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Preface 

The first edition of “Close Range Photogrammetry” was published in 2006 by Whittles 
Publishing. This was a translated and extended version of the original German book 
“Nahbereichsphotogrammetrie” and was well received by the large international 
community of photogrammetrists, metrologists and computer vision experts. This 
success was further recognized by the International Society of Photogrammetry and 
Remote Sensing (ISPRS) which awarded the authors the then newly inaugurated Karl 
Kraus Medal for excellence in authorship (2010).  

The second and third editions, entitled “Close-Range Photogrammetry and 3D 
Imaging”, were published by de Gruyter in 2014 and 2019. They were based on the 
latest German versions of “Nahbereichsphotogrammetrie” but extended to reflect 
new methods and systems for 3D imaging, particularly in the field of image analysis. 
Currently also, versions in Russian and Arabic are available and the preparation of a 
Spanish version is in progress.  

Due to the rapid pace of development in our field, there is a constant need to 
review the progress made in our technologies and their application. Hence, only four 
years after edition 3, this current 4th edition again incorporates state-of-the-art 
updates on diverse topics such as colour processing. There is also new content, for 
example covering developments in 3D sensors, mobile scanning, metrology systems, 
Augmented and Virtual Reality (AR/VR) and applications. 

Three-dimensional information acquired from imaging sensors is widely used 
and accepted. The field of photogrammetry, optical 3D metrology and 3D imaging is 
still growing, especially in areas which have no traditional link to photogrammetry 
and geodesy. However, whilst 3D imaging methods are established in many scientific 
communities, photogrammetry is still an engineering-driven technique where quality 
and accuracy play an important role.  

It is the expressed objective of the authors to appeal to non-photogrammetrists 
and experts from many other fields in order to transfer knowledge and avoid re-
invention of the wheel. The structure of the book therefore assumes different levels of 
pre-existing knowledge, from beginner to scientific expert. For this reason, the book 
also presents a number of fundamental techniques and methods in mathematics, 
adjustment techniques, physics, optics, image processing and others. Although this 
information may also be found in other textbooks, the objective here is to create a 
closer link between different fields and present a common notation for equations and 
parameters.   

The authors would also like to express their gratitude to the many generous 
colleagues who have helped complete the work. In addition to all those who have 
already contributed to the previous editions, on this occasion we would particularly 
like to thank: Maria Chizhova, Matevz Domajnko, Francesco Fassi, Andreas 
Georgopoulos, Ute Greve-Luhmann, Albrecht Grimm, Heidi Hastedt, Oliver Kahmen, 
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Paul Kalinowski, Thomas Kersten, Peter Krzystek, Ralf Lichtenberger, Claudio 
Limena, Raimund Loser, Michael Lösler, Fabio Menna, Otto Naber, Simon Nietiedt, 
Enno Petersen, Heinz-Jürgen Przybilla, Fabio Remondino, Robin Rofallski and Till 
Sieberth. 

As always, we are grateful to all the companies, universities and institutes which 
have provided illustrative material and other valuable technical information. Our 
publisher, de Gruyter, deserves a special mention for their excellent cooperation in 
bringing all the contributions together in this updated work. Finally, of course, 
thanks go to our families and colleagues for their patience and support during many 
months of translation, writing and editing.  

 
 

Oldenburg /London/Guernsey, June 2023  
 

Thomas Luhmann, Stuart Robson, Stephen Kyle, Jan Boehm 
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 Introduction 

. Overview 

.. Content 

Chapter 1 provides an overview of the fundamentals of photogrammetry, with 
particular reference to close-range measurement. After a brief discussion of the 
principal methods and systems, typical areas of applications are presented. The 
chapter ends with a short historical review of close-range photogrammetry.  

Chapter 2 deals with mathematical basics. These include the definition of some 
important coordinate systems and the derivation of geometric transformations which 
are needed for a deeper understanding of topics presented later. In addition, a 
number of geometrical elements important for object representation are discussed. 
The chapter concludes with a summary of least squares adjustment and statistics. 

Chapter 3 is concerned with photogrammetric image acquisition for close-range 
applications. After an introduction to physical basics and the principles of image 
acquisition, geometric fundamentals and imaging models are presented. There follow 
discussions of digital imaging equipment as well as specialist areas of image 
recording. The chapter ends with a summary of illumination techniques and some 
general targeting principles. 

Analytical methods of image orientation and object reconstruction are presented 
in Chapter 4. The emphasis here is on bundle triangulation. The chapter also presents 
methods for dealing with single, stereo and multiple image configurations based on 
measured image coordinates, and concludes with a review of panoramic and multi-
media (underwater) photogrammetry.  

Chapter 5 brings together many of the relevant methods of digital 
photogrammetric image analysis. Those which are most useful to dimensional 
analysis and three-dimensional (3D) object reconstruction are presented, in 
particular methods for feature extraction and image matching. 

Photogrammetric systems developed for close-range measurement are discussed 
in Chapter 6. As targeting is an integral part of the system, some detailed targeting 
concepts are first presented, followed by solutions for scale and reference system 
definition. The systems themselves are classified into interactive systems, tactile and 
laser-based measuring systems, systems for the measurement of points and surfaces, 
systems for dynamic processes, systems on mobile platforms such as drones and, 
finally, 3D visualization and projection systems. 

Chapter 7 discusses imaging project planning and quality criteria for practical 
measurement tasks. After an introduction to network planning and optimization, 
quality criteria and approaches to accuracy assessment are discussed. The chapter 
concludes with strategies for camera and system calibration.  
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Finally, Chapter 8 uses case studies and examples to demonstrate the potential 
for close-range photogrammetry in fields such as architecture, heritage conservation, 
construction, manufacturing industry, medicine and science. 

.. References 

Relevant literature is directly referenced within the text in cases where it is highly 
recommended for the understanding of particular sections. In general, however, 
further reading is presented in Chapter 9 which provides an extensive list of 
thematically ordered literature. Here each chapter in the book is assigned a structured 
list of reference texts and additional reading. Efforts have been made to suggest 
reference literature which is easy to access. In addition, the reader is advised to make 
use of conference proceedings, journals and the webpages of universities, scientific 
societies and commercial companies for up-to-date information.  

. Fundamental methods 

.. The photogrammetric process 

Photogrammetry encompasses methods of image measurement and interpretation in 
order to derive the shape and location of an object from one or more photographs of 
that object. In principle, photogrammetric methods can be applied in any situation 
where the object to be measured can be photographically recorded. The primary 
purpose of a photogrammetric measurement is the three-dimensional reconstruction 
of an object in digital form (coordinates, point clouds, 3D models and derived 
geometric elements) or graphical form (images, drawings, maps and 3D 
visualisations). The photograph or image represents a store of information which can 
be re-accessed at any time. 

   

Fig. 1.1: Photogrammetric images. 
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Fig. 1.1 shows examples of photogrammetric images. The reduction of a three-
dimensional object to a two-dimensional image implies a loss of information. In the 
first place, object areas which are not visible in the image cannot be reconstructed 
from it. This not only includes hidden parts of an object such as the rear of a building, 
but also regions which cannot be interpreted due to lack of contrast or size 
limitations. Whereas the position in space of each point on the object may be defined 
by three coordinates, there are only two coordinates available to define the position 
of its image. There are geometric changes caused by the shape of the object, the 
relative positioning of camera and object, perspective imaging and optical lens 
defects. Finally, there are also radiometric (colour) changes since the reflected 
electromagnetic radiation recorded in the image is affected by the light source, the 
transmission media (air, glass) and the light-sensitive recording medium. 

light source

sensor

media

processing
reconstruction

object

model  

Fig. 1.2: From object to image. 

For the reconstruction of an object from images it is therefore necessary to describe 
the optical process by which an image is created. This includes all elements which 
contribute to this process, such as light sources, properties of the surface of the 
object, the medium through which the light travels, sensor and camera technology, 
image processing, and further processing (Fig. 1.2). 

Methods of image interpretation and measurement are then required which 
permit the identification of an object by its form, brightness or colour distribution in 
the image. For every image point, values in the form of radiometric data (intensity, 
grey value, colour value) and geometric data (position in image) can then be 
obtained. Optionally, this requires appropriate geometric and radiometric calibration 
procedures.  

From these measurements and a mathematical transformation between image 
and object space, the object can finally be modelled. 

Fig. 1.3 simplifies and summarizes this sequence. The left-hand side indicates the 
principal instrumentation used whilst the right hand side indicates the methods 
involved. Together with the physical and mathematical models, human knowledge, 
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experience and skill play a significant role. They determine the extent to which the 
reconstructed model corresponds to the imaged object or fulfils the task objectives. 

image acquisition

image measurement

object reconstruction
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human
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calibration

 

Fig. 1.3: The photogrammetric process: from object to model. 

.. Aspects of photogrammetry 

Because of its varied application areas, close-range photogrammetry has a strong 
interdisciplinary character. There are not only close connections with other 
measurement techniques but also with fundamental sciences such as mathematics, 
physics, information sciences and biology. 

Close-range photogrammetry also has significant links with aspects of graphics 
and photographic science, for example computer graphics and computer vision, 
digital image processing, computer aided design (CAD), augmented and virtual 
reality (AR/VR) , geographic information systems (GIS) and cartography.  

Traditionally, there are further strong associations of close-range 
photogrammetry with the techniques of surveying, particularly in the areas of 
adjustment methods and engineering surveying. With the increasing application of 
photogrammetry to industrial metrology and quality control, links have been created 
in other directions, too. Furthermore, there is increasing demand for optical 3D 
measurement systems in rapidly developing fields such as autonomous vehicles and 
medical technology. 

Fig. 1.4 gives an indication of the relationship between size of measured object, 
required measurement accuracy and relevant technology. Although there is no hard-
and-fast definition, it may be said that close-range photogrammetry usually applies 
to objects ranging from about 0.1 m to 200 m in size, with accuracies under 0.1 mm at 
the smaller end (manufacturing industry) and around 1 cm at the larger end (AEC -
architecture, engineering and construction). 
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Fig. 1.4: Relationship between measurement methods and object size and accuracy 
(The extent of the named methods and application areas is indicative only).  

Optical methods using light as the information carrier lie at the heart of non-contact 
3D measurement techniques. Measurement techniques using electromagnetic waves 
may be subdivided in the manner illustrated in Fig. 1.5. Techniques based on light 
waves are as follows:  
– Triangulation techniques:  

Photogrammetry (single, stereo and multiple imaging), Structure-from-Motion 
(SfM) and vision-based Simultaneous Localisation and Mapping (Visual SLAM), 
structured light (light section procedures, fringe projection, phase measurement, 
moiré topography), focusing methods, shadow methods, etc. 

– Interferometry:  
Optically coherent time-of-flight measurement, holography, speckle 
interferometry, coherent radar. 

– Time-of-flight measurement:  
Distance measurement by optical modulation methods, pulse modulation, etc. 

The clear structure of Fig. 1.5 is blurred in practice since multi-sensor and hybrid 
measurement systems utilize different principles in order to combine the advantages 
of each. 
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Fig. 1.5: Non-contact 3D measuring methods. 

Photogrammetry can be categorized in a multiplicity of ways: 
 

– By camera position and object distance h: 

– satellite photogrammetry: processing of remote sensing and  
 satellite images, h > ca. 200 km 
– aerial photogrammetry: processing of aerial photographs, h > ca. 300 m 
– UAV photogrammetry: processing of aerial photographs from drones,  
 h < ca. 120 m 
– terrestrial photogrammetry: measurements from a fixed terrestrial location  
– close-range photogrammetry: imaging distance h < ca. 300 m 
– underwater photogrammetry: object recording in or through water  
– macro photogrammetry: image scale > 1 (microscope imaging) 
– mobile mapping: data acquisition from moving vehicles,  
 h < ca. 100 m 

– By method of recording and processing: 

– plane table photogrammetry: graphical evaluation (until ca. 1930) 
– analogue photogrammetry: analogue cameras, opto-mechanical  
 measurement systems (until ca. 1980) 
– analytical photogrammetry: analogue images, computer-controlled measurement 
– digital photogrammetry: digital images, computer-controlled measurement 
– videogrammetry: digital image acquisition and measurement 
– panoramic photogrammetry: panoramic imaging and processing 
– line photogrammetry: analytical methods based on straight lines and  
 polynomials 
– multi-media photogrammetry: recording through media of different refraction 
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– By number of measurement images: 

– single-image photogrammetry: single-image processing, mono-plotting,  
 rectification, orthophotos 
– stereo photogrammetry: dual image processing, stereoscopic measurement 
– multi-image photogrammetry: n images where n>2, bundle triangulation 

– By availability of measurement results: 

– offline photogrammetry: sequential, digital image recording, separated in time  
 or location from measurement 
– online photogrammetry: simultaneous, multiple, digital image recording,  
 immediate measurement 
– real-time photogrammetry: recording and measurement completed within a  
 specified time period particular to the application 

– By application or specialist area: 

– architectural photogrammetry: architecture, heritage conservation, archaeology 
– engineering photogrammetry: general engineering (construction) applications 
– industrial photogrammetry: industrial (manufacturing) applications 
– forensic photogrammetry: applications to diverse legal problems 
– shape from stereo: stereo image processing (computer vision) 
– structure-from-motion: multi-image processing (computer vision)  

.. Image-forming model 

Photogrammetry is a three-dimensional measurement technique which uses central 
projection imaging as its fundamental mathematical model (Fig. 1.6). Shape and 
position of an object are determined by reconstructing bundles of rays in which, for 
each camera, each image point P', together with the corresponding perspective centre 
O', defines the spatial direction of the ray to the corresponding object point P. 
Provided the imaging geometry within the camera and the location of the imaging 
system in object space are known, then every image ray can be defined in 3D object 
space. Since photogrammetry is basically a method for measurement of spatial 
directions (angles), i.e. it measures shape not scale, at least one absolute scale 
information in object space must therefore be given, e.g. by a measured distance or 
by control points with known coordinates. 

From the intersection of at least two corresponding (homologous), spatially 
separated image rays, an object point can be located in three dimensions. In stereo 
photogrammetry two images are used to achieve this. In multi-image 
photogrammetry the number of images involved is, in principle, unlimited. 
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Fig. 1.6: Principle of photogrammetric measurement. 

The interior orientation parameters describe the internal geometric model of a camera. 
Photogrammetric usage, deriving from German, applies the word to groups of camera 
parameters. Exterior (extrinsic) orientation parameters incorporate this angular 
meaning but extend it to include position. Interior (intrinsic) orientation parameters, 
which include a distance, two coordinates and a number of polynomial coefficients, 
involve no angular values. The use of the terminology here underlines the connection 
between two very important, basic groups of parameters.  
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Fig. 1.7: Pinhole camera model. 

With the model of the pinhole camera as its basis (Fig. 1.7), the most important 
reference location is the perspective centre O, through which all image rays pass. The 
interior orientation defines the position of the perspective centre relative to a 
reference system fixed in the camera (image coordinate system), as well as departures 
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from the ideal central projection (image distortion). The most important parameter of 
interior orientation is the principal distance, c, which defines the distance between 
image plane and perspective centre (see section 3.3.2).  

A real and practical photogrammetric camera will differ from the pinhole camera 
model. The necessity of using a relatively complex objective lens, a camera housing 
which is not built for stability and an image recording surface which may be neither 
planar nor perpendicular to the optical axis of the lens will all give rise to departures 
from the ideal imaging geometry. The interior orientation, which will include 
parameters defining these departures, must be determined by calibration for every 
camera (see section 3.3). 

A fundamental property of a photogrammetric image is the image scale or photo 
scale. The photo scale factor m defines the relationship between the object distance, 
h, and principal distance, c. Alternatively it is the relationship between a distance, X, 
parallel to the image plane in the object, and the corresponding distance in image 
space, x': 

'
h Xm
c x

= =  (1.1) 

Since every object point in 3D space is, in general, at a different distance to the 
camera, an image does not have a uniform image scale. Only in the special case of an 
orthogonal view above a planar object, is the image scale equal across the whole 
image. In many applications, however, a mean image scale is given for the entire 
image, e.g. for planning purposes or accuracy estimates. 

The image scale is in every case the deciding factor in resolving image details, 
defined by the ground sample distance (GSD) which is derived from the pixel spacing 
∆s' in the camera:  

'GSD m Δs= ⋅  (1.2) 

The image scale also determines the photogrammetric measurement accuracy, since 
any measurement error in the image is multiplied in the object space by the scale 
factor (see section 3.3.1).  

The exterior orientation parameters specify the spatial position and orientation of 
the camera in a global coordinate system. The exterior orientation is described by the 
coordinates of the perspective centre in the global system and, commonly, three 
suitably defined angles expressing the rotation of the image coordinate system with 
respect to the global system (see section 4.2.1). The exterior orientation parameters 
are calculated indirectly, after measuring image coordinates of well identified object 
points. 

Every measured image point corresponds to a spatial direction from projection 
centre to object point. The length of the direction vector is initially unknown, i.e. 
every object point lying on the line of this vector generates the same image point. In 
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other words, although every three-dimensional object point transforms to a unique 
image point for given orientation parameters, a unique reversal of the projection is 
not possible. The object point can be located on the image ray, and thereby absolutely 
determined in object space, only by intersecting the ray with an additional known 
geometric element such as a second spatial direction or an object plane. 

Every image generates a spatial bundle of rays, defined by the imaged points and 
the perspective centre, in which the rays were all recorded at the same point in time. 
If all the bundles of rays from multiple images are intersected as described above, a 
dense network is created. For an appropriate imaging configuration, such a network 
has the potential for high geometric strength. Using the method of bundle 
triangulation any number of images (ray bundles) can be simultaneously oriented, 
together with the calculation of the associated three-dimensional object point 
locations (Fig. 1.6, Fig. 1.8, see section 4.4).  

For absolute scaling of a photogrammetric network, at least one known distance 
in object space must be known, e.g. directly from measured distances or calibrated 
baselines between cameras, or derived from coordinates of known reference points.  

 

Fig. 1.8: Bundle of rays from multiple images. 

.. Photogrammetric systems and procedures  

... Digital system 
With few exceptions, photogrammetric image recording today uses digital cameras 
supported by image processing based on methods of visual and digital image 
analysis. A closed digital system is therefore possible which can completely measure 
an object directly on site and without any significant time loss between image 
acquisition and delivery of results (Fig. 1.9). 
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By using suitably targeted object points and automatic pattern recognition, 
complex photogrammetric tasks can be executed fully automatically, hence 
eliminating the need for manual image measurement, orientation and processing. 
This approach is particularly important in industrial applications where, in the first 
instance, 3D coordinates of discrete points are required. The measurement of free-
form surfaces through the use of dense point clouds is performed by stereo or multi-
image matching of textured object areas. By adopting the method of structure-from-
motion (SfM), arbitrary configurations of images can be oriented fully automatically. 
In contrast, the measurement of linear object structures (e.g. for creating maps or 
drawings) largely remains a visual, interactive process.  

Digital image recording and processing offer the possibility of a fast, closed data 
flow from taking the images to presenting the results. Two general procedures are 
distinguished here. Offline photogrammetry uses a single camera with measurement 
results generated after all images have first been recorded and then evaluated 
together. Online photogrammetry records simultaneously using at least two cameras, 
with immediate generation of results. If the result is delivered within a certain 
process-specific time period, the term real-time photogrammetry is commonly used.  

targeting
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post-processing

FIELD

USER

additional meas.

 

Fig. 1.9: Digital photogrammetric system. 

Automation and short processing cycles enable a direct integration with other 
processes where decisions can be made on the basis of feedback of the 
photogrammetric results. Digital systems are therefore critical to the application of 
photogrammetry in complex real-time processes, in particular industrial 
manufacturing and assembly, robotics and medicine where feedback with the object 
or surroundings takes place. 

When imaging scenes with purely natural features, without the addition of 
artificial targets, the potential for automation is much lower. An intelligent 
evaluation of object structures and component forms demands a high degree of visual 
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interpretation which is conditional on a corresponding knowledge of the application 
and further processing requirements. However, even here simple software interfaces, 
and robust techniques of image orientation and camera calibration, make it possible 
for non-expert users to carry out photogrammetric recording and analysis. 

... Recording and analysis procedures 
Fig. 1.10 shows the principal procedures in close-range photogrammetry which are 
briefly summarized in the following sections. 
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Fig. 1.10: Recording and analysis procedures (red - can be automated). 

1. Recording 
a. Targeting (signalizing): 

target selection and attachment to object features to improve automation 
and increase the accuracy of target measurement in the image; definition 
of control points. 

b. Determination of control points or scaling lengths: 
creation of a global object coordinate system by definition of reference 
(control) points and/or reference lengths (scales). 

c. Image recording: 
digital image recording of the object with a photogrammetric system. 
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2. Pre-processing 
a. Numbering and archiving: 

assigning photo numbers to identify individual images and archiving or 
storing the photographs. 

b. Computation: 
calculation of reference point coordinates and/or distances from survey 
observations, e.g. using network adjustment.  

3. Orientation 
a. Measurement of image points: 

identification and measurement of reference and scale points, 
identification and measurement of tie points. 

b. Correspondence analysis:  
matching of identical points (features) in all images. 

c. Approximation: 
calculation of approximate (starting) values for unknown quantities to be 
calculated by the bundle adjustment. 

d. Bundle adjustment: 
adjustment program which simultaneously calculates parameters of both 
interior and exterior orientation as well as the object point coordinates 
which are required for subsequent analysis. 

e. Removal of outliers: 
detection and removal of gross errors which mainly arise during 
measurement of image points. 

4. Measurement and evaluation 
a. Single point measurement: 

creation of three-dimensional object point coordinates, e.g. point clouds, 
for further numerical processing. 

b. Graphical plotting: 
production of scaled maps or plans in analogue or digital form, e.g. hard 
copies for maps and electronic files for CAD models or GIS. 

c. Rectification/Orthophoto/3D visualization: 
generation of transformed images or image mosaics which remove the 
effects of tilt relative to a reference plane (rectification) and/or remove the 
effects of perspective (orthophoto). 

5. Analysis 
a. Deformations:  

Analysis of changes with respect to previous epochs. 
b. Process control: 

Control of external systems using the measured 3D data. 
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c. Quality analysis: 
Comparison against nominal values in shape and size or accuracy 
verifications. 

To a significant extent, this sequence can be automated (see connections in red in Fig. 
1.10). This automation requires that either object features are suitably marked and 
identified using coded targets or, if there are sufficient textured and dense images 
available, processing can be done using structure-from-motion. In both cases the 
calculation of initial values and removal of outliers (gross errors) must be done by 
robust estimation methods.  

.. Photogrammetric products 

In general, photogrammetric systems supply three-dimensional object coordinates 
derived from image measurements (Fig. 1.11). From these, further elements and 
dimensions can be derived, for example lines, distances, areas and surface 
definitions, parameters of 6 degrees of freedom (6DOF) or navigation data as well as 
quality information such as comparisons against design and machine control data. 
The direct determination of geometric elements such as straight lines, planes and 
cylinders is also possible without explicit calculation of point coordinates. In 
addition, the recorded image is an objective data store which documents the state of 
the object at the time of recording. Hence, semantic information can be derived to 
create maps or qualified 3D models. Last but not least, the visual data can be provided 
as corrected camera images, rectifications or orthophotos.  

photogrammetric processing

geometric features
coordinates, point clouds graphical information

drawings, maps

as-built model

image rectifications
orthophotos

3D visualisations

distances, areas

comparison with design

process control data

surface data
meshesnavigation

semantic information

6DOF

 

Fig. 1.11: Typical photogrammetric products. 

Fig. 1.12 shows an example of two measurement images of a multi-image network for 
the 3D digitisation of a statue (State Museum Nature and Human, Oldenburg). Fig. 
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1.13 shows the visualised 3D model and the back-projection of part of the model’s 
surface triangulation into the original images. 

   

Fig. 1.12: Measurement images of an African statue. 

             

Fig. 1.13: Reconstructed 3D model (left) and back-projection into original images. 

. Application areas 

Much shorter imaging ranges, typically from a few centimetres to a few hundred 
metres, and alternative recording techniques, differentiate close-range photo-
grammetry from its aerial and satellite equivalents.  

The following comments, based on ones made by Thompson as long ago as 1963, 
identify applications in general terms by indicating that photogrammetry and optical 
3D measurement techniques are potentially useful when: 
– the object to be measured is difficult to access but images are easily available; 
– the object is not rigid and its instantaneous dimensions are required; 
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– it is not certain that measurement will be required at all, or even what 
measurements are required (i.e. the data is preserved for possible later 
evaluation); 

– the object is very small; 
– the use of direct measurement would influence the measured object or disturb 

events around it; 
– real-time results are required;  
– the simultaneous recording and the measurement of a very large number of 

points is required. 

The following specific application areas (with examples) are amongst the most 
important in close-range photogrammetry: 

Architecture, heritage conservation, archaeology: 
– façade measurement 
– historic building documentation 
– deformation measurement 
– reconstruction of damaged buildings 
– mapping of excavation sites 
– modelling monuments and sculptures 
– 3D models and texturing 

 
Fig. 1.14: Building record. 

Automotive, machine and ship building industries: 
– inspection of tooling jigs 
– reverse engineering of design models 
– manufacturing control 
– optical shape measurement 
– recording and analysing car safety tests 
– robot calibration 
– driver assistance systems 
– autonomous driving  

Fig. 1.15: Car safety test. 

Aerospace industry: 
– measurement of parabolic antennae and mirrors 
– control of component assembly 
– inspection of tooling jigs 
– space simulations 

 
Fig. 1.16: Parabolic mirror. 
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Engineering: 
– as-built measurement of process plants 
– measurement of large civil engineering sites 
– deformation measurements 
– pipework and tunnel measurement 
– mining 
– road and railway track measurement 
– wind power systems 

 
Fig. 1.17: Engineering. 

Medicine and physiology: 
– dental measurements 
– spinal deformation 
– plastic surgery 
– neuro surgery 
– motion analysis and ergonomics 
– microscopic analysis 
– computer-assisted surgery (navigation)  

Fig. 1.18: Spinal analysis. 

Animation and movie/film industries:  
– body shape recording  
– motion capture (of actors)  
– 3D movies  
– virtual reality (VR)  
– augmented reality (AR)  
– mixed reality (MR)  

 
Fig. 1.19: Motion capture. 

Police work and forensic analysis:  
– accident recording 
– scene-of-crime measurement 
– legal records  
– measurement of individuals  

 
Fig. 1.20: Accident recording. 
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Information systems: 
– building information modelling (BIM)  
– facility management 
– production planning 
– image databases 
– internet applications (digital globes) 

 
Fig. 1.21: Pipework measurement. 

Natural sciences:  
– liquid flow measurement 
– wave topography 
– crystal growth 
– material testing 
– glacier and soil movements 

 
 

Fig. 1.22: Flow measurement. 

In general, similar methods of recording and analysis are used for all application 
areas of close-range photogrammetry and the following features are shared: 
– powerful image recording systems; 
– freely chosen imaging configuration with almost unlimited numbers of pictures; 
– photo orientation based on the technique of bundle triangulation; 
– visual and digital analysis of the images; 
– presentation of results in the form of 3D models, 3D coordinate files, CAD data, 

photographs or drawings. 

Industrial and engineering applications make special demands of the 
photogrammetric technique: 
– limited recording time on site (no significant interruption of industrial 

processes); 
– delivery of results for analysis after only a brief time;  
– high accuracy requirements; 
– traceability of results to standard unit of dimension, the metre; 
– proof of accuracy attained. 

. Historical development 

It comes as a surprise to many that the history of photogrammetry is almost as long 
as that of photography itself and that, for at least the first fifty years, the predominant 
application of photogrammetry was to close-range, architectural measurement rather 
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than to topographical mapping. Only a few years after the invention of photography 
during the 1830s and 1840s by Fox Talbot in England, by Niepce and Daguerre in 
France, and by others, the French military officer Laussedat began experiments in 
1849 into measuring from perspective views by working on the image of a façade of 
the Hotel des Invalides. Admittedly Laussedat, usually described as the first 
photogrammetrist, was in this instance using a camera lucida for he did not obtain 
photographic equipment until 1852.  

Fig. 1.23 shows an early example of a photogrammetric camera, built by Brunner 
and used by Laussedat, with a stable construction without moving components. Fig. 
1.24 shows an example of Laussedat’s work for military field mapping by 
“metrophotographie”. As early as 1858 the German civil engineer Meydenbauer used 
photographs to draw plans of the cathedral of Wetzlar and by 1865 he had constructed 
his “great photogrammeter”, a forerunner of the phototheodolite. In fact, it was 
Meydenbauer and Kersten, a geographer, who coined the word “photogrammetry”, 
this first appearing in print in 1867.  

  

Fig. 1.23: One of the first photogrammetric 
cameras by Brunner, 1859 (Laussedat 1899). 

Fig. 1.24: Early example of photogrammetric field 
recording, about 1867 (Laussedat 1899). 

Meydenbauer also made topographical surveys by means of plane table 
photogrammetry, for example in 1867 for the mapping of Freyburg a.d. Unstrut at a 
scale of 1:5000 (Fig. 1.25). He also used photography as an alternative to manual 
methods of measuring façades. For this he developed his own large-format, glass-
plate cameras (see Fig. 1.26) and, between 1885 and 1909, compiled an archive of 
around 13000 metric1 images of the most important Prussian architectural 
monuments. This represents a very early example of cultural heritage preservation by 

 
1 A “metric” camera is defined as one with known and stable interior orientation. 
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photogrammetry. Fig. 1.27 shows an original metric image, Fig. 1.28 displays the 
façade map derived from it. 

  

Fig. 1.25: Topographic surveying by 
Meydenbauer, 1867 (Burchardi & 
Meydenbauer 1868). 

Fig. 1.26: Metric cameras by Meydenbauer  
(ca. 1890); left: 30x30 cm2, right: 20x20 cm2  
(Albertz 2009). 

  

Fig. 1.27: Metric image of the Marburg 
Elisabeth Church by Meydenbauer (1883). 

Fig. 1.28: Façade drawing of the Marburg 
Elisabeth Church (1883). 

The phototheodolite, as its name suggests, represents a combination of camera and 
theodolite. The direct measurement of orientation angles leads to a simple 
photogrammetric orientation. A number of inventors, such as Porro and Paganini in 
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Italy, in 1865 and 1884 respectively, and Koppe in Germany, 1896, developed such 
instruments (Fig. 1.29). 

Horizontal bundles of rays can be constructed from terrestrial photographs, with 
two or more permitting a point-by-point survey using intersecting rays. This 
technique, often called plane table photogrammetry, works well for architectural 
subjects which have regular and distinct features. However, for topographic mapping 
it can be difficult identifying the same feature in different images, particularly when 
they are well separated to improve accuracy. Nevertheless, despite the early 
predominance of architectural photogrammetry, mapping was still undertaken. For 
example, in the latter part of the 19th century, Paganini mapped the Alps, Stolze the 
Friday Mosque in Shiraz, Deville the Rockies and Jordan the Dachel oasis, whilst 
Finsterwalder developed analytical solutions. 

     

Fig. 1.29: Phototheodolite by Koppe (1889) and Zeiss Jena 19/1318 (ca. 1904). 

The development of stereoscopic measurement around the turn of the century was a 
major breakthrough in photogrammetry. Following the invention of the stereoscope 
around 1830, and Stolze’s principle of the floating measuring mark in 1893, Pulfrich 
in Germany and Fourcade in South Africa, at the same time but independently2, 
developed the stereocomparator which implemented Stolze’s principle. These 
enabled the simultaneous setting of measuring marks in the two comparator images, 
with calculation and recording of individual point coordinates (Fig. 1.30). 

 
2 Pulfrich’s lecture in Hamburg announcing his invention was given on 23rd September 1901, while 
Fourcade delivered his paper in Cape Town nine days later on 2nd October 1901. 
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Photogrammetry then entered the era of analogue computation, very different to 
the numerical methods of surveying. Digital computation was too slow at that time to 
compete with continuous plotting from stereo instruments, particularly of contours, 
and analogue computation became very successful for a large part of the 20th century. 

 

Fig. 1.30: Pulfrich’s stereocomparator (Zeiss, 1901). 

In fact, during the latter part of the 19th century much effort was invested in 
developing stereoplotting instruments for the accurate and continuous plotting of 
topography. In Germany, Hauck proposed a device and, in Canada, Deville claimed 
“the first automatic plotting instrument in the history of photogrammetry”. Deville’s 
instrument had several defects, but they inspired many developers such as Pulfrich 
and Santoni to overcome them.  

In Germany, conceivably the most active country in the early days of 
photogrammetry, Pulfrich’s methods were very successfully used in mapping. This 
inspired von Orel in Vienna to design an instrument for the “automatic” plotting of 
contours, which lead to the Orel-Zeiss Stereoautograph in 1909. In England, F. V. 
Thompson anticipated von Orel in the design of the Vivian Thompson stereoplotter 
and subsequently the Vivian Thompson Stereoplanigraph (1908). This was described 
by E. H. Thompson (1974) as “the first design for a completely automatic and 
thoroughly rigorous photogrammetric plotting instrument”.  

The rapid development of aviation, which began shortly after this, was another 
decisive influence on the course of photogrammetry. Not only is the Earth, 
photographed vertically from above, an almost ideal subject for the photogrammetric 
method, but also aircraft made almost all parts of the Earth accessible at high speed. 
In the first half, and more, of the 20th century these favourable circumstances allowed 
impressive development in photogrammetry, with tremendous economic benefit in 
air survey. On the other hand, the application of stereo photogrammetry to the 
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complex surfaces relevant to close-range work was impeded by far-from-ideal 
geometry and a lack of economic advantage.  

Although there was considerable opposition from surveyors to the use of 
photographs and analogue instruments for mapping, the development of 
stereoscopic measuring instruments forged ahead in very many countries during the 
period between the First World War and the early 1930s. Meanwhile, non-topographic 
use was sporadic for the reasons that there were few suitable cameras and that 
analogue plotters imposed severe restrictions on principal distance, on image format 
and on disposition and tilts of cameras. Instrumentally complex systems were being 
developed using optical projection (for example Multiplex), opto-mechanical 
principles (Zeiss Stereoplanigraph) and mechanical projection using space rods (for 
example Wild A5, Santoni Stereocartograph), designed for use with aerial 
photography. By 1930 the Stereoplanigraph C5 was in production, a sophisticated 
instrument able to use oblique and convergent photography. Even if makeshift 
cameras had to be used at close range, experimenters at least had freedom in the 
orientation and placement of these cameras and this considerable advantage led to 
some noteworthy work. 

  

Fig. 1.31: Wild P32 metric camera  
mounted on a theodolite. 

Fig. 1.32: Wild C120 stereometric camera. 

As early as 1933 Wild stereometric cameras were being manufactured and used by 
Swiss police for the mapping of accident sites, using the Wild A4 Stereoautograph, a 
plotter especially designed for this purpose. Such stereometric cameras comprise two 
identical metric cameras fixed to a rigid base of known length such that their axes are 
coplanar, perpendicular to the base and, usually, horizontal3 (Fig. 3.38a, see section 

 
3 This is sometimes referred to as the “normal case” of photogrammetry. 
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4.3.1.4). Other manufacturers have also made stereometric cameras (Fig. 1.32) and 
associated plotters (Fig. 1.34) and a great deal of close-range work has been carried 
out with this type of equipment. Initially glass plates were used in metric cameras in 
order to provide a flat image surface without significant mechanical effort (see 
example in Fig. 1.31, Fig. 1.33). From the 1950s, film was increasingly used in metric 
cameras which were then equipped with a mechanical film-flattening device.  

The 1950s were the start of the period of analytical photogrammetry. The 
expanding use of digital, electronic computers in that decade shifted interest from 
prevailing analogue methods to a purely analytical or numerical approach to 
photogrammetry. While analogue computation is inflexible, in regard to both input 
parameters and output results, and its accuracy is limited by physical properties, a 
numerical method allows virtually unlimited accuracy of computation and its 
flexibility is limited only by the mathematical model on which it is based. Above all, 
it permits over-determination which may improve precision, lead to the detection of 
gross errors and provide valuable statistical information about the measurements 
and the results. The first analytical applications were to photogrammetric 
triangulation. As numerical methods in photogrammetry improved, the above 
advantages, but above all their flexibility, were to prove invaluable at close range. 

  

Fig. 1.33: Jenoptik UMK 1318. Fig. 1.34: Wild A40 stereoplotter. 

Subsequently, stereoplotters were equipped with devices to record model coordinates 
for input to electronic computers. Arising from the pioneering ideas of Helava (1957), 
computers were incorporated in stereoplotters themselves, resulting in analytical 
stereoplotters with fully numerical reconstruction of the photogrammetric models. 
Bendix/OMI developed the first analytical plotter, the AP/C, in 1964 and, during the 
following two decades, analytical stereoplotters were produced by the major 
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instrument companies and others (example in Fig. 1.35). While the adaptability of 
such instruments has been of advantage in close-range photogrammetry, 
triangulation programs with even greater flexibility were soon to be developed, which 
were more suited to the requirements of close-range work.  

 

Fig. 1.35: Analytical Stereoplotter Zeiss Planicomp (ca. 1980). 

Analytical photogrammetric triangulation is a method, using numerical data, of point 
determination involving the simultaneous orientation of all the photographs and 
taking all inter-relations into account. Work on this line of development, for example 
by the Ordnance Survey of Great Britain, had appeared before World War II, long 
before the development of electronic computers. Analytical triangulation required 
instruments to measure photo coordinates. The first stereocomparator designed 
specifically for use with aerial photographs was the Cambridge Stereocomparator 
designed in 1937 by E. H. Thompson. By 1955 there were five stereocomparators on 
the market and monocomparators designed for use with aerial photographs also 
appeared.  

In the 1950s many mapping organizations were also experimenting with the new 
automatic computers, but it was the ballistic missile industry which gave the impetus 
for the development of the bundle method of photogrammetric triangulation. This is 
commonly known simply as the bundle adjustment and is today the dominant 
technique for triangulation in close-range photogrammetry. Seminal papers by 
Schmid (1956–57, 1958) and Brown (1958) laid the foundations for theoretically 
rigorous block adjustment. A number of bundle adjustment programs for air survey 
were developed and became commercially available, such as those by Ackermann et 
al. (1970) and Brown (1976). Programs designed specifically for close-range work have 
appeared since the 1980s, such as STARS (Fraser & Brown 1986), BINGO (Kruck 1983), 
MOR (Wester-Ebbinghaus 1981) or CAP (Hinsken 1989). 
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The importance of bundle adjustment in close-range photogrammetry can hardly 
be overstated. The method imposes no restrictions on the positions or the orientations 
of the cameras, nor is there any necessity to limit the imaging system to central 
projection. Of equal or greater importance, the parameters of interior orientation of 
all the cameras may be included as unknowns in the solution. Until the 1960s many 
experimenters appear to have given little attention to the calibration4 of their 
cameras. This may well have been because the direct calibration of cameras focused 
for near objects is usually much more difficult than that of cameras focused for distant 
objects. At the same time, the interior orientation must usually be known more 
accurately than is necessary for vertical aerial photographs because the geometry of 
non-topographical work is frequently far from ideal. In applying the standard 
methods of calibration in the past, difficulties arose because of the finite distance of 
the targets, either real objects or virtual images. While indirect, numerical methods 
to overcome this difficulty were suggested by Torlegård (1967) and others, bundle 
adjustment now removes this concern. For high precision work, it is no longer 
necessary to use metric cameras which, while having the advantage of known and 
constant interior orientation, are usually cumbersome and expensive. Virtually any 
camera can now be used. Calibration via bundle adjustment is usually known as self-
calibration (see sections 3.3 and 4.4).  

  

Fig. 1.36: Rolleiflex SLX semi-metric camera 
(ca. 1980). 

Fig. 1.37: Rollei MR2 multi-image restitution 
system (ca. 1990). 

Many special cameras have been developed to extend the tools available to the 
photogrammetrist. One example promoted by Wester-Ebbinghaus (1981) was a 
modified professional photographic camera with an inbuilt réseau, an array of 
engraved crosses on a glass plate which appear on each image (see Fig. 1.36). 

 
4 In photogrammetry, unlike computer vision, “calibration” refers only to interior orientation. 
Exterior orientation is not regarded as part of calibration. 
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The use of traditional stereo photogrammetry at close ranges has declined. As an 
alternative to the use of comparators, multi-photo analysis systems which use a 
digitizing pad as a measuring device for photo enlargements, for example the Rollei 
MR2 from 1986 (Fig. 1.37) have been widely used for architectural and accident 
recording.  

  

Fig. 1.38: Partial-metric camera  
GSI CRC-1 (ca. 1986). 

Fig. 1.39: Réseau-Scanner Rollei RS1 (ca. 1986). 

  

Fig. 1.40: Online multi-image system Mapvision (1987). Fig. 1.41: Zeiss Indusurf (1987). 

Since the middle of the 1980s, the use of opto-electronic image sensors has increased 
dramatically. Advanced computer technology enables the processing of digital 
images, particularly for automatic recognition and measurement of image features, 
including pattern correlation for determining object surfaces. Procedures in which 
both the image and its photogrammetric processing are digital are often referred to as 
digital photogrammetry. Automated precision monocomparators, in combination 
with large format réseau cameras, were developed for high-precision, industrial 
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applications, e.g. by Fraser and Brown (1986) or Luhmann and Wester-Ebbinghaus 
(1986), see Fig. 1.38 and Fig. 1.39.Initially, standard video cameras were employed. 
These generated analogue video signals which could be digitized with resolutions up 
to 780 x 580 picture elements (pixels) and processed in real time (real-time 
photogrammetry, videogrammetry). The first operational online multi-image systems 
became available in the late 1980s (example in Fig. 1.40). Analytical plotters were 
enhanced with video cameras to become analytical correlators, used for example in 
car body measurement (Zeiss Indusurf 1987, Fig. 1.41). Closed procedures for 
simultaneous multi-image processing of grey level values and object data based on 
least squares methods were developed, e.g. by Förstner (1982) and Gruen (1985).  

The limitations of video cameras in respect of their small image format and low 
resolution led to the development of scanning cameras which enabled the high 
resolution recording of static objects to around 6000 x 4500 pixels. In parallel with 
this development, electronic theodolites were equipped with video cameras to enable 
the automatic recording of directions to targets (Kern SPACE). With the Leica/Rollei 
system POM (Programmable Optical Measuring system, Fig. 1.42) a complex online 
system for the measurement of automotive parts was developed which used réseau-
scanning cameras (Fig. 1.43) and a rotary table for all-round measurements. 

  

Fig. 1.42: POM online system with digital rotary table 
(1990).  

Fig. 1.43: Réseau-scanning camera  
Rollei RSC (1990). 

Digital cameras with high resolution, which can provide a digital image without 
analogue signal processing, have been available since the beginning of the 1990s. 
Resolutions ranged from about 1000 x 1000 pixels, e.g. the Kodak Megaplus (1986), 
to over 4000 x 4000 pixels. Easily portable, still-video cameras could store high 
resolution images directly in the camera, e.g. the Kodak DCS 460 (Fig. 1.44). They 
have led to a significant expansion of photogrammetric measurement technology, 
particularly in the industrial field. See, for example, systems from GSI, AICON (now 
part of Hexagon) and GOM (now part of Zeiss). Online photogrammetric systems (Fig. 
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1.45) have been brought into practical use, in addition to offline systems, both as 
mobile systems and in stationary configurations. Coded targets allowed the fully 
automatic identification and assignment of object features and orientation of the 
image sequences. Surface measurement of large objects were now possible with the 
development of pattern projection methods combined with photogrammetric 
techniques. 

  

Fig. 1.44: Still-video camera Kodak DCS 
460 (ca. 1996). 

Fig. 1.45: GSI VSTARS online industrial measurement 
system (ca. 1991). 

Interactive digital stereo systems, such as the Leica/Helava DSP and Zeiss PHODIS, 
have existed since around 1988 (Kern DSP-1). They have replaced analytical plotters, 
but they are rarely employed for close-range use. Interactive, graphical multi-image 
processing systems are of more importance here as they offer processing of freely 
chosen image configurations in a CAD environment, for example the Phocad PHIDIAS  
(Fig. 1.46). Easy-to-use, low-cost software packages, such as the EOS PhotoModeler 
(Fig. 1.47) or Photometrix iWitness, provide object reconstruction and creation of 
virtual 3D models from digital images without the need for a deep understanding of 
photogrammetry. Since around 2010 computer vision algorithms (interest operators, 
structure-from-motion approaches, see section 5.5.2) have become very popular and 
provide fully automated 3D modelling for arbitrary imagery without any pre-
knowledge or on-site measurements. These systems provide dense point clouds and 
true orthophotos as well. See, for example, systems from AgiSoft, Pix4D, 
RealityCapture or MicMac, and the example output in Fig. 1.48. 
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Fig. 1.46: PHIDIAS-MS multi-image analysis system (Phocad, 1994, see also Fig. 6.20).  

 

Fig. 1.47: Multi-image analysis system PhotoModeler (EOS Systems, 2008).  

A trend in close-range photogrammetry is now towards the integration or embedding 
of photogrammetric components in application-oriented hybrid systems. This 
includes links to such packages as 3D CAD systems, databases and information 
systems, quality analysis and control systems for production, navigation systems for 
autonomous robots and vehicles, 3D visualization systems, internet applications, 3D 
animations and virtual reality. Another trend is the increasing use of methods from 
computer vision, such as projective geometry or pattern recognition, for rapid 
solutions which do not require high accuracy. Multi-sensor systems such as laser 
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scanners combined with cameras, GNSS-enabled cameras and cameras with 
integrated range finders are growing in importance. There is increased interest, too, 
in mobile and dynamic applications, including UAV applications. Finally, the 
continuing fall in the cost of digital cameras and processing software will ensure that 
photogrammetry is open to everyone.  

 

Fig. 1.48: Structure-from-Motion software PhotoScan (AgiSoft, 2016).  

Close-range photogrammetry is today a well-established, universal 3D measuring 
technique, routinely applied in a wide range of interdisciplinary fields. There is every 
reason to expect its continued development long into the future. 
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 Mathematical fundamentals 

This chapter presents mathematical fundamentals which are essential for a deeper 
understanding of close-range photogrammetry. After defining some common 
coordinate systems, the most important plane and spatial coordinate transformations 
are summarized. An introduction to homogeneous coordinates and graphical 
projections then follows and the chapter concludes with the basic theory of least-
squares adjustment. 

. Coordinate systems 

.. Pixel and sensor coordinate system 

Digital cameras incorporating electronic image sensors are routinely used for image 
recording. They deliver a positive digital image of an object or scene in the form of a 
matrix of pixels whose rows and columns are defined in a pixel coordinate system. It 
is a left-handed system, u,v, with its origin in the upper left element (Fig. 2.1 and 
section 5.1.2). The digital image can be viewed as a two-dimensional matrix with m 
columns and n rows which, in the case of multiple stored channels such as colour 
channels, can also be defined as multi-dimensional (see also section 5.1.3). A digital 
image only has a relationship to the physical image sensor in the camera when there 
is a 1:1 correspondence between individual pixels and individual sensor elements. For 
transformation into a metric image coordinate system, the physical pixel dimensions 
Δs'u, Δs'v must be known. Together with a knowledge of pixel numbers m and n, this 
information then enables the origin to be shifted to the centre of the sensor (centre of 
image) and converted to a right-handed system x',y' (see sections 2.1.2 and 3.3.2.1 and 
eqn. 2.2). 
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Fig. 2.1: Pixel coordinate system. 
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.. Image and camera coordinate systems 

The image coordinate system defines a two-dimensional, image-based reference 
system of right-handed rectangular Cartesian coordinates, x',y'. In a film camera its 
physical relationship to the camera is defined by reference points, either fiducial 
marks or a réseau, which are projected into the acquired image (see section 3.3.2.1). 
For a digital imaging system, the sensor matrix in the camera’s imaging plane is the 
source of the matrix of imaging pixels. These define an image coordinate system 
where the origin of metric image coordinates is located at the image centre (see 
section 2.1.1). 
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Fig. 2.2: Image and camera coordinate system. 
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Fig. 2.3: Image coordinate system in negative (left) and positive image (right). 

The relationship between the positive plane image and the camera, regarded as a 
spatial object, can be established when the image coordinate system is extended by 
a z' axis normal to the image plane, with a positive direction as indicated in order to 
preserve a right-handed system (see Fig. 2.2). This 3D coordinate system will be called 
the camera coordinate system and its origin is located at the perspective centre O'. The 
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z' axis coincides approximately with the optical axis. An image position B1 
corresponds to a location in the physically acquired image, which is the image 
negative. With respect to the positive, this is upside down (Fig. 2.3 left). For a number 
of mathematical calculations, it is easier to use the corresponding image position B2, 
in the equivalent positive image (upright, see Fig. 2.3 right).  

For points in the positive image, a 3D vector of image coordinates x' points from 
the origin at the perspective centre to the object point P. Note that this requires a 
negative z' value which has the same magnitude as the principal distance, c. Hence 
the 3D image vector x' as follows:  

' '
' '
'

x x
y y
z c

   
   

= =   
   −   

x'   (2.1) 

Thus, the image vector x' describes the projection ray, with respect to the image 
coordinate system, from the positive image point to the object point. The spatial 
position of the perspective centre in the image coordinate system is given by the 
parameters of interior orientation under consideration of the principal point and 
imaging errors (see section 3.3.2).  

The transformation between pixel and metric image using the physical pixel sizes 
Δs'u, Δs'v and pixel numbers m and n, is given as follows:  

Δ

Δ
2

x u

x
u

s' m s'
s'

x' u s'

= ⋅

= − + ⋅
 

= ⋅

= − ⋅

Δ

Δ
2

y v

y
v

s' n s'
s'

y' v s'
 (2.2) 

Here, s'x and s'y normally define the sensor format. Where the photogrammetric 
calculation is required in a right-handed pixel coordinate system, with the origin 
located at the image centre, the transformation is defined by Δs'u = Δs'v = 1. 

.. Model coordinate system 

The spatial Cartesian model coordinate system xyz is used to describe the relative 
position and orientation of two or more images (image coordinate systems). Normally 
its origin is at the perspective centre of one of the images (Fig. 2.4). In addition, the 
model coordinate system may be parallel to the related image coordinate system (see 
section 4.3.3). 
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Fig. 2.4: Model coordinate system. 

.. Object coordinate system 

The term object coordinate system, also known as the world coordinate system, is here 
used for every spatial Cartesian coordinate system XYZ that is defined by reference 
points of the object (examples in Fig. 2.5). For example, national geodetic coordinate 
systems (X = easting, Y = northing, Z = altitude, origin at the equator) are defined by 
geodetically measured reference points1. Another example is the local object or 
workpiece coordinate system of a car body that is defined by the constructional axes 
(X = longitudinal car axis, Y = front axle, Z = height, origin at centre of front axle).  

X

Y

Z
X

Y

Z

 

Fig. 2.5: Object coordinate systems. 

A special case of three-dimensional coordinate system is an arbitrarily oriented one 
used by a 3D measuring system such as a camera or a scanner. This is not directly 
related to any superior system or particular object but if, for instance, just one 

 
1 National systems of geodetic coordinates which use the geoid as a reference surface are equivalent 
to a C artesian coordinate system only over small areas. 
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reference scale is given (Fig. 2.6), then it is still possible to measure spatial object 
coordinates. 

The definition of origin, axes and scale of a coordinate system is also known as 
the datum. 

3D measuring system

orientation frame

object

X

Y

Z

D

 

Fig. 2.6: 3D instrument coordinate system. 

. Coordinate transformations 

.. Plane transformations 

... Homogenous coordinates 
Homogenous coordinates can be derived from Cartesian coordinates by adding one 
dimension and scaling by any non-zero factor λ. In two dimensions this leads to: 

   
   

= =   
   
   

λ
1

u x
v y
w

x  where x = u/w, y = v/w, λ ≠ 0 (2.3) 

Three-dimensional Cartesian coordinates are converted to homogenous coordinates 
in an analogous way2.  

The homogenous coordinate transformation 

= λTx' x   (2.4) 

maintains its projection properties independently of λ. Consequently, all major 
coordinate transformations (translation, rotation, similarity, central projection) can 
be formed in a consistent way and can be combined in an arbitrary order to a total 

 
2 Homogenous vectors are denoted in bold and italic text. 
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transformation T (see section 2.2.3). The photogrammetric projection equations can 
also be elegantly expressed in homogenous coordinates (see section 4.2.4.2). 

... Similarity transformation 
The plane similarity transformation is used for the mapping of two plane Cartesian 
coordinate systems (Fig. 2.7). Generally a 4-parameter transformation is employed 
which defines two translations, one rotation and a scaling factor between the two 
systems. Angles and distance proportions are maintained. 

Y

X

αP1

P2

T
X,Yx, y

 

Fig. 2.7: Plane similarity transformation. 

Given a point P in the xy source system, the XY coordinates in the target system are 

0 1 1X a a x b y= + ⋅ − ⋅  0 1 1Y b b x a y= + ⋅ + ⋅  (2.5) 

or 

0 ( cos sin )X a m x α y α= + ⋅ ⋅ − ⋅  0 ( sin cos )Y b m x α y α= + ⋅ ⋅ + ⋅  (2.6) 

Here a0 and b0 define the translation of the origin, α is the rotation angle and m is the 
global scaling factor. In order to determine the four coefficients, a minimum of two 
identical points is required in both systems. With more than two identical points, the 
transformation parameters can be calculated by an over-determined, least-squares 
adjustment. 

In matrix notation (2.5) is expressed as 

1 1 0

1 1 0

X a b x a
Y b a y b

= ⋅ +
       −

= ⋅ +       
              

X A x a
  (2.7) 

or in non-linear form with a0 = X0 und b0 = Y0: 
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0

0

0

cos sin
sin cos

m
X α α x X

m
Y α α y Y

= ⋅ ⋅ +
       −

= ⋅ ⋅ +       
              

X R x X
 (2.8) 

R is the rotation matrix corresponding to rotation angle α. This is an orthogonal 
matrix having orthonormal column (or row) vectors and it has the properties: 

1 T− =R R  and T ⋅ =R R I  (2.9) 

For the reverse transformation of coordinates from the target system into the source 
system, the transformation equations (2.8) are re-arranged as follows: 

1
0

0

0

1 ( )

cos sin1
sin cos

m
x α α X X
y α α Y Ym

−= ⋅ ⋅ −

     −
= ⋅ ⋅     

− −          

x R X X
 (2.10) 

or explicitly with the coefficients of the forward transformation:  

1 0 1 0
2 2
1 1

( ) ( )a X a b Y b
x

a b
− + −

=
+

 1 0 1 0
2 2
1 1

( ) ( )a Y b b X a
y

a b
− − −

=
+

 (2.11) 

... Affine transformation 
The plane affine transformation is also used for the mapping of two plane coordinate 
systems (Fig. 2.8). This 6-parameter transformation defines two displacements, one 
rotation, one shearing angle between the axes and two separate scaling factors. 

X

αP1

P2

β

P3

Y

T
X,Yx, y

 

Fig. 2.8: Plane affine transformation. 

For a point P in the source system, the XY coordinates in the target system are given 
by 
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0 1 2X a a x a y= + ⋅ + ⋅  0 1 2Y b b x b y= + ⋅ + ⋅  (2.12) 

or in non-linear form with a0 = X0 und b0 = Y0: 

0

0

cos sin( )
sin cos( )

X Y

X Y

X X m x α m y α β
Y Y m x α m y α β

= + ⋅ ⋅ − ⋅ ⋅ +
= + ⋅ ⋅ + ⋅ ⋅ +

 (2.13) 

The parameters a0 and b0 (X0 and Y0) define the displacement of the origin, α is the 
rotation angle, β is the shearing angle between the axes and mX, mY are the scaling 
factors for x and y. In order to determine the six coefficients, a minimum of three 
identical points is required in both systems. With more than three identical points, 
the transformation parameters can be calculated by over-determined least-squares 
adjustment. 

In matrix notation the affine transformation can be written as: 

1 2 0

1 2 0

X a a x a
Y b b y b

= ⋅ +
       

= ⋅ +       
              

X A x a
 

or  (2.14) 

0

0

cos sin( )
sin cos( )

X Y

X Y

X m α m α β x X
Y m α m α β y Y

       ⋅ − ⋅ +
= ⋅ +       

⋅ ⋅ +              
 

A is the affine transformation matrix. For transformations with small values of 
rotation and shear, the parameter a1 corresponds to the scaling factor mX and the 
parameter b2 to the scaling factor mY. 

For the reverse transformation from coordinates in the target system to 
coordinates in the source system, eqn. (2.14) is re-arranged as follows  

1 ( )−= ⋅ −x A X a   (2.15) 

or explicitly with the coefficients with the original, forward transformation:  

2 0 2 0

2 1 1 2

( ) ( )a Y b b X a
x

a b a b
− − −

=
−

 1 0 1 0

2 1 1 2

( ) ( )b X a a Y b
y

a b a b
− − −

=
−

 (2.16) 

... Polynomial transformation 
Non-linear deformations (Fig. 2.9) can be described by polynomials of degree n:  
In general, the transformation model can be written as: 

0 0

jn
j i i

ji
j i

X a x y−

= =

= ∑∑  
0 0

jn
j i i

ji
j i

Y b x y−

= =

= ∑∑  (2.17) 

where n = degree of polynomial 
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A polynomial with n = 2 is given by: 

2 2
00 10 11 20 21 22

2 2
00 10 11 20 21 22

X a a x a y a x a x y a y
Y b b x b y b x b x y b y

= + ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ⋅

= + ⋅ + ⋅ + ⋅ + ⋅ ⋅ + ⋅
 (2.18) 

The polynomial with n = 1 is identical to the affine transformation (2.12). In general, 
the number of coefficients required to define a polynomial transformation of degree 
n is ( 1) ( 2)u n n= + ⋅ + . In order to determine the u coefficients, a minimum of u/2 
identical points is required in both systems. 

T
X,Yx, y

 

Fig. 2.9: Plane polynomial transformation. 

... Bilinear transformation 
The bilinear transformation is similar to the affine transformation but extended by a 
mixed term:  

0 1 2 3X a a x a y a xy= + + +  0 1 2 3Y b b x b y b xy= + + +  (2.19) 

In order to determine the eight coefficients, a minimum of four identical points is 
required.  

The bilinear transformation can be used in the unconstrained transformation and 
interpolation of quadrilaterals, for example in réseau grids or digital surface models. 

T
X,Yx, y

∆

∆

 

Fig. 2.10: Bilinear transformation. 

For the transformation of a square with side length Δ (Fig. 2.10), the coefficients can 
be calculated as follows: 
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

















⋅=



















4

3

2

1

3

2

1

0

x
x
x
x

a
a
a
a

A   and 

0 1

1 2

2 3

3 4

b y
b y
b y
b y

   
   
   = ⋅   
   
      

A  (2.20) 

where 

2 2 2 2

1 0 0 0
1 / 1 / 0 0
1 / 0 1 / 0

1 / 1 / 1 / 1 /

Δ Δ
Δ Δ

Δ Δ Δ Δ

 
 
− =  −

 
− −  

A  

... Projective transformation 
The plane projective transformation maps two plane coordinate systems using a 
central projection. All projection rays are straight lines through the perspective centre 
(Fig. 2.11). 

The transformation model is: 

0 1 2

1 21
a a x a y

X
c x c y

+ ⋅ + ⋅
=

+ ⋅ + ⋅
 0 1 2

1 21
b b x b y

Y
c x c y

+ ⋅ + ⋅
=

+ ⋅ + ⋅
 (2.21) 

The system of equations (2.21) is not linear. By multiplying by the denominator and 
rearranging, the following linear form can be derived. This is suitable as an 
observation equation in an adjustment procedure: 

0 1 2 1 2

0 1 2 1 2

0
0

a a x a y X c xX c yX
b b x b y Y c xY c yY

+ + − − − =
+ + − − − =

 (2.22) 

In order to determine the eight coefficients, four identical points are required where 
no three may lay on a common straight line. With more than four points, the system 
of equations can be solved by adjustment (see calculation scheme in section 4.2.6). 
For the derivation of (2.21) the spatial similarity transformation can be used (see 
section 2.2.3). 

The reverse transformation can be calculated by re-arrangement of equations 
(2.21): 

2 0 0 2 2 0 2 0 2 2

1 2 2 1 1 2 2 1 2 1 1 2

0 1 1 0 0 1 1 1 0 1

1 2 2 1 1 2 2 1 2 1 1 2

( ) ( )
( ) ( )

( ) ( )
( ) ( )

a b a b b b c X a c a Y
x

a b a b b c b c X a c a c Y
a b a b b c b X a a c Y

y
a b a b b c b c X a c a c Y

− + − + −
=

− + − + −
− + − + −

=
− + − + −

 (2.23) 

In this form the equations again express a projective transformation. By substitution 
of terms the following form is derived:  
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0 1 2

1 2

' ' '
1 ' '

a a X a Y
x

c X c Y
+ +

=
+ +

 0 1 2

1 2

' ' '
1 ' '

b b X b Y
y

c X c Y
+ +

=
+ +

  (2.24) 

where  

2 0 0 2
0

2 0 2
1

0 2 2
2

'

'

'

a b a b
a

N
b b c

a
N

a c a
a

N

−
=

−
=

−
=

 

0 1 1 0
0

0 1 1
1

1 0 1
2

'

'

'

a b a b
b

N
b c b

b
N

a a c
b

N

−
=

−
=

−
=

 

1 2 2 1
1

2 1 1 2
2

1 2 2 1

'

'

b c b c
c

N
a c a c

c
N

N a b a b

−
=

−
=

= −
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Fig. 2.11: Plane projective 
transformation. 

Fig. 2.12: Cross ratios. 

The plane projective transformation preserves rectilinear properties and intersection 
points of straight lines. In contrast, angles, length and area proportions are not 
invariant. An additional invariant property of the central projection are the cross 
ratios of distances between points on a straight line. They are defined as follows: 

* * * *

* * * *

' ' ' ' " " " "
' ' ' ' " " " "

AB AD A B A D A B A D A B A Dλ
BC CD B C C D B C C DB C C D

= ÷ = ÷ = ÷ = ÷  (2.25) 

The cross ratios apply to all straight lines that intersect a bundle of perspective rays 
in an arbitrary position (Fig. 2.11). 

The plane projective transformation is applied to single image analysis, e.g. for 
rectification or coordinate measurement in single images (see section 4.2.6). 
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Example .: 
Given  points in the source and target coordinate systems with the following plane coordinates: 

No. x y X Y 
 −. −.   
 −. .   
 . .   
 . −.   
 . .   
 −. .   
 . −.   
 −. −.   

These correspond to the image and control point coordinates in Fig. .. 
The plane transformations described in section ... to section ... then give rise to the 
following transformation parameters: 

Coeff. -param -param Bilinear Projective Polynomial 
 transf. transf. transf. transf. nd order 
a . . . . . 
a . . . . . 
a  . . −. . 
a   .  . 
a     . 
a     −. 
b . . . . . 
b . . . −. . 
b  . . . . 
b   .  −. 
b     . 
b     . 
c    −.  
c    −.  
s [mm] . . . . . 

The standard deviation s indicates the spread of the transformed points in the XY system. It can be 
seen that the projective transformation has the best fit, with the nd order polynomial as second 
best. The other transformations are not suitable for this particular distribution of points. 

Using homogenous coordinates the plane projective transformation can be expressed 
as: 

11 12 13

21 22 23

31 32 33 1

U h h h x
V h h h y
W h h h

= ⋅
     
     

= ⋅     
     
     

U H x

 and 

1 /
/
/

1 /

W
X U W
Y V W

W W

= ⋅
   
   

=   
   
   

X U

 (2.26) 

This formulation is known as homography. Since the matrix H can be scaled without 
altering its projective properties (see section 2.2.1.1), there are eight degrees of 
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freedom as there are in the plane projective transformation of eqn. (2.21). When 
seeking a direct solution to h = [h11, …, h33] the elements should be normalized to deal 
with this rank deficiency and to avoid the trivial solution h=0. For example, this can 
be done by setting h33=1 which gives the same result as in eqn. (2.21). It can be 
numerically advantageous to seek a normalisation via the norm of the vector e.g. 
|h|=1, which is implicitly the case if a solution is sought via an eigenvalue or singular 
value decomposition. 

.. Spatial rotations 

... Rotation matrix using trigonometric functions 
For plane transformations, rotations take effect about a single point. In contrast, 
spatial rotations are performed successively about the three axes of a spatial 
coordinate system. Consider a point P in the source system xyz which is rotated with 
respect to the target system XYZ. Using trigonometric functions, individual rotations 
about the three axes of the target system are defined as follows (see Fig. 2.13): 

Y

X

κ

z=Z

X

Z

ϕ

y=Y

Z

Y

ω

x=X

P P P

 

Fig. 2.13: Definition of spatial rotation angles. 

1. Rotation about Z-axis: 

A Z-axis rotation is conventionally designated by angle κ. This is positive in an 
anticlockwise direction when viewed down the positive Z axis towards the origin. 
From eqn. (2.8), this results in the following point coordinates in the target system 
XYZ:  

= ⋅ − ⋅
= ⋅ + ⋅
=

cos sin
sin cos

X x κ y κ
Y x κ y κ
Z z

 
or 

cos sin 0
sin cos 0

0 0 1

κ

X κ κ x
Y κ κ y
Z z

= ⋅
     −
     

= ⋅     
     
     

X R x

 

(2.27) 
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2. Rotation about Y-axis:  

The corresponding rotation about the Y-axis is designated by rotation angle φ. This 
results in the following XYZ target point coordinates: 

= ⋅ + ⋅
=
= − ⋅ + ⋅

cos sin

sin cos

X x φ z φ
Y y
Z x φ z φ

 
or = ⋅

     
     

= ⋅     
     −     

cos 0 sin
0 1 0

sin 0 cos

φ

X φ φ x
Y y
Z φ φ z

X R x

 (2.28) 

3. Rotation about X-axis:  

Finally, the X axis rotation is designated by angle ω, which results in XYZ values:  

cos sin
sin cos

X x
Y y ω z ω
Z y ω z ω

=
= ⋅ − ⋅
= ⋅ + ⋅

 
or 

1 0 0
0 cos sin
0 sin cos

ω

X x
Y ω ω y
Z ω ω z

= ⋅
     
     

= − ⋅     
     
     

X R x

 (2.29) 

The given rotation matrices are orthonormal, i.e.  

T T⋅ = ⋅ =R R R R I  1 T− =R R  and det( ) 1=R  (2.30) 

The complete rotation R of a spatial coordinate transformation can be defined by the 
successive application of 3 individual rotations, as defined above. Only certain 
combinations of these 3 rotations are possible and these may be applied about either 
the fixed axial directions of the target system or the moving axes of the source system. 
If a general rotation is defined about moving axes in the order ω φ κ, then the complete 
rotation is given by:  

= ⋅X R x   (2.31) 
where 

ω φ κ= ⋅ ⋅R R R R   (2.32) 

and 

11 12 13

21 22 23

31 32 33

cos cos cos sin sin
cos sin sin sin cos cos cos sin sin sin sin cos
sin sin cos sin cos sin cos cos sin sin cos cos

r r r
r r r
r r r

φ κ φ κ φ
ω κ ω φ κ ω κ ω φ κ ω φ
ω κ ω φ κ ω κ ω φ κ ω φ

 
 

=  
 
 
 −
 

= + − − 
 − + 

R

 

If the rotation is alternatively defined about fixed axes in the order ω φ κ, then the 
rotation matrix is given by: 
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*
κ φ ω= ⋅ ⋅R R R R   (2.33) 

This is mathematically equivalent to applying the same rotations about moving axes 
but in the reverse order. 

From eqn. (2.31) the inverse transformation which generates the coordinates of a 
point P in the rotated system xyz from its XYZ values is therefore given by: 

T= ⋅x R X   (2.34) 
where 

T T T T
κ φ ω= ⋅ ⋅R R R R   (2.35)  

Note that in this inverse transformation, the individually inverted rotation matrices 
are multiplied in the reverse order. 

From the matrix coefficients r11…r33 in eqn. (2.32), the individual rotation angles 
can be calculated as follows: 

13

23

33

12

11

sin

tan

tan

φ r
r

ω
r
r

κ
r

=

= −

= −

 or 

13

33

11

sin

cos
cos

cos
cos

φ r
r

ω
φ

r
κ

φ

=

=

=

 (2.36) 

Eqn. (2.36) shows that the determination of φ is ambiguous due to solutions for sin φ 
in two quadrants. In addition, there is no unique solution for the rotation angles if the 
second rotation (φ in this case) is equal to 90° or 270° (cosine φ in r11 and r33 then 
causes division by zero). This effect also exists in gimbal systems (gyroscopes) where 
it is known as gimbal lock. 

X

Y

Z

x'

y'

z'ω

ϕ

κ

 

Fig. 2.14: Image configuration where ω = 0°, φ = 90° and κ = 90°. 
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A simple solution to this ambiguity problem is to alter the order of rotation. In the 
case that the secondary rotation is close to 90°, the primary and secondary rotations 
can be exchanged, leading to the new order φ ω κ. This procedure is used in close-
range photogrammetry when the viewing direction of the camera is approximately 
horizontal (see Fig. 2.14 and also section 4.2.1.2). The resulting rotation matrix is then 
given by: 

φωκ φ ω κ= ⋅ ⋅R R R R   (2.37) 

where 

11 12 13

21 22 23

31 32 33

cos cos sin sin sin cos sin sin sin cos sin cos
cos sin cos cos sin

sin cos cos sin sin sin sin cos sin cos cos cos

φωκ

r r r
r r r
r r r

φ κ φ ω κ φ κ φ ω κ φ ω
ω κ ω κ ω

φ κ φ ω κ φ κ φ ω κ φ ω

 
 

=  
 
 

 + − +
 

= − 
 − + + 

R

 

Example .: 
Referring to Fig. ., an image configuration is shown where the primary rotation ω = °, the 
secondary rotation φ = ° and the tertiary rotation κ = °. In this case the Rφωκ reduces to 

 
 

=  
 
 

φωκ

0 0 1
1 0 0
0 1 0

R  

This rotation matrix represents an exchange of coordinate axes. The first row describes the 
transformation of the X axis. Its x, y and z elements are respectively ,  and , indicating a 
transformation of X to z. Correspondingly, the second row shows Y transforming to x and the third 
row transforms Z to y. 

However, the exchange of rotation orders is not a suitable solution for arbitrarily 
oriented images (see Fig. 3.39 and Fig. 4.57). Firstly, the rotation angles of images 
freely located in 3D space are not easy to visualize. Secondly, ambiguities cannot be 
avoided, which leads to singularities when calculating orientations. The effects can 
be avoided by rotation matrices based on algebraic functions (see next sections).  

... Rotation matrix using quaternions 
The ambiguities for trigonometric functions (above) can be avoided when a rotation 
matrix with algebraic functions is used and where the rotation itself is a single 
rotation about a specific axis in space. The direction of the rotation axis is defined by 
three vector components a, b, c and the rotation defined by angular value d. This four-
dimensional vector is known as a quaternion and it gives rise to the following rotation 
matrix: 
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2 2 2 2

2 2 2 2

2 2 2 2

2( ) 2( )
2( ) 2( )
2( ) 2( )

T

d a b c ab cd ac bd
ab cd d a b c bc ad
ac bd bc ad d a b c

 + − − − +
 

= + − + − − 
 − + − − +  

R  (2.38) 

Implicitly, this rotation matrix contains a common scaling factor: 

2 2 2 2m a b c d= + + +   (2.39) 

Using the constraint m = 1, an orthogonal rotation matrix with three independent 
parameters is obtained. Normalization with m gives the unit quaternion q: 

1

2

3

0

sin( / 2)/
sin( / 2)/

/ sin( / 2)
/ cos( / 2)

x

y

z

n αa m q
n αb m q

c m q n α
d m q α

    
    
    = = =     
    
         

q   (2.40) 

with the orthonormal rotation matrix: 

2 2
2 3 1 2 0 3 0 2 1 3

2 2
1 2 0 3 1 3 2 3 0 1

2 2
1 3 0 2 0 1 2 3 1 2

1 2( ) 2( ) 2( )
2( ) 1 2( ) 2( )
2( ) 2( ) 1 2( )

q q q q q q q q q q
q q q q q q q q q q
q q q q q q q q q q

 − + − +
 

= + − + − 
 − + − +  

R  (2.41) 

The parameters a…c, or q1…q3, are called the vector components of the quaternion and 
the parameter d, or q0, is called the scalar component. The rotation matrix becomes a 
unity matrix when either q0 = 1 (corresponding to α = 0) or q1 = q2 = q3 = 0. 

X

Y

Z

ω
ϕ

κ

P

nz

α

P'

nY
nX

n

 

Fig. 2.15: Rotation around an axis in space.  

The formulation with quaternions corresponds to a rotation angle α about an axis in 
space defined by the normalized direction vector n = [nx,ny,nz]T (see Fig. 2.15). Since the 
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axis only specifies direction, and its length has no importance, only two of its 
parameters are independent. Together with the rotation angle, three independent 
parameters therefore still remain to describe a rotation in space. This form of rotation 
is often used in computer graphics, e.g. OpenGL or VRML. The only ambiguity 
associated with quaternions is the fact that a rotation defined by q is identical to a 
rotation defined by q–1, i.e. a rotation can be formed equally in the reversed viewing 
direction using the inverted quaternion.  

The quaternion can be calculated from a given orthonormal rotation matrix R as 
follows: 

0 11 22 33
1 cos
2 2

αq r r r= ± + + =   (2.42) 

32 23
1

04
r r

q
q
−

=  13 31
2

04
r r

q
q
−

=

 

21 12
3

04
r r

q
q
−

=

 

The sign of q0, or equivalently the value of angle α, cannot be uniquely defined (see 
above). The transformation of the coefficients q into Euler angles of the rotation 
matrix (2.41) is done analogously to (2.36) or directly by 

( )

2 3 0 1
2 2 2 2
0 1 2 3

0 2 1 3

1 2 0 3
2 2 2 2
0 1 2 3

2( )
arctan

arcsin 2( )

2( )
arctan

q q q q
ω

q q q q
φ q q q q

q q q q
κ

q q q q

 −
 = −
 − − + 

= +

 −
 = −
 + − − 

  (2.43) 

whereby the ambiguities described in section 2.2.2.1 still exist. 

Example .: 
Given the rotation matrix  

 − −
 

=  
 − 

0.996911 0 013541 0 077361
0 030706 0 973820 0 225238
0 072285 0 226918 0 971228

. .
. . .
. . .

R  

Application of eqn. (.) results in the following rotation angles: 
ω = –13.0567°, φ = –4.4369°, κ = 0.7782°  

Application of eqns. (.) and (.) results in the following quaternion: 
q = –., q = –., q = ., q = . and α = .° 

See also example . in section ... 

In summary, a rotation matrix with algebraic functions offers the following benefits 
in contrast to trigonometric functions: 
– no singularities, (i.e. no gimbal lock); 
– no dependency on the sequence of rotations; 
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– no dependency on the definition of coordinate axes; 
– simplified computation of the design matrix (the first derivatives of a, b, c, d are 

linear); 
– faster convergence in adjustment systems; 
– faster computation by avoiding power series for internal trigonometric 

calculations. 

However, the geometric interpretation of quaternions is more complex, e.g. in error 
analysis of rotation parameters around particular rotation axes.  

... Rodrigues rotation matrix 
The rotation matrix according to Rodrigues is also based on a rotation around an axis 
in space. Using the quaternion in (2.42) and the parameters  

1

2 2 2
1 2 3

2 tan( / 2)
'

q α
a

q q q

⋅
=

+ +
 2

2 2 2
1 2 3

2 tan( / 2)
'

q α
b

q q q

⋅
=

+ +

 

3

2 2 2
1 2 3

2 tan( / 2)
'

q α
c

q q q

⋅
=

+ +
 (2.44) 

the Rodrigues matrix is derived:  

2 2 2

2 2 2
2 2 2

2 2 2

4 ' ' ' 2 ' ' 4 ' 2 ' ' 4 '
1 2 ' ' 4 ' 4 ' ' ' 2 ' ' 4 '

4 ' ' '
2 ' ' 4 ' 2 ' ' 4 ' 4 ' ' '

a b c a b c a c b
a b c a b c b c a

a b c
a c b b c a a b c

 + − − − +
 

= + − + − − 
+ + +  − + − − +  

R  (2.45) 

The Rodrigues matrix consists of three independent parameters but cannot describe 
rotations where α = 180° as the tangent function is undefined at 90° (tan (α/2)). 

... Rotation matrix with direction cosines 
The spatial rotation matrix can also be regarded as a 
matrix of direction cosines of the angles δ between the 
original and the rotated coordinate axes. The unit 
vectors i,j,k are defined in the direction of the rotated 
axes (Fig. 2.16). 

cos cos cos
cos cos cos
cos cos cos

xX yX zX

xY yY zY

xZ yZ zZ

δ δ δ
δ δ δ
δ δ δ

 
 

 = =   
 
  

R i j k  (2.46) 

... Normalization of rotation matrices  
If the coefficients of a rotation matrix are not explicitly derived from three rotational 
values, but instead are the result of a calculation process such as the determination 

X

Y

Z

x

y

z

k
j

i
 

Fig. 2.16: Direction cosines. 
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of exterior orientation or a spatial similarity transformation, then the matrix can show 
departures from orthogonality and orthonormality. Possible causes are systematic 
errors in the input data or limits to computational precision. In this case, the matrix 
can be orthonormalized by methods such as the Gram-Schmidt procedure or the 
following similar method:  

With the initial rotation matrix (to be orthonormalized) 

11 12 13

21 22 23

31 32 33

r r r
r r r
r r r

 
   = =   
 
 

R u v w   (2.47) 

create direction vectors which have unit length (unit vectors), and are mutually 
orthogonal, and which form the new (orthonormal) matrix as follows: 

=
uu'
u

 ⋅
= −

v u's v
u'

 
=

sv'
s

 = ×w' u' v'  (2.48) 

 =  R' u' v' w'  : orthonormalized rotation matrix   

Example .: 
A rotation matrix R is defined by angles ω = °, φ = °, κ = ° according to eqn. (.). In this 
example, the values of the coefficients after the third decimal place are subject to computational 
error (see also example .): 

 −
 

= − 
 − 

0 433273 0 844569 0 324209
0 248825 0 468893 0 855810
0 876000 0 284795 0 409708

. . .
. . .
. . .

R  and =det( ) 1.018296R  

which, when multiplied by its transpose, does not result in a unit matrix: 
 
 

=  
 
 

1.017015  -0.000224   0.005486
 -0.000224   1.014265   0.010784
  0.005486   0.010784   1.005383

TR R  and =det( ) 1.036927TR R  

The matrix orthonormalized according to (.) is given by: 
 
 

=  
 
 

0 429633   0.838703 -0.334652
 -0.246735   0.465529   0.849944
  0.868641  -0.282594   0.406944

.
R'  and =det( ) 1.000000R'  

The three column vectors are now orthogonal to one another in pairs and all have unit length. 

... Comparison of coefficients 
The spatial rotation defined in  

= ⋅X R x   (2.49) 
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depends on the nine coefficients r11…r33 of R. See, for example, the rotation order ω φ κ 
about rotated axes which defines R in eqn. (2.32). If the identical transformation result 
is to be achieved by a rotation matrix R' using a different rotation order, the 
coefficients of R' must be equal to those of R: 

=R R'   (2.50) 

If the rotation angles ω',φ',κ' of rotation matrix R' are to be calculated from the 
explicitly given angles ω,φ,κ of R, this can be achieved by a comparison of matrix 
coefficients and a subsequent reverse calculation of the trigonometric functions. 

Example .: 
Given the rotation matrix of eqn. (.) defined by angles ω = °, φ = °, κ = °, determine the 
rotation angles ω',φ',κ' belonging to the equivalent rotation matrix R' defined by eqn. (.): 
1. Evaluate the coefficients r11…r33 of R by multiplying out the individual rotation matrices in the order 

= ⋅ ⋅ω φ κR R R R , substituting the given values of ω φ κ: 

 −
 

= − 
 − 

0 433013 0 250000 0 866025
0 839758 0 461041 0 286788
0 327576 0 851435 0 409576

. . .
. . .
. . .

R  

2. Write the coefficients r'11…r'33 of R' in trigonometric form by multiplying the individual rotation 
matrices in the order = ⋅ ⋅φ ω κR' R R R . Assign to each coefficient the values from R, i.e. r'11 = r11, r'12 
= r12, and so on. 

3. Calculate the rotation angles ω',φ',κ' of R' by solution of trigonometric equations: 
ω' = 16.666° φ' = 64.689° κ' = 61.232° 

.. Spatial transformations 

... General transformations 
The general linear transformation of homogeneous coordinates is given by:  

λ= ⋅ ⋅TX x   (2.51) 

where λ is an arbitrary scale factor not equal to zero and T is the transformation or 
projection matrix3.  

11 12 13 14
11 12

3,3 1,321 22 23 24

31 32 33 34 21 22
3,1 1,1

41 42 43 44

a a a a
a a a a
a a a a
a a a a

 
  
  = =   
      

T T
T

T T  (2.52) 

 
3 Note that T is a homogeneous matrix whilst the four sub-matrices are not. 
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Due to the arbitrary scale factor, there are 15 independent parameters remaining. By 
selecting parameter subsets from this general transformation, special 
transformations such as the affine transformation, projective transformation or 
similarity transformation can be derived. The result of this transformation always 
results in a new homogeneous coordinate vector. The four sub-matrices contain 
information as follows: 

T11 : scaling, reflection in a line, rotation  
T12 : translation 
T21 : perspective 
T22 : homogeneous scaling 

Scaling or reflection about a line is performed by the factors sX, sY, sZ: 

0 0 0
0 0 0
0 0 0
0 0 0 1

X

Y
S

Z

s
s

s

 
 
 =  
 
  

T  : scaling, reflection in a line  (2.53) 

A spatial rotation results if T11 is replaced by the rotation matrix derived in section 
2.2.2: 

11 12 13

21 22 23

31 32 33

0
0
0

0 0 0 1

R

r r r
r r r
r r r

 
 
 =  
 
  

T  : spatial rotation (2.54) 

Translation by a vector xT,yT,zT is performed by the matrix: 

1 0 0
0 1 0
0 0 1
0 0 0 1

T

T
T

T

x
y
z

 
 
 =  
 
  

T  : translation (2.55) 

Combined transformations T1, T2 etc. can be created by sequential multiplication of 
single projection matrices as follows: 

2 1n= ⋅ = ⋅ ⋅ ⋅ ⋅T T T TX x x   (2.56) 

In general, the multiplication order may not be changed because the projections are 
not necessarily commutative. 

The reverse transformation is given by: 
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1 1 1 1
1 2 n

− − − −= ⋅ = ⋅ ⋅ ⋅ ⋅T T T Tx X X   (2.57) 

This inversion is only possible if the projection matrix is not singular, as is the normal 
case for the transformation of one 3D system into another. However, if the vector x is 
projected onto a plane, the projection matrix does become singular. The original 
coordinates cannot then be calculated from the transformed plane coordinates X. 

... Central projection 
The central projection is of fundamental importance in photogrammetry and it can 
also be expressed by a homogenous transformation. 

Z=z'
x'

-c

X

x'image
plane

Z

P(X,Y,Z)

P'(x',y',-c)

O'
X

 

Fig. 2.17: Central projection. 

The central projection is modelled firstly for the following special case. The projection 
plane is oriented normal to the viewing direction Z with the distance –c to the 
perspective centre at O'. Here the origins of the image coordinate system x'y'z' and 
the object coordinate system XYZ are both located in the perspective centre. Referring 
to Fig. 2.17, the following ratios can be derived. 

'x X
c Z

=
−

 'y Y
c Z

=
−

 ' 1z Z
c Z

= =
−

 (2.58) 

and further rearranged to give x', y' and z': 

' Xx c m X
Z

= − = ⋅  ' Yy c m Y
Z

= − = ⋅  'z c= −  (2.59) 

If the perspective centre moves to infinity, c becomes infinite and the term c/Z 
approaches the value 1. The central projection then changes to a parallel projection.  

In homogeneous matrix notation, the perspective transformation is firstly written 
as 
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1 0 0 0'
0 1 0 0'
0 0 1 0'
0 0 1 / 0' 1 /

U X X
V Y Y
W Z Z

cT Z c

      
      
      = ⋅ =      
      

− −            
= ⋅TU X'

 (2.60) 

and for the resulting Cartesian coordinates after division by Z/–c: 

/
/ 0 0 0' /

0 / 0 0' /
0 0 / 0'
0 0 1 / 01 1 1

P
c

c Z
c Zx X cX Z

c Zy Y cY Z
c Zz Z c

Z

−
= = ⋅

−
      − −
      

− −      = ⋅ =      − −
      
            

TU Xx' '

 (2.61) 

The fourth row of TP (sub-matrices T21 and T22 in eqn. 2.52) implies the central 
projective effect. Eqn. (2.61) also leads to the projection equations (2.59) that are 
already known for the pinhole camera model (compare section 1.2.3). 

If the above-mentioned special case is extended to an arbitrary exterior 
orientation of the image plane (position and orientation in space), the transformation 
of object coordinates into image coordinates can be performed by the following 
matrix operation, which is the inverse of (2.66): 

1 1
P R T

− −= ⋅ ⋅ ⋅T T Tx' X   (2.62) 

... General affine transformation 
The general affine transformation describes a spatial transformation of points by 12 
parameters which for each axis comprise a translation, scale factor, shear parameter 
and rotation.  

= + ⋅0X X A x   (2.63) 

or 

0 1 2 3

0 1 2 3

0 1 2 3

X a a a a x
Y b b b b y
Z c c c c z

       
       

= + ⋅       
       
       

 
0 1 2 3

0 1 2 3

0 1 2 3

X a a x a y a z
Y b b x b y b z
Z c c x c y c z

= + + +
= + + +
= + + +

 

In homogeneous notation: 
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0 1 2 3 1 2 3 0

0 1 2 3 1 2 3 0

0 1 2 3 1 2 3 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 11 1 1

A

a a a a a a a aX x x
b b b b b b b bY y y
c c c c c c c cZ z z

= ⋅
          
          
          = ⋅ ⋅ = ⋅          
          
                    

TX x

 (2.64) 

This system of equations is linear and can be solved without approximate values. The 
transformation is therefore also suitable for obtaining approximate values for non-
linear spatial transformations. 

.. Spatial similarity transformation 

... Mathematical model 
The spatial similarity transformation is used for the shape-invariant mapping of a 
three-dimensional Cartesian coordinate system xyz into a corresponding target 
system XYZ. Both systems can be arbitrarily rotated, shifted and scaled with respect 
to each other. It is important to note that the rectangularity of the coordinate axes is 
preserved. This transformation is therefore a special case of the general affine 
transformation (section 2.2.3.3). 

X

Y

Z

ω
ϕ

κ

P

 

Fig. 2.18: Spatial similarity transformation. 

The spatial similarity transformation, also known as a 3D Helmert transformation, is 
defined by 7 parameters, namely 3 translations to the origin of the xyz system (vector 
X0 defined by X0,Y0,Z0), 3 rotation angles ω,φ,κ about the axes XYZ (implied by 
orthogonal rotation matrix R) and one scaling factor m (Fig. 2.18). The 6 parameters 
for translation and rotation correspond to the parameters of exterior orientation (see 
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section 4.2.1). Parameters are applied in the order rotate - scale - shift and the 
transformation function for a point P(x,y,z), defined by vector x, is given by: 

m= + ⋅ ⋅0X X R x   (2.65) 

or 

0 11 12 13

0 21 22 23

0 31 32 33

X X r r r x
Y Y m r r r y
Z Z r r r z

       
       

= + ⋅ ⋅       
       
       

 

Using homogenous coordinates, the spatial similarity transformation of eqn. (2.65) is 
given by (m = sx = sy = sz, see eqn. 2.51):  

0 11 12 13

0 21 22 23

0 31 32 33

11 12 13 0

21 22 23 0

31 32

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 11 1

T S R

X m r r rX x
Y m r r rY y
Z m r r rZ z

mr mr mr X
mr mr mr Y
mr mr

= ⋅ ⋅ ⋅
        
        
        = ⋅ ⋅ ⋅        
        
                

=

X T T T x

33 0

0 0 0 1 1

x
y

mr Z z

   
   
   ⋅   
   
     

 (2.66) 

In order to determine the seven parameters, a minimum of seven observations is 
required. These observations can be derived from the coordinate components of at 
least three spatially distributed reference points (control points). They must contain 
at least 2 X, 2 Y and 3 Z components4 and they must not lie on a common straight line 
in object space. 

The spatial similarity transformation is of fundamental importance to 
photogrammetry for two reasons. Firstly, it is a key element in the derivation of the 
collinearity equations, which are the fundamental equations of analytical 
photogrammetry (see section 4.2.2). Secondly, it is used for the transformation of local 
3D coordinates such as model coordinates or 3D measuring machine coordinates, into 
an arbitrary superior system, for example an object or world coordinate system, as 
required, say, for absolute orientation (see section 4.3.5) or bundle adjustment (see 
section 4.4). It can also be used to detect deviations or deformations between two 
groups of points.  

There are simplified solutions for a transformation between two systems that are 
approximately parallel. In the general case both source and target system have an 

 
4 It is assumed that the viewing direction is approximately parallel to the Z axis. For other image 
orientations appropriately positioned minimum control information is required.  
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arbitrary relative orientation, i.e. any possible translation and rotation may occur. 
The calculation of transformation parameters then requires linearization of the 
system of equations defined by the similarity transformation (2.65). Sufficiently 
accurate initial values are then required in order to determine the unknown 
parameters (see below). An alternative solution is presented in section 2.2.4.3. 

The system of equations is normally over-determined and the solution is 
performed by least-squares adjustment (see section 2.4). This derives an optimal fit 
between both coordinate systems. According to eqn. (2.65) every reference point 
defined in both systems generates up to three equations (compare with eqn. 2.63): 

0 11 12 13

0 21 22 23

0 31 32 33

( )
( )
( )

X X m r x r y r z
Y Y m r x r y r z
Z Z m r x r y r z

= + ⋅ ⋅ + ⋅ + ⋅
= + ⋅ ⋅ + ⋅ + ⋅
= + ⋅ ⋅ + ⋅ + ⋅

  (2.67) 

By linearizing the equations at approximate parameter values, corresponding 
correction equations are built up. Any reference point with defined X, Y and Z 
coordinates (full reference point) provides three observation equations. 
Correspondingly, reference points with fewer coordinate components generate fewer 
observation equations but they can still be used for parameter estimation. Thus, a 
transformation involving 3 full reference points already provides 2 redundant 
observations. The 3-2-1 method (see section 4.4.3), used in industrial metrology, is 
based on 6 observations, does not derive a scale change, and therefore results in zero 
redundancy. 

Each reference point or each observation can be weighted individually (see 
section 2.4.1.2). For example, this can be based on an a priori known accuracy of the 
reference point measurement. If there is no reliable information to indicate that 
reference coordinates have different accuracies, all observations should be weighted 
equally. Otherwise transformation parameters may be biased and, as a result, 
transformed points may be subject to deformation. 

There is a special case of the 3D similarity transformation when the scale factor 
is fixed, i.e. 6 unknown parameters remain. This transformation is then often known 
as a rigid-body transformation.  

... Approximate values 
In order to calculate approximate values of the translation and rotation parameters 
of the similarity transformation, an intermediate coordinate system is formed. This is 
derived from 3 reference points P1,P2,P3, defined in an intermediate system uvw and 
known in both the target system XYZ and the source system xyz (Fig. 2.19). The 
purpose at this stage is to calculate the parameters which transform the reference 
points from intermediate system uvw to coordinate systems XYZ and xyz. 
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Fig. 2.19: Calculation of approximate values for 3D similarity transformation. 

XYZ u X uvw u X→ →= ⋅ +P R P T  xyz u x uvw u x→ →= ⋅ +P R P T  (2.68) 

Solving both equations for Puvw and re-arranging:  

( ) ( )T T
u X XYZ u X u x xyz u x→ → → →⋅ − = ⋅ −R P T R P T  (2.69) 

and finally, for the coordinates of a point in system XYZ: 

0 0( )

T T
XYZ u X u x xyz u X u X u x u x

x X xyz u X x X u x

→ → → → → →

→ → → →

= ⋅ ⋅ + − ⋅ ⋅

= ⋅ + − ⋅

P R R P T R R T
R P T R T

 (2.70) 

Here matrices Ru→X and Ru→x describe the rotation of each system under analysis with 
respect to the intermediate system. The vectors Tu→X and Tu→x describe the 
corresponding translations. The expression in brackets describes the translation 
between systems XYZ and xyz: 

0 0
x X u X x X u x→ → → →= − ⋅X T R T   (2.71) 

To calculate the required parameters, the u axis of the intermediate system is 
constructed through P13 and P2 and the uv plane through P3 (corresponds to the 3-2-1 
method). From the local vectors defined by the reference points Pi(Xi,Yi,Zi), i = 1…3, 
normalized direction vectors are calculated. Here vectors u,v,w are derived from the 
coordinates of Pi in the source system xyz, while U,V,W are calculated from the target 
system coordinates XYZ: 
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2 1

2 1

−
=

−

P P
U

P P
 3 1

3 1

( )
( )

× −
=

× −

U P P
W

U P P
 = ×V W U  (2.72) 

2 1

2 1

−
=

−

p p
u

p p
 3 1

3 1

( )
( )

× −
=

× −

u p p
w

u p p
 = ×v w u  

Vector u is a unit vector on the u axis, w is perpendicular to the uv plane and v is 
perpendicular to u and w. These 3 vectors directly define the rotation matrix from 
uvw to XYZ (see eqn. 2.46): 

U X→
 =  R U V W  u x→

 =  R u v w  (2.73) 

The approximate rotation matrix from the xyz to the XYZ system is obtained from 
successive application of the above two matrices as follows:  

0 T
x X U X u x→ → →= ⋅R R R   (2.74) 

The approximate scale factor can be calculated from the point separations: 

2 2 2
2 1 2 1 2 1 2 10

2 2 2
2 1 2 1 2 1 2 1

( ) ( ) ( )

( ) ( ) ( )

X X Y Y Z Z
m

x x y y z z

− − + − + −
= =

− − + − + −

P P

p p
 (2.75) 

Using the centroid of the reference points in both coordinate systems, approximate 
values for the translation parameters of the similarity transformation can be 
calculated: 

S

S S u X

S

X
Y
Z

→

 
 

= = 
 
 

X T  : centroid in XYZ system (2.76) 

S

S S u x

S

x
y
z

→

 
 

= = 
 
 

x T  : centroid in xyz system (2.77) 

According to (2.71) the translation can then be calculated: 

0 0 0
x X S x X Sm→ →= − ⋅ ⋅X X R x   (2.78) 
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Example .:  
 points are known in the source and target systems and have the following D coordinates: 

No. x y z X Y Z 
 . . . . . . 
 . . . . . . 
 . . . . . . 
 . . . . . . 
 . . . . . . 

Approximate values, calculated using points ,  and  as above, are: 

Rotation:  →

 −
 

= − 
 − 

0
0.433558 0.250339 0.865654
0.839451 0.461481 0.286979
0.327641 0.851097 0.410226

x XR  

Scale factor: m = .  

Translation: 
 −
 

=  
 
 

0
0

23 430
10 185
9.284

.
.X  

The adjusted parameters are given in example .. 

... Calculation with eigenvalues and quaternions 
The rotation matrix of the spatial similarity transformation can also be derived 
directly from the two sets of points as the related quaternion can be determined by 
eigenvalue analysis. Firstly, the 3D coordinates of points Pi are reduced to their 
centroid: 

i i S= −X X X  i i S= −x x x  (2.79) 

Using the matrices SX and Sx formed by the coordinate components of all n points Pi  

1 1 1 1

2 2 3 2
X

n n n n

X Y Z
X Y Z

X Y Z

   
   
   = =   
   
      

X
X

S

X
   

 

   
   
   = =   
   
      

   

1 1 1 1

2 2 3 2
x

n n n n

x y z
x y z

x y z

x
x

S

x

 (2.80) 

the 3x3 matrix M is calculated 

T
X x= ⋅M S S   (2.81) 

which then is used to form the following symmetrical matrix N: 
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11 22 33 23 32 31 13 12 21

11 22 33 12 21 31 13

11 22 33 23 32

11 22 33

m m m m m m m m m
m m m m m m m

m m m m m
m m m

 + + − − −
 

− − + + =  − + − +
 

− − +  

N  (2.82) 

The eigenvector of N with the largest eigenvalue λmax gives the required quaternion of 
the rotation between both systems.  

Translation and scale are calculated according to section 2.2.4.1 or by: 

max
1

/
n

T
i i

i
m λ

=

= ∑x x  0 0 0
x X S x X Sm→ →= − ⋅ ⋅X X R x  (2.83) 

Example .: 
Using the five points from example . the following transformation parameters are calculated: 

Least-squares adjustment Eigenvalues and quaternions 
m = . m = . 
X = –. X = –. 
Y =   . Y =   . 
Z =     . Z =     . 

R =
 −
 

− 
 − 

0.433878 0.250183 0.865539
0.839270 0.461625 0.287278
0.327682 0.851065 0.410260

 R =
 −
 

− 
 − 

0.433878 0.250183 0.865540
0.839270 0.461625 0.287278
0.327682 0.851065 0.410260

 

ω = .° ω = .° 
φ = .° φ = .° 
κ = .° κ = .° 
S = . S = . 
RMS X;Y;Z = .; .; . RMS X;Y;Z = .; .; . 

Example 2.7 demonstrates that the calculation using quaternions generates the same 
result as least-squares adjustment based on the observation equations (2.67). 
However, the possible need for individual weighting of observations is much more 
complex if eigenvalues are used. Where applicable, the eigenvalue computation 
should be followed by a least-squares adjustment with a suitable stochastic model.  

.. Additional coordinate transformations 

... Spherical coordinates 
Spherical coordinates use two angles α, β and the distance r to the origin to define a 
point in 3D space. (Fig. 2.20). For r = const. all points lie on a sphere. For a right-
handed convention, α is positive from X towards Y. β increases from zero on the Z 
axis. 
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cos sin
sin sin

cos

X α β
Y r α β
Z β

   
   

=   
   
   

  (2.84) 

Z

α

P

Y
X

β r

X

Y

Z

 

P

X

Y

Z

r

h

α

Y
X

Z

 

Fig. 2.20: Spherical coordinates. Fig. 2.21: Cylindrical coordinates. 

The reverse transformation from Cartesian coordinates to the angles α, β and the 
distance r depends on quadrants, hence is not unique. Spherical coordinates are 
used, for instance, for the calculation of 3D coordinates from total stations or laser 
scanners (polar measuring systems).  

... Cylindrical coordinates 
Cylindrical coordinates define a 3D point using one angle α, the cylinder radius r and 
the height h along the cylinder axis (Fig. 2.21). Again, for a right-handed convention, 
α is positive from X towards Y. 

cos
sin

X r α
Y r α
Z h

   
   

=   
   
   

  (2.85) 

As for spherical coordinates, the calculation of α from Cartesian coordinates is not 
unique. Cylindrical coordinates can be used, for example, in colour transformations 
(section 5.2.2.2) or in panoramic photogrammetry (section 4.5.1). 

. Geometric elements 

The geometric reconstruction of a measured object is the major goal of a 
photogrammetric process. This section therefore gives a short summary of geometric 
elements and their mathematical definition. It distinguishes between planar 
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elements, spatial elements and surface descriptions that are the basic result of a 
photogrammetric measurement. For a detailed description of the methods of 
analytical geometry, the reader should refer to specialist literature on geometry and 
3D computer graphics. 

points
XYZ

calculated geometric 
elements

derived geometric
elements

adjustment

combination

points on
cylinders

cylinder, axis

intersection point of 
cylinder axes

derived
quantities

distance between 
two intersetcion points
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Fig. 2.22: Calculation progress for geometric elements. 

Except in very few cases, photogrammetric methods are based on measurement of 
discrete object points. Geometric elements such as straight lines, planes, cylinders 
etc. are normally calculated in a post-processing step using the measured 3D points. 
For over-determined solutions, least-squares fitting methods are used. Computed 
geometric elements can then either be combined or intersected in order to create 
additional geometric elements such as the intersection line between two planes. 
Alternatively, specific dimensions can be derived from them, such as the distance 
between two points (Fig. 2.22). 

In addition to the determination of regular geometric shapes, the determination 
and visualization of arbitrary three-dimensional surfaces (free-form surfaces) is of 
increasing importance. This requires a basic knowledge of different ways to represent 
3D surfaces, involving point grids, triangle meshing, analytical curves, voxels etc. 

Many of these calculations are embedded in state-of-the-art 3D CAD systems or 
programs for geometric quality analysis. CAD and photogrammetric systems are 
therefore often combined. However, geometric elements may also be directly 
employed in photogrammetric calculations, e.g. as conditions for the location of 
object points (see section 4.4.2.3). In addition, some evaluation techniques enable the 
direct calculation of geometric 3D elements without the use of discrete points (e.g. 
contour method, section 4.4.7.2). 
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.. Analytical geometry in the plane 

... Straight line 

.... Parametric form 
The straight line g between two points P1 and P2 (Fig. 2.23) is to be determined. For all 
points P(x,y) belonging to g, the proportional relationship 

1 2 1

1 2 1

y y y y
x x x x

− −
=

− −
  (2.86) 

leads to the parametric form of the straight line:  

1 2 1

1 2 1

1 2 1

( )t
x x x x

t
y y y y

= + ⋅ −
     −

= + ⋅     
−          

x x x x
  (2.87) 

Point P1(x1,y1) is defined at t = 0 and point P2(x2,y2) at t = 1. 
The distance d of a point Q(xQ,yQ) from the straight line is defined by:  

2 1 1 2 1 1( )( ) ( )( )Q Qy y x x x x y y
d

l
− − − − −

=  (2.88) 

with 
2

12
2

12 )()( yyxxl −+−=  

The foot F(x,y) of the perpendicular from Q to the line is given by: 

1 1 2

1 2 1

F

F

x x y y
s

y y x x
     −

= + ⋅     
−          

  (2.89) 

where 

1 2 1 1 2 1
2

( )( ) ( )( )Q Qy y x x x x y y
s

l
− − − − −

=  

.... Analytical form 
The analytical form of a straight line  

0A x B y C⋅ + ⋅ + =   (2.90) 

leads to the following relations (Fig. 2.23): 



  2 Mathematical fundamentals 

  

= ⋅ +y m x c  
where 

2 1

2 1

tan
y yAm α

B x x
−

= = − =
−

 : slope (2.91) 

Cc
B

= −  : intersection point on y axis 

The (perpendicular) distance d to point Q(xQ,yQ) is given by: 

2 2

⋅ + ⋅ +
=

+

Q QA x B y C
d

A B
  (2.92) 
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Fig. 2.23: Definition of straight lines. 

.... Intersection of two straight lines 
Given two straight lines g1 and g2, their point of intersection S is derived from (2.90) 
as:  

1 2 2 1

1 2 2 1

⋅ − ⋅
=

⋅ − ⋅S
B C B Cx
A B A B

 1 2 2 1

1 2 2 1

⋅ − ⋅
=

⋅ − ⋅S
C A C Ay
A B A B

 (2.93) 

Alternatively, from (2.87) two equations for parameters t1 und t2 are obtained: 

2 1 1 3 4 2 3 1

2 1 1 3 4 2 3 1

( ) ( )
( ) ( )
x x t x x t x x
y y t y y t y y

− ⋅ + − ⋅ = −
− ⋅ + − ⋅ = −

  (2.94) 

The point of intersection is obtained by substituting t1 or t2 into the original straight 
line equations: 
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1 1 2 1 3 2 4 3

1 2 1 3 4 3
1 2

1 2 1 3 4 3

( ) ( )S

S

S

t t
x x x x x x x

t t
y y y y y y y

= + ⋅ − = + ⋅ −
         − −

= + ⋅ = + ⋅         
− −                  
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 (2.95) 

The angle between both lines is given by:  

1 2 2 1 2 1

1 2 1 2 1 2

tan
1

A B A B m m
φ

A A B B m m
⋅ − ⋅ −

= =
⋅ − ⋅ ⋅ +

  (2.96) 

Alternatively, if both lines are defined by their direction vectors 

2 1= −a x x  and 4 3= −b x x  

then the angle between them can be found from the scalar product of both vectors: 

cos
T

φ ⋅
= =

⋅ ⋅
a b a b
a b a b

  (2.97) 

The scalar product is zero if the lines are mutually perpendicular. 

.... Regression line 
The generalized regression line, which is a best-fit to a set of points, is the straight 
line which minimizes the sum of squared distances di of all points Pi from the line (Fig. 
2.24). For n point coordinates with equal accuracy in the x and y directions, the 
criterion is expressed as: 

2 2 2 2
1 2

1
min

n

n i
i

d d d d
=

+ + + = →∑   (2.98) 

The regression line passes through the centroid of the points: 

0
1

1 n

i
i

x x
n =

= ∑  and 0
1

1 n

i
i

y y
n =

= ∑  (2.99) 

One point on the straight line is therefore directly given. The direction of the line is 
defined by: 

0 0
2 2

0 0

2 ( )( )
tan2

( ) ( )
i i

i i

x x y y
φ

y y x x

− −
=

− − −

∑
∑

  (2.100) 
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Fig. 2.24: Regression line. 

Alternatively, the direction of the line can be expressed by the direction vector (a,b) 
which is equal to the eigenvector of the maximum eigenvalue of matrix B: 

T= ⋅B A A  

where  
1 0 1 0

0 0n n

x x y y

x x y y

 − −
 

=  
 − − 

A     (2.101) 

Without restriction, the optimization principle based on minimum quadratic 
distances according to (2.98) can be applied to regression lines in space as well as 
other best-fit elements.  

... Circle 
From the generalized equation for second order curves (conic sections)  

2 22 2 2 0Ax Bxy Cy Dx Ey F+ + + + + =  (2.102) 

the special cases of circle and ellipse are of major interest in close-range 
photogrammetry. For a circle with centre (xM,yM) and radius r, the equation is typically 
written as: 

2 2 2( ) ( )M Mx x y y r− + − =   (2.103) 

This can be re-arranged in the form: 

2 2 2 2 22 2 0M M M Mx y x x y y x y r+ − − + + − =  (2.104) 

This can be further re-arranged as: 

2 2 2 ' 2 ' ' 0x y D x E y F+ + + + =   (2.105) 
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This is equivalent to eqn. (2.102) with A = C = 1 and B = 0. There are effectively only 
three independent, unknown parameters, D', E' and F' and the circle can therefore be 
defined with a minimum of three points. The linear form of (2.105) can be used directly 
to solve for D', E' and F' in a least-squares solution where there are more than three 
points. 

By comparing eqn. (2.105) with eqn. (2.104), the radius and centre of the circle 
can be further derived as follows: 

2 2' ' 'r D E F= + −  'Mx D= −  'My E= −  (2.106) 

Alternatively, the distance of any point Pi(xi,yi) from the circumference is given by:  

2 2( ) ( )i i i M i Md r r x x y y r= − = − + − −  (2.107) 

The non-linear eqn. (2.107) can also be used as an observation equation after 
linearization. The best-fit circle is obtained by least-squares minimization of all point 
distances di. With initial approximate values for the centre coordinates and radius, 
the design matrix A consists of the derivatives 

i i M

M i

d x x
x r

∂ −
= −

∂
 i i M

M i

d y y
y r

∂ −
= −

∂
 1id

r
∂

= −
∂

 (2.108) 

Although the linear approach offers a direct solution without the requirement for 
initial parameter values, the non-linear approach directly generates the geometrically 
meaningful parameters of circle centre coordinates and circle radius. For over-
determined data, the two solutions will generate slightly different circles because 
different parameters are used in their respective optimizations. In this case it may be 
advantageous to use the linear solution to find initial estimates for circle centre and 
radius and then apply the non-linear solution to optimize these estimates. 

... Ellipse 
The determination of ellipse parameters, in particular the centre coordinates, is an 
important part of the measurement of circular targets which are projected as ellipses 
in the central perspective image (see sections 6.2.1.1 and 5.4.2.5). As a good 
approximation, the calculated ellipse centre corresponds to the required centre of the 
circular target (see section 6.2.1.1 for restrictions). 

A simple method for the determination of the ellipse centre is based on the 
geometry of ellipse diameters. Ellipse diameters are chords that are bisected by the 
ellipse centre. A conjugate diameter is defined by the straight line through the mid-
point of all chords which are parallel to a given diameter. A given diameter and its 
conjugate intersect at the ellipse centre (see Fig. 2.25). A possible implementation of 
this technique is presented in section 5.4.2.5. 
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Fig. 2.25: Geometry of an ellipse. 

For a full determination of ellipse parameters, a similar approach to the calculation 
of circle parameters can be applied. The approach is again based on fitting measured 
points to the generalized equation for second order curves (conic section), which is 
repeated here:  

2 22 2 2 0Ax Bxy Cy Dx Ey F+ + + + + =  (2.109) 

This equation provides a direct linear solution for the unknown parameters A, B, C, 
D, E, F by substituting measured values for x,y in order to create an observation 
equation. However, as in the case of a circle where only 3 of these parameters are 
required, for an ellipse only 5 are required, as explained below. This requires a 
minimum of 5 measured points in the image which generate 5 observation equations. 

The following analysis indicates a suitable modification of the generalized conic, 
as well as a derivation of the ellipse parameters (major and minor axes, centre 
position and rotation angle) from the generalized equation parameters. 

The simple form of a non-rotated ellipse, with semi-major axis a, semi-minor axis 
b and centre at the origin of the coordinate axes, is illustrated by the uv system in Fig. 
2.25 and given by: 

2 2

2 2
1u v

a b
+ =   (2.110) 

The axial rotation α must be applied in order to transform the equation from the uv 
and UV systems to the xy and XY systems respectively. In this process, it is convenient 
to use terms c and s where c = cos α und s = sin α as follows: 
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u cx sy
v sx cy

= +
= − +

 
x cu sv
y su cv

= −
= +

 M M M

M M M

U cX sY
V sX cY

= +
= − +

 (2.111) 

Substituting for u and v in (2.110), the transformed values of u and v in the xy system 
are: 

2 2

2 2
( ) ( ) 1cx sy sx cy

a b
+ − +

+ =   (2.112) 

Multiplying out and collecting terms gives: 

2 2 2 2
2 2

2 2 2 2 2 2
2 1c s cs cs s cx xy y

a b a b a b

    
+ + − + + =           

 (2.113) 

which may be written as: 

2 22 1Ax Bxy Cy+ + =   (2.114) 

Applying shifts from the xy to XY system, x = (X-XM) und y = (Y-YM), 

2 2

2 2

2 2( ) 2( )
( 2 1) 0

M M M M

M M M M

AX BXY CY AX BY X BX CY Y
AX BX Y CY

+ + − + − +

+ + + − =
 (2.115) 

which may be written as: 

2 22 2 2 0AX BXY CY DX EY F+ + + + + =  (2.116) 

Eqn. (2.116) is identical to the original generalized eqn. (2.109). Comparing (2.113) and 
(2.114) it can be seen that: 

2 2

2 2
c sA
a b

 
= +  

 
 

2 2

2 2
s cC
a b

 
= +  

 
 

2 2
1 12 2B cs
a b

 
= − 

 
 (2.117) 

Using the standard trigonometrical identities 

2 2 2 2

2 2 cos sin sin2
cos sin cos2

cs α α α
c s α α α

= =

− = − =
  (2.118) 

it can further be seen that: 

2 2
2 sin22 tan2

cos2
B cs α α

A C αc s
= = =

− −
  (2.119) 

From a comparison of (2.116) and (2.115) 

M M

M M

AX BY D
BX CY E

+ = −
+ = −

  (2.120) 
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which by standard algebraic manipulation gives: 

2M
DC EBX
AC B

− −
=

−
 

2M
BD AEY
B AC

− +
=

−
 (2.121) 

As can be seen from the analysis, the 6 parameters A, B, C, D, E, F of the generalized 
eqn. (2.116) are themselves based on only 5 parameters a, b, α, XM, YM. In general, the 
parameters A and C are positive and one may be set to the value 1 by dividing through 
to obtain, for example, the following linear solution equation for measured point 
(Xi,Yi): 

2 22 ' ' 2 ' 2 ' ' 0i i i i i iX B X Y C Y D X E Y F+ + + + + =  (2.122) 

As explained, 5 measured points on the ellipse will generate 5 linear observation 
equations which can be solved directly by standard matrix algebra. Expressing (2.119) 
and (2.121) in terms of the actual solution parameters B', C', D', E', F': 

2
' ' ' '
' 'M

D C E BX
C B

− −
=

−
 

2
' ' '
' 'M

B D EY
B C

− +
=

−
 2 'tan2

1 '
Bα
C

=
−

 (2.123) 

If required, the axial parameters of the ellipse, a and b, can be determined as follows. 
The ellipse equation in the UV system is found by applying the following rotational 
transformation from the XY system:  

X cU sV= −  Y sU cV= +  (2.124) 

Substituting for X and Y in eqn. (2.122) and collecting terms results in: 

2 2 2 2 2

2 2 2

( 2 ' ' ) [2 '( ) 2 (1 ')]
( ' 2 ' ) (2 ' 2 ' ) (2 ' 2 ' ) ' 0

c B cs C s U B c s cs C UV
C c B cs s V D c E s U E c D s V F
+ + + − − −

+ − + + + + − + =
 (2.125) 

This can be written as follows as follows: 

2 22 2 2 0AU BUV CV DU EV F+ + + + + =  (2.126) 

In the UV system it is simple to show 0B = , which leads to the same result for tan 2α 
as expressed in eqn. (2.123). It is also possible to show that the semi axes are then 
given by: 

2 2

2
CD AC ACFa

A C
+ −

=  
2 2

2
CD AC ACFb

AC
+ −

=  (2.127) 

... Curves 
Consider the requirement that a polynomial with k+1 points Pi(xi,yi), i = 0…k, be 
described by a closed curve. If the curve should pass through the vertices of a 
polygon, the process is referred to as interpolation. If the curve should be an optimal 
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fit to the polygon, it is referred to as approximation. Curves in general are usually 
defined by polynomials whose order and curvature properties can be varied with 
respect to the application. 

.... Polynomials 
A polynomial of degree n is a function of the form:  

1 1
1 1 0( ) n n

n nQ x a x a x a x a−
−= + + +   (2.128) 

that is defined by n+1 coefficients. 
All points in a data set are used to determine the polynomial coefficients, if 

necessary by least-squares adjustment. For over-determined solutions, the 
polynomial does not normally pass through the vertices of the polygon defined by the 
points. In particular, it does not intersect the end points. Polynomials of higher 
degree quickly tend to oscillate between the points (Fig. 2.26). 
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Fig. 2.26: Polygon with 8 data points and polynomial approximations of different order. 

A more natural curve shape is obtained if the polygon is approximated by piecewise 
polynomials. A piecewise polynomial Q(x) is a set of k polynomials qi(t), each of order 
n, and k+1 nodes5 x0,…, xk, with:  

 
5 Nodes are the given points defining a curve, i.e. the vertices of a polygon. 
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{ }( ) ( )iQ x q t=  for 1i ix t x +≤ ≤  and i = 0,…, k–1 (2.129) 

Using additional constraints, it is possible to generate an approximation curve that is 
both continuous and smooth. All methods which follow generate a curve that passes 
through the end points of the polygon and which can be differentiated n–1 times at 
all points. Approximations based on cubic splines (n = 3) are of major importance for 
they provide a practical level of smoothness with a minimum polynomial degree. 

.... Splines 
Splines are used to interpolate between the points of a polygon, i.e. the curve passes 
through all the points. For this purpose, basic B-spline functions of degree n and order 
m = n+1 are suitable. They are recursively defined for a set of nodes x0,x1, …, xk–1: 

1
,0

1 for 
( )

0 otherwise
i i

i

x t x
B t +

 ≤ ≤= 


  (2.130) 

1
, , 1 1, 1

1 1

( ) ( ) ( )i i n
i n i n i n

i n i i n i

t x x t
B t B t B t

x x x x
+ +

− + −
+ + + +

− −
= +

− −
 (2.131) 

for 1i i nx t x + +≤ ≤ . 

Optimal smoothness at the data point points is required for spline interpolation, i.e. 
continuous derivatives up to order n–1 should exist. This criterion is fulfilled by the 
following linear combination of k+1 nodes: 

1

,
0

( ) ( )
n k

n i i n
i

S t a B t
+ −

=

= ∑   (2.132) 

For the frequently used cubic spline function (n = 3) 

2

3 ,3
0

( ) ( )
k

i i
i

S t a B t
+

=

= ∑   (2.133) 

a number k+3 of coefficients ai have to be determined by a corresponding number of 
equations. Here k+1 equations are provided by the data points and the remaining two 
equations defined by additional constraints. For example, for natural splines these 
are: 

''
3 0
''
3

( ) 0
( ) 0n

S x
S x

=

=
  (2.134) 

Fig. 2.27a shows a polygon approximated by a cubic spline. The resulting curve 
continuously passes through the vertices (nodes). Splines are therefore most effective 
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when the vertices are free of position errors, i.e. no smoothing is desired. However, 
the shape of the entire curve is affected if only one point changes. 

.... B-Splines 
For many technical applications it is more feasible to approximate a given polygon 
by a curve with the following properties: 
– analytical function is simple to formulate; 
– can be easily extended to higher dimensions, especially for the surface 

approximations;  
– smoothness at vertices is easy to control; 
– variation of a node has only a local effect on the shape of the curve. 

The requirements are met by B-spline approximations which are a combination of 
base functions (2.131) for each point to be interpolated P(t): 

,
0

,
0

( ) ( )
P( )

( ) ( )

k

i i n
i

k

i i n
i

x t x B t
t

y t y B t

=

=


=

= 
 =


∑

∑
 0 1t k n≤ ≤ − +   (2.135) 

It is obvious that the spline base functions are directly “weighted” by the coordinates 
of the vertices instead of the computed coefficients. The smoothness of the curve is 
controlled by the order m = n+1, whereby the curve becomes smoother with 
increasing order. Fig. 2.27c and d show B-spline approximations of order m = 3 and m 
= 5. In addition, the computed curve always lies inside the envelope of the polygon, 
in contrast to normal spline or polynomial interpolation and approximation. 
Moreover, the approach can be extended directly to three-dimensional polygons 
(surface elements). 

.... Bézier approximation 
The Bézier approximation has been developed by the car industry. Here a given 
polygon is approximated by a curve that has optimal smoothness but does not pass 
through the vertices. The approximation 
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i
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∑

∑
 0 1t≤ ≤   (2.136) 

is similar to the B-spline approximation but is based on the Bernstein polynomials:  

,
!( ) (1 )

!( )!
i k i

i k
kBE t t t

i k i
−= −

−
 0 1t≤ ≤   (2.137) 
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All points in the polygon data set are used for the computation of the curve. The 
approach can be extended directly to three-dimensional polygons (section 2.3.3.2). 
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Fig. 2.27: Spline interpolation, and Bézier and B-spline approximation. 

Fig. 2.27b shows the curve which results from Bézier approximation of a polygon. The 
continuous curve does not pass through the vertices, but shows an “averaged” shape. 
Bézier curves are therefore very suitable for applications where the data points are 
not free of error and smoothing is required. 

.. Analytical geometry in 3D space 

... Straight line 
The form of a straight line in 3D space can be derived directly from the straight line in 
2D space. Thus a straight line between two points P1(x1,y1,z1) and P2(x2,y2,z2) is given by 
the proportional relationships 

1 1 1

2 1 2 1 2 1

x x y y z z
x x y y z z

− − −
= =

− − −
  (2.138) 

and in parametric form: 
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1 2 1 0

1 2 1 0
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z z z z z c

= + ⋅ −
         −
         

= + ⋅ − = + ⋅         
         −         

x x x x

 (2.139) 

Here P0(x0,y0,z0) is any point on the line. The direction cosines are defined by: 

2 1cos
x x

α a
d
−

= =  

2 1cos
y y

β b
d
−

= =  where 2 2 2
2 1 2 1 2 1( ) ( ) ( )d x x y y z z= − + − + −  (2.140) 

2 1cos
z z

γ c
d
−

= =  

At first glance it looks as though there are 6 independent parameters for a straight 
line in 3D space. However, taking into account the condition 

2 2 2 1a b c+ + =  

there are only two direction parameters that are linearly independent. In addition, 
the coordinate z0 of a point on the straight line can be derived from the corresponding 
x0 and y0 coordinates. Hence, 4 independent parameters remain in order to describe 
a straight line in space: 

1.  direction vector:  (a',b',1) 
2.  point on the line:  0 0 0' '= − ⋅ − ⋅z a x b y  (2.141) 

For numerical reasons these two criteria are only valid for straight lines which are 
approximately vertical (parallel to the z axis). Arbitrarily oriented straight lines must 
therefore first be transformed into a vertical direction. 

.... Intersection of two straight lines 
The intersection point of two straight lines in space only exists if both lines lie in a 
common plane, otherwise the lines are skew. In this case the shortest distance e 
between them is defined along a direction which is perpendicular to both. For two 
lines gi, i = 1…2, each defined by a point Pi(xi,yi,zi) and direction cosine ai,bi,ci the 
shortest distance e between them is given by: 
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1 2 1 2 1 2

1 1 1

2 2 2

2 2 2

x x y y z z
a b c
a b c

e
a b c

− − −
±

=
+ +

  (2.142) 

where 

1 1

2 2

a b
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a b
=  1 1

2 2
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Fig. 2.28: Intersection of two straight lines in 3D space. 

For consistency, the point of intersection S is then defined at half this distance, e/2, 
between both lines (Fig. 2.28). Using the factors 

1 2 1 2 1 2

2 2 2

1 1 1

2 2 2

x x y y z z
a b c
a b c

λ
a b c
a b c
a b c

− − −

= −  

1 2 1 2 1 2

1 1 1

1 1 1

2 2 2

x x y y z z
a b c
a b c

μ
a b c
a b c
a b c

− − −

= −  

the spatial coordinates of points S1 and S2 at the ends of the perpendicular reduce to 

1 1 1

1 1 1

1 1 1

S

S

S

x x λ a
y y λ b
z z λ c

= + ⋅
= + ⋅
= + ⋅

 
2 2 2

2 2 2

2 2 2

S

S

S

x x μ a
y y μ b
z z μ c

= + ⋅
= + ⋅
= + ⋅

 

and hence the point of intersection S: 
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+

=  1 2

2
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S
y y
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=  1 2

2
S S

S
z z

z
+

=  (2.143) 

The intersection angle φ between both lines is given by: 

1 2 1 2 1 2cosφ a a b b c c= ⋅ + ⋅ + ⋅   (2.144) 

The intersection of two straight lines in space is used for spatial intersection in stereo 
photogrammetry (see section 4.3.6.2). Here the distance e provides a quality measure 
for the intersection.  

.... Regression line in space  
The calculation of a best-fit straight line in space can be derived directly from the 
algorithm presented in section 2.3.1.1. The distance of a point Pi(xi,yi,zi) from the 
straight line defined by the point P0(x0,y0,z0) and the direction cosine a,b,c is given 
by: 

2 2 2
i i i id u v w= + +   (2.145) 

where 

0 0

0 0

0 0

( ) ( )
( ) ( )
( ) ( )

i i i

i i i

i i i

u c y y b z z
v a z z c x x

w b x x a y y

= − − −
= − − −
= − − −

 

The fitted line passes through P0, the centroid of all points on the line. As in the two-
dimensional case, the spatial direction of the line is defined by the eigenvector which 
corresponds to the largest eigenvalue of the matrix B: 

T= ⋅B A A  

where 
1 0 1 0 1 0

0 0 0n n n

x x y y z z

x x y y z z

 − − −
 

=  
 − − − 

A     (2.146) 

... Plane 

.... Parameters 
A plane in space is defined by n≥3 points which must not lie on a common straight 
line. The analytical form of a plane is given by: 

0A x B y C z D⋅ + ⋅ + ⋅ + =   (2.147) 
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A plane in 3D space is therefore analogous to a straight line in 2D (see eqn. 2.90 for 
comparison). The vector n(a,b,c) is defined as the unit vector normal to the plane with 
direction cosines:  

2 2 2
cos Aα a

A B C
= =

+ +
 

2 2 2
cos Bβ b

A B C
= =

+ +
  (2.148) 

2 2 2
cos Cγ c

A B C
= =

+ +
 

Given a point P0(x0,y0,z0) on the plane with normal unit vector having direction 
cosines (a,b,c), then all points P(x,y,z) on the plane are defined by the following 
equation: 

0 0 0( ) ( ) ( ) 0a x x b y y c z z− + − + − =   (2.149) 
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Fig. 2.29: Definition of a plane in space. 

