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Preface 

The speed of modern science and technology development is becoming faster and 
faster. The amount of new science and technology knowledge and information is 
rapidly increasing. A British scholar pointed out that the doubling cycle of human 
knowledge was 50 years in the nineteenth century, around 10 years in the first half 
of the twentieth century, and almost doubled every 3 years by the end of the 1980s. 
Recently, there are 13,000–14,000 papers being published daily worldwide. The 
continuous emergence of new theories, materials, processes, and methods has accel-
erated the pace of knowledge aging. In the past 30 years, the information produced 
by humans has exceeded the total information production of the past 5000 years. This 
background shows that we are in an era of information explosion. Thus, intelligent 
information processing becomes very important. 

This book is aimed for sophomore and junior students of university. We focus on 
intelligent information processing algorithms and their mathematical principles. The 
presentation of the algorithms is simplified without too many advanced mathematics 
and object-oriented programming skills. We believe that the concepts and algorithms 
of intelligent information processing can be learning. We also expect that students 
could go beyond trial-and-error play. Students can be able to use and apply intelligent 
information processing algorithms to solve problems in the real world. This book 
can serve as a bridge to the study of intelligent information processing at the senior 
undergraduate or postgraduate levels. 

The required background is a knowledge of advanced mathematics and program-
ming. From advanced mathematics, the knowledge should include linear algebra, 
calculus, and probability. From programming, the knowledge should include sequen-
tial structure, selection structure, and loop structure. MATLAB programming 
language is preferred to run the examples of this book. Python programming language 
is also popular in artificial intelligence field; however, the packages for running 
Python programs are sometimes hard to manage. Thus, we implement the exam-
ples by using MATLAB programming language. In the past course learning process, 
students were able to implement most examples themselves using Python program-
ming language. Please let us know if you implement the examples by using other 
programming language, and we will post a link on the book’s website.
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Chapter 1 describes the artificial neural network model and presents several 
commonly used neural networks. Chapter 2 presents convolutional neural network 
and specifies the metrics to evaluate the performance of neural networks. The research 
progress of neural networks is also given in Chap. 2. Chapter 3 presents an overview 
of fuzzy computing and specifies the typical problems that fuzzy computing can 
solve. Chapter 4 describes the fuzzy neural network model. Time series prediction, 
fuzzy clustering, and research progress of fuzzy computing are also introduced in 
Chap. 4. Chapter 5 presents an overview of evolutionary computing and specifies four 
evolutionary algorithms proposed before 2000. Chapter 6 gives a traveling salesman 
problem test set and a continuous optimization problem test set as well as the metrics 
to evaluate the performance of evolutionary algorithms. Chapter 6 also introduces 
two swarm intelligence algorithms proposed after 2000 and the research progress of 
evolutionary computing. 

Tianjin, China Xiu Zhang 
Xin Zhang 
Wei Wang
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Chapter 1 
Artificial Neural Network 

Abstract Artificial neural network is the core of deep learning algorithms and the 
forefront of artificial intelligence. Its inspiration comes from neurons within the 
human brain. Artificial neural network mimics the way biological neurons transmit 
signals to each other. It can thus achieve the goal of learning experiences. This 
chapter introduces artificial neuron, perceptron and basic model of artificial neural 
network. Moreover, the chapter also introduces backpropagation neural network, 
Hopfield neural network, competitive neural network. Finally, deep neural network 
is introduced in the chapter. Five examples are given to show the working principle 
of artificial neural network. The programs for implementing the examples are also 
provided for better understanding the model of artificial neural network. 

1.1 Artificial Neuron 

Artificial neural network (ANN) is a computational structure proposed by scientists 
based on neurobiological research to simulate biological processes and reflect certain 
properties of the human brain [1]. Artificial neural network is also known as neural 
network (NN). It is the abstraction, simplification and simulation of human brain 
nervous system. 

The nervous system of human brain is composed of neuron as the basic unit. 
In order to simulate the neural system of human brain, ANN needs to start from 
simulating the biological neuron of human brain, which is called artificial neuron. In 
ANN, artificial neurons are called processing units; from the network point of view, 
artificial neurons are also called nodes. 

The comparison of biological and artificial neurons is shown in Table 1.1. The  
artificial neuron simulates the biological neuron. Although the simulation could not 
be exactly the same, the main functional steps are the same [2]. First, the input 
layer of artificial neurons simulates the dendrites receiving signals from the external 
input. Second, the function of the cell body is simulated by a weighted summation, 
which means that each component of the received signal is multiplied by a certain 
weight and the sum is calculated. Thirdly, the activation function simulates axons 
controlling the weighted sum. When it reaches a certain threshold, it represents the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
X. Zhang et al., Intelligent Information Processing with Matlab, 
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2 1 Artificial Neural Network

excitation state; otherwise, it is the inhibition state. Finally, the output layer simulates 
the synapse to transmit the processed results. 

Artificial neuron processes data as follows: 

(1) Artificial neuron requires a set of inputs, denote inputs as (x1, …,  xi, …,  xn). 
The inputs are sent to artificial neuron, as shown in Fig. 1.1. In Fig.  1.1, both the 
input nodes and the artificial neuron are represented by circles, and the circle 
of the artificial neuron is filled with gray. It can be seen that artificial neuron is 
a multi-input structure. 

(2) Artificial neuron generally sums all the inputs together using a weighted summa-
tion method, as shown in Fig. 1.2. In Fig.  1.2, each input xi is assigned a weight 
wi. 

(3) Artificial neuron typically has an input bias, as shown in Fig. 1.3. In Fig.  1.3, 
the bias is passing an x0 to the artificial neuron and assigning it the weight w0, 
so that the bias is w0x0. In general, x0 is equal to − 1. Note that the bias is also 
called a deviation, and sometimes the bias is denoted by the symbol b, i.e., b = 
w0x0. For ease of expression into a matrix, w0x0 is used here to denote the bias.

After the above steps, the input obtained by the artificial neuron can be computed 
by:

Table 1.1 Comparison of biological neuron and artificial neuron 

Biological neuron Artificial neuron Function 

Dendrite Input layer Receive external input signal 

Cell body Weighted summation Filter and process signal 

Axon Activation function Set threshold to control signal output 

Synapse Output layer Output results after processing 

Fig. 1.1 The input of 
artificial neuron 

Fig. 1.2 The weighted 
summation of artificial 
neuron 
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Fig. 1.3 The input bias of 
artificial neuron

Fig. 1.4 The output of 
artificial neuron 

net = 
n∑

i=1 

wi xi + w0x0 (1.1) 

Using the notation of vectors, let denote W = (w0, w1, ..., wi , ..., wn)
T , and 

denote X = (x0, x1, ..., xi , ..., xn)T , then Eq. (1.1) can be rewritten as: 

net = W T X (1.2) 

(4) The output of the artificial neuron is calculated from the activation function, 
as shown in Fig. 1.4. In Fig.  1.4, the output function is denoted as f , which is 
a function of the input net, sometimes it is also called activation function, or 
transfer function. 

Let denote the output as y, then: 

y = f (net) = f
(
W T X

)
(1.3) 

It can be seen that the artificial neuron is a multiple-input single-output structure. 
The activation functions of artificial neuron generally take the range domain of 

[0, 1] or [− 1, 1]. The commonly used transfer functions are threshold activation 
function, nonlinear activation function, piecewise linear activation function, proba-
bilistic activation function, and rectified linear unit (ReLU) activation function. Next, 
the mathematical models of the transfer functions are introduced, and the indepen-
dent variable of the transfer functions is always denoted by x for the convenience of 
presentation, which is different from the input x of artificial neuron. 

Threshold-type activation function is expressed as:
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f (x) =
{
1, x ≥ 0 
0, x < 0 

(1.4) 

It can be seen that the output of the threshold-type activation function is either 1 
or 0. In fact, it is a step function. It can model the excitatory and inhibitory states of 
biological neurons. 

Nonlinear activation function is expressed as: 

f (x) = 1 

1 + e−x 
(1.5) 

The output of the activation function in Eq. (1.5) is a real number between 0 and 1. 
Sometimes it is also called Sigmoid function or S-type function. It has the advantage 
of being a monotonically differentiable function in the domain of definition. To obtain 
a number between − 1 and 1, the following activation function can be used: 

f (x) = 2 

1 + e−x 
− 1 = 

1 − e−x 

1 + e−x 
(1.6) 

Segmented linear activation functions: 

f (x) = 

⎧ 
⎨ 

⎩ 

0, x ≤ 0 
cx, 0 < x ≤ xc 
1, xc < x 

(1.7) 

In Eq. (1.7), c is a constant, and xc is another constant related to c. 
Probabilistic activation function: 

f (x) = 1 

1 + e−x/T 
(1.8) 

In Eq. (1.8), T is a temperature parameter. When the relationship between input 
and output is uncertain, we need to use a probabilistic activation function to describe 
the probability that the output state is 1. 

Linear rectification activation function: 

f (x) = max(0, x) =
{
x, x > 0 
0, x ≤ 0 

(1.9) 

The ReLU activation function is generally referred as the ramp function in algebra. 
Experiments show that the linear rectification activation function maximizes the 
screening ability of artificial neurons. In addition, the linear rectification activation 
function converges faster compared to the Sigmoid activation function.
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1.2 Overview of Artificial Neural Network 

Artificial neural network is composed of several artificial neurons and their connec-
tions. Artificial neural network is also called neural network. As shown in Fig. 1.5, 
the figure shows an artificial neural network composed of two artificial neurons. 

As can be seen from Fig. 1.5, the output of the first artificial neuron: 

y1 = f

(
3∑

i=1 

wi1xi + w01x01

)
(1.10) 

The output of the second artificial neuron: 

y2 = f

(
3∑

i=1 

wi2xi + w02x02

)
(1.11) 

It can be seen from (1.10) and (1.11) that the output formula of each neuron is 
similar. For convenience of expression, subscripts are often omitted and expressed 
in vector form. The output of the j-th neuron is as follows: 

y j = f
(
W T j X

)
(1.12) 

where X represents the input transmitted to all neurons, Wj represents the weight 
vector from the input to the j-th artificial neuron, and yj represents the output of the 
j-th artificial neuron.

Fig. 1.5 Artificial neural network formed by two artificial neurons 
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Fig. 1.6 Artificial neural network with hidden layer 

Generally, artificial neural network also contains a hidden layer, which is also 
composed of artificial neurons, as shown in Fig. 1.6. 

Figure 1.6 shows an artificial neural network with a hidden layer. From the input 
layer to the hidden layer, the input data is passed to each hidden layer of neurons. 
Similarly, from the hidden layer to the output layer, each artificial neuron of hidden 
layer will also pass information to each artificial neuron in the output layer. 

According to the shape of network topology structure, network structure can 
be classified into hierarchical structure and interconnection structure. The artificial 
neural network in Fig. 1.6 is a simple hierarchical structure. In addition, the hierar-
chical structure could have the output layer connected to the input layer structure, and 
the connections within the hidden layer or the output layer. Interconnection structure 
includes full interconnection structure, local interconnection structure and sparse 
interconnection structure. 

From the classification of information flow on the network, the network structure 
can be divided into feedforward neural network and feedback neural network. 

For hierarchical neural network, the number of levels can be divided into single-
layer neural network, shallow neural network and deep neural network. For example, 
the neural network in Fig. 1.5 is a single-layer neural network, while that in Fig. 1.6 
is a shallow neural network, also known as a common neural network. It is easy to 
see that the functional of the input layer node is only to transmit the signal to the next 
layer node without designing other operations, so the number of layers of the neural 
network does not include the input layer. The deep neural network generally refers 
to the neural network with more than or equal to 3 layers. For a deep neural network, 
it contains at least two hidden layers, excluding the input layer and the output layer. 

To make an artificial neural network work, the weights of each connection in the 
network need to be determined, for example, Wj in (1.12). Once the weight is deter-
mined, the corresponding output yj can be calculated. In artificial neural network, 
the determination of weights is called learning, that is, the learning of artificial
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neural network is to determine the weights in the network. Next, we introduce some 
commonly used learning methods. 

Learning method is able to reflect the intelligence characteristics of artificial 
neural network. Without learning algorithm, artificial neural network will lose the 
ability of self-organization, self-adaptation and self-learning. The learning process 
of artificial neural network is its training process. The so-called training is to adjust 
the connection weights between neurons in a certain way during the input of the 
sample set composed of sample vectors into the artificial neural network, so that the 
network can store the connotation of the sample set in the form of connection weight 
matrix. At last, the network can give appropriate output when data is input. 

At present, there are many kinds of neural network learning methods. According 
to whether there is supervised signal or not, learning methods can be divided into 
supervised learning, unsupervised learning and reinforcement learning. Note that 
supervised signals are also known as teacher signals, so supervised learning is known 
as teacher learning and unsupervised learning is known as teacher-free learning. 
Reinforcement learning is also known as evaluative learning. In addition, there is 
no strict unified standard for the classification of learning methods. Some scholars 
distinguish learning methods from training methods, while some scholars distinguish 
learning methods from learning modes. We can distinguish the learning methods 
from the format of the dataset, as shown in Table 1.2. As can be seen from the table, 
the format of the dataset required for unsupervised learning is the simplest, which is 
simply to transmit the input signal to the neural network. Supervised learning requires 
knowing the input of a signal and its corresponding real output. Reinforcement 
learning requires knowing the input of the signal and the actual output corresponding 
to some of the input, and in addition, rating the output. 

In supervised learning, the output of the network is compared with the desired 
output, and the weights of the network are adjusted according to the difference 
between the two, ultimately making the difference smaller. Supervised learning 
means that there is teacher learning. It is assumed that both teachers and the neural 
network have to make judgments on training vectors (i.e., examples) extracted from 
the surrounding environment at the same time, and teachers can provide expected 
responses for the neural network according to some knowledge they have mastered. 

There will be some difference between the output of neural network and the real 
output, which is generally called error. The error can be expressed by a function, so 
as to measure the error generated by the whole neural network. This function is also 
called loss function, sometimes called cost function, objective function, etc. Common 
loss functions include square loss function, logarithmic loss function, cross entropy

Table 1.2 Learning methods and the format of datasets required 

Learning method Dataset format 

Supervised learning Input and output of neural network 

Unsupervised learning Neural network input 

Reinforcement learning Neural network input, partial output and the associated level 
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loss function, etc. The value of these loss functions is generally non-negative. The 
larger the value of the loss function is, the larger the error of the neural network will 
be, and the worse the ability of the neural network to deal with the problem. 

Figure 1.7 is a neural network diagram of supervised learning. The weight param-
eters of neural network can be adjusted under the comprehensive influence of training 
vector and error signal. The error signal can be defined as the difference between 
the predicted output and the real output of the neural network. This adjustment can 
be carried out gradually and repeatedly, and the ultimate goal is to make the neural 
network simulate the teacher signal. In this way, the teacher’s knowledge of the envi-
ronment can be transferred to the neural network through training. When meeting 
certain conditions, the teacher signal can be excluded and the network can cope with 
the environment completely autonomously. 

Figure 1.8 is a neural network diagram of unsupervised learning. In the teacher-
free learning mode, after the input mode enters the network, the network automati-
cally adjusts the weight according to pre-set rules (e.g. competition rules), so that the 
network finally has the function of pattern classification. In the unsupervised learning, 
there is no teacher monitoring the learning process, that is, the neural network has 
no examples to learn from. 

Unsupervised learning can be divided into two categories: self-organized learning 
and unsupervised competitive learning. 

In the learning process of artificial neural network, the change of weight can be 
expressed as follows:

ΔW j = ηr
(
W j (t), X (t), d j (t)

)
X (t) (1.13)

Fig. 1.7 Neural network with supervised learning 

Fig. 1.8 Neural network with unsupervised learning 
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where, t is the time, also can be understood as the t-th iteration, η is a positive number, 
known as the learning constant, η determines the learning rate. 

For the discrete time adjustment, Eq. (1.13) is:  

W j (t + 1) = W j + ηr
(
W j (t), X (t), d j (t)

)
X(t) (1.14) 

Different learning rules of r
(
W j (t), X (t), d j (t)

)
have different definitions, thus 

forming a variety of neural network. Neural network learning rules are as follows: 

(1) Hebb learning rule 

When neuron i and neuron j are excited at the same time, the connection strength of 
the two should increase. When two neurons are connected, it is understood that both 
the input and the output of the neuron are positive. 

Hebb learning rule is a kind of pure feedforward, unsupervised learning, which 
still plays an important role in various neural network models. The learning signal 
simply equals to the output of the neuron: 

r = f
(
W T j X

)
(1.15) 

The weight vector is adjusted by:

ΔW j = η f
(
W T j X

)
X (1.16) 

Hebb learning rule requires pre-set weight saturation values to prevent uncon-
strained growth of weights when the input and output are always positive and 
negative. Weight is initialized by assigning a small random number near zero to 
W j (0). 

(2) Winner-take-all learning rule 

Winner-Take-All is a competitive learning rule for unsupervised learning in which a 
layer of the network is identified as a competitive layer, and for a particular input X, 
all p neurons in the competitive layer have output responses, where the neuron with 
the largest response value j* is the neuron that wins in the competition. The rule is 
expressed as: 

W T j∗ X = max 
i=1,2,....,p 

(W T i X ) (1.17) 

Only the winning neuron has the right to adjust its weight vector W ∗ 
j by:

ΔW j∗ = η
(
X − W j∗

)
, η  ∈ (0, 1] (1.18) 

Since a larger dot product of two vectors indicates a closer approximation, the 
adjustment results in making W ∗ 

j further close to the current input X, so that the next 
time an input pattern similar to X appears, the neuron that won last time is more likely
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to win, and thus the weight vector corresponding to each neuron in the competitive 
layer is gradually adjusted to the clustering center of the input sample space. 

Sometimes a winning neighborhood is defined with the winning nerve as the 
center. In addition to the winning neuron, other neurons in the neighborhood also 
adjust their weights to varying degrees. Weights are generally initialized to arbitrary 
values and normalized. 

Next, we introduce perceptron, which is a kind of feedforward neural network. 
Perceptron is a hierarchical neural network which simulates the environment infor-
mation received by human vision and transmits the information by nerve impulse. 
Some common feedforward neural networks, such as adaptive linear neural networks, 
backpropagation neural networks and radial basis function neural networks, belong 
to perceptron in structure. The structure and function of single-layer perceptron are 
simple, and the network itself has its inherent limitations, which are overcome by the 
proposed improved multi-layer perceptron network and the corresponding learning 
rules. 

A single layer perceptron is a forward network with one layer of neurons and 
a threshold activation function. This forward network has no feedback connections 
or intra-layer connections and outputs only one node. The single-layer perceptron 
network model is shown in Fig. 1.4. 

In the single-layer perceptron, the net input can be obtained as: 

net = 
n∑

i=0 

wi xi (1.19) 

In a single-layer perceptron, the predicted output is: 

o j = sgn
(
net j − Tj

) = sgn

(
n∑

i=0 

wi xi

)
= W T X (1.20) 

A single-layer perceptron can do classification. The classification principle is to 
store the classification knowledge in the weight vector (including threshold) of the 
perceptron. The classification decision determined by the weight vector divides the 
input modes into two categories, so as to realize the purpose of classifying the input 
vector. 

Example 1.1 Suppose the input data has 4 sample points, namely (0, 0), (0, 1), (1, 0) 
and (1, 1). The corresponding real output of the four sample points is 0, 1, 1, 1. Since 
the output values are only 0 and 1, you can see that this is a binary classification 
problem. This problem is simulated in Matlab. 

The specific programs are as follows: 

x = [0  0 1 1;  0 1 0 1];  
t = [0 1 1 1];  
graduate School 
net = perceptron(‘hardlim’, ‘learnp’);
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net = configure(net,x,t); 
net.iw{1,1} = [-1.5 -0.5]; 
net.b{1} = 1; 
figure(1); 
plotpv(x, t); 
hold on; box on; grid on; 
plotpc(net.iw{1,1},net.b{1}). 
xlabel(‘×1’); ylabel(‘×2’); title(‘’). 
hold off; 
net = train(net,x,t); 
view(net) 
y = net(x); 
figure(2); 
plotpv(x, t); 
hold on; box on; grid on; 
plotpc(net.iw{1,1}, net.b{1}) 
xlabel(‘×1’); ylabel(‘×2’); title(‘’). 
hold off; 

In this example, not only a single-layer perceptron is trained, but also the classifi-
cation renderings of the untrained perceptron and the trained perceptron are drawn, 
as shown in Figs. 1.9 and 1.10. In these two figures, the circle and the plus sign 
respectively represent two types of sample points, and the straight line in the graph 
is the dividing line determined by the single-layer perceptron. 

Fig. 1.9 Classification results of untrained single-layer perceptron
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Fig. 1.10 Classification results of trained single-layer perceptron 

As can be seen from Fig. 1.9, if the initial weight is arbitrarily set, the single-layer 
perceptron cannot correctly classify the input sample. As can be seen from Fig. 1.10, 
the single-layer perceptron can correctly classify input samples after training. 

The model of the multi-layer perceptron network (MLP) is shown in Fig. 1.11. 
Besides the output layer, the multi-layer perceptron also has a mid-layer, called the 
hidden layer. 

Fig. 1.11 Multi-layer perceptron network model
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In the MLP network, the relationship between input and hidden layer processing 
unit is the same as that in single-layer perceptron network. Each hidden layer 
processing unit determines the position of a decision line through weight adjust-
ment, and then obtains convex domain through weighted sum to completely separate 
the two types of data. 

Neural network is to learn the input data, constantly adjust the weight value, so 
that the loss between the output of neural network and the real output is less and 
less, this process is called neural network training, or training a neural network. For 
the trained neural network, the new input data is transmitted to the neural network, 
so as to calculate the output of the neural network, this process is called prediction, 
or the prediction of the neural network. When a neural network is trained with little 
error on the trained input data and great error on the new data, this situation is called 
overfitting of the neural network. If a neural network has a large error in the trained 
input data after training, it will generally have a large error in the prediction, which 
is called neural network underfitting. 

Both underfitting and overfitting are unsatisfactory, so training a neural network 
model needs to consider both cases and make a good trade-off. When a neural network 
predicts new data, that is, it judges the output brought by the new input, which is 
called generalization of neural network. The new data is also called the test data. The 
generalization ability of a neural network is what we are most concerned about. We 
always hope that the obtained neural network model has good generalization ability. 
Researchers often use regularization method to enhance the generalization ability of 
neural networks. 

In training, the purpose of neural network is to minimize the error, and in gener-
alization, the purpose is to minimize the generalization error. This problem with 
the smallest error is the problem of finding the optimal weight, which is called 
the optimization problem in mathematics. From this point of view, the learning of 
neural network is to solve the optimization problem, so the optimization problem 
research is also very helpful. The commonly used optimization methods include 
gradient descent, random gradient descent, batch gradient descent, etc. Sometimes 
these methods are called traditional optimization methods. At the other end of the 
spectrum is evolutionary computing, or intelligent optimization. The evolutionary 
computing approach is described in a later chapter. 

1.3 Backpropagation Neural Network 

Backpropagation (BP) neural network, also known as BP neural network, belongs to 
feedforward neural network like perceptron. Different from perceptron, BP neural 
network adopts weight learning algorithm of backpropagation. The error backprop-
agation learning algorithm of BP neural network was proposed by Rumelhart and 
McClelland in 1985 [1–3]. When input data in the input layer, BP neural network 
transmits information to the output layer through the hidden layer. The results of the 
output layer were compared with the true results, then the error could be computed.
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The transmission direction become from the output layer to the input layer. Each 
layer could modify the weight, and finally learn a group of good weight. 

Theoretically, when BP neural network adopts nonlinear differentiable activation 
function, such as Sigmoid function, it can approximate any nonlinear function, so 
BP neural network can effectively solve a variety of nonlinear problems. 

The flow chart of backpropagation neural network is shown in Fig. 1.12. The first 
step is the preparation of the dataset. For problems with supervised learning, the 
dataset needs to include input X and real output y. The output is sometimes called the 
label. The second step is the initialization of the neural network. The weights in the 
neural network are randomly initialized. The parameters of neural network training, 
such as learning rate in learning rules, also need to be initialized. In neural network, 
other parameters besides weights are sometimes called hyperparameters, which have 
certain influence on the learning ability and generalization ability of neural network. 
Hyperparameters are usually set by experience, and some scholars have studied the 
setting of hyperparameters. The third step is to calculate the output and error of the 
neural network. According to the weight in the neural network, when the data is 
transferred from the input layer to the output layer, the output can be calculated. The 
output of the neural network is compared with the real output, and the error can be 
calculated. The fourth step is error backpropagation. After the error is calculated, 
the weight value is updated from the output layer forward layer by layer until the 
input layer ends. The fifth step is to judge whether the learning of the neural network 
terminates or not. The termination condition can be a pre-set number of iterations, 
or the loss function can reach a small value. If there is no termination, go back to 
step 3 and continue the iteration; If terminated, the learned neural network model is 
output.

As mentioned above, the learning of neural network is a process of adjusting 
weights to reduce the error between the predicted output and the real output of 
the network. The error between the network predicted output and the real output 
is generally measured by loss function. The common loss functions in BP neural 
network are square loss function and cross entropy loss function. The expression of 
the square loss function is: 

L(y) = (o − y)2 (1.21) 

where L(y) represents the loss function, o represents the real output, and y represents 
the network predicted output. 

It can be seen from the formula that the square loss function is the square of the 
error between the network predicted output and the real output. If they are the same, 
the error is 0; If they are different, the error is greater than 0, and the loss function 
is proportional to the error. It should be pointed out that the squared loss function is 
an error measure often used in early neural network research. The learning rules of 
backpropagation are also derived from the square loss function. 

The expression of the cross-entropy loss function is: 

L(y) = −oln(y) − (1 − o)ln(1 − y) (1.22)
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Fig. 1.12 Training process 
of backpropagation neural 
network

where ln(y) denotes the natural logarithm function. For the binary classification 
problem, the value of the real output is either 0 or 1. When o = 1, the loss function 
in the above equation is equivalent to −ln(y), at which point the error increases and 
−ln(y) tends to positive infinity as y tends to 0, while the error decreases and −ln(y) 
tends to 0 as y tends to 1. When o = 0, the loss function in the above equation is 
equivalent to −ln(1 − y), when y tends to 0, the error decreases and −ln(1 − y) 
tends to 0; while when y tends to 1, the error increases and −ln(y) tends to positive 
infinity. This also shows that the cross-entropy loss function is also proportional to 
the error, and the cross-entropy loss function is more sensitive to the error than the 
square loss function, i.e., the cross-entropy loss function increases faster than the 
squared loss function when the error increases. 

Through the simulation analysis of the researchers, it is found that the cross-
entropy loss function is better for the classification of supervised learning. In other 
words, when training the back-propagation neural network, if you choose between 
the square loss function and the cross-entropy loss function, the cross-entropy loss
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function is recommended. For the regression problem in supervised learning, the 
square loss function learning rule is recommended. 

In addition, the purpose of learning rules of neural networks is to reduce the 
error between network output and real output, that is, to minimize the error, which 
involves the optimization theory in operations research. For example, for the square 
loss function, we can get the optimization problem: 

min L(y) = (o − y)2 

s.t. y = f
(
W T X

) (1.23) 

where y is calculated from the weight W of the neural network and the samples 
X of the training set, while X is known and the weights W are unknown and need 
to be learned to be determined. This means that the independent variable (1.23) 
is actually the weight W, which is an optimization model. As mentioned before, 
machine learning has the problem of overfitting, and the regularization method can 
solve this problem to some extent. The regularization method is to add the weights 
to the loss function, whose expression is: 

min L(y) = (o − y)2 + 1 2 λ∥W∥2 
s.t. y = f

(
W T X

) (1.24) 

One of them is λ a parameter to regulate the proportion of errors and weights in 
the loss function, and the 1/2 in the expression is introduced for the simplicity of the 
expression after the derivative is found. 

By comparing model (1.23) and model (1.24), it can be seen that the loss function 
is small enough only when the error and weight are reduced in model (1.24) with 
regular term added. Conversely, if the error and weight do not decrease, the loss 
function cannot approach 0. We will not expand on the optimization model theory 
and its solution, interested readers can refer to the relevant books. 

In the backpropagation method, we know that the error of the output layer is 
reversely transmitted to the hidden layer. The error of the hidden layer is calculated 
by reverse transmission of the error of the output layer. In the calculation, the same 
connection weight is used to deal with it. In turn, the error can be transmitted to 
the hidden layer after the input layer, which realizes the weight adjustment of the 
whole neural network. The backpropagation method is very important, and it is also 
commonly used in deep learning. 

With a trained neural network model, new input data can be predicted. Usually, 
a certain amount of data is required for training, that is, the data set contains many 
samples, so the training of neural network generally takes some time. In the predic-
tion, it only needs to be passed from the input layer to the output layer, and all kinds 
of weights are determined. Compared with the training, the prediction takes a very 
short time. Therefore, the neural network model has a good application prospect. 

Example 1.2 The dataset for this example comes from the UCI machine learning 
database and is about monitoring Coronavirus disease (COVID-19). This problem
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belongs to supervised learning. The data set includes 14 samples, each of which has 
7 attributes, and the data set has 3 kinds of labels. Matlab is used to establish the BP 
neural network program. After training, all samples are predicted and the prediction 
accuracy is output. 

This problem is simulated in Matlab, and the programs are as follows: 

P = [ 1 1 1 1 1 -1 -1  
1 1 -1 1 1 -1 -1  
1 1 1 1 -1 1 -1  
1 1 -1 1 -1  1 -1  
1 -1 -1 -1 -1 -1 1  
1 1 1 -1 -1 -1 1 
1 1 -1 -1 -1 -1 1  
1 1 1 1 -1 -1 -1  
1 -1 -1 1 1 -1 -1
-1 1 -1 1 1 -1 -1  
1 -1 -1 1 -1 1 -1
-1 1 -1 1 -1 1 -1
-1 1 -1 -1 -1 -1 1
-1 -1 -1 -1 -1 -1 1]’; 

T = [1 1 1 1 1 1 1 1 2 2 2 2 2 3];  
hiddenLayerSize = [10, 10]; 
net = feedforwardnet(hiddenLayerSize); 
net.numLayers. 
net.layers{1}.transferFcn = ‘tansig’; 
net.layers{2}.transferFcn = ‘logsig’; 
net.trainFcn = ‘traingd’; 
net.trainParam.goal = 0.01; 
net.trainParam.lr = 0.1; 
net.trainParam.showWindow = false; 
[net, tr] = train(net, P, T); 
o = sim(net, P); 
o = round(o); 
[T; o] 
figure1 = figure(1); 
axes1 = axes(‘Parent’,figure1); 
hold(axes1,‘on’); 
box(axes1,‘on’); 
grid(axes1,‘on’); 
plot(T, ‘d’, ‘MarkerSize’,10,‘LineWidth’,2,‘LineStyle’,‘none’); 
plot(o, ‘*’, ‘MarkerSize’,10,‘LineWidth’,2,‘LineStyle’,‘none’); 
hold(axes1,‘off’); 
set(axes1,‘FontSize’,14); 
print(‘Fig’, ‘-dpng’, ‘-r600’)
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Fig. 1.13 Problem of COVID-19 prediction solved by BP neural network 

The running result of this example is shown in Fig. 1.13, where the diamond is the 
real output and the asterisk is the output predicted by the BP neural network. As can be 
seen from the figure, for 14 samples in the data set, the trained BP neural network can 
correctly predict the output results. Due to the use of random initialization weights, 
so each independent run of the program may not be able to obtain the same results, 
sometimes the prediction becomes inaccurate. 

As can be seen from the above example problems, the number of input layer and 
output layer nodes of BP neural network depends on the training samples. That is to 
say, after the training sample of a certain problem is obtained, the number of input 
layer nodes and output layer nodes of BP neural network can be determined. 

BP neural network is also a feedforward neural network. Generally speaking, 
the structural design of multilayer feedforward neural network needs to solve two 
problems. One is how many hidden layers should be designed, and the other is 
how many nodes should be designed for each hidden layer. For these two problems, 
there is no universal theoretical guidance, but researchers have accumulated a lot of 
experience through a lot of practice. 

(1) Design of the number of hidden layers. 
A feedforward neural network with a single hidden layer can approximate 
any continuous function. Two hidden layers are needed only when learning 
discontinuous functions. The experience of network design is to give priority 
to designing a hidden layer. When a hidden layer has a large number of hidden 
nodes, but cannot improve the network performance, you can consider adding
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another hidden layer. Another rule of thumb is that when two hiding layers are 
used, designing more hidden nodes in the first hiding layer and fewer hidden 
nodes in the second hiding layer is beneficial to improve network performance. 

(2) Design of the number of hidden nodes. 
Trial-and-error method is a common method to determine the optimum number 
of hidden nodes. In the design of the network, a small number of hidden nodes 
can be set first, and then gradually increase the number of hidden nodes. The 
same sample set is used for training, from which the number of hidden nodes 
corresponding to the minimum error can be determined. In the trial-and-error 
method, some empirical formulas can be used to determine the number of hidden 
nodes. The number of hidden nodes calculated by these formulas is only a 
rough estimate, which can be used as the initial value of trial-and-error method. 
Another method of trial-and-error method is to set more hidden nodes at first. 
In the training process, the weight with little influence will gradually decline 
to zero, so the corresponding nodes can be removed, and the remaining is the 
optimal number of hidden nodes. 

1.4 Hopfield Neural Network 

Hopfield neural network is a feedback neural network proposed by Hopfield and 
Tank in 1985. The design of the network follows the principles of physics, and each 
artificial neuron is composed of an operational amplifier and a capacitor resistor 
element [1–4]. The input signal is added to each artificial neuron in the form of 
voltage, and each neuron is connected with each other. After receiving the voltage 
signal, after a period of time, the current and voltage of each part of the network 
reach a certain stable state. At this time, the output voltage of the network is the 
answer to the problem. From the point of view of system, Hopfield neural network 
is a kind of static nonlinear mapping, which combines simple nonlinear mapping to 
achieve complex nonlinear processing capability. 

Hopfield neural network can be divided into discrete and continuous types 
according to the input sample processing or activation function. The discrete Hopfield 
neural network is suitable for the case where the input sample is binary logic; while 
the continuous Hopfield neural network is suitable for the case where the input 
sample is analog. Discrete Hopfield neural network activation function is a δ type 
function (e.g., symbol function), commonly used in associative memory problems; 
The activation function of continuous Hopfield neural network is S type function 
(e.g., Sigmoid function), which is generally used for optimization problems. 

Discrete Hopfield neural network (DHNN) is a kind of feedback type neural 
network. As shown in Fig. 1.14, it is a single-layer neural network. Its feature is that 
the output of each artificial neuron is fed back to all neurons except its own through 
connection weight, so as to realize that the output of each neuron can be controlled 
by the output of all neurons except its own, and the output of each neuron can restrict 
each other.
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Fig. 1.14 Topology of discrete Hopfield neural network 

The input of DHNN is the initial state value of the network, denoted as X(0) = 
[x1(0), x2(0), …, xn(0)]T. The output of DHNN is the output value of all neuron 
states, denoted by X = [x1, x2, …,  xn]T. The connection weight of artificial neuron 
xi to xj is denoted as wij, that is, the output of xi is fed back to neuron xj as input. 
Each neuron has a threshold bj. 

Under the excitation of the outside world, DHNN enters the dynamic evolution 
process from the initial state, and the state of each neuron is constantly changing. 
DHNN usually uses the sign function as the activation function, and the net input of 
artificial neuron xj is: 

net j = 
n∑

i=0

(
wi j  xi − b j

)
, j = 1, 2, . . . ,  n (1.25) 

The output of artificial neuron xj is: 

f
(
net j

) = sgn
(
net j

) =
{

1, net j ≥ 0, 
−1, net j < 0, 

j = 1, 2, . . . ,  n (1.26) 

In general, DHNN has wii = 0 and wij = wii. When DHNN reaches stability, the 
state of each neuron no longer changes, and the steady state at this time is the output 
of DHNN. If the network output of DHNN at moment t is denoted as X(t), the output 
of DHNN in the steady state is limt→∞ X(t). 

DHNN works in two ways: asynchronous mode and synchronous mode. The 
asynchronous mode is a serial mode in which only one neuron at a time adjusts its 
state according to (1.26) while the DHNN is running, and the state of other neurons 
remains the same. When adjusting the state of neurons, they can be adjusted in some
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prescribed order, or they can be randomly selected for adjustment. Synchronous 
mode is a parallel mode in which all neurons adjust their state simultaneously while 
the DHNN is running. 

DHNN can store a number of predetermined stable states, that is, the value of 
the input. When it runs, an X(0) is applied to the network, and the network will 
feed back the output as the input next time. After several iterations, under certain 
preconditions, DHNN will finally stabilize at the pre-set stable point. X(0) is known  
as the initial activation vector of DHNN, which only plays a driving role in the initial 
scope network. In the following loop iteration, the whole network is in a self-excited 
state, and X(0) is replaced by the feedback vector as the next input. 

DHNN can be regarded as a discrete nonlinear dynamic system, which may have 
stable state, finite ring state and chaotic state. First, DHNN can be regarded as a 
discrete nonlinear dynamic system. As mentioned above, it starts with the initial 
state X(0), and if it can recurse a finite number of times, and its state does not 
change, so that X(t + 1) = X(t), then the network is said to be stable, or the network 
has a stable state. If DHNN is stable, it can converge from any initial state to a stable 
state. Secondly, if DHNN is unstable, since the state of each node in the network 
is binary, that is, there are only 1 and − 1 cases, it is impossible for the network 
to have infinite divergence, but can only be a self-sustained oscillation between 1 
and − 1, then the network becomes a finite ring network, or the network has a finite 
ring state. Finally, if the state of a network changes within some definite range, but 
its state neither repeats nor stops, that is, its state changes infinitely many, and its 
motion trajectory does not diverge to infinity, then this phenomenon is called chaos. 
For DHNN, the state of each node is binary, so all possibilities of its network state 
are limited, so there will be no chaotic phenomenon. In other words, DHNN does 
not have a chaotic state. 

If DHNN has a stable state, then it can realize associative memory function. When 
the topology structure and weight matrix of the network are given, the Hopfield neural 
network can store several pre-set stable states. Which stable state the network reaches 
after running is related to the initial state. If the stable state of the network is used 
to represent the memory pattern, the process of the initial state converging to the 
stable state can be regarded as the process of the network searching for the memory 
pattern. The initial state has part of the information of the memory pattern, and the 
subsequent evolution of the network is to recall all the information process from part 
of the information, thus realizing the associative memory function. 

The concept of attractor and energy function is introduced next. If X is the state 
when a network reaches stability, X is called the attractor of the network, also known 
as the equilibrium point. If the attractor is regarded as the solution of an optimiza-
tion problem, then the evolution process from the initial state to the attractor is the 
computational process of finding the optimal solution. 

Definition 1.1 If the state X of a network satisfies X = f (WT X − b), then X is said 
to be an attractor of the network. 

Assuming that X is an attractor of DHNN, the set of all initial states that make 
DHNN reach X is called the attractor domain of X.
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Definition 1.2 If Xa is an attractor of DHNN and DHNN is asynchronous, X is 
weakly attracted to Xa if there is an adjustment order so that DHNN can evolve from 
state X to Xa. If DHNN can evolve from state X to Xa for any adjustment order, X is 
said to be strongly attracted to Xa. 

Definition 1.3 If there are some X, which are weakly attracted to Xa, the  set of  X is 
said to be the weakly attracted domain of Xa; If there are some X that are strongly 
attracted to Xa, then the set of X is called the strongly attracted domain of Xa. 

A network can always evolve into an attractor starting from the state in the attractor 
domain. Therefore, when designing the network, it is necessary to make the network 
have as large an attractor domain as possible so as to enhance the associative memory 
function. 

Theorem 1.1 If DHNN adjusts the state of the network in an asynchronous manner, 
and its weight matrix W is a symmetric matrix, then for any initial state, DHNN 
eventually converges to an attractor. 

Theorem 1.2 If DHNN adjusts the state of the network in a synchronous manner, 
and its weight matrix W is a non-negative definite symmetric matrix, then for any 
initial state, DHNN eventually converges to an attractor. 

Theorems 1.1 and 1.2 point out that no matter which way to adjust the state of 
the network, as long as certain conditions are satisfied, DHNN can converge to an 
attractor, that is, DHNN is stable. 

If the DHNN network is stable, and steady state is a generalized concept, how do 
you quantify steady state? The energy function is the solution to this problem. For a 
system, the more stable it is, the less energy it has, the smaller the value of its energy 
function. The minimum value of the energy function corresponds to the stable state 
of the system, so the energy function transforms the problem of finding the attractor 
into the problem of finding the minimum value of the function. Generally speaking, 
the energy function of a network is defined as follows: 

E(t) = −  
1 

2 
X (t)T W X(t) + X (t)T b (1.27) 

where W is the weight matrix, b is the threshold vector, and E is the energy function. 
In addition, the stability of the network is closely related to the energy function, 

which can be used to optimize the solution function. When the state of the network 
changes, the energy function of the network automatically tends to the minimum point 
of energy. If an objective function is expressed in the form of the network energy 
function, when the energy function tends to the minimum, the corresponding network 
state is the optimal solution of the problem. The initial state of the network can express 
the initial solution of the problem. The convergence process of the network from the 
initial state to the stable state is the process of optimization calculation. This kind of 
optimization search is automatically completed in the evolution of the network.
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Continuous Hopfield Neural Network (CHNN) is proposed on the basis of DHNN, 
both the principle of which is similar. The input of CHNN is analog, that is, contin-
uous, and each neuron runs in parallel. Therefore, CHNN is closer to biological neural 
network than DHNN. CHNN is generally used to solve optimization problems, and 
will not be introduced here. 

Example 1.3 The dataset of this example is a manually generated problem, which 
contains two sample points, namely [1, − 1] and [− 1, 1]. The problem assumes that 
DHNN contains two neurons and has two attractors. Use Matlab to write DHNN 
program. After simulation, output DHNN associative memory results. 

This problem is simulated in Matlab, and the programs are as follows: 

T = [1, -1; -1, 1]; 
figure(1); hold on; 
plot(T(1,:), T(2,:), ‘ro’, ‘MarkerSize’,10,‘LineWidth’,2); 
axis([-1.1 1.1 -1.1 1.1]); 
xlabel(‘×1’); 
ylabel(‘×2’); 
net = newhop(T); 
[Y,Pf,Af] = sim(net,2,[],T); 
color = ‘rgbmy’; 
for i = 1:10 

a = {rands(2,1)}; 
[y,Pf,Af] = sim(net,{1 20},{},a); 
record = [cell2mat(a) cell2mat(y)]; 
start = cell2mat(a); 
plot(start(1,1),start(2,1),‘k*’,record(1,:),record(2,:),color(rem(i,5) + 1), … 

‘MarkerSize’,10,‘LineWidth’,2) 
end 
grid on; box on; hold off; 

The simulation results of the above problems are shown in Fig. 1.15, where the 
attractor is represented by a circle symbol, and DHNN is run repeatedly for 10 times. 
The initial state of each time is represented by an asterisk, and the curve from asterisk 
to circle represents the trajectory of DHNN iteration.

As can be seen from Fig. 1.15, if the initial state of DHNN is near the upper 
left, it converges to the upper left attractor. If DHNN starts near the bottom right, it 
converges to the bottom right attractor. This is the associative memory function of 
DHNN.
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Fig. 1.15 Results of the DHNN

1.5 Competitive Neural Network 

The human brain can “learn by itself”, that is, through repeated observation, analysis 
and comparison of objective things, reveal the internal laws of things and correctly 
classify things with common characteristics. Researchers have used neural networks 
to achieve this trait, such as the competitive learning neural network described in this 
section. In addition, this kind of “untaught” way is a kind of learning way without 
a teacher. The learning way without a teacher is also called self-organized learning, 
so the “untaught” neural network is also called self-organized neural network. Self-
organizing neural network mimics the learning patterns of biological neural network 
in the human brain. It is characterized by self-organizing and adaptively changing 
network parameters and structures by automatically searching for intrinsic laws and 
intrinsic attributes in samples. 

Self-organizing neural network is a hierarchical network structure. Different from 
perceptron and BP neural network, self-organizing neural network has competition 
layer. As shown in Fig. 1.16, the simplest self-organizing neural network consists of 
an input layer and a competition layer. The dashed lines in the figure indicate that 
neurons compete with each other. The input layer accepts the external signal and 
passes the input pattern to the competition layer. The competition layer analyzes and 
compares the transmitted patterns to find out the rules in order to correctly classify 
them. The self-organizing function of self-organizing neural network is realized by 
competitive learning.
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Fig. 1.16 The simplest 
self-organizing neural 
network 

Competitive learning exists in the human body. There is a lateral inhibition in 
the retina, spinal cord and hippocampus of the human eye. This is a phenomenon 
in which the excitation of one nerve cell has an inhibitory effect on the surrounding 
nerve cells. This lateral inhibition allows the nerve cells to compete with each other. 
In the initial state, more than one cell may be excited at the same time, but the most 
excited nerve cell also has the most inhibitory effect on the peripheral nerve cells. 
As a result, the peripheral nerve cells are less excited, so that this nerve cell is the 
“winner” of the competition, while other nerve cells lose the competition. 

The strongest inhibitory effect is the “only me” effect of the competition winner, 
which does not allow other nerve cells to excite, this is known as winner-take-all. 
In competitive learning strategies, winner-take-all is a typical learning rule. The 
following details the winner-take-all competitive learning rules. 

Step (1) Vector normalization. The current input pattern vector X and the internal 
star vector W ( j = 1, 2„…, m) are normalized. After normalization, we obtain X

Ʌ

and W
Ʌ

( j = 1, 2, …, m). 
Step (2) Finding the winning neuron. When the network obtains an input pattern 

vector X
Ʌ

, the inner star weight vector W
Ʌ

j were compared with X
Ʌ

. The inner star 
weight vector most similar to X

Ʌ

is judged as the winning neuron, and its weight 
vector is denoted as W

Ʌ

j∗ . The similarity can be measured by the Euclidean distance 
between W

Ʌ

j and X
Ʌ

, or the cosine of the angle between these two vectors. Euclidean 
distance of these two vectors is:

∥X
Ʌ

− W
Ʌ

j∗∥ = min 
j∈{1,2,...,m}

{
∥X
Ʌ

− W
Ʌ

j∥
}

(1.28) 

By expanding the distance of the above Eq. (1.24) and using the property of unit 
vector, it can be simplified as:
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)

(1.29)
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As can be seen from (1.29) and (1.30), if the Euclidean distance of two vectors is 
minimized, it is only necessary to maximize the dot product of the two vectors: 

W
ɅT 

j∗ X
Ʌ

= max 
j∈{1,2,...,m}

(
W
ɅT 

j X
Ʌ)

(1.31) 

Note that the dot product of the weight vector and the input vector is exactly the 
net input of the competing layer neurons. In other words, the winning neuron is the 
one with the highest net input. 

Step (3) Output and weight adjustment. In this learning rule, the output of the 
winning neuron is 1, and the output of the remaining neurons is 0, as follows: 

o j (t + 1) =
{
1, j = j∗ 

0, j /= j∗
(1.32) 

It can be seen that only the winning neuron can adjust its weight vector, and the 
adjusted weight vector is: 

W j∗ (t + 1) = W
Ʌ

j∗ (t) + ΔW j∗ = W
Ʌ

j∗ (t) + μ(t)
(
X
Ʌ

− W
Ʌ

j∗
)

(1.33) 

For the unwinning neurons, their weight values are not adjusted, which is equivalent 
to the “victor” neuron j* applying lateral inhibition to them, not allowing them to 
excite. 

The new vector obtained after the adjustment is not necessarily a unit vector, 
so it is necessary to re-normalize the adjusted vector. In other words, after Step (3) 
output and weight adjustment is completed, it is necessary to return to Step (1) vector 
normalization to continue training until learning rate μ(t) attenuates to 0. 

Next, we introduce the principle of competitive learning. As shown in Fig. 1.17, 
assuming that the input pattern of a problem is a two-dimensional vector, the normal-
ized input pattern can be regarded as points distributed on the unit circle, represented 
by “O”. It is assumed that the competitive learning neural network has three neurons, 
and the corresponding three inner star vectors are also distributed on the unit circle 
after normalization, which is represented by the gray square. From the observation of 
Fig. 1.17, we can see that the input pattern points can be clustered into three clusters, 
that is, they can be divided into three categories. In the initial state, the inner star 
vectors of the neurons in the competition layer are randomly distributed, so how does 
the competitive learning neural network realize the classification of input patterns?

Before the competitive learning neural network starts training, the inner star 
vectors of the neurons in the competition layer should be randomly initialized, as 
shown in Fig. 1.18. We represent the current input pattern to the neural network 
(the current sample) as a solid circle. According to the above calculation steps, the
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Fig. 1.17 An example of 
competitive learning

distance between the inner star vector and the current sample needs to be calculated, 
and the inner star vector closest to the current sample is the winning neuron. 

Then, as shown in Fig. 1.19, the winning neuron can adjust its weight, and after 
adjusting its weight, the winning neuron is further closer to the current input pattern. 
After weight adjustment, the position of winning neuron moves further to the current 
sample and its cluster. The next time an input pattern similar to the current sample 
appears in the same cluster, the neuron that won the last time is more likely to win. 
After sufficient training in this way, the three inner star vectors on the unit circle 
will gradually move into the cluster center of each input pattern, so that the weight 
vector of each neuron in the competition layer becomes a clustering center of the 
input pattern. After the input pattern training, when a pattern is input into the neural 
network, the output of the winning neuron in the competition layer is 1, and the 
winning neuron represents the category of the input pattern. 

Example 1.4 The data set of this example comes from UCI machine learning 
database, which is about the classification problem of iris. This problem belongs 
to supervised learning. The data set includes 150 samples, each of which has 4

Fig. 1.18 Competitive 
learning example: initial 
state
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Fig. 1.19 Competitive 
learning example: weight 
adjustment

attributes. All samples are divided into 3 categories, with 50 samples in each cate-
gory. The three types of iris are Sentosa, Versicolour and Virginica. The four attributes 
of this dataset are sepal length, sepal width, petal length and petal width. Matlab is 
used to write the program of competitive learning neural network. After training, all 
samples are predicted and the type of each sample is output. 

This problem is simulated in Matlab, and the programs are as follows: 

[inputs, outputs] = iris_dataset; 
outputs = vec2ind(outputs); 
net = competlayer(3); 
net = configure(net, inputs); 
net.trainParam.epochs = 50; 
net = train(net,inputs); 
y = net(inputs); 
y = vec2ind(y); 
figure(2); hold on; 
plot(outputs, ‘d’, ‘MarkerSize’,10,‘LineWidth’,2,‘LineStyle’,‘none’); 
plot(y, ‘*’, ‘MarkerSize’,10,‘LineWidth’,2,‘LineStyle’,‘none’); 
box on; grid on; hold off; 

The running results of the above program are shown in Fig. 1.20, with the true 
category of each sample represented by a diamond and the predicted category of each 
sample represented by an asterisk. As can be seen from the figure, the competitive 
learning neural network correctly judged the categories of most sample points, while 
about a dozen sample categories were incorrectly predicted.
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Fig. 1.20 Competitive learning: clustering results of iris data 

1.6 Deep Neural Network 

Shallow neural networks and deep neural networks are mentioned in Sect. 1.2. Both  
of these two neural networks have more than or equal to 2 layers, which can be 
collectively referred to as multi-layer neural networks. With the development of arti-
ficial intelligence, deep learning has been deeply rooted in people’s hearts, becoming 
the hottest topic and achieving unprecedented effects [5]. It is just for this reason 
that deep neural network is separated from multi-layer neural network. The so-called 
deep learning is actually a machine learning method based on the extension of deep 
neural network. 

Perhaps some readers think that if the hidden layers of the shallow neural network 
were increased, it would become a deep neural network. While the performance of 
the obtained deep neural network is not good, the main reasons are: 

(1) Gradient disappearance. In the error backpropagation method, as the number of 
hidden layers increases, the output error cannot be transmitted to the previous 
hidden layer nodes, which is the problem of gradient disappearance in the 
backpropagation method. 

(2) Overfitting. During the training process, the neural network overlearns the 
samples, which leads to the neural network has very good performance on
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the training set and poor performance on the test set, which is the overfitting 
problem of the neural network. 

(3) The increasing amount of computation. When the number of hidden layers of 
the neural network is increased, if the fully connected structure is adopted, 
the number of connection weights between nodes increases very fast, and the 
dimension of the weight matrix is very large, resulting in a sharp increase in 
the amount of computation, which is the problem of increasing the amount of 
computation. 

The gradient disappearance problem can be solved by using ReLU activation 
function and using cross entropy loss function in learning rules. These two small 
changes can improve the performance of deep neural networks. The ReLU activation 
function was introduced earlier and, to repeat, its expression is: 

f (x) = max(0, x) =
{
x, x > 0 
0, x ≤ 0 

(1.34) 

As can be seen from (1.34), when x > 0, the value of ReLU activation function is 
x; When x ≤ 0, the value of ReLU activation function is 0. It is not difficult to see 
that the value of the activation function is always non-negative. And the derivative 
of the ReLU activation function is: 

ϕ'(x) = 
d f  (x) 
dx  

=
{
1, x > 0 
0, x ≤ 0 

(1.35) 

The expression of the cross-entropy loss function is: 

L(x) = −  
M∑

i=1 

oi log2oi (1.36) 

where M is the number of output nodes, oi is the predicted output. 
Node dropout or regularization methods can solve the overfitting problem. Regu-

larization methods were introduced earlier. Moreover, the validation set can also 
alleviate the overfitting problem in neural network training. Node dropout method is 
a simple and effective technique. It means that in the learning process, some nodes 
are randomly selected for weight update, while the weights of nodes that are not 
selected are not updated. Since each iteration adopts the method of random selec-
tion, the update of node weight is constantly changing. When the dropout technique 
is used, the dropout percentage of hidden layer nodes is generally set to 50%, while 
the drop percentage of input layer nodes is generally set to 25%. 

The problem of the increasing amount of computation can be solved by using 
higher performance processors, such as Graphics Processing Unit (GPU), or better 
performance numerical methods. With the rapid development of computer hardware 
technology, high-performance GPU can solve the problem of increasing amount of 
computation to some extent.
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Deep learning took off when it was able to solve three problems in which deep 
neural networks performed poorly. The success of deep learning has been the result of 
many small techniques and improvements. In this section, deep learning technologies 
such as convolution, pooling and residual error are not introduced. Instead, a fully 
connected deep neural network is built from the deep learning toolbox of Matlab, 
and the results are demonstrated by examples. 

Example 1.5 The dataset of this example is the dataset in Matlab, which is about 
the gear condition classification problem in the transmission system. This problem 
belongs to supervised learning. The dataset consists of 208 samples, each of which 
has 18 attributes and each of which has 3 labels. In other words, this problem is a 
multi-output problem. To facilitate the understanding of the problem, we take the 
tooth condition label as the output of the classification problem, and convert the 
sensor state and shaft state into the input of the classification problem. The condition 
labels for gear teeth include toothless fault and no tooth fault, meaning that the 
problem is one of two categories. Write out the shallow neural network and deep 
neural network programs respectively with Matlab. After training, predict the test 
samples and calculate the accuracy. 

The sample size of this example is not large, and in fact, it does not need to 
use deep neural network. Shallow neural network can also solve this problem. This 
is just a teaching case to show the difference between shallow neural network and 
deep neural network. Too many samples will take a long training time, which is not 
conducive to case presentation. 

The problem is simulated in Matlab, and the shallow neural network is used to 
solve the problem. The programs are as follows: 

rng(0); 
filename = “transmissionCasingData.csv”; 
tbl = readtable(filename,‘TextType’,‘String’); 
labelName = “GearToothCondition”; 
tbl = convertvars(tbl,labelName,‘categorical’); 
classNames = categories(tbl{:,labelName}); 
categoricalInputNames = [“SensorCondition” “ShaftCondition”]; 
tbl = convertvars(tbl,categoricalInputNames,‘categorical’); 
for i = 1:numel(categoricalInputNames). 

name = categoricalInputNames(i); 
oh = onehotencode(tbl(:,name)); 
tbl = addvars(tbl,oh,‘After’,name); 
tbl(:,name) = []; 

end 
tbl = splitvars(tbl); 
inputs = (table2array(tbl(:, 1:(end-1))))’; 
outputs = (double(tbl{:,labelName}))’; 
hiddenLayerSize = [20]; 
net = feedforwardnet(hiddenLayerSize);
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net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
net.trainFcn = ‘traingdm’; 
net.trainParam.epochs = 1000; 
[net, tr] = train(net, inputs, outputs); 
tstInd = tr.testInd; 
YPred = net(inputs(:, tstInd)); 
YPred(YPred<1.5) = 1; 
YPred(YPred>=1.5) = 2; 
tstOutputs = outputs(tstInd); 
accuracy = sum(YPred = =  tstOutputs)/numel(tstOutputs); 
figure (1); 
confusionchart(tstOutputs,YPred); 

After running the above program, it can be concluded that the accuracy rate of 
the shallow neural network on the test set is 90.32%. The program also draws the 
confusion matrix, which is omitted here. The training process of shallow neural 
network is shown in Fig. 1.21. As can be seen from the figure, there are 20 neurons 
in the hidden layer, and the network trains the training data 1000 times. Such training 
times are called epochs, also known as generations. This means that each training 
sample has been repeated for 1,000 generations. As shown in Fig. 1.21, the training 
time of this network is very short, only 1 s.

