

Unleashing the Power of TypeScript

Copyright © 2023 SitePoint Pty. Ltd.

Ebook ISBN: 978-1-925836-58-5

Author: Steve Kinney

Technical Editor: Sebastian Springer

Product Manager: Simon Mackie

English Editor: Ralph Mason

Cover Designer: Volodymyr Boyarinov

Notice of Rights

All rights reserved. No part of this book may be reproduced,

stored in a retrieval system or transmitted in any form or by

any means, without the prior written permission of the

publisher, except in the case of brief quotations embodied in

critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure

the accuracy of the information herein. However, the

information contained in this book is sold without warranty,

either express or implied. Neither the authors and SitePoint

Pty. Ltd., nor its dealers or distributors will be held liable for

any damages to be caused either directly or indirectly by

the instructions contained in this book, or by the software or

hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked

name as such, this book uses the names only in an editorial

fashion and to the benefit of the trademark owner with no

intention of infringement of the trademark.

Published by SitePoint Pty. Ltd.

71 Balmain Street, Cremorne, VIC, 3121

Australia

Web: www.sitepoint.com

Email: books@sitepoint.com

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-

to-understand content for web professionals. Visit

http://www.sitepoint.com/ to access our blogs, books,

newsletters, articles, and community forums. You’ll find a

stack of information on JavaScript, PHP, design, and more.

About the Author

Steve Kinney is the head of engineering for frontend and

developer tools at Temporal and an instructor with Frontend

Masters. Previously, Steve founded the front-end

engineering program at the Turing School of Software and

Design and was a New York City public school teacher for

the better part of a decade.

http://www.sitepoint.com/

Preface

Who Should Read This Book?

This book is for intermediate-level JavaScript developers

who want to get to grips with the powerful features that

TypeScript offers.

Conventions Used

Code Samples

Code in this book is displayed using a fixed-width font, like

so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all back at school.

</p>

You’ll notice that we’ve used certain layout styles

throughout this book to signify different types of

information. Look out for the following items.

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to

the topic at hand. Think of them as extra tidbits of

information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up

along the way.

Supplementary Materials

https://www.sitepoint.com/community/ are SitePoint’s

forums, for help on any tricky problems.

books@sitepoint.com is our email address, should

you need to contact us to report a problem, or for any

other reason.

https://www.sitepoint.com/community/

Chapter 1: Simplifying

Reducers in React with

TypeScript

Many of the example React applications we see tend to be

small and easily understandable. But in the real world, React

apps tend to grow to a scale that makes it impossible for us

to keep all of the context in our head. This can often lead to

unexpected bugs when a given value isn’t what we thought

it would be. That object you thought had a certain property

on it? It turns out it ended up being undefined somewhere

along the way. That function you passed in? Yeah, that’s

undefined too. That string you’re trying to match against? It

looks like you misspelled it one night when you were working

after hours.

Using TypeScript in a React application enhances code

quality by providing static type checking, which catches

errors early in the development process. It also improves

readability and maintainability through explicit type

annotations, making it easier for teams to understand the

code structure. Additionally, TypeScript features like

interfaces and generics make it easier to build robust,

scalable applications.

Large applications also tend to come with increasingly

complicated state management. Reducers are a powerful

pattern for managing state in client-side applications.

Reducers became popular with Redux, and are now built into

React with the useReducer hook, but they’re framework and

language agnostic. At the end of the day, a reducer is just a

function. Redux and React’s useReducer just add some

https://react.dev/learn/extracting-state-logic-into-a-reducer
https://react.dev/reference/react/useReducer

additional functionality to trigger updates accordingly. We

can use Redux with any frontend framework or without one

all together. We could also write our own take on Redux

pretty easily, if we were so inclined.

That said, Redux (and other implementations of the Flux

architecture that it’s based on) often get criticized for

requiring a lot of boilerplate code, and for being a bit

cumbersome to use. At the risk of making an unintentional

pun, we can leverage TypeScript not only to reduce the

amount of boilerplate required, but also to make the overall

experience of using reducers more pleasant.

Following Along with This Tutorial

You’re welcome to follow along with this tutorial in your own

environment. I’ve also created a GitHub repository that you

can clone, as well as a CodeSandbox demo that you can use

to follow along.

Reducer Basics

A reducer, at its most fundamental level, is simply a

function that takes two arguments: the current state, and an

object that represents some kind of action that has occurred.

The reducer returns the new state based on that action.

https://github.com/facebookarchive/flux
https://github.com/stevekinney/sitepoint-reducers
https://codesandbox.io/p/sandbox/typescript-redux-example-sitepoint-hjkzkg?file=%2Findex.html%3A1%2C1

The following code is regular JavaScript, but it could easily be

converted to TypeScript by adding any types to state and

action:

export const incrementAction = { type: 'Increment' };

export const decrementAction = { type: 'Decrement' };

export const counterReducer = (state, action) => {

 if (action.type === 'Increment') {

 return { count: state.count + 1 };

 }

 if (action.type === 'Decrement') {

 return { count: state.count - 1 };

 }

 return state;

};

let state = { count: 1 };

state = counterReducer(state, incrementAction);

state = counterReducer(state, incrementAction);

state = counterReducer(state, decrementAction);

console.log(state); // Logs: { count: 1 }

Repo Code

You can find the code above (01-basic-example) in the GitHub

repo for this tutorial.

Let’s review what’s going on in the code sample above:

We pass in the current state and an action.

If the action has a type property of "Increment", we

increment the count property on state.

If the action has a type property of "Decrement", we

decrement the count property on state.

If neither of the above two bullet points is true, we do

nothing and return the original state.

Redux requires an action to be an object with a type property,

as shown in the example above. React isn’t as strict. An

action can be anything—even a primitive value like a

number. For example, this is a valid reducer when using

useReducer:

const counterReducer = (state = 0, value = 1) => state + value;

In fact, if you’ve used useState in React before, you’ve really

used useReducer. useState is simply an abstraction of

useReducer. For our purposes, we’ll stick to a model closer to

Redux, where actions are objects with a type property, since

that pattern will work almost universally.

https://github.com/stevekinney/sitepoint-reducers/blob/main/src/01-basic-example.ts

The useReducer hook of Redux and React adds some extra

functionality around emitting changes and telling React to

update the state of a component accordingly—as opposed to

repeatedly setting a variable, as shown above—but the basic

principles are the same regardless of what library we’re

using.

Adding Types to Our Reducer

Adding TypeScript will protect us from some of the more

obvious mistakes—by making sure that we both pass in the

correct arguments and return the expected result. Both of

these situations can be a bit tricky to triage in our

applications, because they might not happen until after the

user takes an action—like clicking a button in the UI. Let’s

quickly add some types to our reducer:

type CounterState = { count: number };

type CounterAction = { type: string };

export const incrementAction = { type: 'Increment' };

export const decrementAction = { type: 'Decrement' };

export const counterReducer = (

 state: CounterState,

 action: CounterAction,

): CounterState => {

 if (action.type === 'Increment') {

 return { count: state.count + 1 };

 }

 if (action.type === 'Decrement') {

 return { count: state.count - 1 };

 }

 return state;

};

Repo Code

You can find the code above (02-reducer-with-types) in the

GitHub repo for this tutorial.

Let’s say that we forget to return state when none of the

actions match any of our conditionals. TypeScript has

analyzed our code and has been to told to expect that

counterReducer will always return some kind of CounterState. If

there’s even so much as a possibility that our code won’t

behave as expected, it will refuse to compile. In this case,

TypeScript has seen that there’s a mismatch between what

we expect our code to do and what it actually does.

We’ll also get the other protections we’ve come to expect

from TypeScript, such as making sure we pass in the correct

https://github.com/stevekinney/sitepoint-reducers/blob/main/src/02-reducer-with-types.ts

arguments and only access properties available on those

objects.

But there’s a more insidious (and arguably more common)

edge case that comes up when working with reducers. In

fact, it’s one that I encountered when I was writing tests for

the initial example at the beginning of this tutorial. What

happens if we misspell the action type?

let state: CounterState = { count: 0 };

state = counterReducer(state, { type: 'increment' });

state = counterReducer(state, { type: 'INCREMENT' });

state = counterReducer(state, { type: 'Increement' });

console.log(state); // Logs: { count: 0 }

This the worst kind of bug, because it doesn’t cause an error.

It just silently doesn’t do what we expect. One common

solution is to store the action type names in constants:

export const INCREMENT = 'Increment';

export const DECREMENT = 'Decrement';

This is where the typical boilerplate begins. Since JavaScript

can’t protect us from accidentally using a string that doesn’t

match any of the conditionals in our reducer, we assign

these strings to constants. Misspelling a constant or variable

name will prevent our code from compiling and make it

obvious that we have an issue.

Luckily, when we’re using TypeScript, we can avoid this kind

of boilerplate altogether.

Adding Payloads to Actions

It’s common for actions to contain additional information

about what happened. For example, a user might type a

query into a search field and click Submit. We would want to

know what they searched for in addition to knowing they

clicked the Submit button.

There are no hard and fast rules for how to structure an

action—other than Redux’s insistence that we include a type

property. But it’s a good practice to follow some kind of

standard like Flux Standard Action, which advises us put to

any additional information needed in a payload property.

Following this convention, our CounterAction might look

something like this:

type CounterAction = {

 type: string;

 payload: {

 amount: number;

 };

};

let state = counterReducer(

 { count: 1 },

 { type: 'Increment', payload: { amount: 1 } },

);

This is getting a bit complicated to type out. A common

solution is to create a set of helper functions called action

creators. Action creators are simply functions that format

our actions for us. If we wanted to expand counterReducer to

support the ability to increment or decrement by certain

amounts, we might create the following action creators:

export const increment = (amount: number = 1): CounterAction =>

({

 type: INCREMENT,

 payload: { amount },

});

export const decrement = (amount: number = 1): CounterAction =>

({

 type: DECREMENT,

https://github.com/redux-utilities/flux-standard-action

 payload: { amount },

});

Repo Code

You can find the code above (03-action-creators) in the GitHub

repo for this tutorial.