Given a plane that is formed by 3 points P1,P2,P3, any other point P on the plane meets 
the condition (Fig. 2.29): 

1 1 1

2 1 2 1 2 1

3 1 3 1 3 1

0
x x y y z z
x x y y z z
x x y y z z

− − −
− − − =
− − −

  (2.150) 

This determinant corresponds to the volume of a parallelepiped defined by its three 
vectors. It can be taken as a definition of the coplanarity condition used in relative 
orientation (see section 4.3.3.1).  

The distance of a point Q(x,y,z) from the plane is given by (see eqn. 2.149 for 
comparison): 

0 0 0( ) ( ) ( )d a x x b y y c z z= − + − + −   (2.151) 
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.... Intersection of line and plane  
Given a straight line defined by point P(xG,yG,zG) and direction cosines (aG,bG,cG) 

G G

G G

G G

x x a
y y t b
z z c

     
     

= + ⋅     
     
     

  (2.152) 

and a plane defined by point P(xE,yE,zE) and direction cosines (aE,bE,cE): 

( ) ( ) ( ) 0E E E E E Ea x x b y y c z z− + − + − =  (2.153) 

Substituting in (2.153) for the variable point from (2.152), the solution for line 
parameter t is: 

( ) ( ) ( )E E G E E G E E G

E G E G E G

a x x b y y c z z
t

a a b b c c
− + − + −

=
+ +

 (2.154) 

The denominator becomes zero if the line is parallel to the plane. The coordinates of 
the point of intersection are obtained if the solution for t is substituted in (2.152). 

As an example, the intersection of line and plane is used in photogrammetry for 
single image analysis in conjunction with object planes (monoplotting, see section 
4.2.7.1). 

.... Intersection of two planes 
The intersection line of two non-parallel planes has a direction vector a(a,b,c) which 
is perpendicular to the unit vectors n1 and n2 normal to the planes and can be 
calculated directly as the vector product of n1 and n2: 

1 2= ×a n n   (2.155) 

The magnitude of the vector product of two unit vectors is the sine of the angle θ 
between them. If the planes are identical, or parallel, then sin θ = 0 and the 
intersection line does not exist. A small value of sin θ indicates a potentially poorly 
defined intersection line. 

A point x0 on the line of intersection is defined by where it intersects a principal 
coordinate plane, e.g. the xy plane. The intersection line is then given in parametric 
form: 

0 t= + ⋅x x a   (2.156) 

.... Best-fit plane 
In analogy with best-fitting lines, the best-fit plane is calculated by minimising the 
distances di in eqn. (2.151). The adjusted plane that fits n points is defined by the 
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centroid P0 of the points and the direction cosines of the normal vector. The matrix A, 
used for the computation of eigenvalues, is identical to the matrix given in (2.146). 
However, here the direction cosines correspond to the eigenvector with the minimum 
eigenvalue.  

Alternatively, a single observation equation can be formed for each point 
according to (2.151)  

0 0 0( ) ( ) ( ) 0i i ia x x b y y c z z d− + − + − − =  (2.157) 

which is solved within a least-squares adjustment using an additional constraint. The 
plane’s normal vector is defined as a unit vector by setting 

2 2 2 1+ + =a b c   (2.158) 

which further defines a plane in the Hessian normal form.  

... Rotationally symmetric shapes 
The measurement of rotationally symmetric shapes is of major importance, especially 
in industrial metrology. They have the common property that they can be described 
by a single reference axis (straight line in space) and one or more shape parameters 
(see Table 2.1). 

Table 2.1: 3D rotationally symmetric shapes (selection). 

Shape Parameters Degrees of freedom Number of points 

Sphere centre point x,y,z 
radius r 

 ≥  

D circle centre point x,y,z 
normal vector l,m,n 
radius r 

 ≥  

Cylinder axis point x,y,z 
direction vector l,m,n 
radius r 

 ≥  

These shapes (3D circle, sphere and cylinder) are often used in practical applications 
of close-range photogrammetry and are explained below in more detail. For the 
analysis of other rotationally symmetric shapes (paraboloid, ellipsoid, cone etc.) the 
reader is directed to further references. 

.... Sphere 
A sphere (Fig. 2.30) is defined by: 
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– the centre (x0,y0,z0), 
– the radius r. 

Here there are 4 independent parameters which require 4 observation equations for a 
solution. Therefore, a minimum of 4 points must be measured on the surface of the 
sphere to generate these. The 4 points must not all lie on the same circle. (Any 3 will 
lie on a circle and the fourth point must lie off the plane of this circle.) 
The equation of a sphere with centre (x0,y0,z0) and radius r is given by: 

2 2 2 2
0 0 0( ) ( ) ( )x x y y z z r− + − + − =  (2.159) 

Alternatively, a general equation for the circle is as follows: 

2 2 2 2 2 2 0x y z ux vy wz d+ + + + + + =  (2.160) 

which can be re-arranged as: 

2 2 2 2 2 2( ) ( ) ( )x u y v z w u v w d+ + + + + = + + −  (2.161) 

(2.161) has the same general form as (2.159) with the centre at (–u,–v,–w) and radius 
r given by: 

2 2 2r u v w d= + + −   (2.162) 
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Fig. 2.30: Definition of a sphere. 

Expressed in the form of (2.160), the equation is linear in the parameters u, v, w, d and 
can be used to compute their values directly by substituting coordinates of 4 well-
chosen points to create four independent equations. From these, initial values of 
sphere centre and radius can be derived as indicated above. 

For the over-determined case, the distance of a point from the surface of the 
sphere is given by: 
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i id r r= −   (2.163) 

where 2 2 2
0 0 0( ) ( ) ( )i i i ir x x y y z z= − + − + −

 

The derivatives for use in the design matrix of a least-squares analysis are then given 
by: 
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 (2.164) 

.... Circle in 3D space 
A 3D circle is a circle located in an arbitrarily oriented plane in space (Fig. 2.31). It is 
defined by 
– the centre (x0,y0,z0), 
– the direction cosines (a,b,c) of the normal vector to the plane, 
– the radius r. 

Noting that a direction has only two independent parameters, as expressed by (2.141), 
a 3D circle is defined by 6 independent parameters. A minimum number of 6 
observations is therefore required to compute the parameters. These can be provided 
by 3 points on the circumference. 
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Fig. 2.31: Definition of a 3D circle. 

Analogously to the best-fit sphere, a distance can be defined from a fitted point in 
space to the circle circumference. Here the point not only has a radial distance to the 
circle but also a perpendicular distance to the plane. The spatial distance is given by: 

2 2 2
i i id e f= +   (2.165) 
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Here ei is the radial distance analogous to the definition in (2.107) and fi is the distance 
from the plane according to (2.151). In order to calculate a best-fit circle, both 
components must be minimized.  

2 2 2

1 1 1

n n n

i i i
i i i

d e f
= = =

= +∑ ∑ ∑   (2.166) 

Defining c = 1 as in (2.141), there are 6 remaining parameters x0, y0, z0, a, b and r. For 
the special case x0 = y0 = z0 = a = b = 0 the derivatives forming the elements of the 
design matrix are: 
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(2.167) 

The following procedure provides one possible algorithm for the computation of a 
best-fit circle with given initial values of (x0,y0,z0), (a,b,c) and r:  

1. Translate the data points Pi onto a local origin close to the circle centre. 
2. Rotate the normal vector into an approximately vertical (z) direction.  

One method to do this requires the azimuth (α) and zenith (ν) angles of the 
normal: 

( )arctan /α a b=  arccos( )υ c=  

The rotation matrix to rotate the normal vector to the vertical is then given by: 

   − − − − −
   

= − − ⋅   
   − − −   

cos( ) sin( ) 0 cos( ) sin( ) 0
sin( ) cos( ) 0 0 1 0

0 0 1 sin( ) 0 cos( )

T
α α υ υ
α α

υ υ
R  (2.168) 

Steps 1 and 2 temporarily transform an arbitrarily oriented circle into a local 
system x'y'z' where the circle centre is close to the origin and the normal to the 
plane is vertical (see Fig. 2.31). 

3. Set up and solve the normal system of equations using (2.167). 
4. Correct the unknowns and reverse the transformation back into the original 

coordinate system. 

Steps 1–4 are repeated until the unknowns do not change appreciably. 
Note that discrete 3D points on the circle are not necessarily required and a circle 

can also be determined by photogrammetric measurement of its edges in an image 
(see section 4.4.7.2). 
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.... Cylinder 
A cylinder (Fig. 2.32) is defined by 
– one point (x0,y0,z0) on the axis of the cylinder, 
– the direction cosines (a,b,c) of the axis,  
– the radius r. 

Noting that a line requires only 4 independent parameters to define its location and 
direction, as expressed by (2.141), the position and direction of a cylinder axis is 
therefore defined by 4 parameters. Together with the radius, a cylinder therefore 
requires 5 independent parameters. A minimum of 5 observations are therefore also 
required to compute these parameters, i.e. a minimum of 5 points on the cylinder 
surface are necessary. 
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Fig. 2.32: Definition of a cylinder. 

The distance of a point from the cylinder surface is given by: 

i id r r= −     (2.169) 
where 

2 2 2

2 2 2

i i i
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+ +
=

+ +
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( ) ( )
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( ) ( )

i i i
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i i i
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In the special case where x0 = y0 = a = b = 0 the above relations simplify to: 

2 2
i i ir x y= +   (2.170) 

The derivatives required to set up the design matrix A are given by: 
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The iterative procedure for determining the cylinder parameters is identical to the 
procedure given for the 3D circle (see above). This requires shifting the data points to 
an origin close to the cylinder axis, and then rotating this axis to be close to the 
vertical. 

An example of the use of cylinders in close-range photogrammetry is in process 
plant (pipeline) modelling. Note that discrete 3D points on the cylinder surface are 
not necessarily required and a cylinder can also be determined by photogrammetric 
measurement of its edges in an image (see section 4.4.7.2). 

.. Surfaces 

Objects with surfaces which cannot be described by the above geometric elements 
are, in the first instance, usually represented by a dense distribution of 3D surface 
points. From these 3D point clouds, triangular mesh generation can create digital 
surface models of suitable detail. Analytical functions can also be used in a similar 
way to polynomials (see section 2.3.1.4) in order to approximate the shape of the 
surface. 

  

Fig. 2.33: Example of a 2½D surface. Fig. 2.34: Example of a 3D surface. 

Surfaces which can be defined as a function Z = f(X,Y) are known as 2½D surfaces. 
Here every point on a horizontal XY plane is related to exactly one unique height 
value Z. Terrain models and simple component surfaces are examples of 2½D 
surfaces (Fig. 2.33). In contrast, objects with holes and occlusions have true 3D 
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surfaces where a point on the surface is defined by a function f(X,Y,Z) = 0. A sculpture 
(Fig. 8.12) or cup with a handle (Fig. 2.34) are examples for such 3D objects. 

... Digital surface model 
A 3D point cloud represents a digital surface model (DSM) if its point density (grid 
spacing) is sufficient for describing changes in surface shape. The point distribution 
can have a regular structure, e.g. ΔX = ΔY = const., or an irregular spacing. Object 
edges (breaklines) can be represented by special point codes or by additional vector-
based data such as polygons. 

.... Triangle meshing 
The simplest way to generate a closed surface from the point cloud is by triangle 
meshing (Fig. 2.35), where every three adjacent 3D points combine to form a 
triangular surface element. Delaunay triangle meshing offers an appropriate method 
of creating such a triangular mesh. This identifies groups of three neighbouring 
points whose maximum inscribed circle does not include any other surface point.  
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Fig. 2.35: Triangle mesh from a 3D point cloud. 

Each triangle can be defined as a plane in space using eqn. (2.149) and the result is a 
polyhedron representation or wire-frame model of the surface.  

There is normally no topological relation between the 3D points. Differential area 
elements must be established between adjacent points in order to generate a 
topologically closed surface which enables further processing as a surface 
description. The approximation of a surface by small planar surface elements has the 
advantage that it is easy to perform further calculations of, say, normal vectors or 
intersections with straight lines. These are required, for example, in visualization 
using ray tracing techniques or monoplotting (see section 4.2.7). If triangular 
elements rather than polygons are used for surface descriptions, then the planarity of 
surface elements is guaranteed.  

Most commonly a triangular mesh is stored as a collection of triplets, where each 
triplet represents the three corner points of the triangle, each represented again as a 
triplet of its X, Y and Z coordinates. One example of a popular file format based on 
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this representation is the STL (stereo lithography) format used for rapid prototyping 
and 3D printing. It creates a block for each triangle consisting of the normal vector (to 
discern the inside from the outside of the object) and the vertex triplet. The content 
of a STL file is shown in Fig. 2.36 on the left. One problem with this format can be seen 
when comparing the first vertex of the two triangles stored. Obviously the format 
duplicates vertices which are shared by neighbouring triangles. This is not an 
efficient use of memory. An alternative way to represent a triangle mesh is to keep a 
separate list of unique vertices. The list of triangles then stores the corner points as a 
triplet of indices to the list of vertices. A popular file format using this scheme is the 
PLY format (polygon file format). Directly following the header is a list of coordinate 
triplets for the vertices. This is followed by a list of polygons. Each polygon starts with 
the number of vertices and then contains one index for each vertex. An example is 
provided in Fig. 2.36 on the right. From the list of vertex indices (2, 0, 1 and 2, 3, 0) it 
can be seen that the two triangles share two vertices (indexed 0 and 2). Thus they 
actually share an edge. Such formats are commonly referred to as indexed triangle 
meshes. A complementary form of representation centred on edges is the half-edge 
structure, which will not be detailed here. 

STL ASCII file: PLY ASCII file: 
solid example 
  facet normal -0.282 0.312 0.991 
    outer loop 
      vertex  -70.313 347.656 -736.759 
      vertex  -70.313 345.269 -735.938 
      vertex  -67.665 347.656 -735.938 
    endloop 
  endfacet 
  facet normal -0.849 0.172 0.500 
    outer loop 
      vertex  -70.313 347.656 -736.759 
      vertex  -72.130 347.656 -739.844 
      vertex  -70.313 345.269 -735.938 
    endloop 
  endfacet 

ply 
format ascii 1.0 
element vertex 4 
property float x 
property float y 
property float z 
element face 2 
property list uchar int vertex_indices 
end_header 
-70.313 345.269 -735.938  
-67.665 347.656 -735.938  
-70.313 347.656 -736.759  
-72.130 347.656 -739.844 
3 2 0 1  
3 2 3 0 
 

Fig. 2.36: Two file formats storing the same triangle mesh (four vertices and two triangles). 

.... Interpolation 
Additional points can easily be interpolated within a given triangular element. For a 
tilted plane defined in a local coordinate system x'y'z', with origin located in one of 
the vertices of the triangle (Fig. 2.37), then the equation for the plane is given by: 

= + +0 1 2' 'z a a x a y  (2.172) 

The coefficients can be calculated as follows: 
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2 3 3 20 1

1 2 3 3 2 2
2 3 3 2

2 33 2 3 2
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1 ' ' ' '
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' ' ' '

x y x ya z
a y y y y z

x y x ya zx x x x

 −   
    

= − − ⋅    −     − −     

 (2.173) 

For meshes defined by four points, additional points can be calculated by bilinear 
interpolation according to eqn. (2.19). 

Z

X

Y

x'

y'

P1 P2

P3

 

Y

X

Z

∆V  

Fig. 2.37: Interpolation within a triangular mesh. Fig. 2.38: Voxel representation. 

... Digital volume model (voxel) 
Complex 3D objects can also be represented by sufficiently small volume elements 
(voxels) which are cubes of side length ΔV (Fig. 2.38). A three-dimensional matrix 
with column width ΔV is created and in which an attribute value is stored for every 
physically present object element, e.g. colour or material properties. This grid 
structure requires a large amount of memory but it can easily represent holes and 
hollow or non-connected object parts. 

... Range images 
Point clouds acquired in raster format, e.g. by 3D cameras (see section 6.7.6), or as a 
result of a computation such as image matching, can be stored as range images where 
the intensity values correspond to the distance to the object (example in Fig. 6.67d). 
A range image in its most basic form is, analogously to eqn. (5.1):  

( , )R r x y=   (2.174) 

where the function r defines the distance from the camera to the object. While an 
intensity image normally contains quantized integer values, floating point numbers 
are usually used to represent range. In the photogrammetric context presented here, 
the range is defined as the distance from the projection centre of the camera to the 
object’s surface. It should be noted that other definitions are possible, e.g. where 
distance is defined relative to a location on the housing of the camera.  
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Each pixel in the range image uniquely identifies a point in three-dimensional 
space. The two integer coordinate values, and the range measured at this pixel, form 
a triplet (x, y, r(x,y)). In order to obtain three-dimensional Cartesian coordinates 
(X,Y,Z), it is necessary to apply a projection model to the triplet, typically the pin-hole 
camera model (Fig. 1.7). This is very similar to transforming polar coordinates to 
Cartesian coordinates. To account for any geometric errors in the projection (see 
section 3.1.3), a full lens correction model can be applied. This is consistent with the 
normal workflow in photogrammetry.   

Since a projection model with additional parameters can be quite complex, it can 
be desirable to store a representation of a range images with the projection model 
already applied. In this case a three-channel image is stored where the three channels 
contain the X, Y and Z coordinates. This representation is, for example, used in the 
popular ASCII exchange format PTX.  

As every pixel of the image in this case holds a Cartesian coordinate triplet 
(X,Y,Z), this is one form of representation for a point cloud. The grid still contains the 
information about pixel connectivity and thus provides the neighbourhood 
relationship for each pixel, such as a N8 or N4 neighbourhood relationship (see 
section 5.1.2). This representation is therefore referred to as an organized point cloud. 
If all coordinate triplets are stored only as a list, without regard to grid structure, it is 
known as an unorganized point cloud. In this case, establishing neighbourhood 
relationships between points is computationally expensive and typically requires the 
use of a spatial search structure such as a kd-tree.  

Range images can store multiple channels, e.g. with information about reflected 
intensity, colour or measurement uncertainty. A range image with additional true 
colour information is also known as an RGBD image. In principle, range images can 
be processed with all the usual methods of image processing (Chapter 5). Filters for 
image smoothing or noise reduction (section 5.2.3.2) or feature extraction methods 
(section 5.4.3) are commonly used. 

Local curvature can be used for surface segmentation, edge extraction and 
feature-point detection. Either the two principal curvatures k1 and k2 are used directly 
or mean curvature H and Gaussian curvature K are derived from them:  

1 2

2
k k

H
+

=  1 2( )K k k= ⋅  (2.175) 

Using H and K, local surface types can be classified into eight categories as shown in 
Table 2.2. 

Cylindrical surface types indicate the location of an edge. An alternative 
description of local surface shape is the shape parameter. Again using the principal 
curvatures k1 and k2, the parameter S to describe shape, and the parameter C to 
describe strength, are derived. 
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2

1

arctan
k

S
k

 
=   

 
 2 2

1 2C k k= +  (2.176) 

This separation of shape and strength can be seen as an analogy to the separation of 
colour and intensity used in alternative colour spaces (see section 5.2.2.1). The 
parameter C allows for the easy detection of planes (where C is smaller than a certain 
threshold). The parameter S can be used for the simple detection of umbilical points 
(k1 = k2) and minimal points (k1 = ˗k2). 

Table 2.2: Surface types classified by mean curvature H and Gaussian curvature K. 

 
K <  K =  K >  

H <  saddle surface 
(negative) 

cylinder  
(negative) 

ellipsoid  
(negative) 

H =  minimal surface plane – 

H >  saddle surface (positive) cylinder (positive) ellipsoid (positive) 

... B-spline and Bézier surfaces 
Three-dimensional surfaces can be represented directly by a general form of the B-
spline used for curves in a plane (see section 2.3.1.4). Given a three-dimensional 
network of m+1 x n+1 nodes (surface model, see Fig. 2.35), a B-spline surface 
approximation gives: 

, ,
0 0

, ,
0 0

, ,
0 0

( , ) ( ) ( )

( , ) ( , ) ( ) ( )

( , ) ( ) ( )

m n

ij i α j β
i j
m n

ij i α j β
i j
m n

ij i α j β
i j

x s t x B s B t

Q s t y s t y B s B t

z s t z B s B t

= =

= =

= =


=


= =



=


∑∑

∑∑

∑∑

  (2.177) 

where 
0 1s m α≤ ≤ − +  and ≤ ≤ − +0 1t n β  

The result is a quadratic approximation when α = β = 2 and a cubic spline 
approximation when α = β = 3. The determination of the basic functions B is 
equivalent to the two-dimensional case. 

In an analogous way, Bézier approximations can be generated for 3D elements. 
They are mainly used for the construction of industrial free-form surfaces, for 
example in the automotive industry for the representation of car body surfaces. 



 2.4 Adjustment techniques   

  

. Adjustment techniques 

.. The problem 

This section provides a summary of some important techniques for the computation 
of over-determined, non-linear systems of equations by adjustment methods. These 
are essential for the understanding of numerous photogrammetric calculations. In 
general the task is to determine a number of unknown parameters from a number of 
observed (measured) values which have a functional relationship to each other. If 
more observations are available than required for the determination of the 
unknowns, there is normally no unique solution and the unknown parameters are 
estimated according to functional and stochastic models. See specialist literature for 
a more detailed explanation of adjustment methods and applications. 

... Functional model 
A number of observations n (measured values) form an observation vector L: 

L = (L1, L2, ..., Ln)T : observation vector  (2.178) 

Since the elements of the observation vector are measured data they are regarded as 
having small random error effects but are free of systematic defects.  

A number u of unknown parameters must be determined. These form the vector 
of unknowns X, also called the parameter vector.  

X = (X1, X2, ..., Xu)T : vector of unknowns (2.179) 

The number of observations is assumed to be greater than the number of unknowns. 

n > u 

The functional model describes the relation between the “true” observation values L  
and the “true” values of the unknowns X . This relationship is expressed by the 
vector of functions φ of the unknowns: 

1

2

( )
( )

( )

( )n

φ
φ

φ

 
 
 = =  
 
  

X
X

L φ X

X





 





  : functional model (2.180) 

Since the true values are normally not known, the observation vector L  is replaced 
by the sum of the measured observations L and corresponding vector of residuals v. 
Similarly, the vector of unknowns is replaced by the estimated (adjusted) unknowns 
X̂ . As a result, the following non-linear correction equations are obtained: 
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ˆ ˆ( )= + =L L v φ X   (2.181) 

If approximate values X0 of the unknowns are available, the vector of unknowns can 
be expressed as the following sum 

0ˆ ˆ= +X X x   (2.182) 

i.e. only the small unknown values x̂  must be determined. 
From the values in X0, approximate values of the observations can then be 

calculated using the functional model: 

0 0( )=L φ X   (2.183) 

In this way reduced observations (observed minus computed) are obtained: 

0= −l L L   (2.184) 

For sufficiently small values of x̂ , the correction equations can be expanded into a 
Taylor series around the approximate values X0, ignoring terms after the first: 

0 0

0

0

0

( ) ˆ( ) ( )

( ) ˆ

 ∂
+ = + ⋅ − 

∂ 
 ∂

= + ⋅ 
∂ 

φ XL v φ X X X
X

φ XL x
X

 
 

 
 (2.185) 

After introduction of the Jacobian matrix A, also known as the design, model or 
coefficient matrix  
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 (2.186) 

the linearized correction equations are obtained: 

,1 ,1 , ,1,1
ˆ ˆ

n n n u un
= + = ⋅l l v A x   (2.187) 

The Jacobian matrix A consists of derivatives which describe the functional or 
geometrical relation between the parameters and which are calculated from 
approximate values. The vector of unknowns x̂  contains the estimated parameters 
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and l is the vector of reduced observations. A computation scheme is given in section 
2.4.2.2.  

... Stochastic model 
The stochastic properties of the unknowns L are defined by the covariance matrix Cll: 

2
1 12 1 2 1 1

2
21 2 1 2 2 2

,
2

1 1

n n

n n
ll

n n

n n n

σ ρ σ σ ρ σ σ
ρ σ σ σ ρ σ σ

ρ σ σ σ

 
 
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 
 
 

C





   

 

 (2.188) 

where σi : standard deviation of observation Li, i = 1..n 
 ρij: correlation coefficient between Li and Lj, i≠j 

Introducing the multiplication factor σ0
2, the cofactor matrix Qll of observations is 

obtained:  

1
2
0

1
ll llσ

−= =Q C P   (2.189) 

where Pll is the weight matrix  

The covariance matrix is the only component containing information about the 
accuracy of the functional model in the adjustment process. It is therefore called the 
stochastic model. In the case of independent observations, the correlation coefficients 
become zero and the covariance matrix is reduced to a diagonal matrix. This is the 
standard case for many adjustment problems where either independent observations 
are given, or no significant knowledge about correlations between observations is 
available. 

The weight matrix P then becomes:  
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 (2.190) 

In this case an observation Li with standard deviation σi = σ0 has weight  

2
0
2

1i
i

σ
p

σ
= =   (2.191) 
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and P becomes the identity matrix I. σ0 is the true value of the standard deviation of 
unit weight (standard deviation of an observation with weight = 1). It can be regarded 
as a multiplication constant. Refer to sections 2.4.2.1 and 2.4.3.1 for a definition of this 
parameter. 

Usually the true standard deviation σ is not known in practical applications and 
the empirical standard deviation s is used instead. Here s denotes the a priori 
standard deviation, while  𝑠̂𝑠 represents the a posteriori standard deviation (adjusted 
standard deviation). The empirical standard deviation is only meaningful in cases of 
significant redundancy. 

.. Least-squares method (Gauss-Markov linear model) 

The Gauss-Markov adjustment model is based on the idea that the unknown 
parameters are estimated with maximum probability. Assuming a data set with an 
infinite number of measured values and normally distributed errors (non-centrality 
parameter Δ = 0, i.e. no systematic errors), the following condition for the residuals 
results: 

minT ⋅ ⋅ →v P v   (2.192) 

For independent observations it reduces to 

2

1
min

n

i i
i

p v
=

⋅ →∑   (2.193) 

It is known as a least-squares adjustment or minimization using the L2 norm. The 
Gauss-Markov model ensures that estimations of the unknown parameters are 
unbiased and have minimum variance. 

... Adjustment of direct observations 
Consider a number of direct measurements of a single unknown value, e.g. from 
repeated measurements of the distance between two points by laser range 
measurement. The functional model is then reduced to the extent that the required 
quantity is simply the mean of the observations. 

In measurements where observations are considered to be equally accurate, the 
weights pi are simplified to pi = 1. 

For observations of varying accuracy, the corresponding weights are estimated 
from the a priori standard deviations of the original observations and the observation 
of unit weight (si and s0 respectively): 

2
0
2i
i

s
p

s
=  : weight of observation i (2.194) 
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Alternatively, where measurements are considered to be equally accurate, and an 
improved value for a particular quantity is obtained by averaging a number of 
repeated measurements, then this improved average can be given a weight which 
corresponds to the number of measurements in the set. (A single measurement has 
weight 1, an average based on 6 repetitions has weight 6, etc.). 

The estimated unknown is obtained by the geometric (weighted) average: 

1 1 2 2 1

1 2

1

ˆ
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n n i
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p lp l p l p l
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p p p p

=

=
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= =

+ + +

∑

∑





  (2.195) 

The residual of an observation i gives: 

ˆi iv x l= −    (2.196) 

After adjustment the a posteriori standard deviation of unit weight is given by: 

2

0
ˆ

1
p v

s
n

⋅
=

−
∑   (2.197) 

The a posteriori standard deviation of the original observation i is given by: 

0
ˆ

ˆ
i

i

s
s

p
=   (2.198) 

The standard deviation of the average value is, in this case, equal to the standard 
deviation of the adjusted observations: 

0
ˆ

ˆ
ˆ

x
i

s
s

p
=

∑
  (2.199) 

... General least squares adjustment 
Normally, values of interest must be measured indirectly. For example, 
photogrammetric triangulation by the intersection of measured directions produces, 
indirectly, the 3D coordinates of required target points. This section describes a 
generally applicable adjustment process. 

Let the following linearized functions define an adjustment problem:  

,1 ,1 , ,1,1
ˆ ˆ

n n n u un
= + = ⋅l l v A x  : functional model (2.200) 

1
2
0

1
ll lls

−= =Q C P  : stochastic model (2.201) 
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with n observations and u unknowns, n>u. To set up the weight matrix P, the a priori 
standard deviations of observations si, and the a priori standard deviation of unit 
weight s0, are required. They could, for example, be derived from the empirically 
known accuracy of a measuring device: 

2
0
2i
i

s
p

s
=  : weight of observation i (2.202) 

After generation of initial values, setting up of the Jacobian matrix A, and calculation 
of reduced observations l, the following computation scheme may be used in order to 
calculate the vector of unknowns x̂ : 

1) 1

, ,
lln n n n

−=P Q  : weight matrix (2.203) 

2) 
, ,1 ,1 ,1

ˆ
u u u u u

⋅ − =N x n 0  : normal equations (2.204) 

where 

, , , ,

T

u u u n n n n u
= ⋅ ⋅N A P A  : matrix of normal equations 

,1 , , ,1
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u u n n n n
n A P l  : absolute term 

3) 
1

,, u uu u

−
=Q N  : solving the normal equations (2.205) 
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 : where Q: cofactor matrix of unknowns 

4) 
, ,1 ,1,1

ˆ
n u u nn

= ⋅ −v A x l  : residuals (2.206) 

5) 
,1 ,1 ,1
ˆ

n n n
= +l l v  : adjusted observations (2.207) 

,1 ,1 ,1
ˆ

n n n
= +L L v  

6) 
,1 ,1 ,1
ˆ ˆ

u u u
= +0X X x  : vector of unknowns (2.208) 
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ˆ

T
s

n u
⋅ ⋅

=
−

v P v  : standard deviation a posteriori (2.209) 

8) 2
0, ,

ˆ
u u u u

s= ⋅C Q  : variance-covariance matrix (2.210) 
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,1 ,1
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n n
L φ X

!

 : final computing test (2.211) 
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For most non-linear problems, initial values are only approximate and multiple 
iterations are required to reach an accurate solution (e.g. bundle adjustment, see 
section 4.4). In this case the corrected approximate values in iteration k of step (6) are 
used as new starting values for the linearized functional model of the next iteration 
k+1, until the sum of added corrections for the unknowns is less than a given 
threshold. 

0 0
1

ˆ
k k k+ = +X X x   (2.212) 

In order to solve the normal system of equations (2) in step (3), the Jacobian matrix A 
has to be of full column rank. 

,
( )

n u
r rank u= =A   (2.213) 

This requirement means that the included observations allow a unique solution for 
the vector of unknowns and that the inverse of the normal equation matrix N exists. 
For adjustment problems where some observations are missing for a unique solution, 
a rank defect d is detected:  

d u r= −  : rank defect (2.214) 

This problem occurs, for example, in the adjustment of points in coordinate systems 
which are not uniquely defined by known reference points, or other suitable 
observations (datum defect).  

The resulting singular system of normal equations can be solved with the help of 
the Moore-Penrose inverse (see section 4.4.3.4) or by including suitable constraints. 

... Levenberg-Marquardt algorithm 
In computer vision, a bundle adjustment is often solved with the Levenberg-
Marquardt algorithm (LMA). Both procedures are least-squares adjustments, but LMA 
offers a refinement in the form of a damping or regularization term which essentially 
prevents a subsequent iteration from having worse starting values than its preceding 
iteration. 

In the Gauss-Markov model, a correction (solution) vector is calculated in the 
following form (compare with eqn. 2.205): 

1ˆ ( )T T−= ⋅ ⋅ ⋅ ⋅ ⋅x A P A A P l   (2.215) 

Using the Levenberg-Marquardt algorithm, the formulation is as follows: 
1ˆ ( ( ))T T Tλ diag −= ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅x A P A A P A A P l  (2.216) 

Here the parameter λ regularizes the iterations. If the solution improves from one 
iteration to the next, then λ is reduced (often by a factor of 10) and the LM formulation 
becomes closely similar to the conventional formulation because the term in λ 
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gradually disappears. On the other hand, if the solution degrades between iterations 
then λ is increased, again typically by a factor of 10.  

A damped iterative solution can result which may be more robust than the 
conventional approach. 

... Conditional least squares adjustment 
The above method of general least squares adjustment is based on a set of observation 
equations that model the measured observations as a function of the unknowns. An 
extended adjustment model results when additional constraints are incorporated 
between the unknowns. This method may be called the conditional least squares 
adjustment. The following cases are examples of such constraints between unknowns 
(see section 4.4.2.3): 
– Coordinates of a number of adjusted object points must be located on a common 

geometric element, e.g. a straight line, plane or cylinder. 
– Two adjusted object points must have a fixed separation resulting, for example, 

from a high accuracy distance measurement between them.  

The correction equations derived earlier are then extended by a number, r', of non-
linear constraints: 
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ψ  : constraints (2.217) 

Using approximate values, these constraint equations are linearized in an analogous 
way to the observation equations: 

',
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r u

 ∂
=  

∂ 

XB
X

ψ  : linearized constraint equations (2.218) 

Inconsistencies w result from the use of approximate values instead of expected 
values for the unknowns: 

ˆ⋅ = −B x w  : vector of inconsistencies  (2.219) 

The linearized functional model reduces to: 

ˆ
ˆ

⋅ − =
⋅ + =

A x l v
B x w 0

  (2.220) 

The Gauss-Markov model (2.192) must be extended as follows: 

ˆ2 ( ) minT ⋅ ⋅ + ⋅ ⋅ + →v P v k B x w   (2.221) 
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which leads further to the following extended normal system of equations: 

ˆ

                                                   

T T T    ⋅ ⋅ − ⋅ ⋅
   ⋅ + = 
        

⋅ + =

xA P A B A P l
0

kB 0 w
N x n 0

 : normal equations (2.222) 

Here k is the vector of Lagrangian multipliers. The numerical values of k are not 
normally of interest, although the condition that 0T T+ ≡A Pv B k can be tested for 
validity. Only the first u elements of the solution vector x  are therefore important. 

The a posteriori standard deviation is then given by: 

2

0
ˆ

'
p v

s
n u r

⋅
=

− +
∑   (2.223) 

The redundancy f (degrees of freedom defined by the number of excess observations) 
changes to 'f n u r= − + . Additional constraints can therefore increase redundancy 
or they can effectively compensate for missing observations which lead to a rank 
defect (see also free net adjustment, section 4.4.3.4). 

.. Quality measures  

Fig. 2.39 illustrates the relationship between the true value X , the expected value µx, 
the mean or adjusted value x̂  and the single observation xi. True value and expected 
value can differ due to systematic errors Δx. The true deviation ηi is the sum of a 
systematic component Δx and a random component εi. 

(mean   )

measured value xi

true deviation ηi

random dev. εisyst. dev. ∆x

resid. viadjusted result

xiµx

true value X~

X~

x

xx̂
 

Fig. 2.39: True, stochastic and systematic deviation and residual (after Möser et al. 2000). 

Since true value and expected value are unknown with a finite number of 
measurements, quality assessment of measured values is based on their residuals vi. 
The quality values discussed below are based on statistical measures. Depending on 
application, the quality of a measured value, such as the fit between cylinder and 
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bore, must potentially be assessed by taking into account relevant associated 
conditions (see section 7.2). 

... Accuracy measures 

.... Precision and accuracy 
The accuracy of observations and adjusted unknowns are of prime interest when 
analysing quality in an adjustment procedure. The calculated stochastic values 
provide information about the quality of the functional model with respect to the 
input data. This criterion is referred to as precision since it describes an internal 
quality of the adjustment process. In contrast, the term accuracy should only be used 
if a comparison to reference data of higher accuracy is performed. However, in 
practice accuracy is widely used as a general term for quality. 

Assuming that all observations are only affected by normally distributed random 
noise, hence no systematic effects exist, precision and accuracy are theoretically 
equal. However, in practical photogrammetry systematic effects are normally always 
present, for example due to illumination effects, temperature changes or imaging 
instabilities which have not been modelled. Since these effects cannot always be 
detected in an adjustment result, calculated standard deviations such as s0 can 
provide an indicator of the achieved quality level but do not replace a comparison 
against an independent reference system or nominal values of higher accuracy (more 
details in sections 4.4.5 and 7.2). 

.... Standard deviation 
The precision of the observations and adjusted unknowns is a major contributor to 
the quality analysis of an adjustment result. Using the cofactor matrix Q or the 
covariance matrix C (see section 2.4.1.2), the standard deviations of unknowns can be 
obtained: 

11 12 1

21 22 2
ˆ ˆ

1 2

u

u
xx

u u uu

q q q
q q q

q q q

 
 
 = =  
 
  

Q Q





   



 : cofactor matrix of unknowns (2.224) 

The cofactor matrix of adjusted observations is derived from Q and the design matrix 
A as follows:  

ˆ̂
T

ll
= ⋅ ⋅Q A Q A  : cofactor matrix of  (2.225) 

   adjusted observations  

The a posteriori (empirical) standard deviation of unit weight is given by: 
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0
ˆ

T
s

n u
⋅ ⋅

=
−

v P v   (2.226) 

with redundancy r = n–u  

If the a posteriori standard deviation 0ŝ  diverges from the a priori standard deviation
0s , two possible sources of error are indicated. Firstly, the stochastic model may be 

set up incorrectly, although it should be noted that 0s  does not affect the numerical 
values of the adjusted unknowns. Secondly, the functional model may be incomplete. 
For example, unmodelled systematic errors will affect the values of the unknowns. 

According to (2.189) and (2.224) the standard deviation of a single unknown xj is 
given by  

0
ˆ ˆ

j jjs s q= ⋅   (2.227) 

where qjj are the elements of the principal diagonal of matrix Q. 

.... Root mean square 
In many cases, adjustment results are reported as root mean square errors instead of 
the above defined standard deviation. An RMS value (root mean square) is simply the 
square root of the arithmetic mean of the squares of a set of numbers Xi, i = 1…n.  

2
iX

RMS
n

= ∑   (2.228) 

Typically, a root mean square error is used (RMS error or RMSE) in which the numbers 
represent a set of differences or changes which are of some particular interest. This 
could perhaps indicate the RMS error of adjusted observations with respect to the 
mean of those adjusted observations or perhaps the difference between measured 
values of a set of points which have been optimally fitted to corresponding reference 
values. Examples are: 

2( )iX X
RMSE

n
−

= ∑  
2( )

i iref measX X
RMSE

n

−
=

∑
 (2.229) 

For large n, the RMSE is equal to the empirical standard deviation. This is because the 
standard deviation of a simple set of error values would have the same form but use 
(n–1) in place of n. As n becomes large, the difference between n and (n–1) becomes 
negligible. 

.... Span 
The span R denotes the maximum separation between two observations of a set of 
measurements. 
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max minR X X= −   (2.230) 

The span is not unbiased as the observations may contain blunders. However, it is 
important in metrology since, for manufacturing purposes, it may necessary that all 
measured values lie within particular limits (tolerance, see section 7.2.2.6). Hence, 
the span implicitly describes a confidence interval of 100 % probability (see section 
2.4.3.2). The span can also be defined as the difference between the minimum and 
maximum residuals in a data set. 

... Confidence interval 
It is generally assumed that the observations in an adjustment process have a normal 
(Gaussian) random error distribution. Given a normally distributed random variable 
l with expected value µ and standard deviation σ, the probability density is given by: 

2

2
1 1 ( )( ) exp

22
x μf x

σσ π

 −
= ⋅ −  

 
  (2.231) 

The error of the random variable is defined by: 

ε l μ= −  : random error (2.232) 

This is valid for a normally distributed sample with an infinite number of sample 
points and an expected value defined as: 

{ }μ E x x= =   : expected value (true value)  (2.233) 

 

Fig. 2.40: Standardized Gaussian distribution. 
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Fig. 2.40 shows the probability density function of the normalized Gaussian 
distribution (µ = 0, σ = 1) and, for comparison, the systematically shifted distribution 
corresponding to the non-centrality parameter Δ = 16. The area underneath the curve, 
between specified limits on the horizontal axis, corresponds to the probability P that 
the error of a random variable lies between these limits. The total area under the curve 
= 1 and the probability limits are usually defined as a symmetrical factor of the 
standard deviation. 

{ }P k σ ε k σ− ⋅ < < ⋅   (2.234) 

Table 2.3: Probability of error |ε| < k·σ at different degrees of freedom.  

Gaussian distribution  Student distribution 
k P  P P P P 
 f = ∞  f =  f =  f =  f =  
 . %  . % . % . % . % 
 . %  . % . % . % . % 
 . %  . % . % . % . % 
 

Table 2.3 shows that, in the case of an infinitely large data set (degrees of freedom f = 
∞), the probability is 68.3 % that all deviations are within a single standard deviation 
of the true value (k = 1). The probability rises to 95.4 % for 2 standard deviations (k = 
1.96 for P = 95 %). Lastly, only 0.3 % of all errors lie outside limits defined by 3 
standard deviations.  

In the case of large but finite data sets, the Gaussian distribution is replaced by 
the t-distribution (Student distribution). The probability P that a deviation is within a 
factor k of the standard deviation, increases with increasing degrees of freedom. For 
very large degrees of freedom, the t-distribution becomes equivalent to the Gaussian 
distribution. 

Cu Cox̂ µ

α/2 1-α α/2

 

Fig. 2.41: Confidence interval. 

For real (finite) data sets, only estimates x̂  and ŝ  of the true values µ and σ can be 
computed. However, an interval between two limiting values Cu and Co can be 

 
6 In the following it is assumed that no systematic deviations exist, hence Δ = 0. 



  2 Mathematical fundamentals 

  

defined, within which x̂  is determined with probability P (Fig. 2.41). This confidence 
interval is given by 

ˆ{ } 1

ˆ{ }
2

u o

u

P C x C α
αP x C

≤ ≤ = −

< =
  (2.235) 

with confidence level 1 – α. 
The confidence limits for empirical estimate x̂  with a given empirical standard 

deviation are defined as: 

ˆ,1 /2

ˆ,1 /2

ˆ
ˆ

u f α x

o f α x

C x t s
C x t s

−

−

= − ⋅

= + ⋅   (2.236) 

 

Fig. 2.42: Confidence intervals with different t-distributions. 

Here t is a quantile of the t-distribution. For example, t5, 0.975 = 2.57 corresponds to a 
confidence level of 95 % (α = 0.05) and f = 5 degrees of freedom. The confidence 
interval therefore increases with finite number of excess measurements, i.e. the 
confidence that estimate x̂  lies between defined limits is reduced. Fig. 2.42 shows the 
limiting curves of confidence intervals for different degrees of freedom and different 
confidence levels.  

... Correlations 
In addition to standard deviations, dependencies between adjusted parameters can 
also be investigated in order to assess the quality of an adjustment result. They 
indicate the extent to which an unknown can be calculated and hence the adequacy 
of the functional model and geometric configuration of the observations.  

According to (2.188) the covariance matrix provides the correlations between 
single parameters:  

1

10

100

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

f

x

1−α α/2α/2

68% 99%95%



 2.4 Adjustment techniques   

  

2
1 12 1 2 1 1

2
2 21 2 1 2 2 2

ˆ ˆ ˆ ˆ0

2
1 1 2 2

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ ˆ ˆ

u u

u u
xx xx

u i u i u

s ρ s s ρ s s
ρ s s s ρ s s

s

ρ s s ρ s s s

 
 
 

= ⋅ =  
 
 
 

C Q




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 (2.237) 

The correlation coefficient ρij between two unknowns i and j is defined by7: 

ˆ
ˆ ˆ

ij
ij

i j

s
ρ

s s
=

⋅
 1 1ijρ− ≤ ≤ +  (2.238) 

Higher correlation coefficients indicate linear dependencies between parameters. 
Possible reasons for this are over-parametrisation of the functional model, physical 
correlation within the measuring device or a weak geometric configuration. They 
should be avoided particularly because the inversion of the normal equation matrix, 
and hence the adjustment solution, can then become numerically unstable. In highly 
correlated solutions, adjusted parameters cannot be interpreted independently and 
accuracy values are often too optimistic.  

... Reliability 
The reliability of an adjustment process indicates the potential to control the 
consistency of the observations and the adjustment model. It depends on the number 
of excess observations (total redundancy) and the geometric configuration 
(configuration of images). Reliability gives a measure of how well gross errors 
(outliers) can be detected in the set of observations. 

Essential information about reliability can be derived from the cofactor matrix of 
residuals: 

T
vv ll= − ⋅ ⋅Q Q A Q A  : cofactor matrix of residuals (2.239) 

The total redundancy in an adjustment is given by 

trace( )vv ir n u r= − = ⋅ = ∑Q P   (2.240)  

where ri are the elements of the principal diagonal of the redundancy matrix  
R = Qvv P:  

 
7 Here the notation ρ is used for the empirical correlation coefficient in order to avoid confusion with 
the redundancy number. 
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 
 
 = ⋅ =  
 
  

R Q P


 : redundancy matrix (2.241)  

ri is denoted as the redundancy number of an observation li with respect to the total 
redundancy r where 

0 1ir≤ ≤  

The redundancy number of an observation indicates the relative part of an 
observation which is significantly used for the estimation of the unknowns (1–ri), or 
which is not used (ri). Small redundancy numbers correspond to weak configurations 
which are hard to control, whilst high redundancy numbers enable a significant 
control of observations. If an observation has a redundancy number ri = 0, it cannot 
be controlled by other observations. Hence, a gross error in this observation cannot 
be detected but it has a direct influence on the estimation of unknowns. If an 
observation has a very high redundancy number (0.8 to 1), it is very well controlled 
by other observations. When optimising an adjustment, such observations can 
initially be eliminated without a significant effect on the adjustment result. 

The relation between residuals and observations is defined by: 

ˆ= ⋅ − = − ⋅v A x l R l   (2.242)  

Hence, for gross (systematic) observation errors Δl: 

Δ Δ= − ⋅v R l   (2.243)  

Eqn. (2.243) does permit the detection of gross errors to be quantified because gross 
errors do not have correspondingly large residuals when redundancy numbers are 
small. According to Baarda, a normalized residual is therefore used: 

ˆ
i

i
i

v

v
w

s
=   (2.244)  

The standard deviation of a residual is derived either from the cofactor matrix or 
redundancy numbers as follows: 

0
ˆ ˆ ˆ ˆ( ) ( )

i i iv vv ii l vv ii l is s s s r= = ⋅ =Q Q P  (2.245)  

Here it is obvious that a redundancy number of ri = 0 leads to an indeterminate value 
of wi and no error detection is then possible. The normalized residuals are normally 
distributed with expectation 0 and standard deviation 1. To detect a gross error, they 
are compared with a threshold k: 
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: gross error
  

: no gross error
>

≤
i

k
w

k
  (2.246)  

In order to compute the threshold value k, a statistical test is used where the value δ0 
(non-centrality parameter) is defined: 

0 0  ( , )δ δ α β=  

where α : probability of identifying an error-free value as a gross error  
  (significance level)  
 β :  probability of identifying a defective value as a gross error 
  (statistical power) 

This test establishes a null hypothesis which states that only randomly distributed 
errors may occur and the expected value of the normalized residuals must therefore 
be zero: 

0{ } 0E w =   (2.247)  

The probability of a false decision is equal to α (type 1 error). This is the decision that 
residuals wi lie outside the range ±k and are therefore excluded. Here k denotes a 
quantile of the t-distribution. 

If a gross error occurs, the expected value of the corresponding normalized 
residual is not equal to zero and has standard deviation 1: 

{ } 0aE w ≠   (2.248)  

Given the alternative hypothesis that only observations where wi > k are identified 
as gross errors, a possible number of outliers still remain in the data set. The 
probability of this false decision (type 2 error) is 1‒β (Fig. 2.43). 

Using (2.243) and (2.244), a lower expected value can be defined for a gross error 
that can be detected significantly with statistical power, β. 

0
0

ˆ ˆ{ } '
i ia l l

i

δ
E Δl s δ s

r
= ⋅ = ⋅   (2.249)  

The following term is normalized with respect to ˆ
il

s : 

0
0,

{ }
'

ˆ
i

a
i

l i

E Δl δ
δ

s r
= =   (2.250)  

It serves as a measure of internal reliability of an adjustment system. It defines the 
factor by which a gross observation error Δla must be larger than ˆ

il
s  in order to be 

detected with probability β. 



  2 Mathematical fundamentals 

  

0

0,1

0,2

0,3

0,4

0,5

-4 -3 -2 -1 0 1 2 3 4 5 6 7

k

α/21-β

δ

null hypothesis alternative hypothesis

E{w0} E{wa}

β

 

Fig. 2.43: Probability densities for null and alternative hypothesis. 

Table 2.4: Test statistics and internal reliability for different 
significance numbers and statistical power.  

 α = 5 % α = 1 % α = 0.1 % 

 β = 75 % β = 93 % β = 80 % 

k 1.96 2.56 3.29 

δ'0 3.9 4.0 4.1 

 

Table 2.4 shows some test statistics resulting from a chosen significance level α and 
statistical power β. The selected probabilities lead to similar measures of the internal 
reliability. It becomes clear that with increasing significance level (i.e. decreasing 
confidence level) the statistical power is reduced and is therefore less effective. 

In general, a value of δ'0 = 4 is appropriate for photogrammetric bundle 
adjustment (see section 4.4). It is also an appropriate value for the decision threshold 
k in inequality (2.246). In order to use this standard value for bundle adjustments, a 
high redundancy is required. For other photogrammetric adjustment tasks, such as 
spatial intersection and space resection, the value of k should be modified, typically 
to the range 2.5 ≤ k ≤ 4. Eqn. (2.250) clearly shows that the test value depends on the 
a posteriori standard deviation of a single observation and hence is a function of the 
standard deviation of unit weight 0ŝ . Smaller gross errors can therefore only be 
detected when 0ŝ  becomes sufficiently small after iteration that its value is of the 
order of the precision of the observations (measurement precision). 
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When planning a measuring project, the internal reliability can be calculated 
prior to knowledge of actual observations (measurement values) because the 
necessary information can be obtained from the Jacobian matrix A and the (assumed) 
a priori accuracy values for the observations (see section 7.1.5). 

During or after an iterative adjustment, the internal reliability is used as criterion 
for the automated elimination of gross data errors. 

The external reliability indicates the influence of defective observations on the 
estimated unknowns. For this purpose, the vector of internal reliability values, 
defined as in (2.249), is used in the system of equations, defined in (2.205). For each 
unknown it is possible to compute a total number of n values of external reliability, 
each dependent on an observation. 

... Precision of calculated coordinates  
The variances and covariances of a 3D point P(X,Y,Z) are calculated by least-squares 
adjustment and can be found in the cofactor matrix where the values correspond to 
the following symbolic form: 

2

2 2
0

2

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

X XY X Y XZ X Z

XYZ XYZ XY X Y Y YZ Y Z

XZ X Z YZ Y Z Z

s ρ s s ρ s s
s ρ s s s ρ s s

ρ s s ρ s s s

 
 

= ⋅ =  
 
  

Σ Q  (2.251) 

The mean point error (after Helmert) is given by:  

2 2 2ˆ ˆ ˆ ˆ
XYZ X Y Zs s s s= + +   (2.252) 

This figure represents the standard error (1-sigma level) s covering all coordinate 
directions. The individual standard deviations in X, Y and Z depend on the definition 
and origin of the coordinate system. They represent a quality measure which takes no 
account of covariances or correlations between them. To take those also into account, 
a confidence ellipsoid must be calculated with the lengths and directions of its semi-
axes given by an eigenvalue analysis of QXYZ. 

A spectral analysis of QXYZ into its eigenvalues λi and eigenvectors si, generates an 
error or confidence ellipsoid within which the “true” point lies with a probability 1 – α. 

11

ˆ ˆ 1 2 3 2 2
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    

s
C s s s s

s
 : spectral analysis (2.253) 

From the eigenvalues sorted in descending order λi, i = 1…3, the semi-axes ai of the 
Helmert error ellipsoids become 
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2 2
0

ˆ
i ia s λ= ⋅   (2.254) 

and the semi-axes Ai of the confidence ellipsoids: 

2 2
0 , ,1

ˆ
i i u r αA s λ F −= ⋅ ⋅   (2.255) 

The quantile of the F-distribution defines the confidence interval for a probability 
p = 1–α with u degrees of freedom and redundancy r (here u = 3 for a 3D point). The 
directions of the semi-axes are given by the corresponding eigenvectors. The lengths 
of the semi-axes are independent of the selected coordinate system (compare with 
section 4.4.7.1).  

Taking the example of a 2D point, Fig. 2.44 illustrates the relationship between 
single standard deviations and resulting confidence ellipses for different 
probabilities and redundancies. The higher the probability that the point position 
corresponds to the true value, the larger are the semi-axes and area of the ellipse. It 
is also clear that neither the mean point error (blue circle) nor the Helmert confidence 
ellipse (red ellipse) indicate realistic accuracy measures for coordinate components 
that have different accuracies and correlations. With increasing redundancy (black: 
r = 5; green: r = 15) the ellipses become smaller. See Fig. 4.82 for an example of a three-
dimensional confidence ellipsoid. 
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Fig. 2.44: Confidence ellipses for a 2D point (u = 2); 
red: Helmert error ellipse; blue: mean point error; black: r = 5; green: r = 15. 

.. Error detection in practice 

It is difficult to avoid gross data errors (outliers) in real projects. In photogrammetric 
applications they typically occur as a result of faulty measurements, errors in point 
identification, or mistakes in image numbering. Gross errors must be eliminated from 
the data set because they affect all estimated unknowns and standard deviations, 
leading to a significantly distorted adjustment result. In summary, the following 
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errors in observations may occur8, in addition to random errors and unknown 
systematic deviations: 
– Assignment errors:  

Typical errors in this group are false point identifications, mismatches of image 
numbers or image coordinates measured in only one image. They must be 
detected and eliminated by plausibility checks (sanity checks) and data checks 
prior to actual calculation. 

– Totally wrong measurement data: 
These are erroneous measurement values which can result from incorrect 
readings, operational errors or system failures and are typically in the order of 
(20–50) σ or more. They can affect statistical outlier tests, so that genuine outliers 
can no longer be detected. They must also be identified using plausibility checks.  

– Gross errors (outliers): 
These deviations fall in the range from (3–5) σ up to (20–50) σ, i.e. they may occur 
with a reasonable probability. In photogrammetry they can caused, for instance, 
by defective matching of features or by false measurements of partially occluded 
targets.  

– Rounding errors: 
Deviations caused by numerical rounding errors, a limited number of decimal 
places in a data display or imported data file, as well as numerical computational 
limits, all have a negative effect on calculated precision values, rather than 
adjusted mean values, if the redundancy is poor.  

The residuals calculated in the adjustment should not be used directly for the 
detection of outliers. Residuals not only result from errors in the set of observations 
but also from errors in the geometric model, i.e. a functional model of the adjustment 
which is incomplete. Model and data errors can both be present and their effects may 
overlap. 

Most approaches for detection and elimination of gross errors are based on the 
assumption that only very few outliers exist, and in extreme cases only one. The 
method of least-squares adjustment described above optimally disperses the 
observation errors over all observations in the data set, with larger deviations 
affecting the unknowns more than smaller. Where gross errors are present this results 
in a smearing effect. The ability to recognize a gross error is therefore limited, 
especially if several such outliers occur at the same time. Where there is an 
unfavourable geometric configuration of unknowns and number of outliers, even 
error-free observations may be identified as having gross errors. It is therefore 
critically important to eliminate only those observations that can be identified 

 
8 After Niemeier (2008). 
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without doubt as errors. The elimination of outliers should always be associated with 
an analysis of the entire measurement task. 

... Error detection without adjustment 
If an adjustment process does not converge it may be reasonable to check the 
consistency of the original observations with respect to their initial values. Here the 
"residuals", as defined by: 

0= −v L L   (2.256) 

may indicated large discrepancies between measurement data and initial values, for 
example due to mistakes in point or image identification. However, a discrepancy 
here may simply be due to bad initial values and not necessarily to faulty 
measurements. 

... Data snooping 
Baarda’s data snooping is a method of error detection based on the value of internal 
reliability derived in section 2.4.3.4. It is based on the assumption that only one gross 
error can be identified in the data set at any time. The process iteratively searches for 
and eliminates gross errors. After each iteration of the adjustment that observation is 
eliminated which, on the basis of the decision function (2.246), corresponds to the 
largest normalized residual wi. The complete adjustment procedure is set up again 
and the computation repeated until no gross errors remain in the set of observations.  

In cases where several large residuals wi exist, and where their geometric 
configuration ensures they are independent of each other, it is possible to detect more 
than one outlier simultaneously. However, one should still carefully check those 
observations which are suspected as gross errors. 

... Variance component estimation 
The internal reliability value used in data snooping is a function of the standard 
deviation of the adjusted observations. These are derived from the covariance matrix 
by multiplication with the standard deviation of unit weight 0ŝ . Since 0ŝ  is a global 
value influenced by all residuals, it is really only useful for observations of equal 
accuracy. Data sets with different types of observations, or different levels of 
accuracy, should therefore be divided into separate groups with homogeneous 
accuracy. 

In order to set up the weight matrix P, each separate observation group g is 
assigned its own a priori variance: 

2
0,gs  : a priori variance of unit weight  
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This variance, for example, can be derived from the existing known accuracy of a 
measuring device used for that specific observation group. 

After computing the adjustment, the a posteriori variance can be determined: 

2
0,

ˆ
T
g g g

g
g

s
r

=
v P v

 : a posteriori variance of unit weight  

where ( )g i gr r= ∑   (2.257) 

Using the a posteriori variance of unit weight, it is possible to adjust the a priori 
weights in succeeding adjustments until the following condition is achieved: 

0,

0,

ˆ
1g

g
g

s
Q

s
= =   (2.258) 

Subsequently, the normal data snooping method can be used. 
Taking eqn. (2.189) into account, the variance of unit weight can be used to 

calculate the variance of a complete observation group. 

... Robust estimation with weighting functions  
The comments above indicate that the residuals resulting from an adjustment process 
are not directly suitable for the detection of one or more gross errors. Different 
approaches have therefore been developed for defining the weights pi as a function 
of the residuals in successive iterations. If the weighting function is designed such 
that the influence of a gross error is reduced as the error becomes larger, then it is 
referred to as robust estimation (robust adjustment). One possible approach is given 
by the following function: 

( )
1'

1
i i b

i

p p
a v

= ⋅
+ ⋅

  (2.259)  

For vi = 0 it reduces to p'i = 1 and for vi = ∞ it reduces to p'i = 0. The parameters a and b 
form the curve of a bell-shaped weighting function. With 

0

1
ˆˆ

i

i
i

vi

p
a

s kr s k
= =

⋅⋅ ⋅
  (2.260)  

the parameter a is controlled by the redundancy number of an observation. Definition 
of parameters b and k is done empirically. With a correct choice of parameters, the 
quotient 00 /ˆ ss converges to 1.  

Kruck proposes a weighting function that is also based on redundancy numbers: 
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m i
i i

r r
p p

c c
   − −

= ⋅       
   

1 1
' tan tan  where m

n ur
n
−

=  (2.261) 

The constant c is defined empirically, rm is referred to as the average redundancy or 
constraint density. The weights become constant values when the stability ri = rm is 
reached (balanced observations).  

Procedures for robust estimation are primarily designed to reduce the effect of 
leverage points. Leverage points, in the sense of adjustment, are those observations 
which have a significant geometric meaning but only small redundancy numbers. 
Gross errors at leverage points affect the complete result but are difficult to detect. 
Using balanced weights, leverage points and observations with gross errors are 
temporarily assigned the same redundancy numbers as every other observation. As a 
result, they can be detected more reliably. After elimination of all defective 
observations, a final least-squares adjustment is calculated using the original 
weights. 

...  Robust estimation according to L1 norm 
In recent times more attention has been paid to the principle of adjustment according 
to the L1 norm, especially for gross error detection in weak geometric configurations. 
For example, it is used to calculate approximate orientation values using data sets 
containing gross errors. 

The L1 approach is based on the minimization of the absolute values of the 
residuals, whilst the L2 approach (least squares, see section 2.4.2) minimizes the sum 
of squares of the residuals: 

L1 norm: minv →∑  (2.262) 

L2 norm: 2 minv →∑  

The solution of the system of equations using the L1 approach is a task in linear 
optimization. It is much more difficult to handle than the L2 approach in terms of 
mathematics, error theory and computation algorithms. One solution is given by the 
Simplex algorithm known from linear programming.  

The L1 approach is also suitable for balancing weights according to section 
2.4.4.4. In theory it is possible with the L1 norm to process data sets with up to 50 % 
gross errors. The reason is that the L1 solution uses the median value whereas the L2 
solution is based on the arithmetic mean which has a smearing effect. 

After error elimination based on the L1 norm, the final adjustment should be 
calculated according to the least-squares approach. 
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... RANSAC 
RANSAC (random sample consensus) describes an adjustment algorithm for any 
functional model which is based on a voting scheme and is particularly robust in the 
presence of outliers, e.g. even as high as 80 %. The idea is based on the repeated 
calculation of a target function by using the minimum number of observations n = u. 
These are randomly selected from the full set of observations. Subsequently, all other 
observations are tested against this particular solution. All observations which are 
consistent with the calculated solution within a certain tolerance are regarded as 
valid measurements and form a consensus set. The solution with the maximum 
number of valid observations (largest consensus set) is taken as the best result. All 
observations are marked as outliers if they do not belong to this consensus group. 
Outliers are rejected and an optional final least-squares adjustment is calculated. 

Fig. 2.45 shows the RANSAC principle applied to the calculation of a best-fit circle 
with a set of valid observations and outliers. For each of the two samples A and B, a 
circle is calculated from three randomly selected points. The other observations are 
tested against the circle tolerance d. Out of all samples, the solution with the 
maximum number of valid observations is finally selected (sample A in this case). 
Remaining outliers are rejected from the data set. 

d

sample A sample B

 

Fig. 2.45: RANSAC approach for a best-fit circle; 
blue: selected RANSAC points; red: detected outliers; green: valid points. 

The success of the RANSAC algorithm depends mainly on the selection of tolerance 
parameter d and the termination criteria, e.g. the number of iterations or the 
minimum size of the consensus set.  

RANSAC is widely used in photogrammetry and computer vision for solving tasks 
such as relative orientation (section 4.3.3), feature detection in point clouds or 
general shape fitting of geometric primitives. 
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.. Computational aspects 

... Linearization 
In order to linearize the functional model at initial values, two methods are available: 
– exact calculation of the first derivative;  
– numerical differentiation. 

Exact calculation of the derivatives  

0

( )φ X
X

 ∂
 

∂ 

   (2.263) 

may require considerably more programming effort for complex functions such as 
those expressed by rotation matrices. 

In contrast, numerical differentiation is based on small changes to the initial 
values of unknowns in order to calculate their effects on the observations: 

0 0

0 0

( )
( )

Δx

Δx

L φ X ΔX
L φ X ΔX

+

−

= +

= −
  (2.264) 

The difference quotients are then: 

0 0 ( )  ( )
2

Δx ΔxL LΔφ X φ X
ΔX ΔX X

+ −− ∂
= ≈

∂
  (2.265) 

In a computer program, the function φ can be entered directly, for example in a 
separate routine. The set-up of the Jacobian matrix A and subsequent adjustment 
procedure can then be programmed independently of the functional model. Only the 
increment ΔX need be adjusted if necessary.  

Compared with numerical differentiation, the exact calculation of derivatives 
leads to faster convergence. If suitable initial values are available, then after a 
number of iterations both adjustment results are, for practical purposes, identical. 
Modern programming libraries for solving adjustment and optimisation tasks, such 
as Ceres-Solver, SciPy.Optimize or Matlab Optimization Toolbox, offer interfaces to 
perform these tasks automatically and efficiently. 

... Normal systems of equations  
In order to solve solely for the solution vector x̂ , efficient decomposition algorithms 
can be used which do not require the inverse of the normal equation matrix N, for 
example the Gaussian algorithm. However, for many photogrammetric and geodetic 
calculations, a quality analysis based on the covariance matrix is required and so the 
inverse of N must be computed. The dimension of the normal system of equations 
based on (2.204) is u x u elements. For photogrammetric bundle adjustments, the 
number of unknowns u can easily range from a few hundred up to a few tens of 
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thousand. Often a direct inversion of the normal equation matrix is not possible or 
else consumes too much computation time. 

If the (symmetric) matrix N is positive definite (trace(N)>0), it can be factorized, 
for example, according to Cholesky . The triangular rearrangement 

T
⋅ =L L N   (2.266)  

inserted into (2.204) yields 

T⋅ ⋅ =ˆL L x n   (2.267)  

With the forward substitution 

⋅ =L g n   (2.268)  

and the subsequent backward substitution  
T ⋅ =ˆL x g   (2.269)  

both g and x̂  can be computed by suitable solution methods, some without the need 
for inversion. 

... Sparse matrix techniques and optimization 
The computational effort to solve the normal system of equations is mainly a function 
of the dimension of matrix C. Since matrix N can consist of numerous zero elements, 
relating to unknowns which are not connected by an observation, then these 
elements are also present in C.  

Sparse techniques provide efficient use of RAM (Random-Access Memory). 
Instead of a full matrix, a profile is stored which, for each column (or row) of a matrix, 
only records elements from the first non-zero value up to the principal diagonal, 
together with a corresponding index value.  

Fig. 2.46 shows an example of a network of observations and the corresponding 
structure of the normal equation matrix. The crosses indicate connections between 
unknowns while the blank fields have zero values. For example, point 2 is connected 
to points 1, 3, 6, 7 and 8. 

In this example, the size of the profile to be stored, i.e. the number of stored 
matrix elements, amounts to P = 43. In order to reduce the profile size without 
modifying the functional relationships, the point order can be sorted (Banker’s 
algorithm), leading to the result of Fig. 2.46 right. The profile size in this case has been 
reduced to P = 31.  
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Fig. 2.46: Order of point numbers without (left) and with (right) optimization (after Kruck 1983). 

Since the resulting computational effort for solving equations is a quadratic function 
of the profile size, optimization is of major importance for solving large systems of 
equations. Further information on the solution of large systems of equations, and on 
bundle adjustment, can be found in the relevant literature (section 9.2.2). 
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 Imaging technology 

Photogrammetric imaging technologies for close-range measurement purposes 
impact upon all elements in the measurement process, from the preparation of the 
measuring object prior to imaging, through image acquisition, to subsequent analysis 
of the image content. Following an introduction to the physics behind optical 
imaging, issues including distortion, resolution and sampling theory are discussed. 
Common photogrammetric imaging concepts are briefly presented such as online and 
offline approaches and imaging configurations. The key part of this chapter deals 
with the geometric analysis defining the camera as a measuring tool, i.e. 
photogrammetric camera modelling, parameters of interior orientation and 
correction of imaging errors. Current components and sensor technologies for 2D 
image acquisition are then reviewed in the sections which follow. From there, 
discussion moves to signalization (targeting), light projection and illumination, 
which are critical in achieving photogrammetric accuracy. 

. Physics of image formation 

.. Wave optics 

... Electro-magnetic spectrum 
In photogrammetry, the usable part of the electromagnetic spectrum (Fig. 3.1) is 
principally restricted to wavelengths in the visible and infra-red regions. This is due 
to the spectral sensitivity of the imaging sensors normally employed, such as 
photographic emulsions, and silicon-based CCD and CMOS sensors which respond to 
wavelengths in the range 380 nm to 1100 nm (visible to near infrared). In special 
applications, X-rays (X-ray photogrammetry), ultraviolet and longer wavelength 
thermal radiation (thermography) are also used. However, microwaves (radar) are 
generally confined to remote sensing from aircraft and satellite platforms. Fig. 3.1 
summarizes the principal spectral regions, with associated sensors and applications, 
which are relevant to photogrammetry. 

The relationship between wavelength λ, frequency υ and speed of propagation c 
is given by: 

cλ
ν

=   (3.1) 

The propagation of electromagnetic radiation is described using either a wave 
propagation model or a photon stream. Both models have relevance in 
photogrammetry. The wave properties of light are employed in the description of 
optical imaging and its aberrations, as well as refraction and diffraction. The particle 
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properties of light are useful in understanding the transformation of light energy into 
electrical energy in image sensors (CCD, CMOS), see also section 3.4.1.  
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wave 
length [m]

cosmic 
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radiation

X-ray
radiation

ultraviolet
radiation

infrared
radiation

terahertz
radiation

microwaves radio waves

visible light
400 nm 450 nm 500 nm 550 nm 600 nm 650 nm 700 nm

Radiation Wavelength Sensor Application area
X-ray 10 pm – 1 nm X-ray detector medical diagnosis, non-destructive testing
ultraviolet 300 nm – 380 nm CCD, CMOS, silicon (Si) detector remote sensing, UV reflectography
visible ligth 380 nm – 720 nm CCD, CMOS, film photography, photogrammetry, remote sensing
near infrared 1 720 nm – 1 µm CCD, CMOS, film IR reflectography, photogrammetry, remote sensing
near infrared 2 1 µm – 3 µm InGaAs detectors NIR reflectography, material classif., remote sensing
mid infrared 3 µm – 5 µm Ge-, PbSe-, PbS detectors remote sensing

thermal infrared 8 µm – 14 µm micro-bolometer, quantum detector thermography, material testing, building energy efficiency

terahertz 30 µm – 3 mm Golay cell spectroscopy, body scanning
microwave 1 cm – 30 cm radar antenna radar remote sensing
radio wave 30 cm – 10 m coil magnetic resonance imaging (MRI)  

Fig. 3.1: Electromagnetic spectrum with example application areas. 

... Radiometry 
According to quantum theory, all radiation is composed of quanta of energy (photons 
in the case of light). The radiant energy is a whole multiple of the energy in a single 
quantum of radiation which is related to the reciprocal of the photon’s associated 
wavelength according to the following equation: 

cE h ν h
λ

= ⋅ = ⋅   (3.2) 

where  
h: Planck’s constant 6.62 ⋅ 10–34 Js 

The spectral emission of a black body at absolute temperature T is defined by Planck’s 
law: 

1

1 2
5

exp 1λ
c c

M
λ Tλ

−
  

= −   ⋅   
 : Planck’s law  (3.3) 

where  
c1 = 3.7418⋅10-16 W m2 

c2 = 1.4388⋅10-2 K m 

This states that the radiant power is dependent only on wavelength and temperature. 
Fig. 3.2 shows this relationship for typical black-body temperatures. Radiant power 
per unit area of the emitting source and per unit solid angle in the direction of 
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emission is defined as radiance. The area under the curves represents the total energy 
in Watts per m². The example of the sun at a temperature of 5800 K clearly shows the 
maximum radiant power at a wavelength around 580 nm, which is in the yellow part 
of the visible spectrum. In contrast, a body at room temperature (20° C) radiates with 
a maximum at a wavelength around 10 µm and a very much smaller power. 

The radiant power maxima are shifted towards shorter wavelengths at higher 
temperatures according to Wien’s displacement law (see straight line in Fig. 3.2).  

1
max 2897.8λ T −= ⋅  : Wien’s displacement law (3.4) 

 

Fig. 3.2: Spectrally dependent radiant power at different black-body temperatures.  

... Refraction and reflection 
The refractive index n is defined as the ratio of the velocities of light propagation 
through two different media (frequency is invariant):  

1

2

c
n

c
=  : refractive index  (3.5) 

In order to define refractive indices for different materials, c1 is assigned to the 
velocity of propagation in a vacuum c0 and cmed is the velocity of light in the medium 
of interest. Note that cmed is dependent on wavelength (colour of light): 

= 0

med

c
n

c
  (3.6) 

The refractive index of pure water has been determined to be n = 1.33 whilst for glass 
the value varies between 1.45 and 1.95 depending on the material constituents of the 
glass. In general, homogeneous and isotropic media are assumed. A ray of light 



  3 Imaging technology 

passing from a low density media to a more dense media is refracted towards the 
normal at the media interface MI, as denoted by Snell’s law (Fig. 3.3, Fig. 3.4).  

1 1 2 2sin sinn ε n ε=  : Snell’s law of refraction  (3.7) 

The law can also be expressed as a function of the tangent: 

2 2 21
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Fig. 3.3: Refraction and reflection. 

  
a) Still water surface  b) Disturbed water surface  

Fig. 3.4: Refraction effects caused by taking an image through a water surface.   

For the case of reflection it holds that n2 = –n1 and the law of reflection follows: 

1rε ε= −  : law of reflection (3.9) 

As mentioned, the velocity of propagation of light depends on the wave length. The 
resulting change of refraction is denoted as dispersion (Fig. 3.5). In an optical imaging 
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system this means that different wavelengths from the object are refracted at slightly 
different angles which lead to chromatic aberration in the image (see section 3.1.3.2).  

red
orange
yellow
green

blue
magenta

white

 

Fig. 3.5: Dispersion by a glass prism.  

... Diffraction  
Diffraction occurs if the straight-line propagation of spherical wave fronts of light is 
disturbed, e.g. by passing through a slit (linear aperture) or circular aperture. The 
edges of the aperture can be considered as multiple point sources of light that also 
propagate spherically and interfere with one another to create maxima and minima 
(Fig. 3.6, Fig. 3.7).  

The intensity I observed for a phase angle φ is given by: 

sin( ) sinc( )xI φ x
x

= =   (3.10) 

where 'sinπd φx
λ

=  

 d ': slit width 
 λ: wavelength 
 φ: phase angle 

Ir'
d ' 0

λ/d '

2λ/d '

3λ/d '

4λ/d '
 

Fig. 3.6: Diffraction caused by a slit.  
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Fig. 3.7: Diffraction at a slit (left) and circular aperture (right). 

The intensity becomes a minimum for the values: 

sin
'n

λφ n
d

=  n = 1, 2, … (3.11) 

Diffraction at a circular aperture results in a diffraction pattern, known as an Airy 
disc, with concentric lines of interference. Bessel functions are used to calculate the 
phase angle of the maximum intensity of the diffraction disc which leads to: 

2sin
'n n
λφ b

d
=  b1 = 0.61; b2 = 1.12; b3 = 1.62 … (3.12) 

The radius r of a diffraction disc at distance f ' and n = 1 is given by: 

1.22 ' 1.22
'

λr f λ k
d

= = ⋅ ⋅   (3.13) 

where 
f ':  focal length  
k = f '/ d ':  f/number 
d':  diameter of aperture 

Diffraction not only occurs at limiting circular edges such as those defined by 
apertures or lens mountings but also at straight edges and (regular) grid structures 
such as the arrangement of sensor elements on imaging sensors (see section 3.4.1). 
Diffraction-limited resolution in optical systems is discussed further in section 3.1.5.1. 

In conjunction with deviations of the lens equation (3.14), (defocusing) 
diffraction yields the point spread function (PSF). This effect is dependent on 
wavelength and described by the contrast or modulation transfer function (see 
sections 3.1.5.3 and 3.1.6). 
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... Polarization 
Natural light has the property of propagating in the form of a transverse wave, i.e. the 
direction of oscillation is orthogonal to the direction of propagation. An infinite 
number of oscillation directions with arbitrary (unordered) wavelengths, amplitudes 
and phases occur circularly around the propagation vector, i.e. the light is not 
polarized. If the oscillation only occurs in one direction, the light has a linear 
polarization (Fig. 3.8a). This can be achieved, for example, when light is transmitted 
through a polarizer, whose transparent layer consists of parallel strings of 
macromolecules. The projection of this oscillation in two mutually perpendicular 
planes generates a sinusoidal oscillation with the same phase position. 

In contrast, circularly polarized light has two perpendicular components with 
equal amplitudes but a phase difference of 90° (Fig. 3.8b). The direction of oscillation 
therefore rotates as the wave propagates. 

polarisor

light source

 

Y

Z

X  
a) Linear polarization b) Circular polarization 

Fig. 3.8: Polarization. 

Light is partly polarized by refraction, reflection or scattering. At a smooth surface, 
the reflected light is polarized, hence disruptive reflections in an image (hot spots) 
can be reduced by suitable use of polarizing filters (see section 3.4.4). Polarizing 
filters can be mounted both in front of the imaging lens, as well as in front of the light 
source. The polarization effect is also applied to the design of stereo monitors (see 
section 6.12.1).  

Fig. 3.9 shows an image with specular reflection of a light source, as well as the 
result with the cross-polarization technique, in which the camera and light source are 
each equipped with a polarizing filter that are rotated 90° to each other. The cross-
polarised image is free of specular reflections and has better colour saturation. 



  3 Imaging technology 

  
a) Bright spot due to reflective surface b) Recording with cross-polarization filter 

Fig. 3.9: Image capture with and without polarization filter. 

.. Optical imaging 

... Geometric optics 

H1 H2
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P
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z f
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Fig. 3.10: Geometrical construction for a typical thin lens system. 

The optical imaging model for thin spherical lenses is illustrated in Fig. 3.10. The well-
known thin lens equations can be stated as follows:  

1 1 1
' 'a a f
+ =  (3.14) 

2' 'z z f⋅ = −   (3.15) 
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where 
a: object distance 
a': image distance ≈ principal distance c 
f, f ': external and internal focal length 
z, z': object and image distances relative to principle foci, F and F' 
H1, H2: object-side and image-side principal planes 
O, O': object-side and image-side principal points  

If the transmission media are different in object and image space, eqn. (3.14) is 
extended as follows: 

' '
' '

n n n
a a f

+ =   (3.16) 

where  
n: refractive index in object space  
n': refractive index in image space  

The optical axis is defined by the line joining the principal points O and O' which are 
the centres of the principal planes H1 and H2. The object and image side nodal points 
(see Fig. 3.10) are those points on the axis where an imaging ray makes the same angle 
with the axis in object and image space. If the refractive index is the same on the 
object and image sides, then the nodal points are identical with the principal points. 
For a centred lens system, the principal planes are parallel and the axis is 
perpendicular to them. The optical axis intersects the image plane at the 
autocollimation point, H'. With centred lenses and principal planes orthogonal to the 
axis, the autocollimation point is the point of symmetry for lens distortion and 
corresponds to the principal point in photogrammetry (see section 3.3.2). 

In addition, the imaging scale or magnification is given in analogy to (3.45)1: 

' ' '' 1 :
'

y a zβ m
y a f

= = = − =   (3.17) 

or in the case of different transmission media:  

''
'

n aβ
n a

=   (3.18) 

According to eqn. (3.14), an object point P is focused at distance a' from the image 
side principal plane H2. Points at other object distances are not sharply focused (see 
section 3.1.2.3). For an object point at infinity, a' = f'. To a good approximation, image 
distance a' corresponds to the principal distance c in photogrammetry. m denotes 
image scale (magnification), as commonly used in photogrammetry.  

 
1 In optics β' is used instead of M = 1/m. 
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... Apertures and stops  
The elements of an optical system which limit the angular sizes of the transmitted 
bundles of light rays (historically denoted as light pencils) can be described as stops. 
These are primarily the lens rims or mountings and the aperture and iris diaphragms 
themselves. Stops and diaphragms limit the extent of the incident bundles and, 
amongst other things, contribute to amount of transmitted light and the depth of 
field. 

The most limiting stop is the aperture stop, which defines the aperture of a lens 
or imaging system. The object-side image of the aperture is termed the entrance pupil 
EP and the corresponding image-side image is known as the exit pupil E'P. The 
f/number is defined as the ratio of the image-side focal length f’ to the diameter of the 
entrance pupil d ': 

f/number '
'

f
d

=   (3.19) 

In symmetrically constructed compound lenses, the diameters of the pupils E'P and 
EP are equal. In this case E'P and EP are located in the principal planes (Fig. 3.11). In 
that case only, the incident and emerging rays make the same angle τ = τ' with the 
optical axis. Asymmetrical lenses are produced when the component lens do not 
provide a symmetrical structure. For example, in wide-angle or telephoto lens designs 
where the asymmetrical design can place one or more of the nodes outside the 
physical glass boundaries or the aperture is asymmetrically positioned between the 
principal planes (Fig. 3.12). Such lenses are often deployed in camera systems with 
mirror viewing systems where the separation between the lens mount and the sensor 
needed to accommodate the mirror is greater than the focal length of the lens. 
Different angles of incidence and emergence give rise to radially symmetric lens 
distortion Δr' (see also sections 3.1.3.1 and 3.3.2.2).  
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H1 H2  

Fig. 3.11: Symmetrical compound lens.  
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Fig. 3.12: Asymmetrical compound lens.  

... Focussing  
In practical optical imaging, a point source of light is not focused to a point image but 
to a spot known as the circle of confusion or blur circle. An object point is observed by 
the human eye as sharply imaged if the diameter of the circle of confusion u' is under 
a resolution limit. For film cameras u' is normally taken as around 20–30 µm and for 
digital cameras as around 1–3 pixels (2–10 µm). It is also common to make the 
definition on the basis of the eye’s visual resolution limit of Δα = 0.03°. Transferring 
this idea to a normal-angle camera lens of focal length f’ (≈ image diagonal d '), a blur 
circle of the following diameter u' will be perceived as a sharp image: 

1' ' '
2000

u f Δα d= ⋅ ≈   (3.20) 

Example 3.1: 
It is required to find the permissible diameter of the blur circle for a small-format film camera, as well 
as for two digital cameras with different image formats. 

 Film camera Digital camera 1 Digital camera 2 
Pixels: n/a - analogue 2560 x 1920 4368 x 2912 
Pixel size:  3.5 µm 8.2 µm 
Image diagonal: 43.3 mm 11.2 mm 43.0 mm 
Blur circle: 22 µm 5.6 µm = 1.6 pixel 21 µm = 2.6 pixel 

The blur which can be tolerated therefore becomes smaller with smaller image format. At the same 
time the demands on lens quality increase. 

Based on the blur which can be tolerated, not only does an object point P at distance 
a appear to be in sharp focus but also all points between Pv and Ph (Fig. 3.13). 
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Fig. 3.13: Focusing and depth of field. 

The distance to the nearest and the furthest sharply defined object point can be 
calculated as follows: 

1v
aa

K
=

+
 

1h
aa

K
=

−
 

2
( ) 'k a f uK

f
−

=  (3.21) 

where 
k:  f/number 
f: focal length 
a: focused object distance 

By re-arrangement of (3.21) the diameter of the blur circle u' can be calculated: 

2
'

( )
h v

h v

a a fu
a a k a f

−
= ⋅

+ −
  (3.22) 

The depth of field is defined by: 

2 2
2 ' (1 ')
' ( ' / ')h v

u k βt a a
β u k f

+
= − =

−
  (3.23) 

Hence, for a given circle of confusion diameter, depth of field depends on the 
f/number of the lens k and the imaging scale β'. The depth of field will increase if the 
aperture is reduced, the object distance is increased, or if the focal length is reduced 
through the use of a wider-angle lens. Fig. 3.14 shows the non-linear curve of the 
resulting depth of field at different scales and apertures. At very small scale numbers, 
the depth of field becomes extremely small, as is typical for macro-photogrammetry. 
Fig. 3.16a,b shows an example with different f-stop settings.  
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Fig. 3.14: Depth of field as a function of image scale number (u' = 20 µm). 

For large object distances (3.23) can be simplified to 

2
2 '

'
u kt
β

=   (3.24) 

Example 3.2: 
Given a photograph of an object at distance a =5 m and image scale number m = 125, i.e. β' = 0.008. 
The depth of field for each aperture k = 2.8 and k = 11 is required. 
Solution: 

1. For k = 2.8 
β

−⋅ ⋅ ⋅ ⋅ ⋅
= = =

5

2 2

2 ' 2 2 10 2.8 1.8 m
' 0.008

u kt  

2. For k = 11 = 6.9mt  

When imaging objects at infinity, depth of field can be optimized if the lens is not 
focused at infinity but to the hyperfocal distance b. Then the depth of field ranges from 
the nearest acceptably sharp point av to ∞: 

2

'
fb

u k
=  : hyperfocal distance (3.25) 

Sufficient depth of field must be considered especially carefully for convergent 
imagery, where there is variation in scale across the image, and when imaging objects 
with large depth variations. Depth of field can become extremely small for large 
image scales (small m), for example when taking images at very close ranges. Sharp 
focusing of obliquely imaged object planes can be achieved using the Scheimpflug 
condition (section 3.1.2.4). 
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It is worth noting that under many circumstances a slight defocusing of the image 
can be tolerated if radially symmetric targets are used for image measurement. On the 
one hand the human eye can centre a symmetrical measuring mark over a blurred 
circle and on the other hand the optical centroid remains unchanged for digital image 
measurement. Note when designing an imaging system for a particular application, 
the tolerable blur circle will be dependent on the features to be detected and 
measured. For example, a tolerable circle diameter is likely to be larger when imaging 
solid circular retro-target images vs applications that require the detection and 
measurement of natural line features. 

... Scheimpflug condition  
For oblique imaging of a flat object, the lens eqn. (3.14) can be applied to all object 
points provided that the object plane, image plane and lens plane (through the lens 
perspective centre and orthogonal to the optical axis) are arranged such that they 
intersect in a common line (Fig. 3.15). This configuration is known as the Scheimpflug 
condition and can be realized, for example, using a view camera (Fig. 3.93) or special 
tilt-shift lenses, also called perspective control lenses (Fig. 3.105). 

a1

a'1
a'2

a2

P1P2

P'2

P'1

object plane

image plane

lens plane
f

α

H'

S'

c

intersection line g  

Fig. 3.15: Arrangement of object, lens and image planes according to the Scheimpflug principle.  

Fig. 3.15 shows the imaging configuration which defines the Scheimpflug principle. 
The relative tilts of the three planes leads to the condition: 

1 1 2 2

1 1 1 1
' 'a a a a

+ = +   (3.26) 
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Compare this with eqn. (3.27) and it is clear that all points on the tilted object plane 
are sharply imaged. Fig. 3.16c shows an actual example of the effect. 

The opposing tilts of the lens and image planes by angle α results in a separation 
of the principal point H' (foot of the perpendicular from perspective centre to image 
plane) and the point of symmetry of radial distortion S' (point of intersection of 
optical axis and image plane). Note that the practical maximum angles that can 
deliver images of appropriate quality for photogrammetric measurement will be a 
limited by the light transmission vs reflection characteristics of the lens elements with 
respect to the high incident and emergent ray angles.  

   
a) f/number = f/3.5 b) f/number = f/16 c) f/number = f/3.5 and 

Scheimpflug angle α = 6.5° 

Fig. 3.16: Depth of field at different f/numbers and with the Scheimpflug condition active.  

.. Aberrations  

In optics, aberrations are deviations from an ideal imaging model, and aberrations 
which arise in monochromatic light are known as geometric distortions. Aberrations 
which arise through dispersion are known as chromatic aberrations. In 
photogrammetry, individual optical aberrations, with the exception of radial 
distortion, are not normally handled according to their cause or appearance as 
derived from optical principles. Instead, only their effect in the image is modelled. 
However, a physically-based analysis is appropriate when several aberrations 
combine to create complex image errors. An example would be the combination of 
spherical aberration, curvature of field and lateral chromatic aberration which 
contribute to misshapen circular retro-reflective target images at the edges of wide-
angle images, see Fig. 3.20a. 
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... Distortion 
In the ideal case of Fig. 3.11 the angle of incidence τ is equal to the angle of emergence 
τ'. As the position of entrance pupil and exit pupil do not usually coincide with the 
principal planes, an incident ray enters at angle τ, and exits at a different angle τ'. 
This has a distorting effect Δr' in the image plane which is radially symmetric with a 
point of symmetry S'. In the ideal case, S' is identical with the autocollimation point 
H'. The sign, i.e. direction, of Δr' depends on the design combination of spherical and 
aspherical lens elements in the lens construction and the position of the lens 
aperture. For spherical lenses the distortion effect can be modelled by the Seidel 
series (see section 3.3.3.1). 

Fig. 3.17 shows how barrel distortion in a spherical lens can increase when the 
aperture is moved towards the object such that light rays traversing the edges of the 
lens dominate in forming the image, and similarly pincushion distortion can be 
enhanced when the aperture is moved towards the image. When the image is free of 
distortion it may be called orthoscopic. 
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Fig. 3.17: Distortion in a spherical lens as a function of aperture position. 

Radial distortion can be interpreted as a radially dependent scale change in the 
image. The relative distortion is defined as:  

' ' '
' ' '

Δr Δx Δy
r x y

= =   (3.27) 
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Fig. 3.18: Pincushion (left) and barrel distortion (right) in an actual image. 

From the definition of image scale in (3.17) and dividing numerator and denominator 
in (3.27) by y, it can be seen that the relative distortion is also equivalent to the relative 
scale change as follows: 

' ' ( )
' '

Δβ Δy f τ
β y

= =   (3.28) 

For Δy'/y' < 0 the image is too small, i.e. the image point is shifted towards the optical 
axis and the result is seen as barrel distortion. Correspondingly, when Δy'/y' > 0 the 
result is pincushion distortion. Fig. 3.18 shows the effect in an actual image. The 
analytical correction of distortion is discussed in section 3.3.2.2. 

... Chromatic aberration  
Chromatic aberration in a lens is caused by dispersion which depends on wavelength, 
also interpreted as colour, hence the name. Longitudinal chromatic aberration, also 
called axial chromatic aberration, has the consequence that every wavelength has its 
own focus. A white object point is therefore focused at different image distances so 
that an optimal focus position is not possible (see Fig. 3.19). Depending on lens 
quality, the effect can be reduced by using different component lenses and coatings 
in its construction. If the image plane is positioned for sharp imaging at mid-range 
wavelengths, e.g. green, then image errors will appear in the red and blue regions. In 
practice, the presence of chromatic aberration limits the sharpness of an image. 

Lateral chromatic aberration, also called transverse chromatic aberration, has the 
consequence that an object is imaged at different scales depending on radial position 
in the image. For monochromatic light the effect is equivalent to radial distortion. For 
polychromatic light, the aberration causes a variable radial shift of colour.  
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Fig. 3.19: Longitudinal chromatic aberration. 

The effect can easily be seen in digital colour images. Fig. 3.20a shows white targets 
with poor image quality towards the edge of a colour image. The colour errors are 
clearly visible at the target edges, as they would occur at the edge of any other imaged 
object. Fig. 3.20b shows the green channel only. This has an image quality sufficient 
for photogrammetric point measurement. The difference image in Fig. 3.20c makes 
clear the difference between the red and green channels. 

In black-and-white cameras chromatic aberration causes blurred edges in the 
image. In colour cameras, multi-coloured outlines are visible, particularly at edges 
with black/white transitions. In these cases, colour quality also depends on the 
method of colour separation (e.g. Bayer filter, see section 3.4.1.6) and the image pre-
processing common in digital cameras, e.g. in the form of colour or focus correction. 

   
a) Original RGB image b) Green channel c) Difference between red and 

green channels 

Fig. 3.20: Colour shift at a black/white edge. 

... Spherical aberration 
Spherical aberration causes rays to focus at different positions in the z' direction 
depending on their displacement from the optical axis. The effect is greater for off-
axis object points (with bundles of rays angled to the axis). 

The offset Δz' in the longitudinal direction varies quadratically with the 
displacement y (Fig. 3.21). The effect can be considerably reduced by stopping down 
(reducing the aperture size) to the extent possible before diffraction becomes 
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predominant. In the image the effect causes a reduction in contrast and a softening 
of focus. Photogrammetrically it can be concluded that spherical aberration results in 
a shift of perspective centre at different field angles (off-axis locations). Good quality 
modern lenses optimized for the latest generation of imaging sensors, are mostly free 
of spherical aberration so that this source of error need not be taken into account in 
photogrammetric camera calibration outside of the most accurate work. 

∆z'

y ∆z'

 

Fig. 3.21: Spherical aberration.  

... Astigmatism and curvature of field  
Astigmatism and curvature of field apply to off-axis object points. They are incident at 
different angles to the refractive surfaces of the component lenses and have different 
image effects in orthogonal directions. These orthogonal directions are defined by the 
meridian and sagittal planes, M1M2 and S1S2 (Fig. 3.22). The meridian plane is defined 
by the optical axis and the principal ray in the imaging pencil of light, this being the 
ray through the centre of the entrance pupil. The two planes no longer meet at a single 
image point but in two image lines (Fig. 3.23). An object point therefore appears in the 
image as a blurred oval shape or an elliptical spot. 

The curved image surfaces, which are produced as shown in Fig. 3.23, are known 
as curvature of field. If the meridian and sagittal surfaces are separated, then the effect 
is true astigmatism with differing curvatures through the image space. Where 
significant curvature is present, sensor placement within the field becomes critical in 
maintaining image quality across the image format.  

The effects on the image of astigmatism and curvature of field are, like spherical 
aberration, dependant on the off-axis position of the object point (incoming ray 
pencils are at an angle to the axis). The imaging error can be reduced with smaller 
apertures and appropriately designed curvatures and combinations of component 
lenses. No effort is made to correct this in photogrammetry as it is assumed that lens 
design reduces the error below the level of measurement sensitivity. Camera 
manufacturer Contax has historically produced cameras with a curved photographic 
film image plane in order to optimize image sharpness in the presence of field 
curvature. 
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Fig. 3.22: Elliptical masking of off-axis ray bundles (after Marchesi 1985). 
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Fig. 3.23: Astigmatism (after Schröder 1990). 

... Light fall-off and vignetting 
For conventional lenses, the luminous intensity I effective at the imaging plane is 
reduced with increasing field angle τ according to the cos4 law:  

4' cosI I τ=   (3.29) 

Hence the image gets darker towards its periphery (Fig. 3.24, Fig. 3.25a). The effect is 
particularly observable for super-wide-angle lenses where it may be necessary to use 
a concentrically graduated neutral density filter in the optical system to reduce the 
image intensity at the centre of the field of view. Fisheye lenses avoid the cos4 law 
through the use of different projections which reduce the fall-off in illumination at 
the expense of image distortions (section 3.3.7). The cos4 reduction in image intensity 
can be amplified if vignetting, caused by physical obstructions due to mounting parts 
of the lens, is taken into account (Fig. 3.25b). The fall-off in light can be compensated 
by analytical correction of the colour value, but at the expense of increased image 
noise. 
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Fig. 3.24: Relative fall-off in light for small format images at different focal lengths (in mm). 

  
a) Light fall-off b) Vignetting 

Fig. 3.25: Images showing loss of intensity towards the edges.  

.. Aspherical lenses  

In the previous sections, it was implicitly assumed that lenses consist of 
combinations of individual spherical lenses. Improved manufacturing methods have 
made it cost effective for affordable lenses to deviate from the spherical shape and 
deliver sharper images to match increasingly smaller pixel dimensions. In general, 
aspherical surfaces can significantly improve lens performance in terms of sharpness, 
resolution and aberration compared to spherical systems.  
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Fig. 3.26: Typical ray paths for spherical and aspherical lens. 

Fig. 3.26 compares typical optical paths through a spherical and an aspherical lens 
element. With a spherical lens, spherical aberrations cause the image rays to intersect 
not at a point but in a region known as the caustic, resulting in a blurred image (see 
section 3.1.3.3). Aspherical lenses, on the other hand, can be constructed with a 
varying surface curvature optimised for example to achieve a point focus, which 
results in significantly sharper images.  

Aspherical lenses are characterised by the fact that their surfaces can have 
practically any radially symmetric shape. The shape is described by the sag z as a 
function of the distance to the optical axis (elevation) h: 

2
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 (3.30) 

where 
z sag 
h distance to the optical axis (elevation) 
ρ vertex curvature with radius R = 1/ρ 
k conic constant (sphere: k=0; ellipsoid: k>–1; paraboloid: k=–1) 
A2i aspheric coefficients of the correction polynomial with even exponents 
A2i+1 aspheric coefficients of the correction polynomial with odd exponents 

The first summand in eqn. (3.30) describes the central spherical part of the surface. 
The coefficients of the correction polynomial define the aspherical curve. The odd 
terms describe lenses with free-form surfaces; commercially available aspherical 
lenses are described exclusively by the even terms. 

For photogrammetry, the generally better imaging properties of aspheres are 
offset by the fact that, strictly speaking, the correction functions for radial-
symmetrical distortion based on Seidel polynomials (section 3.3.3.1), no longer apply. 
The outcome in terms of radial lens distortion is specific to each lens design. A simple 
test is to imagine a straight line across each edge of the image and to look for 
variations in what would otherwise be smooth curves in a spherical lens design.  
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.. Resolution 

... Resolving power of a lens  
The resolving power of a lens is limited by diffraction and aperture. For a refractive 
index of n = 1, the radius r or the diameter d of the central Airy diffraction disc is 
obtained from (3.13) und (3.19) as follows: 

1.22 1.22 / 2
'

fr λk λ d
d

= ⋅ = ⋅ =   (3.31)  

which corresponds to an angular resolution of 

1.22
'

λδ
d

= ⋅   (3.32) 

r = d / 2
d '

δ
P

Q

 

Fig. 3.27: Resolving power defined by the separation of two Airy discs (compare with Fig. 3.6). 

Two neighbouring point objects can only be seen as separate images when their 
image separation is greater than r (Fig. 3.27). At that limiting separation the maximum 
of one diffraction disc lies on the minimum of the other. At greater apertures (smaller 
f/numbers) the resolving power increases.  

Example 3.3: 
The following diffraction discs with diameter d are generated by a camera for a mid-range wavelength 
of 550 nm (yellow light): 

Aperture f/2: d = 2.7 µm;  Aperture f/11: d = 15 µm 

A human eye with a pupil diameter of d ' = 2 mm and a focal length of f' = 24 mm has an f/number of 
f/12. At a wavelength λ = 550 nm, and a refractive index in the eyeball of n = 1.33, a diffraction disc of 
diameter d = 12 µm is obtained. The average separation of the rod and cone cells which sense the 
image is 6 µm, which exactly matches the diffraction-limited resolving power. 
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... Geometric resolving power 
The geometric resolving power of a film or a digital imaging system defines its 
capability to distinguish between a number of black and white line pairs with equal 
spacing, width and contrast in the resulting image. Therefore it is a measure of the 
information content of an image. 
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Fig. 3.28: Line pair pattern and contrast transfer. 

The resolving power RP is measured visually as the number of line pairs per millimetre 
(Lp/mm). Alternatively, the terms lines per millimetre (L/mm) or dots per inch (dpi) 
may be used2. Such terms describe the ability of the imaging system to distinguish 
imaged details, with the interest usually being in the maximum distinguishable 
spatial frequency attainable (Fig. 3.28, see also section 3.1.6.1). 

The spatial frequencies F in object space with respect to f in image space are the 
reciprocals of the corresponding line spacings ΔX in object space with respect to Δx' 
in image space. 

1F
ΔX

=  1
'

f
Δx

=  (3.33) 

Resolving power can be measured by imaging a test pattern whose different spatial 
frequencies are known (Fig. 3.29). For example, the Siemens star consisting of 72 
sectors (36 sector pairs) allows the maximum resolving power of the imaging system 

 
2 With unit L/mm only black lines are counted, with Lp/mm black and white lines (pairs) are 
counted, i.e. both notions are comparable since a black line is only visible if bordered by white lines. 
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to be determined in Lp/mm by relating the number of sectors to the circumference (in 
mm) of the inner circle where the sectors are no longer distinguishable. 

36RP
πd

=   (3.34) 

d

 

Fig. 3.29: Test chart and Siemens star for the measurement of resolving power.  

The minimum resolved structure size in object space (structure resolution) ΔX is 
calculated from image scale and resolving power as follows:  

1'ΔX m Δx m
RP

= ⋅ = ⋅   (3.35) 

The applicability of resolving power to opto-electronic sensors is discussed in section 
3.4.1.7.  

Example 3.4: 
In the Siemens star printed above, the diameter of the unresolved circle is about 1.5 mm (observable 
with a magnifying glass). Thus the print resolution of this page can be computed as follows: 

1. Resolving power: 
π

= ≈
⋅
36 8  L/mm

1.5
RP  

2. Line size: Δ = =' 1 / 0.13 mmx RP  

3. Converted to dpi: 
Δ

= = ≈
25.4 194 dpi 200 dpi 

'
RP

x
 

... Contrast and modulation transfer function 
The actual resolving power of an imaging system depends on the contrast of the 
original object, i.e. for decreasing contrast, signal transfer performance is reduced, 
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particularly at higher spatial frequencies. A contrast-independent formulation of the 
resolving power is given by the contrast transfer function (CTF).  

 
Original high contrast object pattern 

 
Corresponding image of high contrast pattern 

 
Sinusoidal contrast pattern in object 

 
Corresponding image of sinusoidal contrast pattern 

Fig. 3.30: Contrast and modulation transfer. 

The object contrast K and the imaged contrast K' are functions of the minimum and 
maximum intensities I of the fringe pattern (Fig. 3.28, Fig. 3.30): 
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=

+
 (3.36) 

Hence the contrast transfer CT of a spatial frequency f follows: 

'( )( )
( )

K fCT f
K f

=   (3.37) 

For most imaging systems, contrast transfer varies between 0 and 1. The contrast 
transfer function (CTF) defines the transfer characteristic as a function of the spatial 
frequency f (Fig. 3.31). Here the resolving power RP can be defined by the spatial 
frequency that is related to a given minimum value of the CTF, for example 30 % or 
50 % (green line in Fig. 3.31). Alternatively, RP can be determined as the intersection 
point of an application-dependent threshold function of a receiver or observer that 
cannot resolve higher spatial frequencies. The threshold function is usually a 
perception-limiting function that describes the contrast-dependent resolving power 
of the eye with optical magnification (dashed line in Fig. 3.31). 
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In an analogous way, if the rectangular function of Fig. 3.28 is replaced by a 
sinusoidal function, the contrast transfer function is known as the modulation 
transfer function (MTF). 

For an optical system an individual MTF can be defined for each system 
component (atmosphere, lens, developing, scanning etc.). The total system MTF is 
given by multiplying the individual MTFs (Fig. 3.31):  

total imageblur lens sensor nMTF MTF MTF MTF MTF= ⋅ ⋅ ⋅ ⋅  (3.38) 

 

Fig. 3.31: Resulting total MTF.  

.. Fundamentals of sampling theory 

... Sampling theorem 
A continuous analogue signal is converted into a discrete signal by sampling. The 
amplitude of the sampled signal can then be transferred into digital values by a 
process known as quantization (Fig. 3.32). 

If sampling is performed using a regular array of detector or sensor elements with 
spacing Δs', then the sampling frequency fA can be expressed as: 

1
'Af

Δs
=  : sampling frequency (3.39) 

According to Shannon's sampling theorem, the Nyquist frequency fN defines the highest 
spatial frequency that can be reconstructed by fA without loss of information: 

1 1
2 2 'N Af f

Δs
= =  : Nyquist frequency (3.40) 
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Spatial frequencies f higher than the Nyquist frequency are undersampled, and they 
are displayed as lower frequencies, an effect known as aliasing (see Fig. 3.33).  

g

x0
∆s'

∆g=1

 

Fig. 3.32: Sampling and quantization. 

To avoid sampling errors, as well as to provide a good visual reproduction of the 
digitized image, it is advisable to apply a higher sampling rate as follows: 

2.8Af f≈ ⋅   (3.41) 

The transfer characteristic of the sampling system can be described with the 
modulation transfer function (MTF). With respect to a normalized frequency f ⁄ fN the 
MTF falls off significantly above 1 (= Nyquist frequency). If the aliasing effects (Fig. 
3.33) are to be avoided, the system must consist of a band-pass filter (anti-aliasing 
filter) that, in the ideal case, cuts off all frequencies above the Nyquist frequency (Fig. 
3.34). As an optical low-pass filter, it is possible to use a lens with a resolving power 
(section 3.1.5.1) somewhat lower than the pixel pitch of the imaging sensor. There is 
a trend in modern DSLR camera designs utilising small pixels to forego such filters to 
maximize spatial resolution with lenses whose performance is matched to the sensor 
pixel dimensions. 

The signal is quantized with a given number of integers N which is defined by the 
bit depth K. Bit depths K = 8 to K = 16 are commonly used in the camera electronics to 
quantize the grey values g. The required bit depth should be selected according to the 
signal-to-noise ratio of the imaging sensor (see section 3.4.1.9). 

2KN =  where 0 1g N≤ ≤ −  (3.42) 
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Fig. 3.33: a) Nyquist sampling; b) undersampling/aliasing.  
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Fig. 3.34: MTF as a function of the normalized sampling frequency.  

... Detector characteristics  
Electronic imaging devices, such as CCDs, consist of one or several detectors (sensor 
elements) of limited size with constant spacing with respect to each other. It is 
important to realize that, because of the need to place a variety of electronic devices 
in the sensing plane, not all of the area of each detector element is likely to be light 
sensitive. Sampling and transfer characteristics are therefore a function of both the 
size of the light-sensitive detector area (aperture size Δd ') and of the detector spacing 
(pixel spacing Δs'). In contrast to the sampling scheme of Fig. 3.33 real sampling 
integrates over the detector area. 

Fig. 3.35a displays the detector output when scanning with a sensor whose light-
sensitive elements are of size Δd ' and have gaps between them. This gives a detector 
spacing of Δs' = 2 Δd ' (e.g. interline-transfer sensor, Fig. 3.76c). In contrast, Fig. 3.35b 
shows the sampling result with light sensitive regions without gaps Δs' = Δd ' (e.g. 
frame-transfer sensor, Fig. 3.76a). For the latter case, the detector signal is higher 
(greater light sensitivity), however, dynamic range (umax – umin) and hence modulation 
are reduced.  
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Fig. 3.35: Detector signals: a) light-sensitive size equal to half detector 
spacing; b) light-sensitive size equal to detector spacing.  

The MTF of a sampling system consisting of sensor elements is given by: 

sin( ' )
sinc( ' )

'detector

π Δd f
MTF π Δd f

π Δd f
⋅ ⋅

= = ⋅ ⋅
⋅ ⋅

 (3.43) 

The sinc function was previously introduced for diffraction at aperture slits, see 
section 3.1.1.4. The function shows that a point signal (Dirac pulse) also generates an 
output at adjacent detector elements. In theory this is true even for elements at an 
infinite distance from the pulse. Together with possible defocusing, this gives rise to 
the point spread function (PSD) which, for example, causes sharp edges to have 
somewhat blurred grey values. Consequently both MTF and PSF can be reconstructed 
from an analysis of edge profiles (see Fig. 5.44).  

The MTF becomes zero for f = k / d ' where k = 1,2..n. The first zero crossing (k = 1) 
is given by the frequency:  

0
1

'
f

Δd
=   (3.44) 

The first zero-crossing point can be regarded as a natural resolution limit. Fig. 3.36 
shows a typical MTF of a detector system. Negative values correspond to reverse 
contrast, i.e. periodic black fringes are imaged as white patterns, and vice versa. 
Usually the MTF is shown up to the first zero-crossing only. 
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Fig. 3.36: MTF of a detector system. 

. Photogrammetric imaging concepts 

.. Offline and online systems  

With the availability of digital imaging systems, it is possible to implement a seamless 
data flow from image acquisition to analysis of the photogrammetric results (compare 
with Fig. 1.10). When image acquisition and evaluation take place in different places 
or at different times, this is known as offline photogrammetry. In contrast, when the 
acquired images are immediately processed and the relevant data used in a connected 
process, then this is known as online photogrammetry (Fig. 3.37). In addition, mixed 
forms exist. For example, intelligent cameras may use an internal camera processor 
to perform image processing during image acquisition, with further processing taking 
place offline.  
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Fig. 3.37: Chain of processing in offline and online systems. 
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Both concepts have a direct impact on the relevant imaging technology. In many 
cases, cameras used offline can subsequently be calibrated from the recorded 
sequence of images (see section 7.3.2). Both analogue and digital cameras may be 
used here. In contrast, pre-calibrated digital cameras, which are assumed to be 
geometrically stable over longer periods of time, are typically used in online 
applications. By appropriate use of reference information in the object space such as 
control points, the orientation of online systems can be checked during measurement 
and, if necessary, corrected. 

... Offline photogrammetry 
In offline applications it is typical to acquire what, in principle, can be an unlimited 
number of images which can then be evaluated at a later time and in a different place, 
possibly also by different users. If the imaging configuration is suitable (see section 
7.3.2), the recording cameras can be simultaneously calibrated during the 
photogrammetric object reconstruction by employing a bundle adjustment (section 
4.4). In this way it is possible to use lower-cost cameras, with a lower level of 
mechanical stability, as the photogrammetric recording system. Since object 
measurement and camera calibration take place simultaneously and with a high level 
of redundancy, the highest measurement accuracies can be achieved with offline 
systems. Depending on application, or technical and economic restrictions, it may 
also be sensible to make use of pre-calibrated cameras or metric cameras. 

Examples of the use of offline photogrammetry are conventional aerial 
photography, the production of plans and 3D models in architecture, archaeology or 
facilities management, accident recording, the measurement of industrial equipment 
and components, as well as image acquisition from unmanned aerial vehicles (UAVs) 
or mobile platforms. 

... Online photogrammetry  
Online photogrammetric systems have a limited number of cameras. There are single, 
stereo and multi-camera systems which, at given time intervals, deliver three-
dimensional object information. Systems with image sensors integrated at fixed 
relative positions are generally pre-calibrated (known interior orientation) and 
oriented (exterior orientation). Depending on stability, this geometry remains 
constant over longer periods of time. Examples of mobile and stationary online 
systems with a fixed configuration of cameras are shown in Figs. 6.42 and 6.45. Online 
systems with variable camera configurations offer the option of on-site orientation 
which is normally achieved with the aid of reference objects. An example is shown in 
Fig. 6.34. 

Online systems are commonly connected to further operating processes, i.e. the 
acquired 3D data are delivered in real time in order to control the operation of a 
second system. Examples here include stereo navigation systems for computer-
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controlled surgery, positioning systems in car manufacture, image-guided robot 
positioning or production-line measurement of pipes and tubes. 

.. Imaging configurations 

In photogrammetry, imaging configuration is the arrangement of camera stations and 
viewing directions for object measurement. The following imaging configurations are 
typically distinguished: 
– single image acquisition; 
– stereo image acquisition; 
– multi-image acquisition. 

... Single image acquisition 
Three-dimensional reconstruction of an object from a single image is only possible if 
additional geometric information about the object is available. Single image 
processing is typically applied for rectification (of plane object surfaces, see section 
4.2.8.1), orthophotos (involving a digital surface model, see section 4.2.8.2), as well 
as plane-object measurements (after prior definition of an object plane, see section 
4.2.6.4) and monoplotting methods (see section 4.2.7). In addition, the use of just one 
image, and known object geometry, enables the measurement of relative 6DOF poses 
(position and orientation) between two objects in space, e.g. camera with respect to 
object (space resection, see section 4.2.3) or object to object (6DOF measurements, see 
section 4.2.5).  

The achievable accuracy of object measurement depends primarily on the image 
scale (see section 3.3.1, Fig. 3.40 to Fig. 3.42) and the ability to distinguish those 
features which are to be measured within the image. In the case of oblique imaging, 
the image scale is defined by the minimum and maximum object distances.  

... Stereo image acquisition 
Stereo imagery represents the minimum configuration for acquiring three-
dimensional object information. It is typically employed where a visual or automated 
stereoscopic evaluation process is to be used. Visual processing requires near parallel 
camera axes similar to the normal case (Fig. 3.38a), as the human visual system can 
only process images which are comfortably within a limited angle of convergence. 
For digital stereo image processing (stereo image matching, see section 5.5), the 
prerequisites of human vision can be ignored with the result that more convergent 
image pairs can be used (Fig. 3.38b). 

In the simplest case, three-dimensional object reconstruction using image pairs 
is based on the measurement of image parallax or disparity px' = x'–x" (Fig. 3.38a) 
that can be transformed directly into a distance measure h in the viewing direction 
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(see section 4.3.6.2). More generally, image coordinates (x'y', x"y") of homologous 
(corresponding) image points can be measured in order to calculate 3D coordinates 
by spatial intersection (see section 4.4.7.1). The accuracy of the computed object 
coordinates in the viewing direction will generally differ from those parallel to the 
image plane. Differences in accuracy are a function of the intersection angle between 
homologous image rays, as defined by the height-to-base ratio h/b.  

h

x'

c c

b

x''

b

a) normal b) convergent  

Fig. 3.38: Normal and convergent stereo image configurations. 

Stereo imagery is most important for the measurement of non-signalized (targetless) 
object surfaces that can be registered by the visual setting of an optical floating mark 
(see section 4.3.6.3). Special stereometric cameras have been developed for stereo 
photogrammetry (see section 3.5.4). An example application in industry is the 
measurement of free-form surfaces where one camera can be replaced by an oriented 
pattern projector (see section 6.7.3). 

... Multi-image acquisition 
Multi-image configurations (Fig. 3.39) are not restricted with respect to the selection 
of camera stations and viewing directions. In principle, the object is acquired by an 
unlimited number of images from locations chosen to enable sufficient intersecting 
angles of bundles of rays in object space. At least two images from different locations 
must record every object point to be coordinated in 3D. 

Object coordinates are determined by multi-image triangulation (bundle 
adjustment, see section 4.4, or spatial intersection, see section 4.4.7.1). If a sufficient 
number and configuration of image rays (at least 3–4 images per object point) are 
provided, uniform object accuracies in all coordinates can be obtained (see section 
3.3.1.2). 
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In close-range photogrammetry, multi-image configurations are the most 
common case. They are required in all situations where a larger number of different 
viewing locations are necessary due to the object structure, e.g. occlusions or the 
measurement of both interior and exterior surfaces, or to maintain specified accuracy 
requirements. Images can be arranged in strips or blocks (Fig. 4.58) or as all-around 
configurations (see Fig. 3.39, Fig. 4.59) but, in principle, without any restrictions 
(other examples in Fig. 1.6, Fig. 1.8, Fig. 8.5). 

 

Fig. 3.39: Multi-image acquisition (all-around configuration). 

Where the configuration provides a suitable geometry, multi-image configurations 
enable the simultaneous calibration of the camera(s) by self-calibrating bundle 
adjustment procedures (see sections 4.4.2.4 and 7.3.2). 

. Geometry of the camera as a measuring device 

.. Image scale and accuracy 

Image scale and achievable accuracy are the basic criteria of photogrammetric 
imaging and will dominate the choice of camera system and imaging configuration. 

... Image scale 
The image scale number or magnification m is defined by the ratio of object distance 
h to the principal distance c (lens focal length plus additional shift to achieve sharp 
focus). It may also be given as the ratio of a distance in object space X to the 
corresponding distance in image space x', assuming X is parallel to x' (see eqn. 1.1, 
compare with section 3.1.2): 
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1
'

h Xm
c x M

= = =   (3.45) 

In order to achieve a sufficient accuracy and detect fine detail in the scene, the 
selected image scale m must take into account the chosen imaging system and the 
surrounding environmental conditions. Fig. 3.40 illustrates the relationship between 
object distance, principal distance, image format and the resulting image scale. 
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Fig. 3.40: Dependency of image scale on image format, focal length and object distance. 

Using a camera with a smaller image format and the same image scale (and principal 
distance) at the same location, the imaged object area is reduced (Fig. 3.40a). In 
contrast, a larger image scale can be achieved if the object distance is reduced for the 
same image format (Fig. 3.40b). 

For a shorter object distance (Fig. 3.40b), or a longer principal distance (Fig. 
3.40c), a larger image scale will result in a correspondingly reduced imaged object 
area, i.e. the number of images necessary for complete coverage of the object will 
increase. 

Fig. 3.40d shows that equal image scales can be obtained by different imaging 
configurations. With respect to image scale it can be concluded that the selection of 
imaging system and camera stations is often a compromise between contrary 
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requirements. Note, however, that any change in the position of the camera with 
respect to the object will result in a different perspective view of the object. 
Conversely, changing the focal length of the lens, or altering the camera format 
dimensions, whilst maintaining the camera position, will not alter the perspective.  

An image has a uniform scale only in the case of a plane object which is viewed 
normally (camera axis normal to the object plane). For small deviations from the 
normal an average image scale number related to an average object distance can be 
used for further estimations. In practical imaging configurations, large deviations in 
image scale result mainly from 
– large spatial depth of the object and/or 
– extremely oblique images of a plane object. 

Example 3.5: 

Given a camera with image format s' = 60 mm and a principal distance of c = 40 mm (wide angle). 
Compute the object distance h, where an object size of 7.5 m is imaged over the full format. 

1. Image scale number: = = =
7500 125

' 60
Xm
x

 (M = 1:125) 

2. Object distance: = ⋅ = ⋅ = =125 40 5000 mm 5mh m c  

 

hmax

c

hmin

hmax

c

hmin

 

h

dX

dXX

x'dx'

c

 

Fig. 3.41: Different image scales. Fig. 3.42: Single image acquisition. 

For these cases (see Fig. 3.41) minimum and maximum image scales must be used for 
project planning and accuracy estimations. 
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... Accuracy estimation 
The achievable accuracy3 in object space of a photogrammetric measurement 
requires assessment against an independent external standard, but the precision of 
the derived coordinates can be estimated approximately according to Fig. 3.42. 

Differentiation of eqn. (3.45) shows that the uncertainty of an image 
measurement dx' can be transferred into object space by the image scale number m: 

'dX m dx= ⋅   (3.46) 

Applying the law of error propagation, the standard deviation gives: 

'X xs m s= ⋅   (3.47) 

In many cases a relative precision, rather than an absolute value, that is related to the 
maximum object dimension S, or the maximum image format s', is calculated: 

'

'
xX ss

S s
=   (3.48) 

Eqn. (3.48) shows that a larger image format results in better measurement precision. 

Example 3.6: 

Given an object with object size S = 7.5 m photographed at an image scale of m = 125. What is the 
necessary image measuring accuracy sx', if an object precision of sX = 0.5 mm is to be achieved? 

1. According to (3.47): = = = ='
0.5 0.004mm 4µm
125

X
x

s
s

m
 

2. Relative accuracy: = =1 :15000 0.007%Xs
S

 

Firstly, the achievable object precision according to (3.47) indicates the relationship 
between scale and resulting photogrammetric precision. Furthermore, it is a function 
of the imaging geometry (number of images, ray intersection angles in space) and the 
extent to which measured features can be identified. A statement of relative precision 
is only then meaningful if the measured object, processing methods and accuracy 
verification are effectively described. 

Eqn. (3.47) must be extended by a design factor q that provides an appropriate 
weighting of the imaging configuration: 

' '
D

X x x
q

s q m s m s
k

= ⋅ ⋅ = ⋅   (3.49) 

 
3 Here the term “accuracy” is used as a general quality criterion. See sections 2.4.3 and 7.2 for a 
definition of accuracy, precision and reliability. 
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The design parameter qD is related to the intersection geometry of the imaging 
configuration, and k defines the mean number of images per camera location. For a 
normal case, in practice k = 1 and therefore qD = q. 

Practical values for the design factor q vary between 0.4–0.8 for excellent 
imaging configurations, (e.g. all-around configuration, see Fig. 3.39), and up to 1.5–
3.0 or worse for weak stereo configurations (see Fig. 3.38). 

If the object is targeted (marked, or signalized, e.g. by circular high-contrast 
retro-reflective targets) and imaged by an all-around configuration, (3.49) provides a 
useful approximation for all three coordinate axes, such that q = 0.5 can be achieved. 
In cases where the object cannot be recorded from all sides, accuracies along the 
viewing direction can differ significantly from those in a transverse direction. As an 
example, the achievable precision in the viewing direction Z for a normal stereo pair 
(see section 4.3.6.2) can be estimated by: 

2

' 'Z px px
h hs s m s

b c b
= =

⋅
  (3.50) 

Here b defines the distance between both camera stations (stereo base) and spx' the 
measurement precision of the x-parallax; base b and principal distance c are assumed 
to be free of error. Measurement precision in the viewing direction depends on the 
image scale (h/c) and on the intersection geometry, as defined by the height-to-base 
ratio (h/b). 

Example 3.7: 

Given a stereo image pair with an image scale of M = 1:125, an object distance of h = 5 m and a base 
length of b = 1.2 m. Compute the achievable precision in the XY-direction (parallel to the image plane) 
and in the Z-direction (viewing direction) respectively, given a parallax measurement precision of  

spx' = 4 µm (assume =' ' 2px xs s ). 

1. Precision in Z: = ⋅ ⋅ = ⋅ ⋅ ='
5125 0.004 2.1mm

1.2Z px
hs m s
b

 

2. Precision in X,Y where qXY = 1: = = ⋅ = ⋅ =' 125 0.006 0.75 mmX Y xs s m s  

3. Design factor from (3.49): = =
⋅ '

2.8Z
Z

x

s
q

m s
 

The example shows that the precision in the viewing direction is reduced by a factor of almost 3. 

.. Interior orientation of a camera 

The interior (intrinsic) orientation of a camera comprises all instrumental and 
mathematical elements which completely describe the imaging model within the 
camera. By taking proper account of the interior orientation, the real camera 
conforms to the pinhole camera model. It is a requirement of the model that there 
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exists a reproducible image coordinate system so that geometric image values, such 
as measured image coordinates, can be transformed into the physical-mathematical 
imaging model. 

   
a) Original image  b) Compression  c) Extract  

Fig. 3.43: Original and processed images.  

Fig. 3.43 shows an arbitrarily selected, original digital image that has been stored in 
exactly this form and therefore has a reproducible relationship to the camera. The 
applied processing (compression and extraction) results in a loss of reference to the 
image coordinate system fixed in the camera, unless the geometric manipulation can 
be reconstructed in some way (see section 3.3.2.4). 

... Physical definition of the image coordinate system  
The image coordinate system must not only be defined physically with respect to the 
camera lens, but must also be reconstructable within the image. For this purpose, 
analogue photogrammetric cameras used either fiducial marks at the edge of the 
image (metric camera) or a réseau (partial-metric camera) whose nominal coordinates 
were calibrated at the factory. For the digital cameras used exclusively today, 
artificial reference points for the image coordinate system can be omitted if there is a 
clear reference between the digital image and the optoelectronic image sensor (rows 
and columns of the sensor matrix). This is usually the case when using fixed area 
sensors (CCD or CMOS sensor matrix) and with direct digital image readout. For 
images without a given reference system (see Fig. 3.51 for an example), the direct 
linear transformation (DLT, section 4.2.4.1) can be used for photogrammetric 
orientation tasks.  

To ensure a defined physical relationship between sensor and lens, a static sensor 
without sensor-based auto-focus, motion compensation and anti-dust vibration (see 
3.4.2.3), a fixed focal length lens, the focus and aperture of which is mechanically 



 3.3 Geometry of the camera as a measuring device   

locked in place, are preferred for accurate photogrammetric reconstruction. In such 
cases, the image manipulations shown in Fig. 3.43 should be omitted. By convention 
the origin of these systems is usually at the top left and the coordinate system is left-
handed (see section 2.1.1). The conversion of pixel coordinates into metric image 
coordinates is done with eqn. (2.2). Radiometric image processing (e.g. contrast 
changes) usually does not change the image geometry and is permissible in the 
photogrammetric sense. 

... Perspective centre and distortion 
Mathematically, the perspective centre is defined by the point through which all 
straight-line image rays pass. For images created with a compound lens (multiple lens 
components) both an external and an internal perspective centre can be defined. 
Each is defined by the intersection point of the optical axis with the entrance pupil 
EP and the exit pupil E'P, respectively (see section 3.1.2). The position and size of the 
entrance and exit pupils are defined by the lens design and its limiting aperture (Fig. 
3.11, Fig. 3.44). Hence, the position of the perspective centre depends on the chosen 
aperture and, due to the influence of dispersion, is additionally dependent on 
wavelength.  
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Fig. 3.44: Perspective centres O, O' and principal distance c (after Kraus 1994).  

In the ideal case of Fig. 3.11 the angle of incidence τ is equal to the exit angle τ', and 
the principal distance c is equal to the image distance a' (between principal plane and 
image plane). As the position of entrance pupil and exit pupil do not usually coincide 
with the principal planes, an incident ray enters at angle τ, and exits at a different 
angle τ'. This effect is radially symmetric with a point of symmetry S'. Compared with 
the ideal case, an image point P' is shifted by an amount Δr' that is known as radial 
distortion (see also Fig. 3.12 and Fig. 3.17).  

' ' tanΔr r c τ= − ⋅   (3.51) 
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In this formulation the distortion is therefore linearly dependent on the principal 
distance (see also Fig. 3.53). 
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Fig. 3.45: Definition of principal point for a tilted image plane (after Kraus 2000).  

