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Preface

The first edition of “Close Range Photogrammetry” was published in 2006 by Whittles
Publishing. This was a translated and extended version of the original German book
“Nahbereichsphotogrammetrie” and was well received by the large international
community of photogrammetrists, metrologists and computer vision experts. This
success was further recognized by the International Society of Photogrammetry and
Remote Sensing (ISPRS) which awarded the authors the then newly inaugurated Karl
Kraus Medal for excellence in authorship (2010).

The second and third editions, entitled “Close-Range Photogrammetry and 3D
Imaging”, were published by de Gruyter in 2014 and 2019. They were based on the
latest German versions of “Nahbereichsphotogrammetrie” but extended to reflect
new methods and systems for 3D imaging, particularly in the field of image analysis.
Currently also, versions in Russian and Arabic are available and the preparation of a
Spanish version is in progress.

Due to the rapid pace of development in our field, there is a constant need to
review the progress made in our technologies and their application. Hence, only four
years after edition 3, this current 4® edition again incorporates state-of-the-art
updates on diverse topics such as colour processing. There is also new content, for
example covering developments in 3D sensors, mobile scanning, metrology systems,
Augmented and Virtual Reality (AR/VR) and applications.

Three-dimensional information acquired from imaging sensors is widely used
and accepted. The field of photogrammetry, optical 3D metrology and 3D imaging is
still growing, especially in areas which have no traditional link to photogrammetry
and geodesy. However, whilst 3D imaging methods are established in many scientific
communities, photogrammetry is still an engineering-driven technique where quality
and accuracy play an important role.

It is the expressed objective of the authors to appeal to non-photogrammetrists
and experts from many other fields in order to transfer knowledge and avoid re-
invention of the wheel. The structure of the book therefore assumes different levels of
pre-existing knowledge, from beginner to scientific expert. For this reason, the book
also presents a number of fundamental techniques and methods in mathematics,
adjustment techniques, physics, optics, image processing and others. Although this
information may also be found in other textbooks, the objective here is to create a
closer link between different fields and present a common notation for equations and
parameters.

The authors would also like to express their gratitude to the many generous
colleagues who have helped complete the work. In addition to all those who have
already contributed to the previous editions, on this occasion we would particularly
like to thank: Maria Chizhova, Matevz Domajnko, Francesco Fassi, Andreas
Georgopoulos, Ute Greve-Luhmann, Albrecht Grimm, Heidi Hastedt, Oliver Kahmen,

https://doi.org/10.1515/9783111029672-202



VI —— Preface

Paul Kalinowski, Thomas Kersten, Peter Krzystek, Ralf Lichtenberger, Claudio
Limena, Raimund Loser, Michael Losler, Fabio Menna, Otto Naber, Simon Nietiedt,
Enno Petersen, Heinz-Jiirgen Przybilla, Fabio Remondino, Robin Rofallski and Till
Sieberth.

As always, we are grateful to all the companies, universities and institutes which
have provided illustrative material and other valuable technical information. Our
publisher, de Gruyter, deserves a special mention for their excellent cooperation in
bringing all the contributions together in this updated work. Finally, of course,
thanks go to our families and colleagues for their patience and support during many
months of translation, writing and editing.

Oldenburg /London/Guernsey, June 2023

Thomas Luhmann, Stuart Robson, Stephen Kyle, Jan Boehm
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1 Introduction

1.1 Overview
1.1.1 Content

Chapter 1 provides an overview of the fundamentals of photogrammetry, with
particular reference to close-range measurement. After a brief discussion of the
principal methods and systems, typical areas of applications are presented. The
chapter ends with a short historical review of close-range photogrammetry.

Chapter 2 deals with mathematical basics. These include the definition of some
important coordinate systems and the derivation of geometric transformations which
are needed for a deeper understanding of topics presented later. In addition, a
number of geometrical elements important for object representation are discussed.
The chapter concludes with a summary of least squares adjustment and statistics.

Chapter 3 is concerned with photogrammetric image acquisition for close-range
applications. After an introduction to physical basics and the principles of image
acquisition, geometric fundamentals and imaging models are presented. There follow
discussions of digital imaging equipment as well as specialist areas of image
recording. The chapter ends with a summary of illumination techniques and some
general targeting principles.

Analytical methods of image orientation and object reconstruction are presented
in Chapter 4. The emphasis here is on bundle triangulation. The chapter also presents
methods for dealing with single, stereo and multiple image configurations based on
measured image coordinates, and concludes with a review of panoramic and multi-
media (underwater) photogrammetry.

Chapter 5 brings together many of the relevant methods of digital
photogrammetric image analysis. Those which are most useful to dimensional
analysis and three-dimensional (3D) object reconstruction are presented, in
particular methods for feature extraction and image matching.

Photogrammetric systems developed for close-range measurement are discussed
in Chapter 6. As targeting is an integral part of the system, some detailed targeting
concepts are first presented, followed by solutions for scale and reference system
definition. The systems themselves are classified into interactive systems, tactile and
laser-based measuring systems, systems for the measurement of points and surfaces,
systems for dynamic processes, systems on mobile platforms such as drones and,
finally, 3D visualization and projection systems.

Chapter 7 discusses imaging project planning and quality criteria for practical
measurement tasks. After an introduction to network planning and optimization,
quality criteria and approaches to accuracy assessment are discussed. The chapter
concludes with strategies for camera and system calibration.

https://doi.org/10.1515/9783111029672-001
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Finally, Chapter 8 uses case studies and examples to demonstrate the potential
for close-range photogrammetry in fields such as architecture, heritage conservation,
construction, manufacturing industry, medicine and science.

1.1.2 References

Relevant literature is directly referenced within the text in cases where it is highly
recommended for the understanding of particular sections. In general, however,
further reading is presented in Chapter 9 which provides an extensive list of
thematically ordered literature. Here each chapter in the book is assigned a structured
list of reference texts and additional reading. Efforts have been made to suggest
reference literature which is easy to access. In addition, the reader is advised to make
use of conference proceedings, journals and the webpages of universities, scientific
societies and commercial companies for up-to-date information.

1.2 Fundamental methods

1.2.1 The photogrammetric process

Photogrammetry encompasses methods of image measurement and interpretation in
order to derive the shape and location of an object from one or more photographs of
that object. In principle, photogrammetric methods can be applied in any situation
where the object to be measured can be photographically recorded. The primary
purpose of a photogrammetric measurement is the three-dimensional reconstruction
of an object in digital form (coordinates, point clouds, 3D models and derived
geometric elements) or graphical form (images, drawings, maps and 3D
visualisations). The photograph or image represents a store of information which can
be re-accessed at any time.

Fig. 1.1: Photogrammetric images.
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Fig. 1.1 shows examples of photogrammetric images. The reduction of a three-
dimensional object to a two-dimensional image implies a loss of information. In the
first place, object areas which are not visible in the image cannot be reconstructed
from it. This not only includes hidden parts of an object such as the rear of a building,
but also regions which cannot be interpreted due to lack of contrast or size
limitations. Whereas the position in space of each point on the object may be defined
by three coordinates, there are only two coordinates available to define the position
of its image. There are geometric changes caused by the shape of the object, the
relative positioning of camera and object, perspective imaging and optical lens
defects. Finally, there are also radiometric (colour) changes since the reflected
electromagnetic radiation recorded in the image is affected by the light source, the
transmission media (air, glass) and the light-sensitive recording medium.

processing
reconstruction

R ‘/‘Q.

- " sensor
object

model

light source Tl

Fig. 1.2: From object to image.

For the reconstruction of an object from images it is therefore necessary to describe
the optical process by which an image is created. This includes all elements which
contribute to this process, such as light sources, properties of the surface of the
object, the medium through which the light travels, sensor and camera technology,
image processing, and further processing (Fig. 1.2).

Methods of image interpretation and measurement are then required which
permit the identification of an object by its form, brightness or colour distribution in
the image. For every image point, values in the form of radiometric data (intensity,
grey value, colour value) and geometric data (position in image) can then be
obtained. Optionally, this requires appropriate geometric and radiometric calibration
procedures.

From these measurements and a mathematical transformation between image
and object space, the object can finally be modelled.

Fig. 1.3 simplifies and summarizes this sequence. The left-hand side indicates the
principal instrumentation used whilst the right hand side indicates the methods
involved. Together with the physical and mathematical models, human knowledge,
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experience and skill play a significant role. They determine the extent to which the
reconstructed model corresponds to the imaged object or fulfils the task objectives.

object

) . m isition physical
imaging system ——*| image acquisitio models
calibration i
measuring system image measurement [« ---------ooooeoeoooy human
being
‘ ) e mathematical
processing system ——* object reconstruction [+—— models

|

object model

Fig. 1.3: The photogrammetric process: from object to model.

1.2.2 Aspects of photogrammetry

Because of its varied application areas, close-range photogrammetry has a strong
interdisciplinary character. There are not only close connections with other
measurement techniques but also with fundamental sciences such as mathematics,
physics, information sciences and biology.

Close-range photogrammetry also has significant links with aspects of graphics
and photographic science, for example computer graphics and computer vision,
digital image processing, computer aided design (CAD), augmented and virtual
reality (AR/VR) , geographic information systems (GIS) and cartography.

Traditionally, there are further strong associations of close-range
photogrammetry with the techniques of surveying, particularly in the areas of
adjustment methods and engineering surveying. With the increasing application of
photogrammetry to industrial metrology and quality control, links have been created
in other directions, too. Furthermore, there is increasing demand for optical 3D
measurement systems in rapidly developing fields such as autonomous vehicles and
medical technology.

Fig. 1.4 gives an indication of the relationship between size of measured object,
required measurement accuracy and relevant technology. Although there is no hard-
and-fast definition, it may be said that close-range photogrammetry usually applies
to objects ranging from about 0.1 m to 200 m in size, with accuracies under 0.1 mm at
the smaller end (manufacturing industry) and around 1cm at the larger end (AEC -
architecture, engineering and construction).
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Fig. 1.4: Relationship between measurement methods and object size and accuracy
(The extent of the named methods and application areas is indicative only).

Optical methods using light as the information carrier lie at the heart of non-contact
3D measurement techniques. Measurement techniques using electromagnetic waves
may be subdivided in the manner illustrated in Fig. 1.5. Techniques based on light
waves are as follows:

Triangulation techniques:

Photogrammetry (single, stereo and multiple imaging), Structure-from-Motion
(SfM) and vision-based Simultaneous Localisation and Mapping (Visual SLAM),
structured light (light section procedures, fringe projection, phase measurement,
moiré topography), focusing methods, shadow methods, etc.

Interferometry:

Optically coherent time-of-flight measurement, holography, speckle
interferometry, coherent radar.

Time-of-flight measurement:

Distance measurement by optical modulation methods, pulse modulation, etc.

The clear structure of Fig. 1.5 is blurred in practice since multi-sensor and hybrid
measurement systems utilize different principles in order to combine the advantages
of each.
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Fig. 1.5: Non-contact 3D measuring methods.

TOF cameras
solid-state LIDAR

Photogrammetry can be categorized in a multiplicity of ways:

- satellite photogrammetry:

- aerial photogrammetry:
— UAV photogrammetry:

— terrestrial photogrammetry:
- close-range photogrammetry:
- underwater photogrammetry:
— macro photogrammetry:

— mobile mapping:

By camera position and object distance h:

processing of remote sensing and
satellite images, h > ca. 200 km
processing of aerial photographs, h > ca. 300 m
processing of aerial photographs from drones,
h<ca.120 m
measurements from a fixed terrestrial location
imaging distance h < ca. 300 m

object recording in or through water
image scale > 1 (microscope imaging)
data acquisition from moving vehicles,
h<ca.100 m

- plane table photogrammetry:
— analogue photogrammetry:

— analytical photogrammetry:
- digital photogrammetry:

- videogrammetry:

— panoramic photogrammetry:
- line photogrammetry:

— multi-media photogrammetry:

By method of recording and processing:

graphical evaluation (until ca. 1930)
analogue cameras, opto-mechanical
measurement systems (until ca. 1980)
analogue images, computer-controlled measurement
digital images, computer-controlled measurement

digital image acquisition and measurement

panoramic imaging and processing
analytical methods based on straight lines and
polynomials
recording through media of different refraction
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— By number of measurement images:

- single-image photogrammetry: single-image processing, mono-plotting,
rectification, orthophotos

- stereo photogrammetry: dual image processing, stereoscopic measurement

— multi-image photogrammetry: n images where n>2, bundle triangulation

— By availability of measurement results:

- offline photogrammetry: sequential, digital image recording, separated in time
or location from measurement

— online photogrammetry: simultaneous, multiple, digital image recording,
immediate measurement

- real-time photogrammetry: recording and measurement completed within a

specified time period particular to the application

— By application or specialist area:

— architectural photogrammetry: architecture, heritage conservation, archaeology
— engineering photogrammetry: general engineering (construction) applications
—industrial photogrammetry: industrial (manufacturing) applications

- forensic photogrammetry: applications to diverse legal problems

- shape from stereo: stereo image processing (computer vision)

- structure-from-motion: multi-image processing (computer vision)

1.2.3 Image-forming model

Photogrammetry is a three-dimensional measurement technique which uses central
projection imaging as its fundamental mathematical model (Fig. 1.6). Shape and
position of an object are determined by reconstructing bundles of rays in which, for
each camera, each image point P', together with the corresponding perspective centre
0', defines the spatial direction of the ray to the corresponding object point P.
Provided the imaging geometry within the camera and the location of the imaging
system in object space are known, then every image ray can be defined in 3D object
space. Since photogrammetry is basically a method for measurement of spatial
directions (angles), i.e. it measures shape not scale, at least one absolute scale
information in object space must therefore be given, e.g. by a measured distance or
by control points with known coordinates.

From the intersection of at least two corresponding (homologous), spatially
separated image rays, an object point can be located in three dimensions. In stereo
photogrammetry two images are used to achieve this. In multi-image
photogrammetry the number of images involved is, in principle, unlimited.
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" exterior
” orientation

Fig. 1.6: Principle of photogrammetric measurement.

The interior orientation parameters describe the internal geometric model of a camera.
Photogrammetric usage, deriving from German, applies the word to groups of camera
parameters. Exterior (extrinsic) orientation parameters incorporate this angular
meaning but extend it to include position. Interior (intrinsic) orientation parameters,
which include a distance, two coordinates and a number of polynomial coefficients,
involve no angular values. The use of the terminology here underlines the connection
between two very important, basic groups of parameters.

Fig. 1.7: Pinhole camera model.

With the model of the pinhole camera as its basis (Fig. 1.7), the most important
reference location is the perspective centre O, through which all image rays pass. The
interior orientation defines the position of the perspective centre relative to a
reference system fixed in the camera (image coordinate system), as well as departures
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from the ideal central projection (image distortion). The most important parameter of
interior orientation is the principal distance, c, which defines the distance between
image plane and perspective centre (see section 3.3.2).

A real and practical photogrammetric camera will differ from the pinhole camera
model. The necessity of using a relatively complex objective lens, a camera housing
which is not built for stability and an image recording surface which may be neither
planar nor perpendicular to the optical axis of the lens will all give rise to departures
from the ideal imaging geometry. The interior orientation, which will include
parameters defining these departures, must be determined by calibration for every
camera (see section 3.3).

A fundamental property of a photogrammetric image is the image scale or photo
scale. The photo scale factor m defines the relationship between the object distance,
h, and principal distance, c. Alternatively it is the relationship between a distance, X,
parallel to the image plane in the object, and the corresponding distance in image
space, x':
m=n_% L)
c x
Since every object point in 3D space is, in general, at a different distance to the
camera, an image does not have a uniform image scale. Only in the special case of an
orthogonal view above a planar object, is the image scale equal across the whole
image. In many applications, however, a mean image scale is given for the entire
image, e.g. for planning purposes or accuracy estimates.

The image scale is in every case the deciding factor in resolving image details,
defined by the ground sample distance (GSD) which is derived from the pixel spacing
As' in the camera:

GSD=m-As' (1.2)

The image scale also determines the photogrammetric measurement accuracy, since
any measurement error in the image is multiplied in the object space by the scale
factor (see section 3.3.1).

The exterior orientation parameters specify the spatial position and orientation of
the camera in a global coordinate system. The exterior orientation is described by the
coordinates of the perspective centre in the global system and, commonly, three
suitably defined angles expressing the rotation of the image coordinate system with
respect to the global system (see section 4.2.1). The exterior orientation parameters
are calculated indirectly, after measuring image coordinates of well identified object
points.

Every measured image point corresponds to a spatial direction from projection
centre to object point. The length of the direction vector is initially unknown, i.e.
every object point lying on the line of this vector generates the same image point. In
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other words, although every three-dimensional object point transforms to a unique
image point for given orientation parameters, a unique reversal of the projection is
not possible. The object point can be located on the image ray, and thereby absolutely
determined in object space, only by intersecting the ray with an additional known
geometric element such as a second spatial direction or an object plane.

Every image generates a spatial bundle of rays, defined by the imaged points and
the perspective centre, in which the rays were all recorded at the same point in time.
If all the bundles of rays from multiple images are intersected as described above, a
dense network is created. For an appropriate imaging configuration, such a network
has the potential for high geometric strength. Using the method of bundle
triangulation any number of images (ray bundles) can be simultaneously oriented,
together with the calculation of the associated three-dimensional object point
locations (Fig. 1.6, Fig. 1.8, see section 4.4).

For absolute scaling of a photogrammetric network, at least one known distance
in object space must be known, e.g. directly from measured distances or calibrated
baselines between cameras, or derived from coordinates of known reference points.

Fig. 1.8: Bundle of rays from multiple images.

1.2.4 Photogrammetric systems and procedures

1.2.4.1 Digital system

With few exceptions, photogrammetric image recording today uses digital cameras
supported by image processing based on methods of visual and digital image
analysis. A closed digital system is therefore possible which can completely measure
an object directly on site and without any significant time loss between image
acquisition and delivery of results (Fig. 1.9).
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By using suitably targeted object points and automatic pattern recognition,
complex photogrammetric tasks can be executed fully automatically, hence
eliminating the need for manual image measurement, orientation and processing.
This approach is particularly important in industrial applications where, in the first
instance, 3D coordinates of discrete points are required. The measurement of free-
form surfaces through the use of dense point clouds is performed by stereo or multi-
image matching of textured object areas. By adopting the method of structure-from-
motion (SfM), arbitrary configurations of images can be oriented fully automatically.
In contrast, the measurement of linear object structures (e.g. for creating maps or
drawings) largely remains a visual, interactive process.

Digital image recording and processing offer the possibility of a fast, closed data
flow from taking the images to presenting the results. Two general procedures are
distinguished here. Offline photogrammetry uses a single camera with measurement
results generated after all images have first been recorded and then evaluated
together. Online photogrammetry records simultaneously using at least two cameras,
with immediate generation of results. If the result is delivered within a certain
process-specific time period, the term real-time photogrammetry is commonly used.

orientation
processing

post-processing

Fig. 1.9: Digital photogrammetric system.

Automation and short processing cycles enable a direct integration with other
processes where decisions can be made on the basis of feedback of the
photogrammetric results. Digital systems are therefore critical to the application of
photogrammetry in complex real-time processes, in particular industrial
manufacturing and assembly, robotics and medicine where feedback with the object
or surroundings takes place.

When imaging scenes with purely natural features, without the addition of
artificial targets, the potential for automation is much lower. An intelligent
evaluation of object structures and component forms demands a high degree of visual
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interpretation which is conditional on a corresponding knowledge of the application
and further processing requirements. However, even here simple software interfaces,
and robust techniques of image orientation and camera calibration, make it possible
for non-expert users to carry out photogrammetric recording and analysis.

1.2.4.2 Recording and analysis procedures
Fig. 1.10 shows the principal procedures in close-range photogrammetry which are
briefly summarized in the following sections.

targeting
. . control points /
image recording scaling lengths

image numbering
and archiving

1 RECORDING

2 PRE-PROCESSING

computation

image point removal of P
measurement outliers
3 IMAGE MEASUREMENT
approximation
4 ORIENTATION
bundle
adjustment
""""" 2
coordinates of exterior interior
object points orientations orientations
T T 5 MEASUREMENT /
single point | graphical | rectification / EVALUATION
measurement plotting orthophoto
| deformations | | process control | | quality analysis | 6 ANALYSIS

Fig. 1.10: Recording and analysis procedures (red - can be automated).

1.  Recording

a. Targeting (signalizing):
target selection and attachment to object features to improve automation
and increase the accuracy of target measurement in the image; definition
of control points.

b. Determination of control points or scaling lengths:
creation of a global object coordinate system by definition of reference
(control) points and/or reference lengths (scales).

c. Image recording:
digital image recording of the object with a photogrammetric system.



1.2 Fundamental methods =—— 13

Pre-processing

a.

Numbering and archiving:

assigning photo numbers to identify individual images and archiving or
storing the photographs.

Computation:

calculation of reference point coordinates and/or distances from survey
observations, e.g. using network adjustment.

Orientation

a.

Measurement of image points:

identification and measurement of reference and scale points,
identification and measurement of tie points.

Correspondence analysis:

matching of identical points (features) in all images.

Approximation:

calculation of approximate (starting) values for unknown quantities to be
calculated by the bundle adjustment.

Bundle adjustment:

adjustment program which simultaneously calculates parameters of both
interior and exterior orientation as well as the object point coordinates
which are required for subsequent analysis.

Removal of outliers:

detection and removal of gross errors which mainly arise during
measurement of image points.

Measurement and evaluation

a.

Single point measurement:

creation of three-dimensional object point coordinates, e.g. point clouds,
for further numerical processing.

Graphical plotting:

production of scaled maps or plans in analogue or digital form, e.g. hard
copies for maps and electronic files for CAD models or GIS.
Rectification/Orthophoto/3D visualization:

generation of transformed images or image mosaics which remove the
effects of tilt relative to a reference plane (rectification) and/or remove the
effects of perspective (orthophoto).

Analysis

a.

b.

Deformations:

Analysis of changes with respect to previous epochs.
Process control:

Control of external systems using the measured 3D data.
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c.  Quality analysis:
Comparison against nominal values in shape and size or accuracy
verifications.

To a significant extent, this sequence can be automated (see connections in red in Fig.
1.10). This automation requires that either object features are suitably marked and
identified using coded targets or, if there are sufficient textured and dense images
available, processing can be done using structure-from-motion. In both cases the
calculation of initial values and removal of outliers (gross errors) must be done by
robust estimation methods.

1.2.5 Photogrammetric products

In general, photogrammetric systems supply three-dimensional object coordinates
derived from image measurements (Fig. 1.11). From these, further elements and
dimensions can be derived, for example lines, distances, areas and surface
definitions, parameters of 6 degrees of freedom (6DOF) or navigation data as well as
quality information such as comparisons against design and machine control data.
The direct determination of geometric elements such as straight lines, planes and
cylinders is also possible without explicit calculation of point coordinates. In
addition, the recorded image is an objective data store which documents the state of
the object at the time of recording. Hence, semantic information can be derived to
create maps or qualified 3D models. Last but not least, the visual data can be provided
as corrected camera images, rectifications or orthophotos.

’ photogrammetric processing ‘

l | |

geometric features
coordinates, point clouds

‘ ’ semantic information ‘ ’ graphical information ‘

meshes

rocess control data distances, areas drawings. maps image rectifications
i ' gs, map orthophotos
comparison with design 6DOF ‘ as-built model ‘ 3D visualisations ‘
’ - surface data ‘
navigation

Fig. 1.11: Typical photogrammetric products.

Fig. 1.12 shows an example of two measurement images of a multi-image network for
the 3D digitisation of a statue (State Museum Nature and Human, Oldenburg). Fig.
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1.13 shows the visualised 3D model and the back-projection of part of the model’s
surface triangulation into the original images.

Fig. 1.12: Measurement images of an African statue.

Fig. 1.13: Reconstructed 3D model (left) and back-projection into original images.

1.3 Application areas

Much shorter imaging ranges, typically from a few centimetres to a few hundred
metres, and alternative recording techniques, differentiate close-range photo-
grammetry from its aerial and satellite equivalents.

The following comments, based on ones made by Thompson as long ago as 1963,
identify applications in general terms by indicating that photogrammetry and optical
3D measurement techniques are potentially useful when:

— the object to be measured is difficult to access but images are easily available;
— the object is not rigid and its instantaneous dimensions are required;
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— it is not certain that measurement will be required at all, or even what
measurements are required (i.e. the data is preserved for possible later
evaluation);

— the object is very small;

— the use of direct measurement would influence the measured object or disturb
events around it;

— real-time results are required;

— the simultaneous recording and the measurement of a very large number of
points is required.

The following specific application areas (with examples) are amongst the most
important in close-range photogrammetry:

Architecture, heritage conservation, archaeology:
—  fagade measurement

—  historic building documentation

—  deformation measurement

—  reconstruction of damaged buildings

— mapping of excavation sites

— modelling monuments and sculptures

— 3D models and texturing

Automotive, machine and ship building industries:
— inspection of tooling jigs

—  reverse engineering of design models

—  manufacturing control

—  optical shape measurement

—  recording and analysing car safety tests

—  robot calibration

—  driver assistance systems

—  autonomous driving

Aerospace industry:

—  measurement of parabolic antennae and mirrors
—  control of component assembly

— inspection of tooling jigs

—  space simulations

Fig. 1.16: Parabolic mirror.
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Engineering:

as-built measurement of process plants
measurement of large civil engineering sites
deformation measurements

pipework and tunnel measurement

mining

road and railway track measurement

wind power systems

Medi

cine and physiology:

dental measurements

spinal deformation

plastic surgery

neuro surgery

motion analysis and ergonomics
microscopic analysis
computer-assisted surgery (navigation)

Animation and movie/film industries:

body shape recording
motion capture (of actors)
3D movies

virtual reality (VR)
augmented reality (AR)
mixed reality (MR)

Polic

e work and forensic analysis:
accident recording
scene-of-crime measurement
legal records

measurement of individuals

Fig. 1.20: Accident recording.
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Information systems:

—  building information modelling (BIM)
—  facility management

—  production planning

— image databases

— internet applications (digital globes)

Natural sciences:

—  liquid flow measurement

—  wave topography

—  crystal growth

—  material testing

—  glacier and soil movements

Fig. 1.22: Flow measurement.

In general, similar methods of recording and analysis are used for all application

areas of close-range photogrammetry and the following features are shared:

— powerful image recording systems;

— freely chosen imaging configuration with almost unlimited numbers of pictures;

— photo orientation based on the technique of bundle triangulation;

— visual and digital analysis of the images;

— presentation of results in the form of 3D models, 3D coordinate files, CAD data,
photographs or drawings.

Industrial and engineering applications make special demands of the

photogrammetric technique:

— limited recording time on site (no significant interruption of industrial
processes);

— delivery of results for analysis after only a brief time;

— high accuracy requirements;

— traceability of results to standard unit of dimension, the metre;

— proof of accuracy attained.

1.4 Historical development

It comes as a surprise to many that the history of photogrammetry is almost as long
as that of photography itself and that, for at least the first fifty years, the predominant
application of photogrammetry was to close-range, architectural measurement rather
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than to topographical mapping. Only a few years after the invention of photography
during the 1830s and 1840s by Fox Talbot in England, by Niepce and Daguerre in
France, and by others, the French military officer Laussedat began experiments in
1849 into measuring from perspective views by working on the image of a facade of
the Hotel des Invalides. Admittedly Laussedat, usually described as the first
photogrammetrist, was in this instance using a camera lucida for he did not obtain
photographic equipment until 1852.

Fig. 1.23 shows an early example of a photogrammetric camera, built by Brunner
and used by Laussedat, with a stable construction without moving components. Fig.
1.24 shows an example of Laussedat’s work for military field mapping by
“metrophotographie”. As early as 1858 the German civil engineer Meydenbauer used
photographs to draw plans of the cathedral of Wetzlar and by 1865 he had constructed
his “great photogrammeter”, a forerunner of the phototheodolite. In fact, it was
Meydenbauer and Kersten, a geographer, who coined the word “photogrammetry”,
this first appearing in print in 1867.

i
il

Fig. 1.23: One of the first photogrammetric Fig. 1.24: Early example of photogrammetric field
cameras by Brunner, 1859 (Laussedat 1899).  recording, about 1867 (Laussedat 1899).

Meydenbauer also made topographical surveys by means of plane table
photogrammetry, for example in 1867 for the mapping of Freyburg a.d. Unstrut at a
scale of 1:5000 (Fig. 1.25). He also used photography as an alternative to manual
methods of measuring facades. For this he developed his own large-format, glass-
plate cameras (see Fig. 1.26) and, between 1885 and 1909, compiled an archive of
around 13000 metric! images of the most important Prussian architectural
monuments. This represents a very early example of cultural heritage preservation by

1 A “metric” camera is defined as one with known and stable interior orientation.
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photogrammetry. Fig. 1.27 shows an original metric image, Fig. 1.28 displays the
facade map derived from it.

ik [l g LV B '

Fig. 1.25: Topographic surveying by Fig. 1.26: Metric cameras by Meydenbauer
Meydenbauer, 1867 (Burchardi & (ca. 1890); left: 30x30 cm?, right: 20x20 cm?
Meydenbauer 1868). (Albertz 2009).
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Fig. 1.27: Metric image of the Marburg Fig. 1.28: Facade drawing of the Marburg
Elisabeth Church by Meydenbauer (1883). Elisabeth Church (1883).

The phototheodolite, as its name suggests, represents a combination of camera and
theodolite. The direct measurement of orientation angles leads to a simple
photogrammetric orientation. A number of inventors, such as Porro and Paganini in
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Italy, in 1865 and 1884 respectively, and Koppe in Germany, 1896, developed such
instruments (Fig. 1.29).

Horizontal bundles of rays can be constructed from terrestrial photographs, with
two or more permitting a point-by-point survey using intersecting rays. This
technique, often called plane table photogrammetry, works well for architectural
subjects which have regular and distinct features. However, for topographic mapping
it can be difficult identifying the same feature in different images, particularly when
they are well separated to improve accuracy. Nevertheless, despite the early
predominance of architectural photogrammetry, mapping was still undertaken. For
example, in the latter part of the 19" century, Paganini mapped the Alps, Stolze the
Friday Mosque in Shiraz, Deville the Rockies and Jordan the Dachel oasis, whilst
Finsterwalder developed analytical solutions.
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Fig. 1.29: Phototheodolite by Koppe (1889) and Zeiss Jena 19/1318 (ca. 1904).

The development of stereoscopic measurement around the turn of the century was a
major breakthrough in photogrammetry. Following the invention of the stereoscope
around 1830, and Stolze’s principle of the floating measuring mark in 1893, Pulfrich
in Germany and Fourcade in South Africa, at the same time but independently?,
developed the stereocomparator which implemented Stolze’s principle. These
enabled the simultaneous setting of measuring marks in the two comparator images,
with calculation and recording of individual point coordinates (Fig. 1.30).

2 Pulfrich’s lecture in Hamburg announcing his invention was given on 23" September 1901, while
Fourcade delivered his paper in Cape Town nine days later on 2*¢ October 1901.
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Photogrammetry then entered the era of analogue computation, very different to
the numerical methods of surveying. Digital computation was too slow at that time to
compete with continuous plotting from stereo instruments, particularly of contours,
and analogue computation became very successful for a large part of the 20 century.

Fig. 1.30: Pulfrich’s stereocomparator (Zeiss, 1901).

In fact, during the latter part of the 19% century much effort was invested in
developing stereoplotting instruments for the accurate and continuous plotting of
topography. In Germany, Hauck proposed a device and, in Canada, Deville claimed
“the first automatic plotting instrument in the history of photogrammetry”. Deville’s
instrument had several defects, but they inspired many developers such as Pulfrich
and Santoni to overcome them.

In Germany, conceivably the most active country in the early days of
photogrammetry, Pulfrich’s methods were very successfully used in mapping. This
inspired von Orel in Vienna to design an instrument for the “automatic” plotting of
contours, which lead to the Orel-Zeiss Stereoautograph in 1909. In England, F. V.
Thompson anticipated von Orel in the design of the Vivian Thompson stereoplotter
and subsequently the Vivian Thompson Stereoplanigraph (1908). This was described
by E. H. Thompson (1974) as “the first design for a completely automatic and
thoroughly rigorous photogrammetric plotting instrument”.

The rapid development of aviation, which began shortly after this, was another
decisive influence on the course of photogrammetry. Not only is the Earth,
photographed vertically from above, an almost ideal subject for the photogrammetric
method, but also aircraft made almost all parts of the Earth accessible at high speed.
In the first half, and more, of the 20" century these favourable circumstances allowed
impressive development in photogrammetry, with tremendous economic benefit in
air survey. On the other hand, the application of stereo photogrammetry to the
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complex surfaces relevant to close-range work was impeded by far-from-ideal
geometry and a lack of economic advantage.

Although there was considerable opposition from surveyors to the use of
photographs and analogue instruments for mapping, the development of
stereoscopic measuring instruments forged ahead in very many countries during the
period between the First World War and the early 1930s. Meanwhile, non-topographic
use was sporadic for the reasons that there were few suitable cameras and that
analogue plotters imposed severe restrictions on principal distance, on image format
and on disposition and tilts of cameras. Instrumentally complex systems were being
developed using optical projection (for example Multiplex), opto-mechanical
principles (Zeiss Stereoplanigraph) and mechanical projection using space rods (for
example Wild A5, Santoni Stereocartograph), designed for use with aerial
photography. By 1930 the Stereoplanigraph C5 was in production, a sophisticated
instrument able to use oblique and convergent photography. Even if makeshift
cameras had to be used at close range, experimenters at least had freedom in the
orientation and placement of these cameras and this considerable advantage led to
some noteworthy work.

Fig. 1.31: Wild P32 metric camera Fig. 1.32: Wild C120 stereometric camera.
mounted on a theodolite.

As early as 1933 Wild stereometric cameras were being manufactured and used by
Swiss police for the mapping of accident sites, using the Wild A4 Stereoautograph, a
plotter especially designed for this purpose. Such stereometric cameras comprise two
identical metric cameras fixed to a rigid base of known length such that their axes are
coplanar, perpendicular to the base and, usually, horizontal® (Fig. 3.38a, see section

3 This is sometimes referred to as the “normal case” of photogrammetry.
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4.3.1.4). Other manufacturers have also made stereometric cameras (Fig. 1.32) and
associated plotters (Fig. 1.34) and a great deal of close-range work has been carried
out with this type of equipment. Initially glass plates were used in metric cameras in
order to provide a flat image surface without significant mechanical effort (see
example in Fig. 1.31, Fig. 1.33). From the 1950s, film was increasingly used in metric
cameras which were then equipped with a mechanical film-flattening device.

The 1950s were the start of the period of analytical photogrammetry. The
expanding use of digital, electronic computers in that decade shifted interest from
prevailing analogue methods to a purely analytical or numerical approach to
photogrammetry. While analogue computation is inflexible, in regard to both input
parameters and output results, and its accuracy is limited by physical properties, a
numerical method allows virtually unlimited accuracy of computation and its
flexibility is limited only by the mathematical model on which it is based. Above all,
it permits over-determination which may improve precision, lead to the detection of
gross errors and provide valuable statistical information about the measurements
and the results. The first analytical applications were to photogrammetric
triangulation. As numerical methods in photogrammetry improved, the above
advantages, but above all their flexibility, were to prove invaluable at close range.

Fig. 1.33: Jenoptik UMK 1318. Fig. 1.34: Wild A40 stereoplotter.

Subsequently, stereoplotters were equipped with devices to record model coordinates
for input to electronic computers. Arising from the pioneering ideas of Helava (1957),
computers were incorporated in stereoplotters themselves, resulting in analytical
stereoplotters with fully numerical reconstruction of the photogrammetric models.
Bendix/OMI developed the first analytical plotter, the AP/C, in 1964 and, during the
following two decades, analytical stereoplotters were produced by the major
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instrument companies and others (example in Fig. 1.35). While the adaptability of
such instruments has been of advantage in close-range photogrammetry,
triangulation programs with even greater flexibility were soon to be developed, which
were more suited to the requirements of close-range work.

Fig. 1.35: Analytical Stereoplotter Zeiss Planicomp (ca. 1980).

Analytical photogrammetric triangulation is a method, using numerical data, of point
determination involving the simultaneous orientation of all the photographs and
taking all inter-relations into account. Work on this line of development, for example
by the Ordnance Survey of Great Britain, had appeared before World War II, long
before the development of electronic computers. Analytical triangulation required
instruments to measure photo coordinates. The first stereocomparator designed
specifically for use with aerial photographs was the Cambridge Stereocomparator
designed in 1937 by E. H. Thompson. By 1955 there were five stereocomparators on
the market and monocomparators designed for use with aerial photographs also
appeared.

In the 1950s many mapping organizations were also experimenting with the new
automatic computers, but it was the ballistic missile industry which gave the impetus
for the development of the bundle method of photogrammetric triangulation. This is
commonly known simply as the bundle adjustment and is today the dominant
technique for triangulation in close-range photogrammetry. Seminal papers by
Schmid (1956-57, 1958) and Brown (1958) laid the foundations for theoretically
rigorous block adjustment. A number of bundle adjustment programs for air survey
were developed and became commercially available, such as those by Ackermann et
al. (1970) and Brown (1976). Programs designed specifically for close-range work have
appeared since the 1980s, such as STARS (Fraser & Brown 1986), BINGO (Kruck 1983),
MOR (Wester-Ebbinghaus 1981) or CAP (Hinsken 1989).
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The importance of bundle adjustment in close-range photogrammetry can hardly
be overstated. The method imposes no restrictions on the positions or the orientations
of the cameras, nor is there any necessity to limit the imaging system to central
projection. Of equal or greater importance, the parameters of interior orientation of
all the cameras may be included as unknowns in the solution. Until the 1960s many
experimenters appear to have given little attention to the calibration* of their
cameras. This may well have been because the direct calibration of cameras focused
for near objects is usually much more difficult than that of cameras focused for distant
objects. At the same time, the interior orientation must usually be known more
accurately than is necessary for vertical aerial photographs because the geometry of
non-topographical work is frequently far from ideal. In applying the standard
methods of calibration in the past, difficulties arose because of the finite distance of
the targets, either real objects or virtual images. While indirect, numerical methods
to overcome this difficulty were suggested by Torlegard (1967) and others, bundle
adjustment now removes this concern. For high precision work, it is no longer
necessary to use metric cameras which, while having the advantage of known and
constant interior orientation, are usually cumbersome and expensive. Virtually any
camera can now be used. Calibration via bundle adjustment is usually known as self-
calibration (see sections 3.3 and 4.4).