We’re also going to need to update our reducer to support

this new structure for our actions. This also feels like a good

opportunity to look at the example holistically:

export const INCREMENT = 'Increment';

export const DECREMENT = 'Decrement';

type CounterState = { count: number };

type CounterAction = {

 type: string;

 payload: {

 amount: number;

 };

};

type CounterReducer = (

 state: CounterState,

 action: CounterAction,

) => CounterState;

export const increment = (amount: number = 1): CounterAction =>

({

 type: INCREMENT,

 payload: { amount },

});

export const decrement = (amount: number = 1): CounterAction =>

({

 type: DECREMENT,

 payload: { amount },

});

export const counterReducer: CounterReducer = (state, action) =>

{

https://github.com/stevekinney/sitepoint-reducers/blob/main/src/03-action-creators.ts

 const { count } = state;

 if (action.type === 'Increment') {

 return { count: count + action.payload.amount };

 }

 if (action.type === 'Decrement') {

 return { count: count - action.payload.amount };

 }

 return state;

};

let state: CounterState = { count: 0 };

Using Unions

But wait, there’s more! We used some of the traditional

patterns to get around the issue where our reducer ignores

actions that it wasn’t explicitly told to look for, but what if we

could use TypeScript to prevent that from happening in the

first place?

Let’s assume that, in addition to being able to increment and

decrement the counter, we can also reset it back to zero.

This gives us three types of actions:

Increment

Decrement

Reset

We’ll start with Increment and Decrement and address Reset

later.

In the last section, we added the ability to increment or

decrement by a certain amount. Reseting the counter will be

a bit unusual — in that we can only ever reset it back to zero.

(Sure, I could have just created a Set action that took a

value, but I’m setting myself up to make a more important

point in a bit.)

Let’s start with our two known quantities: Increment and

Decrement. Instead of saying that the type property on an

action can be any string, we can get a bit more specific.

In 04-unions in our GitHub repo, I use the union of 'Increment'

| 'Decrement'. We’re now telling TypeScript that the type

property on a CounterAction isn’t just any string, but rather

that it’s one of exactly two strings:

type CounterAction = {

 type: 'Increment' | 'Decrement';

 payload: {

 amount: number;

 };

};

We get a number of benefits from this relatively simple

change. The first and most obvious is that we no longer have

to worry about misspelling or mistyping an action’s type.

You’ll notice that TypeScript not only detects the error, but

it’s even smart enough to provide a suggestion that can help

us quickly address the issue.

We also get autocomplete for free whenever TypeScript has

enough information to determine that we’re working with a

CounterAction.

https://github.com/stevekinney/sitepoint-reducers/blob/main/src/04-unions.ts

If you look carefully, you’ll notice that it’s only

recommending Decrement. That’s because we’ve already

created a conditional defining what we should do in the

event that the type is Increment. TypeScript is able to deduce

that, if there are only two properties and we’ve dealt with

one of them, there’s only one option left.

As promised, we can also now get rid of these two lines of

code from 03-action-creators:

- export const INCREMENT = 'Increment';

- export const DECREMENT = 'Decrement';

With TypeScript’s help, we can now go back to using regular

strings and still enjoy all of the benefits of using constants.

This might not seem like much in this simple example, but if

you’ve ever used this pattern before, you know that it can

get cumbersome to have to import these values in each and

every file that uses them.

Removing the Default Case in the

Reducer

https://github.com/stevekinney/sitepoint-reducers/blob/main/src/03-action-creators.ts

Earlier on, TypeScript tried to help us by throwing an error

when we omitted the line with return state at the end of the

function that served as a fallback if none of the conditions

above it were hit.

But now we’ve given TypeScript more information about

what types of actions it can expect. I prefer to use

conditionals (which is why I’ve done so throughout this

tutorial), but if we use a switch statement instead, we’ll

notice that something interesting happens.

TypeScript has figured out that, since we’re returning from

each case of the switch statement and we’ve covered all of

the possible cases of action.type, there’s no need to return

the original state in the event that our action slips through,

because TypeScript can guarantee that will never happen.

There are a few things to take away from this:

TypeScript will use the information we provide it to help

us avoid common mistakes.

TypeScript will also use this information to enable us to

write less protective code.

Dealing with Different Kinds of

Actions

Earlier, I hinted that we might add a third type of action: the

ability to Reset the counter back to zero. This action is a lot

like the actions we saw at the very beginning. It doesn’t

need a payload. However, it might be tempting to do

something like this:

type CounterAction = {

 type: 'Increment' | 'Decrement' | 'Reset';

 payload: {

 amount: number;

 };

};

You’ll notice that TypeScript is again upset that we risk

returning undefined from our reducer. We’ll handle that in a

moment. But first, we should address the fact that Reset

doesn’t need a payload.

We don’t want to have to write something like this:

let state = counterReducer({ count: 5 }, { type: 'Reset', {

payload: { amount: 0 } } });

We might be tempted to make the payload optional:

type CounterAction = {

 type: 'Increment' | 'Decrement' | 'Reset';

 payload?: {

 amount: number;

 };

};

But now, TypeScript will never be sure if Increment and

Decrement are supposed to have a payload. This means that

TypeScript will insist that we check to see if payload exists

before we’re allowed to access the amount property on it. At

the same time, TypeScript will still allow us to needlessly put

a payload on our Reset actions. I suppose this isn’t the worst

thing in the world, but we can do better.

Using Unions for Action Types

It turns out that we can use a similar solution to the one we

used with the type property on CounterAction:

type CounterAdjustmentAction = {

 type: 'Increment' | 'Decrement';

 payload: {

 amount: number;

 };

};

type CounterResetAction = {

 type: 'Reset';

};

type CounterAction = CounterAdjustmentAction |

CounterResetAction;

TypeScript is smart enough to figure out the following:

CounterAction is an object.

CounterAction always has a type property.

The type property is one of Increment, Decrement, or Reset.

If the type property is Increment or Decrement, there’s a

payload property that contains a number as the amount.

If the type property is Reset, there’s no payload property.

By updating the type to include CounterResetAction, TypeScript

has already figured out that we’re no longer providing an

exhaustive list of cases to counterReducer.

We can update the code:

export const counterReducer: CounterReducer = (state, action) =>

{

 const { count } = state;

 switch (action.type) {

 case 'Increment':

 return { count: count + action.payload.amount };

 case 'Decrement':

 return { count: count - action.payload.amount };

 case 'Reset':

 return { count: 0 };

 }

};

Repo Code

You can find the code above (05-different-payloads) in the

GitHub repo for this tutorial.

https://github.com/stevekinney/sitepoint-reducers/blob/main/src/05-different-payloads.ts

If you’ve been following along, you might have noticed a few

cool features (albeit unsurprising at this point). First, as we

added that third case, TypeScript was able to infer that we

were adding a case for Reset and suggested that as the only

available autocompletion. Secondly, if we tried to reference

action in the return statement, we would have noticed that it

only let us access the type property because it’s well aware

that CounterResetActions doesn’t have a payload property.

Other than clearly defining the type, we didn’t have to tell

TypeScript much of anything in the code itself. It was able to

use the information at hand to figure everything out on our

behalf.

If you want to see this for yourself, you can create an action

creator for resetting the counter:

export const reset = (): CounterAction => ({ type: 'Reset' });

I chose to use the broader CounterAction in this case. But

you’ll notice that, even if you try to add a payload to it,

TypeScript has already figured out that it’s not an option. But

if you change the type to "Increment" for a moment, you’re

suddenly permitted to add the property.

If we update the return type on the function to

CounterResetAction, we’ll see that we only have one option for

the type—"Reset"—and that payloads are forbidden:

export const reset = (): CounterResetAction => ({ type: 'Reset'

});

Using Our Reducer in a React

Component

So far, we’ve talked a lot about the reducer pattern outside

of any framework. Let’s pull our counterReducer into React and

see how it works. We’ll start with this simple component:

const Counter = () => {

 return (

 <main className="mx-auto w-96 flex flex-col gap-8 items-

center">

 <h1>Counter</h1>

 <p className="text-7xl">0</p>

 <div className="flex place-content-between w-full">

 <button>Decrement</button>

 <button>Reset</button>

 <button>Increment</button>

 </div>

 </main>

);

};

export default Counter;

Repo Code

You can find the code above (06-react-component) in the GitHub

repo for this tutorial.

You might notice that there isn’t much happening just yet.

The counterReducer that we’ve been working on throughout

this tutorial is ready for action. We just need to hook it up to

the component, using the useReducer hook.

In the context of a reducer in React—or Redux, for that

matter—state is the current snapshot of our component’s

data. dispatch is a function used to update that state based

on actions. We can think of dispatch as the way to trigger

changes, and the state as the resulting data after those

changes.

Let’s add the following code inside the Counter component:

const [state, dispatch] = useReducer(counterReducer, { count: 0

});

https://github.com/stevekinney/sitepoint-reducers/blob/main/src/06-react-component.tsx

Now, if we hover over state and dispatch, we’ll see that

TypeScript is able to automatically figure out what the

correct types of each is:

const state: CounterState;

const dispatch: React.Dispatch<CounterAction>;

It’s able to infer this from the type annotations on

counterReducer itself. Similarly, it also will only allow us to pass

in an initial state that matches CounterState—although the

error isn’t nearly as helpful. If we change the count property

to amount in the initial state given to useReducer, we’ll see a

result similar to that pictured below.

