
Xiu Zhang
Xin Zhang
Wei Wang

Intelligent
Information
Processing
with Matlab

Intelligent Information Processing with Matlab

Xiu Zhang · Xin Zhang · Wei Wang

Intelligent Information
Processing with Matlab

Xiu Zhang
Tianjin Normal University
Tianjin, China

Wei Wang
Tianjin Normal University
Tianjin, China

Xin Zhang
Tianjin Normal University
Tianjin, China

ISBN 978-981-99-6448-2 ISBN 978-981-99-6449-9 (eBook)
https://doi.org/10.1007/978-981-99-6449-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Paper in this product is recyclable.

https://doi.org/10.1007/978-981-99-6449-9

Preface

The speed of modern science and technology development is becoming faster and
faster. The amount of new science and technology knowledge and information is
rapidly increasing. A British scholar pointed out that the doubling cycle of human
knowledge was 50 years in the nineteenth century, around 10 years in the first half
of the twentieth century, and almost doubled every 3 years by the end of the 1980s.
Recently, there are 13,000–14,000 papers being published daily worldwide. The
continuous emergence of new theories, materials, processes, and methods has accel-
erated the pace of knowledge aging. In the past 30 years, the information produced
by humans has exceeded the total information production of the past 5000 years. This
background shows that we are in an era of information explosion. Thus, intelligent
information processing becomes very important.

This book is aimed for sophomore and junior students of university. We focus on
intelligent information processing algorithms and their mathematical principles. The
presentation of the algorithms is simplified without too many advanced mathematics
and object-oriented programming skills. We believe that the concepts and algorithms
of intelligent information processing can be learning. We also expect that students
could go beyond trial-and-error play. Students can be able to use and apply intelligent
information processing algorithms to solve problems in the real world. This book
can serve as a bridge to the study of intelligent information processing at the senior
undergraduate or postgraduate levels.

The required background is a knowledge of advanced mathematics and program-
ming. From advanced mathematics, the knowledge should include linear algebra,
calculus, and probability. From programming, the knowledge should include sequen-
tial structure, selection structure, and loop structure. MATLAB programming
language is preferred to run the examples of this book. Python programming language
is also popular in artificial intelligence field; however, the packages for running
Python programs are sometimes hard to manage. Thus, we implement the exam-
ples by using MATLAB programming language. In the past course learning process,
students were able to implement most examples themselves using Python program-
ming language. Please let us know if you implement the examples by using other
programming language, and we will post a link on the book’s website.

v

vi Preface

Chapter 1 describes the artificial neural network model and presents several
commonly used neural networks. Chapter 2 presents convolutional neural network
and specifies the metrics to evaluate the performance of neural networks. The research
progress of neural networks is also given in Chap. 2. Chapter 3 presents an overview
of fuzzy computing and specifies the typical problems that fuzzy computing can
solve. Chapter 4 describes the fuzzy neural network model. Time series prediction,
fuzzy clustering, and research progress of fuzzy computing are also introduced in
Chap. 4. Chapter 5 presents an overview of evolutionary computing and specifies four
evolutionary algorithms proposed before 2000. Chapter 6 gives a traveling salesman
problem test set and a continuous optimization problem test set as well as the metrics
to evaluate the performance of evolutionary algorithms. Chapter 6 also introduces
two swarm intelligence algorithms proposed after 2000 and the research progress of
evolutionary computing.

Tianjin, China Xiu Zhang
Xin Zhang
Wei Wang

Acknowledgments

This book arose from the intelligent information processing course at Tianjin Normal
University. The course is for junior students majoring in “artificial intelligence”
and “Intelligent Science and Technology”. We would like to thank all the students,
teachers, and engineers of Tianjin Key Laboratory of Wireless Mobile Communica-
tions and Power Transmission. We would also like to thank all the staffs of College
of Artificial Intelligence, College of Electronic and Communication Engineering,
Science and Technology Department, and Dean’s Office. Without the efforts of them,
this book could not have been written.

We would like to thank Bingyue Xu, Liuwei Zhang, Jian Dang, and Ke Chen for
their efforts on proofreading the text, table, figure, and program of the book.

We would like to thank the staffs at Springer for their help and support in preparing
this book.

Tianjin, China Xiu Zhang
Xin Zhang
Wei Wang

vii

Contents

1 Artificial Neural Network . 1
1.1 Artificial Neuron . 1
1.2 Overview of Artificial Neural Network . 5
1.3 Backpropagation Neural Network . 13
1.4 Hopfield Neural Network . 19
1.5 Competitive Neural Network . 24
1.6 Deep Neural Network . 29
References . 37

2 Convolutional Neural Network . 39
2.1 Overview of Convolutional Neural Network . 39
2.2 Neural Network Performance Evaluation . 46
2.3 Transfer Learning with Convolutional Neural Network 52
2.4 Research Progress of Neural Network . 62
References . 70

3 Fuzzy Computing . 73
3.1 Overview of Fuzzy Computing . 73
3.2 Fuzzy Sets . 74
3.3 Fuzzy Pattern Recognition . 90
3.4 Fuzzy Clustering . 93
3.5 Fuzzy Inference . 101
3.6 Fuzzy Control System . 108
3.7 Fuzzy Logic Designer . 116
References . 126

4 Fuzzy Neural Network . 127
4.1 Overview of Fuzzy Neural Network . 127
4.2 Adaptive Fuzzy Neural Inference System . 134
4.3 Time Series Prediction . 141
4.4 Interval Type-2 Fuzzy Logic . 145
4.5 Fuzzy C-means Clustering . 149

ix

x Contents

4.6 Suburban Commuting Prediction Problem . 159
4.7 Research Progress of Fuzzy Computing . 166
References . 170

5 Evolutionary Computing . 173
5.1 Overview of Evolutionary Computing . 173
5.2 Simple Genetic Algorithm . 176
5.3 Genetic Algorithm for Travelling Salesman Problem 181
5.4 Ant Colony Optimization Algorithm . 188
5.5 Particle Swarm Optimization Algorithm . 194
5.6 Differential Evolution Algorithm . 206
References . 219

6 Testing and Evaluation of Evolutionary Computing 221
6.1 Test Set of Traveling Salesman Problem . 221
6.2 Test Set of Continuous Optimization Problem 224
6.3 Evaluation of Continuous Optimization Problems 230
6.4 Artificial Bee Colony Algorithm . 238
6.5 Fireworks Algorithm . 243
6.6 Research Progress of Evolutionary Computing 246
References . 251

Chapter 1
Artificial Neural Network

Abstract Artificial neural network is the core of deep learning algorithms and the
forefront of artificial intelligence. Its inspiration comes from neurons within the
human brain. Artificial neural network mimics the way biological neurons transmit
signals to each other. It can thus achieve the goal of learning experiences. This
chapter introduces artificial neuron, perceptron and basic model of artificial neural
network. Moreover, the chapter also introduces backpropagation neural network,
Hopfield neural network, competitive neural network. Finally, deep neural network
is introduced in the chapter. Five examples are given to show the working principle
of artificial neural network. The programs for implementing the examples are also
provided for better understanding the model of artificial neural network.

1.1 Artificial Neuron

Artificial neural network (ANN) is a computational structure proposed by scientists
based on neurobiological research to simulate biological processes and reflect certain
properties of the human brain [1]. Artificial neural network is also known as neural
network (NN). It is the abstraction, simplification and simulation of human brain
nervous system.

The nervous system of human brain is composed of neuron as the basic unit.
In order to simulate the neural system of human brain, ANN needs to start from
simulating the biological neuron of human brain, which is called artificial neuron. In
ANN, artificial neurons are called processing units; from the network point of view,
artificial neurons are also called nodes.

The comparison of biological and artificial neurons is shown in Table 1.1. The
artificial neuron simulates the biological neuron. Although the simulation could not
be exactly the same, the main functional steps are the same [2]. First, the input
layer of artificial neurons simulates the dendrites receiving signals from the external
input. Second, the function of the cell body is simulated by a weighted summation,
which means that each component of the received signal is multiplied by a certain
weight and the sum is calculated. Thirdly, the activation function simulates axons
controlling the weighted sum. When it reaches a certain threshold, it represents the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Zhang et al., Intelligent Information Processing with Matlab,
https://doi.org/10.1007/978-981-99-6449-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6449-9_1&domain=pdf
https://doi.org/10.1007/978-981-99-6449-9_1

2 1 Artificial Neural Network

excitation state; otherwise, it is the inhibition state. Finally, the output layer simulates
the synapse to transmit the processed results.

Artificial neuron processes data as follows:

(1) Artificial neuron requires a set of inputs, denote inputs as (x1, …, xi, …, xn).
The inputs are sent to artificial neuron, as shown in Fig. 1.1. In Fig. 1.1, both the
input nodes and the artificial neuron are represented by circles, and the circle
of the artificial neuron is filled with gray. It can be seen that artificial neuron is
a multi-input structure.

(2) Artificial neuron generally sums all the inputs together using a weighted summa-
tion method, as shown in Fig. 1.2. In Fig. 1.2, each input xi is assigned a weight
wi.

(3) Artificial neuron typically has an input bias, as shown in Fig. 1.3. In Fig. 1.3,
the bias is passing an x0 to the artificial neuron and assigning it the weight w0,
so that the bias is w0x0. In general, x0 is equal to − 1. Note that the bias is also
called a deviation, and sometimes the bias is denoted by the symbol b, i.e., b =
w0x0. For ease of expression into a matrix, w0x0 is used here to denote the bias.

After the above steps, the input obtained by the artificial neuron can be computed
by:

Table 1.1 Comparison of biological neuron and artificial neuron

Biological neuron Artificial neuron Function

Dendrite Input layer Receive external input signal

Cell body Weighted summation Filter and process signal

Axon Activation function Set threshold to control signal output

Synapse Output layer Output results after processing

Fig. 1.1 The input of
artificial neuron

Fig. 1.2 The weighted
summation of artificial
neuron

1.1 Artificial Neuron 3

Fig. 1.3 The input bias of
artificial neuron

Fig. 1.4 The output of
artificial neuron

net =
n∑

i=1

wi xi + w0x0 (1.1)

Using the notation of vectors, let denote W = (w0, w1, ..., wi , ..., wn)
T , and

denote X = (x0, x1, ..., xi , ..., xn)T , then Eq. (1.1) can be rewritten as:

net = W T X (1.2)

(4) The output of the artificial neuron is calculated from the activation function,
as shown in Fig. 1.4. In Fig. 1.4, the output function is denoted as f , which is
a function of the input net, sometimes it is also called activation function, or
transfer function.

Let denote the output as y, then:

y = f (net) = f
(
W T X

)
(1.3)

It can be seen that the artificial neuron is a multiple-input single-output structure.
The activation functions of artificial neuron generally take the range domain of

[0, 1] or [− 1, 1]. The commonly used transfer functions are threshold activation
function, nonlinear activation function, piecewise linear activation function, proba-
bilistic activation function, and rectified linear unit (ReLU) activation function. Next,
the mathematical models of the transfer functions are introduced, and the indepen-
dent variable of the transfer functions is always denoted by x for the convenience of
presentation, which is different from the input x of artificial neuron.

Threshold-type activation function is expressed as:

4 1 Artificial Neural Network

f (x) =
{
1, x ≥ 0
0, x < 0

(1.4)

It can be seen that the output of the threshold-type activation function is either 1
or 0. In fact, it is a step function. It can model the excitatory and inhibitory states of
biological neurons.

Nonlinear activation function is expressed as:

f (x) = 1

1 + e−x
(1.5)

The output of the activation function in Eq. (1.5) is a real number between 0 and 1.
Sometimes it is also called Sigmoid function or S-type function. It has the advantage
of being a monotonically differentiable function in the domain of definition. To obtain
a number between − 1 and 1, the following activation function can be used:

f (x) = 2

1 + e−x
− 1 =

1 − e−x

1 + e−x
(1.6)

Segmented linear activation functions:

f (x) =

⎧
⎨

⎩

0, x ≤ 0
cx, 0 < x ≤ xc
1, xc < x

(1.7)

In Eq. (1.7), c is a constant, and xc is another constant related to c.
Probabilistic activation function:

f (x) = 1

1 + e−x/T
(1.8)

In Eq. (1.8), T is a temperature parameter. When the relationship between input
and output is uncertain, we need to use a probabilistic activation function to describe
the probability that the output state is 1.

Linear rectification activation function:

f (x) = max(0, x) =
{
x, x > 0
0, x ≤ 0

(1.9)

The ReLU activation function is generally referred as the ramp function in algebra.
Experiments show that the linear rectification activation function maximizes the
screening ability of artificial neurons. In addition, the linear rectification activation
function converges faster compared to the Sigmoid activation function.

1.2 Overview of Artificial Neural Network 5

1.2 Overview of Artificial Neural Network

Artificial neural network is composed of several artificial neurons and their connec-
tions. Artificial neural network is also called neural network. As shown in Fig. 1.5,
the figure shows an artificial neural network composed of two artificial neurons.

As can be seen from Fig. 1.5, the output of the first artificial neuron:

y1 = f

(
3∑

i=1

wi1xi + w01x01

)
(1.10)

The output of the second artificial neuron:

y2 = f

(
3∑

i=1

wi2xi + w02x02

)
(1.11)

It can be seen from (1.10) and (1.11) that the output formula of each neuron is
similar. For convenience of expression, subscripts are often omitted and expressed
in vector form. The output of the j-th neuron is as follows:

y j = f
(
W T j X

)
(1.12)

where X represents the input transmitted to all neurons, Wj represents the weight
vector from the input to the j-th artificial neuron, and yj represents the output of the
j-th artificial neuron.

Fig. 1.5 Artificial neural network formed by two artificial neurons

6 1 Artificial Neural Network

Fig. 1.6 Artificial neural network with hidden layer

Generally, artificial neural network also contains a hidden layer, which is also
composed of artificial neurons, as shown in Fig. 1.6.

Figure 1.6 shows an artificial neural network with a hidden layer. From the input
layer to the hidden layer, the input data is passed to each hidden layer of neurons.
Similarly, from the hidden layer to the output layer, each artificial neuron of hidden
layer will also pass information to each artificial neuron in the output layer.

According to the shape of network topology structure, network structure can
be classified into hierarchical structure and interconnection structure. The artificial
neural network in Fig. 1.6 is a simple hierarchical structure. In addition, the hierar-
chical structure could have the output layer connected to the input layer structure, and
the connections within the hidden layer or the output layer. Interconnection structure
includes full interconnection structure, local interconnection structure and sparse
interconnection structure.

From the classification of information flow on the network, the network structure
can be divided into feedforward neural network and feedback neural network.

For hierarchical neural network, the number of levels can be divided into single-
layer neural network, shallow neural network and deep neural network. For example,
the neural network in Fig. 1.5 is a single-layer neural network, while that in Fig. 1.6
is a shallow neural network, also known as a common neural network. It is easy to
see that the functional of the input layer node is only to transmit the signal to the next
layer node without designing other operations, so the number of layers of the neural
network does not include the input layer. The deep neural network generally refers
to the neural network with more than or equal to 3 layers. For a deep neural network,
it contains at least two hidden layers, excluding the input layer and the output layer.

To make an artificial neural network work, the weights of each connection in the
network need to be determined, for example, Wj in (1.12). Once the weight is deter-
mined, the corresponding output yj can be calculated. In artificial neural network,
the determination of weights is called learning, that is, the learning of artificial

1.2 Overview of Artificial Neural Network 7

neural network is to determine the weights in the network. Next, we introduce some
commonly used learning methods.

Learning method is able to reflect the intelligence characteristics of artificial
neural network. Without learning algorithm, artificial neural network will lose the
ability of self-organization, self-adaptation and self-learning. The learning process
of artificial neural network is its training process. The so-called training is to adjust
the connection weights between neurons in a certain way during the input of the
sample set composed of sample vectors into the artificial neural network, so that the
network can store the connotation of the sample set in the form of connection weight
matrix. At last, the network can give appropriate output when data is input.

At present, there are many kinds of neural network learning methods. According
to whether there is supervised signal or not, learning methods can be divided into
supervised learning, unsupervised learning and reinforcement learning. Note that
supervised signals are also known as teacher signals, so supervised learning is known
as teacher learning and unsupervised learning is known as teacher-free learning.
Reinforcement learning is also known as evaluative learning. In addition, there is
no strict unified standard for the classification of learning methods. Some scholars
distinguish learning methods from training methods, while some scholars distinguish
learning methods from learning modes. We can distinguish the learning methods
from the format of the dataset, as shown in Table 1.2. As can be seen from the table,
the format of the dataset required for unsupervised learning is the simplest, which is
simply to transmit the input signal to the neural network. Supervised learning requires
knowing the input of a signal and its corresponding real output. Reinforcement
learning requires knowing the input of the signal and the actual output corresponding
to some of the input, and in addition, rating the output.

In supervised learning, the output of the network is compared with the desired
output, and the weights of the network are adjusted according to the difference
between the two, ultimately making the difference smaller. Supervised learning
means that there is teacher learning. It is assumed that both teachers and the neural
network have to make judgments on training vectors (i.e., examples) extracted from
the surrounding environment at the same time, and teachers can provide expected
responses for the neural network according to some knowledge they have mastered.

There will be some difference between the output of neural network and the real
output, which is generally called error. The error can be expressed by a function, so
as to measure the error generated by the whole neural network. This function is also
called loss function, sometimes called cost function, objective function, etc. Common
loss functions include square loss function, logarithmic loss function, cross entropy

Table 1.2 Learning methods and the format of datasets required

Learning method Dataset format

Supervised learning Input and output of neural network

Unsupervised learning Neural network input

Reinforcement learning Neural network input, partial output and the associated level

8 1 Artificial Neural Network

loss function, etc. The value of these loss functions is generally non-negative. The
larger the value of the loss function is, the larger the error of the neural network will
be, and the worse the ability of the neural network to deal with the problem.

Figure 1.7 is a neural network diagram of supervised learning. The weight param-
eters of neural network can be adjusted under the comprehensive influence of training
vector and error signal. The error signal can be defined as the difference between
the predicted output and the real output of the neural network. This adjustment can
be carried out gradually and repeatedly, and the ultimate goal is to make the neural
network simulate the teacher signal. In this way, the teacher’s knowledge of the envi-
ronment can be transferred to the neural network through training. When meeting
certain conditions, the teacher signal can be excluded and the network can cope with
the environment completely autonomously.

Figure 1.8 is a neural network diagram of unsupervised learning. In the teacher-
free learning mode, after the input mode enters the network, the network automati-
cally adjusts the weight according to pre-set rules (e.g. competition rules), so that the
network finally has the function of pattern classification. In the unsupervised learning,
there is no teacher monitoring the learning process, that is, the neural network has
no examples to learn from.

Unsupervised learning can be divided into two categories: self-organized learning
and unsupervised competitive learning.

In the learning process of artificial neural network, the change of weight can be
expressed as follows:

ΔW j = ηr
(
W j (t), X (t), d j (t)

)
X (t) (1.13)

Fig. 1.7 Neural network with supervised learning

Fig. 1.8 Neural network with unsupervised learning

1.2 Overview of Artificial Neural Network 9

where, t is the time, also can be understood as the t-th iteration, η is a positive number,
known as the learning constant, η determines the learning rate.

For the discrete time adjustment, Eq. (1.13) is:

W j (t + 1) = W j + ηr
(
W j (t), X (t), d j (t)

)
X(t) (1.14)

Different learning rules of r
(
W j (t), X (t), d j (t)

)
have different definitions, thus

forming a variety of neural network. Neural network learning rules are as follows:

(1) Hebb learning rule

When neuron i and neuron j are excited at the same time, the connection strength of
the two should increase. When two neurons are connected, it is understood that both
the input and the output of the neuron are positive.

Hebb learning rule is a kind of pure feedforward, unsupervised learning, which
still plays an important role in various neural network models. The learning signal
simply equals to the output of the neuron:

r = f
(
W T j X

)
(1.15)

The weight vector is adjusted by:

ΔW j = η f
(
W T j X

)
X (1.16)

Hebb learning rule requires pre-set weight saturation values to prevent uncon-
strained growth of weights when the input and output are always positive and
negative. Weight is initialized by assigning a small random number near zero to
W j (0).

(2) Winner-take-all learning rule

Winner-Take-All is a competitive learning rule for unsupervised learning in which a
layer of the network is identified as a competitive layer, and for a particular input X,
all p neurons in the competitive layer have output responses, where the neuron with
the largest response value j* is the neuron that wins in the competition. The rule is
expressed as:

W T j∗ X = max
i=1,2,....,p

(W T i X) (1.17)

Only the winning neuron has the right to adjust its weight vector W ∗
j by:

ΔW j∗ = η
(
X − W j∗

)
, η ∈ (0, 1] (1.18)

Since a larger dot product of two vectors indicates a closer approximation, the
adjustment results in making W ∗

j further close to the current input X, so that the next
time an input pattern similar to X appears, the neuron that won last time is more likely

10 1 Artificial Neural Network

to win, and thus the weight vector corresponding to each neuron in the competitive
layer is gradually adjusted to the clustering center of the input sample space.

Sometimes a winning neighborhood is defined with the winning nerve as the
center. In addition to the winning neuron, other neurons in the neighborhood also
adjust their weights to varying degrees. Weights are generally initialized to arbitrary
values and normalized.

Next, we introduce perceptron, which is a kind of feedforward neural network.
Perceptron is a hierarchical neural network which simulates the environment infor-
mation received by human vision and transmits the information by nerve impulse.
Some common feedforward neural networks, such as adaptive linear neural networks,
backpropagation neural networks and radial basis function neural networks, belong
to perceptron in structure. The structure and function of single-layer perceptron are
simple, and the network itself has its inherent limitations, which are overcome by the
proposed improved multi-layer perceptron network and the corresponding learning
rules.

A single layer perceptron is a forward network with one layer of neurons and
a threshold activation function. This forward network has no feedback connections
or intra-layer connections and outputs only one node. The single-layer perceptron
network model is shown in Fig. 1.4.

In the single-layer perceptron, the net input can be obtained as:

net =
n∑

i=0

wi xi (1.19)

In a single-layer perceptron, the predicted output is:

o j = sgn
(
net j − Tj

) = sgn

(
n∑

i=0

wi xi

)
= W T X (1.20)

A single-layer perceptron can do classification. The classification principle is to
store the classification knowledge in the weight vector (including threshold) of the
perceptron. The classification decision determined by the weight vector divides the
input modes into two categories, so as to realize the purpose of classifying the input
vector.

Example 1.1 Suppose the input data has 4 sample points, namely (0, 0), (0, 1), (1, 0)
and (1, 1). The corresponding real output of the four sample points is 0, 1, 1, 1. Since
the output values are only 0 and 1, you can see that this is a binary classification
problem. This problem is simulated in Matlab.

The specific programs are as follows:

x = [0 0 1 1; 0 1 0 1];
t = [0 1 1 1];
graduate School
net = perceptron(‘hardlim’, ‘learnp’);

1.2 Overview of Artificial Neural Network 11

net = configure(net,x,t);
net.iw{1,1} = [-1.5 -0.5];
net.b{1} = 1;
figure(1);
plotpv(x, t);
hold on; box on; grid on;
plotpc(net.iw{1,1},net.b{1}).
xlabel(‘×1’); ylabel(‘×2’); title(‘’).
hold off;
net = train(net,x,t);
view(net)
y = net(x);
figure(2);
plotpv(x, t);
hold on; box on; grid on;
plotpc(net.iw{1,1}, net.b{1})
xlabel(‘×1’); ylabel(‘×2’); title(‘’).
hold off;

In this example, not only a single-layer perceptron is trained, but also the classifi-
cation renderings of the untrained perceptron and the trained perceptron are drawn,
as shown in Figs. 1.9 and 1.10. In these two figures, the circle and the plus sign
respectively represent two types of sample points, and the straight line in the graph
is the dividing line determined by the single-layer perceptron.

Fig. 1.9 Classification results of untrained single-layer perceptron

12 1 Artificial Neural Network

Fig. 1.10 Classification results of trained single-layer perceptron

As can be seen from Fig. 1.9, if the initial weight is arbitrarily set, the single-layer
perceptron cannot correctly classify the input sample. As can be seen from Fig. 1.10,
the single-layer perceptron can correctly classify input samples after training.

The model of the multi-layer perceptron network (MLP) is shown in Fig. 1.11.
Besides the output layer, the multi-layer perceptron also has a mid-layer, called the
hidden layer.

Fig. 1.11 Multi-layer perceptron network model

1.3 Backpropagation Neural Network 13

In the MLP network, the relationship between input and hidden layer processing
unit is the same as that in single-layer perceptron network. Each hidden layer
processing unit determines the position of a decision line through weight adjust-
ment, and then obtains convex domain through weighted sum to completely separate
the two types of data.

Neural network is to learn the input data, constantly adjust the weight value, so
that the loss between the output of neural network and the real output is less and
less, this process is called neural network training, or training a neural network. For
the trained neural network, the new input data is transmitted to the neural network,
so as to calculate the output of the neural network, this process is called prediction,
or the prediction of the neural network. When a neural network is trained with little
error on the trained input data and great error on the new data, this situation is called
overfitting of the neural network. If a neural network has a large error in the trained
input data after training, it will generally have a large error in the prediction, which
is called neural network underfitting.

Both underfitting and overfitting are unsatisfactory, so training a neural network
model needs to consider both cases and make a good trade-off. When a neural network
predicts new data, that is, it judges the output brought by the new input, which is
called generalization of neural network. The new data is also called the test data. The
generalization ability of a neural network is what we are most concerned about. We
always hope that the obtained neural network model has good generalization ability.
Researchers often use regularization method to enhance the generalization ability of
neural networks.

In training, the purpose of neural network is to minimize the error, and in gener-
alization, the purpose is to minimize the generalization error. This problem with
the smallest error is the problem of finding the optimal weight, which is called
the optimization problem in mathematics. From this point of view, the learning of
neural network is to solve the optimization problem, so the optimization problem
research is also very helpful. The commonly used optimization methods include
gradient descent, random gradient descent, batch gradient descent, etc. Sometimes
these methods are called traditional optimization methods. At the other end of the
spectrum is evolutionary computing, or intelligent optimization. The evolutionary
computing approach is described in a later chapter.

1.3 Backpropagation Neural Network

Backpropagation (BP) neural network, also known as BP neural network, belongs to
feedforward neural network like perceptron. Different from perceptron, BP neural
network adopts weight learning algorithm of backpropagation. The error backprop-
agation learning algorithm of BP neural network was proposed by Rumelhart and
McClelland in 1985 [1–3]. When input data in the input layer, BP neural network
transmits information to the output layer through the hidden layer. The results of the
output layer were compared with the true results, then the error could be computed.

14 1 Artificial Neural Network

The transmission direction become from the output layer to the input layer. Each
layer could modify the weight, and finally learn a group of good weight.

Theoretically, when BP neural network adopts nonlinear differentiable activation
function, such as Sigmoid function, it can approximate any nonlinear function, so
BP neural network can effectively solve a variety of nonlinear problems.

The flow chart of backpropagation neural network is shown in Fig. 1.12. The first
step is the preparation of the dataset. For problems with supervised learning, the
dataset needs to include input X and real output y. The output is sometimes called the
label. The second step is the initialization of the neural network. The weights in the
neural network are randomly initialized. The parameters of neural network training,
such as learning rate in learning rules, also need to be initialized. In neural network,
other parameters besides weights are sometimes called hyperparameters, which have
certain influence on the learning ability and generalization ability of neural network.
Hyperparameters are usually set by experience, and some scholars have studied the
setting of hyperparameters. The third step is to calculate the output and error of the
neural network. According to the weight in the neural network, when the data is
transferred from the input layer to the output layer, the output can be calculated. The
output of the neural network is compared with the real output, and the error can be
calculated. The fourth step is error backpropagation. After the error is calculated,
the weight value is updated from the output layer forward layer by layer until the
input layer ends. The fifth step is to judge whether the learning of the neural network
terminates or not. The termination condition can be a pre-set number of iterations,
or the loss function can reach a small value. If there is no termination, go back to
step 3 and continue the iteration; If terminated, the learned neural network model is
output.

As mentioned above, the learning of neural network is a process of adjusting
weights to reduce the error between the predicted output and the real output of
the network. The error between the network predicted output and the real output
is generally measured by loss function. The common loss functions in BP neural
network are square loss function and cross entropy loss function. The expression of
the square loss function is:

L(y) = (o − y)2 (1.21)

where L(y) represents the loss function, o represents the real output, and y represents
the network predicted output.

It can be seen from the formula that the square loss function is the square of the
error between the network predicted output and the real output. If they are the same,
the error is 0; If they are different, the error is greater than 0, and the loss function
is proportional to the error. It should be pointed out that the squared loss function is
an error measure often used in early neural network research. The learning rules of
backpropagation are also derived from the square loss function.

The expression of the cross-entropy loss function is:

L(y) = −oln(y) − (1 − o)ln(1 − y) (1.22)

1.3 Backpropagation Neural Network 15

Fig. 1.12 Training process
of backpropagation neural
network

where ln(y) denotes the natural logarithm function. For the binary classification
problem, the value of the real output is either 0 or 1. When o = 1, the loss function
in the above equation is equivalent to −ln(y), at which point the error increases and
−ln(y) tends to positive infinity as y tends to 0, while the error decreases and −ln(y)
tends to 0 as y tends to 1. When o = 0, the loss function in the above equation is
equivalent to −ln(1 − y), when y tends to 0, the error decreases and −ln(1 − y)
tends to 0; while when y tends to 1, the error increases and −ln(y) tends to positive
infinity. This also shows that the cross-entropy loss function is also proportional to
the error, and the cross-entropy loss function is more sensitive to the error than the
square loss function, i.e., the cross-entropy loss function increases faster than the
squared loss function when the error increases.

Through the simulation analysis of the researchers, it is found that the cross-
entropy loss function is better for the classification of supervised learning. In other
words, when training the back-propagation neural network, if you choose between
the square loss function and the cross-entropy loss function, the cross-entropy loss

16 1 Artificial Neural Network

function is recommended. For the regression problem in supervised learning, the
square loss function learning rule is recommended.

In addition, the purpose of learning rules of neural networks is to reduce the
error between network output and real output, that is, to minimize the error, which
involves the optimization theory in operations research. For example, for the square
loss function, we can get the optimization problem:

min L(y) = (o − y)2

s.t. y = f
(
W T X

) (1.23)

where y is calculated from the weight W of the neural network and the samples
X of the training set, while X is known and the weights W are unknown and need
to be learned to be determined. This means that the independent variable (1.23)
is actually the weight W, which is an optimization model. As mentioned before,
machine learning has the problem of overfitting, and the regularization method can
solve this problem to some extent. The regularization method is to add the weights
to the loss function, whose expression is:

min L(y) = (o − y)2 + 1 2 λ∥W∥2
s.t. y = f

(
W T X

) (1.24)

One of them is λ a parameter to regulate the proportion of errors and weights in
the loss function, and the 1/2 in the expression is introduced for the simplicity of the
expression after the derivative is found.

By comparing model (1.23) and model (1.24), it can be seen that the loss function
is small enough only when the error and weight are reduced in model (1.24) with
regular term added. Conversely, if the error and weight do not decrease, the loss
function cannot approach 0. We will not expand on the optimization model theory
and its solution, interested readers can refer to the relevant books.

In the backpropagation method, we know that the error of the output layer is
reversely transmitted to the hidden layer. The error of the hidden layer is calculated
by reverse transmission of the error of the output layer. In the calculation, the same
connection weight is used to deal with it. In turn, the error can be transmitted to
the hidden layer after the input layer, which realizes the weight adjustment of the
whole neural network. The backpropagation method is very important, and it is also
commonly used in deep learning.

With a trained neural network model, new input data can be predicted. Usually,
a certain amount of data is required for training, that is, the data set contains many
samples, so the training of neural network generally takes some time. In the predic-
tion, it only needs to be passed from the input layer to the output layer, and all kinds
of weights are determined. Compared with the training, the prediction takes a very
short time. Therefore, the neural network model has a good application prospect.

Example 1.2 The dataset for this example comes from the UCI machine learning
database and is about monitoring Coronavirus disease (COVID-19). This problem

1.3 Backpropagation Neural Network 17

belongs to supervised learning. The data set includes 14 samples, each of which has
7 attributes, and the data set has 3 kinds of labels. Matlab is used to establish the BP
neural network program. After training, all samples are predicted and the prediction
accuracy is output.

This problem is simulated in Matlab, and the programs are as follows:

P = [1 1 1 1 1 -1 -1
1 1 -1 1 1 -1 -1
1 1 1 1 -1 1 -1
1 1 -1 1 -1 1 -1
1 -1 -1 -1 -1 -1 1
1 1 1 -1 -1 -1 1
1 1 -1 -1 -1 -1 1
1 1 1 1 -1 -1 -1
1 -1 -1 1 1 -1 -1
-1 1 -1 1 1 -1 -1
1 -1 -1 1 -1 1 -1
-1 1 -1 1 -1 1 -1
-1 1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 1]’;

T = [1 1 1 1 1 1 1 1 2 2 2 2 2 3];
hiddenLayerSize = [10, 10];
net = feedforwardnet(hiddenLayerSize);
net.numLayers.
net.layers{1}.transferFcn = ‘tansig’;
net.layers{2}.transferFcn = ‘logsig’;
net.trainFcn = ‘traingd’;
net.trainParam.goal = 0.01;
net.trainParam.lr = 0.1;
net.trainParam.showWindow = false;
[net, tr] = train(net, P, T);
o = sim(net, P);
o = round(o);
[T; o]
figure1 = figure(1);
axes1 = axes(‘Parent’,figure1);
hold(axes1,‘on’);
box(axes1,‘on’);
grid(axes1,‘on’);
plot(T, ‘d’, ‘MarkerSize’,10,‘LineWidth’,2,‘LineStyle’,‘none’);
plot(o, ‘*’, ‘MarkerSize’,10,‘LineWidth’,2,‘LineStyle’,‘none’);
hold(axes1,‘off’);
set(axes1,‘FontSize’,14);
print(‘Fig’, ‘-dpng’, ‘-r600’)

18 1 Artificial Neural Network

Fig. 1.13 Problem of COVID-19 prediction solved by BP neural network

The running result of this example is shown in Fig. 1.13, where the diamond is the
real output and the asterisk is the output predicted by the BP neural network. As can be
seen from the figure, for 14 samples in the data set, the trained BP neural network can
correctly predict the output results. Due to the use of random initialization weights,
so each independent run of the program may not be able to obtain the same results,
sometimes the prediction becomes inaccurate.

As can be seen from the above example problems, the number of input layer and
output layer nodes of BP neural network depends on the training samples. That is to
say, after the training sample of a certain problem is obtained, the number of input
layer nodes and output layer nodes of BP neural network can be determined.

BP neural network is also a feedforward neural network. Generally speaking,
the structural design of multilayer feedforward neural network needs to solve two
problems. One is how many hidden layers should be designed, and the other is
how many nodes should be designed for each hidden layer. For these two problems,
there is no universal theoretical guidance, but researchers have accumulated a lot of
experience through a lot of practice.

(1) Design of the number of hidden layers.
A feedforward neural network with a single hidden layer can approximate
any continuous function. Two hidden layers are needed only when learning
discontinuous functions. The experience of network design is to give priority
to designing a hidden layer. When a hidden layer has a large number of hidden
nodes, but cannot improve the network performance, you can consider adding

1.4 Hopfield Neural Network 19

another hidden layer. Another rule of thumb is that when two hiding layers are
used, designing more hidden nodes in the first hiding layer and fewer hidden
nodes in the second hiding layer is beneficial to improve network performance.

(2) Design of the number of hidden nodes.
Trial-and-error method is a common method to determine the optimum number
of hidden nodes. In the design of the network, a small number of hidden nodes
can be set first, and then gradually increase the number of hidden nodes. The
same sample set is used for training, from which the number of hidden nodes
corresponding to the minimum error can be determined. In the trial-and-error
method, some empirical formulas can be used to determine the number of hidden
nodes. The number of hidden nodes calculated by these formulas is only a
rough estimate, which can be used as the initial value of trial-and-error method.
Another method of trial-and-error method is to set more hidden nodes at first.
In the training process, the weight with little influence will gradually decline
to zero, so the corresponding nodes can be removed, and the remaining is the
optimal number of hidden nodes.

1.4 Hopfield Neural Network

Hopfield neural network is a feedback neural network proposed by Hopfield and
Tank in 1985. The design of the network follows the principles of physics, and each
artificial neuron is composed of an operational amplifier and a capacitor resistor
element [1–4]. The input signal is added to each artificial neuron in the form of
voltage, and each neuron is connected with each other. After receiving the voltage
signal, after a period of time, the current and voltage of each part of the network
reach a certain stable state. At this time, the output voltage of the network is the
answer to the problem. From the point of view of system, Hopfield neural network
is a kind of static nonlinear mapping, which combines simple nonlinear mapping to
achieve complex nonlinear processing capability.

Hopfield neural network can be divided into discrete and continuous types
according to the input sample processing or activation function. The discrete Hopfield
neural network is suitable for the case where the input sample is binary logic; while
the continuous Hopfield neural network is suitable for the case where the input
sample is analog. Discrete Hopfield neural network activation function is a δ type
function (e.g., symbol function), commonly used in associative memory problems;
The activation function of continuous Hopfield neural network is S type function
(e.g., Sigmoid function), which is generally used for optimization problems.

Discrete Hopfield neural network (DHNN) is a kind of feedback type neural
network. As shown in Fig. 1.14, it is a single-layer neural network. Its feature is that
the output of each artificial neuron is fed back to all neurons except its own through
connection weight, so as to realize that the output of each neuron can be controlled
by the output of all neurons except its own, and the output of each neuron can restrict
each other.

20 1 Artificial Neural Network

Fig. 1.14 Topology of discrete Hopfield neural network

The input of DHNN is the initial state value of the network, denoted as X(0) =
[x1(0), x2(0), …, xn(0)]T. The output of DHNN is the output value of all neuron
states, denoted by X = [x1, x2, …, xn]T. The connection weight of artificial neuron
xi to xj is denoted as wij, that is, the output of xi is fed back to neuron xj as input.
Each neuron has a threshold bj.

Under the excitation of the outside world, DHNN enters the dynamic evolution
process from the initial state, and the state of each neuron is constantly changing.
DHNN usually uses the sign function as the activation function, and the net input of
artificial neuron xj is:

net j =
n∑

i=0

(
wi j xi − b j

)
, j = 1, 2, . . . , n (1.25)

The output of artificial neuron xj is:

f
(
net j

) = sgn
(
net j

) =
{

1, net j ≥ 0,
−1, net j < 0,

j = 1, 2, . . . , n (1.26)

In general, DHNN has wii = 0 and wij = wii. When DHNN reaches stability, the
state of each neuron no longer changes, and the steady state at this time is the output
of DHNN. If the network output of DHNN at moment t is denoted as X(t), the output
of DHNN in the steady state is limt→∞ X(t).

DHNN works in two ways: asynchronous mode and synchronous mode. The
asynchronous mode is a serial mode in which only one neuron at a time adjusts its
state according to (1.26) while the DHNN is running, and the state of other neurons
remains the same. When adjusting the state of neurons, they can be adjusted in some

1.4 Hopfield Neural Network 21

prescribed order, or they can be randomly selected for adjustment. Synchronous
mode is a parallel mode in which all neurons adjust their state simultaneously while
the DHNN is running.

DHNN can store a number of predetermined stable states, that is, the value of
the input. When it runs, an X(0) is applied to the network, and the network will
feed back the output as the input next time. After several iterations, under certain
preconditions, DHNN will finally stabilize at the pre-set stable point. X(0) is known
as the initial activation vector of DHNN, which only plays a driving role in the initial
scope network. In the following loop iteration, the whole network is in a self-excited
state, and X(0) is replaced by the feedback vector as the next input.

DHNN can be regarded as a discrete nonlinear dynamic system, which may have
stable state, finite ring state and chaotic state. First, DHNN can be regarded as a
discrete nonlinear dynamic system. As mentioned above, it starts with the initial
state X(0), and if it can recurse a finite number of times, and its state does not
change, so that X(t + 1) = X(t), then the network is said to be stable, or the network
has a stable state. If DHNN is stable, it can converge from any initial state to a stable
state. Secondly, if DHNN is unstable, since the state of each node in the network
is binary, that is, there are only 1 and − 1 cases, it is impossible for the network
to have infinite divergence, but can only be a self-sustained oscillation between 1
and − 1, then the network becomes a finite ring network, or the network has a finite
ring state. Finally, if the state of a network changes within some definite range, but
its state neither repeats nor stops, that is, its state changes infinitely many, and its
motion trajectory does not diverge to infinity, then this phenomenon is called chaos.
For DHNN, the state of each node is binary, so all possibilities of its network state
are limited, so there will be no chaotic phenomenon. In other words, DHNN does
not have a chaotic state.

If DHNN has a stable state, then it can realize associative memory function. When
the topology structure and weight matrix of the network are given, the Hopfield neural
network can store several pre-set stable states. Which stable state the network reaches
after running is related to the initial state. If the stable state of the network is used
to represent the memory pattern, the process of the initial state converging to the
stable state can be regarded as the process of the network searching for the memory
pattern. The initial state has part of the information of the memory pattern, and the
subsequent evolution of the network is to recall all the information process from part
of the information, thus realizing the associative memory function.

The concept of attractor and energy function is introduced next. If X is the state
when a network reaches stability, X is called the attractor of the network, also known
as the equilibrium point. If the attractor is regarded as the solution of an optimiza-
tion problem, then the evolution process from the initial state to the attractor is the
computational process of finding the optimal solution.

Definition 1.1 If the state X of a network satisfies X = f (WT X − b), then X is said
to be an attractor of the network.

Assuming that X is an attractor of DHNN, the set of all initial states that make
DHNN reach X is called the attractor domain of X.

22 1 Artificial Neural Network

Definition 1.2 If Xa is an attractor of DHNN and DHNN is asynchronous, X is
weakly attracted to Xa if there is an adjustment order so that DHNN can evolve from
state X to Xa. If DHNN can evolve from state X to Xa for any adjustment order, X is
said to be strongly attracted to Xa.

Definition 1.3 If there are some X, which are weakly attracted to Xa, the set of X is
said to be the weakly attracted domain of Xa; If there are some X that are strongly
attracted to Xa, then the set of X is called the strongly attracted domain of Xa.

A network can always evolve into an attractor starting from the state in the attractor
domain. Therefore, when designing the network, it is necessary to make the network
have as large an attractor domain as possible so as to enhance the associative memory
function.

Theorem 1.1 If DHNN adjusts the state of the network in an asynchronous manner,
and its weight matrix W is a symmetric matrix, then for any initial state, DHNN
eventually converges to an attractor.

Theorem 1.2 If DHNN adjusts the state of the network in a synchronous manner,
and its weight matrix W is a non-negative definite symmetric matrix, then for any
initial state, DHNN eventually converges to an attractor.

Theorems 1.1 and 1.2 point out that no matter which way to adjust the state of
the network, as long as certain conditions are satisfied, DHNN can converge to an
attractor, that is, DHNN is stable.

If the DHNN network is stable, and steady state is a generalized concept, how do
you quantify steady state? The energy function is the solution to this problem. For a
system, the more stable it is, the less energy it has, the smaller the value of its energy
function. The minimum value of the energy function corresponds to the stable state
of the system, so the energy function transforms the problem of finding the attractor
into the problem of finding the minimum value of the function. Generally speaking,
the energy function of a network is defined as follows:

E(t) = −
1

2
X (t)T W X(t) + X (t)T b (1.27)

where W is the weight matrix, b is the threshold vector, and E is the energy function.
In addition, the stability of the network is closely related to the energy function,

which can be used to optimize the solution function. When the state of the network
changes, the energy function of the network automatically tends to the minimum point
of energy. If an objective function is expressed in the form of the network energy
function, when the energy function tends to the minimum, the corresponding network
state is the optimal solution of the problem. The initial state of the network can express
the initial solution of the problem. The convergence process of the network from the
initial state to the stable state is the process of optimization calculation. This kind of
optimization search is automatically completed in the evolution of the network.

1.4 Hopfield Neural Network 23

Continuous Hopfield Neural Network (CHNN) is proposed on the basis of DHNN,
both the principle of which is similar. The input of CHNN is analog, that is, contin-
uous, and each neuron runs in parallel. Therefore, CHNN is closer to biological neural
network than DHNN. CHNN is generally used to solve optimization problems, and
will not be introduced here.

Example 1.3 The dataset of this example is a manually generated problem, which
contains two sample points, namely [1, − 1] and [− 1, 1]. The problem assumes that
DHNN contains two neurons and has two attractors. Use Matlab to write DHNN
program. After simulation, output DHNN associative memory results.

This problem is simulated in Matlab, and the programs are as follows:

T = [1, -1; -1, 1];
figure(1); hold on;
plot(T(1,:), T(2,:), ‘ro’, ‘MarkerSize’,10,‘LineWidth’,2);
axis([-1.1 1.1 -1.1 1.1]);
xlabel(‘×1’);
ylabel(‘×2’);
net = newhop(T);
[Y,Pf,Af] = sim(net,2,[],T);
color = ‘rgbmy’;
for i = 1:10

a = {rands(2,1)};
[y,Pf,Af] = sim(net,{1 20},{},a);
record = [cell2mat(a) cell2mat(y)];
start = cell2mat(a);
plot(start(1,1),start(2,1),‘k*’,record(1,:),record(2,:),color(rem(i,5) + 1), …

‘MarkerSize’,10,‘LineWidth’,2)
end
grid on; box on; hold off;

The simulation results of the above problems are shown in Fig. 1.15, where the
attractor is represented by a circle symbol, and DHNN is run repeatedly for 10 times.
The initial state of each time is represented by an asterisk, and the curve from asterisk
to circle represents the trajectory of DHNN iteration.

As can be seen from Fig. 1.15, if the initial state of DHNN is near the upper
left, it converges to the upper left attractor. If DHNN starts near the bottom right, it
converges to the bottom right attractor. This is the associative memory function of
DHNN.

24 1 Artificial Neural Network

Fig. 1.15 Results of the DHNN

1.5 Competitive Neural Network

The human brain can “learn by itself”, that is, through repeated observation, analysis
and comparison of objective things, reveal the internal laws of things and correctly
classify things with common characteristics. Researchers have used neural networks
to achieve this trait, such as the competitive learning neural network described in this
section. In addition, this kind of “untaught” way is a kind of learning way without
a teacher. The learning way without a teacher is also called self-organized learning,
so the “untaught” neural network is also called self-organized neural network. Self-
organizing neural network mimics the learning patterns of biological neural network
in the human brain. It is characterized by self-organizing and adaptively changing
network parameters and structures by automatically searching for intrinsic laws and
intrinsic attributes in samples.

Self-organizing neural network is a hierarchical network structure. Different from
perceptron and BP neural network, self-organizing neural network has competition
layer. As shown in Fig. 1.16, the simplest self-organizing neural network consists of
an input layer and a competition layer. The dashed lines in the figure indicate that
neurons compete with each other. The input layer accepts the external signal and
passes the input pattern to the competition layer. The competition layer analyzes and
compares the transmitted patterns to find out the rules in order to correctly classify
them. The self-organizing function of self-organizing neural network is realized by
competitive learning.

1.5 Competitive Neural Network 25

Fig. 1.16 The simplest
self-organizing neural
network

Competitive learning exists in the human body. There is a lateral inhibition in
the retina, spinal cord and hippocampus of the human eye. This is a phenomenon
in which the excitation of one nerve cell has an inhibitory effect on the surrounding
nerve cells. This lateral inhibition allows the nerve cells to compete with each other.
In the initial state, more than one cell may be excited at the same time, but the most
excited nerve cell also has the most inhibitory effect on the peripheral nerve cells.
As a result, the peripheral nerve cells are less excited, so that this nerve cell is the
“winner” of the competition, while other nerve cells lose the competition.

The strongest inhibitory effect is the “only me” effect of the competition winner,
which does not allow other nerve cells to excite, this is known as winner-take-all.
In competitive learning strategies, winner-take-all is a typical learning rule. The
following details the winner-take-all competitive learning rules.

Step (1) Vector normalization. The current input pattern vector X and the internal
star vector W (j = 1, 2„…, m) are normalized. After normalization, we obtain X

Ʌ

and W
Ʌ

(j = 1, 2, …, m).
Step (2) Finding the winning neuron. When the network obtains an input pattern

vector X
Ʌ

, the inner star weight vector W
Ʌ

j were compared with X
Ʌ

. The inner star
weight vector most similar to X

Ʌ

is judged as the winning neuron, and its weight
vector is denoted as W

Ʌ

j∗ . The similarity can be measured by the Euclidean distance
between W

Ʌ

j and X
Ʌ

, or the cosine of the angle between these two vectors. Euclidean
distance of these two vectors is:

∥X
Ʌ

− W
Ʌ

j∗∥ = min
j∈{1,2,...,m}

{
∥X
Ʌ

− W
Ʌ

j∥
}

(1.28)

By expanding the distance of the above Eq. (1.24) and using the property of unit
vector, it can be simplified as:

∥X
Ʌ

− W
Ʌ

j∗∥ =
/(

X
Ʌ

− W
Ʌ

j∗
)T(

X
Ʌ

− W
Ʌ

j∗
)

(1.29)

26 1 Artificial Neural Network

=
/
X
ɅT

X
Ʌ

− 2W
ɅT

j∗ X
Ʌ

+ W
ɅT

j∗ W
Ʌ

j∗ =
/
2
(
1 − W

ɅT

j∗ X
Ʌ)

(1.30)

As can be seen from (1.29) and (1.30), if the Euclidean distance of two vectors is
minimized, it is only necessary to maximize the dot product of the two vectors:

W
ɅT

j∗ X
Ʌ

= max
j∈{1,2,...,m}

(
W
ɅT

j X
Ʌ)

(1.31)

Note that the dot product of the weight vector and the input vector is exactly the
net input of the competing layer neurons. In other words, the winning neuron is the
one with the highest net input.

Step (3) Output and weight adjustment. In this learning rule, the output of the
winning neuron is 1, and the output of the remaining neurons is 0, as follows:

o j (t + 1) =
{
1, j = j∗

0, j /= j∗
(1.32)

It can be seen that only the winning neuron can adjust its weight vector, and the
adjusted weight vector is:

W j∗ (t + 1) = W
Ʌ

j∗ (t) + ΔW j∗ = W
Ʌ

j∗ (t) + μ(t)
(
X
Ʌ

− W
Ʌ

j∗
)

(1.33)

For the unwinning neurons, their weight values are not adjusted, which is equivalent
to the “victor” neuron j* applying lateral inhibition to them, not allowing them to
excite.

The new vector obtained after the adjustment is not necessarily a unit vector,
so it is necessary to re-normalize the adjusted vector. In other words, after Step (3)
output and weight adjustment is completed, it is necessary to return to Step (1) vector
normalization to continue training until learning rate μ(t) attenuates to 0.

Next, we introduce the principle of competitive learning. As shown in Fig. 1.17,
assuming that the input pattern of a problem is a two-dimensional vector, the normal-
ized input pattern can be regarded as points distributed on the unit circle, represented
by “O”. It is assumed that the competitive learning neural network has three neurons,
and the corresponding three inner star vectors are also distributed on the unit circle
after normalization, which is represented by the gray square. From the observation of
Fig. 1.17, we can see that the input pattern points can be clustered into three clusters,
that is, they can be divided into three categories. In the initial state, the inner star
vectors of the neurons in the competition layer are randomly distributed, so how does
the competitive learning neural network realize the classification of input patterns?

Before the competitive learning neural network starts training, the inner star
vectors of the neurons in the competition layer should be randomly initialized, as
shown in Fig. 1.18. We represent the current input pattern to the neural network
(the current sample) as a solid circle. According to the above calculation steps, the

1.5 Competitive Neural Network 27

Fig. 1.17 An example of
competitive learning

distance between the inner star vector and the current sample needs to be calculated,
and the inner star vector closest to the current sample is the winning neuron.

Then, as shown in Fig. 1.19, the winning neuron can adjust its weight, and after
adjusting its weight, the winning neuron is further closer to the current input pattern.
After weight adjustment, the position of winning neuron moves further to the current
sample and its cluster. The next time an input pattern similar to the current sample
appears in the same cluster, the neuron that won the last time is more likely to win.
After sufficient training in this way, the three inner star vectors on the unit circle
will gradually move into the cluster center of each input pattern, so that the weight
vector of each neuron in the competition layer becomes a clustering center of the
input pattern. After the input pattern training, when a pattern is input into the neural
network, the output of the winning neuron in the competition layer is 1, and the
winning neuron represents the category of the input pattern.

Example 1.4 The data set of this example comes from UCI machine learning
database, which is about the classification problem of iris. This problem belongs
to supervised learning. The data set includes 150 samples, each of which has 4

Fig. 1.18 Competitive
learning example: initial
state

28 1 Artificial Neural Network

Fig. 1.19 Competitive
learning example: weight
adjustment

attributes. All samples are divided into 3 categories, with 50 samples in each cate-
gory. The three types of iris are Sentosa, Versicolour and Virginica. The four attributes
of this dataset are sepal length, sepal width, petal length and petal width. Matlab is
used to write the program of competitive learning neural network. After training, all
samples are predicted and the type of each sample is output.

This problem is simulated in Matlab, and the programs are as follows:

[inputs, outputs] = iris_dataset;
outputs = vec2ind(outputs);
net = competlayer(3);
net = configure(net, inputs);
net.trainParam.epochs = 50;
net = train(net,inputs);
y = net(inputs);
y = vec2ind(y);
figure(2); hold on;
plot(outputs, ‘d’, ‘MarkerSize’,10,‘LineWidth’,2,‘LineStyle’,‘none’);
plot(y, ‘*’, ‘MarkerSize’,10,‘LineWidth’,2,‘LineStyle’,‘none’);
box on; grid on; hold off;

The running results of the above program are shown in Fig. 1.20, with the true
category of each sample represented by a diamond and the predicted category of each
sample represented by an asterisk. As can be seen from the figure, the competitive
learning neural network correctly judged the categories of most sample points, while
about a dozen sample categories were incorrectly predicted.

1.6 Deep Neural Network 29

Fig. 1.20 Competitive learning: clustering results of iris data

1.6 Deep Neural Network

Shallow neural networks and deep neural networks are mentioned in Sect. 1.2. Both
of these two neural networks have more than or equal to 2 layers, which can be
collectively referred to as multi-layer neural networks. With the development of arti-
ficial intelligence, deep learning has been deeply rooted in people’s hearts, becoming
the hottest topic and achieving unprecedented effects [5]. It is just for this reason
that deep neural network is separated from multi-layer neural network. The so-called
deep learning is actually a machine learning method based on the extension of deep
neural network.

Perhaps some readers think that if the hidden layers of the shallow neural network
were increased, it would become a deep neural network. While the performance of
the obtained deep neural network is not good, the main reasons are:

(1) Gradient disappearance. In the error backpropagation method, as the number of
hidden layers increases, the output error cannot be transmitted to the previous
hidden layer nodes, which is the problem of gradient disappearance in the
backpropagation method.

(2) Overfitting. During the training process, the neural network overlearns the
samples, which leads to the neural network has very good performance on

30 1 Artificial Neural Network

the training set and poor performance on the test set, which is the overfitting
problem of the neural network.

(3) The increasing amount of computation. When the number of hidden layers of
the neural network is increased, if the fully connected structure is adopted,
the number of connection weights between nodes increases very fast, and the
dimension of the weight matrix is very large, resulting in a sharp increase in
the amount of computation, which is the problem of increasing the amount of
computation.

The gradient disappearance problem can be solved by using ReLU activation
function and using cross entropy loss function in learning rules. These two small
changes can improve the performance of deep neural networks. The ReLU activation
function was introduced earlier and, to repeat, its expression is:

f (x) = max(0, x) =
{
x, x > 0
0, x ≤ 0

(1.34)

As can be seen from (1.34), when x > 0, the value of ReLU activation function is
x; When x ≤ 0, the value of ReLU activation function is 0. It is not difficult to see
that the value of the activation function is always non-negative. And the derivative
of the ReLU activation function is:

ϕ'(x) =
d f (x)
dx

=
{
1, x > 0
0, x ≤ 0

(1.35)

The expression of the cross-entropy loss function is:

L(x) = −
M∑

i=1

oi log2oi (1.36)

where M is the number of output nodes, oi is the predicted output.
Node dropout or regularization methods can solve the overfitting problem. Regu-

larization methods were introduced earlier. Moreover, the validation set can also
alleviate the overfitting problem in neural network training. Node dropout method is
a simple and effective technique. It means that in the learning process, some nodes
are randomly selected for weight update, while the weights of nodes that are not
selected are not updated. Since each iteration adopts the method of random selec-
tion, the update of node weight is constantly changing. When the dropout technique
is used, the dropout percentage of hidden layer nodes is generally set to 50%, while
the drop percentage of input layer nodes is generally set to 25%.

The problem of the increasing amount of computation can be solved by using
higher performance processors, such as Graphics Processing Unit (GPU), or better
performance numerical methods. With the rapid development of computer hardware
technology, high-performance GPU can solve the problem of increasing amount of
computation to some extent.

1.6 Deep Neural Network 31

Deep learning took off when it was able to solve three problems in which deep
neural networks performed poorly. The success of deep learning has been the result of
many small techniques and improvements. In this section, deep learning technologies
such as convolution, pooling and residual error are not introduced. Instead, a fully
connected deep neural network is built from the deep learning toolbox of Matlab,
and the results are demonstrated by examples.

Example 1.5 The dataset of this example is the dataset in Matlab, which is about
the gear condition classification problem in the transmission system. This problem
belongs to supervised learning. The dataset consists of 208 samples, each of which
has 18 attributes and each of which has 3 labels. In other words, this problem is a
multi-output problem. To facilitate the understanding of the problem, we take the
tooth condition label as the output of the classification problem, and convert the
sensor state and shaft state into the input of the classification problem. The condition
labels for gear teeth include toothless fault and no tooth fault, meaning that the
problem is one of two categories. Write out the shallow neural network and deep
neural network programs respectively with Matlab. After training, predict the test
samples and calculate the accuracy.

The sample size of this example is not large, and in fact, it does not need to
use deep neural network. Shallow neural network can also solve this problem. This
is just a teaching case to show the difference between shallow neural network and
deep neural network. Too many samples will take a long training time, which is not
conducive to case presentation.

The problem is simulated in Matlab, and the shallow neural network is used to
solve the problem. The programs are as follows:

rng(0);
filename = “transmissionCasingData.csv”;
tbl = readtable(filename,‘TextType’,‘String’);
labelName = “GearToothCondition”;
tbl = convertvars(tbl,labelName,‘categorical’);
classNames = categories(tbl{:,labelName});
categoricalInputNames = [“SensorCondition” “ShaftCondition”];
tbl = convertvars(tbl,categoricalInputNames,‘categorical’);
for i = 1:numel(categoricalInputNames).

name = categoricalInputNames(i);
oh = onehotencode(tbl(:,name));
tbl = addvars(tbl,oh,‘After’,name);
tbl(:,name) = [];

end
tbl = splitvars(tbl);
inputs = (table2array(tbl(:, 1:(end-1))))’;
outputs = (double(tbl{:,labelName}))’;
hiddenLayerSize = [20];
net = feedforwardnet(hiddenLayerSize);

32 1 Artificial Neural Network

net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.trainFcn = ‘traingdm’;
net.trainParam.epochs = 1000;
[net, tr] = train(net, inputs, outputs);
tstInd = tr.testInd;
YPred = net(inputs(:, tstInd));
YPred(YPred<1.5) = 1;
YPred(YPred>=1.5) = 2;
tstOutputs = outputs(tstInd);
accuracy = sum(YPred = = tstOutputs)/numel(tstOutputs);
figure (1);
confusionchart(tstOutputs,YPred);

After running the above program, it can be concluded that the accuracy rate of
the shallow neural network on the test set is 90.32%. The program also draws the
confusion matrix, which is omitted here. The training process of shallow neural
network is shown in Fig. 1.21. As can be seen from the figure, there are 20 neurons
in the hidden layer, and the network trains the training data 1000 times. Such training
times are called epochs, also known as generations. This means that each training
sample has been repeated for 1,000 generations. As shown in Fig. 1.21, the training
time of this network is very short, only 1 s.