Next, the problem is simulated in Matlab and the deep neural network is used to 
solve the problem. The programs are as follows:

rng(0); 
filename = “transmissionCasingData.csv”; 
tbl = readtable(filename,‘TextType’,‘String’); 
labelName = “GearToothCondition”; 
tbl = convertvars(tbl,labelName,‘categorical’); 
classNames = categories(tbl{:,labelName}); 
categoricalInputNames = [“SensorCondition” “ShaftCondition”]; 
tbl = convertvars(tbl,categoricalInputNames,‘categorical’); 
for i = 1:numel(categoricalInputNames) 

name = categoricalInputNames(i); 
oh = onehotencode(tbl(:,name)); 
tbl = addvars(tbl,oh,‘After’,name); 

end 
tbl = splitvars(tbl); 
numObservations = size(tbl,1); 
numObservationsTrain = floor(0.7*numObservations); 
numObservationsValidation = floor(0.15*numObservations); 
numObservationsTest = numObservations - numObservationsTrain - numObser-
vationsValidation; 
idx = randperm(numObservations);
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Fig. 1.21 Training process of shallow neural network

idxTrain = idx(1:numObservationsTrain);
idxValidation = idx(numObservationsTrain + 1: … 
numObservationsTrain + numObservationsValidation); 

idxTest = idx(numObservationsTrain + numObservationsValidation + 1:end); 
tblTrain = tbl(idxTrain,:); 
tblValidation = tbl(idxValidation,:); 
tblTest = tbl(idxTest,:); 
numFeatures = size(tbl,2) - 1; 
numClasses = numel(classNames); 
layers = [featureInputLayer(numFeatures,‘Normalization’, ‘zscore’).
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fullyConnectedLayer(20 
batchNormalizationLayer 
reluLayer 
fullyConnectedLayer(numClasses) 
softmaxLayer. 
classificationLayer]; 

miniBatchSize = 8; 
options = trainingOptions(‘adam’, … 

‘MaxEpochs’, 30, … 
‘MiniBatchSize’,miniBatchSize, … 
‘Shuffle’,‘every-epoch’, … 
‘ValidationData’,tblValidation, … 
‘Plots’,‘training-progress’, … 
‘Verbose’,false); 

net = trainNetwork(tblTrain,labelName,layers,options); 
YPred = classify(net,tblTest(:,1:end-1),‘MiniBatchSize’,miniBatchSize); 
YTest = tblTest{:,labelName}; 
accuracy = sum(YPred = =  YTest)/numel(YTest); 
figure(1); 
cm = confusionchart(YTest,YPred); 

After running the above program, it can be concluded that the accuracy of the 
deep neural network on the test set is 93.75%. The program also draws the confusion 
matrix, which is omitted here. The training process of this deep neural network is 
shown in Fig.  1.22. As can be seen from the figure, the deep neural network is run 
on a single CPU computer, and the accuracy of the verification set is 93.55%, which 
is similar to that of the test set, indicating that there is no overfitting phenomenon. 
The network performed 30 rounds of training on the training data, much less than 
the 1000 rounds of shallow neural network. As shown in Fig. 1.22, the training time 
of this network is 14 s, indicating that the training time of deep neural network is 
longer than that of shallow neural network. Moreover, during the training of this 
deep neural network, the number of iterations per round is 18. This is because deep 
neural networks generally use batch or minibatch training.

In the learning process of a neural network, samples need to be passed to the 
input layer, and the weights are adjusted after passing through the network. If the 
weights are adjusted after each training sample is passed to the input layer, this is 
the shallow neural network learning method. The so-called batch learning method 
is to pass all training samples to the input layer before adjusting the weights. In this 
way, the weights are updated by averaging the changes of all samples. The so-called 
small-batch learning approach is in between the above two approaches, where the 
weights are adjusted after passing a portion of the training samples to the input layer, 
and the average weights are used to update the weights of the neural network. In the 
above example of deep neural network, the size of small batch is set to 8, i.e., the 
number of samples passed to the input layer for each iteration is 8, and the number
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Fig. 1.22 Training process of deep neural network

of training samples is 0.7 × 208 = 145, then the number of iterations needed to train 
all samples is 145/8 ≈ 18. 

The previous section describes the way to write programs to implement shallow 
and deep neural networks, and next we describe the way to implement deep neural 
networks using Matlab’s App. Matlab provides many apps for users to use, which 
is a graphical user interface. Since the introduction of the App design approach in 
2016, Matlab has gradually added many functions and the App has become more 
and more mature. 

Find the Deep Network Design App in the Matlab menu, and by clicking Open, you 
can build a deep neural network by dragging and dropping. As shown in Fig. 1.23, we  
build the same structure as the deep neural network program above, the input layer 
is the “featureInputLayer”, which is suitable for numerical data without spatial– 
temporal characteristics, and for image data you can choose the “imageInputLayer” 
on the left. the rest of the layers of this deep neural network are not described in 
detail. It should be noted that Fig. 1.23 shows that the network has 7 layers. The 
number of layers here is not the number of layers in the network, but the number of 
components in the whole network. For example, the “featureInputLayer” is the first 
layer, which is called “input”, the second layer is the “fullyConnectedLayer”, which 
is called “fc_1”, and so on, and the seventh layer is the “classificationLayer”, which 
is called “classoutput”.

After creating the network, the network structure needs to be analyzed to verify 
the feasibility of the designed network. As shown in Fig. 1.24, after analyzing the 
network structure, no warnings or errors are given. It should be noted that it is 
possible to export the designed network, either as a file or to a workspace, or to the 
corresponding code program. This provides more options for users who prefer to 
write code for editing, while users who prefer interface interaction can export to a 
file and continue editing the network structure later.
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Fig. 1.23 Designing a deep neural network using an App

Fig. 1.24 Analyzing a deep neural network using an App
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After finishing the design of the network, you can import the existing dataset in 
the “Data” panel, and also train the deep neural network in the “Training” panel, 
and these operations will not be described specifically. It should be noted that some 
features of the Deep Network Designer App are not perfect, and new features are 
added every year, so users can design the network according to the version of Matlab. 

Exercises 

(1) Try to write three neuron activation functions and draw the corresponding 
curves. 

(2) Try to draw a schematic diagram of the neuron model, write the mathematical 
model of the neuron, and explain the meaning of each variable in the model. 

(3) Try to write the process of backpropagation neural network algorithm and 
explain its advantages and disadvantages. 
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Chapter 2 
Convolutional Neural Network 

Abstract Convolutional neural network is one of the most important networks in 
deep learning. Different from common artificial neural network, the main charac-
teristic of convolutional neural network is the convolution operation. It has made 
remarkable achievements in computer vision and natural language processing. More-
over, convolutional neural network has received extensive attention from industry and 
academia. This chapter first introduces the convolution operation of the convolutional 
neural network. Then performance evaluation metrics are introduced. Based on two 
typical convolutional neural network, transfer learning is demonstrated to use trained 
convolutional neural network to solve new computer vision problems. Finally, the 
state-of-the-art research progress of artificial neural network is provided. 

2.1 Overview of Convolutional Neural Network 

Convolution neural network (CNN) is used to deal with artificial neural network 
with mesh structure data, its main characteristic is the convolution operation. In the 
common artificial neural network, such as BP neural network, the parameter calcu-
lation of the network is generally realized by matrix multiplication. In convolutional 
neural network, the parameter calculation of at least one layer of the network is real-
ized by convolutional operation. CNN is one of the most important networks in the 
field of deep learning. Since CNN has made remarkable achievements in many fields 
including but not limited to computer vision and natural language processing, it has 
received extensive attention from industry and academia in the past few years. 

In 1998, Yann LeCun first used the term “convolutional” in his paper, which is 
where the name convolutional neural network came from [1]. LeCun used CNN 
to solve the problem of handwritten postal code recognition, which involves image 
processing. It can be said that CNN were originally used for image recognition, which 
belongs to the field of computer vision. As we all know, vision is the main source 
of human information about the outside world. Psychologist Treicher has done an 
experiment on the sources of human access to information, and the experimental 
results show that 83% of human access to information comes from vision, 11% 
comes from hearing, and the rest comes from smell, touch and taste. In artificial
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intelligence, computer vision is also the largest area of research. For example, in the 
artificial intelligence software market organized by a research institute from China in 
2020, artificial intelligence is divided into computer vision, speech recognition and 
natural language processing, and data science; Computer vision accounted for about 
56.6%, speech recognition and natural language processing for 35.6%, and data 
science for about 7.8%.The research of artificial intelligence is inseparable from 
computer vision, and the research of computer vision is inseparable from images. 
Therefore, we need to learn CNN with images as the basic data. 

Let’s take the MNIST image dataset for an example. The MINST dataset is an 
open-source handwritten digit recognition dataset maintained by LeCun [1]. In the 
MNIST dataset, the training set consists of handwritten numbers from 250 different 
people, 50% of whom are high school students and 50% of whom are Census Bureau 
staff, and the test set is the same ratio. In the MNIST dataset, each image is composed 
of 28× 28 pixels, and each pixel is represented by a grayscale value, that is, all images 
are grayscale images of the same size. The dataset includes 10 Arabic numbers 
ranging from 0 to 9, so it is a classification problem for 10 categories. 

In the MNIST dataset, the training set has 60,000 images, while the test set has 
10,000 images. We can use the following programs to look at the images in this 
dataset: 

oldpath = addpath(fullfile(matlabroot,examples’,‘nnet’,‘main’)); 
filenameImagesTrain = ‘dataset\train-images-idx3-ubyte.gz’; 
filenameLabelsTrain = ‘dataset\train-labels-idx1-ubyte.gz’; 
filenameImagesTest = ‘dataset\t10k-images-idx3-ubyte.gz’; 
filenameLabelsTest = ‘dataset\t10k-labels-idx1-ubyte.gz’; 
XTrain = processImagesMNIST(filenameImagesTrain); 
YTrain = processLabelsMNIST(filenameLabelsTrain); 
XTest = processImagesMNIST(filenameImagesTest); 
YTest = processLabelsMNIST(filenameLabelsTest); 
path(oldpath); 
figure(1); 
numImages = size(XTrain, 4); 
idx = randperm(numImages,9); 
for i = 1:length(idx) 

subplot(3,3,i); 
im = extractdata(XTrain(:,:,:,idx(i))); 
imshow(im); 

end 

The result after running the above program is shown in Fig. 2.1. Since 9 images 
are randomly selected for display, the repeated running of the program may display 
different images. With the training set and the test set, we have the necessary data 
for image recognition. Empirically, researchers divide the training set into two parts, 
one is used to train the neural network model, and the other is used to cross-validate 
the performance of the model, so researchers now often refer to the dataset as the 
training set, the validation set, and the test set.
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Fig. 2.1 The 9 images in the MNIST dataset 

In a BP neural network, suppose there is an input layer, one hidden layer and 
an output layer. For the binary classification problem, suppose the size of the input 
sample is N, the number of neurons in the hidden layer is M, the neurons in the 
output layer is 1. Hence, the number of weight parameters from the input layer to 
the hidden layer is N × (M + 1), where 1 denotes the threshold, and the number 
of weight parameters from the hidden layer to the output layer is M + 1, then the 
number of weight parameters of the BP neural network is N × (M + 1) + M + 1. In  
a fully connected deep neural network, suppose there is an input layer, two hidden 
layers and an output layer. For the same binary classification problem, the number 
of weight parameters of this deep neural network is N × (M + 1) + M × (M + 1) + 
M + 1. It can be seen that the growth of the number of parameters is proportional 
to the size of the input layer, and also proportional to the number of neurons in the 
hidden layer. For image data, the growth rate of the number of parameters is too 
fast, which leads to a decrease in the learning efficiency of the neural network, and 
the convolution operation is an effective method to solve the problem of too large 
number of parameters. 

CNN includes input layer, convolutional layer, pooling layer, fully connected 
layer, etc. After the analysis of researchers, the role of convolutional layer and 
pooling layer is feature extraction, i.e., extracting features such as edge, shadow, 
contour, etc. from the image. While the fully connected layer is the same role as BP 
neural network. Generally, CNN has multiple fully connected layers, so it is more
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Fig. 2.2 Structure of the convolutional neural network LeNet 

like deep neural network, so CNN is a feedforward neural network that contains 
multiple fully connected layers for convolutional computation. The typical convo-
lutional neural networks (CNNs) are LeNet, AlexNet, VGGNet and GoogLeNet. 
Unlike AlexNet and VGGNet, GoogLeNet does not rely on deepening the structure 
of neural networks, but introduces a module called Inception structure. 

We use LeNet as an example to describe how to create a CNN. The structure of 
LeNet is shown in Fig. 2.2, which is a 7-layer network structure. Note that the input 
layer is not counted in the number of layers. 

LeNet is used for handwritten postal code images, so the image of the input layer 
is  assumed to be a 32  × 32 pixel grayscale map. The first layer of LeNet is the 
convolutional layer, which is noted as convolutional layer 1. In convolutional layer 
1, 6 convolutional kernels are used, each with a size of 5 × 5 pixels and a step size of 
1. Therefore, the size of the image computed by each convolutional kernel is (32–5 
+ 1) × (32–5 + 1) = 28 × 28 pixels, 6 convolution kernels generate 6 images of 
28 × 28 pixels, sometimes also called feature maps. The number of neurons from 
the input layer to the convolutional layer 1 is 28 × 28 × 6 = 4704, and the weight 
parameters are 6 convolutional kernels and their threshold (5 × 5 + 1) × 6 = 156. 
The number of connections from the input layer pixel points to the convolutional 
layer 1 pixel points is 156 × 28 × 28 = 122,304. If the fully connected approach is 
used, the number of connections is 32 × 32 × (4704 + 1) = 4,817,920, which shows 
that the number of connections is greatly reduced by using the convolutional layer. 

The second layer of LeNet is the pooling layer, denoted as pooling layer 2. The 
feature map input to pooling layer 2 is 28 × 28 pixels, using 2 × 2 pixel sampling, 
i.e., 4 pixel values in the 2 × 2 pixel region are summed, multiplied by a weight 
parameter, plus a threshold parameter, and using the Sigmoid activation function, 
pooling layer 2 outputs a 14 × 14 pixel feature map. Pooling layer 2 uses six 2 × 
2 pixels for sampling, so it yields six 14 × 14 pixel feature maps, i.e., the number 
of neurons is 14 × 14 × 6. The number of connections from convolutional layer 1 
to pooling layer 2 is (2 × 2 + 1) × 14 × 14 × 6 = 5880. Since the image becomes 
smaller after sampling, the pooling layer is also called the downsampling layer. 

The third layer of LeNet is the convolutional layer, which is called convolutional 
layer 3. In convolutional layer 3, 16 convolutional kernels are used, and the size of 
each convolutional kernel is 5 × 5 pixels with a step size of 1. Therefore, the size 
of the image computed by each convolutional kernel is (14–5 + 1) × (14–5 + 1) 
= 10 × 10 pixels, and 16 convolutional kernels yield 16 feature maps of 10 × 10
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pixels. Since 16 convolutional kernels are used, if all the convolutional kernels are 
connected to the feature maps obtained in the previous layer, it is easy to cause too 
many connections. To reduce the computation, the first 6 convolutional kernels of 
the 16 convolutional kernels are connected to 3 adjacent subsets of the feature maps 
obtained in the previous layer, the next 6 convolutional kernels are connected to 4 
adjacent subsets of the feature maps obtained in the previous layer, and then the next 
3 convolutional The next 6 convolutional kernels are connected to the subset of 4 
non-adjacent feature maps obtained from the previous layer, the next 3 convolutional 
kernels are connected to the subset of 4 non-adjacent feature maps obtained from the 
previous layer, and the last 1 convolutional kernel is connected to all feature maps 
obtained from the previous layer, as shown in Table 2.1. The number of connections 
from pooling layer 2 to convolutional layer 3 is 6 × (3 × 5 × 5 + 1) + 6 × (4 × 5 
× 5 + 1) + 3 × (4 × 5 × 5 + 1) + 1 × (6 × 5 × 5 + 1) × 10 × 10 = 151,600. the 
number of neurons in convolutional layer 3 is 10 × 10 × 16 = 1600. 

In Table 2.1, the serial number in the first row represents the 16 convolutional 
kernels of convolutional layer 3, while the serial number in the first column represents 
the 6 convolutional kernels of pooling layer 2. The number 1 after the second column 
in the second row indicates that one of the convolutional kernels of pooling layer 
2 is connected to one of the convolutional kernels of convolutional layer 3, while 
the number 0 indicates that there is no connection between the two convolutional 
kernels. 

The fourth layer of LeNet is the pooling layer, noted as pooling layer 4. The feature 
map input to pooling layer 4 is 10 × 10 pixels, using 2 × 2 pixels of sampling, which 
is the same setup as pooling layer 2, and the output is a 5 × 5 pixel feature map. 
Pooling layer 4 uses 16 2 × 2 pixels for sampling, so it generates 16 feature maps 
of 5 × 5 pixels, i.e., the number of neurons is 5 × 5 × 16 = 400. The number of 
connections from convolutional layer 3 to pooling layer 4 is (2 × 2 + 1) × 400 = 
2000. 
The fifth layer of LeNet is the convolutional layer, which is called convolutional 
layer 5. In convolutional layer 5, 120 convolutional kernels are used, and the size of 
each convolutional kernel is 5 × 5 pixels with a step size of 1. Therefore, the size 
of the image computed by each convolutional kernel is (5–5 + 1) × (5–5 + 1) = 
1 × 1 pixel, and 120 feature maps of 1 pixel are obtained from 120 convolutional 
kernels. The number of neurons in convolutional layer 5 is 120, and each neuron is

Table 2.1 Connection method of pooling layer 2 and convolutional layer 3 

Kernel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 

2 1 1 0 0 0 1 1 1 0 0 1 1 1 1 0 1 

3 1 1 1 0 0 0 1 1 1 0 0 1 0 1 1 1 

4 0 1 1 1 0 0 1 1 1 1 0 0 1 0 1 1 

5 0 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1 

6 0 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 
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connected to all the 16 feature maps obtained from pooling layer 4. The number of 
connections from pooling layer 4 to convolutional layer 5 is (5 × 5 × 16 + 1) × 120 
= 48,120. Since the convolutional kernels of convolutional layer 5 have the same 
size as the feature maps obtained from pooling layer 4 and are all connected to each 
other, convolutional layer 5 is equivalent to a fully connected layer. 

The sixth layer of LeNet is the fully connected layer, denoted as fully connected 
layer 6. In fully connected layer 6, the number of neurons is 84, and the number of 
connections from 120 neurons in convolutional layer 5–84 neurons in this layer is 
(120 + 1) × 84 = 10,164. This layer uses the Sigmoid activation function. 

The seventh layer of LeNet is the output layer, denoted as output layer 7, which 
is also a fully connected layer. In output layer 7, the number of neurons is 10. It uses 
one-hot encoding method, and 10 neurons can represent the category of numbers 
from 0 to 9. This layer uses radial basis functions as activation functions. 

In Matlab, you can use the Deep Network Designer App to design LeNet, as shown 
in Fig. 2.3. Export the designed network and select “Generate Code” to generate the 
corresponding programs, as follows: 

layers = [ 
imageInputLayer([32 32 1],“Name”,“imageinput”) 
convolution2dLayer([5 5],6,“Name”,“conv1”)

Fig. 2.3 Designing LeNet neural network
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maxPooling2dLayer([2 2],“Name”,“maxpool2”,“Padding”,“same”,“Stride”,[2 
2])

convolution2dLayer([5 5],16,“Name”,“conv3”) 
maxPooling2dLayer([2 2],“Name”,“maxpool4”,“Padding”,“same”,“Stride”,[2 

2]) 
convolution2dLayer([5 5],120,“Name”,“conv5”) 
fullyConnectedLayer(84,“Name”,“fc6”) 
fullyConnectedLayer(10,“Name”,“fc7”) 
softmaxLayer(“Name”,“softmax”) 
classificationLayer(“Name”,“classoutput”)]; 

plot(layerGraph(layers)); 

For multi-classification problems, “softmaxLayer” and “classificationLayer” are 
generally required, but they are generally not counted as layers. As mentioned above, 
the input of LeNet is a 32 × 32 pixel grayscale image, while the image of MNIST 
is a 28 × 28 pixel grayscale image, there are two ways to solve this problem. One 
way is to adjust the network structure of LeNet, such as the size of the convolutional 
kernel and the way to connect between layers; the other way is to adjust the size of 
the image. Here we use the second method, which is to enlarge the image from 28 
× 28 pixels to 32 × 32 pixels. After resizing the image, you can use LeNet to solve 
the MNIST classification problem. For the image resizing, the following programs 
can be used: 

resize3dLayer(“Name”,“resize3d-output-size”,… 
“GeometricTransformMode”,“half-pixel”,“Method”,“nearest”,… 
“NearestRoundingMode”,“round”,“OutputSize”,[32 32 1]). 

Place the program for adjusting image size between the input layer and convolution 
layer 1. 

The programs to train and test LeNet model are as follows: 

layers = [ 
imageInputLayer([28 28 1],“Name”,“imageinput”) 
resize3dLayer(“Name”,“resize3d-output-size”,… 
“GeometricTransformMode”,“half-pixel”,“Method”,“nearest”,… 
“NearestRoundingMode”,“round”,“OutputSize”,[32 32 1]) 
convolution2dLayer([5 5],6,“Name”,“conv1”) 
maxPooling2dLayer([2 2],“Name”,“maxpool2”,“Padding”,“same”,“Stride”,[2 

2]) 
convolution2dLayer([5 5],16,“Name”,“conv3”) 
maxPooling2dLayer([2 2],“Name”,“maxpool4”,“Padding”,“same”,“Stride”,[2 

2]) 
convolution2dLayer([5 5],120,“Name”,“conv5”) 
fullyConnectedLayer(84,“Name”,“fc6”) 
fullyConnectedLayer(10,“Name”,“fc7”) 
softmaxLayer(“Name”,“softmax”)
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classificationLayer(“Name”,“classoutput”)]; 
options = trainingOptions(‘sgdm’, … 

‘MaxEpochs’,10, … 
‘MiniBatchSize’,128, … 
‘Plots’,‘training-progress’); 

trainNet = trainNetwork(XTrain,YTrain,layers,options); 
save(‘MNIST_LeNet5.mat’,‘trainNet’); 
YPred = classify(trainNet, XTest); 
accuracy = sum(YPred == YTest)/numel(YPred); 

The training process is not shown for the saving of space. The accuracy on the 
test set is 98.42%, which shows that LeNet is able to solve the MNIST classification 
problem. 

It should be noted that when using Matlab to solve classification problems, the 
classify function is generally used to make predictions, while when using Matlab to 
solve regression problems, the predict function is generally used to make predictions. 

2.2 Neural Network Performance Evaluation 

This section describes how to evaluate the performance of a neural network. In the 
previous section, we used accuracy to describe the performance of a model, but there 
are many other metrics that can evaluate the performance of a model. Note that the 
evaluation methods can also be used to assess other machine learning methods such 
as decision tree and support vector machine. 

In the Sect. 2.1, we used the MNIST dataset, which is not stored as images, using 
the form of an numerical arrays. This is obviously not a figurative way to represent 
image dataset. In this section we use the Digits dataset as the dataset, which is a 
similar dataset to MNIST that comes with Matlab. The Digits dataset consists of 
10,000 images in ten categories from 0 to 9, with 1000 images in each category. The 
form of our image data storage divides this dataset into a training set, a validation 
set and a test set in the ratio of 6:2:2. The programs used are as follows: 

digitDatasetPath = fullfile(matlabroot,‘toolbox’,… 
‘nnet’,‘nndemos’, ‘nndatasets’,‘DigitDataset’); 

imds = imageDatastore(digitDatasetPath, … 
‘IncludeSubfolders’,true,‘LabelSource’,‘foldernames’); 

figure(1); 
numImages = length(imds.Files); 
idx = randperm(numImages,9); 
for i = 1:length(idx) 
subplot(3,3,i); 
imshow(imds.Files{idx(i)}); 

end 
labelCount = countEachLabel(imds);
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img1 = readimage(imds,1); 
size(img1) 
[imdsTest,imdsTrain] = splitEachLabel(imds,0.2,‘randomize’); 
[imdsValid,imdsTrain] = splitEachLabel(imdsTrain,0.25,‘randomize’); 
labelCountTest = countEachLabel(imdsTest); 
labelCountTrain = countEachLabel(imdsTrain); 
labelCountValid = countEachLabel(imdsValid); 

The results of the above program after running are shown in Fig. 2.4. As can be 
seen from the figure, the Digits dataset is very similar to MNIST, except that the 
number of samples becomes smaller. There are 600 images for each category in the 
training set, 200 images for each category in the validation set, and 200 images for 
each category in the test set. 

We still use the LeNet model from the previous section and the network structure 
can be analyzed using the following program: 

analyzeNetwork(layers); 

Analyzing the network structure yields Fig. 2.5, from which we can see the size 
of the output feature map for each layer and the number of weight parameters to 
be learned for each layer. For LeNet, the input layer, adjustment size, pooling layer,

Fig. 2.4 Showing 9 images in the Digits dataset 



48 2 Convolutional Neural Network

Fig. 2.5 Analyzing the LeNet network 

Softmax and output layer do not involve weight parameters, so they are indicated by 
“-” in the figure. 

The training and testing programs for the LeNet network are as follows: 

layers = [ 
imageInputLayer([28 28 1],“Name”,“imageinput”) 
resize3dLayer(“Name”,“resize3d-output-size”,… 
“GeometricTransformMode”,“half-pixel”,“Method”,“nearest”,… 
“NearestRoundingMode”,“round”,“OutputSize”,[32 32 1]) 
batchNormalizationLayer 
convolution2dLayer([5 5],6,“Name”,“conv1”) 
maxPooling2dLayer([2 2],“Name”,“maxpool2”,“Padding”,“same”,“Stride”,[2 

2]) 
convolution2dLayer([5 5],16,“Name”,“conv3”) 
maxPooling2dLayer([2 2],“Name”,“maxpool4”,“Padding”,“same”,“Stride”,[2 

2]) 
convolution2dLayer([5 5],120,“Name”,“conv5”) 
fullyConnectedLayer(84,“Name”,“fc6”) 
fullyConnectedLayer(10,“Name”,“fc7”) 
softmaxLayer(“Name”,“softmax”) 
classificationLayer(“Name”,“classoutput”)]; 

options = trainingOptions(‘sgdm’, … 
‘MaxEpochs’,10, … 
‘Shuffle’,‘every-epoch’, … 
‘MiniBatchSize’,128, …



2.2 Neural Network Performance Evaluation 49

‘ValidationData’,imdsValid, … 
‘ValidationFrequency’,10, … 
‘Verbose’,false, … 
‘Plots’,‘training-progress’); 

trainNet = trainNetwork(imdsTrain,layers,options); 
save(‘Digits_LeNet5.mat’,‘trainNet’); 
YPred = classify(trainNet, imdsTest); 
YTest = imdsTest.Labels; 
accuracy = sum(YPred = =  YTest)/numel(YPred); 

The results of the above program after running are shown in Fig. 2.6. It can be 
seen that the training process was completed in 78 s on a CPU computer, which is 
still relatively fast. The accuracy on the validation set is 95.85%, while the accuracy 
on the test set is 96.65%, which shows that the LeNet network is able to solve the 
classification problem of the Digits dataset. 

Accuracy is the most commonly used and basic metric to evaluate the performance 
of a classification model, but it is not applicable to all cases. For example, suppose 
there is an unbalanced dataset which is a binary classification problem containing 
10,000 samples, where the number of positive class samples is 9900 and the number 
of negative samples is 100. If there is a classification model that predicts all the 
samples as positive class, then its accuracy is 9900/10,000 = 99%. Although the 
accuracy of this classification model is very high, it cannot determine the negative 
class samples, and we generally consider the model unconvincing. Especially for the 
medical diagnosis problem, the number of patients as negative class and the number 
of normal people as positive class samples, usually the number of patients is much 
smaller than the number of normal people, such a model cannot effectively determine

Fig. 2.6 Training process of LeNet network on Digits dataset 
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Fig. 2.7 Confusion matrix 
of binary classification 
problem 

the negative class and is not helpful for identifying patients. Thus, other criteria are 
needed to evaluate the performance of the classification model. 

We first present the evaluation metrics for binary classification problems and then 
extend to multi-class classification problems. For binary classification problems, in 
medicine they are generally referred to as positive and negative, while in artificial 
intelligence we generally refer to samples as positive and negative classes and assume 
that the positive class is the one we focus on. 

As shown in Fig. 2.7, for a binary classification problem, a particular classification 
model may predict the sample as either positive or negative class, and the true class 
of the sample has been given, then four scenarios can be combined: 

(1) True Positive (TP). True means that a classification model identifies a sample 
as a positive class, and the true class of the sample is the positive class, which 
simply means that the positive sample is correctly identified as the positive class. 

(2) False Negative (FN). False negative means that a classification model identifies 
a sample as a negative class, while the true class of the sample is positive, which 
simply means that the positive sample is incorrectly identified as a negative 
class. 

(3) False Positive (FP). False positive means that a classification model identifies 
a sample as a positive class, while the true class of the sample is a negative 
class, which simply means that the negative sample is incorrectly identified as 
a positive class. 

(4) True Negative (TN). True negative means that a classification model identifies 
a sample as a negative class when the true class of the sample is negative, which 
simply means that the negative sample is correctly identified as a negative class. 

If we use the letter abbreviations in Fig. 2.7 to represent the number of samples 
for each scenario, the accuracy rate is: 

ACC = T P  + T N  

T P  + FN  + FP  + T N  
(2.1) 

where ACC denotes accuracy, the numerator is the number of sample categories 
correctly identified by a model, and the denominator is the number of all samples. 
Precision is defined as: 

P = T P  

T P  + FP  
(2.2)
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where P denotes the precision rate, which indicates the proportion of samples that 
are true positive samples among those identified as positive classes by a particular 
model. The Recall is: 

R = T P  

T P  + FN  
(2.3) 

where R denotes the recall rate, which indicates the proportion of samples that are 
identified as positive classes by a particular model among those that are truly positive 
classes. In Fig. 2.7, the precision rate can be calculated from the values in the first 
column, while the recall rate can be calculated from the values in the first row. 

Precision and recall express the performance of some aspect of the binary classi-
fication problems, and the F-score (F-score), which combines the P and R metrics, 
is expressed as 

Fβ =
(
1 + β2

) P × R
(
β2 × P) + R (2.4) 

where β is the parameter that balances the precision rate and the recall rate. When 
β = 2, the weight of recall is higher than that of precision, and the F-score focuses 
on recall; when β = 0.5, the weight of precision is higher than that of recall, and the 
F-score focuses on precision; and when β = 1, the weights of precision and recall 
are equal, and the F-score is also called F1-score. F1-score is also a common metric 
to evaluate the performance of the model. 

We can also calculate the true positive class rate, whose expression is: 

T P  R  = T P  

T P  + FN  
(2.5) 

where TPR stands for True Positive Rate. It is clear to see that the TPR and the recall 
rate are the same. Correspondingly, the false positive class rate is: 

FPR  = FP  

FP  + T N  
(2.6) 

where FPR denotes the False Positive Rate. The TPR and FPR rate can be calculated 
from the first and second rows in Fig. 2.7. By using  the  TPR as the vertical axis 
and the FPR as the horizontal axis, we can plot a curve called Receiver Operating 
Characteristic (ROC). Since both TPR and FPR are between 0 and 1, ROC is a curve 
located in [0, 1] × [0, 1]. We refer to the area enclosed by the ROC curve and the 
horizontal axis as the Area Under Curve (AUC). Since AUC is a numerical value, it 
can quantitatively describe the performance of a classification model. 

For binary classification problems, ACC, P, R, F1 score and AUC are available 
evaluation metrics. For multi-class classification problems, it is sufficient to gener-
alize the above formulae. These evaluation metrics are between 0 and 1, and the closer 
to 1 the better the performance of the classification model. The values of ACC, P, R,
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F1-score and AUC can be expressed as percentage. Let us take the LeNet network 
as an example to solve the handwritten postal code recognition problem, which is 
a ten-class classification problem. The programs to calculate the evaluation metrics 
on the test set are as follows: 

M = confusionmat(YTest, YPred); 
ACC = sum(diag(M)) / sum(M(:)); 
P1 = diag(M)./(sum(M,1) + 0.0001)’; 
R1 = diag(M)./(sum(M,2) + 0.0001); 
P = mean(P1); 
R = mean(R1); 
F1score = 2*P*R/(P + R); 
fig = figure; 
cm = confusionchart(YTest,YPred,‘RowSummary’,… 

‘row-normalized’,‘ColumnSummary’,‘column-normalized’); 
CLASSES = unique(YTest); 
for i1 = 1:length(CLASSES). 

% compute AUC for Class i. 
[XRF,YRF,TRF,AUCRF(i1)] = perfcurve(YTest,… 

YPredScores(:, i1),CLASSES(i1)); 
end 
AUC = mean(AUCRF); 

After running the above program, the result in Fig. 2.8 is obtained. The values 
of all metrics are expressed as percentage. The ACC overaged on ten categories is 
97.6%, the average precision rate on ten categories is 97.65%, the average recall rate 
on ten categories is 97.6%, and the average AUC on ten categories is 99.99%. All four 
metrics are close to 100%, which shows that LeNet shows a very good performance 
on Digits dataset.

In Fig. 2.8, we can see that the precision rate of each category, the precision rate 
of number 9 is 93.5%, and the precision rate of the rest of numbers are above 95%; 
the recall rates of number 3 and number 8 are 92.5% and 94.5% respectively, and the 
recall rates of the rest of numbers are above 95%. It can be seen that although the 
precision rate and recall rate of LeNet on the test set are above 95%, its precision or 
recall of some digits could be less than 95%, which indicates that there is still some 
room for improvement in the recognition of a specific digit. 

2.3 Transfer Learning with Convolutional Neural Network 

In this section, we will describe how to use a pre-trained model, i.e., train a convolu-
tional neural network on one dataset, and for another dataset, we just need to modify 
the previously trained convolutional neural network so that it can match the image 
size and number of categories of the new dataset. This means that we can reuse the
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Fig. 2.8 Confusion matrix of the LeNet network on Digits dataset

prior knowledge to solve the unknown problem. In the field of machine learning, this 
practice is called transfer learning. 

Let’s first introduce the ImageNet dataset, which is a dataset maintained by Fei-
Fei Li at Stanford University. She sponsored the ImageNet competition, which is 
called ILSVRC (ImageNet Large Scale Visual Recognition Challenge). ImageNet 
competition has been held since 2010. The dataset is continuously updated, so the 
size of the dataset has gradually increased. The most commonly used ImageNet 
dataset is the 2012 dataset with about 1.2 million images in the training set, about 
50,000 images in the validation set, and about 100,000 images in the test set [2]. 
the ImageNet dataset has 1,000 categories, and the size of each image is 227 × 227 
× 3, i.e., each image is in color. The dataset is widely used for problems such as 
image classification, image detection and localization, and is also the home of classic 
convolutional neural networks such as AlexNet (2012), VGG (2014), GoogLeNet 
(2014) and ResNet (2015), where the number in parentheses indicates the year in 
which the network model was attended in the ImageNet competition. 

In this section, we take two convolutional neural network models, AlexNet and 
SqueezeNet [3], as examples. Readers can also try other network models. We use the
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Table 2.2 Food example 
image dataset Label Amount 

caesar_salad 26 

caprese_salad 15 

french_fries 181 

greek_salad 24 

hamburger 238 

hot_dog 31 

pizza 299 

sashimi 40 

Sushi 124 

food example image dataset as the research problem, as shown in Table 2.2, which 
contains 978 images with 9 categories. 

The food example image dataset is a small size dataset and the number of images 
in each category is different. From Table 2.2, we can see that the category with the 
least sample is “caprese_salad” with only 15 images and the category with the most 
sample is “pizza” with 299 images, and the sample ratio of these two categories is 
about 1:20, so this dataset can be considered as an unbalanced dataset. 

AlexNet is a convolutional neural network proposed by Hinton and his student 
Alex in 2012. It won the first place in the ImageNet dataset competition. AlexNet is a 
convolutional neural network with 8 layers, where the first 5 layers are convolutional 
and the last 3 layers are fully connected. Without going into details of the exact 
structure and computational process of AlexNet, the programs to solve the problem 
using pre-trained AlexNet are as follows: 

dataDir = fullfile(“ExampleFoodImageDataset”); 
url = “https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImag 
eDataset.zip”; 
if ~ exist(dataDir, “dir”) 

mkdir(dataDir); 
downloadExampleFoodImagesData(url,dataDir); 

end 
imds = imageDatastore(‘ExampleFoodImageDataset’, … 

‘IncludeSubfolders’,true,‘LabelSource’,‘foldernames’); 
labelCount = countEachLabel(imds); 
img1 = readimage(imds,1); 
size(img1) 
[imdsTest,imdsTrain] = splitEachLabel(imds,0.2,‘randomize’); 
[imdsValid,imdsTrain] = splitEachLabel(imdsTrain,0.25,‘randomize’); 
labelCountTest = countEachLabel(imdsTest); 
labelCountTrain = countEachLabel(imdsTrain); 
labelCountValid = countEachLabel(imdsValid); 
numTrainImages = numel(imdsTrain.Labels);

https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImageDataset.zip
https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImageDataset.zip
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idx = randperm(numTrainImages,9); 
I = imtile(imds, ‘Frames’, idx); 
figure; 
imshow(I); 
net = alexnet; 
inputSize = net.Layers(1).InputSize; 
analyzeNetwork(net); 
numClasses = numel(categories(imdsTrain.Labels)); 
layersTransfer = net.Layers(1:end-3); 
layers = [ 

layersTransfer 
fullyConnectedLayer(numClasses,‘WeightLearnRateFactor’,… 
10,‘BiasLearnRateFactor’,10) 
softmaxLayer 
classificationLayer]; 

lgraph = layerGraph(layers); 
aug = imageDataAugmenter(“RandXReflection”, true, … 

“RandYReflection”, true, … 
“RandXScale”, [0.8 1.2], … 
“RandYScale”, [0.8 1.2]); 

augImdsTrain = augmentedImageDatastore(inputSize(1:2), imdsTrain, … 
‘DataAugmentation’, aug); 

augImdsVal = augmentedImageDatastore(inputSize(1:2), imdsValid); 
opts = trainingOptions(“adam”, … 

“InitialLearnRate”, 1e-4, … 
“MaxEpochs”, 10, … 
“ValidationData”, augImdsVal, … 
“Verbose”, false,… 
“Plots”, “training-progress”, … 
“ExecutionEnvironment”,“cpu”,… 
“MiniBatchSize”,128); 

netTransfer = trainNetwork(augImdsTrain, lgraph, opts); 
save(‘Food_AlexNet.mat’,‘netTransfer’, … 

‘imdsTrain’,‘imdsValid‘,‘imdsTest‘); 
augImdsTest = augmentedImageDatastore(inputSize(1:2), imdsTest); 
[YPred, YPredScores] = classify(netTransfer, augImdsTest); 
YTest = imdsTest.Labels; 
M = confusionmat(YTest, YPred); 
ACC = sum(diag(M)) / sum(M(:)); 
P1 = diag(M)./(sum(M,1) + 0.0001)‘; 
R1 = diag(M)./(sum(M,2) + 0.0001); 
P = mean(P1); % mean precision of all classes 
R = mean(R1); % mean recall of all classes 
F1score = 2*P*R/(P + R); 
fig = figure;
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cm = confusionchart(YTest,YPred,‘RowSummary‘,… 
‘row-normalized‘,‘ColumnSummary‘,‘column-normalized‘); 

CLASSES = unique(YTest); 
for i1 = 1:length(CLASSES) 

% compute AUC for Class i 
[XRF,YRF,TRF,AUCRF(i1)] = perfcurve(YTest,… 

YPredScores(:, i1),CLASSES(i1)); 
end 
AUC = mean(AUCRF); 

The results of the above program after running are shown in Figs. 2.9, 2.10 and 
2.11. Figure 2.9 shows the structure analysis of AlexNet. It is known that the AlexNet 
network model contains more than 60 million parameters to be learned. It should be 
noted that the figure shows that the AlexNet structure consists of 25 layers, which is 
because each step from input to output is considered as one layer in Matlab, so the 
number of layers shown in the figure is larger than the 8 layers introduced earlier. The 
training process of this model is more time consuming if the model is not pre-trained. 

Figure 2.10 shows the training process of the AlexNet network, and it can be seen 
that the model was re-trained on a CPU computer in less than 6 min based on the 
pre-trained model. The accuracy on the validation set was 85.71%. The accuracy on 
the test set was 83.67%. Thus, the AlexNet network is able to solve food example 
image dataset. 

Figure 2.11 shows the confusion matrix of the AlexNet network. Although the 
model has a high average accuracy and recall on the nine categories, it has shortcom-
ings, for example, in the “sashimi” category, the precision rate of AlexNet is only

Fig. 2.9 Analysis of the AlexNet network



2.3 Transfer Learning with Convolutional Neural Network 57

Fig. 2.10 Training process of the AlexNet on food example image dataset 

Fig. 2.11 Confusion matrix of the AlexNet on food example image dataset

44.4% and the recall rate of the AlexNet is only 50.0%. The precision rate of the 
AlexNet in the “hot_dog” category is 66.7%, and the recall in the “hot_dog” category 
is only 33.3%. 

SqueezeNet is a convolutional neural network proposed by Iandola and other 
scholars [3]. After simulation experiments, SqueezeNet achieves the same accuracy 
rate as AlexNet, but SqueezeNet has only one-fiftieth of the number of parameters of
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AlexNet. SqueezeNet also opens up a new research direction in the field of artificial 
intelligence, which is to maximize the computational speed without decreasing the 
accuracy of the model. A pre-trained version from the ImageNet dataset, which 
is based on more than 1 million images, has been saved in Matlab. The pre-trained 
network can classify images into 1000 object classes, such as keyboard, mouse, pencil 
and many animals. Thus, SqueezeNet has learned a rich feature representation of a 
wide range of images, and its network input image size is 227 × 227. 

We use the food example image dataset as the research problem. The programs 
to solve the problem using pre-trained SqueezeNet are as follows: 

dataDir = fullfile(“ExampleFoodImageDataset”); 
url = “https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImag 
eDataset.zip”; 
if ~ exist(dataDir, “dir”). 
mkdir(dataDir); 
downloadExampleFoodImagesData(url,dataDir); 

end 
imds = imageDatastore(‘ExampleFoodImageDataset‘, … 
‘IncludeSubfolders‘,true,‘LabelSource‘,‘foldernames‘); 

labelCount = countEachLabel(imds); 
img1 = readimage(imds,1); 
size(img1) 
[imdsTest,imdsTrain] = splitEachLabel(imds,0.2,‘randomize‘); 
[imdsValid,imdsTrain] = splitEachLabel(imdsTrain,0.25,‘randomize‘); 
labelCountTest = countEachLabel(imdsTest); 
labelCountTrain = countEachLabel(imdsTrain); 
labelCountValid = countEachLabel(imdsValid); 
numTrainImages = numel(imdsTrain.Labels); 
idx = randperm(numTrainImages,9); 
I = imtile(imds, ‘Frames‘, idx); 
figure; 
imshow(I); 
net = squeezenet; 
inputSize = net.Layers(1).InputSize; 
analyzeNetwork(net); 
lgraph = layerGraph(net); 
numClasses = numel(categories(imdsTrain.Labels)); 
newConvLayer = convolution2dLayer ([1,1],numClasses,… 
‘WeightLearnRateFactor‘,10,‘BiasLearnRateFactor‘,… 
10,“Name”,‘new_conv‘); 

lgraph = replaceLayer(lgraph,‘conv10‘,newConvLayer); 
newClassificatonLayer = classificationLayer(‘Name‘,‘new_classoutput‘); 
lgraph = replaceLayer(lgraph,… 
‘ClassificationLayer_predictions‘,newClassificatonLayer); 

aug = imageDataAugmenter(“RandXReflection”, true, …

https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImageDataset.zip
https://www.mathworks.com/supportfiles/nnet/data/ExampleFoodImageDataset.zip
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“RandYReflection”, true, … 
“RandXScale”, [0.8 1.2], … 
“RandYScale”, [0.8 1.2]); 

augImdsTrain = augmentedImageDatastore(inputSize(1:2), imdsTrain, … 
‘DataAugmentation‘, aug); 

augImdsVal = augmentedImageDatastore(inputSize(1:2), imdsValid); 
opts = trainingOptions(“adam”, … 
“InitialLearnRate”, 1e-4, … 
“MaxEpochs”, 10, … 
“ValidationData”, augImdsVal, … 
“Verbose”, false,… 
“Plots”, “training-progress”, … 
“ExecutionEnvironment”,“cpu”,… 
“MiniBatchSize”,128); 

netTransfer = trainNetwork(augImdsTrain, lgraph, opts); 
save(‘Food_SqueezeNet.mat‘,‘netTransfer‘, … 
‘imdsTrain‘,‘imdsValid‘,‘imdsTest‘); 

augImdsTest = augmentedImageDatastore(inputSize(1:2), imdsTest); 
[YPred, YPredScores] = classify(netTransfer, augImdsTest); 
YTest = imdsTest.Labels; 
M = confusionmat(YTest, YPred); 
ACC = sum(diag(M)) / sum(M(:)); 
P1 = diag(M)./(sum(M,1) + 0.0001)‘; 
R1 = diag(M)./(sum(M,2) + 0.0001); 
P = mean(P1); % mean precision of all classes 
R = mean(R1); % mean recall of all classes 
F1score = 2*P*R/(P + R); 
fig = figure; 
cm = confusionchart(YTest,YPred,‘RowSummary‘,… 
‘row-normalized‘,‘ColumnSummary‘,‘column-normalized‘); 

CLASSES = unique(YTest); 
for i1 = 1:length(CLASSES) 
% compute AUC for Class i. 
[XRF,YRF,TRF,AUCRF(i1)] = perfcurve(YTest,… 

YPredScores(:, i1),CLASSES(i1)); 
end 
AUC = mean(AUCRF); 

The results of the above program after running are shown in Figs. 2.12, 2.13 and 
2.14. Figure 2.12 gives the structural analysis of the SqueezeNet. The SqueezeNet 
network model contains about one million two hundred thousand parameters to be 
learned. It should be noted that the figure shows that the SqueezeNet structure consists 
of 68 layers, which is because in Matlab, each step from input to output is considered 
as one layer, so the number of layers shown in the figure is larger than the 18 layers 
introduced earlier.



60 2 Convolutional Neural Network

Fig. 2.12 Analysis of the SqueezeNet network 

Fig. 2.13 Training process of the SqueezeNet on food example image dataset

The training process of this model is more time consuming if the model is not 
pre-trained. Figure 2.13 shows the training process of the SqueezeNet. It can be seen 
that the model was retrained on a CPU computer in less than eight minutes based 
on the pre-trained model and with an accuracy of 75.51% on the validation set. The 
accuracy of the SqueezeNet on the test set is 76.02%. Thus, the SqueezeNet is able 
to solve the food example image dataset.
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Fig. 2.14 Confusion matrix of the SqueezeNet on food example image dataset

Figure 2.14 shows the confusion matrix of the SqueezeNet. It can be seen that 
the model‘s precisioin rate of SqueezeNet does not exceed 50.0% on categories of 
“greek_salad” and “sashimi”. Moreover, the SqueezeNet predicts incorrectly on all 
samples of the “caesar_salad” category, resulting in an precision rate that cannot be 
calculated. Except “french_fries”, “greek_salad”, “sashimi” and “sushi” categories, 
the recall rates of the SqueezeNet are all less than 33.3%. 

Finally, the comparison of the AlexNet and the SqueezeNet performance on the 
food example image dataset is shown in Table 2.3. 

Table 2.3 gives the values of the five metrics ACC, P, R, F1-score and AUC 
introduced in the previous section, where F1-score is abbreviated as F1. it can be 
seen that the AlexNet outperforms the SqueezeNet in all metrics. This result is 
consistent with the experimental results of recent researchers. The total number of 
parameters of the SqueezeNet is reduced by about 50 times. Although the accuracy of 
the SqueezeNet is lower than that of the AlexNet, the reduction in the total number 
of parameters makes the SqueezeNet applicable to real-time image classification 
problems. Moreover, the SqueezeNet can be laid out in small chips such as field 
programmable gate array (FPGA).

Table 2.3 Performance of AlexNet and SqueezeNet on food example image dataset 

Network ACC (%) P (%) R (%) F1 (%) AUC (%) 

AlexNet 83.67 77.09 77.70 77.39 97.21 

SqueezeNet 76.02 52.88 45.16 48.72 94.30 
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Except MINST and ImageNet dataset, readers can use other datasets. For example, 
corona virus disease 2019 (COVID-19) is a worldwide outbreak of an infectious 
disease. There are publicly available datasets on the classification problem of 
COVID-19 [4]. Readers could easily use AlexNet or SqueezeNet to solve COVID-19 
dataset. 

2.4 Research Progress of Neural Network 

This section reviews the state-of-the-art progress of neural network research. 
These researches are classified to four categories. They are deep neural network, 
convolutional neural network, graph neural network and other network model. 

(1) Deep neural network 

Considering that the application of deep neural network (DNN) in modeling tabular 
data is still challenging. Borisov et al. outline the most advanced deep learning 
methods for tabular data [5]. Specifically, they are divided into three groups: data 
transformation, dedicated architecture, and regularization model. The authors do 
in-depth study of deep learning methods for tabular data. This work can serve as 
a valuable starting point to guide researchers and practitioners interested in deep 
learning of tabular data. 

Due to ill-posed problems, gradient disappearance or explosion problems, saddle 
point problems and other reasons, DNN often have problems of poor performance 
or even training failure. Liu et al. proposed a new method of applying gradient 
activation function to gradient to solve these problems [6]. Intuitively, GAF enlarges 
the small gradient and limits the large gradient. The conditions that GAF needs to 
meet are given theoretically, and it is proved that GAF alleviates the above problems. 
In addition, under certain assumptions, it is proved that the convergence speed of 
SGD with GAF is faster than that of SGD without GAF. The experimental results 
also show that this method can be applied to various deep neural networks (DNNs) 
to improve their performance. 

Considering that DNNs require high computational time, people always expect 
to achieve better performance with lower computational complexity. Therefore, the 
human sense system was studied and a neural network (SpinalNet) was designed to 
achieve higher accuracy with less computation [7]. The hidden layer in the traditional 
neural network receives the input of the previous layer, applies the activation function, 
and then passes the result to the next layer. In SpinalNet, each layer is divided into 
three parts: input part, middle part and output part. The input part of each layer 
receives part of the input. The middle part of each layer receives the output of the 
middle part of the previous layer and the output of the input part of the current layer. 
Compared with the traditional DNN, the number of input weights is significantly 
reduced. SpinalNet can also be used as a fully connected layer or classification layer 
of DNN to support transfer learning.
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Aiming at the problem that there are few studies on the interpretation of the 
physical meaning of CNN structure in the existing literature, Li et al. proposed a 
new wavelet-driven DNN, called wavelet kernel net (WKN), in which a continuous 
wavelet convolution (CWConv) layer is designed to replace the first convolution layer 
of standard CNN [8]. This allows the first CWConv layer to find more meaningful 
filters. In addition, in the CWConv layer, only the scale parameters and translation 
parameters are learned directly from the original data. This provides a very effective 
method to obtain a customized filter bank dedicated to extracting the defect-related 
impact component embedded in the vibration signal. The experimental results show 
that the importance of the CWConv layer and the output of the CWConv layer are 
interpretable. Compared with standard CNN, WKN has fewer parameters, higher 
fault classification accuracy and faster convergence speed. 

In view of the lack of high-quality labels in many practical scenarios, Song et al. 
first described the learning problem with label noise from the perspective of super-
vised learning [9]. Next, the authors make a comprehensive review of 62 state-
of-the-art robust training methods. All these methods are divided into five groups 
according to their method differences, and then the six attributes used to evaluate their 
superiority are systematically compared. The authors put forward several promising 
research directions, which can be used as guidance for future research. 

Elbrächter et al. developed the basic limitations of DNN by describing what 
may occur without imposing constraints on learning algorithms and training data 
volume [10]. Specifically, they consider Kolmogorov optimal approximation through 
DNNs. The guiding theme is the relationship between the complexity of the function 
to be approximated and the complexity of the approximation network in terms of 
connectivity and memory requirements for storage network topology and related 
quantization weights. The theory establishes Kolmogorov optimal approximations 
of DNNs that are significantly different function classes, such as the unit ball in Besov 
space and modulation space. The authors also prove that in the approximation of a 
sufficiently smooth function, a finite-width deep network requires less connectivity 
than a finite-width wide network. 

Apostolidis et al. mainly conducted a comprehensive survey of the existing general 
video summarization methods based on deep learning [11]. They formulate a video 
summarization task and discuss the main features of a typical deep learning-based 
analysis pipeline. The authors report the objective evaluation protocol of video 
summarization algorithm, and compare the performance of several methods based on 
deep learning. Based on the results of these comparisons, as well as some literature 
considerations on the amount of annotated data and the applicability of evaluation 
schemes, the authors point out potential future research directions. 

In view of the fact that there is no comprehensive investigation focusing on the 
advantages and limitations of using neural evolution methods in DNN, and preventing 
DNN researchers from using neural evolution methods in their own research, Galván 
et al. conducted a comprehensive investigation, discussion and evaluation of the latest 
work on DNN architecture configuration and training using evolutionary algorithms 
(EAs) [12]. On this basis, this paper focuses on the most relevant problems and
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challenges in current neuroevolution research, and points out several promising future 
research directions. 

(2) Convolutional neural network 

Among them, Li et al. consider that the existing literature review mainly focuses 
on the application of CNN in different application scenarios, and does not consider 
CNN as a whole, nor does it cover some novel ideas recently proposed [13]. They 
aim to provide new ideas and prospects for this rapidly developing field as much as 
possible. It involves not only two-dimensional convolution, but also one-dimensional 
and multi-dimensional convolution. They introduce the classical and advanced CNN 
models, especially the key points that make them reach the most advanced results. 
Through experimental analysis, some conclusions are drawn and empirical rules 
are provided for functional selection. The applications of one-dimensional, two-
dimensional and multi-dimensional convolutions are introduced. Finally, some open 
problems and development directions of CNN are discussed to provide guidance for 
future work. 

With the increasing number of remote sensing data obtained from satellites, the 
simultaneous processing and analysis of multi-modal remote sensing data pose new 
challenges to remote sensing researchers. To this end, Wu et al. proposed a new frame-
work for multi-modal remote sensing data classification based on deep learning [14]. 
CNN is used as the backbone and the advanced cross-channel reconstruction module 
CCR-Net is used. A large number of experiments on two multi-modal remote sensing 
datasets, including hyperspectral (HS) and light detection and ranging (LiDAR) data, 
and synthetic aperture radar (SAR) data are carried out. Compared with several state-
of-the-art multi-modal remote sensing data classification methods, the effectiveness 
and superiority of CCR-Net are proved. 

In order to effectively learn features from small training data, an additional sparsity 
cost is added to the cost function of CNN to modify it. Kumar et al. proposed a new 
triangular cross entropy function to calculate the sparsity cost [15]. The proposed 
cost function introduces sparsity by avoiding unnecessary neuron activation in the 
CNN hidden layer. At the same time, in order to identify bearing defects from small 
training samples, the transfer learning application based on novel CNN (NCNN) is 
as follows: First, the original vibration signal and the envelope signal of the source 
domain machine are obtained. Then, these envelope signals are applied to NCNN. It 
is used to learn features from large training data released from the source domain. 
After feature learning, the knowledge obtained from NCNN is transferred to the 
small training samples in the target domain to fine-tune the NCNN. Then, the test 
data of the target domain is applied to the fine-tuned NCNN for defect recognition. 
The experimental results verify that the proposed cross-entropy function introduces 
sparsity in CNN, thereby creating an effective deep learning that can even work when 
the training data is insufficient. 

(3) Graph neural network 

Based on non-Euclidean data type graph neural network (GNN), Bessadok et al. 
provides a clever way to learn the structure of depth maps, thereby improving the
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performance of various neuroscience tasks [16]. The authors review the current GNN-
based methods, emphasizing the ways they are used in several brain map-related 
applications. They also draw a path for the better application of GNN in the diagnosis 
of neurological diseases. 

Grattarola et al. introduced Spectral, an open-source Python library for 
constructing graph neural networks using TensorFlow and Keras application 
programming interfaces (API) [17]. Spectral implements a large number of methods 
for deep learning on graphs, including message passing and pool operators, as well as 
utilities for processing graphs and loading popular benchmark datasets. The purpose 
of this library is to provide the building blocks necessary to create a GNN. Therefore, 
Spectral is very suitable for beginners and deep learning experts. 