The point of autocollimation H' is defined as the intersection point of the optical axis 
of the lens OO' and the image plane. The mathematical perspective centre Om, used 
for photogrammetric calculations, is chosen to maximize the symmetry in the 
distortion in the image plane. The principal distance c is normally chosen such that 
the sum of the distortion components across the whole image format is minimized. If 
the optical axis is not normal to the image plane, Om is not positioned on the optical 
axis (Fig. 3.45). H' is also known as the principal point. In real cameras, principal 
point, point of symmetry and the centre of the image can all be separate. In principle, 
the image coordinate system can be arbitrarily defined (Fig. 3.46).   

S'

x'

y'

H' M'

 

Fig. 3.46: Possible locations of principal point, 
point of symmetry, centre of image and origin of 
image coordinate system. 
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Hence the photogrammetric reference axis is defined by the straight line OmH'. In 
object space it is given by the parallel ray passing through O4. The image radius r' of 
an image point, and the residual of radial distortion Δr', are defined with respect to 
the principal point H' (see section 3.3.2.3). 

If a camera is typically calibrated by means of a bundle adjustment (see section 
4.4.2.4), the principal distance, principal point and distortion parameters are all 
calculated as a result of this least-squares optimization which incorporates all 
participating observations. They correspond to the optically defined parameters if the 
imaging network is strong and the scale definition accurate. 

 

  

 

Fig. 3.47: Example of a symmetric lens design 
(Zeiss Lametar 8/f=200, Δr'max = ±4 µm at  
r' < 90 mm). 

Fig. 3.48: Example of an asymmetric lens design 
(Leica 50/0.95 Noctilux-M, Δr' = ±200 µm at  
r' = 20 mm, Δr' = ±60 µm at r' = 10 mm).  

In practice, every lens generates distortions. The radial distortion described above 
can be reduced to a level of Δr' < 4 µm for high-quality lenses designed symmetrically 
about the lens aperture (Fig. 3.47). In contrast, asymmetric lens designs produce 
significantly larger distortion values, especially towards the corners of the image. See 
Fig. 3.48 for an example of an asymmetric lens design. 

In contrast, tangential distortions are attributable to decentring and tilt of 
individual lens elements within the compound lens (Fig. 3.58 shows the effect in 
image space). For good quality lenses, these distortions are usually 10 times smaller 
than radial distortion and thus can be neglected for many photogrammetric purposes. 
However, the simple low-cost lenses which are increasingly used have been shown to 
exhibit significantly larger tangential and asymmetric radial distortion values. 
Distortions in the range of more than 30 µm are possible and are attributable to the 
low cost of these lenses, combined with the small size of their individual elements.  

... Parameters of interior orientation 
A camera can be modelled as a spatial system that consists of a planar imaging area 
(film or electronic sensor) and the lens with its perspective centre. The parameters of 

 
4 Usually the notations O or O' are used, even when Om is meant. 
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interior orientation of a camera define the spatial position of the perspective centre, 
the principal distance and the location of the principal point with respect to the image 
coordinate system defined in the camera. They also encompass deviations from the 
principle of central perspective to include radial and tangential distortion and often 
affinity and orthogonality errors in the image. 
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Fig. 3.49: Interior orientation. 

Fig. 3.49 illustrates the schematic imaging process of a photogrammetric camera. 
Position and offset of the perspective centre, as well as deviations from the central 
perspective model, are described with respect to the image coordinate system as 
defined by reference or fiducial points (film-based system) or the pixel array 
(electronic system). The origin of the image coordinate system is located in the image 
plane. For the following analytical calculations, the origin of the image coordinate 
system is shifted to coincide with the perspective centre according to Fig. 2.2. 

Hence, the parameters of interior orientation are (see section 3.3.2.1): 
– Principal point H':  

Foot of perpendicular from perspective centre to image plane, with image 
coordinates (x'0,y'0). For commonly used cameras approximately equal to the 
centre of the image: H' ≈ M'. 

– Principal distance c:  
Perpendicular distance to the perspective centre from the image plane in the 
negative z' direction. When focused at infinity, c is approximately equal to the 
focal length of the lens (c ≈ f '). The principal distance is also known as the 
camera constant. For analytical computations c is a negative number (z' = –c), see 
section 2.1.2. 
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– Parameters of functions describing imaging errors: 
Functions or parameters that describe deviations from the central perspective 
model are dominated by the effect of symmetric radial distortion Δr'. 

If these parameters are given, the (error-free) image vector x' can be defined with 
respect to the perspective centre, and hence also the principal point: 

p 0

p 0

' ' ''
' ' ' '
'

x x Δxx
y y y Δy
z c

   − −
  

= = − −  
   −   

x'  (3.52) 

where 
x'p, y'p: measured coordinates of image point P' 
x'0, y'0: coordinates of the principal point H' 
Δx', Δy': correction values for errors in the image plane 

The parameters of interior orientation are determined by camera calibration (see 
sections 3.3.2.5 and 4.4.2). 

... Metric and semi-metric cameras  
The expression metric camera is used for photogrammetric cameras with a stable 
optical and mechanical design. For these cameras the parameters of interior 
orientation can be calibrated in the factory (laboratory) and are assumed to be 
constant over a long period of time. Usually metric cameras consist of a rigidly 
mounted fixed-focus lens with minimal distortion. In addition, they have a flat image 
plane. A semi-metric camera meets the above metric camera requirements only with 
respect to a plane image surface and its corresponding plane image coordinate 
system. These specifications are fulfilled by a réseau for analogue film cameras, and 
the physical surface of the imaging sensor for digital cameras. 

  
a) Variation of principal point (in mm)   b) Variation of principal distance (in mm) 

Fig. 3.50: Variation in perspective centre position across a series of images  
(Nikon D4 with Zeiss 35mm lens). 
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For a semi-metric camera, the spatial position of the principal point is only given 
approximately with respect to the image coordinate system. It is not assumed to be 
constant over a longer period of time. Movements between perspective centre (lens) 
and image plane (sensor) can, for example, result from the use of variable focus 
lenses, or an unstable mounting of lens or imaging sensor. Fig. 3.50 illustrates this 
effect for a series of 220 images acquired with a Nikon D4 DSLR camera held in 
different orientations. The observed variations can only be handled by a calibration 
which varies with the image (image-variant camera calibration). 

     

Fig. 3.51: Image examples of non-metric cameras  
(left: historical postcard; right: image posted on Internet). 

Cameras, such as analogue photographic cameras, without a suitable 
photogrammetric reference system and/or without a planar image surface, are known 
as amateur or non-metric cameras. If images taken by amateur cameras, for example 
from old postcards, or an unknown source, such as an internet platforms, are to be 
processed photogrammetrically, they often have no unique reference points from 
which the principal point can be determined. Often, even the original image corners 
cannot be found. In such cases, a suitable analytical method for image orientation is 
the direct linear transformation (DLT, see section 4.2.4.1). This method does not 
require an image coordinate system. For multiple image configuration, unknown 
images can be self-calibrated but with limited accuracy, for example using techniques 
such as structure-from-motion (see section 5.5.2.2 and also compare with Fig. 3.43). 
Fig. 3.51 shows an example of an image where neither fiducial marks nor image 
corners in the camera body are visible.  

... Determination of interior orientation (calibration) 
In photogrammetry, the determination of the parameters of interior orientation is 
usually referred to as calibration. This is based on the idea that once a mechanically 
stable camera is calibrated, it may be moved from one image taking location to 
another whilst retaining its calibration. State-of-the-art close-range techniques 
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employ analytical calibration methods to derive the parameters of the chosen camera 
model indirectly from photogrammetric image coordinate observations. For this 
purpose the imaging function is extended by the inclusion of additional parameters 
that model the position of the perspective centre and image distortion effects.  

Usually calibration parameters are estimated by bundle adjustment 
(simultaneous calibration, section 4.4.2.4). Depending on available object 
information (reference points, distances, constraints) suitable imaging 
configurations must be chosen (see section 7.3). 

The necessity for the periodic calibration of a camera depends on the accuracy 
specifications, the mechanical construction of the camera and environmental 
conditions on site at the time of measurement. Consequently, the time and form of 
the most appropriate calibration may vary: 
– One-time factory calibration: 

Imaging system: metric camera 
Method: factory or laboratory calibration  
Reference: calibrated test instruments, e.g. goniometer, comparators, reference 
target points 
Assumption: camera parameters are valid for the life of the camera 

– Long-term checks, e.g. annual: 
Imaging system: metric camera 
Method: laboratory or test-field calibration 
Reference: calibrated test instruments, reference target points, scale bars, 
plumb lines  
Assumption: camera parameters are valid for a long period of time 

– Calibration immediately before or after object measurement: 
Imaging system: semi-metric camera, metric camera with high stability 
Method: test field calibration, self-calibration (see section 7.3.1.1) 
Reference: reference points, reference lengths within the test field, straight lines 
Assumption: camera parameters do not alter until the time of object 
measurement 

– Calibration integrated into object reconstruction: 
Imaging system: semi-metric camera, metric camera with moderate stability 
Method: self-calibration, on-the-job calibration (see section 7.3.1.3) 
Reference: reference points, distances on object, straight lines 
Assumption: constant interior orientation during image network acquisition  

– Calibration of each individual image: 
Imaging system: semi-metric camera with limited stability 
Method: self-calibration with variable interior orientation (see section 4.4.2.4) 
Reference: reference points, distances on object, straight lines 
Assumption: only limited requirements regarding camera stability, e.g. constant 
distortion values 
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In the default case, the parameters of interior orientation are assumed to be constant 
for the duration of image acquisition. However, for close-range applications in it may 
be the case that lenses are changed or re-focused during an image sequence, and/or 
mechanical or thermal changes occur. Every change in camera geometry will result 
in a change of interior orientation which must be taken into account in the 
subsequent evaluation by use of an individual set of parameters for each different 
camera state.  

From the standpoint of camera calibration, the difference between metric and 
semi-metric cameras becomes largely irrelevant as the stability of interior orientation 
depends on the required accuracy. Consequently, even metric cameras are calibrated 
on-the-job if required by the measuring task. In such cases their prior calibration data 
can be used as a check or as input observations into the new calibration. On the other 
hand, semi-metric digital cameras can be calibrated in advance if they are 
components of multi-camera online systems.  

.. Standardized correction functions 

Deviations from the ideal central perspective model, attributable to imaging errors, 
are expressed in the form of correction functions Δx', Δy' to the measured image 
coordinates. Techniques to establish these functions have been largely standardized 
and they capture the effects of radial, tangential and asymmetric distortion, as well 
as affine errors in the image coordinate system. Extended models for special lenses 
and imaging systems are described in section 3.3.4.  

... Radial distortion 
According to section 3.1.3.1, distortion is related to the principal point, i.e. the 
measured image coordinates x'P,y'P must first be corrected by a shift of origin to the 
principal point at x'0,y'0: 

P 0

P 0

' '
' '

x x x
y y y
° = −
° = −

 : image coordinates relative to principal point 

where  (3.53) 
2 2'r x y= ° + °  : image radius, distance from the principal point 

The correction of the image coordinates x°, y° for distortion is then given by: 

' '
' '

x x Δx
y y Δy

= ° −
= ° −

 : corrected image coordinates (3.54) 

The distortion corrections Δx', Δy' must be calculated using the final image 
coordinates x',y' but must be initialized using the approximately corrected 
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coordinates x°,y°. Consequently, correction values must be applied iteratively (see 
section 3.3.4.6). 

 

Fig. 3.52: Symmetric radial distortion.  

Symmetric radial distortion, commonly known as radial distortion, constitutes the 
major imaging error for most camera systems. It is attributable to variations in 
refraction at each individual component lens within the camera’s compound lens. It 
depends also on the wavelength, aperture setting, focal setting and the object 
distance at constant focus.   

Fig. 3.52 shows the effect of radial distortion as a function of the radius of an 
imaged point. In the example, the distortion increases with distance from the 
principal point, and it can easily reach 1 % (relative distortion Δr'/r') or more for off-
the-shelf lenses. The distortion curve is usually modelled with a polynomial series 
(Seidel series) with distortion parameters K0 to Kn: 5 

3 5 7
0 1 2 3' ' ' ' 'radΔr K r K r K r K r= + + +   (3.55) 

3 5 7
0 1 2 3' ' ' ' 'radΔr A r A r A r A r= + + + +   (3.56) 

For most lens types the series can be truncated after the second or third term (i = 3) 
without any significant loss of accuracy. The linear term with K0 (A0) describes the 
function ' ' tanΔr r c τ= − ⋅  (see eqn. 3.51 and Fig. 3.52). Eqn. (3.51) and Fig. 3.53 show 
that the effect of introducing the linear term with K0 (A0) can also be achieved by a 
change in principal distance. Hence, the distortion parameters defined in (3.55) are 
numerically correlated with image scale or principal distance, and consequently, K0 
(A0) and c cannot be calculated simultaneously within one system of equations.  

 
5 Here and in the following paragraphs both common notations (Ai) and (Ki) are displayed in parallel. 
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Fig. 3.53: Linear relationship between c and Δr'.  

In order to avoid these correlations, the linear part of the distortion function is 
removed or set to a constant value. This is equivalent to a rotation of the distortion 
curve into the direction of the r' axis, thus resulting in a second zero-crossing. This 
generates a distortion function in which only the differences from the straight line 

' ' tanΔr r c τ= − ⋅  (see eqn. 3.51) in Fig. 3.52 must be modelled.  

 

Fig. 3.54: Typical balanced lens distortion curve (Rollei Sonnar 4/150)  
red: distortion effect Δr'; blue: relative distortion Δr'/r'. 

Alternatively, a polynomial of the following type is used: 

2 2 4 4 6 6
1 0 2 0 3 0' '( ' ) '( ' ) '( ' )radΔr A r r r A r r r A r r r= − + − + −  (3.57) 

By simple rearrangement of (3.57) it can be shown that this has the same effect as 
(3.55): 

3 5 7 2 4 6
1 2 3 1 0 2 0 3 0' ' ' ' '( )radΔr A r A r A r r A r A r A r= + + − + +  (3.58) 

Here the term in brackets is a constant analogous to K0. In practice r0 should be chosen 
such that minimum and maximum distortion values are more or less equal with 
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respect to the complete image format (balanced radial distortion). Usually r0 is set to 
approximately 2/3 of the maximum image radius. Fig. 3.54 shows a typical radial 
distortion curve according to (3.57), and the relative distortion Δr'/r'.  
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distortion parameters: 
 
A1 =   4.664 · 10–6 
A2 = –6.456 · 10–10 
A3 = 0 
 
r0 = 20.0 mm 

 

Fig. 3.55: Effect of radial distortion (data from Table 3.1). 

Fig. 3.55 displays the corresponding two-dimensional effect with respect to the image 
format. Balanced radial lens distortion is only necessary when the distortion 
correction is applied using analogue methods, for example by specially shaped cams 
within the mechanical space rod assembly. The term r0 was introduced for analogue 
systems where mechanical cameras were used to apply mechanical corrections but 
for purely digital calibration it no longer has any practical meaning and can, without 
restriction, be set to zero (corresponding to K0 = 0).  

Table 3.1: Correction table for distortion (see Fig. 3.54, Fig. 3.55, all values in mm). 

r' Δr' r' Δr' r' Δr' r' Δr' 
0 0.0000 9 -0.0125 18 -0.0057 27 0.0350 
1 -0.0018 10 -0.0130 19 -0.0031 28 0.0419 
2 -0.0035 11 -0.0133 20 0.0000 29 0.0494 
3 -0.0052 12 -0.0132 21 0.0035 30 0.0574 
4 -0.0068 13 -0.0129 22 0.0076 31 0.0658 
5 -0.0082 14 -0.0122 23 0.0121 32 0.0748 
6 -0.0096 15 -0.0112 24 0.0170 33 0.0842 
7 -0.0107 16 -0.0098 25 0.0225 34 0.0941 
8 -0.0117 17 -0.0080 26 0.0285 35 0.1044 
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A table of correction values for radial distortion (lens map function) is often derived 
from a camera calibration (Table 3.1). It can then be used by a real-time processing 
system to provide correction values for image coordinates by linear interpolation. 

Finally, the image coordinates are corrected proportionally: 

'
' '

'
rad

rad
Δr

Δx x
r

=  
'

' '
'
rad

rad
Δr

Δy y
r

=  (3.59) 

The meaning of the distortion parameters 
The sign of parameter A1 (K1) determines the form of the distortion as either barrel (A1 
< 0) or pincushion (A1 > 0), see Fig. 3.56. A2 and A3 (K2 and K3) model deviations of the 
distortion curve from the cubic parabolic form with each term introducing an 
additional inflection. A2 normally has its primary effect towards the edges of the 
image (Fig. 3.57). The introduction of the term A3 makes it possible to model lenses 
with large distortion values at the image edges (Fig. 3.57). 

  

Parameters: 
A1 = 4.664 · 10–6 A2 = 0 A3 = 0 
r0 = 20.0 mm 

Parameters: 
A1 = –4.664 · 10–6 A2 =   0 A3 =   0 
r0 = 20.0 mm 

Fig. 3.56: Effect of changing the sign of A1. 

  

Parameters: 
A1 = 4.664 · 10–6 A2 = –3.0 · 10–9 A3 = 0 
r0 = 20.0 mm 

Parameters: 
A1 = –4.664 · 10–6 A2 = 0 A3 =  –1.0 · 10–12 
r0 = 20.0 mm 

Fig. 3.57: Effects of parameters A2 and A3. 
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... Tangential distortion 
Tangential distortion (Fig. 3.58), also known as decentring distortion, is attributable 
to decentring and misalignment of individual lens elements from the ideal central 
axis of the camera’s compound lens. It can be described by the following functions 
with the parameters P1, P2 or alternatively B1, B2: 

2 2
1 2

2 2
2 1

' ( ' 2 ' ) 2 ' '
' ( ' 2 ' ) 2 ' '
tan

tan

Δx P r x P x y
Δy P r y P x y

= + +

= + +
 

2 2
1 2

2 2
2 1

' ( ' 2 ' ) 2 ' '
' ( ' 2 ' ) 2 ' '
tan

tan

Δx B r x B x y
Δy B r y B x y

= + +

= + +
 (3.60) 

 

Fig. 3.58: Effect of tangential distortion. Fig. 3.59: Effect of affinity and shear. 

According to Conrady (1919) and Brown (1966), the complete approach for modelling 
asymmetric tangential distortion also consists of a coupled radially symmetric 
component described by the coefficients P3 and P4: 

2 2 2 4
1 2 3 4

2 2 2 4
2 1 3 4

' [ ( ' 2 ' ) 2 ' '](1 ' ' )
' [ ( ' 2 ' ) 2 ' '](1 ' ' )
tan

tan

Δx P r x P x y P r P r
Δy P r y P x y P r P r

= + + + +

= + + + +
 (3.61) 

P3 and P4 describe a non-linear effect that may have a larger impact at the image 
borders. Fig. 3.60 illustrates the effect for two image points P', Q', in different image 
positions. The imaged points are displaced asymmetrically by a radial and tangential 
component (first term in eqn. 3.61) which is itself scaled by another radial component 
(second term in eqn. 3.61). The radial term in eqn. (3.61) is not considered in most 
software solutions since it has a minor impact in good quality lenses and is otherwise 
highly correlated with the standard parameters for radial distortion. 
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Fig. 3.60: Example of tangential distortion with a radially symmetric component.  

For most quality lenses the effects of decentring distortion are significantly smaller 
than for radial distortion and are often only determined where accuracy demands are 
high. If low-cost lenses are used, as is often the case in surveillance or webcam 
systems, significant decentring distortion can be present. 

... Affinity and shear 
Affinity and shear are used to describe deviations of the image coordinate system with 
respect to orthogonality and uniform scale of the coordinate axes (Fig. 3.59). The 
effect can have several causes: 
– sensors which are not aligned orthogonally to the optical axis of the camera lens; 
– sensor elements which are not distributed on a regular grid or which are not 

square; 
– video images which are transferred in analogue form before being digitized by a 

frame grabber; 
– imaging sensors with rolling shutters (see section 3.4.2.2); 
– scanned analogue films. 

The following function can be used to provide an appropriate correction: 

1 2' ' 'affΔx C x C y= +  ' 0affΔy =  (3.62) 

A similar effect is modelled by the parameters m' and s' of the calibration matrix in 
eqn. (3.66). Affinity and shear are not associated with the lens but are distortions 
occurring within the sensor and image planes. If relevant, these should be processed 
in the order shown below for total distortion correction. The C parameters are close to 
zero in many modern digital cameras (sensors) and need only be calibrated for very 
high-accuracy applications. 
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... Total correction 
The simplified, but widely used, definition of total distortion correction is obtained 
by simple summing of the individual correction terms: 

0

' ' ' '
' ' ' '

rad tan aff

P

Δx Δx Δx Δx
x x Δx x x Δx

= + +

= ° − = − −
 

0

' ' ' '
' ' ' ' '

rad tan aff

P

Δy Δy Δy Δy
y y Δy y y Δy

= + +

= ° − = − −
 (3.63) 

Strictly speaking, the measured image coordinates must initially be corrected by the 
sensor-related affinity and shear terms. Subsequently, these pre-corrected 
coordinates are used to calculate the corresponding corrections for lens-related radial 
and decentring distortion. The total correction then becomes: 

" ' '
' ' ( ", ") ' ( ", ")
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Δx Δx x y Δx x y
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Δy Δy x y Δy x y

y y Δy

= −

= +
= ° −

 (3.64) 

Which of the two approaches should be used to correct measured image coordinates 
depends on the software used for camera calibration. It should also be noted that the 
sign of the correction terms and the assumption as to the pixel origin, e.g. top left, 
centre or bottom right, may vary between different programs. Careful reading of 
software documentation is therefore strongly recommended if data is to be exchanged 
between different software packages. 

Example 3.8: 

A calibration of a Canon EOS1000 digital camera with lens f = 18 mm gives the following set of 
correction parameters:  

A1 = –4.387 · 10–4 A2 =   1.214 · 10–6 A3 = –8.200 · 10–10 
B1 =   5.572 · 10–6 B2 = –2.893 · 10–6 
C1 = –1.841 · 10–5 C2 =   4.655 · 10–5 r0 = 8.325 mm 

Compute the effects of individual distortion terms for two image points, the first located in the centre 
of the image and the second in one corner:  

 x'1 y'1 x'2 y'2 
x',y' 1.500 1.500 11.100 7.400 mm 
A1, A2, A3 34.4 34.4 –215.4 –143.6 µm 
B1, B2 0.0 0.0 1.9 0.2 µm 
C1, C2 0.0 0.0 0.1 0.0 µm 
 
Total 34.4 34.4 –213.4 –143.4 µm 

This example indicates that the effect of radial distortion predominates. However, if the accuracy 
potential of this camera of about 0.2 µm (1/50th pixel) is to be reached, the other sources of image 
errors must be taken into account. 
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.. Alternative correction formulations  

... Simplified models  
In Tsai’s approach, only one parameter k is used in addition to principal distance, 
principal point and two scaling parameters. The distorted image coordinates, with 
origin at the principal point, are given by: 

2

2 '

1 1 4 '

xx
kr

° =
+ −

 
2

2 '

1 1 4 '

yy
kr

° =
+ −

 (3.65) 

This widely used model does not include any high-order distortion effects and is not 
therefore equivalent to a Seidel polynomial with two or three parameters (A1, A2, A3). 
Typical lenses with large distortion components are not fully modelled by this 
approach and the disadvantage increases towards the image edges. In addition, 
asymmetric and tangential distortions are not taken into account at all. 

In computer vision the parameters of interior orientation are typically expressed 
by a calibration matrix K which consists of five degrees of freedom (principal distance 
c, principal point x'0, y'0, shear s and differential scale m' between the axes). 
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K  (3.66) 

K is part of a general 3x4 transformation matrix from object space into image space 
by homogeneous coordinates (see section 2.2.3.1). Lens distortion cannot directly be 
integrated in this method and must be modelled by a position-dependent correction 
matrix dK(x', y'). 

In computer vision, camera parameters are often based on pixel units. The 
transformation of pixel-based calibration parameters into metric parameters is 
described in section 3.3.6. 

... Additional parameters  
An approach by Brown (1971) was developed specifically for large format analogue 
aerial cameras, but can also be applied to digital cameras: 
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 (3.67) 
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In addition to parameters for modelling deformations in the image plane (D1 to D12) 
terms for the compensation of lack of flatness in film or sensor are included (E1 to E6). 
These are formulated either as a function of the radial distance or of the tangent of 
the imaging angle (x'/c or y'/c).  

Additional correction models, based on polynomials, were created by Ebner 
(1978) and Grün (1978) for the calibration of analogue aerial cameras: 

2 2 2 2 2 2
1 2 3 4 5 7 9 11

2 2 2 2 2 2
1 2 3 4 6 8 10 12

' ' ' 2 ' ' ' ' ' ' ' ' ' '
' ' ' ' ' 2 ' ' ' ' ' ' ' '
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Δx E x E y E x E x y E y E x y E x y E x y
Δy E y E x E x y E y E x E y x E y x E x y

= + − + + + + +

= − + + − + + + +
 (3.68) 
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However, these polynomials are geometrically difficult to interpret. Other approaches 
to camera modelling based on Legendre or Chebyshev polynomials show similar 
characteristics to high-order polynomials. Fourier series can also be used in which 
coefficients are inherently uncorrelated and independent in x and y. Here again, 
however, there are a large number of parameters which are difficult to handle and 
interpret.  

In summary, the above approaches are more difficult to interpret geometrically 
and can easily be over-parameterised, leading to a dependency or correlation 
between individual parameters. As a result, these approaches are not often used in 
photogrammetry. 

For a self-calibrating bundle adjustment, individual parameters should be tested 
for their significance and correlation with respect to each other. Any parameters 
which fail such tests should be eliminated, starting with the weakest first.  

An example of an extension to the parameter set to accommodate digital cameras 
is given below: 
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 (3.70) 
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Here the parameters K describe radial distortion, P describes tangential (decentring) 
distortion and C models affinity and shear. The parameters Δx'0, Δy'0 and Δc are used 
for small corrections to the spatial position of the perspective centre. Together with 
the factors x'/c and y'/c they have an effect similar to r0 in eqn. (3.57). 

The correction of radial distortion according to (3.55) can be formulated as a 
function of image angle rather than image radius: 

3 4 1
1 2 3 ..... i

iΔr W θ W θ W θ W θ2 += + + + +  (3.71) 

where  

2 21arctan ' 'θ x y
c

 
= + 

 
 : angle between optical axis and object point 

x', y':  corrected image coordinates, projection of the object point in the image 
c: principal distance 

      

Fig. 3.61: Radial distortion (red) as a function of radius (left) and image angle (right) for a lens with 
large distortion (Basler, see Table 3.2), with the uncertainty of the distortion curve for each case 
shown in blue.  

A distortion model based on angle is particularly suitable for central perspective 
optics with large symmetric radial distortion. In this case the distortion curve has a 
lower slope into the corners (Fig. 3.61). 

The increasing uncertainty is in general due to a reduced density of imaged points 
with increasing image radius. 

In aspheric wide-angle lenses with aspherical components, the radial lens 
distortion gradients can be sharper and more varied than for spherical lenses. The 
conventional odd-power polynomial model (section 3.3.3.1) can lead to significant 
systematic errors in image distortion corrections (see Fig. 7.37). In such cases it can 
be useful to apply additional even-power terms to the classical Seidel polynomial. 

... Correction of distortion as a function of object distance  
Strictly speaking, the above approaches for the correction of lens distortion are valid 
only for points on an object plane that is parallel to the image plane, and focused, 
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according to the lens eqn. (3.14), at a distance a' or with respect to the interior 
perspective centre. Imaging rays of points outside this object plane pass through the 
lens along a different optical path and hence are subject to different distortion effects.  

This effect can be taken into account by a correction dependent on distance. This 
requires introduction of a scaling factor: 

'
'

' ( )
( ' )

S
SS

S

c S S cγ
c S S c

−
= = ⋅

−
 (3.72) 

where cS: principal distance (image distance) of object distance S 
 cS': principal distance (image distance) of object distance S' 

For a given set of distortion parameters K1S', K2S', K3S' applying to an object plane at 
distance S', according to (3.55), the correction of radial distortion for object points at 
a focused distance S can be calculated as follows: 

2 3 4 5 6 7
' ' 1 ' ' 2 ' ' 3 '' ' ' 'SS SS S SS S SS SΔr γ K r γ K r γ K r= + +  (3.73) 

This model is suitable for high-precision measurements made at large scales (m < 30) 
and lenses with relatively steep distortion curves. As the effect of distortion 
dependent on distance increases with image scale (decreasing object distance), an 
empirically estimated correction factor gSS' can be introduced that can be determined 
for each individual lens: 

' ' '' ' ( ' ' )SS S SS S SΔr Δr g Δr Δr= + −   (3.74) 

As an example, Fig. 3.62 shows the distortion curves of object points with different 
image scales, i.e. at different object distances. 

 

Fig. 3.62: Lens distortion curves for different image scales (Dold 1997).  
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Tangential distortion can also be formulated as a function of the focused distance S: 

2
1 2

2
2 1

' 1 ( ' 2 ') 2 ' '

' 1 ( ' 2 ') 2 ' '

S

S

cΔx P r x P x y
S
cΔy P r y P x y
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   = − + +    
   = − + +    

 (3.75) 

In contrast to the above approaches, the following set of parameters for the correction 
of distance-dependent distortion can be estimated completely within a self-
calibrating bundle adjustment. However, it should be noted that incorporation of 
such corrections within a self-calibration require very strong networks that contain 
many images taken at each distance setting in order to provide a robust and reliable 
parameter set. 

2 2 4 4 6 6
1 0 2 0 3 0*

1' '( ' ) '( ' ) '( ' )distΔr D r r r D r r r D r r r
Z

 = − + − + −   (3.76) 

where Z*: denominator of collinearity equations (4.9) ≈ S (object distance) 

Extension of (3.63) leads to the following total correction of imaging errors: 

' ' ' ' 'rad tan aff distΔx Δx Δx Δx Δx= + + +  ' ' ' ' 'rad tan aff distΔy Δy Δy Δy Δy= + + +  (3.77) 

Usually, distance-dependant distortion does not exceed more than 1µm at the edge of 
the image. Hence, it must only be considered for high-accuracy measurement tasks 
where sub-micron image measuring accuracies are required. This is relevant to large-
scale industrial applications with analogue large-format cameras, but is particularly 
relevant to high-resolution digital cameras that provide an accuracy potential of 
better than 0.5 µm. The need will be most prevalent where there is a large range of 
depth over the scene to be recorded or if the scene is highly linear and requires wide 
angle oblique views from close ranges. An example of this last case might be an 
aircraft wing jig located in the confined working environment of a factory. 

... Image-variant calibration  
Cameras and lenses, which have so little mechanical stability that the geometry of the 
imaging system can vary within a sequence of images, can be modelled by an image-
variant process. Here individual parameters defining the perspective centre 
(principal distance and principal point) are determined individually for every image 
j. In contrast, distortion parameters are normally assumed to be constant for the 
entire image sequence. Image coordinate adjustment is then done with correction 
terms which are calculated for every image as a function of the perspective centre’s 
location.  

{ }0 0, ' , '' '
j

var Δc Δx ΔyΔx Δx=  { }0 0, ' , '' '
j

var Δc Δx ΔyΔy Δy=  (3.78)  
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Fig. 3.50 shows an example for a digital camera, where principal distance and 
principal point vary due to mechanical handling and the effects of gravity. The 
calculation of image-variant camera parameters is done using an extended bundle 
adjustment. 

... Correction of local image deformations  
Local image deformations are imaging errors which appear only in specific areas of 
the image format and are not therefore covered by the global correction functions 
described above. 

 

Fig. 3.63: Example of simulated film deformation on an image with a réseau. 

Local deformations are due, for example, to local lack of flatness in the image plane. 
The lack of flatness often seen in analogue film cameras can be corrected by 
application of the réseau method, i.e. by local geometric transformation of the image 
onto a reference grid (Fig. 3.63).  

A similar analytical formulation can be adopted to describe the lack of flatness of 
digital image sensors. A finite element approach, based on localized correction 
nodes, is used. This requires a grid of two-dimensional correction vectors at the 
intersection points of the grid lines. Corrections within the grid are computed using 
an interpolation process, typically according to the linear process in the following 
equation (Fig. 3.64): 

,

1,

, 1

1, 1

' (1 )

( )

( )

corr l l l l x i j

l l l x i j

l l l x i j

l l x i j

Δx x y x y k

x x y k

y x y k

x y k

  

 + 

 + 

 + + 

= − − + ⋅ ⋅

+ − ⋅ ⋅

+ − ⋅ ⋅

+ ⋅ ⋅

 

,

1,

, 1

1, 1

' (1 )

( )

( )

corr l l l l y i j

l l l y i j

l l l y i j

l l y i j

Δy x y x y k

x x y k

y x y k

x y k

  

 + 

 + 

 + + 

= − − + ⋅ ⋅

+ − ⋅ ⋅

+ − ⋅ ⋅

+ ⋅ ⋅

 (3.79) 
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Fig. 3.64: Interpolation within the correction grid.  

Here xcorr is the corrected value of the image coordinate x, coordinates xl,yl represent 
the local position of the image point within the grid element and kx[i,j], kx[i+1,j], kx[i,j+1], 
kx[i+1,j+1] are the correction vector components at the corresponding grid intersection 
points. An analogous correction applies to image coordinate y. The collinearity 
equations (4.9) are extended by the above formulation so that the grid parameters can 
be estimated by a bundle adjustment (see section 4.4). 

In order to separate out the noise component, i.e. the random measurement error 
in the image point, from the sensor deformation error and other lens imaging errors 
not otherwise considered, deformation conditions at the nodes are introduced as 
pseudo-equations: 
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 (3.80) 

These nodal conditions are applied in both x and y directions in the image plane. 
Within the system of equations, this leads to a new group of observations. The 
accuracy with which the equations are introduced depends on the expected 
“roughness” of the unflatness parameters in the correction grid, as well as the 
number of measured points in the imaging network which appear on each grid 
element. In addition, the equations protect against potential singularities within the 
complete set of adjustment equations when there are grid elements which contain no 
image points.  

As an example, Fig. 3.65 shows a calculated correction grid for a digital camera 
(Canon EOS1000) fitted with a zoom lens. The grids show similar trends despite 
setting the lens at two different zoom settings. In addition to the simultaneously 
determined distortion parameters, effects are modelled in image space which have 
similar characteristics in both cases. However, these are not necessarily pure sensor 
deformations such as lack of flatness. The finite element grid compensates for all 
remaining residual errors in the image sequence. 
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f = 18 mm f = 28 mm 

Fig. 3.65: Computed correction grids for the same camera body with a zoom lens at different 
settings. 

The finite element method of calibration is also suitable for modelling ray paths in 
complex optics, for example when using a stereo-mirror attachment (see Fig. 3.110). 

... Chromatic aberration 
In principle, all image distortions caused by the lens depend on wavelength. Strictly 
speaking, RGB colour cameras or multi-spectral cameras should be calibrated 
separately for each channel.  

  
Red – Green Blue – Green 

Fig. 3.66: Image measurements compared in separate colour channels (Fuji S2 Pro, f = 20 mm). 

Fig. 3.66 shows the difference vectors between measured image points from the 
separate RGB channels of a true-colour image. The radially symmetric distortion, 
corresponding to the transverse chromatic aberration (section 3.1.3.2), can be clearly 
observed. 
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For self-calibration, at every imaging location each colour channel is treated as a 
separate camera with the additional constraint that the corresponding exterior 
orientations are identical. The adjusted parameters of interior orientation then 
represent the physical shift in focus due to colour, i.e. the principal distance of the 
green channel lies between those of the red and blue channel (see example in Table 
3.2). In contrast, the position of the optical axis (principal point x'0 und y'0) does not 
change significantly. 

Table 3.2: Principal point position [mm] after calibration using 
separate colour channels (Fuji S2 Pro, f = 20 mm). 

Parameter Red Green Blue 

c –20.5739 –20.5557 –20.5468 

x'0 0.2812 0.2818 0.2812 

y'0 –0.2080 –0.2095 –0.2105 

.. Iterative correction of imaging errors 

Measured image points can be corrected a priori if the parameters of interior 
orientation are known. Example cases are the calculation of object coordinates by 
space intersection, or the resampling of distortion-free images. However, there are 
often misunderstandings about the sequence and sign of corrections to image errors. 
For clarity it is necessary to know the derivation of the correction values and details 
about the software implementation, which is often not available in practice. 

The correction model described in (3.63) assumes that the error corrections are 
calculated by self-calibrating bundle adjustment. This incorporates the collinearity 
model (4.9), which enables image points to be calculated for points defined in object 
space. Any possible distortion values are then added to these image coordinates.  

0 0 0 0

0 0 0 0

' ( , , , , , , , , , , ' ) '( ', ')
' ( , , , , , , , , , , ' ) '( ', ')

x f X Y Z X Y Z ω φ κ c x Δx x y
y f X Y Z X Y Z ω φ κ c y Δy x y

= +
= +

 (3.81) 

After adjustment, the correction parameters relate to adjusted object coordinates and 
orientation parameters or, expressed differently, to “error-free” image coordinates. 
Consequently, these correction values are directly applicable to image coordinates 
calculated by applying the collinearity equations from object space to image space. 
However, since the corrections Δx', Δy' depend on the current values of image 
coordinates, in the case where image coordinates, measured in a distorted image, 
must be corrected for previously established distortion parameters, then corrections 
must be applied iteratively. In this process, the currently corrected image positions 
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are the starting point for the subsequent calculation of corrections. The process 
continues until the computed corrections are insignificant. 

 
a) Behaviour for lenses with normal distortion 

 
b) Behaviour for lenses with high levels of distortion 

Fig. 3.67: Iterative correction of distortion. 

The iterative correction of image coordinates is of particular practical importance 
when lenses with high levels of distortion are used. Table 3.3 summarizes the effect 
of iterative correction of image coordinates for typical camera systems. The row 
labelled “Total correction” shows the effect of iterative correction. It is obvious that 
cameras with wide angles of view (short focal lengths) and high distortion parameters 
(see row labelled “corrections due to further iterations”) have distortion errors which 
cannot be ignored without iterative correction (ALPA: –2.5 µm, Nikon D4: 2.4 µm). Fig. 
3.67a shows that 3-4 iterations are necessary for a final correction. Cameras with low-
distortion lenses or small angles of view can be corrected without iteration (JAI: 0.2 
µm). Relatively large values occur for the example micro camera where iterative 
correction is also necessary (NanEye GS: –2.1 µm). 

If a high-distortion wide-angle lens is evaluated, e.g. the Basler camera with a 
4.8mm Pentax lens (see sample images in Fig. 3.68), then correction values have two 
features of note. Firstly, they are high, in this case 238 µm. Secondly, they are 
generated in a slow convergence process (Fig. 3.67b) which may even diverge in the 
corners. 
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Table 3.3: Effects of iterative distortion correction for typical camera systems (mm). 

Camera ALPA 12 FPS  Nikon D4 JAI Basler NanEye GS 

Focal length (mm) 40 24 8 4.8 6 

Sensor format (mm) 44 x 33 36 x 24 6.5 x 4.8 9.0 x 6.7 2.3 x 2.3 

c –41.9600 –35.6657 –8.2364 –4.3100 –6.006917 

x'0 
y'0 

-0.50598 
-0.21847 

–0.0870 
0.4020 

0.2477 
0.0839 

–0.0405 
–0.0011 

-0.02647737 
-0.1640278 

A1 
A2 
A3 

–2.4799E-05 
1.3858E-08 

–2.4341E-12 

–9.0439E-05 
6.3340E-08 
–1.5294E-11 

–1.9016E-03 
3.1632E-05 

0 

–1.4700E-02 
3.0396E-04 
3.4731E-06 

2.1644E-03 
1.2617E-03 
2.8721E-04 

B1 
B2 

–2.4965E-06 
2.8628E-06 

2.5979E-06 
–7.2654E-07 

–2.6175E-05 
–7.3739E-05 

1.1358E-05 
–4.5268E-05 

3.1584E-05 
6.5409E-05 

C1 
C2 

2.6503E-05 
2.3514E-05 

1.0836E-04 
1.0964E-05 

9.8413E-03 
–7.2607E-06 

1.9833E-05 
8.9119E-05 

6.6634E-05 
–6.1250E-05 

x' 
y' 

21.942 
16.451 

18.000 
12.000 

3.200 
2.400 

4.400 
3.300 

1,152 
1,152 

Imaging angle 33.68° 41.89° 24.49° 52.08° 16.39° 

Total correction  –0.1351 –0.0796 0.0045 –0.5674 0.0206 

Corrections due to 
further iterations  

–0.0025 0.0024 –0.0002 –0.2385 –0.0021 

   

Fig. 3.68: Example of a significantly distorted image (left) and its corrected version (right). 

.. Transformation of interior orientation parameters  

Different software systems allow for camera calibration based either on pixel 
coordinates or metric coordinates. If those parameters are used for further processing 
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in another program, they can usually be transformed from one unit to the other as 
required.  

Table 3.4: Transformation of camera parameters from pixel to metric units.  

Parameter metric pixel-based Transformation Unit 

Principal distance c f Δ= ⋅ 'c f s  mm 

Principal point x'0 

y'0 

u0 

v0 

Δ
Δ

= ⋅
= − ⋅

0 0

0 0

' '
' '

x u s
y v s

 
mm 

Radial distortion A1 K1 = 2
1 1 /A K c  1/mm–2 

A2 K2 = 4
2 2 /A K c  1/mm–4 

A3 K3 = 6
3 3 /A K c  1/mm–6 

Decentring distortion B1 P1 =1 1 /B P c  1/mm 

B2 P2 = −2 2 /B P c  1/mm 

Affinity and shear C1 B1 =1 1 /C B f   

C2 B2 = −2 2 /C B f   

Table 3.4 summarizes the transformation equations from pixel to metric units. It is 
assumed that the origin of the pixel coordinate system is located in the image centre 
and that the pixels are quadratic, i.e. Δs' = Δs'x' = Δs'y', (see section 3.3.2.1). For absolute 
metric parameters, the physical pixel size Δs' must be known. There is a 
corresponding reverse transformation from metric to pixel units.  

.. Fisheye projections 

As the angle of view of an imaging system increases beyond about 110°, optical 
performance decreases rapidly. Degradation in image quality is seen in the capability 
to correctly image straight lines in the object as straight lines in the image and in 
reduced illumination towards the extremes of the image format following the cos4 law 
(section 3.1.3.5). As an example a 110° angle of view would be given by a 15 mm focal 
length lens on a full frame, FX format digital SLR sensor (Fig. 3.78). Such lenses are 
available, but extremely expensive.  

A solution is to change the imaging geometry from the central perspective 
projection where incident and exit angles τ and τ' are equal, to one where the incident 
angle τ from a point P in object space is greater than the exit angle τ' in image space 
(Fig. 3.69). Fisheye designs allow the projection of a half hemisphere onto the image 
plane with the optical axis coinciding with the centre of the resultant circular image. 
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If the image format is larger than the resultant image circle, the camera is termed a 
fisheye system. Conversely, if the format is smaller than the circle, such that the 
image diagonal is 180°, a quasi-fisheye system is produced. 
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Fig. 3.69: Central perspective projection (left) and a generic fisheye projection (right)  
(after Schneider 2008). 

Three fisheye projections are in optical usage: stereographic, equidistant and 
orthographic. They are defined by the following equations.  

' tanr c τ= ⋅  : central perspective (3.82) 

' 2 tan / 2r c τ= ⋅  : stereographic (3.83) 

'r c τ= ⋅  : equidistant (3.84) 

' sinr c τ= ⋅  : orthographic (3.85) 

When modelling the distortions in a fisheye lens, conventional radial lens distortion 
corrections (eqn. 3.55) are mathematically unstable beyond the central region of the 
image format where the gradient of the distortion curve describing the departure from 
the central perspective case is low. For sensors that capture a significant area of the 
fisheye image circle, for example a DX sensor with a 10.5 mm fisheye lens or an FX 
sensor with a 16 mm fisheye lens, it is necessary to apply the appropriate fisheye lens 
model before using a radial distortion model such as eqn. (3.55), in order to account 
for any remaining radial departures from the lens’s fisheye projection. Alternatively, 
a pre-correction can be calculated by interpolation using a lens map function which 
may be available from the lens manufacturer (see section 3.3.3.1). 

Fisheye cameras and their applications are presented in sections 3.4.3.4 and 
3.5.6.3. Aspects of fisheye lens calibration are discussed in section 7.3.3.2. 
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Fig. 3.70: Central projection and spherical projections.  

. System components  

Electronic imaging systems use opto-electronic sensors for image acquisition instead 
of photographic emulsions. They directly provide an electronic image that can be 
digitized by suitable electronic components and transferred to a local processor or 
host computer for measurement and analysis. Hence the term electronic imaging 
system summarizes all system components involved in the generation of a digital 
image (Fig. 3.71). 
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Fig. 3.71: Electronic imaging system.  

The electro-magnetic radiation (light) emitted or reflected by the object is imaged by 
a sensor as a function of time (exposure time, integration time) and space (linear or 
area sensing). After signal enhancement and processing an analogue image signal, 
in the form of an electric voltage proportional to the amount of light falling on the 
sensor, is produced. In a second stage, this signal is sampled by means of an analogue 
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to digital converter in order to produce a digital image consisting of a series of discrete 
numerical values for each light sensitive cell or pixel in the image. This digital image 
can then be used for further processing such as discrete point measurement, or edge 
detection. 

As far as photogrammetry is concerned, where geometrically quantifiable images 
are required, the development of digital imaging technology is closely related to the 
technology of CCD image sensors (charge coupled devices). Invented at the beginning 
of the 1970s, they dominated the digital imaging market and photogrammetric 
applications for two decades and provided solutions to many imaging challenges. 
More recently, CMOS opto-electronic imaging sensors have become the dominant 
technology (see section 3.4.1.3). Manufactured with silicon fabrication processes 
shared with CPU and memory chips, they are more affordably mass produced than 
CCDs and dominate mobile phone and consumer imaging devices. 

Although camera products are developing into a product continuum, the 
following definitions of imaging systems are useful to characterise those typically 
used in photogrammetry (status 2023): 
– Mobile phone cameras: 

Miniaturised consumer cameras integrated into mobile phones and delivering 
still frames in standard image formats (JPEG, TIFF etc.) or digital video signals in 
real-time (25 to 30 frames per second, fps) in standard video formats (AVI, MPEG 
etc.). The number of pixels varies between ca. 780 x 580 pixels (corresponding to 
older video standards such as PAL or NTSC), 1280 x 780 pixels (HD), 1980 x 1080 
Pixel (Full HD) up to ca. 4096 x 2160 pixels (4K standard) and 8192 x 6144 (8K 
standard). These systems are often equipped with multiple sensors and lenses in 
the same device to give wide, normal and narrow angle fields of view. 

– Action cameras: 
Physically rugged and often waterproof cameras for the consumer market 
delivering images between ca. 3000 x 2000 (6 Mpixel) and ca. 6000 x 4000 pixels 
(24 Mpixel). Possible frame rates vary between ca. 10 fps and 0.5 fps depending 
on sensor resolution and internal memory design. These range from ruggedized 
fixed lens devices to units able to take interchangeable lenses. Examples include 
products from GoPro, Nikon, Olympus and Canon. 

– High-resolution digital cameras:  
Cameras for professional photographic and technical applications with pixel 
numbers between ca. 4000 x 3000 (12 Mpixel) and ca. 12000 x 8000 pixel (100 
Mpixel). Most products use either imaging sensors in DX format (18 mm x 12 mm) 
or FX full format (36 mm x 24 mm). New developments already achieve 
resolutions of 150 Mpixel up to 250 Mpixel for DSLR cameras. Specialized cameras 
for digital aerial images can now deliver 350 Mpixel with a single sensor.  

– High-speed cameras: 
Digital high-speed cameras provide typical frame rates between 500 and 2000 
fps. The number of pixels ranges from ca. 1000 x 1000 to ca. 2000 x 2000 pixels. 
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The total recording time is limited by internal or external storage media. For 
special cases very high frame rates of more than 1 million fps can be reached with 
highly reduced image sizes. 

– Scanning cameras: 
Imaging systems which increase the pixel density or image format by sequential 
scanning using a movable imaging sensor. Different principles (see section 3.5.5) 
enable pixel numbers to be increased from ca. 3000 x 2300 pixels up to ca. 
20000 x 20000 pixels. These are useful only for stationary imaging situations. 
Scanning panorama cameras with CCD line sensors provide image sizes up to ca. 
50000 x 10000 pixels. 

.. Opto-electronic imaging sensors 

... Principle of CCD sensor  
Solid-state imaging sensors are exclusively used in digital photogrammetric systems. 
Solid state imaging sensors consist of a large number of light-sensitive detector 
elements that are arranged as lines or arrays on semi-conductor modules (linear or 
area sensor). Each detector element (sensor element) generates an electric charge that 
is proportional to the amount of incident illumination falling on it. The sensor is 
designed such that the charge at each individual element can be read out, processed 
and digitized. 

Fig. 3.72 illustrates the principle of a single sensor element. Incident light, in the 
form of photons, is absorbed in a semi-conducting layer where it generates pairs of 
electron holes (charged particles). The ability of a sensor element to create a number 
nE of charged particles from a number nP of incident photons is expressed by the 
external quantum efficiency η. The quantum efficiency depends on the sensor 
material and wavelength of the incident light. 

E

P

n
η

n
=   (3.86) 

The negatively charged particles are attracted by a positive electrode. Charges are 
accumulated in proportion to the amount of incident light until saturation or overflow 
of charge is achieved. The positive electric field of the electrode is generated by a 
potential well that collects the negative charge. In CCD sensors the detector elements 
are formed from MOS capacitors (metal-oxide semiconductor).  

Sensor elements can be arranged in lines or two-dimensional arrays. Fig. 3.73 
shows the simplified layout of a CCD line sensor. Each active sensor element is 
directly connected to a serial read-out register that is used to output the generated 
charge. In contrast, bilinear CCD lines can be resampling into what is effectively a 
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single line to provide increased resolution if the sensor elements are coupled in an 
alternating manner with two read-out registers. 

incidenting light

generated charged particles

absorbing
photons

CCD sensor element

 

serial read-out register

active sensor 
elements

serial read-out register A

serial read-out register B

simple CCD line sensor

bilinear CCD line sensor

active sensor 
elements

 
Fig. 3.72: Conversion of photons into 
charged particles. 

Fig. 3.73: Principle of simple and bilinear CCD line 
sensors. 

The core problem for such sensor arrangements is the transportation of the charge 
stored in the sensor element to an output. Fig. 3.74 illustrates a typical solution for a 
linear arrangement of sensor elements. Here, the individual sensor elements have 
three electrodes, each connected to a different voltage phase. (In practice, most 
sensors use a 4-phase technique.) The cumulated charge at electrode 1 cannot 
discharge at time t1, since the voltage is high on electrode 1 and low on electrode 2. At 
time t2 the voltages on electrodes 1 and 2 are equal, forcing a portion of the charge 
under electrode 1 to flow to electrode 2. At time t3 the voltages of electrode 1 and 3 
have a low value, i.e. the complete charge is shifted under electrode 2. The result of 
the sequence is that the charge has shifted one electrode width to the right. 

This process is continued until the charge reaches the read-out register at the end 
of a line. There the charges are read out and transformed into electrical voltage 
signals. The process is usually known as the CCD principle (charge coupled device), 
or bucket-brigade principle. In addition to the CCD principle, the CMOS principle for 
solid-state area sensors has also become well established (see section 3.4.1.3). 

CCD line sensors can consist of more than 12 000 sensor elements. Given a sensor 
spacing of ca. 4 µm to 20 µm, the length of line sensors can be more than 100 mm. 
Line sensors are used in a wide variety of devices such as line cameras, fax machines, 
photo scanners or digital copiers. 
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Fig. 3.74: Principle of CCD charge transportation (red-rectangles = bucket-brigade device). 

... CCD area sensors 
Area sensors, which have their sensor elements arranged in a two-dimensional 
matrix, are almost exclusively used for photogrammetric image acquisition. In 
comparison with line sensors, the construction of matrix sensors is more complicated 
since the read-out process must be accomplished in two dimensions. Examples are 
shown in Fig. 3.75. 

  
a) Frame-transfer sensor with imaging zone  
and storage zone (Teledyne Imaging) 

b) A full-frame transfer sensor with 4096 x 4096 
elements on a single silicon wafer 

Fig. 3.75: CCD matrix sensors.  

There are three different arrangements of CCD matrix sensors that differ in layout and 
read-out process: frame transfer, full-frame transfer and interline transfer. 

Frame-transfer sensors (FT) consist of a light-sensitive, image-recording zone 
and an equally sized, opaque storage zone (Fig. 3.75a). Each contains a parallel array 
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of linear CCD sensors. After exposure, charges are moved along the arrays from the 
imaging zone into the storage zone. From there they are rapidly shifted line by line 
into the read-out register (Fig. 3.76a). Charge transfer from the imaging to the storage 
zone can be carried out very rapidly, allowing high frame rates to be achieved since 
the imaging zone can be exposed again whilst the previous image is written out of the 
camera from the storage zone. Because imaging and storage zones are completely 
separate areas, the elements in the imaging zone can be manufactured with almost 
no gaps between them. 

A simpler variation is given by the full-frame transfer sensor (FFT, Fig. 3.75b). It 
consists only of an imaging zone from where charges are directly transferred into the 
read-out register (Fig. 3.76b). During read-out the sensor may not be exposed. In 
contrast to FT sensors, FFT sensors tend to show greater linear smearing effects since 
longer transfer times are required. The simpler layout enables the construction of very 
large sensor areas6 with very small sensor elements (6–9 µm size). Such layouts are 
used for high-resolution digital cameras with typically more than 1000 x 1000 sensor 
elements (manufacturers: e.g. Thomson, Kodak, Fairchild, and Dalsa). Note that the 
number of FFT sensor elements is often based on integer powers of 2 (512 x 512, 
1024 x 1024, 4096 x 4096).  

a) Frame Transfer

serial output register

storage zone

sensor zone

parallel 
transfer direction

b) Full-Frame Transfer

serial output register

sensor zone

parallel 
transfer direction

serial output register

sensor zone

parallel 
transfer direction

storage zone

c) Interline Transfer

Fig. 3.76: Charge transfer for CCD sensors. 

In contrast, interline-transfer sensors (IL) have a completely different layout. Here 
linear CCD arrays, which are exposed to light, alternate with linear CCD arrays which 
are opaque to light. Following exposure, charges are first shifted sideways into the 
opaque arrays which act as transfer columns. Then they are shifted along the columns 
to the read-out registers (Fig. 3.76c). The light sensitive area of the detector covers 
only about 25% of the total sensor area, compared with 90 to 100% for FT sensors, i.e. 

 
6 The production of very large CCD sensors is limited mainly by economic restrictions (production 
numbers, quality) rather than technological restrictions. 
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IL sensors are less light-sensitive. IL sensors with standard pixel numbers of about 
780 x 580 pixels are mainly used for CCD video and TV cameras (especially colour 
cameras). High-resolution IL sensors have up to 1900 x 1000 pixels. Since the whole 
area of a CCD array sensor is exposed at once, the image acquisition can be regarded 
as exposure by a global shutter (section 3.4.2.2). 

... CMOS matrix sensors 
CMOS technology (complementary metal oxide semi-conductor) is a widely used 
technique for the design of computer processors and memory chips. It is increasingly 
used in the manufacture of opto-electronic imaging sensors, since it has significant 
advantages over CCD technology: 
– only 1/10 to 1/3 power consumption; 
– lower manufacturing costs; 
– directly addressable sensor elements; 
– acquisition of arbitrary image windows; 
– frame rates of more than 2000 frames per second (see section 3.5.3); 
– can be provided with on-chip processing, e.g. for sensor control or image 

processing; 
– high dynamic range and low image noise (see section 3.4.1.9). 
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Fig. 3.77: Architecture of a simple 2D CMOS sensor (after Hauschild 1999).  

CMOS imaging sensors are currently available with up to 150 million sensor elements. 
In contrast to CCD sensor elements comprising linked Metal Oxide Semiconductor 
(MOS) capacitors, CMOS detectors are based on photo diodes or transistor elements 
which are widely used in the construction of both integrated circuit chips and 
analogue detectors. They are therefore less costly to produce and can benefit from 
advances in fabrication of the diodes and transistors. 
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In a CMOS sensor, the charge generated by the incident light is directly processed 
by an integrated amplifier and digitizer unit attached to the pixel element. Individual 
sensor elements can be directly addressed for both readout and processing. This then 
avoids the need for sequential internal charge transfer which ensures that the sensor 
is less sensitive to blooming and transfer loss. Fig. 3.77 illustrates the basic 
architecture of a CMOS matrix sensor. Due to the presence of additional electronic 
components, the CMOS sensor's ratio of light sensitive surfaces to total surface area 
(fill factor)  is smaller than for FFT CCD sensors. CMOS sensors are therefore generally 
equipped with microlenses (section 3.4.1.5). Sensor structure is layered with the latest 
generation of sensors having light sensitive elements in the lowest fabrication layer. 
The sensor is then flipped over in the camera so that light from the lens directly 
illuminates the back side of the sensor. Known as back illumination, this enables 
higher fill factors and efficiency because the electronic circuits do not then interfere 
the incoming light. The layer structure can also be used to provide multiple sensing 
layers, each responsive to a selected spectral band (see section 3.4.1.6). 

CMOS sensor differences include, among others, the exposure and readout 
processes. Here it is usual to distinguish between global shutter and rolling shutter 
principles which function in a similar way to inter-lens and focal-plane shutters. 
Different shutter details are given in section 3.4.2.2. 

... Sensor formats 
According to eqn. (2.2) the physical format of an imaging sensor is derived from the 
number of pixels and the spacing between them. From a photogrammetric or 
photographic point of view, larger sensor formats are preferred since they generate 
less noise and are more sensitive to light. In addition, larger formats are useful for 
generating larger image scales (see section 3.3.1.1). 

Table 3.5: Typical image formats of video cameras. 

Sensor size 
(typical) 
[mm] 

Diagonal 
(tube) 
[inch] 

Diagonal 
sensor 

[mm] 

Number of 
pixels 

(typical) 

Size of sensor 
element [µm] 

Example 

3.7 x 2.7 1/4" 4.6 656 x 490 5.6 x 5.6 Baumer VLG02 

4.9 x 3.6 1/3" 6.1 1296 x 966 3.75 x 3.75 Basler ace A1300 

6.1 x 4.9 1/2" 7.8 1280 x 1024 4.8 x 4.8 IDS UI3140 

8.5 x 7.1 2/3" 11.1 2452 x 2056 3.45 x 3.45 AVT Manta G-505 

9 x 6.7 2/3" 11.2 1392 x 1040 6.45 x 6.45 Ximea ICX285 

12.5 x 9.97 1" 16 3376 x 2704 3.69 x 3.69 Grasshopper3 9.1 

18.1 x 13.6 4/3" 22.7 3296 x 2472 5.5 x 5.5 AVT Prosilica GT 3300 
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Traditionally, sensor formats for video cameras are given in inches. With respect to 
old vidicon (tube) cameras, the sensor formats vary between ¼" and 1". For the image 
formats in Table 3.5, pixel sizes range from around 4 µm (¼" cameras) to around 16 µm 
(1" cameras) and with sensors having rectangular or square pixels.  

For digital consumer cameras the following are common sensor formats (Fig. 
3.78): 
– Full format (FX):  

Sensor formats which are close to the size of analogue 35mm film 
(36 mm x 24 mm) and with aspect ratio 4:3. In full format, lenses with standard 
focal lengths generate imaging angles that are similar to 35mm cameras, e.g. 
f = 50 mm for a normal lens (see section 3.4.3.2). 

– APS and DX formats:  
APS formats are defined with respect to earlier APS film formats which were 
21 mm x 14 mm up to 24 mm x 16 mm for APS-C (also known as DX) and up to 
28.7 mm x 19.1 mm for APS-H, with aspect ratio 3:2. Here crop factors are of the 
order of 1.5 to 1.6x when comparing the same lens used on an FX format sensor. 

– Four Thirds: 
The Four-Thirds format refers to sensors with a diagonal of around 4/3" and 
dimensions of around 18 mm x 13 mm with aspect ratio 4:3, i.e. they are 
equivalent to half-frame sensors. The newer Micro-Four-Thirds standard has the 
same format but a smaller flange focal distance (see section 3.4.2.4), hence these 
kind of sensors are especially suited for high-resolution compact cameras. 

– HD and other formats: 
In addition to the standard formats above, many new digital cameras offer 
variable image formats such as a 16:9 aspect ratio. With a sensor size of, for 
example, 18.7 mm x 10.5 mm, these correspond to the HD and Full-HD formats 
offered by video cameras. In addition, various special forms are available, e.g. 
with square sensor formats. 

36 mm

24 mm

full format

APS-C

16:9

1/4"

 

Fig. 3.78: Image formats of array sensors (selection). 

Technical developments in recent years indicate that future CCD and CMOS array 
sensors will have an increasing number of pixels and larger formats and will deliver 
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improved signal to noise ratios as mass-market technology delivers consumer-driven 
improvements in image quality.  

... Microlenses 
Current sensor designs typically employ microlens arrays in order to increase the fill 
factor of each pixel. A microlens array consists of a series of lens elements, each of 
which is designed to collect the light falling on a region approximating to the area of 
a single pixel and to direct that light to the smaller light-sensitive region of the actual 
sensor element (Fig. 3.79, Fig. 3.80). Whilst microlenses significantly enhance pixel 
fill factor, they typically have the limitation of only being able to receive light over a 
±30-degree range of angles. This performance can limit the use of such arrays for 
extreme wide angle recording unless special optics are used. Modern lens designs for 
DSLR cameras reflect this requirement utilising optical configurations that produce 
less divergent emergent rays than earlier designs which were developed to optimize 
performance with legacy photographic film technologies. 

microlens

spacer

colour filter

support layer

mask

photo diode

metal

 

Fig. 3.79: Example of a microlens structure. 

 

Fig. 3.80: Microlens array (raster electron microscope, 8000x magnification). 

... Colour cameras 
In order to create true colour images, incident light must be separated into three 
spectral bands, typically red, green and blue.  



 3.4 System components   

Table 3.6: Features of colour separating methods. 

 3-chip  
camera 

RGB 
filter 

Colour (mosaic) 
mask 

True colour 
sensor 

Number of sensors 3 1 1 1 
Number of images 1 3 1 1 
Number of video signals 3 1 1 1 
Dynamic scenes yes no yes yes 
Resolution full full half full 
Colour convergency adjustment yes interpolation yes 

 
Separation can be performed by four common methods (summarized in Table 3.6): 
– Parallel or 3-chip method: 

A prism system is used to project incident light simultaneously onto three CCD 
sensors of the same design. Each sensor is located behind a different colour filter 
so that each registers the intensity of only one colour channel (Fig. 3.81). Full 
sensor resolution is retained but exact alignment is required in order to avoid 
colour shifts. The camera delivers three separated analogue image signals that 
must be temporally synchronized and digitized in parallel. The principle is used 
for professional colour cameras, most of which are used either in TV studios or 
by mobile film crews. 

lens

anti-aliasing
low-pass filter

colour filter

 

Fig. 3.81: Schematic optical diagram of a 3-CCD or 3-chip camera. 

– Time-multiplex or RGB filter method: 
Colour separation is performed by the sequential recording of one sensor 
whereby for each image a primary colour filter is introduced into the path of light. 
Full sensor resolution is preserved, but dynamic scenes cannot be imaged. The 
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method can be applied to both matrix sensor cameras and scanning cameras. The 
camera delivers a single image signal which must be filtered temporally in order 
to generate a digital RGB combination from the single colour bands. 

– Space-multiplex or colour-mask methods: 
A filter mask is mounted in front of the CCD matrix so that individual sensor 
elements react to only one colour. Strip or mosaic masks are used with the Bayer 
pattern mosaic mask being the most common. In comparison with the previous 
methods, geometric resolution will decrease since the output of three or more 
(typically four) sensor elements are combined to form each colour pixel (Fig. 
3.82). The principle enables the recording of moving objects and its cost 
effectiveness means that it used for practically all consumer digital camera 
systems. 
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Fig. 3.82: Strip and mosaic masks. 

When using a Bayer pattern, RGB colour values are calculated by interpolating 
neighbouring grey values. Because there are twice as many green as red or blue 
pixels, different calculation methods are used as follows: 
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Fig. 3.83: Different combinations used in Bayer colour interpolation. 

Calculation of red and blue components for a green pixel (Fig. 3.83a und b): 
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Calculation of the blue component for a red pixel and the red component for a 
blue pixel (Fig. 3.83c und d): 
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+ + +
=  (3.88) 

Calculation of the green component for red and blue pixels (Fig. 3.83e and f): 

1 3 1 3 2 4

2 4 1 3 2 4

1 2 3 4 1 3 2 4

1 3 1 3 2 4

2 4 1 3 2 4

1 2 3 4 1 3 2 4
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 + + + − = −
 + − < −
= + − > −
 + + + − = −

 (3.89) 

There are additional interpolation functions which differ in their operation with 
regard to edge sharpness, colour fringes, noise correction and speed of operation. 

– True colour sensor: 
Foveon manufactures a CMOS-based, high-resolution, single-chip, true colour 
sensor consisting of three layers that are each sensitive to one primary colour 
(Fig. 3.84). It utilizes the property of silicon that light of different wavelengths 
penetrates to different depths. Hence, this sensor provides the full resolution of 
a usual CMOS sensor with true-colour registration capability. 
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Fig. 3.84: Simplified structure of the Foveon X3 RGB sensor. 
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... Sensor architecture 
A typical imaging sensor has a structure comprising separate layers which are 
sandwiched together (Fig. 3.85). The lowest level is a layer of light-sensitive elements 
(photodiodes). The Bayer colour mask is attached on top of this, followed by the 
microlens array. Next comes a low-pass filter to supress the aliasing effect (section 
3.1.5.1). The top layer consists of a filter for blocking near infrared radiation (section 
3.4.1.9).  

sensor elements

Bayer mask

microlenses

low-pass filter

NIR blocking filter

 

Fig. 3.85: Layered construction of a typical imaging sensor. 

In principle, each layer is an optical component that affects the imaging rays and 
hence image generation. It is therefore possible that this causes local geometric 
imaging errors which cannot be modelled by standard methods of interior 
orientation. 

... Geometric properties  
.... Resolving power 
The theoretical resolving power of monochrome imaging sensors is limited by two 
factors: 
– detector spacing Δs' (distance between sensor elements) and scanning theorem 

(Nyquist frequency fN);  
– detector size Δd ' (aperture size) and MTF (limiting frequency f0).  

According to section 3.1.6.2, there are different theoretical resolution limits for FT, 
FFT and IL sensors due to their different arrangements of sensor elements. 
Furthermore, for all types, image quality can differ in both x and y directions where 
rectangular, rather than square, light sensitive regions have been used (Table 3.7).  

For FFT sensors, or progressive-scan sensors (no interlaced mode), with square 
detector elements, resolving power can be expected to be equal in both directions. 
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IL sensors have approximately the same detector spacing as FT sensors. However, 
each pixel is split into a light sensitive detector and a shift register. Hence, the 
resulting theoretical resolving power is four times higher than the Nyquist frequency, 
and about two times higher than for FT and FFT sensors. 

In practice, theoretical resolving power cannot be achieved unless the sampling 
interval is small enough to push the Nyquist frequency up beyond the effective 
resolution limit (cut-off) for that MTF. Normally the best that can be achieved is a full-
fill system, for example the Kodak FFT in Table 3.7, where the Nyquist frequency is 
about half the theoretical resolution. In practical systems, frequencies higher than 
the Nyquist frequency are filtered out in order to avoid aliasing and micro lenses are 
used in order to provide pixel fill factors close to unity. Micro scanning systems 
(section 3.5.5.1) are able to achieve closer to theoretical resolving power since they 
subsample by moving the detector in fractions of a pixel between images.  

New sensors with very small detector spacing (e.g. the Kodak KAC-05020 used in 
mobile phone cameras, see last column in Table 3.7) have a theoretically very high 
resolving power. However, these sensors also have a lower sensitivity to light and 
higher image noise. In order to match the pixel dimensions with an appropriate 
optical resolution, very high-quality lenses are required (see section 3.1.5.1 for 
comparison). The advantage of the small detector size therefore lies principally in the 
small dimensions of the imaging sensor. 

Table 3.7: Resolving power of different CCD sensors. 

  FT Valvo NXA FFT Kodak IL Sony CMOS Kodak 

Detector spacing in x Δs'x [µm] 10.0 9.0 11.0 1.4 

Detector spacing in y Δs'y [µm] 7.8 9.0 11.0 1.4 

Detector size in x Δd 'x [µm] 10.0 9.0 5.5 1.4 

Detector size in y Δd 'y [µm] 15.6 9.0 5.5 1.4 

Nyquist frequency in x fNx [lp/mm] 50 55 45 357 

Nyquist- frequency in y fNy [lp/mm] 64 55 45 357 

Theoretical resolution in x f0x [lp/mm] 100 111 180 714 

Theoretical resolution in y f0y [lp/mm] 64 111 180 714 

 
In comparison to photographic emulsions, recent opto-electronic sensors have equal 
or even better resolutions but, at the same time, usually much smaller image formats. 
A comparable resolution is achieved with sensor element sizes of about 7 µm or less. 

In the digital photographic industry, alternative image quality measures are 
currently in use. The value MTF50 defines the spatial frequency in lp/mm where the 
MTF is equal to 50%. With line widths per picture height (LW/PH) digital cameras are 
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classified as a function of line width instead of line pairs. LW/PH is equal to 2 x lp/mm 
x (picture height in mm). The term cycles or line pairs per pixel (c/p or lp/p) is used to 
give an indicator of the performance of a pixel. 

.... Geometric accuracy 
The geometric accuracy of matrix sensors is mainly influenced by the precision of the 
position of sensor elements. Due to the lithographic process used to manufacture 
semi-conductors, CCD matrix sensors have regular detector positions of better than 
0.1–0.2 µm, corresponding to 1/60 to 1/100 of the size of a sensor element. This does 
not mean that the resulting image can be evaluated to this accuracy. Several 
electronic processing steps are performed between image acquisition and digital 
storing that may degrade image geometry and contrast. 

An additional effect is given by the possible lack of flatness of the sensor surface. 
For sensor areas of 1500 x 1000 pixels departures of up to 10 µm from a plane surface 
have been demonstrated. Depending on the viewing angle, a perpendicular 
displacement of a sensor element causes a corresponding lateral shift in the image 
(Fig. 3.86). If there is a non-systematic lack of flatness in sensor surface, the usual 
approaches to distortion correction fail (additional parameters). A suitable correction 
model based on finite elements has been presented in section 3.3.4.4. Fig. 3.87 shows 
deformations of an imaging sensors computed by this approach.  
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Fig. 3.86: Lateral displacement for an uneven sensor surface. 

According to (3.90), image displacement is greater given large incident ray angles to 
the sensor from shorter focal lengths z' (wide angle lenses), increasing distance r' 
from the optical axis and greater lack of flatness Δh'. 
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Fig. 3.87: Sensor deformations (red) after finite element calibration (Kodak DCS460).  

.... Warm-up effects 
Imaging sensors and on-board electronics require a warm-up period of up to 2 hours. 
During warm up, image coordinate displacements of several tenths of a pixel have 
been shown to occur. Fig. 3.88 shows an example of drift measured under controlled 
laboratory conditions. The figure shows coordinate differences extracted from five 
images of a warm-up time series. In the x direction, small shifts only can be observed 
which, after 10 minutes, are below the measuring uncertainty of around ±0.02 pixel. 
In contrast, in the y direction a drift of about 0.15 pixel can be observed within the 
first 20 minutes. Part of this effect is caused by temperature increases on mechanical 
components, but electronic devices inside the camera also contribute as they warm 
up. High performance photogrammetric systems therefore require both calibration 
and image mage acquisition once a steady thermal and mechanical state has been 
reached. 

 

Fig. 3.88: Drift of measured sensor coordinates during warm-up.  

... Radiometric properties 
Light falling onto an imaging sensor is either reflected on the sensor surface, 
absorbed within the semi-conducting layer, or transmitted if high-energy photons are 
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present. Absorption happens if the wave length of light is shorter than a threshold 
wave length λg which is a property of the radiated material and defined according to:  

0
g

g

h c
λ

E
⋅

=    (3.91) 

where c0: velocity of propagation = 3 · 108 m/s 
 h: Planck's constant = 6.62·10–34 Js 
 Eg: energy between conduction and valence band 
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Fig. 3.89: Spectral sensitivity of different sensors.  

Silicon used in the manufacture of imaging sensors has an Eg value of 1.12 eV, thus a 
threshold wavelength of λg = 1097nm which is in the near infrared. In comparison 
with film and the human eye, imaging sensors show a significantly wider spectral 
sensitivity (Fig. 3.89). Optionally, infrared absorbing filters can be attached to the 
sensor in order to restrict incident radiation to visible wavelengths. The spectral 
sensitivity of imaging sensors with Bayer colour masks (see section 3.4.1.6) varies 
between the individual colour channels. Typically, the blue channel has the lowest 
sensitivity (Fig. 3.90). 
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Fig. 3.90: Spectral sensitivity of a colour CCD sensor (Sony ICX 098BQ). 
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Independently of the image-forming incident light, thermal effects in the semi-
conducting layer can generate small charges which appear as background noise in 
the sensor signal. This background noise is known as dark current since it occurs 
independently of any image illumination and can be observed in total darkness.  

The intensity signal g, created by the imaging sensor, depends on the dark 
current signal g0, an electronic amplification factor K, the quantum efficiency η and 
the number of collected photons nP (see eqn. 3.86). 

0 Pg g K η n= + ⋅ ⋅   (3.92) 

The noise (variance) of a digitized grey value is given by: 
2 2 2 2

0( )g d qσ K σ σ K g g= + + −  (3.93) 

where 
2
dσ : system noise of camera electronics 
2
qσ : quantization noise  

The noise depends on the intensity, i.e. dark image areas show higher noise than 
bright areas. By cooling the sensor, the noise level can be reduced in order to improve 
the radiometric dynamic range. Cooling a sensor by 5–10° C readily reduces noise by 
a factor 2. Cooled sensors are mainly used in low light applications with long 
integration times. e.g. imaging sensors for astronomy. 

The radiometric dynamic range is defined by the signal-to-noise ratio (SNR):  

0 020log [dB]
g g

g g g g
SNR

σ σ
− −

= =   (3.94) 

For matrix sensors typical SNR lies somewhere between 1000:1 (approx. 60 dB) and 
5000:1 (approx. 74 dB). If an additional noise for the subsequent A/D conversion is 
assumed, the sensor signal should be digitized with at least 10–12 bits per pixel. In 
low-light conditions or where exposure times are very short (e.g. high frequency 
cameras, section 3.5.3), the SNR has a significant role. For this purpose scientific 
CMOS sensors (sCMOS) which have a very low SNR are available. In static situations 
the dynamic range can be increased by multiple exposures with different apertures 
and exposure settings, as well as analytical combination of individual images (High 
Dynamic Range Imaging, HDR photography).  

For very bright areas in the scene (hot spots) the CCD sensor may be subject to 
saturation or overflow effects where the imaged signal flows into adjacent pixels. 
Such effects are caused by movement of charged particles into neighbouring sensor 
elements (blooming, see Fig. 3.91a,b), and by continuous charge integration during 
the read-out process (smear, see Fig. 3.91c,d). In photogrammetric applications these 
effects can be observed for brightly illuminated retro-reflective targets resulting in an 
incorrect determination of the target centre. Blooming and smear can also occur 
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within images of natural scenes where large variations in lighting and contrast are 
present. This manifestation of blooming and smear does not occur in CMOS sensors. 
However, over-exposure can lead to pixel blooming (parasitic light sensitivity, 
shutter efficiency) or to bright pixels appearing as dark (black sun effect). 

 

a) Normal exposure (no blooming) 

 

b) Blooming due to flash illumination 

 

c) Blooming through over-exposure 

 

d) Continuous illumination  

Fig. 3.91: Blooming effect and smear (PCO). 

.. Camera technology 

... Camera types 
Three generic camera designs can be identified among the wide variety of camera 
systems that are available to the photographer: 
– Cameras without viewfinder: 

Numerous industrial or surveillance cameras (examples in Fig. 3.112) consist only 
of a sensor unit with electronics and a lens, hence no integrated optical or digital 
viewfinder. However, live images can be transferred via a digital interface to an 
external processor or computer which can be used to display the live image. The 
low cost and availability of low-cost network interfaces, such as Gigabit Ethernet, 
expand the capabilities of these systems to include rapid processes such as on-
line lens focusing, target image detection and feature processing. These cameras 
tend to be very small for their imaging capability and can provide an excellent 
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solution where space is restricted or a multitude of cameras are needed to 
simultaneously observe a scene. 

– Viewfinder or compact cameras: 
Historically a viewfinder camera (Fig. 3.92 left, example in Fig. 3.114a) uses a 
viewing lens that is separated from the actual image taking lens. Such camera 
designs are generally very light in weight as the optical systems and image 
formats are compact. However, direct observation of the image is not possible for 
focusing, depth of field control or lens interchange. More seriously for close-
range work, the difference in content between the viewfinder image and the 
recorded image give rise to parallax errors. An overlay in the viewfinder can 
indicate the area imaged by the camera, but it is not possible to fully correct the 
difference in perspective. The viewfinder displays an upright image as would be 
seen by the eye.  

Digital camera technology has replaced the optical viewfinder with a live 
display of the camera image on an LCD screen integrated into the camera. The 
screen may be located on the back of the camera or on hinge mechanism to allow 
comfortable viewing for high and low vantage points. Many consumer compact 
digital cameras and mobile phone cameras are of this type (see Fig. 3.114 and Fig. 
3.119) and are capable of 3D scene reconstruction using public domain apps and 
open source software.  

– Single-lens reflex camera:  
In a single-lens reflex (SLR) camera, viewing is done directly through the camera 
lens by means of a plane mirror which deflects the path of rays into a viewfinder 
(Fig. 3.92 right). Before exposure, the mirror is flipped out of the optical path. 
Cameras employing this principle with a digital sensor are termed Digital SLRs or 
DSLRs (see Fig. 3.115 to Fig. 3.118). 

camera with
separated viewfinder     

single-lens reflex camera
with pentagonal prism  

Fig. 3.92: Single lens reflex cameras (after Marchesi 1985).  
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Fig. 3.115 to Fig. 3.118 show examples of digital single-lens reflex cameras. Here 
it is also normally possible to view the live camera image on the LCD display. In 
this case, the mirror must be flipped up for permanent exposure of the sensor. 
This mode can cause significant warm-up of the camera.  

Most modern DSLR cameras maintain the mirror and ground glass viewing 
system, but support direct live viewing on an LCD screen at the back of the camera 
in a similar manner to the consumer compact camera. Often termed “live view”, 
this method requires the mirror to be in the up position so that light can reach the 
CCD or more commonly CMOS sensor. Maximum framerates for such systems are 
governed by the mechanical requirements of the mirror and shutter system to 
deliver between 3 to 10 frames per second (fps). 

– Mirrorless cameras: 
Mirrorless cameras (example in Fig. 3.114b) do not have an optical viewfinder but 
the image of the sensor is directly transferred to an integrated display that can be 
observed either through an ocular or by a small monitor. Mirrorless cameras are 
equipped with interchangeable lens systems which are also available with fixed 
focal length. They also have short sensor to lens-flange distances enabling small 
high-quality wide-angle lens designs to be used. As battery power needed to 
illuminate their real-time electronic viewfinders improves, this type of camera is 
being marketed to replace DSLR systems by the major camera manufactures. 
High frame rates (30 to 60fps being possible), portability and high quality 
construction make such designs well-suited to photogrammetric purposes 
provided features such as image stabilisation (see section 3.4.2.3) and image 
plane focussing can be switched off as these can compromise the physical 
stability between sensor and lens required for accurate and reliable 
photogrammetric calibration. 

A camera design, known as a bridge camera, removes the interchangeability 
of the lens system and replaces it with a large-ratio zoom lens that can provide 
wide angle and very narrow angle views suitable for all types of photography 
from landscapes to recording distant wildlife.   

– Studio camera: 
Studio cameras (Fig. 3.93) allow for the individual translation and rotation of lens 
and image planes. By tilting the lens, special focus settings can be enabled, e.g. 
Scheimpflug condition (section 3.1.2.4) which maximizes depth of field in a 
particular plane. When the lens is shifted the perspective imaging properties are 
changed, e.g. to avoid convergent lines for vertical architectural pictures. Studio 
cameras represent the ultimate in photographic quality by virtue of their large 
image sizes (5"x7" and 10"x8" being common). Due to their bulky nature and 
relatively cumbersome deployment they are typically used in professional studio 
applications or for landscape and architectural work. 
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lens
bellows

focusing screen or
sensor plane

bench    

Fig. 3.93: Studio camera (Rollei).  

... Shutter 
.... Mechanical shutters 
The shutter is used to open the optical path for the duration of time necessary for 
correct exposure. Mechanical shutters are also used in digital cameras in order to 
control the readout process with an electronic shutter (see below). For conventional 
camera systems two basic types are used, the focal-plane shutter and the inter-lens 
or leaf shutter. 

 

Fig. 3.94: Principle of focal plane shutter.  

The majority of 35mm single lens reflex cameras use a mechanical focal-plane shutter 
that is mounted directly in front of the image plane and, during exposure, moves a 
small slit across it (Fig. 3.94). Variation in the size of the slit allows a variety of short 
duration shutter settings. Focal plane shutters are easy to design and provide shutter 
times of less than 1/8000 s. If the camera moves parallel to the shutter movement, e.g. 
photos from a moving platform, imaging positions are displaced, i.e. at the different 
slit positions the image has a different exterior orientation (see example in Fig. 3.97). 

Inter-lens shutters are typically mounted between the lens elements and close to 
the aperture stop. Because of this, each lens must have its own shutter. Mechanically 
sprung blades are used to open the shutter radially (Fig. 3.95). In the figure, the circles 
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represent the diameter of the shutter as it opens and closes and the corresponding 
tone in the image shows the level of light reaching the image plane. In practice the 
opening and closing of the shutter can be regarded as instantaneous, which means 
that the complete image is exposed simultaneously with the same projection even if 
the camera platform moves. Inter-lens shutters are mechanically more complex than 
focal-plane shutters since the individual elements must be sprung open and then 
closed. Consequently, shortest shutter times are restricted to about 1/1000 s. In 
photogrammetry they are usually encountered in low-cost viewfinder cameras and in 
professional medium and large format cameras.  

 

Fig. 3.95: Principle of the inter-lens shutter. 

.... Electronic shutters 
The process of integration and readout in digital imaging sensors is described as an 
electronic shutter. Depending on the camera and sensor type (CCD, CMOS), it is 
combined with a mechanical shutter in order to control the incoming light and protect 
active sensor elements against additional exposure.  

Using a reset command, the exposed sensor elements are discharged and the 
exposure process can be restarted. The time required for exposure is called the 
integration time. After integration, the sensor elements are read out. For CCD and 
CMOS sensors, the reset is implemented using different timings.  

Several technologies are in use today: 
– Interline odd/even line:  

All even lines in the image are captured followed by all odd lines. The two sets of 
lines are then presented as a pair of half images to form a full frame 
consecutively. The initial purpose of this standard was to provide a high frame 
rate (60 Hz) in early TV transmission with limited given bandwidth. 

– Global Shutter:  
All sensor elements are discharged simultaneously in a global reset process and 
the entire sensor is then exposed for the next image (all pixels simultaneously 
exposed). After the integration period, the charges are shifted to a covered sensor 
area so that there is no further exposure of the pixels during the readout process. 
The chosen exposure time timage equals the integration time tint. Fig. 3.96 (left) 
shows the principle of the exposure and readout scheme. The ratio between 
integration time tint and readout time tread is variable. Standard CMOS sensors do 
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not have a light-protected storage zone, hence a true global shutter can only be 
implemented by additional storage cells as, for instance, employed in high-speed 
cameras (section 3.5.3). The global shutter corresponds to a mechanical inter-lens 
shutter and is preferred for dynamic applications.  

An approximation is possible whereby integration starts for all pixels at the 
same time and the data is read out line by line so that the first lines receive less 
integration time than the later lines. This is often used in progressive scan 
cameras equipped with a trigger output so that an electronic flash can be used to 
freeze motion. 

– Rolling Shutter:  
Lower cost CMOS sensor use the rolling shutter or progressive scan principle (Fig. 
3.96 right). Here lines are progressively read out and exposed line by line as an 
electronic shutter is moved across the array with a time offset which relates to the 
readout time tline. This process is analogous to the higher speed focal plane SLR 
shutters which sweep two blinds with a variable gap across the sensor. Each pixel 
in the array receives the same exposure duration, but the scan over the hole 
image is temporally variant in the direction of the progressive scan. The total 
exposure time timage of an image is therefore longer than the chosen exposure time. 

As with mechanical focal plane shutters, a relative movement between 
rolling shutter camera and object leads to image distortion (Fig. 3.97 right). In 
addition, each image line has an individual exterior orientation if the camera 
platform is moving. This effect can be modelled mathematically for systematic 
camera motion and can be compensated within an extended bundle adjustment.  

tlinetimage
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Fig. 3.96: Integration and readout for global shutter (left) and rolling shutter (right). 

DSLR cameras with CMOS sensors are often combined with a mechanical shutter. 
This is faster than the rolling shutter and can therefore reduce image distortion 
caused by the rolling shutter effect.  
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Fig. 3.97: Recording of a moving object at the same shutter duration with global shutter (left) 
and rolling shutter (right). 

... Image stabilization and cleaning 
Modern lenses and digital cameras can be equipped with electronic image 
stabilization which ensures that blurring caused by hand-held operation is reduced. 
The vibrations, for which this compensates, lie approximately in the range 1 to 10 Hz 
and are corrected either in the camera body or within the lens. 

Image stabilizers in the camera body have a movement sensor which detects the 
accelerations acting on the camera and immediately applies a counteracting 
movement of the imaging sensor (Fig. 3.98a). The compensating movement of the 
imaging sensor is implemented with piezoelectric or electromagnetic elements which 
can generate shifts of up to three millimetres. Cameras with built-in image stabilizers 
can utilize this option with any lens provided resulting image movements remain 
within the limits of the sensor mechanical motion capabilities. 

Image stabilization at the lens (Fig. 3.98b) is implemented with a correction lens 
(or lenses) moved by piezoelectric elements. This lens group alters the imaging path 
in a way which compensates for the blurring movement. To make use of this feature 
the lens requires a digital interface which receives a signal from the camera when 
exposure takes place. 

a) Image stabiliser in camera b) Image stabiliser in lens  

Fig. 3.98: Techniques for automatic image stabilization. 
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Numerous DSLR cameras are also now equipped with automatic sensor cleaning. This 
is done by piezoelectric vibration of the sensor which removes dust particles. Image 
cleaning techniques change the sensor location and can introduce systematic 
changes in the interior orientation of the camera between groups of images. The use 
of this feature requires adoption of calibration methods suited to group variations 
between image sets.   

Image stabilization techniques are more complex to accommodate. First advice 
is to turn these off, however if the resultant image quality is then too poor for the 
identification and subsequent measurement of imaged features, an image-variant 
camera calibration (see section 3.3.4.4) needs to be adopted. 

... Sensor to lens flange distance 
The sensor to lens-flange distance is the distance between the lens mounting flange 
and imaging plane of the sensor. For compatibility, camera bodies and lenses are 
each designed with a specified set of mounting tolerances. This enables the full range 
of focus setting to be used, from infinity to the minimum focus distance. Advantages 
of short distances are simpler wider-angle lens designs and smaller more portable 
camera systems. If the flange distance between camera and lens is mismatched, 
focusing errors will arise. Where the flange distance in the camera is shorter, an 
adapter may be used to attach a lens designed for a longer flange distance. 

Table 3.8 lists some typical lens mount systems and their and their respective 
flange distances. 

Table 3.8: Example flange distances (FD) for different lens mounts. 

Camera type Lens adapter FD Mount 

Industrial camera C-Mount 17.526 mm screw thread 

Industrial camera CS-Mount 12.50 mm screw thread 

Mirrorless camera Micro Four Thirds 19.25 mm bayonet catch 

DSLR Nikon F-Mount 46.50 mm bayonet catch 

DSLR Canon EF 44.00 mm bayonet catch 

.. Lenses 

... Relative aperture and f/number 
The light gathering capacity of a lens is measured by the relative aperture which is 
the ratio of the iris diameter d' of the entrance pupil to the focal length f (see Fig. 3.99): 
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Relative aperture 'd
f

=   (3.95) 

For a lens with an entrance pupil of d' = 20 mm and a focal length of f = 80 mm, the 
relative aperture is 1:4.  

The f/number is given by the reciprocal of relative aperture: 

f/number
'

f
d

=   (3.96) 

A higher f/number corresponds to a smaller relative aperture, i.e. the light gathering 
capacity is reduced. Changes in f/number follow a progression whereby the area of 
aperture (hence the amount of gathered light) changes by a factor of 2 from step to 
step (Table 3.9). The f/number also alters the depth of field (see section 3.1.2.3). 

Table 3.9: Standard f/number sequence. 

1 1.4 2 2.8 4 5.6 8 11 16 22 32 

... Field of view  
The field of view (format angle) 2α' of a lens is defined by its focal length and the 
diameter of the entrance pupil EP (Fig. 3.99): 

'tan '
2
dα

f
=   (3.97) 

EP image format diagona
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f
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Fig. 3.99: Field of view and format angle.  

In contrast, the format angle (field angle) 2Ω is given by the maximum usable image 
angle with respect to the diagonal of a given image format s' and the principal 
distance c:  
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'tan 
2
sΩ
c

= (3.98) 

Table 3.10: Corresponding focal lengths for typical lens types and image formats. 

Lens type Format 
angle (2Ω) 

Mobile phone 
[3 x 2 mm2] 

Video 
[8 x 6 mm2] 

Full format 
[36 x 24 mm2] 

Medium format 
[44 x 33 mm2] 

Image diagonal 3.6 mm 10 mm 43 mm 55 mm 

Telephoto (small angle) 15–25° > 8 mm > 22 mm > 80 mm > 95 mm 

normal 40–50° 4–5 mm 11–14 mm 45–55 mm 55–70 mm 

wide angle 60–100° 2–3 mm 5–8 mm 24–35 mm 35 – 60 mm 

fisheye > 100° < 2 mm <4 mm < 24 mm < 30 mm 

Format angle is a convenient method of distinguishing between different basic lens 
types (see Table 3.10). As a rule of thumb, the focal length of a normal lens is 
approximately equal to the diagonal of the image format. Small image formats (found 
in video cameras, mobile phones and low-cost digital cameras) require short focal 
lengths in order to produce wide angles of view. 

... Image circle and sensor format 
A lens generates a circular image area which is different from the rectangular area of 
a typical sensor. Fig. 3.100 illustrates the difference in the case of two different sensor 
sizes.  

36 mm

24 mm

full format

smaller format

image circle

image circle

Fig. 3.100: Sensor formats and image circles. 

If the diameter of the image circle is equal to, or larger than the sensor diagonal (blue 
circle), the complete sensor area is illuminated without vignetting. Alternatively, if 
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the image circle is smaller than the sensor diagonal (red circle), the sensor is only 
partially illuminated. This causes darkening at the image borders and corners. 
However, if the sensor format is reduced from the larger to the smaller format, full 
sensor illumination is restored.  

With increasing distance from the centre, the optical quality of a lens generally 
degrades and distortion generally increases. From metrological considerations it is 
therefore recommended to use lenses with larger image circles to give better quality 
over the sensor area and to stop down the aperture to reduce light fall off (vignetting) 
caused by the use of large apertures.  

... Super wide-angle and fisheye lenses  
In close-range photogrammetry, short focal length lenses with wide fields of view are 
often selected because they allow for shorter object distances, greater object coverage 
and, consequently, more favourable ray intersection angles. Wide-angle lenses have 
fields of view typically in the range 60–75°. Lenses with larger fields of view designed 
to maintain the central perspective projection are known as super wide-angle lenses 
(approx. 80–120°). Whilst they have increased image aberrations and illumination 
fall-off towards the extremes of the image format (section 3.1.3.5), their use in 
photogrammetry is common as it supports working in cluttered environments with 
short taking distances. Fisheye lenses utilize a different optical design that departs 
from the central perspective imaging model to produce image circles of up to 180° 
(section 3.3.7).  

   
a) f = 14 mm b) f = 15 mm c) f = 20 mm 

Fig. 3.101: Imaging with a) super-wide-angle; b) fisheye; c) wide angle lenses.  
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In general, the effect of radial distortion increases with larger fields of view. Fig. 3.101 
shows examples of images taken with lenses of different focal lengths and fields of 
view. For some lenses the distortion is clearly visible and here the 15 mm quasi-
fisheye lens shows the greatest distortion, but the illumination fall-off identifiable in 
the 14mm super wide-angle lens image is noticeably absent. In addition, towards the 
lens perimeter there is reduced image sharpness, increased chromatic aberration and 
greater fall-off in light according to the cos4 law (see section 3.1.3.5). 

Fisheye lenses must be modelled using the appropriate fisheye projection model 
(see section 3.3.7) as the polynomials described in section 3.3.3.1 will be unstable due 
to the very high distortion gradients. Conventional test fields with circular targets 
often cannot be used for modelling purposes because the large distortion parameters 
deform the images so much that the targets cannot be measured with standard 
methods. Solutions for the calibration of fisheye lenses are discussed in section 
7.3.3.2.  

The last 15 years have seen a step change in mass-market wide-angle lens design. 
Here, the use of high-dispersion glass, aspheric lens elements and precision plastic 
construction delivers increased optical performance over the complete field of view, 
along with a one to two stops increase in lens aperture. A prime example is the change 
made by Nikon from its AF-D to AF-S lens designs where f/1.8 wide-angle lenses in 
the 20mm to 28mm focal length range are of high quality and readily affordable. 

... Zoom lenses 
Zoom or varifocal lenses enable a varying focal length to be produced from a single 
lens system. Designs may also permit constant focusing and maintenance of the same 
relative aperture as focal length is changed. Fig. 3.102 illustrates the principle of a 
zoom lens where moving a central lens group gives a change in focal length whilst 
motion of a second group of lenses provides focus compensation. 

focal length focus  

Fig. 3.102: Principle of a zoom lens (after Marchesi 1985).  
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Fig. 3.103: Variation of the principal point in µm for the different focal lengths of a zoom lens (Canon 
EOS 1000D with Sigma DC 18–50 mm).  

According to section 3.3.2.2, a change in focal length results in a new interior 
orientation. Due to the zoom lens construction, not only the spatial position of the 
perspective centre will change (Fig. 3.103) but parameters of radial and tangential 
distortion will also change (Fig. 3.104). Whilst zoom lenses can be calibrated 
photogrammetrically, off-the-shelf designs cannot be assumed to provide high 
mechanical stability. Thus, whilst they provide great flexibility, they are seldom used 
in practice for accurate work.  

 

Fig. 3.104: Variation in radial distortion for different focal settings of a zoom lens.  

... Tilt-shift lenses  
Tilt-shift lenses are special lenses which permit a lateral shift and tilt of the lens 
relative to the image sensor (Fig. 3.105). Using the shift function, the optical axis can 
be displaced in order to eliminate converging lines in oblique views. As an example, 
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Fig. 3.106 shows the image of a building façade in which the converging effect of 
perspective has been eliminated by shifting the lens in the vertical direction. In both 
cases the camera is set to point horizontally. 

 

Fig. 3.105: A digital SLR camera fitted with a tilt-shift lens. 

  
a) Conventional image b) Image using shift function 

Fig. 3.106: Correction of converging lines by the use of a tilt-shift lens. 

The lateral shift of a lens can also be used to extend the stereoscopic view of a stereo 
camera pair without the need for convergent viewing of the two cameras, i.e. their 
axes remain parallel.  
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Fig. 3.107: Lateral sensor shift for the stereo case.  

In Fig. 3.107, a pair of cameras is configured for the normal case of stereo 
photogrammetry with an overlap of p = 46 %. By shifting the sensor with respect to the 
lens a theoretical overlap of p = 100 % can be achieved. However, care must be taken 
that the image circles of the lenses are large enough to cover their respective sensor 
areas after shifting.  

The tilt function permits the use of the Scheimpflug condition (section 3.1.2.4) 
which enables sharp imaging of an obliquely imaged object plane.  

... Telecentric lenses 
Telecentric lenses are designed such that all object points are imaged at equal image 
scales regardless of their distance. A two-stage telecentric lens consists of two lens 
groups where the object-side principal plane of the second (right) system coincides 
with the focal plane of the first (left) system (Fig. 3.108). The aperture stop is also 
positioned at this location. An object point P located within one focal length of the 
first system is virtually projected into P'. The second system projects P' sharply into 
the image plane at P". Since all points in object space lie on a parallel axis (hence 
distance-independent), light rays are projected through identical principal rays and 
are therefore imaged at the same position in the focal plane. 

Limits to the bundles of rays place limits on the size of the object which can be 
seen in the image plane. The limiting factor will be either the maximum diameter of 
the aperture stop or the lens. Telecentric lenses are mainly used for imaging small 
objects (∅<100 mm) in the field of two-dimensional optical metrology. The imaging 
model does not correspond to a central projection but can be modelled as a parallel 
projection.  
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Fig. 3.108: Two-stage telecentric lens (after Schmidt 1993).  

... Reflective optics  
Reflective optics refers to lenses where curved mirror surfaces, normally paraboloids, 
are used to focus the imaging rays. Parabolic mirrors have a focal point and a 
corresponding focal length. Since imaging does not involve optically refracting 
media, there is no chromatic aberration when imaging with mirrors. Reflective optics 
are therefore suitable for imaging across the whole wavelength spectrum.  

Fig. 3.109 shows the imaging principle of a concentric arrangement of mirrors 
(mirror telescope) and an asymmetric arrangement (Schiefspiegler, also called tilted-
component telescope). The concentric design has an area in the centre which cannot 
be imaged. In contrast, the asymmetric design with off-axis mirrors can acquire a 
complete image. 

1 - sensor 2 - mirror 3 – optical axis
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Fig. 3.109: Reflective optics (after Richter et al. 2013).  

The geometric calibration of reflective optics is complex, especially for asymmetric 
designs. These generate large asymmetric distortions for which standard models of 
radial and decentring distortion are insufficient. In addition, local deviations in the 
mirror surfaces lead to local errors in the image which are much larger than those 
created by local deviations on spherical lens surfaces. The calibration can be solved 
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by using extended polynomials (section 3.3.4.2) or corrective grids based on finite 
elements (section 3.3.4.5). 

... Stereo image splitting  
With the aid of beam splitters and mirrors it is possible, using only a single camera, 
to make stereo and multiple image recordings with only one exposure. This 
possibility is of particular interest for recording dynamic processes where 
synchronization of camera imaging is mandatory. A single-camera, split-image 
system is intrinsically synchronized and is therefore suitable for recording fast-
changing events. 

Fig. 3.110 shows the principle of a stereo mirror attachment with a central lens. 
With this arrangement, it is possible to use an existing camera/lens combination or 
the camera in combination with other lenses. Assuming that the mirror and beam 
splitting surfaces are planar, the arrangement generates the equivalent of two virtual 
cameras with perspective centres O' and O", each of which provides a central 
perspective image onto half of the image sensor area.  
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Fig. 3.110: Principle of the stereo-mirror attachment. 

The stereo base b is the separation between the points O' and O". The photo-
grammetric exterior orientation is defined at these points, i.e. a change in the tilt or 
position of the mirror attachment causes a change in the imaging geometry analogous 
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to a conventional measurement with separate cameras. The reference point for the 
interior orientation of the camera is the perspective centre O located within the lens. 
The field of view τ for the half image is derived from half of the horizontal format s/2 
and the principal distance c. The inclination angle of the inner mirror must meet the 
requirement β1>τ so that the outer ray at the edge of the image can still be reflected by 
the mirror. The outer mirror has an inclination angle β2 and, relative to the inner 
mirror, a rotation angle of α. Angle β2 must be smaller than β1 so that optical axes h1 
and h2 converge, thus ensuring stereoscopic coverage of the object space. At the same 
time, β2 should be set with respect to τ such that the edge rays r1 and r2 diverge in order 
to capture an object space wider than the base b. 

The size of the outer mirror is primarily a function of the field of view of the lens, 
as well as its rotation angle. Mirror size increases linearly with decreasing focal length 
and increasing mirror offset. The resulting horizontal (stereoscopic) measurement 
range is limited by the inner and outer imaging rays. The vertical measurement range 
continues to be defined by the field of view and vertical image format. 

High demands are made of the planarity of the mirror surfaces. Departures from 
planarity result in non-linear image deformations which can only be removed by a 
significant calibration effort. 

.. Filters  

Various filters are employed in analogue and digital imaging procedures. These 
absorb or transmit different parts of the optical spectrum. The following types of filter 
are typically used. Fig. 3.111 illustrates their transmission properties: 
– Ultraviolet blocking filter:  

UV blocking filters are mostly used where the light conditions have a strong UV 
component, e.g. in snow. They absorb all radiation under about 380 nm. 

– Infrared blocking filter:  
IR blocking filters are generally employed to suppress the natural sensitivity of 
digital image sensors to light in the infrared part of the spectrum (see section 
3.4.1.9). They work from about 720 nm and are an integrated filter layer in many 
digital cameras. 

– Band-pass filter:  
Band-pass filters are designed to transmit a limited range of wavelengths. All 
wavelengths outside the band defined by the central wavelength and the half-
power width are suppressed. Band-pass filters are used in optical systems where 
a monochromatic or spectrally narrow illumination is used and extraneous light 
outside this illumination band must be excluded from reaching the imaging 
sensor. Their use with colour imaging systems deploying matrix filters (see 
section 3.4.1.6) has to be carefully considered as their capability to completely 
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block light to some areas of the matrix pattern will impact on the colour image 
reconstruction process.  
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Fig. 3.111: Transmission properties of UV and IR blocking filters. 

– Polarizing filter:  
Polarizing filters (also known as pol filters) restrict the oscillation of light to a 
certain direction perpendicular to the direction of propagation (see section 
3.1.1.5). Amongst other purposes, polarising filters can be used to reduce 
reflections from smooth and polished object surfaces. Fig. 3.9 shows an object 
with smooth surface which generates a bright hot spot from a light source which 
can almost be eliminated by application of cross-polarization. In this technique, 
one polarizing filter is attached to the light source (flash). Polarizing filters reduce 
the amount of light energy and often lead to more intensive colours.  

. Imaging systems 

Imaging systems closely follow the consumer market with significant advances being 
made in design and capability. Photogrammetric system development parallels these 
advances, from making use of the very first analogue CCD camera systems to adopting 
lessons learned for the accelerated development of systems based on low-cost 
webcams and mass-market DSLR systems. 

.. Industrial cameras 

The term industrial camera describes all digital cameras which comprise only a lens, 
the imaging sensor and on-board electronics, and therefore have no viewfinder or 
manual controls (see also section 3.4.2.1). These include surveillance cameras, 
webcams, miniature cameras, cameras for driver-assistance systems or cameras for 
industrial inspection. Examples are illustrated in Fig. 3.112.  
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a) Industrial cameras for technical 
applications 

b) Miniature camera NanEye GS 
(AWAIBA) ∅ ≈ 6 mm 

c) On-chip camera (Sony)  
with 16.4 MPixel 

Fig. 3.112: Examples of digital industrial cameras. 

These cameras usually use a C-mount or CS-mount lens adapter with screw thread 
(see also section 3.4.2.4). Whilst high quality optics are available, for off-the-shelf 
cameras it cannot be assumed that the individual optical components making up the 
lens are sufficiently well aligned to the optical axis, nor have a homogeneity that 
meets photogrammetric requirements. In addition, many video camera lenses have 
large radial and tangential distortions that must be modelled (optical distortions of 
tens of pixels being common). Provided that the opto-mechanical properties of the 
camera are physically stable, modelling is a routine process. 

      

Fig. 3.113: Digital image without (left) and with (right) automatic gain control at constant 
illumination.  

After sensor read-out the image signal is amplified and pre-processed. Subsequently 
its contrast and brightness may be automatically adjusted through the use of an 
automatic gain control whereby the analogue signal is amplified to the maximum 
amplitude. The level of amplification is controlled by the brightest and the darkest 
locations in the image. Many cameras allow gain control to be controlled externally 
(example in Fig. 3.113). Since automatic gain control is a post-processing step, loss of 
geometric quality and undesired brightness changes cannot be excluded. In addition, 
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and most noticeably under poor lighting conditions, gain control can increase image 
noise. Automatic gain control should be switched off under conditions of sufficient 
and constant illumination.  

Both image sensor and video signal require high-frequency synchronization 
signals that are delivered by a pulse generator (sensor clock). Synchronization can 
also be controlled by an external signal, e.g. for the synchronized image acquisition 
of several cameras, or for the synchronization of a video frame grabber for the precise 
digitization of a video signal. 

Modern industrial cameras store and transfer image data in digital formats. 
Power supply and data transfer are usually made via cable connection. In addition to 
the acquisition of single frames, most also allow for the recording of image sequences 
in standard video and audio formats, e.g. MPEG-2, MPEG-4 or AVI. Typical frame rates 
range from 20 to 100 fps. Standardized data transfer protocols and interfaces are 
available, e.g. USB, Firewire, CameraLink, Gigabit Ethernet. Wireless connections are 
also possible.  

.. Digital cameras 

Following the first developments at the end of the 1980s, such as the Kodak Megaplus, 
1320 x 1035 pixel FT sensor, a growing number of high-resolution imaging sensors 
have become available at economic cost. In this field, consumer-orientated 
developments in digital photography are the driving force in that they offer a wide 
range of imaging systems for both amateurs (low-resolution examples in Fig. 3.114), 
and professional photographers (high-resolution monochrome and colour camera 
examples in Fig. 3.115 and Fig. 3.116). 

  
a) Compact camera Fujifilm X100V  b) Mirrorless camera Sony Alpha 6700 

Fig. 3.114: Examples of digital cameras. 

High-resolution digital cameras with up to 100 Mpixel are becoming readily available 
for photogrammetric practice, examples including still-video cameras, scanning 
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cameras, digital camera backs or specialized metric cameras (examples in Fig. 3.117, 
Fig. 3.118). In combination with established photographic camera technologies, they 
provide powerful and user-friendly systems. Data transfer is either performed offline 
by means of an internal storage device (e.g. SD Card) or online with a connected 
computer (Wifi, USB, Firewire, Gigabit Ethernet). In addition, there are imaging 
systems with integrated processors where a variety of image processing functions are 
performed directly inside the camera.  

  

Fig. 3.115: Nikon D6. Fig. 3.116: Leica SL. 

There are several trends in the current development of digital cameras which are 
tuned to the consumer market drive for smaller devices and improved pictorial 
imaging performance. Any new system needs to be carefully tested as improvements 
in one area can be outweighed by new metric imaging challenges from other 
innovations: 
– smaller pixel and sensor sizes for compact and mobile phone cameras;  
– larger image resolutions at economic cost in SLR image formats; 
– sensor back illumination whereby light passes the shortest distance through the 

sensor to arrive at the light sensitive part of each pixel improving light sensitivity 
and reducing sensor noise; 

– combination camera systems able to selectively provide still and video images 
from the same sensor; 

– formats up to 54 mm x 40 mm in digital camera backs or medium format cameras; 
– smaller choice of cameras designed specifically for optical measurement;  
– high-resolution optics, usually equipped with aspherical elements to match the 

capabilities of smaller pixel dimensions with sharper better corrected optical 
images;  

– a move from DSLR to high specification mirrorless cameras as improvements in 
battery capacity and display technologies replace the need for optical viewing 
systems; 
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– actuated sensor movement to compensate for camera motion during exposure 
and potentially utilise sensor motion for autofocus and focus stacking. Note that 
whilst desirable pictorially, mechanical instabilities in the relationship between 
lens and sensor from image to image are likely to impact photogrammetric 
performance; 

– onboard manufacturer's lens distortion correction which can benefit from 
knowledge of the specific lens design. Challenges are that corrections are 
typically not applied on a per-lens basis and can be irreversibly built into all 
output images making lens distortion correction for more accurate applications 
challenging. 

In close-range photogrammetry, digital compact cameras are only used for 
measurements with lower accuracy requirements, for example applications such as 
accident recording, UAV applications or texturing of 3D city models. Digital SLRs are 
used in many photogrammetric applications due to their favourable 
price/performance ratio. Specialized SLRs with robust metal housings and high-
quality lenses can achieve high measurement accuracies with appropriate 
calibration. 

  

Fig. 3.117: Leica S.  Fig. 3.118: Hasselblad H4D-60. 

In principle, digital cameras with a small image format (examples in Fig. 3.115 and 
Fig. 3.116) permit the use of standard lenses for this type of camera so that a wide 
choice of lenses is available, particularly for wide-angle use. However, cameras with 
very small pixel sizes have greater noise in the image and are less sensitive to light. 
In addition, the corresponding lenses are subject to high demands with respect to 
resolution which are often not fulfilled, resulting in a lower image quality than 
available from cameras with a lower number of pixels.  

Medium-format digital cameras (Fig. 3.117, Fig. 3.118) are mainly used in high-
end applications requiring a maximum number of pixels (up to 100 Mpixel) and large 
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image format (up to 54 mm x 40 mm). Due to their high cost, these medium-format 
cameras do not have a significant presence in close-range photogrammetry. 

Purpose-built digital metric cameras, specially designed for measuring purposes, 
guarantee high geometric stability due to their opto-mechanical design. In particular, 
lens and image sensor are rigidly connected in the camera housing. An integrated 
ring flash is used to illuminate retro-reflecting targets. The DynaMo series of metric 
cameras from Geodetic Systems Inc. (GSI), one of which is shown in Fig. 3.119, have 
resolutions ranging from 5 Mpixel to 45 Mpixel, frame rates from 15 Hz to 100Hz and 
accuracy to 5 µm + 4 µm/m (RMS-1σ). A maximum length-measuring error of around 
25 µm can be anticipated for the 12 and 45 Mpixel cameras, according to VDI/VDE 
2634/1 (see section 7.2.3). The DynaMo cameras are designed for high-accuracy 
industrial metrology applications, and they incorporate special features such as built-
in image processing, proprietary very fast image compression, long-life LED flash 
systems and power-over-ethernet cabling.  

The Hexagon C1 (Fig. 3.120) is a metric camera utilizing a full-format CMOS 
imaging sensor with 50.6 Mpixel which is installed together with a 28mm lens in a 
particularly dust- and shock-proof housing. A projection element displays the object 
area visible from the camera. The photogrammetric accuracy has been evaluated at 
around 2 µm + 5 µm/m (RMS-1σ) with a maximum length-measuring error of 15 µm+ 
15 µm/m according to VDI/VDE 2634/1 (see section 7.2.3). 

  

Fig. 3.119: GSI DynaMo/D45.  Fig. 3.120: Hexagon DPA Industrial C1 camera.  

The SingleCam metric camera from AXIOS 3D (Fig. 3.156) is a mechanically stable 
video camera with an optimized assembly of lens, sensor and housing. It has an 
integrated, monochromatic, LED ring flash for recording retro-reflecting targets. The 
camera is shock-resistant to 50 times the acceleration of gravity without any change 
in interior orientation. 
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.. High-speed cameras 

High-speed cameras allow the recording of fast-changing scenes with image 
frequencies much higher than for standard video cameras. Today, high-speed 
cameras exist that can record more than 1200 images per second at resolutions of the 
order of 2000 x 2000 pixel. They are mainly used for monitoring dynamic production 
processes, but are also used for analysing object movement in industrial, medical and 
research applications. For special applications frame rates of more than 1 million fps 
can be reached at highly reduced pixel resolutions. 

In general, high speed imaging systems can be characterized as follows: 
– CMOS sensors:  

As an alternative to progressive-scan sensors, CMOS imaging sensors are 
available that provide exposure times of a few microseconds using an electronic 
shutter which is integrated in the sensor. These sensors facilitate direct 
addressing of individual pixels, but have the disadvantage of increased image 
noise when compared with CCD sensors. 

– Electronic shutter:  
Electronic shutters control the integration time of the imaging sensor with 
exposure times of down to 50 µs, corresponding to 1/20000 s. 

– Solid-state image memory: 
Solid-state image memory modules permit immediate storage of the image 
sequence either in the camera or nearby. The maximum number of images, and 
the maximum recording period, depend on the image memory capacity and the 
(selectable) sensor resolution. 

– External trigger signals: 
External trigger signals serve to control the image acquisition process by allowing 
the camera to be synchronized with an external event, e.g. a particular point on 
a machine production cycle or the simultaneous acquisition of image sequence 
from multiple cameras.  

– Recording of additional information: 
Storing of additional information (image number, data rate etc.) allows for 
subsequent image sequence analysis. 

– Onboard processing:  
CMOS sensors, combined with specialized Field Programmable Gate Array 
(FPGA) processors, can process incoming images in real-time. For example, the 
AICON MoveInspect HF4 is a specialized photogrammetric high-speed camera 
(Fig. 3.121b). It has a 4 Mpixel CMOS image sensor and an FPGA capable of 
automatically measuring up to 10000 bright targets at an image frequency of up 
to 500 Hz with full sensor resolution. Only the measured image coordinates are 
transferred to the externally connected computer and the current image is then 
immediately overwritten. In this way, recording sequences can be of any 
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duration. The camera is used, for example, to measure wheel movements on a 
moving vehicle (see section 6.10.2.2). 

High-speed cameras are offered by different suppliers, including Excelitas PCO, IDT 
and Microtron. For very demanding environmental conditions, such as on-board 
recording of crash tests, special cameras are available which can tolerate high levels 
of impact and acceleration and still maintain a very stable interior orientation. Fig. 
3.121a shows two such cameras, with control unit, from Excelitas PCO. As an 
application illustration, Fig. 3.122 shows a subset of an image sequence recorded by 
the pco.dimax (1920 x 1080 pixels, 1100 frames per second). The duration of the 
recording sequence is limited by the internal or external storage. This camera type 
can be of the cabled or self-contained variety. 

  
a) High-speed camera pco.dimax cs b) AICON MoveInspect HF4 

Fig. 3.121: High-speed cameras. 

Synchronization of several high-speed cameras is a demanding requirement since 
sensor exposure must be guaranteed even at very high frame rates. Usually the 
cameras are synchronized by an external trigger signal, or in master-slave mode 
where one camera triggers the other. Departures from synchronization lead to 
photogrammetric measurement errors (see section 6.10.1). Where cameras of the 
same product type are used, synchronization errors should be less than 50 µs. 
Synchronization can be tested optically, e.g. using the Synchronometer from 
manufacturer IES (Fig. 3.123). This device displays a high-speed sequence of LED 
codes which must be imaged in the same sequence by a set of synchronized cameras. 

Synchronized high-speed stereo images can also be recorded using a stereo 
mirror attachment. (see section 3.4.3.8). Fig. 3.124 shows a high-speed camera with 
the stereo mirror attached. There are demanding requirements in respect of planarity 
and alignment of the mirrors, and significant asymmetric distortion effects if these 
are not met. Fig. 3.125 shows radial and decentring distortion for the left (red) and the 
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right (green) half of an image taken with a stereo mirror. It can easily be seen that the 
mirrors cause both image halves to display completely different characteristics. 

1  2  

3  4  

5  6  

Fig. 3.122: Subset of an image sequence (PCO).  

  

Fig. 3.123: Synchronometer (IES).  Fig. 3.124: High-speed camera with stereo mirror 
attachment (High Speed Vision). 
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Fig. 3.125: Radial (10-times enlarged, left) and decentring distortion (100-times enlarged, right) in a 
camera with a stereo mirror attachment (Weinberger Visario, focal length 12.5 mm). 

Fig. 3.126 shows two images from a stereo recording sequence. Only half the sensor 
format is available for the left- and right-hand parts of the image. Between each half 
image there is a narrow strip with no useful image data. 

 

 

Fig. 3.126: High-speed stereo images taken with the stereo mirror attachment (Volkswagen).  

.. Stereo and multi-camera systems 

Stereo and multi-camera systems, in which the cameras are rigidly mounted in a 
single housing, are suitable for 3D applications requiring the synchronous recording 
of at least two images (Fig. 3.127). These systems permit the imaging of object points 
with simultaneous calculation of their 3D coordinates by the technique of spatial 
intersection (see section 4.4.7.1). The cameras have largely constant orientation 
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parameters and are normally calibrated in the factory. For example, the CamBar 
stereo camera system from AXIOS 3D (Fig. 3.127a) is shock-resistant to 75 g and 
specified to operate in the range 15-30° C, without any change in interior orientation 
of an individual camera or the relative orientation between cameras in the housing. 

  
a) Stereo camera for use in medical 
navigation applications (AXIOS 3D) 

b) 3-camera system for monitoring dynamic 
processes (AICON) 

Fig. 3.127: Stereo and multi-camera systems. 
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a) Three-line measurement principle b) Three-line camera (Nikon Metrology)  

Fig. 3.128: Principle and example of three-line measurement. 

Another form of multi-camera system is represented by three-line systems which have 
three linear imaging elements. Each element has a cylindrical lens which creates a 
line image of a LED target point, with the image being recorded by a linear CCD array 
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set in the image plane at right angles to the image line (Fig. 3.128a). This effectively 
defines a plane in space on which the target point lies. By orienting the central 
element at right angles to the outer elements, the target point can be located by the 
intersection of three planes in space. Linear array technology permits a measurement 
frequency of up to 3000 Hz which is temporally split across the number of active 
targets being imaged. Fig. 3.128b shows a camera system based on this principle. 

Stereo and multi-camera systems are often used for navigation tasks in which 
objects must be absolutely tracked or positioned in space, or located relative to other 
objects. One of the most common application areas is in medical navigation. Here the 
systems are employed during operations to track the movements of surgical 
instruments. Typical industrial applications include the positioning of parts and 
robots (see also section 6.9.3).  

.. Micro and macro-scanning cameras 

Since the resolution of digital cameras was a limiting factor some years ago, scanning 
cameras were developed in order to increase pixel resolution by sequential scanning 
of an object or scene. Two basic scanning principles can be distinguished: micro 
scanning where small sub-pixel steps of the sensor are made sequentially within the 
same image format area to increase spatial resolution and macro scanning where the 
sensor is sequentially stepped by a significant portion of its total dimension to expand 
the image format. Such systems can only deliver high quality images if there is no 
relative movement between camera and object. Depending on implementation, 
image sizes of the order of 3000 x 2300 pixels to 20 000 x 20 000 pixels can be 
obtained. 

... Micro scanning 
In the case of micro-scanning cameras, piezo elements are used to translate an 
interline-transfer sensor horizontally and vertically, in fractions of the sensor element 
size (micro-scan factor) (Fig. 3.129). A high-resolution output image is created by 
alternating the storage of single images. The final image has a geometric resolution 
that is increased by the micro-scan factor in both directions. From a photogrammetric 
standpoint, the micro-scanning principle results in a reduction of effective pixel size 
whilst maintaining the usable image format of the camera. 

Cameras based on this principle are the RJM JenScan (4608 x 3072 pixel), Kontron 
ProgRes 3012 (4608 x 3480 pixel) and Jenoptik Eyelike (6144 x 6144 pixel, Fig. 3.131). 
Even higher resolutions can be achieved if micro scanning is combined with the 
principle of macro scanning (see below). 
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Kontron ProgRes 3012
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Fig. 3.129: Principle and example of a micro-scanning camera.  

... Macro scanning 
Macro-scanning systems shift a linear or area imaging sensor in large steps over a 
large image format. The position of the separate partial images is determined either 
mechanically or by an optical location technique. This enables the images to be 
combined into one complete, large-format image. 
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Fig. 3.130: Principle of a line-scanning camera. 

Fig. 3.130 illustrates the principle of a line-scanning camera. A single linear CCD 
array, set parallel to one axis of the image, is mechanically moved along the other 
image axis in order to scan the entire image area. Image resolution is therefore given 
in one direction by the resolution of the array and in the other direction by the step 
resolution of the mechanical guide.  

An example of a high-resolution, line-scan camera is the PentaconScan 6000 
shown in Fig. 3.132. This camera has a linear RBG CCD sensor which is scanned across 
an image format of 40 mm x 40 mm and, at its highest resolution, can deliver images 
with 10 000 x 10 000 pixel for each colour channel. Due to limitations in the precision 
which is achievable in the mechanical guidance mechanism, these systems are 
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principally designed for professional still photography and not for photogrammetric 
applications. 

  

Fig. 3.131: Jenoptik Eyelike. Fig. 3.132: Pentacon Scan 6000. 
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Fig. 3.133: Principle of the réseau-scanning camera. 

The macro-scanning principle can also be employed with area sensors. The two-
dimensional mechanical positioning technique which is required in this case is 
considerably more complex and therefore more expensive to produce. The réseau-
scanning principle offers an alternative solution. Here the individual sensor locations 
are determined by measuring the images of réseau crosses in the sub-image delivered 
by the sensor. This technique does not require an accurate mechanical positioning 
mechanism (Fig. 3.133). In addition to movement in the xy direction, the sensor can 
also be shifted in the z direction, parallel to the optical axis. This makes it possible to 
focus without altering the parameters of interior orientation. An example of a réseau-
scanning camera is the Rollei RSC which is no longer in production (see Fig. 1.43). 
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.. Panoramic cameras 

... Line scanners 
Digital panoramic cameras with a scanning line sensor form a special case of the 
macro-scan technique. A vertically mounted sensor line is rotated about a vertical 
axis, thereby imaging the surrounding object area (rotating line scanner). The 
mathematical projection model is a central perspective projection in the vertical 
direction and mapped by rotation angle to a cylindrical projection surface in the 
horizontal direction. Some systems internally convert the camera output to a 
spherical projection. Providing the particular panoramic imaging geometry is taken 
into account, photogrammetric methods such as bundle adjustment and spatial 
intersection can be applied in an analogous way to conventional images. Scanning 
panoramic cameras based on CCD line sensors can achieve image sizes of the order of 
50 000 x 10 000 pixels, often known as gigapixel images. 
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Fig. 3.134: Principle of a panoramic scanning 
camera. 

Fig. 3.135: Digital panorama camera 
SpheroCam HDR (Spheron).  

An eccentricity vector e between perspective centre and rotation axis must be 
determined by camera calibration (Fig. 3.134). For photogrammetric processing of 
panoramic images, the mathematical model is extended for the x' direction whereby 
the image coordinate x' (column position in image) is defined as a function of the 
rotation angle α and the eccentricity vector e. A number of panoramic cameras are 
currently available on the market, e.g. the SpheroCam HDR from Spheron (Fig. 3.135, 
50 Mpixels) or the Panoscan Mark III (max. 9000 x 6000 pixels). Most cameras 
provide 360° images and can also produce smaller, user-definable sections. 

Panoramic images can also be generated from single frame images if the 
individual images have a sufficient overlap. A geometrically exact stitching of such 
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panoramas can only be performed if the single images are acquired around a common 
rotation axis, and if the interior orientation parameters are known.  

... Panorama stitching  
A panoramic image can be generated from a number of central-perspective, single 
images which overlap horizontally or vertically (see example in Fig. 3.138). The 
individual images can be merged together in various ways: 
– Manual merging:  

The overlapping images are interactively positioned relative to one another until 
there is a good match in the areas of overlap. 

– Automatic merging:  
Procedures for automatically creating the panoramic image are based on 
detecting corresponding regions in the overlaps using feature extraction or 
correlation methods (see section 5.4.2). Once these common locations are found, 
a simple geometric transformation is used to make a best fit between them in the 
overlaps. The technique makes no use of a global geometric model, such as a 
cylindrical projection, and this gives rise to residual errors where neighbouring 
images are connected. 

– Photogrammetric merging: 
The photogrammetric construction of a panorama takes into account the outer 
and inner orientation of the individual images. In an analogous way to 
orthophoto creation (section 4.2.8.2), the resultant panorama is generated on a 
cylindrical surface with the colour values calculated by back-projection into the 
original images.  

Capabilities are included in cameras of all levels from mobile phones to DSLRs. 
The geometrically correct generation of a panoramic image requires that the 

rotation axis of the camera passes through the perspective centre. Only then do all 
imaged rays pass through the same point, as would be the case in a perfect panoramic 
image.  