Next, the problem is simulated in Matlab and the deep neural network is used to
solve the problem. The programs are as follows:

rng(0);
filename = “transmissionCasingData.csv”;
tbl = readtable(filename,‘TextType’,‘String’);
labelName = “GearToothCondition”;
tbl = convertvars(tbl,labelName,‘categorical’);
classNames = categories(tbl{:,labelName});
categoricalInputNames = [“SensorCondition” “ShaftCondition”];
tbl = convertvars(tbl,categoricalInputNames,‘categorical’);
for i = 1:numel(categoricalInputNames)

name = categoricalInputNames(i);
oh = onehotencode(tbl(:,name));
tbl = addvars(tbl,oh,‘After’,name);

end
tbl = splitvars(tbl);
numObservations = size(tbl,1);
numObservationsTrain = floor(0.7*numObservations);
numObservationsValidation = floor(0.15*numObservations);
numObservationsTest = numObservations - numObservationsTrain - numObser-
vationsValidation;
idx = randperm(numObservations);

1.6 Deep Neural Network 33

Fig. 1.21 Training process of shallow neural network

idxTrain = idx(1:numObservationsTrain);
idxValidation = idx(numObservationsTrain + 1: …
numObservationsTrain + numObservationsValidation);

idxTest = idx(numObservationsTrain + numObservationsValidation + 1:end);
tblTrain = tbl(idxTrain,:);
tblValidation = tbl(idxValidation,:);
tblTest = tbl(idxTest,:);
numFeatures = size(tbl,2) - 1;
numClasses = numel(classNames);
layers = [featureInputLayer(numFeatures,‘Normalization’, ‘zscore’).

34 1 Artificial Neural Network

fullyConnectedLayer(20
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer.
classificationLayer];

miniBatchSize = 8;
options = trainingOptions(‘adam’, …

‘MaxEpochs’, 30, …
‘MiniBatchSize’,miniBatchSize, …
‘Shuffle’,‘every-epoch’, …
‘ValidationData’,tblValidation, …
‘Plots’,‘training-progress’, …
‘Verbose’,false);

net = trainNetwork(tblTrain,labelName,layers,options);
YPred = classify(net,tblTest(:,1:end-1),‘MiniBatchSize’,miniBatchSize);
YTest = tblTest{:,labelName};
accuracy = sum(YPred = = YTest)/numel(YTest);
figure(1);
cm = confusionchart(YTest,YPred);

After running the above program, it can be concluded that the accuracy of the
deep neural network on the test set is 93.75%. The program also draws the confusion
matrix, which is omitted here. The training process of this deep neural network is
shown in Fig. 1.22. As can be seen from the figure, the deep neural network is run
on a single CPU computer, and the accuracy of the verification set is 93.55%, which
is similar to that of the test set, indicating that there is no overfitting phenomenon.
The network performed 30 rounds of training on the training data, much less than
the 1000 rounds of shallow neural network. As shown in Fig. 1.22, the training time
of this network is 14 s, indicating that the training time of deep neural network is
longer than that of shallow neural network. Moreover, during the training of this
deep neural network, the number of iterations per round is 18. This is because deep
neural networks generally use batch or minibatch training.

In the learning process of a neural network, samples need to be passed to the
input layer, and the weights are adjusted after passing through the network. If the
weights are adjusted after each training sample is passed to the input layer, this is
the shallow neural network learning method. The so-called batch learning method
is to pass all training samples to the input layer before adjusting the weights. In this
way, the weights are updated by averaging the changes of all samples. The so-called
small-batch learning approach is in between the above two approaches, where the
weights are adjusted after passing a portion of the training samples to the input layer,
and the average weights are used to update the weights of the neural network. In the
above example of deep neural network, the size of small batch is set to 8, i.e., the
number of samples passed to the input layer for each iteration is 8, and the number

1.6 Deep Neural Network 35

Fig. 1.22 Training process of deep neural network

of training samples is 0.7 × 208 = 145, then the number of iterations needed to train
all samples is 145/8 ≈ 18.

The previous section describes the way to write programs to implement shallow
and deep neural networks, and next we describe the way to implement deep neural
networks using Matlab’s App. Matlab provides many apps for users to use, which
is a graphical user interface. Since the introduction of the App design approach in
2016, Matlab has gradually added many functions and the App has become more
and more mature.

Find the Deep Network Design App in the Matlab menu, and by clicking Open, you
can build a deep neural network by dragging and dropping. As shown in Fig. 1.23, we
build the same structure as the deep neural network program above, the input layer
is the “featureInputLayer”, which is suitable for numerical data without spatial–
temporal characteristics, and for image data you can choose the “imageInputLayer”
on the left. the rest of the layers of this deep neural network are not described in
detail. It should be noted that Fig. 1.23 shows that the network has 7 layers. The
number of layers here is not the number of layers in the network, but the number of
components in the whole network. For example, the “featureInputLayer” is the first
layer, which is called “input”, the second layer is the “fullyConnectedLayer”, which
is called “fc_1”, and so on, and the seventh layer is the “classificationLayer”, which
is called “classoutput”.

After creating the network, the network structure needs to be analyzed to verify
the feasibility of the designed network. As shown in Fig. 1.24, after analyzing the
network structure, no warnings or errors are given. It should be noted that it is
possible to export the designed network, either as a file or to a workspace, or to the
corresponding code program. This provides more options for users who prefer to
write code for editing, while users who prefer interface interaction can export to a
file and continue editing the network structure later.

36 1 Artificial Neural Network

Fig. 1.23 Designing a deep neural network using an App

Fig. 1.24 Analyzing a deep neural network using an App

References 37

After finishing the design of the network, you can import the existing dataset in
the “Data” panel, and also train the deep neural network in the “Training” panel,
and these operations will not be described specifically. It should be noted that some
features of the Deep Network Designer App are not perfect, and new features are
added every year, so users can design the network according to the version of Matlab.

Exercises

(1) Try to write three neuron activation functions and draw the corresponding
curves.

(2) Try to draw a schematic diagram of the neuron model, write the mathematical
model of the neuron, and explain the meaning of each variable in the model.

(3) Try to write the process of backpropagation neural network algorithm and
explain its advantages and disadvantages.

References

1. Zhou ZH (2021) Machine learning. Springer, Singapore. https://doi.org/10.1007/978-981-15-
1967-3

2. Ben-Ari M, Mondada F (2015) Elements of robotics. Springer, Cham, pp 203–220. https://doi.
org/10.1007/978-3-319-62533-1

3. Chen K, Zhang X, Zhang X (2022) Identifying important attributes for secondary school student
performance prediction. In: Liang Q, Wang W, Mu J, Liu X, Na Z (eds) 3rd Artificial intelligence
in China, ChangBaiShan, July 2021. Lecture Notes in Electrical Engineering, vol 854. Springer,
Singapore, pp 151–158. https://doi.org/10.1007/978-981-16-9423-3_19

4. Keller JM, Liu D, Fogel DB (2016) Fundamentals of computational intelligence: neural
networks, fuzzy systems, and evolutionary computation. Wiley-IEEE Press, New York

5. Aggarwal CC (2018) Neural networks and deep learning—a textbook. Springer, Cham. https://
doi.org/10.1007/978-3-319-94463-0

https://doi.org/10.1007/978-981-15-1967-3
https://doi.org/10.1007/978-981-15-1967-3
https://doi.org/10.1007/978-3-319-62533-1
https://doi.org/10.1007/978-3-319-62533-1
https://doi.org/10.1007/978-981-16-9423-3_19
https://doi.org/10.1007/978-3-319-94463-0
https://doi.org/10.1007/978-3-319-94463-0

Chapter 2
Convolutional Neural Network

Abstract Convolutional neural network is one of the most important networks in
deep learning. Different from common artificial neural network, the main charac-
teristic of convolutional neural network is the convolution operation. It has made
remarkable achievements in computer vision and natural language processing. More-
over, convolutional neural network has received extensive attention from industry and
academia. This chapter first introduces the convolution operation of the convolutional
neural network. Then performance evaluation metrics are introduced. Based on two
typical convolutional neural network, transfer learning is demonstrated to use trained
convolutional neural network to solve new computer vision problems. Finally, the
state-of-the-art research progress of artificial neural network is provided.

2.1 Overview of Convolutional Neural Network

Convolution neural network (CNN) is used to deal with artificial neural network
with mesh structure data, its main characteristic is the convolution operation. In the
common artificial neural network, such as BP neural network, the parameter calcu-
lation of the network is generally realized by matrix multiplication. In convolutional
neural network, the parameter calculation of at least one layer of the network is real-
ized by convolutional operation. CNN is one of the most important networks in the
field of deep learning. Since CNN has made remarkable achievements in many fields
including but not limited to computer vision and natural language processing, it has
received extensive attention from industry and academia in the past few years.

In 1998, Yann LeCun first used the term “convolutional” in his paper, which is
where the name convolutional neural network came from [1]. LeCun used CNN
to solve the problem of handwritten postal code recognition, which involves image
processing. It can be said that CNN were originally used for image recognition, which
belongs to the field of computer vision. As we all know, vision is the main source
of human information about the outside world. Psychologist Treicher has done an
experiment on the sources of human access to information, and the experimental
results show that 83% of human access to information comes from vision, 11%
comes from hearing, and the rest comes from smell, touch and taste. In artificial

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Zhang et al., Intelligent Information Processing with Matlab,
https://doi.org/10.1007/978-981-99-6449-9_2

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6449-9_2&domain=pdf
https://doi.org/10.1007/978-981-99-6449-9_2

40 2 Convolutional Neural Network

intelligence, computer vision is also the largest area of research. For example, in the
artificial intelligence software market organized by a research institute from China in
2020, artificial intelligence is divided into computer vision, speech recognition and
natural language processing, and data science; Computer vision accounted for about
56.6%, speech recognition and natural language processing for 35.6%, and data
science for about 7.8%.The research of artificial intelligence is inseparable from
computer vision, and the research of computer vision is inseparable from images.
Therefore, we need to learn CNN with images as the basic data.

Let’s take the MNIST image dataset for an example. The MINST dataset is an
open-source handwritten digit recognition dataset maintained by LeCun [1]. In the
MNIST dataset, the training set consists of handwritten numbers from 250 different
people, 50% of whom are high school students and 50% of whom are Census Bureau
staff, and the test set is the same ratio. In the MNIST dataset, each image is composed
of 28× 28 pixels, and each pixel is represented by a grayscale value, that is, all images
are grayscale images of the same size. The dataset includes 10 Arabic numbers
ranging from 0 to 9, so it is a classification problem for 10 categories.

In the MNIST dataset, the training set has 60,000 images, while the test set has
10,000 images. We can use the following programs to look at the images in this
dataset:

oldpath = addpath(fullfile(matlabroot,examples’,‘nnet’,‘main’));
filenameImagesTrain = ‘dataset\train-images-idx3-ubyte.gz’;
filenameLabelsTrain = ‘dataset\train-labels-idx1-ubyte.gz’;
filenameImagesTest = ‘dataset\t10k-images-idx3-ubyte.gz’;
filenameLabelsTest = ‘dataset\t10k-labels-idx1-ubyte.gz’;
XTrain = processImagesMNIST(filenameImagesTrain);
YTrain = processLabelsMNIST(filenameLabelsTrain);
XTest = processImagesMNIST(filenameImagesTest);
YTest = processLabelsMNIST(filenameLabelsTest);
path(oldpath);
figure(1);
numImages = size(XTrain, 4);
idx = randperm(numImages,9);
for i = 1:length(idx)

subplot(3,3,i);
im = extractdata(XTrain(:,:,:,idx(i)));
imshow(im);

end

The result after running the above program is shown in Fig. 2.1. Since 9 images
are randomly selected for display, the repeated running of the program may display
different images. With the training set and the test set, we have the necessary data
for image recognition. Empirically, researchers divide the training set into two parts,
one is used to train the neural network model, and the other is used to cross-validate
the performance of the model, so researchers now often refer to the dataset as the
training set, the validation set, and the test set.

2.1 Overview of Convolutional Neural Network 41

Fig. 2.1 The 9 images in the MNIST dataset

In a BP neural network, suppose there is an input layer, one hidden layer and
an output layer. For the binary classification problem, suppose the size of the input
sample is N, the number of neurons in the hidden layer is M, the neurons in the
output layer is 1. Hence, the number of weight parameters from the input layer to
the hidden layer is N × (M + 1), where 1 denotes the threshold, and the number
of weight parameters from the hidden layer to the output layer is M + 1, then the
number of weight parameters of the BP neural network is N × (M + 1) + M + 1. In
a fully connected deep neural network, suppose there is an input layer, two hidden
layers and an output layer. For the same binary classification problem, the number
of weight parameters of this deep neural network is N × (M + 1) + M × (M + 1) +
M + 1. It can be seen that the growth of the number of parameters is proportional
to the size of the input layer, and also proportional to the number of neurons in the
hidden layer. For image data, the growth rate of the number of parameters is too
fast, which leads to a decrease in the learning efficiency of the neural network, and
the convolution operation is an effective method to solve the problem of too large
number of parameters.

CNN includes input layer, convolutional layer, pooling layer, fully connected
layer, etc. After the analysis of researchers, the role of convolutional layer and
pooling layer is feature extraction, i.e., extracting features such as edge, shadow,
contour, etc. from the image. While the fully connected layer is the same role as BP
neural network. Generally, CNN has multiple fully connected layers, so it is more

42 2 Convolutional Neural Network

Fig. 2.2 Structure of the convolutional neural network LeNet

like deep neural network, so CNN is a feedforward neural network that contains
multiple fully connected layers for convolutional computation. The typical convo-
lutional neural networks (CNNs) are LeNet, AlexNet, VGGNet and GoogLeNet.
Unlike AlexNet and VGGNet, GoogLeNet does not rely on deepening the structure
of neural networks, but introduces a module called Inception structure.

We use LeNet as an example to describe how to create a CNN. The structure of
LeNet is shown in Fig. 2.2, which is a 7-layer network structure. Note that the input
layer is not counted in the number of layers.

LeNet is used for handwritten postal code images, so the image of the input layer
is assumed to be a 32 × 32 pixel grayscale map. The first layer of LeNet is the
convolutional layer, which is noted as convolutional layer 1. In convolutional layer
1, 6 convolutional kernels are used, each with a size of 5 × 5 pixels and a step size of
1. Therefore, the size of the image computed by each convolutional kernel is (32–5
+ 1) × (32–5 + 1) = 28 × 28 pixels, 6 convolution kernels generate 6 images of
28 × 28 pixels, sometimes also called feature maps. The number of neurons from
the input layer to the convolutional layer 1 is 28 × 28 × 6 = 4704, and the weight
parameters are 6 convolutional kernels and their threshold (5 × 5 + 1) × 6 = 156.
The number of connections from the input layer pixel points to the convolutional
layer 1 pixel points is 156 × 28 × 28 = 122,304. If the fully connected approach is
used, the number of connections is 32 × 32 × (4704 + 1) = 4,817,920, which shows
that the number of connections is greatly reduced by using the convolutional layer.

The second layer of LeNet is the pooling layer, denoted as pooling layer 2. The
feature map input to pooling layer 2 is 28 × 28 pixels, using 2 × 2 pixel sampling,
i.e., 4 pixel values in the 2 × 2 pixel region are summed, multiplied by a weight
parameter, plus a threshold parameter, and using the Sigmoid activation function,
pooling layer 2 outputs a 14 × 14 pixel feature map. Pooling layer 2 uses six 2 ×
2 pixels for sampling, so it yields six 14 × 14 pixel feature maps, i.e., the number
of neurons is 14 × 14 × 6. The number of connections from convolutional layer 1
to pooling layer 2 is (2 × 2 + 1) × 14 × 14 × 6 = 5880. Since the image becomes
smaller after sampling, the pooling layer is also called the downsampling layer.

The third layer of LeNet is the convolutional layer, which is called convolutional
layer 3. In convolutional layer 3, 16 convolutional kernels are used, and the size of
each convolutional kernel is 5 × 5 pixels with a step size of 1. Therefore, the size
of the image computed by each convolutional kernel is (14–5 + 1) × (14–5 + 1)
= 10 × 10 pixels, and 16 convolutional kernels yield 16 feature maps of 10 × 10

2.1 Overview of Convolutional Neural Network 43

pixels. Since 16 convolutional kernels are used, if all the convolutional kernels are
connected to the feature maps obtained in the previous layer, it is easy to cause too
many connections. To reduce the computation, the first 6 convolutional kernels of
the 16 convolutional kernels are connected to 3 adjacent subsets of the feature maps
obtained in the previous layer, the next 6 convolutional kernels are connected to 4
adjacent subsets of the feature maps obtained in the previous layer, and then the next
3 convolutional The next 6 convolutional kernels are connected to the subset of 4
non-adjacent feature maps obtained from the previous layer, the next 3 convolutional
kernels are connected to the subset of 4 non-adjacent feature maps obtained from the
previous layer, and the last 1 convolutional kernel is connected to all feature maps
obtained from the previous layer, as shown in Table 2.1. The number of connections
from pooling layer 2 to convolutional layer 3 is 6 × (3 × 5 × 5 + 1) + 6 × (4 × 5
× 5 + 1) + 3 × (4 × 5 × 5 + 1) + 1 × (6 × 5 × 5 + 1) × 10 × 10 = 151,600. the
number of neurons in convolutional layer 3 is 10 × 10 × 16 = 1600.

In Table 2.1, the serial number in the first row represents the 16 convolutional
kernels of convolutional layer 3, while the serial number in the first column represents
the 6 convolutional kernels of pooling layer 2. The number 1 after the second column
in the second row indicates that one of the convolutional kernels of pooling layer
2 is connected to one of the convolutional kernels of convolutional layer 3, while
the number 0 indicates that there is no connection between the two convolutional
kernels.

The fourth layer of LeNet is the pooling layer, noted as pooling layer 4. The feature
map input to pooling layer 4 is 10 × 10 pixels, using 2 × 2 pixels of sampling, which
is the same setup as pooling layer 2, and the output is a 5 × 5 pixel feature map.
Pooling layer 4 uses 16 2 × 2 pixels for sampling, so it generates 16 feature maps
of 5 × 5 pixels, i.e., the number of neurons is 5 × 5 × 16 = 400. The number of
connections from convolutional layer 3 to pooling layer 4 is (2 × 2 + 1) × 400 =
2000.
The fifth layer of LeNet is the convolutional layer, which is called convolutional
layer 5. In convolutional layer 5, 120 convolutional kernels are used, and the size of
each convolutional kernel is 5 × 5 pixels with a step size of 1. Therefore, the size
of the image computed by each convolutional kernel is (5–5 + 1) × (5–5 + 1) =
1 × 1 pixel, and 120 feature maps of 1 pixel are obtained from 120 convolutional
kernels. The number of neurons in convolutional layer 5 is 120, and each neuron is

Table 2.1 Connection method of pooling layer 2 and convolutional layer 3

Kernel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1

2 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1

3 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1

4 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1

5 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1

6 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1

44 2 Convolutional Neural Network

connected to all the 16 feature maps obtained from pooling layer 4. The number of
connections from pooling layer 4 to convolutional layer 5 is (5 × 5 × 16 + 1) × 120
= 48,120. Since the convolutional kernels of convolutional layer 5 have the same
size as the feature maps obtained from pooling layer 4 and are all connected to each
other, convolutional layer 5 is equivalent to a fully connected layer.

The sixth layer of LeNet is the fully connected layer, denoted as fully connected
layer 6. In fully connected layer 6, the number of neurons is 84, and the number of
connections from 120 neurons in convolutional layer 5–84 neurons in this layer is
(120 + 1) × 84 = 10,164. This layer uses the Sigmoid activation function.

The seventh layer of LeNet is the output layer, denoted as output layer 7, which
is also a fully connected layer. In output layer 7, the number of neurons is 10. It uses
one-hot encoding method, and 10 neurons can represent the category of numbers
from 0 to 9. This layer uses radial basis functions as activation functions.

In Matlab, you can use the Deep Network Designer App to design LeNet, as shown
in Fig. 2.3. Export the designed network and select “Generate Code” to generate the
corresponding programs, as follows:

layers = [
imageInputLayer([32 32 1],“Name”,“imageinput”)
convolution2dLayer([5 5],6,“Name”,“conv1”)

Fig. 2.3 Designing LeNet neural network

2.1 Overview of Convolutional Neural Network 45

maxPooling2dLayer([2 2],“Name”,“maxpool2”,“Padding”,“same”,“Stride”,[2
2])

convolution2dLayer([5 5],16,“Name”,“conv3”)
maxPooling2dLayer([2 2],“Name”,“maxpool4”,“Padding”,“same”,“Stride”,[2

2])
convolution2dLayer([5 5],120,“Name”,“conv5”)
fullyConnectedLayer(84,“Name”,“fc6”)
fullyConnectedLayer(10,“Name”,“fc7”)
softmaxLayer(“Name”,“softmax”)
classificationLayer(“Name”,“classoutput”)];

plot(layerGraph(layers));

For multi-classification problems, “softmaxLayer” and “classificationLayer” are
generally required, but they are generally not counted as layers. As mentioned above,
the input of LeNet is a 32 × 32 pixel grayscale image, while the image of MNIST
is a 28 × 28 pixel grayscale image, there are two ways to solve this problem. One
way is to adjust the network structure of LeNet, such as the size of the convolutional
kernel and the way to connect between layers; the other way is to adjust the size of
the image. Here we use the second method, which is to enlarge the image from 28
× 28 pixels to 32 × 32 pixels. After resizing the image, you can use LeNet to solve
the MNIST classification problem. For the image resizing, the following programs
can be used:

resize3dLayer(“Name”,“resize3d-output-size”,…
“GeometricTransformMode”,“half-pixel”,“Method”,“nearest”,…
“NearestRoundingMode”,“round”,“OutputSize”,[32 32 1]).

Place the program for adjusting image size between the input layer and convolution
layer 1.

The programs to train and test LeNet model are as follows:

layers = [
imageInputLayer([28 28 1],“Name”,“imageinput”)
resize3dLayer(“Name”,“resize3d-output-size”,…
“GeometricTransformMode”,“half-pixel”,“Method”,“nearest”,…
“NearestRoundingMode”,“round”,“OutputSize”,[32 32 1])
convolution2dLayer([5 5],6,“Name”,“conv1”)
maxPooling2dLayer([2 2],“Name”,“maxpool2”,“Padding”,“same”,“Stride”,[2

2])
convolution2dLayer([5 5],16,“Name”,“conv3”)
maxPooling2dLayer([2 2],“Name”,“maxpool4”,“Padding”,“same”,“Stride”,[2

2])
convolution2dLayer([5 5],120,“Name”,“conv5”)
fullyConnectedLayer(84,“Name”,“fc6”)
fullyConnectedLayer(10,“Name”,“fc7”)
softmaxLayer(“Name”,“softmax”)

46 2 Convolutional Neural Network

classificationLayer(“Name”,“classoutput”)];
options = trainingOptions(‘sgdm’, …

‘MaxEpochs’,10, …
‘MiniBatchSize’,128, …
‘Plots’,‘training-progress’);

trainNet = trainNetwork(XTrain,YTrain,layers,options);
save(‘MNIST_LeNet5.mat’,‘trainNet’);
YPred = classify(trainNet, XTest);
accuracy = sum(YPred == YTest)/numel(YPred);

The training process is not shown for the saving of space. The accuracy on the
test set is 98.42%, which shows that LeNet is able to solve the MNIST classification
problem.

It should be noted that when using Matlab to solve classification problems, the
classify function is generally used to make predictions, while when using Matlab to
solve regression problems, the predict function is generally used to make predictions.

2.2 Neural Network Performance Evaluation

This section describes how to evaluate the performance of a neural network. In the
previous section, we used accuracy to describe the performance of a model, but there
are many other metrics that can evaluate the performance of a model. Note that the
evaluation methods can also be used to assess other machine learning methods such
as decision tree and support vector machine.

In the Sect. 2.1, we used the MNIST dataset, which is not stored as images, using
the form of an numerical arrays. This is obviously not a figurative way to represent
image dataset. In this section we use the Digits dataset as the dataset, which is a
similar dataset to MNIST that comes with Matlab. The Digits dataset consists of
10,000 images in ten categories from 0 to 9, with 1000 images in each category. The
form of our image data storage divides this dataset into a training set, a validation
set and a test set in the ratio of 6:2:2. The programs used are as follows:

digitDatasetPath = fullfile(matlabroot,‘toolbox’,…
‘nnet’,‘nndemos’, ‘nndatasets’,‘DigitDataset’);

imds = imageDatastore(digitDatasetPath, …
‘IncludeSubfolders’,true,‘LabelSource’,‘foldernames’);

figure(1);
numImages = length(imds.Files);
idx = randperm(numImages,9);
for i = 1:length(idx)
subplot(3,3,i);
imshow(imds.Files{idx(i)});

end
labelCount = countEachLabel(imds);

2.2 Neural Network Performance Evaluation 47

img1 = readimage(imds,1);
size(img1)
[imdsTest,imdsTrain] = splitEachLabel(imds,0.2,‘randomize’);
[imdsValid,imdsTrain] = splitEachLabel(imdsTrain,0.25,‘randomize’);
labelCountTest = countEachLabel(imdsTest);
labelCountTrain = countEachLabel(imdsTrain);
labelCountValid = countEachLabel(imdsValid);

The results of the above program after running are shown in Fig. 2.4. As can be
seen from the figure, the Digits dataset is very similar to MNIST, except that the
number of samples becomes smaller. There are 600 images for each category in the
training set, 200 images for each category in the validation set, and 200 images for
each category in the test set.

We still use the LeNet model from the previous section and the network structure
can be analyzed using the following program:

analyzeNetwork(layers);

Analyzing the network structure yields Fig. 2.5, from which we can see the size
of the output feature map for each layer and the number of weight parameters to
be learned for each layer. For LeNet, the input layer, adjustment size, pooling layer,

Fig. 2.4 Showing 9 images in the Digits dataset

48 2 Convolutional Neural Network

Fig. 2.5 Analyzing the LeNet network

Softmax and output layer do not involve weight parameters, so they are indicated by
“-” in the figure.

The training and testing programs for the LeNet network are as follows:

layers = [
imageInputLayer([28 28 1],“Name”,“imageinput”)
resize3dLayer(“Name”,“resize3d-output-size”,…
“GeometricTransformMode”,“half-pixel”,“Method”,“nearest”,…
“NearestRoundingMode”,“round”,“OutputSize”,[32 32 1])
batchNormalizationLayer
convolution2dLayer([5 5],6,“Name”,“conv1”)
maxPooling2dLayer([2 2],“Name”,“maxpool2”,“Padding”,“same”,“Stride”,[2

2])
convolution2dLayer([5 5],16,“Name”,“conv3”)
maxPooling2dLayer([2 2],“Name”,“maxpool4”,“Padding”,“same”,“Stride”,[2

2])
convolution2dLayer([5 5],120,“Name”,“conv5”)
fullyConnectedLayer(84,“Name”,“fc6”)
fullyConnectedLayer(10,“Name”,“fc7”)
softmaxLayer(“Name”,“softmax”)
classificationLayer(“Name”,“classoutput”)];

options = trainingOptions(‘sgdm’, …
‘MaxEpochs’,10, …
‘Shuffle’,‘every-epoch’, …
‘MiniBatchSize’,128, …

2.2 Neural Network Performance Evaluation 49

‘ValidationData’,imdsValid, …
‘ValidationFrequency’,10, …
‘Verbose’,false, …
‘Plots’,‘training-progress’);

trainNet = trainNetwork(imdsTrain,layers,options);
save(‘Digits_LeNet5.mat’,‘trainNet’);
YPred = classify(trainNet, imdsTest);
YTest = imdsTest.Labels;
accuracy = sum(YPred = = YTest)/numel(YPred);

The results of the above program after running are shown in Fig. 2.6. It can be
seen that the training process was completed in 78 s on a CPU computer, which is
still relatively fast. The accuracy on the validation set is 95.85%, while the accuracy
on the test set is 96.65%, which shows that the LeNet network is able to solve the
classification problem of the Digits dataset.

Accuracy is the most commonly used and basic metric to evaluate the performance
of a classification model, but it is not applicable to all cases. For example, suppose
there is an unbalanced dataset which is a binary classification problem containing
10,000 samples, where the number of positive class samples is 9900 and the number
of negative samples is 100. If there is a classification model that predicts all the
samples as positive class, then its accuracy is 9900/10,000 = 99%. Although the
accuracy of this classification model is very high, it cannot determine the negative
class samples, and we generally consider the model unconvincing. Especially for the
medical diagnosis problem, the number of patients as negative class and the number
of normal people as positive class samples, usually the number of patients is much
smaller than the number of normal people, such a model cannot effectively determine

Fig. 2.6 Training process of LeNet network on Digits dataset

50 2 Convolutional Neural Network

Fig. 2.7 Confusion matrix
of binary classification
problem

the negative class and is not helpful for identifying patients. Thus, other criteria are
needed to evaluate the performance of the classification model.

We first present the evaluation metrics for binary classification problems and then
extend to multi-class classification problems. For binary classification problems, in
medicine they are generally referred to as positive and negative, while in artificial
intelligence we generally refer to samples as positive and negative classes and assume
that the positive class is the one we focus on.

As shown in Fig. 2.7, for a binary classification problem, a particular classification
model may predict the sample as either positive or negative class, and the true class
of the sample has been given, then four scenarios can be combined:

(1) True Positive (TP). True means that a classification model identifies a sample
as a positive class, and the true class of the sample is the positive class, which
simply means that the positive sample is correctly identified as the positive class.

(2) False Negative (FN). False negative means that a classification model identifies
a sample as a negative class, while the true class of the sample is positive, which
simply means that the positive sample is incorrectly identified as a negative
class.

(3) False Positive (FP). False positive means that a classification model identifies
a sample as a positive class, while the true class of the sample is a negative
class, which simply means that the negative sample is incorrectly identified as
a positive class.

(4) True Negative (TN). True negative means that a classification model identifies
a sample as a negative class when the true class of the sample is negative, which
simply means that the negative sample is correctly identified as a negative class.

If we use the letter abbreviations in Fig. 2.7 to represent the number of samples
for each scenario, the accuracy rate is:

ACC = T P + T N

T P + FN + FP + T N
(2.1)

where ACC denotes accuracy, the numerator is the number of sample categories
correctly identified by a model, and the denominator is the number of all samples.
Precision is defined as:

P = T P

T P + FP
(2.2)

2.2 Neural Network Performance Evaluation 51

where P denotes the precision rate, which indicates the proportion of samples that
are true positive samples among those identified as positive classes by a particular
model. The Recall is:

R = T P

T P + FN
(2.3)

where R denotes the recall rate, which indicates the proportion of samples that are
identified as positive classes by a particular model among those that are truly positive
classes. In Fig. 2.7, the precision rate can be calculated from the values in the first
column, while the recall rate can be calculated from the values in the first row.

Precision and recall express the performance of some aspect of the binary classi-
fication problems, and the F-score (F-score), which combines the P and R metrics,
is expressed as

Fβ =
(
1 + β2

) P × R
(
β2 × P) + R (2.4)

where β is the parameter that balances the precision rate and the recall rate. When
β = 2, the weight of recall is higher than that of precision, and the F-score focuses
on recall; when β = 0.5, the weight of precision is higher than that of recall, and the
F-score focuses on precision; and when β = 1, the weights of precision and recall
are equal, and the F-score is also called F1-score. F1-score is also a common metric
to evaluate the performance of the model.

We can also calculate the true positive class rate, whose expression is:

T P R = T P

T P + FN
(2.5)

where TPR stands for True Positive Rate. It is clear to see that the TPR and the recall
rate are the same. Correspondingly, the false positive class rate is:

FPR = FP

FP + T N
(2.6)

where FPR denotes the False Positive Rate. The TPR and FPR rate can be calculated
from the first and second rows in Fig. 2.7. By using the TPR as the vertical axis
and the FPR as the horizontal axis, we can plot a curve called Receiver Operating
Characteristic (ROC). Since both TPR and FPR are between 0 and 1, ROC is a curve
located in [0, 1] × [0, 1]. We refer to the area enclosed by the ROC curve and the
horizontal axis as the Area Under Curve (AUC). Since AUC is a numerical value, it
can quantitatively describe the performance of a classification model.

For binary classification problems, ACC, P, R, F1 score and AUC are available
evaluation metrics. For multi-class classification problems, it is sufficient to gener-
alize the above formulae. These evaluation metrics are between 0 and 1, and the closer
to 1 the better the performance of the classification model. The values of ACC, P, R,

52 2 Convolutional Neural Network

F1-score and AUC can be expressed as percentage. Let us take the LeNet network
as an example to solve the handwritten postal code recognition problem, which is
a ten-class classification problem. The programs to calculate the evaluation metrics
on the test set are as follows:

M = confusionmat(YTest, YPred);
ACC = sum(diag(M)) / sum(M(:));
P1 = diag(M)./(sum(M,1) + 0.0001)’;
R1 = diag(M)./(sum(M,2) + 0.0001);
P = mean(P1);
R = mean(R1);
F1score = 2*P*R/(P + R);
fig = figure;
cm = confusionchart(YTest,YPred,‘RowSummary’,…

‘row-normalized’,‘ColumnSummary’,‘column-normalized’);
CLASSES = unique(YTest);
for i1 = 1:length(CLASSES).

% compute AUC for Class i.
[XRF,YRF,TRF,AUCRF(i1)] = perfcurve(YTest,…

YPredScores(:, i1),CLASSES(i1));
end
AUC = mean(AUCRF);

After running the above program, the result in Fig. 2.8 is obtained. The values
of all metrics are expressed as percentage. The ACC overaged on ten categories is
97.6%, the average precision rate on ten categories is 97.65%, the average recall rate
on ten categories is 97.6%, and the average AUC on ten categories is 99.99%. All four
metrics are close to 100%, which shows that LeNet shows a very good performance
on Digits dataset.

In Fig. 2.8, we can see that the precision rate of each category, the precision rate
of number 9 is 93.5%, and the precision rate of the rest of numbers are above 95%;
the recall rates of number 3 and number 8 are 92.5% and 94.5% respectively, and the
recall rates of the rest of numbers are above 95%. It can be seen that although the
precision rate and recall rate of LeNet on the test set are above 95%, its precision or
recall of some digits could be less than 95%, which indicates that there is still some
room for improvement in the recognition of a specific digit.

2.3 Transfer Learning with Convolutional Neural Network

In this section, we will describe how to use a pre-trained model, i.e., train a convolu-
tional neural network on one dataset, and for another dataset, we just need to modify
the previously trained convolutional neural network so that it can match the image
size and number of categories of the new dataset. This means that we can reuse the

2.3 Transfer Learning with Convolutional Neural Network 53

Fig. 2.8 Confusion matrix of the LeNet network on Digits dataset

prior knowledge to solve the unknown problem. In the field of machine learning, this
practice is called transfer learning.

Let’s first introduce the ImageNet dataset, which is a dataset maintained by Fei-
Fei Li at Stanford University. She sponsored the ImageNet competition, which is
called ILSVRC (ImageNet Large Scale Visual Recognition Challenge). ImageNet
competition has been held since 2010. The dataset is continuously updated, so the
size of the dataset has gradually increased. The most commonly used ImageNet
dataset is the 2012 dataset with about 1.2 million images in the training set, about
50,000 images in the validation set, and about 100,000 images in the test set [2].
the ImageNet dataset has 1,000 categories, and the size of each image is 227 × 227
× 3, i.e., each image is in color. The dataset is widely used for problems such as
image classification, image detection and localization, and is also the home of classic
convolutional neural networks such as AlexNet (2012), VGG (2014), GoogLeNet
(2014) and ResNet (2015), where the number in parentheses indicates the year in
which the network model was attended in the ImageNet competition.

In this section, we take two convolutional neural network models, AlexNet and
SqueezeNet [3], as examples. Readers can also try other network models. We use the

54 2 Convolutional Neural Network

Table 2.2 Food example
image dataset Label Amount

caesar_salad 26

caprese_salad 15

french_fries 181

greek_salad 24

hamburger 238

hot_dog 31

pizza 299

sashimi 40

Sushi 124

food example image dataset as the research problem, as shown in Table 2.2, which
contains 978 images with 9 categories.

The food example image dataset is a small size dataset and the number of images
in each category is different. From Table 2.2, we can see that the category with the
least sample is “caprese_salad” with only 15 images and the category with the most
sample is “pizza” with 299 images, and the sample ratio of these two categories is
about 1:20, so this dataset can be considered as an unbalanced dataset.

AlexNet is a convolutional neural network proposed by Hinton and his student
Alex in 2012. It won the first place in the ImageNet dataset competition. AlexNet is a
convolutional neural network with 8 layers, where the first 5 layers are convolutional
and the last 3 layers are fully connected. Without going into details of the exact
structure and computational process of AlexNet, the programs to solve the problem
using pre-trained AlexNet are as follows:

dataDir = fullfile(“ExampleFoodImageDataset”);
url = “https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImag
eDataset.zip”;
if ~ exist(dataDir, “dir”)

mkdir(dataDir);
downloadExampleFoodImagesData(url,dataDir);

end
imds = imageDatastore(‘ExampleFoodImageDataset’, …

‘IncludeSubfolders’,true,‘LabelSource’,‘foldernames’);
labelCount = countEachLabel(imds);
img1 = readimage(imds,1);
size(img1)
[imdsTest,imdsTrain] = splitEachLabel(imds,0.2,‘randomize’);
[imdsValid,imdsTrain] = splitEachLabel(imdsTrain,0.25,‘randomize’);
labelCountTest = countEachLabel(imdsTest);
labelCountTrain = countEachLabel(imdsTrain);
labelCountValid = countEachLabel(imdsValid);
numTrainImages = numel(imdsTrain.Labels);

https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImageDataset.zip
https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImageDataset.zip

2.3 Transfer Learning with Convolutional Neural Network 55

idx = randperm(numTrainImages,9);
I = imtile(imds, ‘Frames’, idx);
figure;
imshow(I);
net = alexnet;
inputSize = net.Layers(1).InputSize;
analyzeNetwork(net);
numClasses = numel(categories(imdsTrain.Labels));
layersTransfer = net.Layers(1:end-3);
layers = [

layersTransfer
fullyConnectedLayer(numClasses,‘WeightLearnRateFactor’,…
10,‘BiasLearnRateFactor’,10)
softmaxLayer
classificationLayer];

lgraph = layerGraph(layers);
aug = imageDataAugmenter(“RandXReflection”, true, …

“RandYReflection”, true, …
“RandXScale”, [0.8 1.2], …
“RandYScale”, [0.8 1.2]);

augImdsTrain = augmentedImageDatastore(inputSize(1:2), imdsTrain, …
‘DataAugmentation’, aug);

augImdsVal = augmentedImageDatastore(inputSize(1:2), imdsValid);
opts = trainingOptions(“adam”, …

“InitialLearnRate”, 1e-4, …
“MaxEpochs”, 10, …
“ValidationData”, augImdsVal, …
“Verbose”, false,…
“Plots”, “training-progress”, …
“ExecutionEnvironment”,“cpu”,…
“MiniBatchSize”,128);

netTransfer = trainNetwork(augImdsTrain, lgraph, opts);
save(‘Food_AlexNet.mat’,‘netTransfer’, …

‘imdsTrain’,‘imdsValid‘,‘imdsTest‘);
augImdsTest = augmentedImageDatastore(inputSize(1:2), imdsTest);
[YPred, YPredScores] = classify(netTransfer, augImdsTest);
YTest = imdsTest.Labels;
M = confusionmat(YTest, YPred);
ACC = sum(diag(M)) / sum(M(:));
P1 = diag(M)./(sum(M,1) + 0.0001)‘;
R1 = diag(M)./(sum(M,2) + 0.0001);
P = mean(P1); % mean precision of all classes
R = mean(R1); % mean recall of all classes
F1score = 2*P*R/(P + R);
fig = figure;

56 2 Convolutional Neural Network

cm = confusionchart(YTest,YPred,‘RowSummary‘,…
‘row-normalized‘,‘ColumnSummary‘,‘column-normalized‘);

CLASSES = unique(YTest);
for i1 = 1:length(CLASSES)

% compute AUC for Class i
[XRF,YRF,TRF,AUCRF(i1)] = perfcurve(YTest,…

YPredScores(:, i1),CLASSES(i1));
end
AUC = mean(AUCRF);

The results of the above program after running are shown in Figs. 2.9, 2.10 and
2.11. Figure 2.9 shows the structure analysis of AlexNet. It is known that the AlexNet
network model contains more than 60 million parameters to be learned. It should be
noted that the figure shows that the AlexNet structure consists of 25 layers, which is
because each step from input to output is considered as one layer in Matlab, so the
number of layers shown in the figure is larger than the 8 layers introduced earlier. The
training process of this model is more time consuming if the model is not pre-trained.

Figure 2.10 shows the training process of the AlexNet network, and it can be seen
that the model was re-trained on a CPU computer in less than 6 min based on the
pre-trained model. The accuracy on the validation set was 85.71%. The accuracy on
the test set was 83.67%. Thus, the AlexNet network is able to solve food example
image dataset.

Figure 2.11 shows the confusion matrix of the AlexNet network. Although the
model has a high average accuracy and recall on the nine categories, it has shortcom-
ings, for example, in the “sashimi” category, the precision rate of AlexNet is only

Fig. 2.9 Analysis of the AlexNet network

2.3 Transfer Learning with Convolutional Neural Network 57

Fig. 2.10 Training process of the AlexNet on food example image dataset

Fig. 2.11 Confusion matrix of the AlexNet on food example image dataset

44.4% and the recall rate of the AlexNet is only 50.0%. The precision rate of the
AlexNet in the “hot_dog” category is 66.7%, and the recall in the “hot_dog” category
is only 33.3%.

SqueezeNet is a convolutional neural network proposed by Iandola and other
scholars [3]. After simulation experiments, SqueezeNet achieves the same accuracy
rate as AlexNet, but SqueezeNet has only one-fiftieth of the number of parameters of

58 2 Convolutional Neural Network

AlexNet. SqueezeNet also opens up a new research direction in the field of artificial
intelligence, which is to maximize the computational speed without decreasing the
accuracy of the model. A pre-trained version from the ImageNet dataset, which
is based on more than 1 million images, has been saved in Matlab. The pre-trained
network can classify images into 1000 object classes, such as keyboard, mouse, pencil
and many animals. Thus, SqueezeNet has learned a rich feature representation of a
wide range of images, and its network input image size is 227 × 227.

We use the food example image dataset as the research problem. The programs
to solve the problem using pre-trained SqueezeNet are as follows:

dataDir = fullfile(“ExampleFoodImageDataset”);
url = “https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImag
eDataset.zip”;
if ~ exist(dataDir, “dir”).
mkdir(dataDir);
downloadExampleFoodImagesData(url,dataDir);

end
imds = imageDatastore(‘ExampleFoodImageDataset‘, …
‘IncludeSubfolders‘,true,‘LabelSource‘,‘foldernames‘);

labelCount = countEachLabel(imds);
img1 = readimage(imds,1);
size(img1)
[imdsTest,imdsTrain] = splitEachLabel(imds,0.2,‘randomize‘);
[imdsValid,imdsTrain] = splitEachLabel(imdsTrain,0.25,‘randomize‘);
labelCountTest = countEachLabel(imdsTest);
labelCountTrain = countEachLabel(imdsTrain);
labelCountValid = countEachLabel(imdsValid);
numTrainImages = numel(imdsTrain.Labels);
idx = randperm(numTrainImages,9);
I = imtile(imds, ‘Frames‘, idx);
figure;
imshow(I);
net = squeezenet;
inputSize = net.Layers(1).InputSize;
analyzeNetwork(net);
lgraph = layerGraph(net);
numClasses = numel(categories(imdsTrain.Labels));
newConvLayer = convolution2dLayer ([1,1],numClasses,…
‘WeightLearnRateFactor‘,10,‘BiasLearnRateFactor‘,…
10,“Name”,‘new_conv‘);

lgraph = replaceLayer(lgraph,‘conv10‘,newConvLayer);
newClassificatonLayer = classificationLayer(‘Name‘,‘new_classoutput‘);
lgraph = replaceLayer(lgraph,…
‘ClassificationLayer_predictions‘,newClassificatonLayer);

aug = imageDataAugmenter(“RandXReflection”, true, …

https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImageDataset.zip
https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImageDataset.zip

2.3 Transfer Learning with Convolutional Neural Network 59

“RandYReflection”, true, …
“RandXScale”, [0.8 1.2], …
“RandYScale”, [0.8 1.2]);

augImdsTrain = augmentedImageDatastore(inputSize(1:2), imdsTrain, …
‘DataAugmentation‘, aug);

augImdsVal = augmentedImageDatastore(inputSize(1:2), imdsValid);
opts = trainingOptions(“adam”, …
“InitialLearnRate”, 1e-4, …
“MaxEpochs”, 10, …
“ValidationData”, augImdsVal, …
“Verbose”, false,…
“Plots”, “training-progress”, …
“ExecutionEnvironment”,“cpu”,…
“MiniBatchSize”,128);

netTransfer = trainNetwork(augImdsTrain, lgraph, opts);
save(‘Food_SqueezeNet.mat‘,‘netTransfer‘, …
‘imdsTrain‘,‘imdsValid‘,‘imdsTest‘);

augImdsTest = augmentedImageDatastore(inputSize(1:2), imdsTest);
[YPred, YPredScores] = classify(netTransfer, augImdsTest);
YTest = imdsTest.Labels;
M = confusionmat(YTest, YPred);
ACC = sum(diag(M)) / sum(M(:));
P1 = diag(M)./(sum(M,1) + 0.0001)‘;
R1 = diag(M)./(sum(M,2) + 0.0001);
P = mean(P1); % mean precision of all classes
R = mean(R1); % mean recall of all classes
F1score = 2*P*R/(P + R);
fig = figure;
cm = confusionchart(YTest,YPred,‘RowSummary‘,…
‘row-normalized‘,‘ColumnSummary‘,‘column-normalized‘);

CLASSES = unique(YTest);
for i1 = 1:length(CLASSES)
% compute AUC for Class i.
[XRF,YRF,TRF,AUCRF(i1)] = perfcurve(YTest,…

YPredScores(:, i1),CLASSES(i1));
end
AUC = mean(AUCRF);

The results of the above program after running are shown in Figs. 2.12, 2.13 and
2.14. Figure 2.12 gives the structural analysis of the SqueezeNet. The SqueezeNet
network model contains about one million two hundred thousand parameters to be
learned. It should be noted that the figure shows that the SqueezeNet structure consists
of 68 layers, which is because in Matlab, each step from input to output is considered
as one layer, so the number of layers shown in the figure is larger than the 18 layers
introduced earlier.

60 2 Convolutional Neural Network

Fig. 2.12 Analysis of the SqueezeNet network

Fig. 2.13 Training process of the SqueezeNet on food example image dataset

The training process of this model is more time consuming if the model is not
pre-trained. Figure 2.13 shows the training process of the SqueezeNet. It can be seen
that the model was retrained on a CPU computer in less than eight minutes based
on the pre-trained model and with an accuracy of 75.51% on the validation set. The
accuracy of the SqueezeNet on the test set is 76.02%. Thus, the SqueezeNet is able
to solve the food example image dataset.

2.3 Transfer Learning with Convolutional Neural Network 61

Fig. 2.14 Confusion matrix of the SqueezeNet on food example image dataset

Figure 2.14 shows the confusion matrix of the SqueezeNet. It can be seen that
the model‘s precisioin rate of SqueezeNet does not exceed 50.0% on categories of
“greek_salad” and “sashimi”. Moreover, the SqueezeNet predicts incorrectly on all
samples of the “caesar_salad” category, resulting in an precision rate that cannot be
calculated. Except “french_fries”, “greek_salad”, “sashimi” and “sushi” categories,
the recall rates of the SqueezeNet are all less than 33.3%.

Finally, the comparison of the AlexNet and the SqueezeNet performance on the
food example image dataset is shown in Table 2.3.

Table 2.3 gives the values of the five metrics ACC, P, R, F1-score and AUC
introduced in the previous section, where F1-score is abbreviated as F1. it can be
seen that the AlexNet outperforms the SqueezeNet in all metrics. This result is
consistent with the experimental results of recent researchers. The total number of
parameters of the SqueezeNet is reduced by about 50 times. Although the accuracy of
the SqueezeNet is lower than that of the AlexNet, the reduction in the total number
of parameters makes the SqueezeNet applicable to real-time image classification
problems. Moreover, the SqueezeNet can be laid out in small chips such as field
programmable gate array (FPGA).

Table 2.3 Performance of AlexNet and SqueezeNet on food example image dataset

Network ACC (%) P (%) R (%) F1 (%) AUC (%)

AlexNet 83.67 77.09 77.70 77.39 97.21

SqueezeNet 76.02 52.88 45.16 48.72 94.30

62 2 Convolutional Neural Network

Except MINST and ImageNet dataset, readers can use other datasets. For example,
corona virus disease 2019 (COVID-19) is a worldwide outbreak of an infectious
disease. There are publicly available datasets on the classification problem of
COVID-19 [4]. Readers could easily use AlexNet or SqueezeNet to solve COVID-19
dataset.

2.4 Research Progress of Neural Network

This section reviews the state-of-the-art progress of neural network research.
These researches are classified to four categories. They are deep neural network,
convolutional neural network, graph neural network and other network model.

(1) Deep neural network

Considering that the application of deep neural network (DNN) in modeling tabular
data is still challenging. Borisov et al. outline the most advanced deep learning
methods for tabular data [5]. Specifically, they are divided into three groups: data
transformation, dedicated architecture, and regularization model. The authors do
in-depth study of deep learning methods for tabular data. This work can serve as
a valuable starting point to guide researchers and practitioners interested in deep
learning of tabular data.

Due to ill-posed problems, gradient disappearance or explosion problems, saddle
point problems and other reasons, DNN often have problems of poor performance
or even training failure. Liu et al. proposed a new method of applying gradient
activation function to gradient to solve these problems [6]. Intuitively, GAF enlarges
the small gradient and limits the large gradient. The conditions that GAF needs to
meet are given theoretically, and it is proved that GAF alleviates the above problems.
In addition, under certain assumptions, it is proved that the convergence speed of
SGD with GAF is faster than that of SGD without GAF. The experimental results
also show that this method can be applied to various deep neural networks (DNNs)
to improve their performance.

Considering that DNNs require high computational time, people always expect
to achieve better performance with lower computational complexity. Therefore, the
human sense system was studied and a neural network (SpinalNet) was designed to
achieve higher accuracy with less computation [7]. The hidden layer in the traditional
neural network receives the input of the previous layer, applies the activation function,
and then passes the result to the next layer. In SpinalNet, each layer is divided into
three parts: input part, middle part and output part. The input part of each layer
receives part of the input. The middle part of each layer receives the output of the
middle part of the previous layer and the output of the input part of the current layer.
Compared with the traditional DNN, the number of input weights is significantly
reduced. SpinalNet can also be used as a fully connected layer or classification layer
of DNN to support transfer learning.

2.4 Research Progress of Neural Network 63

Aiming at the problem that there are few studies on the interpretation of the
physical meaning of CNN structure in the existing literature, Li et al. proposed a
new wavelet-driven DNN, called wavelet kernel net (WKN), in which a continuous
wavelet convolution (CWConv) layer is designed to replace the first convolution layer
of standard CNN [8]. This allows the first CWConv layer to find more meaningful
filters. In addition, in the CWConv layer, only the scale parameters and translation
parameters are learned directly from the original data. This provides a very effective
method to obtain a customized filter bank dedicated to extracting the defect-related
impact component embedded in the vibration signal. The experimental results show
that the importance of the CWConv layer and the output of the CWConv layer are
interpretable. Compared with standard CNN, WKN has fewer parameters, higher
fault classification accuracy and faster convergence speed.

In view of the lack of high-quality labels in many practical scenarios, Song et al.
first described the learning problem with label noise from the perspective of super-
vised learning [9]. Next, the authors make a comprehensive review of 62 state-
of-the-art robust training methods. All these methods are divided into five groups
according to their method differences, and then the six attributes used to evaluate their
superiority are systematically compared. The authors put forward several promising
research directions, which can be used as guidance for future research.

Elbrächter et al. developed the basic limitations of DNN by describing what
may occur without imposing constraints on learning algorithms and training data
volume [10]. Specifically, they consider Kolmogorov optimal approximation through
DNNs. The guiding theme is the relationship between the complexity of the function
to be approximated and the complexity of the approximation network in terms of
connectivity and memory requirements for storage network topology and related
quantization weights. The theory establishes Kolmogorov optimal approximations
of DNNs that are significantly different function classes, such as the unit ball in Besov
space and modulation space. The authors also prove that in the approximation of a
sufficiently smooth function, a finite-width deep network requires less connectivity
than a finite-width wide network.

Apostolidis et al. mainly conducted a comprehensive survey of the existing general
video summarization methods based on deep learning [11]. They formulate a video
summarization task and discuss the main features of a typical deep learning-based
analysis pipeline. The authors report the objective evaluation protocol of video
summarization algorithm, and compare the performance of several methods based on
deep learning. Based on the results of these comparisons, as well as some literature
considerations on the amount of annotated data and the applicability of evaluation
schemes, the authors point out potential future research directions.

In view of the fact that there is no comprehensive investigation focusing on the
advantages and limitations of using neural evolution methods in DNN, and preventing
DNN researchers from using neural evolution methods in their own research, Galván
et al. conducted a comprehensive investigation, discussion and evaluation of the latest
work on DNN architecture configuration and training using evolutionary algorithms
(EAs) [12]. On this basis, this paper focuses on the most relevant problems and

64 2 Convolutional Neural Network

challenges in current neuroevolution research, and points out several promising future
research directions.

(2) Convolutional neural network

Among them, Li et al. consider that the existing literature review mainly focuses
on the application of CNN in different application scenarios, and does not consider
CNN as a whole, nor does it cover some novel ideas recently proposed [13]. They
aim to provide new ideas and prospects for this rapidly developing field as much as
possible. It involves not only two-dimensional convolution, but also one-dimensional
and multi-dimensional convolution. They introduce the classical and advanced CNN
models, especially the key points that make them reach the most advanced results.
Through experimental analysis, some conclusions are drawn and empirical rules
are provided for functional selection. The applications of one-dimensional, two-
dimensional and multi-dimensional convolutions are introduced. Finally, some open
problems and development directions of CNN are discussed to provide guidance for
future work.

With the increasing number of remote sensing data obtained from satellites, the
simultaneous processing and analysis of multi-modal remote sensing data pose new
challenges to remote sensing researchers. To this end, Wu et al. proposed a new frame-
work for multi-modal remote sensing data classification based on deep learning [14].
CNN is used as the backbone and the advanced cross-channel reconstruction module
CCR-Net is used. A large number of experiments on two multi-modal remote sensing
datasets, including hyperspectral (HS) and light detection and ranging (LiDAR) data,
and synthetic aperture radar (SAR) data are carried out. Compared with several state-
of-the-art multi-modal remote sensing data classification methods, the effectiveness
and superiority of CCR-Net are proved.

In order to effectively learn features from small training data, an additional sparsity
cost is added to the cost function of CNN to modify it. Kumar et al. proposed a new
triangular cross entropy function to calculate the sparsity cost [15]. The proposed
cost function introduces sparsity by avoiding unnecessary neuron activation in the
CNN hidden layer. At the same time, in order to identify bearing defects from small
training samples, the transfer learning application based on novel CNN (NCNN) is
as follows: First, the original vibration signal and the envelope signal of the source
domain machine are obtained. Then, these envelope signals are applied to NCNN. It
is used to learn features from large training data released from the source domain.
After feature learning, the knowledge obtained from NCNN is transferred to the
small training samples in the target domain to fine-tune the NCNN. Then, the test
data of the target domain is applied to the fine-tuned NCNN for defect recognition.
The experimental results verify that the proposed cross-entropy function introduces
sparsity in CNN, thereby creating an effective deep learning that can even work when
the training data is insufficient.

(3) Graph neural network

Based on non-Euclidean data type graph neural network (GNN), Bessadok et al.
provides a clever way to learn the structure of depth maps, thereby improving the

2.4 Research Progress of Neural Network 65

performance of various neuroscience tasks [16]. The authors review the current GNN-
based methods, emphasizing the ways they are used in several brain map-related
applications. They also draw a path for the better application of GNN in the diagnosis
of neurological diseases.

Grattarola et al. introduced Spectral, an open-source Python library for
constructing graph neural networks using TensorFlow and Keras application
programming interfaces (API) [17]. Spectral implements a large number of methods
for deep learning on graphs, including message passing and pool operators, as well as
utilities for processing graphs and loading popular benchmark datasets. The purpose
of this library is to provide the building blocks necessary to create a GNN. Therefore,
Spectral is very suitable for beginners and deep learning experts.

Aiming at the problem that there is no unified processing method and a standard
evaluation benchmark and test platform for the current GNN interpretability methods,
Yuan et al. provides a unified and classified view [18]. First, the unified and classified
processing of GNN interpretation methods reveal the commonalities and differences
of existing methods. At the same time, in order to facilitate the evaluation, the authors
provide a test platform for GNN interpretability. A comprehensive experiment is
conducted to compare and analyze the performance of many methods.

In recent years, graph neural networks (GNNs) have received extensive attention
due to their excellent performance. Although GNNs are very popular and dynamic
network models have proved its benefits, few people pay attention to the application
of GNNs in dynamic networks. In order to solve the challenges brought by this
research across different fields and investigating dynamic neural networks, Skarding
et al. establishes a dynamic network foundation with consistent and detailed terms and
symbols. A comprehensive survey of dynamic neural network models was conducted
using the proposed terms [19].

Aiming at the problem that it is difficult to explain the validity of the GNN
model due to the complex nonlinear transformation in the iterative process, Huang
et al. proposed a nonlinear feature selection method GraphLIME model [20]. It is
a general GNN model interpretation framework, which learns the nonlinear inter-
pretable model locally in the subgraph of the interpreted node. The GraphLIME
generates a nonlinear interpretable model from its n-hop neighborhood, and then
uses HSIC Lasso to calculate K most representative features as an explanation for
its prediction. It is found that GraphLIME has a very high degree of interpretation
and is more descriptive than the existing interpretation methods.

Bianchi et al. proposed a new graph convolutional layer inspired by the autore-
gressive moving average (ARMA) filter [21]. Compared with the polynomial layer,
it provides a more flexible frequency response. At the same time, the authors propose
a GNN implementation of ARMA filter based on recursive and distributed formulas,
and obtain an efficient training convolution layer. Spectrum analysis is conducted
to study the filtering effect of the proposed ARMA layer. The results show that
the ARMA layer has significant improvement compared with the GNN based on
polynomial filter.