Aiming at the problem that there is no unified processing method and a standard 
evaluation benchmark and test platform for the current GNN interpretability methods, 
Yuan et al. provides a unified and classified view [18]. First, the unified and classified 
processing of GNN interpretation methods reveal the commonalities and differences 
of existing methods. At the same time, in order to facilitate the evaluation, the authors 
provide a test platform for GNN interpretability. A comprehensive experiment is 
conducted to compare and analyze the performance of many methods. 

In recent years, graph neural networks (GNNs) have received extensive attention 
due to their excellent performance. Although GNNs are very popular and dynamic 
network models have proved its benefits, few people pay attention to the application 
of GNNs in dynamic networks. In order to solve the challenges brought by this 
research across different fields and investigating dynamic neural networks, Skarding 
et al. establishes a dynamic network foundation with consistent and detailed terms and 
symbols. A comprehensive survey of dynamic neural network models was conducted 
using the proposed terms [19]. 

Aiming at the problem that it is difficult to explain the validity of the GNN 
model due to the complex nonlinear transformation in the iterative process, Huang 
et al. proposed a nonlinear feature selection method GraphLIME model [20]. It is 
a general GNN model interpretation framework, which learns the nonlinear inter-
pretable model locally in the subgraph of the interpreted node. The GraphLIME 
generates a nonlinear interpretable model from its n-hop neighborhood, and then 
uses HSIC Lasso to calculate K most representative features as an explanation for 
its prediction. It is found that GraphLIME has a very high degree of interpretation 
and is more descriptive than the existing interpretation methods. 

Bianchi et al. proposed a new graph convolutional layer inspired by the autore-
gressive moving average (ARMA) filter [21]. Compared with the polynomial layer, 
it provides a more flexible frequency response. At the same time, the authors propose 
a GNN implementation of ARMA filter based on recursive and distributed formulas, 
and obtain an efficient training convolution layer. Spectrum analysis is conducted 
to study the filtering effect of the proposed ARMA layer. The results show that 
the ARMA layer has significant improvement compared with the GNN based on 
polynomial filter. 

Schnake e al. shows that GNN can actually be explained naturally using higher-
order expansions. In fact, it turns out that such an explanation can be extracted using
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a nested attribution scheme [22]. The output is a set of walks into the input graph 
related to the prediction. The new interpretation method represented by GNN-LRP 
is suitable for a wide range of GNNs. The method also extracts practically relevant 
insights in sentiment analysis of text data and image classification. 

Aiming at the problem that the tasks of GNNs on unclassified graphs usually 
require non-local aggregation, and local aggregation is harmful to some unclassified 
graphs, Liu et al. proposes a simple and effective non-local aggregation framework 
[23]. The framework has efficient GNN attention guided sorting. At the same time, 
the authors develop various non-local GNNs, and conducts thorough experiments to 
analyze the non-classified graph data set and evaluate non-local GNNs. The experi-
mental results show that nonlocal GNNs outperform the state-of-the-art methods in 
terms of model performance and efficiency on seven graph benchmark datasets. 

GNN is an information processing architecture for processing the signals 
supported on the graph. They are here a generalization of CNN, where a single layer 
contains a graph convolutional filter library, rather than a classical convolutional 
filter library. The filter is composed of point-to-nonlinear and stacked in layers. Ruiz 
et al. study that the GNN structure is equivalent to the permutation and is stable to 
the deformation of the graph [24]. These characteristics help to explain the good 
performance of GNN. It can be observed empirically that if the graph converges to 
a limit object, then GNN converges to the corresponding limit object. This conver-
gence proves the transferability of GNN between networks with different number of 
nodes. 

Xie et al. provide a unified review of different methods for training GNN using 
SSL [25]. Specifically, the authors divide the SSL method into a comparison model 
and a prediction model. The unified processing of SSL methods for GNN reveals 
the similarities and differences of various methods, which lays a foundation for the 
development of new methods and algorithms. The authors summarize the different 
SSL settings and the corresponding datasets used for each setting. A standardized 
test platform is developed for SSL in GNN, including the implementation of general 
baseline methods, datasets, and evaluation indicators. 

In order to solve the problem of optimal power allocation in single-hop ad hoc 
wireless networks, Chowdhury et al. propose a neural network architecture inspired 
by the iterative weighted least mean square error algorithm expansion, which is 
called UWMMSE [26]. The GNN is used to parameterize the learnable weights in 
UWMMSE, where the time-varying underlying graph is given by the fading inter-
ference coefficient in the wireless network. The experimental results show that the 
method has robustness to hyperparameter selection and generalization to unknown 
scenarios. 

Aiming at the intrusion detection based on GNN in the Internet of Things (IoT) 
system with limited budget, Zhou et al. propose a new hierarchical adversarial attack 
(HAA) generation method, and realize a hierarchical-aware black box adversarial 
attack strategy [27]. By constructing the shadow GNN model, an intelligent mecha-
nism based on saliency mapping technology is designed to generate adversarial exam-
ples by effectively identifying and modifying key feature elements under minimum 
perturbation. Considering the overall loss changes of nodes in the IoT network, a
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hierarchical node selection algorithm based on random walk restart is proposed to 
select a set of vulnerable and high-priority nodes. The comparison results show that 
the classification accuracy of the two most advanced GNN models is reduced by 
more than 30% in the IoT environment. 

Liu et al. discuss the use of GNNs and expert knowledge for intelligent contract 
vulnerability detection methods [28]. Specifically, the authors convert the rich control 
flow and data flow semantics of the source code into a contract graph. In order to 
highlight the key nodes in the graph, the node elimination phase to standardize 
the graph is designed. A new time message propagation network to extract graph 
features from the normalized graph is designed. The experimental results show that 
the accuracy of the proposed method is significantly improved compared with the 
existing methods in three types of vulnerabilities. 

Each layer of the neural network uses a graph as a parameterization to reduce the 
number of parameters and computational complexity to capture node-level details. 
According to this principle, Isufi et al. propose a unified half framework of the most 
advanced GNN through the EdgeNet concept [29]. EdgeNet is a GNN architecture 
that allows different nodes to use different parameters to weigh the information 
of different neighbors. By extrapolating this strategy to more iterations between 
adjacent nodes, EdgeNet learns the weights of edge and neighbor dependencies to 
capture local details. This is a general linear and local operation that a node can 
perform, and contains all existing graph convolutional neural networks (GCNNs) 
and graph attention networks (GATs) under a formula. 

Chen et al. propose a new few short learning hierarchical GNN (HGNN) [30]. 
The network consists of bottom-up reasoning, top-down reasoning and final node 
classification. For bottom-up reasoning, the authors design an intra-class k-nearest 
neighbor pool and an inter-class layer to learn intra-class and inter-class nodes hierar-
chically. For top-down reasoning, the authors use the graphical pool layer to restore 
the down sampled graph to the original size. For the final node classification, the 
authors propose a skip connection to fuse multi-level features. The parameters of 
HGNN are learned through the scenario training of node loss signals. The experi-
mental results on benchmark data show that HGNN is significantly superior to other 
state-of-the-art GNN-based methods for both transduced and non-transduced few 
short learning tasks. 

(4) Other network model 

Han et al. classify dynamic neural networks to three categories [31]: 

(i) dynamic neural networks using data-related architectures or parameters to 
process the sample intelligent dynamic model of each sample; 

(ii) Spatial intelligent dynamic network for adaptive computing of different spatial 
locations of image data; 

(iii) the temporal intelligent dynamic model that performs adaptive reasoning on 
sequence data. 

Zhang et al. review the interpretability of neural networks [32]. The impor-
tance of interpretability is elaborated in detail, and a new classification method is
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proposed. The classification method is organized along three dimensions: participa-
tion type, interpretation type and focus. This classification provides a meaningful 
three-dimensional view of the distribution of papers from the relevant literature. The 
existing interpretability evaluation methods are also summarized. 

The purpose of meta-learning is to improve the learning algorithm itself, taking 
into account the experience of multiple learning. Hospedales et al. describe the 
landscape of contemporary meta-learning. Firstly, the definition of meta-learning 
is discussed and it is positioned in related fields, such as transfer learning and hyper-
parameter optimization [33]. Then a new classification method is proposed, which 
provides a more comprehensive subdivision of meta-learning methods. At the same 
time, the authors also summarize some promising applications and successful cases 
of meta-learning, including small probability learning, reinforcement learning and 
architecture search. 

Considering that because deep learning methods operate like black boxes, the 
uncertainty associated with their predictions is often difficult to quantify. Bayesian 
statistics provide a form to understand and quantify the uncertainty associated with 
deep neural network prediction. Jospin et al. provide an overview of relevant literature 
and a complete set of tools for deep learning practitioners to design, implement and 
evaluate Bayesian neural networks [34]. 

To further improve the interpretability of DNNs, Fan et al. propose a simple and 
comprehensive classification of neural network interpretability [35]. The authors 
systematically review the research on improving the interpretability of neural 
networks in recent years, describe the application of interpretability in medicine, 
and discuss the possible future research directions of interpretability. 

For the predictive learning of spatio-temporal sequences, Wang et al. proposed a 
new recurrent network PredRNN [36]. In PredRNN model, a pair of memory units 
show decoupling and operate in an almost independent transition mode. Specifically, 
the PredRNN is characterized by a serrated memory flow that propagates in a bottom-
up and top-down direction at all layers, allowing the visual dynamics learned by 
recurrent neural network (RNN) at different levels to communicate. It also uses 
memory decoupling loss to prevent memory units from learning redundant features. 
The PredRNN has obtained competitive results on five datasets of predictive learning 
scenarios. 

In order to solve the reconstruction problem in untrained neural networks to 
accelerate magnetic resonance imaging (MRI), Darestani et al. proposed a highly 
optimized untrained recovery method based on Deep Decoder variants [37]. The 
author showed that it was significantly superior to other untrained methods. At the 
same time, the performance of the training method under ideal settings is compared, 
where the training and test data are from the same distribution. The authors find that 
the untrained algorithm achieves similar performance to the baseline trained neural 
network, but the most advanced training network is superior to the untrained network. 

Gurrola-Ramos et al. proposed a residual dense neural network (RDUNet) based 
on densely connected hierarchical network for image denoising [38]. The encoding 
and decoding layers of RDUNet are composed of closely connected convolutional 
layers to reuse feature mapping and local residual learning, so as to avoid the problem
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of gradient disappearance and accelerate the learning process. In addition, the model 
uses a global residual learning method, which no longer directly predicts the denoised 
image, but predicts the residual noise of the damaged image. An advantage of 
RDUNet is that the denoising process does not require prior knowledge about the 
noise level. Experiments show that RDUNet obtains competitive results compared 
with the most advanced image denoising network. 

Aiming at the problem that the label information in DNN is not given and a data 
point cannot be assigned to a given cluster, Kauffmann et al. proposed a new frame-
work that can explain the clustering assignment of input features in an effective and 
reliable way for the first time [39]. It is based on the novel idea that clustering models 
can be rewritten as neural networks. Several cases demonstrate that the method can 
evaluate the quality of learning clustering and extract new insights from the analyzed 
data and representations. 

For single-phase shunt active power filter, a fractional order sliding mode control 
scheme based on two hidden layer recurrent neural network (THLRNN) is proposed 
[40]. A new THLRNN structure is designed to overcome the shortcomings of tradi-
tional neural networks like low approximation accuracy. The structure contains two 
hidden layers, which makes the network have stronger fitting ability and is used 
to approximate unknown nonlinearity. The fractional order term is added to the 
sliding mode controller to make the sliding mode controller have larger adjustable 
space and better optimization space. Simulation results show that compared with the 
traditional neural network sliding controller, the THLRNN method has satisfactory 
compensation performance and robustness. 

Fei et al. proposed an approximation-based adaptive fractional-order sliding mode 
control scheme for micro-gyroscopes [41]. Their method used a double-loop recur-
rent fuzzy neural network (DLRFNN) to approximate the uncertainty and distur-
bance of the system. The network had two feedback loops to capture the weights and 
output signals calculated in the previous step and used them as feedback signals for 
the next step. The proposed DLRFNN combined fuzzy system processing uncertain 
information with neural network learning from the process. The effectiveness of the 
DLRFNN method is verified through the simulation analysis. 

Exercises 

(1) Try to analyze the working of convolutional layer and pooling layer in 
convolutional neural network and give examples. 

(2) Try to analyze the difference between convolutional neural network and fully 
connected backpropagation neural network. 

(3) Novel Corona Virus Disease 2019 (COVID-19) is a worldwide outbreak of 
an infectious disease. There are publicly available datasets on the classifica-
tion problem of COVID-19. For example, COVID-CT is a CT image dataset 
(https://github.com/UCSD-AI4H/COVID-CT) that includes 349 images with 
COVID-19 and 463 images without COVID-19. Please use Matlab to create a 
convolutional neural network to solve the classification problem and analyze its 
performance.

https://github.com/UCSD-AI4H/COVID-CT
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(4) Please download the COVID-19 dataset and solve the problem by transfer 
learning using pre-trained neural network models in Matlab, e.g., AlexNet and 
SqueezeNet, and compare the performance of the different models. 
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Chapter 3 
Fuzzy Computing 

Abstract Fuzzy computing is a computational intelligence technology based on 
fuzzy theory. Fuzzy computing can solve various problems such as identification and 
clustering. Automatic control problems remain the main application area of fuzzy 
computing. This chapter first introduces the basis of fuzzy computing including fuzzy 
set and fuzzy membership function. Fuzzy pattern recognition, fuzzy clustering and 
fuzzy inference are three kinds of problems that fuzzy computing can solve. Then 
this chapter introduces Mamdani fuzzy control system, which is one of the most 
important application of fuzzy computing. Finally, this chapter introduces fuzzy 
logic designer to build fuzzy controller for a control problem. 

3.1 Overview of Fuzzy Computing 

Fuzzy computing is a computational intelligence technology based on fuzzy set 
theory, fuzzy linguistic variables, fuzzy inference. Fuzzy computing is also known 
as Fuzzy logic. In 1965, Zadeh created fuzzy set theory and developed fuzzy logic 
control theory [1]. In 1974, Mamdani applied fuzzy logic control to boiler and steam 
engine control and formed fuzzy logic controller. This pioneering work marked the 
birth of fuzzy logic cybernetics [2]. 

The phenomenon of “fuzzy” is present in human society and is an important 
feature of human perception, logical thinking and reasoning decisions [3]. For 
example, the answer to the question of whether someone is a student or not is definite, 
i.e., either he is a student or not. For the question of whether a girl is a beauty, the 
answer is uncertain, i.e., she may be a beauty, she may not be a beauty, or she may 
be somewhere in between. Through this example, we know that “fuzzy” has more 
information than “definite” and is more in line with the objective world reality. 

In natural human language, there is a large number of concepts that have a rich 
connotation without an absolute standard of measurement. People in their lives often 
use words such as “big”, “small”, “more”, “less”, “probably” and “probably” [3]. 
For example, in the column of health status, you can only fill in “good, healthy”, but 
it is difficult to specify exactly what kind of body is “good” and what kind of body is 
“healthy”. In fact, health status is a comprehensive qualitative assessment, and there
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are often personal subjective judgments. For example, we often hear that someone 
is “competent”, “smart”, “beautiful”, which are the most common words in natural 
language, and are very vague concepts. 

How do people use fuzziness in their lives to deal with things? For example, when 
a person goes to the market to buy tomatoes, he knows that the buying guideline is: 
“The redder the tomato, the riper it is”, which is equivalent to fuzzy knowledge or 
fuzzy rules. When he sees a very red tomato, he immediately assumes that the tomato 
is very ripe; while when he sees a tomato that is not red, he assumes that the tomato 
may not be very ripe according to the buying guideline This is fuzzy inference. 

Even some definite characteristics that are strictly defined are sometimes described 
by fuzzy concepts in order to grasp the main characteristics of things from a 
macro perspective and to facilitate processing. For example, people are divided into 
“young”, “middle-aged” and “old” according to their age. According to height, people 
are divided into “tall”, “medium” and “short”. By weight, people are divided into 
“fat” and “thin”, and by speed, people are divided into “fast” and “slow”. These 
examples show that fuzzy phenomena exist in human society in large numbers, and 
people often use these fuzzy concepts to deal with problems in daily life. 

According to the previous discussion, applying conventional mathematical 
methods to the analysis of problems that are inherently fuzzy is incongruous and it 
will cause a large gap between theory and practice. This gave rise to the birth of fuzzy 
mathematics. The birth of fuzzy mathematics was marked by Zadeh’s article entitled 
Fuzzy Sets published in the journal Information and Control in 1965. Zadeh proposed 
the use of member functions to describe intermediate transitions in the differences of 
fuzzy phenomena, thus breaking away from the deterministic belong-or-don’t-belong 
relationship of classical set theory. 

After that, Mandani proposed fuzzy logic control theory in 1974 and achieved 
better results than traditional numerical control methods. In 1980, Holmblad and 
Ostergard in Denmark applied fuzzy logic control theory to the cement kiln problem, 
which was the first commercially meaningful application of fuzzy logic control 
theory. In recent years, fuzzy logic cybernetics has been successfully applied to 
problems such as intelligent drum washing machines, intelligent balancing cars, and 
automatic driving of cars. 

Fuzzy computing can solve problems such as identification and clustering in 
addition to fuzzy logic cybernetics, but control problems remain the main application 
area of fuzzy computing. 

3.2 Fuzzy Sets 

At the end of the nineteenth century, Cantor in Germany founded the theory of sets. 
The set theory was then gradually integrated into all branches of mathematics and 
became part of the basic mathematical theory [1–3].
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Definition 3.1 Putting together certain things that can be clearly identified with each 
other is called a set. These things in a set can be either direct objects or abstract objects 
of thought. 

Cantor defined sets as in Definition 3.1. Here, we refer to the set defined by Cantor 
as classical set, or ordinary set. The theoretical domain is an important concept in 
ordinary set theory, which refers to the fact that when discussing the extension of 
a concept or considering the topic of a problem, a scope of discussion is always 
delineated, and this scope is called the theoretical domain. The domain is often 
represented by capital letters in italics, e.g., U, E. Each object in the domain is 
called an element and is often represented by a symbol such as a lowercase letter in 
italics, e.g., a, b, x, y. In a domain, the whole set of objects with a particular property 
constitutes a set in the domain. Sets are often represented by italicized uppercase 
letters, e.g., A, B, C, or  X, Y, Z. 

We briefly introduce some classical set operations, as follows: 

(1) The inclusion relation of a set. For any x ∈ A, there must be x ∈ B. We will 
say that the set B contains the set A, or the  set  A is contained in the set B, and it 
is written as A ⊆ B. 

(2) Empty set. If for any set A, there is ∅ ⊆  A, then ∅ is said to be the empty set of 
any set A. That is an empty set is a set that does not contain any elements. 

(3) Power set. Let U be a theoretical domain, and the set consisting of all subsets 
of U is called the power set of U, denoted as P(U). For example, suppose U = 
{a, b, c}, then P(U) = {∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}}. 

(4) Union set. The union of a set A and a set B is defined as A ∪ B = {x |x ∈ 
A or  x  ∈ B}. 

(5) Intersection set. The intersection of a set A and a set B is defined as A ∩ B = 
{x |x ∈ A and  x  ∈ B}. 

(6) Difference set. The difference set of a set A and a set B is defined as AB  = 
{x |x ∈ A and  x  /∈ B}. 

(7) Complementary set. Let U be a theoretical domain and the complement of A to 
U is defined as Ac = U − A = {x |x ∈ U or  x  /∈ A}. 

(8) Equivalence. The set A and the set B are equal noted as A = B, i.e., we have 
A ⊆ B and B ⊆ A. 

To represent a common set, one can use the enumeration method, the descriptive 
method and the characteristic function method as follows: 

(1) Enumeration method. The enumeration method is to list all the elements in a 
set, so it generally indicates a finite set. For example, S = {Primary student, 
Secondary student, University student, Graduate student}, where the set S lists 
all the elements with the nature of “student”. 

(2) Descriptive method. The descriptive method is the representation of elements 
with certain properties by means of language. For example, {A = x |x < 
0, and x i s a real number}. 

(3) Characteristic function method. The characteristic function method is to 
represent the elements by means of expressions. For example:



76 3 Fuzzy Computing

FA(x) =
{
1, x ∈ A 
0, x /∈ A 

(3.1) 

If there are more than one ordinary set, they can also perform operations on each 
other and there are some laws as follows: 

(1) Exchange law. A ∪ B = B ∪ A, A ∩ B = B ∩ A. 
(2) Combination law. A ∪ (B ∪ C) = (A ∪ B) ∪ C , A ∩ (B ∩ C) = ( A ∩ B) ∩ C . 
(3) Absorption rate. (A ∪ B) ∩ A = A, (A ∩ B) ∪ A = A. 
(4) Idempotence law. A ∪ A = A, A ∩ A = A. 
(5) Distributive law. (A ∪ B)∩C = (A ∩ C)∪(B ∩ C), (A ∩ B)∪C = (A ∪ C)∩ 

(B ∪ C). 
(6) Law of restitution. ( Ac)c = A. 
(7) Complementary law. A ∪ Ac = U , A ∩ Ac = ϕ. 
(8) 0–1 law. A ∪ U = U , A ∪ ϕ = A, A ∩ U = A,A ∩ ϕ = ϕ. 
(9) Inversion law, also known as De Morgan’s law. A ∪ Bc = Ac ∩ Bc, A ∩ Bc = 

Ac ∪ Bc. 

Based on the concept of classical sets, the concept of fuzzy sets is introduced next. 

Definition 3.2 Given a theoretical domain U, any  map  μA from U to the closed 
interval [0, 1] has the expression: 

μA : U → [0, 1] (3.2) 

The above expression determines a fuzzy set A of U, μA is called the member 
function of the fuzzy set A. 

The membership function μA reflects the degree to which the elements in a fuzzy 
set A belong to that set. If the elements in U are represented by x, then μA(x) is 
called the degree of membership of the element x belonging to the fuzzy set A. From  
Eq. (3.2), it can be seen that μA(x) takes values in the closed interval [0, 1]. If μA(x) 
is close to 0, it means that the degree of x belonging to A is low; conversely, if μA(x) 
is close to 1, it means that the degree of x belonging to A is high. 

If a fuzzy set is to be represented, the corresponding method can be used 
according to the specifics of the theoretical domain. When the theoretical domain 
U = {x1, x2, . . . ,  xn} is a discrete finite set, the methods usually used are the Zadeh 
representation, the ordered pair representation and the vector representation. 

(1) Zadeh representation method. The element xi in the theoretical domain U is 
represented with its membership function μA(xi ) by the following equation: 

A = 
μA(x1) 

x1 
+ 

μA(x2) 
x2 

+  · · ·  +  
μA(xn) 

xn 
(3.3) 

where A is the fuzzy set and the fraction in the expression is just a form and not 
a division operation.
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Example 3.1 Suppose there is a domain of integers 1, 2, …, 10, i.e., the domain U 
= {1, 2, …, 10}, the fuzzy set “several” is denoted by A. And let the membership 
function of each element of μA be  {0, 0.1, 0.3, 0.7, 1, 1, 0.7, 0.3, 0.1, 0} in order.  

Solution According to (3.3), the fuzzy set A can be expressed as 

A = 
0 

1 
+ 

0.1 

2 
+ 

0.3 

3 
+ 

0.7 

4 
+ 

1 

5 
+ 

1 

6 
+ 

0.7 

7 
+ 

0.3 

8 
+ 

0.1 

9 
+ 

0 

10 
(3.4) 

= 
0.1 

2 
+ 

0.3 

3 
+ 

0.7 

4 
+ 

1 

5 
+ 

1 

6 
+ 

0.7 

7 
+ 

0.3 

8 
+ 

0.1 

9 
(3.5) 

The part where the membership is zero can be left out. 

(2) ordered pair representation method. Representing A by forming an ordered pair 
of an element xi in the theoretical domain with its membership μA(xi ), then: 

A = {(x1, μA(x1)), (x2, μA(x2)), . . . , (xN , μA(xN ))|x ∈ U } (3.6) 

In the ordered pair representation method, terms with zero membership can be 
omitted. For example, for the above example, the ordered pair representation can 
be written as: 

A = {(1, 0), (2, 0.1), (3, 0.3), (4, 0.7), (5, 1), 
(6, 1), (7, 0.7), (8, 0.3), (9, 0.1), (10, 0)} (3.7) 

= {(2, 0.1), (3, 0.3), (4, 0.7), (5, 1), (6, 1), (7, 0.7), (8, 0.3), (9, 0.1)} (3.8) 

(3) vector representation method. Representing A by forming a vector with the 
membership μA(xi ) of the element xi in the theoretical domain, i.e., we have 

A = [μA(x1)μA(x2) . . . μA(xN )] (3.9) 

In the vector representation method, terms with zero membership cannot be omitted. 
For example, for the above example, the vector representation can be written as A = 
[0 0.1 0.3 0.7 1 1 0.7 0.3 0.1 0]. 

When the theoretical domain U is a continuous finite set, the Zadeh representation 
is generally used to represent the fuzzy set, and its expression is: 

A =
∫
U 

μA(x) 
x 

(3.10)
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where U is the theoretical domain, x is an element in the domain, and μA(x) is the 
membership of x. In the Zadeh representation of a finite continuous domain, the part 
of the membership that is zero can be left out. 

For example, if we take age as the domain and set U = [0, 200], let Y denote the 
fuzzy set “young” and O denote the fuzzy set “old”. The membership function of 
“young” is known as μY (x), and its expression is: 

μY (x) =
{
1, 0 ≤ x ≤ 25 
1 + (

x−25 
5

)2 
, 25 < x ≤ 200 

(3.11) 

The subordinate function of “old” is μO (x), and its expression is: 

μO (x)

{
0, 0 ≤ x ≤ 25 
1 + (

5 
x−50

)2 
, 50 < x ≤ 200 

(3.12) 

Then, using the Zadeh representation method, the “young” fuzzy set Y can be 
expressed as: 

Y = {(x, 1)|0 ≤ x ≤ 25} +  

⎧⎨ 

⎩ 

⎛ 

⎝x,

[
1 +

(
x − 25 

5

)2
]−1

⎞ 

⎠
||||||25 < x ≤ 200 

⎫⎬ 

⎭ 

(3.13) 

After finishing the above equation, we get: 

Y =
∫

0≤x≤25 

1 

x 
+

∫
25<x≤200

[
1 + (

x−25 
5

)2]−1 

X 
(3.14) 

Using the Zadeh representation method, the fuzzy set O of “old” can be expressed 
as: 

O = {(x, 0)|0 ≤ x ≤ 50} +  

⎧⎨ 

⎩ 

⎛ 

⎝x,

[
1 +

(
5 

x − 50

)2
]−1

⎞ 

⎠
||||||50 < x ≤ 200 

⎫⎬ 

⎭ 

(3.15) 

After finishing the above equation, we get: 

O =
∫

50<x≤200

[
1 + (

5 
x−50

)2]−1 

x 
(3.16)
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It should be noted that the integral notation in the Zadeh representation method 
does not mean the integral in calculus, and the notation is simply used here for the 
representation of fuzzy set. 

From the concept of fuzzy set, the membership function plays a very important 
role. After the membership function is determined, the membership of each element 
is determined, and then the fuzzy set is determined. Generally speaking, the determi-
nation of the membership function is both objectivity and subjectivity. Objectivity 
means that the membership function is essentially a description of something, so 
it should be objective; subjectivity means that each person does not have the same 
understanding of fuzzy concepts, so the subjectivity function should have people’s 
subjective perception. Therefore, the subjectivity function is usually given by experts 
or authorities in the field, and it expresses the experience accumulated in practice, 
or the knowledge derived from data statistics. 

There are three general methods to determine the subjectivity function, which are: 
the fuzzy statistics method, the objective scale method and the assignment method. 

Fuzzy statistics is a method based on data statistics to obtain a membership func-
tion, which requires designing and distributing a questionnaire to form a membership 
function from the data in the questionnaire. 

Example 3.2 Suppose we want to define the membership function of “young” with 
the domain U = [0,100], i.e. we discuss which age is young between 0 and 100 years. 
Suppose that 136 experts have empirically given the age range of “young”, as shown 
in Table 3.1. In this table, the age range given by each expert is represented as a 
closed interval. Suppose we want to count the degree to which a certain age μ0 is 
“young”, and count the number of times these closed intervals cover μ0, i.e., the 
frequency.

For Table 3.1, it is easy to see that the minimum age is 14 years and the maximum 
age is 36 years. For the integer ages located in the interval [14, 36], we can count 
their occurrences in Table 3.1, and the results are shown in column 2 of Table 3.2.

In Table 3.2, column 1 is age from 14 to 36, column 2 is the frequency per age, 
and column 3 is the relative frequency. The value in column 3 is each number in 
column 2 divided by the largest frequency in column 2. The final relative frequency 
of each age is obtained as a number that lies between 0 and 1. We can represent the 
young membership function graphically with the following programs:

load(‘IIP3_1.mat’); 
agemin = min(data(:)); 
agemax = max(data(:)); 
agefreq = zeros(agemax-agemin+1, 1); 
idx = 1; 
for i1 = agemin:agemax 
for i2 = 1:size(data, 1) 

if data(i2, 1) <= i1 && i1 <= data(i2, 2) 
agefreq(idx,1) = agefreq(idx,1) + 1; 

end
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Table 3.1 Age range of “young” given by experts 

[18, 25] [17, 30] [17, 28] [18, 25] [16, 35] [14, 25] [18, 30] [18, 35] 

[18, 35] [16, 25] [15, 30] [18, 35] [17, 30] [18, 25] [18, 35] [20, 30] 

[18, 30] [16, 30] [20, 35] [18, 30] [18, 25] [18, 35] [15, 25] [18, 30] 

[15, 28] [16, 28] [18, 30] [18, 30] [16, 30] [18, 35] [18, 25] [18, 30] 

[16, 28] [18, 30] [16, 30] [16, 28] [18, 35] [18, 35] [17, 27] [16, 28] 

[15, 28] [18, 25] [19, 28] [15, 30] [15, 26] [17, 25] [15, 36] [18, 30] 

[17, 30] [18, 35] [16, 35] [16, 30] [15, 25] [18, 28] [16, 30] [15, 28] 

[18, 35] [18, 30] [17, 28] [18, 35] [15, 28] [15, 25] [15, 25] [15, 25] 

[18, 30] [16, 24] [15, 25] [16, 32] [15, 27] [18, 35] [16, 25] [18, 30] 

[16, 28] [18, 30] [18, 35] [18, 30] [18, 30] [18, 30] [17, 30] [18, 30] 

[18, 35] [16, 30] [18, 28] [17, 25] [15, 30] [18, 25] [17, 30] [14, 25] 

[18, 26] [18, 29] [18, 35] [18, 28] [18, 35] [18, 25] [16, 35] [17, 29] 

[18, 25] [17, 30] [16, 28] [18, 30] [16, 28] [15, 30] [18, 30] [16, 30] 

[20, 30] [20, 30] [16, 25] [17, 30] [15, 30] [18, 30] [16, 30] [18, 28] 

[15, 35] [16, 30] [15, 30] [18, 35] [18, 35] [18, 30] [17, 30] [16, 35] 

[17, 30] [15, 25] [18, 35] [15, 30] [15, 25] [15, 30] [18, 30] [17, 25] 

[18, 29] [18, 28] [18, 35] [18, 25] [18, 30] [15, 30] [17, 30] [18, 30]

end
idx = idx + 1; 

end 
ageprob = agefreq / max(agefreq); 
figure1 = figure(1); 
axes1 = axes(‘Parent’,figure1); 
hold(axes1,‘on’); 
plot((agemin:agemax), ageprob’, ‘b’, ‘LineWidth’, 2); 
plot((agemin:agemax), ageprob’, ‘bo’,‘LineWidth’, 2,‘LineStyle’,‘none’); 
ylabel(‘membership function’); 
xlabel(‘age’); 
box(axes1,‘on’); 
grid(axes1,‘on’); 
hold(axes1,‘off’); 
set(axes1,‘FontSize’,14); 

The results shown in Fig. 3.1 were obtained after running the above program. From 
Fig. 3.1, it can be seen that most experts consider 20–25 years old as the “young”, 
while the probability of belonging to the “young” after 31 years old decreases rapidly.

The objective scaling method for describing the membership function is based on 
empirical knowledge of human. For example, if the theoretical domain is “household” 
and the fuzzy set is “well-off family”, then whether a family element belongs to 
“well-off family” can be measured using Engel’s Coefficient to measure whether a
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Table 3.2 Frequency 
statistics of age Age Frequency Relative frequency 

14 2 0.0147 

15 27 0.1985 

16 52 0.3824 

17 69 0.5074 

18 131 0.9632 

19 132 0.9706 

20 136 1 

21 136 1 

22 136 1 

23 136 1 

24 136 1 

25 135 0.9926 

26 109 0.8015 

27 107 0.7868 

28 105 0.7721 

29 86 0.6324 

30 83 0.6103 

31 28 0.2059 

32 28 0.2059 

33 27 0.1985 

34 27 0.1985 

35 27 0.1985 

36 1 0.0074

specific family element is a “well-off family”. For example, if the theoretical domain 
is “equipment” and the fuzzy set is “normal”, then whether an equipment element is 
“normal”, we can use the equipment intactness rate to measure. 

The assignment method is to use a certain distribution matching the nature of 
the problem to be described as the membership function, and the method is highly 
subjective. When using the real number field R as the theoretical domain, i.e., U 
= R, the membership function is generally made a fuzzy distribution. To solve the 
problem, we can choose from common fuzzy distributions, such as rectangular fuzzy 
distribution, trapezoidal fuzzy distribution, k-th parabolic fuzzy distribution, normal 
fuzzy distribution, Cauchy fuzzy distribution, S-type fuzzy distribution, etc. 

The expression for the rectangular fuzzy distribution is: 

μA(x) =
{
0, x < a or  x  > b 
1, a ≤ x ≤ b 

(3.17)
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Fig. 3.1 Membership function of “young”

In the above equation a, b are two parameters with a < b. When the element x 
lies between a and b, the affiliation is 1; otherwise, it is 0. In addition, a one-sided 
distribution can be defined as follows: 

μA(x) =
{
1, x ≤ a 
0, x > a 

(3.18) 

μA(x) =
{
0, x < a 
1, x ≥ a 

(3.19) 

In (3.18), the membership is 1 when the element x lies to the left of a; while on 
the right side is the degree of affiliation 0. In (3.19), the membership is 0 when the 
element x lies to the left of a; while on the right side is the degree of affiliation 1. It 
is easy to see that (3.17) gives the case where x takes the value 1 in the middle of 
the domain, while (3.18) and (3.19) give the case where x takes the value 1 on one 
side of the domain is 1. Therefore, the case where x takes a value of 1 in the middle 
of the domain is generally referred to as the intermediate fuzzy distribution, the case 
where x takes a value of 1 on the left side of the domain is referred to as the small 
fuzzy distribution, and the case where x takes a value of 1 on the right side of the 
domain is referred to as the large fuzzy distribution. 

Similarly, other fuzzy distributions can be subdivided into small, intermediate and 
large fuzzy distributions. The expressions for the small, intermediate and large fuzzy 
distributions of the trapezoidal fuzzy distribution are:
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μA(x) = 

⎧⎨ 

⎩ 

1, x < a 
b−x 
b−a , a ≤ x ≤ b 
0, x > b 

(3.20) 

μA(x) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0, x < a 
x−a 
b−a , a ≤ x < b 
1, b ≤ x < c 
d−x 
d−c , c ≤ x < d 
0, x ≥ d 

(3.21) 

μA(x) = 

⎧⎨ 

⎩ 

0, x < a 
x−a 
b−a , a ≤ x ≤ b 
1, x > b 

(3.22) 

where a, b, c, d are the four parameters and satisfy a < b < c < d. 
The expressions for the small, intermediate and large fuzzy distributions of the 

k-th parabolic fuzzy distribution are: 

μA(x) = 

⎧⎪⎨ 

⎪⎩ 

1, x < a(
b−x 
b−a

)k 
, a ≤ x ≤ b 

0, x > b 
(3.23) 

μA(x) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0, x < a(
x−a 
b−a

)k 
, a ≤ x < b 

1, b ≤ x < c(
d−x 
d−c

)k 
, c ≤ x < d 

0, x ≥ d 

(3.24) 

μA(x) = 

⎧⎪⎨ 

⎪⎩ 

0, x < a(
x−a 
b−a

)k 
, a ≤ x ≤ b 

1, x > b 
(3.25) 

where k, a, b are three parameters and satisfy a < b and k > 0.  
The expressions for the small, intermediate and large fuzzy distributions of the 

normal fuzzy distribution are: 

μA(x) =
{

1, x ≤ a 
e−((x−a)/σ )2 , x > a 

(3.26) 

μA(x) = e−((x−a)/σ )2 (3.27) 

μA(x) =
{

0, x < a 
1 − e−((x−a)/σ )2 , x ≥ a 

(3.28)
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where a and σ > 0 are the two parameters. 
The expressions for the small, intermediate and large fuzzy distributions of the 

Cauchy fuzzy distribution are: 

μA(x) =
{
1, x < a 

1 
1+α(x−α)β , x ≥ a (3.29) 

μA(x) = 1 

1 + α(x − α)β
(3.30) 

μA(x) =
{
0, x < a 

1 
1+α(x−α)−β , x ≥ a (3.31) 

where a, α, β are three parameters and satisfy α > 0 and β > 0.  
S in the S-type fuzzy distribution refers to the Sigmoid function, which has been 

studied in Chap. 1, and its expressions for the small, intermediate and large fuzzy 
distributions are: 

μA(x) = 1 − 1 

1 + e−a(x−b) (3.32) 

μA(x) =
|||| 1 

1 + e−a(x−b) −
1 

1 + e−c(x−d)

|||| (3.33) 

μA(x) = 1 

1 + e−a(x−b) (3.34) 

where a, b, c, d are the four parameters. In Matlab, the S-shaped fuzzy distribution 
can be plotted using the following programs: 

x = 0:0.1:10; 
y1 = 1-sigmf(x,[5 2]); 
y2 = dsigmf(x,[5 2 5 7]);  
y3 = sigmf(x,[5 7]); 
figure1= figure(1); 
axes1 = axes(‘Parent’,figure1); 
hold(axes1,‘on’); 
plot(x, y1, ‘-’, ‘LineWidth’, 2); 
plot(x, y2, ‘--’, ‘LineWidth’, 2); 
plot(x, y3, ‘:’, ‘LineWidth’, 2); 
ylabel(‘membership’); 
xlabel(‘x’); 
box(axes1,‘on’); 
grid(axes1,‘on’); 
hold(axes1,‘off’); 
set(axes1,‘FontSize’,14);
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Fig. 3.2 S-type membership function 

After running the above program, the small, intermediate and large S-type fuzzy 
distributions are obtained as shown in Fig. 3.2. 

The fuzzy distributions of the above membership functions all contain parameters, 
and the determination of these parameters is the problem to be solved by the fuzzy 
computing. In practical applications, we can test the effect of the membership func-
tion in practice and make adjustments in order to obtain a more exact membership 
function. The following tips should be noted in the application: 

(1) the fuzzy set of the membership function must be a convex fuzzy set. For 
example: “moderate speed” of the membership function, it is from the largest 
membership point to both sides of the extension, the value of its membership 
must be monotonically decreasing, but not allowed to have undulating wavi-
ness, thus, generally the membership function of triangles and trapezoids is 
more suitable. 

(2) membership function is generally symmetric and balanced. For example: “mod-
erate speed” of the membership function, if one side to take “high speed”, then 
generally the other side to take “low speed”, to meet the symmetry property. 

(3) The membership function should conform to the semantic order of people and 
avoid inappropriate expressions. 

The operation of ordinary sets is described by the characteristic function; while 
the membership function is a generalization of the characteristic function, thus, the 
operation of fuzzy sets can be described by the membership function. 

(1) Equality of fuzzy sets. If there are two fuzzy sets A and B with μA(x) = μB(x) 
for all x ∈ U , then the fuzzy set A is said to be equal to the fuzzy set B, denoted 
as A = B.
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(2) The inclusion relation of fuzzy sets. If there are two fuzzy sets A and B with 
μA(x)μB (x) for all x ∈ U , then the fuzzy set A is said to be contained in the 
fuzzy set B, or  A is a subset of B, denoted as A ⊆ B. 

(3) Fuzzy empty set. A fuzzy set A is said to be empty if μA(x) = 0 for all x ∈ U , 
and is denoted as A = ∅. 

(4) Union of fuzzy sets. The union of fuzzy sets is also known as the maximal 
operator of fuzzy sets, or the sum operator of fuzzy sets. If there are three fuzzy 
sets A, B and C, for all x ∈ U , all  have:  

μC (x) = μA(x) ∨ μB (x) = max[μA(x), μB (x)] (3.35) 

Then the fuzzy set C is said to be the union of A and B, denoted as C = A ∪ B. 
In addition, the union of fuzzy sets can also be defined as: 

μC (x) = μA(x) ∨ μB (x) = μA(x) + μB(x) − μA(x)μB(x) (3.36) 

Both definitions of (3.35) and (3.36) are feasible, but the first form is more 
commonly used. 

(5) Intersection of fuzzy sets. The intersection of fuzzy sets is also known as the 
minimum algorithm of fuzzy sets, or the product operator of fuzzy sets. If there are 
three fuzzy sets A, B and C, for all x ∈ U , all  have:  

μC (x) = μA(x) ∧ μB (x) = min[μA(x), μB (x)] (3.37) 

Then the fuzzy set C is said to be the intersection of A and B, denoted as C = A∩B. 
Furthermore, the intersection of fuzzy sets can be defined as: 

μC (x) = μA(x) ∧ μB(x) = μA(x)μB(x) (3.38) 

Both definitions of (3.37) and (3.38) are feasible, but the first form is more 
commonly used. 

(6) Complement of a fuzzy set. If there are two fuzzy sets A and B with μB (x) = 
1 − μA(x) for all x ∈ U , then B is said to be the complement of A, and is denoted as 
B = Ac. 

Take Gaussian membership function for example, the programs for union, 
intersection and complement of fuzzy sets are as follows: 

x = 0:0.1:10; 
A = gaussmf(x,[1 4]); 
B = gaussmf(x,[1 6]); 
AORB = max([A;B],[], 1); 
AANDB = min([A;B],[], 1); 
Ac = 1 - A;  
figure1 = figure; 
subplot1 = subplot(2,2,1,‘Parent’,figure1);
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hold(subplot1,‘on’); 
plot1 = plot(x,[A;B],‘Parent’,subplot1,‘LineWidth’,2); 
set(plot1(1),‘DisplayName’,‘A’); 
set(plot1(2),‘DisplayName’,‘B’,‘LineStyle’,‘—’); 
ylabel(‘membership’); 
xlabel(‘x’); 
box(subplot1,‘on’); 
hold(subplot1,‘off’); 
set(subplot1,‘XGrid’,‘on’,‘XTick’,[0 2 4 6 8 10],‘YGrid’,‘on’); 
legend1 = legend(subplot1,‘show’); 
set(legend1,‘Position’,[0.36 0.840 0.094 0.073]); 
subplot2 = subplot(2,2,2,‘Parent’,figure1); 
hold(subplot2,‘on’); 
plot(x,AORB,‘DisplayName’,‘union of A and B’,‘Parent’,subplot2,‘LineWidth’,2); 
ylabel(‘membership’); 
xlabel(‘x’); 
box(subplot2,‘on’); 
hold(subplot2,‘off’); 
set(subplot2,‘XGrid’,‘on’,‘XTick’,[0 2 4 6 8 10],‘YGrid’,‘on’); 
legend2 = legend(subplot2,‘show’); 
set(legend2,‘Position’,[0.774 0.855 0.125 0.040]); 
subplot3 = subplot(2,2,3,‘Parent’,figure1); 
hold(subplot3,‘on’); 
plot(x,AANDB,‘DisplayName’,‘intersection of A and 
B’,‘Parent’,subplot3,‘LineWidth’,2); 
ylabel(‘membership’); 
xlabel(‘x’); 
ylim(subplot3,[0 1]); 
box(subplot3,‘on’); 
hold(subplot3,‘off’); 
set(subplot3,‘XGrid’,‘on’,‘XTick’,[0 2 4 6 8 10],‘YGrid’,‘on’); 
legend3 = legend(subplot3,‘show’); 
set(legend3,‘Position’,[0.327 0.398 0.125 0.040]); 
subplot4 = subplot(2,2,4,‘Parent’,figure1); 
hold(subplot4,‘on’); 
plot(x,Ac,‘DisplayName’,‘complement of A’,‘Parent’,subplot4,‘LineWidth’,2); 
ylabel(‘membership’); 
xlabel(‘x’); 
box(subplot4,‘on’); 
hold(subplot4,‘off’); 
set(subplot4,‘XGrid’,‘on’,‘XTick’,[0 2 4 6 8 10],‘YGrid’,‘on’); 
legend4 = legend(subplot4,‘show’); 
set(legend4,‘Position’,[0.769 0.334 0.131 0.040]);
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Fig. 3.3 Union, intersection and complement of fuzzy sets 

After running the above program, the result is shown in Fig. 3.3. In Fig.  3.3, the  
upper left graph shows the membership function of fuzzy set A and B. The upper 
right graph shows the membership function of the union of A and B. The lower left 
graph shows the membership function of the intersection of A and B. The lower right 
graph shows the membership function of the complement of A. 

Example 3.3 Suppose the theoretical domain U = {u1, u2, u3, u4, u5}, on which 
there are two fuzzy sets: 

A = 
0.2 

u1 
+ 

0.7 

u2 
+ 

1 

u3 
+ 

0.5 

u5 
(3.39) 

B = 
0.5 

u1 
+ 

0.3 

u2 
+ 

0.1 

u4 
+ 

0.7 

u5 
(3.40) 

Try to find the union and intersection of the two fuzzy sets. 

Solution Then, according to the operations on fuzzy sets introduced above, we have: 

A ∪ B = 
0.2 ∨ 0.5 

u1 
+ 

0.7 ∨ 0.3 
u2 

+ 
1 ∨ 0 
u3 

+ 
0 ∨ 0.1 
u4 

+ 
0.5 ∨ 0.7 

u5
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= 
0.5 

u1 
+ 

0.7 

u2 
+ 

1 

u3 
+ 

0.1 

u4 
+ 

0.7 

u5 
(3.41) 

A ∩ B = 
0.2 ∧ 0.5 

u1 
+ 

0.7 ∧ 0.3 
u2 

+ 
1 ∧ 0 
u3 

+ 
0 ∧ 0.1 
u4 

+ 
0.5 ∧ 0.7 

u5 

= 
0.2 

u1 
+ 

0.3 

u2 
+ 

0.5 

u5 
(3.42) 

The operations on fuzzy sets satisfy the following eight properties, as follows: 

(1) Power law. A
U

A = A, A
∩

A = A. 
(2) Exchange law. A

U
B = B

U
A, A

∩
B=B

∩
A. 

(3) Combination law. A
U(

B
U

C
) = (

A
U

B
)U

C , A
∩(

B
∩

C
) =(

A
∩

B
)∩

C . 
(4) Distributive law.

(
A
U

B
)∩

C = (
A
∩

C
)U(

B
∩

C
)
. 

(5) Absorption rate. (A
U

B)
∩

A = A, (A
∩

B)
U

A = A. 
(6) Law of restitution. ( Ac)c = A. 
(7) Pairwise law. A

U
Bc = Ac

∩
Bc, A

∩
Bc = Ac

U
Bc. 

(8) 0–1 law. A
U

U = U , A
U

ϕ = A, A
∩

U = A, A
∩

∅ = ∅. 

It can be seen that the properties of fuzzy sets are formally similar to those of 
classical sets, but fuzzy sets do not satisfy the complementary law in classical sets, 
i.e., A

U
Ac = U , A

∩
Ac = ∅. For example, suppose there is a fuzzy set A = 

(0.2, 0.7), then its complementary set Ac = (0.8, 0.3). Thus, we have A
U

Ac = 
(0.2 ∨ 0.8, 0.7 ∨ 0.3) = (0.8, 0.3) /= U and A

∩
Ac = (0.2 ∧ 0.8, 0.7 ∧ 0.3) = 

(0.8, 0.3) /= ∅. In particular, when the fuzzy set A = (0.5, 0.5), then its complement 
set Ac=(1–0.5, 1–0.5) = (0.5, 0.5). This shows that there exist fuzzy sets in which 
their complements are equal to themselves. This is unbelievable in classical sets, but 
it reflects the phenomenon of “both here and there” in practice. This feature of fuzzy 
sets is important in fuzzy information processing, which makes the results of fuzzy 
information processing more consistent with the actual situation. 

Fuzzy intercept set is an important concept of fuzzy set operations, which is 
generally called λ-cut. For example, if there are fuzzy sets: 

society = 
1 

Xia 
+ 1 

Shang 
+ 0.9 

Xizhou 
+ 0.7 

Chunqiu 
+ 0.5 

Zhanguo 

+ 
0.4 

Qin 
+ 

0.3 

Xihan 
+ 0.1 

Donghan 
(3.43) 

If a level of at least 0.5 is required, there are Xia, Shang, Xizhou, Chunqiu and 
Zhanguo with membership of 0.5. If a level of at least 0.7 is required, there are Xia, 
Shang, Xizhou and Chunqiu that meet the condition. 

Definition 3.3 Suppose U is a theoretical domain with fuzzy set A ∈ F(U ), λ ∈ 
[0, 1], we call Aλ = {x |A(x) ≥ λ} the λ-cut set of A; while A 

λ 
. 

= {x |A(x) > λ} is
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called the strong λ-cut set of A. Note that there is a small dot directly below λ in the 
definition of the strong cut set. 

Obviously, a strong cut set is a subset of a cut set, i.e., Aλ· ⊆ Aλ. In addition, the 

λ in the cut set is also called the threshold or confidence level. 

Example 3.4 Suppose there is fuzzy set: 

A = 
0.5 

u1 
+ 

0.6 

u2 
+ 

1 

u3 
+ 

0.7 

u4 
+ 

0.3 

u5 
(3.44) 

Take λ=1, λ=0.7 and λ=0.3, respectively, and try to find their λ-cut sets. 

Solution When λ=1, only the membership of u3 reaches 1, so A1 = {u3}. When 
λ=0.7, only the membership of u3 and u4 reaches 0.7, so A0.7 = {u3, u4}. When 
λ=0.3, there are u1, u2, u3, u4 and u5 whose membership reaches 0.3, so A0.3 = 
{u1, u2, u3, u4, u5}. The fuzzy sets of these three cut sets are: 

A1 = 
1 

u3 
(3.45) 

A0.7 = 
1 

u3 
+ 

1 

u4 
(3.46) 

A0.3 = 
1 

u1 
+ 

1 

u2 
+ 

1 

u3 
+ 

1 

u4 
+ 

1 

u5 
(3.47) 

From the Example 3.3, we can see that λ-cut set is an ordinary set, while the 
elements satisfying the level of λ correspond to a fuzzy set. λ-cut set provides a way 
to convert between fuzzy and classical sets, which is very useful when dealing with 
practical problems. 

3.3 Fuzzy Pattern Recognition 

Pattern recognition is a human perception and awareness of things. It is also a human 
thinking activity. The pattern recognition of human can be the recognition of concrete 
things such as pictures, words and language, or the recognition of abstract things such 
as an argument or an opinion. 

Fuzzy pattern recognition is the introduction of fuzzy mathematical theory into 
pattern recognition, using fuzzy logic methods to classify and recognize things. There 
are two main types of methods for fuzzy pattern recognition, one is the direct method 
and the other is the indirect method. Direct methods generally use the maximum 
membership principle to classify categories and are usually used for individual pattern 
recognition. Indirect methods generally use the principle of proximity to classify 
categories and are usually used for pattern recognition of groups.
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(1) Maximum membership principle. 

Definition 3.4 Suppose there are n patterns which are represented as n fuzzy sets Ai 

(i = 1, 2, …, n) on a theoretical domain U. u0 ∈ U is an identified object if there 
exists i ∈ {1, 2, . . . ,  n} such that 

Ai (μ0) = ∨n 
j=1 A j (μ0) = max{A1(μ0), A2(μ0), . . . ,  An(μ0)} (3.48) 

Then u0 is said to belong relatively to pattern Ai . 

If the object being identified is definite and the pattern is ambiguous, then the 
maximum membership principle can be used. 

Example 3.5 Suppose the theoretical domain U = {u1, u2, u3, u4, u5, u6} denotes 
the set of 6 goods whose categories are lagging goods A1, out-of-stock goods A2 and 
popular goods A3, i.e., we have: 

A1 = 
1 

u1 
+ 

0.1 

u2 
+ 

0 

u3 
+ 

0.6 

u4 
+ 

0.5 

u5 
+ 

0.4 

u6 
(3.49) 

A2 = 
0 

u1 
+ 

0.1 

u2 
+ 

0.1 

u3 
+ 

0 

u4 
+ 

0 

u5 
+ 

0.05 

u6 
(3.50) 

A3 = 
0 

u1 
+ 

0.8 

u2 
+ 

1 

u3 
+ 

0.4 

u4 
+ 

0.4 

u5 
+ 

0.5 

u6 
(3.51) 

Try to find the category of u2. 

Solution To determine which category u2 belongs to, the calculation is performed 
according to the principle of maximum membership: 

∨n 
j=1 A j (μ2) = 0.1 ∨ 0.1 ∨ 0.8 = A3(μ2) (3.52) 

It is known that u2 belongs to the popular goods A3. Similarly, to determine to 
which category u5 belongs, the calculation is performed according to the principle 
of maximum membership: 

∨n 
j=1 A j (μ5) = 0.5 ∨ 0 ∨ 0.4 = A1(μ5) (3.53) 

It is known that u5 belongs to lagging goods A1. 

(2) Nearest principle. 

We first introduce the concepts of inner product, outer product and nearness degree 
of fuzzy sets.
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Definition 3.5 Suppose there are two fuzzy sets A and B on the theoretical domain 
U. Then: 

A ◦ B = ∨u∈U (A(u) ∧ B(u)) (3.54) 

is called the inner product of A and B. 

Definition 3.6 Suppose there are two fuzzy sets A and B on the theoretical domain 
U. Then: 

A ⊗ B = ∧u∈U (A(u) ∨ B(u)) (3.55) 

is called the outer product of A and B. 
When the theoretical domain U = {u1, u2, . . . ,  un}, according to the above 

definition, we can obtain: 

A ◦ B = ∨n 
i=1(A(ui ) ∧ B(ui )) (3.56) 

A ⊗ B = ∧n 
i=1(A(ui ) ∨ B(ui )) (3.57) 

The nearness degree of two fuzzy sets can measure the similarity of fuzzy sets. 
Commonly used nearness degree includes the lattice nearness degree, the average 
nearness degree and the max–min nearness degree. 

The formula for lattice nearness degree is as follows: 

N (A, B) = (A ◦ B) ∧ (A ⊗ B)' (3.58) 

The formula for the average nearness degree is as follows: 

N (A, B) = 
1 

2

[
(A ◦ B) + (A ⊗ B)'

]
(3.59) 

The formula for the max–min nearness degree is as follows: 

N (A, B) =
∑n 

i=1(A(ui ) ∧ B(ui ))∑n 
i=1(A(ui ) ∨ B(ui )) 

=
∫ +∞ 
−∞ ( A(ui ) ∧ B(ui ))dx∫ +∞ 
−∞ ( A(ui ) ∨ B(ui ))dx  

(3.60) 

lattice nearness degree is the most common method of nearness degree. 

Definition 3.7 Suppose there are n patterns which are represented as n fuzzy sets 
Ai (i = 1, 2, …, n) on a theoretical domain U. Another fuzzy set B is an identified 
object if there exists i ∈ {1, 2, . . . ,  n} such that: 

N ( Ai , B) = max{N (A1, B), N (A2, B), . . . ,  N (An, B)} (3.61)
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Then B is said to be closest to Ai and it is decided that B belongs to mode Ai . 

Example 3.6 Suppose the domain U = {u1, u2, u3, u4, u5, u6} represents the set 
of 6 commodities, and there are 5 categories of patterns A1, A2, A3, A4 and A5 on 
the domain, where A1 = (0.6, 0.3, 0.2, 0, 0.5, 0.1), A2 = (0.7, 1, 0.3, 0, 0.8, 0.9), 
A3 = (0.2, 1, 0.8, 0.4, 0.5, 0.1), A4 = (0.8, 0, 0.4, 0.5, 0.7, 0), A5 = 
(0.5, 0.3, 0.6, 1, 0, 0.4), For commodity B, use the lattice nearness degree to 
determine the category to which B belongs, where B = (0.7, 0.4, 0.6, 0.3, 0.4, 0.8). 
Solution Lattice nearness degree requires to compute the inner product and 
outer produce of two fuzzy sets. The inner product of A1 and B is A1 ◦ B = 
max(min(0.6, 0.7), min(0.3, 1), min(0.2, 0.3), min(0, 0), min(0.5, 0.8), min(0.1, 0.9)) = 
max(0.6, 0.3, 0.2, 0, 0.5, 0.1) = 0.6. Similarly, we can compute A2 ◦ B = 0.8, 
A3 ◦ B = 0.6, A4 ◦ B = 0.7, A5 ◦ B = 0.6. 