Fig. 1.36: Rolleiflex SLX semi-metric camera  Fig. 1.37: Rollei MR2 multi-image restitution
(ca. 1980). system (ca. 1990).

Many special cameras have been developed to extend the tools available to the
photogrammetrist. One example promoted by Wester-Ebbinghaus (1981) was a
modified professional photographic camera with an inbuilt réseau, an array of
engraved crosses on a glass plate which appear on each image (see Fig. 1.36).

4 In photogrammetry, unlike computer vision, “calibration” refers only to interior orientation.
Exterior orientation is not regarded as part of calibration.
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The use of traditional stereo photogrammetry at close ranges has declined. As an
alternative to the use of comparators, multi-photo analysis systems which use a
digitizing pad as a measuring device for photo enlargements, for example the Rollei
MR2 from 1986 (Fig. 1.37) have been widely used for architectural and accident
recording.

Fig. 1.38: Partial-metric camera Fig. 1.39: Réseau-Scanner Rollei RS1 (ca. 1986).
GSI CRC-1 (ca. 1986).

Fig. 1.40: Online multi-image system Mapvision (1987). Fig. 1.41: Zeiss Indusurf (1987).

Since the middle of the 1980s, the use of opto-electronic image sensors has increased
dramatically. Advanced computer technology enables the processing of digital
images, particularly for automatic recognition and measurement of image features,
including pattern correlation for determining object surfaces. Procedures in which
both the image and its photogrammetric processing are digital are often referred to as
digital photogrammetry. Automated precision monocomparators, in combination
with large format réseau cameras, were developed for high-precision, industrial
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applications, e.g. by Fraser and Brown (1986) or Luhmann and Wester-Ebbinghaus
(1986), see Fig. 1.38 and Fig. 1.39.Initially, standard video cameras were employed.
These generated analogue video signals which could be digitized with resolutions up
to 780x580 picture elements (pixels) and processed in real time (real-time
photogrammetry, videogrammetry). The first operational online multi-image systems
became available in the late 1980s (example in Fig. 1.40). Analytical plotters were
enhanced with video cameras to become analytical correlators, used for example in
car body measurement (Zeiss Indusurf 1987, Fig. 1.41). Closed procedures for
simultaneous multi-image processing of grey level values and object data based on
least squares methods were developed, e.g. by Forstner (1982) and Gruen (1985).

The limitations of video cameras in respect of their small image format and low
resolution led to the development of scanning cameras which enabled the high
resolution recording of static objects to around 6000 x 4500 pixels. In parallel with
this development, electronic theodolites were equipped with video cameras to enable
the automatic recording of directions to targets (Kern SPACE). With the Leica/Rollei
system POM (Programmable Optical Measuring system, Fig. 1.42) a complex online
system for the measurement of automotive parts was developed which used réseau-
scanning cameras (Fig. 1.43) and a rotary table for all-round measurements.

Fig. 1.42: POM online system with digital rotary table  Fig. 1.43: Réseau-scanning camera
(1990). Rollei RSC (1990).

Digital cameras with high resolution, which can provide a digital image without
analogue signal processing, have been available since the beginning of the 1990s.
Resolutions ranged from about 1000 x 1000 pixels, e.g. the Kodak Megaplus (1986),
to over 4000 x 4000 pixels. Easily portable, still-video cameras could store high
resolution images directly in the camera, e.g. the Kodak DCS 460 (Fig. 1.44). They
have led to a significant expansion of photogrammetric measurement technology,
particularly in the industrial field. See, for example, systems from GSI, AICON (now
part of Hexagon) and GOM (now part of Zeiss). Online photogrammetric systems (Fig.
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1.45) have been brought into practical use, in addition to offline systems, both as
mobile systems and in stationary configurations. Coded targets allowed the fully
automatic identification and assignment of object features and orientation of the
image sequences. Surface measurement of large objects were now possible with the
development of pattern projection methods combined with photogrammetric
techniques.

Fig. 1.44: Still-video camera Kodak DCS Fig. 1.45: GSI VSTARS online industrial measurement
460 (ca. 1996). system (ca. 1991).

Interactive digital stereo systems, such as the Leica/Helava DSP and Zeiss PHODIS,
have existed since around 1988 (Kern DSP-1). They have replaced analytical plotters,
but they are rarely employed for close-range use. Interactive, graphical multi-image
processing systems are of more importance here as they offer processing of freely
chosen image configurations in a CAD environment, for example the Phocad PHIDIAS
(Fig. 1.46). Easy-to-use, low-cost software packages, such as the EOS PhotoModeler
(Fig. 1.47) or Photometrix iWitness, provide object reconstruction and creation of
virtual 3D models from digital images without the need for a deep understanding of
photogrammetry. Since around 2010 computer vision algorithms (interest operators,
structure-from-motion approaches, see section 5.5.2) have become very popular and
provide fully automated 3D modelling for arbitrary imagery without any pre-
knowledge or on-site measurements. These systems provide dense point clouds and
true orthophotos as well. See, for example, systems from AgiSoft, Pix4D,
RealityCapture or MicMac, and the example output in Fig. 1.48.
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Fig. 1.46: PHIDIAS-MS multi-image analysis system (Phocad, 1994, see also Fig. 6.20).

Fig. 1.47: Multi-image analysis system PhotoModeler (EOS Systems, 2008).

A trend in close-range photogrammetry is now towards the integration or embedding
of photogrammetric components in application-oriented hybrid systems. This
includes links to such packages as 3D CAD systems, databases and information
systems, quality analysis and control systems for production, navigation systems for
autonomous robots and vehicles, 3D visualization systems, internet applications, 3D
animations and virtual reality. Another trend is the increasing use of methods from
computer vision, such as projective geometry or pattern recognition, for rapid
solutions which do not require high accuracy. Multi-sensor systems such as laser
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scanners combined with cameras, GNSS-enabled cameras and cameras with
integrated range finders are growing in importance. There is increased interest, too,
in mobile and dynamic applications, including UAV applications. Finally, the
continuing fall in the cost of digital cameras and processing software will ensure that
photogrammetry is open to everyone.

Fig. 1.48: Structure-from-Motion software PhotoScan (AgiSoft, 2016).

Close-range photogrammetry is today a well-established, universal 3D measuring
technique, routinely applied in a wide range of interdisciplinary fields. There is every
reason to expect its continued development long into the future.



2 Mathematical fundamentals

This chapter presents mathematical fundamentals which are essential for a deeper
understanding of close-range photogrammetry. After defining some common
coordinate systems, the most important plane and spatial coordinate transformations
are summarized. An introduction to homogeneous coordinates and graphical
projections then follows and the chapter concludes with the basic theory of least-
squares adjustment.

2.1 Coordinate systems
2.1.1 Pixel and sensor coordinate system

Digital cameras incorporating electronic image sensors are routinely used for image
recording. They deliver a positive digital image of an object or scene in the form of a
matrix of pixels whose rows and columns are defined in a pixel coordinate system. It
is a left-handed system, u,v, with its origin in the upper left element (Fig. 2.1 and
section 5.1.2). The digital image can be viewed as a two-dimensional matrix with m
columns and n rows which, in the case of multiple stored channels such as colour
channels, can also be defined as multi-dimensional (see also section 5.1.3). A digital
image only has a relationship to the physical image sensor in the camera when there
isa1:1 correspondence between individual pixels and individual sensor elements. For
transformation into a metric image coordinate system, the physical pixel dimensions
As'y, As'ymust be known. Together with a knowledge of pixel numbers m and n, this
information then enables the origin to be shifted to the centre of the sensor (centre of
image) and converted to a right-handed system x',y" (see sections 2.1.2 and 3.3.2.1 and
eqn. 2.2).

y As',

0123 .. — ‘e— m-1
0 >
1 u
2
3

> X'
v
As',
n-1 T
vV

Fig. 2.1: Pixel coordinate system.

https://doi.org/10.1515/9783111029672-002
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2.1.2 Image and camera coordinate systems

The image coordinate system defines a two-dimensional, image-based reference
system of right-handed rectangular Cartesian coordinates, x',y". In a film camera its
physical relationship to the camera is defined by reference points, either fiducial
marks or a réseau, which are projected into the acquired image (see section 3.3.2.1).
For a digital imaging system, the sensor matrix in the camera’s imaging plane is the
source of the matrix of imaging pixels. These define an image coordinate system
where the origin of metric image coordinates is located at the image centre (see
section 2.1.1).

) 2
yﬁ B,: negative

B,: positive

WP

I .
ﬂL\VYPIEP

*‘}EER GARDE[\[ X

Fig. 2.3: Image coordinate system in negative (left) and positive image (right).

The relationship between the positive plane image and the camera, regarded as a
spatial object, can be established when the image coordinate system is extended by
a z' axis normal to the image plane, with a positive direction as indicated in order to
preserve aright-handed system (see Fig. 2.2). This 3D coordinate system will be called
the camera coordinate system and its origin is located at the perspective centre O'. The
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z' axis coincides approximately with the optical axis. An image position B
corresponds to a location in the physically acquired image, which is the image
negative. With respect to the positive, this is upside down (Fig. 2.3 left). For a number
of mathematical calculations, it is easier to use the corresponding image position B,
in the equivalent positive image (upright, see Fig. 2.3 right).

For points in the positive image, a 3D vector of image coordinates x' points from
the origin at the perspective centre to the object point P. Note that this requires a
negative z' value which has the same magnitude as the principal distance, c. Hence
the 3D image vector x' as follows:

X
x=|y|=|y @1)
z

Thus, the image vector x' describes the projection ray, with respect to the image
coordinate system, from the positive image point to the object point. The spatial
position of the perspective centre in the image coordinate system is given by the
parameters of interior orientation under consideration of the principal point and
imaging errors (see section 3.3.2).

The transformation between pixel and metric image using the physical pixel sizes
As'y, As', and pixel numbers m and n, is given as follows:

s’ =m-As’, s’yzn'As’V
, s' A S'y (2.2)
x'=—%+u-As' =Y _y.As'

2 u y 5 v-As'

Here, s'x and s', normally define the sensor format. Where the photogrammetric
calculation is required in a right-handed pixel coordinate system, with the origin
located at the image centre, the transformation is defined by As'.=As',=1.

2.1.3 Model coordinate system

The spatial Cartesian model coordinate system xyz is used to describe the relative
position and orientation of two or more images (image coordinate systems). Normally
its origin is at the perspective centre of one of the images (Fig. 2.4). In addition, the
model coordinate system may be parallel to the related image coordinate system (see
section 4.3.3).
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Fig. 2.4: Model coordinate system.

2.1.4 Object coordinate system

The term object coordinate system, also known as the world coordinate system, is here
used for every spatial Cartesian coordinate system XYZ that is defined by reference
points of the object (examples in Fig. 2.5). For example, national geodetic coordinate
systems (X = easting, Y = northing, Z = altitude, origin at the equator) are defined by
geodetically measured reference points'. Another example is the local object or
workpiece coordinate system of a car body that is defined by the constructional axes
(X =longitudinal car axis, Y = front axle, Z = height, origin at centre of front axle).

Fig. 2.5: Object coordinate systems.

A special case of three-dimensional coordinate system is an arbitrarily oriented one
used by a 3D measuring system such as a camera or a scanner. This is not directly
related to any superior system or particular object but if, for instance, just one

1 National systems of geodetic coordinates which use the geoid as a reference surface are equivalent
to a Cartesian coordinate system only over small areas.
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reference scale is given (Fig. 2.6), then it is still possible to measure spatial object
coordinates.

The definition of origin, axes and scale of a coordinate system is also known as
the datum.

object

3D measuring system

X
orientation frame

Fig. 2.6: 3D instrument coordinate system.

2.2 Coordinate transformations
2.2.1 Plane transformations

2.2.1.1 Homogenous coordinates
Homogenous coordinates can be derived from Cartesian coordinates by adding one
dimension and scaling by any non-zero factor A. In two dimensions this leads to:

X
x=Av|=|y where x =u/w,y=v/w,A#0 (2.3)
1

w

Three-dimensional Cartesian coordinates are converted to homogenous coordinates
in an analogous way?
The homogenous coordinate transformation

x'=ATx (2.4)

maintains its projection properties independently of A. Consequently, all major
coordinate transformations (translation, rotation, similarity, central projection) can
be formed in a consistent way and can be combined in an arbitrary order to a total

2 Homogenous vectors are denoted in bold and italic text.
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transformation T (see section 2.2.3). The photogrammetric projection equations can
also be elegantly expressed in homogenous coordinates (see section 4.2.4.2).

2.2.1.2 Similarity transformation

The plane similarity transformation is used for the mapping of two plane Cartesian
coordinate systems (Fig. 2.7). Generally a 4-parameter transformation is employed
which defines two translations, one rotation and a scaling factor between the two
systems. Angles and distance proportions are maintained.

Fig. 2.7: Plane similarity transformation.

Given a point P in the xy source system, the XY coordinates in the target system are

X=a,+a-x-by Y=b,+b x+a,y (2.5)
or
X=a,+m-(x-cosa—y-sina) Y =b,+m-(x-sina+y-cosa) (2.6)

Here ao and bo define the translation of the origin, a is the rotation angle and m is the
global scaling factor. In order to determine the four coefficients, a minimum of two
identical points is required in both systems. With more than two identical points, the
transformation parameters can be calculated by an over-determined, least-squares
adjustment.

In matrix notation (2.5) is expressed as

X=A-x+a
X| la, -b||x| |a, 2.7)
v |“|b, a||y|| b,

or in non-linear form with ao=Xo und bo=Yo:
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X=m-R-x+X,

X cosa —sina||x| | X, (2.8)
=m- . . =+

Y sina cosa ||y Y,

R is the rotation matrix corresponding to rotation angle a. This is an orthogonal
matrix having orthonormal column (or row) vectors and it has the properties:

R'=R" and R" -R=1 (2.9)

For the reverse transformation of coordinates from the target system into the source
system, the transformation equations (2.8) are re-arranged as follows:

x=i~R‘1-(X—X0)

m
x| 1| cosa sina||X-X; (2.10)
y " m |-sina cosa Y-Y,

or explicitly with the coefficients of the forward transformation:

X:al(X—a0)+b1(Y—bO) y:al(Y—bO)—bl(X—aO)

(2.11)
2 2 2 2
a; +b; a; +b;

2.2.1.3 Affine transformation

The plane affine transformation is also used for the mapping of two plane coordinate
systems (Fig. 2.8). This 6-parameter transformation defines two displacements, one
rotation, one shearing angle between the axes and two separate scaling factors.

Fig. 2.8: Plane affine transformation.

For a point P in the source system, the XY coordinates in the target system are given
by
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X=a,+a, x+a,y Y=b,+b,-x+b,-y (212

or in non-linear form with ao=Xo und bo=Yo:

X=X,+m, -x-cosa—m, -y-sin(a+ ) 2.13)
Y=Y +m,-x-sina+m,-y-cos(a+p)
The parameters ao and bo (Xo and Yo) define the displacement of the origin, a is the
rotation angle, B is the shearing angle between the axes and mx, my are the scaling
factors for x and y. In order to determine the six coefficients, a minimum of three
identical points is required in both systems. With more than three identical points,
the transformation parameters can be calculated by over-determined least-squares
adjustment.
In matrix notation the affine transformation can be written as:

X=A-x+a

_X___al a, || x N a,

Y| |b b,||y| |b,

or (2.14)

X _mX-cosa -m, -sin(a+f) erX0
Y m,-sina  m,-cos(a+p) ||y Y

0

A is the affine transformation matrix. For transformations with small values of
rotation and shear, the parameter a: corresponds to the scaling factor mx and the
parameter b; to the scaling factor my.

For the reverse transformation from coordinates in the target system to
coordinates in the source system, eqn. (2.14) is re-arranged as follows

x=A"-(X-a) (2.15)

or explicitly with the coefficients with the original, forward transformation:

a,(Y-b,)-b,(X-a,) b(X-a,)-a,(Y-b,)
X= y=

(2.16)
aZbl _albz azbl _albz

2.2.1.4 Polynomial transformation
Non-linear deformations (Fig. 2.9) can be described by polynomials of degree n:
In general, the transformation model can be written as:

X :Zn:iaﬁx’;iyi Y=Zn:Z):bﬁx"”'y" (2.17)

j=0i=0 j=0i=0

where n = degree of polynomial
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A polynomial with n =2 is given by:

3 2
X:aoo-"aw'X“Lau'y"'azo'x2 +a21-x~y+a22~y2 (2.18)
Y=by, +b,y-X+b, -y +by X +b, -X-y+by,-y

The polynomial with n =1 is identical to the affine transformation (2.12). In general,
the number of coefficients required to define a polynomial transformation of degree
nis u=(n+1)-(n+2). In order to determine the u coefficients, a minimum of u/2
identical points is required in both systems.

Fig. 2.9: Plane polynomial transformation.

2.2.1.5 Bilinear transformation
The bilinear transformation is similar to the affine transformation but extended by a
mixed term:

X=a,+ax+ay+axy Y=b,+bx+b,y+bxy (2.19)

In order to determine the eight coefficients, a minimum of four identical points is
required.

The bilinear transformation can be used in the unconstrained transformation and
interpolation of quadrilaterals, for example in réseau grids or digital surface models.

Fig. 2.10: Bilinear transformation.

For the transformation of a square with side length A (Fig. 2.10), the coefficients can
be calculated as follows:
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a, X, b, Y
b y
a X
=A™ and bl =A|7? (2.20)

a, X, ) Y;
a, X, b, Y,
1 0 0 0
-1/A 1/A 0 0

where A

“lc1/a o 1/4 0
1/ /R /R 1A

2.2.1.6 Projective transformation
The plane projective transformation maps two plane coordinate systems using a
central projection. All projection rays are straight lines through the perspective centre
(Fig. 2.11).

The transformation model is:

_a,+a,x+a,y y=Doth x+b,y (2.21)

- 1+c -x+c,-y B 1+c,-x+c,-y
The system of equations (2.21) is not linear. By multiplying by the denominator and

rearranging, the following linear form can be derived. This is suitable as an
observation equation in an adjustment procedure:

a,+ax+ay—-X-cxX-c,yX=0

(2.22)
b,+bx+by-Y-cxY-cyY=0

In order to determine the eight coefficients, four identical points are required where
no three may lay on a common straight line. With more than four points, the system
of equations can be solved by adjustment (see calculation scheme in section 4.2.6).
For the derivation of (2.21) the spatial similarity transformation can be used (see
section 2.2.3).

The reverse transformation can be calculated by re-arrangement of equations
(2.21):

_ ab,-ayb,+(b,~b,c,)X+(a,c,-a,)Y
ab,-a,b, +(bc,-b,c)X+(a,c ~ac,)Y

_ab—ab, +(bc,~b, )X +(a,—a,c,)Y

y= ab,—a,b, +(bc,-b,c)X+(a,c, —ac,)Y

(2.23)

In this form the equations again express a projective transformation. By substitution
of terms the following form is derived:
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X:a'0+a'1X+a'2Y _b'0+b'1X+b'2Y

=—0 17 27 2.24
1+c' X+clY Y 1+c' | X+c\Y (2:24)
where
a = azbo _aobz b = aObl _albo ¢ = blcz _bzcl
0 N 0 N ! N
a' = b, _bocz bll _ bOCI —b, ¢ = a4,¢, ~ 4,6
N N N
g = a,.c,—-a, . a,—ac, N=ab,-a,b,
g N g N

Fig. 2.11: Plane projective Fig. 2.12: Cross ratios.
transformation.

The plane projective transformation preserves rectilinear properties and intersection
points of straight lines. In contrast, angles, length and area proportions are not
invariant. An additional invariant property of the central projection are the cross
ratios of distances between points on a straight line. They are defined as follows:

\_AB_AD_A'B _AD _AB AD'_A'B" A'D’ (2.25)
BC CD B*Ck CkD* BlCI CIDI B"Cll C"D"

The cross ratios apply to all straight lines that intersect a bundle of perspective rays
in an arbitrary position (Fig. 2.11).

The plane projective transformation is applied to single image analysis, e.g. for
rectification or coordinate measurement in single images (see section 4.2.6).
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Example 2.1:

Given 8 points in the source and target coordinate systems with the following plane coordinates:
No. X y X Y
1 -12.3705 -10.5075 0 0
2 -10.7865 15.4305 0 5800
3 8.6985 10.8675 4900 5800
4 11.4975 -9.5715 4900 0
5 7.8435 7.4835 4479 4580
6 -5.3325 6.5025 1176 3660
7 6.7905 -6.3765 3754 790
8 -6.1695 -0.8235 1024 1931

These correspond to the image and control point coordinates in Fig. 5.56.
The plane transformations described in section 2.2.1.1 to section 2.2.1.6 then give rise to the
following transformation parameters:

Coeff. 4-param 6-param Bilinear Projective Polynomial
transf. transf. transf. transf. 2nd order
a0 2524.3404 2509.3317 2522.4233 2275.9445 2287.8878
al 237.2887 226.9203 228.0485 195.1373 230.9799
a2 7.3472 11.5751 -11.5864 16.4830
a3 2.1778 2.9171
a4 2.2887
a5 -0.0654
b0 2536.0460 2519.9142 2537.9164 2321.9622 2348.9782
b1 5.6218 21.5689 23.1202 -9.0076 28.0384
b2 250.1298 255.9436 222.6108 250.7228
b3 2.9947 -0.2463
b4 3.5332
b5 2.5667
cl -0.0131
c2 -0.0097
sO [mm] 369.7427 345.3880 178.1125 3.1888 38.3827

The standard deviation so indicates the spread of the transformed points in the XY system. It can be
seen that the projective transformation has the best fit, with the 2" order polynomial as second
best. The other transformations are not suitable for this particular distribution of points.

Using homogenous coordinates the plane projective transformation can be expressed
as:

U=H-x X=1/W-U
U h, h, h, X u/w
V= h21 hzz hz3 Yy and Y|=|V/W (2.26)
W |h, h, hg|[1 1 w/w

This formulation is known as homography. Since the matrix H can be scaled without
altering its projective properties (see section 2.2.1.1), there are eight degrees of
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freedom as there are in the plane projective transformation of eqn. (2.21). When
seeking a direct solution to h = [hu, ..., h33] the elements should be normalized to deal
with this rank deficiency and to avoid the trivial solution h=0. For example, this can
be done by setting hs;;=1 which gives the same result as in eqn. (2.21). It can be
numerically advantageous to seek a normalisation via the norm of the vector e.g.
|h|=1, which is implicitly the case if a solution is sought via an eigenvalue or singular
value decomposition.

2.2.2 Spatial rotations

2.2.2.1 Rotation matrix using trigonometric functions

For plane transformations, rotations take effect about a single point. In contrast,
spatial rotations are performed successively about the three axes of a spatial
coordinate system. Consider a point P in the source system xyz which is rotated with
respect to the target system XYZ. Using trigonometric functions, individual rotations
about the three axes of the target system are defined as follows (see Fig. 2.13):

Y X 4
Y * z
P P P
"""""""""" O ”"""""""’i’(‘) ”"""""":'_’i’(‘)
* ; 7 ‘ y
K ¢ o |
z=Z X y=Y z x=X Y

Fig. 2.13: Definition of spatial rotation angles.

1. Rotation about Z-axis:

A Z-axis rotation is conventionally designated by angle k. This is positive in an
anticlockwise direction when viewed down the positive Z axis towards the origin.
From eqn. (2.8), this results in the following point coordinates in the target system
XYZ:

X=x-cosk-y-sink or X=R -x

Y =x-sink+y-cosk cosk —sink O |x

X
Z=z Y |=|sink cosk O]y (2.27)
VA

0 0 11|z
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2. Rotation about Y-axis:

The corresponding rotation about the Y-axis is designated by rotation angle ¢. This
results in the following XYZ target point coordinates:

X=x-cos@p+z-sing or X:R(P-x

Y=y X cosp O sing||x

Z=-x-sing+z-cosp Y=l o 1 o (2.28)
Z| |-sinp O cosg||z

3. Rotation about X-axis:

Finally, the X axis rotation is designated by angle w, which results in XYZ values:

X=x or X=R x
Y=y-cosw-z-sinw X 1 0 0 X
Z=y-sinw+z-cosw Y|=|0 cosw —sinw||y (2.29)
VA 0 sinw cosw ||z
The given rotation matrices are orthonormal, i.e.
R-R"=R" .R=I R'=R" and det(R)=1 (2.30)

The complete rotation R of a spatial coordinate transformation can be defined by the
successive application of 3 individual rotations, as defined above. Only certain
combinations of these 3 rotations are possible and these may be applied about either
the fixed axial directions of the target system or the moving axes of the source system.
If a general rotation is defined about moving axes in the order w ¢ x, then the complete
rotation is given by:

X=R-x (2.31)
where
R=R R ‘R, (2.32)
and
W T s
R=1r, 1, 1,
_r31 I I
[ COS( COSK —Ccos@sink sing
=| coswsink +sinwsin@cosk COSwCOSK —sinwsingsink —sinwcos¢g
sinwsink —coswsin@cosk Sinwcosk +coswsin@sink  coswcosy

If the rotation is alternatively defined about fixed axes in the order w ¢ x, then the
rotation matrix is given by:
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R'=R R R, (2.33)

This is mathematically equivalent to applying the same rotations about moving axes
but in the reverse order.

From eqn. (2.31) the inverse transformation which generates the coordinates of a
point P in the rotated system xyz from its XYZ values is therefore given by:

x=R"-X (2.34)
where
R"=R;-R R, (2.35)

Note that in this inverse transformation, the individually inverted rotation matrices
are multiplied in the reverse order.

From the matrix coefficients ri...rs3 in eqn. (2.32), the individual rotation angles
can be calculated as follows:

sinp=r, sing=r,
r 3 r33
tanw=-—-2 or cosw = (2.36)
s cos@
r r
tanx = —12 cosk=—=1—
r, cos @

Eqn. (2.36) shows that the determination of ¢ is ambiguous due to solutions for sin ¢
in two quadrants. In addition, there is no unique solution for the rotation angles if the
second rotation (¢ in this case) is equal to 90° or 270° (cosine ¢ in ry and rs; then
causes division by zero). This effect also exists in gimbal systems (gyroscopes) where
it is known as gimbal lock.

Z [ ] [ ] [ ]
K
&) [ ] [ ] [ ]
[ ] [ ] [ ]
" /1
Y o
Lo v
o
(0] z

Fig. 2.14: Image configuration where w = 0°, ¢ = 90° and k = 90°.
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A simple solution to this ambiguity problem is to alter the order of rotation. In the
case that the secondary rotation is close to 90°, the primary and secondary rotations
can be exchanged, leading to the new order ¢ w k. This procedure is used in close-
range photogrammetry when the viewing direction of the camera is approximately
horizontal (see Fig. 2.14 and also section 4.2.1.2). The resulting rotation matrix is then
given by:

R(pwx = R(p ’ Rw ’ Rx (237)
where

W Ty I3
R(pwk S Ty Ty

T I

cos@cosk+sin@sinwsink  —cos@sink+singsinwcosk  singcosw
= coswsink COSWCOSK —sinw
—sing@cosk+cospsinwsink  sin@sink+cos@sSinwcosk  COS@PCosw

Example 2.2:
Referring to Fig. 2.14, an image configuration is shown where the primary rotation w=0°, the
secondary rotation ¢ = 90° and the tertiary rotation k = 90°. In this case the Ryu« reduces to
0 01
RWK =1 0 0
010

This rotation matrix represents an exchange of coordinate axes. The first row describes the
transformation of the X axis. Its x, y and z elements are respectively 0, 0 and 1, indicating a
transformation of X to z. Correspondingly, the second row shows Y transforming to x and the third
row transforms Z to y.

However, the exchange of rotation orders is not a suitable solution for arbitrarily
oriented images (see Fig. 3.39 and Fig. 4.57). Firstly, the rotation angles of images
freely located in 3D space are not easy to visualize. Secondly, ambiguities cannot be
avoided, which leads to singularities when calculating orientations. The effects can
be avoided by rotation matrices based on algebraic functions (see next sections).

2.2.2.2 Rotation matrix using quaternions

The ambiguities for trigonometric functions (above) can be avoided when a rotation
matrix with algebraic functions is used and where the rotation itself is a single
rotation about a specific axis in space. The direction of the rotation axis is defined by
three vector components a, b, c and the rotation defined by angular value d. This four-
dimensional vector is known as a quaternion and it gives rise to the following rotation
matrix:
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d*+a*-b*-c? 2(ab-cd) 2(ac+bd)
RT=| 2(ab+cd) d’>-a’+b*-c? 2(bc—ad) (2.38)
2(ac-bd) 2(bc +ad) d*-a’-b*+c?

Implicitly, this rotation matrix contains a common scaling factor:
m=a’+b*+c*+d? (2.39)

Using the constraint m =1, an orthogonal rotation matrix with three independent
parameters is obtained. Normalization with m gives the unit quaternion q:

[a /m q, n sin(a/2)
B b/m |4, | nysin(a/z)
leim|™| g, || n_sin(@/2)

_d /m q, cos(a/2)

(2.40)

with the orthonormal rotation matrix:

1-2(q;+q3)  2(q,9,-49,9;) 2(4,9,+4,4;)
R=|2(q,9,+9,9,) 1-2(q;+4q2) 2(4,9,-9,4,) .41)
_2(q1q3 _qoqz) 2(q0q1 +q2q3) 1—2(‘]12 +q§)

The parameters a...c, or gi...gs, are called the vector components of the quaternion and
the parameter d, or qo, is called the scalar component. The rotation matrix becomes a
unity matrix when either go=1 (corresponding to a=0) or g1=g.=¢:=0.

Fig. 2.15: Rotation around an axis in space.

The formulation with quaternions corresponds to a rotation angle a about an axis in
space defined by the normalized direction vector n=[ny,ny,n.]” (see Fig. 2.15). Since the
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axis only specifies direction, and its length has no importance, only two of its
parameters are independent. Together with the rotation angle, three independent
parameters therefore still remain to describe a rotation in space. This form of rotation
is often used in computer graphics, e.g. OpenGL or VRML. The only ambiguity
associated with quaternions is the fact that a rotation defined by q is identical to a
rotation defined by q7/, i.e. a rotation can be formed equally in the reversed viewing
direction using the inverted quaternion.

The quaternion can be calculated from a given orthonormal rotation matrix R as
follows:

1 a
q,= iz noHh, = cosE (2.42)
. —r r.—r. r,—r
q,= 32 23 q,= 13731 q,= a1
4q, 4q, 4q,

The sign of go, or equivalently the value of angle a, cannot be uniquely defined (see
above). The transformation of the coefficients g into Euler angles of the rotation
matrix (2.41) is done analogously to (2.36) or directly by

2

q@-9 -4 +q
Q= arcsin(z(qoq2 + ‘11‘13)) (2.43)
2(9,4,-4,9;) ]

2 —
w =—arctan [(qququl)]

2

K =—arctan
[qowf—qi-fﬁ

whereby the ambiguities described in section 2.2.2.1 still exist.

Example 2.3:
Given the rotation matrix

0.996911 -0.013541 -0.077361

R=|0.030706 0.973820 0.225238
0.072285 -0.226918 0.971228

Application of eqn. (2.36) results in the following rotation angles:
w=-13.0567°, p=-4.4369°, k=0.7782°
Application of eqns. (2.42) and (2.38) results in the following quaternion:
g1=-0.113868, g2 =-0.037686, g3 = 0.011143, go=0.927183 and a = 13.834°
See also example 4.2 in section 4.2.3.1

In summary, a rotation matrix with algebraic functions offers the following benefits
in contrast to trigonometric functions:

— no singularities, (i.e. no gimbal lock);

— no dependency on the sequence of rotations;
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— no dependency on the definition of coordinate axes;

— simplified computation of the design matrix (the first derivatives of a, b, c, d are
linear);

— faster convergence in adjustment systems;

— faster computation by avoiding power series for internal trigonometric
calculations.

However, the geometric interpretation of quaternions is more complex, e.g. in error
analysis of rotation parameters around particular rotation axes.

2.2.2.3 Rodrigues rotation matrix
The rotation matrix according to Rodrigues is also based on a rotation around an axis
in space. Using the quaternion in (2.42) and the parameters

al_qu-tan(a/z) |_2q2-tan(a/2) . 2q,-tan(a/2)

= b'=—F—on—— =—F———— (244)
NG +d;+ 45 \VG; +a,+4; \VG; +a,+4;

the Rodrigues matrix is derived:

4+a”-b”-c?  2a'b'-4c' 2a'c'+4b'
R:% 2a'b'+4c' 4-a”+b?-c?  2b'c'-4a’ (2.45)
4+a' +bl +CI [P 1 [N 1 12 12 12
2a'c'-4b 2b'c'+4a 4-a“-b"+c

The Rodrigues matrix consists of three independent parameters but cannot describe
rotations where a=180° as the tangent function is undefined at 90° (tan (a/2)).

2.2.2.4 Rotation matrix with direction cosines

The spatial rotation matrix can also be regarded as a
matrix of direction cosines of the angles § between the
original and the rotated coordinate axes. The unit
vectors i,j,k are defined in the direction of the rotated
axes (Fig. 2.16).

cosﬁxx cos6yX cosSzX
R=|cosé , cos&yy cosb, :[i j kJ (2.46)

cosé , cosb , cosd,

X. . .

Fig. 2.16: Direction cosines.

2.2.2.5 Normalization of rotation matrices
If the coefficients of a rotation matrix are not explicitly derived from three rotational
values, but instead are the result of a calculation process such as the determination
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of exterior orientation or a spatial similarity transformation, then the matrix can show
departures from orthogonality and orthonormality. Possible causes are systematic
errors in the input data or limits to computational precision. In this case, the matrix
can be orthonormalized by methods such as the Gram-Schmidt procedure or the
following similar method:

With the initial rotation matrix (to be orthonormalized)

rll rlZ rl3
R=|r, 1, 1, :[u v w] (2.47)
r31 r32 r33

create direction vectors which have unit length (unit vectors), and are mutually
orthogonal, and which form the new (orthonormal) matrix as follows:

,u v-u , S

u'=— S=V-——— V=—r w'=u'xv' (2.48)
o u &
R'= [u' v' W':| : orthonormalized rotation matrix
Example 2.4:

A rotation matrix R is defined by angles w = 35°, ¢ = 60°, k = 30° according to eqn. (2.32). In this
example, the values of the coefficients after the third decimal place are subject to computational
error (see also example 2.4):
0.433273 0.844569 -0.324209
R=|-0.248825 0.468893 0.855810 and det(R)=1.018296
0.876000 —0.284795 0.409708

which, when multiplied by its transpose, does not result in a unit matrix:

1.017015 -0.000224 0.005486
R'R=| -0.000224  1.014265 0.010784 and det(R'R)=1.036927
0.005486  0.010784  1.005383

The matrix orthonormalized according to (2.48) is given by:

0.429633 0.838703 -0.334652
R'=| -0.246735 0.465529 0.849944 and det(R')=1.000000
0.868641 -0.282594 0.406944

The three column vectors are now orthogonal to one another in pairs and all have unit length.

2.2.2.6 Comparison of coefficients
The spatial rotation defined in

X=R-x (2.49)
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depends on the nine coefficients ru...rs3s of R. See, for example, the rotation order w ¢
about rotated axes which defines R in eqn. (2.32). If the identical transformation result
is to be achieved by a rotation matrix R' using a different rotation order, the
coefficients of R' must be equal to those of R:

R=R' (2.50)

If the rotation angles w',',x"' of rotation matrix R' are to be calculated from the
explicitly given angles w,@,x of R, this can be achieved by a comparison of matrix
coefficients and a subsequent reverse calculation of the trigonometric functions.

Example 2.5:

Given the rotation matrix of eqn. (2.32) defined by angles w = 35°, ¢ = 60°, kK =30°, determine the

rotation angles w',¢',k' belonging to the equivalent rotation matrix R' defined by eqn. (2.37):

1. Evaluate the coefficients ri...rs3 of R by multiplying out the individual rotation matrices in the order
R=R R R, substituting the given values of w ¢ k:

0.433013 -0.250000 0.866025
R=| 0.839758  0.461041 -0.286788
—-0.327576 0.851435  0.409576

2. Write the coefficients r'u...r'ss of R" in trigonometric form by multiplying the individual rotation
matrices in the order R'=R¢ ‘R, -R, . Assign to each coefficient the values from R, i.e. r'u=ru, r'n
=z, and so on.