Schnake e al. shows that GNN can actually be explained naturally using higher-
order expansions. In fact, it turns out that such an explanation can be extracted using

66 2 Convolutional Neural Network

a nested attribution scheme [22]. The output is a set of walks into the input graph
related to the prediction. The new interpretation method represented by GNN-LRP
is suitable for a wide range of GNNs. The method also extracts practically relevant
insights in sentiment analysis of text data and image classification.

Aiming at the problem that the tasks of GNNs on unclassified graphs usually
require non-local aggregation, and local aggregation is harmful to some unclassified
graphs, Liu et al. proposes a simple and effective non-local aggregation framework
[23]. The framework has efficient GNN attention guided sorting. At the same time,
the authors develop various non-local GNNs, and conducts thorough experiments to
analyze the non-classified graph data set and evaluate non-local GNNs. The experi-
mental results show that nonlocal GNNs outperform the state-of-the-art methods in
terms of model performance and efficiency on seven graph benchmark datasets.

GNN is an information processing architecture for processing the signals
supported on the graph. They are here a generalization of CNN, where a single layer
contains a graph convolutional filter library, rather than a classical convolutional
filter library. The filter is composed of point-to-nonlinear and stacked in layers. Ruiz
et al. study that the GNN structure is equivalent to the permutation and is stable to
the deformation of the graph [24]. These characteristics help to explain the good
performance of GNN. It can be observed empirically that if the graph converges to
a limit object, then GNN converges to the corresponding limit object. This conver-
gence proves the transferability of GNN between networks with different number of
nodes.

Xie et al. provide a unified review of different methods for training GNN using
SSL [25]. Specifically, the authors divide the SSL method into a comparison model
and a prediction model. The unified processing of SSL methods for GNN reveals
the similarities and differences of various methods, which lays a foundation for the
development of new methods and algorithms. The authors summarize the different
SSL settings and the corresponding datasets used for each setting. A standardized
test platform is developed for SSL in GNN, including the implementation of general
baseline methods, datasets, and evaluation indicators.

In order to solve the problem of optimal power allocation in single-hop ad hoc
wireless networks, Chowdhury et al. propose a neural network architecture inspired
by the iterative weighted least mean square error algorithm expansion, which is
called UWMMSE [26]. The GNN is used to parameterize the learnable weights in
UWMMSE, where the time-varying underlying graph is given by the fading inter-
ference coefficient in the wireless network. The experimental results show that the
method has robustness to hyperparameter selection and generalization to unknown
scenarios.

Aiming at the intrusion detection based on GNN in the Internet of Things (IoT)
system with limited budget, Zhou et al. propose a new hierarchical adversarial attack
(HAA) generation method, and realize a hierarchical-aware black box adversarial
attack strategy [27]. By constructing the shadow GNN model, an intelligent mecha-
nism based on saliency mapping technology is designed to generate adversarial exam-
ples by effectively identifying and modifying key feature elements under minimum
perturbation. Considering the overall loss changes of nodes in the IoT network, a

2.4 Research Progress of Neural Network 67

hierarchical node selection algorithm based on random walk restart is proposed to
select a set of vulnerable and high-priority nodes. The comparison results show that
the classification accuracy of the two most advanced GNN models is reduced by
more than 30% in the IoT environment.

Liu et al. discuss the use of GNNs and expert knowledge for intelligent contract
vulnerability detection methods [28]. Specifically, the authors convert the rich control
flow and data flow semantics of the source code into a contract graph. In order to
highlight the key nodes in the graph, the node elimination phase to standardize
the graph is designed. A new time message propagation network to extract graph
features from the normalized graph is designed. The experimental results show that
the accuracy of the proposed method is significantly improved compared with the
existing methods in three types of vulnerabilities.

Each layer of the neural network uses a graph as a parameterization to reduce the
number of parameters and computational complexity to capture node-level details.
According to this principle, Isufi et al. propose a unified half framework of the most
advanced GNN through the EdgeNet concept [29]. EdgeNet is a GNN architecture
that allows different nodes to use different parameters to weigh the information
of different neighbors. By extrapolating this strategy to more iterations between
adjacent nodes, EdgeNet learns the weights of edge and neighbor dependencies to
capture local details. This is a general linear and local operation that a node can
perform, and contains all existing graph convolutional neural networks (GCNNs)
and graph attention networks (GATs) under a formula.

Chen et al. propose a new few short learning hierarchical GNN (HGNN) [30].
The network consists of bottom-up reasoning, top-down reasoning and final node
classification. For bottom-up reasoning, the authors design an intra-class k-nearest
neighbor pool and an inter-class layer to learn intra-class and inter-class nodes hierar-
chically. For top-down reasoning, the authors use the graphical pool layer to restore
the down sampled graph to the original size. For the final node classification, the
authors propose a skip connection to fuse multi-level features. The parameters of
HGNN are learned through the scenario training of node loss signals. The experi-
mental results on benchmark data show that HGNN is significantly superior to other
state-of-the-art GNN-based methods for both transduced and non-transduced few
short learning tasks.

(4) Other network model

Han et al. classify dynamic neural networks to three categories [31]:

(i) dynamic neural networks using data-related architectures or parameters to
process the sample intelligent dynamic model of each sample;

(ii) Spatial intelligent dynamic network for adaptive computing of different spatial
locations of image data;

(iii) the temporal intelligent dynamic model that performs adaptive reasoning on
sequence data.

Zhang et al. review the interpretability of neural networks [32]. The impor-
tance of interpretability is elaborated in detail, and a new classification method is

68 2 Convolutional Neural Network

proposed. The classification method is organized along three dimensions: participa-
tion type, interpretation type and focus. This classification provides a meaningful
three-dimensional view of the distribution of papers from the relevant literature. The
existing interpretability evaluation methods are also summarized.

The purpose of meta-learning is to improve the learning algorithm itself, taking
into account the experience of multiple learning. Hospedales et al. describe the
landscape of contemporary meta-learning. Firstly, the definition of meta-learning
is discussed and it is positioned in related fields, such as transfer learning and hyper-
parameter optimization [33]. Then a new classification method is proposed, which
provides a more comprehensive subdivision of meta-learning methods. At the same
time, the authors also summarize some promising applications and successful cases
of meta-learning, including small probability learning, reinforcement learning and
architecture search.

Considering that because deep learning methods operate like black boxes, the
uncertainty associated with their predictions is often difficult to quantify. Bayesian
statistics provide a form to understand and quantify the uncertainty associated with
deep neural network prediction. Jospin et al. provide an overview of relevant literature
and a complete set of tools for deep learning practitioners to design, implement and
evaluate Bayesian neural networks [34].

To further improve the interpretability of DNNs, Fan et al. propose a simple and
comprehensive classification of neural network interpretability [35]. The authors
systematically review the research on improving the interpretability of neural
networks in recent years, describe the application of interpretability in medicine,
and discuss the possible future research directions of interpretability.

For the predictive learning of spatio-temporal sequences, Wang et al. proposed a
new recurrent network PredRNN [36]. In PredRNN model, a pair of memory units
show decoupling and operate in an almost independent transition mode. Specifically,
the PredRNN is characterized by a serrated memory flow that propagates in a bottom-
up and top-down direction at all layers, allowing the visual dynamics learned by
recurrent neural network (RNN) at different levels to communicate. It also uses
memory decoupling loss to prevent memory units from learning redundant features.
The PredRNN has obtained competitive results on five datasets of predictive learning
scenarios.

In order to solve the reconstruction problem in untrained neural networks to
accelerate magnetic resonance imaging (MRI), Darestani et al. proposed a highly
optimized untrained recovery method based on Deep Decoder variants [37]. The
author showed that it was significantly superior to other untrained methods. At the
same time, the performance of the training method under ideal settings is compared,
where the training and test data are from the same distribution. The authors find that
the untrained algorithm achieves similar performance to the baseline trained neural
network, but the most advanced training network is superior to the untrained network.

Gurrola-Ramos et al. proposed a residual dense neural network (RDUNet) based
on densely connected hierarchical network for image denoising [38]. The encoding
and decoding layers of RDUNet are composed of closely connected convolutional
layers to reuse feature mapping and local residual learning, so as to avoid the problem

2.4 Research Progress of Neural Network 69

of gradient disappearance and accelerate the learning process. In addition, the model
uses a global residual learning method, which no longer directly predicts the denoised
image, but predicts the residual noise of the damaged image. An advantage of
RDUNet is that the denoising process does not require prior knowledge about the
noise level. Experiments show that RDUNet obtains competitive results compared
with the most advanced image denoising network.

Aiming at the problem that the label information in DNN is not given and a data
point cannot be assigned to a given cluster, Kauffmann et al. proposed a new frame-
work that can explain the clustering assignment of input features in an effective and
reliable way for the first time [39]. It is based on the novel idea that clustering models
can be rewritten as neural networks. Several cases demonstrate that the method can
evaluate the quality of learning clustering and extract new insights from the analyzed
data and representations.

For single-phase shunt active power filter, a fractional order sliding mode control
scheme based on two hidden layer recurrent neural network (THLRNN) is proposed
[40]. A new THLRNN structure is designed to overcome the shortcomings of tradi-
tional neural networks like low approximation accuracy. The structure contains two
hidden layers, which makes the network have stronger fitting ability and is used
to approximate unknown nonlinearity. The fractional order term is added to the
sliding mode controller to make the sliding mode controller have larger adjustable
space and better optimization space. Simulation results show that compared with the
traditional neural network sliding controller, the THLRNN method has satisfactory
compensation performance and robustness.

Fei et al. proposed an approximation-based adaptive fractional-order sliding mode
control scheme for micro-gyroscopes [41]. Their method used a double-loop recur-
rent fuzzy neural network (DLRFNN) to approximate the uncertainty and distur-
bance of the system. The network had two feedback loops to capture the weights and
output signals calculated in the previous step and used them as feedback signals for
the next step. The proposed DLRFNN combined fuzzy system processing uncertain
information with neural network learning from the process. The effectiveness of the
DLRFNN method is verified through the simulation analysis.

Exercises

(1) Try to analyze the working of convolutional layer and pooling layer in
convolutional neural network and give examples.

(2) Try to analyze the difference between convolutional neural network and fully
connected backpropagation neural network.

(3) Novel Corona Virus Disease 2019 (COVID-19) is a worldwide outbreak of
an infectious disease. There are publicly available datasets on the classifica-
tion problem of COVID-19. For example, COVID-CT is a CT image dataset
(https://github.com/UCSD-AI4H/COVID-CT) that includes 349 images with
COVID-19 and 463 images without COVID-19. Please use Matlab to create a
convolutional neural network to solve the classification problem and analyze its
performance.

https://github.com/UCSD-AI4H/COVID-CT

70 2 Convolutional Neural Network

(4) Please download the COVID-19 dataset and solve the problem by transfer
learning using pre-trained neural network models in Matlab, e.g., AlexNet and
SqueezeNet, and compare the performance of the different models.

References

1. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86(11):2278–2324

2. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional
neural networks. Commun ACM 60(6):84–90

3. Iandola FN, Han S, Moskewicz MW et al (2016) SqueezeNet: AlexNet-level accuracy with
50× fewer parameters and <0.5 MB model size. arXiv:1602.07360

4. Zhao J, Zhang Y, He X, Xie P (2020) COVID-CT-Dataset: a CT scan dataset about COVID-19.
arXiv:2003.13865

5. Borisov V, Leemann T, SeBler K et al (2022) Deep neural networks and tabular data: a survey.
IEEE Trans Neural Netw Learn Syst

6. Liu M, Chen L, Du X et al (2022) Activated gradients for deep neural network. IEEE Trans
Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2022.3229161

7. Kabir HMD, Abdar M, Khosravi A et al (2022) Spinalnet: deep neural network with gradual
input. IEEE Trans Artif Intell. https://doi.org/10.1109/TAI.2022.3185179

8. Li T, Zhao Z, Sun C et al (2021) WaveletKernelNet: an interpretable deep neural network for
industrial intelligent diagnosis. IEEE Trans Syst, Man, Cybern: Syst 52(4):2302–2312

9. Song H, Kim M, Park D et al (2022) Learning from noisy labels with deep neural networks: A
survey. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2022.3152527

10. Elbrächter D, Perekrestenko D, Grohs P et al (2021) Deep neural network approximation theory.
IEEE Trans Inf Theory 67(5):2581–2623

11. Apostolidis E, Adamantidou E, Metsai AI et al (2021) Video summarization using deep neural
networks: a survey. Proc IEEE 109(11):1838–1863

12. Galván E, Mooney P (2021) Neuroevolution in deep neural networks: current trends and future
challenges. IEEE Trans Artif Intell 2(6):476–493

13. Li Z, Liu F, Yang W et al (2021) A survey of convolutional neural networks: analysis,
applications, and prospects. IEEE Trans Neural Netw Learn Syst 33(12):6999–7019

14. Wu X, Hong D, Chanussot J (2021) Convolutional neural networks for multimodal remote
sensing data classification. IEEE Trans Geosci Remote Sens 60:1–10

15. Kumar A, Vashishtha G, Gandhi CP et al (2021) Novel convolutional neural network (NCNN)
for the diagnosis of bearing defects in rotary machinery. IEEE Trans Instrum Meas 70:1–10

16. Bessadok A, Mahjoub MA, Rekik I (2022) Graph neural networks in network neuroscience.
IEEE Trans Pattern Anal Mach Intell 45(5):5833–5848

17. Grattarola D, Alippi C (2021) Graph neural networks in tensorflow and keras with spektral
[application notes]. IEEE Comput Intell Mag 16(1):99–106

18. Yuan H, Yu H, Gui S et al (2023) Explainability in graph neural networks: a taxonomic survey.
IEEE Trans Pattern Anal Mach Intell 45(5):5782–5799

19. Skarding J, Gabrys B, Musial K (2021) Foundations and modeling of dynamic networks using
dynamic graph neural networks: a survey. IEEE Access 9:79143–79168

20. Huang Q, Yamada M, Tian Y et al (2023) Graphlime: local interpretable model explanations
for graph neural networks. IEEE Trans Knowl Data Eng 35(7):6968–6972

21. Bianchi FM, Grattarola D, Livi L et al (2021) Graph neural networks with convolutional ARMA
filters. IEEE Trans Pattern Anal Mach Intell 44(7):3496–3507

22. Schnake T, Eberle O, Lederer J et al (2021) Higher-order explanations of graph neural networks
via relevant walks. IEEE Trans Pattern Anal Mach Intell 44(11):7581–7596

http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/2003.13865
https://doi.org/10.1109/TNNLS.2022.3229161
https://doi.org/10.1109/TAI.2022.3185179
https://doi.org/10.1109/TNNLS.2022.3152527

References 71

23. Liu M, Wang Z, Ji S (2021) Non-local graph neural networks. IEEE Trans Pattern Anal Mach
Intell 44(12):10270–10276

24. Ruiz L, Gama F, Ribeiro A (2021) Graph neural networks: architectures, stability, and
transferability. Proc IEEE 109(5):660–682

25. Xie Y, Xu Z, Zhang J et al (2022) Self-supervised learning of graph neural networks: a unified
review. IEEE Trans Pattern Anal Mach Intell 45(2):2412–2429

26. Chowdhury A, Verma G, Rao C et al (2021) Unfolding WMMSE using graph neural networks
for efficient power allocation. IEEE Trans Wireless Commun 20(9):6004–6017

27. Zhou X, Liang W, Li W et al (2021) Hierarchical adversarial attacks against graph-neural-
network-based IoT network intrusion detection system. IEEE Internet Things J 9(12):9310–
9319

28. Liu Z, Qian P, Wang X et al (2023) Combining graph neural networks with expert knowledge
for smart contract vulnerability detection. IEEE Trans Knowl Data Eng 35(2):1296–1310

29. Isufi E, Gama F, Ribeiro A (2021) EdgeNets: edge varying graph neural networks. IEEE Trans
Pattern Anal Mach Intell 44(11):7457–7473

30. Chen C, Li K, Wei W et al (2021) Hierarchical graph neural networks for few-shot learning.
IEEE Trans Circuits Syst Video Technol 32(1):240–252

31. Han Y, Huang G, Song S et al (2021) Dynamic neural networks: a survey. IEEE Trans Pattern
Anal Mach Intell 44(11):7436–7456

32. Zhang Y, Tiňo P, Leonardis A et al (2021) A survey on neural network interpretability. IEEE
Trans Emerg Top Comput Intell 5(5):726–742

33. Hospedales T, Antoniou A, Micaelli P et al (2021) Meta-learning in neural networks: A survey.
IEEE Trans Pattern Anal Mach Intell 44(9):5149–5169

34. Jospin LV, Laga H, Boussaid F et al (2022) Hands-on Bayesian neural networks—a tutorial for
deep learning users. IEEE Comput Intell Mag 17(2):29–48

35. Fan FL, Xiong J, Li M et al (2021) On interpretability of artificial neural networks: a survey.
IEEE Trans Radiat Plasma Med Sci 5(6):741–760

36. Wang Y, Wu H, Zhang J et al (2022) PredRNN: a recurrent neural network for spatiotemporal
predictive learning. IEEE Trans Pattern Anal Mach Intell 45(2):2208–2225

37. Darestani MZ, Heckel R (2021) Accelerated MRI with un-trained neural networks. IEEE Trans
Comput Imaging 7:724–733

38. Gurrola-Ramos J, Dalmau O, Alarcón TE (2021) A residual dense u-net neural network for
image denoising. IEEE Access 9:31742–31754

39. Kauffmann J, Esders M, Ruff L et al (2022) From clustering to cluster explanations via neural
networks. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2022.3185901

40. Fei J, Wang H, Fang Y (2021) Novel neural network fractional-order sliding-mode control with
application to active power filter. IEEE Trans Syst, Man, Cybern: Syst 52(6):3508–3518

41. Fei J, Wang Z, Liang X et al (2021) Fractional sliding-mode control for microgyroscope based
on multilayer recurrent fuzzy neural network. IEEE Trans Fuzzy Syst 30(6):1712–1721

https://doi.org/10.1109/TNNLS.2022.3185901

Chapter 3
Fuzzy Computing

Abstract Fuzzy computing is a computational intelligence technology based on
fuzzy theory. Fuzzy computing can solve various problems such as identification and
clustering. Automatic control problems remain the main application area of fuzzy
computing. This chapter first introduces the basis of fuzzy computing including fuzzy
set and fuzzy membership function. Fuzzy pattern recognition, fuzzy clustering and
fuzzy inference are three kinds of problems that fuzzy computing can solve. Then
this chapter introduces Mamdani fuzzy control system, which is one of the most
important application of fuzzy computing. Finally, this chapter introduces fuzzy
logic designer to build fuzzy controller for a control problem.

3.1 Overview of Fuzzy Computing

Fuzzy computing is a computational intelligence technology based on fuzzy set
theory, fuzzy linguistic variables, fuzzy inference. Fuzzy computing is also known
as Fuzzy logic. In 1965, Zadeh created fuzzy set theory and developed fuzzy logic
control theory [1]. In 1974, Mamdani applied fuzzy logic control to boiler and steam
engine control and formed fuzzy logic controller. This pioneering work marked the
birth of fuzzy logic cybernetics [2].

The phenomenon of “fuzzy” is present in human society and is an important
feature of human perception, logical thinking and reasoning decisions [3]. For
example, the answer to the question of whether someone is a student or not is definite,
i.e., either he is a student or not. For the question of whether a girl is a beauty, the
answer is uncertain, i.e., she may be a beauty, she may not be a beauty, or she may
be somewhere in between. Through this example, we know that “fuzzy” has more
information than “definite” and is more in line with the objective world reality.

In natural human language, there is a large number of concepts that have a rich
connotation without an absolute standard of measurement. People in their lives often
use words such as “big”, “small”, “more”, “less”, “probably” and “probably” [3].
For example, in the column of health status, you can only fill in “good, healthy”, but
it is difficult to specify exactly what kind of body is “good” and what kind of body is
“healthy”. In fact, health status is a comprehensive qualitative assessment, and there

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Zhang et al., Intelligent Information Processing with Matlab,
https://doi.org/10.1007/978-981-99-6449-9_3

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6449-9_3&domain=pdf
https://doi.org/10.1007/978-981-99-6449-9_3

74 3 Fuzzy Computing

are often personal subjective judgments. For example, we often hear that someone
is “competent”, “smart”, “beautiful”, which are the most common words in natural
language, and are very vague concepts.

How do people use fuzziness in their lives to deal with things? For example, when
a person goes to the market to buy tomatoes, he knows that the buying guideline is:
“The redder the tomato, the riper it is”, which is equivalent to fuzzy knowledge or
fuzzy rules. When he sees a very red tomato, he immediately assumes that the tomato
is very ripe; while when he sees a tomato that is not red, he assumes that the tomato
may not be very ripe according to the buying guideline This is fuzzy inference.

Even some definite characteristics that are strictly defined are sometimes described
by fuzzy concepts in order to grasp the main characteristics of things from a
macro perspective and to facilitate processing. For example, people are divided into
“young”, “middle-aged” and “old” according to their age. According to height, people
are divided into “tall”, “medium” and “short”. By weight, people are divided into
“fat” and “thin”, and by speed, people are divided into “fast” and “slow”. These
examples show that fuzzy phenomena exist in human society in large numbers, and
people often use these fuzzy concepts to deal with problems in daily life.

According to the previous discussion, applying conventional mathematical
methods to the analysis of problems that are inherently fuzzy is incongruous and it
will cause a large gap between theory and practice. This gave rise to the birth of fuzzy
mathematics. The birth of fuzzy mathematics was marked by Zadeh’s article entitled
Fuzzy Sets published in the journal Information and Control in 1965. Zadeh proposed
the use of member functions to describe intermediate transitions in the differences of
fuzzy phenomena, thus breaking away from the deterministic belong-or-don’t-belong
relationship of classical set theory.

After that, Mandani proposed fuzzy logic control theory in 1974 and achieved
better results than traditional numerical control methods. In 1980, Holmblad and
Ostergard in Denmark applied fuzzy logic control theory to the cement kiln problem,
which was the first commercially meaningful application of fuzzy logic control
theory. In recent years, fuzzy logic cybernetics has been successfully applied to
problems such as intelligent drum washing machines, intelligent balancing cars, and
automatic driving of cars.

Fuzzy computing can solve problems such as identification and clustering in
addition to fuzzy logic cybernetics, but control problems remain the main application
area of fuzzy computing.

3.2 Fuzzy Sets

At the end of the nineteenth century, Cantor in Germany founded the theory of sets.
The set theory was then gradually integrated into all branches of mathematics and
became part of the basic mathematical theory [1–3].

3.2 Fuzzy Sets 75

Definition 3.1 Putting together certain things that can be clearly identified with each
other is called a set. These things in a set can be either direct objects or abstract objects
of thought.

Cantor defined sets as in Definition 3.1. Here, we refer to the set defined by Cantor
as classical set, or ordinary set. The theoretical domain is an important concept in
ordinary set theory, which refers to the fact that when discussing the extension of
a concept or considering the topic of a problem, a scope of discussion is always
delineated, and this scope is called the theoretical domain. The domain is often
represented by capital letters in italics, e.g., U, E. Each object in the domain is
called an element and is often represented by a symbol such as a lowercase letter in
italics, e.g., a, b, x, y. In a domain, the whole set of objects with a particular property
constitutes a set in the domain. Sets are often represented by italicized uppercase
letters, e.g., A, B, C, or X, Y, Z.

We briefly introduce some classical set operations, as follows:

(1) The inclusion relation of a set. For any x ∈ A, there must be x ∈ B. We will
say that the set B contains the set A, or the set A is contained in the set B, and it
is written as A ⊆ B.

(2) Empty set. If for any set A, there is ∅ ⊆ A, then ∅ is said to be the empty set of
any set A. That is an empty set is a set that does not contain any elements.

(3) Power set. Let U be a theoretical domain, and the set consisting of all subsets
of U is called the power set of U, denoted as P(U). For example, suppose U =
{a, b, c}, then P(U) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}.

(4) Union set. The union of a set A and a set B is defined as A ∪ B = {x |x ∈
A or x ∈ B}.

(5) Intersection set. The intersection of a set A and a set B is defined as A ∩ B =
{x |x ∈ A and x ∈ B}.

(6) Difference set. The difference set of a set A and a set B is defined as AB =
{x |x ∈ A and x /∈ B}.

(7) Complementary set. Let U be a theoretical domain and the complement of A to
U is defined as Ac = U − A = {x |x ∈ U or x /∈ A}.

(8) Equivalence. The set A and the set B are equal noted as A = B, i.e., we have
A ⊆ B and B ⊆ A.

To represent a common set, one can use the enumeration method, the descriptive
method and the characteristic function method as follows:

(1) Enumeration method. The enumeration method is to list all the elements in a
set, so it generally indicates a finite set. For example, S = {Primary student,
Secondary student, University student, Graduate student}, where the set S lists
all the elements with the nature of “student”.

(2) Descriptive method. The descriptive method is the representation of elements
with certain properties by means of language. For example, {A = x |x <
0, and x i s a real number}.

(3) Characteristic function method. The characteristic function method is to
represent the elements by means of expressions. For example:

76 3 Fuzzy Computing

FA(x) =
{
1, x ∈ A
0, x /∈ A

(3.1)

If there are more than one ordinary set, they can also perform operations on each
other and there are some laws as follows:

(1) Exchange law. A ∪ B = B ∪ A, A ∩ B = B ∩ A.
(2) Combination law. A ∪ (B ∪ C) = (A ∪ B) ∪ C , A ∩ (B ∩ C) = (A ∩ B) ∩ C .
(3) Absorption rate. (A ∪ B) ∩ A = A, (A ∩ B) ∪ A = A.
(4) Idempotence law. A ∪ A = A, A ∩ A = A.
(5) Distributive law. (A ∪ B)∩C = (A ∩ C)∪(B ∩ C), (A ∩ B)∪C = (A ∪ C)∩

(B ∪ C).
(6) Law of restitution. (Ac)c = A.
(7) Complementary law. A ∪ Ac = U , A ∩ Ac = ϕ.
(8) 0–1 law. A ∪ U = U , A ∪ ϕ = A, A ∩ U = A,A ∩ ϕ = ϕ.
(9) Inversion law, also known as De Morgan’s law. A ∪ Bc = Ac ∩ Bc, A ∩ Bc =

Ac ∪ Bc.

Based on the concept of classical sets, the concept of fuzzy sets is introduced next.

Definition 3.2 Given a theoretical domain U, any map μA from U to the closed
interval [0, 1] has the expression:

μA : U → [0, 1] (3.2)

The above expression determines a fuzzy set A of U, μA is called the member
function of the fuzzy set A.

The membership function μA reflects the degree to which the elements in a fuzzy
set A belong to that set. If the elements in U are represented by x, then μA(x) is
called the degree of membership of the element x belonging to the fuzzy set A. From
Eq. (3.2), it can be seen that μA(x) takes values in the closed interval [0, 1]. If μA(x)
is close to 0, it means that the degree of x belonging to A is low; conversely, if μA(x)
is close to 1, it means that the degree of x belonging to A is high.

If a fuzzy set is to be represented, the corresponding method can be used
according to the specifics of the theoretical domain. When the theoretical domain
U = {x1, x2, . . . , xn} is a discrete finite set, the methods usually used are the Zadeh
representation, the ordered pair representation and the vector representation.

(1) Zadeh representation method. The element xi in the theoretical domain U is
represented with its membership function μA(xi) by the following equation:

A =
μA(x1)

x1
+

μA(x2)
x2

+ · · · +
μA(xn)

xn
(3.3)

where A is the fuzzy set and the fraction in the expression is just a form and not
a division operation.

3.2 Fuzzy Sets 77

Example 3.1 Suppose there is a domain of integers 1, 2, …, 10, i.e., the domain U
= {1, 2, …, 10}, the fuzzy set “several” is denoted by A. And let the membership
function of each element of μA be {0, 0.1, 0.3, 0.7, 1, 1, 0.7, 0.3, 0.1, 0} in order.

Solution According to (3.3), the fuzzy set A can be expressed as

A =
0

1
+

0.1

2
+

0.3

3
+

0.7

4
+

1

5
+

1

6
+

0.7

7
+

0.3

8
+

0.1

9
+

0

10
(3.4)

=
0.1

2
+

0.3

3
+

0.7

4
+

1

5
+

1

6
+

0.7

7
+

0.3

8
+

0.1

9
(3.5)

The part where the membership is zero can be left out.

(2) ordered pair representation method. Representing A by forming an ordered pair
of an element xi in the theoretical domain with its membership μA(xi), then:

A = {(x1, μA(x1)), (x2, μA(x2)), . . . , (xN , μA(xN))|x ∈ U } (3.6)

In the ordered pair representation method, terms with zero membership can be
omitted. For example, for the above example, the ordered pair representation can
be written as:

A = {(1, 0), (2, 0.1), (3, 0.3), (4, 0.7), (5, 1),
(6, 1), (7, 0.7), (8, 0.3), (9, 0.1), (10, 0)} (3.7)

= {(2, 0.1), (3, 0.3), (4, 0.7), (5, 1), (6, 1), (7, 0.7), (8, 0.3), (9, 0.1)} (3.8)

(3) vector representation method. Representing A by forming a vector with the
membership μA(xi) of the element xi in the theoretical domain, i.e., we have

A = [μA(x1)μA(x2) . . . μA(xN)] (3.9)

In the vector representation method, terms with zero membership cannot be omitted.
For example, for the above example, the vector representation can be written as A =
[0 0.1 0.3 0.7 1 1 0.7 0.3 0.1 0].

When the theoretical domain U is a continuous finite set, the Zadeh representation
is generally used to represent the fuzzy set, and its expression is:

A =
∫
U

μA(x)
x

(3.10)

78 3 Fuzzy Computing

where U is the theoretical domain, x is an element in the domain, and μA(x) is the
membership of x. In the Zadeh representation of a finite continuous domain, the part
of the membership that is zero can be left out.

For example, if we take age as the domain and set U = [0, 200], let Y denote the
fuzzy set “young” and O denote the fuzzy set “old”. The membership function of
“young” is known as μY (x), and its expression is:

μY (x) =
{
1, 0 ≤ x ≤ 25
1 + (

x−25
5

)2
, 25 < x ≤ 200

(3.11)

The subordinate function of “old” is μO (x), and its expression is:

μO (x)

{
0, 0 ≤ x ≤ 25
1 + (

5
x−50

)2
, 50 < x ≤ 200

(3.12)

Then, using the Zadeh representation method, the “young” fuzzy set Y can be
expressed as:

Y = {(x, 1)|0 ≤ x ≤ 25} +

⎧⎨

⎩

⎛

⎝x,

[
1 +

(
x − 25

5

)2
]−1

⎞

⎠
||||||25 < x ≤ 200

⎫⎬

⎭

(3.13)

After finishing the above equation, we get:

Y =
∫

0≤x≤25

1

x
+

∫
25<x≤200

[
1 + (

x−25
5

)2]−1

X
(3.14)

Using the Zadeh representation method, the fuzzy set O of “old” can be expressed
as:

O = {(x, 0)|0 ≤ x ≤ 50} +

⎧⎨

⎩

⎛

⎝x,

[
1 +

(
5

x − 50

)2
]−1

⎞

⎠
||||||50 < x ≤ 200

⎫⎬

⎭

(3.15)

After finishing the above equation, we get:

O =
∫

50<x≤200

[
1 + (

5
x−50

)2]−1

x
(3.16)

3.2 Fuzzy Sets 79

It should be noted that the integral notation in the Zadeh representation method
does not mean the integral in calculus, and the notation is simply used here for the
representation of fuzzy set.

From the concept of fuzzy set, the membership function plays a very important
role. After the membership function is determined, the membership of each element
is determined, and then the fuzzy set is determined. Generally speaking, the determi-
nation of the membership function is both objectivity and subjectivity. Objectivity
means that the membership function is essentially a description of something, so
it should be objective; subjectivity means that each person does not have the same
understanding of fuzzy concepts, so the subjectivity function should have people’s
subjective perception. Therefore, the subjectivity function is usually given by experts
or authorities in the field, and it expresses the experience accumulated in practice,
or the knowledge derived from data statistics.

There are three general methods to determine the subjectivity function, which are:
the fuzzy statistics method, the objective scale method and the assignment method.

Fuzzy statistics is a method based on data statistics to obtain a membership func-
tion, which requires designing and distributing a questionnaire to form a membership
function from the data in the questionnaire.

Example 3.2 Suppose we want to define the membership function of “young” with
the domain U = [0,100], i.e. we discuss which age is young between 0 and 100 years.
Suppose that 136 experts have empirically given the age range of “young”, as shown
in Table 3.1. In this table, the age range given by each expert is represented as a
closed interval. Suppose we want to count the degree to which a certain age μ0 is
“young”, and count the number of times these closed intervals cover μ0, i.e., the
frequency.

For Table 3.1, it is easy to see that the minimum age is 14 years and the maximum
age is 36 years. For the integer ages located in the interval [14, 36], we can count
their occurrences in Table 3.1, and the results are shown in column 2 of Table 3.2.

In Table 3.2, column 1 is age from 14 to 36, column 2 is the frequency per age,
and column 3 is the relative frequency. The value in column 3 is each number in
column 2 divided by the largest frequency in column 2. The final relative frequency
of each age is obtained as a number that lies between 0 and 1. We can represent the
young membership function graphically with the following programs:

load(‘IIP3_1.mat’);
agemin = min(data(:));
agemax = max(data(:));
agefreq = zeros(agemax-agemin+1, 1);
idx = 1;
for i1 = agemin:agemax
for i2 = 1:size(data, 1)

if data(i2, 1) <= i1 && i1 <= data(i2, 2)
agefreq(idx,1) = agefreq(idx,1) + 1;

end

80 3 Fuzzy Computing

Table 3.1 Age range of “young” given by experts

[18, 25] [17, 30] [17, 28] [18, 25] [16, 35] [14, 25] [18, 30] [18, 35]

[18, 35] [16, 25] [15, 30] [18, 35] [17, 30] [18, 25] [18, 35] [20, 30]

[18, 30] [16, 30] [20, 35] [18, 30] [18, 25] [18, 35] [15, 25] [18, 30]

[15, 28] [16, 28] [18, 30] [18, 30] [16, 30] [18, 35] [18, 25] [18, 30]

[16, 28] [18, 30] [16, 30] [16, 28] [18, 35] [18, 35] [17, 27] [16, 28]

[15, 28] [18, 25] [19, 28] [15, 30] [15, 26] [17, 25] [15, 36] [18, 30]

[17, 30] [18, 35] [16, 35] [16, 30] [15, 25] [18, 28] [16, 30] [15, 28]

[18, 35] [18, 30] [17, 28] [18, 35] [15, 28] [15, 25] [15, 25] [15, 25]

[18, 30] [16, 24] [15, 25] [16, 32] [15, 27] [18, 35] [16, 25] [18, 30]

[16, 28] [18, 30] [18, 35] [18, 30] [18, 30] [18, 30] [17, 30] [18, 30]

[18, 35] [16, 30] [18, 28] [17, 25] [15, 30] [18, 25] [17, 30] [14, 25]

[18, 26] [18, 29] [18, 35] [18, 28] [18, 35] [18, 25] [16, 35] [17, 29]

[18, 25] [17, 30] [16, 28] [18, 30] [16, 28] [15, 30] [18, 30] [16, 30]

[20, 30] [20, 30] [16, 25] [17, 30] [15, 30] [18, 30] [16, 30] [18, 28]

[15, 35] [16, 30] [15, 30] [18, 35] [18, 35] [18, 30] [17, 30] [16, 35]

[17, 30] [15, 25] [18, 35] [15, 30] [15, 25] [15, 30] [18, 30] [17, 25]

[18, 29] [18, 28] [18, 35] [18, 25] [18, 30] [15, 30] [17, 30] [18, 30]

end
idx = idx + 1;

end
ageprob = agefreq / max(agefreq);
figure1 = figure(1);
axes1 = axes(‘Parent’,figure1);
hold(axes1,‘on’);
plot((agemin:agemax), ageprob’, ‘b’, ‘LineWidth’, 2);
plot((agemin:agemax), ageprob’, ‘bo’,‘LineWidth’, 2,‘LineStyle’,‘none’);
ylabel(‘membership function’);
xlabel(‘age’);
box(axes1,‘on’);
grid(axes1,‘on’);
hold(axes1,‘off’);
set(axes1,‘FontSize’,14);

The results shown in Fig. 3.1 were obtained after running the above program. From
Fig. 3.1, it can be seen that most experts consider 20–25 years old as the “young”,
while the probability of belonging to the “young” after 31 years old decreases rapidly.

The objective scaling method for describing the membership function is based on
empirical knowledge of human. For example, if the theoretical domain is “household”
and the fuzzy set is “well-off family”, then whether a family element belongs to
“well-off family” can be measured using Engel’s Coefficient to measure whether a

3.2 Fuzzy Sets 81

Table 3.2 Frequency
statistics of age Age Frequency Relative frequency

14 2 0.0147

15 27 0.1985

16 52 0.3824

17 69 0.5074

18 131 0.9632

19 132 0.9706

20 136 1

21 136 1

22 136 1

23 136 1

24 136 1

25 135 0.9926

26 109 0.8015

27 107 0.7868

28 105 0.7721

29 86 0.6324

30 83 0.6103

31 28 0.2059

32 28 0.2059

33 27 0.1985

34 27 0.1985

35 27 0.1985

36 1 0.0074

specific family element is a “well-off family”. For example, if the theoretical domain
is “equipment” and the fuzzy set is “normal”, then whether an equipment element is
“normal”, we can use the equipment intactness rate to measure.

The assignment method is to use a certain distribution matching the nature of
the problem to be described as the membership function, and the method is highly
subjective. When using the real number field R as the theoretical domain, i.e., U
= R, the membership function is generally made a fuzzy distribution. To solve the
problem, we can choose from common fuzzy distributions, such as rectangular fuzzy
distribution, trapezoidal fuzzy distribution, k-th parabolic fuzzy distribution, normal
fuzzy distribution, Cauchy fuzzy distribution, S-type fuzzy distribution, etc.

The expression for the rectangular fuzzy distribution is:

μA(x) =
{
0, x < a or x > b
1, a ≤ x ≤ b

(3.17)

82 3 Fuzzy Computing

Fig. 3.1 Membership function of “young”

In the above equation a, b are two parameters with a < b. When the element x
lies between a and b, the affiliation is 1; otherwise, it is 0. In addition, a one-sided
distribution can be defined as follows:

μA(x) =
{
1, x ≤ a
0, x > a

(3.18)

μA(x) =
{
0, x < a
1, x ≥ a

(3.19)

In (3.18), the membership is 1 when the element x lies to the left of a; while on
the right side is the degree of affiliation 0. In (3.19), the membership is 0 when the
element x lies to the left of a; while on the right side is the degree of affiliation 1. It
is easy to see that (3.17) gives the case where x takes the value 1 in the middle of
the domain, while (3.18) and (3.19) give the case where x takes the value 1 on one
side of the domain is 1. Therefore, the case where x takes a value of 1 in the middle
of the domain is generally referred to as the intermediate fuzzy distribution, the case
where x takes a value of 1 on the left side of the domain is referred to as the small
fuzzy distribution, and the case where x takes a value of 1 on the right side of the
domain is referred to as the large fuzzy distribution.

Similarly, other fuzzy distributions can be subdivided into small, intermediate and
large fuzzy distributions. The expressions for the small, intermediate and large fuzzy
distributions of the trapezoidal fuzzy distribution are:

3.2 Fuzzy Sets 83

μA(x) =

⎧⎨

⎩

1, x < a
b−x
b−a , a ≤ x ≤ b
0, x > b

(3.20)

μA(x) =

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, x < a
x−a
b−a , a ≤ x < b
1, b ≤ x < c
d−x
d−c , c ≤ x < d
0, x ≥ d

(3.21)

μA(x) =

⎧⎨

⎩

0, x < a
x−a
b−a , a ≤ x ≤ b
1, x > b

(3.22)

where a, b, c, d are the four parameters and satisfy a < b < c < d.
The expressions for the small, intermediate and large fuzzy distributions of the

k-th parabolic fuzzy distribution are:

μA(x) =

⎧⎪⎨

⎪⎩

1, x < a(
b−x
b−a

)k
, a ≤ x ≤ b

0, x > b
(3.23)

μA(x) =

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, x < a(
x−a
b−a

)k
, a ≤ x < b

1, b ≤ x < c(
d−x
d−c

)k
, c ≤ x < d

0, x ≥ d

(3.24)

μA(x) =

⎧⎪⎨

⎪⎩

0, x < a(
x−a
b−a

)k
, a ≤ x ≤ b

1, x > b
(3.25)

where k, a, b are three parameters and satisfy a < b and k > 0.
The expressions for the small, intermediate and large fuzzy distributions of the

normal fuzzy distribution are:

μA(x) =
{

1, x ≤ a
e−((x−a)/σ)2 , x > a

(3.26)

μA(x) = e−((x−a)/σ)2 (3.27)

μA(x) =
{

0, x < a
1 − e−((x−a)/σ)2 , x ≥ a

(3.28)

84 3 Fuzzy Computing

where a and σ > 0 are the two parameters.
The expressions for the small, intermediate and large fuzzy distributions of the

Cauchy fuzzy distribution are:

μA(x) =
{
1, x < a

1
1+α(x−α)β , x ≥ a (3.29)

μA(x) = 1

1 + α(x − α)β
(3.30)

μA(x) =
{
0, x < a

1
1+α(x−α)−β , x ≥ a (3.31)

where a, α, β are three parameters and satisfy α > 0 and β > 0.
S in the S-type fuzzy distribution refers to the Sigmoid function, which has been

studied in Chap. 1, and its expressions for the small, intermediate and large fuzzy
distributions are:

μA(x) = 1 − 1

1 + e−a(x−b) (3.32)

μA(x) =
|||| 1

1 + e−a(x−b) −
1

1 + e−c(x−d)

|||| (3.33)

μA(x) = 1

1 + e−a(x−b) (3.34)

where a, b, c, d are the four parameters. In Matlab, the S-shaped fuzzy distribution
can be plotted using the following programs:

x = 0:0.1:10;
y1 = 1-sigmf(x,[5 2]);
y2 = dsigmf(x,[5 2 5 7]);
y3 = sigmf(x,[5 7]);
figure1= figure(1);
axes1 = axes(‘Parent’,figure1);
hold(axes1,‘on’);
plot(x, y1, ‘-’, ‘LineWidth’, 2);
plot(x, y2, ‘--’, ‘LineWidth’, 2);
plot(x, y3, ‘:’, ‘LineWidth’, 2);
ylabel(‘membership’);
xlabel(‘x’);
box(axes1,‘on’);
grid(axes1,‘on’);
hold(axes1,‘off’);
set(axes1,‘FontSize’,14);

3.2 Fuzzy Sets 85

Fig. 3.2 S-type membership function

After running the above program, the small, intermediate and large S-type fuzzy
distributions are obtained as shown in Fig. 3.2.

The fuzzy distributions of the above membership functions all contain parameters,
and the determination of these parameters is the problem to be solved by the fuzzy
computing. In practical applications, we can test the effect of the membership func-
tion in practice and make adjustments in order to obtain a more exact membership
function. The following tips should be noted in the application:

(1) the fuzzy set of the membership function must be a convex fuzzy set. For
example: “moderate speed” of the membership function, it is from the largest
membership point to both sides of the extension, the value of its membership
must be monotonically decreasing, but not allowed to have undulating wavi-
ness, thus, generally the membership function of triangles and trapezoids is
more suitable.

(2) membership function is generally symmetric and balanced. For example: “mod-
erate speed” of the membership function, if one side to take “high speed”, then
generally the other side to take “low speed”, to meet the symmetry property.

(3) The membership function should conform to the semantic order of people and
avoid inappropriate expressions.

The operation of ordinary sets is described by the characteristic function; while
the membership function is a generalization of the characteristic function, thus, the
operation of fuzzy sets can be described by the membership function.

(1) Equality of fuzzy sets. If there are two fuzzy sets A and B with μA(x) = μB(x)
for all x ∈ U , then the fuzzy set A is said to be equal to the fuzzy set B, denoted
as A = B.

86 3 Fuzzy Computing

(2) The inclusion relation of fuzzy sets. If there are two fuzzy sets A and B with
μA(x)μB (x) for all x ∈ U , then the fuzzy set A is said to be contained in the
fuzzy set B, or A is a subset of B, denoted as A ⊆ B.

(3) Fuzzy empty set. A fuzzy set A is said to be empty if μA(x) = 0 for all x ∈ U ,
and is denoted as A = ∅.

(4) Union of fuzzy sets. The union of fuzzy sets is also known as the maximal
operator of fuzzy sets, or the sum operator of fuzzy sets. If there are three fuzzy
sets A, B and C, for all x ∈ U , all have:

μC (x) = μA(x) ∨ μB (x) = max[μA(x), μB (x)] (3.35)

Then the fuzzy set C is said to be the union of A and B, denoted as C = A ∪ B.
In addition, the union of fuzzy sets can also be defined as:

μC (x) = μA(x) ∨ μB (x) = μA(x) + μB(x) − μA(x)μB(x) (3.36)

Both definitions of (3.35) and (3.36) are feasible, but the first form is more
commonly used.

(5) Intersection of fuzzy sets. The intersection of fuzzy sets is also known as the
minimum algorithm of fuzzy sets, or the product operator of fuzzy sets. If there are
three fuzzy sets A, B and C, for all x ∈ U , all have:

μC (x) = μA(x) ∧ μB (x) = min[μA(x), μB (x)] (3.37)

Then the fuzzy set C is said to be the intersection of A and B, denoted as C = A∩B.
Furthermore, the intersection of fuzzy sets can be defined as:

μC (x) = μA(x) ∧ μB(x) = μA(x)μB(x) (3.38)

Both definitions of (3.37) and (3.38) are feasible, but the first form is more
commonly used.

(6) Complement of a fuzzy set. If there are two fuzzy sets A and B with μB (x) =
1 − μA(x) for all x ∈ U , then B is said to be the complement of A, and is denoted as
B = Ac.

Take Gaussian membership function for example, the programs for union,
intersection and complement of fuzzy sets are as follows:

x = 0:0.1:10;
A = gaussmf(x,[1 4]);
B = gaussmf(x,[1 6]);
AORB = max([A;B],[], 1);
AANDB = min([A;B],[], 1);
Ac = 1 - A;
figure1 = figure;
subplot1 = subplot(2,2,1,‘Parent’,figure1);

3.2 Fuzzy Sets 87

hold(subplot1,‘on’);
plot1 = plot(x,[A;B],‘Parent’,subplot1,‘LineWidth’,2);
set(plot1(1),‘DisplayName’,‘A’);
set(plot1(2),‘DisplayName’,‘B’,‘LineStyle’,‘—’);
ylabel(‘membership’);
xlabel(‘x’);
box(subplot1,‘on’);
hold(subplot1,‘off’);
set(subplot1,‘XGrid’,‘on’,‘XTick’,[0 2 4 6 8 10],‘YGrid’,‘on’);
legend1 = legend(subplot1,‘show’);
set(legend1,‘Position’,[0.36 0.840 0.094 0.073]);
subplot2 = subplot(2,2,2,‘Parent’,figure1);
hold(subplot2,‘on’);
plot(x,AORB,‘DisplayName’,‘union of A and B’,‘Parent’,subplot2,‘LineWidth’,2);
ylabel(‘membership’);
xlabel(‘x’);
box(subplot2,‘on’);
hold(subplot2,‘off’);
set(subplot2,‘XGrid’,‘on’,‘XTick’,[0 2 4 6 8 10],‘YGrid’,‘on’);
legend2 = legend(subplot2,‘show’);
set(legend2,‘Position’,[0.774 0.855 0.125 0.040]);
subplot3 = subplot(2,2,3,‘Parent’,figure1);
hold(subplot3,‘on’);
plot(x,AANDB,‘DisplayName’,‘intersection of A and
B’,‘Parent’,subplot3,‘LineWidth’,2);
ylabel(‘membership’);
xlabel(‘x’);
ylim(subplot3,[0 1]);
box(subplot3,‘on’);
hold(subplot3,‘off’);
set(subplot3,‘XGrid’,‘on’,‘XTick’,[0 2 4 6 8 10],‘YGrid’,‘on’);
legend3 = legend(subplot3,‘show’);
set(legend3,‘Position’,[0.327 0.398 0.125 0.040]);
subplot4 = subplot(2,2,4,‘Parent’,figure1);
hold(subplot4,‘on’);
plot(x,Ac,‘DisplayName’,‘complement of A’,‘Parent’,subplot4,‘LineWidth’,2);
ylabel(‘membership’);
xlabel(‘x’);
box(subplot4,‘on’);
hold(subplot4,‘off’);
set(subplot4,‘XGrid’,‘on’,‘XTick’,[0 2 4 6 8 10],‘YGrid’,‘on’);
legend4 = legend(subplot4,‘show’);
set(legend4,‘Position’,[0.769 0.334 0.131 0.040]);

88 3 Fuzzy Computing

Fig. 3.3 Union, intersection and complement of fuzzy sets

After running the above program, the result is shown in Fig. 3.3. In Fig. 3.3, the
upper left graph shows the membership function of fuzzy set A and B. The upper
right graph shows the membership function of the union of A and B. The lower left
graph shows the membership function of the intersection of A and B. The lower right
graph shows the membership function of the complement of A.

Example 3.3 Suppose the theoretical domain U = {u1, u2, u3, u4, u5}, on which
there are two fuzzy sets:

A =
0.2

u1
+

0.7

u2
+

1

u3
+

0.5

u5
(3.39)

B =
0.5

u1
+

0.3

u2
+

0.1

u4
+

0.7

u5
(3.40)

Try to find the union and intersection of the two fuzzy sets.

Solution Then, according to the operations on fuzzy sets introduced above, we have:

A ∪ B =
0.2 ∨ 0.5

u1
+

0.7 ∨ 0.3
u2

+
1 ∨ 0
u3

+
0 ∨ 0.1
u4

+
0.5 ∨ 0.7

u5

3.2 Fuzzy Sets 89

=
0.5

u1
+

0.7

u2
+

1

u3
+

0.1

u4
+

0.7

u5
(3.41)

A ∩ B =
0.2 ∧ 0.5

u1
+

0.7 ∧ 0.3
u2

+
1 ∧ 0
u3

+
0 ∧ 0.1
u4

+
0.5 ∧ 0.7

u5

=
0.2

u1
+

0.3

u2
+

0.5

u5
(3.42)

The operations on fuzzy sets satisfy the following eight properties, as follows:

(1) Power law. A
U

A = A, A
∩

A = A.
(2) Exchange law. A

U
B = B

U
A, A

∩
B=B

∩
A.

(3) Combination law. A
U(

B
U

C
) = (

A
U

B
)U

C , A
∩(

B
∩

C
) =(

A
∩

B
)∩

C .
(4) Distributive law.

(
A
U

B
)∩

C = (
A
∩

C
)U(

B
∩

C
)
.

(5) Absorption rate. (A
U

B)
∩

A = A, (A
∩

B)
U

A = A.
(6) Law of restitution. (Ac)c = A.
(7) Pairwise law. A

U
Bc = Ac

∩
Bc, A

∩
Bc = Ac

U
Bc.

(8) 0–1 law. A
U

U = U , A
U

ϕ = A, A
∩

U = A, A
∩

∅ = ∅.

It can be seen that the properties of fuzzy sets are formally similar to those of
classical sets, but fuzzy sets do not satisfy the complementary law in classical sets,
i.e., A

U
Ac = U , A

∩
Ac = ∅. For example, suppose there is a fuzzy set A =

(0.2, 0.7), then its complementary set Ac = (0.8, 0.3). Thus, we have A
U

Ac =
(0.2 ∨ 0.8, 0.7 ∨ 0.3) = (0.8, 0.3) /= U and A

∩
Ac = (0.2 ∧ 0.8, 0.7 ∧ 0.3) =

(0.8, 0.3) /= ∅. In particular, when the fuzzy set A = (0.5, 0.5), then its complement
set Ac=(1–0.5, 1–0.5) = (0.5, 0.5). This shows that there exist fuzzy sets in which
their complements are equal to themselves. This is unbelievable in classical sets, but
it reflects the phenomenon of “both here and there” in practice. This feature of fuzzy
sets is important in fuzzy information processing, which makes the results of fuzzy
information processing more consistent with the actual situation.

Fuzzy intercept set is an important concept of fuzzy set operations, which is
generally called λ-cut. For example, if there are fuzzy sets:

society =
1

Xia
+ 1

Shang
+ 0.9

Xizhou
+ 0.7

Chunqiu
+ 0.5

Zhanguo

+
0.4

Qin
+

0.3

Xihan
+ 0.1

Donghan
(3.43)

If a level of at least 0.5 is required, there are Xia, Shang, Xizhou, Chunqiu and
Zhanguo with membership of 0.5. If a level of at least 0.7 is required, there are Xia,
Shang, Xizhou and Chunqiu that meet the condition.

Definition 3.3 Suppose U is a theoretical domain with fuzzy set A ∈ F(U), λ ∈
[0, 1], we call Aλ = {x |A(x) ≥ λ} the λ-cut set of A; while A

λ
.

= {x |A(x) > λ} is

90 3 Fuzzy Computing

called the strong λ-cut set of A. Note that there is a small dot directly below λ in the
definition of the strong cut set.

Obviously, a strong cut set is a subset of a cut set, i.e., Aλ· ⊆ Aλ. In addition, the

λ in the cut set is also called the threshold or confidence level.

Example 3.4 Suppose there is fuzzy set:

A =
0.5

u1
+

0.6

u2
+

1

u3
+

0.7

u4
+

0.3

u5
(3.44)

Take λ=1, λ=0.7 and λ=0.3, respectively, and try to find their λ-cut sets.

Solution When λ=1, only the membership of u3 reaches 1, so A1 = {u3}. When
λ=0.7, only the membership of u3 and u4 reaches 0.7, so A0.7 = {u3, u4}. When
λ=0.3, there are u1, u2, u3, u4 and u5 whose membership reaches 0.3, so A0.3 =
{u1, u2, u3, u4, u5}. The fuzzy sets of these three cut sets are:

A1 =
1

u3
(3.45)

A0.7 =
1

u3
+

1

u4
(3.46)

A0.3 =
1

u1
+

1

u2
+

1

u3
+

1

u4
+

1

u5
(3.47)

From the Example 3.3, we can see that λ-cut set is an ordinary set, while the
elements satisfying the level of λ correspond to a fuzzy set. λ-cut set provides a way
to convert between fuzzy and classical sets, which is very useful when dealing with
practical problems.

3.3 Fuzzy Pattern Recognition

Pattern recognition is a human perception and awareness of things. It is also a human
thinking activity. The pattern recognition of human can be the recognition of concrete
things such as pictures, words and language, or the recognition of abstract things such
as an argument or an opinion.

Fuzzy pattern recognition is the introduction of fuzzy mathematical theory into
pattern recognition, using fuzzy logic methods to classify and recognize things. There
are two main types of methods for fuzzy pattern recognition, one is the direct method
and the other is the indirect method. Direct methods generally use the maximum
membership principle to classify categories and are usually used for individual pattern
recognition. Indirect methods generally use the principle of proximity to classify
categories and are usually used for pattern recognition of groups.

3.3 Fuzzy Pattern Recognition 91

(1) Maximum membership principle.

Definition 3.4 Suppose there are n patterns which are represented as n fuzzy sets Ai

(i = 1, 2, …, n) on a theoretical domain U. u0 ∈ U is an identified object if there
exists i ∈ {1, 2, . . . , n} such that

Ai (μ0) = ∨n
j=1 A j (μ0) = max{A1(μ0), A2(μ0), . . . , An(μ0)} (3.48)

Then u0 is said to belong relatively to pattern Ai .

If the object being identified is definite and the pattern is ambiguous, then the
maximum membership principle can be used.

Example 3.5 Suppose the theoretical domain U = {u1, u2, u3, u4, u5, u6} denotes
the set of 6 goods whose categories are lagging goods A1, out-of-stock goods A2 and
popular goods A3, i.e., we have:

A1 =
1

u1
+

0.1

u2
+

0

u3
+

0.6

u4
+

0.5

u5
+

0.4

u6
(3.49)

A2 =
0

u1
+

0.1

u2
+

0.1

u3
+

0

u4
+

0

u5
+

0.05

u6
(3.50)

A3 =
0

u1
+

0.8

u2
+

1

u3
+

0.4

u4
+

0.4

u5
+

0.5

u6
(3.51)

Try to find the category of u2.

Solution To determine which category u2 belongs to, the calculation is performed
according to the principle of maximum membership:

∨n
j=1 A j (μ2) = 0.1 ∨ 0.1 ∨ 0.8 = A3(μ2) (3.52)

It is known that u2 belongs to the popular goods A3. Similarly, to determine to
which category u5 belongs, the calculation is performed according to the principle
of maximum membership:

∨n
j=1 A j (μ5) = 0.5 ∨ 0 ∨ 0.4 = A1(μ5) (3.53)

It is known that u5 belongs to lagging goods A1.

(2) Nearest principle.

We first introduce the concepts of inner product, outer product and nearness degree
of fuzzy sets.

92 3 Fuzzy Computing

Definition 3.5 Suppose there are two fuzzy sets A and B on the theoretical domain
U. Then:

A ◦ B = ∨u∈U (A(u) ∧ B(u)) (3.54)

is called the inner product of A and B.

Definition 3.6 Suppose there are two fuzzy sets A and B on the theoretical domain
U. Then:

A ⊗ B = ∧u∈U (A(u) ∨ B(u)) (3.55)

is called the outer product of A and B.
When the theoretical domain U = {u1, u2, . . . , un}, according to the above

definition, we can obtain:

A ◦ B = ∨n
i=1(A(ui) ∧ B(ui)) (3.56)

A ⊗ B = ∧n
i=1(A(ui) ∨ B(ui)) (3.57)

The nearness degree of two fuzzy sets can measure the similarity of fuzzy sets.
Commonly used nearness degree includes the lattice nearness degree, the average
nearness degree and the max–min nearness degree.

The formula for lattice nearness degree is as follows:

N (A, B) = (A ◦ B) ∧ (A ⊗ B)' (3.58)

The formula for the average nearness degree is as follows:

N (A, B) =
1

2

[
(A ◦ B) + (A ⊗ B)'

]
(3.59)

The formula for the max–min nearness degree is as follows:

N (A, B) =
∑n

i=1(A(ui) ∧ B(ui))∑n
i=1(A(ui) ∨ B(ui))

=
∫ +∞
−∞ (A(ui) ∧ B(ui))dx∫ +∞
−∞ (A(ui) ∨ B(ui))dx

(3.60)

lattice nearness degree is the most common method of nearness degree.

Definition 3.7 Suppose there are n patterns which are represented as n fuzzy sets
Ai (i = 1, 2, …, n) on a theoretical domain U. Another fuzzy set B is an identified
object if there exists i ∈ {1, 2, . . . , n} such that:

N (Ai , B) = max{N (A1, B), N (A2, B), . . . , N (An, B)} (3.61)

3.4 Fuzzy Clustering 93

Then B is said to be closest to Ai and it is decided that B belongs to mode Ai .