We can now use the state and dispatch from useReducer in our

Counter component. TypeScript will know that count is a

property on state, and it will only accept actions or the

values returned from action creators that match the

CounterAction type:

import { useReducer } from 'react';

import {

 counterReducer,

 increment,

 decrement,

 reset,

} from './05-different-payloads';

const Counter = () => {

 const [state, dispatch] = useReducer(counterReducer, { count:

0 });

 return (

 <main className="mx-auto w-96 flex flex-col gap-8 items-

center">

 <h1>Counter</h1>

 <p className="text-7xl">{state.count}</p>

 <div className="flex place-content-between w-full">

 <button onClick={() =>

dispatch(decrement())}>Decrement</button>

 <button onClick={() => dispatch(reset())}>Reset</button>

 <button onClick={() =>

dispatch(increment())}>Increment</button>

 </div>

 </main>

);

};

export default Counter;

Repo Code

You can find the code above (07-react-component-complete) in

the GitHub repo for this tutorial.

I’d like to draw your attention to just how little TypeScript is

in this component. In fact, if we were to change the file

extension for .tsx to .jsx, it would still work. But behind the

scenes, TypeScript is doing the important work of ensuring

that our application will work as expected when we put it in

the hands of our users.

Conclusion

The power of reducers is not in their inherent complexity but

in their simplicity. It’s important to remember that reducers

are just functions. In the past, they’ve received a bit of flack

for requiring a fair amount of boilerplate.

TypeScript helps to reduce the amount of boilerplate, while

also making the overall experience of using reducers a lot

https://github.com/stevekinney/sitepoint-reducers/blob/main/src/07-react-component-complete.tsx

more pleasant. We’re protected from potential pitfalls in the

form of incorrect arguments and unexpected results, which

can be tricky to troubleshoot in our applications.

The combination of reducers and TypeScript can make it

super easy to build resilient, error-free applications.

Don’t forget to refer to the GitHub repository and

CodeSandbox demo to play around with any of the examples

discussed above.

In the next part of this book, we’ll look at taking some of the

mystery out of using generics in TypeScript. Generics allow

us to write reusable code that works with multiple types,

rather than a single one. It acts as a placeholder for the type,

letting us write code that can adapt and enforce type

consistency at compile time.

https://github.com/stevekinney/sitepoint-reducers
https://codesandbox.io/p/sandbox/typescript-redux-example-sitepoint-hjkzkg?file=%2Findex.html%3A1%2C1

Chapter 2: A Gentle

Introduction to Generics in

TypeScript

If you’ve come from a language with a type system, you

might already be familiar with generics. But if you’re like me

and your experience consists predominately of dynamic

languages like JavaScript, Python, or Ruby, generics might

seem a bit bewildering at first. I’m certainly guilty of just

copying and pasting examples without fully understanding

what’s going on. But fear not! Generics are both powerful

and also fairly simple once we understand them. Let’s start

at the basics and build up from there, as we work towards a

full understanding what generics are and how we can use

them in our TypeScript code.

In short, a generic in TypeScript allows us to write reusable

code that works with more than one type. Generics act as

placeholders for types, letting us write code that can adapt

and enforce type consistency at compile time. It’s not wrong

to think of generics as variables, but just for our types.

Following Along with This Tutorial

All of the code that we’ll be working with can be found in

this GitHub repository. I also encourage you to use the

TypeScript Playground to try out ideas and play with the

examples below.

What Are Generics?

https://www.typescriptlang.org/docs/handbook/2/generics.html
https://github.com/stevekinney/sitepoint-generics
https://www.typescriptlang.org/play

Generics in TypeScript offer a means for creating reusable

code components that work with a variety of types (rather

than just one). As I mentioned, we can think of them as

variables—but for our types. Generics provide a way to

create flexible structures that allow us to define the type at

a later time.

Let’s start with a simple linked list. A linked list node

contains a value and then a link to the next node. We could

start out with something link this:

type LinkedListNode = {

 value: any;

 next?: LinkedListNode;

};

However, I’m going to add an extra requirement. All of the

nodes in the list should be of the same type. For example, if

we wanted a linked list of strings, we could refine our type

to make sure that value is always a string:

type LinkedListNode = {

 value: string;

 next?: LinkedListNode;

};

const firstNode: LinkedListNode = {

 value: 'first',

};

const secondNode: LinkedListNode = {

 value: 'second',

};

firstNode.next = secondNode;

Repo Code

You can find the code above (01-without-generics.ts) in the

GitHub repo for this tutorial.

https://en.wikipedia.org/wiki/Linked_list
https://github.com/stevekinney/sitepoint-generics/blob/main/src/01-without-generics.ts

You might have already noticed the problem here. If we

wanted to also support a linked list of numbers, we’d have

to create another type, and so on for every single type of

value we wanted our linked list to support. This is tedious,

and it doesn’t scale.

This is where generics come in. They let us define a

placeholder that we can use in our types. If we wanted to

have a linked list node, where the value could be any type,

but that would ensure all of the later nodes were also of the

same type, we could write something along these lines:

type LinkedListNode<T> = {

 value: T;

 next?: LinkedListNode<T>;

};

const firstNode: LinkedListNode<string> = {

 value: 'first',

};

const secondNode: LinkedListNode<string> = {

 value: 'second',

};

const thirdNode: LinkedListNode<number> = {

 value: 42,

};

const fourthNode: LinkedListNode<number> = {

 value: 17,

};

firstNode.next = secondNode;

thirdNode.next = fourthNode;

Repo Code

You can find the code above (02-with-generics) in the GitHub

repo for this tutorial.

https://github.com/stevekinney/sitepoint-generics/blob/main/src/02-with-generics.ts

When we set T to either string or number, TypeScript uses that

type everywhere that T is referenced.

An Experiment

If you want to run a little experiment, you can try to connect

the thirdNode to firstNode in this playground. You’ll see that

TypeScript won’t allow it.

A Word on Naming Generics

You might be wondering why I called my generic T. I mostly

did this because it’s convention. T stands for “type”. If

there’s more than one generic in a type, you might

sometimes see U used. Why? because U is the letter after T.

Generics don’t need to be single letters. We could have

easily used a longer name:

type LinkedListNode<NodeType> = {

 value: NodeType;

 next?: LinkedListNode<NodeType>;

};

Typically, though, we just see single letters used. For

example, React’s types will use P when referring to props.

If we need to use multiple generics, we can separate them

with a comma, just like we would do for arguments in a

function:

type Badge<L extends string, C extends number> {

 label: L,

 count: C

}

Extending Types in Generics

https://www.typescriptlang.org/play?#code/C4TwDgpgBAMglgOwNYQCbwM7AHIHtUQA8AKgHxQC8UA3gFBRQBuAhgDYCuEAXFMQNz0oCCAA9gAfh7xkaTDnxEyAgL4DaAY1wIsUAGZwATljwEpiFOjjGFhLAcQBzclToMWHblADk+o8C8ANLSqtBpaOhgQmgioJp7SFnJxtsD2CE6UNILunDxekdGogcFq0TrAABaGsQpmMpbWBIQI7AC2AEYQBs5Zbmy5UAAsAExBIWHawHq47AaVcXWJVvJNLR1dPa5M-Z4AjADsY2q+jRAAdMJimQVaNQQCldVxF6JTVLozcxVxfEA
https://github.com/DefinitelyTyped/DefinitelyTyped/blob/60ab8a805a1c5c4225027068e604ef4687cdf379/types/react/index.d.ts#L76

Right now, the T generic can be anything. In the example

above, we used a string and a number, but we could have

just as easily used a Boolean, an array, an object, or even a

function.

Let’s say we wanted to limit the value of our linked list node

to only support strings, numbers, and Booleans.

In TypeScript, constraints are expressed using the extends

keyword. T extends K means it’s safe to presume that a value

of type T is also of type K. An easy way of thinking about this

is to just imagine we’re writing something with extends as a

variable assignment.

Let’s take 19 extends number as an example. We could think

about it like this:

const nineteen: number = 19;

We can say that T has to extend another type:

type LinkedListNode<T extends string | number | boolean> = {

 value: T;

 next?: LinkedListNode<T>;

};

Repo Code

You can find the code above (03-extending-types) in the

GitHub repo for this tutorial.

Now, our generic is limited to anything that meets the

criteria of being a string, number, or Boolean. We can get a

little bit silly with this. For example, we could say a node can

only support a particular string or a specific number:

const firstNode: LinkedListNode<string> = {

 value: 'first',

https://github.com/stevekinney/sitepoint-generics/blob/main/src/03-extending-types.ts

};

const secondNode: LinkedListNode<'second'> = {

 value: 'second',

};

const thirdNode: LinkedListNode<number> = {

 value: 42,

};

const fourthNode: LinkedListNode<17> = {

 value: 17,

};

firstNode.next = secondNode;

thirdNode.next = fourthNode;

fourthNode.next = {

 value: 17,

};

The type number refers to any number. 17 is a literal type that

only allows for that specific value. In this case, anything

connected to secondNode would have to have a value of

"second", and anything connected to fourthNode would have to

have a value of 17. Each technically does extend string and

number respectively. That said, I’m only doing this as a

demonstration. I’m not sure why we’d want to do this in

practice.

A more practical example would be if we wanted to only

support a certain subset of strings or numbers. For example,

we could limit the acceptable strings using a union, as seen

in this demo:

type LinkedListNode<T extends 'loading' | 'success' | 'error'>

= {

 value: T;

 next?: LinkedListNode<T>;

};

https://www.typescriptlang.org/play?#code/C4TwDgpgBAMglgOwNYQCbwM7AHIHtUQA8AKlBAB7AQKoZQDkANrgIaqIDm9UAPgxgFcAxkIgYM3PvQgAnGbhn0AfFAC8UAN4AoKFABuLRgIgAuKMQDcOqAgrAA-GfjI0mHPiLElVgL4WgA

Obviously, it’s getting a bit tedious to constantly have to

define the type for each variable.

Using Generics in Functions

It’s a bit more common to see generics used with functions.