To achieve this condition it is advantageous to connect the camera to an 
adjustable panoramic adapter, one which permits a shift along the camera axis (Fig. 
3.136). This adjustment can be achieved by simple means, e.g. the imaging of two 
points in line with the rotation axis (Fig. 3.137). When correctly adjusted, both object 
points overlap in the same image point. When the ideal configuration is achieved and 
the rotation axis passes through the perspective centre, then the resulting panoramic 
image has the same central-perspective properties as a normal image, although in 
this case the horizontal field of view is 360°. If there is a residual displacement error, 
then the camera’s perspective centre moves on a circle around the rotation axis. Note 
that in panoramic photography the perspective centre is also known as the nodal 
point. Fig. 3.138 shows an example panoramic image created by the camera in Fig. 
3.136. 
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Fig. 3.136: Digital camera on a 
panoramic adapter. 

Fig. 3.137: Alignment of perspective centre with rotation 
centre by observing collinear points. 

         

         

 

Fig. 3.138: A digital cylindrical panorama created by stitching together overlapping camera images. 

As an alternative to the use of a camera, a panoramic image can also be generated by 
a video theodolite, or imaging total station with integrated camera (see section 
6.3.2.1). A panoramic camera with integrated laser distance meter is presented in 
section 6.8.3. 
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... Panoramas from fisheye lenses 
360° panoramas can also be created by combining two images taken with fisheye 
lenses (see section 3.3.7) which are pointing in opposite directions. Fig. 3.139 shows 
two original fisheye images and Fig. 3.140 the resultant panorama. The source of the 
images is a system designed for mobile mapping (see section 6.11.1). A wide range of 
action and panoramic cameras are now available which have been designed for 
leisure and web applications rather than for professional metrology (Fig. 3.141). They 
are constructed from multiple individual cameras which enables panoramic images 
and videos to be acquired and processed directly. 

 
a) Camera view to front  

 
b) Camera view to rear 

Fig. 3.139: Images from two cameras with fisheye lenses which are pointing in opposite directions 
(Cyclomedia).  

  

Fig. 3.140: Digital panorama created from the images in Fig. 3.139 (Cyclomedia).  
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a) 360° camera (Giroptic)  

 

b) Ball with 32 cameras (Panono)  

Fig. 3.141: Panoramic cameras with multiple individual cameras.  

.. Endoscopes  

A distinction is made between rigid and flexible endoscopes. Rigid endoscopes 
(borescopes) usually have a camera attached to the end, whereby light and image 
transmission are usually achieved with a rod lens system. Optical fibres are typically 
used for both light and image transmission in flexible endoscopes. However, the 
number of individual optical fibres in the connecting coherent fibre bundle will limit 
image resolution. Due to ever smaller image sensors and LED light sources, it is now 
possible to build one or more cameras into the tip of the endoscope (chip-on-the-tip) 
along with the necessary illumination. Fig. 3.142 shows examples of endoscopes. 

 

a) Rigid endoscopes without camera 
 

 

b) Stereo endoscope with two miniature cameras in 
the tip of the endoscope 

Fig. 3.142: Examples of endoscopes (Schölly).  

Photogrammetric calibration of endoscope cameras can cause particular problems 
due their small field of view and depth of field. Flat checkerboard test fields are often 
used for this purpose, but they tend to create high correlations between interior and 
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exterior orientation parameters (see sections 4.4.5.5 and 7.3.2). However, it is also 
possible to use miniaturised 3D test fields equipped with conventional targets. 
Suitable arrays can be 3D printed. 

In addition to monocular endoscopes, there are also stereo endoscopes (Fig. 
3.142b). These were designed to give the observer a visual 3D impression, but they can 
also be used photogrammetrically and offer advantages in the matching of image 
points through the use of epipolar geometry (section 5.5.4). Fig. 5.98 shows the 
experimental setup of a trinocular endoscope that avoids ambiguities in image 
assignment. The third camera could also be replaced by another image sensor, e.g. 
an infrared camera or range sensor. 

.. Thermal imaging cameras  

Thermal imaging cameras (thermographic cameras) are used for analytical tasks in 
building research and materials science. They deliver a thermal image using 
wavelengths in the range 2.5 to 14 µm (medium to near infrared part of the spectrum, 
see Fig. 3.2). Typical thermal sensitivity of the cameras lies approximately in the range 
–40° C to +2500° C. Until now, thermal imaging cameras have been rarely used for 
geometric and photogrammetric analyses because they are costly and, with sensor 
resolutions in the range 320 x 240 pixel to 1024 x 768 pixel, have a relatively poor 
resolution compared with modern CCD and CMOS sensors. 

  

Fig. 3.143: Thermal imaging camera 
(InfraTec).  

Fig. 3.144: Thermographic test-field image. 

Thermal imaging cameras (example shown in Fig. 3.143) work either with thermal 
detectors or quantum detectors. Thermal detectors (micro-bolometers, pyro-electric 
detectors) measure the temperature directly incident on the sensor, independently of 
wavelength. The cameras do not need to be cooled, only stabilized at their own 
constant temperature. In contrast, quantum detectors absorb incident infrared 
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photons and operate in a similar way to CCD and CMOS sensors. They must be cooled 
to very low temperatures (60-140 K) and are functionally dependent on wavelength. 

Typical sizes of detector elements (pixel sizes) lie in the range 17 µm to 50 µm. 
According to eqn. (3.13), the diffraction-limited resolution of thermal imaging 
cameras is around 12 µm for a wavelength of 5 µm and an f/number of 1. Because of 
the requirements imposed by the refractive indices of thermal radiation, the lenses 
which can be used are not constructed from normal glass but from germanium. They 
are expensive to produce and therefore represent the principal component cost of a 
thermal imaging camera. 

Like conventional cameras, thermal imaging cameras can be geometrically 
calibrated. Test fields for this purpose have target points which radiate in the thermal 
region, for example active infrared LEDs, heated or cooled metal discs, or retro-
reflecting targets exposed to a suitable infrared illumination source. Fig. 3.144 shows 
a thermal image of such a photogrammetric test field. 

.. Multi-spectral and hyperspectral cameras  

Multi-spectral or hyperspectral cameras are designed to capture images over 
specified wavelength ranges either as a continuum of colour samples across a 
designated area of the spectrum or in discrete bands. Sensors may be silicon based, 
for example CMOS or CCD, which are capable of acquiring images over wavelengths 
in the range of ca 350 to 1000 nm covering near UV (NUV), visible and near IR (NIR) 
parts of the spectrum, (see Fig. 3.1 and section 3.4.1.8). Beyond the visible spectrum, 
different sensor and recording principles are needed. For example, InGaAs-sensors 
can be used to collect data in the short-wave infrared band (SWIR) between 1000 nm 
and 2500 nm. Lens design in these cases must be carefully considered as optical 
glasses and materials have different spectral transmission properties and need to be 
optimised to achieve consistent image quality over the selected wavelength range. 

... Multi-spectral cameras 
Multi-spectral cameras are designed to simultaneously acquire images across defined 
broad spectral bands. Typically, single cameras are combined such that each sensor 
is sensitive to a specific spectral band by incorporating a band pass filter in its optical 
path (section 3.4.4). Fig. 3.145a shows a camera with five 1280 x 960 pixel sensors 
which record images in the blue (459-491 nm), green (546-574 nm), red (660-676 nm), 
“red edge” (711-723 nm) and near IR (814-870 nm) bands. Cameras with up to 10 
spectral channels are also available. The red to near IR channels are often selected for 
vegetation detection and classification, e.g. by band combinations such as the 
normalized difference vegetation index (NDVI) which calculates the ratio (NIR-
Red)/(NIR+Red) based on the red-edge phenomena. 
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The calibration of interior orientation must be performed for each camera 
individually. Because the combined sensor will have a series of physically separate 
optical centres, it is useful to apply a mathematical geometric constraint for fixed 
relative orientation between the cameras in order to stabilize the calibration process 
(see section 4.4.2.3). 

Fig. 3.145b shows example multi-spectral images acquired by the camera in Fig. 
3.145a. It can be seen that different object types have significantly different reflection 
properties in each band. The false-colour composite infrared image (CIR) displayed is 
derived from combining red, green and NIR bands. Due to the different positions of 
the lenses of each sensor, a clear displacement of colours can be observed. 
Multispectral images typically have fewer than 20 bands with each band covering a 
wider wavelength range. Cameras of this type are relatively new for close-range 
purposes, but are long established in aerial mapping. 

 
a) Sensor head (MicaSense) 
 

 
b) Example multi-spectral bands (top: green and red; 
bottom: infrared and CIR image) (Hochschule München) 

Fig. 3.145: Multispectral camera for five spectral bands.  

... Hyperspectral cameras 
Hyperspectral cameras generate images with a spectral profile per pixel. Spectral 
profiles consist of between 20 to several hundred narrow spectral bands, each band 
being 10 nm or less in width. Ideally spectral bands will be continuous over the 
wavelength range of the imaging system. There are three common hyperspectral 
camera designs: spatial scanning, spectral scanning and snapshot cameras. 

For hyperspectral spatial scanning cameras, the typical optical separation of the 
spectral ranges is done with the help of a dispersion element (prism, grating, cf. Fig. 
3.5), whose image is recorded with an area sensor having n x k pixels. Fig. 3.146 shows 
the imaging principle within the camera. The object is scanned line by line with n 
pixels. Each pixel of this line is expanded via several optical elements to form a 
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hyperspectral line, which is then recorded in the sensor column with k lines. Area 
images can only be captured by sequentially scanning the object. 

Hyperspectral spatial scanning cameras are rarely used for photogrammetric 
tasks because they are expensive and can only record areas if the exterior orientation 
of each individual image can be determined with sufficient accuracy. This can be 
realized, for example, by a motorized shift or rotation of the camera or a known object 
movement (e.g. conveyor belt). Their advantage lies in their high radiometric 
resolution, which can be used for material or object classification. 
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Fig. 3.146: Imaging principle of a line-scanning hyperspectral camera.  

Hyperspectral scanning cameras capture spectral images over time. To do this they 
rely on sequential exposures utilising different narrow band filters each of which 
delivers a spectral band. This gives the advantage of maintaining spatial resolution 
at the disadvantage of requiring the relationship between the camera and the scene 
to remain constant whilst successive exposures are made. A typical implementation 
is to use a filter wheel or optically tuneable filter in front of the lens. 

Hyperspectral snapshot cameras use a frame sensor which is covered by a filter 
mask where each pixel in a defined neighbourhood (e.g. 4x4 or 5x5 pixels) is sensitive 
to a specific narrow spectral band. Comparable to RGB mosaic filters such as the Bayer 
system (see section 3.4.1.6), spectral information needs to be spatially interpreted 
across the image using demosaicing. Therefore, the actual spatial resolution is 
reduced compared with the line scanning principle. As an example, a snapshot 
camera with a 2048 x 1088 array sensor would logically yield an effective resolution 
of 409 x 216 using a 5x5 filter grid (25 spectral bands).  
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. Reflection and illumination 

.. Reflection models 

This section summarises some essential aspects of the reflection of light at material 
surfaces. Basic knowledge of reflection types is important for understanding the 
intensity and colour of a captured image signal, but also has significance for the 
design of targets. In addition, the generation of synthetic images is based on the 
consideration of surface and material properties, light sources and recording 
positions, which essentially determine the reflectivity. 

... Reflection types 
The ambient reflection model is based on the idea that a proportion ka of the incident 
light Ii reflects uniformly in all directions. The reflected radiation Ir is then given by: 

( ) ( )r a iI λ k I λ= ⋅  where 0 1ak≤ ≤  (3.99) 

This model does not consider the spatial orientation of the surface. The factor ka 
results in a uniform intensity variation of the whole scene. 
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Fig. 3.147: Diffuse reflection. 

Diffuse reflection (Fig. 3.147) is based on Lambert's law. The intensity of the reflected 
light reduces as a function of the cosine of the angle α between the surface normal n 
and the direction to the light source l and is expressed by the scalar triple product of 
the two vectors: 

( ) ( ) max(( ),0) ( )r d iI λ k λ I λ= ⋅ ⋅ ⋅n l  (3.100) 

The term kd(λ) is material dependent and defined as a function of wavelength. It is 
therefore dependent on the colour of the illuminant, the surface and the colour 
sensitivity of the sensor or observer. The reflected component is independent of the 
observer's position. Techniques like Reflectance Transformation Imaging (RTI, see 
section 3.6.3.5), photometric stereo and shape-from-shading calculate normals from 
reflection. 
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The basic idea of specular or mirror-like reflection (Fig. 3.148) is the principle that 
angle of incidence = angle of reflection. For a perfect specular reflector or mirror the 
light is reflected in direction r. Consequently, in viewing direction b the intensity is 
given by: 

( ) if  0
( )

0 otherwise
i

r

I λ
I λ
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Fig. 3.148: Specular reflection. 

Since perfect mirrors rarely exist in reality, and as they would generate a signal only 
in one direction b = r (β = 0), some spread around this direction is permitted: 

( ) ( ) max(( ),0) ( )m
r s iI λ k λ I λ= ⋅ ⋅ ⋅b r   (3.102) 

Here the exponent m defines the spread characteristic which is dependent on material 
and term ks(λ) specifies the spectral reflective properties. Large values of m describe 
polished surfaces (metals, mirrors), small values specify matt, non-metallic surfaces. 
In general, the roughness of mirror surfaces must always be smaller than half of the 
incoming wavelength. 

Natural surfaces often have a mixed reflection, with ambient, diffuse and 
specular components overlapping. The radiation received by an observer or a camera 
depends on the following influencing variables: 
– spectral characteristics of light sources, 
– spatial position of light sources, 
– properties of the atmosphere (media), 
– spectral characteristics of surface materials (reflection, absorption, 

transmission), 
– surface structure (roughness),  
– location and orientation of surfaces, 
– optical and radiometric characteristics of the camera or sensor, 
– location and orientation of the camera or observer.  
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With advancing computational capability, illumination and reflection models play an 
increasingly important role in photogrammetry, e.g. in multispectral image analysis, 
in the simulation of synthetic images, in the design of a suitable illumination 
situation or in evaluation methods that explicitly include position, direction and 
spectral properties of light sources (e.g. Photometric Stereo or RTI, see section 
3.6.2.5). Methods of optical 3D metrology, computational photography and material 
sciences flow together here. 

... Retro-reflection 
Retro-reflectors reflect incident light back in the direction of the light source over a 
relatively large range of incident angles, i.e. the reflector is not required to point 
accurately back towards the source of illumination. The technical realisation is 
achieved with retro-reflective spheres or with triple mirrors (corner cubes, see Fig. 
3.149 showing two of the mirrors). Retro-reflective film, for example, has a dense array 
of spheres of approx. 30-50 µm diameter embedded in its surface, and is suitable for 
the production of retro-reflective targets (see section 6.2). When used with a camera 
equipped with a light source close to the objective, typically a ring light, the strong 
reflection back to the recording camera produces high-contrast imaging of targets 
under a wide variety of ambient light levels (see Fig. 3.155 or Fig. 3.156). 

a) Reflection by a spherical mirror b) Reflection by mirrors with normals at 90°  
Fig. 3.149: Retro-reflection. 

For retro-reflective spherical mirrors, the viewing angle is limited to ±45°. Triple-
mirrors allow larger viewing angles. One alternative concept makes use of glass 
spheres with a refractive index of 2 at the wavelength of the illuminating light. This 
achieves a total internal retro-reflection without the need for a reflecting surface seen 
in Fig. 3.149a. However, only a small proportion of light is returned by this design. 
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In optical metrology large retro-reflectors based on triple mirrors or prisms are 
mainly used with laser trackers and totalstations (see section 6.3.2). 

.. High contrast photogrammetric targeting 

Applications that require accurate photogrammetric measurement typically make use 
of purpose engineered targets whose optical centres can be reliably and accurately 
determined from multiple camera views. Specific designs and target configurations 
are presented in section 6.2. 

... Retro-reflective targets 
Retro-reflective targets (retro-targets) are widely used in practice, particularly in 
industrial applications. For typical photogrammetric applications, they consist of a 
retro-reflective material that is either covered by a black pattern mask, or is stamped 
into the target shape. Usually retro-targets are circular in shape, but they can be 
manufactured in any size and shape (examples in Fig. 3.150). In addition, the retro-
reflective material can be mounted on spheres (retro-spheres) which can be viewed 
over a wider range of directions (see section 6.2.1.2). The retro-reflective material 
consists either of a dense arrangement of small reflective balls (∅ ≈ 80 µm), or an 
array of micro-prisms (with triple-mirror corners). 

   
a) Circular target with point number b) Circular target with area 

code 
c) Circular target with ring 
code 

Fig. 3.150: Examples of retro-reflective targets.  

In order to achieve high contrast target images, retro-reflective targets must be 
illuminated from a position close to the camera axis (e.g. by a ring flash, see Fig. 
3.155). The resulting images can be simply and fully automatically measured since, 
for all practical purposes, only the high-contrast measurement locations, without any 
background information, are imaged (examples in Fig. 7.30).  
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The microscopic balls or prisms of a retro-target are attached to a base material. 
Incident light is reflected internally within each ball and returns parallel to its 
incident path. Optionally, the material may have a protective plastic coating to allow 
the surface to function under wet conditions, but at the expense of a reduced light 
return. For masked targets, balls can partially be occluded at the edge of the target, 
so that the measured centre is laterally displaced. The shift depends on the viewing 
direction and gives rise to a 3D target location which is above the physical centre of 
the target if a triangulation method is applied (Fig. 3.151). The opposite effect occurs 
for stamped targets and leads to a triangulated 3D point below physical target level. 
Both effects can result in a shift of about 50 µm and should be corrected by the 
processing software where a best estimate of the mechanical plane of the target is 
required. 
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Fig. 3.151: Position of virtual centre of circular retro-targets (after Dold 1997).  

   
a) Finger marks b) Scratches c) Water drops 

Fig. 3.152: Degraded retro-targets.  
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Retro-reflective target materials are sensitive to surface marking caused by 
fingerprints, dust, liquids and mechanical abrasion, as well as humidity and aging. 
In these cases, reflectivity and target outline are affected, which may lead to 
degradation in 3D measurement quality. This particularly affects measurement 
techniques which determine the target centre from the grey value distribution across 
the target image, e.g. centroid methods and template matching, see section 5.4.2. Fig. 
3.152 shows examples of degraded retro-targets. In such cases the plastic-coated 
versions may be of more practical use, since the ability to wipe these clean can more 
than offset their reduced light return and viewing angle. 

Further drawbacks of retro-targets are caused by:  
– relatively high manufacturing costs, particularly for large or coded targets; 
– finite target dimensions which restrict the target density which can be applied to 

the object surface; 
– self-adhesive targets can generally only be used once, therefore requiring a new 

set of targets for each object to be measured; 
– method of illumination produces images which show only the targets and no 

other object information. 

... Other target materials  
The drawbacks of retro-reflective targets mentioned above demands the use of 
alternative materials or targeting techniques for a number of applications.  

  
a) Target with a bright plastic centre (∅ = 50 mm) b) Target printed on paper (∅ = 15 mm) 

Fig. 3.153: Examples of artificial circular targets. 

Circular plastic targets with a central target point are suitable for long-term targeting 
of outdoor objects such as buildings and bridges, and are also useful for geodetic 
measurements. They can be produced in almost any size. Fig. 3.153a shows an 
example of a circular plastic target. 

Targets printed on paper (Fig. 3.153b) or adhesive film are simple to manufacture, 
for example with a laser printer. Self-adhesive targets can be used for temporary 
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targeting of locations where no long-term reproducibility in measurement is required. 
At minimal cost, this type of targeting offers an almost unlimited range of target 
designs with sharp edges and additional information. Luminous targets, where 
illumination at one wavelength is used to emit a different wavelength from a 
fluorescent material, can be very advantageous since the illumination wavelength 
can be filtered out at the camera removing reflections from shiny surfaces. Since 
printed targets are not retro-reflective, image contrast and target detectability 
strongly depend on high quality photography and sophisticated feature extraction 
algorithms during post-processing. The adhesive must also be selected with regard to 
ease of removal, potential damage to the object surface and resistance to heat. 

LED

diffuse
cover

opaque
cover   

Fig. 3.154: Conceptual design for a luminous target.  

Self-luminous (active) targets are more complex. They are used in those applications 
where no artificial illumination is possible or where a recording or measurement 
process is controlled by switching active targets on or off. Self-luminous targets can, 
for example, be designed with an LED (light emitting diode) that is mounted behind 
a semi-transparent plastic cover. These targets provide optimal contrast and sharp 
edges (Fig. 3.154). As examples, LEDs are incorporated into manual probes used in 
online measuring systems (Fig. 6.9).  

.. Illumination and projection techniques 

... Electronic flash 
Electronic flash systems can be attached and synchronized to almost all modern 
digital camera systems. Whilst the electronic flash output may occur in 1/70 000 s or 
less, camera shutters use synchronization times ranging between 1/30 s to 1/250 s. 
Electronic flash performance is characterized by the guide number Z. The guide 
number indicates the ability of the flash to illuminate an object at a given object 
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distance a in metres and a given f/number k. Higher guide numbers indicate greater 
light output. 

Za
k

=   (3.103) 

Ring flashes, which are circular flash tubes mounted concentrically around the lens, 
are of special importance for photogrammetry (see Fig. 3.155). They are mainly used 
for illuminating objects to which retro-reflective targets are attached. Their light 
output, which is concentric with, and close to, the lens axis, ensures the retro-
reflective target images are well separated from the background. It is important to 
note that electronic flash units with automatic exposure options utilize light 
measurement systems that are calibrated for general-purpose photography. Correctly 
illuminated retro-targets do not require as much light output and it is generally 
necessary to use manual controls in order to obtain consistent image quality. When 
illumination is controlled effectively, it is possible to make the background disappear 
almost completely in the image such that only reflecting target images remain 
(example in Fig. 7.30). Such a situation is ideal for rapid, automated target detection 
and measurement. 

  

Fig. 3.155: Digital SLR camera with  
ring flash. 

Fig. 3.156: Digital metric camera with integrated LED ring 
flash (AXIOS 3D). 

Modern LED technology makes it possible to construct almost any form of 
illumination geometry, for example on a ring or flat field. LED illumination is 
available in the colours blue, green, yellow, red and white, as well as infrared, which 
permits the generation of almost any colour mix. They are extremely robust, durable 
and have low energy requirements. If LEDs are used for high-voltage flash 
illumination, very high illumination levels can be achieved. Fig. 3.156 shows a digital 
metric camera with an integrated LED ring flash operating in the infrared. 
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... Pattern projection 
Arbitrary light patterns, for example lines, fringes or random patterns, can be 
projected onto object surfaces by means of analogue slide projectors or computer-
controlled digital projectors. These devices are typically used if the object does not 
provide sufficient natural texture to enable a photogrammetric surface 
reconstruction. They are also known as structured light projectors, particularly if the 
projected image is designed to form part of the surface reconstruction algorithm. Fig. 
3.157 shows examples of projectors used for industrial photogrammetry. The GSI Pro-
Spot system can project up to 22 000 circular dots onto an object. These can be 
measured like conventional targets to produce a dense object surface measurement. 

 
 

a) Point pattern projector (GSI)  c) Fringe projection sensor (Hexagon)  

 

concentrator
with light source lens

object

GOBO wheel with
aperiodic binary fringes

 
b) Component surface showing projected point 
pattern (GSI) 

d) GOBO principle (Fraunhofer IOF)  

Fig. 3.157: Surface pattern projection. 

Digital projectors use either LCD (liquid crystal display), LCOS (liquid crystal on 
silicon) or DLP technologies (digital light processing) with micro-mirror devices 
(digital micro-mirror device, DMD). For LCD and LCOS projectors, reflective 
condenser optics are used to illuminate an LCD array where the programmed line 
pattern is projected through a lens onto the object surface. LCD video projectors are 
also available which can project video and computer images in colour. Current 
projectors have resolutions up to 1600 x 1400 lines at frame rates of up to 60 Hz.  
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Higher light efficiency and image contrasts can be achieved by digital micro-
mirror devices (DMD). Movable micro-mirrors of about 5–16 µm size are attached to a 
semiconductor. They can be controlled digitally in order to reflect or absorb incident 
light. Micro-mirror chips are available with up to 4090 x 2160 points or more at frame 
rates of up to 100 Hz. 

GOBO projectors (GOes Before Optics) have a high-speed rotating disk supporting 
a pattern, e.g. aperiodic fringes (see section 6.7.3.4), which is projected via a lens onto 
the object surface of interest (Fig. 3.157d). Using this method, patterns can be 
projected with high radiant power (> 100 W) and at high projection frame rates of 
more than 10000 Hz, without being restricted in lateral resolution by the pixel 
structure of a digital light projector. 

If a projector is calibrated and oriented it can be treated as a camera in the 
photogrammetric process. In such a situation the position of a projection point within 
the slide or digital projection plane is analogous to an image coordinate measurement 
and the collinearity equations can be used to compute its direction. This approach is 
used for projectors integrated into structured light systems for optical 3D metrology. 
There is also an increasing demand in the areas of virtual and augmented reality, e.g. 
for the superimposition of CAD data onto the real object (section 6.12.3). 

... Laser projectors 
Laser projectors can be used to create a structured pattern on an object surface, e.g. 
with points or lines. In contrast to other light sources, high illumination powers can 
be achieved even for eye-safe laser classes (up to Class 2).  

Laser projectors can be classified into three groups: 
– Point projection:  

A single laser spot is projected onto the object, for example with a laser pointer. 
The resulting pattern is not a perfect circle and oblique projection angles make 
the spot elliptical. Interference between the coherent laser light and the 
roughness of the incident surface gives rise to speckle effects and generates an 
inhomogeneous intensity distribution within the laser spot which depends on 
viewpoint and any relative motion between laser, surface and viewpoint. As a 
result the optical centroid does not correspond to the geometric centre (Fig. 
3.158). For these reasons, laser point projection is seldom used for high accuracy 
photogrammetric targeting. 
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Fig. 3.158: Magnified image of laser points (left λ = 511 nm; right λ = 785 nm). 

– 1D line projection:  
Laser lines can be projected by means of a cylindrical lens (see Fig. 3.128) 
mounted in front of the laser source. Projected lines are used for triangulation 
with light-section methods (sections 6.4.1 and 8.4.2). 

– 2D pattern projection: 
Two-dimensional laser patterns can be created by special lenses and diffractive 
elements mounted in front of the laser source (Fig. 3.159). This is used, for 
example, in low-cost 3D sensors and 3D cameras (see section 6.7.6). 

     

Fig. 3.159: Laser projection of two-dimensional patterns by front lenses.  

Arbitrary patterns can be generated by fast 2D laser scanners. A laser beam is 
reflected by two galvanometer mirrors which rotate at high frequencies (up to 15 
MHz). If the projection frequency is higher than the integration time of the camera 
(or the human eye), a continuous two-dimensional pattern is visible in the image. 
Such systems can be used in industrial measurement to set out information on a 
surface. 

... Directional lighting 
Directional lighting techniques are of major importance since the measurement of 
particular object areas, for example edges, can be enhanced by the controlled 
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generation of shadows. This applies, for example, to the illumination of object edges 
which, without further targeting, are to be located by image edge detection (see 
section 4.4.7.2). Under such situations the physical edge of the object and the imaged 
edge must be identical.  

Depending on the relative position of object surface and camera, directional 
lighting must be chosen such that one surface at the object edge reflects light towards 
the camera, while the other surface is shadowed, or does not reflect into the camera 
(Fig. 3.160). In the image, contrast characteristics and edge structure depend on the 
reflective properties of the two surfaces, and on the sharpness of the actual object 
edge. For example, a right-angled edge can be expected to give better results than a 
curved or bevelled edge.  

drilling hole

light source

camera

image

reflections on surface

 

Fig. 3.160: Directional lighting for edge measurement.  

 
a) Directly from the camera 

 
b) According to Fig. 3.160 

 
c) Diffuse from below 

Fig. 3.161: Illumination of a drill hole in a metal component. 

Fig. 3.161 shows the influence of different types of illumination on the images of 
object edges on a metal workpiece. Illumination from the viewing direction of the 
camera (a) results, as expected, in a poor image of the edge. If light is incident from 
the opposite direction (b), the edge of the drilled hole is correctly located in the object 
surface. Conditions permitting, a diffuse illumination source located below the 
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drilled hole (c) will also provide a suitable image of the edge, as required for example 
in the optical measurement of pipes and tubes (section 6.6.2.1). 

... Reflectance Transformation Imaging 
RTI techniques (reflectance transformation imaging)  are first used to record an object 
with a sequence of images from a camera position which is stationary with respect to 
the object of interest. Each individual image in the sequence is illuminated from a 
different direction using either a large number of permanently installed lamps (Fig. 
3.162a) or a light source moving around the object (Fig. 3.162b). In this way, shadows 
are cast even on the smallest object details. The position of a light source in relation 
to the camera can be determined by means of the reflection on a bare metal sphere, 
which must be in the camera's field of view. This allows conclusions to be drawn 
about the surface texture, thus enabling the computation of surface normals for every 
pixel from sequentially acquired images using triplets of light sources. The surface 
normal solution is obtained independently of the surrounding pixels and without the 
need for a 3D surface model preserving the full spatial image resolution. RTI was 
developed as a tool for visualisation. For example, the method allows advanced 
texturing methods such as polynomial texture mapping to be used in order to 
determine the colour values of the surface under varying illumination conditions. 

  

 

a) Illumination using a light dome  b) Illumination using a moving light source  

Fig. 3.162: Arrangement of light sources for RTI. 

In the example of Fig. 3.163, local carving detail on a prehistoric bone shows how RTI 
generates shadows in the minimal carvings which are not revealed in the original RGB 
image due to its limited camera resolution. In associated software solutions, a 
fictitious light source can be moved interactively and continuously so that the viewer 
selects a suitable lighting direction in which the desired surface structures and 
reflectance become visible. 
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a) Original RGB image b) Visualisation using RTI 

Fig. 3.163: Visualisation of small structures by RTI. 

The technique can be extended to metric surface recording if the spatial relationship 
between the camera and each illumination location is established. Where the lamps 
are mounted statically in a dome, a network of photogrammetric images of the 
constellation of lights taken with a second camera can be used to compute each lamp 
location. If a motion system is used to move a single lamp, the motion system can be 
calibrated much like the end effector on a robot arm. When the camera and 
illumination information are available, shading-based 3D methods such as Shape 
from Shading or Photometric Stereo can be used to determine surface normals.  

RTI systems work exceptionally well for diffuse reflecting surfaces (section 
3.6.1.1). However, for specular surfaces, small rotations of the light-source geometry 
with respect to the surface geometry are needed to optimise the light returned to the 
camera. The objective is to avoid direct specular returns which will locally saturate 
the sensor, whilst optimising if possible, illumination geometries that capture near-
specular returns just below sensor saturation levels. In such cases it is also possible 
to record and determine the colour differences between specular and diffuse surfaces. 
This can be important in understanding metallic heritage objects. 
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 Analytical methods 

. Overview 

This chapter deals with the analytical methods which are essential for the calculation 
of image orientation parameters and object information (coordinates, geometric 
elements). The methods are based on measured image coordinates derived from both 
manual image measurement and digital image processing. 

Due to their differing importance in practice, the analytical methods of 
calculation are classified according to the number of images involved. It is common 
to all methods that the relationship between image information and object geometry 
is established by the parameters of interior and exterior orientation. Procedures 
usually have the following stages: 
– provision of object information (reference points, distances, geometric 

elements); 
– measurement and matching of image points for orientation (image coordinates); 
– calculation of orientation parameters (interior and exterior orientations); 
– object reconstruction from oriented images (new points, dense point clouds, 

geometric elements, maps, orthophotos). 

Depending on method and application, these stages are performed either 
sequentially, simultaneously or iteratively in a repeated number of processing steps. 
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Fig. 4.1: Methods and data flow for orientation and point determination. 
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Fig. 4.1 is a simplified illustration of typical methods for the determination of 
orientation parameters (exterior only) and for the reconstruction of 3D object 
geometry (new points, geometric elements). Both procedures are based on measured 
image coordinates and known object information. It is obvious that 3D point 
determination for object reconstruction cannot be performed without the parameters 
of exterior orientation, i.e. position and orientation of an image in space. 

If orientation data and coordinates of reference points or measured object points 
are available, further object reconstruction can be performed according to one or 
more of the following methods: 
– Numerical generation of points and geometric elements: 

Using images of known orientation for the determination of additional object 
coordinates and geometric elements by, for example, spatial intersection. 

– Graphical object reconstruction: 
Extraction of graphical and geometric information to create maps, drawings or 
CAD models.  

– Rectification or orthophoto production:  
Using various projections, the transformation of the measurement imagery into 
image-based products such as photo maps, image mosaics and 3D animations. 

With regard to the number of images involved, the following methods can be 
identified: 
– Single image analysis (see section 4.2):  

Analysis of single images which takes into account additional geometric 
information and constraints in object space (straight lines, planes, surface 
models etc.). Here a distinction is made between the calculation of object 
coordinates and the production of rectified images and orthophotos (Fig. 4.2), see 
also section 4.2.7 (Monoplotting). 
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Fig. 4.2: Methods of single image processing. 
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– Stereo image processing (see section 4.3):  
Visual or digital processing of image pairs based on the principles of stereoscopic 
image viewing and analysis, in particular for the measurement of natural features 
(non-targeted points) and the capture of free-form surfaces (Fig. 4.3). 

– Multi-image processing (see section 4.4):  
Simultaneous evaluation of an unlimited number of images of an object, e.g. for 
camera calibration or the reconstruction of complex object geometries. 
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Fig. 4.3: Methods of stereo image processing. 

If the geometric imaging model is appropriately modified, the techniques of 
orientation and 3D object reconstruction can be extended to panoramic applications 
(section 4.5) and multi-media photogrammetry (section 4.6).  

. Processing of single images 

.. Exterior orientation 

... Standard case 
The exterior orientation consists of six parameters which describe the spatial position 
and orientation of the camera coordinate system with respect to the global object 
coordinate system (Fig. 4.4). The terms pose or 6DOF are also used to denote the six 
orientation parameters. Fig. 4.5 illustrates the projective relationship between an 
object point P and the exterior orientation of an image. The standard case in aerial 
photography of a horizontal image plane is also used as the basic model in close-
range photogrammetry, i.e. for a non-rotated image the optical axis is approximately 
aligned with the Z axis of the object coordinate system. Terrestrial photogrammetry 
is covered in the next section as a special case. 
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The camera coordinate system has its origin at the perspective centre of the image 
(see section 2.1.2). It is further defined by reference features fixed in the camera 
(fiducial marks, réseau, sensor system). It can therefore be reconstructed from the 
image and related to an image measuring device (interior orientation, section 3.3.2).  
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Fig. 4.4: Exterior orientation of a camera in object coordinate system XYZ.  
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Fig. 4.5: Exterior orientation and projective imaging. 
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The spatial position of the image coordinate system is defined by the vector X0 from 
the origin to the perspective centre O'. The orthogonal rotation matrix R defines the 
angular orientation in space. It is the combination of three independent rotations 
ω,φ,κ about the coordinate axes X,Y,Z (see section 2.2.2). 
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R  : rotation matrix (4.2) 

The elements of the rotation matrix rij can be defined either as trigonometric functions 
of the three rotation angles or as functions of quaternions (section 2.2.2.2). 

With given parameters of exterior orientation, the direction from the perspective 
centre O' to the image point P' (image vector x') can be transformed into an absolutely 
oriented spatial ray from the perspective centre to the object point P. 

The exterior orientation further describes the spatial transformation (rotation and 
shift) from camera coordinates x*,y*,z* into object coordinates X,Y,Z (see Fig. 4.5): 
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  (4.3) 

... Special case of terrestrial photogrammetry 
For the special case of conventional terrestrial photogrammetry, the camera axis is 
approximately horizontal. In order to avoid singularities in trigonometric functions, 
the rotation sequence must either be re-ordered (see section 2.2.2.1) or the image 
coordinate system must be defined by axes x' and z' (instead of x' and y', see section 
2.1.2). In this case, image acquisition systems which provide angle measurements, 
e.g. video theodolites, can use rotation angles ω (tilt about horizontal axis), κ (roll 
around optical axis) and φ or α (azimuth) instead of the standard sequence ω,φ,κ 
(Fig. 4.6). It must be remembered here that geodetic angles are positive clockwise. 

The modified rotation order ω,φ,κ leads to the following rotation matrix 
(compare with eqn. 2.37): 
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Fig. 4.6: Exterior orientation for terrestrial photogrammetry. 

.. Collinearity equations 

The central projection in space is at the heart of many photogrammetric calculations. 
Thus, the coordinates of an object point P can be derived from the position vector to 
the perspective centre X0 and the vector from the perspective centre to the object point 
X* (Fig. 4.5): 

*
0= +X X X   (4.5) 

The vector X* is given in the object coordinate system. The image vector x' may be 
transformed into object space by rotation matrix R and a scaling factor m. Then, since 
it is in the same direction as X* (with z' = –c): 

* m= ⋅ ⋅X R x'   (4.6) 

Hence, the projection of an image point into a corresponding object point is given by:  
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  (4.7) 

The scale factor m is an unknown value which varies for each object point. If only one 
image is available, then only the direction to an object point P can be determined but 
not its absolute position in space. The 3D coordinates of P can only be computed if 
this spatial direction intersects another geometrically known element, e.g. 
intersection with a second ray from another image or intersection with a given surface 
in space. Range-measuring 3D cameras represent an exception because they directly 
deliver polar coordinates (section 6.7.6). 

By inverting eqn. (4.7), adding the principal point H'(x'0,y'0) and introducing 
correction terms Δx' (image distortion parameters), the image coordinates are given 
by (see also eqn. 3.52): 
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Note that the inverse rotation matrix is equal to its transpose. By dividing the first and 
second equations by the third equation, the unknown scaling factor m is eliminated:  
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As a check, this reduces to the simple non-rotated case (R = I) shown in Fig. 4.7 where, 
for example, the image-side ratio x':z' is equal to the object-side ratio (X–X0):(Z–Z0). 
After further rearrangement, the collinearity equations follow:  
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= + ⋅ +

⋅ − + ⋅ − + ⋅ −
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= + ⋅ +
⋅ − + ⋅ − + ⋅ −

 (4.10) 

These equations describe the transformation of object coordinates (X,Y,Z) into 
corresponding image coordinates (x',y') as functions of the interior orientation 
parameters (x'0,y'0,z'=–c,Δx',Δy') and exterior orientation parameters (X0,Y0,Z0,R) of 
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one image. Here (x'P,y'P) denote the measured (distorted) image coordinates whilst 
(x',y') are the non-distorted image coordinates of a point P which are reduced to the 
principal point (see eqn. 3.52). 

P'

P

O'

H'x'=x'P-x'0-∆x'

X-X0

h=Z-Z0

z' = –c

image plane

object plane

 

Fig. 4.7: Image and object-side proportions for the case R = I. 

An alternative form is given if the object coordinate system is transformed by shifting 
to the perspective centre and orienting parallel to the image coordinate system. 
Within the local coordinate system which results, object coordinates are denoted by 
x*,y*,z* (see Fig. 4.5):  

*
0

* 1
0

*
0

x X X
y Y Y

Z Zz

−

   −
   

= −   
   −   

R  : spatial translation and rotation (4.11) 

Multiplying out and substitution results in the following transformation equation: 

( )* 1
0

1 1
0

* *
0

−

− −

= ⋅ −

= ⋅ − ⋅

= + ⋅

x R X X
R X R X
X R X

 : spatial translation and rotation (4.12) 

where R* = –R–1. 

By introducing the image scale 1/m and corrections for shift of principal point and 
image errors, the collinearity equations for image coordinates are again obtained: 
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 : projection into image plane (4.13) 

In the following, principal point and image error corrections are ignored. By 
multiplying out eqn. (4.13) and multiplying through with 1/Z*

0, the following spatial 
projection equations are obtained: 
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 (4.14) 

X0
*, Y0

*, Z0
* are the components of vectors X0

* from eqn. (4.12). If the fractional terms 
are replaced by coefficients a',b',c', the three dimensional image equations are 
obtained as follows (see for comparison eqn. 2.21 and eqn. 4.24): 
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y
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+ + +

 (4.15) 

The collinearity equations demonstrate clearly that each object point is projected into 
a unique image point, if it is not occluded by other object points. The equations 
effectively describe image generation inside a camera by the geometry of a central 
projection.  

  
a) Original image (taken by Nikon D2X,  
f = 24 mm) 

b) Position of the camera (and image) in the object 
coordinate system 

Fig. 4.8: Exterior orientation of an image.  
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The equations (4.10) form the fundamental equations of photogrammetry. It is 
important to note that, since the observed measurements stand alone on the left-hand 
side, these equations are suitable for direct use as observation equations in an over-
determined least-squares adjustment (see section 2.4.2). For example, the collinearity 
equations are used to set up the equation system for spatial intersection (section 
4.4.7.1), space resection (section 4.2.3) and bundle triangulation (section 4.4). 
Additionally, they offer the mathematical basis for the generation of orthophotos 
(section 4.2.8.2) and the principle of stereo plotting systems. 

Example .:  
The following data are available for the image illustrated in Fig. 4.8: 

Interior orientation: c = –24.2236 mm x'0 = 0.0494 mm  y'0 = –0.2215 mm 
Exterior orientation: X0 = –471.89 mm Y0 = 11.03 mm Z0 = 931.07 mm 
 ω  = –13.059° φ  = –4.440° κ  = 0.778° 
Object coordinates: X1 = –390.93 mm Y1 = –477.52 mm Z1 = 0.07 mm 
 X2 = –101.54 mm Y2 = –479.19 mm Z2 = 0.10 mm 

Image coordinates of the object points are required in accordance with equations (2.32) and (4.10). 

Image coordinates: x'1 = 0.0104 mm y'1 = –6.5248 mm 
 x'2 = 6.7086 mm y'2 = –6.5162 mm 

From the object and image separations of both points, an approximate image scale is calculated as 
m ≈ .  

.. Space resection 

Orientation of single images is taken to mean, in the first instance, the process of 
calculating the parameters of exterior orientation. Since direct determination, for 
example by angle or distance measurement, is not usually possible or not accurate 
enough, methods of indirect orientation are employed. These make use of XYZ 
reference points whose image coordinates may be measured in the image. Common 
calculation procedures can be divided into two groups: 
1. Calculation of exterior orientation based on collinearity equations: 

The method of space resection provides a non-linear solution that requires a 
minimum of three XYZ reference points in object space and approximate values 
for the unknown orientation parameters (see also section 4.2.3.1). 

2. Calculation of exterior orientation based on projective relations: 
The most popular method in this group is the Direct Linear Transformation (DLT). 
It requires a minimum of six XYZ reference points, but provides a direct solution 
without the need for approximate values (see also section 4.2.4). Linear methods 
in projective geometry function in a similar way.  
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... Space resection with known interior orientation 
Space resection is used to compute the exterior orientation of a single image. The 
procedure requires known XYZ coordinates of at least three object points Pi which do 
not lie on a common straight line. The bundle of rays through the perspective centre 
from the reference points can fit the corresponding points in image plane P'i in only 
one, unique, position and orientation of the image (Fig. 4.9).1 Fig. 4.10 shows the 
respective intersection figure of image plane and control point tetrahedron for two 
images with different exterior orientations. 

z

X

Y

Z

P1

P'2

P'3

O'

P2

P3

x'

y'

P'1

Fig. 4.9: Space resection. 

Fig. 4.10: Intersection figures for two images with different exterior orientations.  

 
1 Strictly speaking, multiple solutions exist with only three reference points but a single unique 
solution is possible if at least one more non coplanar reference point is added (further information in 
section 4.2.3.4). 



  4 Analytical methods  

Using the measured image coordinates of the reference points, corrected for 
distortion and reduced to the principal point, and with known interior orientation, 
the following system of correction equations can be derived from the collinearity 
equations (4.10): 
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+ =
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, ,
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vy φ κF , z X Y Z  (4.16) 

Function F is a representation for equations (4.10) in which the red values are 
introduced as unknowns. This system can be linearized at approximate values by 
Taylor-series expansion and solved by least-squares adjustment. 

Each of the measured image points provides two linearized correction equations: 
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 (4.17) 

Here xi' and yi' are the corrected image coordinates, x'i
0 and y'i

0 are the image 
coordinates which correspond to the approximate orientation parameters. If 
quaternions are used to define rotations (see eqn. 2.38) then the partial derivatives 
with respect to ω,φ,κ, must be replaced by derivatives with respect to the algebraic 
parameters a, b, c, d. 

Simplification of the collinearity equations (4.10), by substituting kx and ky for the 
numerators and N for the denominator, leads to  

0' ' ' 'Xk
x x z Δx

N
= + +  0' ' ' 'Yk

y y z Δy
N

= + +  (4.18) 

from which the derivatives of (4.17) are given by:  
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The coefficients rij can be derived from the rotation matrix R according to eqn. (2.32).  

Example .:  
The following data are available for the space resection of the image in Fig. 4.8: 

Interior orientation: z' = –24.2236 mm  

Reference points: X1 = –390.93 mm Y1 = –477.52 mm Z1 = 0.07 mm 
 X2 = –101.5 mm Y2 = –479.19 mm Z2 = 0.11 mm 
 X3 = –23.22 mm Y3 = –256.85 mm Z3 = –0.09 mm 
 X4 = –116.88 mm Y4 = –21.03 mm Z4 = 0.07 mm 
 X5 = –392.17 mm Y5 = –21.46 mm Z5 = 0.11 mm 
 X6 = –477.54 mm Y6 = –237.65 mm Z6 = –0.16 mm 

Corrected image coordinates: x'1 = –0.0395 mm y'1 = –6.3033 mm 
 x'2 = 6.6590 mm y'2 = –6.2948 mm 
 x'3 = 9.0086 mm y'3 = –1.3473 mm 
 x'4 = 7.3672 mm y'4 = 4.5216 mm 
 x'5 = 0.2936 mm y'5 = 4.7133 mm 
 x'6 = –2.0348 mm y'6 = –0.7755 mm 

The parameters of exterior orientation are required: 

Exterior orientation: X = –. mm Y = . mm Z = . mm

 
 − −
 

=  
 − 

0.996908 0 013556 0 077392
0 030729 0 973815 0 225255
0 072312 0 226937 0 971221

. .
. . .
. . .

R  

 ω = –.°  φ = –.°  κ = .° 

... Space resection with unknown interior orientation 
For images from cameras with unknown parameters of interior orientation, such as 
amateur cameras, the number of unknown parameters, ignoring distortion in the first 
instance, increases by 3 (c, x'0, y'0) to a total of 9. Two more additional reference 
points, providing 4 additional image observation equations, are required for the 
solution (a minimum of 5 reference points in total). 

If all reference points lie approximately on a plane, then the normal system of 
equations for the resection is singular, since the problem can be solved by an 8-
parameter projective transformation between image and object planes (see equations 
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2.21 and 4.45). However, if one of the unknown parameters, such as the principal 
distance, is fixed to an arbitrary value, a unique solution can be computed. 

If a suitable spatial distribution of object points is available, the space resection 
approach can be used to calibrate the parameters of interior orientation c, x'0, y'0, Δx', 
Δy' from only one image. The number of elements to be determined increases to a total 
of 11 if the parameters A1 and A2 for radial distortion are introduced (6 for exterior and 
5 for interior orientation). In this case a minimum of 6 spatially distributed XYZ 
reference points are required. 

... Approximate values for resection 
In some situations, approximate values for the unknown parameters of exterior 
orientation can be readily determined by one of the following methods: 
– Approximate values by direct measurement: 

Approximate orientation values can possibly be measured on site, for example by 
geodetic methods or the use of GNSS and INS sensors. The camera position can 
often be determined by simple means such as estimation off a site plan. Even 
rotation angles can be estimated sufficiently well in simple configurations, for 
example without oblique or rolled views.  

– Small image rotations: 
If the coordinate axes of the image system are approximately parallel to the object 
coordinate system, initial rotation angles can be approximated by the value zero. 
The parameters for translation X0 and Y0 can be estimated from the centroid of 
the reference points; the object distance (Z–Z0) can be determined from the 
principal distance and approximately known image scale. 

– General solution: 
A general solution for approximate values of the six parameters of outer 
orientation can be derived with the aid of three reference points as the next 
method explains. 

... Resection with minimum object information 
In the general case of arbitrary position and orientation of an image, approximate 
values can no longer be easily estimated but must be computed. This can be 
performed according to the following scheme which may also be called space 
resection with minimum object information. It is noted that other solutions, including 
algebraic solutions, exist but are not discussed here. 

Given a minimum of three XYZ reference points, the position of the perspective 
centre O' is first determined. As shown in Fig. 4.11 a tetrahedron can be formed by the 
perspective centre and the three object points. From the simple properties of 
triangles, the angles α,β,γ of the tetrahedrons O'P'1P'2P'3 and O'P1P2P3 can be 
calculated from the measured image coordinates of P'1, P'2 and P'3 and the principal 
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distance c. However, the side lengths of the tetrahedron, di, i = 1…3, necessary to 
complete the location of O', remain unknown at this stage. 

If each of the tetrahedron sides is rotated into the plane of the three object points, 
the configuration of Fig. 4.12 is obtained. Taking as an example the triangle formed 
by object points P1, P2 and the required perspective centre O', it is obvious that a circle 
K1 can be constructed from known distance s12 and angle α calculated previously, and 
that O' lies on this circle. Similarly, circle K2 can be constructed from s23 and circle K3 
from s13. Three spindle tori shapes are formed when the three circles are rotated about 
their corresponding chords P1P2, P2P3, and P3P1 and their intersection points provide 
possible solutions for the spatial position of O'.  
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Fig. 4.11: Tetrahedron for space resection. 

However, rather than attempting to compute the intersection of these relatively 
complex shapes, the following iterative search strategy estimates the unknown side 
lengths of the tetrahedron and from these the perspective centre can be more simply 
calculated as described below. The search is made as follows. Starting near P1 in circle 
K1, a test point R is stepped around the circle and distances dR1 and dR2 calculated at 
test positions. Distance dR1 is an estimate of side length d1 and dR2 an estimate of side 
length d2. At each test position, distance dR2 is transferred into circle K2 where a 
corresponding value dR3 can be calculated from angle β and the known distance s23. 
Finally, dR3 is transferred into circle K3 where, in a similar way, distance d1 is again 
estimated as value d'R1. At the end of the loop a difference Δd1 = dR1–d'R1 results. If R is 
stepped further around the circle until it approaches P2, the sign of the difference at 
some position will change. At this position, sufficiently good approximate values for 
the side lengths di are available.  
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Fig. 4.12: Approximate values for space resection. 

When transferred into circle K2, dR2 in general creates two possible positions for O' and 
therefore two possible values of distance dR3. When transferred into circle K3 each 
value of dR3 generates two possible positions for O' which therefore leads to a total 
number of four possible solutions for the position of the perspective centre. To ensure 
that all possible solutions are investigated, and correct solutions with Δd1 = 0 are 
found, the circles must be searched in order of increasing size, starting with the 
smallest. 

Now the rotation and translation of the image coordinate system with respect to 
the object coordinate system can be determined. Using the side lengths estimated 
above for one of the solutions, the coordinates of reference points Pi, i = 1…3, are 
calculated in the camera coordinate system xyz, with origin O', which coincides with 
the image coordinate system x'y'z' (Fig. 4.11): 
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Approximate values for the rotation parameters can then be derived by a spatial 
similarity transformation (see section 2.2.4), since the coordinates of P1, P2, P3 are 
known in both the xyz and the XYZ systems (Fig. 4.9).  

0 for 1,2,3i im i= + ⋅ ⋅ =X X R x      (4.21) 
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Since the distances, PiPi+1 are the same in both systems, the scale factor, m, will be 
unity. The rotation matrix R rotates the xyz coordinate system parallel to the XYZ 
system. Finally, the required translation, X0, may be found using the xyz coordinates 
xi of a reference point, Pi, and rotated by R. For example, using P1: 

0 1 1= − ⋅X X R x   (4.22) 

For the reasons given above, the spatial position of O', and the corresponding rotation 
matrix, are not unique. With the correct solution, O' lies on the visible side of the 
object. With the wrong solution, the point is mirrored in the plane defined by the 
object points. To solve the ambiguity, the distances of points P3 and P'3 to the plane 
O'P1P2 are calculated with eqn. (2.151). With the correct solution, both distances have 
the same sign, hence lie on the same side of the object plane. Alternatively, the 
ambiguity can be resolved by use of a fourth reference point.  

The approximate values found in this way can then initiate a linearized solution 
to generate optimized values. The normal system of equations is set up and corrective 
additions added to the solutions in a sequence of k iterative calculations until these 
additions lie below a threshold value: 
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 (4.23) 

Amongst other applications, space resection is used to compute initial orientation 
values from approximate object point coordinates (see section 4.4.4.1). If the mirror 
effect mentioned above is not taken into account, then wrong approximations can 
result for plane object surfaces. 

... Quality measures 
In addition to the accuracy of image coordinate measurement, the quality of the 
resection depends on the number and distribution of reference points. Measured 
image points should ideally fill the image format. If all the reference points are 
located on or close to a common straight line, the normal system of equations 
becomes singular or numerically weak. Similarly, there is no solution if object points 
and perspective centre are all located on the same danger surface such as a cylinder 
(see also section 4.3.3.6). 

As in other adjustment problems, the a posteriori standard deviation of unit 
weight s0 can be used as a quality criterion for the resection. It represents the internal 
accuracy of the observations, in this case the measured image coordinates. In 
addition, the standard deviations of the estimated orientation parameters can be 
analysed. They can be derived from the covariance matrix and hence depend on s0. 
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.. Linear orientation methods 

... Direct linear transformation (DLT) 
Using the Direct Linear Transformation (DLT) it is possible, by solving a linear system 
of equations, to determine the orientation of an image without the need for 
approximate initial values. The method is based on the collinearity equations, 
extended by an affine transformation of the image coordinates. No image coordinate 
system fixed in the camera is required.  

The transformation equation of the DLT is given by: 
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 (4.24) 

Here x and y are the measured comparator or image coordinates and X,Y,Z are the 3D 
coordinates of the reference points. The coefficients L1 to L11 are the DLT parameters 
to be estimated and from these the parameters of interior orientation (3) and exterior 
orientation (6) can be derived. The two remaining elements describe shearing and 
scaling of the affine transformation. By re-arrangement of eqn. (4.24) the following 
linear system is obtained: 
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Determination of the 11 DLT parameters requires a minimum of 6 reference points, 
each of which provides two equations, resulting in minimum total of 12 equations. 
The solution is calculated according to the usual model  

ˆ= ⋅ −v A x l  

for which the design matrix A is set up as follows: 
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









 
 

 (4.26) 

Since equations (4.26) are linear in the unknowns, Li, no approximate values of the 
unknown parameters are required. Because of the affine transformation applied to 
the measured image coordinates, there is no need for an image coordinate system 
defined by reference points fixed in the camera, such as fiducial marks. Instead it is 
possible to make direct use of measured comparator coordinates and, in general, 
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coordinates from an arbitrary image measuring device with non-orthogonal axes and 
different axial scale factors, e.g. pixel coordinates. Images from non-metric cameras, 
which have no image coordinate system or have an unknown interior orientation, can 
therefore be evaluated by this method. 

Because of its robust linear form, the DLT is also used for the calculation of 
approximate exterior orientation parameters prior to a bundle adjustment. The more 
familiar orientation parameters can be derived from the DLT parameters as follows: 

With 
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the parameters of interior orientation are obtained as follows: 
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  (different scales in x and y)  (4.28) 

The parameters of exterior orientation, as defined by the elements of rotation matrix 
R, are given by 
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The position of the perspective centre is given by 

1

0 1 2 3 4

0 5 6 7 8

0 9 10 11 1

X L L L L
Y L L L L
Z L L L

−
     
     

= − ⋅     
     
     

  (4.30) 

It is sometimes possible in this process that the determinant of the rotation matrix R 
is negative. This must be checked and, if necessary, the matrix must be multiplied by 
–1 to make its determinant positive. If the determinant of the rotation matrix in (4.29) 
is negative, L must be multiplied by –1.  
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To avoid possible numerical uncertainties, the elements of the rotation matrix 
must be normalized to an orthonormal matrix (see section 2.2.2.1). The individual 
rotation angles can be further derived according to eqn. (2.36), with due regard to the 
ambiguities indicated. The DLT model can be extended by correction terms for radial 
distortion. 

Example .:  
Using the six image and reference points from example ., a DLT is calculated: 

DLT parameters: L1  =   0.025599 L2  =   0.000789 L3  =  0.000914 
 L4  = 10.341817 L5  = –0.000347 L6  =  0.025008 
 L7  = –0.008166 L8  =   4.986816 L9  =  0.000082 
 L10 = –0.000239 L11 = –0.000551 

Applying eqns. (4.27ff), the following orientation parameters are then derived: 

Interior orientation: cx =  42.0688 mm cy =  43.1748 mm 
 x'0 =   3.8202 mm  y'0 = –4.0620 mm 

Exterior orientation: X0 = –471.12 mm Y0 = 318.14 mm Z0 = 1604.96 mm 

 

 − −
 

=  
 − 

0.990725 0.000546 0.135153
0.066680 0.917685 0.393592
0.118394 0.397306 0.909295

R  

 ω = –23.4056° φ = –7.7675° κ = 0.0316° 
The DLT result departs significantly from the space resection calculation in example .. The reason 
is that in this example the object points lie close to a plane. In this case, the DLT generates values 
which are not suitable for either orientation or calibration.  

Together with the benefits of the DLT mentioned above, there are some drawbacks. If 
the parameters of interior orientation are known, the DLT has an excess of 
parameters. In addition, singular or weakly conditioned systems of equations arise if 
all reference points are located on a common plane, or if the denominator in 
equations (4.24) is close to zero. Measurement errors in the image coordinates, and 
errors in reference point coordinates, cannot be detected by the DLT and this results 
in false parameters. Finally, the minimum number of 6 reference points cannot 
always be provided in real applications. 

... Perspective projection matrix  
The creation of an image point from an object point can also be formulated using the 
methods of projective geometry. Here object and image coordinates are expressed as 
homogeneous vectors. Object coordinates X are transformed into image space with 
image coordinates x' using a 3x4 projection matrix P. 
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= ⋅Px' X  (4.31) 
where  

   = ⋅ ⋅ − = ⋅ − ⋅   P K R K R R0 0I X X  (4.32) 

P is based on the parameters of exterior orientation R and X0, as well as a calibration 
matrix K which contains five parameters of interior orientation. 

     
     

= + ⋅ = +     
     
     

0 0

0 0

1 ' ' 0 0 ' '
0 1 ' ' 0 0 0 (1 ') '
0 0 1 0 0 1 0 0 1

s x c c cs x
m y c c m yK  (4.33) 

In addition to the coordinates of the perspective centre (x'0,y'0,c), s' and m' describe 
the shear and differential scales of the image coordinate axes. 

With the six parameters of exterior orientation, P therefore has 11 independent 
transformation parameters. They can be solved in a linear system of equations and 
transformed into the 11 DLT parameters. 

Written in full, (4.32) gives the following system of equations: 

0 11 12 13 0

0 21 22 23 0

31 32 33 0

' ' 1 0 0
0 (1 ') ' 0 1 0
0 0 1 0 0 1

c cs x r r r X
c m y r r r Y

r r r Z

     −
     

= + ⋅ ⋅ −     
     −     

P  (4.34) 

(4.31) can therefore be written as follows: 

0 11 12 13 0

0 21 22 23 0

31 32 33 0

' ' ' 1 0 0
' 0 (1 ') ' 0 1 0
' 0 0 1 0 0 1

1

X
u c cs x r r r X

Y
v c m y r r r Y
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w r r r Z
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x'  (4.35) 

From the right-hand side, (4.35) expresses a translation of the perspective centre, 
followed by a rotation R, and finally a perspective scaling and correction to the 
principal point, in image space. With x'=u'/w' and y'=v'/w' the classical collinearity 
equations can be derived. Distortion effects are taken into account in the above model 
by the addition of correction values Δx',Δy': 

     +
     

= + + = ⋅ +     
     
     

0 0

0 0

' ' ' 1 0 ' ' '
0 (1 ') ' ' 0 1 ' 0 (1 ') '
0 0 1 0 0 1 0 0 1

c cs x Δx Δx c cs x
c m y Δy Δy c m yK'  (4.36) 
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.. Object position and orientation (pose) by inverse resection  

... Position and orientation of an object with respect to a camera 
An inverse space resection enables the determination of the spatial position and 
orientation of an object, also called pose, with respect to the 3D camera coordinate 
system. The procedure is sometimes known as the 6 DOF (degrees of freedom) 
calculation for the target object. 

Based on the parameters of exterior orientation described in equations 4.1 and 
4.2, the relationship between coordinates of a point, X in the object system and x* in 
the camera system (see Fig. 4.5), is given by:  

= + ⋅0
*X X R x   (4.37) 

Rearranging (4.37) gives: 

( )0
1* −= ⋅ −x R X X   (4.38) 

where *x  gives the coordinates with respect to the camera system of a point on the 
object.  

When expanded, eqn. (4.38) gives: 

0 0
1 1* ( ) ' '− −= − ⋅ + ⋅ = + ⋅x R X R X X R X  (4.39) 

This has the same form as eqn. (4.37) and can be interpreted as an inverse operation, 
i.e. object coordinates in the camera system rather than vice versa. If X0 and R are 
obtained from a space resection, then X'0 and R' are the inverse resection values. 
Typically, this is applied to the monitoring of a known object. If the camera remains 
fixed during an imaging sequence, the spatial motion (pose) of a known object can be 
fully determined by repeated inverse space resections. 

... Position and orientation of one object relative to another 
The spatial relationship between two objects can also be calculated by space 
resection, provided that both objects appear in the same image. In this case a 
reference object is defined with its own local coordinate system, XYZ, in which the 
position and orientation of a second object is to be determined. This second object, 
here called the probe or locator, has a separate coordinate system, xyz (Fig. 4.13). Two 
space resections are calculated using control points given in each of these two 
coordinate systems (see also eqn. 4.3): 

0 *Rm= + ⋅ ⋅X X R x  : resection on reference points (4.40) 

0 *Lm= + ⋅ ⋅x x R x  : resection on locator points (4.41) 

Rearranging (4.41) gives:  
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−= ⋅ ⋅ −1
0

* 1 ( )Lm
x R x x   (4.42) 

Substituting for x* in (4.42) from (4.40) eliminates the scale factor m to give:  

1
0 0

0 0

( )
( )

R L
−= + ⋅ ⋅ −

= + ⋅ −
X X R R x x
X X R x x

  (4.43) 

in which 
x: position of a locator point P, e.g. a probing tip (see Fig. 4.13), within its 

xyz system 
X: position of the same point P in the XYZ reference system (which is the 

result required) 
x0, X0: coordinates of the projection centre within locator xyz and reference 

XYZ systems respectively 
RL, RR: rotation matrices of camera axes with respect to locator xyz and 

reference XYZ systems respectively 
R: rotation matrix of the locator xyz axes with respect to the XYZ axes 

Fig. 4.14 illustrates an application in which a hand-held measurement probe is 
monitored by a single camera. The 6DOF calculation is made in real time at a rate of 
25 Hz. Since the reference object is also simultaneously located, any movement of the 
reference object or camera has no effect on the calculation of relative 6DOF between 
reference and probe. Fig. 6.94 shows another industrial example of the same 
principle, used to measure the spatial movements of a wheel on a moving car.  

X

Y

Z
O'

x

y
z

X0

X

P

reference
object

locator

x

x0

  

Fig. 4.13: 6DOF relation between two objects and a 
camera. 

Fig. 4.14: Example of a 6DOF application with 
reference object and locator (AXIOS 3D). 
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The accuracy of the calculated 6DOF values depends on a number of parameters, 
including: 
– focal length of camera;  
– physical extent of the observed targets;  
– distance of targets from camera;  
– accuracy of the reference target locations and the image measurement.  

  
a) Translation error as a function of focal length b) Rotation error as a function of focal length  

  
c) Translation error as a function of locator size d) Rotation error as a function of locator size  

  
e) Translation error as a function of image 
measurement accuracy 

f) Rotation error as a function of image 
measurement accuracy  

Fig. 4.15: Simulated errors in 6DOF calculation. 

In general, rotations of either body around an axis perpendicular to the image plane 
(roll angle), as well as lateral shifts (parallel to the image plane), can be determined 
very accurately. Determinations of movement in the camera’s viewing direction (Z), 
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and around the two remaining axes of rotation, is less accurate and significantly more 
sensitive to measurement and errors in camera orientation and calibration. Fig. 4.15 
shows examples of position and rotation errors in a 6DOF calculation relating to the 
scenario illustrated by the application in Fig. 4.14. This problem also applies to 6DOF 
targets (section 6.2.2.4), whose orientation in space is captured with only one camera. 

.. Projective transformation of a plane 

... Mathematical model 
A special case is the reconstruction of plane object surfaces. The central perspective 
projection of an object plane onto the image plane is described by the projective 
transformation (see section 2.2.1.6), also known as homography.  

By setting Z = 0 in eqn. (4.15), the transformation equations for the central 
projection of a plane are obtained: 

0 1 2

1 2

' ' '
'

1 ' '
a a X a Y

x
c X c Y
+ +

=
+ +

 0 1 2

1 2

' ' '
'

1 ' '
b b X b Y

y
c X c Y
+ +

=
+ +

 (4.44) 

or alternatively in the inverse form: 

0 1 2

1 2

' '
' ' 1

a a x a y
X

c x c y
+ +

=
+ +

 0 1 2

1 2

' '
' ' 1

b b x b y
Y

c x c y
+ +

=
+ +

 (4.45) 

In order to determine the eight parameters of eqn. (4.45), at least four reference points 
are required on the plane, no three of which may lie on a common straight line.  

The (over-determined) system of equations is solved by an iterative least-squares 
adjustment. Using the approximate initial values: 

1 2 1a b= =  0 2 0 1 1 2 0a a b b c c= = = = = =  

and the substitution 

1 2' ' 1i i iN c x c y= + +  

the following observation equations are derived: 

0 1 2 1 2

0 1 2 1 2

' ' ' '1

' ' ' '1

i i i i i i i
Xi

i i i i i i

i i i i i i i
Yi

i i i i i i

x y x X y X lx
v da da da dc dc

N N N N N N
x y x Y y Y ly

v db db db dc dc
N N N N N N

= + + + + −

= + + + + −

 (4.46) 

where  
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The approximate solution values at iteration k are adjusted by the computed 
corrections to the unknowns and the process repeated until the changes are no longer 
significant, i.e.: 

1
0 0 0

and so on

k k ka a da+ = +  

Object coordinates Image coordinates  
(X0 = 7500, Y0 = 4000, Z0 = 10000,  

ω = 0°, φ = 0°, κ = 30°) 

Coefficients 

 
 

 

a0=7500.0000 

a1= 433.0127 

a2=-250.0000 

b0=4000.0000 

b1= 250.0000 

b2= 433.0127 

c1=   0.0000 

c2=   0.0000 

 Image coordinates  
(X0 = 15000, Y0 = 4000, Z0 = 10000,  

ω = –20°, φ = 40°, κ = 30°) 

Coefficients 

Pt X Y 

1 0 0 

2 0 3500 

3 7500 8000 

4 15000 3500 

5 15000 0 

 

a0=6070.4880 

a1=1183.9872 

a2=-272.1012 

b0= 360.2976 

b1= 386.9559 

b2= 639.9948 

c1=   0.0482 

c2=  -0.0004 

 

Fig. 4.16: Projective transformation of a plane pentangle. 

Equations 4.45 are non-linear in the coefficients a,b,c. A direct, non-iterative 
calculation of the unknown parameters is possible if linear equations (2.22) are used. 
This results in the following equations  
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which can be solved directly according to the scheme: 

ˆ⋅ =A x l   (4.48) 

Using the transformation parameters of (4.45) further image coordinates can be 
transformed into object coordinates. 

Fig. 4.16 shows the position of five plane object points and the corresponding 
image coordinates with their related transformation parameters. For the special case 
where c1 = 0 and c2 = 0, the projective transformation (4.45) reduces to an affine 
transformation (eqn. 2.12). For the further case of parallel object and image planes 
(Fig. 4.16 top right), eqn. (4.45) can be replaced by the plane similarity transformation 
(2.5). 

By the use of homogeneous coordinates, the projective transformation of a plane 
can be formulated as a homogeneous transformation. 
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  (4.49) 

This formulation is known as homography. Since the matrix H can be arbitrarily 
scaled without altering its projective properties, this shows that there are eight 
degrees of freedom in the transformation, as there are in eqn. (4.45). Thus, the matrix 
could also be normalized to h33=1. From this a set of linear equations is obtained which 
can be solved directly. 

333231
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''
''
''

hyhxhw
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   (4.50) 

If the last equation is inserted into the first two and all terms containing lower case 
coordinates are moved to the right of the equation, we obtain: 

YyhYxhhyhxhYh
XyhXxhhyhxhXh

⋅⋅−⋅⋅−+⋅+⋅=⋅
⋅⋅−⋅⋅−+⋅+⋅=⋅

''''
''''

323123222133

323113121133  (4.51) 

If the normalization to h33 = 1 is applied, the same equations as (4.47) are obtained. 
Alternatively, the term to the left of the equal sign can be moved to the right side and 
the equation set to zero. In this case an eigenvalue decomposition will provide the 
solution. The eigenvector corresponding to the smallest eigenvalue contains the 
desired transformation parameters.  
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... Influence of interior orientation 
The model of central projection described above assumes straight line rays through 
the perspective centre. Although the spatial position of the perspective centre 
(principal distance c, principal point x'0,y'0) is modelled by the parameters of the 
projective transformation, it is not possible to compensate here for lens distortion. 

The image coordinates must therefore be corrected for lens distortion before 
applying the projective transformation. For optimal accuracy, when applying 
distortion parameters derived from a separate process, care should be taken in case 
they are correlated with the interior and exterior orientation parameters. Further 
usage of these parameters might involve a different mathematical model where, 
strictly speaking, the distortion parameters should be applied with their full variance-
covariance matrix from the bundle adjustment. However, this transfer of correlation 
information is rarely done. A determination of distortion parameters which is 
numerically independent of the orientation parameters can, for example, be done 
using the plumb-line method (see section 7.3.1.2).  

... Influence of non-coplanar object points 
Object points which do not lie in the plane of the reference points have a positional 
error in image space after projective transformation. This shift depends on the height 
above the reference plane and on the position of the point in the image. The image 
plane is here assumed to be parallel to the reference plane. Since Fig. 4.17 represents 
a vertical plane containing the projection centre, the shift Δr' is radial with respect to 
the principal point:  

'' rΔr Δh
h

=   (4.52) 

Multiplying by the image scale gives the corresponding shift in the reference plane: 

' 'hΔr Δr m Δr
c

= = ⋅   (4.53) 

The equations above can also be used to determine the maximum height of a point 
above the reference plane which will not exceed a specified shift in image space. 

Example .:  
For the measurement of a flat plate, a digital video camera is used with following specifications: c = 
8 mm, h = 2.5 m, r'max = 5 mm. The maximum offset above the object plane must be calculated which 
ensures that the resulting shift in object space Δr is less than 1mm. 

1. Image scale: = = =
2.5 m 312

0.008 m
hm
c

 

2. From (4.52) and (4.53) Δ Δ= = ⋅ =
max

8 mm1.0 mm 1.6 mm
' 5 mm
ch r

r
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Fig. 4.17: Shift in image space caused by height differences. 

... Measurement of flat objects  
If the projective transformation between any object plane and the image is known, 
measured values such as coordinates, lengths, areas or angles can be determined 
directly in the original image. Fig. 4.18 illustrates the measurement of flat panels on 
a roof. The parameters of the projective transformation are determined beforehand 
with the aid of a reference cross visible in the middle of the image. Every pixel or 
coordinate in the image can therefore be directly transformed into object coordinates 
with respect to the reference plane (and vice versa). 

  

Fig. 4.18: Image showing overlay results from 
in-plane measurement. 

Fig. 4.19: Simulated errors of object points 
measured using an oblique image of a flat roof. 



  4 Analytical methods  

Measurement accuracy depends strongly on the perspective of the image. As usual, it 
reduces with increasing object distance, which results in measurements of very 
variable accuracy in the image. Fig. 4.19 shows simulated error vectors which would 
be expected in object points measured by oblique imaging of a flat roof. In this case 
the control points (blue) are in the lower right corner. The systematic and, in object 
space asymmetric, error distribution is obvious. 

.. Monoplotting  

The spatial ray defined by an image point can be intersected with the object surface, 
if interior and exterior orientation of the image are known and a geometric model of 
the surface exists. The object model can be defined by a known mathematical element 
(straight line, plane, cylinder, etc.), or by a dense grid of points (digital surface or 
elevation model). The intersection point of the ray and the object model is the desired 
3D object coordinate. The procedure is known as monoplotting and is explained in the 
next two sections in more detail.  

... Standard geometric shapes (geometric primitives) 

.... Plane 
The principle of monoplotting within an object plane is illustrated in Fig. 4.20. The 
3D coordinates of the object point P result from the intersection of the object surface 
and the ray defined by the image point P' and the perspective centre O'. The object 
plane can be defined, for example, by prior photogrammetric measurement of three 
points. The parameters of the plane can be calculated from a least-squares best-fit 
adjustment (see section 2.3.2.2). 
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Fig. 4.20: Single image evaluation within an object plane. 
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A variation of plane monoplotting is represented by a triangular mesh where each 
individual triangle of the mesh defines a unique plane (eqn. 2.150). In addition to 
calculation of the intersection point of ray and plane, it is also necessary to test if the 
point lies with the triangular area.  

.... Sphere and cylinder 
In principle, any geometric element which can be described analytically can be 
intersected with an image ray. Spheres and cylinders are useful examples. 

The intersection point of a straight line with a sphere can be solved by 
introducing the line in parameterized form (eqn. 2.139) into the sphere equation 
(2.158). This may result in two solutions (line within sphere), one solution (line 
tangential to sphere) or no solution (line outside sphere).  

For a cylinder the same solutions exist as for a sphere. Additionally, it is 
necessary to check if the intersection point lies beyond the ends of the cylinder, which 
has finite length. 

... Digital surface models 
An arbitrary or free-form object surface can be approximated by a suitably dense grid 
of 3D points (digital surface model, DSM, see section 2.3.3.1). The point grid can be 
regular, e.g. ΔX = ΔY = const., or irregular. Object edges (breaklines) can be modelled 
by special point codes or by additional vector data (polygons). Inside the object model 
further points can be interpolated. 

Fig. 4.21 shows the principle of spatial point determination from a single image 
using a digital surface model (DSM). The spatial direction defined by the measured 
image coordinates x', y' and c in the image coordinate system (image vector x') is 
transformed into the spatial vector X* using the exterior orientation parameters 
(similarity transform with arbitrary scale, e.g. m = 1). This ray intersects the DSM at 
point P using a local surface plane defined by the four adjacent points. 

In order to calculate the point of intersection, the straight line g is constructed 
between the intersection point S of X* and the XY plane, and the foot of the 
perpendicular OXY from the perspective centre to the XY plane (Fig. 4.22). A search for 
point P starts along this line at OXY until its interpolated height Z lies within two Z 
values of adjacent profile points. 

If the DSM is defined by a triangular mesh instead of a rectangular grid structure, 
the intersection point is calculated as for a plane (see section 4.2.7.1). With complex 
3D surfaces (see section 2.3.3) multiple triangles may be intersected, hence the point 
closest to the image must be selected.  

Monoplotting is not very popular in close-range photogrammetry, but is gaining 
importance in CAD technology and through the combination of cameras with 3D point 
cloud recording, e.g. by laser scanners. Fig. 4.23 shows an example of monoplotting 
using a 3D point cloud from a terrestrial laser scanner which is equipped with a high-
resolution camera (see section 6.8.1). Here geometrical primitives such as cylinders 
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are extracted from the measurement data. The evaluation is semi-automatic, 
requiring visual interpretation of the image. The enlargement of the image extract in 
Fig. 4.23b makes clear that a fully automatic evaluation of the complex point cloud is 
not practicable without additional image information. 
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Fig. 4.21: Point determination in a digital surface 
model (DSM). 

Fig. 4.22: Search and interpolation of object 
point P(XYZ) within the height profile above g. 

  
a) Measurement image overlaid with simulated 
cylinder in object space 

b) Image detail with overlaid 3D point cloud 

Fig. 4.23: Monoplotting applied to the measurement of pipework by intersecting image rays with 
the 3D point cloud from a terrestrial laser scanner (Riegl, Phocad).  



 4.2 Processing of single images   

.. Rectification 

... Plane rectification 
In addition to coordinate determination, the projective transformation is also used as 
the mathematical basis for digital image rectification. The aim is the transformation 
of an image into a new geometric (graphical) projection, in most cases a parallel 
projection.  

For rectification of a plane, the complete image format, or a defined area of 
interest, is transformed into the reference system (target system) by the parameters of 
a single projective transformation, i.e. the same transformation coefficients are 
applied to every point in the source image area. In contrast, for non-planar objects 
every image point must be rectified as a function of its corresponding XYZ coordinates 
(differential rectification or orthophoto production, see section 4.2.8.2). 

The digital projective rectification of a rectangular object plane (here: XY) is 
calculated in the following steps:  
1. Measurement of reference and image points: 

A plane projective transformation requires at least four XY control points lying 
in a common plane and their corresponding image coordinates must be 
measured. 

2. Calculation of transformation parameters: 
From the measured image and reference point coordinates, the coefficients a', 
b' and c' of the projective transformation are calculated (see section 4.2.6), by 
least-squares adjustment if required. 
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3. Definition of the rectangular object area to be rectified: 
Lower left corner:  X1, Y1 
Upper right corner: X2, Y2 

4. Definition of output scale or print resolution: 
The output scale (map scale) mk and/or the desired output resolution (print, 
screen) Δxk,Δyk of the rectification, define the step width (point distance) in object 
space. Often it will be defined according to the pixel size in object space of the 
original image (GSD, see section 1.2.3). 

5. Definition of object resolution ΔX,ΔY, which is used to “scan” the object: 

k kΔX m Δx=  k kΔY m Δy=  

6. For each point on the object plane (X,Y)i the corresponding image or pixel 
coordinates (x',y')i are calculated using the parameters of the projective 
transformation. 
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7. At (x',y')i the colour value of the digital image is determined. This is usually done 
by interpolation since (x',y')i are real numbers which do not correspond to the 
integer position of a pixel (indirect rectification, see section 5.3.2): 
g'i = g(x',y')i 

8. The interpolated colour value g'i is stored in the output image at pixel position 
(x',y')i: 
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1

i k

i k

x x j Δx
y y k Δy
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= + ⋅

 ( , ) 'i i ig x y g=  

In close-range photogrammetry, digital rectification has gained in importance, e.g. 
for the production of rectified image mosaics of building façades, or for the 
superposition of natural textures onto CAD elements (see section 5.3.3). Fig. 4.24 
shows an example of the plane rectification of a façade. Object areas outside the 
reference plane (marked in red) are distorted. The curved image edge is created by 
considering the distortion of the input image. The digital image processing procedure 
for creating the new image is presented in section 5.3.1.  

 
a) Original image b) Rectification onto façade plane 

Fig. 4.24: Example of plane rectification. 

... Differential rectification (orthophotos) 
For the production of an orthophoto by differential rectification, each point 
(infinitesimally small object patch) is projected individually according to its XYZ 
coordinates in order to create a new image which is a parallel projection of the object 
surface. Compared with the process described in section 4.2.8.1, a digital orthophoto 
displaying a rectangular area of the ground plane XY is determined in the following 
steps (Fig. 4.25a): 
1. Determination of the interior and exterior orientation of the image (or all images): 

Calibration and orientation data are determined according to the methods 
described in section 3.3.2 and 4.4. 
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2. Definition of the rectangular area of interest and resolution on the object: 
3. For each grid point (X,Y)i the corresponding Zi value is interpolated in the given 

surface model, e.g. by bilinear interpolation (see section 2.2.1.5): 
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4. Using the collinearity equations (4.10), and the given parameters of interior and 
exterior orientation, the image coordinate (x',y')i corresponding to (X,Y,Z)i is 
calculated: 
x'i = F (X0, Y0, Z0, ω, φ, κ, x'0, c, Δx', Xi, Yi, Zi) 
y'i = F (X0, Y0, Z0, ω, φ, κ, x'0, c, Δy', Xi, Yi, Zi) 

5. At position (x',y')i the stored colour value is extracted from the digital image. The 
colour value is usually interpolated, since (x',y')i are floating point numbers 
which do not match the integer pixel raster of the image (see section 5.3.2): 
g'i = g(x',y')i 

6. The interpolated colour value g'i is transferred into the output image at position 
(x,y)i.  

The method described above transforms each point of the orthophoto into the original 
image. In order to reduce the computational effort, the anchor-point method can be 
used. This transforms only a coarse grid of points from which local colour values can 
be linearly interpolated in the image. Fig. 4.25b shows an orthophoto of the image 
from Fig. 4.8 created using the corresponding surface model. In comparison, Fig. 
4.25c shows the rectification calculated by plane projective transformation. At first 
glance, this looks identical to the orthophoto. However, the difference between the 
images, shown in Fig. 4.25d, demonstrates clear differences between the methods at 
all points where there are significant height differences from the reference plane 
(black: no difference, white: large difference). Object areas which are not described 
by the surface model are therefore shifted and distorted in image space. 

Occluded object areas can only be projected in the orthophoto if additional 
images from different stations are available and integrated into the orthophoto 
process. The method however requires either extensive ray tracing or simultaneous 
multi-image processing, for example using object-based multi-image matching (see 
section 5.5.6). 

The resulting orthophoto is geometrically correct only when all visible object 
elements are located to a corresponding accuracy in the digital surface model (DSM). 
Suitable surface models can be generated by point clouds which are created, for 
instance, by laser scanning, 3D cameras, or dense stereo or multi-image matching. 
Fig. 4.26 shows an example of a rectified façade generated with both a complete and 
incomplete surface model from laser scanned data. It can clearly be seen that object 
elements not part of the DSM are laterally shifted due to perspective imaging (see also 
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point B in Fig. 4.27). The complete, geometrically error-free rectification is known as 
a true orthophoto. 
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a) Principle of orthophoto calculation b) Orthophoto calculated using surface model 

  

c) Rectification by plane transformation d) Difference image between b) and c) 

Fig. 4.25: Creation of orthophotos. 

 



 4.2 Processing of single images   

 
a) Orthophoto with incomplete surface model  

 
b) True orthophoto with complete surface model 

Fig. 4.26: Orthophoto generation with different surface models.  

Even in true orthophotos, which are based on complete surface models, geometric 
errors may occur. One typical effect is known as double mapping (ghosting) where 
object areas appear twice in the final image as explained by Fig. 4.27. Point A is 
correctly projected because terrain and surface model are identical and occluding 
objects do not interrupt the imaging ray. Point B illustrates the lateral displacement 
which can occur when a point is re-projected when using a terrain model (BT) instead 
a surface model (BS). As a result, the image of the left façade will appear in the 
orthophoto. It should, of course, not appear at all since it is a vertical structure. In 
contrast, point C is an example of double mapping. Although C is represented by the 
surface model, the projected ray intersects an object, e.g. a house with roof. In the 
orthophoto, this part of the roof will therefore be visible at C as well as near B.  
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Fig. 4.27: Lateral displacement (B) and double mapping (B,C) in orthophoto generation.  

Double mapping can be avoided if the rectification software uses ray tracing to detect 
occluding objects. Then the occluded object regions may either be drawn as empty 
(black) areas, or additional images from other positions may be used to fill these 
regions with correct colours. 

 

a) With double mapping 

 

b) Without double mapping 

Fig. 4.28: True orthophoto generation. 

Fig. 4.28a shows an example of a true orthophoto where double mapping is visible 
(windows on red roof appear twice). Fig. 4.28b illustrates the result without double 
mapping. The same digital surface model is behind both images but only the software 
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used to create the image of Fig. 4.28b takes ray tracing and multi-image processing 
into account. 

Differential rectification is a general approach which, in principle, can be applied 
to any projections and object surfaces. In such cases it is necessary only to replace 
the transformations of steps 3 and 4 with functions relating the 2D coordinates of the 
original image to the 3D object coordinates. This method can handle, for example, 
cylindrical or spherical projections as well as the plane projective transformation 
described above (example in Fig. 4.29). 

  

Fig. 4.29: Original image and cylindrical projection (monastery church at Gernrode (Fokus Leipzig).  

... Image mosaics 
An orthophoto can also be generated by combining a number of partial views or 
original images into a common image mosaic. This procedure, used in the production 
of an aerial orthophoto mosaic, can be employed in close-range photogrammetry for 
the rectification of façades, or for texture mapping of 3D models (Fig. 4.30, section 
5.3.3). 

     

Fig. 4.30: 3D model with rectified image areas and superimposed textures  
(Lurdji monastery, Tbilisi, Georgia, see also Figs. 6.111 and 6.112). 
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Image mosaics are essentially calculated according to the procedures above. The 
process can utilize either re-projection of the mosaic image points into the original 
images by projective or differential rectification, or previously rectified images can be 
combined. If more than one image is available to provide the colour value of the 
mosaic point, then one of the following decision rules can be applied: 
– colour value is taken from the image where the angle between optical axis and 

surface normal is minimal; 
– colour value is taken from the image where the image point is closest to the image 

centre; 
– colour value is averaged over all images; 
– minimum or maximum colour value from all related images; 
– colour adjustment over all images to minimize colour edges.  

Fig. 4.31 shows the example of an image mosaic generated from 9 images. The camera 
has been calibrated in advance, hence image distortion can be compensated. All 
images have been rectified using reference points known in a common plane 
coordinate system on the façade. For mosaicking, the average colour value of 
overlapping images has been used. An area-based colour adjustment has not been 
calculated, hence colour edges are still visible between the single images. 

  
a) Rectified input images b) Orthophoto mosaic 

Fig. 4.31: Generation of an image mosaic.  
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. Processing of stereo images 

.. Stereoscopic principle 

... Stereoscopic matching 
The photogrammetric processing of image pairs has, in many ways, a particular 
significance. For a start, two images of an object, taken from different positions, 
represent the minimum condition necessary for a 3D object measurement. Then there 
is the fact that human vision is highly developed and enables the stereoscopic 
viewing and analysis of image pairs. 

  

  

  

Fig. 4.32: Correspondence problem resulting from different object surface patterns in a stereo 
image. 
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The process of evaluating stereo images is typically divided into three steps: 
1. Determination of homologous image features, e.g. corresponding points in both 

images; 
2. Orientation of the image pair, potentially also with calibration of the camera(s); 
3. 3D object measurement, e.g. measurement of free-form surfaces. 

Depending on application, the steps can be executed in the sequence given, or in 
combination, or in a different order.  

The essential task in stereo and multi-image processing is the solution of the 
correspondence problem, i.e. the matching of identical (homologous) image points. 
This depends first of all on the visible object texture which influences the accuracy 
and uniqueness of the association. Fig. 4.32 shows an example of varying textures, 
patterns and targets (extracts from the image pair in Fig. 4.38), which make clear that 
unique or ambiguous matches are possible, depending on pattern. 

... Tie points  
Tie points are measured, homologous points in the images, i.e. they represent the 
same object point. They assist in the geometric connection between two or more 
images and need not be reference points. More specifically, they must be selected to 
cover a sufficient area in image and object space in order to provide a robust 
connection between the images. 

 

Fig. 4.33: Tie points in a stereo pair; : correctly matched points; : wrongly matched points.  

Homologous points can be identified visually, either by stereoscopic viewing or by 
monoscopic measurement of single images. Non-targeted object points can be 
identified more reliably by stereoscopic viewing. Correspondence between 
homologous points can also be performed by digital stereo image matching (see 
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section 5.5.4). Here similarities or cost functions in grey level patterns are compared 
in order to match corresponding points (image correlation). 

Normally there is no orientation information available during the tie point 
measurement stage and so there are few controls to prevent false measurements. In 
larger photogrammetric projects, gross errors (blunders) are therefore almost always 
present in the observations due to errors in measurement or identification. Fig. 4.33 
shows an example of four correct and one incorrect tie points. 

... Orientation of stereo image pairs  
The orientation of a stereo pair provides exterior orientation parameters of both 
images (Fig. 4.34). In principle, this task can be solved separately for each image by 
space resection (see section 4.2.3) but three-dimensional reference points (full 
reference points) are then required for each photo (see Fig. 4.9). The reference points 
can be identical or different for each image. In this procedure the geometric 
relationship between the two images in a stereo model is not used. 
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Fig. 4.34: Orientation methods for stereo images. 

Fig. 4.33 shows a typical stereo pair where both images cover the object with an 
overlap of at least 50 % (a standard overlap is 60 %, see also Fig. 3.38a). This feature 
can be employed in the orientation of both images. 

The one-step joint orientation employs the principle of bundle triangulation 
(section 4.4, Fig. 4.56) for the special case of two images. Here the orientation 
elements of both images are determined simultaneously in one step using the image 
coordinates of the reference points and additional tie points. 

The traditional two-step solution of this problem works as follows. In the first step 
the correspondence between the images, and the coordinates of model points, are 
determined in a local coordinate system (relative orientation, see section 4.3.3). In the 
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second step the transformation into the global object coordinate system is performed 
using reference points (absolute orientation, see section 4.3.5). 

Once the stereo model has been oriented, three-dimensional object 
reconstruction is possible using the methods outlined in section 4.3.6. 

... Normal case of stereo photogrammetry  
The normal case of stereo photogrammetry is, in fact, the special case in which two 
identical ideal cameras have parallel axes pointing in the same direction at right 
angles to the stereo base. With respect to an XYZ coordinate system located in the left 
perspective centre, object coordinates can be derived from the ratios indicated in Fig. 
4.35. Using real cameras, the normal case can only be achieved with low accuracy 
requirements (example in Fig. 1.32). Its use is mainly in the calculation of 
approximate coordinates and the estimation of the achievable measurement 
accuracy. 
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Fig. 4.35: Normal case of stereo photogrammetry. 

Stereo images, which approximate to the normal case, can easily be evaluated by 
visual inspection. Ideally, objects are only observed with a distance-dependent, 
horizontal shift between the images, and a vertical shift (y-parallax), which is 
detrimental to stereoscopic viewing, will not exist. This horizontal shift is known as 
x-parallax or disparity. X-parallax increases with shorter object distances and is zero 
for objects at infinity. In the example of Fig. 4.35, the x-parallax for point P1, with  
px1 = x'1–x"1, is greater than for point P2 with px2 = x'2–x"2. 
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Real stereo image pairs can be digitally transformed (rectified) into the distortion-
free normal stereo case (normal-case images or epipolar images, section 4.3.3.5) if 
their interior and relative orientation is known (relative orientation, section 4.3.3). 

.. Epipolar geometry 

Fig. 4.36 shows the geometry of a stereo pair imaging any object point P. The base b, 
and the projected rays r' and r" from each perspective centre to the object point, 
define an epipolar plane, sometimes called a basal plane. This plane intersects the 
image planes along lines k' and k", which are known as epipolar lines. In the case of 
convergent images, the epipolar lines are convergent. In the special case of normal 
stereo photogrammetry, the epipolar lines are parallel to the x' direction (Fig. 4.37, 
see also section 4.3.6.2). In the case of deviations from the central projection, e.g. due 
to distortion or with panoramic cameras, the epipolar lines become curves. 
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Fig. 4.36: Epipolar plane for convergent images. 
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Fig. 4.37: Epipolar plane for normal case of stereo photogrammetry. 
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The importance of epipolar geometry lies in the fact that, assuming an error-free ray 
intersection, an image point P" in the right image, corresponding to P' in the left 
image, must lie on the epipolar plane and hence on the epipolar line k". Thus, the 
search space for matching corresponding points can be significantly reduced. 
Assuming an additional object point Q lying on ray O'P, it is obvious that the 
difference in distance (depth) between Q and P results in a parallax along the epipolar 
line k". As already noted, in the normal case of stereo photogrammetry the parallax is 
purely in the x' direction and is known as x-parallax or horizontal parallax. 

If the orientation parameters are known, the position of the epipolar line k" 
corresponding to P' (or vice versa) can be calculated. Given an arbitrary image point 
P', and with projection equations 4.7, two points P and Q on the ray r' can be 
calculated for two different arbitrary values of scaling factor m. The XYZ coordinates 
of points P and Q can subsequently be projected into the right image using the 
collinearity equations (4.10). The epipolar line k" is then defined by the straight line 
containing image points P" and Q". 

Fig. 4.38 shows a convergent stereo image pair, and the images derived from 
them which correspond to the normal case of stereo photogrammetry (epipolar 
images, see section 4.3.3.5). For a point measured in the left and right images, the 
corresponding epipolar lines are shown. In the convergent case they run at an angle 
through the images and in the normal case they are run parallel on identical y image-
coordinate values. 

  

  

Fig. 4.38: Epipolar lines in stereo image pair; top: original images; bottom: epipolar images. 
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The epipolar lines can also be calculated from the parameters of relative orientation 
which are derived below (see section 4.3.3.4). 

.. Relative orientation 

Relative orientation describes the translation and rotation of one image with respect 
to its stereo partner in a common local model coordinate system. It is the first stage in 
the two-step orientation of a stereo image pair (see Fig. 4.34). 
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Fig. 4.39: Model coordinate system and relative orientation (left image fixed). 

The numerical method of relative orientation can be easily developed for the 
following case. A local three-dimensional model coordinate system xyz is located in 
the perspective centre of the first (left) image and oriented parallel to its image 
coordinate system Fig. 4.39). The parameters of exterior orientation of the left image 
with respect to the model coordinate system are therefore already given: 

01

01

01

0
0
0

x
y
z

=
=
=

 
1

1

1

0
0
0

ω
φ
κ

=
=
=

 (4.55) 

Now the second (right) image is oriented in the model coordinate system by 3 
translations and 3 rotations: 
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The base space vector b between the perspective centres O' and O" is defined by the 
base components bx, by and bz. It is stated in section 4.3.3.1 that the condition for 
correct relative orientation is that all pairs of homologous rays must be coplanar with 
the base. Suppose that the right-hand perspective centre is displaced along the base 
line towards O' and that the image is not rotated. It is clear that the homologous rays 
of Fig. 4.39 will still be coplanar with the base and that they will intersect in a point 
lying on the line between O' and P'. Consideration of similar triangles shows that the 
scale of the model will be directly proportional to the length of the base. That is to 
say, the model coordinate system can be scaled by an arbitrary factor depending on 
our choice of base length. One of the base components is therefore set to a constant 
value, commonly  

1bx =  

Five independent elements by, bz and ω2, φ2, κ2 therefore remain for the definition of 
the relative orientation. 
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Fig. 4.40: Model coordinate system with base defining the x axis. 

For an alternative formulation of the relative orientation, the x axis of the model 
coordinate system is defined by the stereo base and the origin of the system is located 
in the left-hand perspective centre (Fig. 4.40). The parameters of exterior orientation 
in the model coordinate system are then given by: 
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The five elements to be determined are here expressed by five independent rotation 
angles ω1, φ1, κ1 and φ2, κ2. Instead of ω1 (rotation about x axis), ω2 may be used as an 
alternative. The scale is again set to an arbitrary value, normally with bx = 1. 

... Coplanarity constraint 
The computational solution of relative orientation utilizes the condition that an object 
point P and the two perspective centres O' and O" must lie in a plane (coplanarity 
constraint). This is the epipolar plane defined by vectors b, r' and r", which also 
contains the image points P' and P".  

The coplanarity constraint is only fulfilled if rays r' and r" strictly intersect in 
object point P, i.e. if the positions of image points P' and P", as well as the orientation 
parameters, are free of error. For each pair of homologous image points, one 
coplanarity constraint equation can be derived. Consequently, in order to calculate 
the five unknown orientation parameters, a minimum of five homologous points (tie 
points) with measured image coordinates is required. The constraint is equivalent to 
the minimization of y-parallaxes at all observed points P. The term y-parallax is 
defined by eqn. (4.64). 

The coplanarity constraint can be expressed using the scalar triple product of the 
three vectors. They lie in a plane if the volume of the parallelepiped they define is 
zero: 

( ) 0× ⋅ =b r' r"   (4.57) 

Alternatively, eqn. (4.57) can be expressed by the determinant of the following matrix. 
The base vector b is replaced by the three base components, the image vector r' is 
replaced by the image coordinates in the left image and the image vector r" is given 
by the image coordinates of the right image, transformed by the relative rotation 
parameters. 

1 ' "
' " 0
' "

        

x x
Δ by y y

bz z z
= =

b r' r"
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     
     

= ⋅r" A x"

 (4.58) 
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Here A2 is the rotation matrix of the right-hand image, so that the coefficients a11, a12... 
are functions of the rotation angles ω2,φ2,κ2. Different principal distances for both 
images may be introduced as z' = –c1 and z" = –c2. For each measured tie point Pi one 
observation equation can be established using (4.58).  

If the calculation of relative orientation is solved with the aid of the collinearity 
equations (4.10), then the 5 homologous point pairs give rise to 5 x 2 x 2 = 20 
observation equations. Opposite these are five unknowns of relative orientation as 
well as 5 x 3 = 15 unknown model coordinates, so that again 5 tie points provide a 
minimum solution. The determination of relative orientation using the fundamental 
and essential matrices is discussed in section 4.3.4. 

... Calculation 
The calculation of the five elements of relative orientation follows the principle of 
least-squares adjustment (see section 2.4.2.2). Based on the coplanarity condition, the 
following correction equation can be set up for each tie point: 

0
2 2 2

2 2 2
Δ

Δ Δ Δ Δ Δv dby dbz dω dφ dκ Δ
by bz ω φ κ
∂ ∂ ∂ ∂ ∂

= + + + + +
∂ ∂ ∂ ∂ ∂

 (4.59) 

In the case of approximately parallel viewing directions, the initial values required 
for linearization are as follows: 

0 0 0 0 0
2 2 2 0by bz ω φ κ= = = = =   (4.60) 

Δ0 is the volume of the parallelepiped calculated from the initial values. The 
differentials can again easily be computed using the following determinants: 
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The approximate values are iteratively improved by the adjusted corrections until 
there is no significant change. 

Here the standard deviation of unit weight s0 provides little information about 
achieved accuracy because the volumes of the parallelepipeds are used as 



 4.3 Processing of stereo images   

observations instead of the measured image coordinates. Residuals of the estimated 
orientation elements result in skew intersection of the rays r' and r", thus generating 
y-parallaxes in model space. It is therefore advantageous to analyse the quality of 
relative orientation using the calculated model coordinates. 

Example .:  
The following data are available to calculate the relative orientation of the image pair in Fig. 4.38. 

 Image 1 (left): Image 2 (right) 
Interior orientation: c = –24.2236 mm c = –24.2236 mm 

Image coordinates: 
P1 x'1 = –0.0395 y'1 = –6.3033 x"1 = –8.1592 y"1 = –6.1394 
P2 x'2 =  6.6590 y'2 = –6.2948  x"2 = –1.0905 y"2 = –6.5887 
P3 x'3 =  9.0086 y'3 = –1.3473 x"3 =  1.1945 y"3 = –1.4564 
P4 x'4 =  7.3672 y'4 =  4.5216 x"4 = –0.8836 y"4 =  4.8255 
P5 x'5 =  0.2936 y'5 =  4.7133 x"5 = –8.3009 y"5 =  5.2626 
P6 x'6 = –2.0348 y'6 = –0.7755 x"6 = –10.4401 y"6 = –0.2882 

Parameters of relative orientation are required (left image fixed). 

Base components: bx = 1 by = –0.0634 bz = –0.1280 

Rotation angles: ω = 1.4493°  φ = 4.1055°  κ = 2.5182° 

It can be seen that the base components in the y and z directions are significantly smaller than in the 
x direction and that convergence in the configuration is most apparent in the φ rotation angle about 
the y axis. 

... Model coordinates 
The relationship between image and model coordinates can be expressed by the 
following ratios:  

' ' '
x y z λ
x y z
= = =  

: scale factor for a particular point 
in left image 

(4.62) 

2

" " "
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−− −

= = =  
: scale factor for the same point  
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Elimination of model coordinates gives the scale factors as:  
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 (4.63) 

and hence the model coordinates 
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'x λx=  'z λz=  

1 'y λy=  2 "y by μ y= +  (4.64) 
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=  2 1py y y= −  

Due to uncertainties in measurement there are two solutions for the model 
coordinates in the y direction, i.e. corresponding rays are skew and do not exactly 
intersect, which results in y-parallax py. 

Additional arbitrary homologous image points can be measured in the relatively 
oriented model, and transformed into model coordinates xyz using equations (4.64). 
They describe a three-dimensional object surface, correctly shaped, but at an 
arbitrarily defined scale resulting from our arbitrary choice, bx = 1. The 
transformation of model coordinates into a global object coordinate system at true 
scale is performed by absolute orientation (see section 4.3.5). The set of equations 
4.64 describe a special case of spatial intersection (see also sections 4.3.6.2, 4.4.7.1). 

Example .: 
The homologous points in example 4.5 have the following model coordinates: 

Model coordinates x y z 
P1 –0.0043 –0.6802 –2.6141 
P2   0.7346 –0.6944 –2.6722 
P3   0.9520 –0.1424 –2.5598 
P4   0.7314   0.4489 –2.4050 
P5   0.0285   0.4574 –2.3507 
P6 –0.2066 –0.0787 –2.4592 

The z coordinates are approximately 2.5 times the base length 1. This gives rise to an average height-
to-base ratio of 2.5:1. 

... Calculation of epipolar lines 
The equation of the epipolar line k" in the right-hand image is given in parametric 
form as: 

k": " " ( " ")t= + −k p q p  (4.65) 

Here k" is the locus of points on the straight line through image points p" and q", 
which correspond to the arbitrary model points P and Q lying on the ray r' (Fig. 4.36). 
If the parameters of relative orientation (exterior orientation of both images in the 
model coordinate system) are inserted into the collinearity equations (4.10), the 
image coordinates in the right-hand image are obtained (with z" = –c2): 
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Here rik are the elements of the rotation matrix of ω2,φ2,κ2. The perspective centre O' 
can be used in place of point P:  
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Point Q is given by multiplication of the image vector x' by an arbitrary scaling factor 
λ:  

Q: 

'
'
'

Q

Q

Q

x λx
y λy
z λz

= −
= −
= −

 

By inserting the model coordinates into (4.66), the image coordinates of points p" and 
q" are obtained and hence the straight line equation of the epipolar line. Due to 
unavoidable measurement errors, the search for point P", the homologous point to 
P', should not be done along straight line k" but within a narrow band either side of 
this line. 

... Calculation of normal-case images (epipolar images) 
Digitized convergent stereo images can be rectified by epipolar resampling in order 
to correspond to the normal case of stereo photogrammetry. After rectification they 
are suitable for ocular stereo viewing. In addition, the epipolar lines are parallel to 
the x' direction, enabling simplified algorithms for stereo image matching to be 
applied (see section 5.5.4.1). 

Fig. 4.41 illustrates the spatial position of normal-case images with respect to the 
stereo model. With given exterior orientations for both images, e.g. in model 
coordinate system xyz, three-dimensional image coordinates x'n,y'n,–cn in the normal-
case images can be transformed using (4.10) into the image coordinates x',y' of the 
original image (and analogously for the second image). Rectification is performed 
when, for all points in the images, the colour level of the original image g'(x',y') is 
copied to position x'n,y'n in the normal-case image (see section 5.3). 
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Fig. 4.41: The geometry of normal-case stereo images. 

Fig. 4.38 shows a strongly convergent stereo image pair and the distortion-free 
normal-case stereo images derived from them. Homologous points then lie on the 
same y coordinate values. The principal points of the normal-case images are exactly 
at the image centres. The large areas with no image information are the result of the 
convergence of the original images and could be removed. 

 

Fig. 4.42: Anaglyph image derived from normal-case stereo images. 

Fig. 4.42 shows an anaglyph stereo image which has been created from the normal-
case image pair of Fig. 4.38. Note that the x-parallaxes of homologous points vary 
with object distance. 
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... Quality of relative orientation 
The existence of y-parallax py (defined in 4.64) at a point in the model indicates 
failure of homologous rays to intersect at that point. The y-parallaxes, considered 
over the whole model, may be used as a measure of the quality of relative orientation; 
y-parallax at photo scale gives a normalized figure.  

If the y-parallax at a point, i, in the model is pyi, then the y-parallax at photo scale 
may be taken as  

''i i
i

zpy py
z

=   (4.67) 

Assuming that by and bz are small compared to bx, the following expression, based 
on a number of tie points, n, gives a measure of the quality of the relative orientation: 

2
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s py
n =

= ∑   (4.68) 

The intersection angle α of homologous image rays is the angle between the two 
spatial vectors r' and r" where: 

cos
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α ⋅
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⋅
r' r"
r' r"

  (4.69) 

Taking all n tie points into account, the mean intersection angle can be calculated: 
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α α
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Fig. 4.43: Mean intersection angle. 
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The mean intersection angle also approximately describes the ratio of the stereo base 
b to the mean object distance h, as given by (Fig. 4.43): 

tan
2 2
α b

h
≈   (4.71) 

Accuracy of relative orientation and point determination will be optimized when the 
mean intersection angle is close to a right angle. 

The quality of relative orientation depends on the following criteria: 
– Accuracy of image coordinates: 

The accuracy of image coordinates depends partly on the measuring accuracy of 
the instrument and partly on the ability to identify matching points in both 
images. Image patches with poor structure can be matched less accurately than 
areas with a significant grey level structure, regardless of the image processing 
method (visual interpretation or digital image matching). 

– Number and distribution of tie points in model space: 
Tie points should be chosen in model space to ensure a robust geometric link 
between both images. A point distribution as recommended by von Gruber is 
particularly suitable. This has a tie point in each corner of the model space and 
one in the middle of each long side. This distribution is strictly possible only in 
the normal case (Fig. 4.44). 

If the object structure, for example containing large homogeneous areas, does 
not allow an optimum distribution of homologous points, model errors, which 
cannot be controlled, may occur in the regions not covered. If all tie points lie on 
a common straight line, the resulting normal system of equations becomes 
singular. 

Gruber points measured tie points  

Fig. 4.44: Good and bad distribution of tie points in model space. 

To properly control the relative orientation, at least 8–10 well distributed tie 
points should be measured.  

– Height-to-base ratio: 
If the base of the stereo model is small relative to object distance (height) then 
ray intersection angles are poor. The parameters of relative orientation are then 
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determined with greater uncertainty. As mentioned above, an optimal 
configuration is achieved with intersection angles of around 90 degrees. 

– Distribution of tie points in object space: 
There are a few exceptional cases where singular or weakly conditioned normal 
equations occur, even though there is a good point distribution in model space. 
Amongst other cases this applies to the danger cylinder, where the object points 
used as tie points and the perspective centres of both images lie on a common 
cylindrical surface (Fig. 4.45). This effect can also occur where object surfaces 
have small curvatures and the imaging lens has a long focal length. The same 
problem exists for the space resection, if the image to be oriented is also located 
on a danger surface. 

The result of this configuration is that the cameras do not have unique 
positions on the cylindrical surface because at different camera positions the tie 
points subtend the same angles and so have the same image positions (a 
fundamental property of circles). 

O'

O"

b

 

Fig. 4.45: Danger cylinder above a curved surface. 

... Special cases of relative orientation 
The method of relative orientation is widely used for traditional stereo image analysis 
on analytical stereo instruments. These applications typically have parallel imaging 
directions which permit stereoscopic viewing (as shown in Fig. 4.37). The orientation 
elements are then relatively small so that initial values for the iterative adjustment 
can be zero. 

Close range photogrammetry, in contrast, often involves arbitrary, convergent, 
multi-image configurations. In this case relative orientation is not used as the actual 
orientation method but only as one step in the calculation of approximate values for 
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the subsequent bundle adjustment (see section 4.4.4.1). Here the image pairs may 
have orientation values that differ significantly from those of the normal case 
(examples in Fig. 4.46). 

P

P'
P"

P"P'

P

 

Fig. 4.46: Convergent image pair configurations. 

Fig. 4.47 shows the distribution in image space of 12 homologous points in an image 
pair, in which the right-hand image has significant tilts with respect to the left-hand 
image. 
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bx=30, by=0, bz=0 

ω2=0, φ2=0, κ2=0 [gon] 
bx=30, by=0, bz=0 

ω2=–10, φ2=30, κ2=150 [gon] 

Fig. 4.47: Image point distribution for different orientations;  left image, ∆ right image. 

It is not possible to define approximate values for the relative orientation of arbitrarily 
oriented images according to eqn. (4.60). Instead the methods of spatial similarity 
transformation (see section 2.2.4) or space resection (see section 4.2.3) can be applied. 
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For these methods, tie points require 3D object coordinates which may be calculated 
by transforming image coordinates in both images by an approximate scale factor. 
Alternatively, linear orientation methods allow calculation without approximate 
values (see section 4.3.4). 

In multi-image applications it is possible that two or more images are exposed at 
the same point but with different orientations. It is also possible that images are 
located behind one another on the same viewing axis. In these and similar cases, both 
images cover a common model space which does not provide distinct intersections at 
object points (Fig. 4.48). The calculation of relative orientation then leads to poor 
results or fails completely. Such images can, of course, be included with others in a 
multi-image bundle adjustment. 

A further special case occurs for relative orientation using images of strictly 
planar surfaces. This happens often in close-range applications, for example in the 
measurement of flat façades or building interiors. In this case only 4 tie points are 
required because both bundles of rays can be related to each other by a projective 
transformation with 8 parameters. In order to solve the adjustment problem, the 
planarity of the object surface can be handled by an additional constraint equation. 
This constraint can replace one of the required coplanarity conditions so that only 
four tie points are necessary. 
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Fig. 4.48: Overlapping image pairs with insufficient spatial ray intersections. 

.. Fundamental matrix and essential matrix  

The relationship between two images can also be derived with the aid of projective 
geometry. According to eqn. (4.32), a projection matrix can be defined for each image: 

 = ⋅ ⋅  1 1 1P K R I 0   = ⋅ ⋅  2 2 2P K R I -b  (4.72) 
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where 
R1, R2: rotation matrices  
K1, K2: calibration matrices  
b: base vector  

For relative orientation (fixed left-hand image) R1 = I. The image coordinates of 
homologous points in both images can be transformed into a local camera coordinate 
system which initially has an arbitrary principal distance c1 = c2 = 1. 

− −= ⋅ ⋅ '1 1
1 1 1R Kx x  − −= ⋅ ⋅1 1

2 2 2R Kx x"   (4.73) 

The transformed image coordinates now lie in the same coordinate system as the base 
vector b and can be used in the following coplanarity condition (compare with eqn. 
4.57): 

1 2 1 2( ) 0T⋅ × = ⋅ ⋅ =Sx x x xbb   (4.74) 

where 
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= − 
 − 

Sb  

The vector product of vectors b and x2 can therefore be expressed using the skew 
symmetric matrix Sb. Insertion of (4.73) in (4.74) leads to the linearized condition: 

− − −⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ =b b
1 1 1

1 2 1 2 2( ) 0T T TS K S R Kx x x' x"  (4.75) 

Using  

− − −= ⋅ ⋅ ⋅b
1 1 1

1 2 2( )TF K S R K  : fundamental matrix (4.76) 

the coplanarity condition for homologous image points can be expressed in the 
simple form: 

⋅ ⋅ =T 0Fx' x"  : coplanarity condition (4.77) 

The fundamental matrix F is a homogeneous 3x3 matrix, i.e. multiplication by a scalar 
does not alter the projection. As a consequence, it can be described by 9–1 = 8 degrees 
of freedom. F contains all necessary relative orientation data, including the 
parameters of interior orientation. Using the fundamental matrix, the epipolar line in 
the partner image can be calculated: 
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Fx' k"  : epipolar line in right image (4.78) 
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Here Ak",Bk",Ck" correspond to the parameters of a straight line defined according to 
eqn. (2.90).  

If the interior orientation of both images is known (known calibration matrix K), 
the fundamental matrix reduces to the essential matrix E:  

−⋅ ⋅ ⋅ = ⋅ ⋅ =1
2 0T T T T

k b k k kS R Ex' x" x' x"   (4.79) 

where  
−= ⋅k

1
1Kx' x'  −= ⋅k

1
2Kx" x"  −= ⋅ 1

2bE S R  

At least eight homologous points are required to calculate the fundamental matrix F. 
In comparison only five are required to solve for the essential matrix E. The linear 
system of equations in each case can be solved, for example, using the singular value 
decomposition. 

.. Absolute orientation 

... Mathematical model 
Absolute orientation describes the transformation of the local model coordinate 
system xyz, resulting from a relative orientation with arbitrary position, rotation and 
scale, into the object coordinate system XYZ via reference points. Reference points 
are object points measured in the model coordinate system which have one or more 
known coordinate components in object space, e.g. XYZ, XY only or Z only. The 
reference points can be identical to the tie points already used for relative orientation, 
or they can be measured subsequently as model points in the relatively oriented 
model. 

Absolute orientation consists of a spatial similarity transformation with three 
translations, three rotations and one scaling factor as described in eqn. 2.65 (see 
section 2.2.4.1). In order to solve the system of equations, a minimum of seven suitable 
point elements are required, for example taken from three spatially distributed XYZ 
reference points. 
Fig. 4.49 illustrates the transformation of the model coordinate system, xyz with 
origin at M, into the object coordinate system, XYZ. The coordinates of M in the XYZ 
system are XM. The rotation matrix R is a function of the three rotation angles ξ,η,ζ 
about the axes XYZ. The transformation for a model point with coordinates xyz (vector 
x) is given by: 
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where m is the scale factor between model and object coordinates.  

X

Y

Z

ξ

η

ζ

YM

XM

ZM

object

model
of object

M

 

Fig. 4.49: Absolute orientation. 

Equations 4.80 are non-linear and are solved in the usual way; if there is redundancy 
the solution will be based on a least-squares adjustment (see section 2.4.2.2) in which 
each coordinate component of a reference point provides one linearized correction 
equation: 

0

0

0

X M

Y M

Z M

F F F FX v dX dm dξ dη dζ X
m ξ η ζ
F F F FY v dY dm dξ dη dζ Y
m ξ η ζ
F F F FZ v dZ dm dξ dη dζ Z
m ξ η ζ

∂ ∂ ∂ ∂
+ = + + + + +

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ = + + + + +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ = + + + + +
∂ ∂ ∂ ∂

 (4.81) 
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... Definition of the datum 
In many close-range applications, 3D reference points (full reference points) are 
available. Each reference point therefore provides three correction equations. In 
aerial photogrammetry it is possible that some reference points only have known plan 
position (XY) and others only height (Z), resulting in a reduced set of correction 
equations. In order to solve the absolute orientation, at least 2 X coordinates, 2 Y 
coordinates and 3 Z coordinates must be available (see also section 4.4.3.2). 

The reference points should be well distributed over the object space to be 
transformed. If all reference points lie on a common straight line, a singular or weak 
system of equations results. In over-determined configurations of control points, 
inconsistencies between coordinates (network strain) can distort the transformation 
parameters and give rise to higher standard deviations in the transformation.  

... Calculation of exterior orientations 
From the parameters of relative and absolute orientation for an image pair, the 
exterior orientation parameters of each image can be calculated.  

The position of the perspective centre, i0X , of an image i is derived from the 
origin of the model coordinate system XM and the transformed components of the 
base b:  

( )
i im ξηζ= + ⋅ ⋅0 MX X R b   (4.82) 

For the left-hand image (i = 1) the base components are zero, hence i =0 MX X . 

In order to calculate the rotation matrix of image i, ( )i ωφκR , with respect to the 
object system, the rotation matrix ( )i ωφκA of the relative orientation is pre-
multiplied by the rotation matrix ( )ξηζR  of the absolute orientation:  

( ) ( ) ( )i iωφκ ξηζ ωφκ= ⋅R R A   (4.83) 

After absolute orientation, object coordinates are available for the model points. As 
an alternative, therefore, the parameters of exterior orientation can also be 
determined by space resection using the transformed model coordinates in object 
space.  

... Calculation of relative orientation from exterior orientations  
If the parameters of exterior orientation, in the object coordinate system, are available 
for both images of the stereo pair, then the parameters of relative orientation can be 
derived. 

For relative orientation with origin in the left-hand image, rotation matrices of 
relative orientation Ai are obtained by multiplication of the exterior orientation 
matrices Ri by the inverse rotation of the left image: 
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1
1 1 1

−= ⋅ =A R R I  1
2 1 2

−= ⋅A R R  (4.84) 

The required base components in the model coordinate system are obtained from the 
vector between the two perspective centres, transformed by the inverse rotation of the 
left-hand image. The resulting vector B is then scaled to create a base vector b where 
bx = 1. 

1
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B R X X

b B
 (4.85) 

Example .:  
The exterior orientation parameters of the stereo pair in Fig. 4.38 are given as follows: 
 Image 1 (left):  Image 2 (right) 
Translation: X01 = –471.890 mm X02 = –78.425 mm 
 Y01 =  11.030 mm Y02 = –12.630 mm 
 Z01 =  931.070 mm Z02 = 916.553 mm 

Rotation: ω1 = –13.0592°  ω2 = –11.6501° 
 φ1 = –4.4402°  φ2 = –0.3134° 
 κ1 =  0.7778°  κ2 =   3.4051° 

Solution for relative orientation: 

Rotations are calculated using eqn. (4.84): 

 
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A  
 −
 

= − 
 − 

2
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. . .
. . .
. . .

A  

Rotation angles: ω = 1.4513°  φ = 4.1059°  κ = 2.5162° 

Base components are calculated as: 
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.

.
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0 0642
0 1277

.
.

b  

The result is largely identical to the relative orientation calculated in example 4.5. Any small 
differences are due to the fact that the parameters of exterior orientation (used here) originate in a 
bundle adjustment composed of 16 images. 

.. Stereoscopic processing 

... Principle of stereo image processing 
Stereo processing covers all visual or computational methods for the processing of a 
stereo image pair. Traditionally, it has greatest application in (interactive) aerial 
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photogrammetry. However, it is also an elementary method for the automatic 
calculation of dense surface models. 
In close-range work, stereo photogrammetry is used in the following example 
applications: 
– Visual processing of natural features:  

The reconstructed object is measured in a stereo plotting instrument using 
binocular, stereoscopic optical viewing systems. The operator observes an 
optically or digitally generated “floating mark”, the apparent spatial position of 
which is under his or her control. A measurement is taken when the floating mark 
appears to lie on the virtual surface of the object; the point measured corresponds 
to the pair of homologous image points simultaneously viewed stereoscopically. 
The movement of the floating mark on to the surface is controlled interactively 
by the operator. Single points may be measured or continuous lines may also be 
measured as the operator moves the floating mark over the virtual surface. 

– Visual or digital reconstruction of free-form surfaces: 
Object surfaces of arbitrary shape can be evaluated by stereo photogrammetry if 
the surface structure permits the identification (matching) of homologous points. 
Surfaces with insufficient visual pattern or structure must therefore be prepared 
with a suitable texture, e.g. by pattern projection or other method. Image 
processing is performed either by the visual method above, or by image 
processing algorithms which implement stereo image matching of corresponding 
points (see section 5.5.4). The final goal is the complete 3D reconstruction of the 
free-form surface, for example as a digital surface model or a dense point cloud. 

– Image acquisition with stereometric cameras: 
Stereometric cameras (see section 3.5.4) are usually configured to correspond to 
the normal case of stereo photogrammetry. They provide a simple method of 
imaging and of photogrammetric object reconstruction which, to a large extent, 
avoids complicated orientation procedures. 

– Point-by-point (tactile) object measurement with online dual camera systems: 
Online photogrammetric systems comprising two digital metric cameras can be 
treated as stereo systems, although they can easily be extended to incorporate 
more than two cameras. The object is measured by spatial intersection of targeted 
points (targets, probes) which can be detected and identified automatically. If the 
exposure of both cameras is synchronized, the object can be measured by hand-
held contact probes (see section 6.5.3). Furthermore, it is then possible to capture 
moving objects in full 3D. 

– Control of vision-based machines, e.g. autonomous robots: 
There are a number of applications in computer vision (stereo vision, shape from 
stereo) where a scene is analysed by stereo-based algorithms which reflect the 
mechanisms of natural human vision. Examples are the control of autonomous 
robots in unknown environments (avoidance of collisions, see example in 
Fig. 6.39) and the control of production tools. 
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In summary, the principle of stereo processing is based on the correspondence of 
homologous points lying in an epipolar plane. The epipolar plane intersects the 
image planes in epipolar lines (see section 4.3.2). For the normal case of stereo 
photogrammetry (Fig. 4.35) the epipolar lines are parallel and depth information can 
be determined by measuring the x-parallax px'.  

... Point determination using image coordinates 

.... Coordinate calculation in normal case 
The normal case of stereo photogrammetry is, in fact, the special case in which two 
identical cameras have parallel axes pointing in the same direction at right angles to 
the stereo base. With respect to an XYZ coordinate system located in the left 
perspective centre, object coordinates can be derived from the ratios indicated in Fig. 
4.50: 

Parallel to the image plane: 

' 'hX x m x
c

= ⋅ = ⋅  ' 'hY y m y
c

= ⋅ = ⋅  (4.86) 

In the viewing direction: 

' "
h b m
c x x
= =

−
 

and it follows that: 

' " '
b c b cZ h

x x px
⋅ ⋅

= = =
−

  (4.87) 

(4.86) and (4.87) can also be derived from the collinearity equations (4.10). The 
rotation angles of both images are zero. The right image is shifted in the X direction 
by the base length b with respect to the left image. Hence it follows that:  

01 01 02 02' ' ' ' 0x y x y= = = =  

01 01 01 02 02 0X Y Z Y Z= = = = =  02X b=  

1 1 1 2 2 2 0ω φ κ ω φ κ= = = = = =  1 2= =R R I  

The x-parallax (disparity) px' is measured either by visual examination and 
coordinate measurement in a stereo plotter (stereo comparator), or by methods of 
digital image matching. As an example, Fig. 4.51 shows the measurement of two 
object points. Point P1 on the manhole cover closest to the cameras has a much larger 
x-parallax than the more distant point P2 at the top of the tower. The y' image 
coordinates are almost equal, i.e. y-parallax does not exist. 
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Fig. 4.50: Normal case of stereo photogrammetry. 

Example .:  
The following image coordinates have been measured for the example image pair above (stereo 
camera SMK 120, b = 1.2 m, c = –60.2 mm). The object coordinates of the two points are to be 
calculated. 

1. Point P1 x' =  –3.924 mm x" = –23.704 mm 
 y' = –29.586 mm y" = –29.590 mm 
 px' = x'–x" = 19.780 mm 

2. Point P2 x' =  7.955 mm x" =  6.642 mm 
 y' = 45.782 mm y" = 45.780 mm 
 px' = x'–x" = 1.313 mm 

3. Z coordinate (distance) ⋅
=

'
b cZ
px

 
= −
= −

1

2

3.65 m
55.02 m

Z
Z

 

4. XY coordinates 
= −
= −
=

1

1

0.24m
1.79m

61

X
Y
m

 
=
=
=

2

2

7.27m
41.84m
914

X
Y
m

 

The result shows that point P1 lies beneath the left-hand camera at a slope distance of 4.08 m. Point 
P2 is located to the right and above the left camera at a slope distance of 69.23 m and with a larger 
image scale number.  
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Fig. 4.51: Measurement of two object points in a stereo image pair. 

.... Accuracy 
Differentiation of eqn. (4.87), and application of error propagation, gives the 
following accuracy estimation of the object coordinate in viewing direction Z (c and 
b are assumed to be free of error). 

2

' ' 'Z px px px
Z h hs s s q m s

b c b c
= = ⋅ = ⋅ ⋅

⋅
  (4.88) 

The equation shows that the accuracy in the viewing direction is a function of the 
accuracies of parallax measurement, image scale m = h/c and height-to-base ratio 
h/b, which corresponds to the design factor q introduced in section 3.3.1.2. The 
equation also shows that, since b and c are constant for any particular case, the 
accuracy falls off in proportion to the square of the distance, Z. The height-to-base 
ratio, or more correctly distance-to-base ratio, describes the intersection geometry. If 
the base is small compared with the distance, ray intersection is weak and accuracy 
in the viewing direction is poor. 

In general, parallax measurement accuracy can be estimated as 

'
' 2

x
px

s
s =   (4.89) 

i.e. it is slightly more accurate than a single measured image coordinate. In 
monoscopic measurement, error propagation for px' = x' – x" gives:  

' ' 2px xs s=   (4.90) 
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The accuracy of the X and Y coordinates can be similarly derived from eqn. (4.86): 
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 (4.91) 

In (4.91) the dominant term is the second summand of the square root. Object 
accuracy can therefore usually be estimated as 

''yxYX smss ⋅==   (4.92) 

The following object accuracies result from the configuration in example 4.8: 

Example .: 
Assume image coordinates are measured to an accuracy of 10 µm, resulting in a parallax accuracy of 
7 µm. Principal distance and base length are assumed free of error. 