Example 3.6 Suppose the domain U = {u1, u2, u3, u4, u5, u6} represents the set
of 6 commodities, and there are 5 categories of patterns A1, A2, A3, A4 and A5 on
the domain, where A1 = (0.6, 0.3, 0.2, 0, 0.5, 0.1), A2 = (0.7, 1, 0.3, 0, 0.8, 0.9),
A3 = (0.2, 1, 0.8, 0.4, 0.5, 0.1), A4 = (0.8, 0, 0.4, 0.5, 0.7, 0), A5 =
(0.5, 0.3, 0.6, 1, 0, 0.4), For commodity B, use the lattice nearness degree to
determine the category to which B belongs, where B = (0.7, 0.4, 0.6, 0.3, 0.4, 0.8).
Solution Lattice nearness degree requires to compute the inner product and
outer produce of two fuzzy sets. The inner product of A1 and B is A1 ◦ B =
max(min(0.6, 0.7), min(0.3, 1), min(0.2, 0.3), min(0, 0), min(0.5, 0.8), min(0.1, 0.9)) =
max(0.6, 0.3, 0.2, 0, 0.5, 0.1) = 0.6. Similarly, we can compute A2 ◦ B = 0.8,
A3 ◦ B = 0.6, A4 ◦ B = 0.7, A5 ◦ B = 0.6.

The outer products are A1⊗ B = 0.3, A2⊗B = 0.3, A3⊗ B = 0.4, A4⊗B = 0.4,
A5 ⊗ B = 0.4. Based on the equation of complement set, we have A1 ⊗ B ' = 0.6,
A2 ⊗ B ' = 0.7, A3 ⊗ B ' = 0.6, A4 ⊗ B ' = 0.6, A5 ⊗ B ' = 0.6.

Based on lattice nearness degree (3.58), we have N (A1, B) = (A1 ◦ B) ∧
(A1 ⊗ B)' = 0.6∧0.7 = 0.6. Similarly, we have N (A2, B) = 0.7, N (A3, B) = 0.6,
N (A4, B) = 0.6, N (A5, B) = 0.6.

We use the nearest principle and get max{N (A1, B), N (A2, B), . . . , N (An, B)} =
N (A2, B) = 0.7, so we can determine that the fuzzy set B belongs to the second
category A2. We can also perform the category determination with the help of
Matlab, whose programs are as follows:

A = [0.6,0.3,0.2,0,0.5,0.1;
0.7,1,0.3,0,0.8,0.9;
0.2,1,0.8,0.4,0.5,0.1;
0.8,0,0.4,0.5,0.7,0;
0.5,0.3,0.6,1,0,0.4];

B = [0.7,0.4,0.6,0.3,0.4,0.8];
for i1 = 1:size(A, 1)
tmp = [A(i1, :); B];
N(i1)=min([max(min(tmp)), 1-min(max(tmp))]);

end
[Nmax, BClass] = max(N);

After running the above program, the variable BClass is equal to 2. The result
indicates that the pattern of B is the second category A2.

3.4 Fuzzy Clustering

This section will introduce data clustering by using fuzzy computing method. First,
we introduce the direct product in classical set theory. Suppose there are two sets A
and B. Then we say:

94 3 Fuzzy Computing

A × B = {(x, y)|x ∈ A, y ∈ B } (3.62)

where A × B is the direct product of A and B. For example, suppose A
= {1, 3} and B = {2, 4, 6}, then their direct product is: A × B =
{(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3, 6)}. It can be seen that the direct product of
two sets is the set of ordered pairs of the two sets.

Next, we introduce the relation of sets. The direct product of two sets is the set
of all ordered pair. If we restrict the ordered pairs, we will get a subset of the direct
product, which is a binary relation of two sets, or the relation of two sets for short.
The relation of two sets can be represented by a matrix, generally noted as R, whose
elements in the i-th row and j-th column are:

ri j =
{
1, (x, y) ∈ R
0, (x, y) /∈ R

, i = 1, 2, . . . , n, j = 1, 2, . . . , m (3.63)

When the theoretical domain is a finite set, for two sets A and B, we can represent
the fuzzy relation between A and B by a fuzzy matrix. Specifically: suppose A and B
are two non-empty sets, a fuzzy set R in the direct product is called a binary fuzzy
relation from A to B, or fuzzy relation for short, and is denoted as Rx×y .

Suppose A = {x1, x2, . . . , xn,}, B = {y1, y2, . . . , yn,}, and Rx×y denotes the
fuzzy relation defined on A × B, then it is represented by the matrix as:

Rx×y =

⎡

⎢⎢⎢⎣

μR(x1, y1) μR(x1, y2) · · · μR(x1, ym)
μR(x2, y1) μR(x2, y2) · · · μR(x2, ym)

...
...

. . .
...

μR(xn, y1) μR(xn, y2) · · · μR(xn, ym)

⎤

⎥⎥⎥⎦ (3.64)

where μR
(
xi , y j

)
denotes the membership of xi and y j for the fuzzy relation Rx×y ,

which is generally abbreviated as ri j and Rx×y can be abbreviated as R.
Similar to the binary fuzzy relation, we can define n-element fuzzy relation, which

are a subset of the direct product of n sets. Because a fuzzy relation is a fuzzy set
defined on the direct product space, the operation rules of fuzzy relation are similar
to the operation rules of fuzzy sets.

For binary fuzzy relation, we introduce the synthetic operation between multiple
fuzzy relations. Suppose there are theoretical domains A, B, C are finite, Rx×y =(
ri j
)
n×m is a fuzzy relation from A to B, and Sy×z =

(
s jk
)
m×l is a fuzzy relation from

B to C. Then Rx×y and Sy×z can be synthesized, denoted as Tx×z = (tik)n×l :

Tx×z = Rx×y ◦ Sy×z (3.65)

The above equation can be abbreviated as T = R ◦ S. At this point, such a
synthesis can be expressed in the form of a matrix with the values of the i-th row and
k-th column of Tx×z as:

3.4 Fuzzy Clustering 95

tik = ∨m
j=1

(
ri j ∧ s jk

)
(3.66)

The synthesis of the above equation is also called maximum-minimum (max–min)
synthesis. The max–min synthesis is commonly used when introducing synthetic
operations for fuzzy relations. It should be noted that, in addition to max–min
synthesis, one can also use:

tik = ∨m
j=1

(
ri j · s jk

)
(3.67)

The synthesis of the above equation is called maximum-product (max-product)
synthesis.

Example 3.7 Suppose the theoretical domain is family members, A is the son and
daughter in the family, B is the father and mother in the family, and the fuzzy relation
R is that the children and parents look alike and have:

R = x1
x2

⎡

⎣
y1 y2
0.8 0.3
0.3 0.6

⎤

⎦ (3.68)

If C is the grandfather and grandmother in the family and the fuzzy relationship
S is that the parents and grandparents look alike and have:

S = y1
y2

⎡

⎣
z1 z2
0.7 0.5
0.1 0.1

⎤

⎦ (3.69)

Try to find the fuzzy relationship matrix from children to grandparents.

Solution According to the max–min synthesis method, the fuzzy relationship matrix
from children to grandparents is:

T = R ◦ S =
[
0.8 0.3
0.3 0.6

]
◦
[
0.7 0.5
0.1 0.1

]
(3.70)

=
[

(0.8 ∧ 0.7) ∨ (0.3 ∧ 0.1) (0.8 ∧ 0.5) ∨ (0.3 ∧ 0.1)
(0.3 ∧ 0.7) ∨ (0.6 ∧ 0.1) (0.3 ∧ 0.5) ∨ (0.6 ∧ 0.1)

]
(3.71)

=
[
0.7 ∨ 0.1 0.5 ∨ 0.1
0.3 ∨ 0.1 0.3 ∨ 0.1

]
=
[
0.7 0.5
0.3 0.3

]
(3.72)

96 3 Fuzzy Computing

The above three equations give the detailed calculation procedure of the max–min
synthesis rule. We can also use Matlab to implement the synthetic operation of fuzzy
relations with the following programs:

R = [0.8, 0.3; 0.3, 0.6];
S = [0.7, 0.5; 0.1, 0.1];
n = size(R, 1);
l = size(S, 2);
for i1 = 1:n
for j1 = 1:l

T(i1, j1) = max(min([R(i1,:); S(:, j1)’]));
end

end

After running the above program, the value of T is the result of the synthesis.
From the above example, we can see that fuzzy relations can be synthesized to form
more complex fuzzy logic operations.

“Clustering” is the process of distinguishing and classifying things according
to certain requirements and laws, in which there is no a priori knowledge about
classification, but only relies on the similarity between things as a criterion for class
classification [5]. Thus, clustering belongs to unsupervised learning.

“Cluster analysis” is a mathematical method to study and deal with the classi-
fication of a given thing. Cluster analysis is also known as a mathematical method
to classify the things studied according to certain criteria. It is a multivariate statis-
tical “things in a class” of a classification method. Human beings to understand the
world must distinguish between different things and recognize the similarity between
things.

We call the binary fuzzy relation R from the set A to itself as R is a fuzzy relation
on A, denoted as R ∈ F(A × A), which has the following properties:

(1) Self-reflexivity. A necessary and sufficient condition for R to be self-transitive
is I ⊆ R, i.e., I (x, y) = 1 when x = y, and I (x, y) = 0 when x /= y.

(2) Symmetry. The necessary and sufficient condition for R to be symmetric is that
R = RT .

(3) Transitivity. The necessary and sufficient condition for R to be transitive is that
R2 ⊂ R, i.e., R ◦ R ⊂ R.

Suppose R is a fuzzy relation on A. We say that R is transmitted if for any λ ∈ [0, 1]
and any x, y, z ∈ A, R(x, y) ≥ λ, R(y, z) ≥ λ can be introduced by R(x, z) ≥ λ
holds.

R is said to be a fuzzy similarity relation on A if R is a fuzzy relation on A and
it has self-reflexivity and symmetry properties. R is said to be a fuzzy equivalence
relation on A if R is a fuzzy relation on A and it has self-reflexivity, symmetry and
transitivity properties.

We can apply fuzzy relations for fuzzy clustering. When solving problems, we
generally use the results of “some level” for classification, thus achieving fuzzy
cluster analysis. The conditions of fuzzy equivalence relations are demanding, and

3.4 Fuzzy Clustering 97

the actual problem often cannot satisfy all three properties at the same time; on
the other hand, the actual problem is often a fuzzy similarity relation. We need
to transform the fuzzy similarity relation into fuzzy equivalence relation in cluster
analysis. Transitive closure is a common method to transform the fuzzy similarity
relation into fuzzy equivalence relation. Transitive closure is also called transition
closure.

Assuming that U is a finite theoretical domain, the transitive closure method starts
from the fuzzy similarity relation R. It synthesizes it with itself repeatedly to compute
R2, R4, … in order to obtain t(R) = Rk , when Rk ◦ Rk = Rk occurs for the first
time. Next, we learn the process of applying the transitive closure method for cluster
analysis by an example.

Example 3.8 Suppose we want to assess the contamination of the environment in the
region, which needs to be measured by the content of 4 elements in the pollutant. We
choose the theoretical domain U to be the set of the content of the 4 elements, and get
the pollution data from 5 locations in the region by measuring x1 = (80, 10, 6, 2),
x2 = (50, 1, 6, 4), x3 = (90, 6, 4, 6), x4 = (40, 5, 7, 3), x5 = (10, 1, 2, 4). Try to
cluster the data by using the transitive closure method.

Solution We expressed the collected data in matrix form as follows:

X∗ =

⎡

⎢⎢⎢⎢⎢⎣

80 10 6 2
50 1 6 4
90 6 4 6
40 5 7 3
10 1 2 4

⎤

⎥⎥⎥⎥⎥⎦
(3.73)

Since the value of the data varies greatly, we use the maximum value method to
speciate the data, where each element of the matrix is divided by the maximum value
of the column it is in, i.e.:

xi j =
x∗
i j

max
1≤k≤5

xk j
(3.74)

This results in the specified data matrix:

X =

⎡

⎢⎢⎢⎢⎢⎣

0.89 1 0.86 0.33
0.56 0.10 0.86 0.67
1 0.60 0.57 1

0.44 0.50 1 0.50
0.11 0.10 0.29 0.67

⎤

⎥⎥⎥⎥⎥⎦
(3.75)

98 3 Fuzzy Computing

Then, we use the max–min method to calculate the fuzzy similarity matrix, where
each element is calculated by the formula:

ri j =
∑4

k=1

(
xik ∧ x jk

)
∑4

k=1

(
xik ∨ x jk

) (3.76)

From this, the fuzzy relation matrix can be obtained as:

R =

⎛

⎜⎜⎜⎜⎜⎝

1 0.54 0.62 0.63 0.24
0.54 1 0.55 0.70 0.53
0.62 0.55 1 0.56 0.37
0.63 0.70 0.56 1 0.38
0.24 0.53 0.37 0.38 1

⎞

⎟⎟⎟⎟⎟⎠
(3.77)

Calculating R2, R4, R8 one at a time according to the transitive closure method
yields:

R2 =

⎛

⎜⎜⎜⎜⎜⎝

1 0.63 0.62 0.63 0.53
0.63 1 0.56 0.70 0.53
0.62 0.56 1 0.62 0.53
0.63 0.70 0.62 1 0.53
0.53 0.53 0.53 0.53 1

⎞

⎟⎟⎟⎟⎟⎠
(3.78)

R4 =

⎛

⎜⎜⎜⎜⎜⎝

1 0.63 0.62 0.63 0.53
0.63 1 0.62 0.70 0.53
0.62 0.62 1 0.62 0.53
0.63 0.70 0.62 1 0.53
0.53 0.53 0.53 0.53 1

⎞

⎟⎟⎟⎟⎟⎠
(3.79)

R8 = R4 ◦ R4 (3.80)

Thus, we have t(R) = R4.
Then, by choosing an appropriate confidence level λ ∈ [0, 1], we intercept t(R)

based on the λ level. We sort the elements in t(R) in descending order: 1 > 0.70 >
0.63 > 0.62 > 0.53. Hence, we can choose λ = 1 and the clustering matrix is:

t(R)1 =

⎛

⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0

0 0 0
0 0 0
1 0 0

0 0
0 0

0 1 0
0 0 1

⎞

⎟⎟⎟⎟⎟⎠
(3.81)

3.4 Fuzzy Clustering 99

From the above equation, it can be seen that when λ = 1, the data are clustered
into 5 classes.

t(R)0.70 =

⎛

⎜⎜⎜⎜⎜⎝

1 0
0 1
0 0

0 0 0
0 1 0
1 0 0

0 1
0 0

0 1 0
0 0 1

⎞

⎟⎟⎟⎟⎟⎠
(3.82)

From the above equation, it can be seen that when λ = 0.70, the data are clustered
into 4 classes, where x2 and x4 belong to the same class.

t(R)0.63 =

⎛

⎜⎜⎜⎜⎜⎝

1 1
1 1
0 0

0 1 0
0 1 0
1 0 0

1 1
0 0

0 1 0
0 0 1

⎞

⎟⎟⎟⎟⎟⎠
(3.83)

From the above equation, it can be seen that when λ = 0.63, the data are clustered
into 3 classes, where x1, x2 and x4 belong to the same class.

t(R)0.62 =

⎛

⎜⎜⎜⎜⎜⎝

1 1
1 1
1 1

1 1 0
1 1 0
1 1 0

1 1
0 0

1 1 0
0 0 1

⎞

⎟⎟⎟⎟⎟⎠
(3.84)

From the above equation, it can be seen that when λ = 0.62, the data are clustered
into 2 classes, where x1, x2, x3 and x4 belong to the same class.

t(R)0.53 =

⎛

⎜⎜⎜⎜⎜⎝

1 1
1 1
1 1

1 1 1
1 1 1
1 1 1

1 1
1 1

1 1 1
1 1 1

⎞

⎟⎟⎟⎟⎟⎠
(3.85)

From the above equation, it can be seen that when λ = 0.53, the data are clustered
into 1 class, i.e., all data samples belong to the same class.

Figure 3.4 gives the results of the fuzzy cluster analysis, and it can be seen
that as the value of λ becomes smaller, the number of categories becomes smaller;
conversely, as the value of λ becomes larger, the number of categories becomes
larger. For the unsupervised learning problem, the number of categories into which
the data samples are divided is unknown, thus Fig. 3.4 is able to show the degree of

100 3 Fuzzy Computing

Fig. 3.4 Clustering results of pollutant data

similarity between the samples. The number of categories can also be determined
in advance according to specific needs, so that the corresponding categories can be
divided.

In the Example 3.8, the degree of similarity between data samples is measured
using the max–min method. In addition to this, there are a number of methods, as
follows:

(1) Scalar product method. This method uses the scalar product of vectors to define
the degree of similarity:

ri j =
{

1, i = j(
xi · x j

)
/M, i /= j

(3.86)

where xi · x j denotes the scalar product of vectors and M > 0 is a parameter and
satisfies M ≥ max

{
xi · x j |i /= j

}
.

(2) Angle cosine method. This method uses the angle of the vectors to define the
degree of similarity:

ri j =
||xi · x j ||

∥xi∥
∥∥x j∥∥ (3.87)

where ∥xi∥ denotes the 2-norm of the vector xi .

(3) Correlation coefficient method. This method uses the correlation coefficient to
define the degree of similarity:

ri j =
∑m

k=1|xik − xi |
||x jk − x j

||
∥xi − xi∥

∥∥x j − x j
∥∥ (3.88)

3.5 Fuzzy Inference 101

where xi denotes the mean value of vector xi .

(4) Nearness degree method. A data sample xi = (xi1, xi2, . . . , xim)

can be considered as a fuzzy vector if each component of the sample is between 0 and
1. The degree of similarity between samples can be measured by the nearness degree.
The methods to calculate the nearness degree are: max–min method, arithmetic mean-
min method, and geometric mean-min method. The max–min method has been used
in the Example 3.8, and the expression of the arithmetic mean-min method is

ri j =
∑m

k=1

(
xik ∧ x jk

)
(∑m

k=1

(
xik + x jk

))
/2

(3.89)

The expression for the geometric mean-min method is:

ri j =
∑m

k=1

(
xik ∧ x jk

)
∑m

k=1
√
xik x jk

(3.90)

(5) Distance method. This method uses the distance between vectors to define the
degree of similarity. The closer the distance between two vectors, the greater
the degree of similarity between them; conversely, the farther the distance
between two vectors, the less similar the two vectors are. Commonly used
distances include Euclidean distance, Chebyshev distance, Hamming distance
and Minkowski distance. The expressions for the definition of these distances
will not be introduced.

(6) Absolute value reciprocal method. This method uses the reciprocal of the abso-
lute value of the difference of two vectors to define the degree of similarity, and
its expression is:

ri j =

⎧⎨

⎩

1, i = j

c/
m∑

k=1

(
xik − x jk

)
, i /= j (3.91)

where c is a properly chosen positive number such that ri j ∈ [0, 1].

3.5 Fuzzy Inference

This section introduces fuzzy inference. We start from introducing the concept of
fuzzy linguistic variables. A linguistic variable can be represented by a quintuple as
follows:

(x, T (x), U, G, M) (3.92)

102 3 Fuzzy Computing

Fig. 3.5 Quintuplet diagram of “error”

where x is the name of the linguistic variable, T (x) is the set of linguistic variable
values, U is the domain of the variable x, G is a grammatical rule, and M is a semantic
rule. The grammatical rule G is used to generate the names of linguistic variables x,
while the semantic rule M is used to generate the membership function of the fuzzy
set.

For example, in a control system, we take “error” as a linguistic variable x and
choose the domain U = [− 6, 6]. The atomic words of the linguistic variable “error”
are “large”, “medium”, “small”, “zero”. By applying the appropriate tone operator
to these atomic words, multiple linguistic values can be formed, such as “very large”
[3]. Moreover, we can consider that the error has positive and negative cases. Then,
the set of linguistic variables T (x) can be expressed as T (x) = {negative very large
(NVL), negative large (NL), negative medium (NM), negative small (NS), zero,
positive small (PS), positive medium (PM), positive large (PL), positive very large
(PVL)}. Figure 3.5 shows the schematic diagram of the quintuple of fuzzy linguistic
variables with “error” as the theoretical domain.

As can be seen from Fig. 3.5, the grammatical rule G acts to convert the linguistic
variable x into a linguistic variable value, while the semantic rule M acts to map the
linguistic variable value into the theoretical domain. A fuzzy linguistic variable is
equivalent to a fuzzy set. After the grammatical rule acts on the linguistic variable.
That is, it uses the tone operator to add “very”, “relatively”, “slightly”, etc. to the
linguistic variables to obtain different values of the linguistic variables. These values
need to be mapped to different affiliation values, which is achieved by the semantic
rules.

If we denote a fuzzy linguistic variable by A, whose membership function is
denoted by μA. We add to A the inflections “very”, “fairly”, “comparatively”,
“slightly”. The membership function of the linguistic variable values can be trans-
formed into μvery A = μ2

A, μrelatively A = μ1.5
A , μslightly A = μ0.75

A . The complement of
the fuzzy set can be μnot A = 1 − μA. Note that this is only an example to illustrate
the correspondence variation of grammatical rules and membership functions, this
correspondence form is not fixed and needs specific analysis in each example.

In fuzzy computing, a fuzzy logic rule is a fuzzy implication relation. An implica-
tion relation is essentially a kind of reasoning or inference. One of the most commonly

3.5 Fuzzy Inference 103

used fuzzy implication relations is: if x is A, then y is B, denoted as A → B. In ordi-
nary logic, A → B has a strict definition. In fuzzy logic, A → B is not a simple
generalization of ordinary logic and has many ways of definition. The commonly
used operations for fuzzy implication relations are:

(1) Fuzzy implication minimum operation. This operation is given by Mamdani.
Its expression is:

Rc = A → B = A × B =
∫

X×Y

μA(x) ∧ μB (y)
(x, y)

(3.93)

From (3.93) the fuzzy implication relation is defined as the multiplication of two
fuzzy sets, which in turn transforms into the intersection of two fuzzy sets.

(2) Fuzzy implication arithmetic operation. This operation is given by Zadeh and
its expression is:

Rc = A → B = (
A × Y

)⊕ (X × B) =
∫

X×Y

1 ∧ (1 − μA(x) + μB(y))
(x, y)

(3.94)

From the above equation, it is clear that the fuzzy implication relation is defined as
an arithmetic operation, which in turn transforms into complement and intersection
operations of two fuzzy sets.

(3) Fuzzy implication max–min operation. This operation is given by Zadeh and its
expression is:

Rc = A → B = (A × B) ∪ (A × Y
) =

∫
X×Y

(μA(x) ∧ μB (y)) ∨ (1 − μA(x))
(x, y)

(3.95)

From the above equation, it can be seen that the fuzzy implication relation is
defined as multiplication and concatenation of sets, which in turn transforms into
intersection, complement and concatenation of fuzzy sets.

Among these three fuzzy implication relations, the most commonly used are fuzzy
implication minimum operation and fuzzy implication arithmetic operation.

Example 3.9 Suppose we have two fuzzy sets A = [1, 0.8, 0.7, 0.4, 0.1] and B = [1,
0.7, 0.3, 0], try to compute the fuzzy implication relation A → B using the fuzzy
implication minimum operation.

Solution Based on (3.93), the fuzzy implication relation A → B is:

104 3 Fuzzy Computing

Rc =
∫

X×Y

μA(x) ∧ μB (y)
(x, y)

=

⎡

⎢⎢⎢⎢⎢⎣

1 0.7 0.3 0
0.8 0.7 0.3 0
0.7 0.7 0.3 0
0.4 0.4 0.3 0
0.1 0.1 0.1 0

⎤

⎥⎥⎥⎥⎥⎦
(3.96)

The example can also be calculated using Matlab with the following programs:

A = [1, 0.8, 0.7, 0.4, 0.1];
B = [1, 0.7, 0.3, 0];
m = length(A);
n = length(B);
for i1 = 1:m
for j1 = 1:n

Rc(i1,j1)=min(A(i1), B(j1));
end

end

After running the above program, the variable Rc is the matrix of the fuzzy
implication relation.

Fuzzy inference is the process of determining the mapping from input to output
using fuzzy logic. After determining the mapping from input to output, fuzzy iden-
tification or fuzzy decision making can be performed. We introduce fuzzy inference
in terms of both simple fuzzy conditional statements and multiple fuzzy conditional
statements.

(1) Simple fuzzy conditional statements.

Suppose the existing precondition is: if x is A, then y is B. For the input: if x is A',
then the output is y is B '. This is the simple fuzzy conditional statement, where the
conclusion B ' is based on the synthesis of the fuzzy implication relation A → B and
the fuzzy set A', i.e.:

B ' = A'◦(A → B) = A'◦ R (3.97)

where R is a fuzzy implication relation and 0 is a synthetic operation.

Example 3.10 Suppose there is a fuzzy implication relation A → B, where A =
[0,0.1,0.4,0.5,0.9] and B = [0,0,0.2,0.5,1], for the input A' = [1, 0.9, 0.6, 0.5, 0.1],
try to find its output B '.

Solution According to the above Eq. (3.97), it is obtained that:

3.5 Fuzzy Inference 105

B ' = A'◦ R = A'◦

⎛

⎜⎜⎜⎜⎜⎝

0 0
0 0
0 0

0.0 0.0 0.0
0.1 0.1 0.1
0.2 0.4 0.4

0 0
0 0

0.2 0.5 0.5
0.2 0.5 0.9

⎞

⎟⎟⎟⎟⎟⎠
= (0, 0, 0.2, 0.5, 0.5) (3.98)

The Matlab programs for the Example 3.10 are as follows:

A = [0, 0.1, 0.4, 0.5, 0.9];
B = [0, 0, 0.2, 0.5, 1];
Aapo = [1, 0.9, 0.6, 0.5, 0.1];
m = length(A);
n = length(B);
for i1 = 1:m
for j1 = 1:n

Rc(i1,j1)=min(A(i1), B(j1));
end

end
n = size(Aapo, 1);
l = size(Rc, 2);
for i1 = 1:n
for j1 = 1:l

Bapo(i1, j1) = max(min([Aapo(i1,:); Rc(:, j1)’]));
end

end

After running the above program, the variable Bapo is the inference result of the
simple fuzzy statement.

(2) Multiple fuzzy conditional statements

Multiple fuzzy conditional statements can be divided into fuzzy conditional
statements connected by “and” and fuzzy conditional statements connected by “also”.

Fuzzy conditional statements using “and” concatenation are a common way of
fuzzy inference. Suppose the existing precondition is: if x is A and y is B, then z
is C. For the input: if x is A' and y is B ', then the output is: z is C '. Compared
with the simple fuzzy conditional statement, the preconditions and inputs have been
added with “and” concatenation. If there is only one “and”, it can be regarded as a
double fuzzy conditional statement. Similarly, if there are more than one “and”, it is
a multiple fuzzy conditional statement.

We introduce the operation of double fuzzy conditional statements as an example.
The fuzzy preconditions x is A and y is B can be regarded as a fuzzy set on the direct
product space X × Y , denoted as A × B. Its membership function can be defined as:

μA×B (x, y) = min{μA(x), μB (y)} (3.99)

106 3 Fuzzy Computing

The membership function can also be defined as:

μA×B (x, y) = μA(x)μB (y) (3.100)

The fuzzy implication relation can be expressed as A × B → C . Based on the
fuzzy implication minimum operation, the fuzzy implication relation can be defined
as:

R = A × B → C = A × B × C =
∫

X×Y ×Z

μA(x) ∧ μB(y) ∧ μC (z)
(x, y, z)

(3.101)

The fuzzy input x is A' and y is B ' can be defined as A' × B ', so the conclusion z
is C ' can be defined as:

C ' = (
A' × B ')◦(A × B → C) =

−−−−−−→(
A' × B ')◦ R (3.102)

where
−−−−−−→(
A' × B ') denotes stretching of A' × B ' by rows.

Example 3.11 Reasoning voltage by knowing the temperature and its variation. If the
fuzzy sets A, B, C denote low temperature, fast temperature change and high voltage
respectively. We have A = (1, 0.4, 0.1), B = (0.1, 0.6, 1), C = (0.3, 0.7, 1), and
A', B ' denote higher temperature and faster temperature change respectively. We
have A' = (0.3, 0.5, 0.7), B ' = (0.4, 0.5, 0.9). The precondition is that if x is A and
y is B, then z is C. The implication is that if the temperature is low and the temperature
is changing fast, then there is a high voltage. For the input: if x is A' and y is B ', try
to find the conclusion C '. That is to infer the voltage if the temperature is higher and
the temperature is changing faster.

Solution The Matlab programs for the Example 3.11 are as follows:

A = [1, 0.4, 0.2];
B = [0.1, 0.6, 1];
C = [0.3, 0.7, 1];
m = length(A);
n = length(B);
for i1 = 1:m

for j1 = 1:n
RAB(i1,j1) = min(A(i1), B(j1));

end
end
RABLaShen = reshape(RAB’, 1, size(RAB, 1) * size(RAB, 2));
m = length(RABLaShen);
n = length(C);
for i1 = 1:m

for j1 = 1:n

3.5 Fuzzy Inference 107

RABC(i1,j1) = min(RABLaShen(i1), C(j1));
end

end
Aapo = [0.3, 0.5, 0.7];
Bapo = [0.4, 0.5, 0.9];
m = length(Aapo);
n = length(Bapo);
for i1 = 1:m
for j1 = 1:n

RAapoBapo(i1,j1) = min(Aapo(i1), Bapo(j1));
end

end
m = size(RAapoBapo, 1);
n = size(RAapoBapo, 2);
RAapoBapoLaShen = reshape(RAapoBapo’, 1, m*n);
n = size(RAapoBapoLaShen, 1);
l = size(RABC, 2);
for i1 = 1:n
for j1 = 1:l

Capo(i1, j1) = max(min([RAapoBapoLaShen(i1,:); RABC(:, j1)’]));
end

end

After running the above program, the variable Capo is the value of conclusion C '.
We have C ' = (0.3, 0.4, 0.4).

Next, we introduce the multiple fuzzy conditional statements using the “also”
conjunction. Suppose the existing preconditions are: if x is A1 and y is B1, then z
is C1, also if x is A2 and y is B2, then z is C2, …, also if x is An and y is Bn , then
z is Cn . For the input: if x is A' and y is B ', then the output: z is C '. Compared
to the fuzzy conditional statement connected by “and”, the precondition has more
conditions connected by “also”.

If the fuzzy implication relation for the i-th conditional rule, i.e., if x is Ai and y
is Bi , then z is Ci , is written as:

Ri = Ai × Bi → Ci (3.103)

Then the total fuzzy implication relation for all n precondition rules is:

R = ∪n
i=1 Ri (3.104)

Finally, the output z is C ' as:

C ' = (
A' × B ')◦ R (3.105)

108 3 Fuzzy Computing

From the above expressions, we can see that the multiple fuzzy conditional state-
ments connected with “also” are defined on the basis of the fuzzy conditional state-
ments connected with “and”. The final output can be obtained by following the
formula step by step.

3.6 Fuzzy Control System

Fuzzy control systems are arguably the most important application of fuzzy
computing. Fuzzy control systems are also known as fuzzy controllers. A fuzzy
control system is a comprehensive use of fuzzy logic theory [5]. A fuzzy control
system includes modules such as fuzzification, knowledge base, fuzzy inference,
and defuzzification, as shown in Fig. 3.6.

The part in the dashed box in Fig. 3.6 is the fuzzy control system. The fuzzy
control system regulates the control object and solves real-life problems by control-
ling changes in the object. Fuzzification refers to the conversion of the input deter-
ministic variable into a fuzzy variable. The deterministic variable is also called the
clear variable. Fuzzy inference refers to the use of fuzzy implication relations and
inference rules in fuzzy logic to make decisions. Defuzzification refers to the conver-
sion of fuzzy variables obtained by fuzzy inference into definite variables for control
purposes. Knowledge base refers to the knowledge of the real-life problem and the
object to be controlled, which usually includes a database and a fuzzy control rule
base.

(1) Fuzzification. The fuzzification operation is to map the input observations into
a fuzzy set over the theoretical domain.

First, the input observations are processed so that they are converted into input
variables suitable for the fuzzy controller. For example, if the input observation is
denoted as r and the output is denoted as y, in general, we need to calculate the error
e = r-y and the rate of change of the error e' = de/dt.

Fig. 3.6 Diagram of a fuzzy control system

3.6 Fuzzy Control System 109

Second, the input variables obtained from the processing are to be scaled so that
they are mapped to their respective theoretical domain ranges.

Finally, the input variables transformed to the range of the theoretical domain are
to be fuzzed to obtain the corresponding fuzzy sets [6].

The method of scale transformation of the input variables can be linear or
nonlinear, while the theoretical domain can be discrete or continuous. If the theo-
retical domain is to be restricted to be discrete, the continuous domain needs to
be discretized, also known as quantization [7]. The quantization of the theoretical
domain can be homogeneous or non-homogeneous.

For example, assuming that the range of the continuous domain is [− 3, 3],
Table 3.3 gives the method of uniform quantization:

As can be seen from Table 3.3, the theoretical domain is uniformly divided
into different levels, except for the two ends, thus achieving a discretization of the
continuous domain.

As can be seen from Table 3.4, the theoretical domain is divided non-uniformly
into different levels, except for the two ends, thus achieving a discretization of the
continuous domain.

Since the continuous theoretical domain can be transformed into the discrete
theoretical domain, we generally discuss the problem on the discrete theoretical
domain. In order to transform the input variable into a fuzzy set on the theoretical
domain, we need to introduce the description method of the membership function.
The description method is introduced from both discrete and continuous perspectives.

The membership functions on discrete theoretical domains are generally described
numerically. Table 3.5 gives an example of a description of a discrete theoretical
domain.

In Table 3.5, the fuzzy sets NB, NS, ZE, PS, and PB denote Negative Big, Negative
Small, Zero, Positive Small, and Positive Big, respectively. ZE can be expressed as:

ZE =
0.5

−1
+

1.0

0
+

0.5

1
(3.106)

For the membership function on the continuous domain, the general method is func-
tional description. That is the membership is usually expressed in the form of a

Table 3.3 Uniform quantization of continuous theoretical domains

Range [− 3, − 1.4) [− 1.4, −
0.8)

[− 0.8, −
0.4)

[− 0.4, 0.4) [0.4, 0.8) [0.8, 1.4) [1.4, 3]

Level − 3 − 2 − 1 0 1 2 3

Table 3.4 Non-uniform quantization of continuous theoretical domains

Range [− 3, − 2.5) [− 2.5, −
1.5)

[− 1.5, −
0.5)

[− 0.5, 0.5) [0.5, 1.5) [1.5, 2.5) [2.5, 3]

Level − 3 − 2 − 1 0 1 2 3

110 3 Fuzzy Computing

Table 3.5 Numerical description method

Fuzzy set − 3 − 2 − 1 0 1 2 3

NB 1.0 0.5 0.0 0.0 0.0 0.0 0.0

NS 0.0 0.5 1.0 0.5 0.0 0.0 0.0

ZE 0.0 0.0 0.5 1.0 0.5 0.0 0.0

PS 0.0 0.0 0.0 0.5 1.0 0.5 0.0

PB 0.0 0.0 0.0 0.0 0.0 0.5 1.0

function. The most common forms of functions are Gaussian function, triangular
function, trapezoidal function. The expression of the Gaussian membership function
is:

μA(x) = e− (x−x0)
2

2σ 2 (3.107)

where x0 is the mean value of the membership function and σ is the variance of the
membership function. By adjusting the magnitude of the mean value and variance,
the Gaussian membership function with different shapes can be obtained.

If the input variable is one-dimensional, it is usually converted into a fuzzy set
using the single-point fuzzy method. Assuming that x0 is a clear input membership,
it is usually fuzzified into a single-point fuzzy set, denoted as A, whose expression
is:

μA(x) =
{
1, x = x0
0, x /= x0

(3.108)

It is easy to see that the single-point fuzzy set only formally converts the clear
variable into a fuzzy variable, while it is still an accurate quantity in substance. For
example, if the theoretical domain is {− 3, − 2, − 1, 0, 1, 2, 3} and the input variable
x0 = − 2, then its corresponding single-point fuzzy set is A = (0,1,0,0,0,0,0,0); while
for x0 = 1, then its corresponding single-point fuzzy set is A = (0, 0, 0, 0, 1, 0, 0).

(2) Fuzzy inference. Fuzzy inference was introduced in the previous section and is
omitted here.

(3) Defuzzification. A fuzzy variable can be obtained by fuzzy inference, while
for the actual control problem, it must be converted into a clear variable. It is
necessary to convert the fuzzy variable into a clear variable. This is the task to be
accomplished by the defuzzification. The common methods of defuzzification
include: average maximum membership method, weighted average method,
maximum membership taking the minimum method, maximum membership
taking the maximum method, and median method.

The average maximum membership method is also known as the “mom” method. If
the membership function of the fuzzy set C ' of the output variable is a single-peaked

3.6 Fuzzy Control System 111

function. That is there is only one peak, the maximum value of the membership
function is selected as the clear value, i.e.:

μC '(z0) ≥ μC '(z), z ∈ Z (3.109)

where z0 denotes the determined value after defuzzification. If the membership func-
tion of the fuzzy set C ' of output variable is not a single-peaked function, i.e., there
are multiple peaks, the average of the values of the elements corresponding to these
peaks is selected as the clear value.

Example 3.12 Suppose the fuzzy set of output variable z1 is known as C '
1 = 0.1 2 +

0.4
3 + 0.7 4 + 1.0 5 + 0.7 6 + 0.3 7 , and the fuzzy set of another output variable z2 is C

'
2 =

0.3
−4 + 0.8 −3 + 1.0 −2 + 1.0 −1 + 0.8 0 + 0.3 1 + 0.1 2 , try to use the average maximum membership
method to find the corresponding clear variables z10 and z20 for z1 and z2.

Solution According to the average maximum membership method, C '
1 is a single-

peaked function and it is easy to know that μC '
1
(z1 = 5) = 1.0 is its maximum

C '
1. Thus, z10 = 5. C '

2 is a function with two peaks. It is easy to know that
μC '

2
(z2 = −2) = 1.0 and μC '

2
(z2 = −1) = 1.0 are is its maximum membership.

Thus, z10 = (−2 − 1)/2 = −1.5.

The weighted average method is also known as the area center of gravity method,
sometimes abbreviated as centroid method. This method is a weighted average of the
membership in a fuzzy set to obtain clear values. For a discrete membership function,
the expression of the weighted average method is:

z0 =
∑n

i=1 zi μC '(zi)∑n
i=1 μC '(zi)

(3.110)

For a continuous membership function, the expression of the weighted average
method is:

z0 = d f (z) =
∫ b
a zi μC '(zi)dz∫ b
a μC '(zi)dz

(3.111)

Example 3.13 Suppose the fuzzy set of the known output variable z1 is C '
1 = 0.1 2 +

0.4
3 + 0.7 4 + 1.0 5 + 0.7 6 + 0.3 7 , try to use the weighted average method to find the
corresponding clear variable z10 of z1.

Solution It is easy to know that C '
1 is a discrete membership function, so the

calculation process of the weighted average method is:

z10 =
0.1 × 2 + 0.4 × 3 + 0.7 × 4 + 1.0 × 5 + 0.7 × 6 + 0.3 × 7

0.1 + 0.4 + 0.7 + 1.0 + 0.7 + 0.3
= 4.84

(3.112)

112 3 Fuzzy Computing

The method of taking the minimum value of the maximum membership is also
noted as “som” method. This method selects the smallest of all points in the fuzzy
set with the maximum membership as the result of defuzzification. The taking
the maximum value of the maximum membership method is also known as the
“lom” method. This method selects the largest of all points in the fuzzy set with
the maximum membership as the result of defuzzification. The median method is
also known as the area equalization method and is denoted as bisector method. The
median method is to select the median of μC '(z) as the result of the defuzzification
of z.

Example 3.14 Suppose the domain U = {−6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6},
we have the linguistic variables x, y, z ∈ U . The values of the linguistic variables
T (x) = {N B, NM, NS, N Z , PZ , PS, PM, PB}, where NB is Negative Big, NM
is Negative Middle, NS is Negative Small, PS is Negative Zero, PZ is Positive Zero,
and PS is Negative Small, PM is Positive Middle, PB is Positive Big. The linguistic
variable value T (y) = T (z) = {N B, NM, NS, ZE, PS, PM, PB}, where ZE
is zero (Zero). For the linguistic variables x, the fuzzy sets corresponding to their
linguistic variable values are shown in Table 3.6.

For the linguistic variables y, z, the fuzzy sets corresponding to their linguistic
variable values are shown in Table 3.7.

In this fuzzy control system, the knowledge base is the fuzzy control rules for the
linguistic variables x, y and z, as shown in Table 3.8.

As shown in Table 3.8, the number of language variable values for language
variable x is 8. The number of language variable values for language variable y is
7. Thus this knowledge base contains 56 rules. Note that 56 rules are the maximum
possible number, and in practice, it is possible that some possible rules do not exist,
i.e., the square column in Table 3.8 can be empty. The rules in the table are, in order,
R1: if x is NB and y is NB, then z is NB; R2: if x is NB and y is NM, then z is NB;
…; R56: if x is PB and y is PB, then z is PB.

Solution If the inputs are noted as x0 and y0, then according to the above steps
of fuzzy control system. We can use single-point fuzzy sets to fuzzify the input

Table 3.6 Membership of the fuzzy set of linguistic variable x

μ(x) − 6 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 6

NB 1.0 0.8 0.7 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NM 0.2 0.7 1.0 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NS 0.1 0.1 0.3 0.7 1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0

NZ 0.0 0.0 0.0 0.0 0.1 0.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0

PZ 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.1 0.0 0.0 0.0 0.0

PS 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.1 0.0

PM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3

PB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 0.8 1.0

3.6 Fuzzy Control System 113

Table 3.7 Membership of fuzzy sets of linguistic variables y and z

μ(y),
μ(z)

− 6 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 6

NB 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NM 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NS 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0

ZE 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0

PS 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0

PM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3

PB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0

Table 3.8 Fuzzy control rules for linguistic variables x, y and z

x NB NM NS ZE PS PM PB

NB NB NB NB NB NM ZE ZE

NM NB NB NB NB NM ZE ZE

NS NM NM NM NM ZE PS PS

NZ NM NM NS ZE PS PM PM

PZ NM NM NS ZE PS PM PM

PS NS NS ZE PM PM PM PM

PM ZE ZE PM PB PB PB PB

PB ZE ZE PM PB PB PB PB

variables. In fuzzy inference, the intersection of fuzzy sets is used for fuzzy condi-
tional statements connected by “and”. The concatenation of fuzzy sets is used for
fuzzy conditional statements connected by “also”, the max–min method is used for
synthesis operations. The intersection method is used for fuzzy implication relations.
The weighted average method is used for the defuzzification operation. The fuzzy
set C ' of the output variable is:

C ' = (
A' × B ')◦ ∪56

i=1 Ri = ∪56
i=1

(
A' × B ')◦((Ai × Bi) → Ci) = ∪56

i=1C
'
i (3.113)

where C '
i =

(
A' × B ')◦((Ai × Bi) → Ci).

For x0 = −6 and y0 = −6, A' = B ' = (1, 0, . . . , 0)1×13 is obtained by the
single-point fuzzy set method. We have C '

1 = (
A' × B ')◦((A1 × B1) → C1) =(

A' × B ')◦((ANB × BNB) → CNB) = (1, 0.7, 0.3, 0, . . . , 0)1×13. Similarly,
C '
2, C '

3, . . . , C '
56 can be computed. Finally the output fuzzy set C ' =

(1, 0.7, 0.3, 0, . . . , 0)1×13 is calculated. Using the weighted average method, the
clear variable is obtained as:

z0 =
1 × (−6) + 0.7 × (−5) + 0.3 × (−4)

1 + 0.73 + 0.3
= −5.35 (3.114)

114 3 Fuzzy Computing

Similarly, we can calculate the output variable z0 when x0 ∈ U and y0 ∈ U are
other combinations in the theoretical domain, as shown in Table 3.9, which provides
a user-queryable control table.

In Table 3.9, the output variables are retained only to one decimal place to save
space and for display purposes.

The above example of a fuzzy control system can also be implemented using
Matlab programming with the following programs:

A = xlsread(‘fuzzycon.xlsx’,‘x’);
B = xlsread(‘fuzzycon.xlsx’,‘yz’);
C = B;
R = xlsread(‘fuzzycon.xlsx’,‘r’);
U = -6:1:6;
n = length(U);
X = eye(n);
Y = X;
Z = zeros(n);
for i=1:n
for j=1:n

x0 = X(i,:);
y0 = Y(j,:);
zi = defuzzyAlsoAnd(A,B,C,R,x0,y0);
zi = sum(zi.*U)/sum(zi);
Z(i,j) = roundn(zi, -2);

end
end

Table 3.9 Control table for linguistic variables x, y and z

x − 6 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 6

− 6 − 5.4 − 5.2 − 5.4 − 5.2 − 5.4 − 5.2 − 4.7 − 4.3 − 2.7 − 2.0 − 1.3 0.0 0.0
− 5 − 5.0 − 5.0 − 5.0 − 5.0 − 5.0 − 5.0 − 3.9 − 3.7 − 2.4 − 1.8 − 1.1 0.2 0.2
− 4 − 4.7 − 4.5 − 4.7 − 4.5 − 4.7 − 4.5 − 3.1 − 2.9 − 1.9 − 1.4 − 0.7 0.6 0.6
− 3 − 4.3 − 4.3 − 4.3 − 4.3 − 4.3 − 4.3 − 2.9 − 2.3 − 1.4 − 0.9 − 0.3 1.0 1.0
− 2 − 4.0 − 4.0 − 3.8 − 3.8 − 3.5 − 3.4 − 2.4 − 1.8 − 0.4 0.0 0.2 1.6 1.6

− 1 − 4.0 − 4.0 − 3.4 − 3.1 − 2.5 − 2.1 − 1.5 − 1.1 0.3 1.9 2.3 2.9 2.9

0 − 3.6 − 3.6 − 2.9 − 2.6 − 1.0 − 0.5 0.0 0.5 1.0 2.6 2.9 3.6 3.6

1 − 2.9 − 2.9 − 2.3 − 1.9 − 0.3 1.1 1.5 2.1 2.5 3.1 3.4 4.0 4.0

2 − 1.8 − 1.8 − 0.6 − 0.3 0.4 1.8 2.4 3.4 3.5 3.8 3.8 4.0 4.0

3 − 1.0 − 1.0 0.3 0.9 1.4 2.3 2.9 4.3 4.3 4.3 4.3 4.3 4.3

4 − 0.6 − 0.6 0.7 1.4 1.9 2.9 3.1 4.5 4.7 4.5 4.7 4.5 4.7

5 − 0.2 − 0.2 1.1 1.8 2.4 3.7 3.9 5.0 5.0 5.0 5.0 5.0 5.0

6 0.0 0.0 1.3 2.0 2.7 4.3 4.7 5.2 5.4 5.2 5.4 5.2 5.4

3.6 Fuzzy Control System 115

xlswrite(‘fuzzycon.xlsx’, Z, ‘result’);

In the above program, the fuzzy set matrix and fuzzy rule matrix are stored in a
file with the suffix “xlsx”. Moreover, the calculated output results are also stored in
a file. The defuzzyAlsoAnd.m function is used for defuzzification:

function zi = defuzzyAlsoAnd(A,B,C,R,x0,y0)
m = size(A,1);
n = size(B,1);
for i=1:m
for j=1:n

k = R(i,j);
Rtmp((i-1)*n+j,:)=fuzzyInference(A(i,:),B(j,:),C(k,:),x0,y0);

end
end
zi = max(Rtmp);
The fuzzyInference.m function is used for fuzzy inference:
function Capo=fuzzyInference(Ai,Bi,Ci,Aapo,Bapo)
m = length(Ai);
n = length(Bi);
for i1 = 1:m
for j1 = 1:n

RAB(i1,j1) = min(Ai(i1), Bi(j1));
end

end
RABLaShen = reshape(RAB’, 1, size(RAB, 1) * size(RAB, 2));
m = length(RABLaShen);
n = length(Ci);
for i1 = 1:m
for j1 = 1:n

RABC(i1,j1) = min(RABLaShen(i1), Ci(j1));
end

end
m = length(Aapo);
n = length(Bapo);
for i1 = 1:m
for j1 = 1:n

RAapoBapo(i1,j1) = min(Aapo(i1), Bapo(j1));
end

end
m = size(RAapoBapo, 1);
n = size(RAapoBapo, 2);
RAapoBapoLaShen = reshape(RAapoBapo’, 1, m*n);
n = size(RAapoBapoLaShen, 1);
l = size(RABC, 2);
for i1 = 1:n

116 3 Fuzzy Computing

for j1 = 1:l
Capo(i1, j1) = max(min([RAapoBapoLaShen(i1,:); RABC(:, j1)’]));

end
end

It can be seen that the fuzzy control system is a comprehensive use of fuzzy logic
theory.

3.7 Fuzzy Logic Designer

In Matlab, the fuzzy logic toolbox implements various computational operations for
fuzzy control systems. This section introduces the Fuzzy Logic Designer tool in
Matlab, taking the fuzzy control of a washing machine as an example.

In people’s daily life, washing machine is a common home appliance. At present,
intelligent washing machine has been developed rapidly [7]. Intelligent washing
machine based on fuzzy control has also received more and more attention. In the
intelligent washing machine, the design and research of intelligent control system is
the basis that the various functional indicators of intelligent washing machine can
be achieved [8]. Thus, the design and research of intelligent washing machine based
on fuzzy computing has important theoretical significance and strategic value.

Example 3.15 The simulation of fuzzy control system can be used to realize the
problem of intelligent control of washing machine by computer. It is assumed that the
input variables of the fuzzy control system of the washing machine we want to design
are sludge and grease of the clothes, and the output of this system is the washing time.
The sludge amount and grease amount can be measured by sensors. The theoretical
domain of sludge x is set to U = [0, 100]. The theoretical domain of grease is also set
to U = [0, 100]. There are 3 fuzzy sets of sludge x on the theoretical domain, which
are small sludge (SD), middle sludge (MD), and large sludge (LD). The membership
function of SD is SD(x) = (50 − x)/50, 0 ≤ x ≤ 50. The membership function of
LD is LD(x) = (x − 50)/50, 50 ≤ x ≤ 100. The membership function of MD is:

MD(x) =
{

x/50, 0 ≤ x ≤ 50
(100 − x)/50, 50 ≤ x ≤ 100

(3.115)

There are also 3 fuzzy sets of grease y on the theoretical domain, which are small
grease (SG), middle grease (MG), and large grease (LG). the membership function
of SG is SG(y) = (50 − y)/50 with 0 ≤ y ≤ 50, the membership function of LG
is LG(Y) = (y − 50)/50, 50 ≤ y ≤ 100, and the membership function of MG is:

MG(y) =
{

y/50, 0 ≤ y ≤ 50
(100 − y)/50, 50 ≤ y ≤ 100

(3.116)

3.7 Fuzzy Logic Designer 117

The output quantity is the washing time t, whose theoretical domain is [0, 60].
The output variable t has five fuzzy sets on the theoretical domain, which are: very
short time (VS), short time (S), medium time (M), long time (L), and very long time
(VL). The membership function of VS is V S(t) = (10 − t)/10, 0 ≤ t ≤ 10, and the
membership function of S is:

S(t) =
{

t/50, 0 ≤ t ≤ 10
(25 − t)/15, 10 < t ≤ 25

(3.117)

The membership function of M is:

M(t) =
{

(t − 10)/15, 10 ≤ t ≤ 25
(40 − t)/15, 25 < t ≤ 40

(3.118)

The membership function of L is:

L(t) =
{

(t − 25)/15, 25 ≤ t ≤ 40
(60 − t)/15, 40 < t ≤ 60

(3.119)

The membership function of VL is:

V L(t) = (t − 40)/20, 40 < t ≤ 60 (3.120)

The fuzzy rules in the knowledge base are: if more sludge and more grease, the
longer the washing time; if the sludge is moderate and the grease is moderate, the
washing time is moderate; if the sludge is less and the grease is less, the washing
time is shorter. Table 3.10 gives all the fuzzy rules. It is clear that there are 9 fuzzy
rules in the knowledge base of the fuzzy control system of the washing machine.

For the input variables x = 60, y = 70, try to find the output quantity t.

Solution We solve the above problem with the help of Matlab’s Fuzzy Logic
Designer, which can be opened by clicking Fuzzy Logic Designer from the App
in Matlab.

The interface after opening the fuzzy logic designer is shown in Fig. 3.7. Under
this interface, there is one input variable (located in the top left of the figure) and
one output variable (located in the top right of the figure) by default. Users can also
modify the name of the current variable, which is changed to sludge in Fig. 3.7.

Table 3.10 Fuzzy rules for
fuzzy control system of
washing machine

x SG MG LG

SD VS M L

MD S M L

LD M L VL

118 3 Fuzzy Computing

Fig. 3.7 Adding sludge in fuzzy logic designer

Double-clicking the icon of sludge with the mouse will bring up the dialog box
shown in Fig. 3.8, in which you can modify the theoretical domain and membership
function of sludge. We name the membership functions of sludge as SD, MD and
LD, respectively.

Close the membership function dialog box of sludge. We have to add another input
variable by selecting Add Variable under the Edit menu of the fuzzy logic designer,
and then clicking Input. Name the newly added input variable as grease. Users can
follow the same operation as sludge to add the membership function of grease to get
the result as shown in Fig. 3.9.

From the bottom left of the Fig. 3.9, we can see that the fuzzy conditional statement
connected with “and” uses “min”, which is the intersection operation. The fuzzy
conditional statement connected with “also” uses “max”. These are the same as the
fuzzy control system example in the previous section. When solving the fuzzy control
problem of the washing machine, these default parameters are also used, but the user
can choose other settings as needed. The default defuzzification is “centroid”, i.e.,
weighted average. It is modified to “mom”, i.e., the average maximum membership
method.

3.7 Fuzzy Logic Designer 119

Fig. 3.8 Adding membership function for sludge

Then modify the name of the output variable as washing time. We can open the
subordinate function dialog box by double-clicking the icon of the output variable.
Then we modify the domain of washing time as [0, 60], add 5 subordinate functions
according to the requirements of the example, and then close the subordinate function
dialog box to get the result as shown in Fig. 3.10.

Next, we add the rules of fuzzy control. Under the fuzzy controller dialog box,
double click the mamdani icon in the middle to open the rule editing dialog box. We
can add the 9 fuzzy control rules in the example. This completes the design of the
washing machine fuzzy control system. Click the File menu, select Export, and save
the file as “washingMachineConrol.fis”.

To calculate the output variable t for the input variables x = 60, y = 70, under the
View menu of the fuzzy control designer, click on Rules to open the Rules view, as
shown in Fig. 3.11. In this dialog box, at the bottom left, enter [60; 70], and you can
see the washing time is about 24.9 at the top right.

The problem of fuzzy control of the washing time of a washing machine can also
be programmed as follows:

fis=mamfis(‘Name’,‘washingMachineControl’);
var1=fisvar([0,100],‘Name’,‘sludge’);

120 3 Fuzzy Computing

Fig. 3.9 Adding membership function for grease

var1=addMF(var1,‘trimf’, [-50,0,50],‘Name’,‘SD’);
var1=addMF(var1,‘trimf’, [0,50,100],‘Name’,‘MD’);
var1=addMF(var1,‘trimf’, [50,100,150],‘Name’,‘LD’);
var2=fisvar([0,100],‘Name’,‘grease’);
var2=addMF(var2,‘trimf’, [-50,0,50],‘Name’,‘SG’);
var2=addMF(var2,‘trimf’, [0,50,100],‘Name’,‘MG’);
var2=addMF(var2,‘trimf’, [50,100,150],‘Name’,‘LG’);
fis.Inputs = [var1,var2];
var3=fisvar([0,60],‘Name’,‘washingtime’);
var3=addMF(var3,‘trimf’, [-10,0,10],‘Name’,‘VS’);
var3=addMF(var3,‘trimf’, [0,10,25],‘Name’,‘S’);
var3=addMF(var3,‘trimf’, [10,25,40],‘Name’,‘M’);
var3=addMF(var3,‘trimf’, [25,40,60],‘Name’,‘L’);
var3=addMF(var3,‘trimf’, [40,60,80],‘Name’,‘VL’);
fis.Outputs=var3;
rulelist=[1,1,1,1,1;
1,2,3,1,1;
1,3,4,1,1;

3.7 Fuzzy Logic Designer 121

Fig. 3.10 Adding washing time in fuzzy logic designer

2,1,2,1,1;
2,2,3,1,1;
2,3,4,1,1;
3,1,3,1,1;
3,2,4,1,1;
3,3,5,1,1];

fuzzyRules=fisrule(rulelist,2);
fuzzyRules=update(fuzzyRules,fis);
fis.Rules=fuzzyRules;
fis.DefuzzificationMethod=‘mom’;
x=60;
y=70;
t=evalfis(fis,[x,y]);
showrule(fis,1:2,‘verbose’);
figure(1);
plotfis(fis);
figure(2); hold on; box on; grid on;
subplot(2,1,1)

122 3 Fuzzy Computing

Fig. 3.11 Rule viewer to calculate the output variable

plotmf(fis,‘input’,1)
subplot(2,1,2)
plotmf(fis,‘output’,1)
hold off;
figure(3);
gensurf(fis)
title(‘function mapping curve of input and output’)

After running the above program, the results of the output variable are stored in
the variable t. The program will draw three figures. The first one is the model graph
of the fuzzy control system as shown in Fig. 3.12. The graph shows that the inputs
are sludge and grease with 3 membership functions for each input, the washing time
is the output with 5 affiliation functions, and the model is of Mandani type with 9
fuzzy rules.

The second figure drawn by the above program is the membership functions of
the input and output variables, as shown in Fig. 3.13. It can be seen that the three
membership functions of sludge are triangular. The five membership functions of
washing time are also triangular.

3.7 Fuzzy Logic Designer 123

Fig. 3.12 Model of fuzzy control system for washing machine

The third one plotted by the above program is the mapping surface diagram of
input and output variables, as shown in Fig. 3.14. It can be seen that the washing
time is a function of sludge and grease. It is getting longer as the sludge and grease
increase. Since fuzzy logic is used for control, the change of washing time shows a
certain slope, which increases the stability of the washing machine control system.

The Example 3.15 shows the usage of fuzzy logic designer and programs to design
a controller for washing machine. Users can choose either way to solve their control
problems.

Exercises

(1) Suppose the domain U is the age of a person with the range (0, 100]. There are
3 classes of patterns young A1, middle-aged A2 and old A3 on this domain. For
a certain variable μ = 35, please use the principle of maximum membership to
determine the class to which μ belongs, where:

A1(μ) =

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

1, 0 < μ ≤ 20
1 − 2

(
μ−20
20

)2
, 20 < μ ≤ 30

2
(

μ−40
20

)2
, 30 < μ ≤ 40

0, 40 < μ ≤ 100

124 3 Fuzzy Computing

Fig. 3.13 Membership function of sludge and washing time

Fig. 3.14 Function mapping curve of input and output

3.7 Fuzzy Logic Designer 125

A2(μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 < μ ≤ 20
2
(

μ−20
20

)2
, 20 < μ ≤ 30

1 − 2
(

μ−40
20

)2
, 30 < μ ≤ 40

1, 40 < μ ≤ 50
1 − 2

(
μ−50
20

)2
, 50 < μ ≤ 60

2
(

μ−70
20

)2
, 60 < μ ≤ 70

0, 70 < μ ≤ 100

A3(μ) =

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, 0 < μ ≤ 50
2
(

μ−50
20

)2
, 50 < μ ≤ 60

1 − 2
(

μ−70
20

)2
, 60 < μ ≤ 70

1, 70 < μ ≤ 100

(2) Suppose the domain U = {u1, u2, u3, u4, u5, u6} is the quality of tea leaves,
where the elements are stripe, color, clarity, soup color, aroma and taste. There
are five categories of patterns A1, A2, A3, A4 and A5 on this domain. For
a certain tea B to be identified, please use the nearest principle to determine
the category to which B belongs, where: A1 = (0.5, 0.4, 0.3, 0.6, 0.5, 0.4),
A2 = (0.3, 0.2, 0.2, 0.1, 0.2, 0.2), A3 = (0.2, 0.2, 0.2, 0.1, 0.1, 0.2),
A4 = (0, 0.1, 0.2, 0.1, 0.1, 0.1), A5 = (0, 0.1, 0.1, 0.1, 0.1, 0.1), B =
(0.4, 0.2, 0.1, 0.4, 0.5, 0.6).