The outer products are A1⊗ B = 0.3, A2⊗B = 0.3, A3⊗ B = 0.4, A4⊗B = 0.4, 
A5 ⊗ B = 0.4. Based on the equation of complement set, we have A1 ⊗ B ' = 0.6, 
A2 ⊗ B ' = 0.7, A3 ⊗ B ' = 0.6, A4 ⊗ B ' = 0.6, A5 ⊗ B ' = 0.6. 

Based on lattice nearness degree (3.58), we have N ( A1, B) = (A1 ◦ B) ∧ 
(A1 ⊗ B)' = 0.6∧0.7 = 0.6. Similarly, we have N (A2, B) = 0.7, N ( A3, B) = 0.6, 
N (A4, B) = 0.6, N (A5, B) = 0.6. 

We use the nearest principle and get max{N (A1, B), N (A2, B), . . . ,  N (An, B)} = 
N (A2, B) = 0.7, so we can determine that the fuzzy set B belongs to the second 
category A2. We can also perform the category determination with the help of 
Matlab, whose programs are as follows: 

A = [0.6,0.3,0.2,0,0.5,0.1; 
0.7,1,0.3,0,0.8,0.9; 
0.2,1,0.8,0.4,0.5,0.1; 
0.8,0,0.4,0.5,0.7,0; 
0.5,0.3,0.6,1,0,0.4]; 

B = [0.7,0.4,0.6,0.3,0.4,0.8]; 
for i1 = 1:size(A, 1) 
tmp = [A(i1, :); B]; 
N(i1)=min([max(min(tmp)), 1-min(max(tmp))]); 

end 
[Nmax, BClass] = max(N); 

After running the above program, the variable BClass is equal to 2. The result 
indicates that the pattern of B is the second category A2. 

3.4 Fuzzy Clustering 

This section will introduce data clustering by using fuzzy computing method. First, 
we introduce the direct product in classical set theory. Suppose there are two sets A 
and B. Then we say:
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A × B = {(x, y)|x ∈ A, y ∈ B } (3.62) 

where A × B is the direct product of A and B. For example, suppose A 
= {1, 3} and B = {2, 4, 6}, then their direct product is: A × B = 
{(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3, 6)}. It can be seen that the direct product of 
two sets is the set of ordered pairs of the two sets. 

Next, we introduce the relation of sets. The direct product of two sets is the set 
of all ordered pair. If we restrict the ordered pairs, we will get a subset of the direct 
product, which is a binary relation of two sets, or the relation of two sets for short. 
The relation of two sets can be represented by a matrix, generally noted as R, whose 
elements in the i-th row and j-th column are: 

ri j  =
{
1, (x, y) ∈ R 
0, (x, y) /∈ R 

, i = 1, 2, . . . ,  n, j = 1, 2, . . . ,  m (3.63) 

When the theoretical domain is a finite set, for two sets A and B, we can represent 
the fuzzy relation between A and B by a fuzzy matrix. Specifically: suppose A and B 
are two non-empty sets, a fuzzy set R in the direct product is called a binary fuzzy 
relation from A to B, or fuzzy relation for short, and is denoted as Rx×y . 

Suppose A = {x1, x2, . . . ,  xn,}, B = {y1, y2, . . . ,  yn,}, and Rx×y denotes the 
fuzzy relation defined on A × B, then it is represented by the matrix as: 

Rx×y = 

⎡ 

⎢⎢⎢⎣ 

μR(x1, y1) μR(x1, y2) · · ·  μR(x1, ym) 
μR(x2, y1) μR(x2, y2) · · ·  μR(x2, ym) 

... 
... 

. . . 
... 

μR(xn, y1) μR(xn, y2) · · ·  μR(xn, ym) 

⎤ 

⎥⎥⎥⎦ (3.64) 

where μR
(
xi , y j

)
denotes the membership of xi and y j for the fuzzy relation Rx×y , 

which is generally abbreviated as ri j  and Rx×y can be abbreviated as R. 
Similar to the binary fuzzy relation, we can define n-element fuzzy relation, which 

are a subset of the direct product of n sets. Because a fuzzy relation is a fuzzy set 
defined on the direct product space, the operation rules of fuzzy relation are similar 
to the operation rules of fuzzy sets. 

For binary fuzzy relation, we introduce the synthetic operation between multiple 
fuzzy relations. Suppose there are theoretical domains A, B, C are finite, Rx×y =(
ri j
)
n×m is a fuzzy relation from A to B, and Sy×z =

(
s jk
)
m×l is a fuzzy relation from 

B to C. Then Rx×y and Sy×z can be synthesized, denoted as Tx×z = (tik)n×l : 

Tx×z = Rx×y ◦ Sy×z (3.65) 

The above equation can be abbreviated as T = R ◦ S. At this point, such a 
synthesis can be expressed in the form of a matrix with the values of the i-th row and 
k-th column of Tx×z as:
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tik  = ∨m 
j=1

(
ri j  ∧ s jk

)
(3.66) 

The synthesis of the above equation is also called maximum-minimum (max–min) 
synthesis. The max–min synthesis is commonly used when introducing synthetic 
operations for fuzzy relations. It should be noted that, in addition to max–min 
synthesis, one can also use: 

tik  = ∨m 
j=1

(
ri j  · s jk

)
(3.67) 

The synthesis of the above equation is called maximum-product (max-product) 
synthesis. 

Example 3.7 Suppose the theoretical domain is family members, A is the son and 
daughter in the family, B is the father and mother in the family, and the fuzzy relation 
R is that the children and parents look alike and have: 

R = x1 
x2 

⎡ 

⎣ 
y1 y2 
0.8 0.3 
0.3 0.6 

⎤ 

⎦ (3.68) 

If C is the grandfather and grandmother in the family and the fuzzy relationship 
S is that the parents and grandparents look alike and have: 

S = y1 
y2 

⎡ 

⎣ 
z1 z2 
0.7 0.5 
0.1 0.1 

⎤ 

⎦ (3.69) 

Try to find the fuzzy relationship matrix from children to grandparents. 

Solution According to the max–min synthesis method, the fuzzy relationship matrix 
from children to grandparents is: 

T = R ◦ S =
[
0.8 0.3 
0.3 0.6

]
◦
[
0.7 0.5 
0.1 0.1

]
(3.70) 

=
[

(0.8 ∧ 0.7) ∨ (0.3 ∧ 0.1) (0.8 ∧ 0.5) ∨ (0.3 ∧ 0.1) 
(0.3 ∧ 0.7) ∨ (0.6 ∧ 0.1) (0.3 ∧ 0.5) ∨ (0.6 ∧ 0.1)

]
(3.71) 

=
[
0.7 ∨ 0.1 0.5 ∨ 0.1 
0.3 ∨ 0.1 0.3 ∨ 0.1

]
=
[
0.7 0.5 
0.3 0.3

]
(3.72)
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The above three equations give the detailed calculation procedure of the max–min 
synthesis rule. We can also use Matlab to implement the synthetic operation of fuzzy 
relations with the following programs: 

R = [0.8, 0.3; 0.3, 0.6]; 
S = [0.7, 0.5; 0.1, 0.1]; 
n = size(R, 1); 
l = size(S, 2); 
for i1 = 1:n 
for j1 = 1:l 

T(i1, j1) = max(min([R(i1,:); S(:, j1)’])); 
end 

end 

After running the above program, the value of T is the result of the synthesis. 
From the above example, we can see that fuzzy relations can be synthesized to form 
more complex fuzzy logic operations. 

“Clustering” is the process of distinguishing and classifying things according 
to certain requirements and laws, in which there is no a priori knowledge about 
classification, but only relies on the similarity between things as a criterion for class 
classification [5]. Thus, clustering belongs to unsupervised learning. 

“Cluster analysis” is a mathematical method to study and deal with the classi-
fication of a given thing. Cluster analysis is also known as a mathematical method 
to classify the things studied according to certain criteria. It is a multivariate statis-
tical “things in a class” of a classification method. Human beings to understand the 
world must distinguish between different things and recognize the similarity between 
things. 

We call the binary fuzzy relation R from the set A to itself as R is a fuzzy relation 
on A, denoted as R ∈ F( A × A), which has the following properties: 

(1) Self-reflexivity. A necessary and sufficient condition for R to be self-transitive 
is I ⊆ R, i.e., I (x, y) = 1 when x = y, and I (x, y) = 0 when x /= y. 

(2) Symmetry. The necessary and sufficient condition for R to be symmetric is that 
R = RT . 

(3) Transitivity. The necessary and sufficient condition for R to be transitive is that 
R2 ⊂ R, i.e., R ◦ R ⊂ R. 

Suppose R is a fuzzy relation on A. We say that R is transmitted if for any λ ∈ [0, 1] 
and any x, y, z ∈ A, R(x, y) ≥ λ, R(y, z) ≥ λ can be introduced by R(x, z) ≥ λ 
holds. 

R is said to be a fuzzy similarity relation on A if R is a fuzzy relation on A and 
it has self-reflexivity and symmetry properties. R is said to be a fuzzy equivalence 
relation on A if R is a fuzzy relation on A and it has self-reflexivity, symmetry and 
transitivity properties. 

We can apply fuzzy relations for fuzzy clustering. When solving problems, we 
generally use the results of “some level” for classification, thus achieving fuzzy 
cluster analysis. The conditions of fuzzy equivalence relations are demanding, and
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the actual problem often cannot satisfy all three properties at the same time; on 
the other hand, the actual problem is often a fuzzy similarity relation. We need 
to transform the fuzzy similarity relation into fuzzy equivalence relation in cluster 
analysis. Transitive closure is a common method to transform the fuzzy similarity 
relation into fuzzy equivalence relation. Transitive closure is also called transition 
closure. 

Assuming that U is a finite theoretical domain, the transitive closure method starts 
from the fuzzy similarity relation R. It synthesizes it with itself repeatedly to compute 
R2, R4, … in order to obtain t(R) = Rk , when Rk ◦ Rk = Rk occurs for the first 
time. Next, we learn the process of applying the transitive closure method for cluster 
analysis by an example. 

Example 3.8 Suppose we want to assess the contamination of the environment in the 
region, which needs to be measured by the content of 4 elements in the pollutant. We 
choose the theoretical domain U to be the set of the content of the 4 elements, and get 
the pollution data from 5 locations in the region by measuring x1 = (80, 10, 6, 2), 
x2 = (50, 1, 6, 4), x3 = (90, 6, 4, 6), x4 = (40, 5, 7, 3), x5 = (10, 1, 2, 4). Try  to  
cluster the data by using the transitive closure method. 

Solution We expressed the collected data in matrix form as follows: 

X∗ = 

⎡ 

⎢⎢⎢⎢⎢⎣ 

80 10 6 2  
50 1 6 4  
90 6 4 6  
40 5 7 3  
10 1 2 4  

⎤ 

⎥⎥⎥⎥⎥⎦ 
(3.73) 

Since the value of the data varies greatly, we use the maximum value method to 
speciate the data, where each element of the matrix is divided by the maximum value 
of the column it is in, i.e.: 

xi j  =
x∗ 
i j  

max 
1≤k≤5 

xk j  
(3.74) 

This results in the specified data matrix: 

X = 

⎡ 

⎢⎢⎢⎢⎢⎣ 

0.89 1 0.86 0.33 
0.56 0.10 0.86 0.67 
1 0.60 0.57 1 

0.44 0.50 1 0.50 
0.11 0.10 0.29 0.67 

⎤ 

⎥⎥⎥⎥⎥⎦ 
(3.75)
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Then, we use the max–min method to calculate the fuzzy similarity matrix, where 
each element is calculated by the formula: 

ri j  =
∑4 

k=1

(
xik  ∧ x jk

)
∑4 

k=1

(
xik  ∨ x jk

) (3.76) 

From this, the fuzzy relation matrix can be obtained as: 

R = 

⎛ 

⎜⎜⎜⎜⎜⎝ 

1 0.54 0.62 0.63 0.24 
0.54 1 0.55 0.70 0.53 
0.62 0.55 1 0.56 0.37 
0.63 0.70 0.56 1 0.38 
0.24 0.53 0.37 0.38 1 

⎞ 

⎟⎟⎟⎟⎟⎠ 
(3.77) 

Calculating R2, R4, R8 one at a time according to the transitive closure method 
yields: 

R2 = 

⎛ 

⎜⎜⎜⎜⎜⎝ 

1 0.63 0.62 0.63 0.53 
0.63 1 0.56 0.70 0.53 
0.62 0.56 1 0.62 0.53 
0.63 0.70 0.62 1 0.53 
0.53 0.53 0.53 0.53 1 

⎞ 

⎟⎟⎟⎟⎟⎠ 
(3.78) 

R4 = 

⎛ 

⎜⎜⎜⎜⎜⎝ 

1 0.63 0.62 0.63 0.53 
0.63 1 0.62 0.70 0.53 
0.62 0.62 1 0.62 0.53 
0.63 0.70 0.62 1 0.53 
0.53 0.53 0.53 0.53 1 

⎞ 

⎟⎟⎟⎟⎟⎠ 
(3.79) 

R8 = R4 ◦ R4 (3.80) 

Thus, we have t(R) = R4. 
Then, by choosing an appropriate confidence level λ ∈ [0, 1], we intercept t(R) 

based on the λ level. We sort the elements in t(R) in descending order: 1 > 0.70 > 
0.63 > 0.62 > 0.53. Hence, we can choose λ = 1 and the clustering matrix is: 

t(R)1 = 

⎛ 

⎜⎜⎜⎜⎜⎝ 

1 0  
0 1  
0 0  

0 0 0  
0 0 0  
1 0  0  

0 0  
0 0  

0 1  0  
0 0 1  

⎞ 

⎟⎟⎟⎟⎟⎠ 
(3.81)
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From the above equation, it can be seen that when λ = 1, the data are clustered 
into 5 classes. 

t(R)0.70 = 

⎛ 

⎜⎜⎜⎜⎜⎝ 

1 0  
0 1  
0 0  

0 0 0  
0 1  0  
1 0  0  

0 1  
0 0  

0 1  0  
0 0 1  

⎞ 

⎟⎟⎟⎟⎟⎠ 
(3.82) 

From the above equation, it can be seen that when λ = 0.70, the data are clustered 
into 4 classes, where x2 and x4 belong to the same class. 

t(R)0.63 = 

⎛ 

⎜⎜⎜⎜⎜⎝ 

1 1  
1 1  
0 0  

0 1  0  
0 1  0  
1 0  0  

1 1  
0 0  

0 1  0  
0 0 1  

⎞ 

⎟⎟⎟⎟⎟⎠ 
(3.83) 

From the above equation, it can be seen that when λ = 0.63, the data are clustered 
into 3 classes, where x1, x2 and x4 belong to the same class. 

t(R)0.62 = 

⎛ 

⎜⎜⎜⎜⎜⎝ 

1 1  
1 1  
1 1  

1 1 0  
1 1 0  
1 1 0  

1 1  
0 0  

1 1 0  
0 0 1  

⎞ 

⎟⎟⎟⎟⎟⎠ 
(3.84) 

From the above equation, it can be seen that when λ = 0.62, the data are clustered 
into 2 classes, where x1, x2, x3 and x4 belong to the same class. 

t(R)0.53 = 

⎛ 

⎜⎜⎜⎜⎜⎝ 

1 1  
1 1  
1 1  

1 1 1  
1 1 1  
1 1 1  

1 1  
1 1  

1 1 1  
1 1 1  

⎞ 

⎟⎟⎟⎟⎟⎠ 
(3.85) 

From the above equation, it can be seen that when λ = 0.53, the data are clustered 
into 1 class, i.e., all data samples belong to the same class. 

Figure 3.4 gives the results of the fuzzy cluster analysis, and it can be seen 
that as the value of λ becomes smaller, the number of categories becomes smaller; 
conversely, as the value of λ becomes larger, the number of categories becomes 
larger. For the unsupervised learning problem, the number of categories into which 
the data samples are divided is unknown, thus Fig. 3.4 is able to show the degree of
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Fig. 3.4 Clustering results of pollutant data 

similarity between the samples. The number of categories can also be determined 
in advance according to specific needs, so that the corresponding categories can be 
divided. 

In the Example 3.8, the degree of similarity between data samples is measured 
using the max–min method. In addition to this, there are a number of methods, as 
follows: 

(1) Scalar product method. This method uses the scalar product of vectors to define 
the degree of similarity: 

ri j  =
{

1, i = j(
xi · x j

)
/M, i /= j 

(3.86) 

where xi · x j denotes the scalar product of vectors and M > 0 is a parameter and 
satisfies M ≥ max

{
xi · x j |i /= j

}
. 

(2) Angle cosine method. This method uses the angle of the vectors to define the 
degree of similarity: 

ri j  =
||xi · x j ||

∥xi∥
∥∥x j∥∥ (3.87) 

where ∥xi∥ denotes the 2-norm of the vector xi . 

(3) Correlation coefficient method. This method uses the correlation coefficient to 
define the degree of similarity: 

ri j  =
∑m 

k=1|xik  − xi |
||x jk  − x j

||
∥xi − xi∥

∥∥x j − x j
∥∥ (3.88)
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where xi denotes the mean value of vector xi . 

(4) Nearness degree method. A data sample xi = (xi1, xi2, . . . ,  xim) 

can be considered as a fuzzy vector if each component of the sample is between 0 and 
1. The degree of similarity between samples can be measured by the nearness degree. 
The methods to calculate the nearness degree are: max–min method, arithmetic mean-
min method, and geometric mean-min method. The max–min method has been used 
in the Example 3.8, and the expression of the arithmetic mean-min method is 

ri j  =
∑m 

k=1

(
xik  ∧ x jk

)
(∑m 

k=1

(
xik  + x jk

))
/2 

(3.89) 

The expression for the geometric mean-min method is: 

ri j  =
∑m 

k=1

(
xik  ∧ x jk

)
∑m 

k=1
√
xik  x jk  

(3.90) 

(5) Distance method. This method uses the distance between vectors to define the 
degree of similarity. The closer the distance between two vectors, the greater 
the degree of similarity between them; conversely, the farther the distance 
between two vectors, the less similar the two vectors are. Commonly used 
distances include Euclidean distance, Chebyshev distance, Hamming distance 
and Minkowski distance. The expressions for the definition of these distances 
will not be introduced. 

(6) Absolute value reciprocal method. This method uses the reciprocal of the abso-
lute value of the difference of two vectors to define the degree of similarity, and 
its expression is: 

ri j  = 

⎧⎨ 

⎩ 

1, i = j 

c/ 
m∑

k=1

(
xik  − x jk

)
, i /= j (3.91) 

where c is a properly chosen positive number such that ri j  ∈ [0, 1]. 

3.5 Fuzzy Inference 

This section introduces fuzzy inference. We start from introducing the concept of 
fuzzy linguistic variables. A linguistic variable can be represented by a quintuple as 
follows: 

(x, T (x), U, G, M) (3.92)
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Fig. 3.5 Quintuplet diagram of “error” 

where x is the name of the linguistic variable, T (x) is the set of linguistic variable 
values, U is the domain of the variable x, G is a grammatical rule, and M is a semantic 
rule. The grammatical rule G is used to generate the names of linguistic variables x, 
while the semantic rule M is used to generate the membership function of the fuzzy 
set. 

For example, in a control system, we take “error” as a linguistic variable x and 
choose the domain U = [− 6, 6]. The atomic words of the linguistic variable “error” 
are “large”, “medium”, “small”, “zero”. By applying the appropriate tone operator 
to these atomic words, multiple linguistic values can be formed, such as “very large” 
[3]. Moreover, we can consider that the error has positive and negative cases. Then, 
the set of linguistic variables T (x) can be expressed as T (x) = {negative very large 
(NVL), negative large (NL), negative medium (NM), negative small (NS), zero, 
positive small (PS), positive medium (PM), positive large (PL), positive very large 
(PVL)}. Figure 3.5 shows the schematic diagram of the quintuple of fuzzy linguistic 
variables with “error” as the theoretical domain. 

As can be seen from Fig. 3.5, the grammatical rule G acts to convert the linguistic 
variable x into a linguistic variable value, while the semantic rule M acts to map the 
linguistic variable value into the theoretical domain. A fuzzy linguistic variable is 
equivalent to a fuzzy set. After the grammatical rule acts on the linguistic variable. 
That is, it uses the tone operator to add “very”, “relatively”, “slightly”, etc. to the 
linguistic variables to obtain different values of the linguistic variables. These values 
need to be mapped to different affiliation values, which is achieved by the semantic 
rules. 

If we denote a fuzzy linguistic variable by A, whose membership function is 
denoted by μA. We add to A the inflections “very”, “fairly”, “comparatively”, 
“slightly”. The membership function of the linguistic variable values can be trans-
formed into μvery A = μ2 

A, μrelatively A = μ1.5 
A , μslightly A = μ0.75 

A . The complement of 
the fuzzy set can be μnot A = 1 − μA. Note that this is only an example to illustrate 
the correspondence variation of grammatical rules and membership functions, this 
correspondence form is not fixed and needs specific analysis in each example. 

In fuzzy computing, a fuzzy logic rule is a fuzzy implication relation. An implica-
tion relation is essentially a kind of reasoning or inference. One of the most commonly
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used fuzzy implication relations is: if x is A, then y is B, denoted as A → B. In ordi-
nary logic, A → B has a strict definition. In fuzzy logic, A → B is not a simple 
generalization of ordinary logic and has many ways of definition. The commonly 
used operations for fuzzy implication relations are: 

(1) Fuzzy implication minimum operation. This operation is given by Mamdani. 
Its expression is: 

Rc = A → B = A × B =
∫

X×Y 

μA(x) ∧ μB (y) 
(x, y) 

(3.93) 

From (3.93) the fuzzy implication relation is defined as the multiplication of two 
fuzzy sets, which in turn transforms into the intersection of two fuzzy sets. 

(2) Fuzzy implication arithmetic operation. This operation is given by Zadeh and 
its expression is: 

Rc = A → B = (
A × Y

)⊕ (X × B) =
∫

X×Y 

1 ∧ (1 − μA(x) + μB(y)) 
(x, y) 

(3.94) 

From the above equation, it is clear that the fuzzy implication relation is defined as 
an arithmetic operation, which in turn transforms into complement and intersection 
operations of two fuzzy sets. 

(3) Fuzzy implication max–min operation. This operation is given by Zadeh and its 
expression is: 

Rc = A → B = (A × B) ∪ (A × Y
) =

∫
X×Y 

(μA(x) ∧ μB (y)) ∨ (1 − μA(x)) 
(x, y) 

(3.95) 

From the above equation, it can be seen that the fuzzy implication relation is 
defined as multiplication and concatenation of sets, which in turn transforms into 
intersection, complement and concatenation of fuzzy sets. 

Among these three fuzzy implication relations, the most commonly used are fuzzy 
implication minimum operation and fuzzy implication arithmetic operation. 

Example 3.9 Suppose we have two fuzzy sets A = [1, 0.8, 0.7, 0.4, 0.1] and  B = [1, 
0.7, 0.3, 0], try to compute the fuzzy implication relation A → B using the fuzzy 
implication minimum operation. 

Solution Based on (3.93), the fuzzy implication relation A → B is:



104 3 Fuzzy Computing

Rc =
∫

X×Y 

μA(x) ∧ μB (y) 
(x, y)

= 

⎡ 

⎢⎢⎢⎢⎢⎣ 

1 0.7 0.3 0  
0.8 0.7 0.3 0  
0.7 0.7 0.3 0  
0.4 0.4 0.3 0  
0.1 0.1 0.1 0  

⎤ 

⎥⎥⎥⎥⎥⎦ 
(3.96) 

The example can also be calculated using Matlab with the following programs: 

A = [1, 0.8, 0.7, 0.4, 0.1];  
B = [1, 0.7, 0.3, 0];  
m = length(A); 
n = length(B); 
for i1 = 1:m 
for j1 = 1:n 

Rc(i1,j1)=min(A(i1), B(j1)); 
end 

end 

After running the above program, the variable Rc is the matrix of the fuzzy 
implication relation. 

Fuzzy inference is the process of determining the mapping from input to output 
using fuzzy logic. After determining the mapping from input to output, fuzzy iden-
tification or fuzzy decision making can be performed. We introduce fuzzy inference 
in terms of both simple fuzzy conditional statements and multiple fuzzy conditional 
statements. 

(1) Simple fuzzy conditional statements. 

Suppose the existing precondition is: if x is A, then y is B. For the input: if x is A', 
then the output is y is B '. This is the simple fuzzy conditional statement, where the 
conclusion B ' is based on the synthesis of the fuzzy implication relation A → B and 
the fuzzy set A', i.e.: 

B ' = A'◦(A → B) = A'◦ R (3.97) 

where R is a fuzzy implication relation and 0 is a synthetic operation. 

Example 3.10 Suppose there is a fuzzy implication relation A → B, where A = 
[0,0.1,0.4,0.5,0.9] and B = [0,0,0.2,0.5,1], for the input A' = [1, 0.9, 0.6, 0.5, 0.1], 
try to find its output B '. 

Solution According to the above Eq. (3.97), it is obtained that:



3.5 Fuzzy Inference 105

B ' = A'◦ R = A'◦ 

⎛ 

⎜⎜⎜⎜⎜⎝ 

0 0  
0 0  
0 0  

0.0 0.0 0.0 
0.1 0.1 0.1 
0.2 0.4 0.4 

0 0  
0 0  

0.2 0.5 0.5 
0.2 0.5 0.9 

⎞ 

⎟⎟⎟⎟⎟⎠ 
= (0, 0, 0.2, 0.5, 0.5) (3.98) 

The Matlab programs for the Example 3.10 are as follows: 

A = [0, 0.1, 0.4, 0.5, 0.9];  
B = [0, 0, 0.2, 0.5, 1];  
Aapo = [1, 0.9, 0.6, 0.5, 0.1]; 
m = length(A); 
n = length(B); 
for i1 = 1:m 
for j1 = 1:n 

Rc(i1,j1)=min(A(i1), B(j1)); 
end 

end 
n = size(Aapo, 1); 
l = size(Rc, 2); 
for i1 = 1:n 
for j1 = 1:l 

Bapo(i1, j1) = max(min([Aapo(i1,:); Rc(:, j1)’])); 
end 

end 

After running the above program, the variable Bapo is the inference result of the 
simple fuzzy statement. 

(2) Multiple fuzzy conditional statements 

Multiple fuzzy conditional statements can be divided into fuzzy conditional 
statements connected by “and” and fuzzy conditional statements connected by “also”. 

Fuzzy conditional statements using “and” concatenation are a common way of 
fuzzy inference. Suppose the existing precondition is: if x is A and y is B, then z 
is C. For the input: if x is A' and y is B ', then the output is: z is C '. Compared 
with the simple fuzzy conditional statement, the preconditions and inputs have been 
added with “and” concatenation. If there is only one “and”, it can be regarded as a 
double fuzzy conditional statement. Similarly, if there are more than one “and”, it is 
a multiple fuzzy conditional statement. 

We introduce the operation of double fuzzy conditional statements as an example. 
The fuzzy preconditions x is A and y is B can be regarded as a fuzzy set on the direct 
product space X × Y , denoted as A × B. Its membership function can be defined as: 

μA×B (x, y) = min{μA(x), μB (y)} (3.99)
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The membership function can also be defined as: 

μA×B (x, y) = μA(x)μB (y) (3.100) 

The fuzzy implication relation can be expressed as A × B → C . Based on the 
fuzzy implication minimum operation, the fuzzy implication relation can be defined 
as: 

R = A × B → C = A × B × C =
∫

X×Y ×Z 

μA(x) ∧ μB(y) ∧ μC (z) 
(x, y, z) 

(3.101) 

The fuzzy input x is A' and y is B ' can be defined as A' × B ', so the conclusion z 
is C ' can be defined as: 

C ' = (
A' × B ')◦(A × B → C) = 

−−−−−−→(
A' × B ')◦ R (3.102) 

where 
−−−−−−→(
A' × B ') denotes stretching of A' × B ' by rows. 

Example 3.11 Reasoning voltage by knowing the temperature and its variation. If the 
fuzzy sets A, B, C denote low temperature, fast temperature change and high voltage 
respectively. We have A = (1, 0.4, 0.1), B = (0.1, 0.6, 1), C = (0.3, 0.7, 1), and 
A', B ' denote higher temperature and faster temperature change respectively. We 
have A' = (0.3, 0.5, 0.7), B ' = (0.4, 0.5, 0.9). The precondition is that if x is A and 
y is B, then z is C. The implication is that if the temperature is low and the temperature 
is changing fast, then there is a high voltage. For the input: if x is A' and y is B ', try  
to find the conclusion C '. That is to infer the voltage if the temperature is higher and 
the temperature is changing faster. 

Solution The Matlab programs for the Example 3.11 are as follows: 

A = [1, 0.4, 0.2];  
B = [0.1, 0.6, 1]; 
C = [0.3, 0.7, 1]; 
m = length(A); 
n = length(B); 
for i1 = 1:m 

for j1 = 1:n 
RAB(i1,j1) = min(A(i1), B(j1)); 

end 
end 
RABLaShen = reshape(RAB’, 1, size(RAB, 1) * size(RAB, 2)); 
m = length(RABLaShen); 
n = length(C); 
for i1 = 1:m 

for j1 = 1:n
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RABC(i1,j1) = min(RABLaShen(i1), C(j1)); 
end 

end 
Aapo = [0.3, 0.5, 0.7]; 
Bapo = [0.4, 0.5, 0.9]; 
m = length(Aapo); 
n = length(Bapo); 
for i1 = 1:m 
for j1 = 1:n 

RAapoBapo(i1,j1) = min(Aapo(i1), Bapo(j1)); 
end 

end 
m = size(RAapoBapo, 1); 
n = size(RAapoBapo, 2); 
RAapoBapoLaShen = reshape(RAapoBapo’, 1, m*n); 
n = size(RAapoBapoLaShen, 1); 
l = size(RABC, 2); 
for i1 = 1:n 
for j1 = 1:l 

Capo(i1, j1) = max(min([RAapoBapoLaShen(i1,:); RABC(:, j1)’])); 
end 

end 

After running the above program, the variable Capo is the value of conclusion C '. 
We have C ' = (0.3, 0.4, 0.4). 

Next, we introduce the multiple fuzzy conditional statements using the “also” 
conjunction. Suppose the existing preconditions are: if x is A1 and y is B1, then z 
is C1, also if  x is A2 and y is B2, then z is C2, …, also if  x is An and y is Bn , then 
z is Cn . For the input: if x is A' and y is B ', then the output: z is C '. Compared 
to the fuzzy conditional statement connected by “and”, the precondition has more 
conditions connected by “also”. 

If the fuzzy implication relation for the i-th conditional rule, i.e., if x is Ai and y 
is Bi , then z is Ci , is written as: 

Ri = Ai × Bi → Ci (3.103) 

Then the total fuzzy implication relation for all n precondition rules is: 

R = ∪n 
i=1 Ri (3.104) 

Finally, the output z is C ' as: 

C ' = (
A' × B ')◦ R (3.105)
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From the above expressions, we can see that the multiple fuzzy conditional state-
ments connected with “also” are defined on the basis of the fuzzy conditional state-
ments connected with “and”. The final output can be obtained by following the 
formula step by step. 

3.6 Fuzzy Control System 

Fuzzy control systems are arguably the most important application of fuzzy 
computing. Fuzzy control systems are also known as fuzzy controllers. A fuzzy 
control system is a comprehensive use of fuzzy logic theory [5]. A fuzzy control 
system includes modules such as fuzzification, knowledge base, fuzzy inference, 
and defuzzification, as shown in Fig. 3.6. 

The part in the dashed box in Fig. 3.6 is the fuzzy control system. The fuzzy 
control system regulates the control object and solves real-life problems by control-
ling changes in the object. Fuzzification refers to the conversion of the input deter-
ministic variable into a fuzzy variable. The deterministic variable is also called the 
clear variable. Fuzzy inference refers to the use of fuzzy implication relations and 
inference rules in fuzzy logic to make decisions. Defuzzification refers to the conver-
sion of fuzzy variables obtained by fuzzy inference into definite variables for control 
purposes. Knowledge base refers to the knowledge of the real-life problem and the 
object to be controlled, which usually includes a database and a fuzzy control rule 
base. 

(1) Fuzzification. The fuzzification operation is to map the input observations into 
a fuzzy set over the theoretical domain. 

First, the input observations are processed so that they are converted into input 
variables suitable for the fuzzy controller. For example, if the input observation is 
denoted as r and the output is denoted as y, in general, we need to calculate the error 
e = r-y and the rate of change of the error e' = de/dt.

Fig. 3.6 Diagram of a fuzzy control system 
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Second, the input variables obtained from the processing are to be scaled so that 
they are mapped to their respective theoretical domain ranges. 

Finally, the input variables transformed to the range of the theoretical domain are 
to be fuzzed to obtain the corresponding fuzzy sets [6]. 

The method of scale transformation of the input variables can be linear or 
nonlinear, while the theoretical domain can be discrete or continuous. If the theo-
retical domain is to be restricted to be discrete, the continuous domain needs to 
be discretized, also known as quantization [7]. The quantization of the theoretical 
domain can be homogeneous or non-homogeneous. 

For example, assuming that the range of the continuous domain is [− 3, 3], 
Table 3.3 gives the method of uniform quantization: 

As can be seen from Table 3.3, the theoretical domain is uniformly divided 
into different levels, except for the two ends, thus achieving a discretization of the 
continuous domain. 

As can be seen from Table 3.4, the theoretical domain is divided non-uniformly 
into different levels, except for the two ends, thus achieving a discretization of the 
continuous domain. 

Since the continuous theoretical domain can be transformed into the discrete 
theoretical domain, we generally discuss the problem on the discrete theoretical 
domain. In order to transform the input variable into a fuzzy set on the theoretical 
domain, we need to introduce the description method of the membership function. 
The description method is introduced from both discrete and continuous perspectives. 

The membership functions on discrete theoretical domains are generally described 
numerically. Table 3.5 gives an example of a description of a discrete theoretical 
domain.

In Table 3.5, the fuzzy sets NB, NS, ZE, PS, and PB denote Negative Big, Negative 
Small, Zero, Positive Small, and Positive Big, respectively. ZE can be expressed as: 

ZE  = 
0.5 

−1 
+ 

1.0 

0 
+ 

0.5 

1 
(3.106) 

For the membership function on the continuous domain, the general method is func-
tional description. That is the membership is usually expressed in the form of a

Table 3.3 Uniform quantization of continuous theoretical domains 

Range [− 3, − 1.4) [− 1.4, − 
0.8) 

[− 0.8, − 
0.4) 

[− 0.4, 0.4) [0.4, 0.8) [0.8, 1.4) [1.4, 3] 

Level − 3 − 2 − 1 0 1 2 3 

Table 3.4 Non-uniform quantization of continuous theoretical domains 

Range [− 3, − 2.5) [− 2.5, − 
1.5) 

[− 1.5, − 
0.5) 

[− 0.5, 0.5) [0.5, 1.5) [1.5, 2.5) [2.5, 3] 

Level − 3 − 2 − 1 0 1 2 3 
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Table 3.5 Numerical description method 

Fuzzy set − 3 − 2 − 1 0 1 2 3 

NB 1.0 0.5 0.0 0.0 0.0 0.0 0.0 

NS 0.0 0.5 1.0 0.5 0.0 0.0 0.0 

ZE 0.0 0.0 0.5 1.0 0.5 0.0 0.0 

PS 0.0 0.0 0.0 0.5 1.0 0.5 0.0 

PB 0.0 0.0 0.0 0.0 0.0 0.5 1.0

function. The most common forms of functions are Gaussian function, triangular 
function, trapezoidal function. The expression of the Gaussian membership function 
is: 

μA(x) = e− (x−x0)
2 

2σ 2 (3.107) 

where x0 is the mean value of the membership function and σ is the variance of the 
membership function. By adjusting the magnitude of the mean value and variance, 
the Gaussian membership function with different shapes can be obtained. 

If the input variable is one-dimensional, it is usually converted into a fuzzy set 
using the single-point fuzzy method. Assuming that x0 is a clear input membership, 
it is usually fuzzified into a single-point fuzzy set, denoted as A, whose expression 
is: 

μA(x) =
{
1, x = x0 
0, x /= x0 

(3.108) 

It is easy to see that the single-point fuzzy set only formally converts the clear 
variable into a fuzzy variable, while it is still an accurate quantity in substance. For 
example, if the theoretical domain is {− 3, − 2, − 1, 0, 1, 2, 3} and the input variable 
x0 = −  2, then its corresponding single-point fuzzy set is A = (0,1,0,0,0,0,0,0); while 
for x0 = 1, then its corresponding single-point fuzzy set is A = (0, 0, 0, 0, 1, 0, 0). 

(2) Fuzzy inference. Fuzzy inference was introduced in the previous section and is 
omitted here. 

(3) Defuzzification. A fuzzy variable can be obtained by fuzzy inference, while 
for the actual control problem, it must be converted into a clear variable. It is 
necessary to convert the fuzzy variable into a clear variable. This is the task to be 
accomplished by the defuzzification. The common methods of defuzzification 
include: average maximum membership method, weighted average method, 
maximum membership taking the minimum method, maximum membership 
taking the maximum method, and median method. 

The average maximum membership method is also known as the “mom” method. If 
the membership function of the fuzzy set C ' of the output variable is a single-peaked
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function. That is there is only one peak, the maximum value of the membership 
function is selected as the clear value, i.e.: 

μC '(z0) ≥ μC '(z), z ∈ Z (3.109) 

where z0 denotes the determined value after defuzzification. If the membership func-
tion of the fuzzy set C ' of output variable is not a single-peaked function, i.e., there 
are multiple peaks, the average of the values of the elements corresponding to these 
peaks is selected as the clear value. 

Example 3.12 Suppose the fuzzy set of output variable z1 is known as C '
1 = 0.1 2 +

0.4 
3 + 0.7 4 + 1.0 5 + 0.7 6 + 0.3 7 , and the fuzzy set of another output variable z2 is C

'
2 =

0.3 
−4 + 0.8 −3 + 1.0 −2 + 1.0 −1 + 0.8 0 + 0.3 1 + 0.1 2 , try to use the average maximum membership 
method to find the corresponding clear variables z10 and z20 for z1 and z2. 

Solution According to the average maximum membership method, C '
1 is a single-

peaked function and it is easy to know that μC '
1 
(z1 = 5) = 1.0 is its maximum 

C '
1. Thus, z10 = 5. C '

2 is a function with two peaks. It is easy to know that 
μC '

2 
(z2 = −2) = 1.0 and μC '

2 
(z2 = −1) = 1.0 are is its maximum membership. 

Thus, z10 = (−2 − 1)/2 = −1.5. 

The weighted average method is also known as the area center of gravity method, 
sometimes abbreviated as centroid method. This method is a weighted average of the 
membership in a fuzzy set to obtain clear values. For a discrete membership function, 
the expression of the weighted average method is: 

z0 =
∑n 

i=1 zi μC '(zi )∑n 
i=1 μC '(zi ) 

(3.110) 

For a continuous membership function, the expression of the weighted average 
method is: 

z0 = d f  (z) =
∫ b 
a zi μC '(zi )dz∫ b 
a μC '(zi )dz  

(3.111) 

Example 3.13 Suppose the fuzzy set of the known output variable z1 is C '
1 = 0.1 2 +

0.4 
3 + 0.7 4 + 1.0 5 + 0.7 6 + 0.3 7 , try to use the weighted average method to find the 
corresponding clear variable z10 of z1. 

Solution It is easy to know that C '
1 is a discrete membership function, so the 

calculation process of the weighted average method is: 

z10 = 
0.1 × 2 + 0.4 × 3 + 0.7 × 4 + 1.0 × 5 + 0.7 × 6 + 0.3 × 7 

0.1 + 0.4 + 0.7 + 1.0 + 0.7 + 0.3
= 4.84 

(3.112)
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The method of taking the minimum value of the maximum membership is also 
noted as “som” method. This method selects the smallest of all points in the fuzzy 
set with the maximum membership as the result of defuzzification. The taking 
the maximum value of the maximum membership method is also known as the 
“lom” method. This method selects the largest of all points in the fuzzy set with 
the maximum membership as the result of defuzzification. The median method is 
also known as the area equalization method and is denoted as bisector method. The 
median method is to select the median of μC '(z) as the result of the defuzzification 
of z. 

Example 3.14 Suppose the domain U = {−6, −5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6}, 
we have the linguistic variables x, y, z ∈ U . The values of the linguistic variables 
T (x) = {N B, NM, NS, N Z  , PZ  , PS, PM, PB}, where NB is Negative Big, NM 
is Negative Middle, NS is Negative Small, PS is Negative Zero, PZ is Positive Zero, 
and PS is Negative Small, PM is Positive Middle, PB is Positive Big. The linguistic 
variable value T (y) = T (z) = {N B, NM, NS, ZE, PS, PM, PB}, where ZE 
is zero (Zero). For the linguistic variables x, the fuzzy sets corresponding to their 
linguistic variable values are shown in Table 3.6. 

For the linguistic variables y, z, the fuzzy sets corresponding to their linguistic 
variable values are shown in Table 3.7.

In this fuzzy control system, the knowledge base is the fuzzy control rules for the 
linguistic variables x, y and z, as shown in Table 3.8.

As shown in Table 3.8, the number of language variable values for language 
variable x is 8. The number of language variable values for language variable y is 
7. Thus this knowledge base contains 56 rules. Note that 56 rules are the maximum 
possible number, and in practice, it is possible that some possible rules do not exist, 
i.e., the square column in Table 3.8 can be empty. The rules in the table are, in order, 
R1: if  x is NB and y is NB, then z is NB; R2: if  x is NB and y is NM, then z is NB; 
…; R56: if  x is PB and y is PB, then z is PB. 

Solution If the inputs are noted as x0 and y0, then according to the above steps 
of fuzzy control system. We can use single-point fuzzy sets to fuzzify the input

Table 3.6 Membership of the fuzzy set of linguistic variable x 

μ(x) − 6 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 6 

NB 1.0 0.8 0.7 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

NM 0.2 0.7 1.0 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

NS 0.1 0.1 0.3 0.7 1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

NZ 0.0 0.0 0.0 0.0 0.1 0.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

PZ 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.1 0.0 0.0 0.0 0.0 

PS 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.1 0.0 

PM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 

PB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 0.8 1.0 
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Table 3.7 Membership of fuzzy sets of linguistic variables y and z 

μ(y), 
μ(z) 

− 6 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 6 

NB 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

NM 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

NS 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

ZE 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 

PS 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 

PM 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 

PB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0

Table 3.8 Fuzzy control rules for linguistic variables x, y and z 

x NB NM NS ZE PS PM PB 

NB NB NB NB NB NM ZE ZE 

NM NB NB NB NB NM ZE ZE 

NS NM NM NM NM ZE PS PS 

NZ NM NM NS ZE PS PM PM 

PZ NM NM NS ZE PS PM PM 

PS NS NS ZE PM PM PM PM 

PM ZE ZE PM PB PB PB PB 

PB ZE ZE PM PB PB PB PB

variables. In fuzzy inference, the intersection of fuzzy sets is used for fuzzy condi-
tional statements connected by “and”. The concatenation of fuzzy sets is used for 
fuzzy conditional statements connected by “also”, the max–min method is used for 
synthesis operations. The intersection method is used for fuzzy implication relations. 
The weighted average method is used for the defuzzification operation. The fuzzy 
set C ' of the output variable is: 

C ' = (
A' × B ')◦ ∪56 

i=1 Ri = ∪56 
i=1

(
A' × B ')◦((Ai × Bi ) → Ci ) = ∪56 

i=1C
'
i (3.113) 

where C '
i =

(
A' × B ')◦((Ai × Bi ) → Ci ). 

For x0 = −6 and y0 = −6, A' = B ' = (1, 0, . . . ,  0)1×13 is obtained by the 
single-point fuzzy set method. We have C '

1 = (
A' × B ')◦((A1 × B1) → C1) =(

A' × B ')◦((ANB  × BNB) → CNB) = (1, 0.7, 0.3, 0, . . .  ,  0)1×13. Similarly, 
C '
2, C '

3, . . . ,  C '
56 can be computed. Finally the output fuzzy set C ' = 

(1, 0.7, 0.3, 0, . . .  ,  0)1×13 is calculated. Using the weighted average method, the 
clear variable is obtained as: 

z0 = 
1 × (−6) + 0.7 × (−5) + 0.3 × (−4) 

1 + 0.73 + 0.3
= −5.35 (3.114)
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Similarly, we can calculate the output variable z0 when x0 ∈ U and y0 ∈ U are 
other combinations in the theoretical domain, as shown in Table 3.9, which provides 
a user-queryable control table. 

In Table 3.9, the output variables are retained only to one decimal place to save 
space and for display purposes. 

The above example of a fuzzy control system can also be implemented using 
Matlab programming with the following programs:

A = xlsread(‘fuzzycon.xlsx’,‘x’); 
B = xlsread(‘fuzzycon.xlsx’,‘yz’); 
C = B; 
R = xlsread(‘fuzzycon.xlsx’,‘r’); 
U = -6:1:6; 
n = length(U); 
X = eye(n); 
Y = X; 
Z = zeros(n); 
for i=1:n 
for j=1:n 

x0 = X(i,:); 
y0 = Y(j,:); 
zi = defuzzyAlsoAnd(A,B,C,R,x0,y0); 
zi = sum(zi.*U)/sum(zi); 
Z(i,j) = roundn(zi, -2); 

end 
end

Table 3.9 Control table for linguistic variables x, y and z 

x − 6 − 5 − 4 − 3 − 2 − 1 0 1 2 3 4 5 6 

− 6 − 5.4 − 5.2 − 5.4 − 5.2 − 5.4 − 5.2 − 4.7 − 4.3 − 2.7 − 2.0 − 1.3 0.0 0.0 
− 5 − 5.0 − 5.0 − 5.0 − 5.0 − 5.0 − 5.0 − 3.9 − 3.7 − 2.4 − 1.8 − 1.1 0.2 0.2 
− 4 − 4.7 − 4.5 − 4.7 − 4.5 − 4.7 − 4.5 − 3.1 − 2.9 − 1.9 − 1.4 − 0.7 0.6 0.6 
− 3 − 4.3 − 4.3 − 4.3 − 4.3 − 4.3 − 4.3 − 2.9 − 2.3 − 1.4 − 0.9 − 0.3 1.0 1.0 
− 2 − 4.0 − 4.0 − 3.8 − 3.8 − 3.5 − 3.4 − 2.4 − 1.8 − 0.4 0.0 0.2 1.6 1.6 

− 1 − 4.0 − 4.0 − 3.4 − 3.1 − 2.5 − 2.1 − 1.5 − 1.1 0.3 1.9 2.3 2.9 2.9 

0 − 3.6 − 3.6 − 2.9 − 2.6 − 1.0 − 0.5 0.0 0.5 1.0 2.6 2.9 3.6 3.6 

1 − 2.9 − 2.9 − 2.3 − 1.9 − 0.3 1.1 1.5 2.1 2.5 3.1 3.4 4.0 4.0 

2 − 1.8 − 1.8 − 0.6 − 0.3 0.4 1.8 2.4 3.4 3.5 3.8 3.8 4.0 4.0 

3 − 1.0 − 1.0 0.3 0.9 1.4 2.3 2.9 4.3 4.3 4.3 4.3 4.3 4.3 

4 − 0.6 − 0.6 0.7 1.4 1.9 2.9 3.1 4.5 4.7 4.5 4.7 4.5 4.7 

5 − 0.2 − 0.2 1.1 1.8 2.4 3.7 3.9 5.0 5.0 5.0 5.0 5.0 5.0 

6 0.0 0.0 1.3 2.0 2.7 4.3 4.7 5.2 5.4 5.2 5.4 5.2 5.4 
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xlswrite(‘fuzzycon.xlsx’, Z, ‘result’);

In the above program, the fuzzy set matrix and fuzzy rule matrix are stored in a 
file with the suffix “xlsx”. Moreover, the calculated output results are also stored in 
a file. The defuzzyAlsoAnd.m function is used for defuzzification: 

function zi = defuzzyAlsoAnd(A,B,C,R,x0,y0) 
m = size(A,1); 
n = size(B,1); 
for i=1:m 
for j=1:n 

k = R(i,j); 
Rtmp((i-1)*n+j,:)=fuzzyInference(A(i,:),B(j,:),C(k,:),x0,y0); 

end 
end 
zi = max(Rtmp); 
The fuzzyInference.m function is used for fuzzy inference: 
function Capo=fuzzyInference(Ai,Bi,Ci,Aapo,Bapo) 
m = length(Ai); 
n = length(Bi); 
for i1 = 1:m 
for j1 = 1:n 

RAB(i1,j1) = min(Ai(i1), Bi(j1)); 
end 

end 
RABLaShen = reshape(RAB’, 1, size(RAB, 1) * size(RAB, 2)); 
m = length(RABLaShen); 
n = length(Ci); 
for i1 = 1:m 
for j1 = 1:n 

RABC(i1,j1) = min(RABLaShen(i1), Ci(j1)); 
end 

end 
m = length(Aapo); 
n = length(Bapo); 
for i1 = 1:m 
for j1 = 1:n 

RAapoBapo(i1,j1) = min(Aapo(i1), Bapo(j1)); 
end 

end 
m = size(RAapoBapo, 1); 
n = size(RAapoBapo, 2); 
RAapoBapoLaShen = reshape(RAapoBapo’, 1, m*n); 
n = size(RAapoBapoLaShen, 1); 
l = size(RABC, 2); 
for i1 = 1:n
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for j1 = 1:l 
Capo(i1, j1) = max(min([RAapoBapoLaShen(i1,:); RABC(:, j1)’])); 

end 
end 

It can be seen that the fuzzy control system is a comprehensive use of fuzzy logic 
theory. 

3.7 Fuzzy Logic Designer 

In Matlab, the fuzzy logic toolbox implements various computational operations for 
fuzzy control systems. This section introduces the Fuzzy Logic Designer tool in 
Matlab, taking the fuzzy control of a washing machine as an example. 

In people’s daily life, washing machine is a common home appliance. At present, 
intelligent washing machine has been developed rapidly [7]. Intelligent washing 
machine based on fuzzy control has also received more and more attention. In the 
intelligent washing machine, the design and research of intelligent control system is 
the basis that the various functional indicators of intelligent washing machine can 
be achieved [8]. Thus, the design and research of intelligent washing machine based 
on fuzzy computing has important theoretical significance and strategic value. 

Example 3.15 The simulation of fuzzy control system can be used to realize the 
problem of intelligent control of washing machine by computer. It is assumed that the 
input variables of the fuzzy control system of the washing machine we want to design 
are sludge and grease of the clothes, and the output of this system is the washing time. 
The sludge amount and grease amount can be measured by sensors. The theoretical 
domain of sludge x is set to U = [0, 100]. The theoretical domain of grease is also set 
to U = [0, 100]. There are 3 fuzzy sets of sludge x on the theoretical domain, which 
are small sludge (SD), middle sludge (MD), and large sludge (LD). The membership 
function of SD is SD(x) = (50 − x)/50, 0 ≤ x ≤ 50. The membership function of 
LD is LD(x) = (x − 50)/50, 50 ≤ x ≤ 100. The membership function of MD is: 

MD(x) =
{

x/50, 0 ≤ x ≤ 50 
(100 − x)/50, 50 ≤ x ≤ 100 

(3.115) 

There are also 3 fuzzy sets of grease y on the theoretical domain, which are small 
grease (SG), middle grease (MG), and large grease (LG). the membership function 
of SG is SG(y) = (50 − y)/50 with 0 ≤ y ≤ 50, the membership function of LG 
is LG(Y ) = (y − 50)/50, 50 ≤ y ≤ 100, and the membership function of MG is: 

MG(y) =
{

y/50, 0 ≤ y ≤ 50 
(100 − y)/50, 50 ≤ y ≤ 100 

(3.116)
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The output quantity is the washing time t, whose theoretical domain is [0, 60]. 
The output variable t has five fuzzy sets on the theoretical domain, which are: very 
short time (VS), short time (S), medium time (M), long time (L), and very long time 
(VL). The membership function of VS is V S(t) = (10 − t)/10, 0 ≤ t ≤ 10, and the 
membership function of S is: 

S(t) =
{

t/50, 0 ≤ t ≤ 10 
(25 − t)/15, 10 < t ≤ 25 

(3.117) 

The membership function of M is: 

M(t) =
{

(t − 10)/15, 10 ≤ t ≤ 25 
(40 − t)/15, 25 < t ≤ 40 

(3.118) 

The membership function of L is: 

L(t) =
{

(t − 25)/15, 25 ≤ t ≤ 40 
(60 − t)/15, 40 < t ≤ 60 

(3.119) 

The membership function of VL is: 

V L(t) = (t − 40)/20, 40 < t ≤ 60 (3.120) 

The fuzzy rules in the knowledge base are: if more sludge and more grease, the 
longer the washing time; if the sludge is moderate and the grease is moderate, the 
washing time is moderate; if the sludge is less and the grease is less, the washing 
time is shorter. Table 3.10 gives all the fuzzy rules. It is clear that there are 9 fuzzy 
rules in the knowledge base of the fuzzy control system of the washing machine. 

For the input variables x = 60, y = 70, try to find the output quantity t. 

Solution We solve the above problem with the help of Matlab’s Fuzzy Logic 
Designer, which can be opened by clicking Fuzzy Logic Designer from the App 
in Matlab. 

The interface after opening the fuzzy logic designer is shown in Fig. 3.7. Under 
this interface, there is one input variable (located in the top left of the figure) and 
one output variable (located in the top right of the figure) by default. Users can also 
modify the name of the current variable, which is changed to sludge in Fig. 3.7.

Table 3.10 Fuzzy rules for 
fuzzy control system of 
washing machine 

x SG MG LG 

SD VS M L 

MD S M L 

LD M L VL 
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Fig. 3.7 Adding sludge in fuzzy logic designer

Double-clicking the icon of sludge with the mouse will bring up the dialog box 
shown in Fig. 3.8, in which you can modify the theoretical domain and membership 
function of sludge. We name the membership functions of sludge as SD, MD and 
LD, respectively. 

Close the membership function dialog box of sludge. We have to add another input 
variable by selecting Add Variable under the Edit menu of the fuzzy logic designer, 
and then clicking Input. Name the newly added input variable as grease. Users can 
follow the same operation as sludge to add the membership function of grease to get 
the result as shown in Fig. 3.9.

From the bottom left of the Fig. 3.9, we can see that the fuzzy conditional statement 
connected with “and” uses “min”, which is the intersection operation. The fuzzy 
conditional statement connected with “also” uses “max”. These are the same as the 
fuzzy control system example in the previous section. When solving the fuzzy control 
problem of the washing machine, these default parameters are also used, but the user 
can choose other settings as needed. The default defuzzification is “centroid”, i.e., 
weighted average. It is modified to “mom”, i.e., the average maximum membership 
method.
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Fig. 3.8 Adding membership function for sludge

Then modify the name of the output variable as washing time. We can open the 
subordinate function dialog box by double-clicking the icon of the output variable. 
Then we modify the domain of washing time as [0, 60], add 5 subordinate functions 
according to the requirements of the example, and then close the subordinate function 
dialog box to get the result as shown in Fig. 3.10.

Next, we add the rules of fuzzy control. Under the fuzzy controller dialog box, 
double click the mamdani icon in the middle to open the rule editing dialog box. We 
can add the 9 fuzzy control rules in the example. This completes the design of the 
washing machine fuzzy control system. Click the File menu, select Export, and save 
the file as “washingMachineConrol.fis”. 

To calculate the output variable t for the input variables x = 60, y = 70, under the 
View menu of the fuzzy control designer, click on Rules to open the Rules view, as 
shown in Fig. 3.11. In this dialog box, at the bottom left, enter [60; 70], and you can 
see the washing time is about 24.9 at the top right.

The problem of fuzzy control of the washing time of a washing machine can also 
be programmed as follows:

fis=mamfis(‘Name’,‘washingMachineControl’); 
var1=fisvar([0,100],‘Name’,‘sludge’);
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Fig. 3.9 Adding membership function for grease

var1=addMF(var1,‘trimf’, [-50,0,50],‘Name’,‘SD’);
var1=addMF(var1,‘trimf’, [0,50,100],‘Name’,‘MD’); 
var1=addMF(var1,‘trimf’, [50,100,150],‘Name’,‘LD’); 
var2=fisvar([0,100],‘Name’,‘grease’); 
var2=addMF(var2,‘trimf’, [-50,0,50],‘Name’,‘SG’); 
var2=addMF(var2,‘trimf’, [0,50,100],‘Name’,‘MG’); 
var2=addMF(var2,‘trimf’, [50,100,150],‘Name’,‘LG’); 
fis.Inputs = [var1,var2]; 
var3=fisvar([0,60],‘Name’,‘washingtime’); 
var3=addMF(var3,‘trimf’, [-10,0,10],‘Name’,‘VS’); 
var3=addMF(var3,‘trimf’, [0,10,25],‘Name’,‘S’); 
var3=addMF(var3,‘trimf’, [10,25,40],‘Name’,‘M’); 
var3=addMF(var3,‘trimf’, [25,40,60],‘Name’,‘L’); 
var3=addMF(var3,‘trimf’, [40,60,80],‘Name’,‘VL’); 
fis.Outputs=var3; 
rulelist=[1,1,1,1,1; 
1,2,3,1,1; 
1,3,4,1,1;
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Fig. 3.10 Adding washing time in fuzzy logic designer

2,1,2,1,1;
2,2,3,1,1; 
2,3,4,1,1; 
3,1,3,1,1; 
3,2,4,1,1; 
3,3,5,1,1]; 

fuzzyRules=fisrule(rulelist,2); 
fuzzyRules=update(fuzzyRules,fis); 
fis.Rules=fuzzyRules; 
fis.DefuzzificationMethod=‘mom’; 
x=60; 
y=70; 
t=evalfis(fis,[x,y]); 
showrule(fis,1:2,‘verbose’); 
figure(1); 
plotfis(fis); 
figure(2); hold on; box on; grid on; 
subplot(2,1,1)
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Fig. 3.11 Rule viewer to calculate the output variable

plotmf(fis,‘input’,1)
subplot(2,1,2) 
plotmf(fis,‘output’,1) 
hold off; 
figure(3); 
gensurf(fis) 
title(‘function mapping curve of input and output’) 

After running the above program, the results of the output variable are stored in 
the variable t. The program will draw three figures. The first one is the model graph 
of the fuzzy control system as shown in Fig. 3.12. The graph shows that the inputs 
are sludge and grease with 3 membership functions for each input, the washing time 
is the output with 5 affiliation functions, and the model is of Mandani type with 9 
fuzzy rules.