Let’s consider an identity function that takes a value and

returns it. I think we’re pretty clear at this point that we

don’t want to do something like this:

const identity = (x: string): string => {

 return x;

};

Just as with the linked list, I don’t have time to create one of

these for every type I come across. This sounds like a

perfect use case for a generic:

export const identity = <T>(x: T): T => {

 return x;

};

export const foo = identity<string>('foo');

A Word on Using Generics with JSX

We might find that the syntax above won’t work if we’re

using React and/or JSX. This is because the parser has a

hard time differentiating between the syntax for a generic

and a JSX component. We can see it failing in this

playground, and we can see it compiling just fine with JSX

turned off here.

To get around this, we have two options. We could simply

add a comma after the generic:

const identity = <T>(x: T): T => {

 return x;

https://en.wikipedia.org/wiki/Identity_function
https://www.typescriptlang.org/play?ssl=5&ssc=37&pln=1&pc=1#code/MYewdgzgLgBAlgEwKZinKBPGBeGAeAFQD4AKADwC4YCBKKgnImAbwCgYYAnJKAV07AwyAblYBfUa1CRYAMxAgc8ZKnQY80TnDABzUgHJ5IfTWFA
https://www.typescriptlang.org/play?jsx=0#code/MYewdgzgLgBAlgEwKZinKBPGBeGAeAFQD4AKADwC4YCBKKgnImAbwCgYYAnJKAV07AwyAblYBfUa1CRYAMxAgc8ZKnQY80TnDABzUgHJ5IfTWFA

};

Or, we could exclusively use function declarations:

function identity<T>(x: T): T {

 return x;

}

Inferring Generics

TypeScript is always trying to get out of our way. If it can

figure out what a generic ought to be, it will relieve us of the

responsibility of having to tell it. Let’s take a look at the

following code:

export const identity = <T>(x: T): T => {

 return x;

};

export const foo = identity<string>('foo');

export const two = identity(2);

Repo Code

You can find the code above (04-inferring-generics) in the

GitHub repo for this tutorial.

In this code, we’re able to completely omit telling TypeScript

what type T should be. It sees that we’re handing that

function call a number, so it’s able to figure out that T is a

number in this case.

We can also leverage this to simplify our linked list above:

type LinkedListNode<T> = {

 value: T;

 next?: LinkedListNode<T>;

};

https://github.com/stevekinney/sitepoint-generics/src/04-inferring-generics.ts

export const identity = <T>(x: T): T => {

 return x;

};

export const foo = identity<string>('foo');

export const two = identity(2);

const createLinkedListNode = <T>(value: T): LinkedListNode<T>

=> {

 return { value };

};

const firstNode = createLinkedListNode('first');

const secondNode = createLinkedListNode('second');

firstNode.next = secondNode;

You’ll notice that we no longer need to define what type of

LinkedListNode we’re expecting. As soon as TypeScript can

narrow down the type for one reference to T, it can fill in all

of the rest. firstNode and secondNode have the following types:

const firstNode: LinkedListNode<string>;

const secondNode: LinkedListNode<string>;

This gives us all the flexibility of a generic without needing

to type any additional boilerplate.

Taking It a Step Further

Now that we have createLinkedListNode, we can create an

additional utility function called addNextNode. The function

should do the following:

It should take an existing LinkedListNode as the first

argument.

Based on the type of the value of that LinkedListNode, the

second argument should be a value of the same type.

It should create a new LinkedListNode based on the

second argument.

It should set the next property on the first LinkedListNode

to the new LinkedListNode.

It should return the newly created node.

Basically, we want to make the following two tests pass:

it('should create a linked list node', () => {

 let node = createLinkedListNode('first');

 expect(node).toEqual({ value: 'first' });

});

it('should add a linked list node', () => {

 let firstNode = createLinkedListNode('first');

 let secondNode = addLinkedListNode(firstNode, 'second');

 expect(firstNode).toEqual({ value: 'first', next: { value:

'second' } });

 expect(secondNode).toEqual({ value: 'second' });

});

The key piece here is that the value of T should be the same

throughout. There are a few ways we could write the

function, and we won’t go over the merits of each. Here’s

one possible implementation:

const createLinkedListNode = <T>(value: T): LinkedListNode<T>

=> {

 return { value };

};

const addLinkedListNode = <T>(

 node: LinkedListNode<T>,

 value: T,

): LinkedListNode<T> => {

 node.next = createLinkedListNode(value);

 return node.next;

};

Repo Code

You can find the code above (05-linking-nodes) in the GitHub

repo for this tutorial.

Using Generics with Classes

We can also use generics with classes. The interesting

feature in this case is that the value of T can be used

throughout the class. Once it’s been set, it will enforce our

type throughout all of its methods, and each individual

instance of the class can have its own value for T. Here’s an

example:

export class LinkedListNode<T> {

 value: T;

 next?: LinkedListNode<T>;

 constructor(value: T) {

 this.value = value;

 }

 add(value: T): LinkedListNode<T> {

 this.next = new LinkedListNode(value);

 return this.next;

 }

}

Repo Code

You can find the code above (06-with-classes) in the GitHub

repo for this tutorial.

Now we can create multiple instances where T is correctly

enforced for that particular instance:

const firstNode = new LinkedListNode('first');

const secondNode = firstNode.add('second');

const thirdNode = new LinkedListNode(42);

const fourthNode = thirdNode.add(17);

https://github.com/stevekinney/sitepoint-generics/blob/main/src/05-linking-nodes.ts
https://github.com/stevekinney/sitepoint-generics/blob/main/src/06-with-classes.ts

You can verify this in the unit tests found here.

Conclusion

I prefer to use types, but we can just as easily use generics

with interfaces as well:

interface LinkedListNode<T> {

 value: T;

 next?: LinkedListNode<T>;

}

Generics are a powerful tool in TypeScript that allow us to

create reusable code components that work with a variety

of types, rather than just one. They provide a way to build

flexible interfaces that enable us to define the type at a

later time. Generics can be used with objects, functions, and

classes. They can be extended or limited to specific types,

and TypeScript can even infer the type for us in some cases.

While they may seem daunting at first, generics are fairly

simple once you understand them. With a little practice,

you’ll be able to use generics to write more efficient and

effective code in no time flat.

https://github.com/stevekinney/sitepoint-generics/blob/main/src/06-with-classes.test.ts

Chapter 3: Navigating the

Perils and Pitfalls of Using

React’s Context API with

TypeScript

Using TypeScript in any large React application provides a

level of safety that’s worth the additional effort over using

JavaScript. TypeScript is able to comb through all of our

components and confirm that we’re passing in all the props

each component requires, and it makes sure sure they’re

actually the types we assume they are and not something

nefarious like undefined. But there are some cases where

even that trade-off is thrown into question—particularly

when it comes to using the Context API. Let’s look at how to

navigate some of the challenges of using createContext and

useContext with TypeScript.

I’m going to assume you’re familiar with the Context API, but

let’s do a quick summary anyway. The Context API in React is

a built-in state management tool that allows for easy sharing

of data throughout a component tree. It enables us to avoid

prop drilling, the process of passing data from top to

bottom through intermediate components.

With the Context API, we create a Context object that has two

properties: a Provider component—which is used to wrap the

part of the component tree of our application that needs

access to our data—and a Consumer component for reading

that data.

https://react.dev/learn/passing-data-deeply-with-context
https://www.sitepoint.com/replace-redux-react-hooks-context-api/

These days, we often don’t use the Consumer directly, instead

using the useContext hook to access the context’s value,

regardless of the level of each in the component hierarchy.

The useContext hook is a much cleaner abstraction than trying

to access the value from the Consumer in a render prop. This

makes state and function sharing between components way

more convenient and efficient, especially in larger

applications. In fact, the React documentation goes as far as

to mention that the Consumer is “an alternative and rarely

used way to read the context value.”

We’re going to work on a simple color picker application

(pictured above) that uses the Context API to share the

ability to get and set the color throughout the component

hierarchy.

https://react.dev/reference/react/createContext#returns
https://react.dev/reference/react/createContext#returns

Following Along with This Tutorial

All of the code that we’ll be working with can be found in this

GitHub repository. I’ll start on the main branch and then make

additional branches at each milestone.

The Fundamental Problem

The core issue that’s going to be a thorn in our side is not

necessarily a TypeScript problem. It’s a React problem:

When we call React.createContext, TypeScript will want to

know what kind of value we can expect.

But we don’t have that value yet, because we have to

wait for the Provider component to mount in order to use

useState.

TypeScript will take issue with the fact that we’re passing

it something that isn’t what it expects.

If we say that it can be a color or undefined, TypeScript

will never be sure which one it’s working with.

We’ll look at a few approaches—such as using any or undefined

—which will work, but which will have some trade-offs—

before we land on a better (though more involved) solution.

A Rejected Solution: Use any

// We don't have access to `hexColor` outside of

`ColorProvider`.

// So we'll use `null` for now.

export const ColorContext = createContext<any>(null);

export const ColorProvider = ({ children }: PropsWithChildren)

=> {

 const [hexColor, setHexColor] = useState('#e56e24');

 return (

 <ColorContext.Provider value={{ hexColor, setHexColor }}>

https://github.com/stevekinney/sitepoint-context

 {children}

 </ColorContext.Provider>

);

};

In the code above, we get glimpse of the easier possible

solution. We can just completely opt out of TypeScript by

using any. Not only will we lose the type safety that comes

with that, but we’ll also lose all of the benefits of

autocomplete in our code. This works, but we can do better.

A Feasible Solution: Use a Type

Assertion

We don’t have our initial hex color yet, but we know that we

will eventually, right? In this case, we could lie to TypeScript

and try to convince it that null is actually a hex color.

First, we’ll need to figure out what the eventual type of the

value prop is going to be. The easiest way to do this is to

hover over setHexColor and look at the type.