(3) If we want to use fuzzy logic method to study the effect of the length of queuing
time on passenger satisfaction at railroad stations. We can define “time” as the
input variable and “satisfaction” as the output variable. The domain of the input
time is set to U = [5, 60], and its membership function has three fuzzy sets on
the domain, which are short time (ST), medium time (MT), and long time (LT).
The membership functions of ST, MT and LT are:

ST (t) =

⎧⎨

⎩

1, x < 10
15−x
5 , 10 ≤ x ≤ 15
0, x > 15

MT (t) =

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, x < 13
x−13
6 , 13 ≤ x < 19

1, 19 ≤ x < 27
35−x
8 , 27 ≤ x < 35

0, x ≥ 35

LT (t) =

⎧⎨

⎩

0, x < 25
x−25
17 , 25 ≤ x ≤ 42
1, x > 42

126 3 Fuzzy Computing

The theoretical domain of the output variable time is set to U = [0, 10]. The
output variable time has three fuzzy sets. They are higher satisfaction (HS), general
satisfaction (GS), and poor satisfaction (LS), whose membership functions are:

HS(s) =
{ 5−s

5 , 0 ≤ s ≤ 5
0, s > 5

GS(s) =

⎧⎪⎪⎨

⎪⎪⎩

0 s < 3
s−3
2 , 3 ≤ s ≤ 5

s−5
3 , 5 ≤ s ≤ 8

0, s > 8

LS(s) =
{

0, s < 7
s−7
3 , 7 ≤ s ≤ 10

The fuzzy logic rules are:

(i) if the waiting time is short, the passenger satisfaction is high;
(ii) if the waiting time is medium, the passenger satisfaction is average;
(iii) if the waiting time is long, the passenger satisfaction is poor.

The defuzzification uses the average maximum membership method. Try to find
what is the passenger satisfaction when the passenger waiting time is 10. Draw the
mapping curve between the input and output variables.

References

1. Zadeh LA (2012) Fuzzy Logic. In: Meyers R (eds) Computational complexity. Springer, New
York, NY. https://doi.org/10.1007/978-1-4614-1800-9_73

2. Deng F, Chen W (2020) Intelligent computing and information processing. Beijing Institute of
Technology Press, Beijing

3. Wei X, Guo J (2020) Foundations of Computational Intelligence. https://www.icourse163.org/
course/NJTU-1207221803. Accessed 17 July 2023

4. Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2,
267–278

5. Mathur N, Glesk I, Buis A (2016) Comparison of adaptive neuro-fuzzy inference system
(ANFIS) and Gaussian processes for machine learning (GPML) algorithms for the prediction
of skin temperature in lower limb prostheses. Med Eng Phys 38:1083–1089

6. Sepúlveda R, Castillo O, Melin P et al (2007) Experimental study of intelligent controllers under
uncertainty using type-1 and type-2 fuzzy logic. Inf Sci 177(10):2023–2048

7. Zadeh LA (1997) The roles of fuzzy logic and soft computing in the conception, design and
deployment of intelligent systems. In: Nwana, HS, Azarmi, N (eds) Software agents and soft
computing towards enhancing machine intelligence. Lecture Notes in Computer Science, vol
1198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-62560-7_45

8. Yager RR, Zadeh LA (2012) An introduction to fuzzy logic applications in intelligent systems.
Springer, New York, NY. https://doi.org/10.1007/978-1-4615-3640-6

https://doi.org/10.1007/978-1-4614-1800-9_73
https://www.icourse163.org/course/NJTU-1207221803
https://www.icourse163.org/course/NJTU-1207221803
https://doi.org/10.1007/3-540-62560-7_45
https://doi.org/10.1007/978-1-4615-3640-6

Chapter 4
Fuzzy Neural Network

Abstract Fuzzy neural network combines fuzzy computing and artificial neural
network. Fuzzy neural network inherits the characteristics of both fuzzy logic and
neural network such as logical reasoning ability, adaptive ability and learning ability.
This chapter first gives an overview of fuzzy neural network including Takagi-Sugeno
fuzzy system and expert system. Adaptive network-based fuzzy inference system is
introduced to illustrate the usage of fuzzy neural network. Then fuzzy neural network
is used to solve time series prediction problem. Interval type-2 fuzzy logic is presented
and its performance is studied through time series prediction problem. Fuzzy neural
network is then applied to solve clustering problem and suburban commuting predic-
tion problem. Finally, the state-of-the-art research progress of fuzzy computing is
presented.

4.1 Overview of Fuzzy Neural Network

The diversity of neural network topology makes it have strong adaptive ability and
learning ability, but the disadvantage of neural network is poor interpretability. Neural
network is like a black box, unable to explain its theoretical basis for solving prob-
lems. Fuzzy logic has a strong logical reasoning ability and expresses knowledge
through rules, which makes it more interpretable. However, the rules of fuzzy logic
need to be obtained according to the knowledge or experience of experts, resulting in
poor adaptive ability. Fuzzy neural network (FNN) is a combination of fuzzy logic
and neural network, which aims to form a method with extremely logical reasoning
ability, adaptive ability and learning ability.

FNN originated in the 1980s, because fuzzy logic has been successfully applied
to the control problems in the home appliance industry, Japanese researchers first
started the study of fuzzy neural network [1]. Their purpose is to use the learning
ability of neural network to design fuzzy control system. In the 1990s, researchers
in the United States also began research in this area, especially the research group
led by Zadeh. These researchers promoted the development of FNN, making FNN
quickly recognized by the industry.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Zhang et al., Intelligent Information Processing with Matlab,
https://doi.org/10.1007/978-981-99-6449-9_4

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6449-9_4&domain=pdf
https://doi.org/10.1007/978-981-99-6449-9_4

128 4 Fuzzy Neural Network

After years of development, the combination of fuzzy logic and neural network
can be structurally divided into neuro-fuzzy system, fuzzy-neural system and fuzzy-
neural hybrid system.

(1) Neuro-fuzzy system. It refers to the output of the neural network connected to the
input of the fuzzy logic, similar to a series structure, using the neural network to
adjust the parameters of the fuzzy system, the weight of the neural network can
represent the fuzzification function, membership function and defuzzification
function and other fuzzy logic calculation required parameters. A neuro-fuzzy
system is a kind of fuzzy system.

(2) Fuzzy-neural system. It means that the output of fuzzy logic is connected to
the input of neural network, fuzzy logic is used to fuzzify the parameters or
weights of neural network, and the neurons in neural network are fuzzy neurons.
Fuzzy-neural system is a kind of neural network.

(3) Fuzzy-neural hybrid system. It refers to the mixed use of fuzzy logic and neural
network technology, generally the two technologies are independent of each
other. The common hybrid system is Adaptive Network-based Fuzzy Inference
System (ANFIS).

In terms of structure and function, FNN can be divided into:

(1) Fuzzy systems with learning ability, also known as trainable fuzzy systems.
Based on the input sample data, the system can use the learning algorithm of
neural network to learn the sample data, obtain the fuzzy rules corresponding
to the data, and finally build a fuzzy system.

(2) Fuzzy system based on neural network. The system is a reasoning system of
fuzzy logic, and researchers have created a variety of neural network structures
to represent fuzzy inference, that is, fuzzy inference is expressed in the form of
neural networks.

(3) Fuzzy neural network. It is essentially a neural network. The input, weight and
output of the network may be fuzzy values, so as to obtain a neural network that
can perform fuzzy computing.

Recalling the Mandani fuzzy system introduced in the last chapter, its fuzzy rule
form is: if x is Ai and y is Bi , then z is Ci , where each fuzzy rule is “also” connected.
In addition to Mandani fuzzy systems, Takagi-Sugeno fuzzy systems and expert
systems are also commonly used fuzzy controllers. Takagi-Sugeno fuzzy system is
also abbreviated as T-S fuzzy system, and its fuzzy rules are as follows:

Ri : if e = Ai and �e = Bi , then zi = αi e + βi�e + γi (4.1)

where Ri denotes the i-th rule, e denotes the error, �e denotes the change rate of the
error, Ai and Bi are the given fuzzy sets, αi , βi and γi are the parameters of the fuzzy
systems.

It can be seen that the output variable of the T-S fuzzy system is a linear function
of the input variable and is calculated to obtain the clear value, so the system does not
have a defuzzification module. Assuming that the T-S fuzzy system contains n rules

4.1 Overview of Fuzzy Neural Network 129

and the weight of the i-th rule is denoted as ωi , the output can be calculated using
the weighted summation method or the weighted average method. The expression
of the weighted summation method is:

δ =
n∑

i=1

ωi zi (4.2)

where δ represents the total output of the system. The expression for the weighted
average method is:

δ =
n∑

i=1

ωi zi /
n∑

i=1

ωi (4.3)

We cannot construct a FNN equivalent to the Mandani fuzzy system, only an
approximate construction, but we can construct a FNN equivalent to a T-S fuzzy
system or an expert system. The FNN corresponding to the above T-S fuzzy system is
shown in Fig. 4.1. From the figure, we can see that the T-S fuzzy system is represented
as a neural network structure, where the weights are calculated from the fuzzy set.
The T-S fuzzy system in Fig. 4.1 uses “and” operation, i.e., min(Ai , Bi).

The above T-S fuzzy system consists of one input layer, three hidden layers and
one output layer. Since one hidden layer is skipped from the weight ωi calculation,
the T-S fuzzy system can also be said to have two hidden layers. There are four
neurons from the input layer to the first hidden layer. The first neuron computes
z1 = α1e + β1�e + γ1, the second neuron computes z2 = α2e + β2�e + γ2,
the third neuron computes ω1 = min(A1, B1), and the fourth neuron computes
ω2 = min(A2, B2). The second hidden layer has three neurons. The first neuron
computes ω1z1, the second neuron computes ω2z2, and the third neuron computes
ω1 + ω2. Then ω1z1 + ω2z2 is computed, and finally the output layer computes δ. It
can be seen that the weights between the second layer to the output layer in the T-S
type fuzzy neural network are all 1, which is a simplified neural network model.

Fig. 4.1 T-S fuzzy system

130 4 Fuzzy Neural Network

By properly constructing the topology and activation function of the neural
network, we can obtain the neural network model equivalent to the T-S fuzzy system.
Then we can use the theory of neural network to analyze the T-S fuzzy controller.
For example, for a certain control problem, data are first collected experimentally to
form a training set. We then can learn the training dataset by the method of neural
network. The trained T-S fuzzy controller can be employed to the associated control
problem.

Next, we introduce the neural network model of the fuzzy expert system. The rule
form of the fuzzy expert system is as follows:

Ri : if e = Ai and �e = Bi , then the control action is ci (4.4)

where Ri denotes the i-th rule, e denotes the error, �e denotes the change rate of the
error, Ai and Bi is the given fuzzy set, ci is the triangle fuzzy function. It can be seen
that the output variable of the fuzzy expert system is a certain control action. The
control action is a clear value, so the system does not have a defuzzification module.
Assuming that the fuzzy expert system contains n rules and the weight of the i-th
rule is noted as ωi , the output can be calculated using the weighted average method.

The fuzzy expert system corresponding to the FNN is shown in Fig. 4.2. From the
figure, it can be seen that the fuzzy expert system is represented as a neural network
structure. In the system, the weights ωi are calculated from the fuzzy set and the
operations used are min(Ai , Bi). The fuzzy expert system consists of an input layer,
two hidden layers and an output layer. There are two neurons from the input layer to
the first hidden layer. The first neuron is to calculate the weights ω1 = min(A1, B1)
and the second neuron is to calculate ω2 = min(A2, B2). The second hidden layer
has two neurons. The first neuron is to compute ω1z1 + ω2z2. The second neuron is
to compute ω1 + ω2, and the weight of the second neuron is 1. Finally, the output
layer computes δ. It can be seen that the weights between the second hidden layer
to the output layer in the fuzzy expert neural network are all 1. It is also a simplified
neural network model. The fuzzy expert system has a more concise neural network
structure compared to the T-S type fuzzy system.

Fig. 4.2 Fuzzy expert
system

4.1 Overview of Fuzzy Neural Network 131

Example 4.1 Suppose a two-input single-output T-S type fuzzy system needs to
be constructed with two input variables, namely x and y. The fuzzy sets of input
variables are shown in Table 4.1. We can construct the corresponding input variables
according to the parameters in Table 4.1.

The output variable is z. The rules from input to output are as follows:

R1 : if x = A1 and y = B1, then z1 = −x + 2y (4.5)

R2 : if x = A2 and y = B1, then z1 = 8x − 4y + 1 (4.6)

R3 : if x = A2 and y = B2, then z1 = 3x + 9y + 1 (4.7)

R4 : if x = A3, then z1 = 5x + 1 (4.8)

Try to build a T-S type fuzzy system satisfying the above rules, and compute the
value z of give x = 6 and y = 7.

Solution The example can be solved by two ways. The first way is using fuzzy logic
designer. T-S type fuzzy system can be designed in an interactive manner using the
fuzzy logic designer. The usage of fuzzy logic designer has been introduced in the
last chapter; thus, it is not described here.

The second way is using the following programs to solve the example:

fis = sugfis(‘Name’,‘SugenoExample’);
var1 = fisvar([0,10],‘Name’,‘X’);
var1 = addMF(var1,‘trimf’, [0,0,4],‘Name’,‘x1’);
var1 = addMF(var1,‘trapmf’, [2,4,6,8],’Name’,‘x2’);
var1 = addMF(var1,‘trimf’, [6,10,10],‘Name’,‘x3’);
var2 = fisvar([0,10],‘Name’,‘Y’);
var2 = addMF(var2,‘trimf’, [0,0,7],‘Name’,‘y1’);
var2 = addMF(var2,‘trimf’, [3, 10],‘Name’,‘y2’);
fis.Inputs = [var1,var2];
var3 = fisvar([0,120],‘Name’,‘Z’);
var3 = addMF(var3,‘linear’, [− 1,2,0],‘Name’,‘z1’);

Table 4.1 Input variables and their fuzzy sets

Variable Domain Fuzzy set Membership Parameter

x [0, 10] A1 Triangle [0, 0, 4]

x [0, 10] A2 Trapezoid [2, 4, 6, 8]

x [0, 10] A3 Triangle [6, 10, 10]

y [0, 10] B1 Triangle [0, 0, 7]

y [0, 10] B2 Triangle [3, 10, 10]

132 4 Fuzzy Neural Network

var3 = addMF(var3,‘linear’, [8,− 4,1],‘Name’,‘z2’);
var3 = addMF(var3,‘linear’, [1,3,9],‘Name’,‘z3’);
var3 = addMF(var3,‘linear’, [5,0,1],‘Name’,‘z4’);
fis.Outputs = var3;
rulelist = [1,1,1,1,1;

2,1,2,1,1;
2,2,3,1,1;
3,0,4,1,1];

fuzzyRules = fisrule(rulelist,2);
fuzzyRules = update(fuzzyRules,fis);
fis.Rules = fuzzyRules;
x = 6;
y = 7;
z = evalfis(fis,[x,y]);
showrule(fis,1:2,‘verbose’);
figure(1);
plotfis(fis);
figure(2);
gensurf(fis)

The running results of the above program are shown in Figs. 4.3, 4.4 and 4.5.
As can be seen in Fig. 4.3, the names of the two input variables are defined as X and

Y, where X has three fuzzy membership functions and Y has two fuzzy membership
functions. The name of this T-S type fuzzy system is “SugenoExample” with four

Fig. 4.3 T-S type fuzzy system for Example 4.1

4.1 Overview of Fuzzy Neural Network 133

Fig. 4.4 Fuzzy rules for Example 4.1

Fig. 4.5 Function mapping curve for Example 4.1

134 4 Fuzzy Neural Network

fuzzy rules, while the name of the output variable is defined as Z. The output variable
is composed of four functions, each of which is a linear function of the input variables.

The fuzzy rules of the Example 4.1 can be seen in Fig. 4.4, from which the process
of fuzzy reasoning by the T-S model can be observed. When the input x = 6, y = 7,
when the output z = 82.

Figure 4.5 gives the surface plot of the relationship between two input and output
variables. It can be seen from the figure that the mapping curve is not very smooth.
There are large fluctuations and drastic changes in some places, which reflects that
the system is not perfect. In this case, it is generally necessary to add more fuzzy
rules to accumulate more empirical knowledge, so that the unsmooth areas can be
eliminated and the whole mapping relationship tends to be continuous and smooth.
However, with the increase of fuzzy rules, it makes the maintenance of fuzzy systems
more and more complicated and reduces the interpretability of the system. In practical
applications, we need to consider the modeling of fuzzy systems from several aspects
to achieve a satisfactory balance.

4.2 Adaptive Fuzzy Neural Inference System

In 1993, Jang proposed the Adaptive Network-based Fuzzy Inference System
(ANFIS), which combines the learning capability of neural networks with the
logical reasoning capability of fuzzy computing [2]. It is a T-S type fuzzy neural
network, which has been widely used in control problems because the system is very
effective. Compared with the Mandani fuzzy system introduced earlier, the ANFIS
fuzzy system outperforms the Mandani fuzzy system when using non-triangular and
non-trapezoidal affiliation functions.

We present the ANFIS fuzzy system with two fuzzy rules as an example:

R1 : if x = A1 and y = B1, then z1 = a1x + b1y + c1 (4.9)

R2 : if x = A2 and y = B2, then z2 = a2x + b2 y + c2 (4.10)

where Ri , i ∈ {1, 2} denotes the i-th rule, x and y denotes two linguistic variables, Ai

and Bi are the given fuzzy sets, ai , bi and ci are the parameters of the fuzzy system.
This ANFIS fuzzy system is shown in Fig. 4.6, which shows that it is a five-

layer neural network structure containing one input layer, four hidden layers and
one output layer. In this figure, the first hidden layer and the fourth hidden layer are
represented by square blocks, which is because these two layers contain adjustable
parameters. While the second hidden layer, the third hidden layer and the output
layer are represented by circular blocks, which is because these three layers do not
contain adjustable parameters. For the nodes with adjustable parameters represented
by square blocks, the learning algorithm of the neural network can be used, and thus
determine the final fuzzy system.

4.2 Adaptive Fuzzy Neural Inference System 135

Fig. 4.6 ANFIS fuzzy neural network

In the above ANFIS fuzzy system, the first hidden layer is to fuzzify the input
variables. The first two neurons in this layer are to calculate the fuzzy set of variable
x . The output value of the first layer is obtained after calculating:

o1 i (x) = μAi (x), i ∈ {1, 2} (4.11)

The last two neurons in the first layer are to compute the fuzzy set of variable y,
which are computed to obtain the output value of the layer:

o1 i (y) = μBi (y), i ∈ {1, 2} (4.12)

where o1 i indicates the result obtained by a certain neuron calculation, the number in
the right superscript indicates that it is the first hidden layer, and the right subscript
indicates the i-th fuzzy rule. It should be noted that there are several forms of member-
ship functions to choose. Different values will be obtained by using different member-
ship functions. The parameters in the chosen membership function are generally
called conditional parameters. For example, if a Gaussian-type membership function
is used:

μAi (x) = exp
(

−‖x − di‖2
σ 2 i

)
, i ∈ {1, 2} (4.13)

where di and σi are the condition parameters.
The second hidden layer has two neurons. The two neurons perform multiplication

operations of the results of the previous layer. Other forms of operations can also be
used, here we take multiplication as an example:

o2 i = ωi = μAi (x) × μBi (x), i ∈ {1, 2} (4.14)

where o2 i denotes the result obtained from the calculation of a certain neuron. The
number in the right superscript indicates that it is the second hidden layer, the right

136 4 Fuzzy Neural Network

subscript indicates the i-th fuzzy rule. The result of the multiplication operation is
denoted as ωi .

The third hidden layer has two neurons. The two neurons normalize the result of
the previous layer. The normalized value indicates the confidence of a fuzzy rule:

o3 i = ωi = ωi /(ω1 + ω2), i ∈ {1, 2} (4.15)

where o3 i indicates the result obtained from a certain neuron calculation. The number
in the right superscript indicates that it is the third hidden layer, the right subscript
indicates the i-th fuzzy rule. The result of the normalization operation is denoted as
ωi .

The fourth hidden layer has two neurons and is based on the results of the previous
layer to calculate the output of each fuzzy rule:

o4 i = ωi zi = ωi (ai x + bi y + ci), i ∈ {1, 2} (4.16)

where o4 i denotes the result obtained from the computation of a certain neuron.
The number in the right superscript indicates that it is the fourth hidden layer, the
right subscript indicates the i-th fuzzy rule. In (4.16), ai , bi and ci are called the
conclusion parameters, also known as the posterior parameters. It can be seen that
the two neurons in this layer use a linear function.

The fifth layer is the output layer. It fuses all the rules together and calculates the
final output:

δ =
2∑

i=1

ωi zi =
∑2

i=1 ωi zi∑2
i=1 ωi

(4.17)

It can be seen that the output layer yields result equivalent to (4.9) and (4.10),
which indicates that the ANFIS fuzzy system can be represented as a fuzzy neural
network equivalent to it.

From the above introduction, it can be seen that the ANFIS fuzzy system includes
conditional and conclusion parameters, which are determined before they can be
used. We can use the BP neural network learning algorithm to learn these param-
eters, or we can combine the BP neural network learning algorithm with the least
square estimation method to learn the parameters. Researchers have found that a
mixture of the BP neural network learning algorithm and the least square estimation
method is more effective for learning the parameters. The learning algorithms for
the conditional and conclusion parameters are not described in detail here. Interested
readers can refer to the related materials.

We compare the Mandani fuzzy system and ANFIS fuzzy system in terms of
interpretability and accuracy. The fewer the parameters of a fuzzy system, the more
interpretable it is; conversely, the more the parameters of a fuzzy system, the better
its accuracy. The fewer the rules of a fuzzy system, the more interpretable it is;
conversely, the more the rules of a fuzzy system, the better its accuracy. Mandani

4.2 Adaptive Fuzzy Neural Inference System 137

fuzzy system uses fuzzy language to describe the problem, thus Mandani fuzzy
system is highly interpretable; while the output of ANFIS fuzzy system is clear value,
thus ANFIS fuzzy system is highly accurate. It can be seen that to construct a fuzzy
system, it is necessary to consider both interpretability and accuracy, which are mutu-
ally constrained. Thus, a balance point is preferable to maximize both interpretability
and accuracy metrics.

Example 4.2 Suppose there is a single-input, single-output control problem, we have
collected 25 samples of this problem as the training set, and another 26 samples as
the validation set. Try to construct a T-S type fuzzy system using ANFIS.

Solution For a training set of 25 samples, the programs for constructing the ANFIS
fuzzy system are as follows:

load(‘fuzex1trnData.dat’);
fis = anfis(fuzex1trnData);
x = fuzex1trnData(:,1);
anfisOutput = evalfis(fis,x);
figure1 = figure(1);
axes1 = axes(‘Parent’,figure1);
hold(axes1,‘on’);
plot1 = plot(x,fuzex1trnData(:,2),‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’,
‘none’);
set(plot1,‘DisplayName’,‘Training Data’,‘Marker’,‘*’,‘Color’,[1 0 0]);
plot2 = plot(x,anfisOutput,‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’,‘none’);
set(plot2,‘DisplayName’,‘ANFIS Output’,‘Marker’,‘o’,‘Color’,[0 0 1]);
xlabel(‘x’);
ylabel(‘z’);
box(axes1,‘on’);
set(axes1,‘FontSize’,14);
legend1 = legend(axes1,‘show’);
set(legend1,‘Position’,[0.15 0.79 0.25 0.10]);
hold(axes1,‘off’);

As can be seen from the above program, only five lines of code is required to load
the training set, construct and evaluate ANFIS. The other codes plot the graph of the
results, as shown in Fig. 4.7. In Fig. 4.7, the samples in the training set are indicated
by asterisks, and the points predicted by ANFIS are indicated by circle symbols, the
mean square error of ANFIS on the training set is 0.2247.

From Fig. 4.7, we can see that the points predicted by ANFIS and the points in
the training set differ greatly. We can adjust the parameters of ANFIS to improve its
performance. For example, ANFIS has 2 membership functions by default, and we
set the number of membership functions to 4. This means we increase the parameters
in the fuzzy rules and fuzzy system. We then set the number of training iterations to
50, and the required programs are as follows:

138 4 Fuzzy Neural Network

Fig. 4.7 Training samples and output results by ANFIS

load(‘fuzex1trnData.dat’);
opt = anfisOptions(‘InitialFIS’,4,‘EpochNumber’,50);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
[fis,trainError] = anfis(fuzex1trnData,opt);
fisRMSE = min(trainError);
x = fuzex1trnData(:,1);
anfisOutput = evalfis(fis,x);
figure1 = figure(1);
axes1 = axes(‘Parent’,figure1);
hold(axes1,‘on’);
plot1 = plot(x,fuzex1trnData(:,2),‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’,
‘none’);
set(plot1,‘DisplayName’,‘Training Data’,‘Marker’,‘*’,‘Color’,[1 0 0]);
plot2 = plot(x,anfisOutput,‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’,‘none’);
set(plot2,‘DisplayName’,‘ANFIS Output’,‘Marker’,‘o’,‘Color’,[0 0 1]);
xlabel(‘x’);
ylabel(‘z’);
box(axes1,‘on’);
set(axes1,‘FontSize’,14);
legend1 = legend(axes1,‘show’);
set(legend1,‘Position’,[0.15 0.79 0.25 0.10]);
hold(axes1,‘off’);

4.2 Adaptive Fuzzy Neural Inference System 139

Fig. 4.8 Results of ANFIS prediction after adjusting parameters

After the above program is run, the variable “fisRMSE” stores the mean square
error of ANFIS on the training set. The value of “fisRMSE” is 0.0823. We can
see a larger reduction in mean square error compared to ANFIS without adjusted
parameters. The predicted results are shown in Fig. 4.8. In Fig. 4.8, the samples in
the training set are indicated by asterisks, and the points predicted by ANFIS are
indicated by circle symbols. It can be seen from the figure that the difference has
narrowed between the training samples and the output of ANFIS.

Based on the above program, we can also add the validation set. Then we can
analyze the mean square error on the training and validation sets with the following
programs:

load(‘fuzex1trnData.dat’);
load(‘fuzex1chkData.dat’);
opt = anfisOptions(‘InitialFIS’,4,‘EpochNumber’,50);
opt.DisplayANFISInformation = 0;
opt.DisplayErrorValues = 0;
opt.DisplayStepSize = 0;
opt.ValidationData = fuzex1chkData;
[fis,trainError,stepSize,chkFIS,chkError] = anfis(fuzex1trnData,opt);
fisRMSE = min(trainError);
x = fuzex1trnData(:,1);
anfisOutput = evalfis(fis,x);
figure1 = figure(1);
axes1 = axes(‘Parent’,figure1);

140 4 Fuzzy Neural Network

hold(axes1,‘on’);
plot1 = plot(x,fuzex1trnData(:,2),‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’,
‘none’);
set(plot1,‘DisplayName’,‘Training Data’,‘Marker’,‘*’,‘Color’,[1 0 0]);
plot2 = plot(x,anfisOutput,‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’,‘none’);
set(plot2,‘DisplayName’,‘ANFIS Output’,‘Marker’,‘o’,‘Color’,[0 0 1]);
xlabel(‘x’);
ylabel(‘z’);
box(axes1,‘on’);
set(axes1,‘FontSize’,14);
legend1 = legend(axes1,‘show’);
set(legend1,‘Position’,[0.15 0.79 0.25 0.10]);
hold(axes1,‘off’);
figure2 = figure(2);
axes1 = axes(‘Parent’,figure2);
hold(axes1,‘on’);
epoch = 1:opt.EpochNumber;
[minval,minidx] = min(chkError);
plot1 = plot(epoch,trainError,‘LineWidth’,2,‘LineStyle’,‘none’);
set(plot1,‘DisplayName’,‘Train’,‘Marker’,‘o’,‘Color’,[0 0 1]);
plot2 = plot(epoch,chkError,‘LineWidth’,2,‘LineStyle’,‘none’);
set(plot2,‘DisplayName’,‘Validation’,‘MarkerSize’,8,...

‘Marker’,‘*’,‘Color’,[1 0 0]);
plot(minidx,minval,‘DisplayName’,‘Best’,‘MarkerSize’,25,...

‘Marker’,‘.’,‘LineWidth’,3,‘LineStyle’,‘none’,…
‘Color’,[0 0 0]);

ylabel(‘RMSE’);
xlabel(‘epoch’);
box(axes1,‘on’);
hold(axes1,‘off’);
set(axes1,‘FontSize’,14,‘XGrid’,‘on’,‘YGrid’,‘on’);
legend1 = legend(axes1,‘show’);
set(legend1,‘Position’,[0.7 0.55 0.2 0.15]);

After the above program is run, the mean square error of ANFIS on the training
and validation sets is shown in Fig. 4.9. In Fig. 4.9, the results on the training set are
represented by circle symbols, while the results on the validation set are represented
by asterisks. The point with the smallest mean square error on the validation set is
represented by a solid circle symbol.

From Fig. 4.9, it can be seen that the mean square error of ANFIS on the training
set decreases rapidly with the increase of training times (epochs). After 30 epochs, the
decreasing trend becomes slower, which indicating that the model tends to be smooth.
The mean square error still shows up and down fluctuations. Correspondingly, the
mean square error of ANFIS on the validation set decreases first. The curve reaches
the minimum mean square error, i.e., the “Best” point in the figure, at the 17-th

4.3 Time Series Prediction 141

Fig. 4.9 Mean square error of ANFIS on the training and validation sets

iteration. In the subsequent epochs, the mean square error of ANFIS on the validation
set gradually increases. Thus, the ANFIS model returned by the above program is
the model of the 17-th iteration, which is stored in the variable “chkFIS”.

4.3 Time Series Prediction

Time series refers to the quantitative change of a certain thing over time, i.e., the
change in quantity is related to time. Time series prediction is to take the quantitative
change of a certain thing over time as a sequence, analyze the pattern of change in it,
and predict the future trend of such change. Time series prediction is also called time
series forecasting. For example, the sales volume forecasting of a certain commodity,
the traffic flow forecasting of a certain city, the price forecasting of daily necessities,
the financial stock forecasting, etc. These problems are all time series prediction
problems.

Time series prediction problems can be solved using regression analysis methods,
neural network methods, while in this section we use ANFIS to solve this type of
problems.

Example 4.3 The Mackey-Glass (MG) time-delay differential equation is a common
test problem in the field of neural networks and fuzzy computing, and its expression
is:

142 4 Fuzzy Neural Network

dx(t)
dt

=
0.2x(t − τ)

1 + x10(t − τ)
− 0.1x(t) (4.18)

which t is the independent variable of the problem, τ is the time delay. The problem
is an acyclic chaotic sequence, which neither converges nor diverges. Assume that
the initial conditions are:

x(0) = 1.2 (4.19)

τ = 17 (4.20)

x(t) = 0, t < 0 (4.21)

Under the above initial conditions, we use the 4-th order Runge-Kutta method to
calculate the numerical solution of this problem. This leads to a set of data for this
problem. The dataset contains 1200 points. Try to make predictions based on the
available dataset and analyze the results.

Solution It can be seen that the time series prediction problem is one independent
variable and one dependent variable. Usually we need to construct a dataset and then
do prediction based on the dataset. Assuming that there are already t moments of
data, the moment we need to predict is t + p. Usually we start from the C-th point
in the existing data and take a sample of every interval of D, i.e.:

x(t − (C − 1)D), . . . , x(t − D), x(t) (4.22)

If we take C = 4, D = p = 6, a sample with 4 components can be obtained:

x(t − 18), x(t − 12), x(t − 6), x(t) (4.23)

And the moment to predict at this point is x(t + 6). We start from t = 118, and
end until t = 1117. Thus, we can construct 1000 such samples. We use the first 500
of the 1000 samples as the training dataset and the last 500 as the validation dataset.

When constructing ANFIS, we can create an initial system based on the training
set and then start training ANFIS. This technique results in a better ANFIS fuzzy
system. Similar to the previous section, we can also analyze the root mean squared
error (RMSE) on the training set and the RMSE on the validation set, using the
following programs:

load(‘mgdata.dat’);
time = mgdata(:,1);
x = mgdata(:, 2);
figure(1)
plot(time,x)

4.3 Time Series Prediction 143

title(‘Mackey-Glass Chaotic Time Series’)
xlabel(‘Time (sec)’)
ylabel(‘x(t)’).
for t = 118:1117.

Data(t − 117,:) = [x(t − 18) x(t − 12) x(t − 6) x(t) x(t + 6)];
end
trnData = Data(1:500,:);
chkData = Data(501:end,:);
fis = genfis(trnData(:,1:end-1),trnData(:,end),…

genfisOptions(‘GridPartition’));
options = anfisOptions(‘InitialFIS’,fis,‘ValidationData’,chkData);
[fis1,error1,ss,fis2,error2] = anfis(trnData,options);
figure(2);
plot(error1,‘-’)
hold on
plot(error2,‘--’)
plot(error1,‘o’)
plot(error2,‘*’)
legend(‘Train error’,‘Valication error’)
xlabel(‘epoch’)
ylabel(‘RMSE’)
anfis_output = evalfis(fis2,[trnData(:,1:4); chkData(:,1:4)]);
figure(3);
index = 125:1124;
plot(time(index),[x(index) anfis_output])
xlabel(‘Time (sec)’)
ylabel(‘x(t)’)
figure(4);
diff = x(index) - anfis_output;
plot(time(index),diff)
xlabel(‘Time (sec)’)
ylabel(‘Prediction Errors’)

After the above program is run, we obtain four figures. They are Figs. 4.10, 4.11,
4.12 and 4.13.

In Fig. 4.10, the MG time series is given from t = 0 to 1200 moments. It can be
seen that the system is in a bounded acyclic state.

The RMSE of ANFIS on the training and validation sets is given in Fig. 4.11. It
can be seen that the error on both datasets decreases rapidly as the number of epochs
increases. The error of ANFIS on the validation set is always smaller than the error
on the training set.

The true MG time series and the ANFIS predicted series are given in Fig. 4.12,
where the solid line shows the MG time series and the dashed line shows the ANFIS
predicted series. It can be seen that the two curves overlap well.

144 4 Fuzzy Neural Network

Fig. 4.10 MG time series

Fig. 4.11 RMSE of ANFIS
on the training and validation
sets

Figure 4.13 gives the ANFIS prediction errors from t = 0 to 1200 moments. The
RMSE at these points is about 0.033. For the validation set, the RMSE of the model
is 0.003. The RMSE values on both training and validation sets are very small. Thus,
it can be seen that the obtained ANFIS model is able to solve the MG time series
prediction problem.

4.4 Interval Type-2 Fuzzy Logic 145

Fig. 4.12 MG time series
and ANFIS predicted series

Fig. 4.13 Error of ANFIS
prediction

4.4 Interval Type-2 Fuzzy Logic

We know that people often use fuzzy language to describe a concept. Correspond-
ingly, fuzzy logic uses fuzzy theory to explain phenomena and solve problems, so
that people can easily understand. For example, the concept of “tall building”, if
we specify the number of floors 20 as the boundary, buildings with less than 20
floors cannot be called tall buildings, and buildings with more than 20 floors can
be called tall buildings. Then this is the classical binary logic, as shown in the left
graph in Fig. 4.14. People may think that a building with 18 floors is also a tall
building, or even 15 floors is also a tall building. The fuzzy computing theory we
introduced earlier uses fuzzy membership to express this situation, as shown in the

146 4 Fuzzy Neural Network

middle graph in Fig. 4.14. This way of representing linguistic concepts by a fuzzy set
is called a type-1 fuzzy set. Here buildings with floor numbers from 15 to 20 are also
tall buildings, except that they belong to the concept of tall buildings to a different
extent. This property of a type-1 fuzzy set for describing linguistic concepts is called
intra-individual uncertainty.

Zadeh proposed the type-2 fuzzy set in 1975. His starting point is that people do
not have the same understanding of the same linguistic concept, also known as inter-
individual uncertainty. Take the concept of “tall building” as an example. Suppose
a type-1 fuzzy set describes this concept, the membership of an 18-floor building as
a tall building is 0.8, but does this membership have to be 0.8? Perhaps someone
thinks this membership should be 0.7? A type-2 fuzzy set is to express different
views of different individuals. Due to the complexity of expressing type-2 fuzzy
sets, researchers nowadays usually use interval type-2 fuzzy sets. In the interval
type-2 fuzzy set, the membership is no longer a value but an interval. For example,
the membership interval for an 18-floor building belonging to a tall building is [0.7,
0.8], as shown in the right graph in Fig. 4.14. If everyone agrees that the membership
degree of the 18-floor building belongs to the tall building is 0.8, then the membership
degree interval becomes a value, i.e., the interval type-2 fuzzy set becomes a type-1
fuzzy set. Thus, the interval type-2 fuzzy set is a generalization of the type-1 fuzzy
set.

Fuzzy logic based on type-1 fuzzy set is called type-1 fuzzy logic. Similarly,
fuzzy logic based on type-2 fuzzy set is called type-2 fuzzy logic [3]. Sometime,
type-1 fuzzy logic is called type-I fuzzy logic, and type-2 fuzzy logic is called
type-II fuzzy logic. According to the concept of type-2 fuzzy sets, we know that
the theories of fuzzy computing introduced earlier are all of type-1, including type-1
fuzzy sets and type-1 fuzzy systems. In 2000, Mendel and his student Liang promoted
the study of interval type-2 fuzzy sets, which led to the development of interval
type-2 fuzzy computing [4]. Type-2 fuzzy computing is then applied to control and
decision-making problems.

The concepts of interval type-2 fuzzy sets are:

(1) upper membership function (UMF). It refers to the upper bound of the
membership interval constituted by type-1 fuzzy set.

Fig. 4.14 Representations of tall building, left: binary logic, middle: type-1 fuzzy set, right: interval
type-2 fuzzy set

4.4 Interval Type-2 Fuzzy Logic 147

(2) lower membership function (LMF). It refers to the lower bound of the
membership interval constituted by type-1 fuzzy set.

(3) footprint of uncertainty (FOU). It refers to the area between the upper
membership function and the lower membership function.

(4) embedded type-1 fuzzy set (ETS). It refers to a type-1 fuzzy set that is inside
the footprint of uncertainty domain.

With the theory of interval type-2 fuzzy sets, we can create fuzzy systems corre-
sponding to them. We can build either type-2 Mandani fuzzy system or type-2 T-S
fuzzy system. For type-2 Mandani fuzzy system, both input and output variables can
be type-2 fuzzy sets. For T-S type fuzzy system, the input variable can be a type-2
fuzzy set, but the output variable is the same as that of a type-1 T-S type fuzzy system.

Example 4.4 This example takes the MG time series prediction problem as an
example. The same training and validation sets are used as in the previous section.
The description of the MG time series prediction problem is omitted.

Solution We build a type-2 T-S fuzzy system using the same training and validation
sets as in the previous section, with the following programs:

load(‘mgdata.dat’);
time = mgdata(:,1);
x = mgdata(:, 2);
figure;
plot(time,x)
title(‘Mackey-Glass Chaotic Time Series’)
xlabel(‘Time (sec)’)
ylabel(‘x(t)’)
C = 4;
for t =118:1117

Data(t − 117,:) = [x(t − 18) x(t − 12) x(t − 6) x(t) x(t + 6)];
end
trnX = Data(1:500,1:C);
trnY = Data(1:500,C + 1);
vldX = Data(501:end,1:C);
vldY = Data(501:end,C + 1);
fisin = sugfistype2;
numInputs = C;
numInputMFs = 3;
range = [min(x) max(x)];
for I = 1:numInputs

fisin = addInput(fisin,range,‘NumMFs’,numInputMFs);
for j = 1:numInputMFs

fisin.Inputs(i).MembershipFunctions(j).LowerScale = 1;
fisin.Inputs(i).MembershipFunctions(j).LowerLag = 0;

end

148 4 Fuzzy Neural Network

end
numOutputMFs = numInputMFs^numInputs;
fisin = addOutput(fisin,range,‘NumMFs’,numOutputMFs);
figure;
plotfis(fisin)
options = tunefisOptions;
options.Method = ‘particleswarm’;
options.OptimizationType = ‘learning’;
options.NumMaxRules = numInputMFs^numInputs;
options.UseParallel = false;
options.MethodOptions.MaxIterations = 10;
fisout1 = tunefis(fisin,[],trnX,trnY,options);
figure;
plotfis(fisout1)
figure;
gensurf(fisout1,gensurfOptions(‘InputIndex’,1))
evalOptions = evalfisOptions(“EmptyOutputFuzzySetMessage”,“none”, ...

“NoRuleFiredMessage”,“none”,“OutOfRangeInputValueMessage”,“none”);
predY = evalfis(fisout1,vldX,evalOptions);
del = predY - vldY;
rmse = sqrt(mean(del.^2));
figure;
plot([predY vldY])
axis([0 length(vldY) min(vldY) − 0.01 max(vldY) + 0.13])
xlabel(‘t’)
ylabel(‘x(t)’)
legend([“predicted value” “true value”],‘Location’,“northeast”)

After the above program is run, five figures would be drawn. We only give three
figures to show the results, as shown in Figs. 4.15, 4.16 and 4.17.

The type-2 T-S fuzzy system at the initial time is given in Fig. 4.15. It can be seen
that the number of fuzzy rules is 0, i.e., there are no fuzzy rules yet.

The type-2 T-S fuzzy system trained using the training set is given in Fig. 4.16,
from which it can be seen that the number of fuzzy rules is 68.

The performance of the type-2 T-S fuzzy system on the validation set is given
in Fig. 4.17. The RMSE at these points is about 0.071. The result shows that the
obtained fuzzy system model is able to solve the MG time series prediction problem.

In conjunction with the previous section, the RMSE on the validation set for the
type-1 T-S fuzzy system is 0.003, while the RMSE on the validation set for the type-2
T-S fuzzy system is 0.071. In terms of RMSE metric, the type-2 T-S fuzzy system
performs slightly worse than the type-1 T-S fuzzy system. It should be noted that the
performance of the model is not intentionally optimized here. Interested readers can
make further comparisons.

4.5 Fuzzy C-means Clustering 149

Fig. 4.15 Type-2 T-S fuzzy system at the beginning

4.5 Fuzzy C-means Clustering

Clustering is the basis for many classification and system modeling methods. The
purpose of clustering is to identify natural groupings of data from a large amount
of data to describe system behavior in a concise form. The best known of the fuzzy
clustering methods is the fuzzy c-means clustering (FCM) method. FCM is a data
clustering technique that uses membership to indicate the degree to which data points
belong to a category. The FCM method was originally proposed by Bezdek in 1981
[5]. It provides a method that shows how to group data points that populate a certain
multi-dimensional space into a specific number of distinct clusters.

Initially, the FCM method first randomly selects the locations of the clustering
points. These randomly generated clustering centers are likely to be wrong. Then,
the FCM method assigns each data point a membership degree belonging to each
category. By iteratively updating the cluster centers and membership degrees for each
data point, the FCM method iteratively moves the cluster centers to dense locations
in the dataset. This iteration is based on minimizing some objective function that
represents the distance from any given data point to the cluster center weighted by
the membership of that data point. The final FCM method will output the clustering
centers it finds.

150 4 Fuzzy Neural Network

Fig. 4.16 Type-2 T-S fuzzy system after training

Fig. 4.17 Performance of type-2 T-S fuzzy system on the validation set

4.5 Fuzzy C-means Clustering 151

Due to the use of fuzzy membership functions, the FCM method is characterized
by allowing each sample point to belong to more than one category. The degree to
which a sample point belongs to a category is determined by the membership function.
Since FCM allows each sample point to belong to more than one category, this makes
the boundaries of the categories overlap each other. It is generally represented by
the fuzzy separation matrix index, which determines the membership degree of the
sample points to different categories. The objective function used in the FCM method
is:

fm =
N∑

i=1

M∑

j=1

μm
i j

∥∥xi − c j
∥∥2

(4.24)

where N is the number of samples in the dataset, M is the number of categories,
m > 1 is the fuzzy separation matrix index, xi is the sample point in the dataset, c j
is the center of the j-th category, and μi j is the membership of the sample point xi
belong to the j-th category.

Based on the objective function in (4.24), the steps of the FCM method are:

Step (1) Randomly initialize the membership μi j of each sample;
Step (2) Calculation of clustering centers:

c j =
∑N

i=1 μ
m
i j xi∑N

i=1 μ
m
i j

(4.25)

Step (3) Update the membership of each sample:

μi j = 1
∑M

k=1

(‖xi−c j‖
‖xi−ck‖

) 2
m−1

(4.26)

Step (4) Calculate the objective function value according to (4.24);
Step (5) Repeat Steps (2)-(4) until the termination conditions are met.

In Step (5), there are 2 common termination conditions. One termination condition
is a predefined maximum number of iterations. For example, if the maximum number
of iterations is set to 100, the FCM method stops after Steps (2)–(4) are repeatedly
executed 100 times. Another termination condition is the objective function stagna-
tion. For example, if we set a very small number like 10−3, when the absolute value
of the difference of the objective function in two consecutive iterations is less than
10−3. It means that the method cannot find a better value of the objective function,
so the iteration of the algorithm is terminated.

Example 4.5 Let’s take the iris dataset as an example. The dataset contains three
types of irises, namely Sentosa iris, Versicolour iris and Virginia iris. There are 50

152 4 Fuzzy Neural Network

samples of each iris species. Each sample has 4 attributes, namely sepal length, sepal
width, petal length and petal width. Please use the FCM method to perform clustering
analysis on this dataset.

Solution The programs for solving this problem using the FCM method are as
follows:

load(‘iris.dat’);
setosaIndex = iris(:,5) == 1;
versicolorIndex = iris(:,5) == 2;
virginicaIndex = iris(:,5) == 3;
setosa = iris(setosaIndex,:);
versicolor = iris(versicolorIndex,:);
virginica = iris(virginicaIndex,:);
Characteristics = {‘sepal length’,‘sepal width’,‘petal length’,‘petal width’};
pairs = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4];
figure1 = figure;
for i =1:6

x = pairs(i,1);
y = pairs(i,2);
subplot1 = subplot(2,3,i,‘Parent’,figure1);
hold(subplot1,‘on’);
plot(setosa(:,x),setosa(:,y),‘Parent’,subplot1,…

‘MarkerSize’,8,‘Marker’,‘.’,‘LineStyle’,‘none’);
plot(versicolor(:,x),versicolor(:,y),‘Parent’,subplot1,…

‘MarkerSize’,8,‘Marker’,‘x’,‘LineStyle’,‘none’);
plot(virginica(:,x),virginica(:,y),‘Parent’,subplot1,…

‘MarkerSize’,8,‘Marker’,‘square’,‘LineStyle’,‘none’);
xlabel(Characteristics{x});
ylabel(Characteristics{y});
box(subplot1,‘on’);
hold(subplot1,‘off’);
set(subplot1,‘FontSize’,12);

end
M = 3;
m = 2.0;
maxIter = 100;
minImpr = 1e − 6;
opt = [m maxIter minImpr true];
[centers,U,objFun] = fcm(iris,M,opt);
figure1 = figure;
for i = 1:6

subplot1 = subplot(2,3,i,‘Parent’,figrue1);
x = pairs(i,1);
y = pairs(i,2);

4.5 Fuzzy C-means Clustering 153

hold(subplot1,‘on’);
plot(setosa(:,x),setosa(:,y),‘Parent’,subplot1,…

‘MarkerSize’,8,‘Marker’,‘.’,‘LineStyle’,‘none’);
plot(versicolor(:,x),versicolor(:,y),‘Parent’,subplot1,…

‘MarkerSize’,8,‘Marker’,‘x’,‘LineStyle’,‘none’);
plot(virginica(:,x),virginica(:,y),‘Parent’,subplot1,…

‘MarkerSize’,8,‘Marker’,‘square’,‘LineStyle’,‘none’);
for j = 1:M

text(centers(j,x),centers(j,y),int2str(j),…
‘FontSize’,12,‘FontWeight’,‘bold’);

end
xlabel(Characteristics{x});
ylabel(Characteristics{y});
box(subplot1,‘on’);
hold(subplot1,‘off’);
set(subplot1,‘FontSize’,12);

end

After the above program is run, the results are shown in Figs. 4.18 and 4.19.

As shown in Fig. 4.18, the iris dataset has four attributes. A flat graph is drawn
by using two attributes. That is the C2

4 = 6 cases in Fig. 4.18. It can be seen that
the overlap of the sample categories for the sepal width and sepal length attributes is

Fig. 4.18 Visualizing the Iris dataset

154 4 Fuzzy Neural Network

Fig. 4.19 Clustering results of the FCM method on the Iris dataset

more, while the overlap of the sample point categories for the sepal width and petal
width attributes is less.

The clustering results of the FCM method are given in Fig. 4.19. The centers of
the clusters are represented by numbers. Numbers 1, 2 and 3 indicate category 1,
category 2 and category 3, respectively. It can be seen from the figure that the FCM
method solves this clustering problem.

The above program also outputs the result of the objective function. After 22
iterations, the FCM method reaches the 10−6 minimum threshold. At this point, the
method terminates and the objective function value is 6058.69.

The FCM method requires a predetermined number of categories. This is one of the
shortcomings of this method. Chiu proposed the subtractive clustering (SC) method
in 1994. The starting point of subtractive clustering is that it does not require a prede-
termined number of categories. It is also fast to estimate the number of categories
and calculate the centers of clusters. The steps of the SC method are:

Step (1) calculate the probability that each sample is a cluster center. Assuming
that each sample point is a possible cluster center, and that this probability is based
on the density of other sample points around the sample point;
Step (2) select the sample points most likely to be cluster centers as temporary
cluster centers;
Step (3) remove sample points from the neighborhood near the temporary cluster
centers. The size of the neighborhood is determined by a parameter called the
category influence range;

4.5 Fuzzy C-means Clustering 155

Step (4) among the remaining sample points, the one most likely to be the cluster
center is selected as the temporary cluster center;
Step (5) Repeat Steps (3) and (4) until some termination condition is met.

Example 4.6 Please perform a clustering analysis of the Iris dataset using the
subtractive clustering method.

Solution The programs for solving this problem using the SC method are as follows:

load(‘iris.dat’);
setosaIndex = iris(:,5) == 1;
versicolorIndex = iris(:,5) == 2;
virginicaIndex = iris(:,5) == 3;
setosa = iris(setosaIndex,:);
versicolor = iris(versicolorIndex,:);
virginica = iris(virginicaIndex,:);
clusterInfluenceRange = 1;
[centers,sigma] = subclust(iris,clusterInfluenceRange);
Characteristics = {‘sepal length’,‘sepal width’,‘petal length’,‘petal width’};
pairs = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4];
figure1 = figure;
for i = 1:6

subplot1 = subplot(2,3,i,‘Parent’,figure1);
x = pairs(i,1);
y = pairs(i,2);
hold(subplot1,‘on’);
plot(setosa(:,x),setosa(:,y),‘Parent’,subplot1,…

‘MarkerSize’,8,‘Marker’,‘.’,‘LineStyle’,‘none’);
plot(versicolor(:,x),versicolor(:,y),‘Parent’,subplot1,…

‘MarkerSize’,8,‘Marker’,‘x’,‘LineStyle’,‘none’);
plot(virginica(:,x),virginica(:,y),‘Parent’,subplot1,…

‘MarkerSize’,8,‘Marker’,‘square’,‘LineStyle’,‘none’);
for j = 1:size(centers,1)

text(centers(j,x),centers(j,y),int2str(j),…
‘FontSize’,12,‘FontWeight’,‘bold’);

end
xlabel(Characteristics{x});
ylabel(Characteristics{y});
box(subplot1,‘on’);
hold(subplot1,‘off’);
set(subplot1,‘FontSize’,12);

end

After the above program is run, the result is shown in Fig. 4.20.

156 4 Fuzzy Neural Network

Fig. 4.20 Clustering results of the SC method on the Iris dataset

The clustering results of the SC method are given in Fig. 4.20. The centers of
the clusters are represented by numbers. Numbers 1, 2 and 3 indicate category 1,
category 2 and category 3, respectively. It can be seen from the figure that the SC
method solves this clustering problem.

The advantage of the SC method is that it does not require a predetermined number
of categories, but introduces a category influence range parameter. The smaller the
value of the category influence range parameter, which is between 0 and 1, the greater
the number of categories classified by the method; conversely, the closer its value is
to 1, the smaller the number of categories classified by the method.

The SC method can find out the number of categories as well as the cluster centers
of the dataset. We can initialize the FCM method with the number of categories and
cluster centers to discover more suitable clustering results. Moreover, the FCM and
SC methods can be used for the construction of fuzzy inference systems.

In the previous sections, the fuzzy system, by default, uses a grid partitioning
method. Grid partitioning method uniformly partitions the range of input variables
and generates the membership function on the result of this partition. If the FCM
method is used to build the fuzzy system, the fuzzy system uses the clustering centers
obtained from the FCM method to generate the membership functions and fuzzy
rules. If the SC method is used to build the fuzzy system, the fuzzy system uses the
clustering centers obtained by the SC method to generate the membership functions
and fuzzy rules.

4.5 Fuzzy C-means Clustering 157

Example 4.7 Please use the FCM and SC methods to build fuzzy systems to solve
MG time series prediction problem.

Solution Based on the FCM method, we build a fuzzy system to solve the MG time
series prediction problem with the following programs:

load(‘mgdata.dat’);
time = mgdata(:,1);
x = mgdata(:, 2);
figure(1)
plot(time,x)
title(‘Mackey-Glass Chaotic Time Series’)
xlabel(‘Time (sec)’)
ylabel(‘x(t)’)
C = 4;
for t = 118:1117

Data(t − 117,:) = [x(t-18) x(t − 12) x(t − 6) x(t) x(t + 6)];
end
trnX = Data(1:500,1:C);
trnY = Data(1:500,C + 1);
vldX = Data(501:end,1:C);
vldY = Data(501:end,C + 1);
M = 3;
m = 2.0;
maxIter = 100;
minImpr = 1e − 6;
opt = [m maxIter minImpr true];
[centers,U,objFun] = fcm(trnX,M,opt);
opt2 = genfisOptions(‘FCMClustering’);
opt2.NumClusters = M;
opt2.Exponent = opt(1);
opt2.MaxNumIteration = opt(2);
opt2.MinImprovement = opt(3);
opt2.Verbose = opt(4);
fis = genfis(trnX,trnY,opt2);
options = anfisOptions(‘InitialFIS’,fis,‘ValidationData’,[vldX,vldY]);
[fis1,error1,ss,fis2,error2] = anfis([trnX,trnY],options);
figure(2);
plot(error1,‘-’)
hold on
plot(error2,‘--’)
plot(error1,‘o’)
plot(error2,‘*’)
legend(‘Train error’,‘Valication error’)
xlabel(‘epoch’)

158 4 Fuzzy Neural Network

ylabel(‘RMSE’)
evalOptions = evalfisOptions(“EmptyOutputFuzzySetMessage”,“none”, …

“NoRuleFiredMessage”,“none”,“OutOfRangeInputValueMessage”,“none”);
predY = evalfis(fis2,vldX);
diff = vldY - predY;
rmse = sqrt(mean(diff.^2));
figure(3);
plot([predY vldY]);
axis([0 length(vldY) min(vldY)− 0.01 max(vldY) + 0.13])
xlabel(‘t’)
ylabel(‘x(t)’)
legend([“predicted value” “true value”],‘Location’,“northeast”)

After the above program is run, we can obtain three figures, which are omitted
for the saving of space. The RMSE of the fuzzy system using the FCM method is
0.0182.

Based on the SC method, we build a fuzzy system to solve the MG time series
prediction problem with the following program:

load(‘mgdata.dat’);
time = mgdata(:,1);
x = mgdata(:, 2);
figure(1)
plot(time,x)
title(‘Mackey-Glass Chaotic Time Series’)
xlabel(‘Time (sec)’)
ylabel(‘x(t)’)
C = 4;
for t = 118:1117

Data(t − 117,:) = [x(t − 18) x(t − 12) x(t − 6) x(t) x(t + 6)];
end
trnX = Data(1:500,1:C);
trnY = Data(1:500,C + 1);
vldX = Data(501:end,1:C);
vldY = Data(501:end,C + 1);
clusterInfluenceRange = 1;
opt = [2.0 0.8 0.7 0];
[centers,sigma] = subclust(trnX,clusterInfluenceRange,‘Options’,opt);
opt2 = genfisOptions(‘SubtractiveClustering’);
opt2.ClusterInfluenceRange = clusterInfluenceRange;
opt2.SquashFactor = opt(1);
opt2.AcceptRatio = opt(2);
opt2.RejectRatio = opt(3);
opt2.Verbose = opt(4);
fis = genfis(trnX,trnY,opt2);

4.6 Suburban Commuting Prediction Problem 159

options = anfisOptions(‘InitialFIS‘,fis,‘ValidationData’,[vldX,vldY]);
[fis1,error1,ss,fis2,error2] = anfis([trnX,trnY],options);
figure(2);
plot(error1,‘-’)
hold on
plot(error2,‘--’)
plot(error1,‘o’)
plot(error2,‘*’)
legend(‘Train error’,‘Valication error’)
xlabel(‘epoch’)
ylabel(‘RMSE’)
evalOptions = evalfisOptions(“EmptyOutputFuzzySetMessage”,“none”, …

“NoRuleFiredMessage”,“none”,“OutOfRangeInputValueMessage”,“none”);
predY = evalfis(fis2,vldX);
diff = vldY - predY;
rmse = sqrt(mean(diff.^2));
figure(3);
plot([predY vldY]);
axis([0 length(vldY) min(vldY)− 0.01 max(vldY) + 0.13])
xlabel(‘t’)
ylabel(‘x(t)’)
legend([“predicted value” “true value”],‘Location’,“northeast”)

After the above program is run, we can obtain three figures, which are omitted
here and will not be described. The RMSE of the fuzzy system using the SC method
is 0.0961.

From the Example 4.7, it can be seen that the fuzzy system based on grid parti-
tioning has the smallest RMSE on the validation set, followed by the fuzzy system
based on the FCM method, and the largest RMSE is the fuzzy system based on the
SC method. It should be noted that in this example, we did not adjust the parameters
of the methods, so we cannot determine which method is superior based on this
result. It is better for the reader to try all of them when solving specific problems and
optimize the parameters to get the best performance.

4.6 Suburban Commuting Prediction Problem

This section tries to solve the suburban commuting prediction problem. We introduce
the integrated application of fuzzy neural network, fuzzy clustering and ANFIS in
the problem.

Example 4.8 The dataset for the suburban commuting prediction problem is demo-
graphic and travel data for 100 transportation analysis areas in New Castle County,
Delaware (USA). The dataset contains five demographic factors as input variables:

160 4 Fuzzy Neural Network

population, number of dwelling units, vehicle ownership, median household income,
and total employment. The sample data in this dataset contains one output variable,
i.e., the number of automobile trips. We have divided the dataset into a training set
and a validation set, where the training set has 75 samples and the validation set has
25 samples.