Object accuracies: 

1. Point P1: sX = 0.6 mm sY = 0.6 mm sZ = 1.4 mm q = h/b = 3.2 

2. Point P2: sX = 9.1 mm sY = 9.1 mm sZ = 315 mm q = h/b = 48 

It is clear that the accuracy of point P2 is significantly decreased in Z and coordinate determination of 
this point is not practicable.  

 

Fig. 4.52: Object accuracy for the normal case of stereo photogrammetry (from example 4.8). 

Fig. 4.52 shows the object accuracies for additional point distances taken from 
example 4.8. For object distances less than about 1.7 m (q = 1.4 = 1:0.7), the accuracy 
sZ in the viewing direction is higher than in the other directions. At longer distances 
the increase in uncertainty sZ is quadratic whilst the increase in sX remains linear. 
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.... Intersection in the general stereo case 
A stereo pair which is not configured according to the strictly normal case has 
orientation parameter values which are not equal to zero. In addition, the images can 
have arbitrary parameters of interior orientation. 
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Fig. 4.53: Spatial intersection for the general stereo case. 

Object coordinates XYZ can be calculated by spatial intersection of the rays r' and r" 
if the parameters of interior and exterior orientation of both images are known (Fig. 
4.53). Both spatial rays are defined by the measured image coordinates, transformed 
by the orientation parameters. For the special case of a stereo pair, the spatial 
intersection can be calculated as follows (see also the calculation of model 
coordinates, section 4.3.3.3): 
1. Transformation of image coordinates: 
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2. Stereo base components: 

02 01bx X X= −  02 01by Y Y= −  02 01bz Z Z= −  (4.94) 
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For the simple version of the intersection, the skew rays intersect the XY plane at 
elevation Z of object point P, giving rise to two possible solutions (Fig. 4.53), i.e.: 

1 2X X X= =  1 2Z Z Z= =  1 2

2
Y Y

Y
+

=  (4.95) 

3. Scale factors:  
The scale factors for the transformation of image coordinates are: 
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4. Object coordinates:  
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 (4.97) 

Here the Y-parallax in object space pY is a quality measure for coordinate 
determination. It is zero when the two rays exactly intersect. However, pY may be 
zero if image measuring errors occur in the direction of epipolar lines. 

The solution is not completely rigorous but works in most cases where the base is 
approximately aligned with the X direction and where bx is large in comparison with 
by and bz.  

Example .: 
For the stereo pair in Fig. 4.38 there are image coordinates of homologous points from example 4.5, 
as well as parameters for interior and exterior orientation in the object coordinate system of example 
4.7. Object point coordinates computed from a spatial intersection are required. 

Solution according to eqn. (4.97): 

Object coordinates: X [mm] Y [mm] Z [mm] pY [mm] 

P1 –390.9432 –477.5426 0.0168 0.0043 
P2 –101.5422 –479.1967 0.1027 0.0069 
P3 –23.2276 –256.8409 –0.0839 –0.0065 
P4 –116.8842 –21.0439 0.0190 0.0138 
P5 –392.1723 –21.4735 0.0974 0.0140 
P6 –477.5422 –237.6566 –0.1844 –0.0055 

Separate evaluation of the stereo pair shows measurement noise in the object space of the order of 
10 µm to 20 µm. Taking the object-space y-parallaxes pY as a measure of the quality of the spatial 
intersection, it can be seen that these lie within the measurement noise. 



  4 Analytical methods  

In the general case of two images with arbitrary orientations, point P is calculated as 
the midpoint of the shortest distance e between both rays (Fig. 4.53; for calculation 
see section 2.3.2.1). The spatial intersection can also be expressed as an over-
determined adjustment problem based on the collinearity equations. In this form it 
can be extended to more than two images (see section 4.4.7.1). 

... Point determination with floating mark 

.... Setting a floating mark onto the surface 
The term floating mark is used here for a digitally generated stereoscopic mark that 
can be moved through the virtual 3D space of the stereo model. The floating mark is 
set onto the object surface in order to measure a surface point. Although the floating 
mark primarily serves the interactive and visual analysis of the stereo image, its 
principle is also useful for automatic, digital stereo measurement. 

The numerical reconstruction of homologous rays is performed in digital 
stereoplotters. Using separate optical paths, the operator observes two floating marks 
which fuse into one common mark if set correctly onto the object surface. When the 
floating mark appears to touch the surface the corresponding XYZ coordinates are 
recorded. 

The XYZ coordinates which correspond to a spatially controlled floating mark can 
be transformed into image coordinates using equations (4.10). Fig. 4.54 shows how 
the transformed marks only identify corresponding image patches (homologous 
points) if the XYZ coordinates represent a point P on the object surface. A measuring 
position below P at point R, as well a position above P at point Q, result in image 
points which do not correspond, namely the imaging positions corresponding to the 
intersections of the non-homologous rays with the object surface. The correct position 
of the floating mark is controlled either by a visual check or by a digital corre-
spondence algorithm applied to the two calculated image positions. The mechanical 
effort is reduced to a separate real-time shift of both image planes. Starting from an 
approximate position, the XYZ coordinates of the floating mark are iteratively 
corrected until correspondence of both images is achieved. It may be noted that this 
approach enables the measurement of Z above regular XY grid positions. 

.... Vertical line locus 
The image lines g' and g" correspond to the projection of the vertical line g which 
passes through P (Fig. 4.54). These straight lines are epipolar lines only if g is located 
in the epipolar plane of P. The image lines g' and g" are known as vertical line loci 
(VLL), in allusion to aerial photogrammetry (Z ≈ viewing direction). With given 
orientation parameters they can be easily calculated by a variation of the Z coordinate 
of P. 



 4.3 Processing of stereo images   

In order to measure a surface point, it is possible to calculate all points Pi at small 
intervals ΔZ between two points, e.g. Q and R, re-project them into the images and 
search for the best correspondence on the straight lines g' and g". 

For arbitrarily oriented object surfaces, g should lie in the direction of the normal 
vector to the surface at the target point. The method is not restricted to the stereo case 
but can be extended to an unlimited number of images per point. 
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Fig. 4.54: Imaging positions and correlation coefficient r of a vertically shifted floating mark. 
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Fig. 4.55: Reconstruction of a welding seam surface by stereo photogrammetry.  
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As an example, Fig. 4.55 shows the reconstruction of a welding seam using a stereo 
image. Object resolution is about 0.04 mm, the accuracy of Z coordinates is estimated 
to be around 0.2 mm (imaging distance 70 mm, height-to-base ratio 10:1). Imaging 
matching was performed by semi-global matching (section 5.5.4.2). 

. Multi-image processing and bundle adjustment 

.. General remarks 

... Objectives 
Bundle adjustment (bundle triangulation, bundle block adjustment, multi-image 
triangulation, multi-image orientation) is a method for the simultaneous numerical 
fit of an unlimited number of spatially distributed images (bundles of rays). It makes 
use of photogrammetric observations (measured image points), survey observations 
and an object coordinate system (Fig. 4.56). Using tie points, single images are 
merged into a global model in which the object surface can be reconstructed in three 
dimensions. The connection to a global object coordinate system can be provided by 
a minimum number of reference points so that larger areas without reference points 
can be bridged by multi-image sub-sets. The most important geometric constraint is 
that all corresponding (homologous) image rays should intersect in their 
corresponding object point with minimum inconsistency. This overall process is 
increasingly also referred to as alignment, which can include the process of image 
matching (feature detection and matching). 
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Fig. 4.56: Multi-image triangulation. 
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In an over-determined system of equations, an adjustment technique estimates 3D 
object coordinates, image orientation parameters and any additional model 
parameters, together with related statistical information about accuracy and 
reliability. All observed (measured) values, and all unknown parameters of a 
photogrammetric project, are taken into account within one simultaneous calculation 
which ensures that homologous rays optimally intersect. In this way, the ray bundles 
provide strong geometry for a dense, high-accuracy measurement network (example 
in Fig. 4.57). The bundle triangulation therefore represents the most powerful and 
accurate method of image orientation and point determination in photogrammetry. 

   

   

   

    
a) Images in a multi-image triangulation b) Corresponding 3D network formed by the 

ray bundles 

Fig. 4.57: Multi-image network for measuring a car door. 

... Development 
The bundle triangulation method has been known since the late 1950s, i.e. from the 
very beginning of analytical photogrammetry. Bundle adjustment is a very general 
technique which combines elements of geodetic and photogrammetric triangulation, 
space resection and camera calibration. These are individually well understood and 
so the practical problems in the implementation of bundle adjustment do not lie in 
the mathematical formulations but in the following areas: 
– solution of large systems of normal equations (up to a few thousand unknowns); 
– generation of approximate values for the unknowns; 
– detection and elimination of gross data errors.  

The development of practical bundle adjustments is closely related to increases in 
computing power. In this respect it is worth noting that similar programs for aerial 
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photogrammetry have largely been developed independently of those for close-range 
applications. 

The triangulation of aerial images is characterized mainly by: 
– predominant use of regular strip arrangements of images (Fig. 4.58) and hence  
– advantageous structure of normal system of equations and 
– easier generation of approximate values, e.g. rotations approximately zero; 
– large numbers of images and object points and 
– use of only one calibrated metric camera. 
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Fig. 4.58: Image configuration for aerial photogrammetry. 
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Fig. 4.59: Arbitrary close-range image configuration. 
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In contrast, the standard case in close-range photogrammetry is characterized by: 
– irregularly arranged, arbitrary and often unfavourable image configurations (Fig. 

4.59); 
– more complex structure of normal system of equations;  
– arbitrarily oriented object coordinate systems; 
– more demanding solutions for generating approximate values; 
– combined adjustment of survey observations and conditions;  
– (several) imaging systems to be calibrated simultaneously. 

Since the early 1980s the bundle adjustment has been accepted in all areas of 
photogrammetry. As a result of diverse requirements and applications there are many 
different bundle adjustment packages on the market.  

Since its introduction for close-range use, the method of bundle adjustment has 
considerably widened the application spectrum as a result of its ability to handle 
almost arbitrary image configurations with few restrictions on the image acquisition 
systems. The general concept of bundle adjustment allows for the inclusion of other 
sensor information and can be performed without any image data at all. 

... Data flow 
Fig. 4.60 shows the principle data flow for a bundle adjustment process. Input data 
for bundle adjustments are typically photogrammetric image coordinates generated 
by manual or automatic (digital) image measuring systems. Each measured image 
point is stored together with a unique point identifier and the corresponding image 
number, hence prior successful matching of image points is assumed (Fig. 4.61). This 
is sufficient to reconstruct the three-dimensional shape of the object surface, as 
represented by the measured object points.  

Additional information in the object space, such as measured distances, angles, 
points, straight lines and planes, can also be taken into account. They provide the 
definition of an absolute scale and the position and orientation of the object 
coordinate system (datum definition). This information is entered into the system as, 
for example, reference point files or additional observations, e.g. constraints between 
object points (see section 4.4.2.3). 

In order to linearize the functional model, approximate values must be 
generated. For simpler image configurations they can be extracted from planning 
data or project sketches. The generation of approximate values for more complex 
configurations (larger number of images, arbitrary orientations) is performed by 
iterative calculation methods (see section 4.4.4). Sensors for direct georeferencing, 
e.g. GNSS, IMU, also provide approximate values for the orientation unknowns. 



  4 Analytical methods  

control points, 
object elements

initial values
of unknowns

measured and matched
image coordinates

INPUT

bundle adjustment

corrections of
image coordinates

3D coordinates
of object points

interior
orientations

exterior
orientations

statistics
error analysis

CALCULATION

OUTPUT

digital stereo plotter
interactive measurement

digital target detection
interest operator

reference points
survey measurements

distances
constraints

direct geo-referencing
calibration

orientation tool
automatic calculation

 

Fig. 4.60: Data flow for bundle adjustment process. 

17       2    -1.077410     2.913010     0.000200    -0.000100       1 
17       3    -1.884320     3.632870     0.000000    -0.000000       1 
17       4    -2.904780     4.434720     0.000400     0.000300       1 
17       5    -6.194840     0.078450    -0.000000     0.000300       1 
17       7    -8.940230    -5.323440     0.000300    -0.000200       1 
17       8    -8.559290    -6.360560     0.000500     0.000300       1 
18       2    -7.412580     3.507980    -0.000100     0.000100       1 
18       3    -8.247020     2.808140    -0.000100     0.000200       1 
18       4    -9.185490     1.896390     0.000400    -0.000200       1 
18       5    -5.220940    -1.985600    -0.000300     0.000200       1 
18       7    -0.466490    -5.242080    -0.000000     0.000100       1 
18       8     0.529900    -5.010630     0.000300    -0.000300       1 
18       9     2.719160    -4.119760     0.000300     0.000000       1 
19       3     7.378300     5.144030     0.000400    -0.000100       1 
19       8    -5.978770     4.462030    -0.000400    -0.000100       1 
19       9    -6.481080     2.217100     0.000000    -0.000100       1 
19      10    -6.920640     0.723660    -0.000300    -0.000100       1 

 

Fig. 4.61: Example of an image coordinate file (values in mm) with  
image number, point number, x', y', sx', sy', code. 

The principal results of bundle adjustment are the estimated 3D coordinates of the 
object points. They are given in an object coordinate system defined by reference 
points or free net adjustment (see section 4.4.3). 

In addition, the exterior orientation parameters of all images are estimated. These 
can be further used, for example, in analytical plotters or for subsequent spatial 
intersections computed outside the bundle adjustment. The interior orientation 
parameters are estimated if the cameras are calibrated simultaneously within the 
adjustment.  
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In order to analyse the quality of the bundle adjustment, it is possible to calculate 
image coordinate residuals (corrections), standard deviations of object points and 
orientation data, correlations between parameters and reliability numbers for the 
detection of gross errors. 

.. Mathematical model 

... Adjustment model 
The mathematical model of the bundle adjustment is based on the collinearity 
equations (see section 4.2.2). 
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( ) ( ) ( )
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r X X r Y Y r Z Z
r X X r Y Y r Z Z

y y z Δy
r X X r Y Y r Z Z

− + − + −
= + +

− + − + −
− + − + −

= + +
− + − + −

 (4.98) 

The structure of these equations allows the direct formulation of primary observed 
values (image coordinates) as functions of all unknown parameters in the 
photogrammetric imaging process. The collinearity equations, linearized at 
approximate values, can therefore be used directly as observation equations for a 
least-squares adjustment according to the Gauss-Markov model (see section 2.4.2).  

It is principally the image coordinates of homologous points which are used as 
observations2. The following unknowns are iteratively determined as functions of 
these observations: 
– three-dimensional object coordinates for each new point i (total uP, 3 unknowns 

each); 
– exterior orientation of each image j (total uI, 6 unknowns each); 
– interior orientation of each camera k (total uC, 0 or ≥ 3 unknowns each). 

The bundle adjustment is completely general and can, for example, represent an 
extended form of the space resection (see section 4.2.3, eqn. 4.16): 

+ =

+ =
0 0 0 0

0 0 0 0

' ' ( )
' ' ( )

, , , ' , ' , ' , , ,
, , , ' , ' , ' , , ,

j j j j j j k k k i i i

j j j j i

i i

i ii j j k k k i

x X ,Y ,Z ,ω φ κ
y

x z Δx X Y Z
X ,Y ,Z ,ω φ κ y z Δ

vx F
v Yy x X ZF

 (4.99) 

where  i: point index 
 j: image index 
 k: camera index 

 
2 Additional observations such as object point coordinates, distances or directions are introduced in 
section 4.4.2.3. 
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The non-linear equations (4.98) are linearized using a Taylor series expansion with 
approximate values for all unknowns (in red) inside the brackets in (4.99). Here the 
derivatives, already determined in equations (4.19), are extended by the derivatives 
with respect to object coordinates: 
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X N
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= − −
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 (4.100) 
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If the interior orientation parameters are introduced as unknowns, the following 
derivatives are added (c = –z'): 
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Derivatives with respect to additional parameters of distortion are introduced in a 
similar way (see section 3.3.3). If linearization is done numerically (see section 
2.4.5.1), the projection equations and selected distortion model can be programmed 
directly into the source code and a rigorous differentiation is not required.  

In standard form, the linearized model is given by  

,1 , ,1,1
ˆ

n n u un
+ = ⋅l v A x   (4.102) 

and the corresponding system of normal equations is 

, ,1 ,1 ,1
ˆ

u u u u u
⋅ + =N x n 0   (4.103) 

where 

, , , ,

T

u u u n n n n u
= ⋅ ⋅N A P A  

,1 , , ,1

T

u u n n n n
= ⋅ ⋅n A P l  

The solution vector and its covariance matrix are estimated in an iterative 
adjustment: 

1

,1 ,1 , , , , , ,1,
ˆ ( )T T

u u u n n n n u u n n n nu u

−= ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅x Q n A P A A P l  (4.104) 
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where 
1

,, u uu u

−
=Q N  : cofactor matrix 

2
0, ,

ˆ
u u u u

s= ⋅C Q  : variance-covariance matrix 

... Normal equations 
The number of unknowns in the adjustment system can be calculated as follows: 

int ( )I images P po s C cameras datumu u n u n u n u= ⋅ + ⋅ + ⋅ +  (4.105) 

where 
uI = 6 : parameters of exterior orientation per image 
uP = 3 : XYZ coordinates of new points 
uC = 0…≥3  : parameters of interior orientation per camera 

In addition to the unknown orientation parameters and point coordinates, up to 
seven parameters are still required for datum definition. However, these can be 
eliminated by use of reference points or appropriate condition equations (datum 
defect, see section 4.4.3.1). Table 4.1 gives examples of the number of observations 
and unknowns for different image configurations. 

Table 4.1: Number of unknowns and observations for different image configurations. 

 Example 1 u utotal Example 2 u utotal Example 3 u utotal 

 aerial set-up (Fig. 4.62) closed loop set-up (Fig. 4.64) test field calibration 
(Fig. 7.33d) 

nimages 8 6 48 16 6 96 8 6 48 
npoints 14 3 42 25 3 75 13+6 3 57 
nref. pts. 6 0 0 0 0 0 3 distances 0 0 
ncameras 1 0 0 1 5 5 1 7 7 
udatum 0  0 7  (7) 6  (6) 
utotal   90   176   112 
nobs   112   384   304 
r=n–u   22   208   192 

 
Example 1 represents a regular arrangement for aerial photogrammetry or the 
measurement of plane façades (Fig. 4.62). The number of unknowns is u = 90 if 8 
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images and 14 new points are assumed. The datum is defined by 6 reference points. 
For image acquisition, a metric camera with known interior orientation is used.3 

The connection matrix in Fig. 4.62 shows which point is measured in which 
image. The numbering of object points by measurement strip produces the typical 
diagonal structure of connections, which is also seen in the structure of the Jacobian 
matrix A and the resulting normal equations (Fig. 4.63). In order to solve the normal 
equations, the order of observations can be further optimized by suitable sorting 
algorithms (see section 2.4.5.3).  
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Fig. 4.62: Example 1: aerial or façade arrangement. 

On average each object point is measured in 2.8 images. Each measured image point 
provides 2 observations. Hence, with a total number of n = 112 observations and a total 
redundancy number of r = n-u = 112–90 = 22, redundancy in the adjustment system is 
relatively weak. 

 
3 For a clearer illustration, a reduced number of object points is used in this example. 
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Fig. 4.63: Structure of design matrix A according to example 1. 
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Fig. 4.64: Example 2: closed-loop arrangement. 

Example 2 shows a typical closed-loop image configuration for an object formed from 
a cylinder and hemisphere (Fig. 4.64). The object is recorded in two image acquisition 
sets which have a relative vertical shift (bottom-set images 1–8, top-set images 9–16). 
The object point on top of the dome appears in all images. As there are no reference 
points available, the datum defect of 7 is eliminated by a free net adjustment (see 
section 4.4.3.3). A non-metric camera is used so 5 parameters of interior orientation 
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must be simultaneously calibrated. A total of 176 unknowns must therefore be 
estimated.  

The corresponding connection matrix (Fig. 4.65) shows an average of 7.7 images 
for each object point. The redundancy is therefore much higher than in example 1 
(aerial or façade arrangement). With 384 measured image coordinates, the total 
redundancy is r = 384–176 = 208. 

However, the extent to which the adjustment system can be calculated, and the 
quality of the results, are less a question of total redundancy than the geometric 
configuration of the system. Consider the arrangement of example 1 (Fig. 4.62) which 
allows for the determination of plane coordinates (parallel to the image plane) to an 
acceptable accuracy whilst a different point accuracy, which varies as a function of 
the height-to-base ratio, applies along the viewing direction. It is not practicable to 
perform a camera calibration with this set-up. In contrast, the arrangement of 
example 2 (Fig. 4.64) represents a very stable geometry which can provide not only 
self-calibration but also a high and homogenous point accuracy in all three 
coordinate axes. 

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9

10
11
12
13
14

image

po
in

t

connection matrix

15
16
17
18
19
20

9 10 11 12 13 14 15 16

21
22
23
24
25

 

Fig. 4.65: Connection matrix of example 2 (Fig. 4.64). 

Finally, example 3 in Table 4.1 refers to an arrangement for test field calibration 
according to Fig. 7.29 (see section 7.3.1.1). If the test field, in this case with 13 points 
and 3 distances (6 points), is completely covered by each of the 8 images, a total 
number of u = 112 unknowns and n = 304 observations results. Even with this simple 
set-up a high redundancy and stable geometric configuration are both achieved. 
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... Combined adjustment of photogrammetric and survey observations 
The system of equations in (4.98) describes the original model of bundle triangulation 
by defining the image coordinates x',y' (observations) as a function of the unknowns, 
specifically of the object coordinates X,Y,Z. Additional information about the object 
or additional non-photogrammetric measurements are not considered in (4.98). 

An extended model for the bundle adjustment takes additional observations into 
account as, for example, measured distances, directions or angles from survey 
instruments or laser trackers. Other constraints on the object can also be integrated, 
such as known points, coordinate differences, straight lines, planes or surfaces 
having rotational symmetry (Fig. 4.66). 

All additional observations can be weighted according to their accuracy or 
importance and therefore have a rigorous stochastic treatment in the adjustment 
process. 
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Fig. 4.66: Survey observations. 

.... Coordinates, coordinate differences and distances 
It is particularly easy to introduce observed coordinates, coordinate differences or 
distances. The following observation equations result from the introduction of 

object coordinates: 
X X=  Y Y=  Z Z=  (4.106) 

coordinate differences: 

2 1ΔX X X= −  2 1ΔY Y Y= −  2 1ΔZ Z Z= −  (4.107) 

slope distances:  
2 2 2

2 1 2 1 2 1( ) ( ) ( )s X X Y Y Z Z= − + − + −  (4.108) 
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distances in XY plane: 
2 2

2 1 2 1( ) ( )XYs X X Y Y= − + −   (4.109) 

distances in XZ plane: 
2 2

2 1 2 1( ) ( )XZs X X Z Z= − + −   (4.110) 

distances in YZ plane:  
2 2

2 1 2 1( ) ( )YZs Y Y Z Z= − + −   (4.111) 

.... Exterior orientations 
Known position or orientation data of a camera can be taken into account by the 
following additional observation equations: 

exterior orientation: 

0 0

0 0

0 0

X X
Y Y
Z Z

=
=
=

 
ω ω
φ φ
κ κ

=
=
=

 (4.112) 

Normally the exterior orientation cannot be measured directly. Older metric cameras 
may be combined with surveying instruments; in this case surveyed angles (azimuth, 
elevation) can be introduced as rotation angles of exterior orientation; the rotation 
matrix must be properly defined (see section 4.2.1.2). In addition, exterior orientation 
parameters may be known from previous calculations and so can be processed with 
a corresponding weight. 

.... Relative orientations 
For the orientation and calibration of stereo cameras which are stably mounted 
relative to each other (example in Fig. 3.127), it is useful to introduce constraint 
equations which fix the relative orientation at all imaging locations: 

Base constraint for fixed relative orientation between images i and j: 
2 2 2

0 0 0 0 0 0( ) ( ) ( )i j i j i j ijX X Y Y Z Z b− + − + − =  (4.113) 

Rotation constraint for fixed relative orientation:  

11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33

a b a b a b α
a b a b a b β
a b a b a b γ

⋅ + ⋅ + ⋅ =
⋅ + ⋅ + ⋅ =
⋅ + ⋅ + ⋅ =

  (4.114) 



 4.4 Multi-image processing and bundle adjustment   

Here aij and bij are the elements of the rotation matrices A and B of the images i and j. 
Each of the constraint equations forms a scalar product, hence α, β, γ define the 
rotation angles between the axes of the two cameras.  

.... Directions and angles 
Survey directions and angles, for example observed by theodolite, can also be 
introduced. In a conventional levelled use where the XY plane is horizontal and the 
theodolite’s vertical axis corresponds to the Z axis (Fig. 4.66), the equations are: 

horizontal direction:  

2 1

2 1

arctanh
X X

r
Y Y

 −
=   − 

 (4.115) 

horizontal angle: 

3 1 2 1

3 1 2 1

arctan arctan
X X X X

β
Y Y Y Y

   − −
= −     − −  

 (4.116) 

vertical angle:

 
2 1

2 2 2
2 1 2 1 2 1

arcsin
( ) ( ) ( )

v
Z Z

r
X X Y Y Z Z

 − =   − + − + − 

 (4.117) 

This can be extended to complete sets of surveyed directions (several measured 
horizontal and vertical directions and distances from one station). With modification, 
the equations can also apply to non-levelled instruments such as laser trackers. With 
the above observation types, pure 3D survey nets can also be adjusted. 

.... Auxiliary coordinate systems 
The introduction of auxiliary coordinate systems is a very elegant way of formulating 
additional information in object space. An auxiliary coordinate system X Y Z  is a 3D 
coordinate system arbitrarily oriented in space and used to define additional 
observations or constraints. For example, this can be local reference point 
configurations with a defined relation to each other or local geometric elements, e.g. 
rotationally symmetric shapes. 

The auxiliary coordinate system can be transformed into the object coordinate 
system X,Y,Z using a spatial similarity transformation (see section 2.2.4): 
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0( )ωφκm= + ⋅ ⋅ −0X X R X X   (4.118) 

or 

0 11 12 13 0

0 21 22 23 0

31 32 33 00

X X r r r X X
Y Y m r r r Y Y

r r r Z ZZ Z

       −
       

= + ⋅ ⋅ −       
       −      

 

where 
X,Y,Z: spatial coordinates in global system 

, ,X Y Z : spatial coordinates in local system 
X0,Y0,Z0: centroid of point cloud in XYZ system 
 (constant coordinate values in the adjustment process) 

0 0 0, ,X Y Z : origin of system XYZ with respect to system X Y Z  

ωφκR : rotation matrix transforming XYZ parallel to X Y Z  
m : scaling factor between both systems 

The seven transformation parameters must be introduced as unknowns in the 
adjustment; hence approximate values must be provided. It is now possible to define 
functional relationships between object points within the auxiliary coordinate 
system. They can be expressed by parameters Bi, which can be transformed into the 
object coordinate system using (4.118). Parameters Bi can describe simple geometric 
conditions and also object surfaces of higher order. 

0 0 0( , , , , , , , , , , ) ( , , , )i if X Y Z ω φ κ X Y Z m B g X Y Z B C= =  (4.119) 

C is a constant in the constraint equation, expressed as function f in the object 
coordinate system or as function g in the auxiliary coordinate system. An arbitrary 
object plane is therefore defined by  

X C=   (4.120) 

A straight line in the auxiliary coordinate system is defined by 

X C=  Y C=  (4.121) 

A rotational solid is given by 

2 2 ( , )iX Y h Z B C+ + =   (4.122) 

The function h defines the shape of the solid in the direction of the rotational axis, 
e.g. for a circular cylinder with radius r 

( , ) 0ih Z B =  and 2C r=  (4.123) 

or for a sphere with radius r: 

2( , )ih Z B Z=  and 2C r=  (4.124) 
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.... Applications of additional observations  
With the aid of the additional observations above, the adjustment system can be 
significantly influenced: 
– Weak image configurations can be stabilized by introducing additional object 

information. 
– Surveyed or other measured object data, and photogrammetric observations, can 

be adjusted in one step, e.g. in order to minimize net strains (inconsistencies 
between object points) or to handle measurement data from different sources in 
a balanced way. 

– Unlimited numbers of known distances (scales) between new points can be 
observed and processed according to their accuracy. 

– Single object points can be forced onto an object surface by geometric conditions, 
e.g. points on a cylindrical surface (pipe line).4 

– Information about exterior orientation provided by instruments such as inertial 
navigation units (INU), GNSS location or gyroscopes, can support the adjustment 
process. Mechanically defined conditions, such as the movement of a camera 
along a straight line or circle, can also be added as additional observations. This 
applies equally to geometric constraints between the orientation parameters of 
different cameras, e.g. for stereo cameras or camera/projector arrangements. 

– Additional information which is introduced with an unrealistic weight can 
negatively affect the adjustment result. This point is particularly important in 
practice and demands a careful choice of weights and analysis of results. 

... Adjustment of additional parameters 
.... Self-calibration 
Functions for the correction of imaging errors are referred to as additional parameter 
functions. Functional models which describe real optical characteristics of image 
acquisition systems (parameters of interior orientation) have been summarized in 
section 3.3. When these parameters are determined within the bundle adjustment, the 
procedure is known as self-calibration.  

The linearized model of the adjustment is extended by derivatives for principal 
distance and principal point, as given in (4.101). Again, approximate values of the 
additional unknowns must be provided, although the following initial values are 
usually sufficient: 

 
4 Conditions include both weak constraints defined by additional observations with standard 
deviations, as well as fixed constraints which force an exact condition. 
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principal distance: c ≈ –f (focal length) 
principal point: x'0 ≈ y'0 ≈ 0 
radial distortion: A1 ≈ A2 ≈ 0 
decentring distortion: B1 ≈ B2 ≈ 0 
affinity and shear: C1 ≈ C2 ≈ 0 

The ability to determine individual parameters depends, on one hand, on the 
modelling of the physical imaging process. Parameter sets based on faulty physical 
assumptions can lead to weakly conditioned systems of equations, over-parametrized 
equations or high correlations between parameters. On the other hand, interior 
orientation parameters can only be reliably calculated if image configuration and 
distribution of object points are well chosen. Section 7.3.2 summarizes suitable image 
configurations for self-calibration. 

The parameters of interior orientation can additionally be handled as observed 
values with a corresponding weight. The observation equations in this case are given 
by: 

interior orientation: 

0 0

0 0

' '
' '

c c
x x
y y

=
=
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Fig. 4.67: Structure of design matrix A, extended by additional unknowns for the interior orientation 
of a camera (compare Fig. 4.63). 
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If additional parameters are introduced, the structure of the normal system of 
equations changes significantly. While the design matrix illustrated in Fig. 4.63 
shows a distinctive diagonal structure with a large number of zero elements, the 
normal equation matrix of adjustment systems with additional parameters contains 
larger areas with non-zero elements. Each measured image coordinate is functionally 
connected with the unknowns of interior orientation, hence the right-hand side of the 
matrix is completely filled (Fig. 4.67).  

In order to invert the resulting normal equation matrices, much more storage and 
computing power is required. Sparse matrix techniques have been successfully 
applied in practice for the efficient use of computing resources (see section 2.4.5.3). 

.... Calibration with variable interior orientation 
The models normally used for interior orientation assume constant camera 
parameters during the period of image acquisition. If the camera geometry changes 
over this period, for example due to refocusing or a change of lens, a “new” camera 
with its own parameters must be assigned to the corresponding images. The 
simultaneous determination of more than one group of parameters requires an image 
configuration appropriate for the calibration of each camera (see section 7.3.2). 

If stable camera parameters cannot be guaranteed for longer periods, the interior 
orientation must be calibrated individually for each image. This approach to image-
variant calibration provides corrections for a shift of the perspective centre (camera 
constant and principal point coordinates) but otherwise assumes stable distortion 
parameters for all images. For this purpose, the image-variant parameters are 
introduced as observed unknowns with approximate values and a priori standard 
deviations which correspond to the expected shift of the perspective centre. The 
numerical stability of the adjustment is maintained provided there is a suitable 
number of object points each with an appropriate number of image rays. Depending 
on image configuration and current state of the camera, applications using DSLR 
cameras report an accuracy increase by a factor of 2 to 4 compared with cases in which 
image-variant parameters are not used (see section 3.3.4.4). The approach can be 
extended to the simultaneous calculation of a correction grid to allow for sensor 
deformation (see section 3.3.4.5). 

.. Object coordinate system (definition of datum) 

... Rank and datum defect 
A network composed of purely photogrammetric observations leads to a singular 
system of normal equations because, although the shape of the network can be 
determined, its absolute position and orientation in space cannot be determined. The 
resulting system of equations has a rank defect 
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d u r= −  (4.126) 
where 
u: number of unknowns 
r: rank(A) 

The rank defect is caused by a datum defect in the observed network which, for a 
three-dimensional network, can be removed by defining 7 additional elements: 

3 translations 
3 rotations 
1 scaling factor 

If at least one known distance is observed, then the datum defect is reduced by 1. The 
information is introduced as an additional distance observation according to 
equations 4.108ff. 

Translational datum defects can be eliminated if control or reference points with 
known object coordinates are observed. Options for this are reviewed in the next 
section. 

Rotational datum defects can also be eliminated by reference points, as well as 
by directly measured directions or angles. 

image 1

image 8

image 7
image 6

control point
tie point

 

Fig. 4.68: Example of a configuration defect in an arrangement of images; 
images 6,7,8 cannot be oriented with respect to the rest of the images. 

In addition to datum defects, observed networks can contain a configuration defect 
if, due to missing observations, some portions of the network cannot be determined 
unambiguously. In photogrammetric networks this problem seldom arises. If some 
images, for example, contain an insufficient number of tie points, they cannot be 
oriented with respect to the other images (see example in Fig. 4.68). 



 4.4 Multi-image processing and bundle adjustment   

... Reference points 
.... Error-free reference points 
Reference points are used for the definition of a global object coordinate system 
(datum definition). They can be introduced as error-free reference points into the 
bundle adjustment if their nominal coordinates are known to a high accuracy. Such 
coordinates could be introduced into the bundle adjustment as constants. Some 
bundle adjustment programs allow their input as measurements with zero standard 
deviations. Logically this approach leads to an error-free definition of the datum.  

It is assumed, however, that the accuracy of the reference point coordinates is, 
for example, better by a factor 5–10 than the photogrammetric point determination, 
and that there are no inconsistencies in reference point coordinates. Errors in 
reference point coordinates are interpreted as errors in observations and are therefore 
difficult to detect. The definition of the object coordinate system using error-free 
reference points gives rise to a fixed datum.  

In principle the spatial distribution of reference points should follow the 
recommendations made for absolute orientation (see section 4.3.5). The stereo model 
discussed there must here be considered a model defined by all images (bundles), i.e. 
a minimum of three reference points is required for the definition of the object 
coordinate system. As a minimum, the following coordinate components must be 
given by these three reference points (the example components in brackets relate to 
an image plane parallel to XY and viewing direction parallel to Z): 
– a minimum of 2x2 coordinates parallel to the primary object plane (X1, Y1, X2, Y2) 
– a minimum of 3 coordinates perpendicular to the primary object plane (Z1, Z2, Z3) 

The minimum configuration can be established, for example, by 2 full reference 
points (2x XYZ) and one additional reference height point (1x Z) or 2 plane reference 
points (2x XY) and 3 reference height points (3x Z). However, in many applications of 
close-range photogrammetry there are more than 2 full reference points available.  

Reference points should be widely and uniformly distributed over the area 
covered by the images. Fig. 4.69 (left) shows an image set-up with a suitable 
distribution of 4 reference points, leading to a stable datum definition and 
homogeneous accuracies. In Fig. 4.69 (right) the 4 reference points are distributed 
inefficiently in one corner of the image configuration. As a consequence, the whole 
system can rotate around this point cloud, which results in discrepancies at more 
distant points and correspondingly higher standard deviations. 

Reference points used for datum definition must not lie on a common straight 
line, as the normal system of equations then becomes singular. Unfavourable 
distributions of reference points which come close to this restriction will result in 
numerically weak systems of equations. 
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datum point new point  

Fig. 4.69: Good (left) and bad (right) distribution of reference points in a multi-image configuration. 

.... Coordinates of reference points as observed quantities 
Coordinates of reference points can also be introduced as observed quantities with a 
weight corresponding to their real point accuracy, e.g. depending on the measuring 
systems used for coordinate determination (see section 4.4.2.3). Within the 
adjustment system, the coordinates of the reference points are treated as unknowns 
and receive corrections and accuracy values in the same way as other observations. 
Standard deviations of weighted reference points can be interpreted as quality 
measures for the reference points themselves. 

Partial compensation for inconsistencies between reference point coordinates 
can be done by an appropriate variation of weights, provided that these 
inconsistencies are not directly transferred to the photogrammetric observations. A 
coordinate system defined in this way is known as a weighted datum. Using 
coordinates of reference points in this way also compensates completely for rank 
defects in the adjustment system. If the weighted datum also results in a weak 
definition of the coordinate system, then higher standard deviations for new points 
are usually obtained. 

.... Unconstrained datum definition using reference points (3-2-1 method) 
Using a minimum amount of object information, it is possible to define the object 
coordinate system in order to avoid any possible influence of inconsistencies in the 
reference points. For this purpose, scale is given by a known distance S. The 
coordinate axes can be then defined according to the following scheme known as the 
3-2-1 method (Fig. 4.70): 
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Fig. 4.70: Unconstrained coordinate system definition using reference points (3-2-1 method). 

1. Fixing the X,Y,Z coordinates of point 1 defines an arbitrary 3D reference point in 
the object coordinate system which can, for example, represent the origin (X = Y 
= Z = 0). 

2. Fixing the Y,Z coordinates of point 2 defines the X axis. At this stage the system 
can still be rotated about a line joining point 1 and point 2. 

3. Fixing the Y coordinate of point 3 defines the XZ plane (alternatively define the 
XY plane with fixed Z or YZ plane with fixed X). Hence the coordinate system is 
uniquely defined without any constraints. 

In some configurations, ambiguities in transformation are possible, e.g. a point could 
be transformed to the mirror image of itself in a plane. In these cases, some very 
approximate additional data can be used to choose between alternative positions. 

Fig. 4.70 shows an example. If real reference point coordinates are not available, 
the system can also be defined by fictitious coordinates. 

Scaling information can, of course, also be derived from the known distances 
between reference points or simply by the inclusion of a scale bar, e.g. element “s” in 
Fig. 4.70. 

The unconstrained datum definition by reference points does not affect the shape 
of the photogrammetric network. It is true that the absolute coordinates of object 
points are related to the arbitrarily selected system origin but the distances between 
points are independent of the datum. In contrast, the estimated accuracies derived 
from the covariance matrix are influenced by the datum definition. If datum points 
are distributed according to Fig. 4.69 (right) then object point accuracy based on 
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datum point accuracy is interpreted too optimistically when they are close to the 
datum points and too pessimistically in more distant parts of the network.  

... Direct georeferencing 
Direct georeferencing is a term originating in geospatial applications. It refers to the 
datum definition of a set of images by direct measurement of their exterior 
orientations without using reference points. Instead, exterior orientation is 
determined using sensor systems such as GNSS receivers (translations) or inertial 
measuring units (rotations). However, inertial, gyroscopic and wireless positioning 
devices are often applied in manufacturing situations, as are mechanical positioning 
devices such as robot arms (translations and rotations). The term will therefore be 
used generally in this book. In all cases there is a spatial offset in six degrees of 
freedom between camera system and the additional sensing devices which must be 
determined by system calibration. For aerial systems this process is also called 
boresight calibration. 

Practical examples of direct georeferencing can be found in applications such as 
mobile mapping, or the use of drones for aerial imaging, where no reference points 
are available (see section 6.12). Further examples are found in the use of mechanical 
devices (robot, articulated arm, coordinate measurement machine) which can 
provide camera orientation parameters to a sufficient accuracy for many 
applications, again without photogrammetric reference points. 

However, externally measured exterior orientation data are not usually as 
accurate as photogrammetrically determined orientation data using reference points. 
For aerial applications, directly measured orientation data may be introduced as 
appropriately weighted observations in order to bridge areas where there is a weak 
distribution of reference or tie points. The combination of direct sensor data with 
reference points is often known as integrated georeferencing. A similar situation can 
arise with mechanically guided camera systems where the exterior orientation is 
additionally supported by measured reference points (see section 6.9.5). 

... Free net adjustment 
If no reference points or equivalent datum definitions are available, the problem of 
datum definition can be avoided by means of a free net adjustment which fits the 
network onto the initial coordinates of the unknown points. Initial values for new 
points are required in any case for the linearization of the correction equations. They 
can be generated by the procedures described in section 4.4.4.  

The initial values of all unknown points (new object points and perspective 
centres) form a spatial point cloud. This point cloud can be transformed by three 
translations, three rotations and one scaling factor onto the photogrammetrically 
determined model of object points, without affecting the shape of the point cloud, i.e. 
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without any geometrical constraint. The photogrammetric observations are not 
influenced by this transformation. 

A rank defect of 7 in the normal equation matrix is avoided if exactly 7 
observations can be found which are linearly independent with respect to each other 
and to the other observations. This requirement is exactly fulfilled if the normal 
system of equations is extended by a matrix B with d = 7 rows and u columns, where 
u is the number of unknowns (see section 2.4.2.4): 
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If the scale of the photogrammetric network is known, the potential rank defect 
decreases to 6 and the last row of matrix B can be eliminated. Practically, scaling can 
be introduced as additional conditions from observed coordinate differences (e.g. 
eqn. 4.108) or other given scale information. Additional aspects about definition of 
reference scales are discussed in section 6.3.1. 

The first six columns of matrix B are related to the unknown parameters of 
exterior orientation. They are not further discussed as the perspective centres are 
normally not of interest in the definition of the datum. 

The next columns correspond to the unknown object points. Three condition 
equations are used for the translation of the system, included in the first three rows 
of matrix B: 
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1 2
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

 (4.128) 

If the sum of coordinate corrections at all object points becomes zero, the centroid of 
the initial points is identical to the centroid of the adjusted object points.  

The next three rows of matrix B contain differential rotations of the coordinate 
system: 
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 (4.129) 

The final row 7 of matrix B defines scale: 
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0 0 0 0 0 0
1 1 1 1 1 1 2 2 2 2 2 2 0X dX Y dY Z dZ X dX Y dY Z dZ+ + + + + + =  (4.130) 

The extended system of normal equations then becomes: 
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Here k consists of seven Lagrange multipliers. The solution of the extended system of 
normal equations can be obtained from the pseudo inverse (Moore-Penrose inverse) 
Q+: 
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The pseudo inverse has the property that the resulting covariance matrix has a 
minimum trace: 

trace{ } min.+ =Q   (4.133) 

Hence, the standard deviations of the unknowns (object coordinates) are estimated 
with minimum quantities. The centroid of object points becomes the origin for the 
datum which is a fixed point with zero standard deviation. A datum is therefore 
defined which does not affect the total accuracy of the system. 

.... Full trace minimization 
If all unknown new points are used for datum definition, the full trace of the 
covariance matrix Q+ is minimized, as explained above. All points therefore 
contribute to the datum definition but they are not considered free of error and do not 
have a priori standard deviations.  

Fig. 4.71 shows an example of a network for which the datum is defined 
alternatively by three reference points and one distance (left, 3-2-1 method) and by 
free net adjustment (right, all points used as datum points). When reference points 
are used, error ellipses illustrate clearly that standard deviations are smaller for 
object points close to reference points than for those at the edges of the net. In 
contrast, error ellipses in the free net adjustment are significantly smaller and more 
homogenous. Their large semi-axes point towards the centroid of the points. The 
vertical lines in the ellipses indicate the error in Z, which behaves similarly to those 
in X and Y. 
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Fig. 4.71: Example of variation in 2D error ellipses estimated from a network based on reference 
points (left, red points) and by free net adjustment (right). 

.... Partial trace minimization  
There are some applications where not all the object points should be used for datum 
definition in a free net adjustment. This can occur, for example, when a subset of new 
points represents an existing network into which the remaining object points should 
be optimally fitted. In this case, those columns of matrix B, which relate to points not 
used in datum definition, must be set to zero. However, the rank of B must not be 
smaller than u–d. 
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Eqn. (4.134) shows a modified matrix B where all those elements are eliminated which 
are related to the perspective centres. 
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.... Practical aspects of free net adjustment 
With free net adjustment, as with the unconstrained datum definition using reference 
points, the photogrammetric network is not influenced by possible inconsistencies 
between reference points. The object coordinate residuals are only affected by the 
photogrammetric observations and the quality of the model. A free net adjustment 
therefore provides an optimal precision that can be better analysed than standard 
deviations of unconstrained, or even over-determined, datum definitions. 

The free net adjustment is therefore a very flexible tool if 
– no reference points are available, 
– only the relative positions of object points are of interest, or 
– only the quality of the model is to be analysed, for example the model of interior 

orientation used in self-calibration. 

However, the standard deviations of object points are not suitable for a direct 
assessment of accuracy. They only provide information about the internal quality of 
a photogrammetric network, i.e. they express how well the observations fit the 
selected model. Accuracy can only be properly assessed using comparisons with data 
of higher accuracy (see also section 4.4.5.4). The display of error ellipse or ellipsoids 
as in Fig. 4.71 is only useful when the required confidence intervals are based on 
eigenvalues and eigenvectors (section 2.4.3.5).  

.. Generation of approximate values 

The generation of approximate values, to be used as starting values or initial values 
in the iterative solution of a photogrammetric problem, is often a complex task. 
Approximate values are required for all unknowns to be estimated, i.e. all orientation 
parameters and all new points or tie points. Since arbitrary image configurations in 
arbitrarily oriented object coordinate systems may well occur in close-range 
applications, the manual calculation of approximate values is virtually impossible. 

Fig. 4.72 depicts (within solid lines) that information which is necessary for the 
generation of approximate values required by the bundle adjustment, and (within 
dotted lines) information which is useful but optional. The key component is a 
module for the automated calculation of approximate values based on measured 
image coordinates, camera parameters and, if available, coordinates of reference 
points. Directly measured values for exterior orientation may also exist, e.g. from 
GNSS data for UAV or mobile mapping systems. This process is also known as multi-
image orientation, whereby bundle triangulation is expressly not implied.  
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Fig. 4.72: Methods and procedures for the calculation of approximate values. 

In many cases, additional information about the image configuration is available, 
such as surveyed orientation data, parameters derived from free-hand sketches or 
CAD models. Manual intervention in the procedures for calculating approximate 
values can sometimes be necessary and such additional information can support this 
manual process as well as helping to define the coordinate system. Approximate 
values can, however, also be generated fully automatically.  

The following principal methods for the generation of approximate values can be 
identified. They can also be applied in combination: 
– Automatic calculation of approximate values: 

In order to generate approximate values automatically, three strategies are 
feasible for complex photogrammetric configurations: 
– combined intersection and resection 
– successive forming of models 
– transformation of independent models 
All three strategies are based on a step by step determination of the parameters 
of exterior orientation, as well as the object coordinates, in a process where all 
images in the project are added sequentially to a chosen initial model. 

– Generation of approximate values by automatic point measurement: 
Digital photogrammetric systems allow for the automatic identification and 
measurement of coded targets. Reference and tie points can be matched by this 
method and, by further applying the above orientation strategies, a fully 
automatic generation of approximate values is possible. 

– Direct measurement of approximate values: 
Approximate values of object points, especially of imaging stations and viewing 
directions, can be measured directly, for example by survey methods. It is also 
possible to use separate measuring equipment for the location of camera stations, 
such as GNSS or inertial navigation units, as these are now increasingly 
incorporated into UAV or mobile mapping systems. 
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... Strategies for the automatic calculation of approximate values 
In order to calculate approximate values automatically, the following information 
must be provided: 
– a file containing camera data (interior orientation data which can be 

approximate); 
– a file containing measured image coordinates (see Fig. 4.61); 
– a file containing reference point coordinates (optional, if available) or other 

information for the definition of the object coordinate system; 
– other known object information (optional, if available), e.g. approximately 

known exterior orientations.  

On the basis of this information, an iterative process is started which attempts to 
connect all images via approximate orientations. At the same time all measured tie 
points can be approximately calculated in object space. The bundle adjustment can 
then be executed. 

The following procedures show sample strategies which employ suitable 
combinations of various methods for orientation and transformation (resection, 
relative and absolute orientation, similarity transformation, intersection). In all 
cases, a reasonable starting model formed by two images is defined. 

.... Starting model and order of calculation  
From a multi-image configuration, a starting model is provided by one image pair for 
which relative orientation may be computed. The resulting model coordinate system 
provides an arbitrary 3D coordinate system for including all subsequent images or 
models. The choice of starting model, and processing sequence of subsequent 
images, is not arbitrary and is critical to the success of the automatic calculation of 
approximate values, especially for complex and irregular image configurations.  

Theoretically, n images of a multi-image configuration lead to n(n–1)/2 possible 
models. Image pairs with fewer than 5 homologous points would, of course, be 
eliminated. Quality criteria can be calculated for each possible model and the selected 
starting model should have the following properties: 
– Number of tie points: 

A large number of tie points leads to a more stable relative orientation where 
possible gross errors (outliers) can eliminated more easily. 
 starting model: maximum number of tie points 

– Accuracy of relative orientation: 
The standard deviation of unit weight of the relative orientation (s0) should 
represent the expected image measuring accuracy. 
 starting model: minimum s0 

– Mean intersection angle at model points: 
The mean intersection angle of homologous image rays provides information 
about the quality of a computed relative orientation. Models with small mean 
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intersection angles, e.g. less than 10°, have an unfavourable height-to-base ratio 
and should not be used as starting models. 
 starting model: mean intersection angle close to 90° 

– Mean residuals of model coordinates: 
The mean intersection offset of homologous image rays which are skew is a 
quality measure of model coordinate determination. 
 starting model: minimum mean intersection offset 

– Number of gross errors in relative orientation: 
Models with few or no blunders are preferable for orientation. 
 starting model: no blunders 

– Image area covered by tie points: 
 starting model: maximum image area 

By giving appropriate weight to these criteria an optimal starting model, as well as a 
sorted list of further models in order of calculation, can be selected. In general, the 
model with maximum tie points and best mean intersection angle is a suitable 
starting model. An unfavourable starting model, chosen without regard to these 
criteria, can cause the iterative orientation procedure to diverge. 

.... Combination of space intersection and resection 
Fig. 4.73 shows the principal steps in generating approximate values by combined 
space intersections and resections. A starting model is first selected according to the 
criteria outlined in the preceding section. 

This starting model is used to calculate a relative orientation. Subsequent images 
are oriented to this model by space resection, provided they have at least 3 spatially 
distributed tie points with model coordinates known from a previous relative 
orientation. Model coordinates of new unknown object points are then calculated by 
intersection. When additional points are calculated, relevant images can be oriented 
again by resection in order to improve their exterior orientation in the model system. 
The image configuration is iteratively stabilized in this process since the number of 
intersected model points continually increases, thus improving the orientation 
parameters calculated by resection.  

Once all images have been oriented with respect to the model coordinate system, 
a final absolute orientation (similarity transformation) can be performed. For this 
purpose, reference points with known coordinates in both model and object 
coordinate systems are used. The final result delivers approximate exterior 
orientation values of all images and approximate coordinates for all 3D object points. 
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Fig. 4.73: Generation of approximate values with combined space intersection and resection. 
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Fig. 4.74: Initial value generation with successive model creation. 

.... Successive creation of models 
Fig. 4.74 illustrates the process of initial value generation by successive creation of 
models. A relative orientation is first calculated for a suitable starting model. If this 
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model contains enough reference points, an absolute orientation can immediately be 
performed. If not, overlapping photos can be successively oriented to the initial 
model if they contain a sufficient number of homologous points. Again, if a set of 
models contains enough reference points it can be absolutely oriented. In this way 
approximate values of unknown object points in a model or object coordinate system 
can be computed. At the end of the process the parameters of exterior orientation can 
be derived from the parameters of relative and absolute orientation. 

.... Transformation of independent models 
The process of initial value generation by transformation of independent models is 
illustrated in Fig. 4.75. A connection matrix of all image pairs (models) is first 
established. For each possible model a relative orientation is calculated and stored 
together with corresponding model coordinates and quality estimators. 

The starting model is selected according to the following criteria: 
a) a maximum number of tie points,  
b) appropriate intersection angles and  
c) minimum intersection offsets.  

connection matrix
model combinations

starting model

relative orientation

model order

3D similarity
transformation

next model

relative orientation

all models
oriented?

absolute orientation
complete model

space
resections

model coordinates

reference
model coordinates

yesno

initial values
object system

initial values
exterior orientation  

Fig. 4.75: Initial value generation by transformation of independent models. 
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The model coordinates of the relatively oriented starting model are used to define a 
local coordinate system. All other relatively oriented models are subsequently 
transformed into this local system using their independent model coordinates as 
input to a 3D similarity transformation. 

When all points in all models are calculated with respect to the local system, a 
final absolute transformation of the complete model into the object coordinate system 
is calculated using reference points with known object coordinates. As a result, 
approximate values of object points in the object coordinate system are generated. 

Finally, the exterior orientations of all images are calculated by space resection 
(single image orientation) using the object coordinates computed above. If any object 
points remain without initial values, these can be provided by spatial intersection. 

... Initial value generation by automatic point measurement 
Fig. 4.76 shows one photo of a multi-image configuration which has been taken to 
measure a set of targeted points. Targets with coded point numbers have been placed 
on several points. These can be automatically identified and decoded by the image 
processing system (see section 6.2.1.4). The majority of points are marked by 
standard, non-coded targets. In addition, a local reference tool (front right) is placed 
in the object space. It consists of a number of coded targets with calibrated local 3D 
object coordinates. The reference tool need not be imaged in all photos. The example 
above also shows a reference scale bar which provides absolute scale but is not 
relevant to initial value generation.  

 

Fig. 4.76: Image with artificial targets and local reference system (GSI). 

Approximate values for the freely configured set of images can be generated as 
follows (Fig. 4.77): A pattern recognition process detects all coded targets and other 
potential object points. Those photos in which the reference tool is imaged can be 
individually oriented by space resection into the tool's coordinate system. Remaining 
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images are oriented by relative orientation using the coded targets and the strategies 
described above for calculation of approximate values. Object coordinates for coded 
targets are calculated by intersection. A first bundle adjustment generates improved 
object coordinates and orientation parameters. Remaining photos, which are not at 
this stage oriented, are iteratively integrated by resection and bundle adjustment 
until all images are oriented.  

A subsequent processing stage identifies and consecutively numbers all non-
coded targets using a matching process based on epipolar geometry (see section 
5.5.4). A final bundle adjustment provides the coordinates of all object points. This 
and similar methods form part of digital online and offline measuring systems (see 
section 6.6). Initial value generation and precise coordinate determination are 
integrated in one common procedure. 
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exterior
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yes no

automatic point measurement
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image
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bundle adjustment
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Fig. 4.77: Fully automated generation of initial values and orientation. 

... Practical aspects of the generation of approximate values 
The automatic calculation of approximate values (multi-image orientation) is often a 
time-consuming process for the complex image configurations associated with close-
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range photogrammetry. The stability of a multi-image project depends mainly on the 
distribution of object points and on the configuration of bundles of rays. If there are 
no, or only coarse, approximate values of orientation parameters, then even a very 
few gross data errors can lead to divergent solutions for initial values. Since the 
imaging configuration is then poorly defined, the detection of gross errors is more 
difficult. 

As a result, effective systems for generating initial values should incorporate the 
following features which increase the level of automation and the scope for error 
detection. 
– Use of algebraic rotation matrices: 

Modules for relative orientation, spatial similarity transformation (absolute 
orientation) and space resection should use rotation matrices based on algebraic 
functions (quaternions) instead of trigonometric functions. The use of 
trigonometric functions in the rotation matrices can lead to singularities or 
ambiguities. In addition, algebraic definitions improve the convergence of 
solutions (see section 2.2.2.2). 

– Robust blunder detection: 
The detection of gross data errors should be sufficiently robust that more than 
one blunder can be detected and eliminated more or less automatically. 
Estimation methods based on RANSAC are particularly suitable for this purpose 
(see section 2.4.4.6). 

– Automatic and interactive definition of the order of images: 
With a suitable starting model, the order of image orientation can be determined 
automatically. However, situations occur where the suggested order does not 
lead to convergence, for example due to images which cannot be controlled by 
other images. In these cases, an interactive definition of image order should be 
possible. 

– Manual activation and deactivation of points and images: 
During the process of initial value generation, it can be necessary to deactivate 
faulty points or images with weak geometry in order to provide an initial image 
set which can be oriented. Once a sufficient number of images have been 
oriented, the deactivated images can then be successively added. 

– Manual input of approximate values: 
It is efficient to use any additional information about the object or the image 
configuration which may be available, e.g. from additional or previous 
measurements. In particular, the principal distance should be known in advance, 
for example approximated by the focal length. 

– Approximate values in SfM approaches: 
Approaches based on structure-from-motion (SfM, section 5.5.2.2) are 
particularly robust when there are significant image overlaps and the object 
surface has unique textures. For calculation of initial values usually a RANSAC-
based method is applied that selects five random points from the high number of 
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candidate tie points. These usually contain a large number of outliers. Through 
successive adding of additional overlapping images exterior orientations and 3D 
coordinates of tie points in the model coordinate system are calculated. 

In principle, photogrammetric measuring systems capable of automatic measure-
ment and identification of image points, generate significantly fewer gross errors 
than interactive systems. With appropriate image configurations these systems 
therefore provide a fully automatic procedure, from the calculation of initial values 
through to the final result of the bundle adjustment.  

.. Quality measures and analysis of results 

... Output report 
Typical bundle adjustment programs report on the current status of processing 
including parameters such as number of iterations, corrections to unknowns and 
error messages. When the program is complete, an output report is generated which 
summarizes all results. It should contain the following information: 
– list of input files and control parameters, date, project description; 
– number of iterations and standard deviation of unit weight s0; 
– list of observations (image measurements) including corrections, reliability 

numbers and test values, sorted by images; 
– mean standard deviations of image coordinates, sorted by image and divided into 

x' and y' values; 
– list of blunders detected and eliminated;  
– list of reference points; 
– list of adjusted object points (new points) with standard deviations; 
– mean standard deviations of new points, divided into X, Y and Z values; 
– maximum corrections with (numeric) identifiers of the corresponding points; 
– parameters of interior orientation with standard deviations; 
– correlations between the parameters of interior orientation; 
– parameters of exterior orientation with standard deviations; 
– correlations between the parameters of interior and exterior orientation; 
– list of additional (survey) observations with standard deviations. 

... Sigma 0 and reprojection error 
A first quality check is given by the a posteriori standard deviation of unit weight 
(sigma 0, 0ŝ ). For a bundle adjustment based on a functional model without 
systematic errors and observations without outliers, 0ŝ should have a value similar to 
the expected image measuring precision (see below). Equations (2.209) and (2.226) 
show clearly that 0ŝ  describes the mean error after back-projection of the adjusted 
unknowns (points) into the image plane (reprojection error). It represents an 
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approximate estimation of accuracy only under the conditions stated and does not 
replace a final quality check using independent references (scale bars, artefacts) 
which have not previously been included in the bundle adjustment. The division by 
n in eqn. (2.226) suggests that 0ŝ  can be “arbitrarily” reduced by increasing the 
number of observations. However, the quality of object reconstruction is not 
necessarily improved in this way.  

... Precision of image coordinates 
The precision of image coordinates is calculated from the cofactor matrix: 

0
ˆ ˆ

i iis s q=   (4.135) 

with qii the principal diagonal elements of matrix ˆ̂ll
Q  (see equations 2.225 ff). 

If the bundle adjustment is calculated using only equally weighted 
photogrammetric image coordinates as observations, 𝑠̂𝑠0 should represent the 
accuracy of the instrumental combination of camera and image measuring device.  
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Fig. 4.78: Residuals of image coordinates. 

The standard deviations of the measured image coordinates should be similar in both 
x and y directions. Different values imply that the measuring device or the camera 
generates systematic errors. This may occur, for example, with digital images 
generated by an image scanner whose mechanical construction is different in x and 
y. Bundle adjustment programs with integrated estimation of variance components 
(see section 2.4.4.3) allow different weighting for separate groups of observations in 
order to process observations according to their importance or precision. 

A graphical analysis of the distribution of residuals should, in the end, show no 
systematic errors Fig. 4.78). However, a rigorous analysis of point accuracy in object 
space is not possible with this information. 
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... Precision of object coordinates 
Usually, the precision of adjusted points is of major importance for the quality 
analysis of a bundle adjustment. The analysis should consider two criteria (example 
in Fig. 4.79): 
– Root mean square error (RMSE):  

The root mean square error is a measure of the general precision level of the 
adjustment. Taking the mean image measuring accuracy sx'y' and the mean 
image scale m into account, the equation for accuracy estimation can be checked 
(see sections 3.3.1 and 7.2.1): 

' 'XYZ x ys q m s= ⋅ ⋅   (4.136) 

The design factor q reflects the accuracy of the imaging configuration with typical 
values between 0.7 and 1.5. 

– Maximum residuals of single points: 
In contrast to the mean standard deviation, maximum residuals indicate the loss 
of precision which can be expected at problem points or unfavourable areas 
within the image configuration. If object coordinates are to be used for further 
calculation or analysis, then the maximum residuals should stay within specified 
precision limits. 

Both the above quality criteria can be used only to analyse the statistical precision of 
the photogrammetric procedure. It is necessary here to take into account whether the 
object coordinate datum was defined without constraints (by minimum number of 
reference points or by free net adjustment), or if inconsistencies in reference points 
could be influencing the accuracy of object points. 

If image observation accuracy is homogeneous, accuracy differences in object 
points are mainly caused by: 
– different image scales or camera/object distances; 
– different numbers of image rays per object point; 
– different intersection angles of image rays; 
– different image quality of object points; 
– variations across the image format, e.g. lower quality imaging near the edges 

where distortion is often less well determined; 
– inconsistencies in reference points. 

The true accuracy of a photogrammetric project can be estimated only by comparing 
photogrammetrically determined points or distances with reference values measured 
independently to a higher accuracy. However, a rigorous evaluation is possible only 
with independent reference points which have not already been used as reference 
points or for reference distances in the bundle adjustment. Only through independent 
control will all properties of a photogrammetric system become visible and a rigorous 
accuracy assessment become possible. Suggestions for the verification of 
photogrammetric systems are further discussed in section 7.2.3. 
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Point Nr. |   x     |      y     |    z     |   sx   |    sy   |    sz      |  Rays 
     2     1027.6098      56.8830    34.1252    0.0063    0.0054    0.0075       29 
     3     1093.4013     143.4041    30.7408    0.0065    0.0052    0.0077       29 
     4     1179.2012     278.0186     0.8845    0.0070    0.0054    0.0090       24 
     5      787.0394     635.6436     8.3199    0.0056    0.0053    0.0085       27 
     6      367.3523    1010.0567    11.0867    0.0055    0.0066    0.0089       23 
     7      240.6758     932.3660    48.2087    0.0049    0.0059    0.0073       32 
     8      151.1113     856.2551    60.1397    0.0050    0.0056    0.0068       33 
     9      -26.2640     664.4885    65.5948    0.0058    0.0052    0.0068       29 
    10     -133.1238     567.6979    57.3798    0.0062    0.0048    0.0065       31 
    11     -272.4712     447.0657    48.6376    0.0069    0.0047    0.0065       31 
    12     -429.7587     258.2250     7.6041    0.0079    0.0056    0.0080       22 
    13     -214.8574      73.6836    11.2978    0.0065    0.0051    0.0064       34 
   ...      ...          ...        ...          ...      ...         ...        .. 
  1148      624.8693     506.9187    34.8052    0.1658    0.2092    0.4223        4 
  1150     -347.0995     557.8746    -5.0205    0.0137    0.0114    0.0250        4 
 
                  Minimum standard deviation:   0.0044    0.0043    0.0060 
                  Maximum standard deviation:   0.1658    0.2092    0.4223 
                   RMS of standard deviation:   0.0144    0.0165    0.0325 

 

Fig. 4.79: Report file showing adjusted object coordinates (Ax.Ori). 

... Quality of self-calibration 
The adjusted interior orientation parameters, and their correlations, should be 
carefully examined if the image acquisition system has been calibrated 
simultaneously in the bundle adjustment.  

Fig. 4.80 is a part of a calculation report showing the adjusted interior orientation 
data, associated standard deviations and a matrix of correlations between the 
parameters. The following comments can be made about individual parameters:  
– Principal distance c: 

The value of c normally corresponds approximately to the focal length. When 
plane surfaces are imaged without oblique views, the principal distance cannot 
be uniquely determined and either the value of c is unreasonable or its 
corresponding standard deviation is higher than expected. In this case, the 
principal distance is often highly correlated with the exterior orientation in 
viewing direction. However, this does not mean that the object points are 
determined to lower accuracy. If the results of the bundle adjustment are 
intended to calibrate a camera which is subsequently used on other projects, then 
the principal distance must be calculated accurately and with a standard 
deviation of order of the image measuring accuracy. 

– Principal point x'0, y'0: 
The principal point normally lies very close to the foot of the perpendicular from 
the projection centre to the focal plane. When plane surfaces are imaged without 
oblique views, the position of the principal point cannot be uniquely determined; 
in this case, however, this does not mean that the object points are determined to 
lower accuracy. The importance attached to an accurate knowledge of the 
principal point will depend on the configuration of the network. If the results of 
the self-calibration are intended to be subsequently used on other projects, then 
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the position of the principal point must be calculated accurately and with a 
standard deviation of order of the image measuring accuracy. 

It should be remembered that the definition of radial distortion depends on 
the location of the principal point. A large shift of the principal point may result 
in irregular parameters for radial distortion. An iterative pre-correction of 
measured image coordinates is recommended in those cases. 

– Radial (symmetric) distortion A1, A2, A3: 
The parameters of radial distortion are normally the most effective additional 
parameters. Their related standard deviations should be much smaller than the 
parameters themselves. Parameter A2 is often significantly correlated with A1 (as 
shown in Fig. 4.80). However, this does not necessarily affect the overall result, 
especially for the object coordinates. Parameter A3 can normally be determined 
to a significant value only in special cases, for example when fisheye lenses are 
employed.  

– Tangential (decentring) distortion B1, B2, affinity and shear C1, C2: 
The statements concerning A1 and A2 can also be applied to the optional 
additional parameters B1, B2, C1, C2. For many digital cameras, departures from 
orthogonality and equality of scale between the axes of the image coordinate 
system, e.g. due to imaging elements which are not square, are barely detectable. 
However, cameras utilizing analogue data transfer and a frame grabber should 
definitely use these parameters.  
 

Camera/R0:               1         8.79576 
C       :        -24.1707      0.00029584 
x0       :      -0.0662334     0.000368011 
y0       :       -0.103883     0.000332042 
A1       :    -0.000162606    1.75349e-007 
A2       :     2.5697e-007    2.64915e-009 
A3       :    4.65242e-011    1.17937e-011 
B1       :   -1.64762e-006    1.94141e-007 
B2       :    4.10302e-006    1.81828e-007 
C1       :    -0.000117619    3.92306e-006 
C2       :   -1.28944e-005    3.28251e-006 
 
Correlations: 
C     1.000 
X0    -0.009   1.000 
Y0    -0.054  -0.002   1.000 
A1     0.030  -0.006   0.005   1.000 
A2     0.029   0.001  -0.019  -0.947   1.000 
A3    -0.025   0.004   0.023   0.885  -0.980   1.000 
B1    -0.004   0.894   0.015  -0.006   0.010  -0.008   1.000 
B2    -0.022  -0.023   0.798  -0.004   0.011  -0.012  -0.009   1.000 
C1     0.406  -0.000  -0.056   0.025   0.094  -0.077   0.015  -0.005   1.000 
C2     0.011  -0.006  -0.010   0.037  -0.010  -0.003  -0.002  -0.002   0.031   1.000 
         C       x0      y0      A1      A2      A3      B1      B2      C1      C2       

 

Fig. 4.80: Result of a self-calibration with correlation between the parameters. 

Correlations between the parameters of interior orientation and exterior orientation 
should be avoided by an appropriate imaging configuration (see section 7.3.2). They 
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do not need to be considered for point determination if the calculation is performed 
in a single stage mathematical process. However, if single parameters are extracted 
for use in further external calculations, e.g. orientation parameters are applied in 
separate spatial intersections, correlations, or more exactly the variance-covariance 
matrix, cannot be further taken into account, which leads to mistakes in the 
functional model. 

.. Strategies for bundle adjustment 

In many practical applications, either the generation of initial values or the complete 
bundle adjustment may not run successfully at the first attempt, or the final result 
might not meet the specification. To avoid these problems, a number of practical tips 
and suggestions for strategies and procedures in bundle adjustments is given below.  

... Simulation 
Simulation of the imaging configuration is one method of project planning (see 
section 7.1.4). Simulation provides a priori accuracy estimation for optimizing an 
imaging configuration without real measurements. For this purpose, the measuring 
object must be represented by simulated object points similar to the actual 
measurement in terms of number and distribution. The required 3D coordinates can 
be provided by manual input if the object is not too complex. Alternatively, the 
coordinates can be obtained from a CAD model or previous measurements (Fig. 4.81). 

computed 
image coordinates

bundle adjustment
(without parameter estimation)

object coordinates exterior orientations

CAD object model manual calculation choice of camera

interior orientations

collinearity equations

accuracy

standard deviations

 

Fig. 4.81: Simulation by bundle adjustment. 
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The a priori definition of camera stations and viewing directions (exterior 
orientations) is much more complicated. While orientation data can easily be 
generated for regular image configuration patterns (example in Fig. 4.58), the 
measurement of complex structures can often be configured only on site. On the one 
hand, selection of image configurations is more flexible but, on the other hand, 
unforeseen problems can often occur in the form of occlusions or restricted camera 
stations. 

Camera data and a priori accuracies must also be defined. Image coordinates can 
then be calculated using collinearity equations and the simulated object coordinates 
and orientation data. Using these simulated data as input, a bundle adjustment can 
be calculated. Here it is only necessary to compute the covariance matrix of the 
unknowns and the standard deviations of interest, instead of a complete parameter 
estimation. Now object points, imaging configurations, selection of cameras and 
accuracies can be varied until a satisfactory adjustment is achieved. By applying the 
Monte-Carlo method (section 7.1.4.2), the input data can be altered within specific 
noise ranges based on normal distribution. The computed output values will vary as 
a function of the noisy input data. 

... Divergence 
Bundle adjustments which do not converge are often a serious problem in practical 
applications. A major reason for this is that standard statistical methods of error 
detection only work well if at least one iteration has been successfully calculated. 
Divergence in adjustments can be caused by: 
– Faulty input data: 

Error in data formats, units of measurement, typing errors etc. should be detected 
by the program but often are not. 

– Poor initial values: 
Poor initial values of the unknowns lead to an inadequate linearization of the 
functional model. 

– Gross errors in the input data: 
Errors in identifying point or image numbers and measuring errors larger than 
the significance level of the total measurement. They can be detected in part by 
statistical tests if robust estimation methods are applied (see section 2.4.4). 

– Weak imaging geometry: 
Small intersection angles, a small number of rays per object point and/or poor 
interior orientation data lead to poorly conditioned normal equations and a lower 
reliability in the adjustment. 

The following steps should therefore be applied to handle divergent bundle 
adjustments: 
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1) Check of input data. 
2) Controlled program abortion after the first iteration, with checking of differences 

between initial values and “adjusted” unknowns (see section 2.4.4.1) – high 
deviations indicate problematic input data. 

3) Pre-correction of image coordinates by known distortion values. 
4) Adjustment without camera calibration in the first run; subsequent adding of 

additional parameters (distortion) when blunders have been eliminated from the 
input data. 

5) Check of the geometric configuration of images where gross errors have been 
detected as the smearing effect of least-squares solutions can lead to 
misidentification of blunders. 

... Elimination of gross errors 
Generally speaking, the bundle adjustment is very sensitive to gross errors (blunders) 
in the measured data. In complex imaging configurations, gross errors arise easily 
due to false identification of object points or mistakes in image or point numbering. 
In contrast, pure measuring errors occur relatively infrequently. The detection of 
gross errors can fail, especially in geometrically weak configurations where statistical 
tests based on redundancy numbers are not significant (see section 2.4.4). This is of 
major importance if gross errors in observations occur at leverage points which have 
a strong influence on overall geometry but which cannot be controlled by other 
(adjacent) observations. 

Most bundle adjustment programs permit both manual and automatic 
elimination of blunders. In both cases only one blunder should be eliminated per 
program run, usually the one with the largest normalized correction. The adjustment 
program should allow the corresponding observation to be set as inactive, not 
deleted, in order that it can be reactivated later in case it is discovered to be correct. 

If observations are eliminated, the corresponding object area and image should 
be analysed. Uncontrolled elimination of observations can lead to weak imaging 
geometries if the object is recorded by a small number of images, or represented by 
only a few object points. A system that is based on the few remaining observations 
cannot be controlled by a rigorous blunder test and may produce a plausible result 
even if gross errors are still present.  

.. Multi-image calculation of points and geometric elements 

This section deals with analytical methods for object reconstruction based on 
measured image coordinates from an unlimited number of oriented photos. Digital, 
multi-image methods which additionally process grey values at image points are 
discussed in Chapter 5. 
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The following methods require known parameters of interior and exterior 
orientation which are normally calculated by a bundle triangulation (see section 4.4). 
In addition, image coordinates must be reduced to the principal point and corrected 
for distortion (see section 3.3.2). On this basis, object points, surfaces and basic 
geometric elements can be determined. 

... General spatial intersection 
The general spatial or forward intersection takes measured image coordinates from 
multiple images, together with their known orientation parameters, and calculates 
the spatial point coordinates X,Y,Z. The calculation is based on the collinearity 
equations (4.10) used as observation equations in a least-squares adjustment: 
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where  
i: point index 
j: image index 
k: camera index 

In order to calculate the three unknowns Xi,Yi,Zi at least three observations (image 
coordinates) are required. Two images already provide a redundancy of 1 and with 
each additional observation the redundancy increases by 2. 

To set up the normal equations, the derivatives of the unknown object 
coordinates are calculated according to (4.100). 

A global measure of the quality of point determination is given by the shortest 
distance between the two skew rays (see section 2.3.2.1). If the point accuracy is to be 
analysed separately for each axis, the covariance matrix must be evaluated. Given the 
cofactor matrix of unknowns 
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the standard deviations of adjusted point coordinates are as follows: 

0
ˆ ˆ

X XXs s q= ⋅  0
ˆ ˆ

Y YYs s q= ⋅

 

0
ˆ ˆ

Z ZZs s q= ⋅  (4.139) 

Hence the mean point error is given by: 

2 2 2ˆ ˆ ˆ ˆ
P X Y Zs s s s= + +   (4.140) 

It should be noted that these standard deviations depend on the datum definition 
(origin of the object coordinate system). Spectral decomposition of the corresponding 
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variance-covariance matrix (see eqn. 2.251) leads to eigenvalues λi and eigenvectors 
si. It is then possible to calculate the error or confidence ellipsoid which contains the 
“true” point with a confidence level of 1–α (see section 2.4.3.5). The size and 
orientation of the confidence ellipsoid is independent of the coordinate system.

 

X

Y

Z

 

Fig. 4.82: Confidence ellipsoid. 

The directions of the semi-axes of the ellipsoid are defined by the eigenvectors and 
their length is given by the eigenvalues (Fig. 4.82).  

P

P

good intersection geometry poor intersection geometry  

Fig. 4.83: On the geometry of spatial intersection. 

In contrast to the standard bundle adjustment, possible correlations between 
adjusted point coordinates and orientation parameters are not taken into account in 
the spatial intersection. Assuming image coordinates of equal accuracy in all images, 
a stretched error ellipsoid indicates a weak intersection of homologous rays (Fig. 
4.83). 

Fig. 4.84 shows the confidence ellipsoids (in XY view) resulting from the spatial 
intersection of object points in two cases. Based on the image set shown in Fig. 4.57, 
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the first case (a) shows the points observed by two adjacent images and the second 
case (b) shows the points observed by five images surrounding the points. It is 
obvious that in case (a) the ellipses grow in size as their distance to the cameras 
increases and that the measuring precision in the viewing direction is lower than in a 
direction parallel to the images. When multiple images surround the area of interest 
as in (b) the ellipses are all generally smaller and rounder. 

  
a) From two adjacent images b) From five surrounding images  

Fig. 4.84: Confidence ellipses for spatial intersection.  

... Direct determination of geometric elements 
The direct determination of geometric elements can also be done 
photogrammetrically. Geometric 3D elements (straight line, circle, sphere, cylinder 
etc.) can be determined in two ways: 
– calculation of best-fit elements from measured 3D coordinates; 
– best-fit adjustment of elements to measured 2D contours in multiple images. 

The first method is preferred in conventional coordinate metrology. The required 3D 
coordinates are delivered by coordinate measuring machines (CMM) from direct 
probing of the object surface. The calculation of best-fit elements, and the 
intersection of these elements, is of major importance because most industrial objects 
offered for inspection contain regular geometric elements. The most important 
algorithms are discussed in section 2.3. 

The second method5, contour measurement, is based on the idea that the imaged 
edges of geometric elements generate unique grey level contours which can be 

 
5 The following derivations are due to Andresen (1991).  
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extracted by suitable edge operators or manual measurements (see section 5.2.4). 
Normally, there are no discrete or identifiable points along the imaged edge which 
would enable individual 3D points on the object surface to be measured, for example 
by intersection. However, if sufficient edge image points belonging to a common 
object surface can be detected in a well-configured set of images, an adjustment can 
be formulated for estimating the parameters of the unknown element. Assuming 
known parameters of interior and exterior orientation, each image point defines a 
light ray in space which, in principle, touches or is tangent to the surface of the 
element. For this purpose, a distance offset is defined between the light ray and the 
spatial element which is minimized by adjustment of the element's parameters. 

The method can be used to calculate, for instance, straight lines, 3D circles, 
cylinders or other elements which generate an appropriate contour in the image. The 
number of images is unlimited. However, for a reliable determination, more than two 
images are usually required. The image coordinates used must be corrected in 
advance for principal point position and distortion. A detailed description of the 
individual methods can be found in earlier editions of this textbook. 

. Panoramic photogrammetry 

Panoramic photogrammetry is a special branch of close-range photogrammetry that 
uses panoramic images instead of conventional perspective imagery. Panoramic 
imagery is created either by digitally stitching together multiple images from the 
same position (left/right, up/down) or by rotating a camera with conventional optics 
and either an area or line sensor, in a specially designed mounting fixture (see section 
3.5.6). This section gives an overview of the basic panoramic imaging model, 
orientation methods and algorithms for 3D reconstruction. 

.. Cylindrical panoramic imaging model  

The most common method of panoramic photogrammetry is based on a cylindrical 
imaging model, as generated by numerous analogue and digital panoramic cameras 
or by a computational fusion of individual central perspective images. Assuming the 
camera rotation corresponds to a horizontal scan, the resulting panoramic image has 
central perspective imaging properties in the vertical direction only. 

An image point P' can be defined either by the cylindrical coordinates r,ξ,η or by 
the Cartesian panoramic coordinates x,y,z (Fig. 4.85, see also section 2.2.5). The 
panorama is assumed to be created by a clockwise rotation when viewed from above. 
The metric image coordinates x',y' and the pixel coordinates u,v are defined within 
the cylindrical surface of the panorama, which is a plane when the cylinder is 
unrolled.  
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Fig. 4.85: Coordinate systems defining a cylindrical panorama. 
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Fig. 4.86: Exterior orientation of cylindrical panorama. 

The digital plane panoramic image has nC columns and nR rows with a pixel resolution 
Δs'x and Δs'y. The circumference of the panorama is therefore nC · Δs'x and its height is 
nR · Δs'y. The radius of the digital image is, in the ideal case, equal to the principal 
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distance of the camera. It can be calculated from the circumference or the horizontal 
angular resolution Δζ: 

' '
2

C x xn Δs Δs
r

π Δξ
⋅

= =   (4.143) 

By introducing the parameters of exterior orientation, the transformation between 
object coordinate system XYZ and panoramic coordinate system xyz (Fig. 4.86) is 
given by: 
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where , ,X Y Z  define a temporary coordinate system that is parallel to the panorama 
system. With the scale factor 
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the image coordinates in the unrolled (plane) panorama are given by 
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or directly as collinearity equations between object coordinates and image 
coordinates: 
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Here y'0 denotes a shift of the principal point in the y direction and Δx',Δy' are 
correction parameters for potential imaging errors in the camera.  

The pixel coordinates u,v of a digital panoramic image can be derived as: 
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.. Orientation of panoramic imagery 

The method of determining the exterior orientations of one or more panoramic images 
is analogous to that for central perspective imagery; that is, by application of the 
panoramic collinearity equations to space resection and/or bundle adjustment. Both 
methods require suitable approximate values. Also, due to different system designs, 
the form of the rotation matrix must take account of the mechanical rotation orders 
and directions.  

... Approximate values 
For the usual case of panoramas with an approximate vertical rotation axis, initial 
values for exterior orientation can easily be derived from reference points. The centre 
coordinates of the panorama X0,Y0 can be calculated by plane resection using three 
control points P1, P2, P3 and the subtended angles Δξ12, Δξ 23, which can be derived from 
the corresponding image points P'1, P'2 and P'3 (Fig. 4.87 left). 

Fig. 4.87 centre shows the general principal of plane resection. It is simple to 
show that a panoramic image subtending an angle α at two reference points, P1, P2, 
must lie on the arc of the circle shown (example points I1, I2). Fig. 4.87 right then 
shows the completed solution using a second circle computed using subtended angle 
β at reference points P2, P3. Hence the intersection of the circles locates the image 
centre at I. 
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Fig. 4.87: Plane resection. 

The Z0 coordinate can, for example, be calculated from reference point P1:  

1
0 1 1

z
Z Z d

r
= −   (4.150) 

where 2 2
1 1 0 1 0( ) ( )d X X Y Y= − + −  
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The approximate rotation angles of exterior orientation can be given to sufficient 
accuracy by:  

0ω =  0φ =  1 1κ ξ α= −  (4.151) 

... Space resection 
Space resection for a panoramic image can be formulated as an over-determined 
adjustment problem. For this purpose, the panoramic imaging equations (4.148) can 
be linearized at the approximate values given above. However, the use of Cartesian 
panoramic coordinates from (4.148) is much more convenient since they can be 
directly used as virtual three-dimensional image coordinates for the observation 
equations of a standard space resection (see section 4.2.3). Each image point provides 
three individual coordinates x,y,z, while for central perspective images the principal 
distance z' = –c is constant for all image points. 

As for the standard space resection, a minimum of three reference points is 
required, although this can generate up to four possible solutions. Alternatively, 
using four reference points a unique solution for the six parameters of exterior 
orientation is always obtained. If the reference points are distributed over the whole 
horizon, then even with a small number of points (greater than 4) a very reliable 
solution is achieved. 

... Bundle adjustment 
Bundle adjustment of panoramic images is based on the same general approach as a 
bundle adjustment of central perspective images, including unknown object points 
and self-calibration of the camera if required. Some programs permit the 
simultaneous processing of both panoramic and central perspective images. 

 

Fig. 4.88: Distribution of 4 panoramas in 3D space. 
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One advantage of panoramic images is that a stably oriented set of images can be 
obtained using a comparatively small number of object points. The example in Fig. 
4.88 shows a set of four panoramas taken for the interior survey of a room. In this 
example, and using only four of the unknown object points, the number of unknowns 
according to Table 4.2 must be calculated. 

Table 4.2: Example of unknowns and observations for panoramic bundle adjustment. 

Parameter group Unknowns Number Total 

Exterior orientations    

Object points    

Datum definition –  – 

Sum    

 
The 29 unknowns can be determined by measuring the object points in all four 
images, so providing 4 x 4 x 2 = 32 observations. Since this minimum solution is very 
sensitive to noise and outliers, the number of object points should be increased to at 
least 8 in this case. Nevertheless, compared to standard image blocks the number of 
required object points is much smaller. This is mainly due to the stable geometry of a 
cylindrical image which can be oriented in 3D space with very little object 
information.  

The bundle adjustment can be extended with parameters for the correction of 
imaging errors. When a panoramic image results from stitching together single 
images calibrated using the original camera parameters, no additional corrections are 
necessary. In contrast, if panoramic images from a rotating line scanner are to be 
adjusted, parameters specific to the scanner must be introduced (see section 3.5.6.1). 

.. Epipolar geometry 

Given two oriented panoramas, epipolar plane and epipolar lines can be constructed 
for an imaged object point analogously to a stereo image pair (Fig. 4.89). The epipolar 
plane K is defined by the object point P and either both image points P' and P" or the 
projection centres O' and O". The epipolar plane intersects the two arbitrarily oriented 
panoramic cylinders in the elliptical epipolar lines k' and k". 

On the unrolled panoramic plane, the epipolar lines are sinusoidal. For an image 
point P' measured in the left-hand image, an arbitrary object point P can be defined. 
The corresponding image point P" in the right-hand panorama can be calculated 
according to (4.148). If the epipolar plane intersects the panoramic cylinder at angle 
β, corresponding to slope m = tan β, the intersection straight line  
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z m x= ⋅   (4.152) 

corresponding to Fig. 4.90 is obtained. With y' = z and x = r · cos ξ the equation for the 
epipolar line is given by 

' cosy m r ξ= ⋅ ⋅   (4.153) 
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Fig. 4.89: Epipolar geometry for panoramic images. 
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Fig. 4.90: Sine form of panoramic epipolar lines. 

Fig. 4.91 shows an example of a panoramic image with the epipolar line 
superimposed. 
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Fig. 4.91: Measured point (top) and sine form of corresponding panoramic epipolar line (bottom). 

.. Spatial intersection 

As for space resection and bundle adjustment for panoramic images, a general spatial 
intersection using three-dimensional panoramic coordinates can also be calculated. 
Spatial intersection fails if the object point lies on the baseline b (see Fig. 4.89). 

If intersection is formulated on the basis of equations (4.148), the derivatives of 
the observation equations with respect to the unknown object coordinates are 
required. Using (4.145) they are given by 
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As usual, the unknown object coordinates X,Y,Z are calculated by iterative 
adjustment until corrections to the unknowns become insignificant. 

.. Rectification of panoramic images  

... Orthogonal rectification  
As with central perspective images, panoramic images can also be rectified if the 
geometric relation between object coordinate system and image coordinate system is 
known. The panoramic images can then be rectified onto any chosen reference plane. 
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Fig. 4.92 shows the rectification of the panoramic image from Fig. 4.91 onto an 
interior side wall (XZ plane, upper image) as well as onto the floor and ceiling (XY 
planes with different Z values, lower images). The resulting images are true to scale 
with respect to the chosen reference plane but objects outside this plane are distorted. 
The black circles visible in the XY rectifications represent the areas in the vertical 
direction which are not covered by the original images. 

Orthophoto production by combining panoramic images with 3D point clouds 
from a terrestrial laser scanner is discussed in section 6.8.1.  

... Tangential images  
Central perspective images can be generated from panoramic images by defining a 
new central projection image plane as a tangential plane to the panoramic cylinder. 
Then according to Fig. 4.93, every image point P' in that part of the panoramic image 
which faces the tangential plane, can be projected onto the tangential plane. The 
result is a central perspective image in which object lines again appear as image lines. 
The perspective centre is a point on the axis of the panoramic cylinder and the 
principal distance corresponds to the cylinder radius. The exterior orientation of the 
tangential image can be directly derived from the exterior orientation of the 
panorama. The derived central perspective images can be further processed like other 
conventional photogrammetric images. 

 

a) Rectification onto XZ plane  

  

b) Rectification onto XY plane (floor and ceiling)  

Fig. 4.92: Rectification of the panoramic images from Fig. 4.91. 
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Fig. 4.93: Generation of central perspective tangential images from panoramic images. 

. Multi-media photogrammetry 

.. Light refraction at media interfaces  

... Media interfaces 
The standard photogrammetric imaging model (see sections 3.1.2, 4.2.1) assumes 
collinearity of object point, perspective centre and image point. Deviations caused by 
the lens or sensor are modelled by image-based correction functions. This approach 
is useful for most image configurations and applications.  

If light rays in image or object space pass through optical media with differing 
refractive indices, they no longer follow a straight line. Using extended functional 
models for multi-media photogrammetry it is possible to calculate the optical path of 
the rays through additional media interfaces (MI) and take this into account in object 
reconstruction. For example, interfaces exist if the optical path intersects the 
following media:  
– walls made of glass in object space (glass container, window panes); 
– water (under, through); 
– inhomogeneous atmosphere (refraction); 
– filter glasses in front of the lens; 
– individual lenses within a compound lens; 
– glass covers on CCD sensors; 
– réseau plates. 

For a rigorous model of the optical path, a geometric description of the media 
interface must be available, for example: 
– plane in space; 
– second order surface (sphere, ellipsoid); 
– wave-shaped surfaces. 
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Usually the transmission media are assumed to be homogenous and isotropic, i.e. 
light rays propagate uniformly in all directions inside the media. 

Applications of multi-media photogrammetry can be found in fluid flow 
measurement (recording through glass, water, gas), underwater photogrammetry 
(underwater archaeology or underwater platform measurement) or hydrology (river 
bed recording).  

... Plane parallel media interfaces  
The simplest multi-media case occurs if there is only one planar interface located 
parallel to the image plane (Fig. 4.94). An object point P1 is then projected onto point 
P'0, passing through intermediate point P0 which lies on the interface. As a result, a 
radial shift Δr' occurs with respect to the image point P'1, which corresponds to a 
straight-line projection without refraction. 
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Fig. 4.94: Planar media interface parallel to the image plane. 

According to Fig. 4.94, the radial shift Δr', taking account of eqn. (3.8), is given by6: 

 
6 The following derivations and illustrations are due to Kotowski (1987). 
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Eqn. (4.155) shows that the effect of refraction is a function of distance. The radial 
shift is zero when: 
1. ε1 = 0: the light ray is perpendicular to the interface and is therefore not refracted;  
2. n = 1: both media have equal refractive indices;  
3. Zi = Z0: the object point is located on the interface (Zrel = 0).  

It can be shown that (4.155) can be expressed as the following power series: 

3 5
0 0 1 0 2 0' ( ' ' ' )relΔr Z A r A r A r= ⋅ ⋅ + ⋅ + ⋅ +  (4.156) 

This power series expansion is similar to the standard functions for correction of 
simple radial distortion in (3.55), and also to the correction of distance-dependent 
distortion (3.73). For applications where Zrel is close to 1, complete compensation for 
the effect of a plane parallel media interface can be done by the correction function 
for distance-dependent radial distortion.  

The radial shift Δr' can become significantly large: 

Example 4.11: 
A submerged underwater camera with air-filled lens and camera housing, r'0 = 21 mm (full-format), 
Zrel = 1 (media interface located in perspective centre) and c = 28mm (wide angle lens) has a maximum 
radial shift of Δr' = 6.9 mm. 

Example 4.12: 
A medium-format camera used for airborne measurement of the seabed, where r'0 = 38 mm, Zi = 4m, 
Z0 = 3m (Zrel = 0.25) (media interface is the water surface) and c = 80mm (standard angle lens) leads 
to a maximum radial shift of Δr' = 2.7mm. 

The model of (4.155) can be extended to an unlimited number of plane parallel media 
interfaces, for instance for the modelling of plane parallel plates inside the camera 
(filter, réseau), or glass panes in object space (Fig. 4.95). For p interfaces, the radial 
shift becomes: 
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where  

1l l ld Z Z+= −   : distance between two adjacent interfaces  

1+= l
l
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n
n

n
 : relative refractive index  

If differential distances between interfaces are used in (4.157), multi-layered media 
can be modelled. For example, this approach can be used to set up an atmospheric 
model for the description of atmospheric refraction.  

Ray transmission through parallel plane media interfaces, with denser media on 
the object side, leads to a reduction of the field of view, i.e. the object in the media, 
for example water, appears larger. Fig. 4.96 illustrates how refraction at the plane 
interface not only results in a smaller field of view (red) but also, during camera 
calibration, to an increase in the principal distance (green). 
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Fig. 4.95: Multiple plane parallel interfaces. 
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Fig. 4.96: Change in field of view and focal length with plane media interface.  

... Spherical media interfaces  
Spherical shells represent a special type of interface. When hemispherical in shape, 
they are known as hemispherical interfaces or dome ports. If the entrance pupil of the 
lens (which is approximately the perspective centre O') is positioned exactly at the 
centre of the corresponding sphere, the photogrammetric imaging model based on 
collinearity equations (4.10) can also be applied to this multi-media case (Fig. 4.97) 
The ray from object point P through the perspective centre O' to the image point P' 
intersects the media interfaces orthogonally and will therefore not be refracted 
because ε1 = 0 in eqn. (4.155). Dome ports are, for example, available as cover glasses 
for underwater camera housings.  
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Fig. 4.97: Imaging with hemispherical interfaces and perspective centre at the sphere centre.  
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The spherical media interface acts as negative lens element which has the effect that 
an imaged object appears to be closer to the camera than in reality. This virtual image 
P* is projected onto a spherical surface called the Petzval surface. The camera must 
therefore be focused on that surface in order to obtain a sharp image of the object. 

In summary, hemispherical media interfaces have the following properties in 
comparison with plane interfaces: 
– field of view (viewing angle) and principal distance of the optical system are 

preserved; 
– lens distortion and chromatic aberration are unchanged by the exterior media, 

e.g. water or air; 
– the virtual image appears closer to the media interface and is projected onto a 

spherical surface; 
– the depth of field increases by the ratio of the refractive indices n1/n2 (see Fig. 

4.97); 
– spherical aberration may increase; 
– they are more expensive to manufacture; 
– they can resist high pressure depending on material (plastic or glass) and 

thickness.   

The differences between plane and spherical interfaces are particular noticeable with 
wide-angle lenses since the acceptance angle can be very large and therefore 
refraction at plane interfaces may also be significant towards the edges of the field of 
view. 

Distortions will occur if the entrance pupil is not positioned exactly on the sphere 
centre. A shift perpendicular to the optical axis can partially be modelled as 
tangential distortion whilst a shift along the optical axis can be modelled as radial 
distortion. There are also approaches which rigorously describe the deviations using 
ray tracing or other methods. 

... Ray tracing through refracting interfaces  
If arbitrary interfaces must be taken into account in the imaging model, each light ray 
must be traced through all contributing media by the successive application of the 
law of refraction (ray tracing). For this purpose, a set of three constraint equations is 
set up for each refracting point of a media interface. These provide the 3D coordinates 
of the point of refraction and the path of the ray between the point P0, the interface 
point P1 and the point P2 (Fig. 4.98): 
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Fig. 4.98: Ray tracing through an optical interface. 

1. P1 is located on surface F1:  
This condition is fulfilled by 

1 1 1 1( , , ) 0F X Y Z =   (4.158) 

where for a general second order surface: 
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where 
X
Y
Z

 
 

=  
 
 

X , 
1

2

3

a
a
a

 
 

=  
 
 

a  and 
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 
 

=  
 
 

A , aij = aji for i ≠ j 

The surface can be parameterized with respect to the temporary coordinate 
system , ,X Y Z  according to section 4.4.2.3, e.g. as a rotationally symmetric 
surface.  

2. Compliance with the law of refraction:  

2 1 1 2 2sin sin 0F n ε n ε= = =   (4.160) 

The angles of incidence and refraction are introduced as a function of the object 
coordinates and the normal vector N1, e.g. for ε1: 
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(4.161) 

3. Surface normal at P1, and the projection rays, lie in a common plane:  
This is implemented by applying the coplanarity constraint to the three vectors: 



  4 Analytical methods  

0 1 0 1 0 1

3 1 2 1 2 1 2 0

X Y Z

X X Y Y Z Z
F X X Y Y Z Z

N N N

− − −
= − − − =

  

(4.162) 

The three constraint equations are linearized at approximate values. Solving the 
system of equations results in the object coordinates X1,Y1,Z1 of the refraction point. 

For an imaging system of p media interfaces, the system of equations is set up for 
each refraction point Pl, l = 1…p. This principle is used in optics for the calculation of 
lens systems. This could be used in photogrammetry for a rigorous determination of 
distortion which took account of all optical elements.  

.. Extended model of bundle triangulation 

Using the fundamentals of optical interfaces and ray tracing discussed above, the 
functional model for bundle adjustment can be extended. For this purpose, the ray 
tracing algorithm with arbitrary interfaces is integrated into the imaging model of the 
collinearity equations. It is natural to distinguish two major imaging configurations: 
– constant (object invariant) position of interfaces relative to the measured object; 
– constant (bundle invariant) location of interfaces relative to the camera system. 

... Object-invariant interfaces 
Object-invariant interfaces exist, for example, when an object is observed through 
glass panes or water, such as when taking pictures of aquariums or pressure tanks 
from the outside (Fig. 4.99). Object-invariant interfaces are always static with respect 
to the superior coordinate system.  

The extended observation equations can be derived in three steps: 
1. Ray tracing according to eqn. (4.159) with p interfaces for point i in image j: 

0( , , , , , )l l l l l
i S i jf a n=X X X A a  (4.163) 

where  
Al, al,al: parameters of interface  
nl: relative refractive indices  
l = 1…p: index of interface  
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2. Spatial rotation and translation:  
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3. Extended collinearity equations (z' = –c):  
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Fig. 4.99: Object-invariant interfaces.  Fig. 4.100: Bundle-invariant interfaces. 

... Bundle-invariant interfaces  
Bundle-invariant interfaces are given by additional optical refracting interfaces 
which are part of the image acquisition system, e.g. underwater housing, add-on front 
filter, conversion lenses, parallel plate cover on sensor or réseau plate (Fig. 4.100). 
Bundle-invariant interfaces are always fixed with respect to the imaging system and 
therefore move with them in space. 

In contrast to the object-invariant approach, the calculation is performed in 
reverse order: 
1. Spatial translation and rotation: 

* 1
0( )ij j i j= ⋅ −X R X X   (4.166) 

2. Ray tracing:  
*( , , , , )l l l l l

ij S ijf a n=X X A a   (4.167) 
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3. Extended collinearity equations:  
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In relation to the object distance, bundle-invariant interfaces are often in very close 
proximity and plane-parallel. This mainly causes radially symmetric pixel shifts, 
whose influence is less strongly distance-dependent (Zrel ≈ 1, see example 4.8). In 
practical applications, therefore, models of single-media photogrammetry are often 
used, which are included in conventional software packages, although this does not 
reflect the complete imaging geometry. For rotationally symmetric elements (lenses) 
or plane-parallel plates set parallel to the image plane, these shifts are radially 
symmetric. With suitable image configurations they can be corrected by camera 
calibration which employs standard functions for distortion.  

.. Special aspects of underwater photogrammetry 

Underwater applications represent the largest area of multi-media photogrammetry. 
Modern sensor technology, single-board computers and mobile platforms allow 
increasing application possibilities for photogrammetric measurement tasks, e.g. in 
the inspection of buildings and ships, the recording of underwater topography or the 
measurement of plants and animals. In addition to the imaging models already 
explained above, some special conditions occur under water. Example underwater 
applications are presented in section 8.6. 

Due to the refractive index of water of approx. nWater = 1.33, there is a change in 
scale compared to air (nAir = 1) of approx. 1.3, i.e. objects under water appear enlarged 
by this factor (Fig. 4.101). The refractive index of water is influenced by temperature, 
pressure and conductivity (salinity). 

The penetration depth of light in water depends on the wavelength. Light of 
shorter wavelengths, e.g. blue, is more energetic (see section 3.1.1.2) than light of 
longer wavelengths, e.g. red, and therefore penetrates deeper into the medium (Fig. 
4.102). This results in considerable colour shifts under water, e.g. strong blue or green 
components. Furthermore, turbidity caused by particles in the water reduces the 
image quality. These effects can be partially eliminated with digital image processing 
methods (Fig. 4.103). 
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Fig. 4.101: Refraction and magnification through 
the medium of water. 

Fig. 4.102: Penetration depth of light in water. 

  

a) Original image b) Digital image enhancement 

Fig. 4.103: Image enhancement of a turbid underwater image.  
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 Digital image analysis 

. Fundamentals 

.. Image processing procedure 

Photogrammetric image processing methods are primarily developed and applied in 
the fields of image acquisition (sensor technology, calibration), pre-processing and 
segmentation (image measuring, line following, image matching). Major 
considerations for these methods are the automation of relatively simple measuring 
tasks and the achievement of a suitable accuracy. Everyday methods which apply 
standard tasks such as digital point measurement, e.g. to targets, or stereo 
photogrammetry (automated orientation, surface reconstruction, driver assistance 
systems) are well developed. Machine learning methods including, for example, deep 
learning, are increasingly used to achieve goals in image understanding (object 
recognition, semantics) which is closely related to artificial intelligence (AI). 
However, it must be remembered that an adequate amount of training data is required 
for these purposes.  
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Fig. 5.1: Image processing sequence. 

Fig. 5.1 illustrates a typical image-processing workflow, starting with image 
acquisition and ending with some intelligent initiation of events. As the sequence 
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proceeds from top to bottom, the volume of data is reduced whilst the complexity of 
processing increases. 

Some characteristic features of current close-range photogrammetry illustrate the 
possibilities and limitations of automatic image processing: 
– The consistent use of object targeting composed of retro-reflective marks, some 

of which are coded, combined with suitable illumination and exposure 
techniques, results in quasi-binary images that can be processed fully 
automatically (Fig. 5.2a). 

– Arbitrary image configurations which can result in large variations in image 
scale, occlusions, incomplete object imaging etc. (Fig. 5.2b). In contrast to simple 
stereo configurations such as those found in aerial photogrammetry, close-range 
applications are often characterized by complex object surfaces and convergent 
multi-image network configurations which require a large amount of interactive 
processing. 

– The application of image analysis and orientation methods from computer vision 
which are often suitable for fully automated orientation of overlapping image 
sequences from arbitrary (uncalibrated) cameras. These techniques, such as 
structure-from-motion, open up interesting opportunities, e.g. for the automatic 
determination of initial orientation values or for fully automated 3D 
reconstruction.   

  

a) Targeted b) Non-targeted 

Fig. 5.2: Targeted and non-targeted object scenes. 

This chapter concentrates on those image processing methods which have been 
successfully used in practical digital close-range photogrammetry. The emphasis is 
on methods for geometric image processing, image measurement and 3D 
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reconstruction which aim at high quality outputs. Extensions to basic principles and 
specialized algorithms can be found in the literature on digital image processing and 
computer vision, see section 9.5. 

.. Pixel coordinate system 

The definition of the pixel coordinate system is fundamental to image processing 
methods used for image measurement (see section 2.1.1). For an image 

S s x y= ( , )  (5.1) 

conventional processing usually adopts a left-handed xy system of rows and columns 
which is related to the display of the image on the computer monitor and where x 
denotes the row direction and y the column direction. 
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Fig. 5.3: Definition of the pixel coordinate system. 

The origin of this system is located in the upper left-hand corner and the first image 
element has the row and column numbers (0,0). m is the number of columns, n the 
number of rows. The last image element has the coordinates (m–1,n–1). Width and 
height of a pixel are equal to 1 (Fig. 5.3). 

In this discrete grid, each pixel has integer coordinate values. When an object is 
imaged by a sensor characterized by such a grid, each pixel acquires a grey value 
corresponding to the local image brightness across its area. Grey values are usually 
quantized with an 8 bit depth to provide 256 grey levels ranging from 0 (black) to 255 
(white). Since human vision can only distinguish about 60 shades of grey, this grey 
level depth is sufficient for a visual representation of images. However, machine 
systems can handle a much higher information content and quantizations of 10 bits 
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(1024 grey levels), 12 bits or 16 bits can be used. True colour images are usually stored 
with 24 bits per pixel, 8 bits for each red, green and blue (RGB) colour channel. 

Due to object size, image scale, pixel dimensions and optical transfer 
characteristics (MTF, PSF) of the image acquisition system (see sections 3.1.5 and 
3.1.6), an imaged object can cover more than one pixel. This leads to a possible sub-
pixel position for the coordinates of the imaged object. Measurement to sub-pixel 
level is only possible if the position of an imaged object can be interpolated over 
several pixels. Here it is assumed that a small shift of an object edge leads to a 
corresponding sub-pixel change in the imaged grey values. When sub-pixel 
coordinates are employed, it is conventional to consider the integer xy-coordinate (i,j) 
as applying to either the upper left corner or, seldom, the centre of a pixel (Fig. 5.3). 

Imaged objects must usually cover more than one pixel in order to be detected or 
processed. Adjacent pixels belonging to one object are characterized by grey values 
that have uniform properties within a limited region (connectivity). Within a discrete 
image raster, each pixel possesses a fixed number of neighbours, with the exception 
of the image border. In defining connectivity, neighbouring pixels are classified 
according to the N4 or the N8 scheme (Fig. 5.4). In the following example, three 
objects A, B and C are imaged. If N4 connectivity is assumed, then object B 
decomposes into individual pixels and objects A and C are separated. In contrast, N8 
connectivity leads to a single integral object B. However, A and C merge together due 
to their corner connection. Extended algorithms for connectivity must therefore 
consider the distribution of grey values within certain regions by using, for example, 
appropriate filters (see section 5.2.3). 
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Fig. 5.4: Objects and connectivity. 

.. Handling image data 

... Image pyramids 
Image or resolution pyramids describe sequences where successive images are 
reductions of the previous image, usually by a factor of 2 (Fig. 5.5). Prior to image 
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reduction the image can be smoothed, for example using Gaussian filters (see section 
5.2.3.2). As resolution is reduced, smaller mage structures disappear, i.e. the 
information content decreases (Fig. 5.6). The total amount of data required to store 
the pyramid is approximately only 30 % more than for the original image. Image 
pyramids are typically used in hierarchical pattern recognition or image matching 
problems which start with a search of coarse features in the lowest resolution image 
(pyramid top). The search is refined with increasing resolution, working 
progressively down through the pyramid layers, each time making use of the results 
of the previous resolution stage. 

  

Original Gaussian low-pass filter  

    

Factor 2  4 8 16 

Fig. 5.5: Image pyramids with 5 steps. 

... Data formats  
There are many ways to organize digital image data. Numerous data formats have 
been developed for digital image processing and raster graphics that, in addition to 
the actual image data, allow the storage of additional information such as image 
descriptions, colour tables, overview images etc. For photogrammetric purposes, the 
unique reproducibility of the original image is of major importance. Loss of 
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information can occur not only in certain data compression methods but also by using 
an insufficient depth of grey values (bits per pixel). 

  

Factor 4 Factor 16 

Fig. 5.6: Information content at reduction factors 4 and 16. 

From the large number of different image formats the following are in common use: 
– Direct storage of raw data: 

Here the original grey values of the image are stored in a binary file without 
compression. Using one byte per pixel, the resulting file size in bytes is exactly 
equal to the total number of pixels in the image. The original image format in 
rows and columns must be separately recorded since the raw image data cannot 
otherwise be read correctly. Multi-channel images can usually be stored in the 
order of their spectral bands, either pixel by pixel (pixel interleaved), line by line 
(line interleaved) or channel by channel (band interleaved). For RGB images 
based on Bayer mask, some raw formats store only the original intensity values, 
hence colour reconstruction has to be done separately. Some camera 
manufacturers offer their own formats for storing raw images.  

– TIFF - Tagged Image File Format: 
The TIFF format is widely used due to its universal applicability. It is based on a 
directory of pointers to critical image information such as image size, colour 
depth, palettes, resolution etc. which must be interpreted by the import program. 
Numerous variants of TIFF exist and this can sometimes lead to problems with 
image transfer. The format permits different methods of image compression 
(LZW, Huffman, JPEG). GeoTIFF extends this format to store transformation 
parameters for geo-referencing.  
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– BMP - Windows Bitmap: 
The BMP format is the standard format for images within the Microsoft Windows 
environment. It enables the storage of arbitrary halftone and colour images (up 
to 24 bit) with varying numbers of grey levels or colours. 

– GIF - Graphics Interchange Format: 
Images stored in GIF format are compressed without loss of information. Grey 
level and colour images are limited to 8 bits per pixel.  

– PNG - Portable Network Graphics: 
A non-patented replacement for GIF, which further provides an alpha channel 
(variable transparency), RGB storage and a higher compression level without loss 
of information. 

– JPEG - Joint Photographic Expert Group: 
JPEG is a format which allows compression levels up to a factor of 100 and in 
which a certain loss of information is accepted (see below). An updated version 
(JPEG2000) utilizes wavelet compression (see section 5.1.3.3).  

Fig. 5.7 shows the percentage compression levels of different data formats for two 
images of very different structure. The first image ‘mosaic’ (Fig. 5.9, detail of the 
image shown in Fig. 5.25, blue bars) with inhomogeneous structures can be 
compressed to only 78 % of the original size without loss of information (PNG), while 
the more homogeneous image ‘targets’ (Fig. 5.10, red bars) can be reduced to less than 
30 % of its original size.  

 

Fig. 5.7: Compression ratios for different image formats  
(blue: image “mosaic”, Fig. 5.9; red: image “targets”, Fig. 5.10). 
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... Image compression 
Image compression is of major practical importance to digital photogrammetry, due 
to the large amounts of data which are handled. For example, a monochromatic set 
of 50 images each of 3000 x 2000 pixels represents some 300 MB of raw data whilst a 
UAV flight with 400 colour images which are each 4000 x 3000 pixels in size, requires 
around 14.4 GB of storage for the raw image data.  

Run-length encoded compression methods count the number of identical grey 
values within a line or a region and code the corresponding image area by its grey 
value and a repetition factor. This method is useful for images with extensive 
homogeneous regions, but for images of natural scenes this often leads to an 
increased amount of data. 

Frequency-based compression methods apply a spectral analysis to the image 
(Fourier, cosine or wavelet transformations, see section 5.2.3.1) and store the 
coefficients of the related functions. Eliminating coefficients of low significance 
compresses data with loss of information, often called lossy compression.  

The basic JPEG image format is also based on a compression method with loss of 
information. The goal is to preserve the essential image content without a significant 
loss of visual quality, even at high compression levels. Due to the high compression 
performance, JPEG is widely used in many graphical and technical fields and the 
procedure is standardized to ensure consistent and appropriate image quality for the 
given application. 

The compression algorithm is based on the 3-stage Baseline Sequential method 
(Fig. 5.8). A discrete cosine transformation (DCT) is calculated in disjoint 8x8 pixel 
patches. The resulting coefficients are weighted using a selectable quantization table 
and stored using run-length encoding. Data decompression is performed in the 
reverse order. For colour images, an additional IHS (intensity, hue, saturation) colour 
transformation is performed (section 5.1.1.1) whose channels are compressed 
differently, analogous to human visual perception.  

8x8 block
image data

discrete
cosine

transformation
quantization

quantization
table

coding

coding 
table

compressed
image data

 

Fig. 5.8: JPEG image compression. 

The actual loss of information is controlled by the choice of intervals in the 
quantization table. Usually the table is designed such that no significant loss of image 
quality can be visually observed (Fig. 5.9 and Fig. 5.10). 



  5 Digital image analysis  

Extensions to the JPEG format are available with JPEG2000. Here the cosine 
transformation is replaced by a wavelet transformation. In addition, different areas 
of the image can be compressed to different levels. JPEG2000 also supports 
transparent images. 

 

a) Original subset 

 

b) JPEG, factor 20 

 

c) JPEG, factor 50 

 

d) JPEG, factor 99 

Fig. 5.9: Effect on quality of compression losses in image ‘mosaic’ (compare with Fig. 5.7). 

 

a) Original subset 

 

b) JPEG, factor 20 

 

c) JPEG, factor 50 

 

d) JPEG, factor 99 

Fig. 5.10: Effect on quality of compression losses in image ‘targets’ (compare with Fig. 5.7). 

The effect of JPEG compression on photogrammetric measurement mainly depends 
on the image content. In general, JPEG compression can give rise to localized image 
displacements of the order of 0.1 to 1 pixel. This significantly exceeds the accuracy 
potential of automatic point measurement which lies around 0.02 – 0.05 pixel (see 
section 5.2.4.6). In addition, the use of 8x8 pixel tiles within the JPEG process can 
cause undesirable edge effects. 

... Video formats 
The use of digital videos for photogrammetric tasks is steadily increasing, as many 
camera systems offer an additional function for recording high-resolution videos. 
Videos also play an important role in the analysis of image sequences (see section 
5.5.7). Due to the large amount of data involved, videos are often stored in compressed 
form, which can lead to a loss of information.  

Video compression uses both spatial compression (analogous to JPEG) and 
temporal compression (from frame to frame). The data compression is called 
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encoding, the decompression is decoding. The implementation of encoding and 
decoding is known as a Codec. Codecs have different profiles depending on the 
functions used. A commonly used standard is H.264, also known as MPEG-4 Part 10 
and MPEG-4 AVC, to which the principles outlined below refer. As the pixel count of 
videos has steadily increased (5K, 8K) H.264 now has a successor format H.265 or 
HEVC (high efficient video coding) which delivers higher compression rates. 
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Fig. 5.11: Principle of video compression. 

Similar to JPEG compression, each frame is divided into small macro blocks. In the 
temporal sequence, certain frames are used as a reference against which only the 
differences in subsequent frames are processed. These compression steps are called 
DPCM (Differential Pulse Code Modulation). Frames in which only image 
compression takes place are called I-frames (intra-frame DPCM). Between the I-
frames are P-frames (predicted frames) and B-frames (bidirectional frames), in which, 
in principle, differences, predicted motion vectors and reference frames are stored 
instead of colour information. With increasing temporal distance from the I-frame, 
the loss of information increases. As a result, an I-frame is set, for example, every 10 
frames. The frames stored between two I-frames are summarised as a Group of 
Pictures (GOP).  

Fig. 5.11 shows the scheme of video compression. The lossy steps largely 
correspond to JPEG compression.  

The (compressed) video data is stored in various container formats, e.g. AVI, MOV 
or MP4 (MPEG-4). Depending on the format, further data such as audio or metadata 
can be saved. Container formats can be compatible with several codecs.  

... Integral images 
Integral images are used to optimize computation times for the calculation of grey-
value sums or square sums of images or image windows. The integral image I(x,y) has 
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the same size as the original input image S = s(x,y) but at each x,y position it stores 
the grey-value sum of a rectangular window of S defined from s(0,0) to s(x,y).  

yx

i j
I x y s i j

I x y I x y I x y s x y
= =

=

= − − + − + − +

∑∑
0 0

( , ) ( , )

( 1, 1) ( 1, ) ( , 1) ( , )
 (5.2) 

Using I(x,y) it is possible to calculate the grey-value sum of an arbitrary rectangle of 
S from only four readings. Fig. 5.12 illustrates the principle for the red area-of-interest 
(AOI). The grey-value sum for this AOI can be derived from the stored sums for the 
four areas A, B, C, D as follows: 

AOI A B C DΣ Σ Σ Σ Σ
I x y I x y I x y I x y

= − − +
= − − − − − − +1 1 2 1 1 2 2 2( 1, 1) ( , 1) ( 1, ) ( , )

 (5.3) 

A B

C D

0 x1 x2

y1

y2

A B

C D

̶=

̶ +

0

AOI

 

Fig. 5.12: Calculation of grey-value sum using an integral image. 

  

a) Synthetic image 

  

b) Subset of a test-field image  

Fig. 5.13: Original images and corresponding integral images (contrast enhanced). 

Fig. 5.13 shows two original images and the corresponding integral images (contrast 
enhanced for display). Integral images can be useful where a large number of grey 
value sums must be calculated for variable sub-windows, e.g. for convolution filters 
(section 5.2.3.2), normalized cross-correlation (section 5.4.2.3) or interest operators 
(section 5.4.3). 
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. Image pre-processing 

.. Point operations 

... Histogram 
The histogram provides the frequency distribution of the grey values in the image. It 
displays the absolute or relative frequency of each grey value either in tabular or 
graphical form (Fig. 5.14).  

 

Fig. 5.14: Grey level image with corresponding histogram and parameters. 

The most important parameters of a histogram are:  

S
S
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p g

M
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( )
( )  
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(5.4) 
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(5.6) 

m n

S S
u v

S S
g

q s u v m
M

g m p g

− −

= =

=

 = − 

= − ⋅

∑∑

∑

1 1 2

0 0
255

2

0

1 ( , )

( ) ( )
 

: variance of grey values  

(5.7) 
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S S
g

H p g p g
=
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255
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: entropy 

(5.8) 

k

S S
g

p g p g
α

H
=

 − ⋅ 
=
∑ 2

0
( ) log ( )

 

k: minimum grey value where 
k

S
g

p g
=

≥∑
0

( ) 0.5  

: symmetry (anisotropic coefficient) 

(5.9) 

Whilst minimum and maximum grey values define the image contrast, the mean is a 
measure of the average intensity (brightness) of the image. For statistical image 
processing, variance or standard deviation is also calculated but both are of minor 
interest in metrology applications.  

The information content in an image can be measured by its entropy. It 
corresponds to the average number of bits necessary to quantize the grey values. 
Entropy can also be used to calculate an appropriate factor for image compression 
(see section 5.1.3.3). 

The degree of symmetry of a histogram is determined by the anisotropic 
coefficient. Symmetrical histograms have a coefficient α = 0.5. This coefficient can 
also be used to determine a threshold for bimodal histograms (see section 5.2.1.4). 

Example 5.1: 
The histogram of the image in Fig. 5.14 has the following parameters: 

Minimum grey value: gmin = 42 
Maximum grey value: gmax = 204 
Contrast: K = 0.658 
Mean value: ms = 120.4 
Variance: q = 1506.7 
Standard deviation: q½ = 38.8 
Entropy: H = –7.1 
Symmetry: α = 0.49 

... Lookup tables 
Lookup tables (LUT, colour tables, palettes) are simple tools for the global 
manipulation of grey values. Each grey value of an input image is assigned a unique 
grey value in an output image. This method of processing grey values is simple to 
implement and can be found in almost all graphics or image processing programs. 
LUTs are easily displayed in diagrammatic form, see Fig. 5.15. LUT operations are 
unique and not usually reversible. 

Given the lookup table 

LUT g g( )        =0,1,2,...,255  (5.10) 
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the grey values of the output image are calculated: 

g LUT g=' ( )  (5.11) 

  

Fig. 5.15: Examples of lookup tables. 

... Contrast enhancement 
Manipulating the brightness and contrast of an original image results in a change of 
the grey value distribution within certain regions, for example along an image edge. 
Variations of grey values are not only a function of object intensity but are also 
influenced by the relative position of camera and object. In general, a non-linear 
manipulation of grey values can affect the geometry of an object's image and should 
therefore be avoided if possible. However, contrast enhancement can provide a better 
visual interpretation for interactive image processing. 

Image contrast changes are easily applied by a lookup table. Table values can be 
defined interactively, pre-calculated or derived from the image content itself. 
Common methods for adjusting brightness and contrast are: 
– Linear contrast stretching: 

The LUT is a linear interpolation between gmin and gmax (Fig. 5.16). Minimum 
and maximum grey values can be derived from the histogram, or defined 
interactively. The calculation of the LUT is derived from a shift (offset) r0 and a 
scale factor (gain) r1 as follows: 

LUT g r r g= +0 1( )   (5.12) 

where 
g

r
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Fig. 5.16: Linear contrast enhancement (original image in Fig. 5.14). 

– Histogram equalization: 
The cumulative frequency function is calculated from the histogram of the 
original image: 

g

S S
k

h g p k
=

=

≤ ≤

∑
0

S

( ) ( )         g=0,1,2,...,255

where  0  h (g)  1
 (5.13) 

The LUT values are given by: 

SLUT g h g= ⋅( ) 255 ( )  (5.14) 

  
Fig. 5.17: Contrast stretching by histogram equalization (original image in Fig. 5.14). 

The function is dependent on the histogram since the slope of the LUT is 
proportional to the frequency of the corresponding grey value (Fig. 5.17). Image 
contrast is consequently strongly enhanced in areas where grey values have high 
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frequencies. The output image S' therefore has a histogram pS' (g') with relative 
cumulative frequencies which are constant for each grey value according to the 
definition Sh g g= ⋅'( ) 1 / 255 ' . 

– Gamma correction: 
Many interactive image processing programs permit a Gamma correction where, 
in analogy with the gamma characteristic in the photographic process, the slope 
of the LUT is adjusted logarithmically. This essentially results in an increase or 
decrease of the mean grey value (Fig. 5.18).  

The LUT of a gamma correction is given by: 

γgLUT g
 

= ⋅ 
 

1

( ) 255
255

 (5.15) 

  

Fig. 5.18: Gamma correction with γ = 0.5 (original image in Fig. 5.14). 

– Local contrast adjustment: 
In principle, all the above image processing methods can be applied to any image 
detail (window, area of interest). Using the Wallis filter (section 5.2.3.4) the image 
is modified so that the local contrast in a filter window is optimized. 

... Thresholding 
In general, thresholding is used to clearly differentiate grey values which belong to 
different object classes, e.g. to separate objects and background. Thresholding is 
often a pre-processing stage prior to segmentation.  

Consider a simple case where the image consists only of two classes, i.e.: 
– class K1: background, e.g. dark  
– class K2: objects, e.g. bright 

0

25

50

75

100

125

150

175

200

225

250

0 25 50 75 100 125 150 175 200 225 250

g

g'



  5 Digital image analysis  

The corresponding histogram can be expected to be bimodal having two significant 
groupings of data, each represented by a maximum (peak), which are separated by a 
minimum (valley). Clearly both classes can be separated by a single threshold t 
(bimodal thresholding) located within the minimum region between the class 
maxima, e.g. by defining: 

t m m= −2 1( ) / 2  (5.16) 
where m1, m2 are the mean grey values of classes K1, K2 

Applying the lookup table 

g g t
LUT g

g g t
 ≤=  >

1

2

for 
( )

for 
 (5.17) 

where g1, g2 are the new grey values for classes K1, K2 

results in a binary image (two-
level image) consisting only of 
grey values g1, e.g. 0, and g2, 
e.g. 1 or 255. Fig. 5.19 shows 
the histogram of the image in 
Fig. 5.20 which has two 
significant primary maxima 
(m1≈18, m2≈163), representing 
background and object. The 
secondary maximum (m3≈254) 
is caused by the imaged retro-
reflective targets. The binary 
image of Fig. 5.21 is the result 
of thresholding with t = 90 
(between the primary 
maxima). 

Fig. 5.22 shows the result with threshold value t = 192, located near maximum 2. 
This preserves some image information in addition to the targets. With t = 230 (Fig. 
5.23) almost all targets are separated or segmented out from the background (but see 
Fig. 5.40). 

For more complex images, the problem of thresholding lies in both the 
calculation of representative class averages and in the subsequent definition of the 
threshold value itself. Natural image scenes usually have more than two grey-value 
classes and this requires a much more complex thresholding procedure (multi-modal 
or dynamic thresholding).  

 

0 50 100 150 200 250
g
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Fig. 5.19: Histogram of Fig. 5.20 with two primary 
maxima (1, 2) and one secondary maximum (3). 
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Fig. 5.20: Metric image with retro-targets. Fig. 5.21: Result after thresholding with t = 90. 

  

Fig. 5.22: Result after thresholding with t = 192. Fig. 5.23: Result after thresholding with t = 230. 

... Image arithmetic 
Two or more images or image subsets can be combined numerically: 
– arithmetic: addition, subtraction, division, multiplication 

The grey values of both images are combined arithmetically, e.g. subtracted: 

s x y s x y s x y= −2 1'( , ) ( , ) ( , )  (5.18) 

 

a) Original 

 

b) Compressed 

 

c) Difference 

Fig. 5.24: Difference image to illustrate information loss after JPEG image compression. 
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The results of this image operation (difference image) show the differences 
between both input images (example in Fig. 5.24). If necessary the grey values of 
the output image, where negative values are possible, must be transformed into 
the positive range [0…255], or alternatively stored as 16-bit signed integers. 

– logical: =, <, >, ≤, ≥, ≠ 
The grey values of both images are compared logically, resulting in Boolean 
values 1 (true) or 0 (false). 

– bit-wise: AND, OR, NOT, XOR 
The grey values of both input images are combined bit by bit. The XOR operation 
has practical use for the temporary superimposition of a moving cursor on the 
image. The original grey value can be recovered without the use of temporary 
storage by executing two sequential XOR operations with the value 255. Example: 
38 XOR 255 = 217; 217 XOR 255 = 38. 