The second figure drawn by the above program is the membership functions of 
the input and output variables, as shown in Fig. 3.13. It can be seen that the three 
membership functions of sludge are triangular. The five membership functions of 
washing time are also triangular.
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Fig. 3.12 Model of fuzzy control system for washing machine

The third one plotted by the above program is the mapping surface diagram of 
input and output variables, as shown in Fig. 3.14. It can be seen that the washing 
time is a function of sludge and grease. It is getting longer as the sludge and grease 
increase. Since fuzzy logic is used for control, the change of washing time shows a 
certain slope, which increases the stability of the washing machine control system.

The Example 3.15 shows the usage of fuzzy logic designer and programs to design 
a controller for washing machine. Users can choose either way to solve their control 
problems. 

Exercises 

(1) Suppose the domain U is the age of a person with the range (0, 100]. There are 
3 classes of patterns young A1, middle-aged A2 and old A3 on this domain. For 
a certain variable μ = 35, please use the principle of maximum membership to 
determine the class to which μ belongs, where: 

A1(μ) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

1, 0 < μ  ≤ 20 
1 − 2

(
μ−20 
20

)2 
, 20 < μ  ≤ 30 

2
(

μ−40 
20

)2 
, 30 < μ  ≤ 40 

0, 40 < μ  ≤ 100
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Fig. 3.13 Membership function of sludge and washing time

Fig. 3.14 Function mapping curve of input and output
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A2(μ) = 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

0, 0 < μ  ≤ 20 
2
(

μ−20 
20

)2 
, 20 < μ  ≤ 30 

1 − 2
(

μ−40 
20

)2 
, 30 < μ  ≤ 40 

1, 40 < μ  ≤ 50 
1 − 2

(
μ−50 
20

)2 
, 50 < μ  ≤ 60 

2
(

μ−70 
20

)2 
, 60 < μ  ≤ 70 

0, 70 < μ  ≤ 100 

A3(μ) = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

0, 0 < μ  ≤ 50 
2
(

μ−50 
20

)2 
, 50 < μ  ≤ 60 

1 − 2
(

μ−70 
20

)2 
, 60 < μ  ≤ 70 

1, 70 < μ  ≤ 100 

(2) Suppose the domain U = {u1, u2, u3, u4, u5, u6} is the quality of tea leaves, 
where the elements are stripe, color, clarity, soup color, aroma and taste. There 
are five categories of patterns A1, A2, A3, A4 and A5 on this domain. For 
a certain tea B to be identified, please use the nearest principle to determine 
the category to which B belongs, where: A1 = (0.5, 0.4, 0.3, 0.6, 0.5, 0.4), 
A2 = (0.3, 0.2, 0.2, 0.1, 0.2, 0.2), A3 = (0.2, 0.2, 0.2, 0.1, 0.1, 0.2), 
A4 = (0, 0.1, 0.2, 0.1, 0.1, 0.1), A5 = (0, 0.1, 0.1, 0.1, 0.1, 0.1), B = 
(0.4, 0.2, 0.1, 0.4, 0.5, 0.6). 

(3) If we want to use fuzzy logic method to study the effect of the length of queuing 
time on passenger satisfaction at railroad stations. We can define “time” as the 
input variable and “satisfaction” as the output variable. The domain of the input 
time is set to U = [5, 60], and its membership function has three fuzzy sets on 
the domain, which are short time (ST), medium time (MT), and long time (LT). 
The membership functions of ST, MT and LT are: 

ST (t) = 

⎧⎨ 

⎩ 

1, x < 10 
15−x 
5 , 10 ≤ x ≤ 15 
0, x > 15 

MT  (t) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0, x < 13 
x−13 
6 , 13 ≤ x < 19 

1, 19 ≤ x < 27 
35−x 
8 , 27 ≤ x < 35 

0, x ≥ 35 

LT  (t) = 

⎧⎨ 

⎩ 

0, x < 25 
x−25 
17 , 25 ≤ x ≤ 42 
1, x > 42
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The theoretical domain of the output variable time is set to U = [0, 10]. The 
output variable time has three fuzzy sets. They are higher satisfaction (HS), general 
satisfaction (GS), and poor satisfaction (LS), whose membership functions are: 

HS(s) =
{ 5−s 

5 , 0 ≤ s ≤ 5 
0, s > 5 

GS(s) = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

0 s < 3 
s−3 
2 , 3 ≤ s ≤ 5 

s−5 
3 , 5 ≤ s ≤ 8 

0, s > 8 

LS(s) =
{

0, s < 7 
s−7 
3 , 7 ≤ s ≤ 10 

The fuzzy logic rules are: 

(i) if the waiting time is short, the passenger satisfaction is high; 
(ii) if the waiting time is medium, the passenger satisfaction is average; 
(iii) if the waiting time is long, the passenger satisfaction is poor. 

The defuzzification uses the average maximum membership method. Try to find 
what is the passenger satisfaction when the passenger waiting time is 10. Draw the 
mapping curve between the input and output variables. 
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Chapter 4 
Fuzzy Neural Network 

Abstract Fuzzy neural network combines fuzzy computing and artificial neural 
network. Fuzzy neural network inherits the characteristics of both fuzzy logic and 
neural network such as logical reasoning ability, adaptive ability and learning ability. 
This chapter first gives an overview of fuzzy neural network including Takagi-Sugeno 
fuzzy system and expert system. Adaptive network-based fuzzy inference system is 
introduced to illustrate the usage of fuzzy neural network. Then fuzzy neural network 
is used to solve time series prediction problem. Interval type-2 fuzzy logic is presented 
and its performance is studied through time series prediction problem. Fuzzy neural 
network is then applied to solve clustering problem and suburban commuting predic-
tion problem. Finally, the state-of-the-art research progress of fuzzy computing is 
presented. 

4.1 Overview of Fuzzy Neural Network 

The diversity of neural network topology makes it have strong adaptive ability and 
learning ability, but the disadvantage of neural network is poor interpretability. Neural 
network is like a black box, unable to explain its theoretical basis for solving prob-
lems. Fuzzy logic has a strong logical reasoning ability and expresses knowledge 
through rules, which makes it more interpretable. However, the rules of fuzzy logic 
need to be obtained according to the knowledge or experience of experts, resulting in 
poor adaptive ability. Fuzzy neural network (FNN) is a combination of fuzzy logic 
and neural network, which aims to form a method with extremely logical reasoning 
ability, adaptive ability and learning ability. 

FNN originated in the 1980s, because fuzzy logic has been successfully applied 
to the control problems in the home appliance industry, Japanese researchers first 
started the study of fuzzy neural network [1]. Their purpose is to use the learning 
ability of neural network to design fuzzy control system. In the 1990s, researchers 
in the United States also began research in this area, especially the research group 
led by Zadeh. These researchers promoted the development of FNN, making FNN 
quickly recognized by the industry.
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After years of development, the combination of fuzzy logic and neural network 
can be structurally divided into neuro-fuzzy system, fuzzy-neural system and fuzzy-
neural hybrid system. 

(1) Neuro-fuzzy system. It refers to the output of the neural network connected to the 
input of the fuzzy logic, similar to a series structure, using the neural network to 
adjust the parameters of the fuzzy system, the weight of the neural network can 
represent the fuzzification function, membership function and defuzzification 
function and other fuzzy logic calculation required parameters. A neuro-fuzzy 
system is a kind of fuzzy system. 

(2) Fuzzy-neural system. It means that the output of fuzzy logic is connected to 
the input of neural network, fuzzy logic is used to fuzzify the parameters or 
weights of neural network, and the neurons in neural network are fuzzy neurons. 
Fuzzy-neural system is a kind of neural network. 

(3) Fuzzy-neural hybrid system. It refers to the mixed use of fuzzy logic and neural 
network technology, generally the two technologies are independent of each 
other. The common hybrid system is Adaptive Network-based Fuzzy Inference 
System (ANFIS). 

In terms of structure and function, FNN can be divided into: 

(1) Fuzzy systems with learning ability, also known as trainable fuzzy systems. 
Based on the input sample data, the system can use the learning algorithm of 
neural network to learn the sample data, obtain the fuzzy rules corresponding 
to the data, and finally build a fuzzy system. 

(2) Fuzzy system based on neural network. The system is a reasoning system of 
fuzzy logic, and researchers have created a variety of neural network structures 
to represent fuzzy inference, that is, fuzzy inference is expressed in the form of 
neural networks. 

(3) Fuzzy neural network. It is essentially a neural network. The input, weight and 
output of the network may be fuzzy values, so as to obtain a neural network that 
can perform fuzzy computing. 

Recalling the Mandani fuzzy system introduced in the last chapter, its fuzzy rule 
form is: if x is Ai and y is Bi , then z is Ci , where each fuzzy rule is “also” connected. 
In addition to Mandani fuzzy systems, Takagi-Sugeno fuzzy systems and expert 
systems are also commonly used fuzzy controllers. Takagi-Sugeno fuzzy system is 
also abbreviated as T-S fuzzy system, and its fuzzy rules are as follows: 

Ri : if e = Ai and �e = Bi , then zi = αi e + βi�e + γi (4.1) 

where Ri denotes the i-th rule, e denotes the error, �e denotes the change rate of the 
error, Ai and Bi are the given fuzzy sets, αi , βi and γi are the parameters of the fuzzy 
systems. 

It can be seen that the output variable of the T-S fuzzy system is a linear function 
of the input variable and is calculated to obtain the clear value, so the system does not 
have a defuzzification module. Assuming that the T-S fuzzy system contains n rules
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and the weight of the i-th rule is denoted as ωi , the output can be calculated using 
the weighted summation method or the weighted average method. The expression 
of the weighted summation method is: 

δ = 
n∑

i=1 

ωi zi (4.2) 

where δ represents the total output of the system. The expression for the weighted 
average method is: 

δ = 
n∑

i=1 

ωi zi / 
n∑

i=1 

ωi (4.3) 

We cannot construct a FNN equivalent to the Mandani fuzzy system, only an 
approximate construction, but we can construct a FNN equivalent to a T-S fuzzy 
system or an expert system. The FNN corresponding to the above T-S fuzzy system is 
shown in Fig.  4.1. From the figure, we can see that the T-S fuzzy system is represented 
as a neural network structure, where the weights are calculated from the fuzzy set. 
The T-S fuzzy system in Fig. 4.1 uses “and” operation, i.e., min(Ai , Bi ). 

The above T-S fuzzy system consists of one input layer, three hidden layers and 
one output layer. Since one hidden layer is skipped from the weight ωi calculation, 
the T-S fuzzy system can also be said to have two hidden layers. There are four 
neurons from the input layer to the first hidden layer. The first neuron computes 
z1 = α1e + β1�e + γ1, the second neuron computes z2 = α2e + β2�e + γ2, 
the third neuron computes ω1 = min( A1, B1), and the fourth neuron computes 
ω2 = min(A2, B2). The second hidden layer has three neurons. The first neuron 
computes ω1z1, the second neuron computes ω2z2, and the third neuron computes 
ω1 + ω2. Then ω1z1 + ω2z2 is computed, and finally the output layer computes δ. It  
can be seen that the weights between the second layer to the output layer in the T-S 
type fuzzy neural network are all 1, which is a simplified neural network model.

Fig. 4.1 T-S fuzzy system 
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By properly constructing the topology and activation function of the neural 
network, we can obtain the neural network model equivalent to the T-S fuzzy system. 
Then we can use the theory of neural network to analyze the T-S fuzzy controller. 
For example, for a certain control problem, data are first collected experimentally to 
form a training set. We then can learn the training dataset by the method of neural 
network. The trained T-S fuzzy controller can be employed to the associated control 
problem. 

Next, we introduce the neural network model of the fuzzy expert system. The rule 
form of the fuzzy expert system is as follows: 

Ri : if e = Ai and �e = Bi , then the control action is ci (4.4) 

where Ri denotes the i-th rule, e denotes the error, �e denotes the change rate of the 
error, Ai and Bi is the given fuzzy set, ci is the triangle fuzzy function. It can be seen 
that the output variable of the fuzzy expert system is a certain control action. The 
control action is a clear value, so the system does not have a defuzzification module. 
Assuming that the fuzzy expert system contains n rules and the weight of the i-th 
rule is noted as ωi , the output can be calculated using the weighted average method. 

The fuzzy expert system corresponding to the FNN is shown in Fig. 4.2. From the  
figure, it can be seen that the fuzzy expert system is represented as a neural network 
structure. In the system, the weights ωi are calculated from the fuzzy set and the 
operations used are min(Ai , Bi ). The fuzzy expert system consists of an input layer, 
two hidden layers and an output layer. There are two neurons from the input layer to 
the first hidden layer. The first neuron is to calculate the weights ω1 = min(A1, B1) 
and the second neuron is to calculate ω2 = min(A2, B2). The second hidden layer 
has two neurons. The first neuron is to compute ω1z1 + ω2z2. The second neuron is 
to compute ω1 + ω2, and the weight of the second neuron is 1. Finally, the output 
layer computes δ. It can be seen that the weights between the second hidden layer 
to the output layer in the fuzzy expert neural network are all 1. It is also a simplified 
neural network model. The fuzzy expert system has a more concise neural network 
structure compared to the T-S type fuzzy system. 

Fig. 4.2 Fuzzy expert 
system
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Example 4.1 Suppose a two-input single-output T-S type fuzzy system needs to 
be constructed with two input variables, namely x and y. The fuzzy sets of input 
variables are shown in Table 4.1. We can construct the corresponding input variables 
according to the parameters in Table 4.1. 

The output variable is z. The rules from input to output are as follows: 

R1 : if x = A1 and y = B1, then z1 = −x + 2y (4.5) 

R2 : if x = A2 and y = B1, then z1 = 8x − 4y + 1 (4.6) 

R3 : if x = A2 and y = B2, then z1 = 3x + 9y + 1 (4.7) 

R4 : if x = A3, then z1 = 5x + 1 (4.8) 

Try to build a T-S type fuzzy system satisfying the above rules, and compute the 
value z of give x = 6 and y = 7. 

Solution The example can be solved by two ways. The first way is using fuzzy logic 
designer. T-S type fuzzy system can be designed in an interactive manner using the 
fuzzy logic designer. The usage of fuzzy logic designer has been introduced in the 
last chapter; thus, it is not described here. 

The second way is using the following programs to solve the example:

fis = sugfis(‘Name’,‘SugenoExample’); 
var1 = fisvar([0,10],‘Name’,‘X’); 
var1 = addMF(var1,‘trimf’, [0,0,4],‘Name’,‘x1’); 
var1 = addMF(var1,‘trapmf’, [2,4,6,8],’Name’,‘x2’); 
var1 = addMF(var1,‘trimf’, [6,10,10],‘Name’,‘x3’); 
var2 = fisvar([0,10],‘Name’,‘Y’); 
var2 = addMF(var2,‘trimf’, [0,0,7],‘Name’,‘y1’); 
var2 = addMF(var2,‘trimf’, [3, 10],‘Name’,‘y2’); 
fis.Inputs = [var1,var2]; 
var3 = fisvar([0,120],‘Name’,‘Z’); 
var3 = addMF(var3,‘linear’, [− 1,2,0],‘Name’,‘z1’);

Table 4.1 Input variables and their fuzzy sets 

Variable Domain Fuzzy set Membership Parameter 

x [0, 10] A1 Triangle [0, 0, 4]  

x [0, 10] A2 Trapezoid [2, 4, 6, 8]  

x [0, 10] A3 Triangle [6, 10, 10] 

y [0, 10] B1 Triangle [0, 0, 7]  

y [0, 10] B2 Triangle [3, 10, 10] 
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var3 = addMF(var3,‘linear’, [8,− 4,1],‘Name’,‘z2’);
var3 = addMF(var3,‘linear’, [1,3,9],‘Name’,‘z3’); 
var3 = addMF(var3,‘linear’, [5,0,1],‘Name’,‘z4’); 
fis.Outputs = var3; 
rulelist = [1,1,1,1,1; 

2,1,2,1,1; 
2,2,3,1,1; 
3,0,4,1,1]; 

fuzzyRules = fisrule(rulelist,2); 
fuzzyRules = update(fuzzyRules,fis); 
fis.Rules = fuzzyRules; 
x = 6; 
y = 7; 
z = evalfis(fis,[x,y]); 
showrule(fis,1:2,‘verbose’); 
figure(1); 
plotfis(fis); 
figure(2); 
gensurf(fis) 

The running results of the above program are shown in Figs. 4.3, 4.4 and 4.5. 
As can be seen in Fig. 4.3, the names of the two input variables are defined as X and 

Y, where X has three fuzzy membership functions and Y has two fuzzy membership 
functions. The name of this T-S type fuzzy system is “SugenoExample” with four

Fig. 4.3 T-S type fuzzy system for Example 4.1
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Fig. 4.4 Fuzzy rules for Example 4.1 

Fig. 4.5 Function mapping curve for Example 4.1
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fuzzy rules, while the name of the output variable is defined as Z. The output variable 
is composed of four functions, each of which is a linear function of the input variables. 

The fuzzy rules of the Example 4.1 can be seen in Fig. 4.4, from which the process 
of fuzzy reasoning by the T-S model can be observed. When the input x = 6, y = 7, 
when the output z = 82. 

Figure 4.5 gives the surface plot of the relationship between two input and output 
variables. It can be seen from the figure that the mapping curve is not very smooth. 
There are large fluctuations and drastic changes in some places, which reflects that 
the system is not perfect. In this case, it is generally necessary to add more fuzzy 
rules to accumulate more empirical knowledge, so that the unsmooth areas can be 
eliminated and the whole mapping relationship tends to be continuous and smooth. 
However, with the increase of fuzzy rules, it makes the maintenance of fuzzy systems 
more and more complicated and reduces the interpretability of the system. In practical 
applications, we need to consider the modeling of fuzzy systems from several aspects 
to achieve a satisfactory balance. 

4.2 Adaptive Fuzzy Neural Inference System 

In 1993, Jang proposed the Adaptive Network-based Fuzzy Inference System 
(ANFIS), which combines the learning capability of neural networks with the 
logical reasoning capability of fuzzy computing [2]. It is a T-S type fuzzy neural 
network, which has been widely used in control problems because the system is very 
effective. Compared with the Mandani fuzzy system introduced earlier, the ANFIS 
fuzzy system outperforms the Mandani fuzzy system when using non-triangular and 
non-trapezoidal affiliation functions. 

We present the ANFIS fuzzy system with two fuzzy rules as an example: 

R1 : if x = A1 and y = B1, then z1 = a1x + b1y + c1 (4.9) 

R2 : if x = A2 and y = B2, then z2 = a2x + b2 y + c2 (4.10) 

where Ri , i ∈ {1, 2} denotes the i-th rule, x and y denotes two linguistic variables, Ai 

and Bi are the given fuzzy sets, ai , bi and ci are the parameters of the fuzzy system. 
This ANFIS fuzzy system is shown in Fig. 4.6, which shows that it is a five-

layer neural network structure containing one input layer, four hidden layers and 
one output layer. In this figure, the first hidden layer and the fourth hidden layer are 
represented by square blocks, which is because these two layers contain adjustable 
parameters. While the second hidden layer, the third hidden layer and the output 
layer are represented by circular blocks, which is because these three layers do not 
contain adjustable parameters. For the nodes with adjustable parameters represented 
by square blocks, the learning algorithm of the neural network can be used, and thus 
determine the final fuzzy system.
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Fig. 4.6 ANFIS fuzzy neural network 

In the above ANFIS fuzzy system, the first hidden layer is to fuzzify the input 
variables. The first two neurons in this layer are to calculate the fuzzy set of variable 
x . The output value of the first layer is obtained after calculating: 

o1 i (x) = μAi (x), i ∈ {1, 2} (4.11) 

The last two neurons in the first layer are to compute the fuzzy set of variable y, 
which are computed to obtain the output value of the layer: 

o1 i (y) = μBi (y), i ∈ {1, 2} (4.12) 

where o1 i indicates the result obtained by a certain neuron calculation, the number in 
the right superscript indicates that it is the first hidden layer, and the right subscript 
indicates the i-th fuzzy rule. It should be noted that there are several forms of member-
ship functions to choose. Different values will be obtained by using different member-
ship functions. The parameters in the chosen membership function are generally 
called conditional parameters. For example, if a Gaussian-type membership function 
is used: 

μAi (x) = exp
(

−‖x − di‖2 
σ 2 i

)
, i ∈ {1, 2} (4.13) 

where di and σi are the condition parameters. 
The second hidden layer has two neurons. The two neurons perform multiplication 

operations of the results of the previous layer. Other forms of operations can also be 
used, here we take multiplication as an example: 

o2 i = ωi = μAi (x) × μBi (x), i ∈ {1, 2} (4.14) 

where o2 i denotes the result obtained from the calculation of a certain neuron. The 
number in the right superscript indicates that it is the second hidden layer, the right
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subscript indicates the i-th fuzzy rule. The result of the multiplication operation is 
denoted as ωi . 

The third hidden layer has two neurons. The two neurons normalize the result of 
the previous layer. The normalized value indicates the confidence of a fuzzy rule: 

o3 i = ωi = ωi /(ω1 + ω2), i ∈ {1, 2} (4.15) 

where o3 i indicates the result obtained from a certain neuron calculation. The number 
in the right superscript indicates that it is the third hidden layer, the right subscript 
indicates the i-th fuzzy rule. The result of the normalization operation is denoted as 
ωi . 

The fourth hidden layer has two neurons and is based on the results of the previous 
layer to calculate the output of each fuzzy rule: 

o4 i = ωi zi = ωi (ai x + bi y + ci ), i ∈ {1, 2} (4.16) 

where o4 i denotes the result obtained from the computation of a certain neuron. 
The number in the right superscript indicates that it is the fourth hidden layer, the 
right subscript indicates the i-th fuzzy rule. In (4.16), ai , bi and ci are called the 
conclusion parameters, also known as the posterior parameters. It can be seen that 
the two neurons in this layer use a linear function. 

The fifth layer is the output layer. It fuses all the rules together and calculates the 
final output: 

δ = 
2∑

i=1 

ωi zi =
∑2 

i=1 ωi zi∑2 
i=1 ωi 

(4.17) 

It can be seen that the output layer yields result equivalent to (4.9) and (4.10), 
which indicates that the ANFIS fuzzy system can be represented as a fuzzy neural 
network equivalent to it. 

From the above introduction, it can be seen that the ANFIS fuzzy system includes 
conditional and conclusion parameters, which are determined before they can be 
used. We can use the BP neural network learning algorithm to learn these param-
eters, or we can combine the BP neural network learning algorithm with the least 
square estimation method to learn the parameters. Researchers have found that a 
mixture of the BP neural network learning algorithm and the least square estimation 
method is more effective for learning the parameters. The learning algorithms for 
the conditional and conclusion parameters are not described in detail here. Interested 
readers can refer to the related materials. 

We compare the Mandani fuzzy system and ANFIS fuzzy system in terms of 
interpretability and accuracy. The fewer the parameters of a fuzzy system, the more 
interpretable it is; conversely, the more the parameters of a fuzzy system, the better 
its accuracy. The fewer the rules of a fuzzy system, the more interpretable it is; 
conversely, the more the rules of a fuzzy system, the better its accuracy. Mandani
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fuzzy system uses fuzzy language to describe the problem, thus Mandani fuzzy 
system is highly interpretable; while the output of ANFIS fuzzy system is clear value, 
thus ANFIS fuzzy system is highly accurate. It can be seen that to construct a fuzzy 
system, it is necessary to consider both interpretability and accuracy, which are mutu-
ally constrained. Thus, a balance point is preferable to maximize both interpretability 
and accuracy metrics. 

Example 4.2 Suppose there is a single-input, single-output control problem, we have 
collected 25 samples of this problem as the training set, and another 26 samples as 
the validation set. Try to construct a T-S type fuzzy system using ANFIS. 

Solution For a training set of 25 samples, the programs for constructing the ANFIS 
fuzzy system are as follows: 

load(‘fuzex1trnData.dat’); 
fis = anfis(fuzex1trnData); 
x = fuzex1trnData(:,1); 
anfisOutput = evalfis(fis,x); 
figure1 = figure(1); 
axes1 = axes(‘Parent’,figure1); 
hold(axes1,‘on’); 
plot1 = plot(x,fuzex1trnData(:,2),‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’, 
‘none’); 
set(plot1,‘DisplayName’,‘Training Data’,‘Marker’,‘*’,‘Color’,[1 0 0]); 
plot2 = plot(x,anfisOutput,‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’,‘none’); 
set(plot2,‘DisplayName’,‘ANFIS Output’,‘Marker’,‘o’,‘Color’,[0 0 1]); 
xlabel(‘x’); 
ylabel(‘z’); 
box(axes1,‘on’); 
set(axes1,‘FontSize’,14); 
legend1 = legend(axes1,‘show’); 
set(legend1,‘Position’,[0.15 0.79 0.25 0.10]); 
hold(axes1,‘off’); 

As can be seen from the above program, only five lines of code is required to load 
the training set, construct and evaluate ANFIS. The other codes plot the graph of the 
results, as shown in Fig. 4.7. In Fig.  4.7, the samples in the training set are indicated 
by asterisks, and the points predicted by ANFIS are indicated by circle symbols, the 
mean square error of ANFIS on the training set is 0.2247.

From Fig. 4.7, we can see that the points predicted by ANFIS and the points in 
the training set differ greatly. We can adjust the parameters of ANFIS to improve its 
performance. For example, ANFIS has 2 membership functions by default, and we 
set the number of membership functions to 4. This means we increase the parameters 
in the fuzzy rules and fuzzy system. We then set the number of training iterations to 
50, and the required programs are as follows:
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Fig. 4.7 Training samples and output results by ANFIS

load(‘fuzex1trnData.dat’); 
opt = anfisOptions(‘InitialFIS’,4,‘EpochNumber’,50); 
opt.DisplayANFISInformation = 0; 
opt.DisplayErrorValues = 0; 
opt.DisplayStepSize = 0; 
[fis,trainError] = anfis(fuzex1trnData,opt); 
fisRMSE = min(trainError); 
x = fuzex1trnData(:,1); 
anfisOutput = evalfis(fis,x); 
figure1 = figure(1); 
axes1 = axes(‘Parent’,figure1); 
hold(axes1,‘on’); 
plot1 = plot(x,fuzex1trnData(:,2),‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’, 
‘none’); 
set(plot1,‘DisplayName’,‘Training Data’,‘Marker’,‘*’,‘Color’,[1 0 0]); 
plot2 = plot(x,anfisOutput,‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’,‘none’); 
set(plot2,‘DisplayName’,‘ANFIS Output’,‘Marker’,‘o’,‘Color’,[0 0 1]); 
xlabel(‘x’); 
ylabel(‘z’); 
box(axes1,‘on’); 
set(axes1,‘FontSize’,14); 
legend1 = legend(axes1,‘show’); 
set(legend1,‘Position’,[0.15 0.79 0.25 0.10]); 
hold(axes1,‘off’);
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Fig. 4.8 Results of ANFIS prediction after adjusting parameters 

After the above program is run, the variable “fisRMSE” stores the mean square 
error of ANFIS on the training set. The value of “fisRMSE” is 0.0823. We can 
see a larger reduction in mean square error compared to ANFIS without adjusted 
parameters. The predicted results are shown in Fig. 4.8. In Fig.  4.8, the  samples in  
the training set are indicated by asterisks, and the points predicted by ANFIS are 
indicated by circle symbols. It can be seen from the figure that the difference has 
narrowed between the training samples and the output of ANFIS. 

Based on the above program, we can also add the validation set. Then we can 
analyze the mean square error on the training and validation sets with the following 
programs: 

load(‘fuzex1trnData.dat’); 
load(‘fuzex1chkData.dat’); 
opt = anfisOptions(‘InitialFIS’,4,‘EpochNumber’,50); 
opt.DisplayANFISInformation = 0; 
opt.DisplayErrorValues = 0; 
opt.DisplayStepSize = 0; 
opt.ValidationData = fuzex1chkData; 
[fis,trainError,stepSize,chkFIS,chkError] = anfis(fuzex1trnData,opt); 
fisRMSE = min(trainError); 
x = fuzex1trnData(:,1); 
anfisOutput = evalfis(fis,x); 
figure1 = figure(1); 
axes1 = axes(‘Parent’,figure1);
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hold(axes1,‘on’); 
plot1 = plot(x,fuzex1trnData(:,2),‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’, 
‘none’); 
set(plot1,‘DisplayName’,‘Training Data’,‘Marker’,‘*’,‘Color’,[1 0 0]); 
plot2 = plot(x,anfisOutput,‘MarkerSize’,8,‘LineWidth’,2,‘LineStyle’,‘none’); 
set(plot2,‘DisplayName’,‘ANFIS Output’,‘Marker’,‘o’,‘Color’,[0 0 1]); 
xlabel(‘x’); 
ylabel(‘z’); 
box(axes1,‘on’); 
set(axes1,‘FontSize’,14); 
legend1 = legend(axes1,‘show’); 
set(legend1,‘Position’,[0.15 0.79 0.25 0.10]); 
hold(axes1,‘off’); 
figure2 = figure(2); 
axes1 = axes(‘Parent’,figure2); 
hold(axes1,‘on’); 
epoch = 1:opt.EpochNumber; 
[minval,minidx] = min(chkError); 
plot1 = plot(epoch,trainError,‘LineWidth’,2,‘LineStyle’,‘none’); 
set(plot1,‘DisplayName’,‘Train’,‘Marker’,‘o’,‘Color’,[0 0 1]); 
plot2 = plot(epoch,chkError,‘LineWidth’,2,‘LineStyle’,‘none’); 
set(plot2,‘DisplayName’,‘Validation’,‘MarkerSize’,8,... 

‘Marker’,‘*’,‘Color’,[1 0 0]); 
plot(minidx,minval,‘DisplayName’,‘Best’,‘MarkerSize’,25,... 

‘Marker’,‘.’,‘LineWidth’,3,‘LineStyle’,‘none’,… 
‘Color’,[0 0 0]); 

ylabel(‘RMSE’); 
xlabel(‘epoch’); 
box(axes1,‘on’); 
hold(axes1,‘off’); 
set(axes1,‘FontSize’,14,‘XGrid’,‘on’,‘YGrid’,‘on’); 
legend1 = legend(axes1,‘show’); 
set(legend1,‘Position’,[0.7 0.55 0.2 0.15]); 

After the above program is run, the mean square error of ANFIS on the training 
and validation sets is shown in Fig. 4.9. In Fig.  4.9, the results on the training set are 
represented by circle symbols, while the results on the validation set are represented 
by asterisks. The point with the smallest mean square error on the validation set is 
represented by a solid circle symbol.

From Fig. 4.9, it can be seen that the mean square error of ANFIS on the training 
set decreases rapidly with the increase of training times (epochs). After 30 epochs, the 
decreasing trend becomes slower, which indicating that the model tends to be smooth. 
The mean square error still shows up and down fluctuations. Correspondingly, the 
mean square error of ANFIS on the validation set decreases first. The curve reaches 
the minimum mean square error, i.e., the “Best” point in the figure, at the 17-th
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Fig. 4.9 Mean square error of ANFIS on the training and validation sets

iteration. In the subsequent epochs, the mean square error of ANFIS on the validation 
set gradually increases. Thus, the ANFIS model returned by the above program is 
the model of the 17-th iteration, which is stored in the variable “chkFIS”. 

4.3 Time Series Prediction 

Time series refers to the quantitative change of a certain thing over time, i.e., the 
change in quantity is related to time. Time series prediction is to take the quantitative 
change of a certain thing over time as a sequence, analyze the pattern of change in it, 
and predict the future trend of such change. Time series prediction is also called time 
series forecasting. For example, the sales volume forecasting of a certain commodity, 
the traffic flow forecasting of a certain city, the price forecasting of daily necessities, 
the financial stock forecasting, etc. These problems are all time series prediction 
problems. 

Time series prediction problems can be solved using regression analysis methods, 
neural network methods, while in this section we use ANFIS to solve this type of 
problems. 

Example 4.3 The Mackey-Glass (MG) time-delay differential equation is a common 
test problem in the field of neural networks and fuzzy computing, and its expression 
is:
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dx(t) 
dt  

= 
0.2x(t − τ ) 

1 + x10(t − τ ) 
− 0.1x(t) (4.18) 

which t is the independent variable of the problem, τ is the time delay. The problem 
is an acyclic chaotic sequence, which neither converges nor diverges. Assume that 
the initial conditions are: 

x(0) = 1.2 (4.19) 

τ = 17 (4.20) 

x(t) = 0, t < 0 (4.21) 

Under the above initial conditions, we use the 4-th order Runge-Kutta method to 
calculate the numerical solution of this problem. This leads to a set of data for this 
problem. The dataset contains 1200 points. Try to make predictions based on the 
available dataset and analyze the results. 

Solution It can be seen that the time series prediction problem is one independent 
variable and one dependent variable. Usually we need to construct a dataset and then 
do prediction based on the dataset. Assuming that there are already t moments of 
data, the moment we need to predict is t + p. Usually we start from the C-th point 
in the existing data and take a sample of every interval of D, i.e.: 

x(t − (C − 1)D), . . . ,  x(t − D), x(t) (4.22) 

If we take C = 4, D = p = 6, a sample with 4 components can be obtained: 

x(t − 18), x(t − 12), x(t − 6), x(t) (4.23) 

And the moment to predict at this point is x(t + 6). We start  from  t = 118, and 
end until t = 1117. Thus, we can construct 1000 such samples. We use the first 500 
of the 1000 samples as the training dataset and the last 500 as the validation dataset. 

When constructing ANFIS, we can create an initial system based on the training 
set and then start training ANFIS. This technique results in a better ANFIS fuzzy 
system. Similar to the previous section, we can also analyze the root mean squared 
error (RMSE) on the training set and the RMSE on the validation set, using the 
following programs: 

load(‘mgdata.dat’); 
time = mgdata(:,1); 
x = mgdata(:, 2); 
figure(1) 
plot(time,x)
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title(‘Mackey-Glass Chaotic Time Series’) 
xlabel(‘Time (sec)’) 
ylabel(‘x(t)’). 
for t = 118:1117. 

Data(t − 117,:) = [x(t − 18) x(t − 12) x(t − 6) x(t) x(t + 6)]; 
end 
trnData = Data(1:500,:); 
chkData = Data(501:end,:); 
fis = genfis(trnData(:,1:end-1),trnData(:,end),… 

genfisOptions(‘GridPartition’)); 
options = anfisOptions(‘InitialFIS’,fis,‘ValidationData’,chkData); 
[fis1,error1,ss,fis2,error2] = anfis(trnData,options); 
figure(2); 
plot(error1,‘-’) 
hold on 
plot(error2,‘--’) 
plot(error1,‘o’) 
plot(error2,‘*’) 
legend(‘Train error’,‘Valication error’) 
xlabel(‘epoch’) 
ylabel(‘RMSE’) 
anfis_output = evalfis(fis2,[trnData(:,1:4); chkData(:,1:4)]); 
figure(3); 
index = 125:1124; 
plot(time(index),[x(index) anfis_output]) 
xlabel(‘Time (sec)’) 
ylabel(‘x(t)’) 
figure(4); 
diff = x(index) - anfis_output; 
plot(time(index),diff) 
xlabel(‘Time (sec)’) 
ylabel(‘Prediction Errors’) 

After the above program is run, we obtain four figures. They are Figs. 4.10, 4.11, 
4.12 and 4.13.

In Fig. 4.10, the MG time series is given from t = 0 to 1200 moments. It can be 
seen that the system is in a bounded acyclic state. 

The RMSE of ANFIS on the training and validation sets is given in Fig. 4.11. It  
can be seen that the error on both datasets decreases rapidly as the number of epochs 
increases. The error of ANFIS on the validation set is always smaller than the error 
on the training set. 

The true MG time series and the ANFIS predicted series are given in Fig. 4.12, 
where the solid line shows the MG time series and the dashed line shows the ANFIS 
predicted series. It can be seen that the two curves overlap well.
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Fig. 4.10 MG time series 

Fig. 4.11 RMSE of ANFIS 
on the training and validation 
sets

Figure 4.13 gives the ANFIS prediction errors from t = 0 to 1200 moments. The 
RMSE at these points is about 0.033. For the validation set, the RMSE of the model 
is 0.003. The RMSE values on both training and validation sets are very small. Thus, 
it can be seen that the obtained ANFIS model is able to solve the MG time series 
prediction problem.
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Fig. 4.12 MG time series 
and ANFIS predicted series 

Fig. 4.13 Error of ANFIS 
prediction

4.4 Interval Type-2 Fuzzy Logic 

We know that people often use fuzzy language to describe a concept. Correspond-
ingly, fuzzy logic uses fuzzy theory to explain phenomena and solve problems, so 
that people can easily understand. For example, the concept of “tall building”, if 
we specify the number of floors 20 as the boundary, buildings with less than 20 
floors cannot be called tall buildings, and buildings with more than 20 floors can 
be called tall buildings. Then this is the classical binary logic, as shown in the left 
graph in Fig. 4.14. People may think that a building with 18 floors is also a tall 
building, or even 15 floors is also a tall building. The fuzzy computing theory we 
introduced earlier uses fuzzy membership to express this situation, as shown in the
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middle graph in Fig. 4.14. This way of representing linguistic concepts by a fuzzy set 
is called a type-1 fuzzy set. Here buildings with floor numbers from 15 to 20 are also 
tall buildings, except that they belong to the concept of tall buildings to a different 
extent. This property of a type-1 fuzzy set for describing linguistic concepts is called 
intra-individual uncertainty. 

Zadeh proposed the type-2 fuzzy set in 1975. His starting point is that people do 
not have the same understanding of the same linguistic concept, also known as inter-
individual uncertainty. Take the concept of “tall building” as an example. Suppose 
a type-1 fuzzy set describes this concept, the membership of an 18-floor building as 
a tall building is 0.8, but does this membership have to be 0.8? Perhaps someone 
thinks this membership should be 0.7? A type-2 fuzzy set is to express different 
views of different individuals. Due to the complexity of expressing type-2 fuzzy 
sets, researchers nowadays usually use interval type-2 fuzzy sets. In the interval 
type-2 fuzzy set, the membership is no longer a value but an interval. For example, 
the membership interval for an 18-floor building belonging to a tall building is [0.7, 
0.8], as shown in the right graph in Fig. 4.14. If everyone agrees that the membership 
degree of the 18-floor building belongs to the tall building is 0.8, then the membership 
degree interval becomes a value, i.e., the interval type-2 fuzzy set becomes a type-1 
fuzzy set. Thus, the interval type-2 fuzzy set is a generalization of the type-1 fuzzy 
set. 

Fuzzy logic based on type-1 fuzzy set is called type-1 fuzzy logic. Similarly, 
fuzzy logic based on type-2 fuzzy set is called type-2 fuzzy logic [3]. Sometime, 
type-1 fuzzy logic is called type-I fuzzy logic, and type-2 fuzzy logic is called 
type-II fuzzy logic. According to the concept of type-2 fuzzy sets, we know that 
the theories of fuzzy computing introduced earlier are all of type-1, including type-1 
fuzzy sets and type-1 fuzzy systems. In 2000, Mendel and his student Liang promoted 
the study of interval type-2 fuzzy sets, which led to the development of interval 
type-2 fuzzy computing [4]. Type-2 fuzzy computing is then applied to control and 
decision-making problems. 

The concepts of interval type-2 fuzzy sets are:

(1) upper membership function (UMF). It refers to the upper bound of the 
membership interval constituted by type-1 fuzzy set.

Fig. 4.14 Representations of tall building, left: binary logic, middle: type-1 fuzzy set, right: interval 
type-2 fuzzy set 
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(2) lower membership function (LMF). It refers to the lower bound of the 
membership interval constituted by type-1 fuzzy set. 

(3) footprint of uncertainty (FOU). It refers to the area between the upper 
membership function and the lower membership function. 

(4) embedded type-1 fuzzy set (ETS). It refers to a type-1 fuzzy set that is inside 
the footprint of uncertainty domain. 

With the theory of interval type-2 fuzzy sets, we can create fuzzy systems corre-
sponding to them. We can build either type-2 Mandani fuzzy system or type-2 T-S 
fuzzy system. For type-2 Mandani fuzzy system, both input and output variables can 
be type-2 fuzzy sets. For T-S type fuzzy system, the input variable can be a type-2 
fuzzy set, but the output variable is the same as that of a type-1 T-S type fuzzy system. 

Example 4.4 This example takes the MG time series prediction problem as an 
example. The same training and validation sets are used as in the previous section. 
The description of the MG time series prediction problem is omitted. 

Solution We build a type-2 T-S fuzzy system using the same training and validation 
sets as in the previous section, with the following programs: 

load(‘mgdata.dat’); 
time = mgdata(:,1); 
x = mgdata(:, 2); 
figure; 
plot(time,x) 
title(‘Mackey-Glass Chaotic Time Series’) 
xlabel(‘Time (sec)’) 
ylabel(‘x(t)’) 
C = 4; 
for t =118:1117 

Data(t − 117,:) = [x(t − 18) x(t − 12) x(t − 6) x(t) x(t + 6)]; 
end 
trnX = Data(1:500,1:C); 
trnY = Data(1:500,C + 1); 
vldX = Data(501:end,1:C); 
vldY = Data(501:end,C + 1); 
fisin = sugfistype2; 
numInputs = C; 
numInputMFs = 3; 
range = [min(x) max(x)]; 
for I = 1:numInputs 

fisin = addInput(fisin,range,‘NumMFs’,numInputMFs); 
for j = 1:numInputMFs 

fisin.Inputs(i).MembershipFunctions(j).LowerScale = 1; 
fisin.Inputs(i).MembershipFunctions(j).LowerLag = 0; 

end
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end 
numOutputMFs = numInputMFs^numInputs; 
fisin = addOutput(fisin,range,‘NumMFs’,numOutputMFs); 
figure; 
plotfis(fisin) 
options = tunefisOptions; 
options.Method = ‘particleswarm’; 
options.OptimizationType = ‘learning’; 
options.NumMaxRules = numInputMFs^numInputs; 
options.UseParallel = false; 
options.MethodOptions.MaxIterations = 10; 
fisout1 = tunefis(fisin,[],trnX,trnY,options); 
figure; 
plotfis(fisout1) 
figure; 
gensurf(fisout1,gensurfOptions(‘InputIndex’,1)) 
evalOptions = evalfisOptions(“EmptyOutputFuzzySetMessage”,“none”, ... 

“NoRuleFiredMessage”,“none”,“OutOfRangeInputValueMessage”,“none”); 
predY = evalfis(fisout1,vldX,evalOptions); 
del = predY - vldY; 
rmse = sqrt(mean(del.^2)); 
figure; 
plot([predY vldY]) 
axis([0 length(vldY) min(vldY) − 0.01 max(vldY) + 0.13]) 
xlabel(‘t’) 
ylabel(‘x(t)’) 
legend([“predicted value” “true value”],‘Location’,“northeast”) 

After the above program is run, five figures would be drawn. We only give three 
figures to show the results, as shown in Figs. 4.15, 4.16 and 4.17.

The type-2 T-S fuzzy system at the initial time is given in Fig. 4.15. It can be seen 
that the number of fuzzy rules is 0, i.e., there are no fuzzy rules yet. 

The type-2 T-S fuzzy system trained using the training set is given in Fig. 4.16, 
from which it can be seen that the number of fuzzy rules is 68. 

The performance of the type-2 T-S fuzzy system on the validation set is given 
in Fig. 4.17. The RMSE at these points is about 0.071. The result shows that the 
obtained fuzzy system model is able to solve the MG time series prediction problem. 

In conjunction with the previous section, the RMSE on the validation set for the 
type-1 T-S fuzzy system is 0.003, while the RMSE on the validation set for the type-2 
T-S fuzzy system is 0.071. In terms of RMSE metric, the type-2 T-S fuzzy system 
performs slightly worse than the type-1 T-S fuzzy system. It should be noted that the 
performance of the model is not intentionally optimized here. Interested readers can 
make further comparisons.
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Fig. 4.15 Type-2 T-S fuzzy system at the beginning

4.5 Fuzzy C-means Clustering 

Clustering is the basis for many classification and system modeling methods. The 
purpose of clustering is to identify natural groupings of data from a large amount 
of data to describe system behavior in a concise form. The best known of the fuzzy 
clustering methods is the fuzzy c-means clustering (FCM) method. FCM is a data 
clustering technique that uses membership to indicate the degree to which data points 
belong to a category. The FCM method was originally proposed by Bezdek in 1981 
[5]. It provides a method that shows how to group data points that populate a certain 
multi-dimensional space into a specific number of distinct clusters. 

Initially, the FCM method first randomly selects the locations of the clustering 
points. These randomly generated clustering centers are likely to be wrong. Then, 
the FCM method assigns each data point a membership degree belonging to each 
category. By iteratively updating the cluster centers and membership degrees for each 
data point, the FCM method iteratively moves the cluster centers to dense locations 
in the dataset. This iteration is based on minimizing some objective function that 
represents the distance from any given data point to the cluster center weighted by 
the membership of that data point. The final FCM method will output the clustering 
centers it finds.
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Fig. 4.16 Type-2 T-S fuzzy system after training 

Fig. 4.17 Performance of type-2 T-S fuzzy system on the validation set
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Due to the use of fuzzy membership functions, the FCM method is characterized 
by allowing each sample point to belong to more than one category. The degree to 
which a sample point belongs to a category is determined by the membership function. 
Since FCM allows each sample point to belong to more than one category, this makes 
the boundaries of the categories overlap each other. It is generally represented by 
the fuzzy separation matrix index, which determines the membership degree of the 
sample points to different categories. The objective function used in the FCM method 
is: 

fm = 
N∑

i=1 

M∑

j=1 

μm 
i j

∥∥xi − c j
∥∥2 

(4.24) 

where N is the number of samples in the dataset, M is the number of categories, 
m > 1 is the fuzzy separation matrix index, xi is the sample point in the dataset, c j 
is the center of the j-th category, and μi j  is the membership of the sample point xi 
belong to the j-th category. 

Based on the objective function in (4.24), the steps of the FCM method are: 

Step (1) Randomly initialize the membership μi j  of each sample; 
Step (2) Calculation of clustering centers: 

c j =
∑N 

i=1 μ
m 
i j  xi∑N 

i=1 μ
m 
i j  

(4.25) 

Step (3) Update the membership of each sample: 

μi j  = 1
∑M 

k=1

(‖xi−c j‖
‖xi−ck‖

) 2 
m−1 

(4.26) 

Step (4) Calculate the objective function value according to (4.24); 
Step (5) Repeat Steps (2)-(4) until the termination conditions are met. 

In Step (5), there are 2 common termination conditions. One termination condition 
is a predefined maximum number of iterations. For example, if the maximum number 
of iterations is set to 100, the FCM method stops after Steps (2)–(4) are repeatedly 
executed 100 times. Another termination condition is the objective function stagna-
tion. For example, if we set a very small number like 10−3, when the absolute value 
of the difference of the objective function in two consecutive iterations is less than 
10−3. It means that the method cannot find a better value of the objective function, 
so the iteration of the algorithm is terminated. 

Example 4.5 Let’s take the iris dataset as an example. The dataset contains three 
types of irises, namely Sentosa iris, Versicolour iris and Virginia iris. There are 50
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samples of each iris species. Each sample has 4 attributes, namely sepal length, sepal 
width, petal length and petal width. Please use the FCM method to perform clustering 
analysis on this dataset. 

Solution The programs for solving this problem using the FCM method are as 
follows: 

load(‘iris.dat’); 
setosaIndex = iris(:,5) == 1; 
versicolorIndex = iris(:,5) == 2; 
virginicaIndex = iris(:,5) == 3; 
setosa = iris(setosaIndex,:); 
versicolor = iris(versicolorIndex,:); 
virginica = iris(virginicaIndex,:); 
Characteristics = {‘sepal length’,‘sepal width’,‘petal length’,‘petal width’}; 
pairs = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4]; 
figure1 = figure; 
for i =1:6 

x = pairs(i,1); 
y = pairs(i,2); 
subplot1 = subplot(2,3,i,‘Parent’,figure1); 
hold(subplot1,‘on’); 
plot(setosa(:,x),setosa(:,y),‘Parent’,subplot1,… 

‘MarkerSize’,8,‘Marker’,‘.’,‘LineStyle’,‘none’); 
plot(versicolor(:,x),versicolor(:,y),‘Parent’,subplot1,… 

‘MarkerSize’,8,‘Marker’,‘x’,‘LineStyle’,‘none’); 
plot(virginica(:,x),virginica(:,y),‘Parent’,subplot1,… 

‘MarkerSize’,8,‘Marker’,‘square’,‘LineStyle’,‘none’); 
xlabel(Characteristics{x}); 
ylabel(Characteristics{y}); 
box(subplot1,‘on’); 
hold(subplot1,‘off’); 
set(subplot1,‘FontSize’,12); 

end 
M = 3; 
m = 2.0; 
maxIter = 100; 
minImpr = 1e − 6; 
opt = [m maxIter minImpr true]; 
[centers,U,objFun] = fcm(iris,M,opt); 
figure1 = figure; 
for i = 1:6 

subplot1 = subplot(2,3,i,‘Parent’,figrue1); 
x = pairs(i,1); 
y = pairs(i,2);
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hold(subplot1,‘on’); 
plot(setosa(:,x),setosa(:,y),‘Parent’,subplot1,… 

‘MarkerSize’,8,‘Marker’,‘.’,‘LineStyle’,‘none’); 
plot(versicolor(:,x),versicolor(:,y),‘Parent’,subplot1,… 

‘MarkerSize’,8,‘Marker’,‘x’,‘LineStyle’,‘none’); 
plot(virginica(:,x),virginica(:,y),‘Parent’,subplot1,… 

‘MarkerSize’,8,‘Marker’,‘square’,‘LineStyle’,‘none’); 
for j = 1:M 

text(centers(j,x),centers(j,y),int2str(j),… 
‘FontSize’,12,‘FontWeight’,‘bold’); 

end 
xlabel(Characteristics{x}); 
ylabel(Characteristics{y}); 
box(subplot1,‘on’); 
hold(subplot1,‘off’); 
set(subplot1,‘FontSize’,12); 

end 

After the above program is run, the results are shown in Figs. 4.18 and 4.19. 

As shown in Fig. 4.18, the iris dataset has four attributes. A flat graph is drawn 
by using two attributes. That is the C2 

4 = 6 cases in Fig. 4.18. It can be seen that 
the overlap of the sample categories for the sepal width and sepal length attributes is

Fig. 4.18 Visualizing the Iris dataset
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Fig. 4.19 Clustering results of the FCM method on the Iris dataset

more, while the overlap of the sample point categories for the sepal width and petal 
width attributes is less. 

The clustering results of the FCM method are given in Fig. 4.19. The centers of 
the clusters are represented by numbers. Numbers 1, 2 and 3 indicate category 1, 
category 2 and category 3, respectively. It can be seen from the figure that the FCM 
method solves this clustering problem. 

The above program also outputs the result of the objective function. After 22 
iterations, the FCM method reaches the 10−6 minimum threshold. At this point, the 
method terminates and the objective function value is 6058.69. 

The FCM method requires a predetermined number of categories. This is one of the 
shortcomings of this method. Chiu proposed the subtractive clustering (SC) method 
in 1994. The starting point of subtractive clustering is that it does not require a prede-
termined number of categories. It is also fast to estimate the number of categories 
and calculate the centers of clusters. The steps of the SC method are: 

Step (1) calculate the probability that each sample is a cluster center. Assuming 
that each sample point is a possible cluster center, and that this probability is based 
on the density of other sample points around the sample point; 
Step (2) select the sample points most likely to be cluster centers as temporary 
cluster centers; 
Step (3) remove sample points from the neighborhood near the temporary cluster 
centers. The size of the neighborhood is determined by a parameter called the 
category influence range;
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Step (4) among the remaining sample points, the one most likely to be the cluster 
center is selected as the temporary cluster center; 
Step (5) Repeat Steps (3) and (4) until some termination condition is met. 

Example 4.6 Please perform a clustering analysis of the Iris dataset using the 
subtractive clustering method. 

Solution The programs for solving this problem using the SC method are as follows: 

load(‘iris.dat’); 
setosaIndex = iris(:,5) == 1; 
versicolorIndex = iris(:,5) == 2; 
virginicaIndex = iris(:,5) == 3; 
setosa = iris(setosaIndex,:); 
versicolor = iris(versicolorIndex,:); 
virginica = iris(virginicaIndex,:); 
clusterInfluenceRange = 1; 
[centers,sigma] = subclust(iris,clusterInfluenceRange); 
Characteristics = {‘sepal length’,‘sepal width’,‘petal length’,‘petal width’}; 
pairs = [1 2; 1 3; 1 4; 2 3; 2 4; 3 4]; 
figure1 = figure; 
for i = 1:6 

subplot1 = subplot(2,3,i,‘Parent’,figure1); 
x = pairs(i,1); 
y = pairs(i,2); 
hold(subplot1,‘on’); 
plot(setosa(:,x),setosa(:,y),‘Parent’,subplot1,… 

‘MarkerSize’,8,‘Marker’,‘.’,‘LineStyle’,‘none’); 
plot(versicolor(:,x),versicolor(:,y),‘Parent’,subplot1,… 

‘MarkerSize’,8,‘Marker’,‘x’,‘LineStyle’,‘none’); 
plot(virginica(:,x),virginica(:,y),‘Parent’,subplot1,… 

‘MarkerSize’,8,‘Marker’,‘square’,‘LineStyle’,‘none’); 
for j = 1:size(centers,1) 

text(centers(j,x),centers(j,y),int2str(j),… 
‘FontSize’,12,‘FontWeight’,‘bold’); 

end 
xlabel(Characteristics{x}); 
ylabel(Characteristics{y}); 
box(subplot1,‘on’); 
hold(subplot1,‘off’); 
set(subplot1,‘FontSize’,12); 

end 

After the above program is run, the result is shown in Fig. 4.20.
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Fig. 4.20 Clustering results of the SC method on the Iris dataset 

The clustering results of the SC method are given in Fig. 4.20. The centers of 
the clusters are represented by numbers. Numbers 1, 2 and 3 indicate category 1, 
category 2 and category 3, respectively. It can be seen from the figure that the SC 
method solves this clustering problem. 

The advantage of the SC method is that it does not require a predetermined number 
of categories, but introduces a category influence range parameter. The smaller the 
value of the category influence range parameter, which is between 0 and 1, the greater 
the number of categories classified by the method; conversely, the closer its value is 
to 1, the smaller the number of categories classified by the method. 

The SC method can find out the number of categories as well as the cluster centers 
of the dataset. We can initialize the FCM method with the number of categories and 
cluster centers to discover more suitable clustering results. Moreover, the FCM and 
SC methods can be used for the construction of fuzzy inference systems. 

In the previous sections, the fuzzy system, by default, uses a grid partitioning 
method. Grid partitioning method uniformly partitions the range of input variables 
and generates the membership function on the result of this partition. If the FCM 
method is used to build the fuzzy system, the fuzzy system uses the clustering centers 
obtained from the FCM method to generate the membership functions and fuzzy 
rules. If the SC method is used to build the fuzzy system, the fuzzy system uses the 
clustering centers obtained by the SC method to generate the membership functions 
and fuzzy rules.
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Example 4.7 Please use the FCM and SC methods to build fuzzy systems to solve 
MG time series prediction problem. 