Solution First, we use the SC method as the clustering method in fuzzy systems as
a way to define the membership function and fuzzy rules. We will create a T-S type
fuzzy system with the following programs:

load(‘trafficData’);
[clusters,sigma] = subclust([datain dataout],0.5);
figure
plot(datain(:,5),dataout(:,1),‘o’,…

clusters(:,5),clusters(:,6),“r*”);
legend(“Data points”,“Cluster centers”,“Location”,“southeast”)
xlabel(“Total Employment”)
ylabel(“Number of Trips”)
title(“Data and Cluster Centers”)
opt = genfisOptions(“SubtractiveClustering”,…

“ClusterInfluenceRange”,0.5);
fis = genfis(datain,dataout,opt);
showrule(fis);
figure
plotmf(fis,“input”,1)
fuzout = evalfis(fis,datain);
trnRMSE = norm(fuzout-dataout)/sqrt(length(fuzout));
valfuzout = evalfis(fis,valdatain);
valRMSE = norm(valfuzout-valdataout)/sqrt(length(valfuzout));
figure
plot(valdataout,‘o’);
hold on.
plot(valfuzout,‘*’);
hold off
ylabel(‘Output value’)
legend(“Validation data”,“FIS output”,“Location”,“northwest”)
anfisOpt = anfisOptions(‘InitialFIS’,fis,…

‘EpochNumber’,100,‘InitialStepSize’,0.1,…
‘ValidationData’,[valdatain valdataout],…
‘DisplayANFISInformation’,0,…
‘DisplayErrorValues’,0,…
‘DisplayStepSize’,0,…
‘DisplayFinalResults’,0);

[fis2,trnErr,stepSize,fis3,valErr] = anfis([datain dataout],anfisOpt);
[minValErr,minValErrIdx] = min(valErr);

4.6 Suburban Commuting Prediction Problem 161

fuzout3 = evalfis(fis3,datain);
trnRMSE3 = norm(fuzout3-dataout)/sqrt(length(fuzout3));
valfuzout3 = evalfis(fis3,valdatain);
valRMSE3 = norm(valfuzout3-valdataout)/sqrt(length(valfuzout3));
figure;
plot(valdataout,‘o’);
hold on
plot(valfuzout,‘*’);
plot(valfuzout3,‘x’);
hold off
ylabel(‘Output value’)
legend(“Validation data”,“Initial FIS: RMSE = ” + num2str(valRMSE), …

“Tuned FIS: RMSE = ”+ num2str(valRMSE3), …
“Location”,“northwest”)

figure;
plot(trnErr);
title(‘Training Error’);
xlabel(‘Number of Epochs’);
ylabel(‘Error’);
figure;
plot(valErr);
hold on;
plot(minValErrIdx,minValErr,‘*’);
title(‘Validation Error’);
xlabel(‘Number of Epochs’);
ylabel(‘Error’);

After the above program is run, we can obtain six figures. Three of them are shown
in the following and the other figures are omitted for the saving of space.

The clustering results of the SC method are given in Fig. 4.21, where the raw
data are represented by circle symbols, while the cluster centers are represented by
star symbols. In this figure, the horizontal axis is the total employment of the input
variable and the vertical axis is the number of car trips of the output variable.

The RMSE of the fuzzy system using the SC method is 0.5276 on the training
set, while the RMSE on the validation set is 0.6179.

We can initialize ANFIS with the obtained fuzzy system in order to be able to
obtain a better fuzzy system. The results of ANFIS on the validation set using the
SC method are given in Fig. 4.22. In this figure, the original data are represented
by circle symbols, the results predicted by the fuzzy system are represented by star
symbols, and the results predicted by ANFIS are represented by crosses. As can be
seen from the figure, the model of ANFIS shows better performance. The RMSE
of ANFIS on the training set is 0.3393, while the RMSE on the validation set it is
0.5834.

162 4 Fuzzy Neural Network

Fig. 4.21 Clustering results
of the SC method

Fig. 4.22 Results of ANFIS
on the validation set using
the SC method

Figure 4.23 gives the error of the model on the validation set for each epoch. It
can be seen from the figure that the error gradually decreases with the number of
epochs and reaches its lowest at the 52nd epoch, as shown by the asterisk point in the
figure. The error increases again during the subsequent epochs. Even after the 52nd
epoch, the error of the model on the training set still decreases, but the error of the
model on the validation set increases. This indicates that ANFIS is in an overfitting
state when the number of epochs exceeds 52. Thus, we use the result obtained from
the 52nd epoch as the final model.

Next, the SC method divides the dataset into 3 categories. We use this number of
categories to initialize the FCM method and repeat the above procedure as follows:

load(‘trafficData’);

4.6 Suburban Commuting Prediction Problem 163

Fig. 4.23 Error curve of
ANFIS on the validation set

M = 3;
m = 2.0;
maxIter = 100;
minImpr = 1e − 6;
opt = [m maxIter minImpr true];
[centers,U,objFun] = fcm([datain dataout],M,opt);
figure
plot(datain(:,5),dataout(:,1),‘o’,…

centers(:,5),centers(:,6),“r*”);
legend(“Data points”,“Cluster centers”,“Location”,“southeast”)
xlabel(“Total Employment”)
ylabel(“Number of Trips”)
title(“Data and Cluster Centers”)
opt = genfisOptions(“FCMClustering”,…

“NumClusters”,M);
fis = genfis(datain,dataout,opt);
showrule(fis);
figure
plotmf(fis,“input”,1)
fuzout = evalfis(fis,datain);
trnRMSE = norm(fuzout-dataout)/sqrt(length(fuzout));
valfuzout = evalfis(fis,valdatain);
valRMSE = norm(valfuzout-valdataout)/sqrt(length(valfuzout));
figure
plot(valdataout,‘o’);
hold on
plot(valfuzout,‘*’);
hold off

164 4 Fuzzy Neural Network

ylabel(‘Output value’)
legend(“Validation data”,“FIS output”,“Location”,“northwest”)
anfisOpt = anfisOptions(‘InitialFIS’,fis,…

‘EpochNumber’,100,‘InitialStepSize’,0.1,…
‘ValidationData’,[valdatain valdataout],…
‘DisplayANFISInformation’,0,…
‘DisplayErrorValues’,0,…
‘DisplayStepSize’,0,…
‘DisplayFinalResults’,0);

[fis2,trnErr,stepSize,fis3,valErr] = anfis([datain dataout],anfisOpt);
[minValErr,minValErrIdx] = min(valErr);
fuzout3 = evalfis(fis3,datain);
trnRMSE3 = norm(fuzout3-dataout)/sqrt(length(fuzout3));
valfuzout3 = evalfis(fis3,valdatain);
valRMSE3 = norm(valfuzout3-valdataout)/sqrt(length(valfuzout3));
figure;
plot(valdataout,‘o’);
hold on
plot(valfuzout,‘*’);
plot(valfuzout3,‘x’);
hold off
ylabel(‘Output value’)
legend(“Validation data”,“Initial FIS: RMSE = ” + num2str(valRMSE), …

“Tuned FIS: RMSE = ”+ num2str(valRMSE3), …
“Location”,“northwest”)

figure;
plot(trnErr);
title(‘Training Error’);
xlabel(‘Number of Epochs’);
ylabel(‘Error’);
figure;
plot(valErr);
hold on;
plot(minValErrIdx,minValErr,‘*’);
title(‘Validation Error’);
xlabel(‘Number of Epochs’);
ylabel(‘Error’);

After the above program is run, we can obtain six figures, which are omitted for
the saving of space.

The RMSE of the T-S type fuzzy system constructed using the FCM method is
0.6858 on the training set and 0.6393 on the validation set. The RMSE of the ANFIS
fuzzy system using the FCM method is 0.5799 on the training set and 0.4867 on the
validation set.

4.6 Suburban Commuting Prediction Problem 165

Finally, we use the grid partitioning method as a clustering method in fuzzy
systems. We repeat the above steps with the following programs:

load(‘trafficData’);
opt = genfisOptions(“GridPartition”);
fis = genfis(datain,dataout,opt);
showrule(fis);
figure
plotmf(fis,“input”,1)
fuzout = evalfis(fis,datain);
trnRMSE = norm(fuzout-dataout)/sqrt(length(fuzout));
valfuzout = evalfis(fis,valdatain);
valRMSE = norm(valfuzout-valdataout)/sqrt(length(valfuzout));
figure
plot(valdataout,‘o’);
hold on
plot(valfuzout,‘*’);
hold off
ylabel(‘Output value’)
legend(“Validation data”,“FIS output”,“Location”,“northwest”)
anfisOpt = anfisOptions(‘InitialFIS’,fis,…

‘EpochNumber’,100,‘InitialStepSize’,0.1,…
‘ValidationData’,[valdatain valdataout],…
‘DisplayANFISInformation’,0,…
‘DisplayErrorValues’,0,…
‘DisplayStepSize’,0,…
‘DisplayFinalResults’,0);

[fis2,trnErr,stepSize,fis3,valErr] = anfis([datain dataout],anfisOpt);
[minValErr,minValErrIdx] = min(valErr);
fuzout3 = evalfis(fis3,datain);
trnRMSE3 = norm(fuzout3-dataout)/sqrt(length(fuzout3));
valfuzout3 = evalfis(fis3,valdatain);
valRMSE3 = norm(valfuzout3-valdataout)/sqrt(length(valfuzout3));
figure;
plot(valdataout,‘o’);
hold on
plot(valfuzout,‘*’);
plot(valfuzout3,‘x’);
hold off
ylabel(‘Output value’)
legend(“Validation data”,“Initial FIS: RMSE = ” + num2str(valRMSE), …

“Tuned FIS: RMSE = ” + num2str(valRMSE3), …
“Location”,“northwest”)

figure;
plot(trnErr);

166 4 Fuzzy Neural Network

title(‘Training Error’);
xlabel(‘Number of Epochs’);
ylabel(‘Error’);
figure;
plot(valErr);
hold on;
plot(minValErrIdx,minValErr,‘*’);
title(‘Validation Error’);
xlabel(‘Number of Epochs’);
ylabel(‘Error’);

After the above program is run, the figures are omitted for the saving of space.
The RMSE of the fuzzy system using the grid partitioning method is 2.7851 on the

training set and 2.6563 on the validation set. We initialize ANFIS with the obtained
fuzzy system. The RMSE of the ANFIS using grid partitioning method is 0.0274 on
the training set and 0.8618 on the validation set. The error of the model using the
grid partitioning method on the training set is much smaller than the error on the
validation set. This indicates that the model has a serious overfitting problem.

In this section, we use the SC method, FCM method and grid partitioning method
to construct fuzzy systems. Moreover, we build ANFIS to enhance the performance
of fuzzy systems. The RMSE of the fuzzy systems obtained by these three methods on
the validation set are 0.5834, 0.4867 and 0.8618, respectively. The order of the three
methods obtained from this result is not consistent with the results in the example
in the previous section. Thus, users have to try multiple methods for simulation and
analysis before choosing the most suitable one when solving their problems.

4.7 Research Progress of Fuzzy Computing

This section reviews the state-of-the-art research progress of fuzzy computing. These
researches are classified to three categories. They are fuzzy control system, type-2
fuzzy logic and other fuzzy logic model.

(1) fuzzy control system

Low-frequency power oscillations in the power system have always been a serious
risk to stabilizing the power system. A fuzzy logic power system stabilizer (FLPSS)
was proposed by Sun et al. to alleviate system oscillation problems [6]. In response to
the parameter configuration and rule setting issues of FLPSS, the use of FLPSS based
on the grey wolf optimizer (GWO) achieved faster stabilization time and improved
the effectiveness of damping oscillation. A comparative study was conducted on the
proposed GWO-based FLPSS and traditional stabilizers on a single machine infinite
bus system. The simulation results show that GWO-based FLPSS can better suppress
low-frequency oscillations and maintain power grid stability.

4.7 Research Progress of Fuzzy Computing 167

Power transformers are one of the most expensive and critical electrical devices
among all networked devices. Various electrical, mechanical, thermal and chem-
ical stresses can reduce the insulation performance of power transformers. Tarafdar
et al. proposed a new method combining fuzzy logic controller with fuzzy clus-
tering method [7]. They used expert systems to diagnose and predict early faults in
power transformers. In addition, this expert model was tested and validated using
200 transformer test datasets.

A distributed approximate optimal control scheme based on fuzzy logic nonzero-
sum game was proposed by An et al. [8]. for modular robots with human-machine
cooperation (HRC) tasks. A modular robot manipulator (MRM) system was estab-
lished using joint torque feedback technology. Based on the differential game
strategy, the optimal control problem of the MRM system facing the HRC task
was transformed into a nonzero-sum game problem of multiple subsystems. Using
adaptive Dynamic programming algorithm and a new fuzzy logic nonzero-sum game
method, a distributed approximate optimal control strategy for HRC tasks was devel-
oped to solve the coupled Hamilton Jacobian equations. Experimental results were
provided to verify the superiority and effectiveness of this method.

Sierra-Garcia et al. tried to control the pitch angle of the wind turbine [9]. Due
to the nonlinearity and complex dynamics of the renewable energy systems, the
control was very difficult for floating offshore wind turbines. To address this issue,
Sierra-Garcia et al. proposed a hybrid system that combines fuzzy logic and deep
learning. Deep learning technology was used to estimate current wind speeds and
predict future wind speeds. The effective wind obtained by deep learning was sent to
the fuzzy controller. The simulation results show how incorporating effective wind
can improve the performance of intelligent controllers against different disturbances.

Laundry is one of people’s daily lives. Currently, hand cleaning has been replaced
by washing machines. Raja et al. developed a fuzzy logic control system based on
people’s needs and behaviors [10]. The inputs to this system were the type of clothing,
the degree of dirt, and the quality of the fabric load; while the received outputs were
washing time, drying time, and temperature. The simulation results indicate that the
system provides good washing quality.

(2) type-2 fuzzy logic

In developing countries, 40% of fresh fruits and vegetables are usually transported
in non-refrigerated trucks and will rot before use. This causes wholesalers to lose
potential profits due to the spoilage of their products. Here, the wholesaler’s trans-
portation of fresh goods starts from the warehouse and returns to the warehouse after
reducing the quantity at the node (retailer) based on the previously placed order. Due
to the changes in freshness of perishable items over time, the selling price of the item
depends on its freshness at the time of delivery to the retailer. There are multiple routes
connecting retailers and warehouses. Thakur et al. developed a multi-route model for
fresh agricultural products considering the freshness of the product, optimal route
plan, suitable route, sales revenue, driver wages and fatigue and so on [11]. The goal
was to find the best route planning, optimal route between nodes, and vehicle speed
for wholesalers to maximize profits, minimize fuel costs, or both. A Virgin discrete

168 4 Fuzzy Neural Network

fireworks algorithm was developed for solutions based on type-1 and type-2 fuzzy
logic. Numerical results of the trade-off between driver rest, non-rest, continuous
driving risks, and profit and green are presented.

A new coupling-based hybrid interval type-2 fuzzy logic controller (MIT2FLC)
was studied by Kumar et al. for trajectory tracking problems of robotic arm objects
[12]. The main obstacle for these types of plants was the coupling between robot links
during operation. In addition, the performance of these devices was also adversely
affected by parameter uncertainty, random noise, and external interference. There-
fore, a MIT2FLC method with additional degrees of freedom in the membership
function was proposed to effectively handle uncertainty problems and provide robust
performance. The robustness analysis of the proposed controller under external
disturbances, system parameter changes, and random noise was studied.

Due to fierce market competition, transportation companies are facing the need to
reduce fleet costs. The fleet management takes action on the driver’s driving style to
achieve fuel consumption savings. Zdravković et al. developed a model for evaluating
driving style using a type-2 fuzzy logic system [13]. The type-2 fuzzy logic system
considered engine speed, accelerator pedal position, and acceleration or deceleration
parameters. The system output was the driver’s score, representing the impact of
driving style on fuel consumption. The experimental results show that the method
can significantly reduce fuel consumption and improve the energy efficiency of the
fleet based on driving style.

The tracking control of steer-by-wire (SbW) system with unknown nonlinear
Friction torque and unmeasurable angular velocity was studied by Luo et al. [14]. In
order to eliminate the adverse effect of Friction torque on SbW system, an observer
based adaptive interval type-2 fuzzy logic system controller was proposed. Interval
type-2 fuzzy logic system (IT2-FLS) was used to model the Friction torque, in which
the model and parameters were not effectively identified. Compared with type-1
fuzzy logic system, IT2-FLS had better ability to handle uncertainty, so friction
modeling based on IT2-FLS had a more satisfactory effect in practical applications.
Numerical simulation experiments have verified the effectiveness and superiority of
the proposed method and control strategy.

Valdez summarized the parameter adaptive algorithms based on swarm intelli-
gence, and used some techniques to obtain the best results [15]. Valdez analyzed the
most popular algorithms, such as ant colony optimization, particle swarm optimiza-
tion, artificial bee colony optimization, and firefly algorithm. These algorithms used
type-2 fuzzy logic for parameter adaptation. These algorithms have proven superior
to other swarm intelligence-based optimization methods in some applications.

(3) other fuzzy logic model

In this technological world, e-learning has become a more feasible choice for a
range of people, from beginners to experts in specific fields. However, due to some
weaknesses in e-learning systems, the development of e-learning systems has not yet
provided sufficient adaptability for e-learners. Usually, e-learners have made varying
degrees of progress in their respective learning methods. For a period of time, this will

4.7 Research Progress of Fuzzy Computing 169

affect the performance of e-learners and provide the same course for all e-learners.
Therefore, it is necessary to create an adaptive e-learning environment that provides
appropriate e-learning content for all e-learners. Karthika et al. proposed a novel,
intelligent, and adaptive e-learning context based on fuzzy logic for programming
languages [16]. The dependency relationships between concepts in programming
languages were provided using fuzzy cognitive maps. Fuzzy set and fuzzy rules
represented the knowledge level of e-learners, and helped to provide appropriate
suggestions for previous and subsequent related concepts in fuzzy cognitive maps.
The simulation results show that the proposed intelligent e-learning system provides
promising results in accurately classifying e-learners.

Homomorphic encryption (HE) is a powerful feature of some cryptographic
systems, which allows privacy protection of encrypted text. However, due to limi-
tations in efficiency and availability, HE is not widespread. In the challenge of HE,
scheme parameterization is a related multifaceted issue. There is no general optimal
choice of parameters, and this choice depends on the circuit and application scenario.
Cabrero-Holgueras et al. propose a unified solution to address the aforementioned
challenges [17]. Specifically, Cabrero-Holgueras et al. proposed an expert system
that combines fuzzy logic with linear programming. The fuzzy logic module received
high-level priorities selected by users for the security of the password system. Based
on these preferences, the expert system generated a linear programming model. The
simulation results show that the optimal parameter selection generated by the expert
system can maintain user preferences without experiencing the inherent complexity
of analyzing the circuit.

Inspired by the surge in interest in the Internet of Things (IoT), Zahra et al. focused
on the dynamics of IoT security. The IoT had brought convenience to people’s lives
and quickly become a trillion-dollar industry. However, the future of the IoT will
depend on how to address its security and privacy issues. Zahra et al. provided a crit-
ical analysis of the latest and relevant state-of-the-art methods for IoT security. The
authors identified parameters that are crucial to any security situation in the IoT. Zahra
et al. proposed a universal lightweight security mechanism for detecting malicious
behavior in uncertain IoT environments using fuzzy logic and fog-based methods
[18]. The proposed method can produce better accuracy results than existing bench-
marks. In addition, the proposed method has extremely low pressure on constrained
nodes and supports the heterogeneity and uncertainty of IoT environments.

The deep neural fuzzy system (DNFS) utilizes the effective learning process of
deep neural networks and the reasoning ability of fuzzy inference systems. The
DNFS has been successfully applied to real-world problems. Talpur et al. provided a
comprehensive review of DNFS and divided it into two important parts [19]. The first
part was to understand DNFS and its architectural representation, while the second
part reviewed the optimization methods of DNFS. This study aims to help researchers
understand various ways of developing DNFS models through mixed deep neural
networks and fuzzy inference systems. This study shows that the proposed DNFS
architecture performs 11.6% better than non-fuzzy models. The study based on opti-
mization method shows that the overall accuracy of DNFS using meta-heuristic algo-
rithms is 21.10% higher than that of DNFS model using gradient-based method. The

170 4 Fuzzy Neural Network

study of Talpur et al. suggests using new and improvised meta-heuristic algorithms
to implement optimization methods to improve model performance.

Exercises

(1) Try to construct a T-S type fuzzy system by using fuzzy logic designer and
observe the relationship surfaces of system model, fuzzy rules, input variables
and output variables.

(2) Try to briefly explain the differences and connections between type-1 fuzzy
systems and interval type-2 fuzzy systems.

(3) Choose a proportional-integral-derivative (PID) control problem and try to
construct a ANFIS fuzzy system to solve this control problem and analyze
its performance.

References

1. de Campos Souza PV (2020) Fuzzy neural networks and neuro-fuzzy networks: a review the
main techniques and applications used in the literature. Appl Soft Comput 92:106275. https://
doi.org/10.1016/j.asoc.2020.106275

2. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst
Man Cybern 23(3):665–685

3. Wu D, Zeng Z, Mo H (2020) Feiyue Wang, Interval type-2 fuzzy sets and systems: overview
and outlook. ACTA Automatica Sinica 46(8):1539–1556

4. Mendel JM (2017) Uncertain rule-based fuzzy systems: introduction and new directions, 2nd
edn. Springer, Cham, pp 229–234

5. Chiu S (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst
2(3):267–278

6. Sun Z, Cao Y, Wen Z et al (2023) A grey wolf optimizer algorithm based fuzzy logic power
system stabilizer for single machine infinite bus system. Energy Rep 9:847–853. https://doi.
org/10.1016/j.egyr.2023.04.365

7. Tarafdar A, Majumder P, Deb M, Bera UK (2023) Diagnosis and prognosis of incipient faults
and insulation status for asset management of power transformer using fuzzy logic controller &
fuzzy clustering means. Electr Power Syst Res 220:10925. https://doi.org/10.1016/j.epsr.2023.
109256

8. An T, Zhu X, Zhu M et al (2023) Fuzzy logic nonzero-sum game-based distributed approx-
imated optimal control of modular robot manipulators with human-robot collaboration.
Neurocomputing 543:126276. https://doi.org/10.1016/j.neucom.2023.126276

9. Sierra-Garcia JE, Santos M (2022) Deep learning and fuzzy logic to implement a hybrid wind
turbine pitch control. Neural Comput Applic 34:10503–10517. https://doi.org/10.1007/s00521-
021-06323-w

10. Raja K, Ramathilagam S (2021) Washing machine using fuzzy logic controller to provide wash
quality. Soft Comput 25:9957–9965. https://doi.org/10.1007/s00500-020-05477-4

11. Thakur K, Maji S, Maity S et al (2023) Multiroute fresh produce green routing models with
driver fatigue using Type-2 fuzzy logic-based DFWA. Expert Syst Appl 229:120300. https://
doi.org/10.1016/j.eswa.2023.120300

12. Kumar A, Raj R, Kumar A, Verma B (2023) Design of a novel mixed interval type-2 fuzzy logic
controller for 2-DOF robot manipulator with payload. Eng Appl Artif Intell 123:106329.https://
doi.org/10.1016/j.engappai.2023.106329

https://doi.org/10.1016/j.asoc.2020.106275
https://doi.org/10.1016/j.asoc.2020.106275
https://doi.org/10.1016/j.egyr.2023.04.365
https://doi.org/10.1016/j.egyr.2023.04.365
https://doi.org/10.1016/j.epsr.2023.109256
https://doi.org/10.1016/j.epsr.2023.109256
https://doi.org/10.1016/j.neucom.2023.126276
https://doi.org/10.1007/s00521-021-06323-w
https://doi.org/10.1007/s00521-021-06323-w
https://doi.org/10.1007/s00500-020-05477-4
https://doi.org/10.1016/j.eswa.2023.120300
https://doi.org/10.1016/j.eswa.2023.120300
https://doi.org/10.1016/j.engappai.2023.106329
https://doi.org/10.1016/j.engappai.2023.106329

References 171

13. Zdravković S, Vujanović D, Stokić M et al (2021) Evaluation of professional driver’s eco-
driving skills based on type-2 fuzzy logic model. Neural Comput Applic 33:11541–11554.
https://doi.org/10.1007/s00521-021-05823-z

14. Luo G, Wang Z, Ma B et al (2021) Observer-based interval type-2 fuzzy friction modeling
and compensation control for steer-by-wire system. Neural Comput Applic 33:10429–10448.
https://doi.org/10.1007/s00521-021-05801-5

15. Valdez F (2020) A review of optimization swarm intelligence-inspired algorithms with type-2
fuzzy logic parameter adaptation. Soft Comput 24:215–226. https://doi.org/10.1007/s00500-
019-04290-y

16. Karthika R, Deborah JL, Vijayakumar P (2020) Intelligent e-learning system based on fuzzy
logic. Neural Comput Applic 32:7661–7670. https://doi.org/10.1007/s00521-019-04087-y

17. Cabrero-Holgueras J, Pastrana S (2023) Towards automated homomorphic encryption param-
eter selection with fuzzy logic and linear programming. Expert Syst Appl 229:120460. https://
doi.org/10.1016/j.eswa.2023.120460

18. Zahra SR, Chishti MA (2022) A generic and lightweight security mechanism for detecting mali-
cious behavior in the uncertain Internet of Things using fuzzy logic- and fog-based approach.
Neural Comput Applic 34:6927–6952. https://doi.org/10.1007/s00521-021-06823-9

19. Talpur N, Abdulkadir SJ, Alhussian H et al (2022) A comprehensive review of deep neuro-fuzzy
system architectures and their optimization methods. Neural Comput Applic 34:1837–1875.
https://doi.org/10.1007/s00521-021-06807-9

https://doi.org/10.1007/s00521-021-05823-z
https://doi.org/10.1007/s00521-021-05801-5
https://doi.org/10.1007/s00500-019-04290-y
https://doi.org/10.1007/s00500-019-04290-y
https://doi.org/10.1007/s00521-019-04087-y
https://doi.org/10.1016/j.eswa.2023.120460
https://doi.org/10.1016/j.eswa.2023.120460
https://doi.org/10.1007/s00521-021-06823-9
https://doi.org/10.1007/s00521-021-06807-9

Chapter 5
Evolutionary Computing

Abstract Evolutionary computing mimics the laws of biological evolution. It solves
optimization problems through the reproduction of individuals and the competition
between individuals. Evolutionary computing is a collection of evolutionary algo-
rithms that follow the survival of the fittest law in species. Evolutionary algorithms
are global probability search algorithms based on natural selection, genetic mutation
and other biological evolution mechanisms. Evolutionary computing has been used in
various fields such as pattern recognition, image processing, economic management,
mechanical engineering, electrical engineering, wireless communication, etc. This
chapter first introduces an overview of evolutionary computing and simple genetic
algorithm. Genetic algorithm is then used to solve travelling salesman problem.
Then, this chapter introduces ant colony optimization, particle swarm optimization
and differential evolution algorithms. These algorithms have been used to solve both
travelling salesman problem and continuous optimization problem.

5.1 Overview of Evolutionary Computing

Evolutionary Computing is an intelligent computing technology that mimics the laws
of biological evolution and solves optimization problems through the reproduction
of individuals and the competition between individuals. Evolutionary computing
aims to achieve “survival of the fittest” in species; accordingly, it aims to reach
optimal solution in optimization problems. Evolutionary computing is also called
evolutionary computation. Evolutionary computing (EC) is not a specific algorithm,
but a collective term for many algorithms. For example, genetic algorithm preceded
the name evolutionary computation, and genetic algorithm is a specific algorithm.
In general, genetic algorithm is considered to be the earliest evolutionary computing
method.

In the 1970s, genetic algorithm (GA) was first proposed by Holland in the United
States [1]. In 1975, Holland published the monograph “Adaptation in Natural and
Artificial Systems”. In the book, he introduced GA and verified that it could solve
the NP-hard (Nondeterministic Polynomial-Hard) problems with good results. Since

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Zhang et al., Intelligent Information Processing with Matlab,
https://doi.org/10.1007/978-981-99-6449-9_5

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6449-9_5&domain=pdf
https://doi.org/10.1007/978-981-99-6449-9_5

174 5 Evolutionary Computing

then, many scholars have noticed GA as a method and have continued to derive more
effective versions, so the GA proposed by Holland is often referred to as the simple
genetic algorithm.

Genetic algorithm is a way to simulate the evolutionary mechanism of biological
evolution in nature [2]. Based on Darwin’s theory of biological evolution, GA trans-
lates the law of survival of the fittest into a strategy for finding the optimal solution.
In scientific and practical problems, the function of GA is to find, among all possible
solutions, the one that best fits the problem by satisfying the constraints. GA can
provide an optimal solution to an optimization problem.

In the 1960s, Fogel in the United States proposed evolutionary programming
(EP). In the same period, Rechenberg and Schwefel in Germany proposed evolution
strategies (ES). They applied ES to complex engineering problems and achieved
good results, thus gaining wide recognition. Methods such as GA, EP, and ES were
developed alone for more than a decade. Until the 1980s, these methods did not
attract much attention, partly because they were not mature enough by themselves
and partly because they were not really applied to practical problems due to the
limitations of computer performance.

In the 1990s, Koza in the United States proposed genetic programming (GP) in his
monograph. GP uses hierarchical tree structure to express problems. After the branch
of GP was proposed, Evolutionary computing began to emerge as a discipline. The
four methods of GA, EP, ES and GP influence each other, learn from each other, and
gradually evolve new evolutionary methods, which promote the rapid development
of EC.

The GA mentioned earlier is able to solve NP-hard problems, which are actually
a class of combinatorial optimization problems. When the learning rules of neural
networks adjust the parameters of weights, gradient descent method is used to contin-
uously approach the optimal weights through iterations. Subsequently, stochastic
gradient descent and batch gradient descent methods are derived. All these methods
need to calculate the gradient of the loss function, which is generally used to require
the loss function to have continuity and differentiability. In combinatorial optimiza-
tion problems, the values of the independent variables are often discrete, which
makes the gradient-based methods no longer applicable. Gradient-based methods
are sometimes referred to as traditional optimization methods, while EC methods
such as GA are called modern optimization methods. This is because the gradient
descent method dates back to 1847 and was proposed by Cauchy.

The travelling salesman problem (TSP) is a typical combinatorial optimization
problem. The TSP problem is to find the shortest distance or optimal path to visit each
city once and return to the starting point, given that some cities and their distances
from each other are known. Suppose the number of cities in the TSP is N, then the
possible paths to visit each city are (N − 1)!, where the exclamation point denotes the
factorial. We know that the factorial function tends to infinity very fast, and finding
the optimal path from these possible paths is very difficult.

So far, the TSP has been derived in various forms, such as the multi-traveler
problem. The problem is to have multiple travelers traversing some cities together,
and the requirement is that all cities are passed through once and return to their

5.1 Overview of Evolutionary Computing 175

respective starting points to find the shortest path through all cities. In real life,
vehicle routing problem (VRP) is such a multi-traveler problem. However, the VRP
problem has more constraints, such as the demand of goods, the arrival time of
vehicles, the capacity of vehicles, and the distance traveled.

With the development of EC, researchers have created many function optimization
problems in order to test the performance of algorithms. These function optimization
problems are synthetic problems, which are generally arithmetic and composite of
basic elementary functions. For example, the Schwefer function is a composite of
N power and sine functions, typically N = 20, with the independent variable x
taking values in the range [− 500, 500]. The function is very deceptive in that it has
one global minimum and another local minimum at a more distant location. If an
optimization method is trapped in a local minimum, it is difficult for the method to
escape from the local region and thus cannot find the global minimum. The Schwefer
function is:

min f (x) = −
N∑

i=1
xi sin

(√|xi |
)

s.t. xi ∈ [−500, 500]
N = 20

(5.1)

As shown in Fig. 5.1, the Schwefer function has many minima, which is only the
case for N = 2. When the number of independent variables increases, finding the
global minima becomes more difficult.

For a better view of the minima, the front view of the Schwefel function is given
in Fig. 5.2. From the figure, it can be seen that the global minimum is located near x1
= 400, while the second minima point is located near x1 = − 300, which is far away
from each other, which also indicates that the Schwefel function is very deceptive.
If a certain EC method is able to find the global minimum of this function, it is
reasonable to assume that this method has good performance.

Fig. 5.1 Top view of the
Schwefer function

176 5 Evolutionary Computing

Fig. 5.2 Front view of the
Schwefer function

In recent years, researchers have created a number of synthetic functions as bench-
mark problems to test the performance of algorithms, which are not described here. It
should be noted that synthetic function problems and optimization problems in prac-
tice have their own advantages and disadvantages. The actual optimization problem
is closer to the actual situation and is easily recognized, but has more constraints
and is less uniform, open and scalable. On the other hand, the synthetic function has
uniformity, openness and scalability. It is easy to calculate the global minimum of a
synthetic function, which is convenient for evaluating the optimization effect of the
method, but it is different from the optimization problem in practice. The EC method
that performs well on the synthetic function may not necessarily achieve satisfactory
results on the optimization problem in practice.

5.2 Simple Genetic Algorithm

This section introduces the simple genetic algorithm step by step through an example
of an artificial synthesis function. The expression of the synthetic function used is:

min f (x1, x2) = x2 1 + x2 2
s.t. x1 ∈ {1, 2, 3, 4, 5, 6, 7}

x2 ∈ {1, 2, 3, 4, 5, 6, 7}
(5.2)

From Eq. (5.2), it can be seen that the global minimum of the objective function
is (x1, x2) = (1, 1) and is the only minimum. The steps required for the simple
genetic algorithm (SGA) to solve the model in (5.2) include: individual coding, initial
population generation, fitness calculation, selection operation, crossover operation,
and mutation operation.

5.2 Simple Genetic Algorithm 177

(1) Individual coding. In EC, each independent variable is assigned a possible value,
and then the combination of the values of these independent variables constitutes
a solution to the problem, called an individual. For example, (x1, x2) = (3, 4)
is a solution to the problem model (5.2), but it is not a minimal value; it is only
a candidate solution to the problem. The SGA does not directly use the values
in the range of values of the independent variables, but encodes them in binary
notation, thus mimicking the genes of the organism. Considering that the value
of the independent variable is a positive integer between 1 and 7, it is possible
to represent an independent variable in 3-bit binary. For example, the binary
symbol 001 represents a positive integer 1, the binary symbol 010 represents
a positive integer 2, and so on, 111 represents a positive integer 7. Here two
independent variables can be represented by 6-bit binary symbols.

(2) Initial population generation. A population is a group of individuals, and the
SGA uses a population to mimic a population of organisms. Suppose the size
of the population is 4, i.e., the population consists of 4 individuals. We can
use uniform distribution to randomly generate 0 s and 1 s as binary symbols
and form individuals. Suppose the populations produced are: 011101, 101011,
011100 and 111001.

(3) Fitness calculation. According to the law of survival of the fittest, there is compe-
tition between individuals, which means that the merits of individuals should
be compared. The fitness function can be used to measure an individual, i.e., to
assign a value to an individual, so that the fitness value of an individual can be
compared to determine the merit of an individual. In SGA, the fitness function is
a non-negative function and the maximum value of the function is sought as the
optimization objective, which requires a mapping from the objective function
to the fitness function. In (5.2), the objective function is to find the minimal
value point, and the range of the objective function is greater than 0. Thus, the
fitness function can take the inverse of the objective function. By calculation,
the fitness values of individuals in the population are shown in Table 5.1.

In Table 5.1, we give the number of each individual. For the individual numbered
1, the programs to calculate its fitness value are as follows:

x1 = bin2dec(’011’);
x2 = bin2dec(’101’);
fx = x1^2 + x2^2;
fitx = 1/fx;

Table 5.1 Fitness values of individuals in the population

Number Individual (x1, x2) f (x1, x2) Fitness

1 011101 (3, 5) 34 0.0294

2 101011 (5, 3) 34 0.0294

3 011100 (3, 4) 25 0.0400

4 111001 (7, 1) 50 0.0200

178 5 Evolutionary Computing

The rest of the individuals are calculated in a similar way and are not described
in detail here.

(4) Selection operation

The selection operation refers to the selection of individuals with high fitness from
the population for reproduction. In general, individuals with high fitness have a
higher probability of being selected; conversely, individuals with low fitness have a
lower probability of being selected. The SGA uses the roulette wheel method for the
selection operation as follows:

First, the relative fitness of each individual is calculated, which is the probability
of an individual being selected. That is the value of the fitness of an individual divided
by the sum of the fitness of all individuals. Take the above population as an example,
as shown in Table 5.2. The Matlab programs used are as follows:

fitx = [0.0294, 0.0294, 0.04, 0.02];
prob = fitx/sum(fitx);
probcum = cumsum(prob);

Next, the four individuals are lined up according to their numbers from smallest
to largest, and each selected probability value corresponds to an interval as shown
in the last column of Table 5.2, while the sum of all probability values is 1. We use
a uniform distribution to generate random numbers between 0 and 1, generally to
generate the same number of random numbers as the population size. Assume that
the four random numbers generated are: 0.2, 0.8, 0.4, and 0.7, as shown in Table 3.3.

In Table 5.3, the first random number is 0.2, and the probability of the first indi-
vidual being selected is 0.2475, so 0.2 falls in the region corresponding to the first
individual, i.e., the first individual is selected. The second random number is 0.8,
which falls in the area corresponding to the third individual, i.e., the third indi-
vidual is selected. Similarly, the third and fourth random numbers are selected for
the second and third individuals, respectively. It can be seen that the fourth individual
is not selected because its probability of being selected is too low.

(5) Crossover operation

The crossover operation mimics the genetic crossover of chromosomes in an indi-
vidual organism. The SGA uses a single-point crossover operator, which requires
two individuals to participate in the operation. For example, we pair the first and

Table 5.2 Calculating the probability of an individual being selected

Number Individual Fitness Probability Interval

1 011101 0.0294 0.2475 [0, 0.2475)

2 101011 0.0294 0.2475 [0.2475, 0.4949)

3 011100 0.0400 0.3367 [0.4949, 0.8316)

4 111001 0.0200 0.1684 [0.8316, 1]

5.2 Simple Genetic Algorithm 179

Table 5.3 Selection of individuals using random numbers

Number Probability Random number Count Selection result

1 0.2475 0.2 1 011101

2 0.2475 0.8 1 011100

3 0.3367 0.4 2 101011

4 0.1684 0.7 0 011100

second selected individuals and then randomly select the position for the crossover
operation. An individual has 6 binary bits, so there are 5 possible positions for the
crossover. We still use a uniform distribution to produce random numbers, assuming
the position of the crossover is 2. Swapping the binary bits behind the crossover
position gives us the individual after the crossover operation, as shown in Fig. 5.3.

We then pair the third and fourth selected individuals. By passing the random
number generator, we assume that the crossover point is 1, and we exchange the
binary bits following the crossover point. We obtain the two individuals after the
crossover operation. It can be seen that four individuals are obtained after the
crossover operation, which is the same size as the initial population.

Fig. 5.3 Single-point crossover operation

180 5 Evolutionary Computing

(6) Mutation operation

The mutation operation mimics the genetic mutation of chromosomes in an individual
organism. The SGA uses a basic bitwise mutation operator that mutates one of the
individual’s binary symbols, while the mutation positions are chosen randomly. For
example, the specific steps of the mutation operation are given in Table 5.4.

As can be seen in Table 5.4, the mutation operation first requires determining
the mutation point location, which is generally determined randomly using a certain
probability to determine the location to be mutated. Next, the original binary bit of
the mutation site is inverted to obtain the mutated result, which is a new individual.
The mutation operation eventually results in a new population.

(7) The new population replaces the old one, then return to step (3), and repeat steps
(3) to (6) until some termination condition is satisfied, then the SGA is finished

For the simple genetic algorithm, the last individual with the highest fitness in the
population is output as the optimal solution of the model (5.2). The flowchart of the
SGA is given in Fig. 5.4. After the previous step-by-step examples, the reader has a
preliminary understanding of the genetic algorithm. The SGA provides a prototype
and basis for solving optimization problems imitating biological evolution, and also
provides a framework for an EC approach. Based on this, researchers have analyzed
and discussed in depth the operation of each step of the genetic algorithm, and have
developed many proven improvement techniques.

It is important to note that the SGA contains hyperparameters. For example, in
step (2), the size of the initial population needs to be given in advance; in step (6),
the probability of the mutation operation also needs to be predefined. The size of the
population is generally denoted by “popsize” or Np. The probability of the mutation
operation is generally denoted by pm. In addition, in some improved crossover oper-
ations, which also contain hyperparameters, the probability during the crossover
operation is denoted by pc. These hyperparameters can affect the performance of
genetic algorithms, just as the learning rate can affect the performance of neural
networks. The study of genetic algorithm hyperparameters and, furthermore, the
study of EC methods hyperparameters is a hot topic of research. Without causing
confusion, such hyperparameters can be directly referred to as parameters.

Table 5.4 Basic bitwise mutation operation

Number Crossover result Basic bit position Mutation result

1 011100 3 010100

2 011101 5 011111

3 111100 2 101100

4 001011 6 001010

5.3 Genetic Algorithm for Travelling Salesman Problem 181

Fig. 5.4 Flowchart of the
simple genetic algorithm

5.3 Genetic Algorithm for Travelling Salesman Problem

The concept of the TSP was introduced earlier, which is to find a shortest path that
traverses all cities once and only once. An arrangement of all cities is a traversal path.
We can number the cities and represent them with independent variables, which take
different values to indicate different cities to be traversed, such that the independent
variables are discrete and positive integers. Suppose there are n cities, the cities are
numbered 1, 2, …, n.

182 5 Evolutionary Computing

The geographical location of cities is fixed, so the distance between cities is fixed.
We can assume that the travel cost between two cities is known and fixed. The
objective of the TSP is to find an ordered arrangement of visits to all cities such that
the travel cost is minimized. We can take the distance between cities can be directly
as the objective function, this is because the travel cost is generally proportional to
the distance. We need to build a list of city locations and distances between cities.

Let’s take the simplest TSP as an example so that we can concentrate on the
introduction of genetic algorithm. From a graph theory perspective, cities can be
viewed as nodes in a graph, and the paths between cities can be viewed as connecting
lines between nodes in the graph, called edges. If the direction of travel between cities
is not considered, then the connecting line between two cities is undirected. The TSP
then boils down to the problem of finding a Hamiltonian loop in an empowered
undirected graph such that the total weight is minimized.

The weighted undirected graph is denoted as G = (V, E), where V = {1, 2, …,
n} is the set of nodes and E is the union of edges. The distance between the nodes
is denoted as C. Then C is an n-th order symmetric matrix, and cij is denoted as a
component of C. The mathematical expression of the TSP is:

min f (x) =
n∑

i=1

n∑

j=1, j /=i
ci j xi j

s.t.

∑

j /=i
xi j = 1, i ∈ V

∑

i /= j
xi j = 1, j ∈ V

∑

i∈S

∑

j∈S
xi j ≥ 1, S ⊂ V , S /= φ

xi j ∈ {0, 1}, i, j ∈ V

(5.3)

From the above equation, it can be seen that f (x) is the objective function, which
is the traversal cost of a path. The first constraint indicates that each city must go
out once; similarly, the second constraint indicates that each city can only go in
once. Together, these two constraints mean that each city passes through once and
only once. The third constraint is the elimination of subloops in the path. The last
constraint is the range of values of the independent variable xij, which indicates
whether the route from city i to city j is selected. If it is necessary to go from city i
to city j, then xij = 1; otherwise xij = 0.

Suppose the traveler wants to visit some cities in the United States, which is also
an example that comes with Matlab. It should be noted that the map used here is an
abbreviated version and not a complete map of the United States, which can reduce
the difficulty of the problem.

Example 5.1 Suppose there are n = 40 cities selected within the map boundary. The
traveler needs to traverse all cities once and only once and return to the initial city
location. The geographic locations of these 40 cities are known and the distances

5.3 Genetic Algorithm for Travelling Salesman Problem 183

between the cities have been given. Please use the genetic algorithm solver to solve
the TSP and draw a graph to analyze the results.

Solution First, let’s configure the basic data for the TSP, the programs used are as
follows:

load(‘usborder.mat’,‘x’,‘y’,‘xx’,‘yy’);
cities = 40;
locations = zeros(cities,2);
rng(1);
n = 1;
while (n <= cities)

xp = rand*1.5;
yp = rand;
if inpolygon(xp,yp,xx,yy)

locations(n,1) = xp;
locations(n,2) = yp;
n = n + 1;

end
end
distances = zeros(cities);
for count1 = 1:cities

for count2 = 1:count1
x1 = locations(count1,1);
y1 = locations(count1,2);
x2 = locations(count2,1);
y2 = locations(count2,2);
distances(count1,count2) = sqrt((x1 − x2)^2 + (y1 − y2)^2);
distances(count2,count1) = distances(count1,count2);

end
end
figure1 = figure(1);
axes1 = axes(‘Parent’,figure1);
hold(axes1,‘on’);
box(axes1,‘on’);
grid(axes1,‘on’);
plot(x, y, ‘Color’,‘black’, ‘LineWidth’,2);
plot(locations(:,1),locations(:,2),‘bo’,‘LineWidth’,2,‘LineStyle’,‘none’);
hold(axes1,‘off’);
set(axes1,‘FontSize’,14);

The result of the above program after running is shown in Fig. 5.5, where the
circle symbols indicate the location of the city.

Next, let’s configure the operation steps of GA. According to the previous section,
we are going to encode the individuals, and here the integer encoding is used instead
of binary encoding, and the specific programs are as follows:

184 5 Evolutionary Computing

Fig. 5.5 City locations of
the TSP of Example 5.1

function pop = create_permutations(NVARS,FitnessFcn,options)
totalPopulationSize = sum(options.PopulationSize);
n = NVARS;
pop = cell(totalPopulationSize,1);
for i = 1:totalPopulationSize

pop{i} = randperm(n);
end

The number of cities is denoted as “NVARS”. The i-th individual is denoted as
pop{i}. An individual is an arrangement of integers from 1 to NVARS. It can be seen
that an individual is a traversal route of all cities. The crossover operation is realized
by:

function xoverKids = crossover_permutation(parents,options,NVARS, ...
FitnessFcn,thisScore,thisPopulation)

nKids = length(parents)/2;
xoverKids = cell(nKids,1);
index = 1;
for i = 1:nKids

parent = thisPopulation{parents(index)};
index = index + 2;
p1 = ceil((length(parent) − 1) * rand);
p2 = p1 + ceil((length(parent) − p1 − 1) * rand);
child = parent;
child(p1:p2) = fliplr(child(p1:p2));
xoverKids{i} = child;

end

From the above program, it can be seen that the crossover operation is not a
single-point crossover, but a special crossover operation. This operation randomly

5.3 Genetic Algorithm for Travelling Salesman Problem 185

selects two gene positions and inverts the values between the two gene positions.
The mutation operation is realized by:

function mutationChildren = mutate_permutation(parents ,options,NVARS, ...
FitnessFcn, state, thisScore,thisPopulation,mutationRate)

mutationChildren = cell(length(parents),1);
for i = 1:length(parents)

parent = thisPopulation{parents(i)};
p = ceil(length(parent) * rand(1,2));
child = parent;
child(p(1)) = parent(p(2));
child(p(2)) = parent(p(1));
mutationChildren{i} = child;

end

From the above program, it is clear that the mutation operation is not a basic
bitwise mutation; while it is a position swap method. The operation is to randomly
select two mutated genes and then swap the values of the two positions. Crossover
and mutation operations use “FitnessFcn” as the objective function as follows:

function scores = traveling_salesman_fitness(x,distances)
scores = zeros(size(x,1),1);
for j = 1:size(x,1)

p = x{j};
f = distances(p(end),p(1));
for i = 2:length(p)

f = f + distances(p(i − 1),p(i));
end
scores(j) = f;

end

From the above program, it can be seen that the objective function is to calculate
the total distance of the path.

Finally, we will configure the parameters of the GA and draw a graph of the
solution results. The programs for configuring GA are as follows:

FitnessFcn = @(x) traveling_salesman_fitness(x,distances);
my_plot = @(options,state,flag) traveling_salesman_plot(options, ...

state,flag,locations);
options = optimoptions(@ga, ‘PopulationType’, ‘custom’,
‘InitialPopulationRange’, ...

[1;cities]);
options = optimoptions(options,‘CreationFcn’,@create_permutations, ...

‘CrossoverFcn’,@crossover_permutation, ...
‘MutationFcn’,@mutate_permutation, ...
‘PlotFcn’, my_plot, ...
‘MaxGenerations’,500,‘PopulationSize’,50, ...

186 5 Evolutionary Computing

‘MaxStallGenerations’,200,‘UseVectorized’,true);
numberOfVariables = cities;
[x,fval,reason,output] = ga(FitnessFcn, ...

numberOfVariables,[],[],[],[],[],[],[],options);
To draw the search process of GA, the following program is used:
function state = traveling_salesman_plot(options,state,flag,locations)
persistent x y xx yy
if strcmpi(flag,‘init’)
load(‘usborder.mat’,‘x’,‘y’,‘xx’,‘yy’);

end
plot(x,y,‘Color’,‘black’, ‘LineWidth’,2);
axis([− 0.1 1.5 − 0.2 1.2]);
hold on;
box on;
grid on;
[unused,i] = min(state.Score);
genotype = state.Population{i};
plot(locations(:,1),locations(:,2),‘bo’,‘LineWidth’,2,‘LineStyle’,‘none’);
plot(locations(genotype,1),locations(genotype,2),’LineWidth’,2);
hold(‘off’);

The results of the above program after running are shown in Fig. 5.6. The total
length of the distance of the best path output by the genetic algorithm is about 5.05.
As can be seen in the figure, the line of the two cities directly to the top right of
the middle falls outside the map boundary. The path shown in the figure becomes
infeasible if the route that restricts the traveler to travel must be inside the map
boundary. This shows that the real-life traveler problem has more constraints, and
our case here is a simplified problem.

Fig. 5.6 Optimal route
found by genetic algorithm

5.3 Genetic Algorithm for Travelling Salesman Problem 187

The careful reader may notice that the GA presented in this section differs in
many ways from the simple genetic algorithm in the previous section, and also does
not present the selection operation and the calculation of the fitness function. The
selection operation is performed using the roulette wheel method implemented in
Matlab as follows:

function parents = selectionroulette(expectation,nParents,options)
expectation = expectation(:,1);
wheel = cumsum(expectation) / nParents;
parents = zeros(1,nParents);
for i = 1:nParents

r = rand;
for j = 1:length(wheel)

if(r < wheel(j))
parents(i) = j;
break;

end
end

end

In the above programs, the expectation refers to the fitness value of all individuals,
not the objective function value. The fitness function uses the objective function, but
the selection operation does not use the fitness function value directly; it must be
transformed to fit the selection operation. In Matlab, the default mapping method is
the sorting-based fitness scaling method with the following programs:

function expectation = fitscalingrank(scores,nParents)
scores = scores(:);
[~,i] = sort(scores);
expectation = zeros(size(scores));
expectation(i) = 1 ./ ((1:length(scores)) .^ 0.5);
expectation = nParents * expectation ./ sum(expectation);

In the above procedure, scores refer to the objective function value, while expec-
tation is the adapted value after conversion. The mapping method of converting the
objective function value to the fitness value can affect the performance of GA. When
using the scaling method, if the scaled values vary too much, individuals with high
scaling values are likely to reproduce faster than those with low scaling values, i.e.,
individuals with high scaling values have a higher probability of being selected,
which can limit the search range of GA. On the other hand, if the scaled value is too
small, the probability of all individuals being selected tends to be the same, which
reduces the convergence speed of GA and leads to a longer number of iterations and
computation time.

The ranking-based fitness scaling method scales each individual according to its
ranking in the population and does not directly use the original objective function
value for scaling. For example, for the minimization optimization problem, the rank
of the individual with the lowest objective function value is denoted as 1, the rank of

188 5 Evolutionary Computing

the individual with the second lowest objective function value is denoted as 2, and
so on. The rank of the individual with the largest objective function value is denoted
as “popsize”. The scaled fitness value for the individual whose rank is i is:

f i t(i) =
1 √
i

× popsi ze (5.4)

where fit(i) denotes the fitness value of the individual ranked as i. From (5.4), it
can be seen that the fitness value is a multiple of 1/

√
i . The ranking-based fitness

scaling method can avoid the uneven dispersion of the objective function values. The
individual ranked 1 has the largest scaled multiplier, while the remaining individuals
have the same scaling multiplier.

Besides the above operation methods, we can find other selection operations,
crossover operations and mutation operations. They are not described here.

5.4 Ant Colony Optimization Algorithm

EC is a collective name for a series of methods that mimic the theory of biological
evolution to solve optimization problems. For example, GA mimic operations such
as crossover and mutation of an organism’s genes. A set of genes can form chro-
mosomes, and a certain number of chromosomes make up a population, hence,
genetic algorithms are simulations of the microcosm of biological evolutionary
theory. Around the 1990s, researchers kept proposing new methods to mimic biolog-
ical evolutionary theory, called Swarm Intelligence (SI), which mimics a population
of organisms, e.g., ant swarm, bee swarm, bird swarm, etc. In contrast to GA, the
SI approach is a simulation of the macrocosm of the organism. There is no unified
criterion whether SI methods belong to the category of EC. We do not discuss the
affiliation between them here. For simplicity, we group SI methods into the chapter
of EC and introduce SI methods starting from this section.

The ant colony optimization (ACO) algorithm was proposed by Dorigo in his
Ph.D. thesis in 1991 [3]. Ant Colony Optimization is also known as ant colony
algorithm or ant algorithm. The starting point of ACO is that a colony of ants with
slight intelligence exhibits intelligent behavior during foraging by cooperating and
communicating with each other, and this phenomenon provides new insights for
solving optimization problems.

The ACO algorithm was inspired by the double-bridge experiment by Deneubourg
and his colleagues [4]. The double-bridge experiment consists of a colony of ants,
two bridges, and a food source, i.e., the ants and the food source are located at
opposite ends, with two bridges in parallel in the middle. If the two bridges were of
the same length, i.e., the distance from the ant nest to the food source was the same,
the double bridge experiment revealed that the ants would gather on one bridge after
a period of time. If one bridge was shorter than the other, i.e., the lengths of the
two bridges were significantly different, the experiment found that the ants would

5.4 Ant Colony Optimization Algorithm 189

congregate on the shorter bridge after a period of time. The double-bridge experiment
showed that ants make random choices when they encounter different paths on their
way to find food sources. The ants leave pheromones on the path as they move,
and the pheromones change the information in the environment, allowing individual
ants to communicate with each other. Initially, ants make random choices, but as
pheromones accumulate and change, ants adjust the probability of choice according
to the size of the pheromone. In the experiment, it was shown that the ants chose the
bridge with the shorter distance.

The ACO algorithm was first used to solve TSP. This section will also use the
TSP from the previous section to introduce the ACO algorithm.

Example 5.2 Suppose there are n = 40 cities within the selected map boundary, the
traveler needs to traverse all cities once and only once and return to the initial city
location. The geographic locations of these 40 cities are known and the distances
between the cities are given. Write a program for the ACO algorithm to solve the
problem and draw a graph to analyze the results.

Solution This example is the same as the previous section, so the background of the
problem is not presented. The programs are as follows:

popsize = 50;
Alpha = 1;
Beta = 5;
Rho = 0.1;
NC_max = 200;
Q = 100;
D = distances;
for i = 1:cities

D(i, i) = eps;
end
Eta = 1./D;
Tau = ones(cities,cities);
Tabu = zeros(popsize,cities);
R_best = zeros(NC_max,cities);
L_best = inf.*ones(NC_max,1);
L_ave = zeros(NC_max,1);
NC = 1;
while NC <= NC_max

Randpos = [];
for i = 1:(ceil(popsize/cities))

Randpos = [Randpos,randperm(cities)];
end
Tabu(:,1) = (Randpos(1,1:popsize))’;
for j = 2:cities

for i = 1:popsize
visited = Tabu(i,1:(j − 1));

190 5 Evolutionary Computing

J = zeros(1,(cities − j + 1));
P = J;
Jc = 1;
for k = 1:cities

if length(find(visited == k)) == 0
J(Jc) = k;
Jc = Jc + 1;

end
end
for k = 1:length(J)
P(k) = (Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);

end
P = P/(sum(P));
Pcum = cumsum(P);
Select = find(Pcum >= rand);
to_visit = J(Select(1));
Tabu(i,j) = to_visit;

end
end
if NC >= 2

Tabu(1,:) = R_best(NC − 1,:);
end
L = zeros(popsize,1);
for i = 1:popsize

R = Tabu(i,:);
for j = 1:(cities − 1)
L(i) = L(i) + D(R(j),R(j + 1));

end
L(i) = L(i)+D(R(1),R(cities));

end
L_best(NC) = min(L);
Pos = find(L == L_best(NC));
R_best(NC,:) = Tabu(pos(1),:);
L_ave(NC) = mean(L);
NC = NC + 1;
Delta_Tau = zeros(cities,cities);
for i = 1:popsize

for j = 1:(cities − 1)
Delta_Tau(Tabu(i,j),Tabu(i,j + 1)) = Delta_Tau(Tabu(i,j),Tabu(i,j + 1))

+ Q/L(i);
end
Delta_Tau(Tabu(i,cities),Tabu(i,1)) = Delta_Tau(Tabu(i,cities),Tabu(i,1))

+ Q/L(i);
end
Tau = (1-Rho).*Tau+Delta_Tau;

5.4 Ant Colony Optimization Algorithm 191

Tabu = zeros(popsize,cities);
end
Pos = find(L_best == min(L_best));
Shortest_Route = R_best(Pos(1),:);
Shortest_Length = L_best(Pos(1));
figure1 = figure(2);
axes1 = axes(’Parent’, figure1);
hold(axes1,’on’);
box(axes1,’on’);
grid(axes1,’on’);
plot(x, y, ’Color’,’black’, ’LineWidth’,2);
plot(locations(:,1),locations(:,2),...

’bo’,’LineWidth’,2,’LineStyle’,’none’);
plot(locations(Shortest_Route,1), ...

locations(Shortest_Route,2),’LineWidth’,2);
plot([locations(Shortest_Route(1),1), ...

locations(Shortest_Route(end),1)], ...
[locations(Shortest_Route(1),2), ...
locations(Shortest_Route(end),2)],’LineWidth’,2);

hold(axes1,’off’);
set(axes1,’FontSize’,14);
figure1 = figure(3);
axes1 = axes(’Parent’, figure1);
hold(axes1,’on’);
box(axes1,’on’);
grid(axes1,’on’);
plot(L_best, ’-’, ’LineWidth’,2);
plot(L_ave, ’:’, ’LineWidth’,2);
legend(’shortest distance’,’average distance’);
xlabel(’number of iterations’);
ylabel(’objective function’);
hold off;

After running the above program, we obtain two figures as shown in Figs. 5.7
and 5.8. In Fig. 5.7, it gives the optimal travel route found by the ACO algorithm.
Figure 5.8 gives the convergence process of the ACO algorithm, including the shortest
path distance and the average path distance for each generation during the iteration.