3. Calculate the rotation angles w',',k" of R* by solution of trigonometric equations:
w'=16.666° P'=64.689° K'=61.232°

2.2.3 Spatial transformations

2.2.3.1 General transformations
The general linear transformation of homogeneous coordinates is given by:

X=A-T-x (2.51)

where A is an arbitrary scale factor not equal to zero and T is the transformation or
projection matrix>.

a, a a. a, |
a, a, a,.a T, T,
T — 21 22 23 : 24 — 3.3 J? 1,3 (2 52)
Ay Gy G104, | T T,
T 311 11
a, 4, 4, i a,

3 Note that T is a homogeneous matrix whilst the four sub-matrices are not.
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Due to the arbitrary scale factor, there are 15 independent parameters remaining. By
selecting parameter subsets from this general transformation, special
transformations such as the affine transformation, projective transformation or
similarity transformation can be derived. The result of this transformation always
results in a new homogeneous coordinate vector. The four sub-matrices contain
information as follows:

Tu: scaling, reflection in a line, rotation
Ty: translation

Tx: perspective

T»: homogeneous scaling

Scaling or reflection about a line is performed by the factors sy, sy, sz:

s, 0 0 ‘o
|0 s 0 L0 i flection in a i 053
s= 0 0 s, 0 : scaling, reflection in a line )

0 0 01

A spatial rotation results if Tu is replaced by the rotation matrix derived in section
2.2.2:

nohy 1t 0
r. r, r,i0

T.=|* 2 2 : spatial rotation (2.54)
B T 110
0 0 01

Translation by a vector xr,yr,zr is performed by the matrix:

10 olx,
010y .

T, = 00 1 izr : translation (2.55)
00 01

Combined transformations Ti, T2 etc. can be created by sequential multiplication of
single projection matrices as follows:

X=Tx=T-.T.T x (2.56)

In general, the multiplication order may not be changed because the projections are
not necessarily commutative.
The reverse transformation is given by:
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x=T"X=T'T," . T"X (2.57)

This inversion is only possible if the projection matrix is not singular, as is the normal
case for the transformation of one 3D system into another. However, if the vector x is
projected onto a plane, the projection matrix does become singular. The original
coordinates cannot then be calculated from the transformed plane coordinates X.

2.2.3.2 Central projection
The central projection is of fundamental importance in photogrammetry and it can
also be expressed by a homogenous transformation.

z=z 4
X X
(0] >—>
-Cc
image
plane i
4
L PXY.2)

Fig. 2.17: Central projection.

The central projection is modelled firstly for the following special case. The projection
plane is oriented normal to the viewing direction Z with the distance —c to the
perspective centre at O'. Here the origins of the image coordinate system x'y'z' and
the object coordinate system XYZ are both located in the perspective centre. Referring
to Fig. 2.17, the following ratios can be derived.

x_X y_y 27, 259
-c Z -c Z -c Z

and further rearranged to give x', y' and z":
x'=—c£=m-X y'=—cZ:m~Y z'=—c (2.59)

Z z

If the perspective centre moves to infinity, ¢ becomes infinite and the term c/Z
approaches the value 1. The central projection then changes to a parallel projection.

In homogeneous matrix notation, the perspective transformation is firstly written
as
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Ul |10 o ioflx X

vii|lo1 o0 io||y Y
w7lo o 1 ioflz|T| z (2.60)
T 6"’6”"1’/"—’8;"6 1] |z/-c

U=TX

and for the resulting Cartesian coordinates after division by Z/-c
C

x'—_C/ZU':TP-X

x'| |-c/z o 0 o|l[x] [-ex/z

y' 0 —/Z 0 30 Y| |—cY/Z (2.61)
z' 0 o —/zollz|7| =

1| o o 1/z o 1 1

The fourth row of Tr (sub-matrices T and T2 in eqn. 2.52) implies the central
projective effect. Eqn. (2.61) also leads to the projection equations (2.59) that are
already known for the pinhole camera model (compare section 1.2.3).

If the above-mentioned special case is extended to an arbitrary exterior
orientation of the image plane (position and orientation in space), the transformation
of object coordinates into image coordinates can be performed by the following
matrix operation, which is the inverse of (2.66):

x'=T, T, T.'- X (2.62)

2.2.3.3 General affine transformation

The general affine transformation describes a spatial transformation of points by 12
parameters which for each axis comprise a translation, scale factor, shear parameter
and rotation.

X=X,+A-x (2.63)
or

X a, a a, a;||x X=a,+ax+ay+az

Y|=|b,|+|b, b, by ||y Y:b0+b1x+b2y+b32

VA (o ¢, ¢ G|z Z =Cy+CX+Cy+C,Z

In homogeneous notation:



56 —— 2 Mathematical fundamentals

X:TA~x

X| |1 0 0ia,||a a ai0||x| |a a a ia,||x

Y| [0 1 0iby||b b, b, iO||y| |b b, b, ib||y (2.64)
Z| |00 1i6 |6 6 6Gi0l\z| |6 6 616 ||

1|00 01 0 011 0 0:1|[1

This system of equations is linear and can be solved without approximate values. The
transformation is therefore also suitable for obtaining approximate values for non-
linear spatial transformations.

2.2.4 Spatial similarity transformation

2.2.4.1 Mathematical model

The spatial similarity transformation is used for the shape-invariant mapping of a
three-dimensional Cartesian coordinate system xyz into a corresponding target
system XYZ. Both systems can be arbitrarily rotated, shifted and scaled with respect
to each other. It is important to note that the rectangularity of the coordinate axes is
preserved. This transformation is therefore a special case of the general affine
transformation (section 2.2.3.3).

zZ A

Fig. 2.18: Spatial similarity transformation.

The spatial similarity transformation, also known as a 3D Helmert transformation, is
defined by 7 parameters, namely 3 translations to the origin of the xyz system (vector
Xo defined by Xo,Yo,Z0), 3 rotation angles w,@,k about the axes XYZ (implied by
orthogonal rotation matrix R) and one scaling factor m (Fig. 2.18). The 6 parameters
for translation and rotation correspond to the parameters of exterior orientation (see
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section 4.2.1). Parameters are applied in the order rotate - scale - shift and the
transformation function for a point P(x,y,z), defined by vector x, is given by:

X=X,+m-R-x (2.65)
or

X XO rll rlZ r13 X

Y =Y, |[+m |1, 1, Iy || Y

Z ZO r31 r32 r33 z

Using homogenous coordinates, the spatial similarity transformation of eqn. (2.65) is
given by (m = s, =s, = s;, see eqn. 2.51):

X=T, T, T, x
X 100§X0 m 0 0.0 A rBiO X
Y0 1 0i% )0 m 0lof|n o r,i0]ly .66
Z| |00 112,110 0 m 0, 1, 1, 0)1z
1/ {000 o0i1||lo 0o 0i1|lo 0 oi1|l1
o mr, o X ]
— mr21 mr22 mr23 3 YO . y
mr, mr, mr,iZ,||z
0 0 o0 1|1

In order to determine the seven parameters, a minimum of seven observations is
required. These observations can be derived from the coordinate components of at
least three spatially distributed reference points (control points). They must contain
atleast 2X, 2 Y and 3 Z components” and they must not lie on a common straight line
in object space.

The spatial similarity transformation is of fundamental importance to
photogrammetry for two reasons. Firstly, it is a key element in the derivation of the
collinearity equations, which are the fundamental equations of analytical
photogrammetry (see section 4.2.2). Secondly, it is used for the transformation of local
3D coordinates such as model coordinates or 3D measuring machine coordinates, into
an arbitrary superior system, for example an object or world coordinate system, as
required, say, for absolute orientation (see section 4.3.5) or bundle adjustment (see
section 4.4). It can also be used to detect deviations or deformations between two
groups of points.

There are simplified solutions for a transformation between two systems that are
approximately parallel. In the general case both source and target system have an

4 It is assumed that the viewing direction is approximately parallel to the Z axis. For other image
orientations appropriately positioned minimum control information is required.
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arbitrary relative orientation, i.e. any possible translation and rotation may occur.
The calculation of transformation parameters then requires linearization of the
system of equations defined by the similarity transformation (2.65). Sufficiently
accurate initial values are then required in order to determine the unknown
parameters (see below). An alternative solution is presented in section 2.2.4.3.

The system of equations is normally over-determined and the solution is
performed by least-squares adjustment (see section 2.4). This derives an optimal fit
between both coordinate systems. According to eqn. (2.65) every reference point
defined in both systems generates up to three equations (compare with eqn. 2.63):

X=X,+m-(r -x+1,-y+1;-2)
Y=Y +m-(r,-x+1,-y+1,-2) (2.67)
Z=Z +m-(r,-X+1,-y+71,,-2)

By linearizing the equations at approximate parameter values, corresponding
correction equations are built up. Any reference point with defined X, Y and Z
coordinates (full reference point) provides three observation equations.
Correspondingly, reference points with fewer coordinate components generate fewer
observation equations but they can still be used for parameter estimation. Thus, a
transformation involving 3 full reference points already provides 2 redundant
observations. The 3-2-1 method (see section 4.4.3), used in industrial metrology, is
based on 6 observations, does not derive a scale change, and therefore results in zero
redundancy.

Each reference point or each observation can be weighted individually (see
section 2.4.1.2). For example, this can be based on an a priori known accuracy of the
reference point measurement. If there is no reliable information to indicate that
reference coordinates have different accuracies, all observations should be weighted
equally. Otherwise transformation parameters may be biased and, as a result,
transformed points may be subject to deformation.

There is a special case of the 3D similarity transformation when the scale factor
is fixed, i.e. 6 unknown parameters remain. This transformation is then often known
as a rigid-body transformation.

2.2.4.2 Approximate values

In order to calculate approximate values of the translation and rotation parameters
of the similarity transformation, an intermediate coordinate system is formed. This is
derived from 3 reference points P;,P,,Ps, defined in an intermediate system uvw and
known in both the target system XYZ and the source system xyz (Fig. 2.19). The
purpose at this stage is to calculate the parameters which transform the reference
points from intermediate system uvw to coordinate systems XYZ and xyz.
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P..,=R _-P +T P =R P +T (2.68)
Solving both equations for P.wand re-arranging:
R _-P.,-T )=R__-P _-T ) (2.69)

u— u—>x Xyz u—->x

and finally, for the coordinates of a point in system XYZ:

T T
PXYZ :Ru—>X .Ru—>x .nyz +Tu—>X _Ru—>X .Ru—>x .Tu—>x (2 70)
0 0 :
:RXA)X ’nyz +(Tu»X _Ran ‘Tuax)

Here matrices R.x and R.x describe the rotation of each system under analysis with
respect to the intermediate system. The vectors Tux and T..x describe the
corresponding translations. The expression in brackets describes the translation
between systems XYZ and xyz:
0 0
X =T ,-R T (2.71)

x—X u—>x

To calculate the required parameters, the u axis of the intermediate system is
constructed through P;; and P, and the uv plane through P; (corresponds to the 3-2-1
method). From the local vectors defined by the reference points Pi(X;,Y:,Z), i = 1...3,
normalized direction vectors are calculated. Here vectors u,v,w are derived from the
coordinates of P;in the source system xyz, while U,V,W are calculated from the target
system coordinates XYZ:
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v P W:M V=WxU (2.72)
|P2—Pl| |U><(P3—P1)|

u PP wo 2, -p) v wxu
p,-p,| ux(p,-p,)|

Vector u is a unit vector on the u axis, w is perpendicular to the uv plane and v is
perpendicular to u and w. These 3 vectors directly define the rotation matrix from
uvw to XYZ (see eqn. 2.46):

R, ,=[U V W] R, =[u v w] @.73)

The approximate rotation matrix from the xyz to the XYZ system is obtained from
successive application of the above two matrices as follows:

R’ =R, ‘Rl (2.74)

x—>X u—>x

The approximate scale factor can be calculated from the point separations:

. [B-R| JX, - X )+ (Y, Y, +(2,-2,)

m
|p2 —p1| \/(x2 -x)+(y,-y,) +(z,-2,)

(2.75)

Using the centroid of the reference points in both coordinate systems, approximate
values for the translation parameters of the similarity transformation can be
calculated:

X, =Y |=T : centroid in XYZ system (2.76)

X,=|y |=T : centroid in xyz system 2.77)

According to (2.71) the translation can then be calculated:

X  =X,-m’-R}_  -x (2.78)

x—>X x—X s
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Example 2.6:

5 points are known in the source and target systems and have the following 3D coordinates:

No. X y z X Y z
1 110.0 100.0 110.0 153.559 170.747 150.768
2 150.0 280.0 100.0 99.026 350.313 354.912
3 300.0 300.0 120.0 215.054 544.420 319.003
4 170.0 100.0 100.0 179.413 251.030 115.601
5 200.0 200.0 140.0 213.431 340.349 253.036

Approximate values, calculated using points 1, 2 and 3 as above, are:

0.433558 —0.250339  0.865654
Rotation: RO, =| 0.839451 0.461481 —0.286979
~0.327641  0.851097  0.410226

Scale factor: m°=1.501637

-23.430
Translation: Xo=| 10.185
9.284

The adjusted parameters are given in example 2.7.

2.2.4.3 Calculation with eigenvalues and quaternions

The rotation matrix of the spatial similarity transformation can also be derived
directly from the two sets of points as the related quaternion can be determined by
eigenvalue analysis. Firstly, the 3D coordinates of points P; are reduced to their
centroid:

e B i~ %% 2.79)
Using the matrices Sx and S, formed by the coordinate components of all n points P;

X v Z | |X X,y ozl |X

1 1 1 1 !
s AR s usle
Xn Yn Zn Xn Xn le Zn X"

the 3x3 matrix M is calculated
M=S .S (2.81)

which then is used to form the following symmetrical matrix N:
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m, +m, +m,, my,—m,, m, —m; m, -m,
N= m, —m,, =My, m, +m, my +m, (2.82)
—my, +m, —ms, my, +m,,

—my, —m,, +m,

The eigenvector of N with the largest eigenvalue Amax gives the required quaternion of
the rotation between both systems.
Translation and scale are calculated according to section 2.2.4.1 or by:

n

_ T o _ 0 po
m= Amax /zxi Xi Xx—)X - XS —-m 'Rx—>X 'XS (283)
i=1
Example 2.7:
Using the five points from example 2.6 the following transformation parameters are calculated:
Least-squares adjustment Eigenvalues and quaternions
m=1.500050 m=1.500050
Xo=-23.4154 Xo=-23.4155
Yo= 10.6115 Yo= 10.6115
Zo= 9.7112 Zo= 9.7122
0.433878 -0.250183  0.865539 0.433878 -0.250183  0.865540
R=| 0.839270 0.461625 -0.287278 R=| 0.839270 0.461625 -0.287278
—0.327682  0.851065 0.410260 —0.327682  0.851065 0.410260
w=35.00102° w=35.00102°
@ =59.94435° ¢ =59.94435°
K=29.96861° K=29.96861°
S0=0.204 S0=0.204
RMS X;Y;Z =0.075;0.177;0.173 RMS X;Y;Z =0.075;0.177;0.173

Example 2.7 demonstrates that the calculation using quaternions generates the same
result as least-squares adjustment based on the observation equations (2.67).
However, the possible need for individual weighting of observations is much more
complex if eigenvalues are used. Where applicable, the eigenvalue computation
should be followed by a least-squares adjustment with a suitable stochastic model.

2.2.5 Additional coordinate transformations

2.2.5.1 Spherical coordinates

Spherical coordinates use two angles a, f and the distance r to the origin to define a
point in 3D space. (Fig. 2.20). For r = const. all points lie on a sphere. For a right-
handed convention, a is positive from X towards Y. B increases from zero on the Z
axis.
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X cosasin 8
Y |=r| sinasinf (2.84)
VA cosf
Z A
P o
|
|
ANk
! Y Y
: — >
,,,,, ¢ e LTX
X Y
Fig. 2.20: Spherical coordinates. Fig. 2.21: Cylindrical coordinates.

The reverse transformation from Cartesian coordinates to the angles a, f and the
distance r depends on quadrants, hence is not unique. Spherical coordinates are
used, for instance, for the calculation of 3D coordinates from total stations or laser
scanners (polar measuring systems).

2.2.5.2 Cylindrical coordinates

Cylindrical coordinates define a 3D point using one angle a, the cylinder radius r and
the height h along the cylinder axis (Fig. 2.21). Again, for a right-handed convention,
a is positive from X towards Y.

X rcosa
Y |=| rsina (2.85)
Z h

As for spherical coordinates, the calculation of o from Cartesian coordinates is not
unique. Cylindrical coordinates can be used, for example, in colour transformations
(section 5.2.2.2) or in panoramic photogrammetry (section 4.5.1).

2.3 Geometric elements

The geometric reconstruction of a measured object is the major goal of a
photogrammetric process. This section therefore gives a short summary of geometric
elements and their mathematical definition. It distinguishes between planar
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elements, spatial elements and surface descriptions that are the basic result of a
photogrammetric measurement. For a detailed description of the methods of
analytical geometry, the reader should refer to specialist literature on geometry and
3D computer graphics.

Process Example 1 Example 2
points points on points on a
XYz cylinders free-form surface
\ adjustment
calculated geometric cylinder, axis triangulation mest
elements planes
combination
R derived geometric intersection point of intersection with
elements cylinder axes rays of sight
> deriV_?d distance between supression of
quantities two intersetcion points hidden lines

Fig. 2.22: Calculation progress for geometric elements.

Except in very few cases, photogrammetric methods are based on measurement of
discrete object points. Geometric elements such as straight lines, planes, cylinders
etc. are normally calculated in a post-processing step using the measured 3D points.
For over-determined solutions, least-squares fitting methods are used. Computed
geometric elements can then either be combined or intersected in order to create
additional geometric elements such as the intersection line between two planes.
Alternatively, specific dimensions can be derived from them, such as the distance
between two points (Fig. 2.22).

In addition to the determination of regular geometric shapes, the determination
and visualization of arbitrary three-dimensional surfaces (free-form surfaces) is of
increasing importance. This requires a basic knowledge of different ways to represent
3D surfaces, involving point grids, triangle meshing, analytical curves, voxels etc.

Many of these calculations are embedded in state-of-the-art 3D CAD systems or
programs for geometric quality analysis. CAD and photogrammetric systems are
therefore often combined. However, geometric elements may also be directly
employed in photogrammetric calculations, e.g. as conditions for the location of
object points (see section 4.4.2.3). In addition, some evaluation techniques enable the
direct calculation of geometric 3D elements without the use of discrete points (e.g.
contour method, section 4.4.7.2).
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2.3.1 Analytical geometry in the plane

2.3.1.1 Straight line

2.3.1.1.1 Parametric form

The straight line g between two points P; and P; (Fig. 2.23) is to be determined. For all

points P(x,y) belonging to g, the proportional relationship

Y=Y _Yo~V,
X—X1 X2—X1

leads to the parametric form of the straight line:

X=X, +t(x,-X,)
x| | . X, =X,
| % 2

Point Pi(x1,y1) is defined at t = 0 and point P2(x;,y2) at t = 1.

The distance d of a point Q(xq,y0) from the straight line is defined by:

(v, =y (x = x) =06, =x)(y, - y,)
l

d:

with
1=y =% + (s =)

The foot F(x,y) of the perpendicular from Q to the line is given by:

Xp _ X +s Y,
Ve Y X=X
where

(v, =y, —x )= (x, = x,)(y, = y,)
12

2.3.1.1.2 Analytical form
The analytical form of a straight line

A-x+B-y+C=0

leads to the following relations (Fig. 2.23):

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)
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y=m-x+c
where
m=tana= A T : slope (2.91)
X=X
C . . . .
Cc= _E : Intersection point on y axis

The (perpendicular) distance d to point Q(xo,y0) is given by:

A-x,+B-y,+C
d=""0""% 2.92)

NA* +B?

Fig. 2.23: Definition of straight lines.

2.3.1.1.3 Intersection of two straight lines
Given two straight lines g and g, their point of intersection S is derived from (2.90)
as:

B -C,-B,-C C-4,-C,-4
xs — 1 2 2 1 yS _ 1 2 2 1 (2.93)
A4 -B,—4,-B, A-B,—A4,-B
Alternatively, from (2.87) two equations for parameters t; und ¢, are obtained:
O =x )t +(x,—x,)-t,=x,-x, (2.94)

(yz_yl)'t1+(y3_y4)'t2 =YV

The point of intersection is obtained by substituting t or t; into the original straight
line equations:
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X, =X +t-(X,-X)=%x,+t,-(x, -X,)
X |_|% it X=X || it X, =X, (2.95)
Vs i Y=Y Y3 Y,=Y;5

The angle between both lines is given by:

A-B -A-B m,—m
tangp=—1-—2—2 1-__2 1 (2.96)
A-A -B B, m-m,+1

Alternatively, if both lines are defined by their direction vectors
a=x -Xx and b=x, -x,
then the angle between them can be found from the scalar product of both vectors:

a-b a’b

[l [ol fa]{b

cosQp = (2.97)

The scalar product is zero if the lines are mutually perpendicular.

2.3.1.1.4 Regression line

The generalized regression line, which is a best-fit to a set of points, is the straight
line which minimizes the sum of squared distances d; of all points P; from the line (Fig.
2.24). For n point coordinates with equal accuracy in the x and y directions, the
criterion is expressed as:

& +d2+...+d’ =) d> —>min (2.98)
i=1

The regression line passes through the centroid of the points:

XOI

Zn: X, and Yo=—2.Y (2.99)
i=1

One point on the straight line is therefore directly given. The direction of the line is
defined by:

2 (X, —x)¥,—y,)

(2.100)
>, —y) = (x, = x, )’

tan2¢ =
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Fig. 2.24: Regression line.

Alternatively, the direction of the line can be expressed by the direction vector (a,b)
which is equal to the eigenvector of the maximum eigenvalue of matrix B:

B=A"-A
X =Xy Y17V

where A= (2.101)

Xn_XO yn_yo

Without restriction, the optimization principle based on minimum quadratic
distances according to (2.98) can be applied to regression lines in space as well as
other best-fit elements.

2.3.1.2 Circle
From the generalized equation for second order curves (conic sections)

Ax? +2Bxy+Cy’ +2Dx +2Ey+F =0 (2.102)

the special cases of circle and ellipse are of major interest in close-range
photogrammetry. For a circle with centre (xu,yn) and radius r, the equation is typically
written as:

(x—x,) +(y-y,) =r’ (2.103)
This can be re-arranged in the form:
2 2 2 2 2
XTHYT =2X, X =2y, Y+ X+, —1 =0 (2.104)
This can be further re-arranged as:

x*+y?+2D'x+2E'y +F'=0 (2.105)
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This is equivalent to eqn. (2.102) with A=C=1 and B = 0. There are effectively only
three independent, unknown parameters, D', E' and F' and the circle can therefore be
defined with a minimum of three points. The linear form of (2.105) can be used directly
to solve for D', E' and F' in a least-squares solution where there are more than three
points.

By comparing eqn. (2.105) with eqn. (2.104), the radius and centre of the circle
can be further derived as follows:

r=yD?+E*-F' x, =-D' y, =—E' (2.106)

Alternatively, the distance of any point Pi(x;y;) from the circumference is given by:

di:ri—r:\/(xl_—xM)2+(yi—yM)2 -7 (2.107)

The non-linear eqn. (2.107) can also be used as an observation equation after
linearization. The best-fit circle is obtained by least-squares minimization of all point
distances d;. With initial approximate values for the centre coordinates and radius,
the design matrix A consists of the derivatives

od, X, =X, od; Y~ Vyu od,

= L= L=—1 (2.108)
ox r Y u T, or

1

Although the linear approach offers a direct solution without the requirement for
initial parameter values, the non-linear approach directly generates the geometrically
meaningful parameters of circle centre coordinates and circle radius. For over-
determined data, the two solutions will generate slightly different circles because
different parameters are used in their respective optimizations. In this case it may be
advantageous to use the linear solution to find initial estimates for circle centre and
radius and then apply the non-linear solution to optimize these estimates.

2.3.1.3 Ellipse

The determination of ellipse parameters, in particular the centre coordinates, is an
important part of the measurement of circular targets which are projected as ellipses
in the central perspective image (see sections 6.2.1.1 and 5.4.2.5). As a good
approximation, the calculated ellipse centre corresponds to the required centre of the
circular target (see section 6.2.1.1 for restrictions).

A simple method for the determination of the ellipse centre is based on the
geometry of ellipse diameters. Ellipse diameters are chords that are bisected by the
ellipse centre. A conjugate diameter is defined by the straight line through the mid-
point of all chords which are parallel to a given diameter. A given diameter and its
conjugate intersect at the ellipse centre (see Fig. 2.25). A possible implementation of
this technique is presented in section 5.4.2.5.
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conjugate
diameter

M~

Q\h,

Fig. 2.25: Geometry of an ellipse.

For a full determination of ellipse parameters, a similar approach to the calculation
of circle parameters can be applied. The approach is again based on fitting measured
points to the generalized equation for second order curves (conic section), which is
repeated here:

Ax? +2Bxy +Cy’ +2Dx +2Ey +F =0 (2.109)

This equation provides a direct linear solution for the unknown parameters A, B, C,
D, E, F by substituting measured values for x,y in order to create an observation
equation. However, as in the case of a circle where only 3 of these parameters are
required, for an ellipse only 5 are required, as explained below. This requires a
minimum of 5 measured points in the image which generate 5 observation equations.

The following analysis indicates a suitable modification of the generalized conic,
as well as a derivation of the ellipse parameters (major and minor axes, centre
position and rotation angle) from the generalized equation parameters.

The simple form of a non-rotated ellipse, with semi-major axis a, semi-minor axis
b and centre at the origin of the coordinate axes, is illustrated by the uv system in Fig.
2.25 and given by:

2 2

! (2.110)

a b
The axial rotation o must be applied in order to transform the equation from the uv
and UV systems to the xy and XY systems respectively. In this process, it is convenient
to use terms c and s where c=cos a und s=sin a as follows:
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U=cx+sy X=Ccu-—sv U, =cX, +sY,

(2.111)
V=-SX+cy y=su+cv v, =-sX, +cY,,

Substituting for u and v in (2.110), the transformed values of u and v in the xy system
are:

(cx+sy)?  (=sx+cy)

T

a’ b’

2

(2.112)

Multiplying out and collecting terms gives:

@ s, cs cs s,

which may be written as:
Ax* +2Bxy +Cy* =1 (2.114)
Applying shifts from the xy to XY system, x=(X-Xy) und y=(Y-Yu),

AX?+2BXY +CY? -2( AX, + BY, )X -2(BX,, +CY, )Y

2 2 (2.115)
+(AX,, +2BX,Y, +CY, -1)=0
which may be written as:
AX?+2BXY +CY?*+2DX +2EY +F =0 (2.116)

Eqn. (2.116) is identical to the original generalized eqn. (2.109). Comparing (2.113) and
(2.114) it can be seen that:

2 2 2 2
A :[‘(‘;2+;] c {Szin 2B = 2cs(12—blzj 2.117)
a a

Using the standard trigonometrical identities

2cs=2cosasina =sin2a

., 5 5 (2.118)
c" -8 =cos a—sin“a=cos2a
it can further be seen that:
2B, ¢ _Sn2x_inoa (2.119)
A-C c2—-s*> cos2a
From a comparison of (2.116) and (2.115)
AX +BY, =-D
M M (2.120)

BX, +CY, =—E
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which by standard algebraic manipulation gives:

_-DC-EB y _—BD+AE

_ULoss (2.121)
MoAC-B Mo B _AC

As can be seen from the analysis, the 6 parameters A, B, C, D, E, F of the generalized
eqn. (2.116) are themselves based on only 5 parameters a, b, a, Xu, Yu. In general, the
parameters A and C are positive and one may be set to the value 1 by dividing through
to obtain, for example, the following linear solution equation for measured point
(X;, Y):

X?+2B'X.Y,+C'Y?+2D'X,+2E'Y, +F'=0 (2122)

As explained, 5 measured points on the ellipse will generate 5 linear observation
equations which can be solved directly by standard matrix algebra. Expressing (2.119)
and (2.121) in terms of the actual solution parameters B', C', D', E', F":

_D'C_EF'R _R'D 1 2Bl
_-D'C-E'B y _~BD+E tan2a =

X =
M C'—B" M~ p2_ 1-C'

(2.123)

If required, the axial parameters of the ellipse, a and b, can be determined as follows.
The ellipse equation in the UV system is found by applying the following rotational
transformation from the XY system:

X=cU-sV Y=sU+cV (2.124)
Substituting for X and Y in eqn. (2.122) and collecting terms results in:

(c?+2B'cs+C's))U? +[2B'(c? -=s*)-2¢cs(1-CHUV

(2.125)
+C'c?=2B'cs+s*)V?>+(2D'c+2E's\U+(2E'c—-2D's)V+F'=0
This can be written as follows as follows:
AU? +2BUV +CV?+2DU +2EV +F =0 (2.126)

In the UV system it is simple to show B=0 , which leads to the same result for tan 2a
as expressed in eqn. (2.123). It is also possible to show that the semi axes are then
given by:

_ |eo+ac—acr ,_ [co?+ac*—ack

= 5 (2.127)
AC AC

2.3.1.4 Curves

Consider the requirement that a polynomial with k+1 points Pi(x;y:), i=0...k, be
described by a closed curve. If the curve should pass through the vertices of a
polygon, the process is referred to as interpolation. If the curve should be an optimal
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fit to the polygon, it is referred to as approximation. Curves in general are usually
defined by polynomials whose order and curvature properties can be varied with
respect to the application.

2.3.1.4.1 Polynomials
A polynomial of degree n is a function of the form:

Q)=ax"+a,_x""'+. . .ax' +a, (2.128)

that is defined by n+1 coefficients.

All points in a data set are used to determine the polynomial coefficients, if
necessary by least-squares adjustment. For over-determined solutions, the
polynomial does not normally pass through the vertices of the polygon defined by the
points. In particular, it does not intersect the end points. Polynomials of higher
degree quickly tend to oscillate between the points (Fig. 2.26).

1. order polynomial

2. order polynomial 3. order polynomial

& 4. order polynomial & 5. order polynomial & 6. order polynomial

Fig. 2.26: Polygon with 8 data points and polynomial approximations of different order.

A more natural curve shape is obtained if the polygon is approximated by piecewise
polynomials. A piecewise polynomial Q(x) is a set of k polynomials gi(t), each of order
n, and k+1 nodes® xo, ..., Xx, with:

5 Nodes are the given points defining a curve, i.e. the vertices of a polygon.
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Q)={g®)}  for x;<t<x,, andi=0,.., k-1 (2.129)

Using additional constraints, it is possible to generate an approximation curve that is
both continuous and smooth. All methods which follow generate a curve that passes
through the end points of the polygon and which can be differentiated n-1 times at
all points. Approximations based on cubic splines (n = 3) are of major importance for
they provide a practical level of smoothness with a minimum polynomial degree.

2.3.1.4.2 Splines

Splines are used to interpolate between the points of a polygon, i.e. the curve passes
through all the points. For this purpose, basic B-spline functions of degree n and order
m = n+1 are suitable. They are recursively defined for a set of nodes xo,x, ..., Xx-1:

1 forx <t<x,
B (t)= ! i+l 2.130
"0( ) {0 otherwise ( )

—X; -t
Bi n(t) = 1 n— l(t)+LBi+1 n—l(t) (2.131)
, X R

i+n l i+n+1 i+1

for x, <t<x,

i+n+1 *

Optimal smoothness at the data point points is required for spline interpolation, i.e.
continuous derivatives up to order n—1 should exist. This criterion is fulfilled by the
following linear combination of k+1 nodes:

n+k-1

S, ()= aB, () (2132

For the frequently used cubic spline function (n = 3)

k+2

S,()= ZalBl ,(0) (2.133)
a number k+3 of coefficients a; have to be determined by a corresponding number of
equations. Here k+1 equations are provided by the data points and the remaining two
equations defined by additional constraints. For example, for natural splines these
are:

S,(x,)=0

S; (x )=0 (2.134)

Fig. 2.27a shows a polygon approximated by a cubic spline. The resulting curve
continuously passes through the vertices (nodes). Splines are therefore most effective
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when the vertices are free of position errors, i.e. no smoothing is desired. However,
the shape of the entire curve is affected if only one point changes.

2.3.1.4.3 B-Splines

For many technical applications it is more feasible to approximate a given polygon

by a curve with the following properties:

— analytical function is simple to formulate;

— can be easily extended to higher dimensions, especially for the surface
approximations;

— smoothness at vertices is easy to control;

— variation of a node has only a local effect on the shape of the curve.

The requirements are met by B-spline approximations which are a combination of
base functions (2.131) for each point to be interpolated P(¢):

x(t)= Zk:xiBi’n(t)

P(t)= o 0<t<k-n+1 (2.135)
y(®)=>"y;B, ()
i=0

It is obvious that the spline base functions are directly “weighted” by the coordinates
of the vertices instead of the computed coefficients. The smoothness of the curve is
controlled by the order m=n+1, whereby the curve becomes smoother with
increasing order. Fig. 2.27c and d show B-spline approximations of order m =3 and m
= 5. In addition, the computed curve always lies inside the envelope of the polygon,
in contrast to normal spline or polynomial interpolation and approximation.
Moreover, the approach can be extended directly to three-dimensional polygons
(surface elements).

2.3.1.4.4 Bézier approximation

The Bézier approximation has been developed by the car industry. Here a given
polygon is approximated by a curve that has optimal smoothness but does not pass
through the vertices. The approximation

x(t)= ixiBEl.yk(t)
P(t)= 20 0<t<1 (2.136)
y(t)=2y,BE, (t)
i=0

is similar to the B-spline approximation but is based on the Bernstein polynomials:

k!

i k—i
i!(kfi)!t 1-0 0<t<1 (2.137)

BE, (6)=
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All points in the polygon data set are used for the computation of the curve. The
approach can be extended directly to three-dimensional polygons (section 2.3.3.2).

8 a) Cubic spline 8 b) Bézier

Fig. 2.27: Spline interpolation, and Bézier and B-spline approximation.

Fig. 2.27b shows the curve which results from Bézier approximation of a polygon. The
continuous curve does not pass through the vertices, but shows an “averaged” shape.
Bézier curves are therefore very suitable for applications where the data points are
not free of error and smoothing is required.

2.3.2 Analytical geometry in 3D space

2.3.2.1 Straight line

The form of a straight line in 3D space can be derived directly from the straight line in
2D space. Thus a straight line between two points Pi(x1,y1,z1) and P2(x2,y2,22) is given by
the proportional relationships

X=X, _ Y-y, _2-%

X=X Y7V %,7%

(2.138)

and in parametric form:
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X=X +t-(x,-X,)
X X X, —X X a
! 2 1 0 (2.139)
YI=| Y A8 Y=Y =] Y, |FE| D
z Z1 ZZ—Z1 ZO C

Here Po(xo0,y0,20) is any point on the line. The direction cosines are defined by:

cosoczxz_x1 =a
y2_y1 _ 2 2 2
cosﬁ:T:b where d—\/(xz—xl) +(y,-y,) +(z,-z) (2.140)
z, -z
cosy=—2—1=¢
Y=

At first glance it looks as though there are 6 independent parameters for a straight
line in 3D space. However, taking into account the condition

a+b*+ct=1

there are only two direction parameters that are linearly independent. In addition,
the coordinate zo of a point on the straight line can be derived from the corresponding
Xo and yo coordinates. Hence, 4 independent parameters remain in order to describe
a straight line in space:

1. direction vector: (a',b',1)
2. pointontheline: =z, =-a"x,-b"y, (2.141)

For numerical reasons these two criteria are only valid for straight lines which are
approximately vertical (parallel to the z axis). Arbitrarily oriented straight lines must
therefore first be transformed into a vertical direction.

2.3.2.1.1 Intersection of two straight lines

The intersection point of two straight lines in space only exists if both lines lie in a
common plane, otherwise the lines are skew. In this case the shortest distance e
between them is defined along a direction which is perpendicular to both. For two
lines g;, i=1...2, each defined by a point Pi(x;y;,z) and direction cosine a;,b;c: the
shortest distance e between them is given by:
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I b, C,
a b c
O 2 2 (2.142)
\/ a+b*+c?
where
a:al b, b:bl c, C:cl a,
a2 b2 b2 C2 CZ 2

Fig. 2.28: Intersection of two straight lines in 3D space.

For consistency, the point of intersection S is then defined at half this distance, e/2,
between both lines (Fig. 2.28). Using the factors

X=X, V7Y, %% X=X, 1Y, %%
a b c a b c
a, bz G a b1 G
A= y=
a bl G 1 b1 G
2 bz = a, bz G
a b c a b c

the spatial coordinates of points S; and S: at the ends of the perpendicular reduce to

Xg, =x,+A-a, X5, =X, + Y a,
y51:y1+)l'b1 y52:y2+y~b2
z, =z, +A-¢ Zg,=Z,+U-C,

and hence the point of intersection S:
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X +X Ve, +Y Z.+z
x. =sS1 782 _7s1"7s2 g =2517%52 2.143
§ 2 Vs 2 5 2 ( )
The intersection angle @ between both lines is given by:
cosp=a,-a,+b-b,+c, c, (2.144)

The intersection of two straight lines in space is used for spatial intersection in stereo
photogrammetry (see section 4.3.6.2). Here the distance e provides a quality measure
for the intersection.

2.3.2.1.2 Regression line in space

The calculation of a best-fit straight line in space can be derived directly from the
algorithm presented in section 2.3.1.1. The distance of a point Pi(xy;z) from the
straight line defined by the point Po(xo,y0,20) and the direction cosine a,b,c is given
by:

d =\’ +v} +w! (2.145)

where
u =c(y,—y,)-blz,-z))
v,=a(z,-z,)-c(x,~x,)
W, :b(xi _Xo)_a(yi —)’0)

The fitted line passes through Po, the centroid of all points on the line. As in the two-
dimensional case, the spatial direction of the line is defined by the eigenvector which
corresponds to the largest eigenvalue of the matrix B:

B=AT-A
X, =Xo Yi7Yo Z 7%
where A= : : : (2.146)

Xn _XO yn _yO Zn_ZO
2.3.2.2 Plane

2.3.2.2.1 Parameters
A plane in space is defined by n>3 points which must not lie on a common straight
line. The analytical form of a plane is given by:

A-x+B-y+C-z+D=0 (2.147)
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A plane in 3D space is therefore analogous to a straight line in 2D (see eqn. 2.90 for
comparison). The vector n(a,b,c) is defined as the unit vector normal to the plane with
direction cosines:

A —

VA? + B2 +C? B
B —
Cc

VA% + B? +C?