We know that we’re passing ColorContext.Provider an object

with hexColor and setHexColor. Let’s break that out into its own

type:

type ColorState = {

 hexColor: string;

 setHexColor: Dispatch<SetStateAction<string>>;

};

Now we can let TypeScript know what it can eventually

expect to receive, even if we don’t have the value just yet:

export const ColorContext = createContext<ColorState>(null as

any);

If we hover over ColorContext, we’ll see the const ColorContext:

React.Context<ColorState>. If we visit any of the components

that use this context, we’ll see that it has the correct type

annotations, as pictured below.

If we want to feel better about our deceit, we can at least tell

it a lie that’s exactly what it should come to expect

eventually:

export const ColorContext = createContext<ColorState>(

 null as unknown as ColorState,

);

If we don’t have a guilty conscience, we might also consider

doing this so that ESLint doesn’t get angry with us for

explicitly using any in our code.

Repo Code

You can find the code above (context.tsx) in the GitHub repo

for this tutorial, in the type-assertion branch.

https://github.com/stevekinney/sitepoint-context/blob/type-assertion/src/context.tsx

A Compromised Solution: Tell the

Truth

Another option is to tell the truth. The value of the context

can either be ColorState or undefined:

export const ColorContext = createContext<ColorState | null>

(null);

This feels better, but it will cause a different set of problems:

Errors Files

 1 src/components/color-change-swatch.tsx:13

 2 src/components/color-picker/color-select.tsx:11

 1 src/components/color-picker/color-swatch.tsx:6

 1 src/components/color-properties/to-cmyk.tsx:8

 1 src/components/color-properties/to-hsl.tsx:8

 1 src/components/color-properties/to-hsv.tsx:8

 1 src/components/color-properties/to-rgb.tsx:8

 1 src/components/related-colors/index.tsx:11

The issue is now that TypeScript isn’t sure if we’re working

with ColorState or undefined. And now we need to check every

time we use it.

So it’s now on us to check to see if it’s defined or not every

time we use it. Here’s one example from the ColorChangeSwatch

component:

const ColorChangeSwatch = ({ hexColor, className }:

ColorChangeSwatchProps) => {

 // 👀 Store the context in a variable.

 const context = useContext(ColorContext);

 return (

 <Button

 className={clsx(

 'border-2 border-slate-900 transition-shadow duration-

200 ease-in

 hover:shadow-xl',

 className,

)}

 style={{ backgroundColor: hexColor }}

 onClick={() => {

 // 👀 Conditionally use any property on it.

 context?.setHexColor(hexColor);

 }}

 >

 {hexColor}

 </Button>

);

};

Repo Code

You can find the code above (color-change-swatch.tsx) in the

GitHub repo for this tutorial.

I’m not going to make you endure the chaos that this has

caused in our application. But I will invite you to look at it

here if you’re interested. It involves changing ten files, and

this isn’t even that big an application. Needless to say, being

honest with TypeScript probably isn’t worth it in this case.

A Reasonable Solution: Create an

Abstraction

Let’s say we don’t want to lie to TypeScript and we also don’t

want to endure what I just went through creating that

https://github.com/stevekinney/sitepoint-context/blob/main/src/components/color-change-swatch.tsx
https://github.com/stevekinney/sitepoint-context/commit/a0343931a92dd53c1672046f855dbc8e4d0da612

example for you. It is possible for us to have our cake and

eat it too. It’s just going to take a little work.

Instead of checking whether or not the context is defined

every single time we use it, we could create our own utilities

that will do this for us and then never worry about it again.

This is going to involve a little bit of upfront work, but—unlike

in the previous solution—once we have our abstractions in

place, we’ll never have to think about them again.

I’m going to create a new branch off of main called create-

context.

Creating Our Own createContext

Let’s start by making a new file called src/create-context.tsx.

We’ll start with a simple function so that TypeScript doesn’t

get mad at us for having an empty file:

export const createContext = () => {};

Next, we’re going to use React’s createContext to create a

Context object that we’ll build on top of:

import React from 'react';

export const createContext = () => {

 const Context = React.createContext(null);

};

I’m using React.createContext as opposed to import {

createContext } from 'react'; so that we don’t have any

naming collisions. The name of our function isn’t important,

but I like consistency.

Now we’ll do something similar to what we did in the

previous example: we’ll acknowledge that we might not

https://github.com/stevekinney/sitepoint-context/tree/create-context

know what the initial value is. We’ll also use a generic so that

this function is reusable for other contexts:

import React from 'react';

export const createContext = <T extends object>() => {

 const Context = React.createContext<T | null>(null);

};

I know that we’re going to want to pass both hexColor and

setHexColor, so I’m choosing to constrain T to some kind of

object. If generics are bewildering to you, you can just

choose to use the ColorState that we created earlier. That

might look something like this:

// 🚨 Note: We won't be using this code. It's just an

alternative to code above.

export const createContext = () => {

 const Context = React.createContext<ColorState | null>(null);

};

Next, we’re going to create our own take on the useContext

hook. This will have access to the Context that we just created

in its closure scope. The new useContext will check to make

sure that context exists and that it’s not null. If it is null, an

error is thrown. TypeScript is smart enough to understand

that, if our Context can only be either T or null and it’s not

null, it must be T. Going forward, we’ll only be using our

custom useContext hook:

import React from 'react';

export const createContext = <T extends object>() => {

 const Context = React.createContext<T | null>(null);

 const useContext = () => {

 const ctx = React.useContext(Context);

 if (ctx === null) {

 throw new Error('useContext must be inside a Provider with

a value.');

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

 }

 return ctx;

 };

 return [useContext, Context.Provider] as const;

};

To review:

We know that the value of the context can either be T or

null.

So, pull the value out of React.useContext and take a look

at it.

Throw an error up if ctx is null. This means that we won’t

return anything in the case that ctx is null.

If ctx can only either be null or T and it’s not null, then

it’s T. This means we don’t have to keep verifying that

it’s not null throughout our application like we did

before.

Return Context.Provider and our customized version of

useContext as a tuple, like we might have seen with

useState and useReducer.

This works because we’re not using the React hook at the

top level, which isn’t allowed. Instead, we have a function

that has access to the context at any point and can check to

see if it’s valid.

The as const at the end of the last line will tell TypeScript that

we don’t expect this array to change ever, and that it can be

sure the first element will always be our useContext function

and the second element will always be Context.Provider.

We end up with the following signature:

const createContext: <T extends object>() => readonly [

 () => T,

 React.Provider<T | null>,

];

Using Our New Hook

We’ve created our new hook. Now we just need to use it.

Let’s update src/context.tsx as follows:

import { Dispatch, PropsWithChildren, SetStateAction, useState }

from 'react';

import { createContext } from './create-context';

type ColorState = {

 hexColor: string;

 setHexColor: Dispatch<SetStateAction<string>>;

};

const [useContext, Provider] = createContext<ColorState>();

export const useColor = useContext;

export const ColorProvider = ({ children }: PropsWithChildren)

=> {

 const [hexColor, setHexColor] = useState('#e56e24');

 return <Provider value={{ hexColor, setHexColor }}>{children}

</Provider>;

};

You’ll notice that our customized createContext doesn’t require

an argument anymore. We just need to tell it what type

we’re eventually expecting. This will return a hook and a

provider. We’ll export that hook. I gave it a useful name

because it’s bound to this specific context.

Finally, we use this Provider returned from our createContext

function to wrap the Application.

We still need to update our code to use our new useColor

hook instead of useContext. It will demonstrate this in

src/components/color-picker/color-select.tsx, and you can

check out the rest in the completed create-context branch:

import { useColor } from '../../context';

import HexColor from '../hex-color';

type ColorSelectProps = {

 label?: string;

};

const ColorSelect = ({ label = 'Color' }: ColorSelectProps) => {

 // 👀 Our new `useColor` hook in action!

 const { hexColor, setHexColor } = useColor();

 return (

 <div className="flex flex-col gap-2">

 <label htmlFor="color-input">{label}</label>

 <input

 id="color-input"

 className="h-80 w-full"

 type="color"

 value={hexColor}

 onChange={(e) => setHexColor(e.target.value)}

 />

 <HexColor hexColor={hexColor} />

 </div>

);

};

export default ColorSelect;

Conclusion

Using the Context API with TypeScript can be a bit tricky, but

there are solutions available. While using any can provide a

quick fix, it’s not ideal for maintaining type safety, and it can

lead to issues down the line. Using a type assertion will

definitely work in most cases. But creating an abstraction

around createContext and using a custom useContext hook will

provide us with a much more solid solution. In fact, it hides

the fact that we’re using a context at all and leaves us with a

https://github.com/stevekinney/sitepoint-context/tree/create-context

convenient hook—in this case, useColor. With this approach,

we can ensure that the context’s value is not null and avoid

the need for constant null-checking throughout our

application.

In the next installment, we’ll continue to explore the use of

TypeScript in our React applications by looking at extending

built-in DOM types and creating polymorphic types for our

component props.

Chapter 4: Extending DOM

Elements and Creating

Polymorphic Components

In most of the larger applications and projects I’ve worked

on, I often find myself building a bunch of components that

are really supersets or abstractions on top of the standard

HTML elements. Some examples include custom button

elements that might take a prop defining whether or not that

button should be a primary or secondary button, or maybe

one that indicates that it will invoke a dangerous action, such

as deleting or removing a item from the database. I still want

my button to have all the properties of a button in addition

to the props I want to add to it.

Another common case is that I’ll end up creating a

component that allows me to define a label and an input

field at once. I don’t want to re-add all of the properties that

an <input /> element takes. I want my custom component to

behave just like an input field, but also take a string for the

label and automatically wire up the htmlFor prop on the <label

/> to correspond with the id on the <input />.

In JavaScript, I can just use {...props} to pass through any

props to an underlying HTML element. This can be a bit

trickier in TypeScript, where I need to explicitly define what

props a component will accept. While it’s nice to have fine-

grained control over the exact types that my component

accepts, it can be tedious to have to add in type information

for every single prop manually.