The total distance length of the optimal route output by the ACO algorithm is about
5.13, which is greater than the result given by the GA. This indicates that the optimal
path given by the ACO is slightly worse than the optimal path given by the GA. Note
that the simulation results in this section alone do not allow us to conclude that the
performance of the ACO is inferior to that of the GA. This is because the comparison
of two algorithms requires certain criteria and cannot be concluded based on a single
simulation result. The comparison criteria for EC methods are more complex and
will not be described in detail here.

192 5 Evolutionary Computing

Fig. 5.7 Optimal route found by the ACO algorithm

Fig. 5.8 Convergence process of the ACO algorithm

From the Example 5.2, we have a preliminary understanding of the ACO algo-
rithm. The flowchart of the ACO algorithm is given in Fig. 5.9. From the figure, we
can see that the first step of the ACO algorithm is to configure the initial parameters
for ACO. The initial operating environment include the ant population size, which is
recorded as “popsize”. The search space of the TSP is discrete, so the movement of
ants from one city to the next is the process of state transfer, which is the second step
of the algorithm. After the ants move, the pheromone needs to be updated, which
is the third step of the algorithm. In the fourth step, the termination condition is

5.4 Ant Colony Optimization Algorithm 193

Fig. 5.9 Flowchart of the
ACO algorithm

judged, and if not, the second and third steps are repeatedly executed; otherwise, the
algorithm is terminated and the optimal solution is output. It can be seen that the
second and third steps are the core part of the algorithm.

In the second step, the state transfer operation of ants is based on a certain prob-
ability to choose the next city. In making the choice, the ant can only go to cities
that it has not visited, thus satisfying that each city is visited. The ant has to try to
choose the route with high pheromone concentration and thus walk according to the
residual pheromone on the route. The ant also has to try to choose the more favorable
city within its visibility range, i.e., each ant needs to know its visibility to locally
determine a favorable walking route. As can be seen, state transfer of ants requires a
certain probability of making a choice. The mathematical expression for the transfer
probability is:

pk i j (t) =
τ α
i j (t)η β

i j (t)
∑

s ∈ allowedk
τ α
is(t)η β

is(t)
, j ∈ allowedk (5.5)

where k denotes the k-th ant, i and j denote cities, τi j denotes the pheromone on the
route from city i to city j, ηi j denotes the heuristic information from city i to city j, α
denotes the importance of the pheromone, β denotes the importance of the heuristic

194 5 Evolutionary Computing

information, and allowedk denotes the set of cities that the k-th ant is allowed to
visit. Equation (5.5) shows that the state transfer of the ant relies on the pheromone
of the route and also relies on the number of cities it can see.

There are also some tricks to update the pheromone. The ants update the
pheromone after the end of the trip. The original pheromone will volatilize after
each iteration. Each ant will make a recommendation for its walking route. This
recommendation is based on the consumption cost of the ant during the whole trip.
The mathematical expression of the pheromone update is:

τi j (t + 1) = (1 − ρ)τi j (t) +
popsi ze∑

k=1

Δτ k i j (5.6)

where ρ is the pheromone volatility parameter between 0 and 1, Δτ k i j indicating
the recommendation of all ants for the route from city i to city j. The mathematical
expression of Δτ k i j is:

Δτ k i j =
{
Q/Lk, i j ∈ lk
0, i j /∈ lk

(5.7)

where Q is a constant, Lk denotes the length of the kth ant’s walking path, and lk
denotes the k-th ant’s walking path. From (5.6), it can be seen that the shorter the
length of the path an ant walks, the higher the pheromone it leaves on the route
through the city. Thus, more ants will choose the route with the shorter path in the
subsequent iterations.

This section presents only the simplest version of the ACO algorithm. It performs
poorly when faced with larger traveler problems, thus researchers have proposed
a number of improvement techniques to improve the performance of the ACO
algorithm.

5.5 Particle Swarm Optimization Algorithm

The particle swarm optimization (PSO) algorithm was proposed by Eberhart and
Kennedy in 1995 [5]. The PSO algorithm aims to solve optimization problems by
using inter-individual collaboration and information sharing. The PSO algorithm was
inspired by the behavior of a flock of birds during travel. The researchers found that
the flock of birds would suddenly change direction during travel and that the changes
were synchronized in a group. Moreover, the birds would often gather together and
disperse at the same time when there was a situation. Thus, the researchers speculated
that there was some underlying rule at work that made the flock of birds exhibit this
behavior. Specifically, the rules of flock behavior are:

5.5 Particle Swarm Optimization Algorithm 195

(1) Birds are to avoid collisions with their neighbors;
(2) The bird should remain similar in speed and consistent in-flight attitude to the

birds around it;
(3) The birds should move closer to the center of the group they identify and not

too far away from the center.

The PSO algorithm is a method of group collaboration designed formally by
simulating the predatory behavior of a flock of birds. It should be noted that although
the method was proposed by researchers observing the behavior of flocks of birds,
the name of the method uses particle swarms and does not use flocks of birds. Particle
flocks can be seen as a more generalized concept, where the particles can be birds or
other species.

The flow chart of the PSO algorithm is shown in Fig. 5.10. As shown in the
figure, the PSO algorithm first needs to initialize the parameters such as position and
velocity of the particles. Second, there should be a fitness function to calculate the
fitness of each particle. Each particle is able to search for what it thinks is the global
optimum and the local optimum particle. Then, each particle updates its own velocity
and position. When all particles complete the above steps, the particle swarm has
completed a generation of search and foraging behavior. These steps continue until
the algorithm terminates when a certain condition is met, and finally the optimal
solution is output.

GA and ACO algorithms were first used to solve the TSP. TSP is an optimization
problem in which the independent variables are discrete. Unlike the GA and ACO
algorithms, the PSO algorithm was first used to solve optimization problems in which
the independent variables are continuous. In the following, we describe the details
of the PSO algorithm.

Step (1) Initialize the velocity and position of the particles. Initially, the position
of each particle in the particle swarm is randomly placed in the search space. The
moving velocity of each particle is generally set to the distance from the particle’s
location to the farthest boundary. The velocity is set so that the particle can search
the entire search space. This provides a guarantee for finding the global minimum.
Suppose the size of the particle swarm is “popsize”. The position of particle i is
denoted as Xi, and the moving velocity of particle i is denoted as Vi.

Step (2) Calculate the fitness of the particles. In the PSO algorithm, the objective
function of the optimization problem can be used as the fitness function. With the
fitness function, the fitness of each particle can be calculated, denoted as f(Xi).

Step (3) Find local best and global best particles. Each particle searches for its
own perceived local best and global best particles. For the minimization problem,
the global best particle is the location with the smallest fitness. To find the local best
particle, it is necessary to determine for each particle the range in which it can be
seen. For example, each particle is able to observe the positions of k particles around
it, i.e., the size of the local neighborhood is k. Euclidean distance is generally used to
measure the proximity between particles so that the particles contained in the local
neighborhood can be determined. The local best position of particle i is denoted as
pbesti, and the global optimal position of all particles is denoted as gbest.

196 5 Evolutionary Computing

Fig. 5.10 Flow chart of the
PSO algorithm

Step (4) Update the velocity of particles. Each particle determines the velocity
of the movement based on itself and the surrounding particles with the following
expression:

Vi (t + 1) = Vi (t) + c1r1(pbesti − Xi (t)) + c2r2(gbest − Xi (t)) (5.8)

where t denotes the number of iterations, c1 and c2 are learning factors, also known
as acceleration factors. r1 and r2 are random numbers between 0 and 1, which are
randomly generated at each iteration and can adjust the particle’s moving speed. In
addition, after the particles calculate their velocities based on (5.8), it is possible that
they become particularly large. It is necessary to set the velocity range of the particle
flight, denoted as [− Vmax, Vmax].

Step (5) Update the position of particles. Each particle is adjusted according to
its own position and moving velocity. Its mathematical expression is:

5.5 Particle Swarm Optimization Algorithm 197

Xi (t + 1) = Xi (t) + Vi (t + 1) (5.9)

Step (6) Determine whether to terminate the search, if the termination condition
is not met, return to Step (2) to continue the execution; otherwise, go to Step (7).

Step (7) Output the global best solution gbest.
The basic steps of the PSO algorithm are introduced. It is easy to see that the most

critical parts of the method are Steps (3) and (4). In particular, Step (4) determines
the next position of the particle. The above presented is only the original version of
the PSO algorithm, which sometimes does not work well. The PSO algorithm with
inertia factor was proposed by Yuhui Shi et al. in 1998. The velocity expression used
is:

Vi (t + 1) = ωVi (t) + c1r1(pbesti − Xi (t)) + c2r2(gbest − Xi (t)) (5.10)

which ω is called the inertia factor and generally takes a non-negative value. As can
be seen from (5.10), a larger ω value makes the particle’s velocity large and can
search a larger area; conversely, a smaller ω value makes the particle’s velocity small
and more suitable for local search. The linear decreasing strategy of the inertia factor
is a frequently used technique. Its expression is:

ω(t) = ωmin + (ωmax − ωmin)
(tmax − t)

tmax
(5.11)

where ωmin and ωmax are the minimum and maximum values of the inertia factor, t
is the current generation, and tmax is the maximum number of iterations of the PSO
algorithm.

Due to the introduction of the inertia factor, the PSO algorithm using (5.10) and
(5.11) has achieved better results and gained recognition to the extent that (5.10) and
(5.11) are often used as the standard PSO algorithm.

Example 5.3 The sphere function is a single-peaked function, also known as the
DeJong function, whose expression is:

min f (x1, x2) = x2 1 + x2 2
s.t. x1 ∈ [−100, 100]

x2 ∈ [−100, 100]
(5.12)

There are only two independent variables in the above equation. The spherical
function is scalable and the number of independent variables can be adjusted as
needed. Please use the PSO algorithm to solve the problem and draw a graph to
analyze the results.

Solution In this example, we solve the problem by two ways. One is using toolbox in
Matlab; the other is write program by ourselves to solve the problem. The independent
variables of this example are continuous. The objective function can be used as the

198 5 Evolutionary Computing

fitness function. It is easy to see that (0, 0) is the minimal value point of the sphere
function with the following programs:

function fx = functionSphere(x)
fx = sum(x.^2, 2);

In the above program, x can be a single particle, or be a swarm of particles. Each
row of x can be a feasible solution of sphere function. We can use the toolbox of
Matlab to solve the problem, and the programs are as follows:

rng(1);
fun = @functionSphere;
nvars = 2;
lb = [− 100, − 100];
ub = [100, 100];
options = optimoptions(’particleswarm’,’SwarmSize’,50);
[x, fval, exitflag, output] = particleswarm(fun, nvars, lb, ub, options);

After running the above program, we obtain the best solution of the PSO algo-
rithm, which is approximately equal to (0, 0). The objective function value is also
approximately equal to 0.

Except using the toolbox of Matlab to solve the problem, we can also write our
own programs for the PSO algorithm:

function [xbest, fbest, cvgef] = PSO(fhd, xdim, xlb, xub, maxFEs)
popsize = 40;
omiga = 1/(2*log(2)) * ones(1, popsize);
maxomiga = 0.9;
minomiga = 0.4;
c1 = 0.5 + log(2);
K = 3;
popu = zeros(popsize, xdim); fpopu = zeros(popsize, 1);
tfun = 0;
for inp = 1:popsize

popu(inp, :) = xlb + (xub - xlb).*rand(1, xdim);
t1 = tic;
fpopu(inp, 1) = feval(fhd, popu(inp, :));
tfun = tfun + toc(t1);

end
xbestidx = find(fpopu == min(fpopu));
if ~isempty(xbestidx)

xbestidx = xbestidx(end);
fbest = fpopu(xbestidx);
xbest = popu(xbestidx, :);

else
fbest = inf;

5.5 Particle Swarm Optimization Algorithm 199

xbest = inf * ones(1, xdim);
end
vmin = − 2*(xub-xlb); vmax = 2*(xub-xlb);
vel = repmat(vmin, popsize, 1) + rand(popsize, xdim).*(repmat(vmax-vmin,
popsize, 1));
pbest = popu; fpbest = fpopu;
neighbor = neighborSelection(popu, fpopu, K);
cvgef = nan * ones(1, maxFEs);
ieval = popsize;
igen = 1; imprFlag = 1;
idxf1 = 1; idxf2 = ieval; idxstat = 1; isidxstatupdated = − 1;
while ieval < maxFEs

cvgef(idxf1:idxf2) = fbest;
isidxstatupdated = − 1;
if imprFlag < 0

neighbor = neighborSelection(popu, fpopu, K);
imprFlag = 1;

end
[nbest, fnbest] = update_nbest(pbest, fpbest, neighbor);
popunew = nan * ones(popsize, xdim); fpopunew = nan * ones(popsize, 1);
velnew = nan * ones(popsize, xdim);

omiga = inertiaWeightAdjustment(omiga, minomiga, maxomiga, ieval,
maxFEs);

for inp = 1:popsize
veltmp = c1 * rand(1,xdim).*(pbest(inp, :) - popu(inp, :)) + …

c1 * rand(1,xdim).*(nbest(inp, :) - popu(inp, :));
velnew(inp, :) = omiga(1,inp) * vel(inp, :) + veltmp;
for ix = 1:xdim

if velnew(inp, ix) < vmin(1, ix)
velnew(inp, ix) = vmin(1, ix) + rand(1) * (vmax(1,ix)-vmin(1,ix));
elseif velnew(inp, ix) > vmax(1, ix)
velnew(inp, ix) = vmax(1, ix) + rand(1) * (vmax(1,ix)-vmin(1,ix));
end

end
popunew(inp, :) = popu(inp, :) + velnew(inp, :);
for ix = 1:xdim

if popunew(inp, ix) < xlb(ix)
popunew(inp, ix) = xlb(ix) + rand(1)*(xub(ix)-xlb(ix));

elseif popunew(inp, ix) > xub(ix)
popunew(inp, ix) = xub(ix) + rand(1)*(xub(ix)-xlb(ix));

end
end

end % for inp
t1 = tic;
for inp = 1:popsize

200 5 Evolutionary Computing

fpopunew(inp, 1) = feval(fhd, popunew(inp, :));
ieval = ieval + 1;

end
tfun = tfun + toc(t1);
popu = popunew; fpopu = fpopunew;
vel = velnew;
[pbest, fpbest] = update_pbest(popu, fpopu, pbest, fpbest);
igen = igen + 1;
[fbesttmp, idx] = min(fpopu);
if fbesttmp(1) < fbest

fbest = fbesttmp(1);
xbest = popu(idx(1), :);
imprFlag = 1;

else
imprFlag = − 1;

end
idxf1 = idxf2 + 1;
idxf2 = ieval;
idxstat = idxstat + 1;
isidxstatupdated = 1;

end
if isidxstatupdated < 0

idxf1 = idxf2 + 1;
idxf2 = maxFEs;
idxstat = idxstat + 1;

end
if idxf2 > maxFEs

idxf2 = maxFEs;
end
cvgef(idxf1:idxf2) = fbest;
end

The above program is the main program of the PSO algorithm. When we compute
the local best and global best particles, we use the following programs:

function [nbest, fnbest] = update_nbest(popu, fpopu, neighbor)
[np, xdim] = size(popu);
nbest = nan * ones(np, xdim); fnbest = nan * ones(np, 1);
for irow = 1:np

nidx = neighbor(irow, :) > 0.5;
ftmp = fpopu(nidx); xtmp = popu(nidx, :);
[fnbest(irow), bestidx] = min(ftmp);
nbest(irow, :) = xtmp(bestidx, :);

end
end

5.5 Particle Swarm Optimization Algorithm 201

When calculating local optimum, the local neighborhood is computed by the
following programs:

function neighbor = neighborSelection(popu, fpopu, K)
np = size(popu, 1);
neighbor = eye(np,np);
for irow = 1:np
nidx = randperm(np);
nidx(nidx == irow) = [];
neighbor(irow, nidx(1:K)) = 1;

end
end

After movement, each particle has to record its local best. The programs are:

function [pbest, fpbest] = update_pbest(popu, fpopu, pbest, fpbest)
for irow = 1:length(fpbest)

if fpopu(irow) < fpbest(irow)
pbest(irow, :) = popu(irow, :);
fpbest(irow) = fpopu(irow);

end
end
end

The linear decreasing strategy of the inertia factor is realized by:

function omiga = inertiaWeightAdjustment(omiga, minomiga, maxomiga, ieval,
maxFEs)
for irow = 1:length(omiga)

omiga(irow) = ((maxFEs − ieval) * (maxomiga - minomiga)) / (maxFEs −
1) + minomiga;
end
end

If we want to use a custom PSO algorithm to solve the sphere function problem,
the programs are as follows:

rng(1);
fun = @functionSphere;
nvars = 2;
lb = [− 100, − 100];
ub = [100, 100];
maxFEs = 3000;
[xbest, fbest, cvgef] = PSO(fun, nvars, lb, ub, maxFEs);

After running the above program, we see that the optimal solution output by the
algorithm is approximately equal to (0, 0), and the corresponding objective function
value is close to 0. This is the same result obtained using the toolbox in Matlab.

202 5 Evolutionary Computing

Fig. 5.11 Convergence curve of the PSO algorithm on Example 5.3

The advantage of using a custom program is the manipulability. For example, the
“cvgef” variable returned in the above custom program, which records the optimal
fitness value of the algorithm for each generation, can be used to plot the convergence
curve of the algorithm, as shown in Fig. 5.11. In this figure, where the vertical axis
is on a logarithmic scale, making it easier to observe the convergence process of the
algorithm.

The programs for Fig. 5.11 are as follows:

figure1 = figure(1);
axes1 = axes(’Parent’,figure1);
box(axes1,’on’);
grid(axes1,’on’);
plot(1:maxFEs, cvgef, ’LineWidth’,2);
set(axes1,’FontSize’,14,’YMinorTick’,’on’,’YScale’,’log’);
set(axes1,’FontSize’,14);
xlabel(’number of iterations’);
ylabel(’objective function’);

As shown in Fig. 5.11, the PSO algorithm finds the optimal fitness value is about
10–9 after 3000 iterations. We know that the global minimum of the sphere function
is 0, and the optimal value of the PSO algorithm output is about 10–9. The difference
between the two is less than 10–6. When using computer simulation, since the floating-
point accuracy is limited, we generally consider that less than 10–6 is equivalent to
the algorithm finding the global minimum.

Although the PSO algorithm was proposed for continuous optimization problems,
it has been modified by researchers to handle discrete optimization problems as well.
For example, we can use the PSO algorithm to solve the TSP problem.

5.5 Particle Swarm Optimization Algorithm 203

Example 5.4 Suppose there are n = 40 cities within the map boundary, the traveler
needs to traverse all cities once and only once and return to the initial city location.
The geographic locations of these 40 cities are known and the distances between the
cities are given. Write a program for the PSO algorithm to solve the TSP problem,
and draw a graph to analyze the results.

Solution This example has been used earlier, so the background of the problem will
not be introduced. The specific programs of the PSO algorithm are as follows:

load(’usborder.mat’,’x’,’y’,’xx’,’yy’);
cities = 40;
locations = zeros(cities,2);
rng(1);
n = 1;
while (n <= cities)

xp = rand*1.5;
yp = rand;
if inpolygon(xp,yp,xx,yy)

locations(n,1) = xp;
locations(n,2) = yp;
n = n+1;

end
end
distances = zeros(cities);
for count1 = 1:cities

for count2 = 1:count1
x1 = locations(count1,1);
y1 = locations(count1,2);
x2 = locations(count2,1);
y2 = locations(count2,2);
distances(count1,count2) = sqrt((x1 − x2)^2+(y1 − y2)^2);
distances(count2,count1) = distances(count1,count2);

end
end
popsize = 50;
IterNum = 200;
c1 = 0.5;
c2 = 0.1;
omiga = 1/(2*log(2)) * ones(1, popsize);
popu = zeros(popsize,cities);
v = zeros(popsize,cities);
iter = 1;
fpopu = zeros(popsize,1);
pbest = zeros(popsize,cities);
pbest_fit = zeros(popsize,1);

204 5 Evolutionary Computing

gbest = zeros(IterNum,cities);
gbest_fit = zeros(popsize,1);
avgl = zeros(IterNum,1);
maxomiga = 0.9;
minomiga = 0.4;
for i = 1:popsize

popu(i,:) = randperm(cities);
v(i,:) = randperm(cities);

end
for i = 1:popsize

for j = 1:cities-1
fpopu(i) = fpopu(i) + distances(popu(i,j),popu(i,j+1));

end
fpopu(i) = fpopu(i) + distances(popu(i,end),popu(i,1));

end
pbest_fit = fpopu;
pbest = popu;
[gbest_fit(1),min_index] = min(fpopu);
gbest(1,:) = popu(min_index);
avgl(1) = mean(fpopu);
while iter <IterNum

iter = iter +1;
omiga = maxomiga-(maxomiga-minomiga)*(iter/IterNum)^2;
change1 = positionChange(pbest,popu);
change1 = changeVelocity(c1,change1);
change2 = positionChange(repmat(gbest(iter-1,:),popsize,1),popu);
change2 = changeVelocity(c2,change2);
v = originalVelocity(omiga, v);
for i = 1:popsize

for j = 1:cities
if change1(i,j) ~= 0

v(i,j) = change1(i,j);
end
if change2(i,j) ~= 0

v(i,j) = change2(i,j);
end

end
end
popu = updatePosition(popu,v);
fpopu = zeros(popsize,1);
for i = 1:popsize

for j = 1:cities-1
fpopu(i) = fpopu(i) + distances(popu(i,j),popu(i,j+1));

end
fpopu(i) = fpopu(i) + distances(popu(i,end),popu(i,1));

5.5 Particle Swarm Optimization Algorithm 205

end
for i = 1:popsize

if fpopu(i) < pbest_fit(i)
pbest_fit(i) = fpopu(i);
pbest(i,:) = popu(i,:);

end
end
[minvalue,min_index] = min(fpopu);
if minvalue <gbest_fit(iter-1)

gbest_fit(iter) = minvalue;
gbest(iter,:) = popu(min_index,:);

else
gbest_fit(iter) = gbest_fit(iter-1);

gbest(iter,:) = gbest(iter-1,:);
end
avgl(iter) = mean(fpopu);

end
[bestRouteLen,index] = min(gbest_fit);
bestRoute = gbest(index,:);
figure1 = figure1 (2);
axes1 = axes(’Parent’,figure1);
hold(axes1,’on’);
box(axes1,’on’);
grid(axes1,’on’);
plot(x, y, ’Color’,’black’, ’LineWidth’,2);
plot(locations(:,1),locations(:,2),...

’bo’,’LineWidth’,2,’LineStyle’,’none’);
plot(locations(bestRoute,1), ...

locations(bestRoute,2),’LineWidth’,2);
plot([locations(bestRoute(1),1), ...

locations(bestRoute(end),1)], ...
[locations(bestRoute(1),2), ...
locations(bestRoute(end),2)],’LineWidth’,2);

hold(axes1,’off’);
set(axes1,’FontSize’,14);
figure1 = figure1 (3);
axes1 = axes(’Parent’,figure1);
hold(axes1,’on’);
box(axes1,’on’);
grid(axes1,’on’);
plot(gbest_fit’, ’-’, ’LineWidth’,2);
plot(avgl’, ’:’, ’LineWidth’,2);
legend(’shortest distance’,’average distance’);
xlabel(’number of iterations’);
ylabel(’objective function’);
hold off;

206 5 Evolutionary Computing

Fig. 5.12 Optimal route
found the PSO algorithm for
the TSP

After the above program is run, we obtain the optimal value and the optimal
solution found by the PSO algorithm, as shown in Fig. 5.12.

It can be seen from Fig. 5.12 that the optimal route output by the PSO algorithm
is not good. The route in the figure has large straight-line segments. In fact, the total
distance length of the route output by the PSO is about 7.43, which is larger than the
results given by the GA and the ACO algorithms.

The convergence curve of the PSO algorithm is given in Fig. 5.13. The solid line
in the figure indicates the shortest distance of the particle swarm at each generation,
while the dashed line indicates the average distance of the particle swarm at each
generation. It can be seen that after 200 generations, the shortest distance gradually
decreases and level off, indicating that the PSO algorithm is close to convergence.
However, compared with the GA and ACO algorithms, the output of the PSO algo-
rithm is not good, which to a certain extent indicates that the PSO algorithm is
not very suitable for discrete optimization problems. The performance of the PSO
algorithm needs to be further improved.

5.6 Differential Evolution Algorithm

This section introduces the differential evolution (DE) algorithm and summarizes
the research related to the DE algorithm.

The DE algorithm is derived from the genetic annealing algorithm proposed and
published by Storn and Price in 1997 [6]. The DE algorithm is simple to implement
programmatically, easy to use, and fast to compute. The conventional DE algorithm
can be implemented in Matlab with less than 70 lines of programming code. The DE
algorithm was proposed in the mid-1990s and has been extensively studied in the
last few decades. The DE algorithm paradigm has also proven to be very powerful.

5.6 Differential Evolution Algorithm 207

Fig. 5.13 Convergence curve of the PSO algorithm for solving the TSP

Next, let us describe the DE algorithm in detail. In general, the DE algo-
rithm consists of four steps: initialization operation, mutation operation, crossover
operation and survivor selection operation, as shown in Fig. 5.14.

The initialization operation is to randomly generate a population of Np individuals,
where Np is a user-predefined population size. Each component of an individual is
created randomly between the lower and upper bounds of the search space. We
initialize the overall population and denote as G1 = {x1,1, x2,1,.., xNp,1}, where
the first subscript i denotes the i-th individual in the population, while the second
subscript 1 denotes the population of the first generation. Mathematically, a single
xi,1 is created in the following way:

x j,i,1 = x j,min +
(
x j,max − x j,min

) × rand(0, 1), j = 1, 2, . . . , D (5.13)

where rand(0, 1) generates a random number that is uniformly distributed between
0 and 1.

After initialization operation, mutation, crossover and survivor selection opera-
tions are performed sequentially until the algorithm terminates. The current gener-
ation is denoted as Gg. In the mutation operation, a population consisting of Np
mutation vectors, denoted as V = {v1,g, v2,g, …, vNp,g}, will be created. To generate
the vector vi,g after the mutation operation, three mutually distinct individuals are
selected from Gg. Assume that the selected individuals are denoted as xr1,g, xr2,g and
xr3,g, where r1 /= r2 /= r3 /= i . Mathematically, vi,g is generated as follows:

208 5 Evolutionary Computing

Fig. 5.14 Flow chart of the
DE algorithm

v j,i,g = x j,r1,g + F × (
x j,r2,g − x j,r3,g

)
, j = 1, 2, . . . , D (5.14)

or expressed in vector form as:

vi,g = xr1,g + F × (
xr2,g − xr3,g

)
(5.15)

where F is called the scale factor and it is a user-predefined parameter. xi,g , xr1,g
and

(
xr2,g − xr3,g

)
are called the target vector, the base vector, and the differential

vector, respectively. A common way to reset an out-of-bounds component vj,i,g is to
reinitialize it randomly. This ensures that each individual is a feasible solution.

In the crossover operation, a population of Np trial vectors is created, denoted as U
= {u1,g, u2,g, …, uNp,g}. To generate the vector ui,g after the crossover operation, the
crossover probability Cr must be defined by the user. each component of ui,g is taken
from the i-th variation vector vi,g with probability Cr or from the i-th individual
xi,g with probability 1-Cr. Then, to ensure that at least one component of ui,g is
inherited from vi,g, a component indicator k (1 ≤ k ≤ D) is chosen at random and
the component k chosen in ui,g is set equal to the component of vi,g at the same
position. Mathematically, ui,g is generated by:

5.6 Differential Evolution Algorithm 209

u j,i,g =
{

v j,i,g if rand(0, 1) ≤ Cr or j = k
x j,i,g otherwise

(5.16)

After generating all the trial vectors, their function values are calculated and then
the survivor selection operation is performed.

In the survivor selection operation, a new population containing Np individuals
will be generated, denoted as Gg+1 = {x1,g+1, x2,g+1,…, xNp,g+1}. For generating xi,g+1,
greedy selection is performed between ui,g and xi,g. Mathematically, the selection is
given by:

xi,g+1 =
{
ui,g, if f

(
ui,g

) ≤ f
(
xi,g

)

xi,g, otherwise
(5.17)

Obviously, there is Np parallel competition between the parent individual and the
trial vector in this operation.

After the population Gg+1 is produced, the mutation, crossover and survivor selec-
tion operations described above are repeated until some termination condition is
reached. In the DE algorithm, a cycle of mutation, crossover and survivor selection
operations is called a generation. Researchers have implemented the classical DE
algorithm using several programming languages, and the relevant source code can
be downloaded for free from the website of Storn.

Next, we present the work related to the DE algorithm. Since 2000, many variants
of the DE algorithm have been proposed by researchers in order to obtain better
performance on optimization problems. Several variants of the DE algorithm have
been studied analytically by Storn and Price.

The method presented earlier in this section is known as the classical DE algo-
rithm, or the common DE algorithm, because it is the first published version and the
most commonly used version. Later, researchers proposed many different variants
to improve the performance of this classical DE algorithm, and these variants can be
called DE algorithm families.

The DE algorithm families can be written in the form of DE/x/y/z. The “x” repre-
sents the string that denotes the base vector to be mutated and the base vector to be
changed. For example, x is “rand” for the randomly selected base vector; x is “best”
means that the base vector is the individual with the best function in the current
population. “y” is the number of differential vectors used in the variation operator.
“z” indicates the method of crossover operation. For example, if a binomial crossover
operator is used, “z” is “bin”; if an exponential crossover is used, it is “exp”; if an
either/or crossover is used, it is “either/or”. Using this expression, the classical DE
algorithm can be expressed as: DE/rand/1/bin. In the DE algorithm family of Storn
and Price, the mutation strategy variants differ in how they generate new solutions,
as follows:

“DE/rand/1” stands for the following equation:

vi,g = xr1,g + F × (
xr2,g − xr3,g

)
(5.18)

210 5 Evolutionary Computing

“DE/best/1” stands for the following equation:

vi,g = xbest,g + F × (
xr1,g − xr2,g

)
(5.19)

“DE/target-to-best/1” stands for the following equation:

vi,g = xi,g + F × (
xbest,g − xi,g

) + F × (
xr1,g − xr2,g

)
(5.20)

“DE/best/2” stands for the following equation:

vi,g = xbest,g + F × (
xr1,g − xr2,g

) + F × (
xr3,g − xr4,g

)
(5.21)

“DE/rand/2” stands for the following equation:

vi,g = xr1,g + F × (
xr2,g − xr3,g

) + F × (
xr4,g − xr5,g

)
(5.22)

Note that some scholars also refer to DE/target-to-best/1 as DE/current-to-best/1.
For consistency, this section uses the name DE/target-to-best/1 used by its original
author. exponential crossover and either/or crossover are less popular than binomial
crossover. In this section, only binomial crossover is considered. It is found that DE/
rand/1/bin is more robust in solving multimodal functions, but converges slower;
DE/best/1/bin, DE/target-to-best/1/bin and DE/rand/2/bin converge faster, but are
less reliable for highly multimodal functions. From our experimental results, DE/
rand/2/bin is similar to DE/rand/1/bin, but slightly slower.

In this section, we provide an overview of the DE algorithm. At the beginning, DE
was found to be effective for solving global optimization problems. The effectiveness
and efficiency of the DE paradigm is due to the use of the differential vector, which is
the difference between two decision vectors that can be explored in the search space
after the initialization phase and used in the subsequent evolution phase to obtain
good solutions. Another key feature of DE is the parallel search.

In addition to creating variation strategies for various DE algorithms, the
researchers noticed that DE is sensitive to its parameters F and Cr, and therefore
introduced techniques to control these parameters. Subsequently, researchers have
also tried to control the variation of Np, studied distributed or parallel DE algorithms,
and implemented collections of parameters, mutation strategies, and crossover oper-
ators. Meanwhile, many practitioners tried to implement DE algorithms on finite
resource devices, discrete optimization, and multi-objective optimization problems.

Based on these observations, we observe that the paradigm of DE has been compre-
hensively studied since 2000. Topics worthy of further research in the future include
large-scale optimization, practical applications, and convergence analysis. Note that
large-scale optimization is also a hot topic in the field of EC, as it is observed that
algorithms that perform well in low-dimensional problems (e.g., D < 50) may not
scale well to high-dimensional problems (e.g., D > 100).

In the mutation operation of DE, the random mutation is caused by the differential
vector of two different individuals chosen at random. Apparently, the differential

5.6 Differential Evolution Algorithm 211

vector may be the direction of descent leading to the improvement of fitness. The
differential vector plays an important role in the evolutionary process. However, the
number of possible differential vectors is large; therefore, the probability of choosing
the direction of descent is low. On the other hand, it is observed that the optimal
fitness found so far by the DE algorithm may not be improved every generation.
This observation inspired us to create a mutation operator capable of finding good
directions to guide the search process of DE. A good direction is a vector that,
when applied to a basis vector, can lead to an improvement in fitness. Readers can
discover mutation methods to improve the performance of the DE algorithm from
this direction.

The classical DE algorithm can solve continuous optimization problems. We can
use the DE algorithm to solve the sphere function problem in the previous section.

Example 5.5 The sphere function is a single-peaked function. There are only two
independent variables in the problem. Please use the DE algorithm to solve the
problem and draw a graph to analyze the results.

Solution In this example, we use the same problem setting as in Example 5.3. The
specific programs of the DE algorithm are as follows:

rng(1);
fhd = @functionSphere;
D = 2;
xlb = [− 100, − 100];
xub = [100, 100];
MFE = 3000;
ps = 50;
F = 0.5;
CR = 0.5;
me = round(MFE/ps);
if length(xlb) == 1

xlb = repmat(xlb,1,D);
xub = repmat(xub,1,D);

end
xlb = repmat(xlb,ps,1);
xub = repmat(xub,ps,1);
popu = xlb+(xub-xlb).*rand(ps,D);
fpopu = feval(fhd,popu);
fitcount = ps;
[gbestval,gbestid] = min(fpopu);
gbest = popu(gbestid,:);
cvgef = gbestval;
for i = 2:me

popuNew = popu;
fpopuNew = fpopu;
for ips = 1:ps

212 5 Evolutionary Computing

rips = randperm(ps − 1);
rips = rips(1:3);
tmp1 = rips> = ips;
rips = rips+tmp1;
vips = popu(rips(1),:) + F*(popu(rips(2),:)-popu(rips(3),:));
tmp1 = xlb(ips,:);
tmp2 = xub(ips,:);
vips = ((vips >= tmp1)&(vips <= tmp2)).*vips...

+ (vips<tmp1).*(tmp1+0.25.*(tmp2-tmp1).*rand(1,D))...
+ (vips>tmp2).*(tmp2-0.25.*(tmp2-tmp1).*rand(1,D));

uips = zeros(1,D);
for jcol = 1:D

if rand <= CR
uips(1,jcol) = vips(jcol);

else
uips(1,jcol) = popu(ips,jcol);

end
end
jrand = ceil(D*rand);
uips(1,jrand) = vips(jrand);
fuips = feval(fhd,uips);
fitcount = fitcount+1;
if fuips <= fpopu(ips)

popuNew(ips,:) = uips;
fpopuNew(ips) = fuips;

end
end
popu = popuNew;
fpopu = fpopuNew;
[gbestval,gbestid] = min(fpopu);
gbest = popu(gbestid,:);
cvgef = [cvgef,gbestval];

end
figure1 = figure1(1);
axes1 = axes(’Parent’,figure1);
box(axes1,’on’);
grid(axes1,’on’);
plot(ps*(1:me), cvgef, ’LineWidth’,2);
set(axes1,’FontSize’,14,’YMinorTick’,’on’,’YScale’,’log’);
set(axes1,’FontSize’,14);
xlabel(’number of iterations’);
ylabel(’objective function’);

After running the above program, we see that the optimal solution output by the
algorithm is approximately equal to (0, 0) and the corresponding objective function

5.6 Differential Evolution Algorithm 213

Fig. 5.15 Convergence curves of the DE algorithm on Example 5.5

value is close to 0. This is the same result obtained using the PSO algorithm. The
results indicates that both the DE and the PSO algorithms are able to solve the
problem.

The convergence curve of the DE algorithm for solving the Example 5.5 is shown
in Fig. 5.15. Compared with the PSO algorithm, the convergence curve of the DE
algorithm is closer to the lower left corner, which indicates that the DE algorithm
converges faster than the PSO algorithm.

Although the DE algorithm is suitable for solving continuous optimization prob-
lems, with simple modifications, it can also be used for discrete optimization
problems. We use the DE algorithm to solve the TSP in the previous section.

Example 5.6 Suppose there are n = 40 cities within the map boundary, the traveler
needs to traverse all cities once and only once and return to the initial city location.
Write a program for the DE algorithm to solve the TSP problem, and draw a graph
to analyze the results.

Solution This example has been used earlier, so the background of the problem will
not be introduced. The specific programs of the DE algorithm are as follows:

load(’usborder.mat’,’x’,’y’,’xx’,’yy’);
cities = 40;
locations = zeros(cities,2);
rng(1);
n = 1;
while (n <= cities)

xp = rand*1.5;
yp = rand;
if inpolygon(xp,yp,xx,yy)

214 5 Evolutionary Computing

locations(n,1) = xp;
locations(n,2) = yp;
n = n + 1;

end
end
distances = zeros(cities);
for count1 = 1:cities

for count2 = 1:count1
x1 = locations(count1,1);
y1 = locations(count1,2);
x2 = locations(count2,1);
y2 = locations(count2,2);
distances(count1,count2) = sqrt((x1 − x2)^2 + (y1 − y2)^2);
distances(count2,count1) = distances(count1,count2);

end
end
IterNum = 200;
iter = 1;
popsize = 50;
F = 0.5;
Cr = 0.1;
popu = zeros(popsize,cities);
fpopu = zeros(popsize,1);
gbest = zeros(IterNum,cities);
gbest_fit = zeros(popsize,1);
avgl = zeros(IterNum,1);
rng(’shuffle’);
for i = 1:popsize

popu(i,:) = randperm(cities);
end
popurt = popu;
for i = 1:popsize

for j = 1:cities-1
fpopu(i) = fpopu(i) + distances(popurt(i,j),popurt(i,j + 1));

end
fpopu(i) = fpopu(i) + distances(popurt(i,end),popurt(i,1));

end
[gbest_fit(1),min_index] = min(fpopu);
gbest(1,:) = popurt(min_index);
avgl(1) = mean(fpopu);
while iter <IterNum

iter = iter + 1;
popuNew = popu;
popurtNew = popurt;
fpopuNew = zeros(size(fpopu));

5.6 Differential Evolution Algorithm 215

for i = 1:popsize
r1 = randi([1,popsize],1,1);
while (fpopu(r1)<fpopu(i))

r1 = randi([1,popsize],1,1);
end
r2 = randi([1,popsize],1,1);
while(r2 == r1)||(r2 == i)

r2 = randi([1,popsize],1,1);
end
r3 = randi([1,popsize],1,1);
while(r3 == i)||(r3 == r2)||(r3 == r1)

r3 = randi([1,popsize],1,1);
end
jrand = randi([1,cities],1,1);
r = rand;
for j = 1:cities

if (r <= Cr) || (j == jrand)
popuNew(i,j) = popu(r1,j) + F*(popu(r2,j)-popu(r3,j));
if popuNew(i,j)< 1

popuNew(i,j) = randi([1,cities],1,1);
end
if popuNew(i,j)> cities

popuNew(i,j) = randi([1,cities],1,1);
end

else
popuNew(i,j) = popu(i,j);

end
end
[tmp1,idx1] = sort(popuNew(i,:));
popurtNew(i,:) = idx1;
for j = 1:cities-1

fpopuNew(i) = fpopuNew(i) + distances(popurtNew(i,j),popurtNew(i,j
+ 1));

end
fpopuNew(i)= fpopuNew(i)+ distances(popurtNew(i,end),popurtNew(i,1));

if fpopuNew(i)<fpopu(i)
popu(i,:) = popuNew(i,:);
popurt(i,:) = popurtNew(i,:);
fpopu(i) = fpopuNew(i);

end
end
[minvalue,min_index] = min(fpopu);
if minvalue <gbest_fit(iter − 1)

gbest_fit(iter) = minvalue;
gbest(iter,:) = popurt(min_index,:);

216 5 Evolutionary Computing

else
gbest_fit(iter) = gbest_fit(iter-1);
gbest(iter,:) = gbest(iter-1,:);

end
avgl(iter) = mean(fpopu);

end % while
[bestRouteLen,index] = min(gbest_fit);
bestRoute = gbest(index,:);
figure1 = figure(2);
axes1 = axes(’Parent’,figure1);
hold(axes1,’on’);
box(axes1,’on’);
grid(axes1,’on’);
plot(x, y, ’Color’,’black’, ’LineWidth’,2);
plot(locations(:,1),locations(:,2),...

’bo’,’LineWidth’,2,’LineStyle’,’none’);
plot(locations(bestRoute,1), ...

locations(bestRoute,2),’LineWidth’,2);
plot([locations(bestRoute(1),1), ...

locations(bestRoute(end),1)], ...
[locations(bestRoute(1),2), ...
locations(bestRoute(end),2)],’LineWidth’,2);

hold(axes1,’off’);
set(axes1,’FontSize’,14);
figure1 = figure(3);
axes1 = axes(’Parent’,figure1);
hold(axes1,’on’);
box(axes1,’on’);
grid(axes1,’on’);
plot(gbest_fit’, ’-’, ’LineWidth’,2);
plot(avgl’, ’:’, ’LineWidth’,2);
legend(’shortest distance’,’average distance’);
xlabel(’number of iterations’);
ylabel(’objective function’);
hold off;

After the above program is run, the optimal value and optimal solution of the DE
algorithm are output, as shown in Fig. 5.16.

It can be seen from Fig. 5.16 that the optimal route output by the DE is not good.
The route in the figure has long straight-line segments. In fact, the total distance length
of the optimal route output by the DE algorithm is about 9.92, which is greater than
the results given by the GA, ACO and PSO algorithms.

5.6 Differential Evolution Algorithm 217

Fig. 5.16 Optimal route of the DE algorithm for Example 5.6

The convergence curve of the DE algorithm for Example 5.6 is given in Fig. 5.17.
The solid line in the figure indicates the shortest route distance of the population
at each generation, while the dashed line indicates the average route distance of
the population at each generation. In Fig. 5.17, the number of iterations means the
number of generations. It can be seen that after 200 generations, the shortest route
distance gradually decreases and level off, indicating that the DE algorithm is close
to convergence. However, compared with the GA, ACO and PSO algorithms, the
output of the DE algorithm is not good, which to a certain extent indicates that the
DE algorithm is not well suited for discrete optimization problems. The DE algorithm
needs further improvement to better solve the TSP.

Exercises

(1) Readers choose a set of optimization test functions, then select no less than two
evolutionary computing methods. Readers have to write programs, adjust the
parameters of the evolutionary computing methods to solve the optimization test
function, and compare the performance of the chosen methods in terms of the
number of convergence iterations, the optimal solution output by the methods,
and the stability of the methods over multiple runs.

(2) Suppose there is a traveler who wants to visit 31 provincial capitals across the
country, and the traveler needs to choose the route to be taken. The coordinates
of the 34 cities in the country are given in Table 5.5 as follows:

218 5 Evolutionary Computing

Fig. 5.17 Convergence curve of the DE algorithm for Example 5.6

Table 5.5 The coordinates of the 34 cities

Number City Coordinate Number City Coordinate

1 Beijing (116.4, 39.9) 18 Changsha (113.0, 28.2)

2 Tianjin (117.2, 39.1) 19 Guangzhou (113.3, 23.1)

3 Shijiazhuang (114.5, 38.0) 20 Nanning (108.3, 22.8)

4 Taiyuan (112.5, 37.9) 21 Haikou (110.3, 20.0)

5 Hohhot (111.7, 40.8) 22 Chongqing (106.5, 29.5)

6 Shenyang (123.4, 41.8) 23 Chengdu (104.1, 30.7)

7 Changchun (125.3, 43.9) 24 Guiyang (106.7, 26.6)

8 Harbin (126.6, 45.8) 25 Kunming (102.7, 25.0)

9 Shanghai (121.5, 31.2) 26 Lhasa (91.1, 29.7)

10 Nanjing (118.8, 32.0) 27 Xi’an (108.9, 34.3)

11 Hangzhou (120.2, 30.3) 28 Lanzhou (103.8, 36.1)

12 Hefei (117.3, 31.9) 29 Xining (101.8, 36.6)

13 Fuzhou (119.3, 26.1) 30 Yinchuan (106.3, 38.5)

14 Nanchang (115.9, 28.7) 31 Urumqi (87.6, 43.8)

15 Jinan (117.0, 36.7) 32 Taipei (121.5, 25.0)

16 Zhenzhou (113.7, 34.8) 33 Hong Kong (114.2, 22.3)

17 Wuhan (114.3, 30.6) 34 Macao (113.5, 22.2)

References 219

References

1. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algorithm: past, present, and future.
Multimedia Tools Appl 80:8091–8126. https://doi.org/10.1007/s11042-020-10139-6

2. Sivanandam SN, Deepa SN (2010) Introduction to genetic algorithms. Springer Berlin,
Heidelberghttps://doi.org/10.1007/978-3-540-73190-0

3. Deneubourg JL, Aron S, Goss S, Pasteels JM (1990) The self-organizing exploratory pattern of
the argentine ant. J Insect Behav 3:159–168

4. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the
traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

5. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE
international conference on neural networks, Perth, WA, Australia, 27 Nov–1 Dec 1995, pp
1942–1948

6. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. J Global Optim 11(4):341–359

https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1007/978-3-540-73190-0

Chapter 6
Testing and Evaluation of Evolutionary
Computing

Abstract Evolutionary computing is a collection of evolutionary algorithms.
Different algorithms have different properties. For example, genetic algorithm is
suitable for discrete optimization problems; while differential evolution algorithm
is suitable for continuous optimization problems. The pros and cons of such algo-
rithms have to be studies and tested on well-known optimization problems. This
chapter presents a test set of traveling salesman problem and a test set of contin-
uous optimization problem. The evaluation metrics are introduced to compare and
analyze evolutionary algorithms. Then, this chapter introduces two recent evolu-
tionary computing methods. They are artificial bee colony algorithm and fireworks
algorithm. Finally, the state-of-the-art research progress of evolutionary computing
are presented.

6.1 Test Set of Traveling Salesman Problem

The traveling salesman problem (TSP) is a typical discrete optimization problem that
has been studied extensively by researchers in recent years. In the previous chapter,
we gave a case study of using evolutionary computing (EC) methods to solve the
TSP. In this section we will give a test set of traveling salesman problems (TSPs).
The test set contains seven problems with increasing difficulty. The seven problems
are well suited for testing the performance of optimization methods.

Example 6.1 The TSP is a classical combinatorial optimization problem and a NP-
hard problem. It has always been a hot problem of interest in academia and industry.
We collected 3000 cities from China. The latitude and longitude coordinate data of
the cities are used to generate seven TSPs, as shown in Table 6.1. As can be seen
from the table, the scale of the problem gradually increases from 100 to 3000 cities.
The test set is called TSPCN.

Figure 6.1 gives the city distribution of the 1-st instance of the test set. In Fig. 6.1,
the horizontal axis is east longitude and the vertical axis is north latitude. As can be
seen from the figure, the city distribution shows a scattered nature, with some cities
being far away and others being close.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
X. Zhang et al., Intelligent Information Processing with Matlab,
https://doi.org/10.1007/978-981-99-6449-9_6

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-6449-9_6&domain=pdf
https://doi.org/10.1007/978-981-99-6449-9_6

222 6 Testing and Evaluation of Evolutionary Computing

Table 6.1 List of Chinese
TSPs Number Name Scale

1 TSPCNProblem1 100

2 TSPCNProblem2 500

3 TSPCNProblem3 1000

4 TSPCNProblem4 1500

5 TSPCNProblem5 2000

6 TSPCNProblem6 2500

7 TSPCNProblem7 3000

Fig. 6.1 City distribution map of TSPCNProblem1

Figure 6.2 gives the city distribution for the 7-th instance in the test set. As can
be seen from the figure, the distribution of cities shows unevenness, with some cities
being far away and others being close. In particular, the cities in the lower right are
more densely distributed, while those in the upper left are more scattered.

Figures 6.1 and 6.2 give the city distribution maps for the 1-st and 7-th instances.
We do not give the city distribution maps for the remaining instances because the
distribution characteristics of the remaining cities are between these two instances.
The cities of TSPCNProblem1 are a subset of cities of TSPCNProblem7; while
TSPCNProblem7 contains more cities than TSPCNProblem1.

We stored the north latitude and east longitude coordinate data as “csv” files
with corresponding names. We could solve the above 7 TSP instances using the EC
methods. Due to the stochastic nature of the EC method, we need to independently
repeat the optimization method used 31 times, saving the optimal route and the
shortest route distance as “csv” files. In each file, the data are split by commas.

6.1 Test Set of Traveling Salesman Problem 223

Fig. 6.2 City distribution map of TSPCNProblem7

Solution We use the GA as a baseline method and use it to solve 7 TSP instances.
Specifically, each TSP instance needs to be run 31 times independently. We can get
31 traversal routes and their route lengths. The traversal route for the G to solve the
1-st instance is shown in Fig. 6.3.

As can be seen in Fig. 6.3, the traversal route found by the GA for the 1-st instance
has overlapping paths. This indicates that the GA did not find the optimal solution for

Fig. 6.3 Traversal route found by the GA for TSPCNProblem1

224 6 Testing and Evaluation of Evolutionary Computing

the instance. Interested readers can further find better traversal routes by adjusting
the hyperparameters of the GA.

The results for all instances of the GA to solve the TSPCN test set are in Table 6.2.
This table gives the lengths of the best route found by running the GA after 31
independent runs. In Table 6.2, columns 2 through 8 are the results from the 1-st
instance to the 7-th instance. Each row from row 2 onward is the length of the best
route obtained by running the GA independently.

The results of all instances of the GA solving the TSPCN test set are summa-
rized in Table 6.3. The table counts the minimum (min), mean, maximum (max),
median(med) and standard deviation(std) of the route length for 31 independent runs
of the GA to solve all instances.

As seen in Table 6.3, the std of the GA gradually increases from instance 1 to
instance 7, which indicates that the GA is somewhat unstable as the problem size
increases. One reason is that we use the same termination condition for different
instances. As the problem size increases, the maximum number of iterations can be
increased. Here we only introduce the use of the GA to solve the TSPCN test set
without adjusting and optimizing the hyperparameters, thus, the GA does not find
the optimal solution for the instances.

6.2 Test Set of Continuous Optimization Problem

With the development of EC, researchers have created many function optimization
problems in order to test the performance of EC methods. Examples include the
Schwefel function used in the previous sections, the sphere function, etc. The inde-
pendent variables of these functions are continuous, and the corresponding functions
are continuous optimization problems. When verifying and comparing the perfor-
mance of EC methods, researchers use test functions. This section describes the
commonly used continuous test functions. If not specified, all test functions in this
section are continuous test functions, and the objective is to minimize the problems.

In the early days of EC, there were not many test functions, and researchers only
needed to test the performance of methods on a few functions. As scientific research
evolved and progressed, more and more functions were tested and their mathematical
expressions became more and more complex. Today, researchers usually need to test
the performance of methods on a dozen or even more functions.

The international conference on evolutionary computation (CEC) is a prestigious
conference in the field of EC. Since 2005, Suganthan and his colleagues have been
running a standard test function competition at CEC. The competition aims to lead
the development of EC methods on continuous optimization problems and develops
test functions of different difficulties. As shown in Table 6.4, they held competitions
for unconstrained continuous optimization test functions in 2005, 2010, 2013, 2014,
2015, 2016, 2017, 2018 and 2020, respectively. In particular, in recent years, Liang
et al. have been organizing this competition at CEC every year as the main members
of this competition [1].

6.2 Test Set of Continuous Optimization Problem 225

Table 6.2 Route length found by GA on TSPCN test set

Run Problem1 Problem2 Problem3 Problem4 Problem5 Problem6 Problem7

1 458.90 4711.89 10,986.70 17,615.64 24,292.58 30,872.35 37,870.12

2 506.78 4599.83 10,854.65 17,389.26 24,057.87 31,042.54 37,756.79

3 475.60 4500.51 10,854.67 17,679.53 24,183.69 30,792.08 37,742.41

4 489.69 4548.82 10,845.60 17,364.05 24,306.60 30,906.32 37,415.95

5 450.43 4523.72 10,662.04 17,508.73 24,241.97 31,005.62 37,709.33

6 494.82 4550.75 10,937.31 17,526.22 24,557.65 30,802.00 37,354.17

7 485.05 4571.54 10,869.33 17,533.28 24,118.64 30,848.09 37,739.57

8 488.49 4536.62 10,810.00 17,486.75 24,399.72 31,019.17 37,426.61

9 482.37 4577.21 10,611.92 17,503.16 24,422.68 30,898.99 37,656.89

10 473.74 4615.64 10,939.66 17,437.89 24,101.27 31,094.86 37,789.40

11 487.50 4525.43 10,996.00 17,447.90 24,345.42 30,702.66 37,790.37

12 522.07 4468.64 10,734.58 17,531.16 23,952.89 30,898.23 37,596.78

13 505.94 4424.91 10,863.40 17,538.20 24,278.33 30,852.89 38,020.12

14 460.03 4453.66 10,770.62 17,420.88 24,092.93 30,698.39 37,375.31

15 496.16 4415.28 10,801.63 17,365.03 24,151.60 30,589.59 37,387.39

16 493.15 4601.98 11,022.97 17,499.47 24,202.65 30,880.22 37,854.88

17 489.93 4608.33 10,874.44 17,332.55 24,386.07 30,980.10 37,806.99

18 459.96 4585.26 10,785.87 17,396.98 24,057.18 30,996.18 37,859.06

19 465.90 4597.85 10,849.19 17,488.53 24,368.66 30,817.79 37,827.11

20 457.42 4362.73 10,954.89 17,268.97 24,308.97 30,761.75 37,554.47

21 479.00 4567.75 10,899.19 17,479.26 24,033.67 30,809.49 37,818.98

22 548.00 4608.57 10,957.55 17,708.66 24,332.32 30,812.02 37,633.35

23 499.92 4611.04 10,821.21 17,591.53 24,379.46 31,051.46 37,385.24

24 531.51 4576.09 10,946.50 17,326.66 23,992.26 30,915.60 37,720.52

25 459.74 4529.45 10,951.31 17,424.42 24,283.34 30,849.92 37,440.99

26 504.12 4535.64 10,832.67 17,427.46 24,411.96 30,743.79 37,468.66

27 522.09 4453.06 10,810.52 17,307.97 24,196.57 30,742.30 37,660.40

28 474.26 4542.23 10,784.33 17,477.88 24,518.23 30,836.35 37,754.02

29 513.08 4571.82 11,058.16 17,358.74 24,226.62 30,798.61 37,554.08

30 531.99 4604.87 10,908.74 17,512.34 24,230.52 30,644.38 37,530.43

31 503.32 4482.99 10,877.93 17,596.28 24,486.42 31,005.07 37,762.21

As can be seen in Table 6.4, researchers have also organized test functions
with constraints, multi-objectives and real-world application problems. These test
functions form the standard for testing and evaluating EC methods.

We use the test function used in CEC in 2020 as an example, denoted as CEC2020.
The continuous single-objective optimization function is modeled as:

226 6 Testing and Evaluation of Evolutionary Computing

Table 6.3 Summary of results found by GA on TSPCN test set

Problem Min. Mean Max. Med. Std.

1 450.43 490.68 548.00 489.69 24.72

2 4362.73 4544.00 4711.89 4550.75 72.49

3 10,611.92 10,866.89 11,058.16 10,863.40 99.46

4 17,268.97 17,469.21 17,708.66 17,479.26 105.63

5 23,952.89 24,255.44 24,557.65 24,278.33 156.58

6 30,589.59 30,860.28 31,094.86 30,849.92 123.99

7 37,354.17 37,653.63 38,020.12 37,709.33 180.13

Table 6.4 Test function competitions held in CEC

Year Problem type Member

2005 Single-objective test functions Suganthan, Hansen, Liang et al.

2006 Constrained single-objective test
functions

Liang, Runarsson, Mezura-Montes et al.

2007 Multi-objective test functions Huang, Qin, Deb et al.

2008 Large-scale single-objective test functions Tang, Yao, Suganthan et al.

2009 Bound constrained single-objective test
functions

Zhang, Zhou, Zhao et al.

2010 Single-objective test functions Mallipeddi, Suganthan

2011 Single-objective application test functions Das, Suganthan

2013 Single-objective test functions Liang, Qu, Suganthan et al.

2014 Single-objective test functions Liang, Qu, Suganthan

2015 Single-objective test functions Chen, Liu, Zhang et al.

2016 Single-objective test functions Chen, Liu, Zhang et al.

2017 Single-objective test functions Chen, Liu, Zhang et al.

2018 Single-objective test functions Chen, Liu, Zhang et al.

2020 Single-objective test functions Kumar, Wu, Ali et al.

min f (x) = f (x1, x2, . . . , xD)
s.t. xi ∈ [−100, 100]

(6.1)

where D denotes the number of independent variables, x denotes the vector consisting
of the independent variable xi, and f denotes the objective function. In order to avoid
the minimum to be located in the center of the feasible space, researchers use trans-
lation to transform the minimum to the center of the feasible space. For example,
x0 is used to denote the location of the translation. According to the knowledge of
geometry, coordinate transformations include translation, rotation and scaling trans-
formations. These three transformations can be used when constructing synthetic
test functions, so that an EC method can be tested for translation invariance, rotation

6.2 Test Set of Continuous Optimization Problem 227

invariance and scaling invariance. The rotation transformation changes the shape of
the objective function, while the scaling transformation allows the range of the inde-
pendent variables to be mapped to the same interval, e.g., [− 100, 100]. All three
transformations can be implemented by operations such as matrix product, and they
are not described here.

The CEC2020 test function set includes 10 synthetic functions, as shown in
Table 6.5. As can be seen from the table, only the first function is a single-peaked
function, the rest are multi-peaked functions. The hybrid and composition functions
are greatly increase the complexity of the problem, which brings a great challenge
to EC methods.

It should be noted that the competitions in recent years use fixed test functions.
For example, the test functions in CEC2020 are from the CEC competitions in 2014
and 2017. It may be that the hybrid and composition functions are too complex and
the current EC methods have not yet solved these problems. Thus, the test set has
not been changed and updated since 2020.