Given a point Po(xo,y0,20) on the plane with normal unit vector having direction
cosines (a,b,c), then all points P(x,y,z) on the plane are defined by the following
equation:

cosa= a

b (2.148)

cosf3=

cosy = c

a(x-x,)+b(y-y,)+c(z-z,)=0 (2.149)

Fig. 2.29: Definition of a plane in space.

Given a plane that is formed by 3 points P1,P2,Ps, any other point P on the plane meets
the condition (Fig. 2.29):
X, Y-y, z-z

1 1

X—
X, =X, Y,~Y, Z%,-%]|=0 (2.150)
X=X V37V, %%
This determinant corresponds to the volume of a parallelepiped defined by its three
vectors. It can be taken as a definition of the coplanarity condition used in relative
orientation (see section 4.3.3.1).

The distance of a point Q(x,y,z) from the plane is given by (see eqn. 2.149 for
comparison):

d=a(x-x,)+b(y-y,)+c(z-z,) (2.151)
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2.3.2.2.2 Intersection of line and plane
Given a straight line defined by point P(xc,ys,zc) and direction cosines (ac,bs,cc)

X XG aG
Y |=| Vs [+t| b (2.152)
z ZG CG

and a plane defined by point P(xz,y,z:) and direction cosines (az,be, cz):
a,(x-x,)+b,(y-y,)+c,(z-2,)=0 (2.153)

Substituting in (2.153) for the variable point from (2.152), the solution for line
parameter f is:

a,(x,—x;)+b,(y,-y;)+c,(z,-z;)
a.a,+b.b.+c.c,

t=

(2.154)

The denominator becomes zero if the line is parallel to the plane. The coordinates of
the point of intersection are obtained if the solution for ¢ is substituted in (2.152).

As an example, the intersection of line and plane is used in photogrammetry for
single image analysis in conjunction with object planes (monoplotting, see section
4.2.7.1).

2.3.2.2.3 Intersection of two planes

The intersection line of two non-parallel planes has a direction vector a(a,b,c) which
is perpendicular to the unit vectors m: and n; normal to the planes and can be
calculated directly as the vector product of n; and n.:

a=n xn, (2.155)

The magnitude of the vector product of two unit vectors is the sine of the angle 6
between them. If the planes are identical, or parallel, then sin6=0 and the
intersection line does not exist. A small value of sin 8 indicates a potentially poorly
defined intersection line.

A point Xo on the line of intersection is defined by where it intersects a principal
coordinate plane, e.g. the xy plane. The intersection line is then given in parametric
form:

X=X +t-a (2.156)

2.3.2.2.4 Best-fit plane
In analogy with best-fitting lines, the best-fit plane is calculated by minimising the
distances d: in eqn. (2.151). The adjusted plane that fits n points is defined by the
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centroid Po of the points and the direction cosines of the normal vector. The matrix A,
used for the computation of eigenvalues, is identical to the matrix given in (2.146).
However, here the direction cosines correspond to the eigenvector with the minimum
eigenvalue.

Alternatively, a single observation equation can be formed for each point
according to (2.151)

a(x,—x,)+b(y,~y,) +c(z,~z,)-d=0 (2.157)

which is solved within a least-squares adjustment using an additional constraint. The
plane’s normal vector is defined as a unit vector by setting

A +b+c =1 (2.158)

which further defines a plane in the Hessian normal form.

2.3.2.3 Rotationally symmetric shapes

The measurement of rotationally symmetric shapes is of major importance, especially
in industrial metrology. They have the common property that they can be described
by a single reference axis (straight line in space) and one or more shape parameters
(see Table 2.1).

Table 2.1: 3D rotationally symmetric shapes (selection).

Shape Parameters Degrees of freedom Number of points

Sphere centre point Xo,Y0,20 4 >4
radius r

3D circle centre point Xo,y0,20 6 >3
normal vector [,m,n
radius r

Cylinder axis point xo,y0,20 5 25
direction vector [,m,n
radius r

These shapes (3D circle, sphere and cylinder) are often used in practical applications
of close-range photogrammetry and are explained below in more detail. For the
analysis of other rotationally symmetric shapes (paraboloid, ellipsoid, cone etc.) the
reader is directed to further references.

2.3.2.3.1 Sphere
A sphere (Fig. 2.30) is defined by:
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— the centre (xo,y0,20),
— theradiusr.

Here there are 4 independent parameters which require 4 observation equations for a
solution. Therefore, a minimum of 4 points must be measured on the surface of the
sphere to generate these. The 4 points must not all lie on the same circle. (Any 3 will
lie on a circle and the fourth point must lie off the plane of this circle.)
The equation of a sphere with centre (xo,y0,20) and radius r is given by:

(x=x, ) +(y=y, ) +(z—z, ) =1 (2.159)
Alternatively, a general equation for the circle is as follows:

X2 +y +2° +2ux+2vy + 2wz +d =0 (2.160)
which can be re-arranged as:

x+u) +(y+v)’ +(z+w) =" +vV* +w’ —d (2.161)

(2.161) has the same general form as (2.159) with the centre at (—u,-v,—w) and radius
r given by:

r=vu*+v*+w?-d (2.162)

Fig. 2.30: Definition of a sphere.

Expressed in the form of (2.160), the equation is linear in the parameters u, v, w, d and
can be used to compute their values directly by substituting coordinates of 4 well-
chosen points to create four independent equations. From these, initial values of
sphere centre and radius can be derived as indicated above.

For the over-determined case, the distance of a point from the surface of the
sphere is given by:
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dl. =r-r (2.163)

where 1 = \/(xl. =X, +(y, -y, +(z,-2,)

The derivatives for use in the design matrix of a least-squares analysis are then given
by:

ad, _X X% %:M o4, %A %, =-1 (2.164)
oX, r, o, r, 0z, T, or

0 i i 0 i

2.3.2.3.2 Circle in 3D space

A 3D circle is a circle located in an arbitrarily oriented plane in space (Fig. 2.31). It is
defined by

— the centre (xo,y0,20),

— the direction cosines (a,b,c) of the normal vector to the plane,

— theradiusr.

Noting that a direction has only two independent parameters, as expressed by (2.141),
a 3D circle is defined by 6 independent parameters. A minimum number of 6
observations is therefore required to compute the parameters. These can be provided
by 3 points on the circumference.

v X

Fig. 2.31: Definition of a 3D circle.

Analogously to the best-fit sphere, a distance can be defined from a fitted point in
space to the circle circumference. Here the point not only has a radial distance to the
circle but also a perpendicular distance to the plane. The spatial distance is given by:

a’=e’+f? (2.165)
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Here e;is the radial distance analogous to the definition in (2.107) and f; is the distance
from the plane according to (2.151). In order to calculate a best-fit circle, both
components must be minimized.

n n
Ydi=>el+> f? (2.166)
Defining ¢ =1 as in (2.141), there are 6 remaining parameters Xo, Yo, 2o, a, b and r. For

the special case xo=Yyo=2z0=a=b=0 the derivatives forming the elements of the
design matrix are:

%:_ﬁ de,  x.z ifi:o o,

ox, I oa __T ox, 6711:)(‘

o _ Y% o8 _ Y& T g g, (2.167)
Vo T b r %Y, ob

&:_i 66!':_1 ifi:_l ifi:

oz, r or oz, or

The following procedure provides one possible algorithm for the computation of a
best-fit circle with given initial values of (xo,y0,20), (a,b,c) and r:

1. Translate the data points P; onto a local origin close to the circle centre.

2. Rotate the normal vector into an approximately vertical (z) direction.
One method to do this requires the azimuth (a) and zenith (v) angles of the
normal:
a= arctan(a / b) v=arccos(c)

The rotation matrix to rotate the normal vector to the vertical is then given by:
T

cos(—a) —sin(-a) O] | cos(-v) sin(-v) 0
R=|sin(-a) cos(-a) O] 0 1 0 (2.168)
0 0 1| | -sin(-v) 0 cos(-v)

Steps 1 and 2 temporarily transform an arbitrarily oriented circle into a local
system x'y'z' where the circle centre is close to the origin and the normal to the
plane is vertical (see Fig. 2.31).

3. Set up and solve the normal system of equations using (2.167).
Correct the unknowns and reverse the transformation back into the original
coordinate system.

Steps 1-4 are repeated until the unknowns do not change appreciably.

Note that discrete 3D points on the circle are not necessarily required and a circle
can also be determined by photogrammetric measurement of its edges in an image
(see section 4.4.7.2).
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2.3.2.3.3 Cylinder

A cylinder (Fig. 2.32) is defined by

— one point (xo,y0,20) on the axis of the cylinder,
— the direction cosines (a,b,c) of the axis,

— theradiusr.

Noting that a line requires only 4 independent parameters to define its location and
direction, as expressed by (2.141), the position and direction of a cylinder axis is
therefore defined by 4 parameters. Together with the radius, a cylinder therefore
requires 5 independent parameters. A minimum of 5 observations are therefore also
required to compute these parameters, i.e. a minimum of 5 points on the cylinder

surface are necessary.

Fig. 2.32: Definition of a cylinder.

The distance of a point from the cylinder surface is given by:

d=r-r
1 1
where
W +vi+w? U, =c(y;~y,)-b(z,~z,)
1 1 1
h=—— and v,=al(z,-z,)-c(x;,—x,)
a’+b*+c?

w, =b(x,—x,)-a(y,-y,)

In the special case where xo = yo = a = b = 0 the above relations simplify to:

_ (2, .2
L=NX 1Y

The derivatives required to set up the design matrix A are given by:

(2.169)

(2.170)
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ad. ) od. : .
i_ X i_ Vi od; __, .171)
ox, ¥ or
od,  x;-z od, y;-z
oa r ob  r

The iterative procedure for determining the cylinder parameters is identical to the
procedure given for the 3D circle (see above). This requires shifting the data points to
an origin close to the cylinder axis, and then rotating this axis to be close to the
vertical.

An example of the use of cylinders in close-range photogrammetry is in process
plant (pipeline) modelling. Note that discrete 3D points on the cylinder surface are
not necessarily required and a cylinder can also be determined by photogrammetric
measurement of its edges in an image (see section 4.4.7.2).

2.3.3 Surfaces

Objects with surfaces which cannot be described by the above geometric elements
are, in the first instance, usually represented by a dense distribution of 3D surface
points. From these 3D point clouds, triangular mesh generation can create digital
surface models of suitable detail. Analytical functions can also be used in a similar
way to polynomials (see section 2.3.1.4) in order to approximate the shape of the
surface.

Fig. 2.33: Example of a 2v/2D surface. Fig. 2.34: Example of a 3D surface.

Surfaces which can be defined as a function Z = f(X,Y) are known as 2%2D surfaces.
Here every point on a horizontal XY plane is related to exactly one unique height
value Z. Terrain models and simple component surfaces are examples of 22D
surfaces (Fig. 2.33). In contrast, objects with holes and occlusions have true 3D
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surfaces where a point on the surface is defined by a function f(X,Y,Z) = 0. A sculpture
(Fig. 8.12) or cup with a handle (Fig. 2.34) are examples for such 3D objects.

2.3.3.1 Digital surface model

A 3D point cloud represents a digital surface model (DSM) if its point density (grid
spacing) is sufficient for describing changes in surface shape. The point distribution
can have a regular structure, e.g. AX =AY = const., or an irregular spacing. Object
edges (breaklines) can be represented by special point codes or by additional vector-
based data such as polygons.

2.3.3.1.1 Triangle meshing

The simplest way to generate a closed surface from the point cloud is by triangle
meshing (Fig. 2.35), where every three adjacent 3D points combine to form a
triangular surface element. Delaunay triangle meshing offers an appropriate method
of creating such a triangular mesh. This identifies groups of three neighbouring
points whose maximum inscribed circle does not include any other surface point.

Fig. 2.35: Triangle mesh from a 3D point cloud.

Each triangle can be defined as a plane in space using eqn. (2.149) and the result is a
polyhedron representation or wire-frame model of the surface.

There is normally no topological relation between the 3D points. Differential area
elements must be established between adjacent points in order to generate a
topologically closed surface which enables further processing as a surface
description. The approximation of a surface by small planar surface elements has the
advantage that it is easy to perform further calculations of, say, normal vectors or
intersections with straight lines. These are required, for example, in visualization
using ray tracing techniques or monoplotting (see section 4.2.7). If triangular
elements rather than polygons are used for surface descriptions, then the planarity of
surface elements is guaranteed.

Most commonly a triangular mesh is stored as a collection of triplets, where each
triplet represents the three corner points of the triangle, each represented again as a
triplet of its X, Y and Z coordinates. One example of a popular file format based on
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this representation is the STL (stereo lithography) format used for rapid prototyping
and 3D printing. It creates a block for each triangle consisting of the normal vector (to
discern the inside from the outside of the object) and the vertex triplet. The content
of a STL file is shown in Fig. 2.36 on the left. One problem with this format can be seen
when comparing the first vertex of the two triangles stored. Obviously the format
duplicates vertices which are shared by neighbouring triangles. This is not an
efficient use of memory. An alternative way to represent a triangle mesh is to keep a
separate list of unique vertices. The list of triangles then stores the corner points as a
triplet of indices to the list of vertices. A popular file format using this scheme is the
PLY format (polygon file format). Directly following the header is a list of coordinate
triplets for the vertices. This is followed by a list of polygons. Each polygon starts with
the number of vertices and then contains one index for each vertex. An example is
provided in Fig. 2.36 on the right. From the list of vertex indices (2, 0, 1 and 2, 3, 0) it
can be seen that the two triangles share two vertices (indexed 0 and 2). Thus they
actually share an edge. Such formats are commonly referred to as indexed triangle
meshes. A complementary form of representation centred on edges is the half-edge
structure, which will not be detailed here.

STL ASCII file: PLY ASCII file:
solid example ply
facet normal -0.282 0.312 0.991 format ascii 1.0
outer loop element vertex 4

vertex -70.313 347.656 -736.759 property float x
vertex =-70.313 345.269 -735.938 property float y
vertex -67.665 347.656 -735.938 property float z

endloop element face 2
endfacet property list uchar int vertex_indices
facet normal -0.849 0.172 0.500 end_header
outer loop -70.313 345.269 -735.938
vertex -70.313 347.656 -736.759 -67.665 347.656 -735.938
vertex -72.130 347.656 -739.844 -70.313 347.656 -736.759
vertex -70.313 345.269 -735.938 -72.130 347.656 -739.844
endloop 3201
endfacet 3230

Fig. 2.36: Two file formats storing the same triangle mesh (four vertices and two triangles).

2.3.3.1.2 Interpolation

Additional points can easily be interpolated within a given triangular element. For a
tilted plane defined in a local coordinate system x'y'z', with origin located in one of
the vertices of the triangle (Fig. 2.37), then the equation for the plane is given by:

z=a,+ax'+a,y' (2.172)

The coefficients can be calculated as follows:
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ao 1 Xlzyl3_XI3yI2 0 O Zl
n Xy —x"y' ylz_yl3 yl3 _ylz 1% (2.173)
& e XI3_XI2 _Xl3 X, | 1%

For meshes defined by four points, additional points can be calculated by bilinear
interpolation according to eqn. (2.19).

Fig. 2.37: Interpolation within a triangular mesh. Fig. 2.38: Voxel representation.

2.3.3.2 Digital volume model (voxel)

Complex 3D objects can also be represented by sufficiently small volume elements
(voxels) which are cubes of side length AV (Fig. 2.38). A three-dimensional matrix
with column width AV is created and in which an attribute value is stored for every
physically present object element, e.g. colour or material properties. This grid
structure requires a large amount of memory but it can easily represent holes and
hollow or non-connected object parts.

2.3.3.3 Range images

Point clouds acquired in raster format, e.g. by 3D cameras (see section 6.7.6), or as a
result of a computation such as image matching, can be stored as range images where
the intensity values correspond to the distance to the object (example in Fig. 6.67d).
A range image in its most basic form is, analogously to eqn. (5.1):

R=r(x,y) (2.174)

where the function r defines the distance from the camera to the object. While an
intensity image normally contains quantized integer values, floating point numbers
are usually used to represent range. In the photogrammetric context presented here,
the range is defined as the distance from the projection centre of the camera to the
object’s surface. It should be noted that other definitions are possible, e.g. where
distance is defined relative to a location on the housing of the camera.
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Each pixel in the range image uniquely identifies a point in three-dimensional
space. The two integer coordinate values, and the range measured at this pixel, form
a triplet (x, y, r(x,y)). In order to obtain three-dimensional Cartesian coordinates
(X,Y,2), it is necessary to apply a projection model to the triplet, typically the pin-hole
camera model (Fig. 1.7). This is very similar to transforming polar coordinates to
Cartesian coordinates. To account for any geometric errors in the projection (see
section 3.1.3), a full lens correction model can be applied. This is consistent with the
normal workflow in photogrammetry.

Since a projection model with additional parameters can be quite complex, it can
be desirable to store a representation of a range images with the projection model
already applied. In this case a three-channel image is stored where the three channels
contain the X, Y and Z coordinates. This representation is, for example, used in the
popular ASCII exchange format PTX.

As every pixel of the image in this case holds a Cartesian coordinate triplet
(X,Y,2), this is one form of representation for a point cloud. The grid still contains the
information about pixel connectivity and thus provides the neighbourhood
relationship for each pixel, such as a N8 or N4 neighbourhood relationship (see
section 5.1.2). This representation is therefore referred to as an organized point cloud.
If all coordinate triplets are stored only as a list, without regard to grid structure, it is
known as an unorganized point cloud. In this case, establishing neighbourhood
relationships between points is computationally expensive and typically requires the
use of a spatial search structure such as a kd-tree.

Range images can store multiple channels, e.g. with information about reflected
intensity, colour or measurement uncertainty. A range image with additional true
colour information is also known as an RGBD image. In principle, range images can
be processed with all the usual methods of image processing (Chapter 5). Filters for
image smoothing or noise reduction (section 5.2.3.2) or feature extraction methods
(section 5.4.3) are commonly used.

Local curvature can be used for surface segmentation, edge extraction and
feature-point detection. Either the two principal curvatures k; and k. are used directly
or mean curvature H and Gaussian curvature K are derived from them:

k +k,
2

H=

K=(kk,) (2.175)

Using H and K, local surface types can be classified into eight categories as shown in
Table 2.2.

Cylindrical surface types indicate the location of an edge. An alternative
description of local surface shape is the shape parameter. Again using the principal
curvatures k; and k., the parameter S to describe shape, and the parameter C to
describe strength, are derived.
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k
S=arctan (sz C=\lk’+k? (2.176)

1

This separation of shape and strength can be seen as an analogy to the separation of
colour and intensity used in alternative colour spaces (see section 5.2.2.1). The
parameter C allows for the easy detection of planes (where C is smaller than a certain
threshold). The parameter S can be used for the simple detection of umbilical points
(ki = k2) and minimal points (k; = -k2).

Table 2.2: Surface types classified by mean curvature H and Gaussian curvature K.

K<O K=0 K>0

H<O0 saddle surface cylinder ellipsoid
(negative) (negative) (negative)

H=0 minimal surface plane -

H>0 saddle surface (positive) cylinder (positive) ellipsoid (positive)

2.3.3.4 B-spline and Bézier surfaces

Three-dimensional surfaces can be represented directly by a general form of the B-
spline used for curves in a plane (see section 2.3.1.4). Given a three-dimensional
network of m+1xn+1 nodes (surface model, see Fig. 2.35), a B-spline surface
approximation gives:

x(s,t)= ZinjBi’a(s)Bj’ﬁ(t)
i=0 j=0
Qs,t)=1y(s,)=_> ¥;B, (5B, ,(t) (2.177)
i-0j=0
z(s,t) = ZZzi].Bi’a(s)B}., 5()
i=0j=0
where
0<s<m-a+1 and 0<t<n-f+1

The result is a quadratic approximation when a=B=2 and a cubic spline
approximation when oa=f=3. The determination of the basic functions B is
equivalent to the two-dimensional case.

In an analogous way, Bézier approximations can be generated for 3D elements.
They are mainly used for the construction of industrial free-form surfaces, for
example in the automotive industry for the representation of car body surfaces.
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2.4 Adjustment techniques
2.4.1 The problem

This section provides a summary of some important techniques for the computation
of over-determined, non-linear systems of equations by adjustment methods. These
are essential for the understanding of numerous photogrammetric calculations. In
general the task is to determine a number of unknown parameters from a number of
observed (measured) values which have a functional relationship to each other. If
more observations are available than required for the determination of the
unknowns, there is normally no unique solution and the unknown parameters are
estimated according to functional and stochastic models. See specialist literature for
a more detailed explanation of adjustment methods and applications.

2.4.1.1 Functional model
A number of observations n (measured values) form an observation vector L:

L=(Li, L, ..., L))" : observation vector (2.178)

Since the elements of the observation vector are measured data they are regarded as
having small random error effects but are free of systematic defects.

A number u of unknown parameters must be determined. These form the vector
of unknowns X, also called the parameter vector.

X=X, X2, ..., X)" : vector of unknowns (2.179)

The number of observations is assumed to be greater than the number of unknowns.
n>u

The functional model describes the relation between the “true” observation values L
and the “true” values of the unknowns X . This relationship is expressed by the
vector of functions ¢ of the unknowns:

¢,(X)

L= X)= <PZE ) : functional model (2.180)

e Pl

9,(X)

Since the true values are normally not known, the observation vector L is replaced
by the sum of the measured observations L and corresponding vector of residuals v.
Similarly, the vector of unknowns is replaced by the estimated (adjusted) unknowns
X.Asa result, the following non-linear correction equations are obtained:
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L=L+v=¢p(X) (2.181)

If approximate values X° of the unknowns are available, the vector of unknowns can
be expressed as the following sum

X=X"+x (2.182)

i.e. only the small unknown values x must be determined.
From the values in X° approximate values of the observations can then be
calculated using the functional model:

I°— @ (X°) (2183)
In this way reduced observations (observed minus computed) are obtained:
1=L-I° (2.184)

For sufficiently small values of X, the correction equations can be expanded into a
Taylor series around the approximate values X°, ignoring terms after the first:
o (X)

L+v=¢p (X )+(6X]O-(X—X )

(2.185)
:Lo{a(p(x)j %

oX

After introduction of the Jacobian matrix A, also known as the design, model or
coefficient matrix

o, (X) op, X)) [ op,(X)
X, X, X
0 0 u 0
op,(X) o9,(X) o, (X)
A[ 20X |5 X T (2.186)
e\ 0X )N T R . '
op,(X) op,X) | [ 09,(X)
X, X, X
L 0 0 u 0|

the linearized correction equations are obtained:

1=1+v=A% (2.187)
nl nl nl nuul
The Jacobian matrix A consists of derivatives which describe the functional or
geometrical relation between the parameters and which are calculated from
approximate values. The vector of unknowns X contains the estimated parameters
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and 1 is the vector of reduced observations. A computation scheme is given in section
2.4.2.2.

2.4.1.2 Stochastic model
The stochastic properties of the unknowns L are defined by the covariance matrix Cu:

2
0 P00, - P00,
2
0,0 O 0,0
c” — p21 .2 1 '2 . pZn .2 n (2188)
ol : : . :
2
pnlo'no‘l e cee Gn

where 0;: standard deviation of observation L;, i =1..n

pij:  correlation coefficient between L; and L;, i#j

Introducing the multiplication factor o¢?, the cofactor matrix Qu of observations is
obtained:

1 _
Q,=—C,=P ' (2.189)

0
where Py is the weight matrix

The covariance matrix is the only component containing information about the
accuracy of the functional model in the adjustment process. It is therefore called the
stochastic model. In the case of independent observations, the correlation coefficients
become zero and the covariance matrix is reduced to a diagonal matrix. This is the
standard case for many adjustment problems where either independent observations
are given, or no significant knowledge about correlations between observations is
available.
The weight matrix P then becomes:

9%
2
o
1
7 .
P= o’ = 2 (2.190)
n,n 2 ..
b
2 n
9
0_2
n

In this case an observation L; with standard deviation o; = go has weight

2
(0
p,=—2=1 (2.191)
o
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and P becomes the identity matrix I. 0o is the true value of the standard deviation of
unit weight (standard deviation of an observation with weight = 1). It can be regarded
as a multiplication constant. Refer to sections 2.4.2.1 and 2.4.3.1 for a definition of this
parameter.

Usually the true standard deviation ¢ is not known in practical applications and
the empirical standard deviation s is used instead. Here s denotes the a priori
standard deviation, while $ represents the a posteriori standard deviation (adjusted
standard deviation). The empirical standard deviation is only meaningful in cases of
significant redundancy.

2.4.2 Least-squares method (Gauss-Markov linear model)

The Gauss-Markov adjustment model is based on the idea that the unknown
parameters are estimated with maximum probability. Assuming a data set with an
infinite number of measured values and normally distributed errors (non-centrality
parameter A = 0, i.e. no systematic errors), the following condition for the residuals
results:

vl .P-v > min (2.192)

For independent observations it reduces to

n

> p;-v —>min (2.193)

i=1
It is known as a least-squares adjustment or minimization using the L2 norm. The
Gauss-Markov model ensures that estimations of the unknown parameters are
unbiased and have minimum variance.

2.4.2.1 Adjustment of direct observations
Consider a number of direct measurements of a single unknown value, e.g. from
repeated measurements of the distance between two points by laser range
measurement. The functional model is then reduced to the extent that the required
quantity is simply the mean of the observations.

In measurements where observations are considered to be equally accurate, the
weights p; are simplified to pi=1.

For observations of varying accuracy, the corresponding weights are estimated
from the a priori standard deviations of the original observations and the observation
of unit weight (siand so respectively):

oN

p,= : weight of observation i (2.194)

__(n‘tn
TN
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Alternatively, where measurements are considered to be equally accurate, and an
improved value for a particular quantity is obtained by averaging a number of
repeated measurements, then this improved average can be given a weight which
corresponds to the number of measurements in the set. (A single measurement has
weight 1, an average based on 6 repetitions has weight 6, etc.).

The estimated unknown is obtained by the geometric (weighted) average:

1
. L+pL+..+pl Zp”
%= b +pl bty _ =l (2.195)
p,+p,+...+p Z
1 2 n Zpi
i=1
The residual of an observation i gives:
v.=Xx-1 (2.196)

1 1

After adjustment the a posteriori standard deviation of unit weight is given by:

2
N vV
5= /% (2.197)

The a posteriori standard deviation of the original observation i is given by:

§ = (2.198)

“n

The standard deviation of the average value is, in this case, equal to the standard
deviation of the adjusted observations:

5, =—=2 (2.199)

2.4.2.2 General least squares adjustment
Normally, values of interest must be measured indirectly. For example,
photogrammetric triangulation by the intersection of measured directions produces,
indirectly, the 3D coordinates of required target points. This section describes a
generally applicable adjustment process.
Let the following linearized functions define an adjustment problem:
1=1+v=A-% : functional model (2.200)

nl nl nl nuul

Q= iCH =P : stochastic model (2.201)

2
0
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with n observations and u unknowns, n>u. To set up the weight matrix P, the a priori
standard deviations of observations s; and the a priori standard deviation of unit
weight so, are required. They could, for example, be derived from the empirically
known accuracy of a measuring device:

oN

p,= : weight of observation i (2.202)

__(n‘tn
TN

After generation of initial values, setting up of the Jacobian matrix A, and calculation
of reduced observations 1, the following computation scheme may be used in order to
calculate the vector of unknowns X :

1) P =Q; : weight matrix (2.203)
n,n nn
2) -X-n= : normal equations (2.204)
wu ul ul wudl
where
N=A"-P-A : matrix of normal equations
u,u u,n n,n n,u
n1 =A"-P-1 : absolute term
u, u,n  n,n on,l
3) Q= N : solving the normal equations (2.205)
wu Ul
x=Q-n
wl oy ul .
T L AT : where Q: cofactor matrix of unknowns
=(A"-P-A)'.A-P-1
u,n n,n nu u,n n,n nl
4) v=A-x-1 : residuals (2.206)
nl nuul nil
5) 1=1+v : adjusted observations (2.207)
nl nl n1
L=L+v
nl nl nil
6) X=X°+x : vector of unknowns (2.208)
u,1 u,l u,1
R vi.P.v . .
7) 5= : standard deviation a posteriori  (2.209)
n-u
8 C=5-Q : variance-covariance matrix (2.210)
uu u,u
~ ! -~
9) L1=(P (X) : final computing test (2.211)
n,

n,1
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For most non-linear problems, initial values are only approximate and multiple
iterations are required to reach an accurate solution (e.g. bundle adjustment, see
section 4.4). In this case the corrected approximate values in iteration k of step (6) are
used as new starting values for the linearized functional model of the next iteration
k+1, until the sum of added corrections for the unknowns is less than a given
threshold.

XO

o =X X, (2.212)

In order to solve the normal system of equations (2) in step (3), the Jacobian matrix A
has to be of full column rank.

r=rank(A)=u (2.213)

This requirement means that the included observations allow a unique solution for
the vector of unknowns and that the inverse of the normal equation matrix N exists.
For adjustment problems where some observations are missing for a unique solution,
arank defect d is detected:

d=u-r : rank defect (2.214)

This problem occurs, for example, in the adjustment of points in coordinate systems
which are not uniquely defined by known reference points, or other suitable
observations (datum defect).

The resulting singular system of normal equations can be solved with the help of
the Moore-Penrose inverse (see section 4.4.3.4) or by including suitable constraints.

2.4.2.3 Levenberg-Marquardt algorithm
In computer vision, a bundle adjustment is often solved with the Levenberg-
Marquardt algorithm (LMA). Both procedures are least-squares adjustments, but LMA
offers a refinement in the form of a damping or regularization term which essentially
prevents a subsequent iteration from having worse starting values than its preceding
iteration.

In the Gauss-Markov model, a correction (solution) vector is calculated in the
following form (compare with eqn. 2.205):

x=(A"-P-A)"-A"-P1 (2.215)
Using the Levenberg-Marquardt algorithm, the formulation is as follows:
x=(AT-P-A+A-diag(A"-P-A))"-A"-P-1 (2.216)

Here the parameter A regularizes the iterations. If the solution improves from one
iteration to the next, then A is reduced (often by a factor of 10) and the LM formulation
becomes closely similar to the conventional formulation because the term in A
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gradually disappears. On the other hand, if the solution degrades between iterations
then A is increased, again typically by a factor of 10.

A damped iterative solution can result which may be more robust than the
conventional approach.

2.4.2.4 Conditional least squares adjustment

The above method of general least squares adjustment is based on a set of observation

equations that model the measured observations as a function of the unknowns. An

extended adjustment model results when additional constraints are incorporated

between the unknowns. This method may be called the conditional least squares

adjustment. The following cases are examples of such constraints between unknowns

(see section 4.4.2.3):

—  Coordinates of a number of adjusted object points must be located on a common
geometric element, e.g. a straight line, plane or cylinder.

— Two adjusted object points must have a fixed separation resulting, for example,
from a high accuracy distance measurement between them.

The correction equations derived earlier are then extended by a number, ', of non-
linear constraints:

l/)] (X)

v |

0 : constraints (2.217)
¥,

Using approximate values, these constraint equations are linearized in an analogous

way to the observation equations:

B = ( a“(;)((x) ] : linearized constraint equations  (2.218)
r'u
0

Inconsistencies w result from the use of approximate values instead of expected
values for the unknowns:

B-x=-w : vector of inconsistencies (2.219)
The linearized functional model reduces to:

A-x-l=v

N (2.220)
B-x+w=0

The Gauss-Markov model (2.192) must be extended as follows:

vl .P-v+2k-(B-X+W)— min (2.221)
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which leads further to the following extended normal system of equations:

AT-P-A B[R] |-ATPL|
-----ﬁ-'-'-'lr'a' i; + w1 : normal equations (2.222)

N X 4+ n =0

Here K is the vector of Lagrangian multipliers. The numerical values of k are not

normally of interest, although the condition that A’Pv+B’k=0 can be tested for

validity. Only the first u elements of the solution vector x are therefore important.
The a posteriori standard deviation is then given by:

2
8, = /M (2.223)
n—-u+r'

The redundancy f (degrees of freedom defined by the number of excess observations)
changes to f=n—-u+r'. Additional constraints can therefore increase redundancy
or they can effectively compensate for missing observations which lead to a rank
defect (see also free net adjustment, section 4.4.3.4).

2.4.3 Quality measures

Fig. 2.39 illustrates the relationship between the true value X, the expected value L,
the mean or adjusted value X and the single observation x.. True value and expected
value can differ due to systematic errors A.. The true deviation n; is the sum of a
systematic component A, and a random component &;.

|
[
X My X;

’ measured value x;

|

- true deV|at|on n; ‘

true value X ‘
|

syst. dev. A, random dev. g;

’ adjusted result ¥ (meanX) resid. v,

Fig. 2.39: True, stochastic and systematic deviation and residual (after Méser et al. 2000).

Since true value and expected value are unknown with a finite number of
measurements, quality assessment of measured values is based on their residuals vi.
The quality values discussed below are based on statistical measures. Depending on
application, the quality of a measured value, such as the fit between cylinder and
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bore, must potentially be assessed by taking into account relevant associated
conditions (see section 7.2).

2.4.3.1 Accuracy measures

2.4.3.1.1 Precision and accuracy

The accuracy of observations and adjusted unknowns are of prime interest when
analysing quality in an adjustment procedure. The calculated stochastic values
provide information about the quality of the functional model with respect to the
input data. This criterion is referred to as precision since it describes an internal
quality of the adjustment process. In contrast, the term accuracy should only be used
if a comparison to reference data of higher accuracy is performed. However, in
practice accuracy is widely used as a general term for quality.

Assuming that all observations are only affected by normally distributed random
noise, hence no systematic effects exist, precision and accuracy are theoretically
equal. However, in practical photogrammetry systematic effects are normally always
present, for example due to illumination effects, temperature changes or imaging
instabilities which have not been modelled. Since these effects cannot always be
detected in an adjustment result, calculated standard deviations such as so can
provide an indicator of the achieved quality level but do not replace a comparison
against an independent reference system or nominal values of higher accuracy (more
details in sections 4.4.5 and 7.2).

2.4.3.1.2 Standard deviation

The precision of the observations and adjusted unknowns is a major contributor to
the quality analysis of an adjustment result. Using the cofactor matrix Q or the
covariance matrix C (see section 2.4.1.2), the standard deviations of unknowns can be
obtained:

4y 4, - 4y
4y 4p 4y .

Q;=Q=| " S : cofactor matrix of unknowns (2.224)
qul quz o quu

The cofactor matrix of adjusted observations is derived from Q and the design matrix
A as follows:

Q;=A-Q-A’ : cofactor matrix of (2.225)
adjusted observations

The a posteriori (empirical) standard deviation of unit weight is given by:



2.4 Adjustment techniques = 103

T
5= B (2.226)
n-u

with redundancy r = n-u

If the a posteriori standard deviation §0 diverges from the a priori standard deviation
S, » two possible sources of error are indicated. Firstly, the stochastic model may be
set up incorrectly, although it should be noted that s, does not affect the numerical
values of the adjusted unknowns. Secondly, the functional model may be incomplete.
For example, unmodelled systematic errors will affect the values of the unknowns.

According to (2.189) and (2.224) the standard deviation of a single unknown x; is
given by

§j =5 -./q. (2.227)

0 Ji

where gj are the elements of the principal diagonal of matrix Q.

2.4.3.1.3 Root mean square
In many cases, adjustment results are reported as root mean square errors instead of
the above defined standard deviation. An RMS value (root mean square) is simply the
square root of the arithmetic mean of the squares of a set of numbers X;, i=1...n.
2
RMS = | 2 %0 (2.228)
n

Typically, a root mean square error is used (RMS error or RMSE) in which the numbers
represent a set of differences or changes which are of some particular interest. This
could perhaps indicate the RMS error of adjusted observations with respect to the
mean of those adjusted observations or perhaps the difference between measured
values of a set of points which have been optimally fitted to corresponding reference
values. Examples are:

_X)2 X -X 2
RMSE =, /Z(X% RMSE = \/ Z(efn'"e"s) (2.229)

For large n, the RMSE is equal to the empirical standard deviation. This is because the
standard deviation of a simple set of error values would have the same form but use
(n-1) in place of n. As n becomes large, the difference between n and (n-1) becomes
negligible.

2.4.3.1.4 Span
The span R denotes the maximum separation between two observations of a set of
measurements.
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R=X_ -X_ (2.230)

X min

The span is not unbiased as the observations may contain blunders. However, it is
important in metrology since, for manufacturing purposes, it may necessary that all
measured values lie within particular limits (tolerance, see section 7.2.2.6). Hence,
the span implicitly describes a confidence interval of 100% probability (see section
2.4.3.2). The span can also be defined as the difference between the minimum and
maximum residuals in a data set.

2.4.3.2 Confidence interval

It is generally assumed that the observations in an adjustment process have a normal
(Gaussian) random error distribution. Given a normally distributed random variable
I with expected value p and standard deviation o, the probability density is given by:

2 g2

fx)= 1 ~exp[ MX_MZJ (2.231)
ov 2

The error of the random variable is defined by:

e=l-pu : random error (2.232)

This is valid for a normally distributed sample with an infinite number of sample
points and an expected value defined as:

u=E{x}=x : expected value (true value) (2.233)
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Fig. 2.40: Standardized Gaussian distribution.
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Fig. 2.40 shows the probability density function of the normalized Gaussian
distribution (u=0, 0 = 1) and, for comparison, the systematically shifted distribution
corresponding to the non-centrality parameter A = 1°, The area underneath the curve,
between specified limits on the horizontal axis, corresponds to the probability P that
the error of arandom variable lies between these limits. The total area under the curve
= 1 and the probability limits are usually defined as a symmetrical factor of the
standard deviation.