In certain scenarios, I need a single adaptable component,

like a <div>, that changes styles according to the current

theme. For example, maybe I want to define what styles

should be used depending on whether or not the user has

manually enabled light or dark mode for the UI. I don’t want

to redefine this component for every single block element

(such as <section>, <article>, <aside>, and so on). It should be

capable of representing different semantic HTML elements,

with TypeScript automatically adjusting to these changes.

There are a few strategies that we can employ:

For components where we’re creating an abstraction

over just one kind of element, we can extend the

properties of that element.

For components where we want to define different

elements, we can create polymorphic components. A

polymorphic component is a component designed to

render as different HTML elements or components while

maintaining the same properties and behaviors. It allows

us to specify a prop to determine its rendered element

type. Polymorphic components offer flexibility and

reusability without us having to reimplement the

component. For a concrete example, you can look at

Radix’s implementation of a polymorphic component.

In this tutorial, we’ll look at both of these strategies.

Following Along with This Tutorial

All of the code that we’ll be working with can be found in this

GitHub repository, starting with the main branch. I’ll push up

other branches along the way.

https://www.radix-ui.com/primitives/docs/utilities/polymorphic
https://github.com/stevekinney/polymorphic/
https://github.com/stevekinney/polymorphic/tree/main

Mirroring and Extending the

Properties of an HTML Element

Let’s start with that first example mentioned in the

introduction. We want to create a button that comes baked in

with the appropriate styling for use in our application. In

JavaScript, we might be able to do something like this:

const Button = (props) => {

 return <button className="button" {...props} />;

};

In TypeScript, we could just add what we know we need. For

example, we know that we need the children if we want our

custom button to behave the same way an HTML button

does:

const Button = ({ children }: React.PropsWithChildren) => {

 return <button className="button">{children}</button>;

};

You can imagine that adding properties one at a time could

get a bit tedious. Instead, we can tell TypeScript that we

want to match the same props that it would use for a <button>

element in React:

const Button = (props: React.ComponentProps<'button'>) => {

 return <button className="button" {...props} />;

};

But we have a new problem. Or, rather, we had a problem

that also existed in the JavaScript example and which we

ignored. If someone using our new Button component passes

in a className prop, it will override our className. We could

(and we will) add some code to deal with this in a moment,

but I don’t want to pass up the opportunity to show you how

to use a utility type in TypeScript to say “I want to use all of

the props from an HTML button except for one (or more)”:

type ButtonProps = Omit<React.ComponentProps<'button'>,

'className'>;

const Button = (props: ButtonProps) => {

 return <button className="button" {...props} />;

};

Now, TypeScript will stop us or anyone else from passing a

className property into our Button component. If we just

wanted to extend the class list with whatever is passed in,

we could do that in a few different ways. We could just

append it to the list:

type ButtonProps = React.ComponentProps<'button'>;

const Button = (props: ButtonProps) => {

 const className = 'button ' + props.className;

 return <button className={className.trim()} {...props} />;

};

I like to use the clsx library when working with classes, as it

takes care of most of these kinds of things on our behalf:

import React from 'react';

import clsx from 'clsx';

type ButtonProps = React.ComponentProps<'button'>;

const Button = ({ className, ...props }: ButtonProps) => {

 return <button className={clsx('button', className)}

{...props} />;

};

export default Button;

We learned how to limit the props that a component will

accept. To extend the props, we can use an intersection:

type ButtonProps = React.ComponentProps<'button'> & {

 variant?: 'primary' | 'secondary';

};

https://npm.im/clsx
https://www.typescriptlang.org/docs/handbook/2/objects.html#intersection-types

We’re now saying that Button accepts all of the props that a

<button> element accepts plus one more: variant. This prop

will show up with all the other props we inherited from

HTMLButtonElement.

We can add support to our Button to add this class as well:

const Button = ({ variant, className, ...props }: ButtonProps)

=> {

 return (

 <button

 className={clsx(

 'button',

 variant === 'primary' && 'button-primary',

 variant === 'secondary' && 'button-secondary',

 className,

)}

 {...props}

 />

);

};

We can now update src/application.tsx to use our new button

component:

diff --git a/src/application.tsx b/src/application.tsx

index 978a61d..fc8a416 100644

--- a/src/application.tsx

+++ b/src/application.tsx

@@ -1,3 +1,4 @@

+import Button from './components/button';

 import useCount from './use-count';

 const Counter = () => {

@@ -8,15 +9,11 @@ const Counter = () => {

 <h1>Counter</h1>

 <p className="text-7xl">{count}</p>

 <div className="flex place-content-between w-full">

- <button className="button" onClick={decrement}>

+ <Button onClick={decrement}>

 Decrement

- </button>

- <button className="button" onClick={reset}>

- Reset

- </button>

- <button className="button" onClick={increment}>

- Increment

- </button>

+ </Button>

+ <Button onClick={reset}>Reset</Button>

+ <Button onClick={increment}>Increment</Button>

 </div>

 <div>

 <form

@@ -32,9 +29,9 @@ const Counter = () => {

 >

 <label htmlFor="set-count">Set Count</label>

 <input type="number" id="set-count" name="set-count"

/>

- <button className="button-primary" type="submit">

+ <Button variant="primary" type="submit">

 Set

- </button>

+ </Button>

 </form>

 </div>

 </main>

Repo Code

You can find the changes above in the button branch of the

GitHub repo for this tutorial.

Creating Composite Components

Another common component that I typically end up making

for myself is a component that correctly wires up a label and

input element with the correct for and id attributes

respectively. I tend to grow weary typing this out over and

over:

<label htmlFor="set-count">Set Count</label>

<input type="number" id="set-count" name="set-count" />

Without extending the props of an HTML element, I might

end up slowly adding props as needed:

type LabeledInputProps = {

 id?: string;

 label: string;

 value: string | number;

 type?: string;

 className?: string;

 onChange?: ChangeEventHandler<HTMLInputElement>;

};

As we saw with the button, we can refactor it in a similar

fashion:

type LabeledInputProps = React.ComponentProps<'input'> & {

 label: string;

};

https://github.com/stevekinney/polymorphic/tree/button

Other than label, which we’re passing to the (uhh) label that

we’ll often want grouped with our inputs, we’re manually

passing props through one by one. Do we want to add

autofocus? Better add another prop. It would be better to do

something like this:

import { ComponentProps } from 'react';

type LabeledInputProps = ComponentProps<'input'> & {

 label: string;

};

const LabeledInput = ({ id, label, ...props }:

LabeledInputProps) => {

 return (

 <>

 <label htmlFor={id}>{label}</label>

 <input {...props} id={id} readOnly={!props.onChange} />

 </>

);

};

export default LabeledInput;

We can swap in our new component in src/application.tsx:

<LabeledInput

 id="set-count"

 label="Set Count"

 type="number"

 onChange={(e) => setValue(e.target.valueAsNumber)}

 value={value}

/>

We can pull out the things we need to work with and then

just pass everything else on through to the <input />

component, and then just pretend for the rest of our days

that it’s a standard HTMLInputElement.

TypeScript doesn’t care, since HTMLElement is pretty flexible, as

the DOM pre-dates TypeScript. It only complains if we toss

something completely egregious in there.

Repo Code

You can see all of the changes above in the input branch of

the GitHub repo for this tutorial.

Polymorphic Components

Earlier, I told you that, over the course of building out a large

application, I tend to end up making a few wrappers around

components. Box is a primitive wrapper around the basic

block elements in HTML (such as <div>, <aside>, <section>,

<article>, <main>, <head>, and so on). But just as we don’t want

to lose all the semantic meaning we get from these tags, we

also don’t need multiple variations of Box that are all

basically the same. What we’d like to is use Box but also be

able to specify what it ought to be under the hood.

Here’s an overly simplified take on a Box element inspired by

Styled Components.

And here’s an example of a Box component from Paste,

Twilio’s design system:

<Box as="article" backgroundColor="colorBackgroundBody"

padding="space60">

 Parent box on the hill side

 <Box

 backgroundColor="colorBackgroundSuccessWeakest"

 display="inline-block"

 padding="space40"

 >

 nested box 1 made out of ticky tacky

 </Box>

</Box>

Here’s a simple implementation that doesn’t have any pass

through any of the props, like we did with Button and

LabelledInputProps above:

https://github.com/stevekinney/polymorphic/tree/input
https://medium.com/styled-components/announcing-styled-components-v4-better-faster-stronger-3fe1aba1a112
https://paste.twilio.design/primitives/box
https://twilio.com/

import { PropsWithChildren } from 'react';

type BoxProps = PropsWithChildren<{

 as: 'div' | 'section' | 'article' | 'p';

}>;

const Box = ({ as, children }: BoxProps) => {

 const TagName = as || 'div';

 return <TagName>{children}</TagName>;

};

export default Box;

We refine as to TagName, which is a valid component name in

JSX. That works as far a React is concerned, but we also want

to get TypeScript to adapt accordingly to the element we’re

defining in the as prop:

import { ComponentProps } from 'react';

type BoxProps = ComponentProps<'div'> & {

 as: 'div' | 'section' | 'article' | 'p';

};

const Box = ({ as, children }: BoxProps) => {

 const TagName = as || 'div';

 return <TagName>{children}</TagName>;

};

export default Box;

I honestly don’t even know if elements like <section> have

any properties that a <div> doesn’t. While I’m sure I could

look it up, none of us feel good about this implementation.

But what’s that 'div' being passed in there and how does it

work? If we look at the type definition for

ComponentPropsWithRef, we see the following:

type ComponentPropsWithRef<T extends ElementType> = T extends

new (

 props: infer P,

) => Component<any, any>

 ? PropsWithoutRef<P> & RefAttributes<InstanceType<T>>

 : PropsWithRef<ComponentProps<T>>;

We can ignore all of those ternaries. We’re interested in

ElementType right now:

type BoxProps = ComponentPropsWithRef<'div'> & {

 as: ElementType;

};

Okay, that’s interesting, but what if we wanted the type

argument we give to ComponentProps to be the same as … as?