.. Colour operations 

... Colour spaces 
True-colour images are composed of three spectral (colour) image channels which 
store their respective intensity or colour distributions. Storage normally requires 8 
bits per channel so that RGB images have a colour depth of 24 bits (Fig. 5.25). An 
optional alpha channel can be stored to control the transparency of an image (the 
proportion of the image displayed with respect to the background). RGB images with 
an alpha channel have a storage depth of 32 bits per pixel. 
An image with n colour or spectral channels can be defined as an image vector S: 

n

s x y
s x y

s x y−

 
 
 =  
 
  



0

1

1

( , )
( , )

( , )

S  (5.19) 

For an RGB image (n = 3), this corresponds to: 

R
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B

s x y
s x y
s x y

   
   

= =   
   
   
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( , )
( , )

R
S G

B
 (5.20) 

A default conversion of an RGB image to a grey-value image is done for every pixel as 
follows: 

R G Bs x y s x y s x y s x y = + + '( , ) ( , ) ( , ) ( , ) / 3  (5.21) 
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or more simply written as:  

I R G B= + +( ) / 3  (5.22) 

 

a) Original true-colour image  

 

b) Red channel  

 

c) Green channel  

 

d) Blue channel  

Fig. 5.25: True-colour image with separate RGB channels.  

The most important colour models in photogrammetry are the RGB colour space and 
the IHS colour space (also called the HSL colour space), see below and Fig. 5.26. In 
the RGB colour space, colour is defined by three-dimensional Cartesian coordinates 
R,G,B. The origin of the coordinate system (R = 0, G = 0, B = 0) defines black and the 
maximum position (R = 1, G = 1, B = 1) defines white. Values on the principal 
diagonal, with equal RGB components, define grey values. The interval [0...1] results 
from the normalisation of the usual grey value range of [0...255]. The additive primary 
colours, red, green and blue, as well as the subtractive colours (complementary 
colours) yellow, magenta and cyan (Y,M,C) lie at the corners of the RGB cube. It is 
simple to convert between additive and subtractive primary colours: 
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1
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   −
   

= −   
   −   

 (5.23) 

Alternatively, a weighted form of intensity calculation can be performed which is 
closer to human perception, e.g. by 

0.2989 0.5870 0.1140I R G B= ⋅ + ⋅ + ⋅  (5.24) 

In the IHS colour space, colours have components of intensity (I), hue (H) and 
saturation (S). This is also called the HSL colour space with components hue (H), 
saturation (S) and luminance (L) where luminance is equivalent to intensity. The IHS 
values can be interpreted as cylindrical coordinates as shown in Fig. 5.26. Grey values 
between black and white lie on the cylinder axis which also represents the intensity 
axis. Primary colours are represented at angle H on the colour circle and their 
saturation is given by the distance from the cylinder axis. 
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Fig. 5.26: RGB and IHS colour spaces.  

The CIE XYZ colour model, named after the Commission Internationale de l’Elcairage, 
is a standardized representation of colour which relates physical colours to how the 
average human eye perceives them. Colour representation is in an XYZ system where 
each colour coordinate is defined in the interval [0,1]. An extension to the CIE model 
is the CIE lab model, where l, a and b represent colour axes. Both models are based 
on standardized illumination and reflection conditions. 
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... Colour transformations 

.... RGB ↔ IHS 
A unique transformation is possible between RGB and IHS colour spaces. However, 
the formulas used in practice are not consistent. The following is a widely used 
transformation:  

With min min( , , )I R G B=  and max max( , , )I R G B=  then: 

I I
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= max min

2
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The calculated values lie in the intervals I [0…1], H [0…360] und S [0…1] and can 
subsequently be transformed into the grey-scale range [0…255]. 

Using the substitutions  

I S I
q

I S I S I
 + <=  + − ⋅ ≥

(1 ) for  0.5
( ) for  0.5

 p I q= −2  H H=' / 360  

Rt H= +' 1 / 3  Gt H= '  Bt H= −' 1 / 3   

then for every colour C ∈ (R,G,B): 

C C

C

C C

p q p t t
t

C
p q p t t
p

 + − <


≤ <=  + − − ≤ <



6( ) for  1 /6
q for  1/6 1 / 2

6( )(2 / 3 ) for  1/2 2 / 3
else

 where C Ct t= mod1  (5.26) 
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Fig. 5.27 shows the IHS channels which result from the transformation of a true-colour 
image. 

 

a) Original true-colour image  

 

b) Intensity channel  

 

c) Hue channel  

 

d) Saturation channel  

Fig. 5.27: IHS transformation.  

.... RGB ↔ XYZ 
The transformation of RGB values into the CIE XYZ model is achieved with the 
following operation: 

X R
Y G
Z B

   
   

= ⋅   
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G Y
B Z
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   
   

= ⋅   
   
   

1M  (5.27) 
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where 
 
 

=  
 
 

0.4887180 0.3106803 0.2006017
0.1762044 0.8129847 0.0108109

0 0.0102048 0.9897952
M  

The transformation matrix M is defined by the CIE standard. There are deviations 
from this matrix which are optimized for printing and computer graphics. 

.... CIE Lab 
The CIE Lab system is a colour space better adapted to human vision, in which 
visually equal perceived colour distances are also mathematically equal. The 
parameters L*, a* and b* are defined with the colours from the XYZ system as follows: 
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with Xn, Yn, Zn: colour values of a standardized white reference  
and 
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similarly for Y and Z 

L* describes the brightness of the image in the range [0,100]. The colourimetric values 
a* and b* describe the colour gradient along the red-green and yellow-blue axes 
respectively. 

With this, colour distances between colour values can be calculated as follows: 

ΔE ΔL Δa Δb= + +2 2 2* * *  (5.29) 

There are significant deviations between human colour perception and the Euclidean 
colour distance in colour areas with high saturation, hence the Euclidean value is 
only used for small colour differences. Taking environmental conditions into 
account, the colour distance equation according to CIEDE 2000 can be extended so 
that the CIE Lab colour space can be seen equidistantly. 
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The calculation of colour distances is relevant, e.g. for the adjustment of printing 
profiles, as well as for colour calibration of images (section 5.2.2.2). 

... Colour calibration 
Colour calibration methods are used to match the captured colours of an RGB image 
against a reference chromaticity diagram, so that calibrated colours are produced 
regardless of local lighting conditions. For this purpose grey or colour charts 
(examples in Fig. 5.28) are imaged together with the actual scene in at least one image 
of the block. 

The simplest and most common method is white balance, in which a 
(standardised) grey chart (Fig. 5.28 left) is recorded. The adjustment of the RGB 
colours is then carried out, for example, in such a way that a lookup table for each 
colour channel is determined via the colour components of a white, grey and black 
surface, with which a colour adjustment of the input image is subsequently carried 
out. 

  

Fig. 5.28: Left: grey charts; right: colour calibration chart (X-Rite ColorChecker). 

  

a) Original image b) Calibrated image 

Fig. 5.29: Result of colour calibration. 
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Better results are obtained with calibrated colour charts. Fig. 5.28 on the right shows 
a colour chart with 140 colour patches from which a colour correction matrix (CCM) 
of the input colours can be calculated in the captured image. Fig. 5.29 illustrates the 
result of colour calibration for a photogrammetric image. 

... Colour combinations  
The following procedures are commonly used to create new colour assignments in 
grey-scale and colour images:  

.... Pseudo colour  
Pseudo colours are obtained when RGB colour values are assigned to the values in a 
single-channel, grey-scale image using a colour palette. Fig. 5.30 shows two possible 
look-up tables which do this. Pseudo colours are used, for example, in the colouring 
of thermal images (see section 3.5.8) so that the intensity values (representing 
temperature) can be visualized using a colour scale (see example in Fig. 5.31). 

  

a) Rainbow palette  b) Temperature scale  

Fig. 5.30: Lookup tables for creating pseudo colour images. 

.... False colour 
False colour images are obtained from multi-channel images, in which every input 
channel is freely assigned to the channel of an RGB output image. For example, using 
the following assignments: 
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the following false colour images are obtained. In (a), three standard RGB channels 
are exchanged and in (b) a false colour infrared image is obtained assigning output 
red to the input IR channel, output green to input red and output blue to input green 
channels. 

  

a) Original thermal image  b) Colour-coded thermal image  

Fig. 5.31: Pseudo colour for thermal image. 

.... Pan sharpening 
Pan sharpening (also called resolution merging) is the combination of a sensor with 
high resolution in the panchromatic region (P channel) with the lower resolution 
channels of a colour sensor (RGB channels). The concept stems from human vision 
where the retina has a higher number of rods (detecting brightness) and a 
significantly lower number of cones (detecting colour) which together give the 
impression of a high-resolution image. 
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Fig. 5.32: Principle of pan sharpening. 

According to Fig. 5.32, the RGB image and the P channel are geometrically aligned so 
that all input images represent the same object at the same resolution. The RGB image 
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is subsequently transformed into HIS format. The resulting I channel is then replaced 
by the P channel and a reverse transformation into RGB space is calculated. The final 
image then has the geometric resolution of the high-resolution P channel as well as 
the colour information from the original RGB image.  

  

a) Original thermal image b) Thermal image after pan sharpening 

Fig. 5.33: Pan sharpening for a thermal image using a true-colour image.  

Fig. 5.33 shows a low-resolution thermal image and the result after combination with 
the panchromatic channel generated from a high-resolution RGB image. It can be 
seen that the resulting image shows much better resolution and that numerous object 
details are visible. However, it is not easy to make a correct measurement of 
temperature in the pan-sharpened image. For that, a back-transformation into the 
original thermal image must be calculated. 

.. Filter operations 

... Spatial domain and frequency domain 
The theory of digital filtering is based on the fundamentals of digital signal processing 
(communication engineering, electronics). Its fundamental method is the Fourier 
transform which represents arbitrary signals (series of discrete values, waves) as 
linear combinations of trigonometric functions. The discrete one-dimensional Fourier 
transformation for n samples of an input signal s(x) is given by: 

( ) ( )
n

x

πF u s x i ux F u i F u
n n

−

=

 
= ⋅ − = + ⋅ 

 
∑

1

0

1 2( ) ( ) exp Re ( ) Im ( )  (5.31) 

Here u denotes the spatial frequency and 1−=i . The inverse Fourier 
transformation is given by: 
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i.e. the original signal can be exactly reconstructed from its Fourier transform. 
The Euler formulas show the connection with the underlying trigonometric 

functions: 
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The power spectrum of s(x) is defined by: 

P u F u F u F u= = +
2 2 2( ) ( ) Re ( ( )) Im ( ( ))  (5.34) 

The 1D Fourier transformation can easily be extended to the discrete 2D Fourier 
transformation. 

When applied to an image, the discrete Fourier transformation transforms it from 
the spatial domain S = s(x,y) into the frequency domain F(u,v). A visual evaluation of 
the spatial frequencies (wave numbers) in the image can be made through the power 
spectrum. For example, edges generate high frequencies. A power spectrum example 
is illustrated in Fig. 5.34, where bright points in the spectrum correspond to large 
amplitudes. This example shows high amplitudes which are perpendicular to the 
significant edges in the original image (spatial domain). The two horizontal and 
vertical lines in the spectrum are caused by the image borders. 

  

Fig. 5.34: Grey-value image and corresponding power spectrum. 

Different basic functions from the Fourier transform result in alternative image 
transformations. For example, the discrete cosine transformation (DCT) uses only 
cosine terms. The wavelet transformation uses various basic functions such as the 
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Haar function to transform the original signal not only into the frequency domain but 
also into a scale domain of different resolutions. Wavelets are especially useful for 
image operations which must simultaneously account for coarse (smoothed) 
structures and detailed features having high information content. One application of 
the wavelet transformation is in image compression with information loss (see section 
5.1.3.3). 

  

Fig. 5.35: Band-pass filter in power spectrum and resulting image. 

Filters can be used to select or suppress certain spatial frequencies in the original 
image (high-pass filter, band-pass filter, low-pass filter). In the frequency domain, the 
desired frequencies are multiplied by a filter function which defines the filter 
characteristics. Fig. 5.35 shows a circular filter in the frequency spectrum. In this 
example the spectrum within the inner circle and beyond the outer circle is multiplied 
by 0 and within the ring zone it is multiplied by 1. After transformation back into the 
spatial domain this band-pass filter produces edge enhancement. 
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Fig. 5.36: Filtering in the spatial and frequency domains. 
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In the spatial domain, filters are applied by convolution with a filter operator. It can 
be shown that both approaches have identical results (Fig. 5.36).  

Filter methods based on a one or two-dimensional convolution calculate a 
weighted sum of grey values in a given pixel region of the input image S. The result is 
assigned to the output image S' at the position of the region's central pixel. 

k l

u k v l
s x y s x u y v h u v

f
S S H

+ +

=− =−

= − − ⋅

= ⊗

∑ ∑1'( , )   ( , ) ( , )
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Here H = h(u,v) denotes the filter matrix (filter operator) with p x q elements, where 
k = (p-1)/2 and l =  (q-1)/2. Usually p and q are odd numbers and often p = q. The factor 
f is used for normalization to the range [0…255]. The operator ⊗ symbolizes the 
convolution operation.  

H

S

 

Fig. 5.37: Scheme for image filtering with p=q=3. 

In order to filter the complete image, the filter operator is shifted over the image in 
rows and columns as shown in Fig. 5.37. At each x,y position the convolution is 
calculated and the resulting grey value stored in the output image. The number of 
computational instructions amounts to (2k+1)² multiplications and (2k+1)–1 
additions. For example, an image with 1024 x 1024 pixels, p = 5, k = 2 requires around 
26 · 106 multiplications and 25 · 106 additions. Some filter masks can be split into one-
dimensional convolutions which can be separately computed in the x and y 
directions. In this case only (4k+2) multiplications and 4k additions are required. In 
the example this results in around 10 · 106 multiplications and 8 · 106 additions. 

... Smoothing filters 
Smoothing filters (low-pass filters) are mainly used for the suppression of grey-level 
noise, such as the quantization noise associated with digitization. These types of filter 
principally divide into linear smoothing filters, based on convolution, and non-linear 
smoothing filters based on rank orders (median filter). Table 5.1 shows one- and two-
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dimensional examples of typical filter operators. Fig. 5.38 illustrates the results of 
different smoothing filters. 

 

a) Original image 

 

b) Moving average filter (5x5) 

 

c) Binomial filter (5x5) 

 

d) Median filter (5x5) 

Fig. 5.38: Effect of different smoothing filters. 

Linear, low-pass filters smooth the image but, depending on choice of filter 
coefficients, also smear image edges. The smoothing effect increases with larger filter 
sizes. 

Gaussian filters possess mathematically optimal smoothing properties. The 
coefficients of the filter are derived from the two-dimensional Gaussian function: 
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A suitable filter matrix of size p is usually chosen empirically. As an example, given 
σ = 1, a filter size of p = 7 is appropriate. The Gaussian filter coefficients can be well 
approximated by the binomial coefficients of Pascal's triangle (see Table 5.1). 

The non-linear median filter performs good smoothing whilst retaining sharp 
edges (Fig. 5.38d). The median filter is not based on convolution. Instead, it calculates 
the median value (as opposed to the mean) of a sorted list of grey values in the filter 
matrix, and uses this as the output grey value. The output image therefore consists 
only of grey values which exist in the input image. This property is essential for the 
filtering of images where, instead of intensities, the image elements store attributes 
or other data. The median filter is a member of the group of rank-order filters. 

Table 5.1: Examples of filter operators for image smoothing.  

Filter method 1D 2D 
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... Morphological operations 
Morphological operations form their own class of image processing methods. The 
basic idea is the application of non-linear filters (see median filter, section 5.2.3.2) for 
the enhancement or suppression of black and white image regions with (known) 
shape properties, e.g. for the segmentation of point or circular features. Filtering is 
performed with special structuring elements which are tuned to the feature type to be 
detected and are successively stepped across the whole image. The structuring 
element is assigned a focus or active point which acts on the corresponding image 
point and which must be carefully defined in order to avoid offsets in the identified 
locations of the features being detected.  

Two fundamental functions based on Boolean operations for binary images are 
defined for morphological image processing: 
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– Erosion: 
Erosion leads to the shrinking of regions. The value 1 is set in the output image if 
all pixels in the filter region, e.g. 3x3 elements, correspond to the structuring 
element, i.e. the structuring element is in complete agreement with the image 
region. Otherwise the value 0 is set. 

– Dilation: 
Dilation leads to the enlargement of connected regions. The number 1 is set if the 
structuring element includes at least one matching pixel within the image filter 
region. 

closing

dilation erosion

opening

erosion dilation

 

Fig. 5.39: Morphological operations with 3x3 structure element (red: focus point). 

Sequential application of dilation and erosion can be used to close gaps or to separate 
connected regions in the image. The following combinations of basic operations are 
useful: 
– Opening: 

Opening is achieved by an erosion followed by dilation (Fig. 5.39 top). Small 
objects are removed. 

– Closing: 
The reverse process is referred to as closing. Dilation is followed by erosion in 
order to close gaps between objects (Fig. 5.39 bottom). 

An application of opening is the segmentation of bright targets in a photogrammetric 
image. Fig. 5.40 shows a problematic situation for an image region with a number of 
targets lying close together. After simple thresholding, the intermediate result shows 
several small circular features which do not correspond to target points, as well as 
connected regions which actually represent separate targets. Segmentation, based on 
the procedure of section 5.2.1.4 with a minimum point size of 15 pixel, results in nine 
objects of which two have joined together features from separate adjacent objects. 
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a) Original image b) Thresholding c) Segmentation result  

Fig. 5.40: Simple segmentation after thresholding (9 objects). 

   

a) Erosion (3x3) b) Dilation (3x3) c) Segmentation result 

Fig. 5.41: Segmentation after thresholding and opening (11 objects). 

Fig. 5.41 shows the same image region processed using the opening operator. Starting 
with the same binary image, erosion eliminates objects smaller than the applied 3x3 
structure element. In addition, the targets shrink. Subsequent application of dilation 
enlarges the remaining objects to their original size. This type of segmentation 
correctly extracts all 11 objects. 

Morphological operators can be extended to grey-level images. Instead of the 
Boolean decision for each pixel of the structuring element, the minimum grey-value 
within the neighbourhood determined by the structuring element (grey-value 
erosion) or the maximum grey-value (grey-value dilation), is used as the result. 

... Wallis filter 
The objective of the Wallis filter is a local optimization of contrast. The grey values in 
the output image are calculated as follows: 

s x y s x y r r= +1 0'( , ) ( , )  (5.37) 
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Here the parameters r0, r1 of a linear contrast stretching (eqn. 5.12) are determined in 
a local filter window of size n x n pixel. The calculation of the filter parameters for 
each pixel is based on the following values: 

σ cr
σσc
c

=
+

1
'

'
  (5.38) 

where  σ:  standard deviation in input window  
 σ':  standard deviation in output window  
 c:  contrast control factor 0 < c < 1.3 

S Sr bm b r m= + − −0 ' 1(1 )  (5.39) 

where  mS: average value in input window  
 mS  ': average value in output window  
 b: brightness control factor 0 ≤ b ≤ 1 

 

a) Image after application of Wallis filter  
(original image in Fig. 5.14) 

 

b) Detail from original image  

 
c) Detail from Wallis image 

Fig. 5.42: Local contrast improvement with Wallis filter (n = 25, b = 0.6, c = 1.6, mS ' = 120, σ' = 60). 

By fixing the average value mS ', e.g. at 120, and standard deviation σ', e.g. at 60, the 
brightness and contrast ranges of the output window are defined for the entire image. 
The control factors b and c are determined empirically, e.g. b = 0.8 and c = 1.3. The 
filter size n is set according to the further processing of the image and lies, for 
example, between n = 3 and n = 25. 

Amongst other applications, the Wallis filter is used as a preparation for various 
image-matching techniques (see section 5.4.2.4 and section 5.5) in order to improve 
the quality of matching independently of image contrast. Fig. 5.42 shows an example 
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of Wallis filtering. In this case, the selected filter parameters lead to a lower contrast 
image, but also one with a more consistent contrast across the whole image. 

.. Edge extraction 

Grey-value edges are the primary image structures used by the human visual system 
for object recognition. They are therefore of fundamental interest for digital image 
measurement and pattern recognition. Every object stands out from the background 
on the basis of a characteristic change in the relevant image structures (Fig. 5.43). 

direction

norm
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Fig. 5.43: Objects and edges. 

This change in image structure can be due to: 
– change in grey values (grey-value edge) along the physical object edge  

→ edge extraction 
– change in colour values (colour edge)  

→ multi-spectral edge extraction 
– change in surface texture, e.g. hatched vs. point pattern 

→ texture analysis 

The following discussion concerns only the extraction of grey-level edges which can 
be characterized by the following properties: 
– a significant change in adjacent grey values perpendicular to the edge direction;  
– edges have a direction and magnitude;  
– edges are formed by small image structures, i.e. the region of grey value change 

may not be too large; 
– small image structures are equivalent to high frequencies in the frequency 

domain.  

If edges are to be extracted by means of filters then, in contrast to smoothing filters, 
high frequencies must be enhanced and low frequencies suppressed (= high-pass 
filter or band-pass filter). 
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An edge, or more precisely ramp, is a significant change of intensity between two 
grey value areas of a particular size. In contrast, a line is a thin grey value image area 
which cannot be resolved into two opposite edges.  

.. First order differential filters 

The first derivative of a continuous function s(x) is given by 

Δx

ds s x Δx s xs x
dx Δx→

+ −
= =

0

( ) ( )'( ) lim  (5.40) 

and for a discrete function by: 

s x s xs x s x s x+ −
= = + −

( 1) ( )'( ) ( 1) ( )
1

 (5.41) 

A filter mask H2 = [–1  +1], known as a Roberts gradient, can be derived from (5.41). 
Larger filter masks, which also offer low-pass filtering, are often used, e.g.  

H3 = [–1  0  +1] 

H5 = [–1  0  0  0  +1]  or  [–2  –1  0  +1  +2] 
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Fig. 5.44: Convolution of an image row with gradient filter H = [2 1 0 –1 –2]. 

These filters approximate the discrete first derivative of the image function by 
(weighted) differences. They evaluate local extremes in grey value distribution from 
gradients calculated separately in the x and y directions. The zero crossing of the first 
derivative is assumed to give the position of a grey value line and its maximum or 
minimum gives the position of an edge (ramp), see Fig. 5.44. 
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From the gradient 
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magnitude and direction of an edge can be derived:  
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: magnitude of gradient (5.43) 

ds x y ds x yφ
dy dx

=
( , ) ( , )tan  : direction of gradient (5.44) 

  

a) Original image b) Gradient magnitude 

  

c) Gradient direction d) Line thinning 

Fig. 5.45: Application of a 5x5 gradient operator. 
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A well-known two-dimensional gradient filter is the Sobel operator. It approximates 
the first derivatives in x and y by separated convolution with the filter masks  
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The operator can be extended to larger filter masks. The magnitude of the gradient is 
calculated from the intermediate convolution results and stored as a grey value. The 
direction of the gradient can also be stored as a coded grey value image. Magnitude 
and direction images can be used for further line and edge extraction, e.g. for line 
thinning and chaining. Fig. 5.45 shows the application of a 5x5 gradient operator 
followed by line thinning. 

... Second order differential filters 
For a continuous function s(x) the second derivative is given by 
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and for a discrete function: 
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2
( 1) ( ) [ ( ) ( 1)]"( ) ( 1) 2 ( ) ( 1)

(1)
 (5.46) 

Here a filter mask H3 = [+1  –2  +1] can be derived. The second derivative can also be 
generated by double application of the first derivative. 

-200

-100

0

100

200

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

image function
2. derivative

zero crossing

Laplace filter [1 0 -2 0 1]

 

Fig. 5.46: Convolution of an image row by a Laplacian filter H5 = [1 0 –2 0 1]. 
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A grey value edge is formed by a ramp change in grey values. The position of the edge 
is given by the zero crossing of the second derivative (Fig. 5.46).  

The second derivative of a two-dimensional function is given by the total second 
order differential: 

d s d ss x y s
dx dy

=∇ = +
2 2

2
2 2

"( , )  (5.47) 

For a discrete function s"(x,y), the second derivative can therefore be formed by 
addition of the partial second derivatives in the x and y directions. 
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The resulting convolution mask is called a Laplace operator (Fig. 5.47a). Its main 
properties are:  
– edges are detected in all directions and so it is invariant to rotations; 
– light-dark changes produce an opposite sign to dark-light changes.  

  

a) Laplacian operator b) Laplacian of Gaussian operator (σ=3.0) 

Fig. 5.47: Edge extraction with differential operators. 

... Laplacian of Gaussian filter 
Fig. 5.47a illustrates the sensitivity to noise of the Laplace operator, hence minor 
intensity changes are interpreted as edges. A better result could be expected if the 
image were smoothed in advance. As the Gaussian filter is an optimal smoothing filter 
(see section 5.2.3.2), the second derivative of the Gaussian function is regarded as an 
optimal edge filter which combines smoothing properties with edge extraction 
capabilities.  
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The second derivative of the Gaussian function (5.36) is given by: 
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where r x y= +2 2 2  

The filter based on this function is known as the Laplacian of Gaussian or LoG filter. 
Due to its shape, it is also called a Mexican hat (Fig. 5.48). Empirical analysis shows 
that a filter size of 11 – 13 corresponds to a ±3σ interval. Fig. 5.47b shows the result of 
LoG filtering with σ = 2.0.  

 

Fig. 5.48: Laplacian of Gaussian (LoG) with σ = 1. 

... Image sharpening 
Various image sharpening filters are used to enhance the sharpness of an image. An 
optically defocused image cannot subsequently be focused without further 
information, but the visual impression can be improved. Out-of-focus images are 
characterized by reduced contrast and blurred edges and filters can be defined which 
reduce these effects. A possible sharpening filter is given by the following definition:  

( )
s x y s x y s x y h u v

s x y s x y s x y h u v
= ⋅ − ⊗

= + − ⊗

'( , ) 2 ( , ) [ ( , ) ( , )]
( , ) ( , ) [ ( , ) ( , )]  (5.49) 

Here h(u,v) represents a smoothing filter, e.g. the binomial filter listed in Table 5.1. 
The subtraction of the smoothed image from the original corresponds to a high-pass 
filtering. The enhancement in the output image therefore results from adding the high 
frequencies in the original image. Fig. 5.49 shows an example of the effect of a 
sharpening filter based on a 5x5 binomial filter. 
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b) Detail from original image 

 

a) Image after application of binomial  
sharpness filter (original image in Fig. 5.14) 

c) Detail in sharpened image 

Fig. 5.49: Enhanced sharpness.  

... Hough transform 
The Hough transform is based on the condition that all points on an analytical curve 
can be defined by one common set of parameters. Whilst a Hough transform can be 
applied to the detection of a wide variety of imaged shapes, one of the simplest 
solutions is the case of imaged straight lines where all points must fulfil the line 
equation in Hesse's normal form: 

r x φ y φ= +cos sin  (5.50) 

In order to determine the parameters r and φ a discrete two-dimensional parameter 
space (Hough space) is spanned, with elements initialized to zero. For each edge 
point at position x,y in the image, the direction of the gradient φ+90° is known and r 
can therefore be determined. At position r,φ the corresponding value in Hough space 
is increased by 1, i.e. each point on the line accumulates at the same position in 
Hough space (due to rounding errors and noise it is actually a small local area). 
Hence, straight lines can be detected by searching the Hough accumulator for local 
maxima. 

Fig. 5.50 illustrates the application of the Hough transform to an image with 
several well-structured edges (a). Edge extraction is performed by a 5x5 gradient filter 
(in analogy to Fig. 5.45), which delivers a magnitude and direction image (b). Several 
maxima (clusters) can be recognized in Hough space (c). Clusters which are arranged 
in one column of the Hough accumulator represent parallel edges in the original 
image. The value pairs in Hough space can be transformed back into the spatial 
domain x,y. Analytical lines are determined as a result, although their start and end 
points cannot be reconstructed (d).  
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Such a Hough transform is most relevant for the detection of objects 
predominantly formed by straight lines. The method can be expanded to curves of 
higher order, e.g. circles of unknown radius, although the dimension of the Hough 
accumulator is then no longer two-dimensional. 

 

a) Original image 

 

b) Gradient magnitude 

 

d) Detected lines superimposed on the original image 

r

ϕ
 

c) Hough accumulator with clusters 

Fig. 5.50: Hough transform. 

... Enhanced edge operators 
The simple methods of edge extraction discussed in the previous sections often do 
not deliver satisfactory results. An edge filter suitable for measurement tasks should 
have the following properties: 
– complete extraction of all relevant edges (robustness); 
– simple parametrization (preferably without interactive input); 
– high sub-pixel accuracy;  
– minimum computational effort.  
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Numerous methods for edge extraction are given in the literature, such as the 
following well-established methods. In contrast to simple convolution operators, 
they are extended by pre and post processing as well as adaptive parameter 
adjustment. They provide good results even for complex images: 
– Canny operator and Deriche operator: 

The Canny operator belongs to the class of operators based on LoG. It optimizes 
the following quality criteria in edge measurement: 
– sensitivity to true edges (uniqueness of edge) 
– robustness to noise (maximum signal-to-noise ratio) accuracy of edge 

position 
A function is defined for each criterion whose parameters are used to build a non-
recursive linear filter. The Canny operator delivers a list of connected contour 
points with sub-pixel resolution and can be classified as one of the methods of 
contour following.  

  

Fig. 5.51: Canny operator with σ = 1.5. Fig. 5.52: Deriche operator with σ = 1.5. 

A further development is the Deriche operator which achieves the quality criteria 
above by recursive filtering. Fig. 5.51 and Fig. 5.52 show the application of both 
filters, where almost identical results are obtained by appropriate parameter 
settings. 

– Edge extraction in image pyramids: 
Image pyramids (see section 5.1.3.1) represent the image content at different 
spatial resolutions. Since the ability to detect edges in natural images varies with 
image resolution (image scale), an approach is sought which determines the 
optimal scale for each edge pixel. LoG filters, or morphological operators, can be 
used as edge operators. 



 5.2 Image pre-processing   

– Least-squares edge operators: 
A model describing the geometric and radiometric properties of the edge can be 
determined by least-squares parameter estimation. By adjusting their initial 
parameter values, a priori edge models (templates) can be fitted to the actual 
region defining an edge (see section 5.4.2.4, least-squares template matching). 
An optimal fit could be the least squares estimate in which the differentials have 
the least entropy. 

A global approach to edge extraction is possible if the energy function 

int grey extE E E E= + +  (5.51) 

where Eint: curve energy function  
 Egrey: grey-value conditions  
 Eext: geometric constraints  

is minimized in a least-squares solution. The curve energy function Eint describes 
the behaviour of the curvature along the edge or the sensitivity with respect to 
possible changes in direction. Grey-value conditions Egrey along the edge can be 
defined by requiring, for example, maximum gradients. Additional geometric 
constraints such as straight lines or epipolar geometries are specified by Eext. 

... Sub-pixel interpolation 
.... Sub-pixel resolution 
In digital photogrammetry, line and edge filters are used for the measurement of 
geometric elements (points, lines) which are described by their contours (see section 
5.4.2.5). The objective is to locate these patterns to the highest accuracy. As discussed 
in section 5.1.2, object structures covering several pixels can be measured by 
interpolation to the sub-pixel level.  

The theoretical resolution of the position of a digitized grey-value edge is, in the 
first instance, a function of the slope of the grey values along the edge and 
quantization depth (number of bits per grey value). It is defined by a parameter, 
sometimes called the slack value, d, where the position of the imaged edge can be 
varied without changing the related grey values (Fig. 5.53). For a step change (β = 0 
in diagram), the slack is maximized and amounts to 1. 

It can be shown that, for N quantization steps, the uncertainty of edge positioning 
is at least 1/(N–1). This corresponds to 0.004 pixels for N = 256 grey levels. In this case 
the average deviation of a single edge point can be estimated, independently of the 
slope of the edge, as  

dσ =0.015  pixel  (5.52) 

This theoretical quantity will be higher in practice due to optical limitations and noise 
but it defines a lower limit for the estimation of positional accuracy of image 
measurements. Hence, the accuracy of an edge of length k pixels can be estimated as 
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Fig. 5.53: Slack in a digitized edge (according to Förstner 1985). 

This is also approximately true for the centre of a circle measured by k edge points. 
For a circular target of diameter 6 pixels there are approximately k = 19 edge points. 
Hence, in the ideal case, the centre of such a target can be determined to an accuracy 
of about 0.004 pixel (4/1000 pixel). Further investigations are discussed in section 
5.4.2.6. 

A selection of edge extraction methods providing sub-pixel interpolation, 
together with their principal parameters, are summarized in Table 5.2. 
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Fig. 5.54: Edge interpolation methods. 

.... Zero-crossing interpolation 
As shown in Fig. 5.44 and Fig. 5.46 the derivative functions do not pass zero at an 
integer pixel coordinate. The sub-pixel position of an edge can be determined by first 
or second order interpolation in the neighbourhood of the zero crossing (Fig. 5.54a). 
This method is used, for example, for the edge measurement of patterns based on 
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points (see section 5.4.2.5). Interpolation of zero crossings provides edge location 
with a precision of up to 1/100 pixel. 

Table 5.2: Methods for sub-pixel interpolation of edge points. 

Method Model Intermediate result Sub-pixel interpolation 

Differential filter deflection point gradient image linear interpolation 

Moment preservation grey value plateaux 1st, 2nd and 3rd 
moments 

solution of 3 equations 

Feature correlation 
(template matching) 

edge template, cross-
correlation 

correlation 
coefficients 

2nd order interpolation  

Least-squares 
matching 

edge template, geometric 
and radiometric 
transformation 

up to 8 
transformation 
parameters 

shift parameters 

.... Moment preservation 
The basic idea of the moment preservation method assumes that an edge within a 
one-dimensional image function, e.g. an image row of window size n, can be 
described by three parameters. These define the left grey-value plateau h1, the right 
grey-value plateau h2 and the coordinate of the grey-value step xk (Fig. 5.54b). The 
three required equations are formed by the 1st, 2nd and 3rd moments: 

n
i

i j
j

m g i
n =

= =∑
1

1 1,2,3  (5.54) 

The following parameters are determined (without derivation): 
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where 
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 p p= −2 11  (5.56) 

The desired edge position is given by: 

Kx n p= ⋅ 1  (5.57) 
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The moment preservation method is easy to implement and it delivers the sub-pixel 
edge location without any further interpolation. It is used, for example, with the Zhou 
operator for the edge extraction of elliptically shaped targets (see section 5.4.2.5). 

.... Correlation methods 
Correlation methods determine the position in a search image which has the highest 
similarity with a reference pattern (template). The reference pattern can be a subset 
of a natural image, or a synthetically created image. For example, when searching for 
a vertical edge which switches from dark to light, a template similar to the one in Fig. 
5.55 can be used. 

The similarity between two patterns can be measured by the normalized cross-
correlation coefficient r (see sections 2.4.3.3 and 5.4.2.3). If r is plotted as a function 
of x, the position of maximum correlation is most likely to be the true position of the 
reference pattern. If the curve around the maximum is approximated by a quadratic 
function (parabola), the desired position can be determined to sub-pixel precision 
(Fig. 5.55). 

xE

r

x

template for edge detection

1

interpolation by correlation coefficients  

Fig. 5.55: Interpolation by correlation coefficients. 

Least-squares matching (see section 5.4.2.4) determines a transformation which 
describes both the change of contrast and the geometric projection between reference 
pattern and search image. The approach requires reasonably good initial values of 
the unknown parameters, in particular the required shift parameters. The adjustment 
process directly delivers the sub-pixel positions of the pattern (edge). 

. Geometric image transformation 

The process of modifying the geometric projection of a digital image is here referred 
to as a geometric image transformation. Related methods are required in photo-
grammetry for photo rectification and orthophoto production (section 4.2.8), for 
combining images with CAD models, for calculation of distortion-free images and 
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normalized stereo images (epipolar images), and for template matching procedures. 
Rendering and morphing methods also belong to this category. Fig. 5.56 shows an 
example of the projective rectification of a façade (see also Fig. 4.24). 

  

Fig. 5.56: Geometric rectification of a façade.  

The term rectification denotes a general modification of pixel coordinates, e.g. for  
– translation and rotation;  
– change of scale or size (magnification, reduction); 
– correction of distortion effects; 
– projective rectification (from central perspective to parallel projection); 
– orthophoto production (differential rectification); 
– rectification of one image with respect to another; 
– superimposition of natural structures onto a surface, e.g. a CAD model (texture 

mapping). 

Geometric image transformations are generally performed in two stages: 
1. Transformation of pixel coordinates (image coordinates) into the target system 

(rectification) – this transformation is the reverse of the imaging process. 
2. Calculation (interpolation) of output grey values. 

.. Fundamentals of rectification 

Rectification is founded on the geometric transformation of pixel coordinates from an 
original image to an output image: 

( )'( ', ') ( , ) 's x y G s x y g= =  (5.58) 
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where  
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2

'
'

x f (x,y)
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=
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Here the grey value g, at position (x,y) in the original image, appears in the output 
image, after grey value interpolation G, as grey value g' at position (x',y').  

The geometric transformations f1 and f2 can be almost arbitrary coordinate 
transformations. The affine transformation (2.12) is often used for standard 
modifications such as translation, scaling, rotation or shearing. The projective 
transformation (8 parameters, see eqn. 2.21) is suited to the rectification of images of 
planar objects. Where a digital surface model is available, arbitrary free-form surfaces 
can be transformed into orthophotos by use of the collinearity equations (4.10) (see 
section 4.2.8.2). 
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Fig. 5.57: Rectification methods. 

In all cases there is a transformation between the pixel coordinates (x,y) of the input 
image and the pixel coordinates (x',y') of the output image. The grey values of the 
input image in the region of (x,y) must be stored in the output image at position (x',y'). 
For this purpose, the indirect rectification method is usually applied in which the 
output image is processed pixel by pixel. By reversing the geometric transformation, 
the grey value of the input image is interpolated at the reverse-transformed position 
(x,y) and then stored in the output image. This algorithm is easy to implement and 
avoids gaps or overlapping regions in the output image (Fig. 5.57).  

.. Grey value interpolation 

The second step in rectification consists of the interpolation of a suitable grey value 
from the local neighbourhood using an arbitrary non-integer pixel position, and then 
storing this quantity in the output image (resampling). The following methods are 
normally used for grey value interpolation: 
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– zero order interpolation (nearest neighbour); 
– first order interpolation (bilinear interpolation); 
– second order interpolation (bicubic convolution, Lagrange polynomials). 
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Fig. 5.58: Grey-value interpolation in 2x2 and 4x4 neighbourhood. 

For the method of nearest neighbour, the grey value at the rounded or truncated real 
pixel coordinate is used in the output image. The interpolation rule is given by: 

g s x y=' (round( ),round( ))  (5.59) 
Nearest-neighbour grey value in the example of Fig. 5.58: g' = 32 = g4 

This approach leads to the visually worst rectification result. However, the 
computational effort is small and the output image consists only of grey values which 
also exist in the input image. 

The bilinear or biquadratic interpolation takes into account the 2x2 adjacent grey 
values of the computed pixel position. The interpolated grey value is the result of the 
weighted average of adjacent grey values in which the weight is given by the relative 
coverage of the current pixel. The interpolation rule is given by: 

g F s i j F s i j F s i j F s i j= ⋅ + ⋅ + + ⋅ + + ⋅ + +1 2 3 4' ( , ) ( 1, ) ( , 1) ( 1, 1)  (5.60) 

where F1 + F2 + F3 + F4 = 1 

or analogously to eqn. (2.19): 

g s i j dx s i j s i j dy s i j s i j
dx dy s i j s i j s i j s i j

= + ⋅ + − + ⋅ + −
+ ⋅ ⋅ + + − + − + +

' ( , ) [ ( 1, ) ( , )] [ ( , 1) ( , )]
[ ( 1, 1) ( 1, ) ( , 1) ( , )]

 (5.61) 

Hence the bilinear grey value in the example of Fig. 5.58: g' = 25.3 ≈ 25 
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With modest computational effort, bilinear interpolation generates slightly smoothed 
rectifications of good quality.  

Bicubic convolution and Lagrange interpolation are usually applied only in output 
rectifications where the highest image quality is required. These methods use a 4x4 
environment for interpolation which results in computation times up to 10 times 
higher. The algorithm for bicubic convolution is as follows: 
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 for n = 1,2,3,4 (5.62) 

'= (1) ( 1) (2) ( ) (3) ( 1) (4) ( 2)⋅ + + ⋅ + ⋅ − + ⋅ −g a df dy a df dy a df dy a df dy  
Bicubic grey value for the example of Fig. 5.58: g' = 21.7 ≈ 22 

   

a) Nearest neighbour b) Bilinear interpolation c) Bicubic convolution 

Fig. 5.59: Rectification results with different methods of grey-value interpolation. 

The arbitrarily chosen example of Fig. 5.58 shows clearly that the three different 
interpolation methods generate quite different values for the interpolated grey level. 
Fig. 5.59 shows an enlarged image region after rotation, generated by the three 
methods. The nearest neighbour approach gives rise to clearly visible steps along 
sloping edges. The other two interpolation methods yield results which are visually 
very similar.  

The problem of grey value interpolation at non-integer positions also occurs in 
least-squares matching (see section 5.4.2.4). Bilinear interpolation is normally used 
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as an efficient compromise between computation time and image quality. If edge 
detection is required in the output image, it is better to apply it prior to rectification. 
This avoids interpolation bias and less processing power is required to rectify edges 
than to rectify large pixel arrays.  

.. Textured images 

... Texture mapping 
The pattern or structure on a surface is referred to as texture. It results from a variation 
of small surface elements within a limited neighbourhood. Textures are physically 
generated by the different reflection properties and geometric characteristics of 
surface particles which, in the limit, can be as small as molecules. With the aid of 
textures, visualized objects achieve their realistic appearance. 

   

a) Wood  b) Granite c) Bricks  

Fig. 5.60: Artificial and natural textures. 

The generation of texture in a visualized scene can be generated most simply by 
projection of a texture image onto the surface (texture mapping). A texture image is a 
digital image whose pattern is superimposed on the object in the manner of a slide 
projection. The texture image can be a real photograph or can consist of artificial 
patterns (examples in Fig. 5.60).  

Texture mapping includes the following principal techniques: 
– 2D texture projection onto a planar object surface (2D→2D)  
– 3D texture projection onto object surfaces of arbitrary shape (2D→3D→2D) 

For 2D texture mapping, a plane transformation between a region in the visualized 
image and the texture image is calculated. According to the principle of plane 
rectification (see section 4.2.8.1), corresponding image patches are defined in both 
images and their corner points are mapped by affine or projective transformation. 
There is no direct relationship to the 3D object model, i.e. for each new visualization 
the texture regions must be re-defined, if necessary by manual interaction.  
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Fig. 5.61 illustrates the schematic process. The relationship between output 
image (visualization) and texture image is given by a plane coordinate 
transformation. Its parameters are derived through identical points (control points) 
on a plane, e.g. triangle, quadrangle or polygon. Then each pixel of the output image 
is processed according to the blue work flow, i.e. the coordinate transformation is 
calculated only once per plane image section. 
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x*,y*

ray tracing

collinearity
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projective
transformation
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x',y'
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Fig. 5.61: Texture mapping. 

 

Fig. 5.62: Texture mapping with natural patterns. 

Texture mapping is more flexible if the known geometric relationship between 
visualization (projection) and 3D model is utilized. Each output pixel defines a ray in 
space which is given by selection of viewing direction and geometric projection. This 
ray is intersected with the 3D model by application of ray tracing methods in order to 
handle any occlusions. The calculated intersection points are projected back into the 
original image using the collinearity equations. From the resulting pixel position a 
suitable colour value is interpolated and transferred into the output image (red path 
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in Fig. 5.61). If the process has an integrated object-based reflection and lighting 
model, photo-realistic scenes can be created which include lighting effects, shadows 
and the natural object structure. 

Fig. 5.62 shows an example of texture mapping in which terrestrial photographs 
are used for the façades, and aerial photographs for the ground. The trees are artificial 
graphics objects. 

... Synthetic images 
For the creation of synthetic images to be used in place of real photogrammetric 
images, arbitrary interior and exterior orientation data can be defined for the output 
image. Again, each pixel x*,y* defines a spatial ray whose processing follows the red 
path in Fig. 5.61. 

  

a) Original image b) Synthetic image 

Fig. 5.63: Example of a synthetic image (compare also with Fig. 5.105). 

Fig. 5.63b shows an example of a synthetic image which has been generated with a 
3D model of a sculpture using textures taken from the original image of Fig. 5.63a. 
Synthetic images can be used, for example, to test a certain image-measuring method 
since all input values are known for comparison with the computed results. A well-
known tool for rendering synthetic images is the open-source software Blender. 

. Digital processing of single images 

This section deals with methods for locating objects in single digital images. It 
distinguishes between algorithms for the determination of single point features 
(pattern centres) and those for the detection of lines and edges. The common aim of 
these methods is the accurate and reliable measurement, to sub-pixel resolution, of 
image coordinates for use in analytical object reconstruction. Three-dimensional 
image processing methods are discussed in section 5.5. 
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.. Approximate values 

... Possibilities 
The image processing methods discussed here require initial approximations for the 
image position which is to be accurately determined. These approximate values can 
be found in different ways:  
– by pre-determined (calculated) image coordinates, e.g. from (approximately) 

known object coordinates and known image orientation parameters; 
– by manually setting an on-screen cursor;  
– by pattern recognition (segmentation) during image pre-processing, e.g. by 

searching for certain grey value patterns in the image; 
– using interest operators which detect regions of significant image structure (see 

section 5.4.3.1). 

In close-range photogrammetry, in particular for industrial applications, simple 
image structures can often be engineered through specific targeting and illumination 
techniques. These can ensure, for example, that only (bright) object points on a 
homogeneous (dark) background exist in the image (examples in Fig. 5.2a, Fig. 7.30). 
In this case, the generation of approximate values reduces to the location of simple 
image patterns and can, in many cases, be fully automated (see section 5.4.1.2). 

The use of coded targets in industrial applications has been particularly 
successful. These encode a point identification which can be detected and decoded 
automatically (see section 6.2.1.4). 

... Segmentation of point features 
The measurement (segmentation) of bright targets is an important special case in 
practical photogrammetric image acquisition. If no information about the position of 
target points is available, the image must be searched for potential candidates. Since 
measurement tasks in practice involve different image scales, perspective distortion, 
extraneous lighting, occlusions etc., the following hierarchical process of point 
segmentation has proven effective: 
1. Adaptive binarization by thresholding (see section 5.2.1.4).  
2. Detection of connected image regions exceeding a threshold (connected 

components). 
3. Analysis of detected regions with respect to size (number of pixels) and shape. 
4. Storage of image positions which meet appropriate conditions of size and shape. 

Thresholding is relatively simple for artificial targets. If retro-reflective targets with 
flash illumination are used, or LED targets, these generate significant peaks in the 
upper region of the grey value histogram (see Fig. 5.19). For non-reflective targets, e.g. 
printed on paper, the contrast against the image background is often weaker. In some 
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circumstances, thresholding cannot then be performed globally but must be adapted 
to different parts of the image. 

Connected components (regions) are detected by a neighbourhood or 
connectivity analysis. Using the sequential process outlined in Fig. 5.64, the left and 
the upper three neighbouring pixels are analysed at the current pixel position. If the 
grey value of one of these neighbours exceeds the threshold, the neighbour belongs 
to a region already detected. Otherwise a new region is created. Pixels in connected 
components are marked in lists or registered in corresponding label images. V-shaped 
objects, which may be assigned to more than one region, are recombined by a contact 
analysis. 

grey value < threshold

closed region

open region

undersized region

current pixel

neighbourhood mask

 

Fig. 5.64: Sequential connectivity analysis (according to Maas 1992). 

In a non-sequential connectivity analysis, adjacent pixels are traced recursively in all 
directions until one or more of the following termination criteria are met: 
– the corresponding grey value is less than the threshold; 
– the maximum number of pixels permitted in a region is exceeded; 
– the pixel already belongs to a known region. 

The resulting connected components can now be analysed with respect to their shape 
and size. Suitable criteria are the number of connected pixels, the standard deviation 
of a best-fit ellipse from the surrounding contour or the ratio of semi-axes b/a.  

The regions which remain after binarization and shape analysis are then finally 
indexed and stored sequentially. 

Fully-automated segmentation is particularly successful if the following criteria 
are met: 
– good contrast in brightness between target and background through suitable 

targeting and illumination techniques (retro-targets, flash); 
– no extraneous reflections from the object surface (avoidance of secondary light 

sources); 
– no occlusions due to other object parts; 
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– good separation of individual targets in image space; 
– minimum target size in image space (5-pixel diameter); 
– no excessive differences size between imaged targets. 

The problems of target imperfections and false detections are illustrated in the 
examples of Fig. 5.20ff, Fig. 5.40, Fig. 5.41 and Fig. 5.65a. In some cases, the 
segmentation steps above must be extended by additional pre-processing, e.g. 
morphological operations, and further analysis. 

.. Measurement of single point features 

Here single point features are taken to mean image patterns where the centre of the 
pattern is the reference point. Examples are shown in Fig. 5.65.  

   

a) Circular target b) Retro-reflective target c) Checkerboard target with 
cursor in a zoomed window 

Fig. 5.65: Examples of single point features with detected contour points. 

... On-screen measurement 
Arbitrary image features can be measured manually by positioning a digital floating 
mark (cursor) on the computer screen. For this purpose, the cursor should be 
displayed as a cross or circle. The minimum movement of the floating mark is 1 pixel 
in screen coordinates. The average measurement accuracy of non-targeted points, 
e.g. building corners, is around 0.3-0.5 pixel. If the image is zoomed, the 
measurement accuracy can be improved to approximately 0.2 pixel. 

... Centroid methods 
If the feature to be measured consists of a symmetrical distribution of grey values, the 
local centroid can be used to determine the centre. The centroid is effectively a 
weighted mean of the pixel coordinates in the processing window: 
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Here n is the number of processed pixels in the window, gi is the grey value at the 
pixel position (xi,yi). The decision function T is used to decide whether a pixel is used 
for calculation. T can be defined by an (adaptive) grey value threshold t, for example: 
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Optionally, the calculation of grey-value sums in the denominator of eqn. (5.63) can 
be accelerated using the method of integral images (section 5.1.3.4). For features 
whose structure is defined by grey-value edges, such as the circumference of a circle, 
it is reasonable to include edge information in the centroid calculation. For this 
purpose, a weighting function based on gradients is employed: 
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Centroid operators are computationally fast and easy to implement. In general, they 
also work for very small features (∅ < 5 pixel) as well as slightly defocused points. 
However, the result depends directly on the grey-value distribution of the 
environment so they are only suitable for symmetrical homogenous patterns as 
shown in Fig. 5.65b. Defective pixels within the processing window will negatively 
affect the calculation of the centre.  

The theoretical accuracy of the centroid can be estimated by applying error 
propagation to (5.63): 
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The standard deviation of the centroid is clearly a linear function of the grey value 
noise σg, and the distance of a pixel from the centre. It is therefore dependent on the 
size of the feature.  
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Example 5.2: 
A targeted point with the parameters 

point diameter: 6 pixels 
operator window size: 13 x 13 pixels 
target grey value: 200 
background grey value: 20 
grey-value noise: 0.5 grey level 

results in a theoretical standard deviation of the centroid of σxM = σyM = 0.003 pixel. 

In practice, centroid operators can reach an accuracy 0.03 – 0.05 pixel if circular or 
elliptical white targets on dark backgrounds are used (see section 5.2.4.6). 

... Correlation methods 
In image processing, correlation methods are procedures which calculate a similarity 
measure between a reference pattern f(x,y) and a target image patch extracted from a 
larger search area within the acquired image g(x,y). The position of best agreement is 
assumed to be the location of the reference pattern in the image. 

A common similarity value is the normalized cross-correlation coefficient. It is 
based on the following covariance and standard deviations (see section 2.4.3.3): 

fg
fg

f g

σ
ρ

σ σ
=  : correlation coefficient  (5.66) 

where  

i f i g
fg

f m g m
σ

n
− −

=
∑[( )( )]

 i f
f

f m
σ

n
−

=
∑ 2( )

 i g
g

g m
σ

n
−

=
∑ 2( )

 

f gm m,  : arithmetic mean of grey values 

fi, gi: : grey value in reference and search image with n pixels, i = 1…n 

For pattern recognition, the reference pattern is successively shifted across a window 
of the search image according to Fig. 5.37, with the correlation coefficient calculated 
at each position. 

Fig. 5.66 shows the reference image and correlation result of the search for 
circular targets in Fig. 5.2. As expected, correlation maxima occur at bright targets, 
but medium correlation values are also caused by background noise and edges. 

To identify pattern positions in the search image, all x,y positions with correlation 
coefficient ρ greater than a threshold t are stored. The choice of a suitable threshold t 
depends on the image content. For correlating stereo images of similar appearance, 
the threshold t can be derived from the auto-correlation function. A suitable threshold 
lies in the range t = 0.5 to 0.7. Where synthetic patterns (templates) are used for image 
correlation, optimal correlation values may be lower if the corresponding patch in the 
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search image deviates from the reference image in terms of background or other 
disturbances. 

 

  

a) Reference pattern 
(enlarged) 

b) Correlation result 
(black = high correlation) 

c) Regions where ρ > 0.5 

Fig. 5.66: Cross correlation (window of search image of Fig. 5.2a). 

In the regions where correlation maxima are detected, a further interpolating 
function applied to the neighbouring correlation values can determine the feature 
position to sub-pixel coordinates (see section 5.2.4.6). 

The calculation process can be accelerated by prior calculation of the values 
which are constant in the reference image (σf in eqn. 5.66), by using integral images 
(section 5.1.3.4) for calculation of the grey value sums in eqn. (5.66) or by reducing 
the image resolution. With reduced resolution the pattern matrix can then be shifted 
across the image in larger steps but this effectively leads to a loss of information. 
However, a hierarchical calculation based on image pyramids (see section 5.1.3.1) can 
be performed in which the search results of one stage are used as prior knowledge for 
the next higher resolution stage. 

Using auto-correlation the uniqueness of the correlated search area can be tested. 
A search window is defined around a pixel and, within that, a smaller central patch 
is used as a reference to be shifted across the search area. The variation of the 
correlation coefficient indicates a measure for the detectability of the pattern. Fig. 
5.67a shows the auto-correlation of a homogeneous bright area. As always, at the 
central position the resulting correlation coefficient is 1 while only a poor correlation 
exists for the rest of the pattern. In Fig. 5.67b the auto-correlation along an edge shows 
high values while a sharp drop-off is visible perpendicular to the edge. Finally, Fig. 
5.67c shows the result for a cross-shaped feature that also appears in the auto-
correlation function. 

Cross correlation is a robust method, independent of contrast but requiring a high 
computational effort. Target patterns can have an almost arbitrary structure. 
However, differences in scale and rotation, or any other distortions between reference 
image and target image, are not readily modelled and lead directly to a reduction in 
similarity value. An image measuring accuracy of about 0.1 pixel can be achieved.  
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a) Homogenous pattern b) Edge c) Cross 

Fig. 5.67: Auto-correlation of different image features (search area 21x21 pixel; reference window 
11x11 pixel). 

... Least-squares matching 
.... Principle 
The method of least-squares matching (LSM) employs an iterative geometric and 
radiometric transformation between reference image and search image in order to 
minimize the least-squares sum of grey-value differences between both images. The 
reference image can be a window in a real image which must be matched in a 
corresponding image, e.g. stereo partner. For a known grey-value structure, the 
reference image can be generated synthetically and used as a template for all similar 
points in the search image (least squares template matching).  

The geometric fit assumes that both image patches correspond to a plane area of 
the object. The mapping between two central perspective images can then be 
described by the projective transformation (2.21). For sufficiently small image patches 
where the 3D surface giving rise to the imaged area can be assumed to be planar, the 
8-parameter projective transformation can be replaced by a 6-parameter affine 
transformation (2.12). The six parameters are estimated by least-squares adjustment 
using the grey values of both image patches as observations. The radiometric fit is 
performed by a linear grey-value transformation with two parameters.  
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Fig. 5.68: Iterative transformation of an image patch. 

Fig. 5.68 shows the iterative geometric and radiometric transformation of a reference 
pattern to the target pattern, which has been extracted from a larger search area. The 
formulation as a least-squares problem has the following implications: 
– An optimal solution is obtained if the mathematical model is a reasonably good 

description of the optical imaging process.  
– The mathematical model can be extended if additional information or conditions 

are available, e.g. geometric constraints between images or on the object. 
– The approach can be adapted to simultaneous point matching in an unlimited 

number of images. 
– The observation equations are non-linear and must therefore be linearized at 

given initial values. 
– The adjustment is normally highly redundant because all grey values in the 

image patch are used as observations to solve for only eight unknowns. 
– Accuracy estimates of the unknowns can be derived from the covariance matrix. 

Internal quality measures are therefore available which can be used for blunder 
(gross error) detection, quality analysis and post-processing. 

Least-squares matching was developed in the mid-eighties for digital stereo image 
analysis and is now established as a universal method of image analysis. In two-
dimensional image processing it can, in addition to single point measurement, be 
applied to edge extraction and line following. For 3D object reconstruction it can be 
configured as a spatial intersection or bundle triangulation, and also integrated into 
the determination of object surface models and geometric elements. 

.... Mathematical model 
Given two image patches f(x,y) and g(x,y), identical apart from a noise component 
e(x,y): 
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For a radiometric and geometric fit, every grey value at position (x,y) in the reference 
image fi is expressed as the corresponding radiometrically and geometrically 
transformed grey value gi at position (x',y') in the search image as follows: 
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Both translation parameters a0 and b0 are of major importance as they define the 
relative shift between reference image and search image. Coordinates x',y' are non-
integer values and so the corresponding grey values must be appropriately 
interpolated, e.g. using bilinear interpolation (see section 5.3.2). 

The observation equation (5.68) must be linearized since the image function 
g(x',y') is non-linear. In summary, the linearized correction equations are as follows 
(ignoring index i): 
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The partial differentials are given by the grey value gradients (see section 5.2.4): 
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It is convenient and sufficient for most purposes to set initial parameter values as 
follows:   
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If the transformation parameters are written as the vector of unknowns x̂ , the partial 
derivatives as the design matrix A and the grey-value differences between reference 
image and search image as the vector of observations l, then the linearized correction 
equation are given by: 
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n: number of observations = number of pixels in window 
u: number of unknowns (8) 
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It is usual to give all observations equal weight by setting P = I. The adjustment 
equations must be solved iteratively. In every iteration the unknowns are corrected. 
This leads to new grey-value differences between search image and transformed 
(rectified) reference image, until the least-squares sum of the corrections is less than 
a threshold. 

During computation, the estimated parameters should be tested for significance. 
Depending on image content, i.e. the similarity between reference and search image 
and the accuracy of initial values, the chosen transformation model (5.68) may have 
to be simplified or extended in successive iterations. This effect can be demonstrated 
by the least-squares matching of an elliptical pattern to a circular target in the search 
image. For this purpose, the affine transformation is over-parametrized because 
rotation and scaling can either be modelled by a shear angle β and different scales in 
x and y (Fig. 5.69 left), or equivalently by a global rotation α and a scale factor (Fig. 
5.69 right). In this case a 5-parameter transformation without a parameter for shear 
should be used. In addition, it is useful to compute the geometric parameters first, 
with radiometric coefficients included in the final iterations. 

schnitt y

x

β
y

x

α

 

Fig. 5.69: Transformation of a circle into a rotated ellipse.  

.... Quality of least-squares matching 
The adjustment equations for least-squares matching are usually highly redundant. 
For example, a window size of 21x21 pixels generates n = 441 observations for only u 
= 8 unknowns. 

Grey-level gradients are used in the linearized correction equations (5.69), and a 
solution exists only if enough image structures (edges) are available in the matched 
windows. For homogeneous image patches the normal system of equations is 
singular. 

The approach requires approximate initial values, especially for the shift 
coefficients a0 and b0. As a rule of thumb, the approximate window position should 
not be displaced more than half the window size from the desired point. Approximate 
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values can be derived from a previous segmentation process or from known object 
geometry and orientation data. 

After solving the system of adjustment equations (5.72), any residuals describe 
the remaining grey-value differences between reference image and adjusted search 
image which are not described by the mathematical model. 

i i iv f x y g x y= − ˆ( , ) ( , )  (5.73) 

They are a measure of the noise level in the image as well as the quality of the 
mathematical model. 

The calculated cofactor matrix Qll can be used to judge the quality of parameter 
estimation. Similar to (2.216), the a posteriori standard deviation of estimated 
parameter j is given by: 

j jjs s q= 0
ˆ ˆ  (5.74) 

where 
qjj: diagonal elements of Qll 

The standard deviations of parameters a0 and b0 can reach high accuracies of the 
order of 0.01–0.04 pixel if there is good similarity between reference and search 
image. However, the standard deviation is only an analytical error estimate. The 
example in Fig. 5.70 shows the result of a least-squares matching with 5 geometric 
and 2 radiometric parameters. Standard deviations of shift parameters for the good-
quality search image are less than 0.02 pixel. For low-quality images, standard 
deviations can still be of the order of 0.08 pixel, although the centre coordinates are 
displaced by 0.29 pixel and –0.11 pixel with respect to the non-defective optimum 
point. 

 

  

a) Reference image (template) b) High quality search image 
a0 = 17.099 ± 0.020 
b0 = 17.829 ± 0.012 

c) Defective search image 
a0 = 16.806 ± 0.088 
b0 = 17.940 ± 0.069 

Fig. 5.70: Least-squares matching (5+2 parameters): shift parameters with standard deviations.  

Using blunder detection, as explained in section 2.4.4, it is possible to eliminate a 
limited number of gross errors in the observations. Here blunders refer to pixels 
whose grey values are caused, for example, by occlusions or other artefacts, and are 
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not described by the functional model. If the adjustment additionally tests for the 
significance of parameters, and if non-significant parameters are eliminated 
automatically, then least-squares matching becomes an adaptive, self-controlled 
method of point measurement. 

.... Extensions 
The least-squares matching algorithm described above can be extended by the 
integration of simultaneous processing of multiple images (multi-image matching) 
and by the introduction of geometric constraints (epipolar geometry), as described in 
sections 5.5.4 and 5.5.5. 

In addition, the geometric transformation of eqn. (5.68) can be replaced by a more 
rigorous plane-projective transformation (eqn. 2.21) or a polynomial transformation 
(eqn. 2.17). Both approaches are suitable for larger matching windows where the 
affine transformation no longer represents a linear approximation, e.g. for highly 
convergent images or for textures of low resolution. A 2nd order polynomial is also 
useful if the object surface represented by the matching windows is curved. 

... Structural measuring methods  
Structural measuring methods extract edges in the image which are relevant to the 
object, and reconstruct its geometry with the aid of mathematically defined shapes. 

.... Circular and elliptical features 
In general, circular objects are imaged as ellipses. To a first approximation, the ellipse 
centre corresponds to the projected circle centre (see section 6.2.1.1). For this purpose, 
the star operator or the Zhou operator have been proven effective. The centre of the 
ellipse is determined in several steps: 
1. Definition of a search window based on a given approximate position.  
2. Extraction of edge points (ellipse boundary). 
3. Calculation of ellipse parameters. 

The star operator determines points on the ellipse by edge detection (e.g. according 
to section 5.1.2) along search lines radiating from an approximation to the centre of 
the ellipse (Fig. 5.71). These search lines intersect the ellipse at favourable angles and 
grey values must be appropriately interpolated along the lines. 

The coordinates of the extracted edge points are subsequently used as 
observations for calculating the parameters of a best-fit ellipse (see section 2.3.1.3). 
Individual false edge points can be eliminated by blunder detection. From the 5 
parameters of the best-fitting ellipse the centre coordinates can be extracted. Since 
the calculated edge points depend on the initial value of the centre, it may be 
necessary to iterate the process in order to improve the accuracy of the ellipse centre.  
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initial value edge point

centrefitted element  
initial value edge point

centrefitted element
point on 
diameter  

Fig. 5.71: Principle of the star operator. Fig. 5.72: Principle of Zhou ellipse operator. 

The Zhou operator makes use of conjugate ellipse diameters (see section 2.3.1.3). 
Ellipse diameters are straight lines connecting mid points of parallel chords. The 
intersection point of conjugate diameters corresponds to the ellipse centre. In the 
image, the ellipse edge points are determined within rows and columns and the 
corresponding middle point is calculated. Two regression lines are determined for the 
middle points belonging to the diameters whose intersection point then corresponds 
to the desired ellipse centre (Fig. 5.72). 

chnitt Such

Ellips
centre

outlier

target

metric image search window

edge points ellipse  

Fig. 5.73: Example of ellipse measurement on curved surface. 
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This method of ellipse measurement essentially requires good-quality targets. A small 
number of defective edge points can be handled by robust blunder detection within 
the ellipse or line adjustment. There are limits to the measurement of damaged or 
occluded targets (e.g. Fig. 3.152) as the number of false edge points increases. Circular 
targets cannot be correctly measured by ellipse approximation if they are located on 
non-planar surfaces (Fig. 5.73). 

.... Cross-shaped features 
Cross-shaped features, e.g. object corners, checkerboard corners and réseau crosses, 
can be measured in a similar way to ellipse measurement by using edge detection. 
Here the objective is also to extract the relevant grey value edges which define the 
cross.  

For upright crosses (see example in Fig. 5.65c) the centre points of the bars are 
extracted along rows and columns, with the central region ignored. As with the Zhou 
operator, a regression line is fitted to the centre points of each bar. The intersection 
point of both lines defines the centre of the cross. 

initial value

edge point

centre

fitted element

unsuccessful measurement

 

Fig. 5.74: Principle of the ring operator. 

Arbitrarily rotated crosses can only be reliably measured by the above algorithm if 
the extracted line points are analysed in order to correctly assign them to the 
appropriate cross bar. A rotation-invariant method is provided by the ring operator 
which extracts edge points within concentric rings around the approximate initial 
centre point (Fig. 5.74). Extracted edge points within a ring are initially defined by 
polar coordinates (radius and arc length). These are easily transformed into Cartesian 
coordinates to which regression lines can be fitted. 

Measurements based on edge detection have the advantage that feature and 
background can be separated relatively easily and only those image points are used 
which describe the actual shape of the feature. As an example, imaged réseau crosses 
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are often disturbed by background structures. False edge points can be detected and 
eliminated a priori by a classification of image gradients (sign and magnitude). Any 
remaining blunders can be identified as outliers on the regression line. 

... Accuracy issues  
The location accuracy of single point features can be assessed as follows: 
– Comparison with nominal coordinates of synthetic reference features: 

Single point features with a regular geometric structure, variable centre 
coordinates, shape parameters and contrast, can be generated synthetically. 
These can be analysed after known arbitrary sub-pixel displacements are 
applied, for example by geometric transformations and appropriate grey value 
interpolations. Accuracy analysis using synthetic features is particularly useful 
for testing individual effects and parameters of an algorithm.  

– Analytical error analysis of adjustment: 
If the centre of a feature is calculated by adjustment, e.g. by least-squares 
matching or a best-fit ellipse, standard deviations and reliability figures can be 
computed for the centre coordinates. However, these only indicate the precision 
to which the chosen mathematical model fits the observations supplied, such as 
grey values or edge points (see section 5.4.2.4).  

– Analysis of bundle adjustment: 
Multi-image bundle adjustment can offer the possibility of a more rigorous 
accuracy assessment which takes into account all influences in the measurement 
process (image acquisition system, digitization, point detection operator, 
mathematical model). This can be achieved, for example, by calibration against 
a test field of high-accuracy reference points. The image residuals remaining after 
the adjustment can be interpreted as a quality measure for the target point 
accuracy, although these are also potentially influenced by systematic effects 
that are not accounted for in the functional model. Ultimately however, only 
independently measured reference points, distances or surface shapes provide a 
strictly rigorous method of analysing point measurement quality (see sections 
4.4.5 and 7.2). 

Many comparative investigations of different measuring algorithms, applied to 
synthetic and real test images, have shown the promising potential of digital point 
measurement. 
– Measurement resolution is limited to about 1/1000 – 2/1000 pixel if adjustment 

methods (least-squares matching, ellipse operators) are applied to the 
localization of appropriately sized and undamaged synthetic features. This result 
corresponds to the theoretical positioning accuracy of edge-based operators (see 
section 5.2.4.6). 

– For real imagery with well exposed and bright elliptical targets, accuracies of 
2/100 – 5/100 pixel can be achieved if least-squares operators or adaptive 
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centroid operators are applied to multi-image configurations. Ellipse 
measurement based on edge detection tends to be slightly more accurate than 
least-squares matching and centroid methods if there is increased image noise or 
distinct blunders are present. 

– A significant factor in determining point accuracy is the size (diameter) of imaged 
points. The optimum target size is between about 5 and 15 pixels in diameter. 
Smaller points do not provide enough object information, which limits the 
localization accuracy of matching procedures or edge-oriented operators. Larger 
point diameters result in larger numbers of observations but the number of 
significant edge points increases only linearly whilst the number of pixels in the 
window increases quadratically. In addition, disturbances in the image are more 
likely with the result that the centre of the ellipse would be displaced with respect 
to the actual centre of the target circle as it increases in size (see section 6.2.1.1). 

.. Feature extraction  

... Interest operators and feature detectors 
Interest operators are algorithms for the extraction of distinctive image points which 
are potentially suitable candidates for image-to-image matching. Suitable candidates 
for homologous points are grey-value patterns which, as far as possible, are unique 
within a limited region and are likely to have a similar appearance in the 
corresponding image. For each pixel, interest operators determine one or more 
parameters (interest values) which can be used in subsequent feature matching. 
Interest points, also called key points, are useful for determining approximate points 
for surface reconstruction. However, they are rarely applied when searching for 
artificial target points. 

Criteria for such distinctive candidate features, and the requirements for an 
optimal interest operator, can be summarized as follows: 
– individuality (locally unique, distinct from background); 
– invariance in terms of geometric and radiometric distortions; 
– robustness (insensitivity to noise); 
– rarity (globally unique, distinct from other candidates); 
– applicability (interest values are suitable for further image analysis). 

Within a local window, the following is a selection of possible criteria for determining 
the presence of readily identifiable structures: 
– Local variance: 

The grey-value variance in a window can be calculated by eqn. (5.7). Highly 
structured image patterns have high variances, homogeneous regions have zero 
variance. The variance does not have any geometric meaning, high numbers can 
also result from edges and therefore it is not suitable as an interest value. 
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– Auto-correlation or auto-covariance function: 
The auto-correlation function or auto-covariance function results from 
calculation of the normalized cross-correlation (section 5.4.2.3) of an image patch 
with itself. If the function shows a sharp maximum it indicates a distinctive image 
structure which is not repeated locally (see section 5.4.2.3).  

– Self-similarity:  
These operators calculate the covariance matrix of the displacement of an image 
window. The corresponding error ellipse becomes small and circular for image 
features which are distinctive in all directions. Examples are given by the 
Förstner operator and by the Harris operator (section 5.4.3.2). 

– Grey-value surface curvature: 
If the grey values in a local region are regarded as a spatial surface (grey-value 
mountains), distinctive points have a high local curvature in all directions, 
declining rapidly in the near neighbourhood. Curvature can be calculated by 
differential operators (section 5.2.4.1) which approximate the second derivative. 

– Gradient sums: 
This operator computes the squared gradient sums in the four principal 
directions of a window. If the smallest of the four sums exceeds a threshold, then 
a distinctive feature is indicated. The remaining image regions are those which 
have significant intensity changes in all directions. Distinctive point features are 
recognizable by the fact that the gradient sums are significant in all directions. 
Individual edges, which have little structural change along the edge direction, 
are therefore eliminated. Examples of methods based on gradient sums are the 
SURF and SIFT operators (section 5.4.3.5).  

– Local grey-value comparison: 
If the number of similar grey values in a window is below a threshold value, then 
this indicates a distinctive point feature (SUSAN and FAST operators). 

Feature detectors combine the detection of interest points (or key points) with the 
extraction of descriptors. Descriptors are compact and distinctive representations of 
the area surrounding the key point. The descriptors serve as feature vectors for each 
interest point and can be used directly for correspondence analysis (see below). In 
general, any interest point detector can be combined with any feature descriptor. 
However, most successful approaches provide an integrated method of key point 
detection and descriptor extraction.  

... Förstner operator 
The Förstner operator is based on the assumption that the region around a point f(x,y) 
is a shifted and noisy copy of the original image signal g(x,y) (see eqn. 5.67): 

f x y g x x y y e x y= + + +0 0( , ) ( , ) ( , )  (5.75) 
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Linearization at initial values x0 = 0, y0 = 0 gives: 

x y
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∂ ∂
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∂ ∂0 0 0 0( , ) ( , )  (5.76) 

where dg x y f x y g x y= −( , ) ( , ) ( , )  

Using the unknown shift parameters x0,y0 and the uncorrelated, equally weighted 
observations (grey value differences) dg(x,y), the following normal system of 
equations for a least-squares estimation is obtained: 
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 (5.77) 

The normal equation matrix N contains the functional model of a displacement of the 
image window in x and y. Its inverse can be interpreted as a variance-covariance 
matrix whose eigenvalues λ1,λ2 indicate the semi-axes of an error ellipse (section 
2.4.3.5). Features forming well-defined points are characterized by small circular 
error ellipses. In contrast, elongated ellipses are obtained for edge points. 
Unstructured or noisy image features result in large error ellipses. 

Based on the parameters 
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a distinct point is observed if thresholds wmin and qmin are exceeded. Suitable windows 
are 5 to 7 pixels in size, appropriate thresholds are in the ranges: 

wmin = (0.5 … 1.5) · wmean, wmean = mean of w for the complete image 
qmin = 0.5 … 0.75 

Fig. 5.75b shows the result of the Förstner operator applied to a stereo image after a 
thinning procedure. Distinct corners are detected but a slight displacement can also 
be observed here. A more precise point location can be obtained if the unknowns x0,y0 
in (5.77) are calculated. As expected, several points are detected, whilst other similar 
features fall below the threshold. 
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Fig. 5.75: Point detection in a stereo image with Förstner operator (filter size 5x5). 

The Förstner operator is in some respects similar to the independently developed 
Harris operator. Today their key idea is sometimes referred to as the Förstner-Harris 
approach. To avoid the complexity of an eigenvalue decomposition the Harris 
operator calculates an interest value directly from the matrix N: 

2det( ) trace( )v k= − ⋅N N  (5.79) 

The parameter k is often set to 0.04 in order to separate point features from edges. 
Förstner and Harris operators are only suitable for images with equal scales and 

minor perspective deviation, e.g. parallel aerial imagery. They are less applicable to 
images with larger scale differences or projective distortions. 

... SUSAN operator  
The SUSAN operator (smallest univalue segment assimilating nucleus) compares the 
intensities of the pixels in a circular window with the grey value of the central pixel, 
designated as the nucleus. A distinctive point has been found when the number of 
similar grey values in the window lies under a threshold value. 
A decision value c is calculated for every pixel in a filter region, u,v: 

s x u y v s x y
c u v

s x u y v s x y t

 + + −= 
+ + − >

1 for ( , ) ( , )
( , )

0 for ( , ) ( , )
 (5.80) 

where  
t: threshold value for similarity of grey value to nucleus   

A more stable decision function is given by: 
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The sum of all values c(u,v) in the window 

n x y c u v=∑( , ) ( , )  (5.82) 

is compared with the geometry threshold T:  
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In order to detect corner features, a threshold value T = nmax/2 is set (nmax = number of 
pixels in the filter window). When less than half the grey values in the window are 
similar to one another, a distinctive point with the interest value R is generated at the 
position x,y. 

  

Fig. 5.76: Feature detection in stereo pair using SUSAN operator (search window 5x5). 

Fig. 5.76 shows examples of points detected in a stereo pair by the SUSAN operator. 
Since the operator depends directly on the brightness of the image, many similar 
points are found in the left and right image in the area of the random pattern, but very 
different characteristics are recognized in the high-contrast patterns (coded targets). 

... FAST operator  
Like the SUSAN operator, the FAST operator (features from accelerated segment test) 
analyses the intensities of the pixels in a circular window. A distinctive feature is 
assumed to be found when a number of connected pixels with similar grey values is 
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found in a ring around the central pixel. An analysis based on a ring is largely 
invariant to changes in scale and rotation. 
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Fig. 5.77: Principle of the FAST operator. 

The principle behind the operator is shown in Fig. 5.77. In this example, within a ring 
which is 16 pixels in length, 10 neighbouring pixels lie below the threshold value. The 
grey values s(u), u = 1…16, are compared with the grey value of the central pixel and 
assigned a similarity value c(u): 

d s u s x y t
c u s s x y t s u s x y t

b s x y t s u

 ≤ −


= − < < +
 + ≤

for ( ) ( , ) (darker)
( ) for ( , ) ( ) ( , ) (similar)

for ( , ) ( ) (brighter)
 (5.84) 

where  
t: threshold value for similarity of grey value to central pixel  

In the simplest case, a corner point is found when, for 12 neighbouring pixels, c(u) = 
d or c(u) = b. For a more robust analysis of the area, the distribution of the grey values 
can be evaluated and compared to different types of corner features which are known 
a priori. 

... SIFT operator  
The SIFT operator (scale invariant feature transform) detects prominent points 
(detector) and a corresponding feature vector (descriptor) in a four-step procedure:  
1. Extraction of edges and their extrema in image pyramids:  

Firstly, the input image is transformed into image pyramids according to section 
5.1.3.1. Subsequently, each pyramid level is smoothed by a Gaussian filter to 
create a multi-scale space (Fig. 5.78). A subtraction of two images in the multi-
scale space is equivalent to a DoG filter (section 5.2.4.2), hence gradients are 
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magnified. In adjacent DoG images, the local extremum is found by determining 
the minimum or maximum DoG value within the N8 neighbourhood of the 
current image and the 3x3 neighbours of the upper and lower level of the pyramid 
(Fig. 5.79). The extracted points are used as initial key points for the next 
processing step. 

2. Localization of feature points: 
The feature candidates from step (1) are further thinned. Based on gradient 
magnitudes and curvature of the grey-value surface (Hessian matrix,  compare 
Förstner and Harris operator, section 5.4.3.2), features with low contrast or minor 
edges are eliminated. 

3. Calculation of major gradient directions: 
In the immediate environment of a feature point, gradient magnitude and 
direction are calculated and entered into a histogram of 10° classes covering the 
range 0° to 360°. The gradients are given weights which are inversely 
proportional to the distance from the central pixel and are summed within the 
histogram. The histogram class with the highest frequency indicates the major 
orientation angle of the feature. 
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Fig. 5.78: Multi-scale space. 

4. Descriptor: 
In the final step, an area of 16x16 pixels is divided into 4x4 blocks in which 
gradient magnitude and direction are again calculated (Fig. 5.80). The gradient 
direction is related to the main direction extracted in step 3, hence invariance 
against rotation is achieved. The directions are given weights which depend on 
the reciprocal of their distance from the feature point and stored in a histogram 
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with 8 classes (45° steps). From the 16 blocks and the 8 classes, 128 features are 
derived in the form of a normalized SIFT feature vector. 

  

Fig. 5.81: Feature detection in stereo pair using SIFT operator.  

Fig. 5.81 illustrated the application of the SIFT operator for feature extraction in a 
stereo image. The size of the circles indicates the pyramid level in which the feature 
was detected. The vectors inside the circles indicate the direction of maximum 
gradient. Typically, the operator detects blobs rather than corner points or other 
distinctive points. Also typically, the operator does not detect corner points or other 
points with visual impact, but blob-like structures (compare with Fig. 5.90). The SIFT 
operator is particularly suitable for assignments between images which have 
significant differences with respect to scale, rotation and small differences in 
perspective. (Fig. 5.81). It is in widespread use, for example as a key component of 
many software solutions based on structure-from-motion (5.5.2.2). 

The ASIFT operator is an extension to the SIFT operator which is less sensitive to 
rotational and perspective distortions. However, it requires much higher 
computational effort. 

  

Fig. 5.79: Search for extrema in DoG images. Fig. 5.80: Descriptor from gradient analysis. 
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... SURF Operator 
The SURF operator (speed-up robust features) uses the maxima of the determinant of 
the Hessian to detect interest points by the second derivations of the grey-value 
distribution (according to LoG filter, section 5.2.4.2). The computation of the Hessian 
is accelerated by approximating the underlying Gaussian filter process with simple 
box filters and using integral images (5.1.3.4) for convolution. The SURF detector 
(much like the SIFT detector) uses image areas that resemble blobs as interest points.  

The neighbourhood of the interest point is characterized by a descriptor using a 
histogram of Haar wavelet responses. This histogram is computed over a square 
region oriented along the dominant orientation to achieve invariance to rotation. As 
with the SIFT, scale space is exploited to gain invariance to scale. Scale space is 
computed implicitly by varying the size of the filters. Integral images are used to 
accelerate filtering particularly for large filter sizes. Fig. 5.82 gives an example of the 
interest points detected using the SURF approach. The size of the circle indicates the 
scale at which the feature was detected. The ticks indicate the direction of the 
dominant gradient. 

  

Fig. 5.82: Feature detection in stereo pair using SURF operator.  

... ORB operator 
ORB (Oriented FAST and rotated BRIEF) is a feature detector and descriptor formed 
as an extended version of FAST (section 5.4.3.4) and the binary descriptor BRIEF (see 
below).  

The ORB extension applies a combination of the FAST and Harris operators to 
image pyramids in order to provide invariance against scale. In addition, an 
orientation vector of gradients between the centroid (xc, yc) and the centre of the patch 
(x, y) is calculated: 
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θ Δy Δx= arctan( / )  (5.85) 
with Δx = x – xc and Δy = y – yc 

The azimuth angles Θ are stored for each pyramid layer to provide angular 
information to the descriptor, in a similar way to SIFT. 

BRIEF computes a binary string where each element is the result of a binary 
comparison of randomly sampled point pairs (pj, pk) with grey values g(pj), g(pk) 
within a patch p. This generates high variance and low correlation within a certain 
region around the feature: 
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Because of a high sensitivity to noise, the image should be low-pass filtered in 
advance, e.g. by Gaussian filtering. From eqn. (5.86), a feature value is calculated as 
the sum of n binary results from the randomly selected points: 
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1
( ) 2 ( ; , )p p  (5.87) 

In its original form, BRIEF is not invariant to rotations. By taking the direction 
information of the extended FAST operator (eqn. 5.85) into account, BRIEF can be 
steered towards the principal feature direction and so become insensitive to rotations. 
The main advantage is the constrained selection of sampling pairs to be used in eqn. 
(5.86) which should be both distinctive (high variation) and unique (low correlation). 

Various extensions to the basic ORB concept are available. In comparison to SIFT, 
it creates similar feature points but does this faster and with much lower 
computational effort. The operator is very popular in the field of visual odometry 
(visual SLAM, see section 5.5.7.6) and other real-time applications with limited 
computing power.  

. Image matching and 3D object reconstruction 

.. Overview 

Image matching methods are used to identify and uniquely match identical object 
features (points, patterns, edges) in two or more images of the object. Matching 
methods are also required for: 
– identification of discrete (targeted) image points for 3D point measurement; 
– identification of homologous image features for 3D surface reconstruction; 
– identification of homologous points for stitching images into mosaics; 
– identification and tracking of objects in image sequences. 
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One of the earliest problems in computer vision, and still one of the most researched 
topics, was automatic matching of corresponding image features. Correspondence 
analysis is a fundamental requirement in understanding images of spatial scenes and 
is closely related to human visual perception. Whilst digital image matching of 
suitably structured object scenes, e.g. using targets or projected patterns, can surpass 
human performance in some areas (measuring accuracy, processing speed), the 
analysis of arbitrary object scenes is still the subject of intensive research. 

Correspondence analysis can be classified as an ill-posed problem, i.e. it is 
uncertain if any solution exists which is unique and robust with respect to variations 
in the input data. In principle, the following problems may occur when matching 
arbitrary scenes: 
– due to occlusion, an image point Pij (point i in image j) does not have a 

homologous partner point Pik; 
– due to ambiguous object structures or transparent surfaces, there are several 

candidates Pik for image point Pij; 
– for regions with poor texture, the solution becomes unstable or sensitive with 

respect to minor disturbances in the image (noise). 

Solutions in practice assume the following preconditions for object and image 
acquisition: 
– intensities in all images cover the same spectral regions; 
– constant illumination, atmospheric effects and media interfaces for the imaging 

period; 
– stable object surface over the period of image acquisition; 
– macroscopically smooth object surface; 
– locally unique textures; 
– opaque object surface;  
– largely diffuse reflection off the surface; 
– known approximate values for orientation data (image overlap) and object data 

(geometric and radiometric parameters). 

From the wide range of matching techniques, a selection of successful methods is 
discussed below. These are directly related to geometric surface reconstruction.  

In practical applications, there are essentially two initial situations (Fig. 5.83): 
a) The selected images are not yet oriented but the interior orientation may be 

known to a sufficient accuracy that can assist further processing.  
b) The selected images have known interior and exterior orientations. 

The first case mainly relates to multi-image configurations which should be 
automatically oriented. The process usually consists of feature extraction in all 
images followed by feature-based matching. After robust calculation of relative 
orientations by RANSAC methods, potentially coupled with repeated bundle 
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adjustment, a final bundle adjustment is computed for all images. This strategy is 
now commonly called structure-from-motion (section 5.5.2.2).  

In the second case, geometric constraints (epipolar geometry, section 4.3.2) can 
be set up between images which can also be used to limit the search space for 
corresponding points. The objective is a precise matching of homologous features 
and the calculation of spatial intersections in order to create a sparse point cloud 
(using feature points) or a dense point cloud (for the complete surface).  

Mixed forms of these strategies are possible, as illustrated in Fig. 5.83. For 
example, after orientation of a starting model, epipolar lines can then be used to 
support matching. 
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Fig. 5.83: Strategies for image matching.  

According to Fig. 5.83 pre-processing includes image enhancement (smoothing, noise 
reduction, contrast adjustment) and the reduction of resolution (image pyramids). 
For noise reduction, smoothing filters are used (section 5.2.3.2). These are also used 
in the creation of image pyramids (section 5.1.3.1). Global contrast can be optimized 
by using filters which adapt to the local contrast, e.g. the Wallis filter (section 5.2.3.4). 
Additional pre-processing methods include colour reduction (e.g. RGB to grey values, 
section 5.1.1.1) and global colour transformations. 

In the feature-extraction step, image features such as distinct points or edges are 
extracted from the images independently of one another and a large percentage are 
assumed to be common to all images. For this purpose, it is not only interest 
operators, feature detectors (section 5.4.3.1) and edge operators (section 5.1.2) which 
are used, but also segmentation methods for the coarse detection of object points (e.g. 
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coded targets, section 6.2.1.4). In addition to the geometric parameters, the extracted 
features are characterized by additional attributes, e.g. topological relationships and 
point numbers. 

The subsequent step of feature-based matching attempts to identify as many 
corresponding features as possible in all images. This is achieved by applying 
suitable cost or similarity functions (see section 5.5.2). Additional information in the 
form of knowledge or rules can be used here in order to limit the search space and to 
minimize mismatches. Starting with a suitable pair of images, a relative orientation 
based on the measured feature points is calculated. All other images are then 
successively connected by corresponding points. In the final bundle adjustment, the 
cameras used for image acquisition are calibrated, precise exterior orientations are 
calculated for all images and the 3D coordinates of all feature points are generated 
(sparse point cloud, sparse matching). In general, the matching of features is the most 
problematical step in correspondence analysis because the type and extent of 
additional knowledge may vary.  

In case (b) of Fig. 5.83 the area-based precise matching of original grey values 
determines corresponding object elements to a high accuracy. Correlation and least-
squares methods are classified as area-based matching methods. In this step, 
additional geometric information such as epipolar geometry (see section 4.3.2, object 
constraints) can be used to improve accuracy and reliability. 3D object data can be 
derived from the calculated homologous image elements by intersection, e.g. for each 
pixel if a dense surface reconstruction is required (dense matching).  
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Fig. 5.84: Methods of digital image matching. 
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Fig. 5.84 shows an organizational structure for different matching methods. It 
differentiates between image-based and object-based procedures. The image-based 
methods either work globally (similarity between complete images), semi-globally 
(local similarity with a limited number of global search paths) or locally (feature-
based or area-based similarity in local search windows). The methods commonly 
used in photogrammetry are marked in red. Here image-based methods are more 
common as they offer more options.  

Object-based matching methods solve the matching problem starting from object 
space. Here there is usually an approximate geometric and radiometric object model 
that can be refined by back-projection into the corresponding image space and 
analysis of the related grey-value distributions. As a result, a structured spatial object 
description in the form of coordinates (point clouds), voxels, geometric elements or 
vector fields is derived.  

The following sections start with strategies for image matching in non-oriented 
images. They continue with image-based matching methods for oriented stereo and 
multi-image configurations and conclude with object-based matching methods. 

.. Strategies for matching non-oriented images  

... Coded targets 
The initial task at the start of 3D image processing is usually to orient the recorded 
images and calibrate the camera(s). In applications where the object is marked with 
suitable targets, the measurement of control and tie points is a robust process which 
does not require interactive operation. Here the methods outlined in section 5.4.2 are 
applied, typically calculating the target centres to a high sub-pixel accuracy. Initial 
values for exterior orientations and 3D object coordinates can be derived by the 
procedure described in section 4.4.4. The subsequent bundle adjustment then uses 
comparatively few, but reliable and accurate, image points.  

... Structure-from-motion 
For non-targeted image sets, there are a number of established methods which can 
be classified under the term structure-from-motion (SfM). SfM, with a history dating 
back to at least 1979, enables an object or structure to be reconstructed three-
dimensionally from the motion of a camera. Typically, at its core there is a closed-
form solution for the relative orientation of an image pair from corresponding points 
without the need for prior information (see section 4.3.4). Tried-and-tested workflows 
use a combination of image processing algorithms, robust orientation methods, 
bundle adjustment with self-calibration, stereo image analysis and point cloud 
processing. 
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Fig. 5.85: Structure-from-Motion (SfM). 

As outlined by Fig. 5.85, all images are pre-processed before applying an interest or 
feature detector (1) which is often SIFT. After detected features are matched (2) they 
are used in a RANSAC-based relative orientation of an initial pair of images (3). The 
selection of this starting stereo model is critical as there is a trade-off between 
choosing a model with a wide baseline (more accurate but larger image differences) 
and one with a small baseline (less accurate bus closely similar images). 
Subsequently, all remaining images are oriented with respect to the starting model 
before processing by a bundle adjustment (4). Optional datum constraints (reference 
points) can be added and a simultaneous camera calibration can be calculated. At 
this stage, the estimated object coordinates from the bundle adjustment already 
represent a sparse point cloud (5). 

If a denser surface model is required, dense stereo matching (6) and subsequent 
multi-view stereo (7) can be used (see section 5.5.5.1) to generate a dense point cloud 
(8) and hence a complete surface model (9). From the oriented images and surface 
models, orthophotos or image mosaics (10) can be derived. Optionally, registered 
laserscan data (11) can be integrated in some programmes (see below). 

SfM is usually successful if there is good surface texture, densely overlapping 
images and a camera which is either pre-calibrated or is at least mechanically stable 
during image acquisition. The typically achievable accuracy lies in the range 0.5–2 
pixels depending on the method of feature extraction and the measure of similarity 
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between images. In current software implementations, the computational effort at the 
orientation stage is essentially defined by the process of feature extraction. However, 
if dense matching is applied this dominates all other stages. With a large number of 
high-resolution images, total processing time in this case could be several hours or 
even days. Well-known software programs which integrate SfM include: Agisoft 
Metashape, RealityCapture, Pix4Dmapper, Context Capture, MicMac, Meshroom, 
Bundler, COLMAP, Theia or OpenMVG (see section 6.4.2). 

If registered laser scans are available for the recorded object, they can be used to 
support the orientation of the photogrammetric images. Synthetic images can be 
calculated for each laser point by projecting the scanner’s point cloud onto the side 
surfaces of a cube centred at the origin of the scanner measurements (Fig. 5.86a). 
These images are then already calibrated and oriented per se, so that the 
photogrammetric images can be oriented by matching against similar features in the 
coordinate system of the laser scans (Fig. 5.86b).  

  

a) Synthetic image generated from a  
registered laser-scan point cloud  

b) 3D point cloud with superimposed original 
images and synthetic image cubes 

Fig. 5.86: Simulated image cubes from terrestrial laser scans.  

... Image masking 
If objects are photographed in such a way that their background has few features or 
features that vary greatly from image to image, it can be helpful for SfM-based 
methods to mask the images, i.e. to hide the irrelevant background. There are manual 
and automatic methods for this (see Fig. 5.87 for an example): 
– Manual drawing of an image mask: 

A mask image is created for each image with the help of a digital drawing pen, 
which quickly becomes very time-consuming with a larger number of images. 
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– Application of background with known colour: 
If it is known that the background in the scene is represented by a known colour, 
this area can be found and masked automatically. This is known as chroma 
keying in visual effects. 

– Use of a background image without a measurement object: 
For each measurement image, a second image is taken from the same direction 
without the measurement object; this assumes that identical shooting positions 
are guaranteed, e.g. by using a tripod (example in Fig. 5.87). Alternatively, one 
background image for all photos is sufficient if the background is static and 
identical for all recording positions. 

– Learning methods: 
Machine learning methods (deep learning) can be used to calculate an automatic 
segmentation of foreground and background from a sufficient amount of training 
data. 

– Application of a given 3D model: 
If, after a first reconstruction step, a 3D model of the object and orientation data 
of the images are known, the circumscribing image contour of the 3D object can 
be calculated from each view. The reconstruction can then be done again with 
the masked images, if necessary several times in succession. 

  

a) Original image b) Masked image 

Fig. 5.87: Example of image masking.  

.. Similarity measures 

The similarity between two or more samples of intensity distributions in images can 
be measured by different mathematical approaches based on similarity or cost 
criteria. For corresponding image patches, similarity measures should be a 
maximum, i.e. a similarity value such as a correlation coefficient should be high 
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between two samples with similar intensity distributions. In contrast, cost (energy) 
functions measure the effort which leads to a best correspondence, hence these 
measures should be a minimum for similar distributions. The next sections describe 
the most common similarity measures for image matching whilst some typical cost 
functions for semi-global matching are given in sections 5.5.4.2 and 5.5.6.3. 

... Sums of differences 
A simple approach for measuring the similarity between two image patches f and g of 
equal size is given by the sum of absolute grey-value differences (SAD) or the sum of 
squared grey-value differences (SSD). See example in Fig. 5.88. 

= −∑ i iSAD f g  i iSSD f g= −∑ 2( )  (5.88) 

The SAD and SSD values depend on contrast and they fail when there are geometric 
distortions between the two image patches. Consequently, they are only suitable for 
matching very similar image areas but are easy and fast to compute. 

A calculation which is independent of brightness can be obtained by introducing 
the grey-value mean in both images, mf and mg. This gives the measures of zero mean 
SAD (ZSAD) and zero mean SSD (ZSSD) as follows: 

i f i gZSAD f m g m= − − −∑ ( )
 

i f i gZSSD f m g m= − − −∑ 2[ ( )]  (5.89) 

9 9 9

9 10 9

12 12 12

0 0 0

0 0

1 1 1

9 9 12

12 15 12

11 12 17

0 0 0

0 0

0 0 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 0

f

g f XOR  g = h
H = Σ h = 2

Census

SAD = 20
SSD = 78

image window

Hamming distance

ZSAD = 18
ZSSD = 42  

Fig. 5.88: Similarity measures - Census and Hamming distance.  

... Census and Hamming distance 
The Census similarity measure (Census transform and Hamming distance) compares 
the grey value of a central pixel in a window with the adjacent pixels (Fig. 5.88). If the 
neighbouring grey value is smaller, 0 is set at that pixel, otherwise it is set to 1. The 
chains of binary numbers for both images are then combined bit-wise by XOR. The 
result is therefore 1 if corresponding bits are different, zero if not. Finally, the 
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Hamming distance H counts the number of 1s, hence both samples are similar for 
small values of H. The method is easy to implement, uses minimum processing power 
and is invariant to radiometric changes. However, geometric distortions between the 
image patches cannot be compensated. 

... Hashing 
Hashing is a group similarity measure based on dividing the image into n x m blocks. 
For each block, a Block Mean Value algorithm calculates the mean S of colour values 
and compares it with the corresponding median value M. If S > M then 1 is set for the 
block, otherwise 0. To suppress high frequencies which disturb the calculation, the 
image size is reduced in advance. Other hashing variants are based on histograms 
and discrete cosine transforms. 

 

Image size 512 x 512 pixel  

 

Image size 64 x 64 pixel  

  

Fig. 5.89: Hashes calculated for an original image (left) and a heavily reduced and lower-contrast 
image (right) each divided into 16 x 16 blocks (Hamming distance between hashes = 28). 

After binarization, the n x m bits are stored in a bit chain known as a hash. To a large 
extent, the hash is invariant to scaling, image compression and geometric distortions. 
Differences in contrast and brightness between images only have a minor impact. The 
Hamming distance can be used to compare two hashes. Fig. 5.89 shows the hash 
calculated for an original image and one for a much smaller copy with lower contrast. 
The similarity between the bit patterns is clearly visible. Hashing can also be useful 
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to search for similar images within large data sets, for example on social media or 
cloud storage. 

... Normalized cross-correlation  
The normalized correlation coefficient (NCC), already introduced in section 5.4.2.3, 
can be used as similarity measure between two images if there are no large geometric 
differences between them. Affine or perspective distortions between the images 
directly lead to a reduced correlation coefficient. In contrast, radiometric differences 
are widely compensated by normalization.  

If a minimum cost value is used instead of a maximum similarity value, the cost 
value c can be written in terms of the correlation coefficient ρfg  as:  

fgc ρ= −(1 ) / 2  (5.90) 

As an example calculation based on Fig. 5.88, with the correlation coefficient defined 
as in eqn. (5.66), the following values are obtained: mf = 10.111, mg = 12.111, σf = 1.370, 
σg = 2.424, σfg  = 1.543. These result in a correlation coefficient of ρfg = 0.464 and a cost 
value of c = 0.268. 

... Least-squares matching 
Least-squares matching (LSM, see section 5.4.2.4) calculates the geometric and 
radiometric transformation parameters between two grey value samples, and the 
related mean standard deviation σ0 that can serve as a similarity measure. The 
importance of LSM lies more in the precise calculation of parallaxes or disparities 
(shift parameters of coordinate transformation) rather than being used as a (robust) 
similarity value. The methods require starting values for translation, approximately 
half the window width, to ensure convergence. 

... Euclidian distance between feature vectors 
For matching image areas which have been detected by an interest or feature detector 
with an n-dimensional feature vector, the distance between two vectors serves as a 
similarity criterion. In the simplest case, the Euclidian distance is used:  

n n
T

d a b a b a b= − + − + + −

= − ⋅ −



2 2 2 2
1 1 2 2( , ) ( ) ( ) ( )

( ) ( )
a b

a b a b
 (5.91) 

A comparison of two n-dimensional feature vectors a and b using the Euclidian 
distance then indicates similarity when this distance is a minimum. When matching 
image areas generated by the SIFT operator, this similarity measure is effective if the 
images contain distinctive textures. Where there are repeated patterns, the minimum 
distances can easily fail to be effective measures since similar feature vectors occur 
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in the neighbourhood. In this case, the minimum distance is only accepted if it differs 
significantly from the next lowest value of the distance. In the example of a 
normalized stereo image, Fig. 5.90 demonstrates the matching result between two 
images processed by SIFT and using minimum Euclidian distance as a matching 
measure. Most of the correspondences appear horizontally, in the direction of the 
epipolar lines. Correspondences along sloping lines indicate false matchings, and 
can therefore be excluded if the relative orientation between both images is known. 

 

Fig. 5.90: Matching features detected by SIFT using minimum Euclidian distance. 

The Mahalanobis distance represents an extended measure of distance. This weights 
individual feature dimensions by the covariance matrix. These can be derived, for 
instance, from known variances which are known for particular feature types.  

Td −= − ⋅ ⋅ −2 1( , ) ( ) ( )a b a b Σ a b  : Mahalonobis distance (5.92) 

Geometrically, points of equal Mahalanobis distance form a (hyper) ellipsoid whilst 
they are lying on a (hyper) sphere for the normal Euclidian distance. This corresponds 
to the difference between the Helmert error ellipse and a confidence ellipse, see 
section 2.4.3.5.  

.. Correspondence analysis based on epipolar geometry 

... Matching in image pairs 
The correspondence problem can be greatly simplified if the relative orientation of 
the images is known. This is the case for fixed stereo vision systems and in close-range 
applications where image orientation is solved in a separate process, e.g. by 
application of coded targets or by structure-from-motion (section 5.5.2.2). The search 
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space for a corresponding point in the neighbouring image can then be reduced to an 
epipolar line (see section 4.3.2 and Fig. 5.91). 

In convergent images, the epipolar lines are sloped at an angle to the x-axis 
(section 4.3.2). In this case, the computational effort may increase since for every 
image point in the left-hand image an individual epipolar line in the right-hand image 
must be calculated, possibly taking account of distortion which would result in a 
curved epipolar line. If convergent stereo images are converted into normalized 
stereo images (section 4.3.3.5), the epipolar lines are then straight and parallel to the 
image rows. This, therefore, significantly reduces the computational effort, especially 
for dense point matching. 

k'
k"

P"
P'

b12

P

P2

P2"

P1

P1"
l12

∆Z

B1 B2

ε

similarity

P1" P2"

 

Fig. 5.91: Matching in an image pair based on epipolar lines (according to Maas 1992). 

Consider first the matching process in an image pair B1, B2 (Fig. 5.91). Point P'', 
corresponding to P', is located within a small band either side of epipolar line k''. The 
band width ε depends on the uncertainty of the orientation parameters and the image 
measurement quality of P'. The search space is strictly reduced to the straight line k'' 
only for perfect input data. The length of the search space l12 is a function of the 
maximum depth ΔZ in object space. 

A correspondence analysis can be performed along the epipolar lines using one 
of the similarity measures described in section 5.5.2.3. If the grey value pattern around 
P' is unique, point P" can be found by a maximum similarity measure or a minimum 
cost function. Non-textured areas, or repeating patterns, lead to arbitrary results 
within the search region which may not be solved with two images but require at least 
one more image from a different view point (section 5.5.5). A consistency check can 
be done by left-right and right-left matching which must both return the same point 
P". 

With increasing number of image points n, and area f of the search space, the 
probability Pa of ambiguous point matches also increases:  
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n f
F

aP e
⋅

−
= −1   (5.93) 

where 
n: number of image points 
F: image area 
f: area of epipolar search space 

The total number of ambiguities Na for an image pair is given by: 

a
c ε b Z Z
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F Z Z
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⋅ ⋅
2 12 max min

max min

2 ( )
( )  (5.94) 

where 
c: principal distance 
b12: base length between image B1 and image B2 
ε: width (tolerance) of search space 
Zmin < Z < Zmax: depth of object 

It therefore increases 
– quadratically with the number of image points; 
– linearly with the length of the epipolar lines; 
– linearly with the base length; 
– approximately linearly with object depth; 
– linearly with the width of the search space. 

Example 5.3: 
Consider an image pair (Kodak DCS 420) with parameters c = 18 mm, F = 18 x 28 mm², b12 = 1 m, 
Zmax = 3 m, Zmin = 1 m and ε = 0.02 mm. Depending on the number of image points n the following 
ambiguities Na result: 

n = 50: Na = 2 
n = 100: Na = 10 
n = 250: Na = 60 
n = 1000: Na = 950 

The example above shows that epipolar geometry leads to a more reliable match if 
the number of image points is relatively small. It depends mainly on the application 
as to whether ambiguities can be reduced by an analysis of interest values, a 
reduction of object depth using available approximations or by a reduced search 
width. 

... Semi-global matching 
In the ideal case, dense image matching should result in a 3D value for each pixel in 
order to reconstruct the object surface completely. In particular, object edges 
(discontinuities) must be modelled precisely and occluded (missing) areas should be 
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filled using information from additional images. Area-based matching methods often 
work with a (rectangular) image window which, depending on the size, has a 
smoothing effect (low-pass filter). With increasing window size, the information 
available for matching increases, but low-pass filtering also increases. Smaller 
windows preserve edges more sharply, but cover just a small object area with little 
texture information. A single pixel (window size 1x1) does not hold sufficient 
information for matching. 

Semi-global matching (SGM) is a method which, for every pixel, determines a 
homologous point in the corresponding image. For this purpose, the focused search 
offered by epipolar matching (section 5.5.4.1) is extended by a more complex cost 
function and the maximum similarity (minimum cost) is calculated along m image 
paths, e.g. m = 8 or m = 16, which is the essence of the semi-global approach, see Fig. 
5.92a. 
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a) Search paths r for SGM (m = 8) and cost 
aggregation along one path  

b) Cost calculation for disparities D(p) 

Fig. 5.92: Semi-global matching.  

Fig. 5.92b illustrates the cost calculation. For a current pixel p in the left hand image, 
all cost functions C(p,Dp) within the search region l12 along the epipolar line k" in the 
right hand image, are calculated and stored in a data structure. For similarity 
measurement, different cost functions can be used, e.g. the sum of absolute grey-
value differences (SAD) or Census (section 5.5.3.2). In Fig. 5.92b the costs are indicated 
by grey circles whose size represents the cost. The disparity with minimum cost is 
then compared with the costs of the neighbouring pixels (red line). If the difference 
of disparities with the neighbouring minimum is larger than zero, the recent cost 
value is given an extra amount depending on the disparity difference (penalty terms 
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P1 and P2). Eqn. (5.95) shows the resulting energy function E(D). This analysis of the 
neighbourhood is now applied along m image paths, i.e. the data structure mentioned 
above must be provided m times. Subsequently, all cost values assigned to a pixel are 
summed and again stored within the data structure E(p,Dp). Finally, the required 
disparity D(p) is given at the location of the minimum cost sum.  

Mathematically, the semi-global optimization process described above is as 
follows. The cost or energy function E calculates the costs of a possible disparity 
(parallax) D of a pixel depending on a cost value C and two penalty terms P1 and P2: 

p p
p p q p q

p q N q N
E D C p D P Τ D D P Τ D D

∈ ∈

= + ⋅ − = + ⋅ − >∑ ∑ ∑1 2( ) ( , ) [| | 1] [| | 1]  (5.95) 

The first term of (5.95) contains the matching cost C for a pixel p. The second term in 
eqn. (5.95) adds a (small) penalty P1 for the current disparity Dp to the cost value C if 
the difference between Dp and the disparity Dq at a neighbouring pixel q is 1. (The 
function T returns 1 if |Dp–Dq|=1 and 0 in all other cases.) In an analogous way, the 
third term adds a larger penalty to the cost value C if the difference exceeds 1. (Here, 
the function T returns 1 if |Dp-Dq|>1 and 0 in all other cases.) The penalties are defined 
within the interval of the applied cost function, e.g. -1 to +1 for normalized cross-
correlation (NCC) whereas the ratio P2/P1 should lie between 2 and 3.  

After calculation of the matching costs and their storage in the data structure C, 
a cost aggregation follows in which the penalties P1 and P2 are added to the matching 
costs (Fig. 5.92a bottom). It can be processed separately for every path r: 
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 (5.96) 

where (p,D)  = (x',y',D) 

The indices i and k are loop variables for the iteration through the aggregated costs at 
the previous position along one of the paths. For each path, the positions of adjacent 
pixels are defined as follows, e.g. with u = 1, v = 0 for a path in the x' direction:  

r rL p r D L x u y v D− = − −( , ) ( ' , ' , )  (5.97) 

The expression in eqn. (5.96) searches for the minimum path costs, including 
penalties P1 and P2 potentially added at the position of the preceding pixel in path 
direction (p–r). When found, the minimum is added to the matching costs of the 
current pixel p and the current disparity D. The last term in eqn. (5.96) subtracts the 
value of minimum path costs for the preceding pixel in order to avoid large numbers 
in Lr. The results of cost aggregation of all m paths are then accumulated as follows: 
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r
r

S p D L p D
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8,16

1
( , ) ( , )  (5.98) 

In S(p,D), the minimum is searched for every pixel p from which the final disparity is 
derived and stored in the disparity map D(p). 

DD p S p D=( ) arg min ( , )  (5.99) 

SGM creates 3D models with sharp edges and, to a certain extent, is able to bridge 
regions of poor texture since the semi-global search locates valuable image 
information at larger distances from the current pixel in support of the matching 
process. However, the accuracy in areas of reduced textured is lower since a degree 
of interpolation is involved. 

 

Disparity map 

 

Point cloud (filtered) 

Fig. 5.93: Image matching in a stereo pair with correlation-based stereo matching. 

 

Disparity map 

 

Point cloud (filtered) 

Fig. 5.94: Image matching in a stereo pair with SGM. 
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Fig. 5.93 shows the disparity map and point cloud for the stereo image pair in Fig. 5.96 
resulting from correlation-based stereo matching using a window size of 7 pixels. Fig. 
5.94 illustrates the result with additional semi-global optimization and matching 
(compare with Fig. 5.106). In both cases a left/right check and a speckle filter are 
applied according to the OpenCV semi-global block-matching function. The more 
complete and smoothed surface from SGM is clearly visible. 

.. Multi-image matching 

There are different ways of extending image matching to more than two images. 
Matched pairs are often combined in order to fuse single point clouds into a global 
point cloud. Methods using image triplets are also common and can, to a large extent, 
solve the ambiguities in stereo matching. Finally, matching can be formulated for any 
number of images.  

... Multi-View Stereo  
The term Multi-View Stereo (MVS) describes an approach which creates combinations 
of stereo images from an oriented multi-image configuration. Stereo matching is 
performed in each pair to give a single disparity map or, after computing associated 
space intersections, a point cloud. All point clouds are located within one common 
object coordinate system, hence can easily be fused into a single common point 
cloud. In MVS a reference image is selected and all overlapping images are applied 
for image matching. For n neighbouring images, n disparity maps are generated, 
hence each pixel of the reference image may have up to n disparities. The disparities 
are normalized in advance by dividing through by the base length (compare with eqn. 
4.87). If there are holes in individual disparity maps, these can be filled with 
disparities from other image pairs. Finally, the normalized disparities are averaged, 
usually by a median filter weighted by the base length. Disparities due to longer 
stereo baselines (smaller height-to-base ratio) generate better height values 
according to eqn. (4.88). 

... Matching in oriented image triples 
Ambiguities can be considerably reduced if the number of images is increased. Fig. 
5.95 illustrates the matching principle for a configuration of three images. Starting 
with an image point P' in image B1, the corresponding epipolar lines k12 and k13 can be 
calculated for the other images. For both partner images, ambiguities are represented 
as candidates Pa'', Pb'', Pc'' in image B2 and Pd'', Pe'', Pf'' in image B3. The homologous 
points of P' cannot therefore be uniquely determined. 
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Fig. 5.95: Matching in image triples based on epipolar lines (according to Maas 1992). 

If, in addition, the epipolar lines k(23)i are calculated in image B3 for all candidates Pi 
in image B2, it is most likely that only one intersection point with k13 is located close 
to a candidate in image B3, in this case Pe'''. The search space is therefore restricted to 
the tolerance region of the intersection points. The number of possible ambiguities 
for three images is given by: 

a
b bn n εN

F α b b
 − ⋅
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2 2
12 12

23 13
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 (5.100) 

where 
n: number of image points 
F: image area 
ε: width (tolerance) of the search space 
α: angle between epipolar lines in image B3 
bjk: base length between image Bj and image Bk 

Ambiguities are minimized if the three cameras are arranged in an equilateral triangle 
such that b12 = b13 = b23 and α = 60°. In the numerical example above (n = 1000) the 
number of ambiguities is then reduced to Na = 10.  

Fig. 5.96 shows an image triplet recorded by a three-camera endoscopic system 
(Fig. 5.97 top left). Point P' is measured in image 1 and the corresponding epipolar 
lines k12 and k13 are displayed in images 2 and 3. These contain the corresponding 
points P" and P"'. If potentially corresponding image points are measured on k12, they 
result in different epipolar lines k23 in image 3. Only one of them contains the correct 
point and intersects with epipolar line k13 in image 3.  
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image 1 (left) image 2 (right) image 3 (top)
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Fig. 5.96: Measured point and corresponding epipolar lines in an image triplet.  

 
Fig. 5.97: Normalized images and epipolar lines for a three-camera system.  

Normalized images can also be calculated for image triplets. Fig. 5.97a shows the 
three original images recorded by the three-camera system displayed on the left. As 
an example, two points are measured in image 1 and their corresponding epipolar 
lines are shown in the neighbouring images. If the three images are rectified onto the 
plane formed by the three perspective centres (trifocal plane), then images 1 and 2 are 
rotated parallel to each other by a rotation matrix that is formed by the normal vector 
of the trifocal plane and the base vector between the perspective centres of image 1 
and 2. Then the same rotation matrix is assigned to image 3. The resulting images are 
displayed in row (b). Whilst the epipolar lines are parallel for images 1 and 2, they are 
at a slope angle in image 3. However, the content of the rotated images remains 
similar so that rectangular, non-rotated matching windows can be used. The images 

image 1 (left) image 3 (top)image 2 (right)

a) original

b) trifocal

c) orthogonal

12

3
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displayed in row (c) are also rectified onto the trifocal plane such that the epipolar 
lines are horizontal between images 1 and 2 and vertical between 1 and 3. This is 
achieved by rotating the y-axis of image 3 parallel to the base vector between the 
projection centres of images 1 and 3 (vertical epipolar lines in image 3), and by 
applying shear and scale to image 1 using the distortion parameters C1 and C2 (see 
section 3.3.3.3). However, in this case, due to the rotation and distortion in the 
orthogonal image triplet (c), local matching requires affine transformed matching 
windows. 

... Matching in an unlimited number of images 
The method can be extended to a virtually unlimited number of images. In order to 
search for homologous points of P' in all other images, a combinatorial approach 
must be applied which investigates all likely combinations of epipolar line 
intersections. The following matching strategy represents a practical solution for 
limiting the required computational effort: 
1. Selection of an image point in image Bi. 
2. Search for candidates on epipolar lines in images Bi+j, until at least 1 candidate is 

found.  
3. Verification of all candidates by calculating their object coordinates using spatial 

intersection followed by back projection into all images Bi+j+1 ... Bn. 
4. Counting all successful verifications, i.e. the calculated (back projected) image 

position must contain an image point. 
5. Acceptance of the candidate possessing the significantly largest number of 

successful verifications. 

This approach offers some major advantages: 
– an arbitrary number of images can be processed; 
– an object point need not be visible in every image, e.g. due to occlusions or 

limited image format; 
– interest values can optionally be used in order to reduce the number of 

candidates;  
– approximate values of image points are not required, i.e. there are no pre-

conditions for the smoothness of the object surface nor the spatial distribution of 
object points. 

... Multi-image least-squares matching 
The least-squares matching approach introduced in section 5.4.2.4 for two image 
patches (reference and search image) can be extended by the following features: 
– simultaneous matching of one point in multiple images (multi-image matching); 
– simultaneous matching of multiple points in multiple images (multi-point 

matching); 
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– introduction of geometric conditions in image space and object space (multi-
image geometrically constrained matching); 

– introduction of object models (object-space matching). 

Consider a reference image f(x,y) and m search images gi(x,y), which are to be 
matched to the reference image. Eqn. (5.67) can be extended to multiple images: 

i if x y e x y g x y− =( , ) ( , ) ( , )  i m= 1, ,  (5.101) 

Here ei(x,y) indicates random noise in image i. In a similar way to least-squares 
matching, the following adjustment system results:  

n u u nn
= ⋅ −

, ,1 ,1,1
ˆv A x l   (5.102) 

where 
T
i i

da da da db db db r r =  0 1 2 0 1 2 0 1
ˆ , , , , , , ,x  i m= 1, ,  

m: number of search images 
n: total number of observations  
 n = n1+n2+...+nm; ni = number of observations (pixel) in image gi(x,y) 
u: total number of unknowns, u = 8·m 

The m parameter vectors T
ix̂  can be determined independently within the system of 

equations (5.102) because they have no cross connections within the design matrix A. 

.... Functional model 
The multi-image approach of (5.101) enables the simultaneous determination of all 
matches of a point. However, it does not consider the constraint that all homologous 
points must correspond to one common object point. This constraint can be 
formulated by the condition that all homologous image rays, taking account of image 
orientation parameters, must intersect optimally at the object point. 

This constraint is also the basis for the bundle adjustment model (section 4.4.2) 
where the collinearity equations (4.10) are used. The three-dimensional coordinates 
of point P in image k are given by1: 
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In simplified notation, the image coordinates x'p,y'p are given by 

 
1 Image coordinates have their origin at the principal point and are corrected for distortion. 
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Based on initial values (x'p,y'p)0, the following non-linear observation equations for 
the required shifts Δx'p,Δy'p result: 

X
Pk Pk PkΔx F x+ + = 0' ' 0  Y

Pk Pk PkΔy F y+ + = 0' ' 0  (5.105) 

Here Δx'p,Δy'p correspond to the shift coefficients da0,db0 in (5.102). The equations 
(5.105) establish the relationship between image space and object space. In contrast 
to the collinearity equations, which primarily only establishes the functional 
relationship between observed image coordinates and unknown point and 
orientation data, this approach uses as observations the original grey values, in 
combination with least-squares matching. Additional observation equations can be 
set up using the parameters in terms Fpk, e.g. for the simultaneous calculation of 
object coordinates XYZ or for the formulation of geometric constraints, e.g. Z = const. 

.... Object restrictions 
It is first assumed that the interior and exterior orientation parameters of all images 
are known, e.g. by a prior bundle triangulation. The system of equations (5.105) must 
be linearized at initial values of the remaining unknowns X,Y,Z: 
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In summary the system of additional observation equations is as follows: 

m m m
= ⋅ −

',1 ',3 ',13,1
ˆw B y t   (5.107) 

where 
T dX dY dZ =  ˆ , ,y  

m': number of images:  
 m' = m, if no transformation of the reference image is permitted 
 m' = m+1, if the reference image is also to be transformed, e.g. with  
  respect to an artificial template  

For the extended system of (5.105) and (5.107) the complete vector of unknowns is 
given by:  

T T T T
t t

−= + ⋅ +1( ) ( )x A PA B P B A Pl B P t  (5.108) 
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The parameter vector x  consists of the simultaneously calculated displacements of 
the image patches in gi(x,y) as well as the adjusted corrections of the object 
coordinates. Because of their relationship to the XYZ object coordinates, the image 
shifts cannot take arbitrary values but are constrained to follow an epipolar line (Fig. 
5.98). The influence of this geometric condition can be controlled by the weight 
matrix Pt. 
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Fig. 5.98: Geometric condition of ray intersection.  

The model in (5.106) is appropriate for determining arbitrary 3D object points. In order 
to measure surface models, some of the coordinate components of the surface points 
can be fixed: 
– Constant X,Y: 

If the surface points are located on a particular grid of XY coordinates, for 
example where ΔX = ΔY = const., corresponding terms can be eliminated from 
(5.106) and only Z-value adjustments remain: 
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In consequence, the normal system of equations becomes simpler. The approach 
corresponds to the manual measurement of terrain models in stereoscopic 
plotters. In this case the image shifts do not take place within epipolar lines but 
on the vertical line locus instead (see section 4.3.6.3). 
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– Constant Z: 
In order to measure contour lines at a given height Z = constant, only coordinate 
displacements in the X and Y directions are permitted and (5.106) reduces to: 
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The possibility of restricting particular coordinate components enables surface 
models to be recorded with respect to specific reference planes or along specific 
sections through the surface. The (topological) structure of the surface model is 
therefore defined directly during measurement and not by a later analysis of an 
unstructured point cloud which could be the result, for instance, of an active 
projection method (section 6.7.3 and also see section 5.5.6.1). 

.... Additional extensions  
The concept of additional observation equations, described above, permits the 
introduction of further constraints on the adjustment system. The influence of 
additional observations can be controlled by appropriate weighting from pi = 0 where 
the constraint has no effect through to pi = ∞ where the constraint is strictly enforced.  

As examples, additional constraints can be formulated for the following tasks: 
– Edge extraction by least-squares matching:  

Single edge points can be determined by a suitable edge template (see example 
in Fig. 5.55). As edges are linear features, an additional constraint can be 
introduced which forces the template to move in the direction of the gradient, i.e. 
perpendicular to the edge. 

– Determination of spatial object contours: 
Spatial object contours can be described by geometric elements (straight line, 
circle etc.) or spline functions. The corresponding analytical parameters can be 
included as unknowns in a least-squares fit. An example of this approach is the 
method of LSB snakes which combines edge extraction and determination of a B-
spline spatial curve (snake) in a single analysis.  

– Measurement of point grids: 
The least-squares matching concept for a single object point can easily be 
extended to an unlimited number of points. However, if no geometric 
relationship between the points exists then the result is identical to single point 
matching. Geometric relations can be formulated either by associating points 
with a common geometric element, e.g. all point belong to a plane or a cylinder, 
or by defining neighbourhood relationships. 

The latter approach can be compared to the interpolation of digital surface 
models where points on a grid are connected by additional constraints such as 
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minimum surface curvature (section 3.3.4.5). The approach of multi-patch 
matching utilizes this idea by defining constraints between adjacent grid 
elements (patches). 

– Bundle concept: 
If the interior and exterior orientation parameters of images are known only 
approximately, they can be included as unknowns in the least-squares matching. 
Eqn. (5.106) is then extended by corresponding differential coefficients of the 
additional orientation parameters. 

.. Matching methods with object models  

The matching methods described in the previous sections are mainly based on 
geometric relationships between images, or between images and object. Although 
contrast differences are modelled in the least-squares matching by two radiometric 
parameters, they are completely independent of the reflection characteristics of the 
surface. 

In order to create a complete object model, it is necessary to combine the 
geometric object properties (position and shape) with the reflection properties of the 
surface. This idea is used in various forms of 3D visualization and can also be used 
for object reconstruction. The features of such a complete reconstruction method are:  
– introduction of a surface reflection model (material characteristics, 

illumination);  
– ray tracing through different media (as a minimum through the atmosphere); 
– multi-image adjustment based on least-squares matching; 
– topological structuring of the surface by surface grid and shape lines. 

The global objective is the 3D surface reconstruction by simultaneous calculation of 
all orientation parameters, object point coordinates and geometric element 
parameters, as well as illumination and reflection parameters. Grey values in multiple 
images are available as observations, as are initial values of unknowns. The number 
of parameters is extremely high and the resulting system of equations is 
correspondingly complex. 

... Object-based multi-image matching  
Object-based multi-image matching is based on a relationship between the intensity 
(colour) value of a surface element Gi and the grey values gij of the associated images 
(Fig. 5.99). The grey values are a function of the orientation parameters Oj of an image 
j and the surface parameters Zi of an element i:  

= ( , )i ij i jG g Z O  = 1, ,i m
 

= 1, ,j n  (5.111) 
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where 
m: number of surface elements  
n: number of images 

In order to solve this system of equations, initial values for the unknown surface and 
the orientation parameters are required. The difference between the grey values 
calculated from the initial values can be regarded as a stochastic value which gives: 

ij i ij i jΔg G g= −0 0 0( , )Z O  (5.112) 
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Fig. 5.99: Relationship between intensity value of surface and grey value of image (Schneider 1991). 

The imaged light intensity depends on the properties of the surface material and of 
the geometric orientation of surface element, light source and imaging sensor (Fig. 
5.99) as, for example, described by Phong's illumination model. In a similar way to 
least-squares matching, the grey values in the individual images are matched using 
two radiometric parameters which are dependent on material: 

( )ij i j j ij i jΔg G r r g= − + ⋅0 0 0 0 0
1, 2, ' ( , )Z O  (5.113) 

where 

j jr r0 0
1, 2,, : approximate radiometric correction parameters 

g'ij: observed image grey value: ij j j ijg r r g= + ⋅0 0
1, 2, '  

Eqn. (5.113) can form the observation equation for each grey value in all images where 
a specific surface element is visible. Using the substitution 

j jr r= +2, 2,1 '  
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and re-arranging the linearized correction equations, the following is obtained: 

ij i i j j j j ij i j
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The differential coefficients 
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contain the grey-value gradients ϑg'/ϑx' and ϑg'/ϑy'. This approach can therefore only 
be applied when an appropriate number of edges or structures exist in the images. 
The remaining differential coefficients ϑx'/ϑZ etc. correspond to the derivatives from 
the space resection and bundle triangulation models (see section 4.4.2). 