P{-k-o<e<k-o} (2.234)

Table 2.3: Probability of error || < k-0 at different degrees of freedom.

Gaussian distribution Student distribution

k P P P P P
f=o0 f=2 f=5 f=10 f=20
68.3% 57.7% 63.7% 65.9% 67.1%
95.4% 81.6% 89.8% 92.7% 94.1%

3 99.7 % 90.5% 97.0% 98.7 % 99.3%

Table 2.3 shows that, in the case of an infinitely large data set (degrees of freedom f=
), the probability is 68.3% that all deviations are within a single standard deviation
of the true value (k = 1). The probability rises to 95.4% for 2 standard deviations (k =
1.96 for P=95%). Lastly, only 0.3% of all errors lie outside limits defined by 3
standard deviations.

In the case of large but finite data sets, the Gaussian distribution is replaced by
the t-distribution (Student distribution). The probability P that a deviation is within a
factor k of the standard deviation, increases with increasing degrees of freedom. For
very large degrees of freedom, the t-distribution becomes equivalent to the Gaussian
distribution.

/2 1 1-a a2

Fig. 2.41: Confidence interval.

For real (finite) data sets, only estimates ¥ and S of the true values p and ¢ can be
computed. However, an interval between two limiting values C. and C, can be

6 In the following it is assumed that no systematic deviations exist, hence A = 0.
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defined, within which x is determined with probability P (Fig. 2.41). This confidence
interval is given by
P{C <x<C}=1-a

2.235
P{x<C,} :% (2:235)

with confidence level 1-a.
The confidence limits for empirical estimate x with a given empirical standard
deviation are defined as:

C =x-t S,
C i tf el (2.236)
0 =X+ fi-al2 'S)?
l,' f
|
|
al2 l 1-a \ al2
68%| 959 99%
o L\
/ // \\ AN
ed / | | N\ S~—

Fig. 2.42: Confidence intervals with different t-distributions.

Here t is a quantile of the t-distribution. For example, ts, 0975 = 2.57 corresponds to a
confidence level of 95% (a=0.05) and f=5 degrees of freedom. The confidence
interval therefore increases with finite number of excess measurements, i.e. the
confidence that estimate x lies between defined limits is reduced. Fig. 2.42 shows the
limiting curves of confidence intervals for different degrees of freedom and different
confidence levels.

2.4.3.3 Correlations
In addition to standard deviations, dependencies between adjusted parameters can
also be investigated in order to assess the quality of an adjustment result. They
indicate the extent to which an unknown can be calculated and hence the adequacy
of the functional model and geometric configuration of the observations.

According to (2.188) the covariance matrix provides the correlations between
single parameters:
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~2 A~ ~ A
5 P58, PSS,
“ o~ ~ “ o~
R s 5
Cii=5Q; = pm;z ' P pz“:Z ! (2.237)
85, po3s, - &
pul i1 puz i72 u

p; = -1<p, <+1 (2.238)

Higher correlation coefficients indicate linear dependencies between parameters.
Possible reasons for this are over-parametrisation of the functional model, physical
correlation within the measuring device or a weak geometric configuration. They
should be avoided particularly because the inversion of the normal equation matrix,
and hence the adjustment solution, can then become numerically unstable. In highly
correlated solutions, adjusted parameters cannot be interpreted independently and
accuracy values are often too optimistic.

2.4.3.4 Reliability
The reliability of an adjustment process indicates the potential to control the
consistency of the observations and the adjustment model. It depends on the number
of excess observations (total redundancy) and the geometric configuration
(configuration of images). Reliability gives a measure of how well gross errors
(outliers) can be detected in the set of observations.

Essential information about reliability can be derived from the cofactor matrix of
residuals:

Q,=Q,-A-QA" : cofactor matrix of residuals (2.239)
The total redundancy in an adjustment is given by
r=n-u=trace(Q, -P)=)r (2.240)

where r; are the elements of the principal diagonal of the redundancy matrix
R = vi P:

7 Here the notation p is used for the empirical correlation coefficient in order to avoid confusion with
the redundancy number.
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R=Q, -P= 2 : redundancy matrix (2.241)

ri is denoted as the redundancy number of an observation I; with respect to the total
redundancy r where

05431

The redundancy number of an observation indicates the relative part of an
observation which is significantly used for the estimation of the unknowns (1-r;), or
which is not used (r;). Small redundancy numbers correspond to weak configurations
which are hard to control, whilst high redundancy numbers enable a significant
control of observations. If an observation has a redundancy number r; = 0, it cannot
be controlled by other observations. Hence, a gross error in this observation cannot
be detected but it has a direct influence on the estimation of unknowns. If an
observation has a very high redundancy number (0.8 to 1), it is very well controlled
by other observations. When optimising an adjustment, such observations can
initially be eliminated without a significant effect on the adjustment result.
The relation between residuals and observations is defined by:

v=A-x-1=-R'1 (2.242)
Hence, for gross (systematic) observation errors Al:
Av=-R-Al (2.243)

Eqn. (2.243) does permit the detection of gross errors to be quantified because gross
errors do not have correspondingly large residuals when redundancy numbers are
small. According to Baarda, a normalized residual is therefore used:

Vi
wi=5- (2.244)
V.

1

The standard deviation of a residual is derived either from the cofactor matrix or
redundancy numbers as follows:

§Vi - §0 \/(QW )ii = §1i \/(vi 'P)ii = §Ii \/{ (2.245)

Here it is obvious that a redundancy number of r; = O leads to an indeterminate value
of wi and no error detection is then possible. The normalized residuals are normally
distributed with expectation 0 and standard deviation 1. To detect a gross error, they
are compared with a threshold k:
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>k:
|Wi| { gross error (2246)

< k:no gross error

In order to compute the threshold value k, a statistical test is used where the value 8o
(non-centrality parameter) is defined:

6,=6, (a,B8)
where o : probability of identifying an error-free value as a gross error
(significance level)
B : probability of identifying a defective value as a gross error
(statistical power)

This test establishes a null hypothesis which states that only randomly distributed
errors may occur and the expected value of the normalized residuals must therefore
be zero:

E{w,}=0 (2.247)

The probability of a false decision is equal to a (type 1 error). This is the decision that
residuals w; lie outside the range tk and are therefore excluded. Here k denotes a
quantile of the t-distribution.

If a gross error occurs, the expected value of the corresponding normalized
residual is not equal to zero and has standard deviation 1:

E{w_}#0 (2.248)

Given the alternative hypothesis that only observations where |w;| >k are identified
as gross errors, a possible number of outliers still remain in the data set. The
probability of this false decision (type 2 error) is 1-f (Fig. 2.43).

Using (2.243) and (2.244), a lower expected value can be defined for a gross error
that can be detected significantly with statistical power, .

6 ~ o -
E{Ala}=—°~sll_ =0y, (2.249)
i
The following term is normalized with respect to § :
5 - E{Ala} :8_0

0, (2.250)
5, \/{

It serves as a measure of internal reliability of an adjustment system. It defines the
factor by which a gross observation error Al. must be larger than 5, in order to be
detected with probability f. I
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null hypothesis alternative hypothesis

v

0,5 T i)

©

E{w} E{wz}

Fig. 2.43: Probability densities for null and alternative hypothesis.

Table 2.4: Test statistics and internal reliability for different
significance numbers and statistical power.

a=5% a=1% a=0.1%

B=75% B=93% B=80%
k 1.96 2.56 3.29
6'o 3.9 4.0 4.1

Table 2.4 shows some test statistics resulting from a chosen significance level o and
statistical power p. The selected probabilities lead to similar measures of the internal
reliability. It becomes clear that with increasing significance level (i.e. decreasing
confidence level) the statistical power is reduced and is therefore less effective.

In general, a value of &8'¢=4 is appropriate for photogrammetric bundle
adjustment (see section 4.4). It is also an appropriate value for the decision threshold
k in inequality (2.246). In order to use this standard value for bundle adjustments, a
high redundancy is required. For other photogrammetric adjustment tasks, such as
spatial intersection and space resection, the value of k should be modified, typically
to the range 2.5 < k < 4. Eqn. (2.250) clearly shows that the test value depends on the
a posteriori standard deviation of a single observation and hence is a function of the
standard deviation of unit weight §0. Smaller gross errors can therefore only be
detected when §0 becomes sufficiently small after iteration that its value is of the
order of the precision of the observations (measurement precision).



2.4 Adjustment techniques = 111

When planning a measuring project, the internal reliability can be calculated
prior to knowledge of actual observations (measurement values) because the
necessary information can be obtained from the Jacobian matrix A and the (assumed)
a priori accuracy values for the observations (see section 7.1.5).

During or after an iterative adjustment, the internal reliability is used as criterion
for the automated elimination of gross data errors.

The external reliability indicates the influence of defective observations on the
estimated unknowns. For this purpose, the vector of internal reliability values,
defined as in (2.249), is used in the system of equations, defined in (2.205). For each
unknown it is possible to compute a total number of n values of external reliability,
each dependent on an observation.

2.4.3.5 Precision of calculated coordinates

The variances and covariances of a 3D point P(X,Y,Z) are calculated by least-squares
adjustment and can be found in the cofactor matrix where the values correspond to
the following symbolic form:

~2 o~ ~ a
Sx PxySxSy  Pxz5xSz
_ a2 _ a4 a2 A A
ZXYZ _so 'QXYZ - pxysxsy SY Py; YSZ (2'251)
22 A a a2
Pxz5xS;  Pyz5vS; Sz

The mean point error (after Helmert) is given by:

N FORPCRPe:
Sxyz =\Sx TSy t5; (2.252)

This figure represents the standard error (1-sigma level) s covering all coordinate
directions. The individual standard deviations in X, Y and Z depend on the definition
and origin of the coordinate system. They represent a quality measure which takes no
account of covariances or correlations between them. To take those also into account,
a confidence ellipsoid must be calculated with the lengths and directions of its semi-
axes given by an eigenvalue analysis of Qxyz.

A spectral analysis of Qxyz into its eigenvalues A; and eigenvectors s; generates an
error or confidence ellipsoid within which the “true” point lies with a probability 1-a.

A0 offs]
CiAz[s1 s, 53] 0 A4 O ~s§ : spectral analysis (2.253)
0 0 AB sg

From the eigenvalues sorted in descending order A; i=1...3, the semi-axes a; of the
Helmert error ellipsoids become
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a’ =583\, (2.254)

1 1
and the semi-axes A; of the confidence ellipsoids:

AP =585-A-F,, . (2.255)
The quantile of the F-distribution defines the confidence interval for a probability
p=1-a with u degrees of freedom and redundancy r (here u=3 for a 3D point). The
directions of the semi-axes are given by the corresponding eigenvectors. The lengths
of the semi-axes are independent of the selected coordinate system (compare with
section 4.4.7.1).

Taking the example of a 2D point, Fig. 2.44 illustrates the relationship between
single standard deviations and resulting confidence ellipses for different
probabilities and redundancies. The higher the probability that the point position
corresponds to the true value, the larger are the semi-axes and area of the ellipse. It
is also clear that neither the mean point error (blue circle) nor the Helmert confidence
ellipse (red ellipse) indicate realistic accuracy measures for coordinate components
that have different accuracies and correlations. With increasing redundancy (black:
r=5; green: r=15) the ellipses become smaller. See Fig. 4.82 for an example of a three-
dimensional confidence ellipsoid.

10.563 0.105
Xy _[0.105 0.160}
5,=0.5
5,=0.75
5,=0.40
Py =0.35
S,, =0.85
A =0.767
A, =0.366

Fig. 2.44: Confidence ellipses for a 2D point (u = 2);
red: Helmert error ellipse; blue: mean point error; black: r=5; green: r=15.

2.4.4 Error detection in practice

It is difficult to avoid gross data errors (outliers) in real projects. In photogrammetric
applications they typically occur as a result of faulty measurements, errors in point
identification, or mistakes in image numbering. Gross errors must be eliminated from
the data set because they affect all estimated unknowns and standard deviations,
leading to a significantly distorted adjustment result. In summary, the following
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errors in observations may occur®, in addition to random errors and unknown

systematic deviations:

— Assignment errors:
Typical errors in this group are false point identifications, mismatches of image
numbers or image coordinates measured in only one image. They must be
detected and eliminated by plausibility checks (sanity checks) and data checks
prior to actual calculation.

— Totally wrong measurement data:
These are erroneous measurement values which can result from incorrect
readings, operational errors or system failures and are typically in the order of
(20-50) 0 or more. They can affect statistical outlier tests, so that genuine outliers
can no longer be detected. They must also be identified using plausibility checks.

—  Gross errors (outliers):
These deviations fall in the range from (3-5) o up to (20-50) ¢, i.e. they may occur
with a reasonable probability. In photogrammetry they can caused, for instance,
by defective matching of features or by false measurements of partially occluded
targets.

— Rounding errors:
Deviations caused by numerical rounding errors, a limited number of decimal
places in a data display or imported data file, as well as numerical computational
limits, all have a negative effect on calculated precision values, rather than
adjusted mean values, if the redundancy is poor.

The residuals calculated in the adjustment should not be used directly for the
detection of outliers. Residuals not only result from errors in the set of observations
but also from errors in the geometric model, i.e. a functional model of the adjustment
which is incomplete. Model and data errors can both be present and their effects may
overlap.

Most approaches for detection and elimination of gross errors are based on the
assumption that only very few outliers exist, and in extreme cases only one. The
method of least-squares adjustment described above optimally disperses the
observation errors over all observations in the data set, with larger deviations
affecting the unknowns more than smaller. Where gross errors are present this results
in a smearing effect. The ability to recognize a gross error is therefore limited,
especially if several such outliers occur at the same time. Where there is an
unfavourable geometric configuration of unknowns and number of outliers, even
error-free observations may be identified as having gross errors. It is therefore
critically important to eliminate only those observations that can be identified

8 After Niemeier (2008).
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without doubt as errors. The elimination of outliers should always be associated with
an analysis of the entire measurement task.

2.4.4.1 Error detection without adjustment

If an adjustment process does not converge it may be reasonable to check the
consistency of the original observations with respect to their initial values. Here the
"residuals", as defined by:

v=L-I° (2.256)

may indicated large discrepancies between measurement data and initial values, for
example due to mistakes in point or image identification. However, a discrepancy
here may simply be due to bad initial values and not necessarily to faulty
measurements.

2.4.4.2 Data snooping
Baarda’s data snooping is a method of error detection based on the value of internal
reliability derived in section 2.4.3.4. It is based on the assumption that only one gross
error can be identified in the data set at any time. The process iteratively searches for
and eliminates gross errors. After each iteration of the adjustment that observation is
eliminated which, on the basis of the decision function (2.246), corresponds to the
largest normalized residual wi. The complete adjustment procedure is set up again
and the computation repeated until no gross errors remain in the set of observations.
In cases where several large residuals w: exist, and where their geometric
configuration ensures they are independent of each other, it is possible to detect more
than one outlier simultaneously. However, one should still carefully check those
observations which are suspected as gross errors.

2.4.4.3 Variance component estimation
The internal reliability value used in data snooping is a function of the standard
deviation of the adjusted observations. These are derived from the covariance matrix
by multiplication with the standard deviation of unit weight $; . Since §, is a global
value influenced by all residuals, it is really only useful for observations of equal
accuracy. Data sets with different types of observations, or different levels of
accuracy, should therefore be divided into separate groups with homogeneous
accuracy.

In order to set up the weight matrix P, each separate observation group g is
assigned its own a priori variance:

sf) < : a priori variance of unit weight
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This variance, for example, can be derived from the existing known accuracy of a
measuring device used for that specific observation group.
After computing the adjustment, the a posteriori variance can be determined:

a2 VngVg . s . . .
Sog=" . : a posteriori variance of unit weight
rg
where r, = Z(ri)g (2.257)

Using the a posteriori variance of unit weight, it is possible to adjust the a priori
weights in succeeding adjustments until the following condition is achieved:

Q =208 _1 (2.258)

Subsequently, the normal data snooping method can be used.
Taking eqn. (2.189) into account, the variance of unit weight can be used to
calculate the variance of a complete observation group.

2.4.4.4 Robust estimation with weighting functions

The comments above indicate that the residuals resulting from an adjustment process
are not directly suitable for the detection of one or more gross errors. Different
approaches have therefore been developed for defining the weights p; as a function
of the residuals in successive iterations. If the weighting function is designed such
that the influence of a gross error is reduced as the error becomes larger, then it is
referred to as robust estimation (robust adjustment). One possible approach is given
by the following function:

p,=p 1 (2.259)

1+ (acfy|)

For vi=0 it reduces to p'i= 1 and for v; = o it reduces to p'i = 0. The parameters a and b
form the curve of a bell-shaped weighting function. With

L 1. (2.260)

the parameter a is controlled by the redundancy number of an observation. Definition
of parameters b and k is done empirically. With a correct choice of parameters, the
quotient S, /s, converges to 1.

Kruck proposes a weighting function that is also based on redundancy numbers:
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1- 1-r n-u
p'=p, -tan( "m ] / tan[ f ] where 1 =—— (2.261)
c c n

The constant c is defined empirically, r» is referred to as the average redundancy or
constraint density. The weights become constant values when the stability ri=rn is
reached (balanced observations).

Procedures for robust estimation are primarily designed to reduce the effect of
leverage points. Leverage points, in the sense of adjustment, are those observations
which have a significant geometric meaning but only small redundancy numbers.
Gross errors at leverage points affect the complete result but are difficult to detect.
Using balanced weights, leverage points and observations with gross errors are
temporarily assigned the same redundancy numbers as every other observation. As a
result, they can be detected more reliably. After elimination of all defective
observations, a final least-squares adjustment is calculated using the original
weights.

2.4.4.5 Robust estimation according to L1 norm
In recent times more attention has been paid to the principle of adjustment according
to the L1 norm, especially for gross error detection in weak geometric configurations.
For example, it is used to calculate approximate orientation values using data sets
containing gross errors.

The L1 approach is based on the minimization of the absolute values of the
residuals, whilst the L2 approach (least squares, see section 2.4.2) minimizes the sum
of squares of the residuals:

L1 norm: ZM — min (2.262)

L2 norm: >V —>min

The solution of the system of equations using the L1 approach is a task in linear
optimization. It is much more difficult to handle than the L2 approach in terms of
mathematics, error theory and computation algorithms. One solution is given by the
Simplex algorithm known from linear programming.

The L1 approach is also suitable for balancing weights according to section
2.4.4.4. In theory it is possible with the L1 norm to process data sets with up to 50 %
gross errors. The reason is that the L1 solution uses the median value whereas the L2
solution is based on the arithmetic mean which has a smearing effect.

After error elimination based on the L1 norm, the final adjustment should be
calculated according to the least-squares approach.
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2.4.4.6 RANSAC
RANSAC (random sample consensus) describes an adjustment algorithm for any
functional model which is based on a voting scheme and is particularly robust in the
presence of outliers, e.g. even as high as 80 %. The idea is based on the repeated
calculation of a target function by using the minimum number of observations n=u.
These are randomly selected from the full set of observations. Subsequently, all other
observations are tested against this particular solution. All observations which are
consistent with the calculated solution within a certain tolerance are regarded as
valid measurements and form a consensus set. The solution with the maximum
number of valid observations (largest consensus set) is taken as the best result. All
observations are marked as outliers if they do not belong to this consensus group.
Outliers are rejected and an optional final least-squares adjustment is calculated.
Fig. 2.45 shows the RANSAC principle applied to the calculation of a best-fit circle
with a set of valid observations and outliers. For each of the two samples A and B, a
circle is calculated from three randomly selected points. The other observations are
tested against the circle tolerance d. Out of all samples, the solution with the
maximum number of valid observations is finally selected (sample A in this case).
Remaining outliers are rejected from the data set.

sampleA @

Fig. 2.45: RANSAC approach for a best-fit circle;
blue: selected RANSAC points; red: detected outliers; green: valid points.

The success of the RANSAC algorithm depends mainly on the selection of tolerance
parameter d and the termination criteria, e.g. the number of iterations or the
minimum size of the consensus set.

RANSAC is widely used in photogrammetry and computer vision for solving tasks
such as relative orientation (section 4.3.3), feature detection in point clouds or
general shape fitting of geometric primitives.
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2.4.5 Computational aspects

2.4.5.1 Linearization

In order to linearize the functional model at initial values, two methods are available:
— exact calculation of the first derivative;

— numerical differentiation.

Exact calculation of the derivatives

[6") (X) ) (2.263)

oX

may require considerably more programming effort for complex functions such as
those expressed by rotation matrices.

In contrast, numerical differentiation is based on small changes to the initial
values of unknowns in order to calculate their effects on the observations:

L, =o(X°+A4X)

(2.264)
L(iAx = ‘P(XO - AX)
The difference quotients are then:
L -r
A(p (X) — +Ax —Ax ~ 6(0 (X) (2265)

AX 2AX oX

In a computer program, the function ¢ can be entered directly, for example in a
separate routine. The set-up of the Jacobian matrix A and subsequent adjustment
procedure can then be programmed independently of the functional model. Only the
increment AX need be adjusted if necessary.

Compared with numerical differentiation, the exact calculation of derivatives
leads to faster convergence. If suitable initial values are available, then after a
number of iterations both adjustment results are, for practical purposes, identical.
Modern programming libraries for solving adjustment and optimisation tasks, such
as Ceres-Solver, SciPy.Optimize or Matlab Optimization Toolbox, offer interfaces to
perform these tasks automatically and efficiently.

2.4.5.2 Normal systems of equations

In order to solve solely for the solution vector x , efficient decomposition algorithms
can be used which do not require the inverse of the normal equation matrix N, for
example the Gaussian algorithm. However, for many photogrammetric and geodetic
calculations, a quality analysis based on the covariance matrix is required and so the
inverse of N must be computed. The dimension of the normal system of equations
based on (2.204) is u x u elements. For photogrammetric bundle adjustments, the
number of unknowns u can easily range from a few hundred up to a few tens of
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thousand. Often a direct inversion of the normal equation matrix is not possible or
else consumes too much computation time.

If the (symmetric) matrix N is positive definite (trace(N)>0), it can be factorized,
for example, according to Cholesky . The triangular rearrangement

T

LL =N (2.266)

inserted into (2.204) yields

L-L' x=n (2.267)
With the forward substitution

L-.g=n (2.268)
and the subsequent backward substitution

' x=g (2.269)

both gand x can be computed by suitable solution methods, some without the need
for inversion.

2.4.5.3 Sparse matrix techniques and optimization

The computational effort to solve the normal system of equations is mainly a function
of the dimension of matrix C. Since matrix N can consist of numerous zero elements,
relating to unknowns which are not connected by an observation, then these
elements are also present in C.

Sparse techniques provide efficient use of RAM (Random-Access Memory).
Instead of a full matrix, a profile is stored which, for each column (or row) of a matrix,
only records elements from the first non-zero value up to the principal diagonal,
together with a corresponding index value.

Fig. 2.46 shows an example of a network of observations and the corresponding
structure of the normal equation matrix. The crosses indicate connections between
unknowns while the blank fields have zero values. For example, point 2 is connected
to points 1, 3, 6, 7 and 8.

In this example, the size of the profile to be stored, i.e. the number of stored
matrix elements, amounts to P=43. In order to reduce the profile size without
modifying the functional relationships, the point order can be sorted (Banker’s
algorithm), leading to the result of Fig. 2.46 right. The profile size in this case has been
reduced to P =31.
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Fig. 2.46: Order of point numbers without (left) and with (right) optimization (after Kruck 1983).

Since the resulting computational effort for solving equations is a quadratic function
of the profile size, optimization is of major importance for solving large systems of
equations. Further information on the solution of large systems of equations, and on
bundle adjustment, can be found in the relevant literature (section 9.2.2).
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Photogrammetric imaging technologies for close-range measurement purposes
impact upon all elements in the measurement process, from the preparation of the
measuring object prior to imaging, through image acquisition, to subsequent analysis
of the image content. Following an introduction to the physics behind optical
imaging, issues including distortion, resolution and sampling theory are discussed.
Common photogrammetric imaging concepts are briefly presented such as online and
offline approaches and imaging configurations. The key part of this chapter deals
with the geometric analysis defining the camera as a measuring tool, i.e.
photogrammetric camera modelling, parameters of interior orientation and
correction of imaging errors. Current components and sensor technologies for 2D
image acquisition are then reviewed in the sections which follow. From there,
discussion moves to signalization (targeting), light projection and illumination,
which are critical in achieving photogrammetric accuracy.

3.1 Physics of image formation
3.1.1 Wave optics

3.1.1.1 Electro-magnetic spectrum
In photogrammetry, the usable part of the electromagnetic spectrum (Fig. 3.1) is
principally restricted to wavelengths in the visible and infra-red regions. This is due
to the spectral sensitivity of the imaging sensors normally employed, such as
photographic emulsions, and silicon-based CCD and CMOS sensors which respond to
wavelengths in the range 380 nm to 1100 nm (visible to near infrared). In special
applications, X-rays (X-ray photogrammetry), ultraviolet and longer wavelength
thermal radiation (thermography) are also used. However, microwaves (radar) are
generally confined to remote sensing from aircraft and satellite platforms. Fig. 3.1
summarizes the principal spectral regions, with associated sensors and applications,
which are relevant to photogrammetry.

The relationship between wavelength A, frequency v and speed of propagation ¢
is given by:

1€ G.1)
1%

The propagation of electromagnetic radiation is described using either a wave
propagation model or a photon stream. Both models have relevance in
photogrammetry. The wave properties of light are employed in the description of
optical imaging and its aberrations, as well as refraction and diffraction. The particle

https://doi.org/10.1515/9783111029672-003



122 —— 31Imaging technology

properties of light are useful in understanding the transformation of light energy into
electrical energy in image sensors (CCD, CMOS), see also section 3.4.1.

visible light
400 nm-450-nm_500 nm 550 nm 600 nm_650-nm~700 nm
cosmic Gamma X-ray ultrégiﬁiéi iﬁﬁ%}éd terahertz  microwaves radio waves

wave radiation  radiation radiation radiation  radiation radiation

length [m] ) S | S

1015 10% 10% 102 10" 10 10° 10® 107 10® 105 104 10% 102 10" 10! 102 10° 104

Radiation Wavelength Sensor Application area

X-ray 10 pm — 1 nm X-ray detector medical diagnosis, non-destructive testing

ultraviolet 300 nm — 380 nm | CCD, CMQOS, silicon (Si) detector remote sensing, UV reflectography

visible ligth 380 nm — 720 nm | CCD, CMOS, film photography, photogrammetry, remote sensing

near infrared 1 720 nm — 1 pm CCD, CMOS, film IR reflectography, photogrammetry, remote sensing

near infrared 2 1um -3 um InGaAs detectors NIR reflectography, material classif., remote sensing

mid infrared 3um-—5pum Ge-, PbSe-, PbS detectors remote sensing

thermal infrared | 8 ym — 14 pm micro-bolometer, quantum detector | thermography, material testing, building energy efficiency
terahertz 30 um — 3 mm Golay cell spectroscopy, body scanning

microwave 1cm-30cm radar antenna radar remote sensing

radio wave 30cm-—10m coil magnetic resonance imaging (MRI)

Fig. 3.1: Electromagnetic spectrum with example application areas.

3.1.1.2 Radiometry

According to quantum theory, all radiation is composed of quanta of energy (photons
in the case of light). The radiant energy is a whole multiple of the energy in a single
quantum of radiation which is related to the reciprocal of the photon’s associated
wavelength according to the following equation:

Cc
E=hv=h-— 3.2
v=h— (.2)

where
h: Planck’s constant 6.62 - 107*]Js

The spectral emission of a black body at absolute temperature T is defined by Planck’s
law:
-1

c c
M, =—L|ex 211 : Planck’s law 3.3
T P T (3.3)

where
¢1=3.7418-10"° W m?
c2=1.4388-102Km

This states that the radiant power is dependent only on wavelength and temperature.
Fig. 3.2 shows this relationship for typical black-body temperatures. Radiant power
per unit area of the emitting source and per unit solid angle in the direction of
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emission is defined as radiance. The area under the curves represents the total energy
in Watts per m?. The example of the sun at a temperature of 5800 K clearly shows the
maximum radiant power at a wavelength around 580 nm, which is in the yellow part
of the visible spectrum. In contrast, a body at room temperature (20° C) radiates with
a maximum at a wavelength around 10 pm and a very much smaller power.

The radiant power maxima are shifted towards shorter wavelengths at higher
temperatures according to Wien’s displacement law (see straight line in Fig. 3.2).
A = 2897.8-T : Wien’s displacement law (3.4)

m
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Fig. 3.2: Spectrally dependent radiant power at different black-body temperatures.
3.1.1.3 Refraction and reflection

The refractive index n is defined as the ratio of the velocities of light propagation
through two different media (frequency is invariant):

n=—Lt : refractive index (3.5)

In order to define refractive indices for different materials, ¢ is assigned to the
velocity of propagation in a vacuum ¢, and cmea is the velocity of light in the medium
of interest. Note that cmes is dependent on wavelength (colour of light):

n=_-o (3.6)

The refractive index of pure water has been determined to be n = 1.33 whilst for glass
the value varies between 1.45 and 1.95 depending on the material constituents of the
glass. In general, homogeneous and isotropic media are assumed. A ray of light
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passing from a low density media to a more dense media is refracted towards the
normal at the media interface MI, as denoted by Snell’s law (Fig. 3.3, Fig. 3.4).

nsing, =n,sineg, : Snell’s law of refraction 3.7)

The law can also be expressed as a function of the tangent:

tane n
. L= n’+(n’ -Dtan’¢, where n=-2 and n,>n, (3.8)
ane n
2

1

Mi Mi
ny | ny, ny | n,
€ € g €y
air glass glass air
a) n;<n, b) n;>n,

Fig. 3.3: Refraction and reflection.

a) Still water surface b) Disturbed water surface

Fig. 3.4: Refraction effects caused by taking an image through a water surface.

For the case of reflection it holds that n. = —n and the law of reflection follows:

€ =-¢ : law of reflection (3.9)

As mentioned, the velocity of propagation of light depends on the wave length. The
resulting change of refraction is denoted as dispersion (Fig. 3.5). In an optical imaging
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system this means that different wavelengths from the object are refracted at slightly
different angles which lead to chromatic aberration in the image (see section 3.1.3.2).

red |
orange
yellow

green

white

blue
magenta

Fig. 3.5: Dispersion by a glass prism.

3.1.1.4 Diffraction
Diffraction occurs if the straight-line propagation of spherical wave fronts of light is
disturbed, e.g. by passing through a slit (linear aperture) or circular aperture. The
edges of the aperture can be considered as multiple point sources of light that also
propagate spherically and interfere with one another to create maxima and minima
(Fig. 3.6, Fig. 3.7).

The intensity I observed for a phase angle @ is given by:

sinx

I(p) =——=sinc(x) (3.10)
X
where X= M
A
d' slit width
A wavelength

(OH phase angle

Fig. 3.6: Diffraction caused by a slit.
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.- ..--‘-*n...v, s

Fig. 3.7: Diffraction at a slit (left) and circular aperture (right).

The intensity becomes a minimum for the values:
. A
sing, :nE n=1,2,.. (3.11)

Diffraction at a circular aperture results in a diffraction pattern, known as an Airy
disc, with concentric lines of interference. Bessel functions are used to calculate the
phase angle of the maximum intensity of the diffraction disc which leads to:

21

sin (pn = b"? b= 0.61; b= 1.12; b;=1.62... (3.12)

The radius r of a diffraction disc at distance f* and n =1 is given by:

r=1.22%f':1.22~)l-k (3.13)
where

f' focal length

k=f'/d': f/number

d': diameter of aperture

Diffraction not only occurs at limiting circular edges such as those defined by
apertures or lens mountings but also at straight edges and (regular) grid structures
such as the arrangement of sensor elements on imaging sensors (see section 3.4.1).
Diffraction-limited resolution in optical systems is discussed further in section 3.1.5.1.

In conjunction with deviations of the lens equation (3.14), (defocusing)
diffraction yields the point spread function (PSF). This effect is dependent on
wavelength and described by the contrast or modulation transfer function (see
sections 3.1.5.3 and 3.1.6).
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3.1.1.5 Polarization
Natural light has the property of propagating in the form of a transverse wave, i.e. the
direction of oscillation is orthogonal to the direction of propagation. An infinite
number of oscillation directions with arbitrary (unordered) wavelengths, amplitudes
and phases occur circularly around the propagation vector, i.e. the light is not
polarized. If the oscillation only occurs in one direction, the light has a linear
polarization (Fig. 3.8a). This can be achieved, for example, when light is transmitted
through a polarizer, whose transparent layer consists of parallel strings of
macromolecules. The projection of this oscillation in two mutually perpendicular
planes generates a sinusoidal oscillation with the same phase position.

In contrast, circularly polarized light has two perpendicular components with
equal amplitudes but a phase difference of 90° (Fig. 3.8b). The direction of oscillation
therefore rotates as the wave propagates.

o
z

a) Linear polarization b) Circular polarization

Fig. 3.8: Polarization.

Light is partly polarized by refraction, reflection or scattering. At a smooth surface,
the reflected light is polarized, hence disruptive reflections in an image (hot spots)
can be reduced by suitable use of polarizing filters (see section 3.4.4). Polarizing
filters can be mounted both in front of the imaging lens, as well as in front of the light
source. The polarization effect is also applied to the design of stereo monitors (see
section 6.12.1).

Fig. 3.9 shows an image with specular reflection of a light source, as well as the
result with the cross-polarization technique, in which the camera and light source are
each equipped with a polarizing filter that are rotated 90° to each other. The cross-
polarised image is free of specular reflections and has better colour saturation.
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Fig. 3.9: Image capture with and without polarization filter.

3.1.2 Optical imaging

3.1.2.1 Geometric optics
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Fig. 3.10: Geometrical construction for a typical thin lens system.

The optical imaging model for thin spherical lenses is illustrated in Fig. 3.10. The well-
known thin lens equations can be stated as follows:

(3.14)

(3.15)
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where

a: object distance

a' image distance ~ principal distance ¢

fif" external and internal focal length

z, 2" object and image distances relative to principle foci, F and F'
H;, H: object-side and image-side principal planes

0,0" object-side and image-side principal points

If the transmission media are different in object and image space, eqn. (3.14) is
extended as follows:

n n n
—t =
a a f

where

n: refractive index in object space

n':  refractive index in image space

(3.16)

The optical axis is defined by the line joining the principal points O and O' which are
the centres of the principal planes H: and H>. The object and image side nodal points
(see Fig. 3.10) are those points on the axis where an imaging ray makes the same angle
with the axis in object and image space. If the refractive index is the same on the
object and image sides, then the nodal points are identical with the principal points.
For a centred lens system, the principal planes are parallel and the axis is
perpendicular to them. The optical axis intersects the image plane at the
autocollimation point, H'. With centred lenses and principal planes orthogonal to the
axis, the autocollimation point is the point of symmetry for lens distortion and
corresponds to the principal point in photogrammetry (see section 3.3.2).
In addition, the imaging scale or magnification is given in analogy to (3.45)":

B'l="—=—=-"-=1:m (3.17)

p=teL (3.18)
na

According to eqn. (3.14), an object point P is focused at distance a' from the image
side principal plane H.. Points at other object distances are not sharply focused (see
section 3.1.2.3). For an object point at infinity, a' = f'. To a good approximation, image
distance a' corresponds to the principal distance ¢ in photogrammetry. m denotes
image scale (magnification), as commonly used in photogrammetry.

1 Inoptics ' is used instead of M =1/m.
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3.1.2.2 Apertures and stops

The elements of an optical system which limit the angular sizes of the transmitted
bundles of light rays (historically denoted as light pencils) can be described as stops.
These are primarily the lens rims or mountings and the aperture and iris diaphragms
themselves. Stops and diaphragms limit the extent of the incident bundles and,
amongst other things, contribute to amount of transmitted light and the depth of
field.

The most limiting stop is the aperture stop, which defines the aperture of a lens
or imaging system. The object-side image of the aperture is termed the entrance pupil
EP and the corresponding image-side image is known as the exit pupil E'P. The
f/number is defined as the ratio of the image-side focal length f* to the diameter of the
entrance pupil d':

f/number = g (3.19)

In symmetrically constructed compound lenses, the diameters of the pupils E'P and
EP are equal. In this case E'P and EP are located in the principal planes (Fig. 3.11). In
that case only, the incident and emerging rays make the same angle t=1' with the
optical axis. Asymmetrical lenses are produced when the component lens do not
provide a symmetrical structure. For example, in wide-angle or telephoto lens designs
where the asymmetrical design can place one or more of the nodes outside the
physical glass boundaries or the aperture is asymmetrically positioned between the
principal planes (Fig. 3.12). Such lenses are often deployed in camera systems with
mirror viewing systems where the separation between the lens mount and the sensor
needed to accommodate the mirror is greater than the focal length of the lens.
Different angles of incidence and emergence give rise to radially symmetric lens
distortion Ar' (see also sections 3.1.3.1 and 3.3.2.2).

P EP EP focal plane

aperture
* o o'
7\ T‘)
HZ

H,

Fig. 3.11: Symmetrical compound lens.
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Fig. 3.12: Asymmetrical compound lens.