Solution Based on the FCM method, we build a fuzzy system to solve the MG time 
series prediction problem with the following programs: 

load(‘mgdata.dat’); 
time = mgdata(:,1); 
x = mgdata(:, 2); 
figure(1) 
plot(time,x) 
title(‘Mackey-Glass Chaotic Time Series’) 
xlabel(‘Time (sec)’) 
ylabel(‘x(t)’) 
C = 4; 
for t = 118:1117 

Data(t − 117,:) = [x(t-18) x(t − 12) x(t − 6) x(t) x(t + 6)]; 
end 
trnX = Data(1:500,1:C); 
trnY = Data(1:500,C + 1); 
vldX = Data(501:end,1:C); 
vldY = Data(501:end,C + 1); 
M = 3; 
m = 2.0; 
maxIter = 100; 
minImpr = 1e − 6; 
opt = [m maxIter minImpr true]; 
[centers,U,objFun] = fcm(trnX,M,opt); 
opt2 = genfisOptions(‘FCMClustering’); 
opt2.NumClusters = M; 
opt2.Exponent = opt(1); 
opt2.MaxNumIteration = opt(2); 
opt2.MinImprovement = opt(3); 
opt2.Verbose = opt(4); 
fis = genfis(trnX,trnY,opt2); 
options = anfisOptions(‘InitialFIS’,fis,‘ValidationData’,[vldX,vldY]); 
[fis1,error1,ss,fis2,error2] = anfis([trnX,trnY],options); 
figure(2); 
plot(error1,‘-’) 
hold on 
plot(error2,‘--’) 
plot(error1,‘o’) 
plot(error2,‘*’) 
legend(‘Train error’,‘Valication error’) 
xlabel(‘epoch’)



158 4 Fuzzy Neural Network

ylabel(‘RMSE’) 
evalOptions = evalfisOptions(“EmptyOutputFuzzySetMessage”,“none”, … 

“NoRuleFiredMessage”,“none”,“OutOfRangeInputValueMessage”,“none”); 
predY = evalfis(fis2,vldX); 
diff = vldY - predY; 
rmse = sqrt(mean(diff.^2)); 
figure(3); 
plot([predY vldY]); 
axis([0 length(vldY) min(vldY)− 0.01 max(vldY) + 0.13]) 
xlabel(‘t’) 
ylabel(‘x(t)’) 
legend([“predicted value” “true value”],‘Location’,“northeast”) 

After the above program is run, we can obtain three figures, which are omitted 
for the saving of space. The RMSE of the fuzzy system using the FCM method is 
0.0182. 

Based on the SC method, we build a fuzzy system to solve the MG time series 
prediction problem with the following program: 

load(‘mgdata.dat’); 
time = mgdata(:,1); 
x = mgdata(:, 2); 
figure(1) 
plot(time,x) 
title(‘Mackey-Glass Chaotic Time Series’) 
xlabel(‘Time (sec)’) 
ylabel(‘x(t)’) 
C = 4; 
for t = 118:1117 

Data(t − 117,:) = [x(t − 18) x(t − 12) x(t − 6) x(t) x(t + 6)]; 
end 
trnX = Data(1:500,1:C); 
trnY = Data(1:500,C + 1); 
vldX = Data(501:end,1:C); 
vldY = Data(501:end,C + 1); 
clusterInfluenceRange = 1; 
opt = [2.0 0.8 0.7 0]; 
[centers,sigma] = subclust(trnX,clusterInfluenceRange,‘Options’,opt); 
opt2 = genfisOptions(‘SubtractiveClustering’); 
opt2.ClusterInfluenceRange = clusterInfluenceRange; 
opt2.SquashFactor = opt(1); 
opt2.AcceptRatio = opt(2); 
opt2.RejectRatio = opt(3); 
opt2.Verbose = opt(4); 
fis = genfis(trnX,trnY,opt2);
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options = anfisOptions(‘InitialFIS‘,fis,‘ValidationData’,[vldX,vldY]); 
[fis1,error1,ss,fis2,error2] = anfis([trnX,trnY],options); 
figure(2); 
plot(error1,‘-’) 
hold on 
plot(error2,‘--’) 
plot(error1,‘o’) 
plot(error2,‘*’) 
legend(‘Train error’,‘Valication error’) 
xlabel(‘epoch’) 
ylabel(‘RMSE’) 
evalOptions = evalfisOptions(“EmptyOutputFuzzySetMessage”,“none”, … 

“NoRuleFiredMessage”,“none”,“OutOfRangeInputValueMessage”,“none”); 
predY = evalfis(fis2,vldX); 
diff = vldY - predY; 
rmse = sqrt(mean(diff.^2)); 
figure(3); 
plot([predY vldY]); 
axis([0 length(vldY) min(vldY)− 0.01 max(vldY) + 0.13]) 
xlabel(‘t’) 
ylabel(‘x(t)’) 
legend([“predicted value” “true value”],‘Location’,“northeast”) 

After the above program is run, we can obtain three figures, which are omitted 
here and will not be described. The RMSE of the fuzzy system using the SC method 
is 0.0961. 

From the Example 4.7, it can be seen that the fuzzy system based on grid parti-
tioning has the smallest RMSE on the validation set, followed by the fuzzy system 
based on the FCM method, and the largest RMSE is the fuzzy system based on the 
SC method. It should be noted that in this example, we did not adjust the parameters 
of the methods, so we cannot determine which method is superior based on this 
result. It is better for the reader to try all of them when solving specific problems and 
optimize the parameters to get the best performance. 

4.6 Suburban Commuting Prediction Problem 

This section tries to solve the suburban commuting prediction problem. We introduce 
the integrated application of fuzzy neural network, fuzzy clustering and ANFIS in 
the problem. 

Example 4.8 The dataset for the suburban commuting prediction problem is demo-
graphic and travel data for 100 transportation analysis areas in New Castle County, 
Delaware (USA). The dataset contains five demographic factors as input variables:
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population, number of dwelling units, vehicle ownership, median household income, 
and total employment. The sample data in this dataset contains one output variable, 
i.e., the number of automobile trips. We have divided the dataset into a training set 
and a validation set, where the training set has 75 samples and the validation set has 
25 samples. 

Solution First, we use the SC method as the clustering method in fuzzy systems as 
a way to define the membership function and fuzzy rules. We will create a T-S type 
fuzzy system with the following programs: 

load(‘trafficData’); 
[clusters,sigma] = subclust([datain dataout],0.5); 
figure 
plot(datain(:,5),dataout(:,1),‘o’,… 

clusters(:,5),clusters(:,6),“r*”); 
legend(“Data points”,“Cluster centers”,“Location”,“southeast”) 
xlabel(“Total Employment”) 
ylabel(“Number of Trips”) 
title(“Data and Cluster Centers”) 
opt = genfisOptions(“SubtractiveClustering”,… 

“ClusterInfluenceRange”,0.5); 
fis = genfis(datain,dataout,opt); 
showrule(fis); 
figure 
plotmf(fis,“input”,1) 
fuzout = evalfis(fis,datain); 
trnRMSE = norm(fuzout-dataout)/sqrt(length(fuzout)); 
valfuzout = evalfis(fis,valdatain); 
valRMSE = norm(valfuzout-valdataout)/sqrt(length(valfuzout)); 
figure 
plot(valdataout,‘o’); 
hold on. 
plot(valfuzout,‘*’); 
hold off 
ylabel(‘Output value’) 
legend(“Validation data”,“FIS output”,“Location”,“northwest”) 
anfisOpt = anfisOptions(‘InitialFIS’,fis,… 

‘EpochNumber’,100,‘InitialStepSize’,0.1,… 
‘ValidationData’,[valdatain valdataout],… 
‘DisplayANFISInformation’,0,… 
‘DisplayErrorValues’,0,… 
‘DisplayStepSize’,0,… 
‘DisplayFinalResults’,0); 

[fis2,trnErr,stepSize,fis3,valErr] = anfis([datain dataout],anfisOpt); 
[minValErr,minValErrIdx] = min(valErr);
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fuzout3 = evalfis(fis3,datain); 
trnRMSE3 = norm(fuzout3-dataout)/sqrt(length(fuzout3)); 
valfuzout3 = evalfis(fis3,valdatain); 
valRMSE3 = norm(valfuzout3-valdataout)/sqrt(length(valfuzout3)); 
figure; 
plot(valdataout,‘o’); 
hold on 
plot(valfuzout,‘*’); 
plot(valfuzout3,‘x’); 
hold off 
ylabel(‘Output value’) 
legend(“Validation data”,“Initial FIS: RMSE = ” + num2str(valRMSE), … 

“Tuned FIS: RMSE = ”+ num2str(valRMSE3), … 
“Location”,“northwest”) 

figure; 
plot(trnErr); 
title(‘Training Error’); 
xlabel(‘Number of Epochs’); 
ylabel(‘Error’); 
figure; 
plot(valErr); 
hold on; 
plot(minValErrIdx,minValErr,‘*’); 
title(‘Validation Error’); 
xlabel(‘Number of Epochs’); 
ylabel(‘Error’); 

After the above program is run, we can obtain six figures. Three of them are shown 
in the following and the other figures are omitted for the saving of space. 

The clustering results of the SC method are given in Fig. 4.21, where the raw 
data are represented by circle symbols, while the cluster centers are represented by 
star symbols. In this figure, the horizontal axis is the total employment of the input 
variable and the vertical axis is the number of car trips of the output variable.

The RMSE of the fuzzy system using the SC method is 0.5276 on the training 
set, while the RMSE on the validation set is 0.6179. 

We can initialize ANFIS with the obtained fuzzy system in order to be able to 
obtain a better fuzzy system. The results of ANFIS on the validation set using the 
SC method are given in Fig. 4.22. In this figure, the original data are represented 
by circle symbols, the results predicted by the fuzzy system are represented by star 
symbols, and the results predicted by ANFIS are represented by crosses. As can be 
seen from the figure, the model of ANFIS shows better performance. The RMSE 
of ANFIS on the training set is 0.3393, while the RMSE on the validation set it is 
0.5834.
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Fig. 4.21 Clustering results 
of the SC method

Fig. 4.22 Results of ANFIS 
on the validation set using 
the SC method 

Figure 4.23 gives the error of the model on the validation set for each epoch. It 
can be seen from the figure that the error gradually decreases with the number of 
epochs and reaches its lowest at the 52nd epoch, as shown by the asterisk point in the 
figure. The error increases again during the subsequent epochs. Even after the 52nd 
epoch, the error of the model on the training set still decreases, but the error of the 
model on the validation set increases. This indicates that ANFIS is in an overfitting 
state when the number of epochs exceeds 52. Thus, we use the result obtained from 
the 52nd epoch as the final model.

Next, the SC method divides the dataset into 3 categories. We use this number of 
categories to initialize the FCM method and repeat the above procedure as follows:

load(‘trafficData’);
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Fig. 4.23 Error curve of 
ANFIS on the validation set

M = 3;
m = 2.0; 
maxIter = 100; 
minImpr = 1e − 6; 
opt = [m maxIter minImpr true]; 
[centers,U,objFun] = fcm([datain dataout],M,opt); 
figure 
plot(datain(:,5),dataout(:,1),‘o’,… 

centers(:,5),centers(:,6),“r*”); 
legend(“Data points”,“Cluster centers”,“Location”,“southeast”) 
xlabel(“Total Employment”) 
ylabel(“Number of Trips”) 
title(“Data and Cluster Centers”) 
opt = genfisOptions(“FCMClustering”,… 

“NumClusters”,M); 
fis = genfis(datain,dataout,opt); 
showrule(fis); 
figure 
plotmf(fis,“input”,1) 
fuzout = evalfis(fis,datain); 
trnRMSE = norm(fuzout-dataout)/sqrt(length(fuzout)); 
valfuzout = evalfis(fis,valdatain); 
valRMSE = norm(valfuzout-valdataout)/sqrt(length(valfuzout)); 
figure 
plot(valdataout,‘o’); 
hold on 
plot(valfuzout,‘*’); 
hold off
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ylabel(‘Output value’) 
legend(“Validation data”,“FIS output”,“Location”,“northwest”) 
anfisOpt = anfisOptions(‘InitialFIS’,fis,… 

‘EpochNumber’,100,‘InitialStepSize’,0.1,… 
‘ValidationData’,[valdatain valdataout],… 
‘DisplayANFISInformation’,0,… 
‘DisplayErrorValues’,0,… 
‘DisplayStepSize’,0,… 
‘DisplayFinalResults’,0); 

[fis2,trnErr,stepSize,fis3,valErr] = anfis([datain dataout],anfisOpt); 
[minValErr,minValErrIdx] = min(valErr); 
fuzout3 = evalfis(fis3,datain); 
trnRMSE3 = norm(fuzout3-dataout)/sqrt(length(fuzout3)); 
valfuzout3 = evalfis(fis3,valdatain); 
valRMSE3 = norm(valfuzout3-valdataout)/sqrt(length(valfuzout3)); 
figure; 
plot(valdataout,‘o’); 
hold on 
plot(valfuzout,‘*’); 
plot(valfuzout3,‘x’); 
hold off 
ylabel(‘Output value’) 
legend(“Validation data”,“Initial FIS: RMSE = ” + num2str(valRMSE), … 

“Tuned FIS: RMSE = ”+ num2str(valRMSE3), … 
“Location”,“northwest”) 

figure; 
plot(trnErr); 
title(‘Training Error’); 
xlabel(‘Number of Epochs’); 
ylabel(‘Error’); 
figure; 
plot(valErr); 
hold on; 
plot(minValErrIdx,minValErr,‘*’); 
title(‘Validation Error’); 
xlabel(‘Number of Epochs’); 
ylabel(‘Error’); 

After the above program is run, we can obtain six figures, which are omitted for 
the saving of space. 

The RMSE of the T-S type fuzzy system constructed using the FCM method is 
0.6858 on the training set and 0.6393 on the validation set. The RMSE of the ANFIS 
fuzzy system using the FCM method is 0.5799 on the training set and 0.4867 on the 
validation set.
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Finally, we use the grid partitioning method as a clustering method in fuzzy 
systems. We repeat the above steps with the following programs: 

load(‘trafficData’); 
opt = genfisOptions(“GridPartition”); 
fis = genfis(datain,dataout,opt); 
showrule(fis); 
figure 
plotmf(fis,“input”,1) 
fuzout = evalfis(fis,datain); 
trnRMSE = norm(fuzout-dataout)/sqrt(length(fuzout)); 
valfuzout = evalfis(fis,valdatain); 
valRMSE = norm(valfuzout-valdataout)/sqrt(length(valfuzout)); 
figure 
plot(valdataout,‘o’); 
hold on 
plot(valfuzout,‘*’); 
hold off 
ylabel(‘Output value’) 
legend(“Validation data”,“FIS output”,“Location”,“northwest”) 
anfisOpt = anfisOptions(‘InitialFIS’,fis,… 

‘EpochNumber’,100,‘InitialStepSize’,0.1,… 
‘ValidationData’,[valdatain valdataout],… 
‘DisplayANFISInformation’,0,… 
‘DisplayErrorValues’,0,… 
‘DisplayStepSize’,0,… 
‘DisplayFinalResults’,0); 

[fis2,trnErr,stepSize,fis3,valErr] = anfis([datain dataout],anfisOpt); 
[minValErr,minValErrIdx] = min(valErr); 
fuzout3 = evalfis(fis3,datain); 
trnRMSE3 = norm(fuzout3-dataout)/sqrt(length(fuzout3)); 
valfuzout3 = evalfis(fis3,valdatain); 
valRMSE3 = norm(valfuzout3-valdataout)/sqrt(length(valfuzout3)); 
figure; 
plot(valdataout,‘o’); 
hold on 
plot(valfuzout,‘*’); 
plot(valfuzout3,‘x’); 
hold off 
ylabel(‘Output value’) 
legend(“Validation data”,“Initial FIS: RMSE = ” + num2str(valRMSE), … 

“Tuned FIS: RMSE = ” + num2str(valRMSE3), … 
“Location”,“northwest”) 

figure; 
plot(trnErr);
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title(‘Training Error’); 
xlabel(‘Number of Epochs’); 
ylabel(‘Error’); 
figure; 
plot(valErr); 
hold on; 
plot(minValErrIdx,minValErr,‘*’); 
title(‘Validation Error’); 
xlabel(‘Number of Epochs’); 
ylabel(‘Error’); 

After the above program is run, the figures are omitted for the saving of space. 
The RMSE of the fuzzy system using the grid partitioning method is 2.7851 on the 

training set and 2.6563 on the validation set. We initialize ANFIS with the obtained 
fuzzy system. The RMSE of the ANFIS using grid partitioning method is 0.0274 on 
the training set and 0.8618 on the validation set. The error of the model using the 
grid partitioning method on the training set is much smaller than the error on the 
validation set. This indicates that the model has a serious overfitting problem. 

In this section, we use the SC method, FCM method and grid partitioning method 
to construct fuzzy systems. Moreover, we build ANFIS to enhance the performance 
of fuzzy systems. The RMSE of the fuzzy systems obtained by these three methods on 
the validation set are 0.5834, 0.4867 and 0.8618, respectively. The order of the three 
methods obtained from this result is not consistent with the results in the example 
in the previous section. Thus, users have to try multiple methods for simulation and 
analysis before choosing the most suitable one when solving their problems. 

4.7 Research Progress of Fuzzy Computing 

This section reviews the state-of-the-art research progress of fuzzy computing. These 
researches are classified to three categories. They are fuzzy control system, type-2 
fuzzy logic and other fuzzy logic model. 

(1) fuzzy control system 

Low-frequency power oscillations in the power system have always been a serious 
risk to stabilizing the power system. A fuzzy logic power system stabilizer (FLPSS) 
was proposed by Sun et al. to alleviate system oscillation problems [6]. In response to 
the parameter configuration and rule setting issues of FLPSS, the use of FLPSS based 
on the grey wolf optimizer (GWO) achieved faster stabilization time and improved 
the effectiveness of damping oscillation. A comparative study was conducted on the 
proposed GWO-based FLPSS and traditional stabilizers on a single machine infinite 
bus system. The simulation results show that GWO-based FLPSS can better suppress 
low-frequency oscillations and maintain power grid stability.
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Power transformers are one of the most expensive and critical electrical devices 
among all networked devices. Various electrical, mechanical, thermal and chem-
ical stresses can reduce the insulation performance of power transformers. Tarafdar 
et al. proposed a new method combining fuzzy logic controller with fuzzy clus-
tering method [7]. They used expert systems to diagnose and predict early faults in 
power transformers. In addition, this expert model was tested and validated using 
200 transformer test datasets. 

A distributed approximate optimal control scheme based on fuzzy logic nonzero-
sum game was proposed by An et al. [8]. for modular robots with human-machine 
cooperation (HRC) tasks. A modular robot manipulator (MRM) system was estab-
lished using joint torque feedback technology. Based on the differential game 
strategy, the optimal control problem of the MRM system facing the HRC task 
was transformed into a nonzero-sum game problem of multiple subsystems. Using 
adaptive Dynamic programming algorithm and a new fuzzy logic nonzero-sum game 
method, a distributed approximate optimal control strategy for HRC tasks was devel-
oped to solve the coupled Hamilton Jacobian equations. Experimental results were 
provided to verify the superiority and effectiveness of this method. 

Sierra-Garcia et al. tried to control the pitch angle of the wind turbine [9]. Due 
to the nonlinearity and complex dynamics of the renewable energy systems, the 
control was very difficult for floating offshore wind turbines. To address this issue, 
Sierra-Garcia et al. proposed a hybrid system that combines fuzzy logic and deep 
learning. Deep learning technology was used to estimate current wind speeds and 
predict future wind speeds. The effective wind obtained by deep learning was sent to 
the fuzzy controller. The simulation results show how incorporating effective wind 
can improve the performance of intelligent controllers against different disturbances. 

Laundry is one of people’s daily lives. Currently, hand cleaning has been replaced 
by washing machines. Raja et al. developed a fuzzy logic control system based on 
people’s needs and behaviors [10]. The inputs to this system were the type of clothing, 
the degree of dirt, and the quality of the fabric load; while the received outputs were 
washing time, drying time, and temperature. The simulation results indicate that the 
system provides good washing quality. 

(2) type-2 fuzzy logic 

In developing countries, 40% of fresh fruits and vegetables are usually transported 
in non-refrigerated trucks and will rot before use. This causes wholesalers to lose 
potential profits due to the spoilage of their products. Here, the wholesaler’s trans-
portation of fresh goods starts from the warehouse and returns to the warehouse after 
reducing the quantity at the node (retailer) based on the previously placed order. Due 
to the changes in freshness of perishable items over time, the selling price of the item 
depends on its freshness at the time of delivery to the retailer. There are multiple routes 
connecting retailers and warehouses. Thakur et al. developed a multi-route model for 
fresh agricultural products considering the freshness of the product, optimal route 
plan, suitable route, sales revenue, driver wages and fatigue and so on [11]. The goal 
was to find the best route planning, optimal route between nodes, and vehicle speed 
for wholesalers to maximize profits, minimize fuel costs, or both. A Virgin discrete
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fireworks algorithm was developed for solutions based on type-1 and type-2 fuzzy 
logic. Numerical results of the trade-off between driver rest, non-rest, continuous 
driving risks, and profit and green are presented. 

A new coupling-based hybrid interval type-2 fuzzy logic controller (MIT2FLC) 
was studied by Kumar et al. for trajectory tracking problems of robotic arm objects 
[12]. The main obstacle for these types of plants was the coupling between robot links 
during operation. In addition, the performance of these devices was also adversely 
affected by parameter uncertainty, random noise, and external interference. There-
fore, a MIT2FLC method with additional degrees of freedom in the membership 
function was proposed to effectively handle uncertainty problems and provide robust 
performance. The robustness analysis of the proposed controller under external 
disturbances, system parameter changes, and random noise was studied. 

Due to fierce market competition, transportation companies are facing the need to 
reduce fleet costs. The fleet management takes action on the driver’s driving style to 
achieve fuel consumption savings. Zdravković et al. developed a model for evaluating 
driving style using a type-2 fuzzy logic system [13]. The type-2 fuzzy logic system 
considered engine speed, accelerator pedal position, and acceleration or deceleration 
parameters. The system output was the driver’s score, representing the impact of 
driving style on fuel consumption. The experimental results show that the method 
can significantly reduce fuel consumption and improve the energy efficiency of the 
fleet based on driving style. 

The tracking control of steer-by-wire (SbW) system with unknown nonlinear 
Friction torque and unmeasurable angular velocity was studied by Luo et al. [14]. In 
order to eliminate the adverse effect of Friction torque on SbW system, an observer 
based adaptive interval type-2 fuzzy logic system controller was proposed. Interval 
type-2 fuzzy logic system (IT2-FLS) was used to model the Friction torque, in which 
the model and parameters were not effectively identified. Compared with type-1 
fuzzy logic system, IT2-FLS had better ability to handle uncertainty, so friction 
modeling based on IT2-FLS had a more satisfactory effect in practical applications. 
Numerical simulation experiments have verified the effectiveness and superiority of 
the proposed method and control strategy. 

Valdez summarized the parameter adaptive algorithms based on swarm intelli-
gence, and used some techniques to obtain the best results [15]. Valdez analyzed the 
most popular algorithms, such as ant colony optimization, particle swarm optimiza-
tion, artificial bee colony optimization, and firefly algorithm. These algorithms used 
type-2 fuzzy logic for parameter adaptation. These algorithms have proven superior 
to other swarm intelligence-based optimization methods in some applications. 

(3) other fuzzy logic model 

In this technological world, e-learning has become a more feasible choice for a 
range of people, from beginners to experts in specific fields. However, due to some 
weaknesses in e-learning systems, the development of e-learning systems has not yet 
provided sufficient adaptability for e-learners. Usually, e-learners have made varying 
degrees of progress in their respective learning methods. For a period of time, this will
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affect the performance of e-learners and provide the same course for all e-learners. 
Therefore, it is necessary to create an adaptive e-learning environment that provides 
appropriate e-learning content for all e-learners. Karthika et al. proposed a novel, 
intelligent, and adaptive e-learning context based on fuzzy logic for programming 
languages [16]. The dependency relationships between concepts in programming 
languages were provided using fuzzy cognitive maps. Fuzzy set and fuzzy rules 
represented the knowledge level of e-learners, and helped to provide appropriate 
suggestions for previous and subsequent related concepts in fuzzy cognitive maps. 
The simulation results show that the proposed intelligent e-learning system provides 
promising results in accurately classifying e-learners. 

Homomorphic encryption (HE) is a powerful feature of some cryptographic 
systems, which allows privacy protection of encrypted text. However, due to limi-
tations in efficiency and availability, HE is not widespread. In the challenge of HE, 
scheme parameterization is a related multifaceted issue. There is no general optimal 
choice of parameters, and this choice depends on the circuit and application scenario. 
Cabrero-Holgueras et al. propose a unified solution to address the aforementioned 
challenges [17]. Specifically, Cabrero-Holgueras et al. proposed an expert system 
that combines fuzzy logic with linear programming. The fuzzy logic module received 
high-level priorities selected by users for the security of the password system. Based 
on these preferences, the expert system generated a linear programming model. The 
simulation results show that the optimal parameter selection generated by the expert 
system can maintain user preferences without experiencing the inherent complexity 
of analyzing the circuit. 

Inspired by the surge in interest in the Internet of Things (IoT), Zahra et al. focused 
on the dynamics of IoT security. The IoT had brought convenience to people’s lives 
and quickly become a trillion-dollar industry. However, the future of the IoT will 
depend on how to address its security and privacy issues. Zahra et al. provided a crit-
ical analysis of the latest and relevant state-of-the-art methods for IoT security. The 
authors identified parameters that are crucial to any security situation in the IoT. Zahra 
et al. proposed a universal lightweight security mechanism for detecting malicious 
behavior in uncertain IoT environments using fuzzy logic and fog-based methods 
[18]. The proposed method can produce better accuracy results than existing bench-
marks. In addition, the proposed method has extremely low pressure on constrained 
nodes and supports the heterogeneity and uncertainty of IoT environments. 

The deep neural fuzzy system (DNFS) utilizes the effective learning process of 
deep neural networks and the reasoning ability of fuzzy inference systems. The 
DNFS has been successfully applied to real-world problems. Talpur et al. provided a 
comprehensive review of DNFS and divided it into two important parts [19]. The first 
part was to understand DNFS and its architectural representation, while the second 
part reviewed the optimization methods of DNFS. This study aims to help researchers 
understand various ways of developing DNFS models through mixed deep neural 
networks and fuzzy inference systems. This study shows that the proposed DNFS 
architecture performs 11.6% better than non-fuzzy models. The study based on opti-
mization method shows that the overall accuracy of DNFS using meta-heuristic algo-
rithms is 21.10% higher than that of DNFS model using gradient-based method. The
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study of Talpur et al. suggests using new and improvised meta-heuristic algorithms 
to implement optimization methods to improve model performance. 

Exercises 

(1) Try to construct a T-S type fuzzy system by using fuzzy logic designer and 
observe the relationship surfaces of system model, fuzzy rules, input variables 
and output variables. 

(2) Try to briefly explain the differences and connections between type-1 fuzzy 
systems and interval type-2 fuzzy systems. 

(3) Choose a proportional-integral-derivative (PID) control problem and try to 
construct a ANFIS fuzzy system to solve this control problem and analyze 
its performance. 
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Chapter 5 
Evolutionary Computing 

Abstract Evolutionary computing mimics the laws of biological evolution. It solves 
optimization problems through the reproduction of individuals and the competition 
between individuals. Evolutionary computing is a collection of evolutionary algo-
rithms that follow the survival of the fittest law in species. Evolutionary algorithms 
are global probability search algorithms based on natural selection, genetic mutation 
and other biological evolution mechanisms. Evolutionary computing has been used in 
various fields such as pattern recognition, image processing, economic management, 
mechanical engineering, electrical engineering, wireless communication, etc. This 
chapter first introduces an overview of evolutionary computing and simple genetic 
algorithm. Genetic algorithm is then used to solve travelling salesman problem. 
Then, this chapter introduces ant colony optimization, particle swarm optimization 
and differential evolution algorithms. These algorithms have been used to solve both 
travelling salesman problem and continuous optimization problem. 

5.1 Overview of Evolutionary Computing 

Evolutionary Computing is an intelligent computing technology that mimics the laws 
of biological evolution and solves optimization problems through the reproduction 
of individuals and the competition between individuals. Evolutionary computing 
aims to achieve “survival of the fittest” in species; accordingly, it aims to reach 
optimal solution in optimization problems. Evolutionary computing is also called 
evolutionary computation. Evolutionary computing (EC) is not a specific algorithm, 
but a collective term for many algorithms. For example, genetic algorithm preceded 
the name evolutionary computation, and genetic algorithm is a specific algorithm. 
In general, genetic algorithm is considered to be the earliest evolutionary computing 
method. 

In the 1970s, genetic algorithm (GA) was first proposed by Holland in the United 
States [1]. In 1975, Holland published the monograph “Adaptation in Natural and 
Artificial Systems”. In the book, he introduced GA and verified that it could solve 
the NP-hard (Nondeterministic Polynomial-Hard) problems with good results. Since
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then, many scholars have noticed GA as a method and have continued to derive more 
effective versions, so the GA proposed by Holland is often referred to as the simple 
genetic algorithm. 

Genetic algorithm is a way to simulate the evolutionary mechanism of biological 
evolution in nature [2]. Based on Darwin’s theory of biological evolution, GA trans-
lates the law of survival of the fittest into a strategy for finding the optimal solution. 
In scientific and practical problems, the function of GA is to find, among all possible 
solutions, the one that best fits the problem by satisfying the constraints. GA can 
provide an optimal solution to an optimization problem. 

In the 1960s, Fogel in the United States proposed evolutionary programming 
(EP). In the same period, Rechenberg and Schwefel in Germany proposed evolution 
strategies (ES). They applied ES to complex engineering problems and achieved 
good results, thus gaining wide recognition. Methods such as GA, EP, and ES were 
developed alone for more than a decade. Until the 1980s, these methods did not 
attract much attention, partly because they were not mature enough by themselves 
and partly because they were not really applied to practical problems due to the 
limitations of computer performance. 

In the 1990s, Koza in the United States proposed genetic programming (GP) in his 
monograph. GP uses hierarchical tree structure to express problems. After the branch 
of GP was proposed, Evolutionary computing began to emerge as a discipline. The 
four methods of GA, EP, ES and GP influence each other, learn from each other, and 
gradually evolve new evolutionary methods, which promote the rapid development 
of EC. 

The GA mentioned earlier is able to solve NP-hard problems, which are actually 
a class of combinatorial optimization problems. When the learning rules of neural 
networks adjust the parameters of weights, gradient descent method is used to contin-
uously approach the optimal weights through iterations. Subsequently, stochastic 
gradient descent and batch gradient descent methods are derived. All these methods 
need to calculate the gradient of the loss function, which is generally used to require 
the loss function to have continuity and differentiability. In combinatorial optimiza-
tion problems, the values of the independent variables are often discrete, which 
makes the gradient-based methods no longer applicable. Gradient-based methods 
are sometimes referred to as traditional optimization methods, while EC methods 
such as GA are called modern optimization methods. This is because the gradient 
descent method dates back to 1847 and was proposed by Cauchy. 

The travelling salesman problem (TSP) is a typical combinatorial optimization 
problem. The TSP problem is to find the shortest distance or optimal path to visit each 
city once and return to the starting point, given that some cities and their distances 
from each other are known. Suppose the number of cities in the TSP is N, then the 
possible paths to visit each city are (N − 1)!, where the exclamation point denotes the 
factorial. We know that the factorial function tends to infinity very fast, and finding 
the optimal path from these possible paths is very difficult. 

So far, the TSP has been derived in various forms, such as the multi-traveler 
problem. The problem is to have multiple travelers traversing some cities together, 
and the requirement is that all cities are passed through once and return to their
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respective starting points to find the shortest path through all cities. In real life, 
vehicle routing problem (VRP) is such a multi-traveler problem. However, the VRP 
problem has more constraints, such as the demand of goods, the arrival time of 
vehicles, the capacity of vehicles, and the distance traveled. 

With the development of EC, researchers have created many function optimization 
problems in order to test the performance of algorithms. These function optimization 
problems are synthetic problems, which are generally arithmetic and composite of 
basic elementary functions. For example, the Schwefer function is a composite of 
N power and sine functions, typically N = 20, with the independent variable x 
taking values in the range [− 500, 500]. The function is very deceptive in that it has 
one global minimum and another local minimum at a more distant location. If an 
optimization method is trapped in a local minimum, it is difficult for the method to 
escape from the local region and thus cannot find the global minimum. The Schwefer 
function is: 

min f (x) = −  
N∑

i=1 
xi sin

(√|xi |
)

s.t. xi ∈ [−500, 500] 
N = 20 

(5.1) 

As shown in Fig. 5.1, the Schwefer function has many minima, which is only the 
case for N = 2. When the number of independent variables increases, finding the 
global minima becomes more difficult. 

For a better view of the minima, the front view of the Schwefel function is given 
in Fig. 5.2. From the figure, it can be seen that the global minimum is located near x1 
= 400, while the second minima point is located near x1 = −  300, which is far away 
from each other, which also indicates that the Schwefel function is very deceptive. 
If a certain EC method is able to find the global minimum of this function, it is 
reasonable to assume that this method has good performance.

Fig. 5.1 Top view of the 
Schwefer function 
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Fig. 5.2 Front view of the 
Schwefer function 

In recent years, researchers have created a number of synthetic functions as bench-
mark problems to test the performance of algorithms, which are not described here. It 
should be noted that synthetic function problems and optimization problems in prac-
tice have their own advantages and disadvantages. The actual optimization problem 
is closer to the actual situation and is easily recognized, but has more constraints 
and is less uniform, open and scalable. On the other hand, the synthetic function has 
uniformity, openness and scalability. It is easy to calculate the global minimum of a 
synthetic function, which is convenient for evaluating the optimization effect of the 
method, but it is different from the optimization problem in practice. The EC method 
that performs well on the synthetic function may not necessarily achieve satisfactory 
results on the optimization problem in practice. 

5.2 Simple Genetic Algorithm 

This section introduces the simple genetic algorithm step by step through an example 
of an artificial synthesis function. The expression of the synthetic function used is: 

min f (x1, x2) = x2 1 + x2 2 
s.t. x1 ∈ {1, 2, 3, 4, 5, 6, 7} 

x2 ∈ {1, 2, 3, 4, 5, 6, 7} 
(5.2) 

From Eq. (5.2), it can be seen that the global minimum of the objective function 
is (x1, x2) = (1, 1) and is the only minimum. The steps required for the simple 
genetic algorithm (SGA) to solve the model in (5.2) include: individual coding, initial 
population generation, fitness calculation, selection operation, crossover operation, 
and mutation operation.
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(1) Individual coding. In EC, each independent variable is assigned a possible value, 
and then the combination of the values of these independent variables constitutes 
a solution to the problem, called an individual. For example, (x1, x2) = (3, 4) 
is a solution to the problem model (5.2), but it is not a minimal value; it is only 
a candidate solution to the problem. The SGA does not directly use the values 
in the range of values of the independent variables, but encodes them in binary 
notation, thus mimicking the genes of the organism. Considering that the value 
of the independent variable is a positive integer between 1 and 7, it is possible 
to represent an independent variable in 3-bit binary. For example, the binary 
symbol 001 represents a positive integer 1, the binary symbol 010 represents 
a positive integer 2, and so on, 111 represents a positive integer 7. Here two 
independent variables can be represented by 6-bit binary symbols. 

(2) Initial population generation. A population is a group of individuals, and the 
SGA uses a population to mimic a population of organisms. Suppose the size 
of the population is 4, i.e., the population consists of 4 individuals. We can 
use uniform distribution to randomly generate 0 s and 1 s as binary symbols 
and form individuals. Suppose the populations produced are: 011101, 101011, 
011100 and 111001. 

(3) Fitness calculation. According to the law of survival of the fittest, there is compe-
tition between individuals, which means that the merits of individuals should 
be compared. The fitness function can be used to measure an individual, i.e., to 
assign a value to an individual, so that the fitness value of an individual can be 
compared to determine the merit of an individual. In SGA, the fitness function is 
a non-negative function and the maximum value of the function is sought as the 
optimization objective, which requires a mapping from the objective function 
to the fitness function. In (5.2), the objective function is to find the minimal 
value point, and the range of the objective function is greater than 0. Thus, the 
fitness function can take the inverse of the objective function. By calculation, 
the fitness values of individuals in the population are shown in Table 5.1. 

In Table 5.1, we give the number of each individual. For the individual numbered 
1, the programs to calculate its fitness value are as follows: 

x1 = bin2dec(’011’); 
x2 = bin2dec(’101’); 
fx = x1^2 + x2^2; 
fitx = 1/fx;

Table 5.1 Fitness values of individuals in the population 

Number Individual (x1, x2) f (x1, x2) Fitness 

1 011101 (3, 5) 34 0.0294 

2 101011 (5, 3) 34 0.0294 

3 011100 (3, 4) 25 0.0400 

4 111001 (7, 1) 50 0.0200 
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The rest of the individuals are calculated in a similar way and are not described 
in detail here. 

(4) Selection operation 

The selection operation refers to the selection of individuals with high fitness from 
the population for reproduction. In general, individuals with high fitness have a 
higher probability of being selected; conversely, individuals with low fitness have a 
lower probability of being selected. The SGA uses the roulette wheel method for the 
selection operation as follows: 

First, the relative fitness of each individual is calculated, which is the probability 
of an individual being selected. That is the value of the fitness of an individual divided 
by the sum of the fitness of all individuals. Take the above population as an example, 
as shown in Table 5.2. The Matlab programs used are as follows: 

fitx = [0.0294, 0.0294, 0.04, 0.02]; 
prob = fitx/sum(fitx); 
probcum = cumsum(prob); 

Next, the four individuals are lined up according to their numbers from smallest 
to largest, and each selected probability value corresponds to an interval as shown 
in the last column of Table 5.2, while the sum of all probability values is 1. We use 
a uniform distribution to generate random numbers between 0 and 1, generally to 
generate the same number of random numbers as the population size. Assume that 
the four random numbers generated are: 0.2, 0.8, 0.4, and 0.7, as shown in Table 3.3. 

In Table 5.3, the first random number is 0.2, and the probability of the first indi-
vidual being selected is 0.2475, so 0.2 falls in the region corresponding to the first 
individual, i.e., the first individual is selected. The second random number is 0.8, 
which falls in the area corresponding to the third individual, i.e., the third indi-
vidual is selected. Similarly, the third and fourth random numbers are selected for 
the second and third individuals, respectively. It can be seen that the fourth individual 
is not selected because its probability of being selected is too low.

(5) Crossover operation 

The crossover operation mimics the genetic crossover of chromosomes in an indi-
vidual organism. The SGA uses a single-point crossover operator, which requires 
two individuals to participate in the operation. For example, we pair the first and

Table 5.2 Calculating the probability of an individual being selected 

Number Individual Fitness Probability Interval 

1 011101 0.0294 0.2475 [0, 0.2475) 

2 101011 0.0294 0.2475 [0.2475, 0.4949) 

3 011100 0.0400 0.3367 [0.4949, 0.8316) 

4 111001 0.0200 0.1684 [0.8316, 1] 
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Table 5.3 Selection of individuals using random numbers 

Number Probability Random number Count Selection result 

1 0.2475 0.2 1 011101 

2 0.2475 0.8 1 011100 

3 0.3367 0.4 2 101011 

4 0.1684 0.7 0 011100

second selected individuals and then randomly select the position for the crossover 
operation. An individual has 6 binary bits, so there are 5 possible positions for the 
crossover. We still use a uniform distribution to produce random numbers, assuming 
the position of the crossover is 2. Swapping the binary bits behind the crossover 
position gives us the individual after the crossover operation, as shown in Fig. 5.3. 

We then pair the third and fourth selected individuals. By passing the random 
number generator, we assume that the crossover point is 1, and we exchange the 
binary bits following the crossover point. We obtain the two individuals after the 
crossover operation. It can be seen that four individuals are obtained after the 
crossover operation, which is the same size as the initial population.

Fig. 5.3 Single-point crossover operation 
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(6) Mutation operation 

The mutation operation mimics the genetic mutation of chromosomes in an individual 
organism. The SGA uses a basic bitwise mutation operator that mutates one of the 
individual’s binary symbols, while the mutation positions are chosen randomly. For 
example, the specific steps of the mutation operation are given in Table 5.4. 

As can be seen in Table 5.4, the mutation operation first requires determining 
the mutation point location, which is generally determined randomly using a certain 
probability to determine the location to be mutated. Next, the original binary bit of 
the mutation site is inverted to obtain the mutated result, which is a new individual. 
The mutation operation eventually results in a new population. 

(7) The new population replaces the old one, then return to step (3), and repeat steps 
(3) to (6) until some termination condition is satisfied, then the SGA is finished 

For the simple genetic algorithm, the last individual with the highest fitness in the 
population is output as the optimal solution of the model (5.2). The flowchart of the 
SGA is given in Fig. 5.4. After the previous step-by-step examples, the reader has a 
preliminary understanding of the genetic algorithm. The SGA provides a prototype 
and basis for solving optimization problems imitating biological evolution, and also 
provides a framework for an EC approach. Based on this, researchers have analyzed 
and discussed in depth the operation of each step of the genetic algorithm, and have 
developed many proven improvement techniques.

It is important to note that the SGA contains hyperparameters. For example, in 
step (2), the size of the initial population needs to be given in advance; in step (6), 
the probability of the mutation operation also needs to be predefined. The size of the 
population is generally denoted by “popsize” or Np. The probability of the mutation 
operation is generally denoted by pm. In addition, in some improved crossover oper-
ations, which also contain hyperparameters, the probability during the crossover 
operation is denoted by pc. These hyperparameters can affect the performance of 
genetic algorithms, just as the learning rate can affect the performance of neural 
networks. The study of genetic algorithm hyperparameters and, furthermore, the 
study of EC methods hyperparameters is a hot topic of research. Without causing 
confusion, such hyperparameters can be directly referred to as parameters.

Table 5.4 Basic bitwise mutation operation 

Number Crossover result Basic bit position Mutation result 

1 011100 3 010100 

2 011101 5 011111 

3 111100 2 101100 

4 001011 6 001010 
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Fig. 5.4 Flowchart of the 
simple genetic algorithm

5.3 Genetic Algorithm for Travelling Salesman Problem 

The concept of the TSP was introduced earlier, which is to find a shortest path that 
traverses all cities once and only once. An arrangement of all cities is a traversal path. 
We can number the cities and represent them with independent variables, which take 
different values to indicate different cities to be traversed, such that the independent 
variables are discrete and positive integers. Suppose there are n cities, the cities are 
numbered 1, 2, …, n.
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The geographical location of cities is fixed, so the distance between cities is fixed. 
We can assume that the travel cost between two cities is known and fixed. The 
objective of the TSP is to find an ordered arrangement of visits to all cities such that 
the travel cost is minimized. We can take the distance between cities can be directly 
as the objective function, this is because the travel cost is generally proportional to 
the distance. We need to build a list of city locations and distances between cities. 

Let’s take the simplest TSP as an example so that we can concentrate on the 
introduction of genetic algorithm. From a graph theory perspective, cities can be 
viewed as nodes in a graph, and the paths between cities can be viewed as connecting 
lines between nodes in the graph, called edges. If the direction of travel between cities 
is not considered, then the connecting line between two cities is undirected. The TSP 
then boils down to the problem of finding a Hamiltonian loop in an empowered 
undirected graph such that the total weight is minimized. 

The weighted undirected graph is denoted as G = (V, E), where V = {1, 2, …,  
n} is the set of nodes and E is the union of edges. The distance between the nodes 
is denoted as C. Then C is an n-th order symmetric matrix, and cij is denoted as a 
component of C. The mathematical expression of the TSP is: 

min f (x) = 
n∑

i=1 

n∑

j=1, j /=i 
ci j  xi j  

s.t.

∑

j /=i 
xi j  = 1, i ∈ V

∑

i /= j 
xi j  = 1, j ∈ V

∑

i∈S

∑

j∈S 
xi j  ≥ 1, S ⊂ V , S /= φ 

xi j  ∈ {0, 1}, i, j ∈ V 

(5.3) 

From the above equation, it can be seen that f (x) is the objective function, which 
is the traversal cost of a path. The first constraint indicates that each city must go 
out once; similarly, the second constraint indicates that each city can only go in 
once. Together, these two constraints mean that each city passes through once and 
only once. The third constraint is the elimination of subloops in the path. The last 
constraint is the range of values of the independent variable xij, which indicates 
whether the route from city i to city j is selected. If it is necessary to go from city i 
to city j, then xij = 1; otherwise xij = 0. 

Suppose the traveler wants to visit some cities in the United States, which is also 
an example that comes with Matlab. It should be noted that the map used here is an 
abbreviated version and not a complete map of the United States, which can reduce 
the difficulty of the problem. 

Example 5.1 Suppose there are n = 40 cities selected within the map boundary. The 
traveler needs to traverse all cities once and only once and return to the initial city 
location. The geographic locations of these 40 cities are known and the distances
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between the cities have been given. Please use the genetic algorithm solver to solve 
the TSP and draw a graph to analyze the results. 

Solution First, let’s configure the basic data for the TSP, the programs used are as 
follows: 

load(‘usborder.mat’,‘x’,‘y’,‘xx’,‘yy’); 
cities = 40; 
locations = zeros(cities,2); 
rng(1); 
n = 1; 
while (n <= cities) 

xp = rand*1.5; 
yp = rand; 
if inpolygon(xp,yp,xx,yy) 

locations(n,1) = xp; 
locations(n,2) = yp; 
n = n + 1; 

end 
end 
distances = zeros(cities); 
for count1 = 1:cities 

for count2 = 1:count1 
x1 = locations(count1,1); 
y1 = locations(count1,2); 
x2 = locations(count2,1); 
y2 = locations(count2,2); 
distances(count1,count2) = sqrt((x1 − x2)^2 + (y1 − y2)^2); 
distances(count2,count1) = distances(count1,count2); 

end 
end 
figure1 = figure(1); 
axes1 = axes(‘Parent’,figure1); 
hold(axes1,‘on’); 
box(axes1,‘on’); 
grid(axes1,‘on’); 
plot(x, y, ‘Color’,‘black’, ‘LineWidth’,2); 
plot(locations(:,1),locations(:,2),‘bo’,‘LineWidth’,2,‘LineStyle’,‘none’); 
hold(axes1,‘off’); 
set(axes1,‘FontSize’,14); 

The result of the above program after running is shown in Fig. 5.5, where the 
circle symbols indicate the location of the city.

Next, let’s configure the operation steps of GA. According to the previous section, 
we are going to encode the individuals, and here the integer encoding is used instead 
of binary encoding, and the specific programs are as follows:
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Fig. 5.5 City locations of 
the TSP of Example 5.1

function pop = create_permutations(NVARS,FitnessFcn,options) 
totalPopulationSize = sum(options.PopulationSize); 
n = NVARS; 
pop = cell(totalPopulationSize,1); 
for i = 1:totalPopulationSize 

pop{i} = randperm(n); 
end 

The number of cities is denoted as “NVARS”. The i-th individual is denoted as 
pop{i}. An individual is an arrangement of integers from 1 to NVARS. It can be seen 
that an individual is a traversal route of all cities. The crossover operation is realized 
by: 

function xoverKids = crossover_permutation(parents,options,NVARS, ... 
FitnessFcn,thisScore,thisPopulation) 

nKids = length(parents)/2; 
xoverKids = cell(nKids,1); 
index = 1; 
for i = 1:nKids 

parent = thisPopulation{parents(index)}; 
index = index + 2; 
p1 = ceil((length(parent) − 1) * rand); 
p2 = p1 + ceil((length(parent) − p1 − 1) * rand); 
child = parent; 
child(p1:p2) = fliplr(child(p1:p2)); 
xoverKids{i} = child; 

end 

From the above program, it can be seen that the crossover operation is not a 
single-point crossover, but a special crossover operation. This operation randomly
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selects two gene positions and inverts the values between the two gene positions. 
The mutation operation is realized by: 

function mutationChildren = mutate_permutation(parents ,options,NVARS, ... 
FitnessFcn, state, thisScore,thisPopulation,mutationRate) 

mutationChildren = cell(length(parents),1); 
for i = 1:length(parents) 

parent = thisPopulation{parents(i)}; 
p = ceil(length(parent) * rand(1,2)); 
child = parent; 
child(p(1)) = parent(p(2)); 
child(p(2)) = parent(p(1)); 
mutationChildren{i} = child; 

end 

From the above program, it is clear that the mutation operation is not a basic 
bitwise mutation; while it is a position swap method. The operation is to randomly 
select two mutated genes and then swap the values of the two positions. Crossover 
and mutation operations use “FitnessFcn” as the objective function as follows: 

function scores = traveling_salesman_fitness(x,distances) 
scores = zeros(size(x,1),1); 
for j = 1:size(x,1) 

p = x{j}; 
f = distances(p(end),p(1)); 
for i = 2:length(p) 

f = f + distances(p(i − 1),p(i)); 
end 
scores(j) = f; 

end 

From the above program, it can be seen that the objective function is to calculate 
the total distance of the path. 

Finally, we will configure the parameters of the GA and draw a graph of the 
solution results. The programs for configuring GA are as follows: 

FitnessFcn = @(x) traveling_salesman_fitness(x,distances); 
my_plot = @(options,state,flag) traveling_salesman_plot(options, ... 

state,flag,locations); 
options = optimoptions(@ga, ‘PopulationType’, ‘custom’, 
‘InitialPopulationRange’, ... 

[1;cities]); 
options = optimoptions(options,‘CreationFcn’,@create_permutations, ... 

‘CrossoverFcn’,@crossover_permutation, ... 
‘MutationFcn’,@mutate_permutation, ... 
‘PlotFcn’, my_plot, ... 
‘MaxGenerations’,500,‘PopulationSize’,50, ...
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‘MaxStallGenerations’,200,‘UseVectorized’,true); 
numberOfVariables = cities; 
[x,fval,reason,output] = ga(FitnessFcn, ... 

numberOfVariables,[],[],[],[],[],[],[],options); 
To draw the search process of GA, the following program is used: 
function state = traveling_salesman_plot(options,state,flag,locations) 
persistent x y xx yy 
if strcmpi(flag,‘init’) 
load(‘usborder.mat’,‘x’,‘y’,‘xx’,‘yy’); 

end 
plot(x,y,‘Color’,‘black’, ‘LineWidth’,2); 
axis([− 0.1 1.5 − 0.2 1.2]); 
hold on; 
box on; 
grid on; 
[unused,i] = min(state.Score); 
genotype = state.Population{i}; 
plot(locations(:,1),locations(:,2),‘bo’,‘LineWidth’,2,‘LineStyle’,‘none’); 
plot(locations(genotype,1),locations(genotype,2),’LineWidth’,2); 
hold(‘off’); 

The results of the above program after running are shown in Fig. 5.6. The total 
length of the distance of the best path output by the genetic algorithm is about 5.05. 
As can be seen in the figure, the line of the two cities directly to the top right of 
the middle falls outside the map boundary. The path shown in the figure becomes 
infeasible if the route that restricts the traveler to travel must be inside the map 
boundary. This shows that the real-life traveler problem has more constraints, and 
our case here is a simplified problem. 

Fig. 5.6 Optimal route 
found by genetic algorithm
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The careful reader may notice that the GA presented in this section differs in 
many ways from the simple genetic algorithm in the previous section, and also does 
not present the selection operation and the calculation of the fitness function. The 
selection operation is performed using the roulette wheel method implemented in 
Matlab as follows: 

function parents = selectionroulette(expectation,nParents,options) 
expectation = expectation(:,1); 
wheel = cumsum(expectation) / nParents; 
parents = zeros(1,nParents); 
for i = 1:nParents 

r = rand; 
for j = 1:length(wheel) 

if(r < wheel(j)) 
parents(i) = j; 
break; 

end 
end 

end 

In the above programs, the expectation refers to the fitness value of all individuals, 
not the objective function value. The fitness function uses the objective function, but 
the selection operation does not use the fitness function value directly; it must be 
transformed to fit the selection operation. In Matlab, the default mapping method is 
the sorting-based fitness scaling method with the following programs: 

function expectation = fitscalingrank(scores,nParents) 
scores = scores(:); 
[~,i] = sort(scores); 
expectation = zeros(size(scores)); 
expectation(i) = 1 ./ ((1:length(scores)) .^ 0.5); 
expectation = nParents * expectation ./ sum(expectation); 

In the above procedure, scores refer to the objective function value, while expec-
tation is the adapted value after conversion. The mapping method of converting the 
objective function value to the fitness value can affect the performance of GA. When 
using the scaling method, if the scaled values vary too much, individuals with high 
scaling values are likely to reproduce faster than those with low scaling values, i.e., 
individuals with high scaling values have a higher probability of being selected, 
which can limit the search range of GA. On the other hand, if the scaled value is too 
small, the probability of all individuals being selected tends to be the same, which 
reduces the convergence speed of GA and leads to a longer number of iterations and 
computation time. 

The ranking-based fitness scaling method scales each individual according to its 
ranking in the population and does not directly use the original objective function 
value for scaling. For example, for the minimization optimization problem, the rank 
of the individual with the lowest objective function value is denoted as 1, the rank of
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the individual with the second lowest objective function value is denoted as 2, and 
so on. The rank of the individual with the largest objective function value is denoted 
as “popsize”. The scaled fitness value for the individual whose rank is i is: 

f i t(i ) = 
1 √
i 

× popsi ze (5.4) 

where fit(i) denotes the fitness value of the individual ranked as i. From (5.4), it 
can be seen that the fitness value is a multiple of 1/ 

√
i . The ranking-based fitness 

scaling method can avoid the uneven dispersion of the objective function values. The 
individual ranked 1 has the largest scaled multiplier, while the remaining individuals 
have the same scaling multiplier. 

Besides the above operation methods, we can find other selection operations, 
crossover operations and mutation operations. They are not described here. 

5.4 Ant Colony Optimization Algorithm 

EC is a collective name for a series of methods that mimic the theory of biological 
evolution to solve optimization problems. For example, GA mimic operations such 
as crossover and mutation of an organism’s genes. A set of genes can form chro-
mosomes, and a certain number of chromosomes make up a population, hence, 
genetic algorithms are simulations of the microcosm of biological evolutionary 
theory. Around the 1990s, researchers kept proposing new methods to mimic biolog-
ical evolutionary theory, called Swarm Intelligence (SI), which mimics a population 
of organisms, e.g., ant swarm, bee swarm, bird swarm, etc. In contrast to GA, the 
SI approach is a simulation of the macrocosm of the organism. There is no unified 
criterion whether SI methods belong to the category of EC. We do not discuss the 
affiliation between them here. For simplicity, we group SI methods into the chapter 
of EC and introduce SI methods starting from this section. 

The ant colony optimization (ACO) algorithm was proposed by Dorigo in his 
Ph.D. thesis in 1991 [3]. Ant Colony Optimization is also known as ant colony 
algorithm or ant algorithm. The starting point of ACO is that a colony of ants with 
slight intelligence exhibits intelligent behavior during foraging by cooperating and 
communicating with each other, and this phenomenon provides new insights for 
solving optimization problems. 

The ACO algorithm was inspired by the double-bridge experiment by Deneubourg 
and his colleagues [4]. The double-bridge experiment consists of a colony of ants, 
two bridges, and a food source, i.e., the ants and the food source are located at 
opposite ends, with two bridges in parallel in the middle. If the two bridges were of 
the same length, i.e., the distance from the ant nest to the food source was the same, 
the double bridge experiment revealed that the ants would gather on one bridge after 
a period of time. If one bridge was shorter than the other, i.e., the lengths of the 
two bridges were significantly different, the experiment found that the ants would
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congregate on the shorter bridge after a period of time. The double-bridge experiment 
showed that ants make random choices when they encounter different paths on their 
way to find food sources. The ants leave pheromones on the path as they move, 
and the pheromones change the information in the environment, allowing individual 
ants to communicate with each other. Initially, ants make random choices, but as 
pheromones accumulate and change, ants adjust the probability of choice according 
to the size of the pheromone. In the experiment, it was shown that the ants chose the 
bridge with the shorter distance. 

The ACO algorithm was first used to solve TSP. This section will also use the 
TSP from the previous section to introduce the ACO algorithm. 

Example 5.2 Suppose there are n = 40 cities within the selected map boundary, the 
traveler needs to traverse all cities once and only once and return to the initial city 
location. The geographic locations of these 40 cities are known and the distances 
between the cities are given. Write a program for the ACO algorithm to solve the 
problem and draw a graph to analyze the results. 