We could try something like this:

import { ComponentProps, ElementType } from 'react';

type BoxProps<E extends ElementType> = Omit<ComponentProps<E>,

'as'> & {

 as?: E;

};

const Box = <E extends ElementType = 'div'>({ as, ...props }:

BoxProps<E>) => {

 const TagName = as || 'div';

 return <TagName {...props} />;

};

export default Box;

Now, a Box component will adapt to whatever element type

we pass in with the as prop.

We can now use our Box component wherever we might

otherwise use a <div>:

<Box as="section" className="flex place-content-between w-full">

 <Button className="button" onClick={decrement}>

 Decrement

 </Button>

 <Button onClick={reset}>Reset</Button>

 <Button onClick={increment}>Increment</Button>

</Box>

Repo Code

You can the final result on the the polymorphic branch of the

GitHub repo for this tutorial.

Conclusion

We’ve just explored different strategies for creating

polymorphic components with React and TypeScript. By

extending the properties of an HTML element, it’s possible to

create abstractions over that element with additional

behavior. A polymorphic component is a single adaptable

component that can represent different semantic HTML

elements, with TypeScript automatically adjusting to these

changes. The cool thing about this is that we can now

universally add themes and other functionality to our

application with this new primitive.

These approaches work in most versions of TypeScript. In the

next chapter, we’re going to take a look at some of the

specific improvements the latest release of TypeScript brings

to the table, and how we can use them to further improve

the reliability and maintainability of our code.

https://github.com/stevekinney/polymorphic/tree/polymorphic

Chapter 5: A Guided Tour

of the Three Biggest

Features in TypeScript 5.0

TypeScript, JavaScript’s more dependable cousin, keeps

getting better and better. TypeScript 5.0 and its subsequent

minor versions, 5.1 and 5.2, are brimming with powerful

new features that promise to make our code cleaner, more

powerful, and a lot easier to work with. As you can tell from

the release notes, TypeScript 5.0 shipped with a ton of

changes—both large and small.

I’m going to focus on three of the features that have had the

biggest impact in my day-to-day development:

Decorators. TypeScript 5.0 supports decorators that

align with the ECMAScript proposal, allowing the

modification of class behavior in a reusable way. These

have some important distinctions between the

decorators previously supported by the --

experimentalDecorators flag.

const type parameters. The new const type

parameters enhance function call inferences, and

ensure declared constants remain unchanged.

Upgrades and changes to enums. TypeScript 5.0

enhances enums, improving type safety and making

them more flexible and user-friendly.

Decorators: the Next Generation

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-5-0.html

Decorators have almost been part of ECMAScript for as long

as I can remember. These nifty tools let us modify classes

and members in a reusable way. They’ve been on the scene

for a while in TypeScript—albeit under an experimental flag.

Although the Stage 2 iteration of decorators was always

experimental, decorators have been widely used in libraries

like MobX, Angular, Nest, and TypeORM. TypeScript 5.0’s

decorators are fully in sync with the ECMAScript proposal,

which is pretty much ready for prime time, sitting at Stage

3.

Decorators let us craft a function that tweaks the behavior

of a class and its methods. Imagine needing to sneak in

some debug statements into our methods. Before TypeScript

5.0, we’d have been stuck copying and pasting the debug

statements manually in each method. With decorators, we

just do the job once and the change will be supported

through each method the decorator is attached to.

Let’s say we want to create a decorator for logging that a

given method is deprecated:

class Card {

 constructor(public suit: Suit, public rank: Rank) {

 this.suit = suit;

 this.rank = rank;

 }

 get name(): CardName {

 return `${this.rank} of ${this.suit}`;

 }

 @deprecated // 👀 This is a decorator!

 getValue(): number {

 if (this.rank === 'Ace') return 14;

 if (this.rank === 'King') return 13;

 if (this.rank === 'Queen') return 12;

 if (this.rank === 'Jack') return 11;

 return this.rank;

 }

https://mobx.js.org/enabling-decorators.html
https://angular.io/
https://docs.nestjs.com/custom-decorators
https://typeorm.io/
https://github.com/tc39/proposal-decorators

 // The new way to do it!

 get value(): number {

 if (this.rank === 'Ace') return 14;

 if (this.rank === 'King') return 13;

 if (this.rank === 'Queen') return 12;

 if (this.rank === 'Jack') return 11;

 return this.rank;

 }

}

const card = new Card('Spades', 'Queen');

card.getValue();

We want a warning message logged to the console

whenever card.getValue() is called. We could implement the

above decorator as follows:

const deprecated = <This, Arguments extends any[], ReturnValue>

(

 target: (this: This, ...args: Arguments) => ReturnValue,

 context: ClassMethodDecoratorContext<

 This,

 (this: This, ...args: Arguments) => ReturnValue

 >,

) => {

 const methodName = String(context.name);

 function replacementMethod(this: This, ...args: Arguments):

ReturnValue {

 console.warn(`Warning: '${methodName}' is deprecated.`);

 return target.call(this, ...args);

 }

 return replacementMethod;

};

This might look a little confusing at first, but let’s break it

down:

Our decorator function takes two arguments: target and

context.

target is the method itself that we’re decorating.

context is metadata about the method.

We return some method that has the same signature.

In this case, we’re calling console.warn to log a

deprecation notice and then we’re calling the method.

The ClassMethodDecorator type has the following properties on

it:

kind: the type of the decorated property. In the example

above, this will be method, since we’re decorating a

method on an instance of a Card.

name: the name of property. In the example above, this is

getValue.

static: a value indicating whether the class element is a

static (true) or instance (false) element.

private: a value indicating whether the class element

has a private name.

access: an object that can be used to access the current

value of the class element at runtime.

has: determines whether an object has a property with

the same name as the decorated element.

get: invokes the setter on the provided object.

Kick the Tires

You can kick the tires of the code samples above in this

playground.

Decorators provide convenient syntactic sugar for adding

log messages—like we did in the example above—as well as

a number of other common use cases. For example, we

could create a decorator that automatically binds the

method to the current instance or that modifies the property

descriptor of the method or class.

https://www.typescriptlang.org/play?ts=5.1.3#code/C4TwDgpgBAygrgS2FAvFA5DMBDAJhAZ3SgB8MAJCbAJ2CNIwBEFsBbAewDtd6z0BhADZwARkQDcAKEmhIUAErZOAa1SSoDdAEEAxhHTqGAJkNkAzKagAWSwFZLANksB2SwA5LATksBGAAyW6ABS2DrKBhp8AIpwEBCcEZoA0gicAOboUjLg0Pw0uABybNBoAAYAJADeiioAvlDsAGZQVfBItaVZOlwEyPhg1BA62MAQuKhQADwAKgAWCAQANFBa1GlwrPF0UBAAHqPcBFBKIADaALrL8hDAcNScAGrYwhAAfAAUhsA0aTcAXFB3sB5gQAXMFssAHTQn6glZrDZbAgASlQrwUNzuj2esUWhm6nFG+wBQmwBAIAFkbrN2LhGEN2NQRoz+FwicBJoYNOCllzAcCFmCQVCYWs4at1ptCSi0Rjbvcni9DK88aiUOjKvieshNsDaUVNhMYMBqKk0u8CezIZxisishpGnBODpgAguFBBmBBKEIFLgFS9bggSChRCoNDIbCARLEdLkQDrvLsS8oJqNBoCQR2IIIJCAO40TjvUoAdULZoB6CqupphWKtWICyg-UGw1GuEhpTtfMGSag3zWN0hw0EgmDYYjsO7Glq0g0vaxHogXp9foDtaktSyezAjOQOm95KgeWo4zTUEzJrgLsZ7zAokECB0UAIiGAALawGW95Ej+fTJUBMlGUVFzw0AUCEhV8kAmaDgCkdN+xBSEANUNBUIQqBZ0MX5kBtTZ3njY98gNaAwKXPsKkqCCUOA+omhaajkLgjpMOwjQAAEWyGEYxhwm5FViQiAU4DYRAgahUz5BBmnHSDUNQFA0G0PR0FRBd7igHwrEwjQZP5ZCFKU5SUnSNSKMXHwzF0qB9Lk2iVEU5SYjiBJ1MxTSfCMGy7JooylIwEIwnMjTOC0nwbNCpCFgc5Q2LnKAAHpEqgOZoE4CA8ygAsQH7dhm3ypAAEJ+OQAA3HEIGEqBRNYcTJPI3zDOApyMF0fR3L7bSfNkvyWuMjBTIyTrLOs6TeuaxyBvQFz4hCjywq8nqDJi-zlKC8IRs8iKewW6L5OA+LZyAA
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy/Proxy/getOwnPropertyDescriptor

Unleashing const Type Parameters

const type parameters allow us to declare values with const.

TypeScript will now be able to infer the type, not just the

literal values.

Put more simply, the const type parameters allow us to spell

out our intentions clearly in our code. If a variable is

supposed to be a constant that never changes, const type

parameters give us a safety net, making sure it stays

constant, come what may.

Previous versions of TypeScript have supported using as

const to declare an object or array as readonly. Once

TypeScript knows that an object or array isn’t going to

change at runtime, it can be a lot more confident in the

assumptions it makes about the type.