3.1.2.3 Focussing

In practical optical imaging, a point source of light is not focused to a point image but
to a spot known as the circle of confusion or blur circle. An object point is observed by
the human eye as sharply imaged if the diameter of the circle of confusion u' is under
a resolution limit. For film cameras u' is normally taken as around 20-30 yum and for
digital cameras as around 1-3 pixels (2-10 um). It is also common to make the
definition on the basis of the eye’s visual resolution limit of Aa = 0.03°. Transferring
this idea to a normal-angle camera lens of focal length f* (~ image diagonal d'), a blur
circle of the following diameter u' will be perceived as a sharp image:

u'=f"Aax d' (3.20)

2000

Example 3.1:
Itis required to find the permissible diameter of the blur circle for a small-format film camera, as well
as for two digital cameras with different image formats.

Film camera Digital camera 1 Digital camera 2
Pixels: n/a- analogue 2560 x 1920 4368 x 2912
Pixel size: 3.5um 8.2um
Image diagonal: 43.3 mm 11.2 mm 43.0 mm
Blur circle: 22 pm 5.6 pm = 1.6 pixel 21 pum = 2.6 pixel

The blur which can be tolerated therefore becomes smaller with smaller image format. At the same
time the demands on lens quality increase.

Based on the blur which can be tolerated, not only does an object point P at distance
a appear to be in sharp focus but also all points between P, and P (Fig. 3.13).
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Fig. 3.13: Focusing and depth of field.

The distance to the nearest and the furthest sharply defined object point can be
calculated as follows:

a=-1 a, =2 K =Ka-fu (3.21)
V14K 1-K 2
where
k: f/number
f: focal length
a: focused object distance
By re-arrangement of (3.21) the diameter of the blur circle u' can be calculated:
1 ah _av fz
u= . 3.22
a,+a, k(a-f) G.2)
The depth of field is defined by:
t:ah_a :M (3.23)

Bk £

Hence, for a given circle of confusion diameter, depth of field depends on the
f/number of the lens k and the imaging scale B'. The depth of field will increase if the
aperture is reduced, the object distance is increased, or if the focal length is reduced
through the use of a wider-angle lens. Fig. 3.14 shows the non-linear curve of the
resulting depth of field at different scales and apertures. At very small scale numbers,
the depth of field becomes extremely small, as is typical for macro-photogrammetry.
Fig. 3.16a,b shows an example with different f-stop settings.



3.1 Physics of image formation = 133

1000
f/number 16
100 f/number 8
f/number 2.8

=
o

depth of field [m]

o

g 2

~—‘?\\\

8
N
8
8
o
ey
8
g
2
o

0,001

0,0001

image scale number m

Fig. 3.14: Depth of field as a function of image scale number (u' =20 pm).

For large object distances (3.23) can be simplified to

t= 2;2" (3.24)
Example 3.2:

Given a photograph of an object at distance a =5 m and image scale number m =125, i.e. B'=0.008.
The depth of field for each aperture k= 2.8 and k=111is required.

Solution:
1 —5
1.Fork=2.8 Utk 2210728 4 o
B” 0.008?
2.Fork=11 t=6.9m

When imaging objects at infinity, depth of field can be optimized if the lens is not
focused at infinity but to the hyperfocal distance b. Then the depth of field ranges from
the nearest acceptably sharp point ay to :

f2

= : hyperfocal distance (3.25)
u

Sufficient depth of field must be considered especially carefully for convergent
imagery, where there is variation in scale across the image, and when imaging objects
with large depth variations. Depth of field can become extremely small for large
image scales (small m), for example when taking images at very close ranges. Sharp
focusing of obliquely imaged object planes can be achieved using the Scheimpflug
condition (section 3.1.2.4).
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It is worth noting that under many circumstances a slight defocusing of the image
can be tolerated if radially symmetric targets are used for image measurement. On the
one hand the human eye can centre a symmetrical measuring mark over a blurred
circle and on the other hand the optical centroid remains unchanged for digital image
measurement. Note when designing an imaging system for a particular application,
the tolerable blur circle will be dependent on the features to be detected and
measured. For example, a tolerable circle diameter is likely to be larger when imaging
solid circular retro-target images vs applications that require the detection and
measurement of natural line features.

3.1.2.4 Scheimpflug condition

For oblique imaging of a flat object, the lens eqn. (3.14) can be applied to all object
points provided that the object plane, image plane and lens plane (through the lens
perspective centre and orthogonal to the optical axis) are arranged such that they
intersect in a common line (Fig. 3.15). This configuration is known as the Scheimpflug
condition and can be realized, for example, using a view camera (Fig. 3.93) or special
tilt-shift lenses, also called perspective control lenses (Fig. 3.105).

lens plane

image plane

P2

o
object plane intersection line g

Fig. 3.15: Arrangement of object, lens and image planes according to the Scheimpflug principle.

Fig. 3.15 shows the imaging configuration which defines the Scheimpflug principle.
The relative tilts of the three planes leads to the condition:
1 1 1 1

——=—t— (3.26)
aZ

a, a a,
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Compare this with eqn. (3.27) and it is clear that all points on the tilted object plane
are sharply imaged. Fig. 3.16c shows an actual example of the effect.

The opposing tilts of the lens and image planes by angle a results in a separation
of the principal point H' (foot of the perpendicular from perspective centre to image
plane) and the point of symmetry of radial distortion S' (point of intersection of
optical axis and image plane). Note that the practical maximum angles that can
deliver images of appropriate quality for photogrammetric measurement will be a
limited by the light transmission vs reflection characteristics of the lens elements with
respect to the high incident and emergent ray angles.

a) f/number =f/3.5 b) f/number = f/16 c) f/number = f/3.5 and
Scheimpflug angle a = 6.5°

Fig. 3.16: Depth of field at different f/numbers and with the Scheimpflug condition active.

3.1.3 Aberrations

In optics, aberrations are deviations from an ideal imaging model, and aberrations
which arise in monochromatic light are known as geometric distortions. Aberrations
which arise through dispersion are known as chromatic aberrations. In
photogrammetry, individual optical aberrations, with the exception of radial
distortion, are not normally handled according to their cause or appearance as
derived from optical principles. Instead, only their effect in the image is modelled.
However, a physically-based analysis is appropriate when several aberrations
combine to create complex image errors. An example would be the combination of
spherical aberration, curvature of field and lateral chromatic aberration which
contribute to misshapen circular retro-reflective target images at the edges of wide-
angle images, see Fig. 3.20a.
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3.1.3.1 Distortion

In the ideal case of Fig. 3.11 the angle of incidence T is equal to the angle of emergence
T'. As the position of entrance pupil and exit pupil do not usually coincide with the
principal planes, an incident ray enters at angle 1, and exits at a different angle t'.
This has a distorting effect Ar' in the image plane which is radially symmetric with a
point of symmetry S'. In the ideal case, S' is identical with the autocollimation point
H'. The sign, i.e. direction, of Ar' depends on the design combination of spherical and
aspherical lens elements in the lens construction and the position of the lens
aperture. For spherical lenses the distortion effect can be modelled by the Seidel
series (see section 3.3.3.1).

Fig. 3.17 shows how barrel distortion in a spherical lens can increase when the
aperture is moved towards the object such that light rays traversing the edges of the
lens dominate in forming the image, and similarly pincushion distortion can be
enhanced when the aperture is moved towards the image. When the image is free of
distortion it may be called orthoscopic.

yl\l/\

N barrel distortion
y[\/i\\ .

N orthoscopic

Fig. 3.17: Distortion in a spherical lens as a function of aperture position.

Radial distortion can be interpreted as a radially dependent scale change in the
image. The relative distortion is defined as:

Ar' A" Ay

r bs y

(3.27)
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Fig. 3.18: Pincushion (left) and barrel distortion (right) in an actual image.

From the definition of image scale in (3.17) and dividing numerator and denominator
in (3.27) by y, it can be seen that the relative distortion is also equivalent to the relative
scale change as follows:

S e (328)
By
For Ay'/y' < 0 the image is too small, i.e. the image point is shifted towards the optical
axis and the result is seen as barrel distortion. Correspondingly, when Ay'/y' > 0 the
result is pincushion distortion. Fig. 3.18 shows the effect in an actual image. The
analytical correction of distortion is discussed in section 3.3.2.2.

3.1.3.2 Chromatic aberration
Chromatic aberration in a lens is caused by dispersion which depends on wavelength,
also interpreted as colour, hence the name. Longitudinal chromatic aberration, also
called axial chromatic aberration, has the consequence that every wavelength has its
own focus. A white object point is therefore focused at different image distances so
that an optimal focus position is not possible (see Fig. 3.19). Depending on lens
quality, the effect can be reduced by using different component lenses and coatings
in its construction. If the image plane is positioned for sharp imaging at mid-range
wavelengths, e.g. green, then image errors will appear in the red and blue regions. In
practice, the presence of chromatic aberration limits the sharpness of an image.
Lateral chromatic aberration, also called transverse chromatic aberration, has the
consequence that an object is imaged at different scales depending on radial position
in the image. For monochromatic light the effect is equivalent to radial distortion. For
polychromatic light, the aberration causes a variable radial shift of colour.
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Fig. 3.19: Longitudinal chromatic aberration.

The effect can easily be seen in digital colour images. Fig. 3.20a shows white targets
with poor image quality towards the edge of a colour image. The colour errors are
clearly visible at the target edges, as they would occur at the edge of any other imaged
object. Fig. 3.20b shows the green channel only. This has an image quality sufficient
for photogrammetric point measurement. The difference image in Fig. 3.20c makes
clear the difference between the red and green channels.

In black-and-white cameras chromatic aberration causes blurred edges in the
image. In colour cameras, multi-coloured outlines are visible, particularly at edges
with black/white transitions. In these cases, colour quality also depends on the
method of colour separation (e.g. Bayer filter, see section 3.4.1.6) and the image pre-
processing common in digital cameras, e.g. in the form of colour or focus correction.

a) Original RGB image b) Green channel c) Difference between red and
green channels

Fig. 3.20: Colour shift at a black/white edge.

3.1.3.3 Spherical aberration
Spherical aberration causes rays to focus at different positions in the z' direction
depending on their displacement from the optical axis. The effect is greater for off-
axis object points (with bundles of rays angled to the axis).

The offset Az' in the longitudinal direction varies quadratically with the
displacement y (Fig. 3.21). The effect can be considerably reduced by stopping down
(reducing the aperture size) to the extent possible before diffraction becomes
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predominant. In the image the effect causes a reduction in contrast and a softening
of focus. Photogrammetrically it can be concluded that spherical aberration results in
a shift of perspective centre at different field angles (off-axis locations). Good quality
modern lenses optimized for the latest generation of imaging sensors, are mostly free
of spherical aberration so that this source of error need not be taken into account in
photogrammetric camera calibration outside of the most accurate work.

Fig. 3.21: Spherical aberration.

3.1.3.4 Astigmatism and curvature of field

Astigmatism and curvature of field apply to off-axis object points. They are incident at
different angles to the refractive surfaces of the component lenses and have different
image effects in orthogonal directions. These orthogonal directions are defined by the
meridian and sagittal planes, MM, and 5:S; (Fig. 3.22). The meridian plane is defined
by the optical axis and the principal ray in the imaging pencil of light, this being the
ray through the centre of the entrance pupil. The two planes no longer meet at a single
image point but in two image lines (Fig. 3.23). An object point therefore appears in the
image as a blurred oval shape or an elliptical spot.

The curved image surfaces, which are produced as shown in Fig. 3.23, are known
as curvature of field. If the meridian and sagittal surfaces are separated, then the effect
is true astigmatism with differing curvatures through the image space. Where
significant curvature is present, sensor placement within the field becomes critical in
maintaining image quality across the image format.

The effects on the image of astigmatism and curvature of field are, like spherical
aberration, dependant on the off-axis position of the object point (incoming ray
pencils are at an angle to the axis). The imaging error can be reduced with smaller
apertures and appropriately designed curvatures and combinations of component
lenses. No effort is made to correct this in photogrammetry as it is assumed that lens
design reduces the error below the level of measurement sensitivity. Camera
manufacturer Contax has historically produced cameras with a curved photographic
film image plane in order to optimize image sharpness in the presence of field
curvature.
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Fig. 3.22: Elliptical masking of off-axis ray bundles (after Marchesi 1985).
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Fig. 3.23: Astigmatism (after Schréder 1990).

3.1.3.5 Light fall-off and vignetting
For conventional lenses, the luminous intensity I effective at the imaging plane is
reduced with increasing field angle T according to the cos” law:

I'=Icos*t (3.29)

Hence the image gets darker towards its periphery (Fig. 3.24, Fig. 3.25a). The effect is
particularly observable for super-wide-angle lenses where it may be necessary to use
a concentrically graduated neutral density filter in the optical system to reduce the
image intensity at the centre of the field of view. Fisheye lenses avoid the cos* law
through the use of different projections which reduce the fall-off in illumination at
the expense of image distortions (section 3.3.7). The cos” reduction in image intensity
can be amplified if vignetting, caused by physical obstructions due to mounting parts
of the lens, is taken into account (Fig. 3.25b). The fall-off in light can be compensated
by analytical correction of the colour value, but at the expense of increased image
noise.
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Relative light fall-off
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Fig. 3.24: Relative fall-off in light for small format images at different focal lengths (in mm).

a) Light fall-off b) Vignetting

Fig. 3.25: Images showing loss of intensity towards the edges.

3.1.4 Aspherical lenses

In the previous sections, it was implicitly assumed that lenses consist of
combinations of individual spherical lenses. Improved manufacturing methods have
made it cost effective for affordable lenses to deviate from the spherical shape and
deliver sharper images to match increasingly smaller pixel dimensions. In general,
aspherical surfaces can significantly improve lens performance in terms of sharpness,
resolution and aberration compared to spherical systems.
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spherical lens aspherical lens

caustic

Fig. 3.26: Typical ray paths for spherical and aspherical lens.

Fig. 3.26 compares typical optical paths through a spherical and an aspherical lens
element. With a spherical lens, spherical aberrations cause the image rays to intersect
not at a point but in a region known as the caustic, resulting in a blurred image (see
section 3.1.3.3). Aspherical lenses, on the other hand, can be constructed with a
varying surface curvature optimised for example to achieve a point focus, which
results in significantly sharper images.

Aspherical lenses are characterised by the fact that their surfaces can have
practically any radially symmetric shape. The shape is described by the sag z as a
function of the distance to the optical axis (elevation) h:

2 n m .
z(h) = ph AR Y A B[ (3.30)
1+4J1-(+k)ph* = il
where
z sag

h distance to the optical axis (elevation)

p vertex curvature with radius R =1/p

k conic constant (sphere: k=0; ellipsoid: k>—1; paraboloid: k=—1)

Ay aspheric coefficients of the correction polynomial with even exponents
Asa  aspheric coefficients of the correction polynomial with odd exponents

The first summand in eqn. (3.30) describes the central spherical part of the surface.
The coefficients of the correction polynomial define the aspherical curve. The odd
terms describe lenses with free-form surfaces; commercially available aspherical
lenses are described exclusively by the even terms.

For photogrammetry, the generally better imaging properties of aspheres are
offset by the fact that, strictly speaking, the correction functions for radial-
symmetrical distortion based on Seidel polynomials (section 3.3.3.1), no longer apply.
The outcome in terms of radial lens distortion is specific to each lens design. A simple
test is to imagine a straight line across each edge of the image and to look for
variations in what would otherwise be smooth curves in a spherical lens design.
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3.1.5 Resolution

3.1.5.1 Resolving power of a lens

The resolving power of a lens is limited by diffraction and aperture. For a refractive
index of n=1, the radius r or the diameter d of the central Airy diffraction disc is
obtained from (3.13) und (3.19) as follows:

r=1.22-)lk=1.22-/1§=d/2 (3.31)

which corresponds to an angular resolution of

6=122-— (3.32)

—<_r=d/2

Fig. 3.27: Resolving power defined by the separation of two Airy discs (compare with Fig. 3.6).

Two neighbouring point objects can only be seen as separate images when their
image separation is greater than r (Fig. 3.27). At that limiting separation the maximum
of one diffraction disc lies on the minimum of the other. At greater apertures (smaller
f/numbers) the resolving power increases.

Example 3.3:

The following diffraction discs with diameter d are generated by a camera for a mid-range wavelength
of 550 nm (yellow light):

Aperture f/2: d =2.7 pm; Aperture f/11: d =15 ym

A human eye with a pupil diameter of d ' =2 mm and a focal length of f = 24 mm has an f/number of
f/12. At a wavelength A =550 nm, and a refractive index in the eyeball of n = 1.33, a diffraction disc of

diameter d =12 pm is obtained. The average separation of the rod and cone cells which sense the
image is 6 pm, which exactly matches the diffraction-limited resolving power.
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3.1.5.2 Geometric resolving power

The geometric resolving power of a film or a digital imaging system defines its
capability to distinguish between a number of black and white line pairs with equal
spacing, width and contrast in the resulting image. Therefore it is a measure of the
information content of an image.

7 lines

I I I I I I I I line pair pattern
1Lp

object contrast

max

Imin —m
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image contrast
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Fig. 3.28: Line pair pattern and contrast transfer.

The resolving power RP is measured visually as the number of line pairs per millimetre
(Lp/mm). Alternatively, the terms lines per millimetre (L/mm) or dots per inch (dpi)
may be used?. Such terms describe the ability of the imaging system to distinguish
imaged details, with the interest usually being in the maximum distinguishable
spatial frequency attainable (Fig. 3.28, see also section 3.1.6.1).

The spatial frequencies F in object space with respect to fin image space are the
reciprocals of the corresponding line spacings AX in object space with respect to Ax'
in image space.

1 1

F=— f

=— 3.33
AX Ax' ( )

Resolving power can be measured by imaging a test pattern whose different spatial
frequencies are known (Fig. 3.29). For example, the Siemens star consisting of 72
sectors (36 sector pairs) allows the maximum resolving power of the imaging system

2 With unit L/mm only black lines are counted, with Lp/mm black and white lines (pairs) are
counted, i.e. both notions are comparable since a black line is only visible if bordered by white lines.
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to be determined in Lp/mm by relating the number of sectors to the circumference (in
mm) of the inner circle where the sectors are no longer distinguishable.

RP=2° (3.34)
d

|||.I =
=2
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Fig. 3.29: Test chart and Siemens star for the measurement of resolving power.

The minimum resolved structure size in object space (structure resolution) AX is
calculated from image scale and resolving power as follows:

AX:m-Ax':m-i (3.35)
RP

The applicability of resolving power to opto-electronic sensors is discussed in section
3.4.1.7.

Example 3.4:

In the Siemens star printed above, the diameter of the unresolved circle is about 1.5 mm (observable
with a magnifying glass). Thus the print resolution of this page can be computed as follows:

6
1. Resolving power: RP=3—z8 L/mm
m-1.5
2. Line size: Ax'=1/RP=0.13 mm
. 25.4
3. Converted to dpi: RP=—— A =194 dpi~200 dpi
X'

3.1.5.3 Contrast and modulation transfer function
The actual resolving power of an imaging system depends on the contrast of the
original object, i.e. for decreasing contrast, signal transfer performance is reduced,
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particularly at higher spatial frequencies. A contrast-independent formulation of the
resolving power is given by the contrast transfer function (CTF).

Original high contrast object pattern

Corresponding image of high contrast pattern

Sinusoidal contrast pattern in object

Corresponding image of sinusoidal contrast pattern

Fig. 3.30: Contrast and modulation transfer.

The object contrast K and the imaged contrast K' are functions of the minimum and
maximum intensities I of the fringe pattern (Fig. 3.28, Fig. 3.30):

I -1 r -1
I( — max min I(' 1 — max min 3. 3 6
(N I +1 (N I' +1I' ( )

max min max min

Hence the contrast transfer CT of a spatial frequency f follows:

K'(f)
C =—= .
T(f) K(f) (3.37)

For most imaging systems, contrast transfer varies between 0 and 1. The contrast
transfer function (CTF) defines the transfer characteristic as a function of the spatial
frequency f (Fig. 3.31). Here the resolving power RP can be defined by the spatial
frequency that is related to a given minimum value of the CTF, for example 30 % or
50 % (green line in Fig. 3.31). Alternatively, RP can be determined as the intersection
point of an application-dependent threshold function of a receiver or observer that
cannot resolve higher spatial frequencies. The threshold function is usually a
perception-limiting function that describes the contrast-dependent resolving power
of the eye with optical magnification (dashed line in Fig. 3.31).
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In an analogous way, if the rectangular function of Fig. 3.28 is replaced by a
sinusoidal function, the contrast transfer function is known as the modulation
transfer function (MTF).

For an optical system an individual MTF can be defined for each system
component (atmosphere, lens, developing, scanning etc.). The total system MTF is
given by multiplying the individual MTFs (Fig. 3.31):

MTF, = MTF, -MTF, - MTF,

total imageblur sensor """

-MTF, (3.38)

Sensor

Lens
Blur
—— Resultant
----Humaneye
RP eye
RP 50%

200

Ip/mm

Fig. 3.31: Resulting total MTF.

3.1.6 Fundamentals of sampling theory

3.1.6.1 Sampling theorem
A continuous analogue signal is converted into a discrete signal by sampling. The
amplitude of the sampled signal can then be transferred into digital values by a
process known as quantization (Fig. 3.32).

If sampling is performed using a regular array of detector or sensor elements with
spacing As', then the sampling frequency f1 can be expressed as:

1

fA:AS.

: sampling frequency (3.39)

According to Shannon's sampling theorem, the Nyquist frequency fv defines the highest
spatial frequency that can be reconstructed by f1 without loss of information:

1 1

- : Nyquist frequency (3.40)
24s'
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Spatial frequencies f higher than the Nyquist frequency are undersampled, and they
are displayed as lower frequencies, an effect known as aliasing (see Fig. 3.33).

Ag=1

0 —_— — X

As'

Fig. 3.32: Sampling and quantization.

To avoid sampling errors, as well as to provide a good visual reproduction of the
digitized image, it is advisable to apply a higher sampling rate as follows:

f,~28-f (3.41)

The transfer characteristic of the sampling system can be described with the
modulation transfer function (MTF). With respect to a normalized frequency f/fv the
MTF falls off significantly above 1 (= Nyquist frequency). If the aliasing effects (Fig.
3.33) are to be avoided, the system must consist of a band-pass filter (anti-aliasing
filter) that, in the ideal case, cuts off all frequencies above the Nyquist frequency (Fig.
3.34). As an optical low-pass filter, it is possible to use a lens with a resolving power
(section 3.1.5.1) somewhat lower than the pixel pitch of the imaging sensor. There is
a trend in modern DSLR camera designs utilising small pixels to forego such filters to
maximize spatial resolution with lenses whose performance is matched to the sensor
pixel dimensions.

The signal is quantized with a given number of integers N which is defined by the
bit depth K. Bit depths K=8 to K=16 are commonly used in the camera electronics to
quantize the grey values g. The required bit depth should be selected according to the
signal-to-noise ratio of the imaging sensor (see section 3.4.1.9).

N=2F where 0<g<N-1 (3.42)
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Fig. 3.33: a) Nyquist sampling; b) undersampling/aliasing.
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Fig. 3.34: MTF as a function of the normalized sampling frequency.

3.1.6.2 Detector characteristics

Electronic imaging devices, such as CCDs, consist of one or several detectors (sensor
elements) of limited size with constant spacing with respect to each other. It is
important to realize that, because of the need to place a variety of electronic devices
in the sensing plane, not all of the area of each detector element is likely to be light
sensitive. Sampling and transfer characteristics are therefore a function of both the
size of the light-sensitive detector area (aperture size Ad") and of the detector spacing
(pixel spacing As'). In contrast to the sampling scheme of Fig. 3.33 real sampling
integrates over the detector area.

Fig. 3.35a displays the detector output when scanning with a sensor whose light-
sensitive elements are of size Ad' and have gaps between them. This gives a detector
spacing of As'=2Ad' (e.g. interline-transfer sensor, Fig. 3.76c). In contrast, Fig. 3.35b
shows the sampling result with light sensitive regions without gaps As'=Ad' (e.g.
frame-transfer sensor, Fig. 3.76a). For the latter case, the detector signal is higher
(greater light sensitivity), however, dynamic range (uUmax— umin) and hence modulation
are reduced.
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Fig. 3.35: Detector signals: a) light-sensitive size equal to half detector
spacing; b) light-sensitive size equal to detector spacing.

The MTF of a sampling system consisting of sensor elements is given by:

sin (- Ad"
MTF 7M

detector n-Ad-f =sinc (IT Adlf) (343)

The sinc function was previously introduced for diffraction at aperture slits, see
section 3.1.1.4. The function shows that a point signal (Dirac pulse) also generates an
output at adjacent detector elements. In theory this is true even for elements at an
infinite distance from the pulse. Together with possible defocusing, this gives rise to
the point spread function (PSD) which, for example, causes sharp edges to have
somewhat blurred grey values. Consequently both MTF and PSF can be reconstructed
from an analysis of edge profiles (see Fig. 5.44).

The MTF becomes zero for f=k/d' where k = 1,2..n. The first zero crossing (k =1)
is given by the frequency:

1

fo= 2

(3.44)

The first zero-crossing point can be regarded as a natural resolution limit. Fig. 3.36
shows a typical MTF of a detector system. Negative values correspond to reverse
contrast, i.e. periodic black fringes are imaged as white patterns, and vice versa.
Usually the MTF is shown up to the first zero-crossing only.
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Fig. 3.36: MTF of a detector system.

3.2 Photogrammetric imaging concepts
3.2.1 Offline and online systems

With the availability of digital imaging systems, it is possible to implement a seamless
data flow from image acquisition to analysis of the photogrammetric results (compare
with Fig. 1.10). When image acquisition and evaluation take place in different places
or at different times, this is known as offline photogrammetry. In contrast, when the
acquired images are immediately processed and the relevant data used in a connected
process, then this is known as online photogrammetry (Fig. 3.37). In addition, mixed
forms exist. For example, intelligent cameras may use an internal camera processor
to perform image processing during image acquisition, with further processing taking
place offline.

camera calibration

orientation

LAB !

object  FIELD !

orientation

calibration

[oeeoes
image measurement ]

orientation

processing

OFFLINE SYSTEM ONLINE SYSTEM

Fig. 3.37: Chain of processing in offline and online systems.
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Both concepts have a direct impact on the relevant imaging technology. In many
cases, cameras used offline can subsequently be calibrated from the recorded
sequence of images (see section 7.3.2). Both analogue and digital cameras may be
used here. In contrast, pre-calibrated digital cameras, which are assumed to be
geometrically stable over longer periods of time, are typically used in online
applications. By appropriate use of reference information in the object space such as
control points, the orientation of online systems can be checked during measurement
and, if necessary, corrected.

3.2.1.1 Offline photogrammetry

In offline applications it is typical to acquire what, in principle, can be an unlimited
number of images which can then be evaluated at a later time and in a different place,
possibly also by different users. If the imaging configuration is suitable (see section
7.3.2), the recording cameras can be simultaneously calibrated during the
photogrammetric object reconstruction by employing a bundle adjustment (section
4.4). In this way it is possible to use lower-cost cameras, with a lower level of
mechanical stability, as the photogrammetric recording system. Since object
measurement and camera calibration take place simultaneously and with a high level
of redundancy, the highest measurement accuracies can be achieved with offline
systems. Depending on application, or technical and economic restrictions, it may
also be sensible to make use of pre-calibrated cameras or metric cameras.

Examples of the use of offline photogrammetry are conventional aerial
photography, the production of plans and 3D models in architecture, archaeology or
facilities management, accident recording, the measurement of industrial equipment
and components, as well as image acquisition from unmanned aerial vehicles (UAVs)
or mobile platforms.

3.2.1.2 Online photogrammetry
Online photogrammetric systems have a limited number of cameras. There are single,
stereo and multi-camera systems which, at given time intervals, deliver three-
dimensional object information. Systems with image sensors integrated at fixed
relative positions are generally pre-calibrated (known interior orientation) and
oriented (exterior orientation). Depending on stability, this geometry remains
constant over longer periods of time. Examples of mobile and stationary online
systems with a fixed configuration of cameras are shown in Figs. 6.42 and 6.45. Online
systems with variable camera configurations offer the option of on-site orientation
which is normally achieved with the aid of reference objects. An example is shown in
Fig. 6.34.

Online systems are commonly connected to further operating processes, i.e. the
acquired 3D data are delivered in real time in order to control the operation of a
second system. Examples here include stereo navigation systems for computer-
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controlled surgery, positioning systems in car manufacture, image-guided robot
positioning or production-line measurement of pipes and tubes.

3.2.2 Imaging configurations

In photogrammetry, imaging configuration is the arrangement of camera stations and
viewing directions for object measurement. The following imaging configurations are
typically distinguished:

— single image acquisition;

— stereo image acquisition;

— multi-image acquisition.

3.2.2.1 Single image acquisition

Three-dimensional reconstruction of an object from a single image is only possible if
additional geometric information about the object is available. Single image
processing is typically applied for rectification (of plane object surfaces, see section
4.2.8.1), orthophotos (involving a digital surface model, see section 4.2.8.2), as well
as plane-object measurements (after prior definition of an object plane, see section
4.2.6.4) and monoplotting methods (see section 4.2.7). In addition, the use of just one
image, and known object geometry, enables the measurement of relative 6DOF poses
(position and orientation) between two objects in space, e.g. camera with respect to
object (space resection, see section 4.2.3) or object to object (6DOF measurements, see
section 4.2.5).

The achievable accuracy of object measurement depends primarily on the image
scale (see section 3.3.1, Fig. 3.40 to Fig. 3.42) and the ability to distinguish those
features which are to be measured within the image. In the case of oblique imaging,
the image scale is defined by the minimum and maximum object distances.

3.2.2.2 Stereo image acquisition
Stereo imagery represents the minimum configuration for acquiring three-
dimensional object information. It is typically employed where a visual or automated
stereoscopic evaluation process is to be used. Visual processing requires near parallel
camera axes similar to the normal case (Fig. 3.38a), as the human visual system can
only process images which are comfortably within a limited angle of convergence.
For digital stereo image processing (stereo image matching, see section 5.5), the
prerequisites of human vision can be ignored with the result that more convergent
image pairs can be used (Fig. 3.38b).

In the simplest case, three-dimensional object reconstruction using image pairs
is based on the measurement of image parallax or disparity px' = x'-x" (Fig. 3.38a)
that can be transformed directly into a distance measure h in the viewing direction
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(see section 4.3.6.2). More generally, image coordinates (x'y', x"y") of homologous
(corresponding) image points can be measured in order to calculate 3D coordinates
by spatial intersection (see section 4.4.7.1). The accuracy of the computed object
coordinates in the viewing direction will generally differ from those parallel to the
image plane. Differences in accuracy are a function of the intersection angle between
homologous image rays, as defined by the height-to-base ratio h/b.

a) normal b) convergent

Fig. 3.38: Normal and convergent stereo image configurations.

Stereo imagery is most important for the measurement of non-signalized (targetless)
object surfaces that can be registered by the visual setting of an optical floating mark
(see section 4.3.6.3). Special stereometric cameras have been developed for stereo
photogrammetry (see section 3.5.4). An example application in industry is the
measurement of free-form surfaces where one camera can be replaced by an oriented
pattern projector (see section 6.7.3).

3.2.2.3 Multi-image acquisition

Multi-image configurations (Fig. 3.39) are not restricted with respect to the selection
of camera stations and viewing directions. In principle, the object is acquired by an
unlimited number of images from locations chosen to enable sufficient intersecting
angles of bundles of rays in object space. At least two images from different locations
must record every object point to be coordinated in 3D.

Object coordinates are determined by multi-image triangulation (bundle
adjustment, see section 4.4, or spatial intersection, see section 4.4.7.1). If a sufficient
number and configuration of image rays (at least 3—4 images per object point) are
provided, uniform object accuracies in all coordinates can be obtained (see section
3.3.1.2).
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In close-range photogrammetry, multi-image configurations are the most
common case. They are required in all situations where a larger number of different
viewing locations are necessary due to the object structure, e.g. occlusions or the
measurement of both interior and exterior surfaces, or to maintain specified accuracy
requirements. Images can be arranged in strips or blocks (Fig. 4.58) or as all-around
configurations (see Fig. 3.39, Fig. 4.59) but, in principle, without any restrictions
(other examples in Fig. 1.6, Fig. 1.8, Fig. 8.5).

Fig. 3.39: Multi-image acquisition (all-around configuration).

Where the configuration provides a suitable geometry, multi-image configurations
enable the simultaneous calibration of the camera(s) by self-calibrating bundle
adjustment procedures (see sections 4.4.2.4 and 7.3.2).

3.3 Geometry of the camera as a measuring device
3.3.1 Image scale and accuracy

Image scale and achievable accuracy are the basic criteria of photogrammetric
imaging and will dominate the choice of camera system and imaging configuration.

3.3.1.1 Image scale

The image scale number or magnification m is defined by the ratio of object distance
h to the principal distance c (lens focal length plus additional shift to achieve sharp
focus). It may also be given as the ratio of a distance in object space X to the
corresponding distance in image space x', assuming X is parallel to x' (see eqn. 1.1,
compare with section 3.1.2):
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h X 1
m=t=X_ L1 (3.45)
c x' M
In order to achieve a sufficient accuracy and detect fine detail in the scene, the
selected image scale m must take into account the chosen imaging system and the
surrounding environmental conditions. Fig. 3.40 illustrates the relationship between

object distance, principal distance, image format and the resulting image scale.

c) Different principal distances d) Equal image scales

Fig. 3.40: Dependency of image scale on image format, focal length and object distance.

Using a camera with a smaller image format and the same image scale (and principal
distance) at the same location, the imaged object area is reduced (Fig. 3.40a). In
contrast, a larger image scale can be achieved if the object distance is reduced for the
same image format (Fig. 3.40b).

For a shorter object distance (Fig. 3.40b), or a longer principal distance (Fig.
3.40c), a larger image scale will result in a correspondingly reduced imaged object
area, i.e. the number of images necessary for complete coverage of the object will
increase.

Fig. 3.40d shows that equal image scales can be obtained by different imaging
configurations. With respect to image scale it can be concluded that the selection of
imaging system and camera stations is often a compromise between contrary
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requirements. Note, however, that any change in the position of the camera with
respect to the object will result in a different perspective view of the object.
Conversely, changing the focal length of the lens, or altering the camera format
dimensions, whilst maintaining the camera position, will not alter the perspective.
An image has a uniform scale only in the case of a plane object which is viewed
normally (camera axis normal to the object plane). For small deviations from the
normal an average image scale number related to an average object distance can be
used for further estimations. In practical imaging configurations, large deviations in
image scale result mainly from
— large spatial depth of the object and/or
— extremely oblique images of a plane object.

Example 3.5:

Given a camera with image format s'=60 mm and a principal distance of ¢ =40 mm (wide angle).
Compute the object distance h, where an object size of 7.5 m is imaged over the full format.

X _7500 55 M =1:125)

1. Image scale number: m=
x' 60

2. Object distance: h=m-c=125-40=5000mm=>5m

dx' x'

Fig. 3.41: Different image scales. Fig. 3.42: Single image acquisition.

For these cases (see Fig. 3.41) minimum and maximum image scales must be used for
project planning and accuracy estimations.
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3.3.1.2 Accuracy estimation

The achievable accuracy® in object space of a photogrammetric measurement

requires assessment against an independent external standard, but the precision of

the derived coordinates can be estimated approximately according to Fig. 3.42.
Differentiation of eqn. (3.45) shows that the uncertainty of an image

measurement dx' can be transferred into object space by the image scale number m:

dX=m-dx' (3.46)
Applying the law of error propagation, the standard deviation gives:

Sy=m-s, (3.47)
In many cases a relative precision, rather than an absolute value, that is related to the
maximum object dimension S, or the maximum image format s', is calculated:

2x = Ox (3.48)

Eqn. (3.48) shows that a larger image format results in better measurement precision.

Example 3.6:

Given an object with object size S=7.5m photographed at an image scale of m=125. What is the
necessary image measuring accuracy Sx, if an object precision of sx=0.5 mm is to be achieved?

S .

1. According to (3.47): s, :—X:E—O.Ool;mm:lmm
m 125

2. Relative accuracy: %‘:1:15000:0.007%

Firstly, the achievable object precision according to (3.47) indicates the relationship
between scale and resulting photogrammetric precision. Furthermore, it is a function
of the imaging geometry (number of images, ray intersection angles in space) and the
extent to which measured features can be identified. A statement of relative precision
is only then meaningful if the measured object, processing methods and accuracy
verification are effectively described.

Eqn. (3.47) must be extended by a design factor q that provides an appropriate
weighting of the imaging configuration:

sX:q-m-sX.:j%m-sx. (3.49)

3 Here the term “accuracy” is used as a general quality criterion. See sections 2.4.3 and 7.2 for a
definition of accuracy, precision and reliability.
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The design parameter gp is related to the intersection geometry of the imaging
configuration, and k defines the mean number of images per camera location. For a
normal case, in practice k=1 and therefore go = g.

Practical values for the design factor g vary between 0.4-0.8 for excellent
imaging configurations, (e.g. all-around configuration, see Fig. 3.39), and up to 1.5—-
3.0 or worse for weak stereo configurations (see Fig. 3.38).

If the object is targeted (marked, or signalized, e.g. by circular high-contrast
retro-reflective targets) and imaged by an all-around configuration, (3.49) provides a
useful approximation for all three coordinate axes, such that g = 0.5 can be achieved.
In cases where the object cannot be recorded from all sides, accuracies along the
viewing direction can differ significantly from those in a transverse direction. As an
example, the achievable precision in the viewing direction Z for a normal stereo pair
(see section 4.3.6.2) can be estimated by:

h2
s, :ﬁsm. :mgspx. (3.50)
Here b defines the distance between both camera stations (stereo base) and sy« the
measurement precision of the x-parallax; base b and principal distance c are assumed
to be free of error. Measurement precision in the viewing direction depends on the
image scale (h/c) and on the intersection geometry, as defined by the height-to-base

ratio (h/b).