Now all the relevant parameters are available for an iterative adjustment:  

= ⋅ −ˆv A x l  

with observations 

= 0 0( , )l g' Z O  

which leads to a vector of unknowns: 

T T T T T Td d d d d= 1 2
ˆ ( , , , , )x Z O r r' G  (5.116) 

The importance of object-based multi-image matching has two aspects. One is the 
simultaneous determination of all parameters influencing the formation of the image, 
including the object itself. The other is that the method can be extensively modified 
by altering object parameters relevant to the application. In this way, the following 
tasks can be solved by use of appropriate functions: 
– Measurement of artificial targets: 

Circular targets can be defined as a circle in space (see section 2.3.2.3) whose 
centre must be determined. An additional transformation converts the 
coordinates of the plane of the circle into the object coordinate system. The 
target's grey values have a radiometric model which is a function of the radius 
and consists, for example, of a white circle on a black background (Fig. 5.100). 

The surface element size should approximately correspond to the size of a 
pixel in image space. The circle centre in object space is determined ignoring any 
eccentricities (see section 6.2.1.1).  
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Fig. 5.100: Distribution of smoothed object grey values for a circular target.  

– Measurement of surfaces: 
Surfaces are recorded as profiles, surface models or free-form surfaces. If the 
measurement is based on profiles, an arbitrarily oriented section is defined in 
which the profile is represented by a two-dimensional curve (Fig. 5.101). Within 
the section, a surface element is defined by a tangential plane whose degrees of 
freedom are reduced to two rotations and a shift within the section plane. 
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Fig. 5.101: Resulting profile from intersection of section plane and surface.  

– Bundle triangulation: 
The system of equations (5.113), extended to determine 3D circles and additional 
parameters of interior orientation (simultaneous calibration), leads logically to 
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an object-based bundle triangulation for photogrammetric images with circular 
targets.  

– Orthophoto production: 
Object-based multi-image matching can also be applied to the production of 
orthophotos where the calculated grey values of the object are here used for 
image generation. The required 3D object model can be estimated within the 
multi-image matching process itself, or it can be generated from other sources. In 
principle, this approach enables orthophotos to be generated from an arbitrary 
number of images, with occlusions and radiometric variations no longer affecting 
the result. 

Object-based multi-image matching, briefly described here, has considerable 
potential for wide application and makes use only of the original image grey values. 
Feasibility in principle, and some test applications, have been demonstrated but so 
far practical use has been limited by the high computational effort needed to solve 
the large systems of normal equations. The generation of appropriate initial values 
for the unknown parameters is, in addition, a non-trivial problem. 

... Multi-image matching with surface grids 
Surface elements calculated by object-based multi-image matching (section 5.5.6.1) 
are independent of their adjacent elements in terms of geometry and radiometry. 
However, this assumption is invalid for piecewise smooth surfaces. With the 
exception of discontinuities (breaklines), adjacent object elements can be connected 
by radiometric and geometric interpolation functions. The above approach can 
therefore be extended by coefficients of piecewise linear functions for both the 
radiometric model and the geometric model (terrain model). For this purpose, the 
surface is represented by triangular or quadrilateral patches (facets) within which 
linear or bilinear interpolation can be applied.  

Fig. 5.102 illustrates the principle. The required surface Z(X,Y) consists of grey 
values G(X,Y). Photographic recording of surface points P(X,Y,Z) results in image 
points P'(x',y') with grey values g'(x',y'). Based on an approximately known height 
model Z0(X0,Y0), surface points are interpolated, e.g. on a fixed grid with separations 
ΔX0 = ΔY0=const. The surface reflection model G'(X,Y) is calculated on a dense grid 
width ΔXG,ΔYG (Fig. 5.103).  

The grid width of the reflection model should be adjusted to the maximum spatial 
frequency in object space. If this information is missing, the grid width should be 
chosen with respect to the mean pixel size Δx',Δy' in the images: 
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≥ ⋅
≥ ⋅

'
'

 where m: image scale number (5.117) 
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Fig. 5.102: Interpolation and projection of surface and reflection model (after Wrobel 1987). 
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Fig. 5.103: Projection of object facets into image space.  

For the height model, the grid width should adapt to the local object shape in order 
to achieve a reasonable result. For example, grid width can be reduced on object 
breaklines. Usually a square grid is chosen where  

G GΔX ΔY ΔX ΔY= > =0 0  (5.118) 

The introduction of radiometric facets with corner-point grey values G(Xk,Yl) leads to: 

kl k lG X Y a X Y G X Y= ⋅∑( , ) ( , ) ( , )  (5.119) 

where 1=∑
kl

kla  
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Correspondingly, coefficients for the height model's geometric facets Z(Xr,Ys) are 
introduced to give: 

∑ ⋅= ),(),(),( srrs YXZYXbYXZ  (5.120) 

where rs
rs

b =∑ 1  

The system of equations (5.113) is extended by (5.119) and (5.120). Coefficients akl and 
brs are determined by the nodal point values of each object grid or triangle facet.  

Object-based multi-image matching based on object facets offers additional 
benefits: 
– By choosing suitable weights for the coefficients, the smoothness of a surface can 

be controlled so that image matching can bridge critical areas containing 
intensity distributions where texture is not present. 

– Occlusions and discontinuities can be handled by correspondingly detailed 
object surfaces or 3D models. 

... Object-based semi-global multi-image matching (OSGM) 
The principle of semi-global matching (SGM, section 5.5.4.2) can be transferred from 
image to object space. As a first step, the object space is divided into discrete voxels 
(voxel grid). The voxels are organized as cubes or cuboids with their dimensions (ΔX, 
ΔY, ΔZ) defining the required resolution for object reconstruction. Voxels should be 
defined by taking account of the mean pixel size in object space (ground sampling 
distance, GSD) and the spatial configuration (height-to-base ratios) of the images. The 
SGM energy function in eqn. (5.95) is then modified such that image coordinates and 
disparities are replaced by object coordinates: 

p p
q q

X Y q N q N
E Z C X Y Z P T Z Z ΔZ P T Z Z ΔZ

∈ ∈

= + ⋅ − = + ⋅ − >∑ ∑ ∑1 2
,

( ) [ ( , , ) (| | ) (| | )]  (5.121) 

The first term in (5.121) contains the matching costs for each voxel whilst the second 
and third terms introduce penalties for differences between Z value between 
neighbouring voxels. Hence, the smoothing conditions of the original SGM here cause 
a smoothing in the direction of a selected axis in space, which in this case is the Z 
axis.  

The calculation of matching costs for each pixel (creation of data structure C in 
eqn. 5.121) considers grey or colour values from 2 to n images (Fig. 5.104). True multi-
image matching is therefore provided. With n images, the conventional calculation of 
matching costs must be extended. However, since pairwise matching in multi-view 
approaches (section 5.5.5.1), and the redundant calculation of object coordinates, 
allow for a robust detection of outliers and occlusions, it makes sense to integrate 
stereo and multi-image strategies into OSGM as well.  
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If window-based cost functions are used, e.g. Census or normalized cross-
correlation (NCC), the matching windows are defined in object space orthogonal to 
the reference axis and back-projected into image space. This strategy ensures a high 
invariance against image rotations and, to some extent, against differences in scale. 
In OSGM, the matching windows are shifted in object space by ΔZ increments 
according to the selected resolution. Back-projection of the matching windows into 
image space leads to subpixel positions, hence cost calculation is done with 
interpolated grey or colour values. As for SGM, Census or NCC can be used as cost 
functions. 
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Fig. 5.104: Cost calculation for a voxel (left) and path directions for cost aggregation (right). 

After cost calculation, the penalties P1 and P2 are added to the costs (cost aggregation). 
The term of eqn. (5.96) is then modified to 
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 (5.122) 

where (v,Z) =  (X,Y,Z) and X,Y,Z are the central coordinates of a voxel v. The indices i 
and k denote loop variables for the iteration through the aggregated costs at a 
preceding position within the path. The relationship between two voxels, with respect 
to a reference plane, in this case the XY plane, is defined by: 

r rL v r Z L X u ΔX Y v ΔY Z− = − ⋅ − ⋅( , ) ( , , )  (5.123) 

As an example, u = 1, v = 0 for a path in the X-direction. Applying eqn. (5.122) to cost 
aggregation results in a penalty for differences of Z values compared with 
neighbouring voxels, hence the smoothing takes effect in the direction of the Z axis. 
The results of path-wise cost aggregation can be accumulated by: 
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Finally, the minimum for each voxel v in the Z direction is determined in S. This 
represents the final matching result. Hence, OSGM directly leads to a 2½D point cloud 
in object space instead of a disparity map in image space. 

 

Fig. 5.105: Test object (left), reference points (middle) and imaging situation (right). 

Fig. 5.105 shows a ceramic sculpture, imaged in an all-around configuration by 38 
images and with all images used in the 3D reconstruction. In a first step, the object 
space is divided into separate voxel blocks to which those images are assigned that 
see the block completely. The reconstruction result is displayed in Fig. 5.106. It shows 
a homogeneous and dense surface with only a few holes due to areas without texture. 
In this example, the voxel resolution is set to 0.3 mm, corresponding to the mean GSD 
of the images. The mean standard deviation with respect to a reference model 
measured by a fringe projection system is 0.16 mm. 

 

Fig. 5.106: Reconstructed 3D model (left) and comparison with reference data (right). 
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OSGM is also useful for the matching of nadir and oblique aerial images, i.e. images 
with very different image scales. Consequently, the voxel structure directly results in 
a true orthophoto. 

... Additional object-based matching methods 
From the variety of additional object-based matching methods known from recent 
research, a selection is briefly outlined here. 

.... Plane-sweep methods 
The objective of this method is the extraction of object planes from oriented images. 
In the simplest case, the applied similarity measure is based on the minimum grey-
value difference between homologous points which are determined by plane 
projective transformation from a reference image into participating images. From the 
known perspective centres of the reference image and the k participating images, the 
following equation can be formed using the normal vector nE of the required plane 
and the distance dE between plane and camera (see also eqn. 4.76): 
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H is a homogenous projective transformation (homography) which is used to 
transform the homogenous image vector from the reference image into the 
neighbouring image:  

T T

k k k ref refk
u v w E x y   = ⋅    ( , ) 1PH  (5.126) 

k k kx u w= /  k k ky v w= /  

With the cost function 
ref

ref ref k k kC x y E g x y r g x y= −( , , ) ( , ) ( , )  (5.127) 

it is assumed that image points lying on the plane have the same colour taking 
account of a gain factor ref

kr . Through a global optimization, points lying on a plane 
are extracted in order to calculate the plane parameters nE and dE. Extensions of the 
method allow for the simultaneous estimation of an arbitrary number of planes from 
images and image sequences, e.g. for autonomous navigation of vehicles. Accurate 
3D elements cannot be generated by these methods.  

.... PatchMatch stereo 
This approach is also based on the extraction of local object planes such that for every 
pixel one plane in space can be assigned whose projection into the stereo image 
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results in minimal colour differences. In the first step a normal disparity image is 
calculated using a local image-based similarity measure. Using a left/right check, the 
result is tested for consistency and possible occlusions are eliminated. For a pixel 
p(x,y) in the left hand image, random parameters of plane E are estimated using 
distance information derived from disparity. From the plane parameters (compare 
with eqn. 2.147) the following cost function is constructed: 

q W
C p E w p q ρ q q

∈

= ⋅∑( , ) ( , ) ( , ')  (5.128) 

where 
W: square window with centre p 
w(p,q): probability that g(p) is equal to g(q)  
q': pixel in right hand image with E q E q Eq a x b y c− + +( )  
aE, bE, cE: parameters of plane E 
ρ: measure of non-similarity between q and q' 

The equation shows that the cost function depends on: 
– the probability that two pixels on the same plane have similar colours; 
– the non-similarity measure ρ which compares q with point q' lying on the epipolar 

line in the neighbouring image that again depends on the plane.  

For each adjacent pixel q, the cost measure is tested to see if it can be improved by an 
additional pixel, i.e. if it belongs to the same plane. If this is fulfilled, the plane E will 
be assigned to point q, otherwise a new random selection of plane parameters is 
chosen. 

.... Optimization of triangular meshes  
The idea here is based on a point cloud derived from a Multi-View Stereo analysis 
(section 5.5.5.1) used for triangular meshing (Delauney triangulation, see section 
2.3.3.1). As a matching strategy, for example, the correspondence of feature points or 
the plane-sweep method can be applied. In contrast to a voxel representation, the 
triangular mesh adapts to the density of surface points. After applying a ray tracing 
test, each triangle is projected into the participating images in order to calculate a 
similarity measure between them. 

Subsequently, the gradient of the similarity measure is determined at the edge 
points of adjacent triangles. The differences between neighbouring gradients are 
adjusted by a gradient descent method. This is done by an iterative shift of the 3D 
points to improve the similarity of projected triangles and to minimize gradient 
differences. As a result, a surface model is generated that can be densified by dividing 
the triangles further. 
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.... Global photo consistency 
The objective is the reconstruction of a surface S from all views of an object by 
minimizing an energy function E which consists of three cost terms. The terms 
indicate if a point x lies on the object or is part of the background under consideration. 
The evaluation makes use of a photo-consistency function which applies the 
constraint that an object point has the same colour in all images. For this, Lambertian 
reflection is assumed.  

S S
Obj Back

Obj Back S
SR R

E S ρ x dx ρ x dx v ρ x dS= + +∫ ∫ ∫( ) ( ) ( ) ( )  (5.129) 

where 
x: 3D object point  
ρObj: binary [0,1] variable for membership of x to object region RObj 
RObj: object region in surface S 
ρBack: binary [0,1] variable for membership of x to background region RBack 
RBack: background region of S 
ρS: binary [0,1] variable for photo consistency 
v: weighting factor  

    
Fig. 5.107: Images from a sequence (left) and iterative 3D modelling by photo consistency (right)  
(CVG TU Munich).  

The surface to be modelled is derived from the minimum of E(S). Fig. 5.107 shows an 
example of surface reconstruction from an image sequence where a starting model 
(cuboid) is iteratively adapted to the shape of the object. The object itself is separated 
from the background. 
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.. Matching in image sequences 

An image sequence implies a series of images acquired dynamically. Here it is 
assumed that camera and/or object are moving relative to each other such that the 
differences from single image (frame) to image are small enough to describe and 
model the dynamics of the scene. To achieve this, the frame rate (frames per seconds, 
fps) must be appropriate for the relative velocity between imaging system and object 
(which may also be changing form). A series of images, or a multi-image set, as used 
in offline photogrammetry or structure-from-motion, is not regarded here as an image 
sequence. 

As examples, image sequences can be recorded by the following systems: 
– videos with frame rates up to 60 fps (video cameras, action cameras, surveillance 

cameras, digital cameras with video mode); 
– high-speed movies with frame rates up to 100000 fps (high-speed cameras, 

section 3.5.3); 
– cameras in autonomous systems (vehicles, robots, drones, section 6.11); 
– multi-camera systems for motion capture (section 6.10.3); 
– mobile mapping systems (section 6.11). 

In principle, image sequences can be acquired by any number of cameras 
simultaneously. For a precise matching in dynamic stereo or multi-image sequences, 
the cameras must be synchronized to avoid false 3D reconstructions (see section 
6.10.1). All applications must ensure that the measured object coordinates or 
trajectories are related to a common coordinate system. 

The single frames in a sequence can also be processed like any other digital 
image. If object points are to be tracked within a dynamic image sequence, the 
problem can be solved, in principle, by the matching procedures described in sections 
5.5.4 and 5.5.5. 

The following photogrammetric applications can be handled by dynamic image 
sequences: 
– Tracking of targeted object points: 

Targeting an object, e.g. with retro-reflective markers (section 3.6.2), enables the 
secure identification and matching of, typically, a small number of object points. 
Example applications are motion capture (section 6.10.3), medical navigation in 
orthopaedics (section 8.7.2), measurement of trajectories in car crash testing 
(section 6.10.2.3) or 6DOF measurement of mobile measuring sensors (section 
6.9.5). 

– Tracking of non-targeted (natural) object points: 
If the object cannot be targeted, natural features must be measured. These could 
either be randomly identified feature points generated by a feature detector or 
explicitly defined object points which are physically relevant to the application. 
Often these specific points are required to be tracked, e.g. for material testing or 
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mechanical analysis. Example applications are measurements of formed metal 
sheet (strain analysis, section 6.7.5.3), measurement of deformed free-form 
surfaces etc. 

– Deformation analysis of surfaces: 
Here the object’s surface is analysed as a whole, i.e. there is no tracking of specific 
surface points. Applications include the measurement of changing volumes or 
the determination of critical object displacements. 

– Detection of moving objects: 
Numerous applications of image sequence analysis in computer vision and 
robotics deal with the detection and tracking of objects, e.g. detection of 
pedestrians for driver-assistance systems, tracking herds of animals and 
monitoring large groups of people to detect suspicious patterns of motion. In 
these cases, it is normally more important to have secure and robust object 
detection than high measurement accuracy. 

– Localization of camera platforms in known or unknown environments: 
Tracking methods utilizing object-space reference data can be used to determine 
the spatial position and orientation (6DOF, pose) of a camera or its platform. 
Example applications are the measurement of hand-held probes with integrated 
camera (section 6.5.2.2), control of UAVs for automatic landing and robot 
calibration. SLAM algorithms can be used for localization of camera positions 
with simultaneous mapping of the (unknown) environment (section 5.5.7.6). 

... 2D object tracking in single-camera sequences  
A sequence of images taken by a single camera can be described mathematically as: 

n n
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where t denotes either the time stamp of a single frame or an identifier of the frame 
within the sequence. It is assumed that all frames have the same geometric properties, 
e.g. the same image size. 

... Target tracking 
Target tracking can easily be achieved by the methods described in section 5.4.2. 
Starting with the selection of a target in the initial image S0 (manually or by automatic 
segmentation), the measured image coordinates of the target are transferred to image 
S1 where they serve as approximations for the actual image position. The process is 
repeated for all images Si. If coded targets are used, the identification of targets is 
robust even in cases where the line of sight is temporarily interrupted. Example 
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applications are described in section 6.10.2.2 (6DOF tracking) and 8.7.2 (medical 
navigation).  

.... Tracking of distinctive image patterns 
The following strategies are suitable for tracking distinctive but non-targeted image 
patterns (feature tracking): 
– Interest operator and feature descriptor:  

An interest or feature detector provides position and feature parameters for 
distinctive image regions in the initial frame S0 (e.g. SIFT, section 5.4.3.5). The 
detection is repeated in the next image. This can be completely independent of 
the search in the previous image or the search regions in the current image can 
be restricted to areas which were detected in the previous image. Points are 
matched by matching feature vectors. As in stereo image matching, this allows 
corresponding points with large positional changes to be matched. 

A disadvantage of feature tracking is that specific object points cannot be 
tracked. Feature tracking therefore cannot be used to track points representing 
key mechanical features or locations where deformations are required. 

– Area-based image matching: 
Firstly, points to be tracked are located in the initial frame S0 (see Fig. 5.108a). 
Their selection can be done manually, by segmentation of point patterns, or by 
use of an interest operator. Fig. 5.108 then illustrates the subsequent matching 
process for a single feature found in S0. In the next frame S1, the search is not 
repeated independently but starts at the location found in S0. The best match 
between the patterns in S1 and S0 is determined by a similarity measure, such as 
normalized cross-correlation or least-squares matching (LSM, section 5.4.2.4). 
The reference window (template) is the image patch detected in the initial frame 
whilst the search window covers a predefined search area in the next frame (b). 
In the following step (c), the rectangular region around the image pattern 
detected in S1 becomes the reference window and the process is repeated in S2 
and so on (d). LSM has the advantage that the matching result can be used in the 
next template through the estimated geometric and radiometric transformation 
parameters. 

image S0 image S1 image S2

a b c d
 

Fig. 5.108: Area-based matching within an image sequence. 
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With this approach, natural surface points can be tracked through a sequence, 
e.g. for markerless motion capture or strain analysis of deformed objects (section 
6.7.5.3). 

.... Optical flow 
Optical flow is a general term for the apparent motion of imaged objects in a field of 
view. This motion derives from intensity changes in an image sequence. To a first 
approximation, it is assumed that the grey values of identical object points do not 
change in sequential images, i.e. there are no occlusions or illumination changes. The 
grey or intensity value g can then be expressed as follows: 

g x y t g x Δx y Δy t Δt= + + +( , , ) ( , , )  (5.131) 

Applying a Taylor expansion with truncation after the first term: 

g g gg x y t g x y t Δx Δy Δt
x y t
∂ ∂ ∂

= + + +
∂ ∂ ∂

( , , ) ( , , )  (5.132) 

The intensity changes of an imaged point shifted by Δx and Δy over time interval Δt 
can therefore be described by the grey-value gradients in the space and time domains. 
Division by Δt and rearrangement gives: 

x y t
Δx g Δy g g u g v g g
Δt x Δt y t

∂ ∂ ∂
= + + = ⋅ + ⋅ +

∂ ∂ ∂
0  (5.133) 

The terms u = Δx/Δt and v = Δy/Δt express the velocity of an image point moving 
through the sequence in the x and y directions. If the grey-value gradients gx and gy 
are zero, no movement exists. Optical flow can therefore only be identified in image 
regions where gradients occur, i.e. perpendicular to grey value edges (compare with 
section 5.2.4). Eqn. (5.133) is known as the optical flow constraint equation. 

In order to generate a homogeneous motion field, i.e. where single image points 
cannot have arbitrary motion vectors, a constraint equation for regularization is 
introduced: 

u v∇ + ∇ =
2 2

0  (5.134) 

These second derivatives in time (compare with eqn. 5.47) describe the acceleration 
of image points. As a consequence, the constraint forces the image points to move 
with constant velocity and in the same direction. An energy function can be derived 
from equations (5.133) and (5.134): 

x y tx yE u v u g v g g α u v ΔxΔy= ⋅ + ⋅ + + ∇ + ∇∑ ∑
2 22( , ) [( ) ( )]  (5.135) 
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Here α is a damping factor which controls the effect of regularization. This energy 
function is minimized for the whole image, taking into account the neighbourhood 
around each pixel where the damping term applies. 

  
 

   

Fig. 5.109: Image sequence (left) and calculated optical flow (right). 

Fig. 5.109 shows a sequence of four images of a rotating rotor blade and the derived 
optical flow. The motion field is mostly plausible but there are some vectors at stable 
object points and a few discrepancies at neighbouring points. These occur because of 
the relatively large time interval between images (low frame rate) and the optical flow 
approach itself which exclusively measures gradients without tracking discrete 
features. 

... 3D object reconstruction from single-camera image sequences  
Where a camera is moving during image acquisition and the exterior orientation of 
each camera station can be determined, 3D reconstructions can be derived from 
single-camera image sequences. If the camera is moved parallel to the object, e.g. as 
in conventional aerial surveying, the base line b between two successive images is 
determined by the image overlap, and the data can be processed by standard stereo 
or multi-image analysis (Fig. 5.110a). In contrast, if the camera moves in the direction 
of its optical axis, as is typical for vehicles with forward looking cameras, 
corresponding image rays intersect at very narrow angles (Fig. 5.110b). Rectification 
into epipolar images (normalized stereo images) then requires the method of polar 
rectification. Here images must be transformed from orthogonal pixel coordinate 
system into a polar pixel coordinate system. 
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a) Side-looking image sequence b) Forward-looking image sequence 

Fig. 5.110: Image matching in a single-camera imaging sequence.  

... Object tracking in multi-camera image sequences 
The strategies for processing image sequences from single cameras can also be used 
for image sequences which use several synchronized cameras. Since multiple 
cameras are used, stereo and multi-camera methods can also be applied. A further 
optional restriction is that matching must be consistent from frame to frame in one 
camera and between cameras. Since matching in single-camera image sequences 
generates trajectories of 2D image coordinates (static camera, object in motion) or 3D 
reconstructions (moving camera, static object), multi-camera sequences enable both 
the measurement of 3D space and of dynamic change.  

Fig. 5.111 illustrates the matching scheme for a stereo-image sequence. For an 
image pair Sk (images S'k and S"k) the matching of detected features, optionally with 
epipolar constraints, results in object points with XYZ coordinates. For the next image 
pair Sk+1, matching can be performed both with image points from the previous image 
Sk or with new detected features between left and right image. This not only makes 
matching more robust but points which are missing from one or two images can be 
reconstructed from other stereo pairs. 

At every recording position of a stereo or multi-camera system, a point cloud can 
be calculated. Using ICP methods (section 6.9.6.2) these single point clouds can be 
matched in order to derive 6DOF transformation parameters which are equivalent to 
the exterior orientations of each camera position.  

Section 6.7.5.3 describes applications for strain analysis where a key 
characteristic is the tracking of discrete object points on an object’s surface as it 
deforms.  
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Fig. 5.111: Image matching in a sequence of stereo images.  

... Prediction of subsequent points (Kalman filter) 
When object points are lost during tracking, their most probable position in a later 
frame can be estimated from the preceding trajectory. If the object movement is linear 
in time and space, the following position is easily extrapolated:  
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The point in frame k+1 with coordinates xk+1 is derived from the coordinates in 
preceding frames xk-1 and xk and the corresponding time differences between the 
frames. The coordinate may be two-dimensional (image coordinates) or three-
dimensional (object coordinates). It may also be necessary to take into account that 
linear object movements can result in non-linear movements in the image after 
central projective transformation. 

A more general estimation of movement can be achieved using the Kalman filter. 
It allows for prediction, filtering, smoothing and correction of the movement based 
on a prior set of motion parameters. A system of equations can be established to 
predict the state, in this case point coordinates, at the next instant in time:  

k k k+ = ⋅ + ⋅1
ˆx T x C w  (5.137) 

T is the transition or dynamic matrix which models the motion of the coordinate 
vector. In the simplest case, it describes a homogeneous motion at constant velocity 
(constant velocity model). kx̂  is the adjusted (corrected) position at time k. C is the 
process noise matrix which models the linear relationship between the state 
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parameters and the process noise. The process noise vector w represents the 
deviations from the assumed motion model. The total system noise is given by C · wk.  

If measurement noise (observation noise) of the adjusted coordinate vector kx̂ is 
given with the covariance matrix kxx ,ˆˆΣ , then the covariance matrix of the next state 
can be calculated:  

T T
xx k xx k ww+ = ⋅ ⋅ + ⋅ ⋅ˆ ˆ, 1 ,Σ T Σ T C Σ C  (5.138) 

The innovation d is the difference between measurements l at state k+1 and the 
predicted value: 

k k k+ + += − ⋅1 1 1d l A x  (5.139) 

where  
A: design matrix (see section 2.4.1) 

The innovation covariance matrix is given by: 
T

dd k xx k ll+ += ⋅ ⋅ +, 1 , 1Σ A Σ A Σ  (5.140) 

From this, the gain matrix (Kalman gain) can be derived: 

T
kdd

T
kxxk 1,1,1 +++ ⋅⋅= ΣAΣK  (5.141) 

This is used to smooth and filter the motion, and to calculate the corrected 
coordinates at state k+1: 

k k k k+ + + += + ⋅1 1 1 1x̂ x K d  (5.142) 

T
xx k xx k k dd k k+ + + + += − ⋅ ⋅ˆ ˆ , 1 , 1 1 , 1 1Σ Σ K Σ K  (5.143) 

The correction to point coordinates is called an update.  
The Kalman filter method can integrate different sensor data such as images, 

odometers, GNSS etc. into one common motion model. For example, it can be used to 
control movements of cars, manoeuvres in flight and robot trajectories. Extensions to 
Kalman filtering can address issues such as non-linear motion, abrupt disruptions 
and sensor failure. 

Fig. 5.112 shows an example of target tracking which is interrupted by an 
occluding object. The blue circles show the moving target which is temporarily 
hidden behind the white object. Using a Kalman filter, the red circles show the 
predicted position and its uncertainty. The uncertainty increases with increasing 
distance from the last corrected point. The update generates the points marked in 
yellow, which brings the tracking back to the actual target. 
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Fig. 5.112: Example of prediction and update by Kalman filtering.  

... Simultaneous Localization and Mapping (SLAM) 
A special type of image sequence analysis exists when the camera platform moves 
along an unknown trajectory within an unknown environment, a task originally 
developed for mobile robotics. In this case, the exterior orientation of the cameras is 
not known. If the platform supports two or more synchronized cameras with fixed 
relative positions, the relative orientation between them can be calculated in 
advance. For each synchronized set of frames, a set of object coordinates in a local 
model coordinate system can then be derived according to the process outlined in Fig. 
5.111. Depth accuracy will depend on the height-to-base ratio between cameras and 
object points. In contrast, if only one camera is on board, 3D coordinates can only be 
calculated using stereo models formed by sequential image frames. In the case of 
forward-looking cameras, the accuracy in depth (direction of motion) is usually lower 
since the baseline is small in the X or Y directions (see section 5.5.7.3). For absolute 
scaling, at least one distance must be known in object space, e.g. from the distance 
travelled between two frames. 

Using the camera motion to derive both the exterior orientations and the object 
shape in a global coordinate system is known as Simultaneous Localization and 
Mapping (SLAM). Calculating these parameters is essentially also the objective of a 
sequential bundle adjustment. It should be noted that SLAM is a general technique 
applicable to different sensor types. When applied to cameras, it may be called Visual 
SLAM. It is also called visual odometry when the main emphasis is on the pose 
estimation of camera or platform, particularly if the trajectory is not closed (loop 
closure).  

A SLAM process can be based on various techniques such as particle filters, 
graph-based methods and regression-based methods. However, one based on an 
extended Kalman filter can be structured as follows: 
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1. Detection and matching of distinctive object features (landmarks):  
The methods described in section 5.5.7.1 lead to position and descriptors of 
interest points that can be matched across the images. 

2. Kalman filter: 
Using the Kalman filter outlined in section 5.5.7.5, the state estimation is 
predicted by the motion model. The calculation of subsequent landmark 
positions is done by Kalman update. 

3. New landmarks: 
When new landmarks are detected, they are added to the list of detected features 
and can be used in later epochs until they disappear again. The covariances of 
calculated 3D points are integrated into the extended Kalman filter. 

The error propagation behind the calculation of locations reveals significant drifting, 
similar to the error effects resulting from an open traverse (polygon) calculation in 
surveying. If the camera platform passes through a region already mapped, or if it 
returns to the start position (loop closure), a global bundle adjustment can be 
calculated which minimizes the discrepancies arising from redundant measurement 
of object points and the start and end poses of the camera(s). The positioning process 
can be significantly strengthened by adding additional sensors to the platform. 
Examples are GNSS navigation sensors, odometers, altimeters, range sensors and 
laser scanners. A multiplicity of different sensors offers a valuable redundancy of 
information, particularly when some sensors temporarily do not deliver useful 
signals. 

   
a) Calculated route b) 3D point cloud with camera 

positions 
c) Superimposition with aerial 
image  

Fig. 5.113: Example of SLAM for environmental mapping with a stereo camera (CVG TU Munich).  

Fig. 5.113 is an example of SLAM used for mapping an urban area. A stereo camera is 
mounted on a car and records stereo-image sequences which use LSD-SLAM (large-
scale direct monocular SLAM) to calculate the trajectory (a) and a point cloud of the 
environment (b). 
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 Measuring tasks and systems 

. Overview 

This chapter presents practical, working systems, often commercially available, 
which utilize photogrammetric principles to solve a range of measuring tasks. The 
very wide variety of potential application areas and system solutions in close-range 
photogrammetry makes it difficult to classify typical system concepts. The chapter 
starts with an overview about targeting designs and configurations followed by a 
section on reference systems (scale, control points). Then interactive software 
programs and tactile probing systems are presented. These are followed by point-by-
point and area-based probing systems, including solutions for the measurement of 
complex free-form surfaces and system for terrestrial laser scanning. The 
presentation continues with systems for measuring dynamic processes, as well as 
systems operating from moving platforms such as drones (UAV, RPAS) or robots. The 
chapter concludes with an overview of visualisation systems (stereo, AR/VR). 

Digital processing systems consist of hardware and software components which 
are subject to rapid technical change. Hence, the solutions and products presented 
here represent only a snapshot of current technical development. This should, 
however, also provide clear pointers to the concepts and possibilities of future 
systems. Note in the following that any stated technical details and measurement 
accuracies are based on the manufacturer’s claims and specifications. 

. Targeting 

In many applications, locations to be measured on an object need to be marked with 
artificial targets, e.g.  
– to identify natural object feature points which cannot otherwise be identified 

accurately;  
– as uniquely defined points for comparative measurements; 
– as control points for geodetic measurement; 
– for automatic point identification and measurement; 
– for accuracy improvement. 

The physical size and type of target to be used depends on the chosen imaging 
configuration (camera stations and viewing directions, image scale, resolution) and 
illumination (light source, lighting direction). The manufacture of very small targets 
and the logistics of very large targets can be prohibitive. 
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.. Target designs 

... Circular targets 
Because of their radially symmetric form, circular targets are very suitable for 
representing a target point (the centre) by a surface. Determination of the target 
centre is invariant to rotation and, over a wide range, also invariant to scale. They are 
suitable for both manual, interactive image measurement as well as automated 
digital techniques for point determination. 

The centre of circular targets can be found in analogue images by manually 
centring a measuring mark, which is a circle or dot, over the target image. In a 
digitized image, the target centre can be computed by a centre-of-gravity calculation, 
correlation with a reference pattern or numerical calculation of the centre of the 
target’s outline circle or ellipse (section 5.4.2). 

In order for accurate measurements to be made, the diameter of the circular target 
images must be matched to the target detection and measurement process. For digital 
processing systems, it is generally accepted that target images should be at least 5 
pixels in diameter. In addition to practical considerations, such as the maximum 
target size for attaching to an object, the maximum target diameter is also a function 
of the maximum allowable eccentricity between the true image position of the circle 
centre and the centre of the target’s elliptical image.  
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Fig. 6.1: Image eccentricity for a circular target with parallel and inclined target planes. 

Fig. 6.1 displays the effect of perspective eccentricity of an imaged circle. The circle 
centre C is imaged as C' whilst the ellipse centre E' is displaced by the eccentricity e'. 
Only in the case where circle and image planes are parallel, are both points identical: 
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C' = E'. The degree of eccentricity depends on the size of the target, viewing direction, 
lateral offset from the optical axis and image scale. It can be estimated as follows: 

sin(90 ) sin(90 )
2 2'

2 cos(90 ) cos(90 )
2 2

m m

m

m m

d dR α R αce r
d dZ α Z α

 
+ ⋅ − − ⋅ − 

 = − ⋅ +
 − ⋅ − + ⋅ − 
 

 (6.1) 

where  e': eccentricity of projection 
 d: target diameter in object space 
 rm: radial offset of target in image  
 α: viewing direction = angle between image plane and target plane 
 Rm: lateral offset of target from optical axis 
 Zm: distance to target 
 c: principal distance 

Essentially, targets which are smaller and/or placed at greater distances result in 
eccentricities which are negligible (smaller than 0.3 µm). For greater image scales, 
larger image formats, bigger targets, strongly convergent camera directions and high 
accuracy requirements, then eccentricity can be significant and must be taken into 
account during processing. 

 
Var. 1: c = 24 mm  

Rm = 208 mm  
rm = 5 mm 
a) target diameter d = 5 mm  
b) target diameter d = 10 mm 

Var. 2: c = 8 mm  
Rm = 187 mm  
rm = 3 mm 
a) target diameter d = 5 mm  
b) target diameter d = 10 mm 

Fig. 6.2: Eccentricity of projection as a function of target orientation angle. 

The effect of eccentricity is extremely complex for the multi-photo convergent image 
configurations that characterize most high-accuracy photogrammetric measurement. 
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It is often assumed that the effect is compensated by the parameters of interior and 
exterior orientation if they are estimated using self-calibration techniques. However, 
for high-precision applications (<0.3 µm in image space) it is recommended that small 
targets are used (see Fig. 6.2 and Example 6.1). In using small targets, the target 
diameter, or level of ring flash illumination for retro-targets, must be capable of 
generating target image diameters of the order of 5–10 pixels if demanding measuring 
accuracies are to be achieved.  

Eccentricity does not matter if the target centre is calculated as the centre of a 
directly defined circle in 3D space, as implemented by the contour algorithm (section 
4.4.7.2) or bundle adjustment with geometric 3D elements. 

Example 6.1: 
Fig. 6.2 illustrates two variant calculations of eccentricity. It shows the resulting eccentricity as a 
sinusoidal function of the angle α between image plane and target plane. Variants (1) and (2) are each 
associated with two target diameters (a) 5 mm and (b) 10 mm. 

For the first variant, targets are assumed to be imaged at an object distance of 1000 mm by a digital 
SLR of 24 mm focal length. In object space, the target is laterally offset from the camera axis by 208 
mm, resulting in an image position 5 mm from the principal point. For 5 mm targets the maximum 
eccentricity is always less than 0.1 µm while for 10 mm targets the maximum value is -0.37 µm at 
α=50°. 

For the second variant, targets are assumed to be imaged at an object distance of 500 mm by a 
typical industrial CCD camera of 8 mm focal length. In object space, the target is laterally offset from 
the camera axis by 187 mm, resulting in an image position 3 mm from the principal point. For 5 mm 
targets the maximum eccentricity is always less than 0.15 µm while for 10 mm targets the maximum 
value is -0.57 µm at α=55°. 

... Spherical targets 
Spherical targets have the following properties compared with flat targets: 
– spherical targets are always imaged as ellipses with an eccentricity that is radial 

about the optical axis; 
– from Fig. 6.3 it can be seen that the ellipse is the result of a conic projection. Note 

that the base of the projective conic is smaller than the sphere diameter; 
– spherical targets can be viewed consistently over a much wider angular range; 
– spheres can be used as touch probes. 

However, there are disadvantages with regard to mechanical construction and optical 
properties: 
– the brightness of the image falls off rapidly towards the edges of the sphere; 
– the edge of the sphere appears blurred; 
– the mounting of the sphere can disrupt the isolation of the target edge in the 

image; 
– sphere diameters for practical use lie between 5 mm and 20 mm; 
– accurate retro-reflecting spheres are expensive to manufacture. 
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The most important advantage of spherical targets is the fact that they can be viewed 
from almost any direction. Whereas flat, retro-reflective targets can only be viewed 
over an angle of ±45°, retro-reflecting spheres can be viewed over a range of 240° (Fig. 
6.4). They are used, for example, in hand-held probes for photogrammetric 
navigation systems or as reference points on engineering tools and components (Fig. 
6.5). 
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C: sphere centre in object space
C': imaged sphere centre 
E': ellipse centre 
O': perspective centre
H': principal point
c: principal distance
R: sphere radius
r: radius of tangential circle CT
e': eccentricity in image

 

Fig. 6.3: Eccentricity of projection for a spherical target. 

-45°

Flat retro target Spherical retro target

+45°

-120° +120°

 
Fig. 6.4: Example viewing angles of flat and spherical retro-targets. 
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a) Retro-reflecting spheres 
(above: IZI, below: Atesos)  

b) Hand-held probe for optical navigation 
system (AXIOS 3D) 

Fig. 6.5: Application of spherical targets. 

... Patterned targets 
Some applications make use of targets where the target point is defined by the 
intersection of two lines. Cross-shaped, checkerboard and sectored targets are 
examples here. Their advantage is the direct definition of a centre point using well 
defined edges and their good separation from the background. A disadvantage is the 
greater effort in locating the centre using digital methods and, in comparison with 
circular targets, the greater dependency on rotation angle.  

Fig. 6.6 shows examples of targets whose centre is defined by the intersection of 
at least two lines in object space or two curves in image space. 

 1957    

Fig. 6.6: Examples of line-pattern targets. 

... Coded targets 
Targets with an additional pattern which encodes an individual point identification 
number, can be used to automate point identification. The codes, like product bar 
codes, are arranged in lines, rings or regions around the central target point (Fig. 6.7). 
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Patterns can be designed which encode many thousands of point-identification 
numbers.  

Coded targets should meet the following requirements: 
– invariance with respect to position, rotation and size;  
– invariance with respect to perspective or affine distortion;  
– robust decoding with error detection (even with partial occlusions); 
– precisely defined and identifiable centre;  
– sufficient number of different point identification numbers;  
– pattern detectable in any image; 
– fast processing times for pattern recognition;  
– minimum pattern size; 
– low production costs. 

 

Fig. 6.7: Selection of coded targets;  
upper row: barcode patterns, lower row: shape and colour patterns.  

The point identification number is decoded by image analysis of the number and 
arrangement of the elements defining the code. The patterns displayed in Fig. 6.7 
(upper row) are based on barcode techniques where the code can be reconstructed 
from a series of black and white marks (bit series) spread around a circle or along a 
line. The number of coded characters is limited by the number of bits in the barcode. 
The patterns displayed in Fig. 6.7 (lower row) consist of clusters of targets grouped in 
a local coordinate system where the target identification number is a function of the 
local point distribution. For decoding, image coordinates of all the sub-targets are 
computed. The planar image pattern can then be perspectively transformed onto 
reference points in the pattern so that target identification can be deduced from the 
map of transformed coordinate positions. Alternatively, targets in the group can be 
given different colours so that the point identification number can be deduced from 
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the locations of these differently coloured points. The majority of coding schemes are 
challenged by large volumes and long oblique sight lines. 

.. Target systems 

... Centring targets 
Targets that have to be observed from very different viewing directions or have to be 
suitable for measuring systems with different target requirements need a 
reproducible mechanical centring. Examples are nests for laser trackers that can 
accommodate both reflectors and photogrammetric targets (spherical mounted 
reflector, SMR, Fig. 6.8a, b), adapters with exchangeable targets (Fig. 6.8c) or tilt & 
turn targets for terrestrial laser scanning (Fig. 6.105).  

 
a) SMR target (API)  
 

 
b) Photogrammetric target 
(Hubbs)  

 
c) Rotatable and replaceable target 
(Meteriss, Rotbucher)  

Fig. 6.8: Examples of centring targets. 

... Probes  
Targeted probing devices have been developed for measuring “hidden” areas on an 
object which are not directly visible to the camera system, although it is also 
convenient to use them for general-purpose measurement. Fig. 6.9 shows probes with 
an offset measuring point P which is determined indirectly by the 3D coordinates of a 
number of auxiliary points Qi attached to the probe in a known local configuration. 
These points can either be arranged on a line (2–3 points) or spatially distributed (≥3 
points) with known 3D reference coordinates in the probe’s local coordinate system. 
The points Q can be either passive retro-reflective targets or active, self-luminous 
LEDs. Alternatively, point P can be sharp point, regarded as a single touch point, or a 
ruby sphere such as those found on CMM touch probes. In such a case, a correction 
must be made in software for the offset caused by the significant radius of the sphere. 
Hand-held probes are used in many industrial applications where they are tracked by 
at least two cameras simultaneously, with a new image pair being taken for each 
point measured by the probe. Such a system is often termed an online system.  
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The determination of the spatial position and orientation (pose, 6DOF) of a group 
of locally measured object points (locator) is carried out in single-camera systems via 
the inverse space resection (section 4.2.5). In multi-camera systems, the locator points 
are determined by spatial intersection. This is followed by a 3D similarity 
transformation of the locator points into the object coordinate system. 

Q1

Q2

Q3 Q1

Q2 Q3

Q4

P P

Q1

Q2 Q3

Q4

R

P

 

  

Fig. 6.9: Principle and examples of targeted measuring probes. 

If the probe is provided with an additional measuring point R (Fig. 6.9), which can be 
shifted relative to the reference points Q, then this can act as a switch, for example to 
trigger a measurement. If R is on a lever which is depressed by the operator, it is 
shifted slightly away from its nominal position. The photogrammetric tracking 
system can register this movement and trigger a recording of the measuring point 
position. 

... Hidden-point devices  
In order to measure the centre of drilled holes or edges of components, specially 
designed target adapters provide a fixed relationship between measurable targets 
and the actual point or edge to be measured. Manufacturing tolerances in the adapter 
directly contribute to the overall accuracy of the indirectly measured object point.  
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For high accuracy applications, individual adapters can be characterized in 
precise jigs to determine individual variability. This concept allows for a wide range 
of bespoke adaptors to be manufactured cost effectively. 

Q

P

drilled hole

adapter d

 

Fig. 6.10: Principle of adapter for drilled hole measurement. 

Fig. 6.10 shows the principle of an adapter for indirect measurement of the centre of 
a drilled hole. The visible target is mounted such that the measured point Q is located 
on the drilling axis at a known offset d to the hole centre P. 

adapter

Q1

Q2

Q3

P

edge

magnet g

 

Fig. 6.11: Principle of an edge adapter.  

The edge adapter displayed in Fig. 6.11 has three target points Qi, with a known local 
relationship to the straight line g which, on attachment of the adapter, represents an 
edge point P. Such adapters can be equipped with magnets for rapid mounting on 
metallic surfaces. If the points Q define a coded target, the photogrammetric system 
can identify the adapter type directly and calculate P automatically. However, 
multiple-point adapters with coded targets require significantly more surface area, so 
adapter size increases.  
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Fig. 6.12: Hexagon adapter cubes. 

The adapter cubes developed by Hexagon and Witte Barskamp (Fig. 6.12) have a 
coded target on each of 5 faces, as well as a measurement point or edge on the sixth 
side. The points in the coded targets, and the measurement point, are manufactured 
to have a relative reference coordinate accuracy of around 10 µm. By measuring the 
points automatically and analysing the spatial distances between them, a particular 
cube can be identified and its measurement point located in 3D. 

... 6DOF targets  
While the target types shown above are used exclusively to define the position of a 
point in space, 6DOF targets can also be used to measure spatial positions and angles.  

Fig. 6.13a shows the ArUco target that is widely used in computer vision. 6DOF 
information is calculated by inverse space resection using one camera and the four 
corner points of the target. The dimensions of the corner points have to be calibrated 
in advance. The interior pattern serves for the automatic identification of the target 
number. 

Fig. 6.13b shows a special target from the company Photron, which consists of a 
point coding, reference marks for the target position, two orientation patterns for the 
total rotation and two moiré patterns. With the help of the four reference points and 
the point coding, the 6DOF parameters of the target in the camera coordinate system 
can be calculated from one camera position by inverse space resection. The rotation 
κ around the local Z-axis and the XY-coordinates are of higher accuracy than the Z-
coordinate and the angles ω and φ around the local X- and Y-axes. The moiré fields 
are made of lenticular glass and change the position of the central bar depending on 
the viewing direction of the mark, so that the rotations around X and Y can be inferred 
with higher accuracy.  

The design of the target requires a significantly larger area than conventional 
targets. The accuracy of the 6DOF parameters depends, among others, on the size of 
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the reference point field and the imaged area of the points, respectively. Highly 
accurate measurements cannot be expected when using only one camera, according 
to the configuration for space resection (section 4.2.3). Point fields (locators) with 
measured reference points observed from several cameras also provide 6DOF 
parameters (see section 6.2.2). 

reference corners

Y

X

Z

ω

ϕ

κ

point coding

 

Moiré pattern

reference marks

Y

X

Z

ω

ϕ

κ

point coding

orientation pattern  
a) ArUco marker b) Photron marker 

Fig. 6.13: 6DOF targets. 

. Realization of reference systems 

.. References 

... Definition of scale 
Since photogrammetry is a triangulation method where image points represent 
spatial directions, at least one reference length for absolute scaling is necessary. Scale 
can be defined by given distances between distinct object points, scale bars, 
calibrated target systems or reference points with known coordinates. Alternatively, 
calibrated multi-camera systems with given relative and absolute orientation 
between the cameras provide absolute base lines which define scale in object space.  

Fig. 7.16 shows examples of photogrammetric scale bars consisting of coded or 
uncoded targets. Scale bars must be calibrated with an accuracy that fulfils the 
overall accuracy demand of the application. Since scale bars usually represent the 
standard Metre unit, traceability to the national standard should be guaranteed. See 
section 7.2.3.3 for detailed information about reference artefacts and traceability.  

Physical scale definitions are sensitive to environmental conditions. Besides 
mechanical stress like deformations or bending of the scale bar material, thermal 
expansion is the most critical issue that effects scale. The resulting length difference 
is given by 



 6.3 Realization of reference systems   

  

0ΔL α L ΔT= ⋅ ⋅  (6.2) 

with 
α thermal expansion coefficient 
L0 reference length (usually at 20° C) 
ΔT temperature difference 

Table 6.1 shows different materials used for photogrammetric scale bars and their 
impact on scale at a distance of 1m for 1° C and 5° C temperature changes.  

Table 6.1: Thermal expansion of different materials for L0 = 1 m.  

Material Thermal expansion 
coefficient [10-6 K-1] 

Effect ΔL for 1° 
 [mm] 

Effect ΔL for 5° 
[mm] 

Aluminium 23 0.0230 0.1150 

Steel 11.5 0.0105 0.0525 

Polyethylene 200 0.2000 1.0000 

Acryl 90 0.0900 0.4500 

Glass 8.5 0.0085 0.0425 

Carbon fibre -0.1 -0.0001 -0.0005 

Invar 1.5 0.0015 0.0075 

 
If temperature difference and expansion coefficient are known, eqn. (6.2) can be used 
to correct the length of a reference scale bar. If the material of the scale bar and actual 
object are the same, a length compensation might be negligible. In addition, note that 
especially for carbon fibre composite material, a change in relative humidity can 
cause significant length changes. 

The influence of a change in reference length on a photogrammetric 
measurement result is initially linear, i.e. all coordinates are scaled in the same way. 
This assumes that the measurement volume and in particular the measurement object 
are isotropic, i.e. the object does not consist of different materials with different 
coefficients of expansion. Since this is rarely the case in practice, the influence of a 
change in length can only be predicted to a limited extent. The standard deviation of 
a photogrammetrically measured point expands due to an uncertain reference length: 

2
2 2

0
XYZ P L

Ds s s
L

 
= +  

 
 (6.3) 
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where 
sP measurement uncertainty of a 3D point (without scaling error)  
D principal diagonal of measurement volume  
L0 reference length  
sL uncertainty of reference length 

This means that the ratio D/L0 controls the influence of an uncertain (changed) 
reference length, i.e. with large measuring volumes and short scale bars the influence 
of an incorrect scale can be serious. If reference length and diagonal are equal, the 
uncertainty of a measuring point increases only by the value of the change in length. 
From eqn. (6.2) it follows that the reference length should be as large as possible, but 
in practice this quickly comes up against technical or financial limits.  

Usually (certified) scale bars are calibrated by coordinate measurement machines 
or interferometric measurements, optimally by a certified calibration service. Scale 
bars can also be calibrated photogrammetrically together with a calibrated reference 
scale. However, it must be noted that the accuracy of derived lengths is less than the 
reference accuracy. The number of required scale bars and their position in object 
space are discussed in section 7.1.5.2.  

... Definition of reference coordinate systems 
In many applications, a workpiece or object coordinate system is required in which 
the final 3D information from photogrammetry is registered. A common way to 
achieve this is to incorporate reference points (control points) measured by a system 
with equal or better accuracy than the photogrammetric survey requires. They then 
serve, for example, as ground control points for indirect georeferencing in the bundle 
adjustment (section 6.9.1), for the orientation of camera-based scanning systems 
(example in section 6.9.2.2) or for the registration of measured which have point 
clouds (section 6.9.6). If local or global 3D reference points are available, scale 
information is inherently given. Where reference points are used, they must be 
visible, and individually identifiable, in the images. 

Fig. 4.13 and Fig. 6.23 show examples of a reference tool that incorporates pre-
calibrated coded targets. During the photogrammetric process these targets are 
measured automatically, hence providing a local coordinate system. However, if 
object coordinates are required in a well-defined object coordinate system, a 
subsequent 3D transformation into the target system is necessary. The accuracy and 
distribution of reference points can be critical. As a rule of thumb, 3D reference 
coordinates should never be less accurate than the final required accuracy of the 
photogrammetric survey. Since photogrammetry is often the method of highest 
accuracy available, the generation of adequate control points can be difficult, time 
consuming or expensive. It must be noted that the spatial distribution of control 
points should represent the whole measurement volume in order to avoid any 
extrapolation effects. It should also be noted that control points should be integrated 
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into the photogrammetric calculations (bundle adjustment) with their realistic a 
priori accuracy or statistical weight. Finally, the system for measuring control points 
should identify the same physical object point as it is done by photogrammetry. That 
means, that the physical and the optical centre of a reference target must be identical. 
One option is offered by high-quality adapters (nests) which, for example, can 
support either a photogrammetric target or a retro-reflector for laser trackers. 

.. Measurement systems 

Diverse geodetic and industrial systems are typically used to measure reference 
points. These include total stations, multistations and laser trackers, and their use 
will depend on the required accuracy and their availability. Note that GNSS methods 
are particularly used in UAV photogrammetry (section 6.11.2), but they are not 
discussed further here.  

... Video total stations and multistations 
Video total stations (video tacheometers) are based on conventional electronic total 
stations with a digital video camera integrated into the optical path. They can be used 
either with prism reflectors or reflectorless. The instruments incorporate an absolute 
distance meter with accuracies up to 1 mm ± 1 ppm and are nowadays available with 
motorized rotations. While electronic angular read-out is used for acquiring 
horizontal and vertical directions, the video image can be digitized and processed to 
enable automatic target detection and point measurement.  

  

Fig. 6.14: Total station with integrated camera 
(Topcon GPT-7000i).  

Fig. 6.15: Multistation (Leica Nova MS50).  
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If object targets are used, and detected by automatic, high-precision image 
processing (see section 6.2.1), angular accuracies of 0.15 mgon (5 arc sec) can be 
achieved. As an illustration, Fig. 6.14 shows the Topcon GPT-7000i total station. This 
uses a colour camera with 640 x 480 pixel and optics that can be operated in zoom or 
wide-angle mode. 

Multistations extend the functionality of a video total station by adding a laser 
scanning unit and an optional GNSS/GPS receiver. Tasks like control-point 
measurement and laser scanning can be combined on site, and incorporated within 
a global coordinate system by GNSS. Fig. 6.15 illustrates this with the Leica Nova 
MS50 multistation. This incorporates a wide-angle camera and a co-axial camera both 
with a 5 Mpixel sensor whose interior and exterior orientations are calibrated to 
enable photogrammetric processing. 

... Laser trackers 
Laser trackers use a dynamically directed laser beam to track and measure the 3D 
coordinates of the centre of a retro-reflecting corner cube (see Fig. 3.149). This is 
typically mounted in a spherical housing (spherically mounted retro-reflector - SMR) 
and used as a manual touch probe to measure object points and surfaces (Fig. 6.16). 
Angle encoders on the two deflecting axes provide horizontal and vertical angle 
values, and range to the reflector is determined either by interferometry or, now more 
commonly, by an absolute optical range-measuring technique. Servo drives on the 
rotation axes, and return-beam sensing, keep the beam on track as the reflector is 
moved, enabling a continuous, dynamic path measurement. Laser trackers are used 
for the measurement of individual object points, scanning large free-form surfaces, 
as large scale deflection gauges, and for the dynamic tracking of moving objects.  

   

Fig. 6.16: Object measurement by laser 
tracking (API).  

Fig. 6.17: Absolute Tracker  
Leica AT 960. 

Fig. 6.18: Laser tracker Faro 
Vantage S6.  
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High-precision angle and range measurement results in measured 3D coordinate 
accuracies of better than 0.1 mm, at object distances of up to 40 m. Target holders, 
also called nests, can be used as fixed mounting locations for the SMRs. These allow 
the reflectors to be rotated towards tracker stations with minimal positional error. In 
addition, exchangeable photogrammetric targets can also be used in the same nests, 
re-locating to the reflector position with an uncertainty of about 5–10 µm.   

There are currently three manufacturers of 3D laser trackers: Leica Geosystems 
(part of Hexagon MI), Faro Technologies Inc., and Automated Precision Inc. (API). 
Fig. 6.17 and Fig. 6.18 show examples of these systems. 

laser tracker

digital camera

hand probe

  

Fig. 6.19: Left: Laser tracker combined with a digital camera for measurement of position and 
orientation of a hand-held probe (Leica T-Probe); right: hand-held probe with internal orientation 
sensors (API vProbe).  

All three manufacturers also offer an enhanced system which tracks a target probe in 
all six degrees of freedom (6DOF). The Leica system is illustrated in (Fig. 6.19). Here 
the probing device (T-Probe) has an embedded retro-reflector which is tracked in 3D 
by the laser beam as normal. LED targets, known with the reflector in a local probe 
coordinate system, surround the reflector and are imaged by a digital zoom camera 
(T-Cam) mounted above the tracker head or integrated within it (depending on 
model). By means of a standard photogrammetric space resection (section 4.2.3) the 
angular orientation of the probe can be calculated. With known 3D location and 
angular orientation, an offset touch point, used for measuring object points, can be 
located in 3D. In addition to a hand-held probe there is also a hand-held surface 
scanner (T-Scan, see also Fig. 6.47) and a special probe for robot and machine control 
(T-Mac). 

API’s vProbe uses internal sensors to determine the probe’s pose. These are 
assumed to be tilt sensing for roll angle and a pinhole camera view of the laser beam 
behind the retro-reflecting prism for sensing pitch and yaw. The Faro probe is a 
relatively new development and its operational concept is not yet known, but appears 
to have some operational similarities with the Leica probe. 
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. Interactive multi-image processing systems 

.. Programs with CAD functionality 

Interactive, multi-image processing systems permit the measurement of image points 
in more than two images. Here the operator checks point identification and 
correspondence. As well as pure coordinate measurement, these systems are 
particularly used for the reconstruction of graphical features, such as lines, or the 
production of virtual 3D models. The data acquired are usually transferred to a CAD 
program for further processing.  

Typical characteristics of interactive multi-image processing systems are: 
– Project management: 

All transformation parameters (interior and exterior orientations, datum 
definitions) and measurement data are stored, and are therefore still available 
when the project is next loaded.   

– Image processing: 
The contrast, sharpness and brightness of the images can be enhanced1 for ease 
of use. Image rectification or orthophoto production can be integrated into the 
processing system. 

– Automation: 
Functions for the detection and measurement of point features not only allow 
automated interior orientation but they also expand interactive systems to 
photogrammetric online or offline systems. 

– Superimposition of graphical information: 
Digital images and graphical information (vector data) can easily be 
superimposed, so permitting improved interactive control of the measurement. 

– Integration into CAD environment: 
Display and measurement of images and 3D CAD processing of the resulting 
object data can take place within one closed system. 

The PHIDIAS (Phocad) interactive photogrammetric system (Fig. 6.20) demonstrates 
the integration of digital photogrammetry with the 3D CAD environment. The system 
is embedded in the Microstation CAD program (Bentley) which therefore makes 
available all the standard CAD functions for the photogrammetric reconstruction of 
the object. The system is well suited to the complex graphical reconstruction of 
objects such as occur in architectural applications or in the as-built documentation 
of industrial plants. Integrated bundle adjustment with self-calibration, as well as 
functions such as mono and stereo plotting, are included within the scope of the 
system.  

 
1 Manipulating images can alter the imaging geometry. 
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Fig. 6.20: PHIDIAS-MS interactive multi-image system (Phocad).  

 

Fig. 6.21: iWitness interactive multi-image system (Photometrix).  

Low-cost systems, with a basic range of construction tools for the simple generation 
of 3D models, have a much more restricted scope and performance. Examples of such 
systems, which have become widespread in recent years, include Photomodeler (EOS 
Systems) and iWitness (Photometrix). Here the level of user guidance and automation 
in the orientation process ensure that even non-specialist users can deliver usable 
results after a short learning period. 

Although the iWitness system (Fig. 6.21) is mainly designed for accident and 
crime-scene recording (see section 8.8.1), it can essentially be used to record any 
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scene of choice. It supports a database of commercially available, off-the-shelf digital 
cameras which is constantly updated. Notable features are the integrated camera 
calibration which makes use of colour-coded targets (see section 6.2.1.4), as well as 
robust orientation algorithms which can handle the often unfavourable imaging 
configurations typical in forensic measurement (see Fig. 8.88). 

.. Structure-from-motion programs 

Various software packages are based on the principle of structure-from-motion 
(section 5.5.2.2) and all provide similar functions:  
– processing of arbitrary image configurations, acquired using one or more 

(uncalibrated) cameras; 
– simultaneous calibration of the imaging cameras; 
– tie point measurement by interest operators and feature descriptors (section 

5.4.3), often based on the SIFT operator;  
– automatic matching of image features (tie points) as input for a dense point 

cloud; 
– inclusion of control points and scale information by manual or semi-manual 

point measurements; 
– robust pre-orientation and subsequent bundle adjustment; 
– post-processing to generate dense point clouds;  
– filtering and segmentation of point clouds; 
– triangular meshing of the point cloud to provide a surface model; 
– texture mapping of the surface model; 
– calculation of orthophotos and image mosaics. 

Measurement and matching of image features (tie points) requires objects with a 
reasonable degree of texture. Interactive control and manipulation by the user are 
often highly restricted since fully automated processing by non-skilled users is the 
approach normally favoured. The particular camera calibration model used for 
interior orientation is not always documented. These programs may well generate 
results even if camera construction is not stable or imaging configurations are weak. 
As a result, this can lead to deformations in the object space which are difficult to 
detect at first glance. Assistance via output logs and analysis functions for quality 
assessment are often reduced to a minimum. 

Typical software packages with the functionality listed above include: Agisoft 
Metashape (Fig. 6.22), RealityCapture, PIX4Dmapper, ContextCapture, MicMac, 
COLMAP and Meshroom.  
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Fig. 6.22: Structure-from-motion software as represented by Metashape (Agisoft).  

.. Offline processing systems for industrial applications 

Software packages are available for industrial applications in optical metrology 
which accept multi-image configurations using both simple and coded targets. These 
normally provide the following functionality: 
– fully-automatic measurement of target points to sub-pixel accuracy (0.02 to 0.05 

pixel); 
– fully-automatic identification of measured points identified by coded targets; 
– bundle adjustment with self-calibration; 
– robust detection and elimination of outliers; 
– tools for deformation analysis; 
– graphical output of measurement results; 
– data interfaces to CAD and industrial metrology software. 

 

Fig. 6.23: User-interface of AICON 3D Studio (Hexagon).  
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In most cases these packages are used for the calculation of the 3D coordinates of 
targets and for camera calibration. They are often associated with offline 
photogrammetry (see section 6.6.1.1). They are also used to calibrate and orientate 
online photogrammetry systems. 

Commercial industrial processing systems, in different configurations, are 
available, for example, from Hexagon (3D Studio, originally from AICON Fig. 6.23), 
ZEISS IQS (TriTop), GSI (VSTARS), Photometrix (Australis) and VMS.  

.. Educational software 

Software solutions are available for educational purposes with emphasis on 
procedure testing, parameter variation, simulations and detailed analysis of results 
rather than automation of image measurements or 3D reconstructions. Some 
examples are given below.   

As part of an ISPRS initiative, the GRAPHOS software package (Fig. 6.24) mainly 
adopts structure-from-motion approaches (section 5.5.2.2) and is a joint development 
by several international universities. It implements a range of algorithms for interest 
operators, feature descriptors and feature matching and includes a bundle 
adjustment program for calculation of image orientations and 3D points. In addition, 
dense point clouds can be generated. Individual process steps can be parametrized, 
and results can be analysed graphically or numerically. 

 

Fig. 6.24: GRAPHOS user interface (ISPRS). 

The PhoX program (IAPG Oldenburg, Fig. 6.25) is mainly directed at the analysis of 
images and their calibration and orientation parameters. Different methods for image 
measurement are provided. Functions such as space resection and DLT, intersection, 
monoplotting or 2D and 3D coordinate transformations allow for a number of 3D 
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calculations. Diverse image processing methods, as well as methods for rectification 
and orthophotos, are included. PhoX allows for the generation of synthetic images as 
well as different Monte-Carlo simulations. Different exercises allow for detailed 
testing of fundamental photogrammetric tasks in order to generate a deeper 
knowledge of complex methods. 

 

Fig. 6.25: PhoX user interface. 

The VRscan3D programme (Fig. 6.26) is a simulator for terrestrial laser scanning 
within a programmable game environment (Unreal Engine). Users can interactively 
move in 3D scenes, select scanner and target positions and scan the virtual object. By 
intersecting the moving laser beam with the object scene, point clouds are created 
that correspond to the specifications of real scanners. In addition, the programme 
generates a panoramic image for each point of view. Other tools for generating 
synthetic point clouds from virtual scanners include Blensor, Blainder or Helios. 

       

Fig. 6.26: Left: virtual scanning in VRscan3D; right: resulting point cloud (IAPG). 
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. Tactile probing systems 

.. Measurement principle 

This section presents optical 3D systems where the object is measured by mechanical 
probes or adapters (examples in Fig. 6.27 and see also section 6.2.2.2). The spatial 
orientation (pose) of the probe within the measurement space is determined by 
photogrammetric means every time a measurement is triggered. The probe (locator) 
is provided with at least three reference targets whose 3D coordinates, together with 
the 3D coordinates of the touch point, are known in a local probe coordinate system 
by prior calibration. If there are more than three reference targets visible on the probe, 
over-determined measurements are possible which contribute to an increase of 
accuracy and reliability in the measurement. The image-based measurement of the 
probe can be achieved using a single camera (section 6.5.2) or a multi-camera system 
(section 6.5.3). The spatial position of the probing tip, which is not directly targeted, 
can be transformed subsequently from the local probe system into the object 
coordinate system (Fig. 6.33). The actual contacting element on the probe is normally 
a ball, often a ruby sphere. A correction is normally made for the radius of the ball in 
order to determine the corresponding point on the object itself. 

  
a) Probe for single camera system (Metronor)  b) Probe for multi-camera system (GSI)  

Fig. 6.27: Photogrammetric probes. 

Depending on probe type, measurement recording is made: 
– by depressing a button, or activating a switch on the probe, which remotely 

triggers image recording and measurement; 
– by the use of a touch-trigger probe, commonly seen on coordinate measuring 

machines, which remotely triggers an image recording and measurement when 
the probe tip is touched lightly against the object surface; 

– by mechanical displacement of one of the probe’s reference points, which is then 
detected by the cameras and used to record a measurement (see section 6.2.2.2); 

– by operation of an external switch, mouse click, voice or keyboard command. 
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A computer usually controls the camera, illumination (flash) and image transfer and 
also implements image processing and coordinate calculations. The computer can be 
located outside (laptop, host) or inside the camera. In the latter case, image 
processing (point measurement) is done within the camera and only a few image 
coordinates are transferred to the host (example in Fig. 3.121b). 

.. Single-camera systems 

... Camera with hand-held probe  
Based on the principle of (inverse) space resection (single image, 6DOF calculation, 
see section 4.2.5), a single camera can determine the current spatial position of a 
measurement probe in the camera’s coordinate system or another reference system 
(Fig. 6.28). The reference targets can be distributed spatially, in a plane or simply 
arranged on a straight line. Depending on the chosen arrangement, the number of 
degrees of freedom which can be calculated drops from 6 (spatial) to 5 (straight line). 
The 3D coordinates of the touch point are generated according to eqn. (4.43). 
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Fig. 6.28: Principle of a single-camera system with a 
touch probe for object measurement. 

Fig. 6.29: Example of a single-camera 
system with 3D touch probe (Metronor). 

It is not possible with a single-camera system to identify the probe targets on the basis 
of their measured 3D coordinates, as is possible with stereo or multi-camera systems 
(section 6.6.1.2). Point identification must therefore be achieved by using coded 
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targets (section 6.2.1.4) or unique target separations, e.g. enabling the use of cross 
ratios in the image (see section 2.2.1.6). 

Fig. 6.29 shows the SOLO system (Metronor). It consists of a factory-calibrated 
camera and a hand-held touch probe with 5 LED targets arranged on a plane. The 
operator records a measurement by depressing a switch on the probe. The accuracy 
of a point-pair separation (distance measurement) in a measuring volume of 1.5 x 1.5 
x 1.5 m3 is 0.12 mm (2-sigma). 

... Probing system with integrated camera 
Self-locating cameras automatically determine their own orientation with respect to 
a fixed or moving set of reference targets. 

The Humanetics ProCam Crash system is a touch probe which incorporates a self-
locating camera. The probe consists of a digital camera, a recording button and a 
bayonet connector for attaching a range of exchangeable probe tips which are 
calibrated with respect to each other in a local xyz system (Fig. 6.31, Fig. 6.30). A 
system of reference points with known positions in a superior XYZ coordinate system 
is established on the borders of the measuring volume. If the measuring probe is 
positioned in such a way that the camera images a minimum of three reference points, 
the exterior orientation of the probe can be calculated by space resection. Coded 
targets provide automatic identification of the reference points. 
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Fig. 6.30: Probe with integrated 
camera (Humanetics ProCam Crash).  

Fig. 6.31: Principle of a probing device with integrated 
camera. 

The measuring probe is connected to the control computer and a synchronized image 
is acquired when the operator records a measurement. The images of the reference 
points are detected and measured automatically. A measuring accuracy of about 
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0.1 mm can be achieved in a variable measuring volume that is limited only by the 
dimensions and accuracy of the reference point field. The reference field can be 
mounted in a fixed position, or it can be mobile. By adapting the size of the reference 
points, the distance to the reference field can be freely chosen. 

 

Fig. 6.32: Mobile probing in measurement cabin (Humanetics).  

Compared to the usual online systems, the principle of the self-locating measuring 
probe has the advantage that the measuring accuracy is independent of the 
intersection angles of image rays. In addition, any number of object points can be 
measured without re-arranging the camera configuration, provided a sufficient 
number of reference points are visible. For large objects to be measured from all sides, 
special measurement cabins can be constructed which contain a large number of 
reference points (Fig. 6.32). Prior to online use, these reference points are coordinated 
by an offline photogrammetric system. 

.. Stereo and multi-camera systems 

Multi-camera systems with tactile probing use the method of intersection to calculate 
the 3D coordinates of the probe’s reference points. The orientation and calibration of 
the cameras must either remain constant or be continually adjusted by observing a 
reference point field fixed relative to the object.  

Fig. 6.33 shows the principle of a dual-camera system. Firstly, the targeted 
reference points on the probe are calculated by intersection in the camera’s 
coordinate system XMYMZM. The coordinates of the probing tip P, given in locator 
system xyz, are then transformed into the coordinate system XMYMZM by 3D similarity 
transformation. If the final coordinates are required with respect to a workpiece 
coordinate system, an additional 3D transformation into the coordinate system XYZ 
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is required. The workpiece or object coordinate system can be established, for 
example, by the 3-2-1 method (see section 4.4.3.2).  
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Fig. 6.33: Measuring principle of a multi-camera system with tactile probing.  

Fig. 6.34 is an example illustration of the set-up of a dual-camera online system with 
tactile probing. If the cameras can be positioned individually, there is flexibility in 
adapting the imaging configuration to the measurement application. However, the 
cameras must then be oriented on site. If local object reference points are available 
(e.g. targets around door in Fig. 6.34) cameras can be re-oriented continuously to 
allow for the fact that relative movements between cameras and object cannot be 
avoided. For systems with cameras fixed in a housing (examples in Fig. 3.127 or Fig. 
6.45), the baseline and the measuring volume are pre-defined and re-orientation is 
unnecessary. Measurement can therefore start immediately. 

     

Fig. 6.34: Online metrology system with manual tactile probing (GSI).  

The accuracy can be estimated according to eqn. (3.49) for multi-camera systems and 
eqn. (4.88ff) for stereo systems. The calibration uncertainty of the reference points on 
the probe can be propagated through to an uncertainty at the probing tip. In addition, 
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manual probing itself creates a certain measurement error, e.g. due to the manual 
handling. The typical measurement accuracy of tactile probing systems is about 
0.2 mm at a distance of up to 3 m. 

The available commercial systems differ mainly in terms of the operating 
procedure and the strategies for orientation and error detection. Mobile online 
systems for point-by-point measurement are available, for example, from ZEISS IQS 
(PONTOS), Metronor (Duo), Hexagon (MoveInspect XR8), GSI (VSTARS-M), AXIOS 3D 
(CamBar).  

. Industrial measuring systems for single point features  

.. Mobile industrial point measuring-systems 

... Offline photogrammetric systems 
An offline photogrammetric system has these characteristics (see section 3.2.1.1): 
– photography of the object with at least two images from one or more cameras; 
– subsequent orientation of the set of images, with simultaneous camera 

calibration and 3D point determination by bundle triangulation. 

In principle, the above two steps are separated in time and, possibly, location (offline, 
see Fig. 3.37) even if some systems allow for the direct transfer of images for first 
calculations in parallel. As in much of photogrammetry, there are no restrictions in 
terms of imaging sensors, object targeting and image configuration (number and 
position of images). 

Offline photogrammetry is very common in industrial applications where the use 
of digital cameras and simple or coded retro-reflective targets is an integral part of the 
process. As a result, automatic orientation and image measurement are possible. 

Object measurement with industrial offline systems has the following 
characteristics: 
– sequential image acquisition with high-resolution digital cameras with internal 

image storage and, possibly also, processing within the camera; optional image 
transfer via WiFi and ring flash; 

– object marking with circular retro-reflective targets; 
– coded targets for automated generation of approximate values and image 

orientation; 
– calibrated reference tools which establish a local 3D object coordinate system; 
– bundle triangulation with self-calibration; 
– digital point measurement with sub-pixel accuracy (0.02–0.05 pixel); 
– typical number of images between 10 and several hundred (no limit in principle, 

number also depends on the requirements for camera calibration); 
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– typical number of images per object point between 6 and 20 (no limit in 
principle); 

– typical object dimensions between 1 m and 15 m (no limit in principle); 
– typical duration for object recording and processing between about 10 min and 

60 min; 
– achievable relative accuracy about 1:100 000 to 1:250 000 (RMS 1-sigma) or  

1:50 000 to 1:100 000 (length measurement error, see section 7.2.3). 

 

Fig. 6.35: Object recording using a photogrammetric offline system (GSI) 
(lower left: detail enlargement showing coded targets).  

Fig. 6.35 shows the recording of an object which is fitted with a number of simple 
targets (tie points) and coded targets. The use of coded targets ensures that all target 
types can be reliably identified and correlated across all images and this, in turn, 
enables fully automatic image orientation (compare with section 4.4.4.2). Suitable 
software packages for the related analysis are presented in section 6.4.3. 

Fig. 6.36 shows the MaxShot 3D camera system from Creaform which uses 
projected laser lines to show directly on the object the area being imaged (field-of-
view). The camera and processing computer are connected by cable so that the 
current image is immediately oriented and image points can be continuously 
measured. If the image has an insufficient overlap with the previous image, the 
projected frame appears in red, otherwise in green. A 3D point cloud of targets is 
thereby calculated sequentially online in a process which ensures there is a sufficient 
number of images and suitable intersection geometry. After object recording is 
complete, a final bundle adjustment is calculated using all images. 

The achievable accuracy in object space is strongly dependent on the imaging 
configuration and on the stability of the camera during image acquisition. To achieve 
the highest accuracies, the configuration should be chosen so that the camera can be 
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simultaneously calibrated during measurement (see section 7.3.1). Object points of 
interest should have good and multiple ray intersection angles and be uniformly 
distributed over the image formats. The points themselves should mostly be identified 
by simple artificial targets (signalized), or coded targets, and features such as holes 
and edges identified by targeted mechanical adapters (see section 6.2.2.3). 

 

Fig. 6.36: Object measurement using an offline photogrammetry system  
with active projection of the field-of-view (Creaform). 

Offline photogrammetry is also changing in concept. With the widespread availability 
of digital cameras and digital image processing, the conventional separation of image 
acquisition at object location, and data processing in the lab, is vanishing. Instead, 
the entire object measurement can be completed on-site. Cameras with integrated 
image processing and direct computer links enable a seamless transition from 
classical offline photogrammetry to online photogrammetry, as presented in the 
following sections. 

... Online photogrammetric systems 
Online photogrammetric systems enable the direct measurement of 3D object 
coordinates much in the manner of a coordinate measuring machine. In the majority 
of systems, at least two synchronized digital cameras are used for image acquisition, 
each with known calibration values and pre-determined orientation with respect to 
an established coordinate system. Online systems designed for tactile object probing 
have already been discussed in section 6.5.3. This section presents systems which 
offer contactless coordinate measurement of multiple (targeted) points in real-time, 
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and which directly transfer the 3D coordinates to a further process. Area-based 
probing systems are discussed in section 6.7.  

Camera operation, illumination (flash) and image transfer are controlled by a 
networked computer which also provides image processing and coordinate 
calculations. The computer can be located externally (laptop, computer trolley) or 
within the camera. In the latter case, image processing (point measurement) is 
performed directly within the camera, so that only a small number of image 
coordinates are transferred to the post-processing computer (example in Fig. 3.121b). 

.... Concepts 
There are various configurations and applications for online systems, such as:  
– dual-camera system with manually tracked touch probing (as described earlier, 

see Fig. 6.34); 
– dual-camera system for the guidance of medical instruments or other sensors 

(Fig. 8.85); 
– three-camera system for tracking dynamic processes, for example the spatial 

movement of a robot (Fig. 6.88);  
– multi-camera system for analysing human motion (MoCap - motion capture), 

typically for applications in medical science and entertainment industries 
(6.10.3, Fig. 6.98); 

– multi-camera systems for measuring machine oscillations, e.g. fitness 
equipment; 

– multi-camera system for deformation monitoring by repeated measurements of a 
set of reference points (example application in Fig. 6.37). 

 

Fig. 6.37: 3D online system with fixed set-up for machine control (ZEISS ARAMIS).  
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.... Calibration and orientation 
Calibration and orientation of online systems can be performed in various ways 
according to the following schemes (Fig. 6.38):  
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Fig. 6.38: Strategies for calibration, orientation and point measurement for online systems. 

a) Separate pre-calibration, orientation and point measurement: 
The parameters of interior orientation of the cameras are determined separately 
from the process of object measurement, for example by test field calibration. All 
cameras are oriented by simultaneous imaging of a reference field that defines a 
local 3D coordinate system. Subsequently the object is measured point by point, 
by intersection and 3D transformation of the target points and the probing tip. 

This approach requires stable interior orientation of the cameras for the 
complete period between calibration and completion of the measurement. In 
addition, the exterior orientation of the cameras must be kept constant, for 
example by the use of fixed mechanical camera mountings or stable tripods. 

b) Calibration and orientation using a reference object added to the measuring 
object or measurement space: 
A calibrated reference field is positioned on or around the object to be measured 
and provides local 3D control points or reference lengths. After setting up the 
cameras, their positions and orientations can be calculated from the reference 
data by space resection (separately for each camera) or by bundle triangulation. 
Under some circumstances, the interior orientation can be determined 
simultaneously if the reference field provides a suitable and sufficient number 
and distribution of control points, or if it is moved and photographed in a number 
of different spatial positions. Point measurement follows as in (a). 

c) Integrated orientation and point measurement: 
The orientation of the cameras can be integrated with the point measurement 
itself. For each new measurement of the probe position, the cameras also record 
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a reference field which is used to check or recalculate the exterior orientations. 
Such a method is essential if stability of the cameras cannot be ensured. 

d) Stable relative orientation and 3D transformation: 
Camera calibration and relative orientation are done by bundle adjustment. If the 
relative orientation is sufficiently stable, the probe is then located in any 
convenient coordinate system at the same time as a stable set of reference 
coordinates is measured. The probe tip coordinates are then transformed into the 
target system by a 3D similarity transformation. 

.... Measurement accuracy 
Assuming that the system components are the same in each case, the measuring 
accuracy of online systems will be less than that of offline systems, mainly for the 
following reasons:  
– small number of images for each point measurement (default: 2); 
– possibly different measuring accuracies in X, Y and Z (see section 4.3.6.2); 
– the strict stability requirements for interior and, especially, exterior orientation 

are difficult to meet; 
– synchronization errors of cameras lead to coordinate errors in dynamic 

measurement (section 6.10.1); 
– if an additional measuring sensor is incorporated into the online system, e.g. a 

touch probe sensor (section 6.5.3) or a surface scanning sensor (section 6.7.2), the 
orientation uncertainty of the added sensor will increase the overall online 
system uncertainty; 

– contact of the probe with the surface, and the triggering of the cameras, must 
occur simultaneously; unless a self-triggering type of probe is being used, this is 
dependent on the operator’s skill. 

With these points in mind, commercial online systems offer an accuracy in the object 
space of about 0.1–0.2 mm for a measuring distance up to 2 m (assumptions: image 
scale m = 100, base length b = 2 m). This corresponds to a relative accuracy of about 
1:10 000 to 1:20 000, or an image measuring accuracy of 1 µm. Stereo systems based 
on off-the-shelf industrial cameras provide significantly lower accuracies of the order 
of 0.1 to 1 mm. They are mainly used in medical applications (section 8.7.2). 

... Stereo vision systems 
Stereo vision systems are dual-camera systems in a fixed mounting which provide an 
online 3D measurement space for applications such as the following:  
– location of manual touch probes and surface sensors for object measurement; 
– navigation of autonomous vehicles (driver-assistance systems, detection of 

obstacles); 
– 3D navigation for computer-controlled surgical operations; 
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– control of manufacturing robots (location of workpieces); 
– mobile mapping (3D reality capture of indoor and outdoor scenes from mobile 

platforms); 
– tracking people and movement; 
– examination using stereo endoscopy (medicine, material testing). 

Fig. 6.39 shows a robot with a stereo camera that is controlled by a micro-controller 
(Raspberry Pi). Fig. 6.40 shows a stereo camera which has a base of 60 mm and is 
used to assist in neuro-navigation and related techniques in dental and aural surgery 
(see also section 3.5.4). 

  

Fig. 6.39: Robot with stereo cameras  
(Boredom Projects).  

Fig. 6.40: Stereo camera system for small 
measurement volumes (AXIOS 3D).  

Diverse low-cost stereo cameras are available for applications at lower accuracies (see 
section 6.7.6). In contrast to the examples of very stable camera constructions shown 
in Fig. 6.40 or Fig. 6.45, low-cost systems have simpler mechanical designs for the 
camera housings and fixtures. They must therefore either be calibrated over shorter 
time intervals or significantly lower accuracies must be accepted. A stereo camera’s 
measurement volume is determined by its base, focal length and direction of camera 
axes. It is clear from Fig. 6.41 that the height-to-base ratio h/b can be improved by a 
suitable choice of convergence angle between the camera axes. It is therefore possible 
to reduce the object distance and improve the accuracy in both XY and Z (towards 
object), see also section 4.3.6.2. 

Based on the properties of digital video cameras, the measurement frequency of 
stereo cameras lies between 10 and 50 Hz. Higher frequencies can be achieved by the 
use of high-speed cameras which can be configured to measure in the same way as 
video cameras. Using a stereo mirror attachment (section 3.4.3.9), a stereo system can 
be created with a single camera. 
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Fig. 6.41: Measurement volume and height-to-base ratio for different stereo configurations. 

Example 6.2: 
A stereo camera system (c = 12 mm) is used in two configurations according to Fig. 6.41. In the 
convergent setup, the cameras can be positioned closer to the object with a larger base. For an image 
or parallax measuring accuracy of 0.5 µm, according to eqn. 4.88 and 4.91, the following accuracies 
are achieved in object space: 

Imaging parameters: b = 600 mm h = 600 mm b = 700 mm h = 420 mmm 
= 50 h/b = 1 m = 35 h/b = 0.6 

Measurement accuracy: sX = 0.025 mm sX = 0.017 mm 
 sZ = 0.025 mm sZ = 0.011 mm 

With convergent geometry a significantly higher measurement accuracy can be achieved, by as much 
as a factor of 2 in the viewing direction. 

.. Static industrial online measuring systems 

Some specialized and repetitive measuring tasks are well suited to the development 
of tailored solutions with a high degree of automation. In contrast to mobile systems, 
these are static systems which occupy a semi-permanent position within a factory. 
They can be designed so that the photogrammetric measuring components (such as 
cameras, projectors, devices for rotating the object) can remain calibrated for a long 
period and the cameras can be oriented automatically using a fixed and known 
reference point field. Such a system is in a permanent state of readiness for repeating 
the same or similar measurements within a fixed, limited volume and with a 
considerable degree of automation. 

Multi-camera photogrammetric systems can also be integrated directly into 
production lines for purposes of quality control. The measuring problem usually 
concerns a limited variety of parts, so that a fixed arrangement of cameras, light 
sources and control points is possible. The function of such a system is real-time 
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measurement of the objects followed by quality analysis and the transfer of results to 
the manufacturing control system. 

Stationary online systems using pattern projection for surface measurement are 
presented in section 6.6.2.3. Flexible systems incorporated into production processes, 
e.g. for robotic inline manufacturing, are discussed in section 6.9.5. 

... Tube inspection system  
Hexagon’s TubeInspect offers a solution for the automatic 3D measurement of formed 
tubes, rods or wires, a typical example being hydraulic brake lines for the automotive 
industries. This non-contact approach has replaced the previous use of gauges. 

cameras

pipe

mounting plate with reference points

light sources   

Fig. 6.42: Online system for check measurement of tubes (Hexagon).  

The system is arranged on several horizontal planes distributed vertically (Fig. 6.42). 
The upper two planes contain up to 16 CMOS industrial cameras. The lower two 
planes consist of an illumination array of light sources and a transparent mounting 
plate with spatially distributed reference points which are used for camera 
orientation. The tube to be measured is placed on the mounting plate in an arbitrary 
position.  

In each image, the tube appears as an easily identified black contour against a 
bright background (Fig. 6.43). Bending points, bending angles, straight line sections 
and arcs can be determined fully automatically by digital multi-image processing. 
The system also calculates correction data with respect to given nominal values that 
are directly transferred to the bending machine for adjustment of the manufacturing 
process (Fig. 6.44). The measuring accuracy has been reported as 0.3–0.5 mm for pipe 
diameters between 4 mm and 200 mm and within a measuring volume of about 2.5 x 
1.0 x 0.7 m3. 
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Fig. 6.43: Backlit image of a tube (Hexagon).  Fig. 6.44: Comparison with nominal values in tube 
measurement (Hexagon). 

... Steel-plate positioning system  
A stereo camera system can be applied to the task of three-dimensional online 
positioning of components in manufacturing and assembly plants. This is illustrated 
by the following example of an online stereo system (AXIOS 3D CamBar B2) used to 
position steel plates for ship construction, with dimensions up to 20 m x 30 m, on 
laser cutting machines.  

  
a) Stereo camera  b) Camera attached to positioning system (red circle) 

Fig. 6.45: Online measuring system for positioning steel plates (AXIOS 3D).  

The system itself only has a measurement volume of 280 mm x 360 mm and an offset 
distance of 600 mm. It is mounted on a coarse positioning device which places it over 
an area to be measured on the plate. Cross-shaped marks are etched on the surface of 
the plate and have known (nominal) positions in the component’s local coordinate 
system. The stereo system can identify the marks automatically, even under highly 
variable illumination conditions, and can determine their 3D locations relative to 
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known reference drill holes. Depending on the quality of the target marks, 
measurement accuracy can be as high as a few hundredths of a millimetre. The entire 
plate can be positioned to an accuracy of 0.1 mm in the machine coordinate system. 
Fig. 6.45 shows the stereo system in place in the factory. 

... Multi-camera system with projected point arrays  
A non-targeted, textureless free-form surface can be measured point by point, by 
projecting an array of targets onto the surface (section 3.6.3) and imaging these by a 
number of cameras synchronized with the projection device. The projector’s 
orientation needs not be known as the point coordinates are calculated by intersected 
rays from oriented cameras, as is the case with conventional targets. However, if the 
projector’s relative orientation is known then the target points can be projected onto 
pre-programmed locations.  

  
a) Schematic construction b) Windscreen positioned for measurement 

Fig. 6.46: Multi-image measuring system with laser point projection for the 3D measurement of 
windscreen surfaces (Mapvision).  

Fig. 6.46 shows a multi-camera measuring system with target point projection, used 
to measure car windscreens (Mapvision). The scanner’s projector emits ultraviolet 
light rays which cause fluorescence when they penetrate the glass. The resulting light 
spots on the surface of the glass are imaged by cameras sensitive to the relevant 
wavelength. The measuring accuracy of the system has been reported as 0.2 mm. 
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. Systems for surface measurement 

.. Overview 

... Active and passive systems 
For the optical 3D measurement of free-form surfaces, different methods are in use 
depending on object properties, required measuring time, accuracy und point 
density. The optical systems described here all offer contactless measurement using 
either a pattern projected onto the surface or the surface texture itself (natural or 
artificial). Active projection techniques include fringe projection (phase 
measurement), raster projection and laser scanning. Purely photogrammetric 
(passive) methods utilize stereo or multi-image configurations with image matching 
methods to analyse surface textures or projected patterns (see section 5.5). Hybrid 
systems also exist in which these technologies are combined.  

A different approach is represented by range cameras. These are based on a 
imaging sensor which can measure distances (section 6.7.6) but they are not used for 
precise measurement of surface form and are not included in this section.  

In analogy with sampling theory (section 3.1.5), the resolution of surface detail 
requires a density of measured object points sufficient to capture its geometric 
complexity. This in turn applies to the textures and projected patterns which also 
require a sufficient resolution so that the corresponding measuring algorithms can 
deliver the necessary surface points which are independent of neighbouring points 
(uncorrelated). Surface textures must be unique within larger neighbourhoods, 
therefore not homogeneous or a repeated pattern. High contrast gradients are 
required for efficient matching results. 

The term “active systems” covers all solutions which use structured light for 
surface measurement. Here the illumination pattern is an integral part of the 
measuring principle, i.e. measurement is not possible without the active projection of 
light. Active structured light systems have a number of properties which are relevant 
to their practical application: 
– Surfaces without texture can be measured if they are diffuse (Lambertian) 

reflectors. 
– A very high point density can be achieved, e.g. one 3D value per pixel.  
– Scanning or sequentially measuring methods can handle dynamic processes only 

if the changes in object space are significantly slower than the measurement rate. 
– Fringe projection systems can achieve very high accuracies. However, they are 

sensitive to extraneous light and their maximum working distance is limited to a 
maximum of around 1–2 m. 

– Laser scanning methods are largely independent of environmental light 
conditions and can be used at very long ranges which, depending on design, can 
exceed 1000 m. 
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Passive photogrammetric methods reconstruct the surface using at least two images 
and the matching of corresponding image features. Appropriate applications are 
those which benefit from the following operational features of passive 
photogrammetric systems: 
– Contact with the object is not necessary if it has a natural texture suitable for 

measurement. 
– The measuring volume can be scaled almost arbitrarily and does not depend on 

the illumination power of a projector. 
– In principle, the number of cameras is unlimited. 
– Area-based matching methods (section 5.5.3) can achieve subpixel resolution 

which, in turn, can lead to high measurement accuracy in the object space. 
– Real-time generation of large point clouds is possible with suitable image 

matching procedures and appropriate computing power. 
– There are no safety restrictions such as the eye-safety requirements with laser 

projection. 
– Dynamically changing scenes and surfaces can be recorded with multiple 

synchronized cameras. 
– It is possible to track multiple physical points on surfaces, for example where the 

mechanical characteristics of specific points must be analysed. 
– Camera-based systems can be assembled at very low cost. 

However, it is emphasized that passive systems require the measured object to have 
a surface texture which provides the appropriate resolution, contrast and uniqueness 
for the system to generate the surface form to the specified accuracy. 

... Surface textures for area-based measurement 
Area-based imaging systems are often used for measuring the 3D shape of arbitrary 
free-form surfaces. These image-based techniques require an object’s surface to have 
a texture suitable for accurate and reliable matching of homologous features. The 
resolution of the texture must match the geometric complexity of the surface and the 
required resolution or density of the final point cloud. Appropriate contrast and 
gradients in the texture are also necessary in order to achieve accurate matching 
results. Textures in use are covered by the following categories: 
– Natural surface texture: 

If the object surface has a suitable texture of its own, it can be measured directly 
without further preparation. The texture should consist of unique patterns which 
permit reliable matching of homologous areas.  

– Physical surface marking: 
If the natural surface texture does not support image matching, artificial textures 
can be provided by etching, paint and powder sprays or adhesive patterned 
sheets, as explained next. This physical marking of a surface may not always be 
permitted but has the advantage that physically defined points can be tracked 
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through image sequences, e.g. for deformation analysis or strain measurement. 
There is the further advantage that the applied texture can be adapted to a 
particular measurement task. 
– Etching:  

For applications such as strain measurement of metal sheets, a physical 
texture can be applied by chemical or laser etching of random features into 
the surface. In this case the texture is of uniform thickness, predefined 
contrast and resolution and can be optimized for the subsequent analysis of 
the measurement, e.g. strain analysis. Since the texture is burned into the 
object material, it cannot be removed later.  

– Paint and powder sprays:  
It is very common to spray white powder or paint onto the surface and apply 
brush strokes to provide a random pattern. The object surface then has a 
structure useful for image correlation. However, manual surface preparation 
may lead to non-uniform textures, inhomogeneous structures or different 
thickness of applied material. The texture layer can be removed from the 
surface after measurement. Recently available sprays provide a matt surface 
for area scanners with active projection (see below) and then evaporate after 
a short time. 

– Adhesive patterned sheets:  
Thin adhesive sheets with a printed surface pattern can be attached to the 
target surface. Fig. 4.38 shows a test object to which such a textured target 
film has been added for purposes of evaluating surface measurement 
accuracy. The adhesive target film has a thickness of around 0.1 mm and can 
be printed with any convenient random pattern. Depending on application, 
surface analysis may require the film thickness to be taken into account. 

– Pattern projection:  
It may be convenient, or there may be a requirement, for fully non-contact 
measurement. In this case, a regular or irregular feature array can be projected 
onto the object surface, e.g. by LCD devices or diffraction grids (section 3.6.3). If 
the illuminated object is observed by at least two cameras, no calibration or 
orientation of the projector or pattern is required. The pattern simply provides a 
visible structure defining the surface. Active pattern projection provides high 
contrast object textures for surfaces with few natural textures. The method is not 
suitable when using sequential images to measure deformation at specific object 
points (see section 6.7.5.3). Discrete surface points cannot be tracked through a 
sequence of images (see also section 5.5.7). 

The approaches above can be combined. For example, a fast active projection method 
can be used for coarse surface measurement which is then refined using a number of 
cameras and passive illumination of texture on the surface. They can be further 
combined with standard, point-by-point photogrammetric measuring methods. 
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.. Laser triangulation 

Fig. 6.47 shows the principle of the laser triangulation (light-section) method. A laser 
beam is projected through a cylindrical lens to generate a light plane (see Fig. 3.128). 
An array imaging sensor is arranged with an offset to the laser diode in order to form 
a triangle with known (calibrated) geometric parameters. The projected laser plane 
on the object is deformed in the image as a function of object shape and distance.  

detector

lens

object

laser diode

projection
optics

 

 
 

 
a) Principle of light-section method  
(after Schwarte 1997) 

b) Laser line sensor and example of 
welding seam measurement 

Fig. 6.47: Laser triangulation method. 

A full 3D measurement of an object surface can only be achieved in combination with 
a scanning mechanism, e.g. if the triangulation sensor is mounted on a CMM arm (Fig. 
6.86b) or positioned by a laser tracker (Fig. 6.17, Fig. 6.18). Laser triangulation sensors 
have typical accuracies for distance measurement in the order of 0.1 mm at distances 
of up to 500 mm. They allow for typical measurement rates of up to 1000 Hz.   

.. Fringe projection systems 

... Stationary fringe projection  
Methods of stationary fringe projection are based on a fixed grid of fringes generated 
by a projector and observed by one camera. The grid has a cyclical structure, normally 
with a square or sine-wave intensity distribution with constant wave length λ. 
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Fig. 6.48 shows the principle of phase measurement for parallel fringe projection 
and parallel (telecentric) image acquisition at an angle α. The wave length λ 
corresponds to a height difference ΔZ0: 

0 sin
λΔZ

α
=  (6.4) 

The height difference ΔZ with respect to a reference plane corresponds to the phase 
difference Δφ: 

tan
ΔφΔZ

α
=  (6.5) 

Phase difference is only unique in the range –π…+π and so only provides a 
differential height value within this range. Absolute height change also requires 
counting the fringe number to determine the additional whole number of height 
units. The measuring method is therefore only suitable for continuous surfaces which 
enable a unique matching of fringes. A resolution in height measurement of about 
λ/20 can be obtained. 

∆ϕ

∆ϕ

α

∆Z

reference plane object

camera

fringe pattern

∆Z0

 

Fig. 6.48: Fringe projection with phase measurement by telecentric imaging. 

The telecentric configuration illustrated in Fig. 6.48 limits the size of measured 
objects to the diameter of the telecentric lens. If larger objects are to be measured the 
method must be extended to perspective imaging. Stationary fringe projection can 
also be applied to dynamic tasks, for example the measurement of moving objects. 
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... Dynamic fringe projection (phase-shift method) 
Phase measurement can be performed directly using intensity values in the image. 
For this purpose the projected fringes are regarded as an interferogram. For the 
intensities of an interferogram at a fringe position n, the following equation applies: 

( )0( , ) 1 ( , )cos( ( , ) )n mI x y I γ x y δ x y φ= + +  (6.6) 

where 
I0: constant or background intensity  
γ(x, y): fringe modulation 
δ(x, y): phase 
φm: phase difference  

The equation above contains the three unknowns I0, γ(x,y) and δ(x,y). Hence at least 
three equations of this type are required for a solution. They can be obtained by m 
sequential shifts of the fringes by the difference φn (Fig. 6.50a):  

0( 1)mφ n φ= −  (6.7) 

where 
m: number of shifts 
n = 1 … m,  where m ≥ 3 
φ0 = 2π/ n  

The measuring principle is known as the phase-shift method. When m = 4, samples 
are taken at equally spaced intervals of π/2 (Fig. 6.50a). The phase of interest δ(x, y) 
then reduces to: 

2 4

3 1

arctan
I I

δ
I I
−

=
−

 δ = δ(x,y);  In = In(x,y) (6.8) 

Finally, the height profile is given by: 

( , ) ( , )
2 2

λZ x y δ x y
π

=
⋅

 (6.9) 

   
a) Object with projected fringes b) Phase image with phase 

discontinuities 
c) Demodulated height model 

Fig. 6.49: Phase-shift method (Breuckmann).  
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As with stationary fringe projection, the result is unique only in the interval –π…+π, 
so that integer multiples of 2π must be added for a complete determination of profile. 
This process is known as demodulation or unwrapping (Fig. 6.49).   

Discontinuities in the object surface lead to problems in the unique identification 
of the fringe number. A unique solution is possible by using fringes of varying 
wavelength (Fig. 6.50b) or Gray-coded fringes (section 6.7.3.3).  

x

t

 x

t

 
a) Phase shifts with m = 4 b) Sinusoidal fringes of varying wavelengths 

Fig. 6.50: Sinusoidal patterns used in the phase-shift method. 

The accuracy of height measurement is about λ/100. The interior and exterior 
orientation of projector and camera must be found by calibration. Each pixel (x, y) is 
processed according to eqn. 6.8. The computations can be solved using fast look-up 
table operations, with the result that height measurements can be processed for all 
pixels in an image (for example 780 x 570 pixel) in less than one second. Examples of 
measuring systems are presented in sections 6.7.3.4 and 6.7.3.6. 

... Coded light (Gray code)  
Solving ambiguities is a major problem for fringe projection methods, especially for 
discontinuous surfaces. In contrast, the coded-light or Gray code technique provides 
an absolute method of surface measurement by fringe projection.  

The projector generates m coded fringes sequentially, so that perpendicular to 
the fringe direction xp a total of 2m different projection directions can be identified by 
an m-digit code word (Fig. 6.51 shows an example bit order 0011001 for m = 7). A 
synchronized camera observes the fringe pattern reflected and deformed by the object 
surface. The m images acquired are binarized and stored as bit values 0 or 1 in a bit 
plane memory which is m bits deep. Hence, each grey value at position (x',y') denotes 
a specific projection direction xp from Op. 

This procedure requires known orientation parameters of camera and projector 
but otherwise requires no initial values related to the object. It is relatively insensitive 
with respect to changing illumination and the reflection properties of the object. 
Continuity of the surface is not a requirement. The accuracy of the method is limited 
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to about 1:500. It is therefore mostly used for fast surface measurements of lower 
accuracy, for example as a preliminary to subsequent measurement by phase-shift. 
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Fig. 6.51: Coded-light approach (after Stahs & Wahl 1990).  

... Aperiodic fringe projection 
As an alternative to the individual or combined phase-shift and coded-light 
approaches, aperiodic sinusoidal fringes offer another way of applying sequentially 
projected patterns. Here N fringe patterns (typically 6 ≤ N ≤ 12) are projected with an 
intensity distribution defined by: 

( ) ( ) ( ) ( ) ( )( , ) ( ) ( ) sin[ ( ) ( )]i i i i i
projI x y a x b x c x x d x= + ⋅ ⋅ +  i = 1…N (6.10) 

where 
a: offset 
b: amplitude 
2π/c: period length 
d: phase shift 

The parameters must be selected such that the resulting functions ( ) ( , )i
projI x y  are 

continuous. The projected pattern sequence is observed by two cameras.  
Fig. 6.52a shows an example of a set of aperiodic fringes. A significant advantage 

of aperiodic sine patterns compared with phase-shifted sine patterns is that there is 
no 2π ambiguity. Neither the projection of an additional pattern, e.g. Gray code 
(section 6.7.3.3), nor a phase unwrapping step is therefore required. Hence in general, 
a fewer number of projected fringe patterns can generate 3D point clouds to a 
comparable accuracy and greater object coverage. The maximum correlation 
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coefficient successfully determines the stereo correspondence between both cameras 
(Fig. 6.52b). A fringe projection system based on this approach is presented in section 
6.7.3.6.  

 

t

rmax
 

a) Sequence of projected aperiodic sine patterns b) Matching of image points by correlation 

Fig. 6.52: Sequentially projected aperiodic sine pattern (Fraunhofer IOF).  

... Single-camera fringe-projection systems 
Measuring systems which operate according to the phase-shift method consist of a 
fringe projector and a camera with a base separation appropriate for the 
measurement volume (larger base for bigger volume, but with accuracy decreasing 
with measurement volume). Camera and projector must be calibrated and spatially 
oriented to one another. Because of the ambiguities of phase measurement inherent 
in eqn. 6.8, the systems are frequently combined with a coded light technique (section 
6.7.3.3) which provides approximate values for the object surface. Alternatively, 
fringes of varying wavelength can be projected. 

The projector is normally designed using a liquid crystal display (LCD), liquid 
crystal on silicon (LCOS) or micromirror array (DMD), see section 3.6.3.2. As a rule, 
the camera is a digital video camera with up to 2000 x 2000 pixels. The performance 
of this method is determined mainly by the reflective properties of the surface. 
Usually, homogeneous, diffusely reflecting surfaces are required. Specular 
reflections and hot spots must be avoided by preparation of the surface (for example 
by dusting with white powder) and provision of suitable ambient lighting conditions.  

Dynamic fringe projection is applicable only to static objects. Depending on 
camera and projector used, as well as the required measured point density, 
measurement frequency lies between 0.2 Hz and 50 Hz. The basic configuration of 
just one camera typically results in occluded areas of the object which are not 
therefore measured. The most important advantage of the phase-shift method is the 
fast measurement of a few hundreds of thousands of surface points. At the same time, 
however, the problem of thinning and structuring of the measured point cloud arises, 
as is necessary for further processing of the 3D data, for example for the control of 
production tools. 
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a) Vialux fringe projection system b) Projection with large fringe separation 

  
c) Projection with small fringe separation d) 3D measurement result 

Fig. 6.53: Scanning an object with a single-camera, fringe-projection system.  

A measuring volume between 0.1 x 0.1 x 0.1 m3 and 1 x 1 x 1 m3 per scan is typical for 
fringe projection systems. In order to measure larger objects, mobile fringe projection 
systems are used in combination with photogrammetric methods or mechanical 
positioning systems for spatial orientation, or by techniques for registration of 
individual point clouds (see section 6.8). Relative accuracies of 1:8000 can be 
achieved (see section 6.7.3.6). Single camera fringe projection systems are offered, 
amongst others, by ZEISS IQS, Creaform, Minolta and Vialux. Fig. 6.53 shows fringe 
projection at different wavelengths and the resulting 3D point cloud.  

A variant of fringe projection is the method of deflectometry. It does not work with 
diffuse reflected fringes but is designed for use with polished and highly reflective 
surfaces such as glass. From the distorted reflection of the fringe pattern in the 
surface, the surface shape can be deduced. 
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... Multi-camera fringe-projection systems 
In their basic configuration, the fringe projection methods mentioned above use one 
projector and one camera. Because the projector serves as a component of the 
measurement system, uncertainties in its geometry adversely affect the results. In 
addition, for objects with large surface variations there are frequently areas of 
occlusion and shadow which cannot be observed by a single camera. Furthermore, 
smooth surfaces often give rise to over illumination or highlights in the image. 

Consequently, a number of advantages are offered by multi-camera systems with 
active fringe projection: 
– reduced measuring uncertainty as a result of greater redundancy (number of 

cameras); 
– fewer areas of occlusion or highlights; 
– no requirement to calibrate the projector; 
– possibility of measuring moving objects using synchronized multi-imaging; 
– greater flexibility in measurement by variation of the projected pattern and the 

relative arrangement of projector and cameras. 

Calibration and orientation of multi-camera systems with active illumination follow 
the principles of test-field calibration (section 7.3.1.1). If required, the orientation 
parameters of the projector can also be determined in this process since the projector 
can be regarded as an inverse camera. 3D coordinates are usually calculated by 
spatial intersection (section 4.4.7.1). Robust methods for matching homologous 
image patterns utilize epipolar constraints and aperiodic fringe projection or variable 
wavelength fringe projection. Fringe patterns are therefore aligned approximately 
perpendicular to the epipolar lines.  

L R
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Fig. 6.54: Measurement of a surface with occlusions using two cameras and one projector. 
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With a calibrated projector, the number of usable observations can be increased from 
four to six for a dual-camera system. This improves the accuracy of surface 
measurement. In addition, occlusions can be handled by using the projector in 
combination with only one camera. Fig. 6.54 illustrates a situation where a part of the 
surface (green) can be measured from both cameras. The partially occluded areas (red 
and blue) are observed by only one camera but can still be reconstructed using the 
calibrated projector.  

Fig. 6.55 shows a mobile dual-camera system with a pattern projector (ZEISS 
ATOS). Two convergent cameras are arranged on a fixed base and a pattern projector 
is mounted between them. The typical measuring volume of a single recording lies 
between 12 x 7 x 8 mm3 and 750 x 500 x 500 mm3 depending on the system 
configuration. However, the ATOS LRX model, equipped with a more powerful light 
source, is also suitable for detecting large-volume components under natural ambient 
light. A relative accuracy between 1:2000 and 1:10 000 can be achieved. 

  
a) Two-camera system with projector b) 3D point cloud 

  
c) Triangular mesh d) Shadowing 

Fig. 6.55: Measurement of a design model by a photogrammetric fringe projection system (ZEISS).  

Fig. 6.56 shows a structured light sensor using a GOBO projector (section 3.6.3.2) to 
project an aperiodic sine pattern (section 6.7.3.4). This delivers a fast surface 
measurement at up to 36 Hz. The projection illumination in the near infrared at 
λ = 850 nm, and an additional RGB camera, are used to record true colour information. 
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Even higher 3D measuring rates of up to 10 kHz can be achieved using special high-
speed cameras (section 3.5.3). 

Dual-camera fringe projection systems are manufactured by companies such as 
ZEISS IQS, Hexagon, Faro and Fraunhofer. Low-cost, dual-camera projection systems 
are also available, for example, from Hewlett Packard (DAVID SLS series). They are 
significantly less powerful than the systems described above for industrial metrology. 

 
a) Sensor 

 
b) Measurement example 

Fig. 6.56: Dual-camera structured light sensor for real-time 3D measurements (Fraunhofer IOF).  

.. Point and grid projection  

... Multi-camera systems with target grid projection 
Grid projection methods are used mainly in materials testing for mapping 
displacement and strain. The surface shape can be reconstructed by analysing the 
deformation of the raster with respect to a reference position. The reference grid can 
be generated in different ways: 

object

projector

grid

camera camera

object
grid

projected grid reflected grid

 

Fig. 6.57: Target grid measuring methods (after Ritter 1995). 
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– by a grid that is physically created on the object surface; 
– by projection of a grid from a position to the side of the viewing camera (Fig. 6.57 

left); 
– by reflection of a grid (Fig. 6.57 right). 

The configuration for grid projection corresponds to that of stationary fringe 
projection (section 6.7.3.1). Using only one camera requires a calibrated and oriented 
projector. For multiple cameras, the projector is only used to generate structured 
light. The reflection method assumes virtually specular surfaces and only allows 
measurement of surface inclination. 

... Multi-camera system with grid projection  
The AICON ProSurf system, now out of production (see Fig. 6.58), used an analogue 
projector to place a regular grid structure on the object surface. This structure was 
imaged with at least three cameras, all oriented to one another and arranged around 
the object. 

Measurement of the object surface was done by measuring the grid intersection 
points in the images and locating them in object space by multiple ray intersection. 
Epipolar geometry was used for the correct assignment of corresponding rays. With a 
minimum of three images this leads to a unique solution (see section 5.5.5.2). To 
measure the entire grid a recursive search strategy was implemented which ensured 
that all measurable points were located, even when points were obscured or 
otherwise missing. Object point location accuracy was around 0.1 mm in a 
measurement volume of approximately 1 m x 1 m x 0.5 m. 

In a similar way, the GSI Pro-Spot system presented in section 3.6.3.2 projects a 
regular array of target points onto an object surface. If projector and object have no 
relative movement, then the targeted object surface can also be measured by a 
standard offline photogrammetric system (section 6.6.1.1).  

    

Fig. 6.58: Multi-camera system with grid projection (AICON).  
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... Multi-camera system with regular etched patterns  
In applications where it is permitted to give a surface a permanent marking, very fine 
structures, typically grid patterns, can be applied by electro-chemical or laser 
etching. Since the grid points are physically marked, if the object is observed by at 
least two cameras then individual grid points can be measured and tracked through 
a deformation process such as strain resulting from stress loading, deep drawing or 
thermoforming.  

  

a) Camera head and patterned object b) Deformation plot 

Fig. 6.59: Four-camera system with recorded metric image of etched grids (Vialux).  

Fig. 6.59a shows the AutoGrid comsmart, a portable measuring system from Vialux 
which has four synchronized 5-Mpixel cameras. It can be hand-held and directed at a 
surface prepared with a grid pattern and a minimum of three local reference points 
for the definition of a workpiece coordinate system. Fig. 6.59b shows the resulting 
deformation measurement of a thermoformed object. Accuracy is reported to be 
around 0.04 mm for an object size up to 1 m.  

.. Systems utilizing random patterns 

Digital image correlation (DIC) and matching can be used to measure free-form 
surfaces if there is enough surface texture information. Typical image measuring 
accuracy is of the order of 0.1 pixels. Lateral and depth accuracy further depend on 
the image configuration, e.g. the base-to-height ratio of cameras. The approach has 
already been used in the early stages of digital photogrammetry, e.g. by the Zeiss 
Indusurf system (see next section).  

The texture must have a structure that allows for reliable and accurate image 
matching in two or more images. Texture resolution, structure and contrast must be 
designed for the required 3D result and take into account object curvature, camera 
resolution and image scale, illumination conditions and object reflectance properties.  
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... Dual-camera system with projection of random patterns  
The Zeiss Indusurf system, was developed in the early 1980s for the off-line 
measurement of car body surfaces. At that time it consisted of an analogue 
stereometric camera system, the Zeiss SMK 120, and a slide projector for the projection 
of a random dot pattern (Fig. 6.60). The analysis was carried out using an analytical 
plotter equipped with CCD cameras for digital image acquisition. Parallax 
measurement was performed using least-squares matching and a measuring 
accuracy of 0.1mm was achievable. Around 1990 the system was adapted to use 
digital cameras but is now no longer in production. 

 

a) Stereometric camera and pattern projector 

 

b) Random pattern 

Fig. 6.60: Zeiss Indusurf for the measurement of car body surfaces (from Schewe 1988).  

  

a) Cognex A5030 b) Random pattern for image correlation 

Fig. 6.61: Stereo metric camera with structured light projector.  

A current example which makes use of this basic principle is the Cognex 3D-A5000 
system. This has two fixed cameras with a speckle pattern projector positioned in 
between them (Fig. 6.61). The system uses a band-limited projected pattern similar to 
that in Fig. 6.61b. Depending on the baseline of the cameras, between 50 mm and 
1200 mm, and their focal length, a measurement volume from 6.5 mm x 4.6 mm x 
1.2 mm up to 1.3 m x 1.8 m x 0.1 m (L x W x H) is provided. The recorded pattern is 
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analysed by a correlation algorithm. Measuring frequencies of up to 10 Hz, and repeat 
accuracies of approx. 0.01 mm, can be achieved. 

... Surface measurement with textured adhesive film 
Textures of any kind can also be printed onto thin adhesive films which are then 
attached to an object’s surface. Fig. 6.62 shows an example of a test artefact covered 
by a textured film which is about 0.1 mm thick. 

Textures should be designed for hierarchical image matching, e.g. in different 
image pyramids or scales (see section 5.1.3), and multiple pattern resolutions can be 
overlaid (example in Fig. 6.62b). High resolution textures are necessary if high 
resolution is required for surface reconstruction (example in Fig. 6.62c).  

   
a) Texture with blobs b) Texture suitable for image 

pyramids 
c) High resolution texture 

Fig. 6.62: Different texture patterns suitable for digital image correlation (DIC). 

Image analysis is by stereo or multi-image photogrammetry. Typical image 
measuring accuracy is of the order of 0.1 pixels if least-squares matching is applied 
(section 5.4.2.4). Lateral and depth accuracy further depend on the image 
configuration, e.g. the base-to-height ratio of the cameras. As an example, 3D points 
on the test artefact in Fig. 6.62a (side length 500 mm) can be measured to an absolute 
accuracy of some 0.1 mm using industrial cameras with sensor resolutions of around 
1300 x 1000 pixels. 

... Measurement of dynamic surface change 
It is only possible to model dynamic surface changes in 3D if the measurement 
frequency is higher than the object’s rate of deformation. Usually, therefore, methods 
based on surface scanning or sequential pattern illumination (fringe projection) are 
unsuitable and optical surface capture with simultaneous multi-image recording is 
required (an exception is discussed in section 6.7.3.4). 
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Recording object surface points with respect to the object or component 
coordinate system can be done in one of the following ways: 
– Regular XY grid:  

Changes in surface position can be measured using a regular XY grid of points, 
i.e. at every XY location, and for every deformation state (epoch), a new Z value 
is determined. A suitable measurement technique for this purpose is the principle 
of the vertical line locus (VLL, see section 4.3.6.3).  

– Irregular distribution of points:  
By applying feature detection algorithms (see section 5.4.3), the location of 
irregularly distributed surface points is calculated for every epoch by spatial 
intersection in which new XYZ values are determined every time. The result is an 
irregular 3D point cloud.  

– Target tracking: 
Surface points which are determined at the start, e.g. distinctive features found 
by interest operators (section 5.4.3), are tracked through the deformation epochs. 
The result is a spatial curve (trajectory) for every measured surface point. 
Tracking requires prediction of the location of the surface points in the next 
epoch, which can be done by Kalman filtering (section 5.5.7.5).  

Fig. 6.63 illustrates the recording and evaluation of a surface deformation. The 
surface was marked with a random pattern and its deformation recorded by a stereo 
camera. The images are processed in a multi-level image pyramid. This starts with a 
coarse measurement using normalized cross correlation (section 5.4.2.3) and finishes 
with a fine measurement using a least-squares adjustment (section 5.4.2.4). The 
derived deformation vectors are shown in Fig. 6.64, in one case on a fixed XY grid and 
in another as space trajectories of discrete surface points. 

   

   
Epoch 0 Epoch 15 Epoch 30 

Fig. 6.63: Image sequence (left hand image only) and the corresponding model of surface 
deformation (IAPG).  



  6 Measuring tasks and systems 

  

  
a) Deformation vectors on a regular XY grid b) Trajectories of discrete surface points 

Fig. 6.64: Deformation vectors between epochs 0 and 25 (IAPG). 

  

a) Strain measurement using sprayed texture b) Result of measurement 

Fig. 6.65: Digital image correlation system (DIC) for strain analysis (ZEISS ARAMIS).  

Fig. 6.65a shows an example application of a digital image correlation (DIC) system 
for strain analysis (ZEISS ARAMIS). In this case a tensile test specimen, whose length 
in the field of view is about 125 mm, is mounted on a tensile testing machine which 
applies controlled strain to the object. The metal surface has been textured by 
spraying with a random pattern (see upper right corner in Fig. 6.65a). The three-
dimensional deformation of the test material is observed by two synchronized 
cameras and physical surface points are tracked through the image sequence by 
digital correlation techniques (see section 5.5.7, Fig. 6.65b). The achieved accuracy is 
reported to 2 µm in XY and 4 µm in Z (= height).  

Another application based on digital image correlation is shown in Fig. 6.66. A 
wind-turbine rotor blade is measured over a length of 10 m. Here the natural texture 
of the unfinished surface provides sufficient structure for stereo correlation. Fig. 6.66 
shows the result of a bending test where the blade deformation in the Z direction is 
measured. The achieved accuracy is of the order of 0.1 mm in Z (=out of plane).  
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Fig. 6.66: Rotor blade deformation measurement with 3D DIC system (LIMESS).  

.. Range cameras 

Here the term range camera is used for a sensor that delivers range images (see 
section 2.3.3.3) directly from the sensor. All required computations are performed on-
board the camera. Such range cameras are frequently used in robotics, at security 
gates, in industrial manufacturing processes and for consumer products, e.g. gaming 
consoles, vacuum cleaners. As there is no need for additional processing on a 
powerful host computer, range cameras are ideal for embedded systems and for 
mobile systems due to lowered power consumption. Range cameras do not introduce 
fundamental new principles for determining 3D coordinates but are based on the 
principles already described previously, namely triangulation and time-of-flight. 
However, they are implemented using semi-conductor components which are as 
simple as possible. Mass-manufacturing allows a price per sensor that is several 
orders of magnitude below high-grade surveying or metrology instruments based on 
similar principles. 

... Kinect  
Originally, demand from the gaming and entertainment industry boosted the 
development of low-cost consumer-grade range cameras. The prime example is the 
Microsoft Kinect, first released in 2010 and with subsequent sales of over 30 million 
units.  

The first version of the Kinect (Fig. 6.67a) was based on 3D technology developed 
by PrimeSense, with further technology modifications by Microsoft to make it suitable 
for gaming. The 3D technology is essentially triangulation. Here a structured light 
approach is adopted which uses a fixed pattern of speckle dots generated by a 
diffractive optical element and a near-infrared laser diode. The projected pattern (Fig. 
6.67b) provides high light intensity and is observed by a laterally offset camera. 
Camera and pattern image are configured according to the normal case of stereo 
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photogrammetry (section 4.3.1.4). Proprietary algorithms are assumed to be behind 
the identification and location of the elements of the pattern, and hence the 3D model. 
The camera resolution is low, e.g. VGA (640 x 480 pixels). However, at the measuring 
frequency of 30 Hz, almost 10 million points per second can be acquired. The 
maximum working range of this class of sensor is short, in the range 1-6 m. Coupled 
with a limited accuracy of 5 to 50 mm, it therefore does not meet the usual 
requirements for many engineering measurement tasks. 

  
a) Kinect 1 based on PrimeSense ChipSet b) Projected point pattern  

  
c) Kinect 2 based on TOF principle d) Range image  

Fig. 6.67: 3D camera Microsoft Kinect. 

The Kinect v2, launched in 2014, was the next generation of the Kinect and is based 
on a time-of-flight principle using amplitude modulation (compare 6.8.1). An array of 
near-infrared LEDs illuminates the complete scene. The light is amplitude modulated 
and the light reflected from the scene is received by a camera sensor. The outgoing 
signal and the received signal are correlated and the time difference is determined 
from the signal shift. Measuring range and accuracy are comparable to the Kinect 1. 
Fig. 6.67c shows the Kinect 2 and Fig. 6.67d a range image recorded by the system. 
Both versions of the product are now discontinued. The technology of the Kinect v2 is 
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still used in the Microsoft HoloLens and the Azure Kinect which is aimed at the 
professional market.  

... Current generation range cameras 
Since 2020 a time-of-flight range camera has been included in Apple’s mobile phones 
and tablets (Fig. 6.68a). The sensor uses a laser light source and a diffractive lens (see 
section 3.6.3.2) to emit a sparse dot matrix of a maximum of 576 points on which time-
of-flight is measured. Proprietary algorithms are used to up-sample this sparse matrix 
to a full-frame range image of 192×256 pixels. While the sensor was mainly developed 
for Augmented Reality, measurement apps are already available from companies 
such as DotProduct, Pix4D and Polycam. Independent tests on small objects have 
shown a standard deviation of around 1 cm when the point cloud is compared to a 
terrestrial laser scanner.  

 

a) Apple iPad Pro 

 

b) Intel RealSense D435 

 

c) Intel RealSense L515 

 

d) Intel RealSense T265 

Fig. 6.68: Range cameras. 

With many range cameras now only available as embedded systems, Intel’s series of 
3D sensors under the RealSense brand have become a popular choice at a 
significantly low price. The RealSense D435 (Fig. 6.68b) is a stereo camera with a 
baseline of 50 mm and a field of view of 87 x 58 degrees. It delivers a depth matrix 
with 1280 x 720 pixel (see Fig. 6.69). With the small baseline, the sensor is 
recommended for use up to 3 metres. Independent tests estimate the ranging error at 
up to 5 mm at 1-meter distance. The sensor has an integrated RGB camera for colour. 
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The depth camera has an optional laser pattern projector for featureless surfaces. 
Different variants of the senor exist with integrated IMU and wider baselines. 

The RealSense L515 (Fig. 6.68c) is a solid-state LIDAR using a MEMS mirror to 
guide a laser beam across the scene. It has a field-of-view of 70 x 55 degrees and 
outputs a depth matrix of 1024 x 768 pixels at 30 frames per second which 
corresponds to 23 million points per second. It is intended for use up to 9 metres and 
is quoted with a nominal accuracy of 5-14 mm. The compact sensor has an integrated 
RGB camera to colour the point cloud. 

The RealSense T265 (Fig. 6.68d) is an unusual range camera as it is not intended 
to output a depth matrix, but only its 3D position and orientation (6DOF). It is 
intended as a visual tracking device. However, it is based on a stereo camera principle 
and features two fish-eye cameras with a baseline of 64 mm. All visual odometry 
computations (section 5.5.7.6) are incorporated in the sensor. 

  

Fig. 6.69: Colour-coded range image from D435 (left) and corresponding point cloud (right). 

... Light-field cameras 
Light-field or plenoptic cameras use an array of microlenses positioned at a certain 
distance between imaging sensor and lens (Fig. 6.70). Depending on the object 
distance, the image of an object point is collected by number of microlenses and then 
projected onto the sensor. The resulting image has a multi-facet pattern whose 
repetitions are used for distance-dependent parallax calculations from which 
distances can be derived. In principle, the microlens array can be positioned either in 
the focal plane (see examples P' and Q'), or in front of it or behind it.  

Fig. 6.70 shows the image of an object point recorded by a light-field camera at 
two different distances. It can be seen that the point at the greater distance is imaged 
with fewer microlenses (compare pxP for the far point with pxQ for the near point).  

Light-field cameras are suitable for short imaging distances of a few metres. The 
achievable accuracy can reach 1/10 mm for very short distances (< 10 cm). For larger 
imaging distances (> 1 m) the accuracy rapidly drops to about 5–10 mm. Note that the 
size of the stereo base is defined by the number of microlenses which enable 
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correlation of an object pattern. Hence, distance accuracy decreases quadratically 
with distance (see section 4.3.6.2) and is traded off against spatial resolution. 

d f

f*

microlenses sensor plane

P'

Q

Q'

pxP

pxQ

lens

d = 350 mm

d = 250 mm

object point
image pattern

 

Fig. 6.70: Principle of a light-field camera. 

Fig. 6.71 shows two examples of light-field cameras with sensor resolutions up to 4 
Mpixel. Using the recorded distance map, images can be refocused, or the depth of 
field adjusted, by post-processing. 

  
a) Raytrix b) Lytro Illum 

Fig. 6.71: Examples of light-field cameras. 