Solution This example is the same as the previous section, so the background of the 
problem is not presented. The programs are as follows: 

popsize = 50; 
Alpha = 1; 
Beta = 5; 
Rho = 0.1; 
NC_max = 200; 
Q = 100; 
D = distances; 
for i = 1:cities 

D(i, i) = eps; 
end 
Eta = 1./D; 
Tau = ones(cities,cities); 
Tabu = zeros(popsize,cities); 
R_best = zeros(NC_max,cities); 
L_best = inf.*ones(NC_max,1); 
L_ave = zeros(NC_max,1); 
NC = 1; 
while NC <= NC_max 

Randpos = []; 
for i = 1:(ceil(popsize/cities)) 

Randpos = [Randpos,randperm(cities)]; 
end 
Tabu(:,1) = (Randpos(1,1:popsize))’; 
for j = 2:cities 

for i = 1:popsize 
visited = Tabu(i,1:(j − 1));
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J = zeros(1,(cities − j + 1)); 
P = J; 
Jc = 1; 
for k = 1:cities 

if length(find(visited == k)) == 0 
J(Jc) = k; 
Jc = Jc + 1; 

end 
end 
for k = 1:length(J) 
P(k) = (Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta); 

end 
P = P/(sum(P)); 
Pcum = cumsum(P); 
Select = find(Pcum >= rand); 
to_visit = J(Select(1)); 
Tabu(i,j) = to_visit; 

end 
end 
if NC >= 2 

Tabu(1,:) = R_best(NC − 1,:); 
end 
L = zeros(popsize,1); 
for i = 1:popsize 

R = Tabu(i,:); 
for j = 1:(cities − 1) 
L(i) = L(i) + D(R(j),R(j + 1)); 

end 
L(i) = L(i)+D(R(1),R(cities)); 

end 
L_best(NC) = min(L); 
Pos = find(L == L_best(NC)); 
R_best(NC,:) = Tabu(pos(1),:); 
L_ave(NC) = mean(L); 
NC = NC + 1; 
Delta_Tau = zeros(cities,cities); 
for i = 1:popsize 

for j = 1:(cities − 1) 
Delta_Tau(Tabu(i,j),Tabu(i,j + 1)) = Delta_Tau(Tabu(i,j),Tabu(i,j + 1)) 

+ Q/L(i); 
end 
Delta_Tau(Tabu(i,cities),Tabu(i,1)) = Delta_Tau(Tabu(i,cities),Tabu(i,1)) 

+ Q/L(i); 
end 
Tau = (1-Rho).*Tau+Delta_Tau;
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Tabu = zeros(popsize,cities); 
end 
Pos = find(L_best == min(L_best)); 
Shortest_Route = R_best(Pos(1),:); 
Shortest_Length = L_best(Pos(1)); 
figure1 = figure(2); 
axes1 = axes(’Parent’, figure1); 
hold(axes1,’on’); 
box(axes1,’on’); 
grid(axes1,’on’); 
plot(x, y, ’Color’,’black’, ’LineWidth’,2); 
plot(locations(:,1),locations(:,2),... 

’bo’,’LineWidth’,2,’LineStyle’,’none’); 
plot(locations(Shortest_Route,1), ... 

locations(Shortest_Route,2),’LineWidth’,2); 
plot([locations(Shortest_Route(1),1), ... 

locations(Shortest_Route(end),1)], ... 
[locations(Shortest_Route(1),2), ... 
locations(Shortest_Route(end),2)],’LineWidth’,2); 

hold(axes1,’off’); 
set(axes1,’FontSize’,14); 
figure1 = figure(3); 
axes1 = axes(’Parent’, figure1); 
hold(axes1,’on’); 
box(axes1,’on’); 
grid(axes1,’on’); 
plot(L_best, ’-’, ’LineWidth’,2); 
plot(L_ave, ’:’, ’LineWidth’,2); 
legend(’shortest distance’,’average distance’); 
xlabel(’number of iterations’); 
ylabel(’objective function’); 
hold off; 

After running the above program, we obtain two figures as shown in Figs. 5.7 
and 5.8. In Fig.  5.7, it gives the optimal travel route found by the ACO algorithm. 
Figure 5.8 gives the convergence process of the ACO algorithm, including the shortest 
path distance and the average path distance for each generation during the iteration.

The total distance length of the optimal route output by the ACO algorithm is about 
5.13, which is greater than the result given by the GA. This indicates that the optimal 
path given by the ACO is slightly worse than the optimal path given by the GA. Note 
that the simulation results in this section alone do not allow us to conclude that the 
performance of the ACO is inferior to that of the GA. This is because the comparison 
of two algorithms requires certain criteria and cannot be concluded based on a single 
simulation result. The comparison criteria for EC methods are more complex and 
will not be described in detail here.
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Fig. 5.7 Optimal route found by the ACO algorithm 

Fig. 5.8 Convergence process of the ACO algorithm

From the Example 5.2, we have a preliminary understanding of the ACO algo-
rithm. The flowchart of the ACO algorithm is given in Fig. 5.9. From the figure, we 
can see that the first step of the ACO algorithm is to configure the initial parameters 
for ACO. The initial operating environment include the ant population size, which is 
recorded as “popsize”. The search space of the TSP is discrete, so the movement of 
ants from one city to the next is the process of state transfer, which is the second step 
of the algorithm. After the ants move, the pheromone needs to be updated, which 
is the third step of the algorithm. In the fourth step, the termination condition is
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Fig. 5.9 Flowchart of the 
ACO algorithm 

judged, and if not, the second and third steps are repeatedly executed; otherwise, the 
algorithm is terminated and the optimal solution is output. It can be seen that the 
second and third steps are the core part of the algorithm. 

In the second step, the state transfer operation of ants is based on a certain prob-
ability to choose the next city. In making the choice, the ant can only go to cities 
that it has not visited, thus satisfying that each city is visited. The ant has to try to 
choose the route with high pheromone concentration and thus walk according to the 
residual pheromone on the route. The ant also has to try to choose the more favorable 
city within its visibility range, i.e., each ant needs to know its visibility to locally 
determine a favorable walking route. As can be seen, state transfer of ants requires a 
certain probability of making a choice. The mathematical expression for the transfer 
probability is: 

pk i j  (t) =
τ α 
i j  (t)η β 

i j  (t)
∑

s ∈ allowedk 
τ α 
is(t)η β 

is(t) 
, j ∈ allowedk (5.5) 

where k denotes the k-th ant, i and j denote cities, τi j  denotes the pheromone on the 
route from city i to city j, ηi j  denotes the heuristic information from city i to city j, α 
denotes the importance of the pheromone, β denotes the importance of the heuristic
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information, and allowedk denotes the set of cities that the k-th ant is allowed to 
visit. Equation (5.5) shows that the state transfer of the ant relies on the pheromone 
of the route and also relies on the number of cities it can see. 

There are also some tricks to update the pheromone. The ants update the 
pheromone after the end of the trip. The original pheromone will volatilize after 
each iteration. Each ant will make a recommendation for its walking route. This 
recommendation is based on the consumption cost of the ant during the whole trip. 
The mathematical expression of the pheromone update is: 

τi j  (t + 1) = (1 − ρ)τi j  (t) + 
popsi ze∑

k=1

Δτ k i j (5.6) 

where ρ is the pheromone volatility parameter between 0 and 1, Δτ k i j  indicating 
the recommendation of all ants for the route from city i to city j. The mathematical 
expression of Δτ k i j  is:

Δτ k i j  =
{
Q/Lk, i j  ∈ lk 
0, i j  /∈ lk 

(5.7) 

where Q is a constant, Lk denotes the length of the kth ant’s walking path, and lk 
denotes the k-th ant’s walking path. From (5.6), it can be seen that the shorter the 
length of the path an ant walks, the higher the pheromone it leaves on the route 
through the city. Thus, more ants will choose the route with the shorter path in the 
subsequent iterations. 

This section presents only the simplest version of the ACO algorithm. It performs 
poorly when faced with larger traveler problems, thus researchers have proposed 
a number of improvement techniques to improve the performance of the ACO 
algorithm. 

5.5 Particle Swarm Optimization Algorithm 

The particle swarm optimization (PSO) algorithm was proposed by Eberhart and 
Kennedy in 1995 [5]. The PSO algorithm aims to solve optimization problems by 
using inter-individual collaboration and information sharing. The PSO algorithm was 
inspired by the behavior of a flock of birds during travel. The researchers found that 
the flock of birds would suddenly change direction during travel and that the changes 
were synchronized in a group. Moreover, the birds would often gather together and 
disperse at the same time when there was a situation. Thus, the researchers speculated 
that there was some underlying rule at work that made the flock of birds exhibit this 
behavior. Specifically, the rules of flock behavior are:
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(1) Birds are to avoid collisions with their neighbors; 
(2) The bird should remain similar in speed and consistent in-flight attitude to the 

birds around it; 
(3) The birds should move closer to the center of the group they identify and not 

too far away from the center. 

The PSO algorithm is a method of group collaboration designed formally by 
simulating the predatory behavior of a flock of birds. It should be noted that although 
the method was proposed by researchers observing the behavior of flocks of birds, 
the name of the method uses particle swarms and does not use flocks of birds. Particle 
flocks can be seen as a more generalized concept, where the particles can be birds or 
other species. 

The flow chart of the PSO algorithm is shown in Fig. 5.10. As shown in the 
figure, the PSO algorithm first needs to initialize the parameters such as position and 
velocity of the particles. Second, there should be a fitness function to calculate the 
fitness of each particle. Each particle is able to search for what it thinks is the global 
optimum and the local optimum particle. Then, each particle updates its own velocity 
and position. When all particles complete the above steps, the particle swarm has 
completed a generation of search and foraging behavior. These steps continue until 
the algorithm terminates when a certain condition is met, and finally the optimal 
solution is output.

GA and ACO algorithms were first used to solve the TSP. TSP is an optimization 
problem in which the independent variables are discrete. Unlike the GA and ACO 
algorithms, the PSO algorithm was first used to solve optimization problems in which 
the independent variables are continuous. In the following, we describe the details 
of the PSO algorithm. 

Step (1) Initialize the velocity and position of the particles. Initially, the position 
of each particle in the particle swarm is randomly placed in the search space. The 
moving velocity of each particle is generally set to the distance from the particle’s 
location to the farthest boundary. The velocity is set so that the particle can search 
the entire search space. This provides a guarantee for finding the global minimum. 
Suppose the size of the particle swarm is “popsize”. The position of particle i is 
denoted as Xi, and the moving velocity of particle i is denoted as Vi. 

Step (2) Calculate the fitness of the particles. In the PSO algorithm, the objective 
function of the optimization problem can be used as the fitness function. With the 
fitness function, the fitness of each particle can be calculated, denoted as f(Xi). 

Step (3) Find local best and global best particles. Each particle searches for its 
own perceived local best and global best particles. For the minimization problem, 
the global best particle is the location with the smallest fitness. To find the local best 
particle, it is necessary to determine for each particle the range in which it can be 
seen. For example, each particle is able to observe the positions of k particles around 
it, i.e., the size of the local neighborhood is k. Euclidean distance is generally used to 
measure the proximity between particles so that the particles contained in the local 
neighborhood can be determined. The local best position of particle i is denoted as 
pbesti, and the global optimal position of all particles is denoted as gbest.
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Fig. 5.10 Flow chart of the 
PSO algorithm

Step (4) Update the velocity of particles. Each particle determines the velocity 
of the movement based on itself and the surrounding particles with the following 
expression: 

Vi (t + 1) = Vi (t) + c1r1(pbesti − Xi (t)) + c2r2(gbest − Xi (t)) (5.8) 

where t denotes the number of iterations, c1 and c2 are learning factors, also known 
as acceleration factors. r1 and r2 are random numbers between 0 and 1, which are 
randomly generated at each iteration and can adjust the particle’s moving speed. In 
addition, after the particles calculate their velocities based on (5.8), it is possible that 
they become particularly large. It is necessary to set the velocity range of the particle 
flight, denoted as [− Vmax, Vmax]. 

Step (5) Update the position of particles. Each particle is adjusted according to 
its own position and moving velocity. Its mathematical expression is:
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Xi (t + 1) = Xi (t) + Vi (t + 1) (5.9) 

Step (6) Determine whether to terminate the search, if the termination condition 
is not met, return to Step (2) to continue the execution; otherwise, go to Step (7). 

Step (7) Output the global best solution gbest. 
The basic steps of the PSO algorithm are introduced. It is easy to see that the most 

critical parts of the method are Steps (3) and (4). In particular, Step (4) determines 
the next position of the particle. The above presented is only the original version of 
the PSO algorithm, which sometimes does not work well. The PSO algorithm with 
inertia factor was proposed by Yuhui Shi et al. in 1998. The velocity expression used 
is: 

Vi (t + 1) = ωVi (t) + c1r1(pbesti − Xi (t)) + c2r2(gbest − Xi (t)) (5.10) 

which ω is called the inertia factor and generally takes a non-negative value. As can 
be seen from (5.10), a larger ω value makes the particle’s velocity large and can 
search a larger area; conversely, a smaller ω value makes the particle’s velocity small 
and more suitable for local search. The linear decreasing strategy of the inertia factor 
is a frequently used technique. Its expression is: 

ω(t) = ωmin + (ωmax − ωmin) 
(tmax − t) 

tmax 
(5.11) 

where ωmin and ωmax are the minimum and maximum values of the inertia factor, t 
is the current generation, and tmax is the maximum number of iterations of the PSO 
algorithm. 

Due to the introduction of the inertia factor, the PSO algorithm using (5.10) and 
(5.11) has achieved better results and gained recognition to the extent that (5.10) and 
(5.11) are often used as the standard PSO algorithm. 

Example 5.3 The sphere function is a single-peaked function, also known as the 
DeJong function, whose expression is: 

min f (x1, x2) = x2 1 + x2 2 
s.t. x1 ∈ [−100, 100] 

x2 ∈ [−100, 100] 
(5.12) 

There are only two independent variables in the above equation. The spherical 
function is scalable and the number of independent variables can be adjusted as 
needed. Please use the PSO algorithm to solve the problem and draw a graph to 
analyze the results. 

Solution In this example, we solve the problem by two ways. One is using toolbox in 
Matlab; the other is write program by ourselves to solve the problem. The independent 
variables of this example are continuous. The objective function can be used as the
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fitness function. It is easy to see that (0, 0) is the minimal value point of the sphere 
function with the following programs: 

function fx = functionSphere(x) 
fx = sum(x.^2, 2); 

In the above program, x can be a single particle, or be a swarm of particles. Each 
row of x can be a feasible solution of sphere function. We can use the toolbox of 
Matlab to solve the problem, and the programs are as follows: 

rng(1); 
fun = @functionSphere; 
nvars = 2; 
lb = [− 100, − 100]; 
ub = [100, 100]; 
options = optimoptions(’particleswarm’,’SwarmSize’,50); 
[x, fval, exitflag, output] = particleswarm(fun, nvars, lb, ub, options); 

After running the above program, we obtain the best solution of the PSO algo-
rithm, which is approximately equal to (0, 0). The objective function value is also 
approximately equal to 0. 

Except using the toolbox of Matlab to solve the problem, we can also write our 
own programs for the PSO algorithm: 

function [xbest, fbest, cvgef] = PSO(fhd, xdim, xlb, xub, maxFEs) 
popsize = 40; 
omiga = 1/(2*log(2)) * ones(1, popsize); 
maxomiga = 0.9; 
minomiga = 0.4; 
c1 = 0.5 + log(2); 
K = 3; 
popu = zeros(popsize, xdim); fpopu = zeros(popsize, 1); 
tfun = 0; 
for inp = 1:popsize 

popu(inp, :) = xlb + (xub - xlb).*rand(1, xdim); 
t1 = tic; 
fpopu(inp, 1) = feval(fhd, popu(inp, :)); 
tfun = tfun + toc(t1); 

end 
xbestidx = find(fpopu == min(fpopu)); 
if ~isempty(xbestidx) 

xbestidx = xbestidx(end); 
fbest = fpopu(xbestidx); 
xbest = popu(xbestidx, :); 

else 
fbest = inf;
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xbest = inf * ones(1, xdim); 
end 
vmin = −  2*(xub-xlb); vmax = 2*(xub-xlb); 
vel = repmat(vmin, popsize, 1) + rand(popsize, xdim).*(repmat(vmax-vmin, 
popsize, 1)); 
pbest = popu; fpbest = fpopu; 
neighbor = neighborSelection(popu, fpopu, K); 
cvgef = nan * ones(1, maxFEs); 
ieval = popsize; 
igen = 1; imprFlag = 1; 
idxf1 = 1; idxf2 = ieval; idxstat = 1; isidxstatupdated = −  1; 
while ieval < maxFEs 

cvgef(idxf1:idxf2) = fbest; 
isidxstatupdated = −  1; 
if imprFlag < 0 

neighbor = neighborSelection(popu, fpopu, K); 
imprFlag = 1; 

end 
[nbest, fnbest] = update_nbest(pbest, fpbest, neighbor); 
popunew = nan * ones(popsize, xdim); fpopunew = nan * ones(popsize, 1); 
velnew = nan * ones(popsize, xdim); 

omiga = inertiaWeightAdjustment(omiga, minomiga, maxomiga, ieval, 
maxFEs); 

for inp = 1:popsize 
veltmp = c1 * rand(1,xdim).*(pbest(inp, :) - popu(inp, :)) + … 

c1 * rand(1,xdim).*(nbest(inp, :) - popu(inp, :)); 
velnew(inp, :) = omiga(1,inp) * vel(inp, :) + veltmp; 
for ix = 1:xdim 

if velnew(inp, ix) < vmin(1, ix) 
velnew(inp, ix) = vmin(1, ix) + rand(1) * (vmax(1,ix)-vmin(1,ix)); 
elseif velnew(inp, ix) > vmax(1, ix) 
velnew(inp, ix) = vmax(1, ix) + rand(1) * (vmax(1,ix)-vmin(1,ix)); 
end 

end 
popunew(inp, :) = popu(inp, :) + velnew(inp, :); 
for ix = 1:xdim 

if popunew(inp, ix) < xlb(ix) 
popunew(inp, ix) = xlb(ix) + rand(1)*(xub(ix)-xlb(ix)); 

elseif popunew(inp, ix) > xub(ix) 
popunew(inp, ix) = xub(ix) + rand(1)*(xub(ix)-xlb(ix)); 

end 
end 

end % for inp 
t1 = tic; 
for inp = 1:popsize
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fpopunew(inp, 1) = feval(fhd, popunew(inp, :)); 
ieval = ieval + 1; 

end 
tfun = tfun + toc(t1); 
popu = popunew; fpopu = fpopunew; 
vel = velnew; 
[pbest, fpbest] = update_pbest(popu, fpopu, pbest, fpbest); 
igen = igen + 1; 
[fbesttmp, idx] = min(fpopu); 
if fbesttmp(1) < fbest 

fbest = fbesttmp(1); 
xbest = popu(idx(1), :); 
imprFlag = 1; 

else 
imprFlag = −  1; 

end 
idxf1 = idxf2 + 1; 
idxf2 = ieval; 
idxstat = idxstat + 1; 
isidxstatupdated = 1; 

end 
if isidxstatupdated < 0 

idxf1 = idxf2 + 1; 
idxf2 = maxFEs; 
idxstat = idxstat + 1; 

end 
if idxf2 > maxFEs 

idxf2 = maxFEs; 
end 
cvgef(idxf1:idxf2) = fbest; 
end 

The above program is the main program of the PSO algorithm. When we compute 
the local best and global best particles, we use the following programs: 

function [nbest, fnbest] = update_nbest(popu, fpopu, neighbor) 
[np, xdim] = size(popu); 
nbest = nan * ones(np, xdim); fnbest = nan * ones(np, 1); 
for irow = 1:np 

nidx = neighbor(irow, :) > 0.5; 
ftmp = fpopu(nidx); xtmp = popu(nidx, :); 
[fnbest(irow), bestidx] = min(ftmp); 
nbest(irow, :) = xtmp(bestidx, :); 

end 
end
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When calculating local optimum, the local neighborhood is computed by the 
following programs: 

function neighbor = neighborSelection(popu, fpopu, K) 
np = size(popu, 1); 
neighbor = eye(np,np); 
for irow = 1:np 
nidx = randperm(np); 
nidx(nidx == irow) = []; 
neighbor(irow, nidx(1:K)) = 1; 

end 
end 

After movement, each particle has to record its local best. The programs are: 

function [pbest, fpbest] = update_pbest(popu, fpopu, pbest, fpbest) 
for irow = 1:length(fpbest) 

if fpopu(irow) < fpbest(irow) 
pbest(irow, :) = popu(irow, :); 
fpbest(irow) = fpopu(irow); 

end 
end 
end 

The linear decreasing strategy of the inertia factor is realized by: 

function omiga = inertiaWeightAdjustment(omiga, minomiga, maxomiga, ieval, 
maxFEs) 
for irow = 1:length(omiga) 

omiga(irow) = ((maxFEs − ieval) * (maxomiga - minomiga)) / (maxFEs − 
1) + minomiga; 
end 
end 

If we want to use a custom PSO algorithm to solve the sphere function problem, 
the programs are as follows: 

rng(1); 
fun = @functionSphere; 
nvars = 2; 
lb = [− 100, − 100]; 
ub = [100, 100]; 
maxFEs = 3000; 
[xbest, fbest, cvgef] = PSO(fun, nvars, lb, ub, maxFEs); 

After running the above program, we see that the optimal solution output by the 
algorithm is approximately equal to (0, 0), and the corresponding objective function 
value is close to 0. This is the same result obtained using the toolbox in Matlab.
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Fig. 5.11 Convergence curve of the PSO algorithm on Example 5.3 

The advantage of using a custom program is the manipulability. For example, the 
“cvgef” variable returned in the above custom program, which records the optimal 
fitness value of the algorithm for each generation, can be used to plot the convergence 
curve of the algorithm, as shown in Fig. 5.11. In this figure, where the vertical axis 
is on a logarithmic scale, making it easier to observe the convergence process of the 
algorithm. 

The programs for Fig. 5.11 are as follows: 

figure1 = figure(1); 
axes1 = axes(’Parent’,figure1); 
box(axes1,’on’); 
grid(axes1,’on’); 
plot(1:maxFEs, cvgef, ’LineWidth’,2); 
set(axes1,’FontSize’,14,’YMinorTick’,’on’,’YScale’,’log’); 
set(axes1,’FontSize’,14); 
xlabel(’number of iterations’); 
ylabel(’objective function’); 

As shown in Fig. 5.11, the PSO algorithm finds the optimal fitness value is about 
10–9 after 3000 iterations. We know that the global minimum of the sphere function 
is 0, and the optimal value of the PSO algorithm output is about 10–9. The difference 
between the two is less than 10–6. When using computer simulation, since the floating-
point accuracy is limited, we generally consider that less than 10–6 is equivalent to 
the algorithm finding the global minimum. 

Although the PSO algorithm was proposed for continuous optimization problems, 
it has been modified by researchers to handle discrete optimization problems as well. 
For example, we can use the PSO algorithm to solve the TSP problem.
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Example 5.4 Suppose there are n = 40 cities within the map boundary, the traveler 
needs to traverse all cities once and only once and return to the initial city location. 
The geographic locations of these 40 cities are known and the distances between the 
cities are given. Write a program for the PSO algorithm to solve the TSP problem, 
and draw a graph to analyze the results. 

Solution This example has been used earlier, so the background of the problem will 
not be introduced. The specific programs of the PSO algorithm are as follows: 

load(’usborder.mat’,’x’,’y’,’xx’,’yy’); 
cities = 40; 
locations = zeros(cities,2); 
rng(1); 
n = 1; 
while (n <= cities) 

xp = rand*1.5; 
yp = rand; 
if inpolygon(xp,yp,xx,yy) 

locations(n,1) = xp; 
locations(n,2) = yp; 
n = n+1; 

end 
end 
distances = zeros(cities); 
for count1 = 1:cities 

for count2 = 1:count1 
x1 = locations(count1,1); 
y1 = locations(count1,2); 
x2 = locations(count2,1); 
y2 = locations(count2,2); 
distances(count1,count2) = sqrt((x1 − x2)^2+(y1 − y2)^2); 
distances(count2,count1) = distances(count1,count2); 

end 
end 
popsize = 50; 
IterNum = 200; 
c1 = 0.5; 
c2 = 0.1; 
omiga = 1/(2*log(2)) * ones(1, popsize); 
popu = zeros(popsize,cities); 
v = zeros(popsize,cities); 
iter = 1; 
fpopu = zeros(popsize,1); 
pbest = zeros(popsize,cities); 
pbest_fit = zeros(popsize,1);
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gbest = zeros(IterNum,cities); 
gbest_fit = zeros(popsize,1); 
avgl = zeros(IterNum,1); 
maxomiga = 0.9; 
minomiga = 0.4; 
for i = 1:popsize 

popu(i,:) = randperm(cities); 
v(i,:) = randperm(cities); 

end 
for i = 1:popsize 

for j = 1:cities-1 
fpopu(i) = fpopu(i) + distances(popu(i,j),popu(i,j+1)); 

end 
fpopu(i) = fpopu(i) + distances(popu(i,end),popu(i,1)); 

end 
pbest_fit = fpopu; 
pbest = popu; 
[gbest_fit(1),min_index] = min(fpopu); 
gbest(1,:) = popu(min_index); 
avgl(1) = mean(fpopu); 
while iter <IterNum 

iter = iter +1; 
omiga = maxomiga-(maxomiga-minomiga)*(iter/IterNum)^2; 
change1 = positionChange(pbest,popu); 
change1 = changeVelocity(c1,change1); 
change2 = positionChange(repmat(gbest(iter-1,:),popsize,1),popu); 
change2 = changeVelocity(c2,change2); 
v = originalVelocity(omiga, v); 
for i = 1:popsize 

for j = 1:cities 
if change1(i,j) ~= 0 

v(i,j) = change1(i,j); 
end 
if change2(i,j) ~= 0 

v(i,j) = change2(i,j); 
end 

end 
end 
popu = updatePosition(popu,v); 
fpopu = zeros(popsize,1); 
for i = 1:popsize 

for j = 1:cities-1 
fpopu(i) = fpopu(i) + distances(popu(i,j),popu(i,j+1)); 

end 
fpopu(i) = fpopu(i) + distances(popu(i,end),popu(i,1));
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end 
for i = 1:popsize 

if fpopu(i) < pbest_fit(i) 
pbest_fit(i) = fpopu(i); 
pbest(i,:) = popu(i,:); 

end 
end 
[minvalue,min_index] = min(fpopu); 
if minvalue <gbest_fit(iter-1) 

gbest_fit(iter) = minvalue; 
gbest(iter,:) = popu(min_index,:); 

else 
gbest_fit(iter) = gbest_fit(iter-1); 

gbest(iter,:) = gbest(iter-1,:); 
end 
avgl(iter) = mean(fpopu); 

end 
[bestRouteLen,index] = min(gbest_fit); 
bestRoute = gbest(index,:); 
figure1 = figure1 (2); 
axes1 = axes(’Parent’,figure1); 
hold(axes1,’on’); 
box(axes1,’on’); 
grid(axes1,’on’); 
plot(x, y, ’Color’,’black’, ’LineWidth’,2); 
plot(locations(:,1),locations(:,2),... 

’bo’,’LineWidth’,2,’LineStyle’,’none’); 
plot(locations(bestRoute,1), ... 

locations(bestRoute,2),’LineWidth’,2); 
plot([locations(bestRoute(1),1), ... 

locations(bestRoute(end),1)], ... 
[locations(bestRoute(1),2), ... 
locations(bestRoute(end),2)],’LineWidth’,2); 

hold(axes1,’off’); 
set(axes1,’FontSize’,14); 
figure1 = figure1 (3); 
axes1 = axes(’Parent’,figure1); 
hold(axes1,’on’); 
box(axes1,’on’); 
grid(axes1,’on’); 
plot(gbest_fit’, ’-’, ’LineWidth’,2); 
plot(avgl’, ’:’, ’LineWidth’,2); 
legend(’shortest distance’,’average distance’); 
xlabel(’number of iterations’); 
ylabel(’objective function’); 
hold off;
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Fig. 5.12 Optimal route 
found the PSO algorithm for 
the TSP 

After the above program is run, we obtain the optimal value and the optimal 
solution found by the PSO algorithm, as shown in Fig. 5.12. 

It can be seen from Fig. 5.12 that the optimal route output by the PSO algorithm 
is not good. The route in the figure has large straight-line segments. In fact, the total 
distance length of the route output by the PSO is about 7.43, which is larger than the 
results given by the GA and the ACO algorithms. 

The convergence curve of the PSO algorithm is given in Fig. 5.13. The solid line 
in the figure indicates the shortest distance of the particle swarm at each generation, 
while the dashed line indicates the average distance of the particle swarm at each 
generation. It can be seen that after 200 generations, the shortest distance gradually 
decreases and level off, indicating that the PSO algorithm is close to convergence. 
However, compared with the GA and ACO algorithms, the output of the PSO algo-
rithm is not good, which to a certain extent indicates that the PSO algorithm is 
not very suitable for discrete optimization problems. The performance of the PSO 
algorithm needs to be further improved.

5.6 Differential Evolution Algorithm 

This section introduces the differential evolution (DE) algorithm and summarizes 
the research related to the DE algorithm. 

The DE algorithm is derived from the genetic annealing algorithm proposed and 
published by Storn and Price in 1997 [6]. The DE algorithm is simple to implement 
programmatically, easy to use, and fast to compute. The conventional DE algorithm 
can be implemented in Matlab with less than 70 lines of programming code. The DE 
algorithm was proposed in the mid-1990s and has been extensively studied in the 
last few decades. The DE algorithm paradigm has also proven to be very powerful.
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Fig. 5.13 Convergence curve of the PSO algorithm for solving the TSP

Next, let us describe the DE algorithm in detail. In general, the DE algo-
rithm consists of four steps: initialization operation, mutation operation, crossover 
operation and survivor selection operation, as shown in Fig. 5.14.

The initialization operation is to randomly generate a population of Np individuals, 
where Np is a user-predefined population size. Each component of an individual is 
created randomly between the lower and upper bounds of the search space. We 
initialize the overall population and denote as G1 = {x1,1, x2,1,.., xNp,1}, where 
the first subscript i denotes the i-th individual in the population, while the second 
subscript 1 denotes the population of the first generation. Mathematically, a single 
xi,1 is created in the following way: 

x j,i,1 = x j,min +
(
x j,max − x j,min

) × rand(0, 1), j = 1, 2, . . . ,  D (5.13) 

where rand(0, 1) generates a random number that is uniformly distributed between 
0 and 1. 

After initialization operation, mutation, crossover and survivor selection opera-
tions are performed sequentially until the algorithm terminates. The current gener-
ation is denoted as Gg. In the mutation operation, a population consisting of Np 
mutation vectors, denoted as V = {v1,g, v2,g, …,  vNp,g}, will be created. To generate 
the vector vi,g after the mutation operation, three mutually distinct individuals are 
selected from Gg. Assume that the selected individuals are denoted as xr1,g, xr2,g and 
xr3,g, where r1 /= r2 /= r3 /= i . Mathematically, vi,g is generated as follows:
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Fig. 5.14 Flow chart of the 
DE algorithm

v j,i,g = x j,r1,g + F × (
x j,r2,g − x j,r3,g

)
, j = 1, 2, . . . ,  D (5.14) 

or expressed in vector form as: 

vi,g = xr1,g + F × (
xr2,g − xr3,g

)
(5.15) 

where F is called the scale factor and it is a user-predefined parameter. xi,g , xr1,g 
and

(
xr2,g − xr3,g

)
are called the target vector, the base vector, and the differential 

vector, respectively. A common way to reset an out-of-bounds component vj,i,g is to 
reinitialize it randomly. This ensures that each individual is a feasible solution. 

In the crossover operation, a population of Np trial vectors is created, denoted as U 
= {u1,g, u2,g, …,  uNp,g}. To generate the vector ui,g after the crossover operation, the 
crossover probability Cr must be defined by the user. each component of ui,g is taken 
from the i-th variation vector vi,g with probability Cr or from the i-th individual 
xi,g with probability 1-Cr. Then, to ensure that at least one component of ui,g is 
inherited from vi,g, a component indicator k (1 ≤ k ≤ D) is chosen at random and 
the component k chosen in ui,g is set equal to the component of vi,g at the same 
position. Mathematically, ui,g is generated by:
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u j,i,g =
{

v j,i,g if rand(0, 1) ≤ Cr or j = k 
x j,i,g otherwise 

(5.16) 

After generating all the trial vectors, their function values are calculated and then 
the survivor selection operation is performed. 

In the survivor selection operation, a new population containing Np individuals 
will be generated, denoted as Gg+1 = {x1,g+1, x2,g+1,…,  xNp,g+1}. For generating xi,g+1, 
greedy selection is performed between ui,g and xi,g. Mathematically, the selection is 
given by: 

xi,g+1 =
{
ui,g, if f

(
ui,g

) ≤ f
(
xi,g

)

xi,g, otherwise 
(5.17) 

Obviously, there is Np parallel competition between the parent individual and the 
trial vector in this operation. 

After the population Gg+1 is produced, the mutation, crossover and survivor selec-
tion operations described above are repeated until some termination condition is 
reached. In the DE algorithm, a cycle of mutation, crossover and survivor selection 
operations is called a generation. Researchers have implemented the classical DE 
algorithm using several programming languages, and the relevant source code can 
be downloaded for free from the website of Storn. 

Next, we present the work related to the DE algorithm. Since 2000, many variants 
of the DE algorithm have been proposed by researchers in order to obtain better 
performance on optimization problems. Several variants of the DE algorithm have 
been studied analytically by Storn and Price. 

The method presented earlier in this section is known as the classical DE algo-
rithm, or the common DE algorithm, because it is the first published version and the 
most commonly used version. Later, researchers proposed many different variants 
to improve the performance of this classical DE algorithm, and these variants can be 
called DE algorithm families. 

The DE algorithm families can be written in the form of DE/x/y/z. The “x” repre-
sents the string that denotes the base vector to be mutated and the base vector to be 
changed. For example, x is “rand” for the randomly selected base vector; x is “best” 
means that the base vector is the individual with the best function in the current 
population. “y” is the number of differential vectors used in the variation operator. 
“z” indicates the method of crossover operation. For example, if a binomial crossover 
operator is used, “z” is “bin”; if an exponential crossover is used, it is “exp”; if an 
either/or crossover is used, it is “either/or”. Using this expression, the classical DE 
algorithm can be expressed as: DE/rand/1/bin. In the DE algorithm family of Storn 
and Price, the mutation strategy variants differ in how they generate new solutions, 
as follows: 

“DE/rand/1” stands for the following equation: 

vi,g = xr1,g + F × (
xr2,g − xr3,g

)
(5.18)
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“DE/best/1” stands for the following equation: 

vi,g = xbest,g + F × (
xr1,g − xr2,g

)
(5.19) 

“DE/target-to-best/1” stands for the following equation: 

vi,g = xi,g + F × (
xbest,g − xi,g

) + F × (
xr1,g − xr2,g

)
(5.20) 

“DE/best/2” stands for the following equation: 

vi,g = xbest,g + F × (
xr1,g − xr2,g

) + F × (
xr3,g − xr4,g

)
(5.21) 

“DE/rand/2” stands for the following equation: 

vi,g = xr1,g + F × (
xr2,g − xr3,g

) + F × (
xr4,g − xr5,g

)
(5.22) 

Note that some scholars also refer to DE/target-to-best/1 as DE/current-to-best/1. 
For consistency, this section uses the name DE/target-to-best/1 used by its original 
author. exponential crossover and either/or crossover are less popular than binomial 
crossover. In this section, only binomial crossover is considered. It is found that DE/ 
rand/1/bin is more robust in solving multimodal functions, but converges slower; 
DE/best/1/bin, DE/target-to-best/1/bin and DE/rand/2/bin converge faster, but are 
less reliable for highly multimodal functions. From our experimental results, DE/ 
rand/2/bin is similar to DE/rand/1/bin, but slightly slower. 

In this section, we provide an overview of the DE algorithm. At the beginning, DE 
was found to be effective for solving global optimization problems. The effectiveness 
and efficiency of the DE paradigm is due to the use of the differential vector, which is 
the difference between two decision vectors that can be explored in the search space 
after the initialization phase and used in the subsequent evolution phase to obtain 
good solutions. Another key feature of DE is the parallel search. 

In addition to creating variation strategies for various DE algorithms, the 
researchers noticed that DE is sensitive to its parameters F and Cr, and therefore 
introduced techniques to control these parameters. Subsequently, researchers have 
also tried to control the variation of Np, studied distributed or parallel DE algorithms, 
and implemented collections of parameters, mutation strategies, and crossover oper-
ators. Meanwhile, many practitioners tried to implement DE algorithms on finite 
resource devices, discrete optimization, and multi-objective optimization problems. 

Based on these observations, we observe that the paradigm of DE has been compre-
hensively studied since 2000. Topics worthy of further research in the future include 
large-scale optimization, practical applications, and convergence analysis. Note that 
large-scale optimization is also a hot topic in the field of EC, as it is observed that 
algorithms that perform well in low-dimensional problems (e.g., D < 50) may not 
scale well to high-dimensional problems (e.g., D > 100). 

In the mutation operation of DE, the random mutation is caused by the differential 
vector of two different individuals chosen at random. Apparently, the differential
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vector may be the direction of descent leading to the improvement of fitness. The 
differential vector plays an important role in the evolutionary process. However, the 
number of possible differential vectors is large; therefore, the probability of choosing 
the direction of descent is low. On the other hand, it is observed that the optimal 
fitness found so far by the DE algorithm may not be improved every generation. 
This observation inspired us to create a mutation operator capable of finding good 
directions to guide the search process of DE. A good direction is a vector that, 
when applied to a basis vector, can lead to an improvement in fitness. Readers can 
discover mutation methods to improve the performance of the DE algorithm from 
this direction. 

The classical DE algorithm can solve continuous optimization problems. We can 
use the DE algorithm to solve the sphere function problem in the previous section. 

Example 5.5 The sphere function is a single-peaked function. There are only two 
independent variables in the problem. Please use the DE algorithm to solve the 
problem and draw a graph to analyze the results. 

Solution In this example, we use the same problem setting as in Example 5.3. The  
specific programs of the DE algorithm are as follows: 

rng(1); 
fhd = @functionSphere; 
D = 2; 
xlb = [− 100, − 100]; 
xub = [100, 100]; 
MFE = 3000; 
ps = 50; 
F = 0.5; 
CR = 0.5; 
me = round(MFE/ps); 
if length(xlb) == 1 

xlb = repmat(xlb,1,D); 
xub = repmat(xub,1,D); 

end 
xlb = repmat(xlb,ps,1); 
xub = repmat(xub,ps,1); 
popu = xlb+(xub-xlb).*rand(ps,D); 
fpopu = feval(fhd,popu); 
fitcount = ps; 
[gbestval,gbestid] = min(fpopu); 
gbest = popu(gbestid,:); 
cvgef = gbestval; 
for i = 2:me 

popuNew = popu; 
fpopuNew = fpopu; 
for ips = 1:ps
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rips = randperm(ps − 1); 
rips = rips(1:3); 
tmp1 = rips> = ips; 
rips = rips+tmp1; 
vips = popu(rips(1),:) + F*(popu(rips(2),:)-popu(rips(3),:)); 
tmp1 = xlb(ips,:); 
tmp2 = xub(ips,:); 
vips = ((vips >= tmp1)&(vips <= tmp2)).*vips... 

+ (vips<tmp1).*(tmp1+0.25.*(tmp2-tmp1).*rand(1,D))... 
+ (vips>tmp2).*(tmp2-0.25.*(tmp2-tmp1).*rand(1,D)); 

uips = zeros(1,D); 
for jcol = 1:D 

if rand <= CR 
uips(1,jcol) = vips(jcol); 

else 
uips(1,jcol) = popu(ips,jcol); 

end 
end 
jrand = ceil(D*rand); 
uips(1,jrand) = vips(jrand); 
fuips = feval(fhd,uips); 
fitcount = fitcount+1; 
if fuips <= fpopu(ips) 

popuNew(ips,:) = uips; 
fpopuNew(ips) = fuips; 

end 
end 
popu = popuNew; 
fpopu = fpopuNew; 
[gbestval,gbestid] = min(fpopu); 
gbest = popu(gbestid,:); 
cvgef = [cvgef,gbestval]; 

end 
figure1 = figure1(1); 
axes1 = axes(’Parent’,figure1); 
box(axes1,’on’); 
grid(axes1,’on’); 
plot(ps*(1:me), cvgef, ’LineWidth’,2); 
set(axes1,’FontSize’,14,’YMinorTick’,’on’,’YScale’,’log’); 
set(axes1,’FontSize’,14); 
xlabel(’number of iterations’); 
ylabel(’objective function’); 

After running the above program, we see that the optimal solution output by the 
algorithm is approximately equal to (0, 0) and the corresponding objective function
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Fig. 5.15 Convergence curves of the DE algorithm on Example 5.5 

value is close to 0. This is the same result obtained using the PSO algorithm. The 
results indicates that both the DE and the PSO algorithms are able to solve the 
problem. 

The convergence curve of the DE algorithm for solving the Example 5.5 is shown 
in Fig. 5.15. Compared with the PSO algorithm, the convergence curve of the DE 
algorithm is closer to the lower left corner, which indicates that the DE algorithm 
converges faster than the PSO algorithm. 

Although the DE algorithm is suitable for solving continuous optimization prob-
lems, with simple modifications, it can also be used for discrete optimization 
problems. We use the DE algorithm to solve the TSP in the previous section. 

Example 5.6 Suppose there are n = 40 cities within the map boundary, the traveler 
needs to traverse all cities once and only once and return to the initial city location. 
Write a program for the DE algorithm to solve the TSP problem, and draw a graph 
to analyze the results. 

Solution This example has been used earlier, so the background of the problem will 
not be introduced. The specific programs of the DE algorithm are as follows: 

load(’usborder.mat’,’x’,’y’,’xx’,’yy’); 
cities = 40; 
locations = zeros(cities,2); 
rng(1); 
n = 1; 
while (n <= cities) 

xp = rand*1.5; 
yp = rand; 
if inpolygon(xp,yp,xx,yy)
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locations(n,1) = xp; 
locations(n,2) = yp; 
n = n + 1; 

end 
end 
distances = zeros(cities); 
for count1 = 1:cities 

for count2 = 1:count1 
x1 = locations(count1,1); 
y1 = locations(count1,2); 
x2 = locations(count2,1); 
y2 = locations(count2,2); 
distances(count1,count2) = sqrt((x1 − x2)^2 + (y1 − y2)^2); 
distances(count2,count1) = distances(count1,count2); 

end 
end 
IterNum = 200; 
iter = 1; 
popsize = 50; 
F = 0.5; 
Cr = 0.1; 
popu = zeros(popsize,cities); 
fpopu = zeros(popsize,1); 
gbest = zeros(IterNum,cities); 
gbest_fit = zeros(popsize,1); 
avgl = zeros(IterNum,1); 
rng(’shuffle’); 
for i = 1:popsize 

popu(i,:) = randperm(cities); 
end 
popurt = popu; 
for i = 1:popsize 

for j = 1:cities-1 
fpopu(i) = fpopu(i) + distances(popurt(i,j),popurt(i,j + 1)); 

end 
fpopu(i) = fpopu(i) + distances(popurt(i,end),popurt(i,1)); 

end 
[gbest_fit(1),min_index] = min(fpopu); 
gbest(1,:) = popurt(min_index); 
avgl(1) = mean(fpopu); 
while iter <IterNum 

iter = iter + 1; 
popuNew = popu; 
popurtNew = popurt; 
fpopuNew = zeros(size(fpopu));
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for i = 1:popsize 
r1 = randi([1,popsize],1,1); 
while (fpopu(r1)<fpopu(i)) 

r1 = randi([1,popsize],1,1); 
end 
r2 = randi([1,popsize],1,1); 
while(r2 == r1)||(r2 == i) 

r2 = randi([1,popsize],1,1); 
end 
r3 = randi([1,popsize],1,1); 
while(r3 == i)||(r3 == r2)||(r3 == r1) 

r3 = randi([1,popsize],1,1); 
end 
jrand = randi([1,cities],1,1); 
r = rand; 
for j = 1:cities 

if (r <= Cr) || (j == jrand) 
popuNew(i,j) = popu(r1,j) + F*(popu(r2,j)-popu(r3,j)); 
if popuNew(i,j)< 1 

popuNew(i,j) = randi([1,cities],1,1); 
end 
if popuNew(i,j)> cities 

popuNew(i,j) = randi([1,cities],1,1); 
end 

else 
popuNew(i,j) = popu(i,j); 

end 
end 
[tmp1,idx1] = sort(popuNew(i,:)); 
popurtNew(i,:) = idx1; 
for j = 1:cities-1 

fpopuNew(i) = fpopuNew(i) + distances(popurtNew(i,j),popurtNew(i,j 
+ 1)); 

end 
fpopuNew(i)= fpopuNew(i)+ distances(popurtNew(i,end),popurtNew(i,1)); 

if fpopuNew(i)<fpopu(i) 
popu(i,:) = popuNew(i,:); 
popurt(i,:) = popurtNew(i,:); 
fpopu(i) = fpopuNew(i); 

end 
end 
[minvalue,min_index] = min(fpopu); 
if minvalue <gbest_fit(iter − 1) 

gbest_fit(iter) = minvalue; 
gbest(iter,:) = popurt(min_index,:);
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else 
gbest_fit(iter) = gbest_fit(iter-1); 
gbest(iter,:) = gbest(iter-1,:); 

end 
avgl(iter) = mean(fpopu); 

end % while 
[bestRouteLen,index] = min(gbest_fit); 
bestRoute = gbest(index,:); 
figure1 = figure(2); 
axes1 = axes(’Parent’,figure1); 
hold(axes1,’on’); 
box(axes1,’on’); 
grid(axes1,’on’); 
plot(x, y, ’Color’,’black’, ’LineWidth’,2); 
plot(locations(:,1),locations(:,2),... 

’bo’,’LineWidth’,2,’LineStyle’,’none’); 
plot(locations(bestRoute,1), ... 

locations(bestRoute,2),’LineWidth’,2); 
plot([locations(bestRoute(1),1), ... 

locations(bestRoute(end),1)], ... 
[locations(bestRoute(1),2), ... 
locations(bestRoute(end),2)],’LineWidth’,2); 

hold(axes1,’off’); 
set(axes1,’FontSize’,14); 
figure1 = figure(3); 
axes1 = axes(’Parent’,figure1); 
hold(axes1,’on’); 
box(axes1,’on’); 
grid(axes1,’on’); 
plot(gbest_fit’, ’-’, ’LineWidth’,2); 
plot(avgl’, ’:’, ’LineWidth’,2); 
legend(’shortest distance’,’average distance’); 
xlabel(’number of iterations’); 
ylabel(’objective function’); 
hold off; 

After the above program is run, the optimal value and optimal solution of the DE 
algorithm are output, as shown in Fig. 5.16.

It can be seen from Fig. 5.16 that the optimal route output by the DE is not good. 
The route in the figure has long straight-line segments. In fact, the total distance length 
of the optimal route output by the DE algorithm is about 9.92, which is greater than 
the results given by the GA, ACO and PSO algorithms.
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Fig. 5.16 Optimal route of the DE algorithm for Example 5.6

The convergence curve of the DE algorithm for Example 5.6 is given in Fig. 5.17. 
The solid line in the figure indicates the shortest route distance of the population 
at each generation, while the dashed line indicates the average route distance of 
the population at each generation. In Fig. 5.17, the number of iterations means the 
number of generations. It can be seen that after 200 generations, the shortest route 
distance gradually decreases and level off, indicating that the DE algorithm is close 
to convergence. However, compared with the GA, ACO and PSO algorithms, the 
output of the DE algorithm is not good, which to a certain extent indicates that the 
DE algorithm is not well suited for discrete optimization problems. The DE algorithm 
needs further improvement to better solve the TSP.

Exercises 

(1) Readers choose a set of optimization test functions, then select no less than two 
evolutionary computing methods. Readers have to write programs, adjust the 
parameters of the evolutionary computing methods to solve the optimization test 
function, and compare the performance of the chosen methods in terms of the 
number of convergence iterations, the optimal solution output by the methods, 
and the stability of the methods over multiple runs. 

(2) Suppose there is a traveler who wants to visit 31 provincial capitals across the 
country, and the traveler needs to choose the route to be taken. The coordinates 
of the 34 cities in the country are given in Table 5.5 as follows:
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Fig. 5.17 Convergence curve of the DE algorithm for Example 5.6

Table 5.5 The coordinates of the 34 cities 

Number City Coordinate Number City Coordinate 

1 Beijing (116.4, 39.9) 18 Changsha (113.0, 28.2) 

2 Tianjin (117.2, 39.1) 19 Guangzhou (113.3, 23.1) 

3 Shijiazhuang (114.5, 38.0) 20 Nanning (108.3, 22.8) 

4 Taiyuan (112.5, 37.9) 21 Haikou (110.3, 20.0) 

5 Hohhot (111.7, 40.8) 22 Chongqing (106.5, 29.5) 

6 Shenyang (123.4, 41.8) 23 Chengdu (104.1, 30.7) 

7 Changchun (125.3, 43.9) 24 Guiyang (106.7, 26.6) 

8 Harbin (126.6, 45.8) 25 Kunming (102.7, 25.0) 

9 Shanghai (121.5, 31.2) 26 Lhasa (91.1, 29.7) 

10 Nanjing (118.8, 32.0) 27 Xi’an (108.9, 34.3) 

11 Hangzhou (120.2, 30.3) 28 Lanzhou (103.8, 36.1) 

12 Hefei (117.3, 31.9) 29 Xining (101.8, 36.6) 

13 Fuzhou (119.3, 26.1) 30 Yinchuan (106.3, 38.5) 

14 Nanchang (115.9, 28.7) 31 Urumqi (87.6, 43.8) 

15 Jinan (117.0, 36.7) 32 Taipei (121.5, 25.0) 

16 Zhenzhou (113.7, 34.8) 33 Hong Kong (114.2, 22.3) 

17 Wuhan (114.3, 30.6) 34 Macao (113.5, 22.2)
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Chapter 6 
Testing and Evaluation of Evolutionary 
Computing 

Abstract Evolutionary computing is a collection of evolutionary algorithms. 
Different algorithms have different properties. For example, genetic algorithm is 
suitable for discrete optimization problems; while differential evolution algorithm 
is suitable for continuous optimization problems. The pros and cons of such algo-
rithms have to be studies and tested on well-known optimization problems. This 
chapter presents a test set of traveling salesman problem and a test set of contin-
uous optimization problem. The evaluation metrics are introduced to compare and 
analyze evolutionary algorithms. Then, this chapter introduces two recent evolu-
tionary computing methods. They are artificial bee colony algorithm and fireworks 
algorithm. Finally, the state-of-the-art research progress of evolutionary computing 
are presented. 

6.1 Test Set of Traveling Salesman Problem 

The traveling salesman problem (TSP) is a typical discrete optimization problem that 
has been studied extensively by researchers in recent years. In the previous chapter, 
we gave a case study of using evolutionary computing (EC) methods to solve the 
TSP. In this section we will give a test set of traveling salesman problems (TSPs). 
The test set contains seven problems with increasing difficulty. The seven problems 
are well suited for testing the performance of optimization methods. 

Example 6.1 The TSP is a classical combinatorial optimization problem and a NP-
hard problem. It has always been a hot problem of interest in academia and industry. 
We collected 3000 cities from China. The latitude and longitude coordinate data of 
the cities are used to generate seven TSPs, as shown in Table 6.1. As can be seen 
from the table, the scale of the problem gradually increases from 100 to 3000 cities. 
The test set is called TSPCN.

Figure 6.1 gives the city distribution of the 1-st instance of the test set. In Fig. 6.1, 
the horizontal axis is east longitude and the vertical axis is north latitude. As can be 
seen from the figure, the city distribution shows a scattered nature, with some cities 
being far away and others being close.
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Table 6.1 List of Chinese 
TSPs Number Name Scale 

1 TSPCNProblem1 100 

2 TSPCNProblem2 500 

3 TSPCNProblem3 1000 

4 TSPCNProblem4 1500 

5 TSPCNProblem5 2000 

6 TSPCNProblem6 2500 

7 TSPCNProblem7 3000

Fig. 6.1 City distribution map of TSPCNProblem1 

Figure 6.2 gives the city distribution for the 7-th instance in the test set. As can 
be seen from the figure, the distribution of cities shows unevenness, with some cities 
being far away and others being close. In particular, the cities in the lower right are 
more densely distributed, while those in the upper left are more scattered.

Figures 6.1 and 6.2 give the city distribution maps for the 1-st and 7-th instances. 
We do not give the city distribution maps for the remaining instances because the 
distribution characteristics of the remaining cities are between these two instances. 
The cities of TSPCNProblem1 are a subset of cities of TSPCNProblem7; while 
TSPCNProblem7 contains more cities than TSPCNProblem1. 

We stored the north latitude and east longitude coordinate data as “csv” files 
with corresponding names. We could solve the above 7 TSP instances using the EC 
methods. Due to the stochastic nature of the EC method, we need to independently 
repeat the optimization method used 31 times, saving the optimal route and the 
shortest route distance as “csv” files. In each file, the data are split by commas.
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Fig. 6.2 City distribution map of TSPCNProblem7

Solution We use the GA as a baseline method and use it to solve 7 TSP instances. 
Specifically, each TSP instance needs to be run 31 times independently. We can get 
31 traversal routes and their route lengths. The traversal route for the G to solve the 
1-st instance is shown in Fig. 6.3. 

As can be seen in Fig. 6.3, the traversal route found by the GA for the 1-st instance 
has overlapping paths. This indicates that the GA did not find the optimal solution for

Fig. 6.3 Traversal route found by the GA for TSPCNProblem1 
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the instance. Interested readers can further find better traversal routes by adjusting 
the hyperparameters of the GA. 

The results for all instances of the GA to solve the TSPCN test set are in Table 6.2. 
This table gives the lengths of the best route found by running the GA after 31 
independent runs. In Table 6.2, columns 2 through 8 are the results from the 1-st 
instance to the 7-th instance. Each row from row 2 onward is the length of the best 
route obtained by running the GA independently.

The results of all instances of the GA solving the TSPCN test set are summa-
rized in Table 6.3. The table counts the minimum (min), mean, maximum (max), 
median(med) and standard deviation(std) of the route length for 31 independent runs 
of the GA to solve all instances.

As seen in Table 6.3, the std of the GA gradually increases from instance 1 to 
instance 7, which indicates that the GA is somewhat unstable as the problem size 
increases. One reason is that we use the same termination condition for different 
instances. As the problem size increases, the maximum number of iterations can be 
increased. Here we only introduce the use of the GA to solve the TSPCN test set 
without adjusting and optimizing the hyperparameters, thus, the GA does not find 
the optimal solution for the instances. 

6.2 Test Set of Continuous Optimization Problem 

With the development of EC, researchers have created many function optimization 
problems in order to test the performance of EC methods. Examples include the 
Schwefel function used in the previous sections, the sphere function, etc. The inde-
pendent variables of these functions are continuous, and the corresponding functions 
are continuous optimization problems. When verifying and comparing the perfor-
mance of EC methods, researchers use test functions. This section describes the 
commonly used continuous test functions. If not specified, all test functions in this 
section are continuous test functions, and the objective is to minimize the problems. 

In the early days of EC, there were not many test functions, and researchers only 
needed to test the performance of methods on a few functions. As scientific research 
evolved and progressed, more and more functions were tested and their mathematical 
expressions became more and more complex. Today, researchers usually need to test 
the performance of methods on a dozen or even more functions. 

The international conference on evolutionary computation (CEC) is a prestigious 
conference in the field of EC. Since 2005, Suganthan and his colleagues have been 
running a standard test function competition at CEC. The competition aims to lead 
the development of EC methods on continuous optimization problems and develops 
test functions of different difficulties. As shown in Table 6.4, they held competitions 
for unconstrained continuous optimization test functions in 2005, 2010, 2013, 2014, 
2015, 2016, 2017, 2018 and 2020, respectively. In particular, in recent years, Liang 
et al. have been organizing this competition at CEC every year as the main members 
of this competition [1].
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Table 6.2 Route length found by GA on TSPCN test set 

Run Problem1 Problem2 Problem3 Problem4 Problem5 Problem6 Problem7 

1 458.90 4711.89 10,986.70 17,615.64 24,292.58 30,872.35 37,870.12 

2 506.78 4599.83 10,854.65 17,389.26 24,057.87 31,042.54 37,756.79 

3 475.60 4500.51 10,854.67 17,679.53 24,183.69 30,792.08 37,742.41 

4 489.69 4548.82 10,845.60 17,364.05 24,306.60 30,906.32 37,415.95 

5 450.43 4523.72 10,662.04 17,508.73 24,241.97 31,005.62 37,709.33 

6 494.82 4550.75 10,937.31 17,526.22 24,557.65 30,802.00 37,354.17 

7 485.05 4571.54 10,869.33 17,533.28 24,118.64 30,848.09 37,739.57 

8 488.49 4536.62 10,810.00 17,486.75 24,399.72 31,019.17 37,426.61 

9 482.37 4577.21 10,611.92 17,503.16 24,422.68 30,898.99 37,656.89 

10 473.74 4615.64 10,939.66 17,437.89 24,101.27 31,094.86 37,789.40 

11 487.50 4525.43 10,996.00 17,447.90 24,345.42 30,702.66 37,790.37 

12 522.07 4468.64 10,734.58 17,531.16 23,952.89 30,898.23 37,596.78 

13 505.94 4424.91 10,863.40 17,538.20 24,278.33 30,852.89 38,020.12 

14 460.03 4453.66 10,770.62 17,420.88 24,092.93 30,698.39 37,375.31 

15 496.16 4415.28 10,801.63 17,365.03 24,151.60 30,589.59 37,387.39 

16 493.15 4601.98 11,022.97 17,499.47 24,202.65 30,880.22 37,854.88 

17 489.93 4608.33 10,874.44 17,332.55 24,386.07 30,980.10 37,806.99 

18 459.96 4585.26 10,785.87 17,396.98 24,057.18 30,996.18 37,859.06 

19 465.90 4597.85 10,849.19 17,488.53 24,368.66 30,817.79 37,827.11 

20 457.42 4362.73 10,954.89 17,268.97 24,308.97 30,761.75 37,554.47 

21 479.00 4567.75 10,899.19 17,479.26 24,033.67 30,809.49 37,818.98 

22 548.00 4608.57 10,957.55 17,708.66 24,332.32 30,812.02 37,633.35 

23 499.92 4611.04 10,821.21 17,591.53 24,379.46 31,051.46 37,385.24 

24 531.51 4576.09 10,946.50 17,326.66 23,992.26 30,915.60 37,720.52 

25 459.74 4529.45 10,951.31 17,424.42 24,283.34 30,849.92 37,440.99 

26 504.12 4535.64 10,832.67 17,427.46 24,411.96 30,743.79 37,468.66 

27 522.09 4453.06 10,810.52 17,307.97 24,196.57 30,742.30 37,660.40 

28 474.26 4542.23 10,784.33 17,477.88 24,518.23 30,836.35 37,754.02 

29 513.08 4571.82 11,058.16 17,358.74 24,226.62 30,798.61 37,554.08 

30 531.99 4604.87 10,908.74 17,512.34 24,230.52 30,644.38 37,530.43 

31 503.32 4482.99 10,877.93 17,596.28 24,486.42 31,005.07 37,762.21

As can be seen in Table 6.4, researchers have also organized test functions 
with constraints, multi-objectives and real-world application problems. These test 
functions form the standard for testing and evaluating EC methods. 