Example 3.7:

Given a stereo image pair with an image scale of M =1:125, an object distance of h=5m and a base
length of b =1.2 m. Compute the achievable precision in the XY-direction (parallel to the image plane)
and in the Z-direction (viewing direction) respectively, given a parallax measurement precision of

Spe =4 pm (assume s, =s.2).

1. Precision in Z: s, =m~£-s " =125‘i~0.004:2.lmm
b * 1.2
2. Precision in X,Y where gx=1: S,=Ss,=m-s ,=125-0.006=0.75 mm
3. Design factor from (3.49): q,= 4 =2.8
m-s,,

The example shows that the precision in the viewing direction is reduced by a factor of almost 3.

3.3.2 Interior orientation of a camera

The interior (intrinsic) orientation of a camera comprises all instrumental and
mathematical elements which completely describe the imaging model within the
camera. By taking proper account of the interior orientation, the real camera
conforms to the pinhole camera model. It is a requirement of the model that there
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exists a reproducible image coordinate system so that geometric image values, such
as measured image coordinates, can be transformed into the physical-mathematical
imaging model.

a) Original image b) Compression c) Extract

Fig. 3.43: Original and processed images.

Fig. 3.43 shows an arbitrarily selected, original digital image that has been stored in
exactly this form and therefore has a reproducible relationship to the camera. The
applied processing (compression and extraction) results in a loss of reference to the
image coordinate system fixed in the camera, unless the geometric manipulation can
be reconstructed in some way (see section 3.3.2.4).

3.3.2.1 Physical definition of the image coordinate system
The image coordinate system must not only be defined physically with respect to the
camera lens, but must also be reconstructable within the image. For this purpose,
analogue photogrammetric cameras used either fiducial marks at the edge of the
image (metric camera) or a réseau (partial-metric camera) whose nominal coordinates
were calibrated at the factory. For the digital cameras used exclusively today,
artificial reference points for the image coordinate system can be omitted if there is a
clear reference between the digital image and the optoelectronic image sensor (rows
and columns of the sensor matrix). This is usually the case when using fixed area
sensors (CCD or CMOS sensor matrix) and with direct digital image readout. For
images without a given reference system (see Fig. 3.51 for an example), the direct
linear transformation (DLT, section 4.2.4.1) can be used for photogrammetric
orientation tasks.

To ensure a defined physical relationship between sensor and lens, a static sensor
without sensor-based auto-focus, motion compensation and anti-dust vibration (see
3.4.2.3), a fixed focal length lens, the focus and aperture of which is mechanically
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locked in place, are preferred for accurate photogrammetric reconstruction. In such
cases, the image manipulations shown in Fig. 3.43 should be omitted. By convention
the origin of these systems is usually at the top left and the coordinate system is left-
handed (see section 2.1.1). The conversion of pixel coordinates into metric image
coordinates is done with eqn. (2.2). Radiometric image processing (e.g. contrast
changes) usually does not change the image geometry and is permissible in the
photogrammetric sense.

3.3.2.2 Perspective centre and distortion

Mathematically, the perspective centre is defined by the point through which all
straight-line image rays pass. For images created with a compound lens (multiple lens
components) both an external and an internal perspective centre can be defined.
Each is defined by the intersection point of the optical axis with the entrance pupil
EP and the exit pupil E'P, respectively (see section 3.1.2). The position and size of the
entrance and exit pupils are defined by the lens design and its limiting aperture (Fig.
3.11, Fig. 3.44). Hence, the position of the perspective centre depends on the chosen
aperture and, due to the influence of dispersion, is additionally dependent on
wavelength.

P E] EP image plane
aperture
Oﬁ" c
T
o o | H'=8'

Fig. 3.44: Perspective centres O, O' and principal distance ¢ (after Kraus 1994).

In the ideal case of Fig. 3.11 the angle of incidence T is equal to the exit angle 1', and
the principal distance c is equal to the image distance a' (between principal plane and
image plane). As the position of entrance pupil and exit pupil do not usually coincide
with the principal planes, an incident ray enters at angle T, and exits at a different
angle 1'. This effect is radially symmetric with a point of symmetry S'. Compared with
the ideal case, an image point P' is shifted by an amount Ar' that is known as radial
distortion (see also Fig. 3.12 and Fig. 3.17).

Ar'=r'—c-tant (3.51)
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In this formulation the distortion is therefore linearly dependent on the principal
distance (see also Fig. 3.53).

image plane

Fig. 3.45: Definition of principal point for a tilted image plane (after Kraus 2000).

The point of autocollimation H' is defined as the intersection point of the optical axis
of the lens OO' and the image plane. The mathematical perspective centre On, used
for photogrammetric calculations, is chosen to maximize the symmetry in the
distortion in the image plane. The principal distance c is normally chosen such that
the sum of the distortion components across the whole image format is minimized. If
the optical axis is not normal to the image plane, O is not positioned on the optical
axis (Fig. 3.45). H' is also known as the principal point. In real cameras, principal
point, point of symmetry and the centre of the image can all be separate. In principle,
the image coordinate system can be arbitrarily defined (Fig. 3.46).

t/ Y

Fig. 3.46: Possible locations of principal point,
point of symmetry, centre of image and origin of
image coordinate system.
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Hence the photogrammetric reference axis is defined by the straight line O-H'. In
object space it is given by the parallel ray passing through O“. The image radius r' of
an image point, and the residual of radial distortion Ar', are defined with respect to
the principal point H' (see section 3.3.2.3).

If a camera is typically calibrated by means of a bundle adjustment (see section
4.4.2.4), the principal distance, principal point and distortion parameters are all
calculated as a result of this least-squares optimization which incorporates all
participating observations. They correspond to the optically defined parameters if the
imaging network is strong and the scale definition accurate.

Fig. 3.47: Example of a symmetric lens design Fig. 3.48: Example of an asymmetric lens design
(Zeiss Lametar 8/f=200, Ar'max = 4 pm at (Leica 50/0.95 Noctilux-M, Ar' =+200 pm at
r'<90 mm). r'=20mm, Ar'=+60 um at r' =10 mm).

In practice, every lens generates distortions. The radial distortion described above
can be reduced to a level of Ar' < 4 pm for high-quality lenses designed symmetrically
about the lens aperture (Fig. 3.47). In contrast, asymmetric lens designs produce
significantly larger distortion values, especially towards the corners of the image. See
Fig. 3.48 for an example of an asymmetric lens design.

In contrast, tangential distortions are attributable to decentring and tilt of
individual lens elements within the compound lens (Fig. 3.58 shows the effect in
image space). For good quality lenses, these distortions are usually 10 times smaller
than radial distortion and thus can be neglected for many photogrammetric purposes.
However, the simple low-cost lenses which are increasingly used have been shown to
exhibit significantly larger tangential and asymmetric radial distortion values.
Distortions in the range of more than 30 pm are possible and are attributable to the
low cost of these lenses, combined with the small size of their individual elements.

3.3.2.3 Parameters of interior orientation
A camera can be modelled as a spatial system that consists of a planar imaging area
(film or electronic sensor) and the lens with its perspective centre. The parameters of

4 Usually the notations O or O' are used, even when On is meant.
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interior orientation of a camera define the spatial position of the perspective centre,
the principal distance and the location of the principal point with respect to the image
coordinate system defined in the camera. They also encompass deviations from the
principle of central perspective to include radial and tangential distortion and often
affinity and orthogonality errors in the image.

Fig. 3.49: Interior orientation.

Fig. 3.49 illustrates the schematic imaging process of a photogrammetric camera.
Position and offset of the perspective centre, as well as deviations from the central
perspective model, are described with respect to the image coordinate system as
defined by reference or fiducial points (film-based system) or the pixel array
(electronic system). The origin of the image coordinate system is located in the image
plane. For the following analytical calculations, the origin of the image coordinate
system is shifted to coincide with the perspective centre according to Fig. 2.2.
Hence, the parameters of interior orientation are (see section 3.3.2.1):
—  Principal point H":
Foot of perpendicular from perspective centre to image plane, with image
coordinates (x'o,y'0). For commonly used cameras approximately equal to the
centre of the image: H' ~ M'.
—  Principal distance c:
Perpendicular distance to the perspective centre from the image plane in the
negative z' direction. When focused at infinity, c is approximately equal to the
focal length of the lens (c~f"'). The principal distance is also known as the
camera constant. For analytical computations c is a negative number (z' = —¢), see
section 2.1.2.
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— Parameters of functions describing imaging errors:
Functions or parameters that describe deviations from the central perspective
model are dominated by the effect of symmetric radial distortion Ar'.

If these parameters are given, the (error-free) image vector X' can be defined with
respect to the perspective centre, and hence also the principal point:

Xu le_Xlo_Axl
X'=ly' =y, Y-y (3.52)
z' —C
where

x's, ¥'p:  measured coordinates of image point P
x'0, ¥'o:  coordinates of the principal point H'
Ax', Ay': correction values for errors in the image plane

The parameters of interior orientation are determined by camera calibration (see
sections 3.3.2.5 and 4.4.2).

3.3.2.4 Metric and semi-metric cameras

The expression metric camera is used for photogrammetric cameras with a stable
optical and mechanical design. For these cameras the parameters of interior
orientation can be calibrated in the factory (laboratory) and are assumed to be
constant over a long period of time. Usually metric cameras consist of a rigidly
mounted fixed-focus lens with minimal distortion. In addition, they have a flat image
plane. A semi-metric camera meets the above metric camera requirements only with
respect to a plane image surface and its corresponding plane image coordinate
system. These specifications are fulfilled by a réseau for analogue film cameras, and
the physical surface of the imaging sensor for digital cameras.
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Fig. 3.50: Variation in perspective centre position across a series of images
(Nikon D4 with Zeiss 35mm lens).
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For a semi-metric camera, the spatial position of the principal point is only given
approximately with respect to the image coordinate system. It is not assumed to be
constant over a longer period of time. Movements between perspective centre (lens)
and image plane (sensor) can, for example, result from the use of variable focus
lenses, or an unstable mounting of lens or imaging sensor. Fig. 3.50 illustrates this
effect for a series of 220 images acquired with a Nikon D4 DSLR camera held in
different orientations. The observed variations can only be handled by a calibration
which varies with the image (image-variant camera calibration).

Fig. 3.51: Image examples of non-metric cameras
(left: historical postcard; right: image posted on Internet).

Cameras, such as analogue photographic cameras, without a suitable
photogrammetric reference system and/or without a planar image surface, are known
as amateur or non-metric cameras. If images taken by amateur cameras, for example
from old postcards, or an unknown source, such as an internet platforms, are to be
processed photogrammetrically, they often have no unique reference points from
which the principal point can be determined. Often, even the original image corners
cannot be found. In such cases, a suitable analytical method for image orientation is
the direct linear transformation (DLT, see section 4.2.4.1). This method does not
require an image coordinate system. For multiple image configuration, unknown
images can be self-calibrated but with limited accuracy, for example using techniques
such as structure-from-motion (see section 5.5.2.2 and also compare with Fig. 3.43).
Fig. 3.51 shows an example of an image where neither fiducial marks nor image
corners in the camera body are visible.

3.3.2.5 Determination of interior orientation (calibration)

In photogrammetry, the determination of the parameters of interior orientation is
usually referred to as calibration. This is based on the idea that once a mechanically
stable camera is calibrated, it may be moved from one image taking location to
another whilst retaining its calibration. State-of-the-art close-range techniques
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employ analytical calibration methods to derive the parameters of the chosen camera
model indirectly from photogrammetric image coordinate observations. For this
purpose the imaging function is extended by the inclusion of additional parameters
that model the position of the perspective centre and image distortion effects.

Usually calibration parameters are estimated by bundle adjustment
(simultaneous calibration, section 4.4.2.4). Depending on available object
information (reference points, distances, constraints) suitable imaging
configurations must be chosen (see section 7.3).

The necessity for the periodic calibration of a camera depends on the accuracy
specifications, the mechanical construction of the camera and environmental
conditions on site at the time of measurement. Consequently, the time and form of
the most appropriate calibration may vary:

—  One-time factory calibration:

Imaging system: metric camera

Method: factory or laboratory calibration

Reference: calibrated test instruments, e.g. goniometer, comparators, reference

target points

Assumption: camera parameters are valid for the life of the camera
— Long-term checks, e.g. annual:

Imaging system: metric camera

Method: laboratory or test-field calibration

Reference: calibrated test instruments, reference target points, scale bars,

plumb lines

Assumption: camera parameters are valid for a long period of time
—  Calibration immediately before or after object measurement:

Imaging system: semi-metric camera, metric camera with high stability

Method: test field calibration, self-calibration (see section 7.3.1.1)

Reference: reference points, reference lengths within the test field, straight lines

Assumption: camera parameters do not alter until the time of object

measurement
— Calibration integrated into object reconstruction:

Imaging system: semi-metric camera, metric camera with moderate stability

Method: self-calibration, on-the-job calibration (see section 7.3.1.3)

Reference: reference points, distances on object, straight lines

Assumption: constant interior orientation during image network acquisition
— Calibration of each individual image:

Imaging system: semi-metric camera with limited stability

Method: self-calibration with variable interior orientation (see section 4.4.2.4)

Reference: reference points, distances on object, straight lines

Assumption: only limited requirements regarding camera stability, e.g. constant

distortion values
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In the default case, the parameters of interior orientation are assumed to be constant
for the duration of image acquisition. However, for close-range applications in it may
be the case that lenses are changed or re-focused during an image sequence, and/or
mechanical or thermal changes occur. Every change in camera geometry will result
in a change of interior orientation which must be taken into account in the
subsequent evaluation by use of an individual set of parameters for each different
camera state.

From the standpoint of camera calibration, the difference between metric and
semi-metric cameras becomes largely irrelevant as the stability of interior orientation
depends on the required accuracy. Consequently, even metric cameras are calibrated
on-the-job if required by the measuring task. In such cases their prior calibration data
can be used as a check or as input observations into the new calibration. On the other
hand, semi-metric digital cameras can be calibrated in advance if they are
components of multi-camera online systems.

3.3.3 Standardized correction functions

Deviations from the ideal central perspective model, attributable to imaging errors,
are expressed in the form of correction functions Ax', Ay' to the measured image
coordinates. Techniques to establish these functions have been largely standardized
and they capture the effects of radial, tangential and asymmetric distortion, as well
as affine errors in the image coordinate system. Extended models for special lenses
and imaging systems are described in section 3.3.4.

3.3.3.1 Radial distortion

According to section 3.1.3.1, distortion is related to the principal point, i.e. the
measured image coordinates x'p,y'r must first be corrected by a shift of origin to the
principal point at x'o,y"o:

X°=x 'P— X '0
ye=y'h=v
where (3.53)
r'=/x°? +y°? : image radius, distance from the principal point

: image coordinates relative to principal point

The correction of the image coordinates x°, y° for distortion is then given by:
x'=x°-Ax'
Voo A : corrected image coordinates (3.54)
y'=y°-dy

The distortion corrections Ax', Ay' must be calculated using the final image
coordinates x',y' but must be initialized using the approximately corrected
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coordinates x°,y°. Consequently, correction values must be applied iteratively (see
section 3.3.4.6).

140 -
120
100
80
60
40

radial distortion Ar' [um]

20

image radius r' [mm]

Fig. 3.52: Symmetric radial distortion.

Symmetric radial distortion, commonly known as radial distortion, constitutes the
major imaging error for most camera systems. It is attributable to variations in
refraction at each individual component lens within the camera’s compound lens. It
depends also on the wavelength, aperture setting, focal setting and the object
distance at constant focus.

Fig. 3.52 shows the effect of radial distortion as a function of the radius of an
imaged point. In the example, the distortion increases with distance from the
principal point, and it can easily reach 1% (relative distortion Ar'/r') or more for off-
the-shelf lenses. The distortion curve is usually modelled with a polynomial series
(Seidel series) with distortion parameters Ko to K: °

1 1 13 15 7
Ar' =K r'+Kr°+Kr°+Kr (3.55)
A =AT+ArC+ A+ AT+ (3.56)

For most lens types the series can be truncated after the second or third term (i=3)
without any significant loss of accuracy. The linear term with Ko (4o) describes the
function Ar'=r'-c-tant (see eqn. 3.51 and Fig. 3.52). Eqn. (3.51) and Fig. 3.53 show
that the effect of introducing the linear term with Ko (4o) can also be achieved by a
change in principal distance. Hence, the distortion parameters defined in (3.55) are
numerically correlated with image scale or principal distance, and consequently, Ko
(Ao) and c cannot be calculated simultaneously within one system of equations.

5 Here and in the following paragraphs both common notations (4;) and (K;) are displayed in parallel.
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Fig. 3.53: Linear relationship between c and Ar'.

In order to avoid these correlations, the linear part of the distortion function is
removed or set to a constant value. This is equivalent to a rotation of the distortion
curve into the direction of the r' axis, thus resulting in a second zero-crossing. This
generates a distortion function in which only the differences from the straight line
Ar'=r'-c-tant (see eqn. 3.51) in Fig. 3.52 must be modelled.
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Fig. 3.54: Typical balanced lens distortion curve (Rollei Sonnar 4/150)
red: distortion effect Ar'; blue: relative distortion Ar'/r'.
Alternatively, a polynomial of the following type is used:
1 _ 1,12 2 e 4 10,16 6
Ar' =Ar T -r) A =)+ At (r© ) (3.57)

By simple rearrangement of (3.57) it can be shown that this has the same effect as
(3.55):

1 13 15 17 1 2 4 6
Ar' =ATC A A -r (A + A+ A (3.58)

Here the term in brackets is a constant analogous to Ko. In practice ro should be chosen
such that minimum and maximum distortion values are more or less equal with
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respect to the complete image format (balanced radial distortion). Usually 1o is set to
approximately 2/3 of the maximum image radius. Fig. 3.54 shows a typical radial
distortion curve according to (3.57), and the relative distortion Ar'/r'.
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Fig. 3.55: Effect of radial distortion (data from Table 3.1).

Fig. 3.55 displays the corresponding two-dimensional effect with respect to the image
format. Balanced radial lens distortion is only necessary when the distortion
correction is applied using analogue methods, for example by specially shaped cams
within the mechanical space rod assembly. The term r, was introduced for analogue
systems where mechanical cameras were used to apply mechanical corrections but
for purely digital calibration it no longer has any practical meaning and can, without
restriction, be set to zero (corresponding to Ko=0).

Table 3.1: Correction table for distortion (see Fig. 3.54, Fig. 3.55, all values in mm).

r Ar' r Ar' r Ar' r Ar'
0 0.0000 9 -0.0125 18 -0.0057 27 0.0350
1 -0.0018 10 -0.0130 19 -0.0031 28 0.0419
2 -0.0035 1 -0.0133 20 0.0000 29 0.0494
3 -0.0052 12 -0.0132 21 0.0035 30 0.0574
4 -0.0068 13 -0.0129 22 0.0076 31 0.0658
5 -0.0082 14 -0.0122 23 0.0121 32 0.0748
6 -0.0096 15 -0.0112 24 0.0170 33 0.0842
7 -0.0107 16 -0.0098 25 0.0225 34 0.0941
8 -0.0117 17 -0.0080 26 0.0285 35 0.1044
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A table of correction values for radial distortion (lens map function) is often derived

from a camera calibration (Table 3.1). It can then be used by a real-time processing

system to provide correction values for image coordinates by linear interpolation.
Finally, the image coordinates are corrected proportionally:

rad

Ar' , Ar'
— B a=y—

Ax'  =x' rad
rad r

(3.59)

The meaning of the distortion parameters

The sign of parameter A; (K:) determines the form of the distortion as either barrel (4.
< 0) or pincushion (4; > 0), see Fig. 3.56. A, and A4s (K; and K5) model deviations of the
distortion curve from the cubic parabolic form with each term introducing an
additional inflection. A, normally has its primary effect towards the edges of the
image (Fig. 3.57). The introduction of the term A; makes it possible to model lenses
with large distortion values at the image edges (Fig. 3.57).

radial distortion o' fum]
8

s
image radius r* [mm] 0 image radius ¢ [mm]

Parameters:
A1=4.664-107°
ro=20.0 mm

Parameters:
Ai=-4.664-10"°
ro=20.0 mm

A2=0 A3=0 A= 0 As= 0

Fig. 3.56: Effect of changing the sign of A.

racial distortion dr [um]
3
radial distortion d [Lm]

image radius r'[mm]

Parameters: Parameters:
A1 =4.664-107° A>=-3.0-10"° As=0 Ai=-4.664-10° A,=0 As= -1.0-1072
ro=20.0 mm ro=20.0 mm

Fig. 3.57: Effects of parameters A; and As.
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3.3.3.2 Tangential distortion

Tangential distortion (Fig. 3.58), also known as decentring distortion, is attributable
to decentring and misalignment of individual lens elements from the ideal central
axis of the camera’s compound lens. It can be described by the following functions
with the parameters P, P; or alternatively Bi, Ba:

Ax',, =P (r+2x")+2Px"y" Ax', =B, (r*+2x")+2Bx'y" 5.60)
dy' . =P(r’+2y?)+2Px'y' Ay, =B,(r*+2y?)+2Bx'y'
P 2o _
wd e = o= 2d —o -a a o e _
4 s s 8 a 8 & & & = 4 = = = =8 & &8 & o @ _
W s a s a @ s & & =« 4o —= = = a a &8 & o &
1 -, « = = W - - =
Tl o a e o = ﬁ I - .
5 = = = = = E . - s = = = = =
b = = = & 8 & & s = 44 —a —a « @& s = & = =
4" @ & & a8 = & s & e ¢ —a —a & & &8 8 - s
o & & w s m s a2 o 4 5 2 = @& s & & & s
T R S A ] R R R T A R ] R R R
Fig. 3.58: Effect of tangential distortion. Fig. 3.59: Effect of affinity and shear.

According to Conrady (1919) and Brown (1966), the complete approach for modelling
asymmetric tangential distortion also consists of a coupled radially symmetric
component described by the coefficients P; and Pa:
1 _ 12 12 10 12 4

Ax', =[P (r"+2x")+2Px'y'|(1+Pr“+Pr") .61
1 12 12 (] 12 14 *

dy' . =[P (r*+2y")+2Px"y' |1+ Pr“+Pr")
P; and P. describe a non-linear effect that may have a larger impact at the image
borders. Fig. 3.60 illustrates the effect for two image points P', Q', in different image
positions. The imaged points are displaced asymmetrically by a radial and tangential
component (first term in eqn. 3.61) which is itself scaled by another radial component
(second term in eqn. 3.61). The radial term in eqn. (3.61) is not considered in most
software solutions since it has a minor impact in good quality lenses and is otherwise
highly correlated with the standard parameters for radial distortion.
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Fig. 3.60: Example of tangential distortion with a radially symmetric component.

For most quality lenses the effects of decentring distortion are significantly smaller
than for radial distortion and are often only determined where accuracy demands are
high. If low-cost lenses are used, as is often the case in surveillance or webcam
systems, significant decentring distortion can be present.

3.3.3.3 Affinity and shear

Affinity and shear are used to describe deviations of the image coordinate system with

respect to orthogonality and uniform scale of the coordinate axes (Fig. 3.59). The

effect can have several causes:

— sensors which are not aligned orthogonally to the optical axis of the camera lens;

— sensor elements which are not distributed on a regular grid or which are not
square;

— video images which are transferred in analogue form before being digitized by a
frame grabber;

— imaging sensors with rolling shutters (see section 3.4.2.2);

— scanned analogue films.

The following function can be used to provide an appropriate correction:

X'y =Cx'+ Gy Ay’ =0 (3.62)
A similar effect is modelled by the parameters m' and s' of the calibration matrix in
eqn. (3.66). Affinity and shear are not associated with the lens but are distortions
occurring within the sensor and image planes. If relevant, these should be processed
in the order shown below for total distortion correction. The C parameters are close to
zero in many modern digital cameras (sensors) and need only be calibrated for very

high-accuracy applications.
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3.3.3.4 Total correction

The simplified, but widely used, definition of total distortion correction is obtained

by simple summing of the individual correction terms:
Ax'=Ax'md+Ax'mn+Ax'aff Ay'=Ay'md+Ay'mn+Ay'aff (3.63)
X=X A =Xy =X = Ax y'=y = dy' =y -y Ay

Strictly speaking, the measured image coordinates must initially be corrected by the

sensor-related affinity and shear terms. Subsequently, these pre-corrected

coordinates are used to calculate the corresponding corrections for lens-related radial

and decentring distortion. The total correction then becomes:

x":x'_Ax'aff yu:yu_Ay.aff
AX::Axumd(xu,yu)+Axumn(xu’yu) Ay.:Ay.md(xu’yu)+Ay|mn(xu’yu) (3.64)
x'=x°-Ax' y'=y° -4y’

Which of the two approaches should be used to correct measured image coordinates
depends on the software used for camera calibration. It should also be noted that the
sign of the correction terms and the assumption as to the pixel origin, e.g. top left,
centre or bottom right, may vary between different programs. Careful reading of
software documentation is therefore strongly recommended if data is to be exchanged
between different software packages.

Example 3.8:

A calibration of a Canon E0S1000 digital camera with lens f=18 mm gives the following set of
correction parameters:

A1 =-4.387-107* A= 1.214-10°° As=-8.200-1071°
Bi= 5.572-107° B,=-2.893-107¢
Ci=-1.841-10" G = 4.655-107° ro=8.325 mm

Compute the effects of individual distortion terms for two image points, the first located in the centre
of the image and the second in one corner:

X1 2! X2 ¥
x\y' 1.500 1.500 11.100 7.400 mm
Ay, Az, As 34.4 34.4 -215.4 -143.6 pm
Bi, B> 0.0 0.0 1.9 0.2 pm
G, G 0.0 0.0 0.1 0.0 pm
Total 34.4 34.4 -213.4 -143.4 pm

This example indicates that the effect of radial distortion predominates. However, if the accuracy
potential of this camera of about 0.2 um (1/50" pixel) is to be reached, the other sources of image
errors must be taken into account.
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3.3.4 Alternative correction formulations

3.3.4.1 Simplified models

In Tsai’s approach, only one parameter k is used in addition to principal distance,
principal point and two scaling parameters. The distorted image coordinates, with
origin at the principal point, are given by:

) ZXI ° 2y
X=— Y=
1++/1—4kr? 1++/1—4kr*

This widely used model does not include any high-order distortion effects and is not
therefore equivalent to a Seidel polynomial with two or three parameters (A, Az, As).
Typical lenses with large distortion components are not fully modelled by this
approach and the disadvantage increases towards the image edges. In addition,
asymmetric and tangential distortions are not taken into account at all.

In computer vision the parameters of interior orientation are typically expressed
by a calibration matrix K which consists of five degrees of freedom (principal distance
¢, principal point x'o, ¥'o, shear s and differential scale m' between the axes).

(3.65)

1 s' x'yllc 0 O c cs' X',
K=|0 1+m' y' /0 ¢ 0|=|0 c(1+m") y', (3.66)
0 0 1 0 0 1 0 0 1

K is part of a general 3x4 transformation matrix from object space into image space
by homogeneous coordinates (see section 2.2.3.1). Lens distortion cannot directly be
integrated in this method and must be modelled by a position-dependent correction
matrix dK(x', y").

In computer vision, camera parameters are often based on pixel units. The
transformation of pixel-based calibration parameters into metric parameters is
described in section 3.3.6.

3.3.4.2 Additional parameters
An approach by Brown (1971) was developed specifically for large format analogue
aerial cameras, but can also be applied to digital cameras:
Ax'y  =Dx'+Dy'+Dx'y'+D,y?+Dx?y'+Dx'y?+D,x"?y?+
[E,(x?-y?)+E,x" y'2+E3(x"‘—y"‘)]x'/c+
[E,(x*+y?)+E (x*+y ") + E,(x"+y" Y Ix'+ E, + E, x'/c (3.67)
Ay’ =Dx'y+Dyx?+D x?y'+D x'y?+D,x"?y+
[El(x'z—y'2)+E2x'2y'2+E3(x"‘—y"‘)]y'/c+
[E,(x?+y?)+E (x"+y"?) +E (x?+y")’ly'+ E, +E9y'/c
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In addition to parameters for modelling deformations in the image plane (D: to D)
terms for the compensation of lack of flatness in film or sensor are included (E; to Es).
These are formulated either as a function of the radial distance or of the tangent of
the imaging angle (x'/c or y'/c).

Additional correction models, based on polynomials, were created by Ebner
(1978) and Griin (1978) for the calibration of analogue aerial cameras:

Ax
Ay'y,  =—Ey+EXx+Ex'y'—E,2y?+Ex"+Ey'x?+E, y? x'+ E x'

'
Ebner

=EX'+E)y'-E2x"+EXx'y'+Ey +EX'y*+Ex"?y'+E x"y" (3.68)
2 .12
y

A =G x'+G,y'+GX'y'+G,y?~G,(10/7)x*+G x"+Gx? y'
+G X'y +G, Y +G X"+ G x y'+ G x y 4G x'y”
+Gl9y|4+625ylxl4+626xl3y|2+Gz7X|2y|3+GZSX|y|4+633X|3 y|3
+G35XI2 }/'4+G39X'4 yl3+G4OXI3 y|4+G43X|4 y|4 (3.69)

Ay, =G y'+Gx'-G,(10/7)y?+Gx*+G.x'y'+G . x"+G x" y'
+G X'y +G Ly + G X+ G, x y'+ G x Py + G x'y"”
+G24yl4+Gz9leI4+G3OXI3yl2+631XI2yl3+G32XIyI4+G37XI3 y|3

12 4 143 13,14 [/
TG Xy +G, x"y +G, x"y"+G, X"y

However, these polynomials are geometrically difficult to interpret. Other approaches
to camera modelling based on Legendre or Chebyshev polynomials show similar
characteristics to high-order polynomials. Fourier series can also be used in which
coefficients are inherently uncorrelated and independent in x and y. Here again,
however, there are a large number of parameters which are difficult to handle and
interpret.

In summary, the above approaches are more difficult to interpret geometrically
and can easily be over-parameterised, leading to a dependency or correlation
between individual parameters. As a result, these approaches are not often used in
photogrammetry.

For a self-calibrating bundle adjustment, individual parameters should be tested
for their significance and correlation with respect to each other. Any parameters
which fail such tests should be eliminated, starting with the weakest first.

An example of an extension to the parameter set to accommodate digital cameras
is given below:

Ax :Ax'o—z\cx'/c+le'r'2+sz'r"‘+K3x'r'6

12 12 [ 1 1
+P,(r'"+2x"")+2Px'y'-Cx'+C,y

1
Beyer

1 1 1 (] 1,0 1o (3.70)
AY' per =2y o—Acy'/c+Ky' TP+ Ky r+ K y'r

1,1 12 12 1
+2Px'y'+ P,(r'"+2y")+C,x
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Here the parameters K describe radial distortion, P describes tangential (decentring)
distortion and C models affinity and shear. The parameters Ax'o, Ay'o and Ac are used
for small corrections to the spatial position of the perspective centre. Together with
the factors x'/c and y'/c they have an effect similar to 1o in eqn. (3.57).

The correction of radial distortion according to (3.55) can be formulated as a
function of image angle rather than image radius:

Ar=W 0’ +W,0° + W,0" +.....+ W™ (3.71)
where
6 =arctan (1\1x'2+ y“ ] : angle between optical axis and object point
c
x',y': corrected image coordinates, projection of the object point in the image
c: principal distance
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Fig. 3.61: Radial distortion (red) as a function of radius (left) and image angle (right) for a lens with
large distortion (Basler, see Table 3.2), with the uncertainty of the distortion curve for each case
shown in blue.

A distortion model based on angle is particularly suitable for central perspective
optics with large symmetric radial distortion. In this case the distortion curve has a
lower slope into the corners (Fig. 3.61).

The increasing uncertainty is in general due to a reduced density of imaged points
with increasing image radius.

In aspheric wide-angle lenses with aspherical components, the radial lens
distortion gradients can be sharper and more varied than for spherical lenses. The
conventional odd-power polynomial model (section 3.3.3.1) can lead to significant
systematic errors in image distortion corrections (see Fig. 7.37). In such cases it can
be useful to apply additional even-power terms to the classical Seidel polynomial.

3.3.4.3 Correction of distortion as a function of object distance
Strictly speaking, the above approaches for the correction of lens distortion are valid
only for points on an object plane that is parallel to the image plane, and focused,
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according to the lens eqn. (3.14), at a distance a' or with respect to the interior

perspective centre. Imaging rays of points outside this object plane pass through the

lens along a different optical path and hence are subject to different distortion effects.

This effect can be taken into account by a correction dependent on distance. This

requires introduction of a scaling factor:
_Cs i (S-¢)

(3.72)

Vs = c, TS (S—0)
where  cs: principal distance (image distance) of object distance S

cs: principal distance (image distance) of object distance S'

For a given set of distortion parameters Kis, Kas, K3s applying to an object plane at
distance S', according to (3.55), the correction of radial distortion for object points at
a focused distance S can be calculated as follows:

Ar' o =y K 1P +ye K P +ys K or” (3.73)

This model is suitable for high-precision measurements made at large scales (m < 30)
and lenses with relatively steep distortion curves. As the effect of distortion
dependent on distance increases with image scale (decreasing object distance), an
empirically estimated correction factor gss can be introduced that can be determined
for each individual lens:

Ar' . =Ar'+ g (Ar' o~ Ar'y) (3.74)

As an example, Fig. 3.62 shows the distortion curves of object points with different
image scales, i.e. at different object distances.
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Fig. 3.62: Lens distortion curves for different image scales (Dold 1997).
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Tangential distortion can also be formulated as a function of the focused distance S:

Ax', :[1—2) [Pl(r'2+2x') +2sz'y'}
(3.75)
Ay’ =[1—;j [Pz(r'2+2y') +2Plx'y'J

In contrast to the above approaches, the following set of parameters for the correction
of distance-dependent distortion can be estimated completely within a self-
calibrating bundle adjustment. However, it should be noted that incorporation of
such corrections within a self-calibration require very strong networks that contain
many images taken at each distance setting in order to provide a robust and reliable
parameter set.

ar',, :%[Dlr'(r'z— 12)+Dyr'(r =)+ Dyr'(r'*- roé)} (3.76)
where Z': denominator of collinearity equations (4.9) ~ S (object distance)

Extension of (3.63) leads to the following total correction of imaging errors:

Ax'=Ax"' +Ax
rad ta

T AX t AX Ay’ =2y’ A Y e+ Yy, (BTT)
Usually, distance-dependant distortion does not exceed more than 1pm at the edge of
the image. Hence, it must only be considered for high-accuracy measurement tasks
where sub-micron image measuring accuracies are required. This is relevant to large-
scale industrial applications with analogue large-format cameras, but is particularly
relevant to high-resolution digital cameras that provide an accuracy potential of
better than 0.5 pm. The need will be most prevalent where there is a large range of
depth over the scene to be recorded or if the scene is highly linear and requires wide
angle oblique views from close ranges. An example of this last case might be an
aircraft wing jig located in the confined working environment of a factory.

3.3.4.4 Image-variant calibration
Cameras and lenses, which have so little mechanical stability that the geometry of the
imaging system can vary within a sequence of images, can be modelled by an image-
variant process. Here individual parameters defining the perspective centre
(principal distance and principal point) are determined individually for every image
j. In contrast, distortion parameters are normally assumed to be constant for the
entire image sequence. Image coordinate adjustment is then done with correction
terms which are calculated for every image as a function of the perspective centre’s
location.

Ax' =Ax' Ay' =Ay' (3.78)

var {Ac,Ax'o,Ay'o}i var y{Ac,Ax'O,Ay'O}i
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Fig. 3.50 shows an example for a digital camera, where principal distance and
principal point vary due to mechanical handling and the effects of gravity. The
calculation of image-variant camera parameters is done using an extended bundle
adjustment.

3.3.4.5 Correction of local image deformations

Local image deformations are imaging errors which appear only in specific areas of
the image format and are not therefore covered by the global correction functions
described above.

Fig. 3.63: Example of simulated film deformation on an image with a réseau.

Local deformations are due, for example, to local lack of flatness in the image plane.
The lack of flatness often seen in analogue film cameras can be corrected by
application of the réseau method, i.e. by local geometric transformation of the image
onto a reference grid (Fig. 3.63).

A similar analytical formulation can be adopted to describe the lack of flatness of
digital image sensors. A finite element approach, based on localized correction
nodes, is used. This requires a grid of two-dimensional correction vectors at the
intersection points of the grid lines. Corrections within the grid are computed using
an interpolation process, typically according to the linear process in the following
equation (Fig. 3.64):

A, :(1_Xl_yl+xl'y1)'kx[i,j] A o :(l_xl_y1+xl'yl)'ky[i,i]

+(Xl _Xl .yl).kx[i+1,]'] +(XI _Xl .yl).ky[i-*-l,]']

=Xy kg R AR

+X,1Y, -kx[

(3.79)

1'+1,j+1] +Xl .yl .ky[i+1,j+1]
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Fig. 3.64: Interpolation within the correction grid.

Here xcorr is the corrected value of the image coordinate x, coordinates x;,y: represent
the local position of the image point within the grid element and kxiji, kuiss, Kiijetls
kui+rjr) are the correction vector components at the corresponding grid intersection
points. An analogous correction applies to image coordinate y. The collinearity
equations (4.9) are extended by the above formulation so that the grid parameters can
be estimated by a bundle adjustment (see section 4.4).