The functions in the CEC2020 test set are built on 12 base functions, as follows:

fb1(x) = x2 1 + 106
D∑

i=2

x2 i (6.2)

where f b1 denotes the first base function. It is generally referred to as the Bent Cigar
function. The second base function is:

fb2(x) =
D∑

i=1

(
x2 i − 10 cos(2π xi) + 10

)
(6.3)

Table 6.5 Test set in CEC2020

Number Function name Property

1 Bent Cigar function Single-peaked

2 Schwefel’s function Multi-peaked

3 Lunacek bi-Rastrigin function Multi-peaked

4 Expanded Rosenbrock and Griewank
function

Multi-peaked

5 Hybrid function 1 Multi-peaked, non-separable

6 Hybrid function 2 Multi-peaked, non-separable

7 Hybrid function 3 Multi-peaked, non-separable

8 Composition function 1 Multi-peaked, non-separable,
asymmetrical

9 Composition function 2 Multi-peaked, non-separable,
asymmetrical

10 Composition function 3 Multi-peaked, non-separable,
asymmetrical

228 6 Testing and Evaluation of Evolutionary Computing

The second base function is also known as the Rastrigin function. The third base
function is:

fb3(x) =
D∑

i=1

(
106
) i−1

D x2 i (6.4)

The third base function is also known as the highly conditional elliptic function.
The fourth base function is:

fb4(x) =
||||||

(
D∑

i=1

x2 i

)2
−
(

D∑

i=1

xi

)2||||||

1
2

+
(
0.5

D∑

i=1

x2 i +
D∑

i=1

xi

)
/D + 0.5 (6.5)

The fourth base function is also known as the HGBat function. The fifth base
function is:

fb5(x) =
D∑

i=1

(
100
(
x2 i − xi+1

)2 + (xi − 1)2
)

(6.6)

The fifth base function is also known as the Rosenbrock function. The sixth base
function is:

fb6(x) =
D∑

i=1

(
x2 i

4000

)
−

Dπ

i=1

cos

(
xi √
i

)
+ 1 (6.7)

The sixth base function is also known as the Griewank function. The seventh base
function is:

fb7(x) = −20exp

⎛

⎝−0.2

┌||√
D∑

i=1

x2 i /D

⎞

⎠ − exp

(
D∑

i=1

cos(2π xi)/D

)
+ 20 + e

(6.8)

The seventh base function is also known as the Ackley function, where e is the
natural constant. The eighth base function is:

fb8(x) =
|||||

D∑

i=1

x2 i − D

|||||

1
4

+
(
0.5

D∑

i=1

x2 i +
D∑

i=1

xi

)
/D + 0.5 (6.9)

The eighth base function is also known as the Happycat function. The ninth base
function is:

6.2 Test Set of Continuous Optimization Problem 229

fb9(x) = 106 x2 1 +
D∑

i=1

x2 i (6.10)

The ninth base function is also known as the Discus function. The tenth base
function is:

fb10(x) = min

⎧
⎨

⎩

D∑

i=1

(
x̂i − μ0

)2
, dD + s

D∑

i=1

(
x̂i − μ1

)2
⎫
⎬

⎭ + 10

⎛

⎝D −
D∑

i=1

cos
(
2π ̂zi
)
⎞

⎠ (6.11)

where (6.11) contains the following parameters:

μ0 = 2.5 (6.12)

μ1 = −
/(

μ2
0 − 1

)
/s (6.13)

s = 1 − 1/
(
2
√
D + 20 − 8.2

)
(6.14)

x̂i = 2sgn(xi)yi + μ0 (6.15)

y = 10(x − x0)/100 (6.16)

ẑi = 2sgn(xi)yi (6.17)

The tenth base function is also known as the Lunacek bi-Rastrigin function. The
eleventh base function is:

fb11(x) = 418.9829D −
D∑

i=1

g(zi) (6.18)

Among them:

zi = xi + 420.968746 (6.19)

g(zi) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zi sin

(
|zi |

1
2

)
|zi ≤ 500|

(500 − mod(zi , 500))sin
(√|500 − mod(zi , 500)|

)
− (zi−500)2

10000D zi > 500

(mod(|zi |, 500) − 500)sin
(√|500 − mod(|zi |, 500)|

)
− (zi−500)2

10000D zi < −500

(6.20)

The eleventh base function is also known as the modified Schwefel function. The
twelfth base function is:

230 6 Testing and Evaluation of Evolutionary Computing

fb12(x) = g(x1, x2) + g(x2, x3) + . . . + g(xD−1, xD) + g(xD, x1) (6.21)

Among them:

g
(
xi , x j

) = 0.5 +
(
sin2
(√

x2 + y2
)

− 0.5
)
/
((
1 + 0.001

(
x2 + y2

))2)
(6.22)

The twelfth base function is also known as the extended Schaffer function.
The functions in the CEC2020 test set are built on the twelve base functions

mentioned above. For example, the first function in the CEC2020 test set is:

f1(x) = fb1(M(x − x0)) + f0 (6.23)

where M is a matrix, whose role is to perform a rotation transformation on the
independent variable. × 0 is a vector, whose role is to perform a translation transfor-
mation on the independent variable. f 0 is a real number whose role is to perform a
translation transformation on the objective function value. It can be seen that the first
function, although single-peaked, makes the problem considerably more difficult
after the translational and rotation transformations.

The other functions in the CEC2020 test set are not introduced here. Interested
readers should consult the relevant references.

6.3 Evaluation of Continuous Optimization Problems

To verify the performance of an EC method, it needs to be tested on some test
functions, such as the CEC2020 test set. Multiple methods have to be tested in a fair
environment in order to be able to compare method performance and draw meaningful
conclusions. In this section, we continue to use the CEC2020 test set as an example
to introduce the testing and evaluation EC methods.

In the CEC2020 test set, all 10 problems can set the number of independent
variables, i.e., the value of D. It is common to set D = 10 or D = 20. Moreover, the
seventh function can also set D = 15; except the seventh function, other functions
can also set D = 5 or D = 15. it can be seen that this test set can only support the
case of a small number of independent variables. For a larger number of independent
variables, it is necessary to use other test sets. In this test set, the range of each
independent variable is the same. The range of independent variables is set to [−
100, 100].

The EC methods introduces randomness in the process of evolutionary iteration,
so that the same method may obtain different results when run independently. In
other words, a method may converge to different solutions in different runs. Then,
for a test function or problem, the EC methods need to be run independently several
times to obtain the average performance of the method in solving the problem. The
recommended number of independent runs for the CEC2020 test set is 30.

6.3 Evaluation of Continuous Optimization Problems 231

The termination condition is set to a fixed number of function valuations, i.e., the
maximum number of functions that can be valued, denoted as MFE. For problems
with a small number of independent variables, the MFE can be set to a small value;
while for problems with a large number of independent variables, the MFE can be
set to a large value. the recommended setting for the CEC2020 test set is MFE =
50,000D. For example, for D = 10 or D = 20, the MFE can be set to 1,000,000 or
10,000,000, respectively.

The optimal solutions of the functions in the CEC2020 test set are all within the
range of values of the independent variables. If the optimal solution is noted as x* and
its corresponding optimal value is f * = (x*), then x* ∈ [− 100, 100]D. The optimal
values of the functions in the test set are known, which makes it convenient to check
whether the problem is solved. The CEC2020 test set recommends two conditions
for the algorithm to terminate. One is to consume the given number of evaluations,
i.e., to reach the MFE; the other is that the error from the optimal value is less than
10–8, i.e., |f − f *| < 10–8. It should be noted that we consider the method to have
found the optimal solution for this test function when the error from the optimal
solution is less than 10–8, i.e., the error is considered to be 0 at this point.

In addition, researchers found that the initial population has an impact on the final
results of the EC methods. To eliminate this effect from initialization, the CEC2020
test set recommends the use of a uniformly distributed random initialization method.

In the optimization search process, we have to record the convergence process of
the tested method. For example, at some appropriate number of iterations, the value
of the current optimal function is recorded, and the expression is:

t =
|
D

k−15
5 MF E

|
, k = 0, 1, 2, . . . , 15 (6.24)

where t denotes the current number of iterations, [·] indicating rounding down. It
can be seen that in the process of finding the best, we have to record 16 function
values. And the last one, i.e., at k = 15, we record the best solution found by the
algorithm. This solution will be used to reflect the performance of the algorithm. It
should be noted that the optimal value of each function in the CEC2020 test set is
known, so we use the error between the best function value found by the EC method
and the optimal value, i.e., f - f *, in presenting the final results.

Example 6.2 Suppose we use the PSO algorithm to solve for the functions in the
CEC2020 test set with D = 10, 15 and 20. Please analyze the effect of the PSO
algorithm.

Solution The CEC2020 test set has been introduced in Sect. 6.2. The PSO algorithm
has been introduced in Sect. 5.5. In this example, we use the PSO algorithm on the
CEC2020 test set, and the results are given in Table 6.6.

Table 6.6 gives the error between the best solution found by the PSO algorithm
and the optimal value of the corresponding function. In Table 6.6, the second column
shows the minimum error (min) for each function; the third column shows the

232 6 Testing and Evaluation of Evolutionary Computing

Table 6.6 Results of the PSO algorithm on the CEC2020 test set with D = 10
f Min. Max. Med. Mean. Std.

f 1 3.91 9682.58 3191.66 3853.33 3150.56

f 2 6.89 373.26 146.58 132.15 89.17

f 3 2.61 20.56 14.40 13.45 4.35

f 4 0.48 1.67 0.87 0.89 0.25

f 5 70.36 4181.66 1124.23 1437.18 1179.66

f 6 0.04 135.20 0.71 10.64 31.65

f 7 0.00 142.95 16.78 32.48 47.40

f 8 0.00 104.16 101.92 95.64 24.08

f 9 100.00 345.19 338.28 330.47 42.95

f 10 398.08 446.18 398.51 409.40 19.87

maximum error (max) for each function; the fourth column shows the median error
(med) for each function; the fifth column shows the mean error for each function; and
the sixth column shows the standard deviation (std) of the error for each function.
From these results, it is clear that the PSO algorithm is able to find near-optimal
solutions when solving problems f 4, f 6, f 7 and f 8. However, the PSO algorithm does
not find the optimal solution in every run. The standard deviation of the method is
particularly large when solving problems f 1 and f 5, which indicates that the method
is not suitable for solving similar problems or that the performance of the algorithm
is not stable on such problems.

Similarly, Tables 6.7 and 6.8 give the cases where the PSO algorithm solves the
CEC2020 test set for D = 15 and D = 20, respectively. As can be seen from the
tables, the PSO algorithm in dimension D = 20 for solving function f 1 finds a better
value than D = 15; while for function f 5 and function f 7, the PSO algorithm finds a
better value than D = 20 in dimension D = 15. It can be seen that a consistent law
of variation cannot be derived from the results of these two dimensions. A specific
analysis of the same function with different D values is required.

According to the time slots defined in (6.24), we can record the 16 error values of
the PSO algorithm. After 30 independent runs, we can calculate the median of the
16 error values from the 30 times, which can reflect the convergence process of the
PSO algorithm, as shown in Fig. 6.4.

As can be seen in Fig. 6.4, from the initial to 2000 function valuations, the PSO
algorithm consistently finds a better solution at each iteration, so the error decreases
very quickly. After this, the convergence curve tends to flatten out. As seen in
Table 6.6, the PSO algorithm does not find a global optimal solution for f 1. This
indicates that the algorithm cannot find a better solution and is likely to be trapped
in a local optimal solution. Although we set the number of function valuations to
1,000,000, the number of valuations for the PSO algorithm to converge to a locally
optimal solution is actually much smaller than the number of termination conditions.

6.3 Evaluation of Continuous Optimization Problems 233

Table 6.7 Results of the PSO on the CEC2020 test set with D = 15
f Min. Max. Med. Mean. Std.

f 1 165.19 20,519.06 3798.11 5926.09 5587.57

f 2 7.00 495.26 186.90 228.08 112.13

f 3 1.56 25.61 18.96 15.67 7.83

f 4 0.45 1.65 1.00 1.04 0.28

f 5 59.78 641.68 252.08 252.51 127.86

f 6 0.43 266.50 28.11 51.53 62.48

f 7 4.47 384.25 126.45 160.65 98.37

f 8 100.00 617.62 100.97 130.91 103.64

f 9 337.61 399.24 393.10 391.34 10.46

f 10 400.00 400.00 400.00 400.00 0.00

Table 6.8 Results of the PSO algorithm on the CEC2020 test set with D = 20
f Min. Max. Med. Mean. Std.

f 1 0.23 788.90 99.36 185.49 214.92

f 2 18.41 744.52 207.02 257.77 177.68

f 3 5.25 33.44 24.14 22.04 8.55

f 4 0.68 3.33 1.42 1.57 0.52

f 5 414.93 89,974.94 10,494.36 15,520.28 18,114.02

f 6 0.47 128.15 4.32 16.11 36.79

f 7 102.63 3742.68 839.09 1256.37 1082.77

f 8 52.77 1169.85 101.27 272.52 355.79

f 9 100.00 457.38 425.89 416.58 59.58

f 10 400.64 459.80 416.06 417.11 9.41

Thus, we could terminate the algorithm after a small number of function evaluations
when solve real-world application problems.

The CEC2020 test set also gives a way to calculate the complexity of the algorithm.
This method is performed only on the function f 7. Since this function f 7 only supports
D = 10, 15 and 20, the computational complexity of the PSO algorithm is shown in
Table 6.9.

In Table 6.9, the second column shows the running time T0, which is the time
consumed to run the following programs:

t0 = tic;
x = 0.55;
for i = 1:1000000

x = x + x;
x = x / 2;
x = x * x;

234 6 Testing and Evaluation of Evolutionary Computing

Fig. 6.4 Convergence curve of the PSO algorithm on f 1 with D = 20

Table 6.9 Complexity of the PSO algorithm

D T0 T1 T2 Complexity

10 0.0154 0.1740 0.2884 7.4286

15 0.0152 0.2421 0.3979 10.2780

20 0.0168 0.3180 0.5040 11.0433

x = sqrt(x);
x = log(x);
x = exp(x);
x = x / (x + 2);

end
T0 = toc(t0);

It can be seen that T0 is the calculation of some basic elementary function. The
running time T1 in the third column of Table 6.9 is the time spent running the
following programs:

t0 = tic;
D = 20;
rng(‘shuffle’);
xlb = − 100;
xub = 100;
fhd = str2func(‘cec20_func’);
fid = 7;
x = xlb + rand(200,000,D)*(xub-xlb);
fx = feval(fhd, x’, fid);
T1 = toc(t0);

6.3 Evaluation of Continuous Optimization Problems 235

The third to last row and second to last row of the above program are the eval-
uation of the function f 7. They are programmed in a matrix fashion; i.e., a number
of candidate solutions are first created to form a matrix. Each row of the matrix
is a candidate solution of the problem. All the candidate solutions are evaluated at
once. In addition, it is also possible if the EC method uses a vector or single vari-
able programming approach. It is important to note that the computer runtime is
faster using the matrix programming approach. Thus, readers may obtain different
complexity by using different programming approach.

The forth column is the running time T2. The associated time is computed by the
following programs:

T2 = zeros(1,5);
for jrun = 1:length(T2)

t0 = tic;
FuncOpt = [100,1100,700,1900,1700,1600,2100,2200,2400,2500];
VTR = 1e-8;
D = 20;
MFE = 200,000;
rng(‘shuffle’);
xlb = −100;
xub = 100;
popsize = 100;
fhd = str2func(‘cec20_func’);
fid = 7;
[tmp1,tmp2,tmp3,tmp4] = PSO(fhd,D,popsize,MFE,xlb,xub,FuncOpt(fid),

VTR,fid);
T2(jrun) = toc(t0);

end
T2 = mean(T2);

The above program is the PSO algorithm executed 5 times independently to solve
the function f 7. Then the results after 5 times are averaged to obtain T2.

The last column in Table 6.9 shows the computational complexity of the PSO
method, which is computed by:

cPSO =
(T2 − T1)

T0
(6.25)

where cPSO denotes the computational complexity of the PSO algorithm. If other EC
methods are used, it is only necessary to change the PSO algorithm to other methods.
Thus, we can compute complexity of any EC method based on (6.25).

In addition to the above computational complexity calculation methods, the
complexity of an EC method can be analyzed theoretically. Taking the PSO algo-
rithm as an example. Suppose that the complexity of the random number generator is
not considered, and only the addition, subtraction and multiplication computations
of the PSO algorithm are considered. The population size of the PSO algorithm is

236 6 Testing and Evaluation of Evolutionary Computing

Np, the dimension is D, and the number of generations of evolution is Ng. From
Eq. (5.8), it can be seen that 4D addition, subtraction and 4D multiplication opera-
tions are required for the velocity update of each particle. The position update for
each particle requires D addition operations from Eq. (5.9). Therefore, the number
of arithmetic operations required for each particle update is about 9D. In each gener-
ation, the PSO algorithm needs to update the position for each particle. At the end of
each generation, the PSO algorithm requires about 9DNp arithmetic operations. And
after all evolved generations, the PSO algorithm requires about 9DNpNg arithmetic
operations. Therefore, the computational complexity of the PSO algorithm is about
O(DNpNg) in theory.

Readers can do their own theoretical analysis of the computational complexity
of other EC methods such as GA and ACO. Most EC methods have a theoretical
computational complexity of at least O(DNpNg). Clearly, this conclusion may be
controversial. At least it is a scheme to analyze the complexity of EC methods.

Example 6.3 Suppose we use the DE algorithm to solve for the functions in the
CEC2020 test set with D = 10, 15 and 20. Please analyze the effect of the DE
algorithm.

Solution The CEC2020 test set has been introduced in Sect. 6.2. The DE algorithm
has been introduced in Sect. 5.6. The classical DE algorithm can solve continuous
optimization problems. In this example, we use the DE algorithm on the CEC2020
test set, and the results are given in Tables 6.10, 6.11 and 6.12.

Table 6.10 shows the results on CEC2020 test set with D = 10. Table 6.11 shows
the results on CEC2020 test set with D= 15. Table 6.12 shows the results on CEC2020
test set with D = 20. As can be seen from the tables, the DE algorithm is able to find
the optimal solution for the function f 1 in different dimensional cases. In addition,
although the optimal solution of function f 7 cannot be found, the DE algorithm
performs better than the PSO algorithm on this function.

Table 6.10 Results of the DE algorithm on the CEC2020 test set with D = 10
f Min. Max. Med. Mean. Std.

f 1 0.00 0.00 0.00 0.00 0.00

f 2 76.20 268.16 196.98 192.15 52.98

f 3 14.19 19.39 17.37 17.15 1.32

f 4 0.87 1.51 1.22 1.22 0.15

f 5 0.11 3.45 1.45 1.54 0.94

f 6 0.02 0.31 0.05 0.09 0.09

f 7 0.00 0.01 0.00 0.00 0.00

f 8 100.00 100.00 100.00 100.00 0.00

f 9 100.00 340.62 336.14 312.69 70.92

f 10 397.74 445.80 398.15 416.34 22.41

6.3 Evaluation of Continuous Optimization Problems 237

Table 6.11 Results of the DE algorithm on the CEC2020 test set with D = 15
f Min. Max. Med. Mean. Std.

f 1 0.00 0.00 0.00 0.00 0.00

f 2 157.24 609.03 375.16 363.04 118.15

f 3 20.93 30.06 27.01 26.84 1.86

f 4 1.99 2.81 2.47 2.45 0.21

f 5 50.26 107.77 75.69 75.11 12.46

f 6 0.31 7.41 0.68 0.84 1.23

f 7 0.35 1.59 0.66 0.69 0.25

f 8 100.00 100.00 100.00 100.00 0.00

f 9 389.68 390.40 389.68 389.72 0.14

f 10 400.00 400.00 400.00 400.00 0.00

Table 6.12 Results of the DE algorithm on the CEC2020 test set with D = 20
f Min. Max. Med. Mean. Std.

f 1 0.00 0.00 0.00 0.00 0.00

f 2 430.91 795.42 582.21 592.41 91.65

f 3 33.90 45.42 40.33 40.33 2.22

f 4 3.26 4.68 4.13 4.10 0.38

f 5 273.60 588.14 387.97 384.52 67.62

f 6 0.20 0.63 0.50 0.45 0.12

f 7 0.53 1.73 1.01 1.01 0.21

f 8 100.00 100.00 100.00 100.00 0.00

f 9 436.02 458.85 448.68 447.37 5.96

f 10 413.66 413.66 413.66 413.66 0.00

From Tables 6.10, 6.11 and 6.12, it can be seen that the standard deviation of the
DE algorithm on each function is not large. This indicates that the DE algorithm
has good stability, i.e., the optimal solutions found do not differ much when run
independently for many times. Even in solving some problems, it is only necessary
to run the method once to find the appropriate solution without repeatedly running
it many times.

238 6 Testing and Evaluation of Evolutionary Computing

6.4 Artificial Bee Colony Algorithm

In the Chap. 5, we introduced the GA, ACO, PSO and DE algorithms, all of which
are EC methods proposed before 2000. In this chapter, we will introduce the EC
methods proposed after 2000. In this section, we want to introduce the artificial bee
colony (ABC) algorithm and summarize the research related to the ABC algorithm.

Swarm intelligence (SI) is the urgent collective behavior of decentralized, self-
organizing systems. The ACO, ABC and PSO algorithms are all commonly used SI
methods. Obviously, the name of each algorithm indicates the source of inspiration
for the algorithm. SI systems usually consist of a group of individuals, and simulate
the behavior of a group of individuals. For example, the ACO algorithm simulates a
group of ants, and the individuals are ants; the PSO algorithm is a group of particles,
and the individuals are some kinds of particles; the ABC algorithm is a group of
bees, and the individuals are bees.

Next, we present the classical ABC algorithm, which was proposed by Karaboga
in 2005 and simulates the foraging behavior of a honeybee colony. It is one of the
most prominent methods in the field of bee-inspired SI methods.

The ABC algorithm contains three groups of artificial bees. They are employed
bees, onlooker bees and scout bees. As other SI methods, the ABC algorithm has
an initialization phase. After initialization, one cycle of the ABC algorithm includes
the employed bee phase, the onlooker bee phase and the scout bee phase, which are
described in detail below.

In the initialization phase of the ABC algorithm, a colony (population) of Np
solutions is created randomly, where Np denotes the population size. For the ABC
algorithm, the solution of the problem to be solved is compared to a food source,
which attracts bees to collect nectar and make honey. Accordingly, the value of the
fitness corresponding to the solution corresponds to the amount of nectar from one
food source. As with the minimization problem study, a small value of the function
implies a large amount of nectar.

In the employed bee phase, Np hired bees are sent out to search for food sources
with a 1:1 ratio of hired bees to food sources. Each hired bee flies out of the hive
to search for a food source. This has the advantage that the colony size is fixed and
conforms to the population configuration of the EC method. In the ABC algorithm, a
hired bee searches for more nectar around the relevant food source, and this behavior
is achieved by the following equation:

vi, j =
{
xi, j + ϕ

(
xi, j − xr1, j

)
, if j = j1

xi, j , otherwise
(6.26)

where vi,j, xi,j and xr1,j is the j-th element of vi, xi, and xr1, respectively; ϕ ∈ [− 1, 1]
is a random number. j1 ∈ [1, D] and r1 ∈ [1, Np] are random integers. vi is the newly
generated candidate solution. After evaluating vi, a greedy selection is performed
between vi and xi and the winner is stored as the new xi.

6.4 Artificial Bee Colony Algorithm 239

Algorithm 6.1 Pseudocode for the ABC algorithm

Number Pseudo-code of the ABC algorithm

1 /* initialization phase*/

2 For i = 1 to Np

3 For j = 1 to D
4 xi, j = x j,min + rand(0, 1) × (x j,max − x j,min

)
;

5 Evaluate xi, compute its fitness f i ti (i = 1, 2, …, Np)

6 Set iter = Np, limit = [limit1, limit2, . . . , limitNp] = [0, 0, …, 0]

7 While iter < MFE

8 /* employed bee phase*/

9 For i = 1 to Np

10 j1 = randInt(1, D);
11 Do r1 = randInt(1, Np); while(r1 = = i);
12 ϕi, j1 = rand(−1, 1);
13 For j = 1 to D

14 If j = = j1, vi, j = xi, j + ϕi, j1
(
xi, j − xr1, j

)
;

15 Else vi, j = xi, j ;
16 Evaluatevi , compute its fitness, set iter = iter + 1;
17 If f (vi) < f (xi)
18 Replace xi by vi ;

19 Replace f (xi) by f (vi), replace f i txi by f i tvi ;
20 limiti = 0;
21 Else limiti = limiti + 1;
22 /* onlooker bee phase */

23 Compute probability pi of food sources;

24 For i = 1 to Np

25 Use roulette wheel method to choose xr1 based on pi ;

26 j1 = randInt(1, D);
27 Do r2 = randInt(1, Np); While(r2 = = r1);
28 ϕi, j1 = rand(−1, 1);
29 For j = 1 to D

30 If j = = j1, vi, j = xr1, j + ϕi, j1
(
xr1, j − xr2, j

)
;

31 Else vi, j = xr1, j ;
32 Evaluate vi , compute its fitness, set iter = iter + 1;
33 If f (vi) < f (xr1)
34 Replace xr1 by vi ;

35 Replace f (xr1) by f (vi), replace f i txr1 by f i tvi ;
36 limitr1 = 0;

(continued)

240 6 Testing and Evaluation of Evolutionary Computing

(continued)

Number Pseudo-code of the ABC algorithm

37 Else limitr1 = limitr1 + 1;
38 /* scout bee phase */

39 For i = 1 to Np

40 If limiti > limit

41 For j = 1 to D

42 vi, j = x j,min + rand(0, 1) × (x j,max − x j,min
)
;

43 Evaluate xi , compute its fitness, set iter = iter + 1;
44 Replace xi by vi ;

45 Replace f (xi) by f (vi), replace f i txi by f i tvi ;
46 limiti = 0;

In the onlooker bee phase, a total of Np onlooker bees was dispatched. This
number was equal to the colony size in the employed bee phase. However, unlike the
hiring bee stage, the onlooker bees selected their food source based on their nectar
amount. A food source with a high fitness value attracted more onlooker bees; while
a food source with a low fitness value was less attractive or even unattractive to
the onlooker bees. This suggests that a good food source (high amount of nectar)
can attract multiple onlooker bees, while a bad food source (low amount of nectar)
can barely attract an onlooker bee. In the ABC algorithm, this behavior is achieved
by first calculating the probability value of each solution (food source); then the
solution is selected using a roulette wheel method. The probability value of solution
xi is calculated by the following equation:

pi = f i ti
∑Np

j=1 f i t j
(6.27)

where the value of the f i ti for xi is calculated by:

f i ti =
{
1/(1 + f (xi)), if f (xi) ≥ 0
1 + | f (xi)|, otherwise

(6.28)

After selecting a solution, the onlooker bee uses (6.26) to modify that solution.
A greedy selection is then performed between the newly generated solution and the
old one. The winner is stored as the new xi.

If a food source has been searched for a long time, its nectar amount will decrease
and it may be abandoned by the bees. In this case, the bee must fly out to find a new
food source. In the ABC algorithm, a predefined parameter called limit is introduced
to determine whether a food source should be abandoned or not. If a solution cannot
be further improved in a limited time, then it should be abandoned and the employed

6.4 Artificial Bee Colony Algorithm 241

bee becomes a scout bee. The discarded solution is replaced by a randomly generated
solution. This is the scout bee phase of the ABC algorithm.

The pseudo-code of the ABC algorithm is shown in Algorithm 6.1. In the algo-
rithm, rand(Min, Max) generates a uniformly distributed random number between
Min and Max; randInt(Min, Max) generates a uniformly distributed random integer
between Min and Max. Researchers have implemented the ABC algorithm in
several programming languages. The source code can be downloaded for free from
Karaboga’s personal website.

The performance of the ABC algorithm has been compared with other heuristic
algorithms such as the PSO, GA and DE algorithms. Simulation results show that the
ABC algorithm outperforms the above algorithms for some problems. In addition,
the ABC algorithm is also effective for large-scale problems.

Due to the success of the ABC algorithm, many researchers have tried to improve
its performance in recent years. Similar to the functional of the PSO algorithm,
Diwold et al. proposed to use the global optimal solution found so far to generate
new candidate solutions, called ABCgBest. Inspired by the PSO algorithm, Zhu et al.
proposed the GABC (Gbest-guided ABC) algorithm, which uses the information of
the global optimal solution to guide the search. Inspired by the DE algorithm, Gao
et al. proposed an improved ABC algorithm in which the bees search only around the
optimal solution of the previous iteration. Banharnsakun et al. proposed the “best-
so-far” ABC (BABC), which biases the direction of the solution toward the best
position to date. The above works attempt to speed up the search process of the ABC
algorithm by using the global optimal solution. However, the use of global optimal
solutions increases the exploitation pressure of the algorithm and has a high risk of
premature convergence.

Since the ABC algorithm does not use crossover operators like the GA or DE
algorithms, it is not very efficient to propagate good information between solutions.
Recently, some modifications have been made to the original ABC algorithm by
combining it with crossover operators like the GA, DE or Hooke-Jeeves pattern
search algorithms to remedy this situation. In addition, the ABC algorithm has been
combined with the agent model and the finite element method in order to search the
global optimum more efficiently.

The ABC algorithm has been applied to practical problems such as training of
neural networks, clustering, image segmentation, structural design, and inverse elec-
tromagnetic field problems. In recent years, the ABC algorithm has been extended
to solve multi-objective design optimization problems. A comprehensive review and
discussion of the ABC algorithm has also been conducted by researchers.

The ABC algorithm simulates the foraging behavior of honeybees. It is one of
the most prominent approaches in the field of bee-inspired methods. We observe
that the paradigm of the ABC algorithm involves two algorithm parameters (i.e., Np
and limit). Compared with the paradigm of the DE algorithm, the ABC algorithm
contains a smaller number of parameters. Thus, the ABC algorithm is also popular
among researchers, and interested readers can discover more variant methods based
on it.

242 6 Testing and Evaluation of Evolutionary Computing

Example 6.4 Suppose we use the ABC algorithm to solve for the functions in the
CEC2020 test set with D = 10, 15 and 20. Please analyze the effect of the ABC
algorithm.

Solution The CEC2020 test set has been introduced in Sect. 6.2. The ABC algorithm
can solve continuous optimization problems, and we use it to solve the functions in
the CEC2020 test set. The results on the test set are shown in Tables 6.13, 6.14 and
6.15, where Table 6.13 shows the results for functions with D = 10, Table 6.14 shows
the results for functions with D = 15, and Table 6.15 shows the results for functions
with D = 20.

From Tables 6.13, 6.13 and 6.15, it can be seen that the ABC algorithm has worse
results than the DE algorithm and the PSO algorithm on function f 5 and function
f 7. While the ABC algorithm has better results than the PSO algorithm on function
f 1, and the ABC algorithm has better results than the DE algorithm and the PSO

Table 6.13 Results of the ABC algorithm on CEC2020 test set with D = 10
f Min. Max. Med. Mean Std.

f 1 3.07 71.95 20.61 25.66 17.58

f 2 8.85 46.99 24.01 23.93 9.05

f 3 9.59 16.60 14.52 14.44 1.48

f 4 0.18 1.07 0.62 0.61 0.23

f 5 1475.77 68,732.30 14,463.95 19,220.44 16,100.46

f 6 0.44 1.95 1.11 1.15 0.39

f 7 305.01 5684.78 1173.59 1321.70 1053.18

f 8 7.52 33.80 25.19 24.39 6.27

f 9 31.27 100.00 54.79 61.81 20.93

f 10 116.24 181.37 135.48 138.26 17.15

Table 6.14 Results of the ABC algorithm on CEC2020 test set with D = 15
f Min. Max. Med. Mean Std.

f 1 49.73 514.58 230.36 241.34 131.24

f 2 4.15 123.33 22.07 28.92 24.30

f 3 15.43 19.72 18.35 18.23 1.05

f 4 0.28 0.83 0.60 0.61 0.15

f 5 4687.85 109,004.95 38,418.16 40,191.92 25,590.43

f 6 6.85 38.04 18.14 19.84 8.04

f 7 1713.00 26,334.04 6997.12 9080.88 6217.21

f 8 4.84 51.07 29.38 29.92 8.39

f 9 94.09 131.20 116.01 116.47 7.51

f 10 176.74 400.00 251.13 269.38 72.77

6.5 Fireworks Algorithm 243

Table 6.15 Results of the ABC algorithm on CEC2020 test set with D = 20
f Min. Max. Med. Mean Std.

f 1 0.52 20.28 5.33 6.39 4.51

f 2 2.35 13.14 6.71 7.29 2.60

f 3 22.03 24.34 23.15 23.16 0.67

f 4 0.36 1.06 0.83 0.77 0.19

f 5 40,078.49 151,126.43 84,534.70 87,954.17 29,422.54

f 6 0.36 0.99 0.73 0.71 0.14

f 7 2319.70 41,424.00 20,244.38 19,670.52 9740.16

f 8 53.53 100.00 79.22 80.46 11.18

f 9 70.67 104.01 102.53 100.52 7.50

f 10 399.49 400.16 399.83 399.83 0.17

algorithm on functions f 8, f 9 and f 10. This indicates that each of the three EC methods
has its own advantages and disadvantages. From this perspective, readers can try to
fuse these three algorithms, for example, using an integrated learning approach, to
obtain an improved algorithm with better performance on the CEC2020 test set.

6.5 Fireworks Algorithm

Fireworks Algorithm (FWA) is a SI optimization method [2]. The method is inspired
by the explosion of fireworks in the night sky. It generates sparks by simulating the
explosion of fireworks to illuminate a part of the night sky. The FWA was proposed
by Tan of Peking University in 2010 [3].

The flow of the FWA is shown in Fig. 6.5. In the fireworks algorithm, we need to
generate N random locations of fireworks in the search space. One firework corre-
sponds to a feasible solution of the problem. Based on the fitness, we can assign
resources to each firework and thus control the explosion behavior of the fireworks.
Each firework is assigned a blast radius and the number of sparks it can produce. Then,
each firework explodes, producing the corresponding number of sparks. A Gaussian
mutation operation is then applied to the generated sparks for a better search. The
FWA also has a selection operation to choose N new fireworks locations from the
three sets of feasible solutions: fireworks, exploding sparks, and Gaussian variant
sparks. The above steps are cycled until the algorithm terminates. The above steps
are the flow of the FWA, and we next describe in detail how each step is computed.

Assigning a radius to each firework that can explode, the blast radius of firework
i is calculated as follows:

Ri = R
fi − ymin + ε

∑N
j=1

(
f j − ymin + ε

) (6.29)

244 6 Testing and Evaluation of Evolutionary Computing

Fig. 6.5 Flow chart of the
fireworks algorithm

where R is the average blast radius, fi is the adaptation of the i-th firework, ymax is
the minimum value of the firework adaptation, and ε is the smallest value that the
computer can represent, which avoids numerical problems.

Assigning the number of sparks that can be produced to each firework, the number
of sparks that can be produced by firework i is calculated as follows:

Si = M
ymax − fi + ε

∑N
j=1

(
ymax − f j + ε

) (6.30)

where M is a constant that represents the total number of sparks and is the maximum
value of the fireworks adaptation. Besides (6.30), the number of sparks is additionally
limited by:

6.5 Fireworks Algorithm 245

Si =

⎧
⎨

⎩

round(aM), i f Si < aM
round(bM), i f Si > bM
round(Si), otherwise

, 0 < a < b < 1 (6.31)

where a and b are constants.
Every firework has the potential to produce sparks. The formula for the explosive

sparks produced by firework i is as follows:

xi = xi + Rirand(−1, 1) (6.32)

where Ri is the blast radius of the firework xi , which rand(−1, 1) is a uniformly
distributed random number between 1 and 1. It should be noted that in (6.32), a
number of dimensions are randomly selected from the D-dimensional search space
for each search, and not all dimensions are updated.

A number of sparks are selected for mutation from the exploding sparks. The
equation for the generation of Gaussian mutation sparks by spark i is as follows:

xi = xi N (1, 1) (6.33)

where N (1, 1) is a Gaussian distributed random number with mean 1 and variance
1. Note that N sparks are randomly selected from the exploded sparks for mutation.
An operation called Gaussian mutation of sparks, where the positions are scaled by
multiplying the original position by a Gaussian distributed random number. Gaussian
mutation is also performed by randomly selecting a number of dimensions from the
D-dimensional search space, and not all dimensions are updated.

If an exploding spark or a Gaussian variant spark gets a position that is beyond
the upper and lower bounds of the search space, it needs to be transformed into the
feasible region by the following equation:

xi = xlb + xi %(xub − xlb) (6.34)

where xlb is the lower bound of xi , the xub is upper bound of xi , and % indicates the
remainder operation.

The selection phase of the FWA is to select N new fireworks positions from three
sets of feasible solutions: fireworks, exploding sparks, and Gaussian variant sparks.
The probability of fireworks and sparks being selected is calculated as follows:

p(xi) =
R(xi)∑
R
(
x j
) (6.35)

where xi denotes a firework, explosive spark, or Gaussian variant spark, and R(xi)
denotes the sum distances of xi to other fireworks or sparks. Euclidean distances are
generally used here.

246 6 Testing and Evaluation of Evolutionary Computing

In the standard FWA, the default value of N is 5, the default value of R is 40, the
default value of M is 50, the default values of a and b are 0.04 and 0.8, respectively,
and the number of Gaussian variant sparks is 5. It can be seen that the FWA contains
six hyperparameters. The number of its hyperparameters is greater than that of the
GA, the PSO algorithm, the DE algorithm, and the ABC algorithm.

In recent years, researchers have proposed many optimization algorithms for SI.
In addition to the FWA (2010), the SI methods include the brain storm optimization
(BSO) algorithm (2011) [4], and the pigeon-inspired optimization (PIO) algorithm
(2014) [5]. The FWA is a SI optimization method that simulates the physics of lighting
fireworks. The BSO algorithm simulates the human group behavior and proposes a
SI optimization method. The PIO algorithm is a SI optimization method proposed
by simulating the biological phenomenon of pigeon population.

6.6 Research Progress of Evolutionary Computing

This section reviews the state-of-the-art research progress of evolutionary computing.
These researches are classified to seven categories. They are genetic algorithm, ant
colony optimization, particle swarm optimization, differential evolution, artificial
bee colony, fireworks algorithm and other EC methods [6, 7].

(1) genetic algorithm

With the exponential increase in the amount of data generated and processed daily
in machine learning and decision-making systems, data preprocessing has become
a key factor in building reliable and high-performance machine learning models.
One of the functions of preprocessing is to use feature selection method to reduce
variables; However, the processing time required for these methods is a major draw-
back. Mehanović et al. aimed to alleviate this problem by migrating the algorithm
to a MapReduce implementation suitable for parallelization on a large number of
commodity hardware units [8]. Hadoop was an open-source MapReduce library used
as a framework for implementing parallel genetic algorithms. The feature selection
method was applied to four datasets. The experimental results show that genetic algo-
rithm allows feature selection with enhanced randomness. Its parallelization reduces
the overall data preprocessing and allows a larger population, which in turn leads
to better feature selection. In practice, it has been shown that this implementation is
superior to existing feature selection methods.

Liang et al. proposed an image encryption algorithm based on Fibonacci Q-matrix
and genetic algorithm [9]. A new four-layer encryption framework with diffusion
perturbation diffusion optimization was adopted. The experimental results and secu-
rity analysis indicate that the algorithm not only has high security, but also has a
certain degree of robustness and real-time performance, which is suitable for practical
applications.

6.6 Research Progress of Evolutionary Computing 247

The clustering of mixed numerical and categorical attributes has attracted many
researchers due to its necessity in many practical applications. A key issue in clus-
tering mixed data is selecting appropriate distance metrics for each attribute type. In
addition, some current clustering methods are sensitive to initial solutions and are
prone to falling into local optima. Therefore, Nguyen et al. proposed a possibility
weighted fuzzy c-means based on local search genetic algorithm (LSGA-PWFCM)
for clustering mixed data [10]. The possibility weighted fuzzy c-means used object
clustering similarity measure to calculate the distance between two mixed attributes.
Genetic algorithm was used to find a set of optimal parameters and initial clustering
centroids for the possibility weighted fuzzy c-means algorithm. In order to avoid
local optima, a variable neighborhood based on local search was embedded in the
genetic algorithm. Based on some common datasets, the proposed LSGA-PWFCM
algorithm was compared with other benchmark algorithms. The experimental results
show that the LSGA-PWFCM method outperforms other algorithms on most test
datasets.

With the improvement of quality parameters, a series of Internet of Vehicles (IoV)
services have emerged. However, this field still faces some limitations, including
resource constraints and time response requirements. Abbasi et al. proposed an algo-
rithm that used genetic algorithm for fault and cost management during resource
allocation to services [11]. The main concept was to use genetic algorithm to select
resources for services. In the first step, the proposed method determined the priority
of the service and allocated resources based on these priorities. In the second step,
the proposed method ensured load balancing of the message transmission path and
avoided message failures. The performance of this method was evaluated using
various parameters and showed to be superior to other evolutionary computing
methods. In addition, the proposed method provides acceptable performance in terms
of service response time.

(2) ant colony optimization

Luo et al. proposed an improved ant colony optimization algorithm to solve the
problems of local optimization, slow convergence rate and low search efficiency
[12]. The initial pheromone with unequal distribution was constructed to avoid blind
search in early planning. The proposed algorithm used pseudo-random state transition
rules to select paths, calculated state transition probabilities based on the current
optimal solution and number of iterations, and adaptively adjusted the proportion
of determined or randomly selected paths. The results show that compared with
other ant colony optimization algorithms, the proposed algorithm improves global
optimal search ability and convergence rate under different robot mobile simulation
environments.

Laser engraving is an important tool for automatic drawing and three-dimension
(3D) printers. When laser engraving tasks become large and complex, the engraving
process will be very time-consuming. In order to improve the time and energy effi-
ciency of laser engraving, trajectory optimization of laser engraving was studied
by Wu et al. [13]. By transforming grayscale into halftone image, the trajectory of
laser engraving robot was modeled as a large-scale TSP. In order to solve the TSP,

248 6 Testing and Evaluation of Evolutionary Computing

a new two-layer ant colony optimization algorithm was proposed that combined
k-means, top-level ant colony system, and low-level ant colony system. The experi-
mental results show that compared with traditional engraving methods, the proposed
method can reduce laser engraving time by about 50%.

In order to improve the accuracy and stability of ACO algorithm, a dynamic
induced clustering ACO algorithm based on coevolutionary chain was proposed by
Yu et al. [14]. First, the distribution of pheromone left by ants in small data clustering
was divided according to the density to induce subsequent ants to choose, so as to
balance convergence rate and solution accuracy. Second, the coevolutionary chain
increased the diversity and stability of the algorithm through population coevolution
and link dimensionality reduction. Simulation experiments show that the roposed
ACO algorithm can effectively balance convergence rate and solution accuracy.

(3) particle swarm optimization

PSO is one of the most concerned meta-heuristic algorithms, which has remarkable
performance in solving various optimization problems. However, PSO algorithm
faces two main problems, namely slow convergence rate and local optimal capture.
Shami et al. proposed a new idea called velocity pausing, in which the particles
were supported by the third move option [15]. The velocity pausing allowed the
particles to move at the same speed as the last iteration. In order to avoid premature
convergence, velocity pausing particle swarm optimization (VPPSO) modified the
first term of the velocity equation. In addition, the population of VPPSO was divided
into two groups to maintain diversity. The performance of VPPSO was verified
on 43 benchmark functions and 4 practical engineering problems. According to
Wilcoxon rank-sum and Friedman test, VPPSO can significantly outperform the
seven prominent algorithms in most test functions in low dimensional and high-
dimensional situations.

Kiruthiga et al. proposed a new optimized deep learning (DL) network design for
time series load forecasting [16]. Firstly, the super parameters of DL were optimized
using Levy flight particle swarm optimization (LF-PSO) technology; Then, the opti-
mized DL model was used for load forecasting. The experimental and measured
results indicate that the proposed method is efficient for short-term load forecasting.

(4) differential evolution

Resource allocation is very important in wireless communication systems. Zhang
et al. investigated the spectrum allocation problem in a cellular network operating on
an orthogonal frequency-division multiple access (OFDMA) system [17]. Network
utility and fairness among all linked users were used to measure service quality in
cellular network. The spectrum allocation was represented as a maximization opti-
mization model. The authors proposed an adaptive differential evolution algorithm
based on fluctuation, denoted as WADE. The WADE algorithm adjusted the algo-
rithmic parameters through wave propagation. The simulation results show that the
WADE algorithm is more effective than other algorithms for allocating spectrum
resources in OFDMA system.

6.6 Research Progress of Evolutionary Computing 249

Fusion is a state-of-the-art technology for observing behavioral patterns from time
series data. The fusion model may become single model constraints due to feature
limitations. Kumar et al. proposed a three-stage fusion model to process time series
data [18]. In the first stage of integration, stock market inputs were combined with
established technical indicators of the stock market. In the second stage, autore-
gressive integrated moving average and long short-term memory were combined to
observe the linear and nonlinear characteristics of the final stock dataset. In the third
stage, an improved artificial bee colony using differential evolution algorithm was
studied for hyperparameter selection in the proposed model for stock market predic-
tion. The experiments on the historical datasets show that the proposed fusion model
outperforms the benchmark model.

(5) artificial bee colony

The IoT provides humanity with a beautiful and intelligent landscape. The connection
of various sensors and devices in the IoT will lead to significant energy consumption.
Therefore, it is imperative to study energy-saving methods. For wireless sensors in
an IoT, achieving sustainable operation through energy-saving methods is crucial
due to limited batteries. Zhang et al. studied an IoT network that included wireless
sensors and base stations [19]. Wireless power transmission technology was used
for providing battery charging, and charging vehicles were responsible for power
supply. The electricity and data transmission in the IoT network was represented as a
minimization optimization problem. A three-stage restart artificial bee colony method
was proposed by Zhang et al. for handling optimization problem. The experimental
results show that the proposed method can be used to minimize consumption in the
studied IoT network.

Breast cancer is the most common cancer among women, and if not diagnosed
early, it can lead to death. Early diagnosis plays a crucial role in reducing global
mortality rates. Computer assisted diagnosis (CAD) can overcome the shortcomings
of manual methods. The CAD system based on artificial neural network (ANN) is
optimized by the meta-heuristic algorithms. Stephan et al. combined the employee
bee stage of ABC with the bubble net attack method of whale optimization. Stephan
et al. proposed a hybrid algorithm of artificial bee colony and whale optimization
(HAW) [20]. The HAW algorithm was used for feature selection and parameter
optimization of ANN. Simulation results show that the HAW using elastic back-
propagation learning achieved higher accuracy than other methods.

The ABC algorithm has a drawback of imbalanced search behavior. Alrosan
et al. introduced a new ABC algorithm, dentoed as MeanABC [21]. The MeanABC
algorithm was based on the mean information of the previous best solution and
achievd a balance in search behavior by modifying the search equation. The experi-
mental results show that compared with other ABC variants, the MeanABC algorithm
enhances the performance of the original ABC in terms of faster convergence rate,
better solution quality and better robustness.

Satoh et al. utilized the ABC algorithm to solve the design problem of a discrete-
time stable unknown input estimator (UIE) based on parameter optimization [22].
First, a stability assurance design method for UIE was provided by Satoh et al.

250 6 Testing and Evaluation of Evolutionary Computing

Next, a new objective function was developed, which combines waveform-based
and norm-based performance standards to allow direct evaluation of the adverse
impact of interference on system performance. Finally, the proposed design method
was compared with the previous design method, using an objective function based
on estimated disturbances.

(6) fireworks algorithm

As the main components of large industrial rolling equipment, rolling bearings have
complex working conditions and are prone to malfunctions. The analysis of the
initial weak signal can be suitable for identifying the suboptimal health status of
industrial rolling equipment. Luo et al. proposed an offline suboptimal health recog-
nition algorithm based on refined composite multi-scale discrete entropy and extreme
learning machine optimized by improved FWA [23]. First, FWA was improved by
Cauchy mutation and adaptive dynamic explosion radius factor coefficients. Second,
the initial vibration signal was processed by the improved parameter optimized
maximum correlation kurtosis deconvolution. Finally, extreme learning machine
was combined with deep belief network. The number of hidden nodes was opti-
mized using the improved FWA. The simulation results show that the proposed
algorithm has higher suboptimal health recognition accuracy and has good industrial
application prospects.

In recent years, multimodal multi-objective optimization problems (MMOPs)
have received increasing attention. Their goal is to find a Pareto front and as many
equivalent Pareto optimal solutions as possible. Although some EC methods have
been proposed, they mainly focus on the convergence rate in the decision space and
ignore the diversity of solutions. Han et al. proposed a new multi-objective FWA
[24]. Han et al. extended the latest single target FWA to handle MMOPs. Then, they
incorporated adaptive strategies and special file guidance to update the location of
the sparks. The experimental results show that the proposed algorithm outperforms
comparative algorithms in solving MMOPs and imbalanced distance minimization
problems in CEC2019.

(7) other EC methods

In brain storm optimization (BSO) algorithm, convergence operations use clustering
strategies to group populations into multiple clusters, and divergence operations use
this clustering information to generate new individuals. However, this mechanism
is inefficient in regulating exploration and mining searches. Ma et al. analyzed the
main factors that affected the performance of BSO [25]. They proposed an orthogonal
learning framework to improve the learning mechanism of BSO. The experimental
results show that the proposed method is effective in optimizing complex functions.
It not only outperforms previous versions of the BSO algorithm, but also several
well-known orthogonal design-based algorithms.

Classification is one of the most classic problems in machine learning. Evolu-
tionary classification model is one of the methods to solve classification problems. In
recent years, the FWA and BSO algorithms have been used to implement evolutionary

References 251

classification models, and have achieved the desired results. However, existing evolu-
tionary classification models still have some shortcomings. The limited dataset makes
the experimental results not convincing enough. More importantly, the structure of the
evolutionary classification model is closely related to the dimensions of the dataset,
which may lead to poor classification performance. Therefore, Xue et al. modified the
structure of evolutionary classification models to improve classification performance
[26]. First, they introduced the concept of feature selection, and used different feature
subsets to construct the evolutionary classification model. Then, the evolutionary
classification model was implemented using the BSO algorithm. The simulation
results show that it is feasible to optimize the structure of evolutionary classification
model by introducing feature selection. In addition, the proposed method has better
classification performance than the original method.

For multiple unmanned aerial vehicles (UAV) performing aerial search and attack
missions, there is a trade-off between maximizing total benefits and minimizing
consumption while constraining effectiveness. Duan et al. proposed a dynamic
discrete pigeon-inspired optimization algorithm to handle cooperative search-attack
mission planning for UAV [27]. The proposed algorithm integrated centralized task
allocation and distributed path generation aspects of the problem. A solution accep-
tance strategy was proposed to avoid frequent task switching. Bayesian formulas
were used to construct and update probability maps to guide subsequent search move-
ments. A response threshold sigmoid model was used for target allocation during the
attack process. Numerical experiments have shown that the proposed method can
provide feasible solutions for multiple UAV.

Exercises

(1) The TSPCN test set include seven TSP problems. The test set has been intro-
duced in Sect. 6.1. Try to use GA, PSO, DE, ABC or other EC methods to solve
the TSPCN test set, and analyze the solutions obtained by different EC methods.

(2) Section 6.5 introduces the FWA algorithm. Try to use the FWA algorithm to
solve the CEC2020 test set, and analyze the performance of the FWA algorithm.

References

1. Yue CT, Price KV, Suganthan PN, Liang JJ, Ali MZ, Qu BY, Award NH, Biswas PP (2020)
Problem Definitions and evaluation Criteria for the CEC 2020 special session and competi-
tion on single objective bound constrained numerical optimization. Technical Report 201911,
Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China, Nanyang
Technological University, Singapore

2. Tan Y (2015) Fireworks algorithm: a novel swarm intelligence optimization method. Springer,
Berlin

3. Li J, Tan Y (2020) A comprehensive review of the fireworks algorithm. ACM Comput Survey
52:1–28

252 6 Testing and Evaluation of Evolutionary Computing

4. Shi Y (2011) Brain storm optimization algorithm. In: Tan Y, Shi Y, Chai Y, Wang G (eds)
Advances in swarm intelligence. ICSI 2011. Lecture notes in computer science, vol 6728.
Springer, Berlin, Heidelberg, pp 303–309

5. Duan H, Qiao P (2014) Pigeon-inspired optimization: a new swarm intelligence optimizer for
air robot path planning. Int J Intell Comput Cybern 7:24–37

6. Cheng S, Qin Q, Chen J et al (2016) Brain storm optimization algorithm: a review. Artif Intell
Rev 46:445–458

7. Duan H, Huo M, Shi Y (2020) Limit-cycle-based mutant multiobjective pigeon-inspired
optimization. IEEE Trans Evol Comput 24(5):948–959

8. Mehanović D,Kečo D, Kevrić J et al (2021) Feature selection using cloud-based parallel genetic
algorithm for intrusion detection data classification. Neural Comput Applic 33:11861–11873.
https://doi.org/10.1007/s00521-021-05871-5

9. Liang Z, Qin Q, Zhou C (2022) An image encryption algorithm based on Fibonacci Q-matrix
and genetic algorithm. Neural Comput Applic 34:19313–19341. https://doi.org/10.1007/s00
521-022-07493-x

10. Nguyen TPQ, Kuo RJ, Le MD et al (2022) Local search genetic algorithm-based possibilistic
weighted fuzzy c-means for clustering mixed numerical and categorical data. Neural Comput
Applic 34:18059–18074. https://doi.org/10.1007/s00521-022-07411-1

11. Abbasi S, Rahmani AM, Balador A, Sahafi A (2023) A fault-tolerant adaptive genetic algorithm
for service scheduling in internet of vehicles. Appl Soft Comput 143:110413. https://doi.org/
10.1016/j.asoc.2023.110413

12. Luo Q, Wang H, Zheng Y et al (2020) Research on path planning of mobile robot based on
improved ant colony algorithm. Neural Comput Applic 32:1555–1566. https://doi.org/10.1007/
s00521-019-04172-2

13. Wu Z, Wu J, Zhao M et al (2021) Two-layered ant colony system to improve engraving robot’s
efficiency based on a large-scale TSP model. Neural Comput Applic 33:6939–6949. https://
doi.org/10.1007/s00521-020-05468-4

14. Yu J, You X, Liu S (2022) Dynamically induced clustering ant colony algorithm based on a
coevolutionary chain. Knowl-Based Syst 251:109231. https://doi.org/10.1016/j.knosys.2022.
109231

15. Shami TM, Mirjalili S, Al-Eryani Y et al (2023) Velocity pausing particle swarm optimization:
a novel variant for global optimization. Neural Comput Applic 35:9193–9223. https://doi.org/
10.1007/s00521-022-08179-0

16. Kiruthiga D, Manikandan V (2023) Levy flight-particle swarm optimization-assisted BiLSTM
+ dropout deep learning model for short-term load forecasting. Neural Comput Applic
35:2679–2700. https://doi.org/10.1007/s00521-022-07751-y

17. Zhang X, Zhang X, Wu Z (2019) Spectrum allocation by wave based adaptive differential
evolution algorithm. Ad Hoc Netw 94:101969

18. Kumar R, Kumar P, Kumar Y (2022) Three stage fusion for effective time series forecasting
using Bi-LSTM-ARIMA and improved DE-ABC algorithm. Neural Comput Applic 34:18421–
18437. https://doi.org/10.1007/s00521-022-07431-x

19. Zhang X, Zhang X, Han L (2019) An energy efficient internet of things network using restart
artificial bee colony and wireless power transfer. IEEE Access 7:12686–12695

20. Stephan P, Stephan T, Kannan R et al (2021) A hybrid artificial bee colony with whale optimiza-
tion algorithm for improved breast cancer diagnosis. Neural Comput Applic 33:13667–13691.
https://doi.org/10.1007/s00521-021-05997-6

21. Alrosan A, Alomoush W, Norwawi N et al (2021) An improved artificial bee colony algorithm
based on mean best-guided approach for continuous optimization problems and real brain MRI
images segmentation. Neural Comput Applic 33:1671–1697. https://doi.org/10.1007/s00521-
020-05118-9

22. Satoh T, Nishizawa S, Nagase J et al (2023) Artificial bee colony algorithm-based design of
discrete-time stable unknown input estimator. Inf Sci 634:621–649. https://doi.org/10.1016/j.
ins.2023.03.130

https://doi.org/10.1007/s00521-021-05871-5
https://doi.org/10.1007/s00521-022-07493-x
https://doi.org/10.1007/s00521-022-07493-x
https://doi.org/10.1007/s00521-022-07411-1
https://doi.org/10.1016/j.asoc.2023.110413
https://doi.org/10.1016/j.asoc.2023.110413
https://doi.org/10.1007/s00521-019-04172-2
https://doi.org/10.1007/s00521-019-04172-2
https://doi.org/10.1007/s00521-020-05468-4
https://doi.org/10.1007/s00521-020-05468-4
https://doi.org/10.1016/j.knosys.2022.109231
https://doi.org/10.1016/j.knosys.2022.109231
https://doi.org/10.1007/s00521-022-08179-0
https://doi.org/10.1007/s00521-022-08179-0
https://doi.org/10.1007/s00521-022-07751-y
https://doi.org/10.1007/s00521-022-07431-x
https://doi.org/10.1007/s00521-021-05997-6
https://doi.org/10.1007/s00521-020-05118-9
https://doi.org/10.1007/s00521-020-05118-9
https://doi.org/10.1016/j.ins.2023.03.130
https://doi.org/10.1016/j.ins.2023.03.130

References 253

23. Luo H, He C, Zhou J, Zhang L (2021) Rolling bearing sub-health recognition via extreme
learning machine based on deep belief network optimized by improved fireworks. IEEE Access
9:42013–42026

24. Han S, Zhu K, Zhou M et al (2022) A novel multiobjective fireworks algorithm and its
applications to imbalanced distance minimization problems. IEEE/CAA J Automatica Sinica
9(8):1476–1489

25. Ma L, Cheng S, Shi Y (2021) Enhancing learning efficiency of brain storm optimization via
orthogonal learning design. IEEE Trans Syst Man Cybern Syst 51(1):6723–6742

26. Xue Y, Zhao Y, Slowik A (2021) Classification based on brain storm optimization with feature
selection. IEEE Access 9:16582–16590

27. Duan H, Zhao J, Deng Y, Shi Y, Ding X (2021) Dynamic discrete pigeon-inspired optimization
for multi-UAV cooperative search-attack mission planning. IEEE Trans Aerosp Electron Syst
57(1):706–720

	Preface
	Acknowledgments
	Contents
	1 Artificial Neural Network
	1.1 Artificial Neuron
	1.2 Overview of Artificial Neural Network
	1.3 Backpropagation Neural Network
	1.4 Hopfield Neural Network
	1.5 Competitive Neural Network
	1.6 Deep Neural Network
	References

	2 Convolutional Neural Network
	2.1 Overview of Convolutional Neural Network
	2.2 Neural Network Performance Evaluation
	2.3 Transfer Learning with Convolutional Neural Network
	2.4 Research Progress of Neural Network
	References

	3 Fuzzy Computing
	3.1 Overview of Fuzzy Computing
	3.2 Fuzzy Sets
	3.3 Fuzzy Pattern Recognition
	3.4 Fuzzy Clustering
	3.5 Fuzzy Inference
	3.6 Fuzzy Control System
	3.7 Fuzzy Logic Designer
	References

	4 Fuzzy Neural Network
	4.1 Overview of Fuzzy Neural Network
	4.2 Adaptive Fuzzy Neural Inference System
	4.3 Time Series Prediction
	4.4 Interval Type-2 Fuzzy Logic
	4.5 Fuzzy C-means Clustering
	4.6 Suburban Commuting Prediction Problem
	4.7 Research Progress of Fuzzy Computing
	References

	5 Evolutionary Computing
	5.1 Overview of Evolutionary Computing
	5.2 Simple Genetic Algorithm
	5.3 Genetic Algorithm for Travelling Salesman Problem
	5.4 Ant Colony Optimization Algorithm
	5.5 Particle Swarm Optimization Algorithm
	5.6 Differential Evolution Algorithm
	References

	6 Testing and Evaluation of Evolutionary Computing
	6.1 Test Set of Traveling Salesman Problem
	6.2 Test Set of Continuous Optimization Problem
	6.3 Evaluation of Continuous Optimization Problems
	6.4 Artificial Bee Colony Algorithm
	6.5 Fireworks Algorithm
	6.6 Research Progress of Evolutionary Computing
	References