Consider the following two arrays:

const avengers = [

 'Black Widow',

 'Captain America',

 'Hawkeye',

 'Hulk',

 'Iron Man',

 'Thor',

];

const ninjaTurtles = [

 'Donatello',

 'Leonardo',

 'Michelangelo',

 'Raphael',

] as const;

If we hover over each in this playground, we’ll see that

TypeScript has inferred two very different types:

https://www.typescriptlang.org/play?ts=4.9.5#code/MYewdgzgLgBAhgNwKZgOZIE4RgXhgbQHIBJDcGAWTjEIBoZCAhAGzmAGsYB1ASwBMQAdzoMAKgAsQGEYQDCcAA5Q4PMDACCAW0w9gcGQAk4g9kgCeSQgF0A3AChQkWGFUArOKICuGKMyTY8IgARcDgoJGZmEBkAGSRQjAEZACVFcTgImQpdcQjqdGireGxHaBsgA

const avengers: string[];

const ninjaTurtles: readonly [

 'Donatello',

 'Leonardo',

 'Michelangelo',

 'Raphael',

];

Things get a little trickier when working with readonly data

structures with functions. Consider the following:

type WithNames = { names: readonly string[] };

const turtles = getNames({

 names: ['Donatello', 'Leonardo', 'Michelangelo', 'Raphael'],

});

In this example, turtles would be string[], which is not what

we might expect if we look closely at WithNames, which

asserts that the names property is readonly. Previously, we

were able to get something closer to what we might expect

by adding as const to the array as we called the function:

const turtles = getNames({

 names: ['Donatello', 'Leonardo', 'Michelangelo', 'Raphael']

as const,

});

turtles would now correctly be the following type:

const turtles: readonly ['Donatello', 'Leonardo',

'Michelangelo', 'Raphael'];

But this can be cumbersome, and if we forget to add as

const each time we call the function, we might end up with

something other than what we expect—and that’s never

good.

In TypeScript 5.0, we can add const to the type of the

parameter itself, and then we no longer have to worry about

adding as const every single time we invoke the function:

// ⬇

const getNames = <const T extends WithNames>(arg: T):

T['names'] => {

 return arg.names;

};

const turtles = getNames({

 names: ['Donatello', 'Leonardo', 'Michelangelo', 'Raphael'],

});

const avengers = getNames({

 names: [

 'Black Widow',

 'Captain America',

 'Hawkeye',

 'Hulk',

 'Iron Man',

 'Thor',

],

});

The types are now as follows:

const turtles: readonly ['Donatello', 'Leonardo',

'Michelangelo', 'Raphael'];

const avengers: readonly [

 'Black Widow',

 'Captain America',

 'Hawkeye',

 'Hulk',

 'Iron Man',

 'Thor',

];

Have a Play

You can play around with the code above in this TypeScript

playground.

As with anything, there are some trade-offs. Using as const

sets the object as read-only at the time of declaration. const

parameters give us another option: the ability to set the

https://www.typescriptlang.org/play?ts=5.1.3#code/C4TwDgpgBA6glsAFgOQIYFsIGcoF4oDeUAdhtgFxQBOEqAJgPbEA2IUWwVcxA5gNoBdKAF8A3AChxAYyYcoPCMDSYc+ADwzicgCpQIAD2ARidHPCTLsAPgAUqKj0raAlE74ByUivdDcVwuJQ1IoArlTEUPY8AHRe2BJikppywGHAzNh48oqWWDYEgSRkWJQeACJMqEbMzAzuADRQ7gAyEJVUjA1NALJwUogQzKi8g3WN7gBKqGCIqIM+9eLCzhLSssCRAG7GClSq2UrF+YVxJVB8hUHuAEJDUgDWsHCMAO4Nl00AwtPAqNxQAEFMFwpKh3kErgAJVAve4QEAQcEQ9yQkLMe5Iq4ASSoTCg3WGmKa2kQDCoSIEi2WEiAA

object as read-only at the time of invocation. Having the

ability to choose the behavior that best serves our use case

is a welcome addition to TypeScript.

Upgraded and Enhanced Enums

Enums—which provide a handy (if somewhat under

appreciated) way of defining a set of named constants—

have received a major boost in TypeScript 5.0.

In the past, we could have accidentally passed an incorrect

number to a function expecting an enum and gotten away

with it. TypeScript 5.0 is a lot stricter. It will throw an error if

there’s a mismatch. It now treats all enums as union enums,

making them safer and easier to work with.

Up until TypeScript 5.0, an enum was really just a set of

numeric constraints. Let’s say we had an enum that tracked

the state of an HTTP request:

enum RequestState {

 NotStarted,

 Loading,

 Success,

 Error,

}

TypeScript will compile that down to the following object:

{

 "0": "NotStarted",

 "1": "Loading",

 "2": "Success",

 "3": "Error",

 "NotStarted": 0,

 "Loading": 1,

 "Success": 2,

 "Error": 3

}

Enums could be treated as a bound set of numbers. In the

case of RequestState, this would be 0, 1, 2, and 3. But in

previous versions of TypeScript, we could get around the

predefined values in an enum with any number. For

example, the following is valid in TypeScript 4.9.5:

const logRequestState = (request: RequestState) => {

 console.log('Request:', request, RequestState[request]);

};

logRequestState(RequestState.Loading); // ✅ Logs: "Request:",

1, "Loading"

logRequestState(0); // ✅ Logs: "Request:", 0, "NotStarted"

logRequestState(55); // ✅ Logs: "Request:", 55, undefined

🤨

55 should not be a valid argument for logRequestState. In

TypeScript 5.0, all enums are now treated as union enums,

which provide better type safety. Effectively, RequestState is 0

| 1 | 2 | 3, which means 55 is no longer a valid argument.

This is closer to what we might have expected, as seen in

this example:

logRequestState(RequestState.Loading); // ✅ Logs: "Request:",

1, "Loading"

logRequestState(0); // ✅ Logs: "Request:", 0, "NotStarted"

logRequestState(55); // ❌ Argument of type '55' is not

assignable to parameter

➥of type 'RequestState'.

TypeScript is now better at enforcing types set in enums.

The following will compile in TypeScript 4.9.5, but it won’t in

TypeScript 5.0 and later. One word of caution: if we try to

dynamically compute the number, TypeScript is not able to

be as helpful. For example, logRequestState(3 + 2) will not

generate an error:

enum Letters {

 A = 'Aye!',

 B = 'Bee!',

https://www.typescriptlang.org/play?ts=4.9.5#code/KYOwrgtgBASsCOZgGcAuBlVBDVwoG8AoKKAOQHsNsAnXAEwBpioAZcrOgSxAHMmT0YAMZCUyflACi1auWpMAvoUJDyINFAA25HnEQoqOPAF4oACmoIkaAFywrBzEYCUUYwD4CzVevKbgAHTaPGYA5HrWqDahDFCW+mixEY7YuADa8ZEAus4A3IQK+YTByWhOuGalhrgBbBzcPHnFOlXlwGYADE0lDmWp7QCsA01AA
https://www.typescriptlang.org/play?ts=5.1.3#code/KYOwrgtgBASsCOZgGcAuBlVBDVwoG8AoKKAOQHsNsAnXAEwBpioAZcrOgSxAHMmT0YAMZCUyflACi1auWpMAvoUJDyINFAA25HnEQoqOPAF4oACmoIkaAFywrBzEYCUUYwD4CzVevKbgAHTaPGYA5HrWqDahDFCW+mixEY7YuADa8ZEAus4A3IQK+YTByWhOuGalhrgBbBzcPHnFOlXlwGYADE0lDmWp7QCsA01AA

 C = 'Sea!',

}

enum Numbers {

 one = 1,

 two = 2,

 three = Letters.C,

}

const n: number = Numbers.three;

As you can see, Numbers.three is technically a letter and

should be allowed to be assigned to a number. TypeScript

5.0 makes sure this behaves as expected. That said, it’s a

breaking change and may require us to revisit our code.

Previously, I avoided enums in favor of unions. The new

behavior should work well with existing code and also

provide more safety than the previous implementations.

Both enums and unions are valid means of defining a set of

values, and the choice now comes down to our preference.

Conclusion

TypeScript 5.0 is a major advancement to the user-

friendliness and flexibility of the language. It nudges us

toward better coding practices, promotes cleaner code, and

catches potential errors before they become a headache.

The TypeScript team is continuing to add important features

and quality-of-life improvements to the language. It’s

obviously a smaller set of changes this time around, but

TypeScript 5.1 has added additional features such as easier

implicit returns for functions that return undefined.

For me, TypeScript has been critical to my confidence in

making changes to and maintaining large code bases. I

often find that the compiler catches edge cases I would

otherwise have missed and that might have caused my

https://www.typescriptlang.org/docs/handbook/release-notes/typescript-5-1.html

pager to go off at an undesirable hour. I’m personally

excited to see how the language evolves over the next few

years—especially if the current pace of updates continues.

	Unleashing the Power of TypeScript
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint
	About the Author
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings

	Supplementary Materials

	Chapter 1: Simplifying Reducers in React with TypeScript
	Reducer Basics
	Adding Types to Our Reducer
	Adding Payloads to Actions
	Using Unions
	Removing the Default Case in the Reducer
	Dealing with Different Kinds of Actions
	Using Unions for Action Types

	Using Our Reducer in a React Component
	Conclusion

	Chapter 2: A Gentle Introduction to Generics in TypeScript
	What Are Generics?
	A Word on Naming Generics
	Extending Types in Generics
	Using Generics in Functions
	A Word on Using Generics with JSX

	Inferring Generics
	Taking It a Step Further
	Using Generics with Classes
	Conclusion

	Chapter 3: Navigating the Perils and Pitfalls of Using React’s Context API with TypeScript
	The Fundamental Problem
	A Rejected Solution: Use any
	A Feasible Solution: Use a Type Assertion
	A Compromised Solution: Tell the Truth
	A Reasonable Solution: Create an Abstraction
	Creating Our Own createContext
	Using Our New Hook

	Conclusion

	Chapter 4: Extending DOM Elements and Creating Polymorphic Components
	Mirroring and Extending the Properties of an HTML Element
	Creating Composite Components

	Polymorphic Components
	Conclusion

	Chapter 5: A Guided Tour of the Three Biggest Features in TypeScript 5.0
	Decorators: the Next Generation
	Unleashing const Type Parameters
	Upgraded and Enhanced Enums
	Conclusion