We use the test function used in CEC in 2020 as an example, denoted as CEC2020. 
The continuous single-objective optimization function is modeled as:
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Table 6.3 Summary of results found by GA on TSPCN test set 

Problem Min. Mean Max. Med. Std. 

1 450.43 490.68 548.00 489.69 24.72 

2 4362.73 4544.00 4711.89 4550.75 72.49 

3 10,611.92 10,866.89 11,058.16 10,863.40 99.46 

4 17,268.97 17,469.21 17,708.66 17,479.26 105.63 

5 23,952.89 24,255.44 24,557.65 24,278.33 156.58 

6 30,589.59 30,860.28 31,094.86 30,849.92 123.99 

7 37,354.17 37,653.63 38,020.12 37,709.33 180.13

Table 6.4 Test function competitions held in CEC 

Year Problem type Member 

2005 Single-objective test functions Suganthan, Hansen, Liang et al. 

2006 Constrained single-objective test 
functions 

Liang, Runarsson, Mezura-Montes et al. 

2007 Multi-objective test functions Huang, Qin, Deb et al. 

2008 Large-scale single-objective test functions Tang, Yao, Suganthan et al. 

2009 Bound constrained single-objective test 
functions 

Zhang, Zhou, Zhao et al. 

2010 Single-objective test functions Mallipeddi, Suganthan 

2011 Single-objective application test functions Das, Suganthan 

2013 Single-objective test functions Liang, Qu, Suganthan et al. 

2014 Single-objective test functions Liang, Qu, Suganthan 

2015 Single-objective test functions Chen, Liu, Zhang et al. 

2016 Single-objective test functions Chen, Liu, Zhang et al. 

2017 Single-objective test functions Chen, Liu, Zhang et al. 

2018 Single-objective test functions Chen, Liu, Zhang et al. 

2020 Single-objective test functions Kumar, Wu, Ali et al.

min f (x) = f (x1, x2, . . . ,  xD) 
s.t. xi ∈ [−100, 100] 

(6.1) 

where D denotes the number of independent variables, x denotes the vector consisting 
of the independent variable xi, and f denotes the objective function. In order to avoid 
the minimum to be located in the center of the feasible space, researchers use trans-
lation to transform the minimum to the center of the feasible space. For example, 
x0 is used to denote the location of the translation. According to the knowledge of 
geometry, coordinate transformations include translation, rotation and scaling trans-
formations. These three transformations can be used when constructing synthetic 
test functions, so that an EC method can be tested for translation invariance, rotation
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invariance and scaling invariance. The rotation transformation changes the shape of 
the objective function, while the scaling transformation allows the range of the inde-
pendent variables to be mapped to the same interval, e.g., [− 100, 100]. All three 
transformations can be implemented by operations such as matrix product, and they 
are not described here. 

The CEC2020 test function set includes 10 synthetic functions, as shown in 
Table 6.5. As can be seen from the table, only the first function is a single-peaked 
function, the rest are multi-peaked functions. The hybrid and composition functions 
are greatly increase the complexity of the problem, which brings a great challenge 
to EC methods. 

It should be noted that the competitions in recent years use fixed test functions. 
For example, the test functions in CEC2020 are from the CEC competitions in 2014 
and 2017. It may be that the hybrid and composition functions are too complex and 
the current EC methods have not yet solved these problems. Thus, the test set has 
not been changed and updated since 2020. 

The functions in the CEC2020 test set are built on 12 base functions, as follows: 

fb1(x) = x2 1 + 106 
D∑

i=2 

x2 i (6.2) 

where f b1 denotes the first base function. It is generally referred to as the Bent Cigar 
function. The second base function is: 

fb2(x) = 
D∑

i=1

(
x2 i − 10 cos(2π xi ) + 10

)
(6.3)

Table 6.5 Test set in CEC2020 

Number Function name Property 

1 Bent Cigar function Single-peaked 

2 Schwefel’s function Multi-peaked 

3 Lunacek bi-Rastrigin function Multi-peaked 

4 Expanded Rosenbrock and Griewank 
function 

Multi-peaked 

5 Hybrid function 1 Multi-peaked, non-separable 

6 Hybrid function 2 Multi-peaked, non-separable 

7 Hybrid function 3 Multi-peaked, non-separable 

8 Composition function 1 Multi-peaked, non-separable, 
asymmetrical 

9 Composition function 2 Multi-peaked, non-separable, 
asymmetrical 

10 Composition function 3 Multi-peaked, non-separable, 
asymmetrical 
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The second base function is also known as the Rastrigin function. The third base 
function is: 

fb3(x) = 
D∑

i=1

(
106
) i−1 

D x2 i (6.4) 

The third base function is also known as the highly conditional elliptic function. 
The fourth base function is: 

fb4(x) =
||||||

(
D∑

i=1 

x2 i

)2 
−
(

D∑

i=1 

xi

)2||||||

1 
2 

+
(
0.5 

D∑

i=1 

x2 i + 
D∑

i=1 

xi

)
/D + 0.5 (6.5) 

The fourth base function is also known as the HGBat function. The fifth base 
function is: 

fb5(x) = 
D∑

i=1

(
100
(
x2 i − xi+1

)2 + (xi − 1)2
)

(6.6) 

The fifth base function is also known as the Rosenbrock function. The sixth base 
function is: 

fb6(x) = 
D∑

i=1

(
x2 i 

4000

)
− 

Dπ

i=1 

cos

(
xi √
i

)
+ 1 (6.7) 

The sixth base function is also known as the Griewank function. The seventh base 
function is: 

fb7(x) = −20exp 

⎛ 

⎝−0.2 

┌||√
D∑

i=1 

x2 i /D 

⎞ 

⎠ − exp

(
D∑

i=1 

cos(2π xi )/D

)
+ 20 + e 

(6.8) 

The seventh base function is also known as the Ackley function, where e is the 
natural constant. The eighth base function is: 

fb8(x) =
|||||

D∑

i=1 

x2 i − D

|||||

1 
4 

+
(
0.5 

D∑

i=1 

x2 i + 
D∑

i=1 

xi

)
/D + 0.5 (6.9) 

The eighth base function is also known as the Happycat function. The ninth base 
function is:
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fb9(x) = 106 x2 1 + 
D∑

i=1 

x2 i (6.10) 

The ninth base function is also known as the Discus function. The tenth base 
function is: 

fb10(x) = min 

⎧ 
⎨ 

⎩ 

D∑

i=1

(
x̂i − μ0

)2 
, dD  + s 

D∑

i=1

(
x̂i − μ1

)2 
⎫ 
⎬ 

⎭ + 10 

⎛ 

⎝D − 
D∑

i=1 

cos
(
2π ̂zi
)
⎞ 

⎠ (6.11) 

where (6.11) contains the following parameters: 

μ0 = 2.5 (6.12) 

μ1 = −
/(

μ2 
0 − 1

)
/s (6.13) 

s = 1 − 1/
(
2 
√
D + 20 − 8.2

)
(6.14) 

x̂i = 2sgn(xi )yi + μ0 (6.15) 

y = 10(x − x0)/100 (6.16) 

ẑi = 2sgn(xi )yi (6.17) 

The tenth base function is also known as the Lunacek bi-Rastrigin function. The 
eleventh base function is: 

fb11(x) = 418.9829D − 
D∑

i=1 

g(zi ) (6.18) 

Among them: 

zi = xi + 420.968746 (6.19) 

g(zi ) = 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

zi sin

(
|zi |

1 
2

)
|zi ≤ 500| 

(500 − mod(zi , 500))sin
(√|500 − mod(zi , 500)|

)
− (zi−500)2 

10000D zi > 500 

(mod(|zi |, 500) − 500)sin
(√|500 − mod(|zi |, 500)|

)
− (zi−500)2 

10000D zi < −500 

(6.20) 

The eleventh base function is also known as the modified Schwefel function. The 
twelfth base function is:
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fb12(x) = g(x1, x2) + g(x2, x3) + . . .  + g(xD−1, xD) + g(xD, x1) (6.21) 

Among them: 

g
(
xi , x j

) = 0.5 +
(
sin2
(√

x2 + y2
)

− 0.5
)
/
((
1 + 0.001

(
x2 + y2

))2)
(6.22) 

The twelfth base function is also known as the extended Schaffer function. 
The functions in the CEC2020 test set are built on the twelve base functions 

mentioned above. For example, the first function in the CEC2020 test set is: 

f1(x) = fb1(M(x − x0)) + f0 (6.23) 

where M is a matrix, whose role is to perform a rotation transformation on the 
independent variable. × 0 is a vector, whose role is to perform a translation transfor-
mation on the independent variable. f 0 is a real number whose role is to perform a 
translation transformation on the objective function value. It can be seen that the first 
function, although single-peaked, makes the problem considerably more difficult 
after the translational and rotation transformations. 

The other functions in the CEC2020 test set are not introduced here. Interested 
readers should consult the relevant references. 

6.3 Evaluation of Continuous Optimization Problems 

To verify the performance of an EC method, it needs to be tested on some test 
functions, such as the CEC2020 test set. Multiple methods have to be tested in a fair 
environment in order to be able to compare method performance and draw meaningful 
conclusions. In this section, we continue to use the CEC2020 test set as an example 
to introduce the testing and evaluation EC methods. 

In the CEC2020 test set, all 10 problems can set the number of independent 
variables, i.e., the value of D. It is common to set D = 10 or D = 20. Moreover, the 
seventh function can also set D = 15; except the seventh function, other functions 
can also set D = 5 or  D = 15. it can be seen that this test set can only support the 
case of a small number of independent variables. For a larger number of independent 
variables, it is necessary to use other test sets. In this test set, the range of each 
independent variable is the same. The range of independent variables is set to [− 
100, 100]. 

The EC methods introduces randomness in the process of evolutionary iteration, 
so that the same method may obtain different results when run independently. In 
other words, a method may converge to different solutions in different runs. Then, 
for a test function or problem, the EC methods need to be run independently several 
times to obtain the average performance of the method in solving the problem. The 
recommended number of independent runs for the CEC2020 test set is 30.
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The termination condition is set to a fixed number of function valuations, i.e., the 
maximum number of functions that can be valued, denoted as MFE. For problems 
with a small number of independent variables, the MFE can be set to a small value; 
while for problems with a large number of independent variables, the MFE can be 
set to a large value. the recommended setting for the CEC2020 test set is MFE = 
50,000D. For example, for D = 10 or D = 20, the MFE can be set to 1,000,000 or 
10,000,000, respectively. 

The optimal solutions of the functions in the CEC2020 test set are all within the 
range of values of the independent variables. If the optimal solution is noted as x* and 
its corresponding optimal value is f * = (x*), then x* ∈ [− 100, 100]D. The optimal 
values of the functions in the test set are known, which makes it convenient to check 
whether the problem is solved. The CEC2020 test set recommends two conditions 
for the algorithm to terminate. One is to consume the given number of evaluations, 
i.e., to reach the MFE; the other is that the error from the optimal value is less than 
10–8, i.e., |f − f *| < 10–8. It should be noted that we consider the method to have 
found the optimal solution for this test function when the error from the optimal 
solution is less than 10–8, i.e., the error is considered to be 0 at this point. 

In addition, researchers found that the initial population has an impact on the final 
results of the EC methods. To eliminate this effect from initialization, the CEC2020 
test set recommends the use of a uniformly distributed random initialization method. 

In the optimization search process, we have to record the convergence process of 
the tested method. For example, at some appropriate number of iterations, the value 
of the current optimal function is recorded, and the expression is: 

t =
|
D 

k−15 
5 MF  E

|
, k = 0, 1, 2, . . .  ,  15 (6.24) 

where t denotes the current number of iterations, [·] indicating rounding down. It 
can be seen that in the process of finding the best, we have to record 16 function 
values. And the last one, i.e., at k = 15, we record the best solution found by the 
algorithm. This solution will be used to reflect the performance of the algorithm. It 
should be noted that the optimal value of each function in the CEC2020 test set is 
known, so we use the error between the best function value found by the EC method 
and the optimal value, i.e., f - f *, in presenting the final results. 

Example 6.2 Suppose we use the PSO algorithm to solve for the functions in the 
CEC2020 test set with D = 10, 15 and 20. Please analyze the effect of the PSO 
algorithm. 

Solution The CEC2020 test set has been introduced in Sect. 6.2. The PSO algorithm 
has been introduced in Sect. 5.5. In this example, we use the PSO algorithm on the 
CEC2020 test set, and the results are given in Table 6.6.

Table 6.6 gives the error between the best solution found by the PSO algorithm 
and the optimal value of the corresponding function. In Table 6.6, the second column 
shows the minimum error (min) for each function; the third column shows the
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Table 6.6 Results of the PSO algorithm on the CEC2020 test set with D = 10 
f Min. Max. Med. Mean. Std. 

f 1 3.91 9682.58 3191.66 3853.33 3150.56 

f 2 6.89 373.26 146.58 132.15 89.17 

f 3 2.61 20.56 14.40 13.45 4.35 

f 4 0.48 1.67 0.87 0.89 0.25 

f 5 70.36 4181.66 1124.23 1437.18 1179.66 

f 6 0.04 135.20 0.71 10.64 31.65 

f 7 0.00 142.95 16.78 32.48 47.40 

f 8 0.00 104.16 101.92 95.64 24.08 

f 9 100.00 345.19 338.28 330.47 42.95 

f 10 398.08 446.18 398.51 409.40 19.87

maximum error (max) for each function; the fourth column shows the median error 
(med) for each function; the fifth column shows the mean error for each function; and 
the sixth column shows the standard deviation (std) of the error for each function. 
From these results, it is clear that the PSO algorithm is able to find near-optimal 
solutions when solving problems f 4, f 6, f 7 and f 8. However, the PSO algorithm does 
not find the optimal solution in every run. The standard deviation of the method is 
particularly large when solving problems f 1 and f 5, which indicates that the method 
is not suitable for solving similar problems or that the performance of the algorithm 
is not stable on such problems. 

Similarly, Tables 6.7 and 6.8 give the cases where the PSO algorithm solves the 
CEC2020 test set for D = 15 and D = 20, respectively. As can be seen from the 
tables, the PSO algorithm in dimension D = 20 for solving function f 1 finds a better 
value than D = 15; while for function f 5 and function f 7, the PSO algorithm finds a 
better value than D = 20 in dimension D = 15. It can be seen that a consistent law 
of variation cannot be derived from the results of these two dimensions. A specific 
analysis of the same function with different D values is required.

According to the time slots defined in (6.24), we can record the 16 error values of 
the PSO algorithm. After 30 independent runs, we can calculate the median of the 
16 error values from the 30 times, which can reflect the convergence process of the 
PSO algorithm, as shown in Fig. 6.4.

As can be seen in Fig. 6.4, from the initial to 2000 function valuations, the PSO 
algorithm consistently finds a better solution at each iteration, so the error decreases 
very quickly. After this, the convergence curve tends to flatten out. As seen in 
Table 6.6, the PSO algorithm does not find a global optimal solution for f 1. This  
indicates that the algorithm cannot find a better solution and is likely to be trapped 
in a local optimal solution. Although we set the number of function valuations to 
1,000,000, the number of valuations for the PSO algorithm to converge to a locally 
optimal solution is actually much smaller than the number of termination conditions.
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Table 6.7 Results of the PSO on the CEC2020 test set with D = 15 
f Min. Max. Med. Mean. Std. 

f 1 165.19 20,519.06 3798.11 5926.09 5587.57 

f 2 7.00 495.26 186.90 228.08 112.13 

f 3 1.56 25.61 18.96 15.67 7.83 

f 4 0.45 1.65 1.00 1.04 0.28 

f 5 59.78 641.68 252.08 252.51 127.86 

f 6 0.43 266.50 28.11 51.53 62.48 

f 7 4.47 384.25 126.45 160.65 98.37 

f 8 100.00 617.62 100.97 130.91 103.64 

f 9 337.61 399.24 393.10 391.34 10.46 

f 10 400.00 400.00 400.00 400.00 0.00 

Table 6.8 Results of the PSO algorithm on the CEC2020 test set with D = 20 
f Min. Max. Med. Mean. Std. 

f 1 0.23 788.90 99.36 185.49 214.92 

f 2 18.41 744.52 207.02 257.77 177.68 

f 3 5.25 33.44 24.14 22.04 8.55 

f 4 0.68 3.33 1.42 1.57 0.52 

f 5 414.93 89,974.94 10,494.36 15,520.28 18,114.02 

f 6 0.47 128.15 4.32 16.11 36.79 

f 7 102.63 3742.68 839.09 1256.37 1082.77 

f 8 52.77 1169.85 101.27 272.52 355.79 

f 9 100.00 457.38 425.89 416.58 59.58 

f 10 400.64 459.80 416.06 417.11 9.41

Thus, we could terminate the algorithm after a small number of function evaluations 
when solve real-world application problems. 

The CEC2020 test set also gives a way to calculate the complexity of the algorithm. 
This method is performed only on the function f 7. Since this function f 7 only supports 
D = 10, 15 and 20, the computational complexity of the PSO algorithm is shown in 
Table 6.9.

In Table 6.9, the second column shows the running time T0, which is the time 
consumed to run the following programs:

t0 = tic; 
x = 0.55; 
for i = 1:1000000 

x = x + x; 
x = x / 2;  
x = x * x;
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Fig. 6.4 Convergence curve of the PSO algorithm on f 1 with D = 20

Table 6.9 Complexity of the PSO algorithm 

D T0 T1 T2 Complexity 

10 0.0154 0.1740 0.2884 7.4286 

15 0.0152 0.2421 0.3979 10.2780 

20 0.0168 0.3180 0.5040 11.0433

x = sqrt(x);
x = log(x); 
x = exp(x); 
x = x / (x  + 2); 

end 
T0 = toc(t0); 

It can be seen that T0 is the calculation of some basic elementary function. The 
running time T1 in the third column of Table 6.9 is the time spent running the 
following programs: 

t0 = tic; 
D = 20; 
rng(‘shuffle’); 
xlb = −  100; 
xub = 100; 
fhd = str2func(‘cec20_func’); 
fid = 7; 
x = xlb + rand(200,000,D)*(xub-xlb); 
fx = feval(fhd, x’, fid); 
T1 = toc(t0);
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The third to last row and second to last row of the above program are the eval-
uation of the function f 7. They are programmed in a matrix fashion; i.e., a number 
of candidate solutions are first created to form a matrix. Each row of the matrix 
is a candidate solution of the problem. All the candidate solutions are evaluated at 
once. In addition, it is also possible if the EC method uses a vector or single vari-
able programming approach. It is important to note that the computer runtime is 
faster using the matrix programming approach. Thus, readers may obtain different 
complexity by using different programming approach. 

The forth column is the running time T2. The associated time is computed by the 
following programs: 

T2 = zeros(1,5); 
for jrun = 1:length(T2) 

t0 = tic; 
FuncOpt = [100,1100,700,1900,1700,1600,2100,2200,2400,2500]; 
VTR = 1e-8; 
D = 20; 
MFE = 200,000; 
rng(‘shuffle’); 
xlb = −100; 
xub = 100; 
popsize = 100; 
fhd = str2func(‘cec20_func’); 
fid = 7; 
[tmp1,tmp2,tmp3,tmp4] = PSO(fhd,D,popsize,MFE,xlb,xub,FuncOpt(fid), 

VTR,fid); 
T2(jrun) = toc(t0); 

end 
T2 = mean(T2); 

The above program is the PSO algorithm executed 5 times independently to solve 
the function f 7. Then the results after 5 times are averaged to obtain T2. 

The last column in Table 6.9 shows the computational complexity of the PSO 
method, which is computed by: 

cPSO  = 
(T2 − T1) 

T0 
(6.25) 

where cPSO  denotes the computational complexity of the PSO algorithm. If other EC 
methods are used, it is only necessary to change the PSO algorithm to other methods. 
Thus, we can compute complexity of any EC method based on (6.25). 

In addition to the above computational complexity calculation methods, the 
complexity of an EC method can be analyzed theoretically. Taking the PSO algo-
rithm as an example. Suppose that the complexity of the random number generator is 
not considered, and only the addition, subtraction and multiplication computations 
of the PSO algorithm are considered. The population size of the PSO algorithm is
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Np, the dimension is D, and the number of generations of evolution is Ng. From  
Eq. (5.8), it can be seen that 4D addition, subtraction and 4D multiplication opera-
tions are required for the velocity update of each particle. The position update for 
each particle requires D addition operations from Eq. (5.9). Therefore, the number 
of arithmetic operations required for each particle update is about 9D. In each gener-
ation, the PSO algorithm needs to update the position for each particle. At the end of 
each generation, the PSO algorithm requires about 9DNp arithmetic operations. And 
after all evolved generations, the PSO algorithm requires about 9DNpNg arithmetic 
operations. Therefore, the computational complexity of the PSO algorithm is about 
O(DNpNg) in theory. 

Readers can do their own theoretical analysis of the computational complexity 
of other EC methods such as GA and ACO. Most EC methods have a theoretical 
computational complexity of at least O(DNpNg). Clearly, this conclusion may be 
controversial. At least it is a scheme to analyze the complexity of EC methods. 

Example 6.3 Suppose we use the DE algorithm to solve for the functions in the 
CEC2020 test set with D = 10, 15 and 20. Please analyze the effect of the DE 
algorithm. 

Solution The CEC2020 test set has been introduced in Sect. 6.2. The DE algorithm 
has been introduced in Sect. 5.6. The classical DE algorithm can solve continuous 
optimization problems. In this example, we use the DE algorithm on the CEC2020 
test set, and the results are given in Tables 6.10, 6.11 and 6.12. 

Table 6.10 shows the results on CEC2020 test set with D = 10. Table 6.11 shows 
the results on CEC2020 test set with D= 15. Table 6.12 shows the results on CEC2020 
test set with D = 20. As can be seen from the tables, the DE algorithm is able to find 
the optimal solution for the function f 1 in different dimensional cases. In addition, 
although the optimal solution of function f 7 cannot be found, the DE algorithm 
performs better than the PSO algorithm on this function.

Table 6.10 Results of the DE algorithm on the CEC2020 test set with D = 10 
f Min. Max. Med. Mean. Std. 

f 1 0.00 0.00 0.00 0.00 0.00 

f 2 76.20 268.16 196.98 192.15 52.98 

f 3 14.19 19.39 17.37 17.15 1.32 

f 4 0.87 1.51 1.22 1.22 0.15 

f 5 0.11 3.45 1.45 1.54 0.94 

f 6 0.02 0.31 0.05 0.09 0.09 

f 7 0.00 0.01 0.00 0.00 0.00 

f 8 100.00 100.00 100.00 100.00 0.00 

f 9 100.00 340.62 336.14 312.69 70.92 

f 10 397.74 445.80 398.15 416.34 22.41
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Table 6.11 Results of the DE algorithm on the CEC2020 test set with D = 15 
f Min. Max. Med. Mean. Std. 

f 1 0.00 0.00 0.00 0.00 0.00 

f 2 157.24 609.03 375.16 363.04 118.15 

f 3 20.93 30.06 27.01 26.84 1.86 

f 4 1.99 2.81 2.47 2.45 0.21 

f 5 50.26 107.77 75.69 75.11 12.46 

f 6 0.31 7.41 0.68 0.84 1.23 

f 7 0.35 1.59 0.66 0.69 0.25 

f 8 100.00 100.00 100.00 100.00 0.00 

f 9 389.68 390.40 389.68 389.72 0.14 

f 10 400.00 400.00 400.00 400.00 0.00 

Table 6.12 Results of the DE algorithm on the CEC2020 test set with D = 20 
f Min. Max. Med. Mean. Std. 

f 1 0.00 0.00 0.00 0.00 0.00 

f 2 430.91 795.42 582.21 592.41 91.65 

f 3 33.90 45.42 40.33 40.33 2.22 

f 4 3.26 4.68 4.13 4.10 0.38 

f 5 273.60 588.14 387.97 384.52 67.62 

f 6 0.20 0.63 0.50 0.45 0.12 

f 7 0.53 1.73 1.01 1.01 0.21 

f 8 100.00 100.00 100.00 100.00 0.00 

f 9 436.02 458.85 448.68 447.37 5.96 

f 10 413.66 413.66 413.66 413.66 0.00

From Tables 6.10, 6.11 and 6.12, it can be seen that the standard deviation of the 
DE algorithm on each function is not large. This indicates that the DE algorithm 
has good stability, i.e., the optimal solutions found do not differ much when run 
independently for many times. Even in solving some problems, it is only necessary 
to run the method once to find the appropriate solution without repeatedly running 
it many times.
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6.4 Artificial Bee Colony Algorithm 

In the Chap. 5, we introduced the GA, ACO, PSO and DE algorithms, all of which 
are EC methods proposed before 2000. In this chapter, we will introduce the EC 
methods proposed after 2000. In this section, we want to introduce the artificial bee 
colony (ABC) algorithm and summarize the research related to the ABC algorithm. 

Swarm intelligence (SI) is the urgent collective behavior of decentralized, self-
organizing systems. The ACO, ABC and PSO algorithms are all commonly used SI 
methods. Obviously, the name of each algorithm indicates the source of inspiration 
for the algorithm. SI systems usually consist of a group of individuals, and simulate 
the behavior of a group of individuals. For example, the ACO algorithm simulates a 
group of ants, and the individuals are ants; the PSO algorithm is a group of particles, 
and the individuals are some kinds of particles; the ABC algorithm is a group of 
bees, and the individuals are bees. 

Next, we present the classical ABC algorithm, which was proposed by Karaboga 
in 2005 and simulates the foraging behavior of a honeybee colony. It is one of the 
most prominent methods in the field of bee-inspired SI methods. 

The ABC algorithm contains three groups of artificial bees. They are employed 
bees, onlooker bees and scout bees. As other SI methods, the ABC algorithm has 
an initialization phase. After initialization, one cycle of the ABC algorithm includes 
the employed bee phase, the onlooker bee phase and the scout bee phase, which are 
described in detail below. 

In the initialization phase of the ABC algorithm, a colony (population) of Np 
solutions is created randomly, where Np denotes the population size. For the ABC 
algorithm, the solution of the problem to be solved is compared to a food source, 
which attracts bees to collect nectar and make honey. Accordingly, the value of the 
fitness corresponding to the solution corresponds to the amount of nectar from one 
food source. As with the minimization problem study, a small value of the function 
implies a large amount of nectar. 

In the employed bee phase, Np hired bees are sent out to search for food sources 
with a 1:1 ratio of hired bees to food sources. Each hired bee flies out of the hive 
to search for a food source. This has the advantage that the colony size is fixed and 
conforms to the population configuration of the EC method. In the ABC algorithm, a 
hired bee searches for more nectar around the relevant food source, and this behavior 
is achieved by the following equation: 

vi, j =
{
xi, j + ϕ

(
xi, j − xr1, j

)
, if j = j1 

xi, j , otherwise 
(6.26) 

where vi,j, xi,j and xr1,j is the j-th element of vi, xi, and xr1, respectively; ϕ ∈ [− 1, 1] 
is a random number. j1 ∈ [1, D] and r1 ∈ [1, Np] are random integers. vi is the newly 
generated candidate solution. After evaluating vi, a greedy selection is performed 
between vi and xi and the winner is stored as the new xi.
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Algorithm 6.1 Pseudocode for the ABC algorithm 

Number Pseudo-code of the ABC algorithm 

1 /* initialization phase*/ 

2 For i = 1 to  Np 

3 For j = 1 to  D 
4 xi, j = x j,min + rand(0, 1) × (x j,max − x j,min

)
; 

5 Evaluate xi, compute its fitness f i ti (i = 1, 2, …, Np) 

6 Set iter = Np, limit = [limit1, limit2, . . . ,  limitNp] = [0, 0, …, 0]  

7 While iter < MFE  

8 /* employed bee phase*/ 

9 For i = 1 to  Np 

10 j1 = randInt(1, D); 
11 Do r1 = randInt(1, Np); while(r1 = =  i); 
12 ϕi, j1 = rand(−1, 1); 
13 For j = 1 to  D 

14 If j = =  j1, vi, j = xi, j + ϕi, j1
(
xi, j − xr1, j

)
; 

15 Else vi, j = xi, j ; 
16 Evaluatevi , compute its fitness, set iter = iter + 1; 
17 If f (vi ) < f (xi ) 
18 Replace xi by vi ; 

19 Replace f (xi ) by f (vi ), replace f i txi by f i tvi ; 
20 limiti = 0; 
21 Else limiti = limiti + 1; 
22 /* onlooker bee phase */ 

23 Compute probability pi of food sources; 

24 For i = 1 to  Np 

25 Use roulette wheel method to choose xr1 based on pi ; 

26 j1 = randInt(1, D); 
27 Do r2 = randInt(1, Np); While(r2 = =  r1); 
28 ϕi, j1 = rand(−1, 1); 
29 For j = 1 to  D 

30 If j = =  j1, vi, j = xr1, j + ϕi, j1
(
xr1, j − xr2, j

)
; 

31 Else vi, j = xr1, j ; 
32 Evaluate vi , compute its fitness, set iter = iter + 1; 
33 If f (vi ) < f (xr1) 
34 Replace xr1 by vi ; 

35 Replace f (xr1) by f (vi ), replace f i txr1 by f i tvi ; 
36 limitr1 = 0;

(continued)
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(continued)

Number Pseudo-code of the ABC algorithm

37 Else limitr1 = limitr1 + 1; 
38 /* scout bee phase */ 

39 For i = 1 to  Np 

40 If limiti > limit  

41 For j = 1 to  D 

42 vi, j = x j,min + rand(0, 1) × (x j,max − x j,min
)
; 

43 Evaluate xi , compute its fitness, set iter = iter + 1; 
44 Replace xi by vi ; 

45 Replace f (xi ) by f (vi ), replace f i txi by f i tvi ; 
46 limiti = 0; 

In the onlooker bee phase, a total of Np onlooker bees was dispatched. This 
number was equal to the colony size in the employed bee phase. However, unlike the 
hiring bee stage, the onlooker bees selected their food source based on their nectar 
amount. A food source with a high fitness value attracted more onlooker bees; while 
a food source with a low fitness value was less attractive or even unattractive to 
the onlooker bees. This suggests that a good food source (high amount of nectar) 
can attract multiple onlooker bees, while a bad food source (low amount of nectar) 
can barely attract an onlooker bee. In the ABC algorithm, this behavior is achieved 
by first calculating the probability value of each solution (food source); then the 
solution is selected using a roulette wheel method. The probability value of solution 
xi is calculated by the following equation: 

pi = f i ti
∑Np 

j=1 f i t j 
(6.27) 

where the value of the f i ti for xi is calculated by: 

f i ti =
{
1/(1 + f (xi )), if f (xi ) ≥ 0 
1 + | f (xi )|, otherwise 

(6.28) 

After selecting a solution, the onlooker bee uses (6.26) to modify that solution. 
A greedy selection is then performed between the newly generated solution and the 
old one. The winner is stored as the new xi. 

If a food source has been searched for a long time, its nectar amount will decrease 
and it may be abandoned by the bees. In this case, the bee must fly out to find a new 
food source. In the ABC algorithm, a predefined parameter called limit is introduced 
to determine whether a food source should be abandoned or not. If a solution cannot 
be further improved in a limited time, then it should be abandoned and the employed
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bee becomes a scout bee. The discarded solution is replaced by a randomly generated 
solution. This is the scout bee phase of the ABC algorithm. 

The pseudo-code of the ABC algorithm is shown in Algorithm 6.1. In the algo-
rithm, rand(Min, Max) generates a uniformly distributed random number between 
Min and Max; randInt(Min, Max) generates a uniformly distributed random integer 
between Min and Max. Researchers have implemented the ABC algorithm in 
several programming languages. The source code can be downloaded for free from 
Karaboga’s personal website. 

The performance of the ABC algorithm has been compared with other heuristic 
algorithms such as the PSO, GA and DE algorithms. Simulation results show that the 
ABC algorithm outperforms the above algorithms for some problems. In addition, 
the ABC algorithm is also effective for large-scale problems. 

Due to the success of the ABC algorithm, many researchers have tried to improve 
its performance in recent years. Similar to the functional of the PSO algorithm, 
Diwold et al. proposed to use the global optimal solution found so far to generate 
new candidate solutions, called ABCgBest. Inspired by the PSO algorithm, Zhu et al. 
proposed the GABC (Gbest-guided ABC) algorithm, which uses the information of 
the global optimal solution to guide the search. Inspired by the DE algorithm, Gao 
et al. proposed an improved ABC algorithm in which the bees search only around the 
optimal solution of the previous iteration. Banharnsakun et al. proposed the “best-
so-far” ABC (BABC), which biases the direction of the solution toward the best 
position to date. The above works attempt to speed up the search process of the ABC 
algorithm by using the global optimal solution. However, the use of global optimal 
solutions increases the exploitation pressure of the algorithm and has a high risk of 
premature convergence. 

Since the ABC algorithm does not use crossover operators like the GA or DE 
algorithms, it is not very efficient to propagate good information between solutions. 
Recently, some modifications have been made to the original ABC algorithm by 
combining it with crossover operators like the GA, DE or Hooke-Jeeves pattern 
search algorithms to remedy this situation. In addition, the ABC algorithm has been 
combined with the agent model and the finite element method in order to search the 
global optimum more efficiently. 

The ABC algorithm has been applied to practical problems such as training of 
neural networks, clustering, image segmentation, structural design, and inverse elec-
tromagnetic field problems. In recent years, the ABC algorithm has been extended 
to solve multi-objective design optimization problems. A comprehensive review and 
discussion of the ABC algorithm has also been conducted by researchers. 

The ABC algorithm simulates the foraging behavior of honeybees. It is one of 
the most prominent approaches in the field of bee-inspired methods. We observe 
that the paradigm of the ABC algorithm involves two algorithm parameters (i.e., Np 
and limit). Compared with the paradigm of the DE algorithm, the ABC algorithm 
contains a smaller number of parameters. Thus, the ABC algorithm is also popular 
among researchers, and interested readers can discover more variant methods based 
on it.
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Example 6.4 Suppose we use the ABC algorithm to solve for the functions in the 
CEC2020 test set with D = 10, 15 and 20. Please analyze the effect of the ABC 
algorithm. 

Solution The CEC2020 test set has been introduced in Sect. 6.2. The ABC algorithm 
can solve continuous optimization problems, and we use it to solve the functions in 
the CEC2020 test set. The results on the test set are shown in Tables 6.13, 6.14 and 
6.15, where Table 6.13 shows the results for functions with D = 10, Table 6.14 shows 
the results for functions with D = 15, and Table 6.15 shows the results for functions 
with D = 20. 

From Tables 6.13, 6.13 and 6.15, it can be seen that the ABC algorithm has worse 
results than the DE algorithm and the PSO algorithm on function f 5 and function 
f 7. While the ABC algorithm has better results than the PSO algorithm on function 
f 1, and the ABC algorithm has better results than the DE algorithm and the PSO

Table 6.13 Results of the ABC algorithm on CEC2020 test set with D = 10 
f Min. Max. Med. Mean Std. 

f 1 3.07 71.95 20.61 25.66 17.58 

f 2 8.85 46.99 24.01 23.93 9.05 

f 3 9.59 16.60 14.52 14.44 1.48 

f 4 0.18 1.07 0.62 0.61 0.23 

f 5 1475.77 68,732.30 14,463.95 19,220.44 16,100.46 

f 6 0.44 1.95 1.11 1.15 0.39 

f 7 305.01 5684.78 1173.59 1321.70 1053.18 

f 8 7.52 33.80 25.19 24.39 6.27 

f 9 31.27 100.00 54.79 61.81 20.93 

f 10 116.24 181.37 135.48 138.26 17.15 

Table 6.14 Results of the ABC algorithm on CEC2020 test set with D = 15 
f Min. Max. Med. Mean Std. 

f 1 49.73 514.58 230.36 241.34 131.24 

f 2 4.15 123.33 22.07 28.92 24.30 

f 3 15.43 19.72 18.35 18.23 1.05 

f 4 0.28 0.83 0.60 0.61 0.15 

f 5 4687.85 109,004.95 38,418.16 40,191.92 25,590.43 

f 6 6.85 38.04 18.14 19.84 8.04 

f 7 1713.00 26,334.04 6997.12 9080.88 6217.21 

f 8 4.84 51.07 29.38 29.92 8.39 

f 9 94.09 131.20 116.01 116.47 7.51 

f 10 176.74 400.00 251.13 269.38 72.77
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Table 6.15 Results of the ABC algorithm on CEC2020 test set with D = 20 
f Min. Max. Med. Mean Std. 

f 1 0.52 20.28 5.33 6.39 4.51 

f 2 2.35 13.14 6.71 7.29 2.60 

f 3 22.03 24.34 23.15 23.16 0.67 

f 4 0.36 1.06 0.83 0.77 0.19 

f 5 40,078.49 151,126.43 84,534.70 87,954.17 29,422.54 

f 6 0.36 0.99 0.73 0.71 0.14 

f 7 2319.70 41,424.00 20,244.38 19,670.52 9740.16 

f 8 53.53 100.00 79.22 80.46 11.18 

f 9 70.67 104.01 102.53 100.52 7.50 

f 10 399.49 400.16 399.83 399.83 0.17

algorithm on functions f 8, f 9 and f 10. This indicates that each of the three EC methods 
has its own advantages and disadvantages. From this perspective, readers can try to 
fuse these three algorithms, for example, using an integrated learning approach, to 
obtain an improved algorithm with better performance on the CEC2020 test set. 

6.5 Fireworks Algorithm 

Fireworks Algorithm (FWA) is a SI optimization method [2]. The method is inspired 
by the explosion of fireworks in the night sky. It generates sparks by simulating the 
explosion of fireworks to illuminate a part of the night sky. The FWA was proposed 
by Tan of Peking University in 2010 [3]. 

The flow of the FWA is shown in Fig. 6.5. In the fireworks algorithm, we need to 
generate N random locations of fireworks in the search space. One firework corre-
sponds to a feasible solution of the problem. Based on the fitness, we can assign 
resources to each firework and thus control the explosion behavior of the fireworks. 
Each firework is assigned a blast radius and the number of sparks it can produce. Then, 
each firework explodes, producing the corresponding number of sparks. A Gaussian 
mutation operation is then applied to the generated sparks for a better search. The 
FWA also has a selection operation to choose N new fireworks locations from the 
three sets of feasible solutions: fireworks, exploding sparks, and Gaussian variant 
sparks. The above steps are cycled until the algorithm terminates. The above steps 
are the flow of the FWA, and we next describe in detail how each step is computed.

Assigning a radius to each firework that can explode, the blast radius of firework 
i is calculated as follows: 

Ri = R 
fi − ymin + ε

∑N 
j=1

(
f j − ymin + ε

) (6.29)
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Fig. 6.5 Flow chart of the 
fireworks algorithm

where R is the average blast radius, fi is the adaptation of the i-th firework, ymax is 
the minimum value of the firework adaptation, and ε is the smallest value that the 
computer can represent, which avoids numerical problems. 

Assigning the number of sparks that can be produced to each firework, the number 
of sparks that can be produced by firework i is calculated as follows: 

Si = M 
ymax − fi + ε

∑N 
j=1

(
ymax − f j + ε

) (6.30) 

where M is a constant that represents the total number of sparks and is the maximum 
value of the fireworks adaptation. Besides (6.30), the number of sparks is additionally 
limited by:
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Si = 

⎧ 
⎨ 

⎩ 

round(aM), i f  Si < aM  
round(bM), i f  Si > bM 
round(Si ), otherwise  

, 0 < a < b < 1 (6.31) 

where a and b are constants. 
Every firework has the potential to produce sparks. The formula for the explosive 

sparks produced by firework i is as follows: 

xi = xi + Rirand(−1, 1) (6.32) 

where Ri is the blast radius of the firework xi , which rand(−1, 1) is a uniformly 
distributed random number between 1 and 1. It should be noted that in (6.32), a 
number of dimensions are randomly selected from the D-dimensional search space 
for each search, and not all dimensions are updated. 

A number of sparks are selected for mutation from the exploding sparks. The 
equation for the generation of Gaussian mutation sparks by spark i is as follows: 

xi = xi N (1, 1) (6.33) 

where N (1, 1) is a Gaussian distributed random number with mean 1 and variance 
1. Note that N sparks are randomly selected from the exploded sparks for mutation. 
An operation called Gaussian mutation of sparks, where the positions are scaled by 
multiplying the original position by a Gaussian distributed random number. Gaussian 
mutation is also performed by randomly selecting a number of dimensions from the 
D-dimensional search space, and not all dimensions are updated. 

If an exploding spark or a Gaussian variant spark gets a position that is beyond 
the upper and lower bounds of the search space, it needs to be transformed into the 
feasible region by the following equation: 

xi = xlb  + xi %(xub − xlb) (6.34) 

where xlb  is the lower bound of xi , the  xub is upper bound of xi , and % indicates the 
remainder operation. 

The selection phase of the FWA is to select N new fireworks positions from three 
sets of feasible solutions: fireworks, exploding sparks, and Gaussian variant sparks. 
The probability of fireworks and sparks being selected is calculated as follows: 

p(xi ) = 
R(xi )∑
R
(
x j
) (6.35) 

where xi denotes a firework, explosive spark, or Gaussian variant spark, and R(xi ) 
denotes the sum distances of xi to other fireworks or sparks. Euclidean distances are 
generally used here.
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In the standard FWA, the default value of N is 5, the default value of R is 40, the 
default value of M is 50, the default values of a and b are 0.04 and 0.8, respectively, 
and the number of Gaussian variant sparks is 5. It can be seen that the FWA contains 
six hyperparameters. The number of its hyperparameters is greater than that of the 
GA, the PSO algorithm, the DE algorithm, and the ABC algorithm. 

In recent years, researchers have proposed many optimization algorithms for SI. 
In addition to the FWA (2010), the SI methods include the brain storm optimization 
(BSO) algorithm (2011) [4], and the pigeon-inspired optimization (PIO) algorithm 
(2014) [5]. The FWA is a SI optimization method that simulates the physics of lighting 
fireworks. The BSO algorithm simulates the human group behavior and proposes a 
SI optimization method. The PIO algorithm is a SI optimization method proposed 
by simulating the biological phenomenon of pigeon population. 

6.6 Research Progress of Evolutionary Computing 

This section reviews the state-of-the-art research progress of evolutionary computing. 
These researches are classified to seven categories. They are genetic algorithm, ant 
colony optimization, particle swarm optimization, differential evolution, artificial 
bee colony, fireworks algorithm and other EC methods [6, 7]. 

(1) genetic algorithm 

With the exponential increase in the amount of data generated and processed daily 
in machine learning and decision-making systems, data preprocessing has become 
a key factor in building reliable and high-performance machine learning models. 
One of the functions of preprocessing is to use feature selection method to reduce 
variables; However, the processing time required for these methods is a major draw-
back. Mehanović et al. aimed to alleviate this problem by migrating the algorithm 
to a MapReduce implementation suitable for parallelization on a large number of 
commodity hardware units [8]. Hadoop was an open-source MapReduce library used 
as a framework for implementing parallel genetic algorithms. The feature selection 
method was applied to four datasets. The experimental results show that genetic algo-
rithm allows feature selection with enhanced randomness. Its parallelization reduces 
the overall data preprocessing and allows a larger population, which in turn leads 
to better feature selection. In practice, it has been shown that this implementation is 
superior to existing feature selection methods. 

Liang et al. proposed an image encryption algorithm based on Fibonacci Q-matrix 
and genetic algorithm [9]. A new four-layer encryption framework with diffusion 
perturbation diffusion optimization was adopted. The experimental results and secu-
rity analysis indicate that the algorithm not only has high security, but also has a 
certain degree of robustness and real-time performance, which is suitable for practical 
applications.
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The clustering of mixed numerical and categorical attributes has attracted many 
researchers due to its necessity in many practical applications. A key issue in clus-
tering mixed data is selecting appropriate distance metrics for each attribute type. In 
addition, some current clustering methods are sensitive to initial solutions and are 
prone to falling into local optima. Therefore, Nguyen et al. proposed a possibility 
weighted fuzzy c-means based on local search genetic algorithm (LSGA-PWFCM) 
for clustering mixed data [10]. The possibility weighted fuzzy c-means used object 
clustering similarity measure to calculate the distance between two mixed attributes. 
Genetic algorithm was used to find a set of optimal parameters and initial clustering 
centroids for the possibility weighted fuzzy c-means algorithm. In order to avoid 
local optima, a variable neighborhood based on local search was embedded in the 
genetic algorithm. Based on some common datasets, the proposed LSGA-PWFCM 
algorithm was compared with other benchmark algorithms. The experimental results 
show that the LSGA-PWFCM method outperforms other algorithms on most test 
datasets. 

With the improvement of quality parameters, a series of Internet of Vehicles (IoV) 
services have emerged. However, this field still faces some limitations, including 
resource constraints and time response requirements. Abbasi et al. proposed an algo-
rithm that used genetic algorithm for fault and cost management during resource 
allocation to services [11]. The main concept was to use genetic algorithm to select 
resources for services. In the first step, the proposed method determined the priority 
of the service and allocated resources based on these priorities. In the second step, 
the proposed method ensured load balancing of the message transmission path and 
avoided message failures. The performance of this method was evaluated using 
various parameters and showed to be superior to other evolutionary computing 
methods. In addition, the proposed method provides acceptable performance in terms 
of service response time. 

(2) ant colony optimization 

Luo et al. proposed an improved ant colony optimization algorithm to solve the 
problems of local optimization, slow convergence rate and low search efficiency 
[12]. The initial pheromone with unequal distribution was constructed to avoid blind 
search in early planning. The proposed algorithm used pseudo-random state transition 
rules to select paths, calculated state transition probabilities based on the current 
optimal solution and number of iterations, and adaptively adjusted the proportion 
of determined or randomly selected paths. The results show that compared with 
other ant colony optimization algorithms, the proposed algorithm improves global 
optimal search ability and convergence rate under different robot mobile simulation 
environments. 

Laser engraving is an important tool for automatic drawing and three-dimension 
(3D) printers. When laser engraving tasks become large and complex, the engraving 
process will be very time-consuming. In order to improve the time and energy effi-
ciency of laser engraving, trajectory optimization of laser engraving was studied 
by Wu et al. [13]. By transforming grayscale into halftone image, the trajectory of 
laser engraving robot was modeled as a large-scale TSP. In order to solve the TSP,
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a new two-layer ant colony optimization algorithm was proposed that combined 
k-means, top-level ant colony system, and low-level ant colony system. The experi-
mental results show that compared with traditional engraving methods, the proposed 
method can reduce laser engraving time by about 50%. 

In order to improve the accuracy and stability of ACO algorithm, a dynamic 
induced clustering ACO algorithm based on coevolutionary chain was proposed by 
Yu et al. [14]. First, the distribution of pheromone left by ants in small data clustering 
was divided according to the density to induce subsequent ants to choose, so as to 
balance convergence rate and solution accuracy. Second, the coevolutionary chain 
increased the diversity and stability of the algorithm through population coevolution 
and link dimensionality reduction. Simulation experiments show that the roposed 
ACO algorithm can effectively balance convergence rate and solution accuracy. 

(3) particle swarm optimization 

PSO is one of the most concerned meta-heuristic algorithms, which has remarkable 
performance in solving various optimization problems. However, PSO algorithm 
faces two main problems, namely slow convergence rate and local optimal capture. 
Shami et al. proposed a new idea called velocity pausing, in which the particles 
were supported by the third move option [15]. The velocity pausing allowed the 
particles to move at the same speed as the last iteration. In order to avoid premature 
convergence, velocity pausing particle swarm optimization (VPPSO) modified the 
first term of the velocity equation. In addition, the population of VPPSO was divided 
into two groups to maintain diversity. The performance of VPPSO was verified 
on 43 benchmark functions and 4 practical engineering problems. According to 
Wilcoxon rank-sum and Friedman test, VPPSO can significantly outperform the 
seven prominent algorithms in most test functions in low dimensional and high-
dimensional situations. 

Kiruthiga et al. proposed a new optimized deep learning (DL) network design for 
time series load forecasting [16]. Firstly, the super parameters of DL were optimized 
using Levy flight particle swarm optimization (LF-PSO) technology; Then, the opti-
mized DL model was used for load forecasting. The experimental and measured 
results indicate that the proposed method is efficient for short-term load forecasting. 

(4) differential evolution 

Resource allocation is very important in wireless communication systems. Zhang 
et al. investigated the spectrum allocation problem in a cellular network operating on 
an orthogonal frequency-division multiple access (OFDMA) system [17]. Network 
utility and fairness among all linked users were used to measure service quality in 
cellular network. The spectrum allocation was represented as a maximization opti-
mization model. The authors proposed an adaptive differential evolution algorithm 
based on fluctuation, denoted as WADE. The WADE algorithm adjusted the algo-
rithmic parameters through wave propagation. The simulation results show that the 
WADE algorithm is more effective than other algorithms for allocating spectrum 
resources in OFDMA system.
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Fusion is a state-of-the-art technology for observing behavioral patterns from time 
series data. The fusion model may become single model constraints due to feature 
limitations. Kumar et al. proposed a three-stage fusion model to process time series 
data [18]. In the first stage of integration, stock market inputs were combined with 
established technical indicators of the stock market. In the second stage, autore-
gressive integrated moving average and long short-term memory were combined to 
observe the linear and nonlinear characteristics of the final stock dataset. In the third 
stage, an improved artificial bee colony using differential evolution algorithm was 
studied for hyperparameter selection in the proposed model for stock market predic-
tion. The experiments on the historical datasets show that the proposed fusion model 
outperforms the benchmark model. 

(5) artificial bee colony 

The IoT provides humanity with a beautiful and intelligent landscape. The connection 
of various sensors and devices in the IoT will lead to significant energy consumption. 
Therefore, it is imperative to study energy-saving methods. For wireless sensors in 
an IoT, achieving sustainable operation through energy-saving methods is crucial 
due to limited batteries. Zhang et al. studied an IoT network that included wireless 
sensors and base stations [19]. Wireless power transmission technology was used 
for providing battery charging, and charging vehicles were responsible for power 
supply. The electricity and data transmission in the IoT network was represented as a 
minimization optimization problem. A three-stage restart artificial bee colony method 
was proposed by Zhang et al. for handling optimization problem. The experimental 
results show that the proposed method can be used to minimize consumption in the 
studied IoT network. 

Breast cancer is the most common cancer among women, and if not diagnosed 
early, it can lead to death. Early diagnosis plays a crucial role in reducing global 
mortality rates. Computer assisted diagnosis (CAD) can overcome the shortcomings 
of manual methods. The CAD system based on artificial neural network (ANN) is 
optimized by the meta-heuristic algorithms. Stephan et al. combined the employee 
bee stage of ABC with the bubble net attack method of whale optimization. Stephan 
et al. proposed a hybrid algorithm of artificial bee colony and whale optimization 
(HAW) [20]. The HAW algorithm was used for feature selection and parameter 
optimization of ANN. Simulation results show that the HAW using elastic back-
propagation learning achieved higher accuracy than other methods. 

The ABC algorithm has a drawback of imbalanced search behavior. Alrosan 
et al. introduced a new ABC algorithm, dentoed as MeanABC [21]. The MeanABC 
algorithm was based on the mean information of the previous best solution and 
achievd a balance in search behavior by modifying the search equation. The experi-
mental results show that compared with other ABC variants, the MeanABC algorithm 
enhances the performance of the original ABC in terms of faster convergence rate, 
better solution quality and better robustness. 

Satoh et al. utilized the ABC algorithm to solve the design problem of a discrete-
time stable unknown input estimator (UIE) based on parameter optimization [22]. 
First, a stability assurance design method for UIE was provided by Satoh et al.
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Next, a new objective function was developed, which combines waveform-based 
and norm-based performance standards to allow direct evaluation of the adverse 
impact of interference on system performance. Finally, the proposed design method 
was compared with the previous design method, using an objective function based 
on estimated disturbances. 

(6) fireworks algorithm 

As the main components of large industrial rolling equipment, rolling bearings have 
complex working conditions and are prone to malfunctions. The analysis of the 
initial weak signal can be suitable for identifying the suboptimal health status of 
industrial rolling equipment. Luo et al. proposed an offline suboptimal health recog-
nition algorithm based on refined composite multi-scale discrete entropy and extreme 
learning machine optimized by improved FWA [23]. First, FWA was improved by 
Cauchy mutation and adaptive dynamic explosion radius factor coefficients. Second, 
the initial vibration signal was processed by the improved parameter optimized 
maximum correlation kurtosis deconvolution. Finally, extreme learning machine 
was combined with deep belief network. The number of hidden nodes was opti-
mized using the improved FWA. The simulation results show that the proposed 
algorithm has higher suboptimal health recognition accuracy and has good industrial 
application prospects. 

In recent years, multimodal multi-objective optimization problems (MMOPs) 
have received increasing attention. Their goal is to find a Pareto front and as many 
equivalent Pareto optimal solutions as possible. Although some EC methods have 
been proposed, they mainly focus on the convergence rate in the decision space and 
ignore the diversity of solutions. Han et al. proposed a new multi-objective FWA 
[24]. Han et al. extended the latest single target FWA to handle MMOPs. Then, they 
incorporated adaptive strategies and special file guidance to update the location of 
the sparks. The experimental results show that the proposed algorithm outperforms 
comparative algorithms in solving MMOPs and imbalanced distance minimization 
problems in CEC2019. 

(7) other EC methods 

In brain storm optimization (BSO) algorithm, convergence operations use clustering 
strategies to group populations into multiple clusters, and divergence operations use 
this clustering information to generate new individuals. However, this mechanism 
is inefficient in regulating exploration and mining searches. Ma et al. analyzed the 
main factors that affected the performance of BSO [25]. They proposed an orthogonal 
learning framework to improve the learning mechanism of BSO. The experimental 
results show that the proposed method is effective in optimizing complex functions. 
It not only outperforms previous versions of the BSO algorithm, but also several 
well-known orthogonal design-based algorithms. 

Classification is one of the most classic problems in machine learning. Evolu-
tionary classification model is one of the methods to solve classification problems. In 
recent years, the FWA and BSO algorithms have been used to implement evolutionary
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classification models, and have achieved the desired results. However, existing evolu-
tionary classification models still have some shortcomings. The limited dataset makes 
the experimental results not convincing enough. More importantly, the structure of the 
evolutionary classification model is closely related to the dimensions of the dataset, 
which may lead to poor classification performance. Therefore, Xue et al. modified the 
structure of evolutionary classification models to improve classification performance 
[26]. First, they introduced the concept of feature selection, and used different feature 
subsets to construct the evolutionary classification model. Then, the evolutionary 
classification model was implemented using the BSO algorithm. The simulation 
results show that it is feasible to optimize the structure of evolutionary classification 
model by introducing feature selection. In addition, the proposed method has better 
classification performance than the original method. 

For multiple unmanned aerial vehicles (UAV) performing aerial search and attack 
missions, there is a trade-off between maximizing total benefits and minimizing 
consumption while constraining effectiveness. Duan et al. proposed a dynamic 
discrete pigeon-inspired optimization algorithm to handle cooperative search-attack 
mission planning for UAV [27]. The proposed algorithm integrated centralized task 
allocation and distributed path generation aspects of the problem. A solution accep-
tance strategy was proposed to avoid frequent task switching. Bayesian formulas 
were used to construct and update probability maps to guide subsequent search move-
ments. A response threshold sigmoid model was used for target allocation during the 
attack process. Numerical experiments have shown that the proposed method can 
provide feasible solutions for multiple UAV. 

Exercises 

(1) The TSPCN test set include seven TSP problems. The test set has been intro-
duced in Sect. 6.1. Try to use GA, PSO, DE, ABC or other EC methods to solve 
the TSPCN test set, and analyze the solutions obtained by different EC methods. 

(2) Section 6.5 introduces the FWA algorithm. Try to use the FWA algorithm to 
solve the CEC2020 test set, and analyze the performance of the FWA algorithm. 
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