In order to separate out the noise component, i.e. the random measurement error
in the image point, from the sensor deformation error and other lens imaging errors
not otherwise considered, deformation conditions at the nodes are introduced as
pseudo-equations:

0=Ugisg K ~Uageg ~Hoien)
0=k, 1=K = Uygi =Ko ) :50)
0 =065y KD =K =Ko iga))
0=06 o177 K ) =K Ko

These nodal conditions are applied in both x and y directions in the image plane.
Within the system of equations, this leads to a new group of observations. The
accuracy with which the equations are introduced depends on the expected
“roughness” of the unflatness parameters in the correction grid, as well as the
number of measured points in the imaging network which appear on each grid
element. In addition, the equations protect against potential singularities within the
complete set of adjustment equations when there are grid elements which contain no
image points.

As an example, Fig. 3.65 shows a calculated correction grid for a digital camera
(Canon E0S1000) fitted with a zoom lens. The grids show similar trends despite
setting the lens at two different zoom settings. In addition to the simultaneously
determined distortion parameters, effects are modelled in image space which have
similar characteristics in both cases. However, these are not necessarily pure sensor
deformations such as lack of flatness. The finite element grid compensates for all
remaining residual errors in the image sequence.
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f=18 mm f=28mm

Fig. 3.65: Computed correction grids for the same camera body with a zoom lens at different
settings.

The finite element method of calibration is also suitable for modelling ray paths in
complex optics, for example when using a stereo-mirror attachment (see Fig. 3.110).

3.3.4.6 Chromatic aberration

In principle, all image distortions caused by the lens depend on wavelength. Strictly
speaking, RGB colour cameras or multi-spectral cameras should be calibrated
separately for each channel.
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Fig. 3.66: Image measurements compared in separate colour channels (Fuji S2 Pro, f=20 mm).

Fig. 3.66 shows the difference vectors between measured image points from the
separate RGB channels of a true-colour image. The radially symmetric distortion,
corresponding to the transverse chromatic aberration (section 3.1.3.2), can be clearly
observed.



184 —— 3 Imaging technology

For self-calibration, at every imaging location each colour channel is treated as a
separate camera with the additional constraint that the corresponding exterior
orientations are identical. The adjusted parameters of interior orientation then
represent the physical shift in focus due to colour, i.e. the principal distance of the
green channel lies between those of the red and blue channel (see example in Table
3.2). In contrast, the position of the optical axis (principal point x'o und y'o) does not
change significantly.

Table 3.2: Principal point position [mm] after calibration using
separate colour channels (Fuji S2 Pro, f=20mm).

Parameter Red Green Blue
c -20.5739 —-20.5557 -20.5468
X'o 0.2812 0.2818 0.2812
¥'o -0.2080 -0.2095 -0.2105

3.3.5 lterative correction of imaging errors

Measured image points can be corrected a priori if the parameters of interior
orientation are known. Example cases are the calculation of object coordinates by
space intersection, or the resampling of distortion-free images. However, there are
often misunderstandings about the sequence and sign of corrections to image errors.
For clarity it is necessary to know the derivation of the correction values and details
about the software implementation, which is often not available in practice.

The correction model described in (3.63) assumes that the error corrections are
calculated by self-calibrating bundle adjustment. This incorporates the collinearity
model (4.9), which enables image points to be calculated for points defined in object
space. Any possible distortion values are then added to these image coordinates.

x'=f(X,Y,Z,X,Y,, Z,,w,0,k,C, X" )+ Ax'(x',y")

1 1 1 1 1 (3.81)
y'=fX,Y,Z,X,Y,,Z,,w,0,k,c,y' )+ Ay'(x",y")

After adjustment, the correction parameters relate to adjusted object coordinates and
orientation parameters or, expressed differently, to “error-free” image coordinates.
Consequently, these correction values are directly applicable to image coordinates
calculated by applying the collinearity equations from object space to image space.
However, since the corrections Ax', Ay' depend on the current values of image
coordinates, in the case where image coordinates, measured in a distorted image,
must be corrected for previously established distortion parameters, then corrections
must be applied iteratively. In this process, the currently corrected image positions
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are the starting point for the subsequent calculation of corrections. The process
continues until the computed corrections are insignificant.
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Fig. 3.67: Iterative correction of distortion.

The iterative correction of image coordinates is of particular practical importance
when lenses with high levels of distortion are used. Table 3.3 summarizes the effect
of iterative correction of image coordinates for typical camera systems. The row
labelled “Total correction” shows the effect of iterative correction. It is obvious that
cameras with wide angles of view (short focal lengths) and high distortion parameters
(see row labelled “corrections due to further iterations”) have distortion errors which
cannot be ignored without iterative correction (ALPA: —2.5pm, Nikon D4: 2.4um). Fig.
3.67a shows that 3-4 iterations are necessary for a final correction. Cameras with low-
distortion lenses or small angles of view can be corrected without iteration (JAI: 0.2
um). Relatively large values occur for the example micro camera where iterative
correction is also necessary (NanEye GS: —2.1um).

If a high-distortion wide-angle lens is evaluated, e.g. the Basler camera with a
4.8mm Pentax lens (see sample images in Fig. 3.68), then correction values have two
features of note. Firstly, they are high, in this case 238 um. Secondly, they are
generated in a slow convergence process (Fig. 3.67b) which may even diverge in the
corners.
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Table 3.3: Effects of iterative distortion correction for typical camera systems (mm).

Camera ALPA 12 FPS Nikon D4 JAI Basler NanEye GS
Focal length (mm) 40 24 8 4.8 6
Sensor format (mm) 44 x 33 36 x 24 6.5x 4.8 9.0x6.7 2.3x2.3
c -41.9600 -35.6657 -8.2364 -4.3100 -6.006917
X'o -0.50598 -0.0870 0.2477 -0.0405 -0.02647737
V'o -0.21847 0.4020 0.0839 -0.0011 -0.1640278
A1 -2.4799E-05 -9.0439E-05 -1.9016E-03 -1.4700E-02 2.1644E-03
A2 1.3858E-08 6.3340E-08 3.1632E-05 3.0396E-04 1.2617E-03
As -2.4341E-12  -1.5294E-11 0 3.4731E-06 2.8721E-04
B —-2.4965E-06 2.5979E-06 -2.6175E-05 1.1358E-05 3.1584E-05
B; 2.8628E-06 -7.2654E-07 -7.3739E-05 -4.5268E-05 6.5409E-05
G 2.6503E-05 1.0836E-04 9.8413E-03 1.9833E-05 6.6634E-05
G 2.3514E-05 1.0964E-05 -7.2607E-06 8.9119E-05 —-6.1250E-05
X' 21.942 18.000 3.200 4.400 1,152
y' 16.451 12.000 2.400 3.300 1,152
Imaging angle 33.68° 41.89° 24.49° 52.08° 16.39°
Total correction -0.1351 -0.0796 0.0045 -0.5674 0.0206
Corrections due to -0.0025 0.0024 -0.0002 -0.2385 -0.0021

further iterations

Fig. 3.68: Example of a significantly distorted image (left) and its corrected version (right).

3.3.6 Transformation of interior orientation parameters

Different software systems allow for camera calibration based either on pixel
coordinates or metric coordinates. If those parameters are used for further processing
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in another program, they can usually be transformed from one unit to the other as
required.

Table 3.4: Transformation of camera parameters from pixel to metric units.

Parameter metric pixel-based Transformation Unit
Principal distance c f c=f-As' mm
Principal point X' Uo x'y=u,-As' mm
Vo Vo y'y=-v,-A4s'
Radial distortion A K A=K /c 1/mm~2
Az K2 A=K, [c* 1/mm™
As Ks A =K, /S 1/mm-
Decentring distortion B P B =P /c 1/mm
B, P B,=-P,/c 1/mm
Affinity and shear G B: C,=B/f
G B> C,=-B,/f

Table 3.4 summarizes the transformation equations from pixel to metric units. It is
assumed that the origin of the pixel coordinate system is located in the image centre
and that the pixels are quadratic, i.e. As' =As'v=As'y, (see section 3.3.2.1). For absolute
metric parameters, the physical pixel size As' must be known. There is a
corresponding reverse transformation from metric to pixel units.

3.3.7 Fisheye projections

As the angle of view of an imaging system increases beyond about 110°, optical
performance decreases rapidly. Degradation in image quality is seen in the capability
to correctly image straight lines in the object as straight lines in the image and in
reduced illumination towards the extremes of the image format following the cos* law
(section 3.1.3.5). As an example a 110° angle of view would be given by a 15 mm focal
length lens on a full frame, FX format digital SLR sensor (Fig. 3.78). Such lenses are
available, but extremely expensive.

A solution is to change the imaging geometry from the central perspective
projection where incident and exit angles T and 1' are equal, to one where the incident
angle 1 from a point P in object space is greater than the exit angle t' in image space
(Fig. 3.69). Fisheye designs allow the projection of a half hemisphere onto the image
plane with the optical axis coinciding with the centre of the resultant circular image.
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If the image format is larger than the resultant image circle, the camera is termed a
fisheye system. Conversely, if the format is smaller than the circle, such that the
image diagonal is 180°, a quasi-fisheye system is produced.

P' P image plane

Fig. 3.69: Central perspective projection (left) and a generic fisheye projection (right)
(after Schneider 2008).

Three fisheye projections are in optical usage: stereographic, equidistant and
orthographic. They are defined by the following equations.

r'=c-tant : central perspective (3.82)
r'=2c-tant/2 : stereographic (3.83)
r'=c-t : equidistant (3.84)
r'=c-sint : orthographic (3.85)

When modelling the distortions in a fisheye lens, conventional radial lens distortion
corrections (eqn. 3.55) are mathematically unstable beyond the central region of the
image format where the gradient of the distortion curve describing the departure from
the central perspective case is low. For sensors that capture a significant area of the
fisheye image circle, for example a DX sensor with a 10.5 mm fisheye lens or an FX
sensor with a 16 mm fisheye lens, it is necessary to apply the appropriate fisheye lens
model before using a radial distortion model such as eqn. (3.55), in order to account
for any remaining radial departures from the lens’s fisheye projection. Alternatively,
a pre-correction can be calculated by interpolation using a lens map function which
may be available from the lens manufacturer (see section 3.3.3.1).

Fisheye cameras and their applications are presented in sections 3.4.3.4 and
3.5.6.3. Aspects of fisheye lens calibration are discussed in section 7.3.3.2.



3.4 System components = 189

T P
o i/
T4
e
r : image plane
___c-sint orthographic

2c - tan(t/2) stereographic
c-tant central perspective

Fig. 3.70: Central projection and spherical projections.

3.4 System components

Electronic imaging systems use opto-electronic sensors for image acquisition instead
of photographic emulsions. They directly provide an electronic image that can be
digitized by suitable electronic components and transferred to a local processor or
host computer for measurement and analysis. Hence the term electronic imaging
system summarizes all system components involved in the generation of a digital
image (Fig. 3.71).

spatial / temporal spatial / temporal digital

/\/W sensing digitisation image processing

. Sig na! quantisation - processor
electro-magnetic processing analogue digital

radiation image signal image signal

I

Fig. 3.71: Electronic imaging system.

The electro-magnetic radiation (light) emitted or reflected by the object is imaged by
a sensor as a function of time (exposure time, integration time) and space (linear or
area sensing). After signal enhancement and processing an analogue image signal,
in the form of an electric voltage proportional to the amount of light falling on the
sensor, is produced. In a second stage, this signal is sampled by means of an analogue
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to digital converter in order to produce a digital image consisting of a series of discrete
numerical values for each light sensitive cell or pixel in the image. This digital image
can then be used for further processing such as discrete point measurement, or edge
detection.

As far as photogrammetry is concerned, where geometrically quantifiable images
are required, the development of digital imaging technology is closely related to the
technology of CCD image sensors (charge coupled devices). Invented at the beginning
of the 1970s, they dominated the digital imaging market and photogrammetric
applications for two decades and provided solutions to many imaging challenges.
More recently, CMOS opto-electronic imaging sensors have become the dominant
technology (see section 3.4.1.3). Manufactured with silicon fabrication processes
shared with CPU and memory chips, they are more affordably mass produced than
CCDs and dominate mobile phone and consumer imaging devices.

Although camera products are developing into a product continuum, the
following definitions of imaging systems are useful to characterise those typically
used in photogrammetry (status 2023):

— Mobile phone cameras:

Miniaturised consumer cameras integrated into mobile phones and delivering

still frames in standard image formats (JPEG, TIFF etc.) or digital video signals in

real-time (25 to 30 frames per second, fps) in standard video formats (AVI, MPEG
etc.). The number of pixels varies between ca. 780 x 580 pixels (corresponding to

older video standards such as PAL or NTSC), 1280 x 780 pixels (HD), 1980 x 1080

Pixel (Full HD) up to ca. 4096 x 2160 pixels (4K standard) and 8192 x 6144 (8K

standard). These systems are often equipped with multiple sensors and lenses in

the same device to give wide, normal and narrow angle fields of view.
— Action cameras:

Physically rugged and often waterproof cameras for the consumer market

delivering images between ca. 3000 x 2000 (6 Mpixel) and ca. 6000 x 4000 pixels

(24 Mpixel). Possible frame rates vary between ca. 10 fps and 0.5 fps depending

on sensor resolution and internal memory design. These range from ruggedized

fixed lens devices to units able to take interchangeable lenses. Examples include
products from GoPro, Nikon, Olympus and Canon.
— High-resolution digital cameras:

Cameras for professional photographic and technical applications with pixel

numbers between ca. 4000 x 3000 (12 Mpixel) and ca. 12000 x 8000 pixel (100

Mpixel). Most products use either imaging sensors in DX format (18 mm x 12 mm)

or FX full format (36 mm x24 mm). New developments already achieve

resolutions of 150 Mpixel up to 250 Mpixel for DSLR cameras. Specialized cameras
for digital aerial images can now deliver 350 Mpixel with a single sensor.
— High-speed cameras:

Digital high-speed cameras provide typical frame rates between 500 and 2000

fps. The number of pixels ranges from ca. 1000 x 1000 to ca. 2000 x 2000 pixels.
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The total recording time is limited by internal or external storage media. For
special cases very high frame rates of more than 1 million fps can be reached with
highly reduced image sizes.
— Scanning cameras:

Imaging systems which increase the pixel density or image format by sequential
scanning using a movable imaging sensor. Different principles (see section 3.5.5)
enable pixel numbers to be increased from ca. 3000 x 2300 pixels up to ca.
20000 x 20000 pixels. These are useful only for stationary imaging situations.
Scanning panorama cameras with CCD line sensors provide image sizes up to ca.
50000 x 10000 pixels.

3.4.1 Opto-electronic imaging sensors

3.4.1.1 Principle of CCD sensor

Solid-state imaging sensors are exclusively used in digital photogrammetric systems.
Solid state imaging sensors consist of a large number of light-sensitive detector
elements that are arranged as lines or arrays on semi-conductor modules (linear or
area sensor). Each detector element (sensor element) generates an electric charge that
is proportional to the amount of incident illumination falling on it. The sensor is
designed such that the charge at each individual element can be read out, processed
and digitized.

Fig. 3.72 illustrates the principle of a single sensor element. Incident light, in the
form of photons, is absorbed in a semi-conducting layer where it generates pairs of
electron holes (charged particles). The ability of a sensor element to create a number
ne of charged particles from a number np of incident photons is expressed by the
external quantum efficiency 1. The quantum efficiency depends on the sensor
material and wavelength of the incident light.

n Ny (3.86)

np

The negatively charged particles are attracted by a positive electrode. Charges are
accumulated in proportion to the amount of incident light until saturation or overflow
of charge is achieved. The positive electric field of the electrode is generated by a
potential well that collects the negative charge. In CCD sensors the detector elements
are formed from MOS capacitors (metal-oxide semiconductor).

Sensor elements can be arranged in lines or two-dimensional arrays. Fig. 3.73
shows the simplified layout of a CCD line sensor. Each active sensor element is
directly connected to a serial read-out register that is used to output the generated
charge. In contrast, bilinear CCD lines can be resampling into what is effectively a
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single line to provide increased resolution if the sensor elements are coupled in an
alternating manner with two read-out registers.

fol

> incidenting light

> é ;; (ﬂ—“i serial read-out register |
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Fig. 3.72: Conversion of photons into Fig. 3.73: Principle of simple and bilinear CCD line
charged particles. Sensors.

The core problem for such sensor arrangements is the transportation of the charge
stored in the sensor element to an output. Fig. 3.74 illustrates a typical solution for a
linear arrangement of sensor elements. Here, the individual sensor elements have
three electrodes, each connected to a different voltage phase. (In practice, most
sensors use a 4-phase technique.) The cumulated charge at electrode 1 cannot
discharge at time t;, since the voltage is high on electrode 1 and low on electrode 2. At
time ¢, the voltages on electrodes 1 and 2 are equal, forcing a portion of the charge
under electrode 1 to flow to electrode 2. At time ¢; the voltages of electrode 1 and 3
have a low value, i.e. the complete charge is shifted under electrode 2. The result of
the sequence is that the charge has shifted one electrode width to the right.

This process is continued until the charge reaches the read-out register at the end
of a line. There the charges are read out and transformed into electrical voltage
signals. The process is usually known as the CCD principle (charge coupled device),
or bucket-brigade principle. In addition to the CCD principle, the CMOS principle for
solid-state area sensors has also become well established (see section 3.4.1.3).

CCD line sensors can consist of more than 12 000 sensor elements. Given a sensor
spacing of ca. 4 pm to 20 pm, the length of line sensors can be more than 100 mm.
Line sensors are used in a wide variety of devices such as line cameras, fax machines,
photo scanners or digital copiers.
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Fig. 3.74: Principle of CCD charge transportation (red-rectangles = bucket-brigade device).

3.4.1.2 CCD area sensors

Area sensors, which have their sensor elements arranged in a two-dimensional
matrix, are almost exclusively used for photogrammetric image acquisition. In
comparison with line sensors, the construction of matrix sensors is more complicated
since the read-out process must be accomplished in two dimensions. Examples are
shown in Fig. 3.75.

mwwwwmquwn‘mmmmm

Nazg8are 17 18
(Red )

a) Frame-transfer sensor with imaging zone b) A full-frame transfer sensor with 4096 x 4096
and storage zone (Teledyne Imaging) elements on a single silicon wafer

Fig. 3.75: CCD matrix sensors.

There are three different arrangements of CCD matrix sensors that differ in layout and

read-out process: frame transfer, full-frame transfer and interline transfer.
Frame-transfer sensors (FT) consist of a light-sensitive, image-recording zone

and an equally sized, opaque storage zone (Fig. 3.75a). Each contains a parallel array
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of linear CCD sensors. After exposure, charges are moved along the arrays from the
imaging zone into the storage zone. From there they are rapidly shifted line by line
into the read-out register (Fig. 3.76a). Charge transfer from the imaging to the storage
zone can be carried out very rapidly, allowing high frame rates to be achieved since
the imaging zone can be exposed again whilst the previous image is written out of the
camera from the storage zone. Because imaging and storage zones are completely
separate areas, the elements in the imaging zone can be manufactured with almost
no gaps between them.

A simpler variation is given by the full-frame transfer sensor (FFT, Fig. 3.75b). It
consists only of an imaging zone from where charges are directly transferred into the
read-out register (Fig. 3.76b). During read-out the sensor may not be exposed. In
contrast to FT sensors, FFT sensors tend to show greater linear smearing effects since
longer transfer times are required. The simpler layout enables the construction of very
large sensor areas® with very small sensor elements (6—9 um size). Such layouts are
used for high-resolution digital cameras with typically more than 1000 x 1000 sensor
elements (manufacturers: e.g. Thomson, Kodak, Fairchild, and Dalsa). Note that the
number of FFT sensor elements is often based on integer powers of 2 (512 x 512,
1024 x 1024, 4096 x 4096).

a) Frame Transfer b) Full-Frame Transfer c) Interline Transfer
<<]—'-— serial output register <«— serial output register serial output register
storage zone HTTTH
sensor zone
11 B
sensor zone storage zone
[TTTTTTT I I ‘

parallel rallel
transfer direction transfer direction parallel
| | | | | | | | | | | transfer direction

el
QO

i

Fig. 3.76: Charge transfer for CCD sensors.

In contrast, interline-transfer sensors (IL) have a completely different layout. Here
linear CCD arrays, which are exposed to light, alternate with linear CCD arrays which
are opaque to light. Following exposure, charges are first shifted sideways into the
opaque arrays which act as transfer columns. Then they are shifted along the columns
to the read-out registers (Fig. 3.76c). The light sensitive area of the detector covers
only about 25% of the total sensor area, compared with 90 to 100% for FT sensors, i.e.

6 The production of very large CCD sensors is limited mainly by economic restrictions (production
numbers, quality) rather than technological restrictions.
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IL sensors are less light-sensitive. IL sensors with standard pixel numbers of about
780 x 580 pixels are mainly used for CCD video and TV cameras (especially colour
cameras). High-resolution IL sensors have up to 1900 x 1000 pixels. Since the whole
area of a CCD array sensor is exposed at once, the image acquisition can be regarded
as exposure by a global shutter (section 3.4.2.2).

3.4.1.3 CMOS matrix sensors

CMOS technology (complementary metal oxide semi-conductor) is a widely used

technique for the design of computer processors and memory chips. It is increasingly

used in the manufacture of opto-electronic imaging sensors, since it has significant

advantages over CCD technology:

— only 1/10 to 1/3 power consumption;

— lower manufacturing costs;

directly addressable sensor elements;

acquisition of arbitrary image windows;

frame rates of more than 2000 frames per second (see section 3.5.3);

— can be provided with on-chip processing, e.g. for sensor control or image
processing;

—  high dynamic range and low image noise (see section 3.4.1.9).
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Fig. 3.77: Architecture of a simple 2D CMOS sensor (after Hauschild 1999).

CMOS imaging sensors are currently available with up to 150 million sensor elements.
In contrast to CCD sensor elements comprising linked Metal Oxide Semiconductor
(MOS) capacitors, CMOS detectors are based on photo diodes or transistor elements
which are widely used in the construction of both integrated circuit chips and
analogue detectors. They are therefore less costly to produce and can benefit from
advances in fabrication of the diodes and transistors.
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In a CMOS sensor, the charge generated by the incident light is directly processed
by an integrated amplifier and digitizer unit attached to the pixel element. Individual
sensor elements can be directly addressed for both readout and processing. This then
avoids the need for sequential internal charge transfer which ensures that the sensor
is less sensitive to blooming and transfer loss. Fig. 3.77 illustrates the basic
architecture of a CMOS matrix sensor. Due to the presence of additional electronic
components, the CMOS sensor's ratio of light sensitive surfaces to total surface area
(fill factor) is smaller than for FFT CCD sensors. CMOS sensors are therefore generally
equipped with microlenses (section 3.4.1.5). Sensor structure is layered with the latest
generation of sensors having light sensitive elements in the lowest fabrication layer.
The sensor is then flipped over in the camera so that light from the lens directly
illuminates the back side of the sensor. Known as back illumination, this enables
higher fill factors and efficiency because the electronic circuits do not then interfere
the incoming light. The layer structure can also be used to provide multiple sensing
layers, each responsive to a selected spectral band (see section 3.4.1.6).

CMOS sensor differences include, among others, the exposure and readout
processes. Here it is usual to distinguish between global shutter and rolling shutter
principles which function in a similar way to inter-lens and focal-plane shutters.
Different shutter details are given in section 3.4.2.2.

3.4.1.4 Sensor formats

According to eqn. (2.2) the physical format of an imaging sensor is derived from the
number of pixels and the spacing between them. From a photogrammetric or
photographic point of view, larger sensor formats are preferred since they generate
less noise and are more sensitive to light. In addition, larger formats are useful for
generating larger image scales (see section 3.3.1.1).

Table 3.5: Typical image formats of video cameras.

Sensor size Diagonal Diagonal Number of Size of sensor Example

(typical) (tube) sensor pixels  element [pm]

[mm] [inch] [mm] (typical)

3.7x2.7 1/4" 4.6 656 x 490 5.6 x5.6 BaumerVLG02
4.9x3.6 1/3" 6.1 1296 x 966 3.75x3.75 Baslerace A1300
6.1x4.9 1/2" 7.8 1280 x 1024 4.8 x 4.8 1DS UI3140
8.5x7.1 2/3" 11.1 2452 x 2056 3.45x3.45 AVT Manta G-505
9x6.7 2/3" 11.2 1392 x 1040 6.45x6.45 Ximea ICX285
12.5x9.97 1" 16 3376 x2704 3.69x3.69 Grasshopper39.1

18.1x13.6 4/3" 22.7 3296 x 2472 5.5x5.5 AVT Prosilica GT 3300
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Traditionally, sensor formats for video cameras are given in inches. With respect to
old vidicon (tube) cameras, the sensor formats vary between 4" and 1". For the image
formats in Table 3.5, pixel sizes range from around 4 pm (V4" cameras) to around 16 pm
(1" cameras) and with sensors having rectangular or square pixels.

For digital consumer cameras the following are common sensor formats (Fig.

3.78):

Full format (FX):

Sensor formats which are close to the size of analogue 35mm film
(36mm x 24mm) and with aspect ratio 4:3. In full format, lenses with standard
focal lengths generate imaging angles that are similar to 35mm cameras, e.g.
f=50mm for a normal lens (see section 3.4.3.2).

APS and DX formats:

APS formats are defined with respect to earlier APS film formats which were
21 mm x 14 mm up to 24 mm x 16 mm for APS-C (also known as DX) and up to
28.7 mm x 19.1 mm for APS-H, with aspect ratio 3:2. Here crop factors are of the
order of 1.5 to 1.6x when comparing the same lens used on an FX format sensor.
Four Thirds:

The Four-Thirds format refers to sensors with a diagonal of around 4/3" and
dimensions of around 18 mm x 13 mm with aspect ratio 4:3, i.e. they are
equivalent to half-frame sensors. The newer Micro-Four-Thirds standard has the
same format but a smaller flange focal distance (see section 3.4.2.4), hence these
kind of sensors are especially suited for high-resolution compact cameras.

HD and other formats:

In addition to the standard formats above, many new digital cameras offer
variable image formats such as a 16:9 aspect ratio. With a sensor size of, for
example, 18.7 mm x 10.5 mm, these correspond to the HD and Full-HD formats
offered by video cameras. In addition, various special forms are available, e.g.
with square sensor formats.

] full format
[] Aps-Cc

24 mm [ [ 169

1 1/4

36 mm

Fig. 3.78: Image formats of array sensors (selection).

Technical developments in recent years indicate that future CCD and CMOS array
sensors will have an increasing number of pixels and larger formats and will deliver
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improved signal to noise ratios as mass-market technology delivers consumer-driven
improvements in image quality.

3.4.1.5 Microlenses

Current sensor designs typically employ microlens arrays in order to increase the fill
factor of each pixel. A microlens array consists of a series of lens elements, each of
which is designed to collect the light falling on a region approximating to the area of
a single pixel and to direct that light to the smaller light-sensitive region of the actual
sensor element (Fig. 3.79, Fig. 3.80). Whilst microlenses significantly enhance pixel
fill factor, they typically have the limitation of only being able to receive light over a
+30-degree range of angles. This performance can limit the use of such arrays for
extreme wide angle recording unless special optics are used. Modern lens designs for
DSLR cameras reflect this requirement utilising optical configurations that produce
less divergent emergent rays than earlier designs which were developed to optimize
performance with legacy photographic film technologies.

microlens

spacer

colour filter

support layer

| [ [ H metal B mask
photo diode

Fig. 3.79: Example of a microlens structure.

Fig. 3.80: Microlens array (raster electron microscope, 8000x magnification).

3.4.1.6 Colour cameras
In order to create true colour images, incident light must be separated into three
spectral bands, typically red, green and blue.
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Table 3.6: Features of colour separating methods.

3-chip RGB Colour (mosaic)  True colour
camera filter mask sensor
Number of sensors 3 1 1 1
Number of images 1 3 1 1
Number of video signals 3 1 1 1
Dynamic scenes yes no yes yes
Resolution full full half full
Colour convergency adjustment yes interpolation yes

Separation can be performed by four common methods (summarized in Table 3.6):

Parallel or 3-chip method:

A prism system is used to project incident light simultaneously onto three CCD
sensors of the same design. Each sensor is located behind a different colour filter
so that each registers the intensity of only one colour channel (Fig. 3.81). Full
sensor resolution is retained but exact alignment is required in order to avoid
colour shifts. The camera delivers three separated analogue image signals that
must be temporally synchronized and digitized in parallel. The principle is used
for professional colour cameras, most of which are used either in TV studios or
by mobile film crews.

,«——colour filter

CCD green

anti-aliasing
low-pass filter

Fig. 3.81: Schematic optical diagram of a 3-CCD or 3-chip camera.

Time-multiplex or RGB filter method:

Colour separation is performed by the sequential recording of one sensor
whereby for each image a primary colour filter is introduced into the path of light.
Full sensor resolution is preserved, but dynamic scenes cannot be imaged. The
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method can be applied to both matrix sensor cameras and scanning cameras. The
camera delivers a single image signal which must be filtered temporally in order
to generate a digital RGB combination from the single colour bands.
—  Space-multiplex or colour-mask methods:

A filter mask is mounted in front of the CCD matrix so that individual sensor
elements react to only one colour. Strip or mosaic masks are used with the Bayer
pattern mosaic mask being the most common. In comparison with the previous
methods, geometric resolution will decrease since the output of three or more
(typically four) sensor elements are combined to form each colour pixel (Fig.
3.82). The principle enables the recording of moving objects and its cost
effectiveness means that it used for practically all consumer digital camera
systems.
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Fig. 3.82: Strip and mosaic masks.

When using a Bayer pattern, RGB colour values are calculated by interpolating
neighbouring grey values. Because there are twice as many green as red or blue
pixels, different calculation methods are used as follows:
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Fig. 3.83: Different combinations used in Bayer colour interpolation.

Calculation of red and blue components for a green pixel (Fig. 3.83a und b):
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R +R B +B
__1 2 B _ 1 2 (3.87)

green 2 green 2

Calculation of the blue component for a red pixel and the red component for a
blue pixel (Fig. 3.83c und d):

:B1+B2+B3+B4 R :R1+R2+R3+R4

red 4 red 4 (3 ° 88)

Calculation of the green component for red and blue pixels (Fig. 3.83e and f):

(G,+G,)/2 for [R —R,|<|R,-R,
Gred: (G2+G4)/2 fOI' Rl_R3 > RZ_R4
(G,+G,+G,+G,)/2 for R -R,|=|R,-R,

(3.89)
(G,+G,)/2 for |B,-B,|<|B,-B,
G,,=1(G,+G,)/2 for |B,~B,|>|B,-B,
(G,+G,+G,+G,)/2 for |B -B,|=|B,-B,

There are additional interpolation functions which differ in their operation with
regard to edge sharpness, colour fringes, noise correction and speed of operation.
True colour sensor:

Foveon manufactures a CMOS-based, high-resolution, single-chip, true colour
sensor consisting of three layers that are each sensitive to one primary colour
(Fig. 3.84). It utilizes the property of silicon that light of different wavelengths
penetrates to different depths. Hence, this sensor provides the full resolution of
a usual CMOS sensor with true-colour registration capability.

Fig. 3.84: Simplified structure of the Foveon X3 RGB sensor.
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3.4.1.7 Sensor architecture

A typical imaging sensor has a structure comprising separate layers which are
sandwiched together (Fig. 3.85). The lowest level is a layer of light-sensitive elements
(photodiodes). The Bayer colour mask is attached on top of this, followed by the
microlens array. Next comes a low-pass filter to supress the aliasing effect (section
3.1.5.1). The top layer consists of a filter for blocking near infrared radiation (section
3.4.1.9).

NIR blocking filter

low-pass filter
microlenses

Bayer mask

sensor elements

Fig. 3.85: Layered construction of a typical imaging sensor.

In principle, each layer is an optical component that affects the imaging rays and
hence image generation. It is therefore possible that this causes local geometric
imaging errors which cannot be modelled by standard methods of interior
orientation.

3.4.1.8 Geometric properties

3.4.1.8.1 Resolving power

The theoretical resolving power of monochrome imaging sensors is limited by two

factors:

— detector spacing As' (distance between sensor elements) and scanning theorem
(Nyquist frequency fv);

— detector size Ad' (aperture size) and MTF (limiting frequency fo).

According to section 3.1.6.2, there are different theoretical resolution limits for FT,
FFT and IL sensors due to their different arrangements of sensor elements.
Furthermore, for all types, image quality can differ in both x and y directions where
rectangular, rather than square, light sensitive regions have been used (Table 3.7).
For FFT sensors, or progressive-scan sensors (no interlaced mode), with square
detector elements, resolving power can be expected to be equal in both directions.
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IL sensors have approximately the same detector spacing as FT sensors. However,
each pixel is split into a light sensitive detector and a shift register. Hence, the
resulting theoretical resolving power is four times higher than the Nyquist frequency,
and about two times higher than for FT and FFT sensors.

In practice, theoretical resolving power cannot be achieved unless the sampling
interval is small enough to push the Nyquist frequency up beyond the effective
resolution limit (cut-off) for that MTF. Normally the best that can be achieved is a full-
fill system, for example the Kodak FFT in Table 3.7, where the Nyquist frequency is
about half the theoretical resolution. In practical systems, frequencies higher than
the Nyquist frequency are filtered out in order to avoid aliasing and micro lenses are
used in order to provide pixel fill factors close to unity. Micro scanning systems
(section 3.5.5.1) are able to achieve closer to theoretical resolving power since they
subsample by moving the detector in fractions of a pixel between images.

New sensors with very small detector spacing (e.g. the Kodak KAC-05020 used in
mobile phone cameras, see last column in Table 3.7) have a theoretically very high
resolving power. However, these sensors also have a lower sensitivity to light and
higher image noise. In order to match the pixel dimensions with an appropriate
optical resolution, very high-quality lenses are required (see section 3.1.5.1 for
comparison). The advantage of the small detector size therefore lies principally in the
small dimensions of the imaging sensor.

Table 3.7: Resolving power of different CCD sensors.

FT Valvo NXA FFT Kodak IL Sony CMOS Kodak
Detector spacing in x As'x [um] 10.0 9.0 11.0 1.4
Detector spacing iny As'y [pm] 7.8 9.0 11.0 1.4
Detector size in x Ad 'x [pm] 10.0 9.0 5.5 1.4
Detector sizeiny Ad'y [pm] 15.6 9.0 5.5 1.4
Nyquist frequency in x fax [lp/mm] 50 55 45 357
Nyquist- frequency iny fay [lp/mm] 64 55 45 357
Theoretical resolution in x  fox[lp/mm] 100 111 180 714
Theoretical resolutioniny  foy[lp/mm] 64 111 180 714

In comparison to photographic emulsions, recent opto-electronic sensors have equal
or even better resolutions but, at the same time, usually much smaller image formats.
A comparable resolution is achieved with sensor element sizes of about 7 pm or less.

In the digital photographic industry, alternative image quality measures are
currently in use. The value MTF50 defines the spatial frequency in lp/mm where the
MTF is equal to 50%. With line widths per picture height (LW/PH) digital cameras are
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classified as a function of line width instead of line pairs. LW/PH is equal to 2 x Ip/mm
X (picture height in mm). The term cycles or line pairs per pixel (c/p or 1p/p) is used to
give an indicator of the performance of a pixel.

3.4.1.8.2 Geometric accuracy
The geometric accuracy of matrix sensors is mainly influenced by the precision of the
position of sensor elements. Due to the lithographic process used to manufacture
semi-conductors, CCD matrix sensors have regular detector positions of better than
0.1-0.2 um, corresponding to 1/60 to 1/100 of the size of a sensor element. This does
not mean that the resulting image can be evaluated to this accuracy. Several
electronic processing steps are performed between image acquisition and digital
storing that may degrade image geometry and contrast.

An additional effect is given by the possible lack of flatness of the sensor surface.
For sensor areas of 1500 x 1000 pixels departures of up to 10 pum from a plane surface
have been demonstrated. Depending on the viewing angle, a perpendicular
displacement of a sensor element causes a corresponding lateral shift in the image
(Fig. 3.86). If there is a non-systematic lack of flatness in sensor surface, the usual
approaches to distortion correction fail (additional parameters). A suitable correction
model based on finite elements has been presented in section 3.3.4.4. Fig. 3.87 shows
deformations of an imaging sensors computed by this approach.

Ar'=Ah'—=Ah'tant' (3.90)

r
z

reference plane P Ah'
r—/ sensor surface T

—{ AP —

Fig. 3.86: Lateral displacement for an uneven sensor surface.

According to (3.90), image displacement is greater given large incident ray angles to
the sensor from shorter focal lengths z' (wide angle lenses), increasing distance r'
from the optical axis and greater lack of flatness Ah'.
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Fig. 3.87: Sensor deformations (red) after finite element calibration (Kodak DCS460).

3.4.1.8.3 Warm-up effects

Imaging sensors and on-board electronics require a warm-up period of up to 2 hours.
During warm up, image coordinate displacements of several tenths of a pixel have
been shown to occur. Fig. 3.88 shows an example of drift measured under controlled
laboratory conditions. The figure shows coordinate differences extracted from five
images of a warm-up time series. In the x direction, small shifts only can be observed
which, after 10 minutes, are below the measuring uncertainty of around +0.02 pixel.
In contrast, in the y direction a drift of about 0.15 pixel can be observed within the
first 20 minutes. Part of this effect is caused by temperature increases on mechanical
components, but electronic devices inside the camera also contribute as they warm
up. High performance photogrammetric systems therefore require both calibration
and image mage acquisition once a steady thermal and mechanical state has been
reached.

0.05

{4 |
-0.15 : : minutes
0 10 20 30 40 50 60

Fig. 3.88: Drift of measured sensor coordinates during warm-up.

3.4.1.9 Radiometric properties
Light falling onto an imaging sensor is either reflected on the sensor surface,
absorbed within the semi-conducting layer, or transmitted