. Laser-scanning systems  

.. 3D laser scanners 

3D laser scanning describes the three-dimensional measurement of the surface of an 
object or scene by distance, typically based on time-of-flight (TOF), and angular 
measurement using a laser beam which is scanned horizontally and vertically over 
the object or scene. This generates a 3D point cloud of the object. The scanning 
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mechanism delivers the individual cloud points in polar coordinates (see section 
2.2.5.1). These are defined by the scanning instrument’s two angle measurements and 
one range (distance) measurement which have their origin at the centre of the 
scanning system. If the reflected intensity is also registered, an object image is 
recorded where each measured 3D point is associated with an intensity or colour 
value dependent on the reflectance of the object surface to the scanning laser 
wavelength.  

The scanning concept has been implemented in systems operating at both short 
and long ranges, from a few metres to 100s of metres. In airborne applications the 
technology is also known as light detection and ranging (LiDAR). Today light-
weighted LiDAR sensors also enable drone scanning applications (see section 6.11.2).  

Laser scanners are also increasingly used in close-range and industrial 
applications, now ranging from small volume applications such as weld checking up 
to larger volumes such as the recording of building interiors and the measurement of 
complex pipework structures. In addition, they are also used to meet rapidly growing 
demands for measurement of the built environment from moving platforms (mobile 
mapping) and for control of autonomous vehicles. 

Commercially available systems differ mainly in terms of physical principle, 
measuring frequency, measuring accuracy, range of operation, beam diameter and 
costs. Some scanner designs have a restricted horizontal and vertical view, less than 
a hemisphere, and are also known as camera-view scanners. In contrast, panoramic 
scanners provide all-around 360° measurement from a single location.  

Fig. 6.72 shows the schematic design of a panoramic scanner. A laser diode emits 
a laser beam which passes through a semi-transparent mirror onto a second mirror 
which is rotated about vertical and horizontal axes. The vertical displacement is 
implemented by a horizontal axis rotating continuously at high speed. The horizontal 
displacement is achieved by rotating the whole scanner head about the vertical 
instrument axis.  

There are various techniques for the laser measurement of distance to the object, 
one of which is phase measurement. Here a modulated laser beam is continuously 
transmitted and the distance calculated from the phase differences between 
transmitted and reflected signals. The distance D can be measured by the phase 
difference as follows: 

1 / 2( )D n λ Δλ= ⋅ +  (6.11) 
where 
λ: wavelength 
n: number of total wavelengths (period)  
Δλ: phase difference 

The principle works at high measurement rates of up to two million points per second, 
but distance measurements are unique only within a certain range. Maximum ranges 
are around 360 m with a corresponding distance accuracy of about 1 mm. 



 6.8 Laser-scanning systems   

  

mirror

laser diodelens

photo diode

rotation around
horizontal and
vertical axes

IR filter
object

laser

modulation

pulse

 

Fig. 6.72: Principle of laser scanning.  

Other commercially available laser scanners pulse the laser beam and calculate range 
by measuring the time-of-flight of the pulses:  

1 / 2D c t= ⋅ ⋅  (6.12) 
where 
c: propagation speed of light in medium 
t: time of flight 

Pulse measurement is less sensitive with respect to object surface variations and is 
therefore generally preferred for reflectorless surface measurement at longer 
distances (> 400 m). Measurement rates are about one order of magnitude slower than 
for phase-difference measurement. Pulse measurement methods allow for full 
waveform analysis in which a sequence of return signals is stored and analysed in a 
post-processing mode. Typical distance measurement noise of 3-8 mm can be 
achieved. 

Time-of-flight measurement can be combined with phase-difference 
measurement in a Wave Form Digitizer (WFD). The WFD system constantly evaluates, 
digitizes and accumulates the waveforms of all reflected signals for precise 
recognition and extraction of the measurement pulses. This provides time-of-flight 
measurements with the phase-difference characteristics of high measurement 
frequency and low noise.  

In addition to the distance measurement, the system accuracy depends on the 
angle measurement. Typical angular measurement accuracies are 0.004-0.01 degrees 
corresponding to 0.8-2 mm at 10 m distance. Further influences on the accuracy are 
given by the calibration of all system components, the positional stability of the 
instrument and the atmosphere (refraction, light propagation speed). 

Manufacturers of laser scanners with geodetic quality include Leica, Zoller & 
Fröhlich, Riegl, Faro, Trimble, Topcon and Teledyne Optech. Fig. 6.73 shows three 
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typical instruments. Well-known manufacturers of simpler laser scanners are, for 
example, SICK, Livox and Ouster Velodyne, which are often used in security areas or 
in the control of autonomous vehicles.  

Newer solid-state LiDAR sensors function without any mechanically moving 
components (see also 6.7.6.2). Here, an expanded diode laser beam is projected onto 
the object via a micro-mirror array and a lens. The achievable accuracies are 
significantly lower than those of geodetic scanners. 

   
a) Zoller & Fröhlich Imager 5016 b) Leica RTC 360 c) Riegl VZ 600i 

Fig. 6.73: Examples of terrestrial laser scanners.  

Regardless of technique, if recorded laser-scanned data (X,Y,Z,intensity) are 
formatted as a regular array, two data sets can be derived: 
1) A range image (see section 2.3.3.3) where the value (displayed as grey or false 

colour) assigned to each pixel is proportional to the range of the object surface 
from the scanner (Fig. 6.74a,b). 

2) An intensity image where the value assigned to each pixel is a function of the 
strength of the return signal from the surface of the object (Fig. 6.74c).  

The intensity image appears similar to a photographic image. However, it only 
records reflection values for the wavelength of the scanner’s laser.  

The principal feature of laser scanning is the fast three-dimensional 
measurement of a (large) object surface or scene with high point density. A typical 
scanning system has a 3D coordinate accuracy of the order of 3-5 mm at a distance of 
10 m. In addition to angle and range measurement, the accuracy is also dependent on 
the stability of the instrument station, for example a tripod. Terrestrial laser scanners 
can be combined with a digital camera in different ways:  
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a) Grey-value range image b) Colour-coded range image 

  
c) Intensity image d) RGB image overlay 

Fig. 6.74: 3D laser scanning of a sculpture. 

– A digital camera within the scanner viewing through the mirror system, or 
mounted onto the rear of the mirror, collects imagery either during scanning or 
in separate imaging passes of the scanner. This method has the advantage of 
minimizing parallax between the image and point cloud, but the disadvantage of 
reduced image quality due to utilization of the scanning optics. Limitations on 
image quality can be alleviated partially by mounting a small camera on the 
reverse of the mirror. 

– External cameras may be incorporated in or attached to the scan head at known 
calibrated offsets. Conventionally the imaging is done in a second path. 
Limitations are in accurate determination of the camera-to-scanner geometry for 
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pixel-to-point-cloud mapping and, more fundamentally, to differences in 
parallax caused by the separate projection centres. 

– An external camera used separately from the scanner. This allows very high-
quality images to be obtained, either from a system placed on a tripod in 
nominally the same location as the scanner or by mapping a network of 
photogrammetric images into the scanning geometry. Here the most suitable 
images can be selected to colour the point cloud, the choice depending on local 
image magnification at each scanned surface, angle of view to the surface and 
image content. In this case, arbitrarily high-resolution images can be created, e.g. 
by eliminating occlusions or where orthogonal viewing directions for building 
facades are required. In addition, high dynamic range (HDR) images, 
multispectral or thermal images can be generated and assigned to the scanned 
point cloud. However, this approach requires a combined network adjustment 
(see section 4.4.2.3).  

If the camera has been calibrated, and oriented with respect to the scanner’s internal 
coordinate system, point clouds and images can be combined and/or separately 
processed as follows: 
– Coloured point clouds: 

Since all scanned points have 3D coordinates, they can be back-projected into the 
images using the collinearity equations (4.10). From their position in the image, 
colour values can be interpolated and assigned to the points (examples in Fig. 
6.74d and Fig. 6.75a). 

– Registration:  
The 3D transformation of single point clouds into a common coordinate system 
(registration) can be supported by image information, e.g. through the detection 
of targets or corresponding object features. Fig. 6.73b shows a laser scanner that 
uses five cameras looking in all directions to determine the scanner position from 
one location to the next using visual odometry techniques (section 5.5.7.6). 

– Monoplotting:  
A feature of interest is measured in the image. The corresponding image ray is 
intersected with a surface model derived from the point cloud (triangular mesh) 
to give the 3D coordinates of the corresponding object point (see section 4.2.7 and 
example in Fig. 4.23). 

– Orthophoto:  
A true orthophoto can be derived directly when the surface model is orthogonally 
projected onto a reference plane and filled with colours from the images (Fig. 
6.75b, and compare with section 4.2.8.2).  

– Central projection:  
The original images can be used to create a combined image with central 
projective properties (tangential image, section 4.5.5.2).  
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– Panoramic image:  
From multiple overlapping images, a distortion-free panoramic image can be 
calculated if perspective centre and rotational centre are identical (Fig. 6.75c, and 
compare with section 3.5.6.2).  

 

a) Complete registered point cloud generated using individual scans from a laser scanner  

 

b) Orthophoto generated from a 3D point cloud and additional RGB images  

 

c) Panoramic image generated from HDR images of an integrated camera 

Fig. 6.75: Processing of point clouds and digital images.  

Since measurements are made by the reflection of a laser beam from a surface, 3D 
laser scanners can record large numbers of points without any need for targeting. Like 
photogrammetry, laser scanning requires lines of sight. Complex objects must 
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therefore be recorded from several instrument stations whose individual point clouds 
must be transformed into a common coordinate system by means of common points 
or matching procedures such as ICP or Visual SLAM (see section 6.9.6). As with other 
area-based scanning methods, unstructured data acquisition is a major 
disadvantage. Usually point clouds must be manually or automatically thinned and 
structured in order to prepare the data for further processing. 

.. 2D and 1D laser scanning 

In some cases, a 3D laser scanner can be operated with a vertical beam deflection 
only, i.e. there is no horizontal rotation of the instrument about its vertical axis. In 
this 2D mode only vertical profiles are scanned. Scanners are also specially designed 
for this purpose. They are usually mounted on moving platforms and a full 3D scan is 
created by the motion of the platform. Profile scanners are available which offer a 
complete 360° scan (panoramic view) as well as a restricted field of view (camera 
view). Profile scanners usually provide medium accuracies, typically 5–20 mm range 
accuracy up to about 100 m range, which are suitable for tasks such as the control of 
autonomous vehicles, security systems and body scanners. Fig. 6.76 shows an 
example of a 3D profile scanner used for security systems, e.g. robot collision 
avoidance.  

  

Fig. 6.76: 2D profile scanner (SICK).  Fig. 6.77: Sensor with four distance meters (IAPG).  

In 1D laser scanning there is no horizontal or vertical beam deflection. In this case, 
the device is essentially a distance meter, like a laser tape measure, typically used for 
monitoring distance to a small surface area which might be moving in the direction 
of measurement. Operation of these devices may be restricted. In the absence of beam 
rotation, the beam is essentially static and, depending on its laser class, could cause 
damage to the eyes. Fig. 6.77 shows an experimental set-up of four distance meters 
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from Z+F 5006 laser scanners. These are arranged to form a planar fan shape to 
measure four points synchronously, and in situ, on a wind turbine’s individual rotor 
blades.  

.. Panoramic imaging systems with laser distance measurement 

By combining a pan-and-tilt camera with a simple 
laser distance meter it is possible to create a 
sequentially recording camera system which, 
under certain circumstances, enables 
photogrammetric 3D measurements from only 
one standpoint. 

The camera is mounted onto a pan-and-tilt 
unit and adjusted so that the optical perspective 
centre coincides with the nodal point of the 
panoramic image (see section 3.5.6). A laser 
distance meter, such as from Leica or Bosch, is 
mounted with an offset to the camera (example in 
Fig. 6.78). In this way, images can be generated 
with the additional distance information necessary to provide the scale information 
required for photogrammetric processing. The typical distance accuracy is around 1–
2 cm at up to 30 m range. Current commercial systems are primarily designed for the 
measurement of rooms but can be used for many panoramic interiors. 

There are two different measuring strategies for data acquisition: 
– Panoramic image recording followed by distance measurement:  

Firstly, a panoramic image is stitched together from a sequence of single images 
in a local 3D coordinate system. After creating the panorama, a manual 
measuring mode is selected in which the user selects object points of interest in 
the image. The measuring system drives to the selected points whose range is 
then measured by the distance meter. In combination with the two angles 
corresponding to the image location, full polar coordinates are available for these 
target points. In this mode the object is measured sequentially in a similar way to 
measurement by total station. 

– Panoramic recording with integrated distance measurement: 
In this mode, a panoramic image is recorded in the same way as above, but 
simultaneously one distance measurement is registered per image. The actual 3D 
model is created offline by combining the assumed parallelism and orthogonality 
of object planes with the polar coordinates of image and distance measurements. 
In this way, onsite object recording is accelerated and modelling is done later at 
another location. Fig. 6.79 shows an example of a model created by this process. 

 

Fig. 6.78: Panorama camera with 
distance meter (Rodeon, Dr. Clauß).  
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Panoramic image 

 
Modelled interior 

Fig. 6.79: Measurement of interior with panoramic camera and distance meter (HCU Hamburg). 

In principle, any type of panoramic camera can be used to acquire images from 
different positions which are then processed in a common coordinate system by 
photogrammetric bundle adjustment. Additional object points can then be measured 
by intersection. Techniques based on structure-from-motion (section 5.5.2.2) can also 
be applied if the panoramic imaging model is integrated into the process and the 
object offers suitable surface textures. 

. Registration and orientation of images and scans  

When the size or form of the surface to be measured is such that it cannot be covered 
in a single measurement stage, then the surface must be measured in parts which are 
subsequently transformed into a common coordinate system to create a single 3D 
representation of the object. When 3D point clouds are transformed in this way, the 
process is also known as registration.  

Registration can be achieved through one of the following methods: 
– photogrammetric multi-image acquisition and bundle adjustment; 
– SLAM-based evaluation of image sequences; 
– measurement of sensor orientation (pose) using photogrammetric control and tie 

points; 
– measurement of sensor orientation by a separate navigation system; 
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– deriving sensor orientation from the positioning values of a mechanical 
manipulator; 

– connecting individual point clouds using common distinctive features. 

.. Multi-image photogrammetry 

The object to be measured is captured in the conventional manner by a multi-image 
setup and oriented by bundle adjustment. The necessary tie points are acquired 
automatically. Dense point clouds are usually obtained by SfM approaches and dense 
image matching. The concept follows the principle of offline photogrammetry, i.e. the 
surface is only reconstructed in 3D after the overall data acquisition has been 
completed. Object coordinates or scale definition are usually done via measured 
reference points or reference scales. 

  
a) Object on rotary table b) 3D comparison with CAD model 

Fig. 6.80: Measurement of complex surfaces by SfM (PhotoGauge).  

Fig. 6.80 shows a low-cost system from PhotoGauge, which captures an object lying 
on a turntable using a smartphone. The background is uniformly coloured so that the 
images can be automatically masked (see section 5.5.2.3). The resulting all-round 
image set is processed cloud-based by SfM (Agisoft Metashape) and made available 
as a dense surface model (mesh) for further processing, e.g. comparison with a CAD 
model. If there is no natural surface texture, the object must be artificially textured. 
The smartphone camera is simultaneously calibrated. The measuring accuracy 
according to VDI/VDE 2617 part 2 is approx. 0.05 mm in a measuring volume of 
approx. 0.5 m x 0.5 m x 0.3 m. 

Fig. 6.81 shows the CultArm3D system (Fraunhofer IGD, Verus Digital). A high-
resolution camera (PhaseOne, 100 Mpixel) is combined with a polarizing LED ring 
light and attached to a collaborative robot arm. The object to be measured is placed 
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on a rotary table and scanned using a combination of table rotation and arm 
movement. The robot control provides approximate external orientation data for the 
camera and captured images are evaluated sequentially via SfM. This enables a 
preliminary 3D model to be displayed during object capture. After image acquisition 
is finished, a complete model is calculated. Image matching is performed using 
natural surface features. Depending on the configuration, the resolution (GSD) on the 
object is up to 15-20 µm in a measuring volume of up to approx. 1 m x 1 m x 2.0 m. The 
scale is defined via a calibrated marker board next to the object. 

  
a) Robot-guided camera with light source b) Robot control and 3D data processing 

Fig. 6.81: Robot-based measurement of complex objects by SfM (Fraunhofer IGD).  

SfM-based concepts allow high flexibility and are in principle suitable for objects of 
any size and complexity. Further examples are the recording of anatomical objects 
(section 8.2.1.4) and insects (section 8.8.2.3). 

Several measuring systems use their integrated camera(s) for real-time Visual 
SLAM (see section 5.5.7.6), optionally combined with other sensor data such as 
gyroscopes or accelerometers. As examples, the technique is used in mobile devices 
(section 6.11) or in laser scanners (section 6.8.1). Since the overall accuracy is much 
lower than for SfM or other precise approaches (see below), the extracted 6DOF values 
of sensor orientation are usually used as approximations for a final least-squares 
optimization (e.g. bundle adjustment). 

.. Orientation with object points 

... Orientation with unknown reference targets 
Targets can be attached to the object which are suitable for photogrammetric 
measurement but initially have unknown coordinates. Cameras in surface scanners 
use these tie points to orient themselves and their scan data relative to the object. If 
the object structure provides unique surface features, e.g. holes or corners, these 
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features can be used instead of targets. Local 3D point clouds, scanned from different 
locations around the object, can then be transformed into a complete model via these 
points. The output will be in an arbitrary coordinate system. Scale may be defined via 
a calibrated stereo baseline. Since subsequent data is built on preceding data, this 
process can lead to a propagation of measurement and orientation errors. However, 
in a post-processing step all measured tie points can be recalculated by bundle 
adjustment in order to optimize the orientation of individual point clouds.  

... Orientation with known reference targets 
Accuracies can potentially be improved if the targets on the object are first located in 
a unified coordinate system using a single camera imaging network plus bundle 
adjustment (section 4.4 and Fig. 6.82b). During subsequent surface scanning, at every 
scan position each scan patch can be transformed into this network by 3D similarity 
transformation provided the patch includes at least three reference points, not all 
lying close to a straight line. Alternatively, the camera orientation can be calculated 
by space resection. Each scan is thereby locked directly into the common network and 
not onto the previous scan, hence the potential for improvement.  

The accuracy of surface point measurement is quoted at around a few tenths of 
millimetres in a measurement volume of a few metres, but this is highly dependent 
on the quality and distribution of the reference targets. 

  
a) HandySCAN 3D Black b) 3D surface capture using object reference targets 

Fig. 6.82: Orientation of a surface scanner using passive reference points (Creaform).  

The HandySCAN 3D family of scanners from Creaform incorporates a multi-line 
projector and dual cameras and operates in a hybrid way (Fig. 6.82). The cameras in 
the scanner locate the initially unknown reference targets in the camera’s coordinate 
system by triangulation (spatial intersection). Simultaneously, it locates eleven 
projected blue laser crosses (22 lines) to give a profile of 3D points along the object 
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surface at a frequency of 60 Hz and an output of up to 1.3 million points per second. 
When the system is moved to another position, in order to create another laser profile 
on the surface and so build up a full surface model, the current reference targets in 
the field of view are again located by the same procedure as before. Although the 
current camera position is different from the preceding one, the current reference 
target positions and laser profile points can be added into the previous measurement 
by a spatial transformation, provided at least three common points have been 
measured in both camera positions. As new targets come into view, they are 
transformed into the common reference system and hence extend the spatial 
reference field.  

This is a very flexible procedure in use. For example, if the object is small and 
light, both object and scanner can be freely moved during scanning, e.g. the object 
held in one hand and the scanner in the other. The accuracy of surface point 
measurement is quoted at up to 12µm+20µm/m, but is dependent on the quality and 
distribution of the targets.  

A similar approach is adopted by the Zeiss T-Scan hawk 2 system. Its scanning 
principle is similar to that of the HandySCAN. The 6DOF orientation of each scan is 
either performed by reference points in the background of the object, or by calibrated 
reference points attached to the object. Prior to the actual measurement the scanner 
acquires a set of images of the object-mounted reference targets which are then 
processed by bundle adjustment to generate optimal reference coordinates. 

These systems are designed to measure geometry without colour information. 
Fig. 8.18 shows a hand-held scanner which is capable of acquiring colour images 
using a separate RGB camera to assign a colour value to each measured point. 

... Orientation with known feature points 
Instead of photogrammetric targets, unique object features whose 3D position in the 
reference coordinate system, e.g. a CAD coordinate system, can also be used for 
sensor orientation. Typical features here, for example, are object corners or drill holes 
whose reference point (corner, hole centre) can be clearly determined in the 
measurement images. The achievable accuracy is usually significantly lower than 
with targets, since detectability and measurement accuracy in the image also depend 
on effects such as lighting and sharpness of physical edges. However, it is 
advantageous when there is no need for complex targeting. 

.. Scanner location by optical tracking 

In this configuration. the surface scanning system, typically a laser line scanner, has 
a number of targets (minimum three) attached to its body and these are tracked by an 
external camera system. Using 6DOF measurement principles (section 4.2.5) the 
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position and angular orientation of the surface scanner can then be determined. The 
measurements made by both scanner and tracker must be synchronized and the 
ability to identify and measure the locating targets must be guaranteed throughout 
the measurement process. Errors in 6DOF measurement directly affect the quality of 
the surface measurement. 

  
Fig. 6.83: Optically tracked surface scanner 
(Zeiss).  

Fig. 6.84: Complete 3D model generated from a 
number of individual surface scans (Zeiss). 

Fig. 6.83 illustrates the concept by showing a three-line camera (section 3.5.4) 
tracking a laser line scanner. The scanner has a number of LED targets, suitable for 
this type of camera tracker, which are calibrated in a local scanner coordinate system. 
These are tracked by the camera which transforms the local LED and laser profile 
coordinates into its own coordinate system in real time. Fig. 6.84 shows an example 
of a full 3D model composed of several individual scans. Additional examples are 
presented in section 6.9.5. See also a similar concept in which a surface scanner is 
tracked by a laser tracker (section 6.3.2.2). 

   

Fig. 6.85: Surface-scanning sensor located by an external stereo camera (Creaform).  
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The Creaform MetraSCAN 3D (Fig. 6.85) combines optical stereo tracking with a 
moving (hand-held) surface-scanning sensor based on the HandySCAN principle (see 
section 6.9.2.2). The scanning sensor is enclosed by a target frame. Multiple reference 
targets on the frame, which are calibrated in a local sensor coordinate system, are 
tracked in 6DOF by a stereo camera. The sensor can be moved within the field of view 
of the cameras and oriented in real-time. If the object is also marked with targets, the 
stereo camera can be oriented permanently, hence a relative movement between 
object and camera will be compensated. The scanning sensor can either be hand-held 
or attached to a mechanical positioning device such as a robot arm. Up to 1.8 million 
points can be measured per second, to an accuracy of about 0.025 mm. 

.. Mechanical location of scanners  

If the surface scanner is connected directly to a mechanical positioning system, then 
its spatial location and orientation can be determined by the positioning system 
provided it has the appropriate angle and displacement sensors. Relevant examples 
of such systems are robots and CMM arms (Fig. 6.86).  

To connect the scanner’s measurement data with those of the positioning 
platform, a corresponding calibration is required so that both systems operate in the 
same coordinate system. 

  
a) Area scanner attached to robot arm (Zeiss)  b) Line scanner attached to CMM arm (API) 

Fig. 6.86: Orientation of surface scanners by mechanical means. 

The accuracy of mechanical orientation with articulated arms (robot, CMM arm) is 
usually insufficient to transfer the achievable accuracy of the surface sensor to the 
complete measuring volume of the combined system. Where high accuracies are 
required in larger volumes, photogrammetric orientation procedures are therefore 
preferred.  
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.. Orientation with external systems and reference points  

Robots can be used to drive a surface measuring sensor around complex objects to 
pre-programmed positions which are relevant for quality control purposes. Here, 
measurement uncertainties of 1/10 mm or less are a typical requirement. For object 
volumes greater than ca. 3 m x 3 m x 3 m, the positioning accuracy of a robot is not 
sufficiently good to deliver directly the exterior orientation of the sensor. In this case, 
photogrammetric orientation procedures are used to measure the six degrees of 
freedom (pose) of the sensor with respect to a global coordinate system. 

One method requires reference points either on the measured object itself or in 
the surrounding environment, such as on the floor or a mounting fixture. These are 
assumed to be in a fixed position relative to the object. By imaging these points, the 
camera(s) on the scanning device can then apply the method of space resection 
(section 4.2.3) to determine the 6DOF parameters of each scanning position in the 
coordinate system of the reference points. 

 

Fig. 6.87: Surface-measuring sensor mounted on a robot arm (ZEISS ScanBox).  

Alternatively, separate oriented cameras can be installed around the measuring 
space. Using spatial intersection (section 4.4.7.1), these can locate targets on the 
scanning head which have been calibrated with respect to the scanning sensor, hence 
locating the sensor in full 6DOF with respect to the coordinate system of the cameras.  

A final transformation of measured point clouds into the object (workpiece) 
coordinate system is usually done by identifying specific object features with known 
positions in the CAD model, for example by using special target adapters positioned 
at related CAD positions (section 6.2.2.3), by manual probing or by feature matching 
procedures. 
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In the ScanBox system from ZEISS (Fig. 6.87), the company’s ATOS fringe 
projection system is mounted on a robot arm. At every measuring position, enough 
reference points must be visible in the sensor’s field of view so that it can be oriented 
with respect to the global coordinate system. In principle, there is no limit to the size 
of the measuring volume provided the reference points have a distribution and 
accuracy appropriate for the application. Since the robot-mounted sensor 
combination operates independently, several measurement robots can operate in 
parallel. 
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Fig. 6.88: Surface sensor mounted on a robot arm (Hexagon 3D Arena).  

Fig. 6.88 shows the 3D Arena system from Hexagon. This has several of high-
resolution cameras (see Fig. 3.121b) which detect and measure targets fully 
automatically. The targets are mounted on stable locations in the space surrounding 
the measured object and are located in a common coordinate system by prior 
photogrammetric measurement using the cameras. The surface is measured by one 
or more stereo fringe projection systems mounted on robot arms. The fringe 
projection systems are contained within an additional local reference field (locator) 
which is also observed by the cameras. By determining the 6DOF parameters of the 
surface measurement sensor relative to the reference points at the moment of surface 
measurement, there is no requirement for potentially uncertain mechanical 
positioning information from the robots and the required measuring accuracy can be 
delivered across the whole measurement volume. A surface measuring accuracy of 
0.1–0.3 mm is reported when using 16 cameras in a measurement volume of 5 m x 3 m 
x 2.5 m. 
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.. Connecting point clouds (registration) 

If no absolute orientation or transformation parameters are available for individual 
point clouds, unique object features within the point clouds, and with known 
positions in 3D space, can be used. These features could, for example, be suitable 
targets or artefacts for which a distinct reference point can be derived from the 
neighbouring points in the cloud. In this way, unique tie points are generated for each 
single point cloud. Alternatively, any other distinct features, such as corners or drill 
holes, can be used if they can be detected and identified. Where distinct features are 
not available, orientation is possible using local surface curvatures which, in analogy 
to interest operators for image matching (see section 5.4.3), enable a unique matching 
in neighbouring point clouds. Yet another technique is global least-squares 
optimization which minimizes the distances between two point clouds (ICP, see 
section 6.9.6.2). In all registration methods, the surface features must contain the 
information necessary to determine all six transformation parameters. Some point 
clouds cannot be connected using surface geometries. These include, for example, 
point clouds which represent single planes or multiple parallel planes, or which 
represent single surfaces with a rotationally symmetric axis such as spheres, 
cylinders and cones.  

... Registration with 3D reference targets 
For point cloud registration, targets can be used whose reference point can be 
extracted from the point cloud. The well-known checkerboard-type targets (see 
section 6.2.1.3) consist of black and white areas which can be detected by the intensity 
values of the point cloud. Within a best-fit plane of neighbouring points the 
intersection point of the pattern edges can be defined. Alternatively, spherical targets 
(usually with known radius) can be used where the centre of a best-fit sphere can be 
calculated (see section 2.3.2.3) and can then be used as a local reference point for 
orientation (example in Fig. 6.89). Both techniques are commonly part of the 
registration process in terrestrial laser scanning. In comparison with 
photogrammetric reference targets, the overall accuracy of feature point registration 
is significantly less.  
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a) Spherical target b) Measured point cloud and best-fit sphere 

Fig. 6.89: Measurement and analysis of a spherical target. 

... Iterative closest point (ICP) 
The most well-known algorithm for registering two point clouds (cloud-to-cloud 
matching) based on overlapping surfaces is the iterative closest-point algorithm (ICP). 
As the name suggests, it is an iterative algorithm which requires a starting value for 
the transformation, i.e. the two point clouds must be roughly aligned. The following 
discussion considers the case of aligning point cloud F to point cloud G, where F 
consists of n points fi and G of m points gj (Fig. 6.90). The ICP starts by searching for 
the closest point for every point fi among all points in G. The closest point is the point 
gj which has the shortest Euclidean distance to fi. All closest point pairs (fi,,gj) are 
assumed to be corresponding points. From this set of corresponding points a rigid 
body transformation is computed as described above. This transformation is applied 
to point cloud F. The Euclidean distance di(fi,,gj) for all corresponding point pairs is 
computed after transformation. If the overall error, e.g. the RMS of all di, is below a 
pre-set threshold, the iteration is aborted. Otherwise the iteration is continued by 
searching again for the closest points and establishing new corresponding points. See 
Fig. 6.90 for a flow diagram of the algorithm. 

The computationally most intensive step of the algorithm is the search for the 
closest point. This problem is also known as the nearest neighbour search. A naïve 
implementation would compute distances di(fi,,gj) for every point gj of G and select the 
point with smallest di. This would require m computations. Well-known spatial search 
structures such as the kd-tree can reduce the search time to log m. If a surface meshing 
is available for point cloud G, the method can be adapted to consider distances 
between points and surfaces. This typically improves the accuracy of the alignment. 
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search for closest point for every point fi in point cloud F from point cloud G

compute rigid-body transformation from corresponding points
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RMS(di) < ε

end
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Fig. 6.90: Flow diagram for iterative closest-point algorithm. 

In addition to point-to-point distances, the ICP can be modified to make use of point-
to-plane or plane-to-plane distances. As an alternative to a simple distance function, 
it is also possible to use distances to a surface centroid or parallelism of normal 
vectors of two planes or combinations of these.  

In analogy to the least-squares matching of two image patches (section 5.5.3.5) 
3D point clouds can be matched (least squares 3D surface matching). Under the 
assumption that two overlapping point clouds have corresponding regions f(x,y,z) 
and g(x,y,z) which are identical apart from random noise e(x,y,z), then the following 
relationship can be established: 

( , , ) ( , , ) ( , , )f x y z e x y z g x y z− =  (6.13) 

Reference region f(x,y,z) and search region g(x,y,z) each consist of single surface 
elements, e.g. discrete 3D points. The geometric transformation between both regions 
is achieved by a 3D similarity transformation with seven parameters (section 2.2.4). 
In an iterative Gauss-Markov adjustment (section 2.4.2), the Euclidian distances 
between corresponding surface elements are minimized. The method requires 
suitable starting values for the transformation parameters and correspondences 
between the regions and can be extended to the simultaneous matching of multiple 
regions.  
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.. ICP-based scanner devices 

Different suppliers offer hand-held 3D scanners. In contrast to high-end industrial 
scanners (example in Fig. 6.82) these scanners are usually designed for smaller 
objects and lower accuracy demands. As examples, Fig. 6.91 shows two systems that 
permit a hand-held digitization of object surfaces. Both project a point pattern which 
is observed by a camera with a lateral offset to the projector. 3D coordinates of 
projected points are calculated by triangulation, i.e. camera and projector must be 
calibrated and oriented with respect to each other. When scanning the surface, the 
device must be guided slowly and evenly over the surface. The registration of 
individually measured point clouds is based on matching of local object surfaces by 
ICP (section 6.9.6).  

  
a) Artec Leo b) Mantis Vision F5 Short Range 

Fig. 6.91: 3D hand-held scanners. 

The Artec Leo system (Fig. 6.91a) projecting a point pattern using blue LED 
technology. It is designed for a measurement space of about 90 mm x 70 mm at a range 
between 0.17 m and 0.35 m. The achievable accuracy is reported to be from 0.5 mm to 
2 mm depending on the surface properties. In this system, point clouds and surface 
models can be coloured using colour information collected by a second RGB camera. 
The Mantis Vision F5 system (Fig. 6.91b) uses infrared LEDs for pattern projection. 
Depending on system model, the measurement range lies between 0.3 m und 4.5 m. 
At a distance of about 0.5 m the achievable accuracy lies in the millimetre range.  

. Dynamic photogrammetry  

Image sequences can provide chronological records of an object’s spatial movements 
(deformations, trajectories, velocity and acceleration curves). In addition to recording 



 6.10 Dynamic photogrammetry   

  

time, suitable measures must be taken to identify and image discrete object points. 
Examples of dynamic applications are: 
– recording crash tests in the automotive industry;  
– investigating turbulent flow in fluids or gases;  
– surveying structural deformations (buildings, bridges, …);  
– material testing under mechanical or thermal stress;  
– vibration analysis; 
– calibrating and evaluating robot movement;  
– human motion analysis. 

Image sequences usually imply a sequential series of multiple images which record 
an object movement at an appropriate frequency. In object space, a stationary set of 
reference points is required to which the object movements can be related. It can also 
be used for image orientation, e.g. with moving camera stations. 

Slow movements, such as the deformation of a cooling tower due to changes in 
direction of the sun's illumination, can be recorded as a sequential set of 3D 
reconstructions, each made using the offline photogrammetric process i.e. using a 
single conventional camera followed by a standard photogrammetric object 
reconstruction.  

The recording of high-speed image sequences can be achieved using video 
cameras (camcorders) and digital high-speed cameras (section 3.5.3). Dynamic 
spatial modelling can be achieved by using multi-camera systems or a single camera 
with stereo image splitting (section 3.4.3.9). Cameras with an integrated memory for 
storing images or videos have a limited maximum recording time. Cameras with 
integrated point measurement are capable of almost unlimited recording of targets 
without the need to store images. 

Methods for tracking and matching features in image sequences are discussed in 
section 5.5.7. 

.. Relative movement between object and imaging system 

... Static object 
Relative movement between a static object and moving camera occurs in a number of 
applications: 
– hand-held photography; 
– photography from an airborne vehicle; 
– image acquisition from a moving car; 
– image acquisition on unstable ground (oscillations, vibrations). 



  6 Measuring tasks and systems 

  

Stationary objects can be recorded in an offline process by sequential imaging with 
only one camera. Movements of the camera, during exposure, cause an image blur 
Δs', dependent on velocity, exposure time and image scale: 

' Δt vΔs
m
⋅

=  (6.14) 

where 
Δt: exposure time 
v: speed of moving camera  
m: image scale factor 

Blurring due to image motion results in a decreased modulation transfer in the 
direction of movement. The maximum permitted image motion can therefore be 
expressed as a function of resolving power. Investigations of aerial cameras have 
shown a maximum tolerable image motion of: 

1
max' 1.5Δs RP−= ⋅  (6.15) 

where 
RP: resolving power of the sensor [L/mm] 

For applications in close-range photogrammetry, a maximum image blur of 1 pixel 
might, for example, be tolerated. 

The maximum permitted exposure time in a given situation can be derived from 
(6.14) as: 

max
max

'Δs m
Δt

v
⋅

=  (6.16) 

Example 6.3: 

A row of houses is imaged from a moving car (v = 30 km/h = 8.33 m/s) at image scale factor m = 2000. 
The maximum image blur should not exceed 1 pixel (e.g. 6 µm). It is necessary to find the maximum 
exposure time Δt and the resulting blur in object space: 

Solution: 
1. Permitted image motion: Δ =max' 6 μms  

2. Maximum exposure time: Δ
−⋅ ⋅

= = ≈
3

max
0.006 10 2000 0.0014s 1 / 700s

8.33
t  

3. Blurring in object space: Δ = ⋅ =2000 0.006 12 mmS  

In practice, exposure times must also be selected on the basis of illumination 
conditions, available lens aperture, required depth of field and film or sensor 
sensitivity (ISO number).  
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... Moving object 
The relationships discussed above for blurring due to camera motion are also valid 
for a moving object. However, 3D measurement of a moving object requires at least 
two synchronized cameras.  

Depending on object velocity, synchronization errors lead to positional errors Δs' 
which are proportional to the corresponding distance moved ΔS. 

' Δt v ΔSΔs
m m
⋅

= =  (6.17) 

where 
Δt: synchronization error 
v: object velocity 
ΔS: distance moved 
m: image scale factor 

If the object is moving parallel to the baseline 
between two cameras, the positional error is 
effectively an x-parallax error Δpx'. According to the 
standard case of stereo photogrammetry shown in 
Fig. 6.92, it is clear that the movement ΔS between 
times t0 and t1 results in a measurement of virtual 
point P*. The corresponding error ΔZ in the viewing 
direction is given by the following expression 
(compare with eqn. 4.88): 

'h hΔZ ΔS m Δpx
b b

= = ⋅ ⋅  (6.18) 

where 
h: object distance 
b: stereo base 
Δpx': x-parallax error 
m: image scale factor 

In the direction of movement, the lateral error ΔX is as follows: 

'xΔX ΔZ
c

=  (6.19) 

where 
x': image coordinate in left image  
c: principal distance 

Conventional cameras can be synchronized by an electrical pulse linked to the shutter 
release. For the synchronous image input from multiple video cameras there are 
frame grabbers with multiple parallel A/D converters, e.g. RGB inputs, whose 

h

x'

c c
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O' O"

∆px'

P*
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Pt0 Pt1

v

∆X

 

Fig. 6.92: Lateral and range errors caused 
by synchronization error. 
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synchronization signal is used to control the cameras. The synchronization pulse can 
also be generated by one camera in master/slave mode.  

Example 6.4: 

For the application in example 6.2 (v = 30 km/h = 8.33 m/s; m = 2000) stereo images with two digital 
video cameras are also to be recorded (b = 1.5 m, c = 8 mm, h = 16 m, x' = 4 mm). Technical limitations 
in the installation require a synchronization error of Δt = 1/500 s to be taken into account: 

1. Distance moved: ΔS= 1/500 · 8.33 = 0.017 m 

2. Lateral image error: Δpx' = 0.017/2000 = 8.5 · 10–3 m = 8.5 µm 

3. Error in viewing direction: ΔZ = 16/1.5 · 2000 · 8.5 · 10–3 = 181 mm 
4. Error in direction of movement: ΔX = 4/8 · 181 = 90 mm 

The example demonstrates the serious effect of a synchronization error on the quality of object 
coordinates. The lateral image error of 8.3 µm is of the order of 1–2 pixels. 

.. Recording dynamic sequences 

... Camera system for robot calibration 
In general, robot calibration is used to check the robot arm position with respect to 
its nominal position, and to derive correction data for angle and distance 
adjustments. This requires the determination of the 6DOF parameters (pose) of the 
robot’s end effector, a task which can be solved by online or offline photogrammetry.  

  
a) Robot calibration with three-line 
camera (Nikon Metrology)  

b) Robot calibration by offline photogrammetry 
(Filion et al. 2018) 

Fig. 6.93: Photogrammetric robot calibration and adjustment. 



 6.10 Dynamic photogrammetry   

  

A possible solution is to have one or more digital cameras fixed in such a way that 
they observe the workspace of the robot. The robot arm is fitted with a calibrated 
reference object which is moved to various positions in space. By space resection 
(section 4.2.3), the camera(s) determine the position and orientation of the reference 
object and hence of the robot tool point.  

The 6DOF parameters between the robot’s target frame, and an additional 
reference field if necessary, can be calculated if both point fields are visible to the 
camera at the same time (see section 4.2.5). The robot can be calibrated in motion, i.e. 
its kinematic properties are taken into account in the calibration. Fig. 6.93a shows a 
target frame equipped with LEDs which is tracked and measured by a high-frequency 
three-line camera (compare with Fig. 3.128). The typical workspace (measuring 
volume) is about 3 x 3 x 2m3 within which an object accuracy of 0.1 mm can be 
achieved. 

Fig. 6.93b shows a set-up for photogrammetric robot calibration using offline 
photogrammetry. Again, typically a single or stereo camera takes multiple images of 
a moving target frame attached to the robot’s end effector. The robot moves to 
different spatial positions and at each position a separate set of images is recorded. 
The achievable accuracy is higher than for online measurements, but more time is 
required for the measurement process and it does not take into account all the robot’s 
kinematic characteristics. 

Robot-based systems like those presented in section 6.9.5 can use external 
measurements based on control points as part of a feedback loop which enables them 
to drive to more accurately known locations. This type of measurement feedback 
control is also implemented using laser trackers (section 6.3.2.2). 

... High-speed 6 DOF system 
Fig. 3.121b shows a high-speed camera system used to record the dynamic changes in 
position and angular orientation of a moving object. The camera incorporates an 
internal FPGA processor with software which can automatically locate bright circular 
targets in the image. An example application is the AICON WheelWatch (see Fig. 
6.94), used to monitor wheel movements on a moving car, for example to analyse the 
steering mechanism or the effect of road impacts.  

The principle of operation is again based on a space resection, as described in 
section 4.2.3. By monitoring two separate sets of targets, one on the car body around 
the wheel arch and one on the wheel itself, the movements of the wheel relative to 
the body can be determined in real-time and at high speed (up to 50 m/s). This means 
that a dynamic measurement sequence can be of unlimited duration since there is no 
image recording but instead a continuous output of 6DOF values. 



  6 Measuring tasks and systems 

  

  
a) High-speed camera and reference targets b) Processing example  

Fig. 6.94: 6DOF real-time measurement of wheel movement (AICON WheelWatch).  

 
t = 0 ms 

 
t = 5 ms 

 
t = 25 ms 

 
t = 50 ms 

 
t = 75 ms 

 
t = 100 ms 

 
t = 125 ms 

 
t = 150 ms 

 
t = 200 ms 

Fig. 6.95: High-speed video sequence (Porsche).  

... Recording with high-speed cameras 
The recording of high-speed image sequences is also known as cinematography for 
which digital high-speed cameras are used (section 3.5.3). Image sequences for 3D 
analysis can be captured by multiple synchronized cameras or a single camera fitted 
with a split-beam mirror for stereo viewing (section 3.4.3.9). Fig. 6.95 shows part of a 
high-speed video sequence to determine the path of glass fragments in the simulation 
of a head striking a car windscreen. The sequence was recorded with two synchro-
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nized cameras (Weinberger Speedcam Visario, 1024 x 768 pixels, 2000 frames per 
second) in order to determine the three-dimensional paths of the glass particles.  

... Particle Image Velocimetry 
Particle Image Velocimetry (PIV) encompasses various methods for measuring the 
spatial trajectories of multiple particles in media such as air, gas and water. Typical 
applications are flow analysis inside wind tunnels, gas turbines and high-pressure 
nozzles or the analysis of stream velocities and directions in fluids. The term Particle 
Flow Tracking is also often applied in this case.  

Fig. 6.96 illustrates an experimental set-up for recording spatial trajectories by a 
multi-camera image sequence. Three video cameras are used to observe particle flow 
in a water tank. A light-section projector creates a “box” of light in which particles 
are visible. The image sequence is stored at video rate on a video recorder. The multi-
media path of the imaging rays through the transparent wall of the tank is taken into 
account by the photogrammetric model (section 4.6).  

line projector

cameras

tank section

particle

 

Fig. 6.96: Experimental set-up for multi-image recording of particle flow (after Maas 1993).  

For this application the key problem lies in solving the correspondence, at a given 
point in time, between the three images of a large number of particles which are 
recorded as bright points (Fig. 6.97). The correspondence problem is solved by an 
image matching process based on epipolar geometry as outlined in section 5.5.4. 

As a result of the photogrammetric analysis, the 3D coordinates of all particles 
throughout the complete image sequence can be determined. Particle trajectories can 
subsequently be derived (Fig. 6.97), although this requires solution of the 
correspondence problem between consecutive images in the sequence. 
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image sequences extraction of particles 3D velocity field  

Fig. 6.97: Particle image velocimetry (Dantec Dynamics).  

.. Motion capture (MoCap)  

A number of commercial photogrammetric systems (motion capture systems) exist for 
the 3D recording and analysis of human movement e.g. for applications in sport, 
medicine, ergonomics and entertainment. They are based either on off-the-shelf 
digital video cameras or specialized measurement cameras with integrated 
processors for the online acquisition of marker (target) locations.  

  
a) Freely configurable camera setup b) Example of 3D motion analysis 

Fig. 6.98: Use of a MoCap tracking system to analyse golf strokes (Qualisys).  
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The cameras can be freely positioned, e.g. on tripods, attached to a mobile base or 
mounted in fixed locations around a measurement space (Fig. 6.98). System 
calibration and orientation is generally made using local reference point arrays or 
targeted scale bars which are moved around the measurement area.  

Retro-reflective targets placed on the body are normally used to record 
movement. They are illuminated from the camera locations and provide reliable 
target identification and tracking. The results of a measurement are the spatial 
trajectories of the target points which typically support a motion analysis or computer 
animation. Many companies offer commercial multi-camera MoCap systems, for 
example Qualisys, Vicon and ART.  

. Mobile measurement platforms  

.. Mobile mapping systems  

... Outdoor mapping 
Mobile mapping systems (Fig. 6.99) are moving platforms equipped with a range of 
sensors (cameras, laser scanners, radar, sonar, odometers, positioning systems). 
They are used to measure transport routes (roads, railways, waterways) in both open 
and built environments and, commonly, the built environment itself. The objective is 
a continuous sensing of the scene with simultaneous registration of exterior sensor 
orientation using GNSS and INS.  

camera camera

TLSTLS

GNSS

IMU

radar

  

Fig. 6.99: Schematic mobile mapping system. Fig. 6.100: Mobile mapping system for road 
modelling (Trimble). 

Mobile mapping systems for railway modelling are used to determine rail geometry 
and areas of damage, as well as bridge and tunnel measurement. Waterways, river 
beds and river banks can be measured by terrestrial laser scanners on board floating 
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platforms with additional hydrographic sensors, e.g. echo sounders, on board. To 
record and check road surfaces and edges, laser and radar systems are typically used 
(see example in Fig. 6.100). In populated areas it is mostly building façades and 3D 
city models which are generated. These are used for both tourism and technical 
purposes, in geoinformation systems and internet portals. For the mapping of areas 
which are difficult to access and cannot be reached by normal vehicles, systems are 
available which can be carried as backpacks (examples in Fig. 6.102). 

A particular challenge for mobile mapping systems is the calibration and 
orientation of the individual sensors in a common coordinate reference system. For 
this purpose, large area reference fields must normally be created. These should 
provide a large number of reference points which can be recorded by the various 
sensors such as image and laser systems. 

Fig. 6.101 shows an example of a mobile-mapping system which uses cameras 
only. Such systems use stereo matching in recorded image sequences to reconstruct 
the 3D model of the environment, typically surface models of roads and 
embankments.  

 

 

 
a) Vehicle with cameras   b) Surface reconstruction by image matching 

Fig. 6.101: Mobile mapping with stereo photogrammetry (iNovitas).  

... Indoor mapping 
Inside buildings or other closed environments, GNSS signals are not available. Here 
mobile mapping systems must obtain their orientation parameters by means of 
image-based and/or laser-scanning techniques. One solution is based on a SLAM 
algorithm (simultaneous localization and mapping, see section 5.5.7.6) which uses 
image sequences for the continuous orientation of cameras within an unknown 
environment. The quality of the recorded data can be significantly improved by 
means of measured control points (targets), additional sensors on the mapping 
platform such as odometers, and appropriate measurement strategies for the point 
clouds, e.g. loop closure. In 3D space the typical resolution (point density) is of the 
order of 5 to 10 mm, with absolute accuracy of the order of 20 to 50 mm.  
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a) Leica Pegasus  b) Gexcel Heron 

Fig. 6.102: Mobile mapping in backpack.  

Fig. 6.102 shows examples of backpack systems which are equipped with one or more 
2D laser scanners, cameras, GNSS and IMU modules. 

  
a) NavVis Trolley  b) Fisheye system for narrow spaces (Politecnico di 

Milano)  

  
c) Hand-held laser scanner (Leica) d) Autonomous robot platform with laser scanner 

(Boston Dynamics, Leica) 

Fig. 6.103: Mobile mapping for indoor measurement.  
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Fig. 6.103a shows an example of a commercial indoor mapping system, in this case 
the NavVis M6 device comprising multiple laser scanners and cameras. Fig. 6.103b is 
an example of a hand-held system based on five fisheye cameras that is specially 
designed for narrow spaces such as stairways, tunnels or caves. Fig. 6.103c and d 
show a mobile laser scanner that can be used as a hand-held device as well as on 
robots or other platforms such as drones. The displayed examples can also be applied 
in outdoor environments. 

.. Close-range aerial imagery 

Images from low flying aerial platforms are used, as example, in the following 
applications:  
– archaeological surveys;  
– volumetric measurement of spoil heaps and waste disposal sites;  
– roofscape mapping;  
– large-scale mapping of inaccessible areas;  
– test site mapping for geographical investigations;  
– biotope monitoring; 
– accident recording; 
– inspection, monitoring and photographic documentation of construction sites; 
– reconnaissance. 

The acquisition of low-altitude aerial images is, in the first instance, a problem of 
flight technology (choice of sensor platform, navigation, flight authorization). 
Photogrammetric processing is based on standard methods.  

... Aerial systems 
Manned aircraft are suitable for large-scale aerial images if image blur at their 
minimum speed is tolerable. For example, with an exposure time of Δt = 1/1000 s, 
flying speed v = 180 km/h and image scale factor m = 1000, image blur is 
approximately 50 µm according to eqn. (6.14). Compensation for image blur is widely 
implemented in aerial cameras by forward motion compensation (FMC) or time 
delayed integration for digital cameras. Low-speed ultra-light aircrafts (gyrocopters, 
microlights, vmin = 40 km/h) provide advantageous flight properties but lower 
payloads (<100 kg). Manned helicopters are seldom used due to their high operational 
costs. 

For large scale mapping of smaller areas, a variety of unmanned platforms are 
available to deploy cameras and scanners. These include balloons, blimps and kites 
but the most commonly used is the continually and rapidly developing technology 
relating to pilotless aircraft and helicopters. These are commonly known as drones 
but have various other names such as remotely piloted vehicles RPV, unmanned aerial 



 6.11 Mobile measurement platforms   

  

vehicles UAV, unmanned aerial systems UAS and remotely piloted aircraft systems 
RPAS.  

Table 6.2: Unmanned platforms for low-altitude aerial imagery. 

Type Typical (max.) 
altitude 1 [m] 

Payload 
[kg] 

Range 2 
[m] 

Number of 
operators 

Max. flying 
time 3 [min] 

Fixed-wing aircraft 50–120 (500) 0.2–15 5000 1 – 2 30 – 120 

Helicopter 10–120 (150) 1–20 5000 1 – 2 10 – 120 

Multicopter  10–120 (150) 0.3–7 3000 1 up to 60 

Hot-air balloon, blimp 10–100 (1000) 10–50 5000 3 – 5 60 

Gas balloon, blimp 10–100 (1000) 10 stationary 2 – 3 unlimited 4 

Kite 50–100 (300) 10–50 stationary 2 unlimited 4 

1) limited to 120 m in Europe; 2) usually required to stay in view; depending on sender/receiver;  
3) payload dependent; 4) weather dependent. 

A particularly strong development area is represented by remotely controlled 
helicopters. With automatic flight stabilization and navigation, they can carry a 
payload of up to 18 kg which permits, for example, the simultaneous use of digital 
cameras and airborne laser scanning systems. Some also use compression-ignition 
motors which allow for longer flying times. High-end multicopters with four to eight 
rotors (example in Fig. 6.105) have been designed for higher payloads, but these are 
usually powered by batteries and have a more limited maximum flying duration. As 
an alternative, low-cost multicopters are available with reasonable flight stability but 
more limited payloads and flight durations (see Fig. 6.106).  

  

Fig. 6.104: Helicopter (Aeroscout).  Fig. 6.105: Quadcopter with laser scanner (Riegl).  
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Fixed-wing UAVs (example in Fig. 6.107) are suitable for aerial coverage of larger 
regions or for following traffic routes. They are more stable than multicopters in 
strong winds and are easy to manoeuvre. As drawbacks, they generate more vibration 
and roll, although roll can partly be compensated by designing the flight path to 
ensure the imaging has a higher side overlap (usually 80%).  

The flight ranges which are technically possible depend not only on the 
maximum flying time but also on the data transmission systems used and can be up 
to several kilometres. Whether a visual line of sight (VLOS) or beyond visual line of 
sight (BVLOS) is permissible is regulated by law. 

  

Fig. 6.106: Quadcopter (DJI Phantom 4 RTK).  Fig. 6.107: Fixed-wing UAV (SenseFly).  

In practice, multicopters are preferred since their requirements for takeoff and 
landing are very flexible and they can hover in fixed locations. The advantages and 
disadvantages of various unmanned aerial systems are summarized in Table 6.3. 

Aerial platforms have also benefitted from advancements in sensor technology 
which, amongst others, help to improve stabilization and navigation. Useful 
advances include miniaturized GNSS receivers, gyroscopes, altimeter, powerful 
rechargeable batteries and existing electronics for wireless image and data transfer. 
These complementary technologies have helped to create a mass market for UAVs 
which, in turn, has opened up numerous new fields of application for 
photogrammetry. This widening spectrum of applications has created a parallel need 
for regulations, with national laws now in place in many countries to control flight 
permissions and pilot certification. 

... Sensor technology 
For widely used low-cost drones, the on-board sensor is often a light and inexpensive 
fixed-focus digital camera, supplied in different designs (RGB, multi-spectral, 
thermal). Image data is usually stored within the camera, because remote data 
transfer at typically required resolutions (usually > 20 Mpixel) is costly and 
demanding. Most of the relevant off-the-shelf cameras have only limited suitability 
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for metric purposes, as their lower construction quality, coupled with normal UAV 
flight patterns, ensures that calibration can only achieve moderate accuracy levels. 
In addition, geometric quality is also affected by vibration, motion blur and rolling-
shutter effects (section 3.4.2.2).  

Table 6.3: Pros and cons of different UAV platforms.  

 Fixed wing Multicopter Helicopter Balloon / Blimp 

Technology 

Handling / calibration simple simple complex simple 

Controlability ++ ++ ++ – 

Sensitivity to wind o + – ++ 

Robustness ++ + + ++ 

Sound level low (e-motor) low (e-motor) high (kerosene) low 

Transportation trunk trunk trunk small trailer 

Flying duration ++ o + ++ 

Costs 

Purchase  + – to + ++ ++ 

Maintenance o + ++ + 

Repair after crash  o ++ + O 

Application 

Velocity / area efficiency ++ o + – 

Minimum flying height + – – – 

Pointing ability – ++ + ++ 

Gimbal rarely default default default 

Payload vs. weight  o + ++ + 

Take-off and landing landing site everywhere everywhere landing site 

 
In addition to the photogrammetric camera, the aerial platform must carry additional 
components such as remote control, navigation devices, video camera or camera 
housing. The camera suspension (gimbal) ensures a stable camera alignment by 
motorised compensation of any platform movements. It also permits adjustment of 
the viewing direction, e.g. to acquire oblique images. 

Even with skilled operators, navigation remains a practical problem. UAVs 
usually have a video transmission with which the aircraft can be driven into position, 
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both automatically and manually. Barometric altimeters can be used in order to 
ensure a constant altitude. UAVs with GNSS receivers can, in principle, be navigated 
autonomously, i.e. within the GNSS accuracy they can fly a predefined course. Note 
that GNSS methods with real-time kinematics (RTK) require a reference station within 
receiving range and thus allow the reduction of control points. As for aerial image 
acquisition with real aircrafts, all on-board components must be calibrated with 
respect to each other (boresight calibration). For professional surveying flight, a 
skilled (certified) pilot is usually required to control takeoff, landing and emergency 
cases whilst the actual flight path is run automatically according to a pre-defined 
program.  

For some time now, airborne laser scanning (ALS) systems have also been 
available with a weight and measuring distance corresponding to typical UAV 
requirements (example in Fig. 6.106). The ALS systems can additionally be combined 
with an RGB camera. For the accurate determination of the external orientation of 
each laser signal, the systems are equipped with high-precision IMU components. 

... Flight planning 
Aerial flight planning is usually implemented with software tools provided by the 
UAV or third-party suppliers. The most relevant planning criteria are: 
– Ground sampling distance (GSD):  

The ground sampling distance GSD, or pixel size on ground, is primarily defined 
by the application. It is calculated from the physical pixel size of the imaging 
sensor and the image scale (see below). Physical rules such as sampling theorem, 
or modulation transfer function, should be taken into account. With current 
systems, the typical GSD ranges from 5 to 20 mm. Achievable accuracies in object 
space lie in the region of 0.5–1 pixels in XY and 2–3 pixels in Z (height). 

– Choice of camera and lens: 
Apart from scale-dependent parameters, the choice of camera is very dependent 
on the maximum payload of the platform. Additional selection criteria are 
memory capacity, control of aperture and exposure time, spectral range and light 
sensitivity. The focal length selected will be a function of GSD, image scale, flying 
height and overlaps. 

– Flying height:  
Determination of a suitable flying height is dependent not only on scale 
requirements but also on other technical and legal side issues. For example, the 
maximum flying height of UAVs can differ considerably and the operational 
requirements of the aviation industry must be followed. 

– Image scale:  
The image scale resulting from eqn. (1.1) is a function of flying height and focal 
length, or GSD and sensor pixel size.  
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– Oblique images:  
For special applications, oblique images may be necessary. It should be noted 
that image scale and GSD become less favourable with increasing distance from 
the nadir direction, depending on the angle (see Fig. 6.108).  
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Fig. 6.108: Imaging geometry for oblique images. 

The image scale is calculated by 
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where 
β: imaging angle to object point P 
τ: tilt angle (τ=0 for nadir image) 
h: flying height above ground 
c: principal distance 

– Forward and side overlap:  
In contrast to flight patterns used in conventional aerial photogrammetry, 
forward and side overlaps have a different meaning for UAV flights. Here it is not 
an objective to acquire a minimum of images for subsequent stereo processing 
but to acquire a dense set of images with minimum occlusions. UAV parameters 
are around p = 80 % (forward overlap) and q = 60 % (side overlap). For fixed-
wing UAVs, which normally fly at higher speeds, an 80 % side overlap is usually 
flown (see above). Large overlaps are also appropriate when processing with 
structure-from-motion techniques. For complex terrains with greater height 
differences, cross strips are recommended where the area is recorded twice at 90° 
directions, optionally also at another flying height. Cross strips at different 
heights are also helpful for simultaneous camera calibration. The total number of 
images is less important.  
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– Height-to-base ratio:  
The height-to-base ratio h/b (see section 4.3.6.2) is the primary factor determining 
the achievable height-measuring accuracy. The base b between two image is 
given by:  

(1 ) (1 ) 'b p S p m s= − ⋅ = − ⋅ ⋅  (6.21) 
where 
p: forward overlap 
S: imaged side of terrain in flying direction  
s': image format of the sensor in flying direction 
m: image scale number 

The distance between adjacent flight strips follows in an analogous way using 
the given side overlap. 

– Image time interval:  
For fixed-wing UAVs, the time interval between two sequentially recorded images 
is given by the base b and velocity v:  

/Δt b v=  (6.22) 

If necessary, the image time interval must be adjusted to accommodate the 
maximum frame rate of the camera. 

– Exposure time and image blur:  
Maximum permitted exposure time and resulting image blur are defined 
according to the relationships described in section 6.10.1.  

– Targeting and measurement of reference points:  
Reference points (ground control points) are usually measured by GNSS or other 
geodetic methods (see section 6.3.2). Targeting is realized through typical 
chessboard patterns or circular targets. Fig. 6.109 shows a turn-and-tilt target 
which can be used in parallel for terrestrial measurements. Alternatively, targets 
with an integrated GNSS receiver are available which do not require any control 
point measurement (Fig. 6.110). 

– Position and accuracy of reference points:  
The number and distribution of (geodetic) reference points are a function of the 
specified accuracy on the ground and in height, the quality of the camera in use, 
overlap parameters and issues of economy. UAV applications with a small 
number of reference points, e.g. only at the corners of the mapped region, tend to 
show deformations in the 3D reconstruction, e.g. systematic height errors. With 
on-board GNSS RTK, the number of ground control points (GCP) can be reduced 
significantly. For accuracy requirements >1 dm, RTK may not require any control 
points at all, but this method of direct georeferencing does not allow independent 
accuracy control. For applications with higher accuracy, control points are 
usually required at least in the corners of the flight area. 
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Fig. 6.109: Tilt & turn target (Zoller & Fröhlich).  Fig. 6.110: GNSS target (Propellor Aerobotics).  

... Photogrammetric processing 
In most UAV applications, photogrammetric processing is done using structure-from-
motion software (SfM, section 6.4.2) which also allow for the orientation of 
unstructured image configurations with uncalibrated cameras, Usually, natural 
surface texture is sufficient to match feature points reliably (application example in 
Fig. 6.111).  

 

Fig. 6.111: UAV flight and object modelling with SfM (see also Fig. 6.112). 

If unstable cameras are used for flights above flat terrain, camera calibration can be 
problematic (see section 7.3.5). Weak camera calibrations often remain undetected in 
SfM solutions because the overall result seems to be correct. To avoid this, UAV flights 
should be configured with some depth in object space, for example flying at two 
different altitudes. Ideally, a stable, high-quality camera should also be employed 
and camera functions such as autofocus or internal distortion correction should be 
switched off for a good photogrammetric result. 
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Fig. 6.112: Use of a quadcopter to record a church (see also Fig. 6.111). 

Fig. 6.112 shows the use of a quadcopter to acquire imagery of a church tower (Lurdji 
monastery, Tbilisi). Here, several flight paths following circular and meandering 
patterns have been combined with images taken from the ground and terrestrial laser 
scanning. Fig. 6.113 shows an orthophoto generated from UAV images used to create 
a cadastral plan.  

     

Fig. 6.113: Orthophoto (left) generated from UAV images used to create a cadastral plan (right)  
(Land Surveying Office, City of Winterthur, Switzerland). 
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. Visualisation systems  

.. Digital stereo viewing systems 

In digital stereo workstations, images are displayed and moved digitally on a suitable 
stereo monitor. Each image may be moved relative to a superimposed measuring 
mark. The measuring marks, the images, or both simultaneously, can therefore be 
moved.  

The (interactive) measurement of 3D coordinates uses the principle of the 3D 
floating mark (section 4.3.6.3). For this, both images must be oriented in the target 
coordinate system. From given 3D positions in space, the corresponding image 
coordinates are calculated and the images are displayed for visual stereoscopic 
control at the corresponding position. The measurement procedure corresponds to 
the functional principle of earlier analytical plotters (example in Fig. 6.60). 

Stereoscopic viewing is achieved through either optical or electronic image 
separation. Essentially, the following techniques are used:  
– Split screen: 

Both images are displayed side by side on a standard monitor and are viewed 
stereoscopically using a simple optical system similar to that of a mirror 
stereoscope. The images move which requires a fixed floating mark. The operator 
is required to sit in a fixed position in front of the monitor and the system can 
only be used by one observer. 

– Anaglyphs:  
Usually, left and right images are presented in two different colours, e.g. 
red/green, red/cyan, blue/yellow, green/magenta, and viewed through glasses 
with corresponding colour filters. Depending on the selected colour combination, 
some significant colour loss may occur in the model. Stereoscopic viewing is 
possible over large viewing distances and angles, and for a number of people 
simultaneously. 

– Alternating image display: 
Left and right images are alternately displayed at high frequency (>100 Hz). The 
operator wears wireless glasses which have synchronized shutters triggered by 
an infrared signal so that only the currently displayed image is visible to the 
corresponding eye. Within the limitations of the infrared receiver, stereoscopic 
viewing is possible for a number of people simultaneously in a large workspace 
in front of the monitor. 

– Polarized image display:  
An LCD filter is mounted in front of the monitor. The filter switches polarization 
direction as the left and right images are alternately displayed (see section 
3.1.1.5). The operator wears glasses with correspondingly oriented polarizing 
filter in order to present the correct image to the correct eye. Electronic control of 
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these glasses is not required. Parallel stereo viewing by multiple users is possible 
in a space that is larger than for shutter glasses. 

  
a) Digital stereo monitor (Schneider Digital)  b) Stereo glasses (Vuzix)  

Fig. 6.114: Examples of digital stereo viewing systems. 

– Beam splitting display:  
A beam splitter (semi-silvered mirror) is located at the bisecting angle between 
the two displays for left and right images (Fig. 6.114a). Polarized light emitted 
from the bottom monitor is transmitted through the mirror while polarized light 
emitted from the top monitor is laterally inverted upon reflection off the beam 
splitter. Polarized glasses are used for stereoscopic viewing.  

– LCD monitor glasses: 
The operator wears glasses with two separate LCD mini-monitors. The monitors 
can either display digital stereo images or can be connected to two mini cameras 
which observe the scene instead of the human eye. This kind of stereo viewer is 
used mostly for augmented reality applications (example in Fig. 6.114b).  

– Stereo projection:  
Two digital projection devices (see section 3.6.3.2) can be used to display a stereo 
image on a large screen. Stereo viewing is usually enabled by shutter glasses that 
are synchronized with the projectors. This solution is mostly adopted in 
applications of virtual and augmented reality, where observers interact with a 
virtual scene. In this case, the position of the observer must be measured by 3D 
tracking systems, by the VR glasses itself and/or handheld controller devices (see 
section 6.10.3 and Fig. 6.116). 

– Auto-stereoscopic display (micro-prisms): 
In this case the stereoscopic image is displayed in separated image columns (even 
columns for the left image and odd columns for the right image). A vertical micro-
prism system is mounted over the monitor surface and deflects the column 
images in the desired spatial viewing direction. The stereoscopic effect may be 
observed without any additional aids. The resolution of the stereoscopic image 
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corresponds to half of the monitor resolution. An automatic image and prism 
adjustment (eye finder) compensates for movements of the operator, so creating 
a large workspace in front of the monitor.  

.. AR/VR systems 

AR/VR (augmented reality, virtual reality) describes various user-controlled systems 
and applications in which digital (virtual) objects are visualised, enriched with 
further information or combined with real image information. In detail, a distinction 
is made between: 
– Virtual Reality (VR):  

VR refers to the representation and simultaneous perception of reality and its 
physical properties in a real-time computer-generated, interactive virtual 
environment. In contrast to the pure visualisation of 3D data, the user interacts 
directly with the environment and thus receives an immersive experience, i.e. the 
virtual world is perceived as real. The reference coordinate system is usually 
given by the digital 3D data. 

– Augmented Reality (AR):  
AR is an application in which additional information from the real or virtual 
world is combined and visualised in real time, e.g. by overlaying the real 
environment with 3D data (see Fig. 6.118). The reference system is the real object 
coordinate system, i.e. visualisation systems such as projectors, stereo glasses or 
head-mounted displays (HMD) must be calibrated and continuously oriented in 
the reference system.  

– Mixed Reality (MR):  
Mixed reality refers to the mixed perception of virtual and real objects, i.e. it is an 
amalgamation of AR and VR. The distinction between the terms is fluid, and their 
use is often not very precise. 

The connection to photogrammetry is that a three-dimensional reference between 
visualisation system, projection system, real world and virtual data must be 
established. For this purpose, real-time multi-camera systems, as represented by 
motion capture systems, are often used (section 6.10.3). The systems are able to track 
and position all relevant system components in space. 

... VR systems 
VR systems are usually interactive programming environments with high graphics 
performance, such as those provided by game engines like UnReal or Unity. These 
sophisticated environments allow the integration of CAD or BIM models as well as 
point clouds or meshes, which can be enhanced by further effects such as material 
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and reflection properties, lighting effects or moving objects. One application example 
is the development of a virtual laser scanner (section 6.4.4). 

 

a) Virtual reconstruction of the “Peking” 

 

b) Historical 3D model of Stade city anno 1620  

Fig. 6.115: Example VR applications (HCU Hamburg).  

Fig. 6.115a shows the virtual reconstruction of the “Peking”, a four-masted barque 
from Hamburg, for an immersive VR application in Unreal. The 3D information used 
in the construction is derived from historical construction plans. Fig. 6.115b is an 
example of a reconstructed historical 3D city model (Stade, 1620), whose 3D model 
data is derived from a photogrammetric recording of a physical city model 1:500 (see 
also section 8.3.1). 

  
a) Hololens (Microsoft)  b) Cave (Jade Hochschule) 

Fig. 6.116: AR/MR systems. 

... AR/MR systems 
The Microsoft HoloLens (Fig. 6.116a) is one example of an AR system. It is a wireless 
HMD with stereo glasses, cameras, positioning sensors and computer unit. The stereo 
glasses allow simultaneous viewing of the environment with superimposed data 
(graphics, text). With the help of the built-in cameras and other sensors, the real 
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environment and the user's own 6DOF position are recorded in real time using SLAM 
approaches. 

Fig. 6.116b shows an MR cave. The cave is a walk-in room with several projection 
walls over which a virtual 3D environment is displayed. One or more people can move 
around the room at the same time and interact with the virtual environments. 
Movements and actions of the cave visitors are continuously recorded via a multi-
camera system and integrated into the virtual environment.  

.. Industrial 3D projection systems  

In many industrial applications, surfaces are measured with the objective of detecting 
or analysing local defects (dents, surface damage), checking for completeness of 
manufactured parts or measuring the shape and position of functional elements (drill 
holes, cutouts, brackets etc.). In such cases it is often helpful to have positionally 
accurate projection, directly onto the surface, of relevant object data, e.g. written 
instructions or measurement results compared against a CAD model (see Fig. 8.66). 

projector

camera

object

camera

any text or
graphics
- …
- …

reference points

 

Fig. 6.117: 3D projection.  

If the measuring system includes a calibrated and oriented projector, arbitrary 3D 
data can be transformed into the image plane of the projector by the collinearity 
equations (4.10) and then accurately re-projected onto the surface. This is also 
possible when either object or projector are moving, provided that the system’s 
cameras can continuously measure reference features on the object, such as corners, 
edges and artificial reference marks. This enables the 3D coordinate transformations 
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and exterior orientations of cameras and projector to be updated continuously, hence 
stabilizing the projections in their correct locations (Fig. 6.117).  

Fig. 6.118: 3D projection onto an object surface.   

Fig. 6.118a shows an example of a fringe projection system (section 6.7.3.6) used to 
superimpose previously measured surface deformation data at the correct surface 
position. This can directly help to make any necessary repairs and adjustments. Fig. 
6.118b illustrates an application where a laser projects shape and design features onto 
the object, e.g. for visual inspection or visualisation of a hidden cable. 
 

 

a) Projection of surface deformation results 
(Hexagon)  

 

b) Projection of object features  
(Fraunhofer IGP)  
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 Measurement design and quality 

This chapter considers photogrammetric projects from the perspective of planning, 
accuracy and optimization. In most practical cases the required measurement 
accuracy in object space is critical to the design and configuration of a measurement 
process. Generally speaking, accuracy is therefore always closely connected with 
costs and commercial viability of a system solution. However, there are a number of 
additional planning criteria to be taken into consideration. These are summarized in 
section 7.1.1. 

The planning of a photogrammetric configuration and strategy is a complex 
process requiring due regard for a wide range of issues. Here the question of camera 
calibration plays a particular role and requires careful consideration, depending on 
the selected imaging technology and required accuracy. The measurement network 
must be so configured that constraints imposed by local conditions, the specified 
accuracy, camera calibration and technical effort required are all taken fully into 
account. 

. Project planning 

.. Planning criteria 

The planning of a photogrammetric project includes the description of the actual 
measuring task, the concept for a solution und the presentation of results. It should 
be carried out in close co-operation with the client as planning errors are often 
detected at a late stage when they are then difficult to correct. Planning the imaging 
configuration is one aspect of the complete project plan which should include, in 
addition to metrology issues, economic aspects such as staff and time management, 
use of instruments, cost management etc. 

The initial project plan should specify the following features of the measuring 
task: 
– number and type of object areas to be measured, including a description of the 

object, its situation and the measuring task requirements; 
– dimensions of the object; 
– specified accuracy in object space (tolerances, measurement uncertainty); 
– smallest object feature (resolution of fine detail, GSD);  
– environmental conditions (variations in temperature, humidity, pressure and the 

presence of any vibration); 
– options for object targeting; 
– definition and implementation of the object coordinate system; 
– determination of scale and reference points (geodetic measurements); 
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– alternative or supplementary measuring methods; 
– online or offline measurement; 
– static or dynamic measurement; 
– processing software; 
– acceptance test procedure or verification of accuracy; 
– available times for on-site work; 
– maximum permitted time for analysis and evaluation;  
– output of results (numerical and graphical, data formats, interfaces, relationship 

to processes).  

In the subsequent detailed planning, an appropriate concept for solution can be 
developed. In particular, the image acquisition system and imaging configuration, as 
well as the type of image and data processing, must be defined. Apart from purely 
technical considerations such as accuracy, the choice of components used also 
depends on the availability of instruments and personnel. 

The following criteria should be defined in detail: 
– estimation of average image scale; 
– estimation of average spatial resolution (GSD); 
– selected processing system (analogue/digital, monoscopic, stereoscopic, multi-

image); 
– camera stations (number of images, network design, ray intersection geometry); 
– required image measuring accuracy; 
– selected imaging system (image format, focal lengths); 
– method of camera calibration (in advance, simultaneously); 
– optical parameters (depth of focus, resolution, exposure); 
– amount of memory for image data (type and cost of archiving). 

.. Accuracy issues 

Besides economic aspects, meeting accuracy requirements is generally of the highest 
priority in practical project planning. Approximate accuracy estimates can be based 
on the relationships given in section 3.3.1 which depend on three primary parameters:  
– image measurement accuracy; 
– image scale; 
– design factor of the imaging configuration. 

Image measurement accuracy depends on the performance of the camera (stability 
and calibration), the accuracy of the image processing system (target image quality, 
measurement algorithm, instrumental precision) and the positioning capability 
(identification, targeting). These criteria must be balanced with respect to each other 
and given appropriate weight in the planning process. The camera selected for any 
given project is particularly important as it not only defines the quality of image 
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acquisition and processing but, through choice of lens, also defines image scale and 
configuration. 

Digital imaging systems can reach image accuracies of 0.2–1 µm (1/50–1/10 pixel) 
depending on the mechanical stability and signal transfer type. Digital processing 
systems providing sub-pixel operators for signalized targets can yield image 
accuracies between 1/100–5/100 pixels. Methods for detection and matching of 
natural features provide typical image accuracies of about 0.5–2 pixels. 

As explained in section 3.3.1, large image or sensor formats are advantageous for 
photogrammetric accuracy. It is essentially also the case that a larger number of 
pixels on a sensor will, in the first instance, improve resolution and therefore 
indirectly also the image measuring accuracy. However, achievable accuracy at the 
object will really only be improved by higher pixel numbers if the quality of the 
optical imaging components (resolving power of the lens), mechanical stability of the 
camera and image noise are consistent with the properties of the imaging sensor. It is 
particularly the case with sensors which have very small pixels (<2.5 µm), that an 
image measurement accuracy of better than 1/10 pixel (< 0.25 µm) cannot be expected 
due to limits in construction (camera mechanics, sensor mounting) and optics 
(diffraction). 

In applications where there is essentially no limitation on the number of images, 
the achievable accuracy can be increased by taking additional images from locations 
which improve imaging geometry. The accuracy enhancement due to an increase of 
images at every station k, as expressed by eqn. (3.49), essentially only results in an 
improvement in precision. In this case, the increased numbers of observations going 
into the bundle adjustment improve the standard deviation of unit weight σ0 and 
thereby the statistical precision of the calculated object coordinates. If object 
targeting permits fully automatic image measurement, then an increase in number of 
images has no significant disadvantages. 

Specification of measurement accuracy should be done in close consultation with 
the end user or client. It must be made clear which accuracy parameters are to be 
used, the justification for the specified limits, and the method of verifying that the 
accuracy has been achieved. Quality measures obtained from various adjustment 
methods are explained in section 2.4.3 and 7.2.1. Metrologically defined parameters 
of accuracy (measurement uncertainty) are presented in section 7.2.2. 

.. Restrictions on imaging configuration 

A generally applicable geometric configuration for photogrammetric measurement 
cannot be defined because it always depends on circumstances specific to the object. 
A compromise must normally be found between different and partly incompatible 
restrictions:  
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– Image scale:  
The image scale is influenced by object distance, focal length (principal distance) 
and usable image format (eqn. 1.1, see Fig. 3.40). A larger image format enables 
shorter object distances for the same imaged object area. It not only leads to a 
larger scale (and higher accuracy) but also to a smaller number of images 
(economic benefits in reduced data processing and storage). It must be 
remembered that for complex object structures and highly convergent images, 
image scale can vary significantly within an image or from image to image (see 
Fig. 3.41). 

– Image quality and resolution:  
The ability to detect and measure object details is again a function of image scale. 
The size of imaged object structures should lie between certain typical limits as 
follows: 
– visual digital processing: 3–10 pixel 
– automatic digital point measurement: 6–10 pixel 
– automatic digital surface measurement: 11–25-pixel window size 
Eqn. (1.2) gives the relationship between pixel size in object space (ground 
sampling distance, GSD) and pixel size in image space. 

– Object environment:  
The selection of suitable camera stations is often restricted by inaccessible object 
areas. It is therefore often necessary to use either additional lenses, or to increase 
the number of images or to dispense with optimal ray intersections. Additional 
camera/lens combinations may also increase the effort required for camera 
calibration. This is particularly applicable to zoom lenses with adjustable focal 
lengths (see section 3.4.3.5). 

– Depth of field: 
The available depth of field (section 3.1.2.3) is mainly a function of image scale 
and f-stop. It restricts the choice of camera stations, especially for large image 
scales and under difficult lighting conditions. If applied targets are measured 
automatically, a slightly defocused image can be accepted if image contrast and 
point diameter are sufficiently large.  

– Imaging angle:  
The imaging angle β at which an object is photographed should not be less than 
20° for critical object features, and not less than 45° for retro-reflective targets, in 
order to achieve suitable image sizes and contrasts (Fig. 7.1). Furthermore, 
extremely oblique views have an eccentricity effect on the centre of circular 
targets as explained in section 6.2.1.1. Spherical targets permit all-round imaging 
but note that they are also elliptical in shape when imaged off axis (see Fig. 6.3). 
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Fig. 7.1: Imaging angle. 

– Number and distribution of image points:  
The total number of object points has little effect on the total redundancy of the 
bundle adjustment. The quality of bundle triangulation depends more on the 
number and configuration of camera stations which, in addition to creating a 
reasonable intersection geometry (see below), should ideally utilize the full 
image format (see Fig. 7.39). 

– Intersection angle:  
Good intersection angles are critical to the accuracy of point measurement (see 
Fig. 4.43). For the (graphical) reconstruction of approximately flat object surfaces 
(building facades) a reduced accuracy in the viewing direction can often be 
tolerated and in these cases it is possible to work with poor intersection angles 
(or insufficient height-to-base ratios). 

Engineering or industrial projects often require an object accuracy which is 
equal in all directions. Optimal ray intersection angles are around 90°–100°. In 
practice, intersection angles between 45° and 120° are sufficient if at least 4 to 6 
images contribute to the measurement. 

– Field of view and visibility:  
The field of view of a camera is defined by the format angle (section 3.4.3.2). If all 
object points can be imaged in all photos, then the imaging configuration is 
simplified and the number of images required is reduced. At the same time, the 
total redundancy of the bundle triangulation increases. Since this assumption is 
only valid for simple objects (e.g. test fields for calibration purposes, see Fig. 
7.28), objects with occluded areas must be recorded with additional photos which 
only include a small portion of all object points. To ensure network stability, 
these additional images should contain a reasonable number of well distributed 
tie points. For simultaneous calibration of distortion, it is advantageous to have 
an irregular distribution of object points across the image format, with many 
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occupying the image corners. In different images, it is an additional advantage to 
have the same points appear in different image areas. 

– Image analysis and use: 
Depending on subsequent image analysis and presentation of results, additional 
images in diverse arrangements may be required. For image rectification and 
texture projection onto 3D models, useful images have few occlusions and view 
the object surfaces perpendicularly. For visual stereoscopic viewing, images with 
a good height-to-base ratio and parallel camera axes are required. 

.. Accuracy estimation by simulation 

Numerical simulation can be used to estimate the expected accuracy of a 
photogrammetric project provided that the imaging configuration, e.g. stereo or 
multi-image, parameters of interior and exterior orientation and the distribution of 
object points are defined in advance.  

In this process, the simulation applies error propagation to derive the effect of 
noisy data, typically image coordinates with associated measurement uncertainties, 
on the required output parameters (orientation parameters, 3D coordinates). 
Simulation results are valid only if the assumptions about uncertainties in input 
values are correct and if the actual project conforms closely to the simulated data and 
its configuration. 

Almost all photogrammetric calculations are based on a least-squares adjustment 
(overdetermined Gauss-Markov model) in which the observations are modelled as a 
function of the required unknowns. These unknown parameters are therefore 
determined indirectly from (simulated) measurements (see eqn. 2.180 ff):  

ˆ ˆ( )= + =L L v φ X  (7.1) 

The simulation’s required input values can be generated according to the scheme 
presented in section 4.4.6.1. The covariance matrix of the unknowns can be derived 
from equations (2.194) and (2.213) and used as a measure of their expected precisions. 
This provides a realistic estimation of quality if the functional adjustment model is 
sufficiently well represented in linearized form, there are no significant systematic 
errors and observations are free of outliers. 

... Variance-covariance propagation 
The conventional law of variance-covariance propagation, also known as error 
propagation, is based on the linearization of a Taylor series expansion which is 
truncated after the first term (first order derivative). In applications where there is an 
explicit relationship y = f(x) between input values x and output values y then, in 
accordance with eqn. (2.185), the following is given: 
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( ) ( ) ( )y y x x= + = ≈ + −y μ ε f x f μ J x μ  (7.2) 

where 
f: vector of functions  
J: design matrix (Jacobian matrix) with first partial derivatives  
µy: expected value of y (compare with eqn. 2.232) 
εy: noise value for y (random error) 
µx: expected value of x 

Non-linear functional relationships are not sufficiently well modelled by first 
derivatives. Extending the modelling to the second derivative gives: 
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where 
Hi: Hessian matrix with the second derivatives of the functional equations i 
[…]i: Symbolic notation for a vector [vi]i , where vi is its element i; 
 by analogy [mij]ij denotes a matrix where mij is the element (i,j). 

For a classical photogrammetric calculation, such as a space intersection based on 
collinearity equations (section 4.4.7.1), vector x would contain all contributing 
parameters on the right side of the equation (3D coordinates, interior and exterior 
orientations) whilst the vector y would contain the measured image coordinates. In 
this example, the explicit relationship would express, for example, the effect of 
orientation parameters on the image coordinates. 

Applying linearized variance-covariance propagation, the expected value of 
observations y and their uncertainty (covariance matrix Σyy) is given as follows 
(compare with eqn. 2.225): 
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Extending to the second derivatives gives: 
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The comparison of eqn. (7.4) with eqn. (7.5) makes clear that both the uncertainties 
and the expected value itself change when the second derivative is taken into 
consideration. If non-linearity can justify the additional effort of calculation using 
second derivatives, eqn. (7.5) delivers results which are close to those derived from 
the numerical approaches below. The procedure described here can, in principle, be 
transferred to overdetermined systems of equations with both explicit and implicit 
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functional relationships. However, due to the complexity of the presentation, it will 
not be discussed in detail here. 

Although typical photogrammetric calculations are non-linear, higher 
derivatives are neglected in practice as they are often complex to calculate. However, 
numerical simulation methods such as the Monte Carlo method (next section) can 
generate estimates free of linearization errors if the number of repeated calculations 
with randomized errors is high enough. 

... Monte Carlo simulation 
A Monte Carlo simulation is a computational method for statistically analysing results 
from complex systems of calculation. The input data is randomized or altered in a 
structured way and its effect on the calculated output data observed. Every input 
parameter can be introduced with its own statistical distribution and variance, as well 
as a function to describe systematic deviations. For every calculation the input data 
is modified with the aid of a random number generator and the calculation is repeated 
many times until a statistically meaningful output sample has been obtained (Fig. 
7.2). 

error-free
input data

random number
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statistical 
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randomised
input data

functional
model
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results
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m replications
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Fig. 7.2: Monte Carlo simulation. 

The total number of repeated calculations (replications), m, should be in the 
thousands, possibly up to ten thousand, in order to ensure a homogeneous 
distribution of random variations across the relevant data spectrum. It is usual to 
assume that the random variations follow a normal distribution. These can, for 
example, be generated by applying the Box-Müller method to the uniformly 
distributed random numbers ( )ε i

x , i = 1,m, which are often available from a built-in 
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random number generator. numbers. A different set of random variations must, of 
course, be taken from this distribution for each replication. 

Depending on application, it may be sensible to limit the noise on the input data, 
for example to 2 or 3-sigma, in order to avoid outliers in the simulated data sets. 
Alternatively, by targeted modelling of possible error sources, the effect of outliers on 
the estimated parameters can be analysed and worst-case scenarios investigated.  

For simulated input values x, the expected values μx and their uncertainty Σxx 
must result from the m replications: 
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Results from all replications are accumulated and statistically analysed at the end. 
This enables the generation of a histogram of the output parameters from which their 
standard deviations can be derived. It is also possible to make a direct comparison 
with defined, error-free target parameter values, from which error-free input data can 
be simulated using the functional model (dotted line connection in Fig. 7.2). 

The expected values of y and their uncertainty Σyy is given by: 
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Fig. 7.3: Principle of a virtual measuring system by Monte Carlo simulation  
(after Schmidt et al. 2008). 

The Monte Carlo method permits the computational modelling of a measuring system 
which, in this form, can also be regarded as a virtual measuring system. A necessary 
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condition is accurate knowledge of the sources of error in a system and their 
mathematical description. It is then possible to create a realistic simulation of 
complex measuring tasks, and various influences on the measurement method, 
without the need to have a system physically available (Fig. 7.3). 

Through application of the complete software chain of a system, for example 
bundle adjustment followed by spatial intersection followed by 3D transformation, 
the complete propagation of uncertainties is modelled. In contrast to the linearized 
variance-covariance propagation, linearization errors do not occur, hence a strict 
error propagation is performed. 

 

Fig. 7.4: Result from a Monte Carlo simulation of a stereo camera showing error ellipsoids at object 
points in various distances.  

Fig. 7.4 shows the result from a Monte Carlo simulation of the expected measurement 
accuracy of a stereo camera. Using defined, error-free object coordinates, as well as 
parameters for the interior and exterior orientation of each camera, error-free image 
coordinates are calculated according to eqn. (4.10). The defined object points are 
representative of the complete measurement volume of the system. In the subsequent 
Monte Carlo simulation, positive and negative random deviations, according to their 
respective expected measurement uncertainties, are added to the error-free image 
coordinates, camera parameters and orientation parameters. Using this randomized 
data, object point intersections are repeatedly calculated and their spread analysed. 

In addition to numerical values for the calculated standard deviation and 
maximum value of the deviations, Fig. 7.4 also shows, at every object point, an error 
ellipsoid to illustrate the spatial distribution of the expected measurement 
uncertainty. 
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... Unscented transformation  
As an alternative to the classical Monte Carlo simulation, the unscented 
transformation is a non-iterative numerical approach to approximate parameters and 
related uncertainties. Whereas the Monte Carlo simulation needs randomized 
observation values, the unscented transformation requires a discrete set of points as 
observations. These are often called sigma points (Σ points). The number of Σ points 
of the Standard Unscented Transformation described here is 2n+1, where n is the 
dimension of the µx vector: 
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where 
2( )κ α λ n n= + −  

α: noise of Σ points 
λ: control parameter 

For normally distributed input values, α = 10–3 and λ = 0 can be assumed. The square 
root of Σxx can be calculated by spectral decomposition (eqn. 2.253). Using the Σ points 
Xj, where j = 0…2n, the resulting output values are: 
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with β = 2 for normally distributed input values 

The unscented transformation estimates the expected value and its variance-
covariance matrix from a fixed number of Σ points without the use of a Taylor 
expansion. In comparison with the Monte Carlo simulation, the usage of a discrete set 
of observations provides repeatable results and reduces the numerical effort. This 
makes the method attractive for solving non-linear real-time applications e.g. in the 
framework of Kalman filters (section 5.5.7.5). In the case of a space intersection using 
two images, with uncertainty in the parameters of interior orientation (2 x 10 
parameters) and exterior orientation (2 x 6 parameters) then n = 32. Here only 
2n + 1 = 65 replications are required whereas the Monte Carlo method needs at least 
5000 to 10000 repeated calculations. The unscented transformation offers a 
reasonable compromise between setting up the Hessian and Jacobian matrices and 
the required computational effort of the Monte Carlo method. 
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... Bootstrap simulation 
In contrast to the above approaches, bootstrap simulation does not use simulated 
input values but n real measurement samples, e.g. n independent measurements of a 
space intersection. The method is therefore less suitable for accuracy estimation prior 
to measurement and more suitable for post-measurement analysis. 

In comparison to the Monte Carlo method, the bootstrap simulation does not rely 
on a particular statistical distribution or pre-defined uncertainty values. Instead, it is 
assumed that all statistical information is contained within the empirical data of the 
input sample. This is also known as a plug-in principle or plug-in estimation. Whilst 
Monte Carlo is based on a synthetic simulation of random numbers according to a 
given probability function, the bootstrap method uses sub-samples generated by an 
m-times resampling of the input sample (Fig. 7.5).  

 

Fig. 7.5: Principle of bootstrap simulation.  

Each sub-sample has the same population count n as the input sample and is created 
by multiple random sampling with replacement. As a simple example of this process, 
if X contains n=5 observations, i.e. X = [1 2 3 4 5], then possible random sub-samples 
with replacement could be X1 = [2 2 1 4 5], X2 = [4 3 4 5 5], X3 = [1 5 2 4 1], X4 = [1 3 5 4 3]. 

Clearly, in this process no further information is introduced into the estimation. 
The sub-samples are then analysed in an analogous way to the Monte Carlo method 
which leads to an estimation of the expected value and its uncertainty using eqn. 
(7.7). The number m should lie between 50 and 200. 
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.. Design of the imaging configuration 

... Network design 
The restrictions mentioned in section 7.1.3 limit the choice of camera stations and 
viewing directions. In practice, a well configured network which surrounds the 
object, as indicated in Fig. 3.39, is impossible for many applications because of object 
restrictions or economic circumstances, e.g. the maximum number of images. Image 
scales and intersection angles can therefore vary widely within a project, so that eqn. 
(3.49) is only valid for average accuracy estimations. Weak areas in an imaging 
network cannot be detected by this approach. 

The image configuration can be simulated by bundle adjustment (section 4.4.6.1) 
if there are sufficient a priori object coordinates to represent object geometry. In this 
process the principal distance and exterior orientation of all cameras are iteratively 
varied until the following criteria are optimized:  
– Maximum accuracy (minimum standard deviations of object coordinates): 

In general, object point accuracy and associated derived quantities (lengths, 
distances etc.) are of greatest importance in practice. In order to assess the 
expected accuracy it is helpful to split up the vector of unknowns in the bundle 
adjustment and express eqn. (4.104) in the form: 
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where 
1x̂ : exterior orientation and additional parameters 
2x̂ : object point coordinates 

In order to optimize the object point accuracy, only Q2 need be analysed 
according to the following considerations: 

– Maximum reliability (ability to control and detect outliers):  
Statistical measures for reliability and robustness of an adjustment can be 
derived from the cofactor matrix of corrections Qvv (section 2.4.3.4, eqn. 2.239). 

– Maximum economic efficiency:  
The objective is to achieve the specified accuracy and reliability for minimum 
instrumental and personal effort. 

The optimization of photogrammetric imaging configurations (network optimization, 
network design) can be considered in four stages:  
1. Zero order design: definition of datum (object coordinate system):  

Standard deviations of object coordinates are directly influenced by the 
definition of the object coordinate system (section 4.4.3). Potential network 
deformation can be avoided by a datum definition without constraints. Optimal 
standard deviations are obtained by a free net adjustment which minimizes the 



  7 Measurement design and quality 

trace of the covariance matrix. In most cases the covariances of the object 
coordinates of a point i can be estimated by 

−≈ 2 1
2 0 2 2( )C A PAT

i is  (7.11) 

2. First order design: optimization of the observation configuration: 
The purpose of optimising the configuration is to define an observation network 
whose design matrix A, given a predefined weight matrix P, results in a 
covariance matrix C2 corresponding to the specified accuracy. This is primarily a 
question of achieving good intersection angles at the object points. Assuming an 
appropriate minimum configuration which does this, C2 can be estimated by: 
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where 
A2B: basic configuration design matrix 
s2

x'y': standard deviations of image coordinates 
k: number of additional, symmetrically arranged camera stations  

The design factor q and the image scale number of eqn. (3.49) are reflected here 
in the matrix product. 
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Fig. 7.6: Imaging configuration for antenna measurement and resulting object accuracies after 
variation of intersecting angles and number of camera stations (after Fraser 1996). 
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Fig. 7.6 illustrates the imaging configuration for an antenna measurement. The 
basic configuration consists of four camera stations. Additional images are added 
symmetrically at equal object distances. The intersection angle Θ is defined 
between the viewing directions of diametrically opposite camera stations. The 
diagram shows the resulting relative object accuracies S/sXYZ as a function of the 
intersection angle and the number of camera stations. The relative accuracy 
increases with an increasing number of images. Equal values in all coordinate 
axes are obtained at Θ ≈ 100°. 

3. Second order design: definition of observation weights (image measuring 
accuracy): 
The normal system of equations can be readily manipulated by appropriate 
choice of observation weights. Generally, the a priori standard deviations of 
image measurements are defined according to the precision of the image 
measuring device. Normally all image observations are given equal weights. 
Unequal weights are only justified if different measuring devices or algorithms 
are employed. In such cases an analysis of variances enables groups of 
observations of similar weights to be defined (see section 2.4.4.3). 

4. Third order design: optimization of point density (object points): 
Where self-calibration of the camera is not required, around 20–50 object points 
are sufficient to achieve a stable network geometry, optimized according to the 
above criteria. The quality of point measurement does not significantly improve 
if the number of object points is further increased. However, if the camera must 
be calibrated (self-calibration), targets must have a good distribution and density 
in the images in order to determine distortion parameters reliably across the 
entire image format (Fig. 7.39). 

A relatively high effort is required for realistic simulations because, in many cases, 
object coordinates are either not available or must be generated manually. In 
addition, the selection of camera stations and viewing directions is usually performed 
interactively. Photogrammetric multi-image processing systems connected to 3D CAD 
systems offer an efficient basis for the simulation of imaging configurations if the 
object can be represented as a CAD model and if the camera stations can be edited 
graphically. 

... Scale 
Every photogrammetric configuration is based on measured image coordinates, i.e. 
only directions in space are determined. The intersection of homologous image rays 
leads to object coordinates (point clouds) that are true in shape but without absolute 
scale. The required scale information can be provided in one of the following ways 
(see also section 6.3.1.1): 
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– exterior orientations are known with respect to a metric coordinate system; 
– the unscaled set of object points can be transformed subsequently into a metric 

target coordinate system (absolute orientation with a 7-parameter 
transformation, see section 2.2.4); 

– the configuration is a stereo or multi-camera system with known baseline; 
– at least one known distance is observed in object space (scale bar, distance 

between two reference points); 
– at least three reference points are provided in object space for the absolute 

definition of datum. 

Distances or reference coordinates are usually introduced into a bundle adjustment 
as additional constraints or observation equations (see section 4.4.2.3). Their 
specified weight must be appropriate to their calibration or measuring accuracy. 
False weighting leads to deformation in object space. Net strains can result from 
overdetermined datum definitions (see section 4.4.3.2). 

The number and spatial distribution of reference distances, e.g. scale bars, have 
a significant impact on the accuracy of measured object points and on the calculated 
statistical quality values. In general, reference lengths should be as long as possible 
and ideally extend across the whole measuring volume. For high-accuracy industrial 
applications, there should be at least one reference length for each major coordinate 
direction in order to ensure equal scaling in all directions. For applications where 
only one scale bar is available, it should be positioned within the inner third of the 
measuring volume. Generally, a longer but less accurate reference distance is 
preferred to a shorter but highly accurate reference length (see eqn. 6.3). 

Laser tracker points

Reference length (multiple partial lengths)

Reference length by laser tracker distance meter

Offset points (above XY plane)

20 m

20 m

x

y

 

Fig. 7.7: Experimental set-up for investigating different configurations of reference scales.  
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Table 7.1: Effect of different scaling configurations. 

Configuration Number Length A priori st.dev. RMS 1σ LME 

1)
 

1 21 m 20 µm 26 µm 155 µm 

2)
 

116 0.15 – 2.2 m 10 µm 29 µm 164 µm 

3)
 

5 1.4 – 2.2 m 10 µm 34 µm 204 µm 

4)
 

1 2 m 10 µm 54 µm 193 µm 

5)
 

16 XYZ 0 µm (fixed) 24 µm 110 µm 

 
Fig. 7.7 shows the experimental set-up of a large-volume project in which number, 
position and accuracy of reference distances have been investigated. 
Photogrammetric targets at different heights, reference distances and laser tracker 
points (nests) were placed in a 20 m x 20 m area. Image acquisition was achieved using 
a digital medium-format camera (ALPA 12 WA metric) arranged in a pattern similar to 
an aerial survey. A total of 2200 images was recorded from which 480 were processed. 

Table 7.1 shows the effect of different scaling configurations on the resulting RMS 
values of object points and the maximum length measuring error LME (section 
7.2.3.4). Where scale bars are used, it can be seen that a long but less accurate 
reference length (1) generates the lowest RMS and the lowest LME. A similar result 
can be achieved with a number of much shorter distances distributed uniformly over 
the object area (2). Several short scale bars arranged in a line (3) do not provide any 
significant improvement in comparison to one short distance in the centre of the 
object space (4). The best result is obtained with a large number of reference points 
(5) which, however, is not usually achievable in practice. The results of this 
investigation may not be transferred one-to-one to other imaging configurations but 
they demonstrate the sensitivity of photogrammetric processing with respect to the 
chosen scaling method.  

. Quality measures and performance testing  

The parameters and methods summarized in the following sub-sections are important 
criteria to use in planning and optimizing a measurement task, as well as for the 
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subsequent verification of the accuracy achieved in object space. Here there is a 
distinction between statistical quality parameters, which are generally derived from 
the stochastic model of an adjustment process, and standardized metrological 
parameters defined by national and international organizations responsible for 
industrial metrology. 

.. Statistical parameters  

... Precision and accuracy parameters from a bundle adjustment 
The quality parameters which can be derived from the statistics generated by an 
adjustment process, reflect how well the measured values (observations) fit the 
functional model defined by the chosen geometrical configuration (design matrix). If 
there are no systematic errors in the measurements, the parameters of precision 
describe the random variations in the measured values. In this case they also 
represent estimates of the measurement accuracies. Precision parameters include the 
following (see sections 2.4.3 and 4.4.5):  
– Standard deviation of unit weight: 

The a posteriori standard deviation 𝑠̂𝑠0 (sigma 0) is derived from the observation 
residuals and the redundancy r = n–u (eqn. 2.209). By increasing the redundancy 
(through an increased number of observations) 𝑠̂𝑠0 can almost be reduced to any 
level required. s0 a priori and 𝑠̂𝑠0 should be of a similar size (compare with eqn. 
2.258). 

– Averaged residuals of image coordinates:  
The averages of residuals of all image coordinates are a measure of the quality of 
image measurement. In addition to the quality of point recognition, the quality 
of camera calibration (interior orientation) and camera stability are also covered 
by this measure. 

– Standard deviations of object coordinates:  
Following an adjustment process, every unknown is assigned a standard 
deviation according to eqn. (2.227) (section 2.4.3.1). If the unknowns relate to 3D 
coordinates, the average standard error of measured points (average point error 
or mean Helmert error) is given by: 

2 2 2ˆ ˆ ˆ ˆ
XYZ X Y Zs s s s= + +  (7.13) 

This, in turn, depends on the standard deviation of unit weight s0 (see eqn. 2.251). 
The average standard deviation of n adjusted object coordinates is given by the 
RMS values: 
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The standard deviations of object coordinates depend on the chosen datum and, 
depending on the positions of points in the object coordinate system, they can 
provide a false picture of the accuracy achieved. A more homogeneous 
distribution of standard deviations is achieved by using a free-net adjustment 
(section 4.4.3.4). Using confidence ellipsoids according to Helmert, adjusted 
coordinates can be associated with confidence regions where the directions of the 
semi-major and semi-minor axes are independent of the selected datum (section 
2.4.3.5). 

– Intersection residuals:  
The residuals resulting from ray intersections (section 4.4.7.1) are a measure of 
the precision of object point determination. In the stereo case (e.g. using a stereo 
camera as shown in Fig. 3.127) the intersection residual (y-parallax) can be zero, 
even when intersection error is present, due to the error being directed along the 
epipolar line. 

... Accuracy 
The accuracy of a photogrammetric measurement can only be assessed by the use of 
independent references which have not been incorporated into the previous 
calculation process. References can be artefacts with known dimensions or control 
points with coordinates measured by a system with superior accuracy to the one 
under evaluation. The resulting accuracy includes all systematic and random effects 
due to the measurements. 

Typical procedures for determining accuracy include: 
– Checks of independent reference lengths:  

From the measured coordinates of end targets on reference lengths, distances 
between them can be calculated and compared with the calibrated lengths. 
Reference lengths for close-range testing are relatively easy to manufacture and 
their use follows normal practice in technical applications where coordinates are 
the source of derived elements (distances, deformations, surfaces, etc.). 
Furthermore, reference lengths permit the calculation of standardized length 
comparisons and the associated traceability back to the SI unit of the metre. The 
precondition is that at least one known length, e.g. a scale bar, is included in the 
photogrammetric network. The test procedure is an industrial standard defined 
by the German guidelines VDI/VDE 2634/1 and can also be used as an evaluation 
test for camera calibration (see section 7.2.3). 

– Comparison with independent reference points:  
If some of the object points used in the bundle adjustment have independent 
reference coordinates of higher accuracy, then a direct comparison between 
bundle coordinates and reference coordinates can be made.  

This situation is difficult to achieve in practice. Firstly, comparison points 
which can be accurately identified, and have higher accuracy reference 
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coordinates, are difficult to create in industrial situations. Secondly, 
independence of the data sets will not be achieved if the same measurement 
method, such as photogrammetry, is separately used to create both (bundle and 
reference) as this will result in correlations between them. 

– Comparison with independent intersections:  
Following a bundle adjustment, it is more effective to use the separate 
measurement (by intersection) of additional image points which correspond to 
object reference points or which define object reference lengths. These 
intersections utilize the interior and exterior orientation parameters derived from 
the bundle adjustment and, as the target points are not included in the actual 
bundle adjustment process, their measurements are independent of it. They are 
therefore suitable for estimating the accuracy of a photogrammetric process 
which includes all uncertainties in the bundle adjustment. It also corresponds to 
the situation in practice where computed orientation data (from a bundle 
adjustment) are often used to make further object measurements. 

For industrial photogrammetric systems, the achievable accuracy is often given in the 
form x µm ±y µm/m. Here x is the minimum absolute uncertainty of a measurement. 
Parameter y is a length-dependent uncertainty which, in principle, relates to the 
image scale. 

... Relative accuracy 
The term relative accuracy, introduced in section 3.3.1, is used in photogrammetry to 
represent the performance of a measurement system independently of the dimension 
of its measurement volume. It is a dimensionless number, e.g. in the form 1:100 000, 
10–6 or 10 ppm. It is usual in close-range photogrammetry to quote the achieved object 
measurement accuracy in relation to the maximum extent of the object. 

If precision measures are used, e.g. RMS value of the object coordinates, then the 
derived relative value still remains a precision value. Since they are often based on a 
simple standard deviation, they then also only relate to a 68 % coverage of the 
measurements. 

.. Metrological parameters  

... Measurement uncertainty 
According to the International Dictionary of Metrology (VIM – Vocabulaire 
international de métrologie), and related publications such as DIN 1319-1, 
measurement uncertainty describes the range within which the true value of a 
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measurand1 lies. The true value is itself never known. value obtained from 
measurements, i.e. external conditions.  

Measurement uncertainty is a characteristic value obtained from measurements. 
Additionally, external conditions, influences due to the system and application and 
empirical values also contribute to this. Measurement and measurement uncertainty 
are estimated values and a complete measurement result only exists when both are 
specified. The measurement and its uncertainty must be traceable back to a reference 
standard, e.g. the SI unit of the metre. 

The statement of measurement value and measurement uncertainty is typically 
given in the following form: 

L = 1533.162 mm ±0.015 mm 

The measurement uncertainty encompasses all the unknown systematic and random 
error contributions to the measured value (Fig. 7.8). The extent defined by the 
uncertainty is itself uncertain. To deal with this in practice, a coverage factor k is 
introduced which is used as a multiplier of the coverage in the form: 

L = (1533.162 ±0.030) mm, k = 2 

For a factor k = 1, the uncertainty value is a standard uncertainty, designated u and 
expressed in the form ±u. In the example above, it is ±0.015 mm. When a coverage 
factor greater than 1 is applied, the uncertainty is then known as the expanded 
uncertainty and designated U where U = k · u and is expressed in the form ±U. In the 
example above with k = 2, U = ±0.030 mm. 

If the probability density function which characterizes the measurand is a normal 
distribution, then k defines the confidence interval, e.g. a 95 % confidence interval 
for k = 2, and the standard uncertainty limits correspond to the standard deviation. 

... Reference value 
Reference values are frequently used in practice in order to provide a comparison for 
measurements and hence an estimate of their quality. A typical example is a reference 
length defined by the end targets on a scale bar which is measured by a system under 
test. 

Reference values are themselves derived from measurements. Values measured 
by a system of higher order accuracy, or supplied with an officially recognized 
calibration certificate, are acceptable as reference values if their own measurement 
uncertainties, within the context of the application, are sufficiently small that they 
can effectively be regarded as true or error-free values. A reference uncertainty 5–10 

 
1 The quantity to be determined, for example, the length of a scale bar at 20° C. Effects such as 
correction for measurement at a different temperature would influence the uncertainty. 
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times smaller than achievable by a system under test would generally be regarded as 
good. 

... Measurement error  
The term measurement error defines the departure of an assigned value, derived from 
measurements of a quantity such as length or coordinate, from a reference value.  

Fig. 7.8 illustrates that measurement errors have systematic and random 
components. If the systematic errors are known, they can be determined by means of 
calibration and largely removed by applying corrections to the measurements. 
Unknown systematic errors in the measurements add to the random components to 
give the resulting measurement uncertainty.  

measurement errors

random errors systematic errors

unknown 
systematic errors

measurement uncertainty

known 
systematic errors+

calibration
and 

correction  

Fig. 7.8: Measurement error and measurement uncertainty. 

... Accuracy  
Accuracy describes the closeness of agreement between a measurement result and a 
measurement standard or accepted reference. Higher accuracy implies closer 
agreement but the term is strictly only qualitative, not quantitative. A statement 
about accuracy can only be made after a comparison is made with an independent, 
higher order reference value.  

... Precision  
Precision describes the statistical spread of a measured quantity as derived from 
repeated measurements or an adjustment process. It is normally expressed as a 
standard deviation or RMS value. Precision is a measure of relative accuracy. If a 
quantity is measured multiple times under repeatable conditions, it indicates the 
internal spread of a measurement result. In an adjustment calculation, precision is 
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calculated as a standard deviation. Estimates of precision should always be provided 
with the coverage factor, e.g. 1-sigma. 

... Tolerance 
Tolerance is a parameter used in manufacturing to define the permissible limits to a 
feature’s dimensions. Relative to a nominal value it can have different positive or 
negative values. 

In a typical industrial measurement process, it is necessary to measure critical 
dimensions on a part and decide if it is within tolerance, and therefore accepted, or 
out of tolerance and therefore rejected. Rejection is costly as parts must then either 
be discarded, recycled or reworked to bring them within tolerance. 

Fig. 7.9 shows the relationship between the accuracy of a measuring device or 
procedure, and the extent to which it can decide if critical part dimensions are in 
tolerance (green) or out of tolerance (red). Depending on the ratio between tolerance 
and measuring uncertainty, e.g. 10:1, there is an area (yellow) where no clear decision 
can be made.   

T

U

U

U

U

B = T – 2U

increasing measurement uncertainty

in-tolerance condition

out-tolerance condition

out-tolerance condition

 

Fig. 7.9: Suitability of testing device or procedure for in-tolerance evaluation. 

The device’s accuracy is indicated by an agreed expanded measurement uncertainty 
±U which corresponds, for example, to a 95 % confidence level (k = 2). The diagram 
shows a measurement made within the tolerance limits (dotted lines). On the extreme 
left, a perfect measuring device with zero uncertainty can reliably determine if a 
feature lies anywhere within the entire tolerance band T. As the device uncertainty 
increases towards the right, a feature measured at the tolerance limits could, due to 
device uncertainty indicated by the yellow areas, be either in tolerance or out of 
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tolerance. To be sure (within the confidence level) that the part is good, only 
measurements within the green area are acceptable. In effect, an increasing 
measurement uncertainty reduces the effective size of the tolerance band. In the 
extreme case (right hand side, not shown) where U = T/2, the device cannot determine 
if a part is in or out of tolerance.  

The problem in practice is to select a compromise between measuring device or 
system with high accuracy (increased cost) giving rise to reduced rejections (lower 
cost). 

... Resolution  
The resolution of a measurement system is the smallest increment which it can display 
or store, for example as represented by the most significant decimal place in a digital 
display. Resolution therefore defines the smallest change in the quantity to be 
measured which produces a significant change in the measurement signal, i.e. one 
which is above the noise level of the measuring system. In contrast, the resolving 
power (section 3.1.5) defined in optics and photogrammetry denotes the capability of 
an optical system to transmit a threshold frequency with sufficient contrast or 
modulation. 

Fig. 7.10 illustrates the relationship between reference value, resolution, 
precision and measurement error, defined above. The measured or displayed values 
are spread according to their precision or repeatability, but may depart significantly 
(measurement error) from the reference value. 

precision

measurement error
resolution

reference value

measurements

 

Fig. 7.10: Resolution, precision and measurement error (after Hennes, 2007).  

.. Acceptance and re-verification of measuring systems 

The checking of achievable accuracy is of fundamental importance in industrial 
metrology. In the field of mechanical coordinate measuring machines (CMM), long-
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established and standardized methods (VDI/VDE 2617, ISO 10360-2, JCGM/GUM) 
define parameters and procedures for acceptance, re-verification and monitoring of 
measuring accuracy which are generally accepted and implemented in practice. They 
are applicable to both CMMs with touch probes and those with optical sensing heads. 
Photogrammetric systems employing touch probing can also be evaluated according 
to these guidelines. Since the year 2000, evaluation of optical non-contact 3D 
measuring systems has been covered by the German guideline VDI/VDE 2634. This 
recommends procedures for the acceptance and re-verification of systems based on 
point-by-point probing and area scanning. In the coming years, a new binding 
framework for optical 3D measurement systems will come into force with the 
international standard ISO 10360-13, replacing older guidelines. 

... Definition of terms 
– Acceptance test: 

An acceptance test is the procedure for acceptance and approval of a measuring 
system after installation at the customer’s site. The selected acceptance 
procedure is usually incorporated in the delivery contract. The goal of the test is 
the proof of the specified measuring accuracy under defined conditions. The 
acceptance test is usually performed jointly by system supplier and customer.  

– Re-verification test:  
Re-verification or monitoring is the periodic checking of the measuring system 
after commissioning to ensure that it conforms with specifications. Compared 
with an acceptance test, re-verification can be simpler. As a rule, it is carried out 
by the user, who also defines the time interval between such checks. 

– Traceability: 
Traceability is the establishment of a link between the measured quantities, with 
their uncertainties, and a measurement standard, for example the standard 
metre. For this purpose, a continuous chain of comparative measurements up to 
the national representation of the standard must be provided (Fig. 7.11). The 
standard used, for example a reference scale bar, must be calibrated and certified 
by a recognized calibration service.  

– Characteristic parameter: 
A characteristic parameter is a measured or calculated value (threshold, 
maximum permitted value) which characterizes the performance of a system or 
its individual components (for example probing error, see below). 

– Probing error: 
Probing error is the value that describes the precision of probing of a single 
measured point. This parameter is used mainly with respect to CMMs in which 
the active probe, as distinct from the length measuring system, contributes to the 
total system accuracy. For example, the probing deviation can be determined by 
repeated measurement of geometrically known reference objects (for example a 
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sphere). Residuals of single measurements with respect to the surface of the 
reference object indicate the probing error. Determination of probing error for 
area scanning systems is discussed in section 7.2.3.5.  

measurement uncertainty

National Measurement 
Institute (e.g. PTB, NPL, NIST)

measurement standard

Accredited Calibration Laboratory
reference artefact

Factory Measurement Laboratory
factory calibrated artefact

Factory Measuring System

Product

 

Fig. 7.11: Traceability to national standards. 

– Length error: 
The three-dimensional length error E (also called length measurement error LME) 
is defined as the difference between a measured (displayed) length Lm and the 
calibrated reference length Lr: 

m rE L L= −  (7.15) 

The length measurement error is usually derived from the measurement of two 
single probings (for example on a gauge block). Alternatively, it can be 
determined from the distance measured between two spheres if the probing error 
can be eliminated. 

The length measurement error is used to analyse the accuracy of length 
measurement. Calibrated reference lengths can easily be established (for 
exceptions see below), and they can be traced back to a standard. Uncertainty of 
length measurement implicitly includes the probing uncertainty. The maximum 
permitted positive and negative limit of length error E is the maximum 
permissible error (MPE). It is defined as a length-dependent value that may not 
be exceeded in an acceptance or re-verification test. The MPE of length error E is 
shown graphically in Fig. 7.15 and expressed analytically as: 

= + ⋅ ≤( )MPE E A K L B  (7.16) 
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where 
E: length error 
A, K:  machine-specific constants  
L: measured length 
B: maximum permitted deviation of length measurement  

Since the error of photogrammetric length measurement does not necessarily 
depend on the length itself, the constant K may be zero.  

– Sphere-spacing error: 
Sphere-spacing error indicates the capability of a system to measure the 
separation between the centres of two spheres which are derived from 
measurements on the spherical surfaces. The probing error is not explicitly 
included in the sphere-spacing error as multiple sampling of the surfaces 
averages it out. This parameter is particularly applicable to area scanning 
systems which cannot always directly determine a length measurement error. 
The length measurement error can be estimated from the sphere-spacing error if 
the probing error is known. 

... Differentiation from coordinate measuring machines (CMMs) 
With respect to mechanical CMMs, photogrammetric 3D measuring systems have 
fundamentally different properties which are apparent in the procedures and 
parameters which characterize them: 
– Image-based measurement of a large number of points: 

Optical 3D measuring systems, being image-based, enable the simultaneous 
registration of large numbers of object points (in the limit, each pixel). In 
contrast, touch-probe CMMs measure only one point per probe, although optical 
and line-scanning probing is also possible. 

– Triangulation principle: 
Photogrammetric and fringe projection systems are based on triangulation, 
which leads to accuracies of object points which are dependent on scale and 
configuration. A homogeneous accuracy cannot, therefore, be expected within a 
specified measuring volume. 

– Mobility: 
Optical 3D measuring systems are mobile and can be brought to the object. 
Consequently, from time to time their calibration data may change, or they 
operate under changing environmental conditions, or their imaging 
configuration may vary. 

– Flexible configurations: 
Non-stationary photogrammetric systems allow a free choice of camera stations. 
Users themselves therefore determine the number and distribution of the images, 
the selection of cameras and lenses and the type of object targeting or probing. 
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– Unlimited measuring volume: 
In principle, the measuring volume of photogrammetric systems is unlimited in 
so far as depth of focus and field of view allow. If scale-dependent resolution of 
object details is taken into account, arbitrary object dimensions can be measured. 
Conversely, the measuring volume of mechanical CMMs is always limited. 

... Reference artefacts 
A reference artefact is a physical object with known (calibrated) geometrical 
parameters. It should be economical to manufacture and easy to handle. As indicated 
in section 7.2.2.2, the calibration accuracy for a reference object should be 
approximately 5–10 times higher than that of the measuring system to be checked. 
Acceptance and re-verification procedures usually require a calibration certificate for 
the reference object. 

  

a) Step gauge b) Ball plate 

Fig. 7.12: Standard reference objects for 3D coordinate measuring machines. 

If the measurement uncertainty of a system under test is determined using an artefact, 
the result is not only affected by random and systematic measurement error by also 
by the artefact’s own calibration uncertainty. The measurement uncertainty cannot 
therefore be better than the calibration uncertainty. 

The type of artefact used depends mainly on measurement volume, method of 
probing, availability and cost. Tactile probing implemented in coordinate 
measurement technology makes use of gauge blocks, step gauges and ball plates (Fig. 
7.12) designed for a measurement volume with a typical diagonal length of 2 m. These 
are only suitable for photogrammetric systems using touch probing (example in Fig. 
6.27 and Fig. 6.29). 

Fig. 7.13a shows an arrangement of reference scale bars for testing optical 3D 
measuring systems according to VDI/VDE 2634 part 1. The scale bars are provided 
with the type of targets which are otherwise used by the system under test. Fig. 7.13b 
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shows a dumbbell target which has a calibrated separation of its ball centres (see also 
Fig. 7.24). This type of artefact can be used to evaluate the sphere-spacing error of 
area scanning systems according to VDI/VDE 2634 part 2. 

  

a) Arrangement of reference scale bars b) Dumbbell artefact  

Fig. 7.13: Test artefacts for 3D measurement systems. 

Supplying reference objects for acceptance and re-verification tests for 
photogrammetric systems can be problematic. It is difficult to find scale bars suitable 
for testing large measuring volumes (dimensions >3 m). For smaller measuring 
volumes (<1 m3) optical 3D systems achieve measuring accuracies of the order of 10 
µm (1:100 000) requiring high-precision reference objects with suitable targets.  

For larger measuring volumes, such as required to measure parabolic antennas 
or ships, measuring accuracy is often checked using laser trackers (section 6.3.2.2). 
Differences in coordinates or in computed distances enable a comparison of 
accuracies. However, several points should be noted: 
– high accuracy photogrammetric systems almost match the performance of laser 

trackers; 
– laser tracker measurements are costly in time and personnel; 
– laser trackers require geometric stability over the period of the observations; 
– multi-purpose targets are required which are measurable by both systems 

without additional significant loss of accuracy. 

... Testing of point-by-point measuring systems  
Part 1 of the VDI/VDE 2634 guidelines recommend parameters and methods for 
acceptance and re-verification testing of optical 3D systems which operate with point-
by-point probing. The single parameter to be tested is the length measurement error 
and the testing is made by measurement of calibrated length artefacts. 

Scale bars manufactured at appropriate lengths can serve as references. They 
should use the same type of targets as are used for the actual object measurement. 
The length can be calibrated, for example, by optical CMMs (for shorter lengths), high 



  7 Measurement design and quality 

accuracy photogrammetry, by field survey (using total stations) or by laser 
interferometry. 

In order to guarantee a sound analysis of the system, the arrangement of 
reference scale bars in object space should match the measuring task. If equal 
measuring accuracies are required for all coordinate axes, the scale bars must be 
arranged in such a way that direction-dependent length measurement deviations can 
be determined. A possible set-up is illustrated in Fig. 7.13a and Fig. 7.14. Of seven 
scale bars, three are arranged parallel to the coordinate axes and four along diagonals 
of a cuboid measuring volume. In order to increase the number of reference lengths 
of different sizes, individual scale bars can be divided into several sections. In this 
manner, the scale bar displayed in the foreground of Fig. 7.14 provides six partial 
distances which can be combined to give 21 different lengths.  
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Fig. 7.14: Arrangement of scale bars in the 
measurement volume. 

Fig. 7.15: Length measurement errors and limiting 
bounding box. 

  

Fig. 7.16: Photogrammetric scale bars.  Fig. 7.17: Imaging configuration for 
assessment of length measurement error. 

As a practical tool for the display and analysis of length measurement errors, a 
diagram showing the measured differences with respect to the nominal distances can 



 7.2 Quality measures and performance testing   

be used (Fig. 7.15). The maximum permitted limits shown by the red bounding box 
correspond to eqn. (7.16). A measuring system can be accepted as successful if all 
length errors lie within the box. 

Fig. 7.16 shows examples of photogrammetric scale bars that can be used either 
as reference lengths to scale the measuring volume, or as check lengths in the 
procedures described above. Fig. 7.17 illustrates a photogrammetric imaging 
configuration for measuring a VDI cube. 

If the scale-bar arrangement illustrated in Fig. 7.14 is not possible, or the system 
under test can only view the measurement volume from one direction (e.g. the stereo 
camera system in Fig. 6.40), then a single scale bar can alternatively be moved to 
different positions in the volume for measurement. Fig. 7.18 shows the testing of a 
stereo camera system. This continuously observes a reference scale bar with five 
retro-reflective ball targets which is recorded at multiple locations and orientations 
within the measurement volume.  

  

a) Reference scale-bar and stereo camera b) Evaluation of length measuring error  

Fig. 7.18: Evaluation of length-measuring error by moving reference scale-bar (AXIOS 3D).  

If a photogrammetric calculation has provided standard deviations of object 
coordinates, then these can be used to estimate analytically the expected length 
measurement error. By applying error propagation to the equation for distance 
measurement: 

2 2 2 2 2 2 2
2 1 2 1 2 1( ) ( ) ( )L X X Y Y Z Z ΔX ΔY ΔZ= − + − + − = + +  (7.17) 

the variance of the calculated length can be obtained:  
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Assuming coordinate standard errors are equal along the individual axes X, Y and Z 
(sX1 = sX2 etc.), the following is obtained: 

2 2 2
2 2 2 2 2 2 2 2 2 2

2 2 2 2
22 2 2 ( )L X Y Z X Y Z

ΔX ΔY ΔZs s s s ΔX s ΔY s ΔZ s
L L L L

= + + = + +  (7.19) 

and if standard errors are equal in all directions (sX = sY = sZ):  
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 (7.20) 

In order for the length measurement error to apply to all lengths measured by one 
system, a 3-sigma coverage factor (99 % confidence level) should be applied. The 
theoretical length measurement error is then given by: 

2 18XYZ XYZ XYZ XYZE k s s C s C RMS= ⋅ = ⋅ = ⋅ ≈ ⋅  (7.21) 

In the first instance, this estimation is only valid if it results from a bundle adjustment 
where all coordinate directions are of equal accuracy. This applies to the 
homogeneous all-around configuration shown in Fig. 7.17. In addition, camera 
stability plays an important role since its impact is not always apparent in the 
resulting standard deviations of object points (precision), although it does affect the 
final LME (accuracy). Suppliers of high-accuracy, offline photogrammetric systems 
can achieve a maximum uncertainty of object coordinates of around 4 µm ± 4 µm/m 
(see section 3.5.2). For a VDI cube of 2 m side length, a typical RMSXYZ of 4–5 µm with 
an LME of around 21 µm is obtained. The constant C in eqn. (7.21) is then around 4–5 
(compare with example 7.1). For a DSLR camera (ring flash not mounted around the 
lens) applied in a similar imaging configuration, the RMSXYZ amounts to around 25 µm 
with an LME of approximately 75 µm, i.e. C is around 3. Using a less stable camera, 
e.g. with plastic housing or ring flash mounted on lens, but which has similar RMS 
values, may result in an LME of up to 150 µm (C = 5–6). Ideally, the objective is to 
achieve a small RMS value (high precision) and a small value of C (high accuracy). 
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Eqn. (7.21) does not hold for online measuring systems, such as stereo cameras, 
which have been pre-calibrated by bundle adjustment and measure further points by 
intersection. On the one hand, redundancy is much lower, e.g. only two images. On 
the other, the physical structure of the camera could change slightly between the time 
of calibration and the actual time of measurement. There are also differences in 
measuring accuracies between the XY and Z directions. 
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For sZ and sXY the assumptions in eqns. (4.88) and (4.92) can be used.  

Example 7.1: 
After bundle adjustment of 144 images of the reference body in Fig. 7.13a, taken by an ALPA camera, 
the following RMS values of object coordinates were obtained: 

RMS (1-sigma) X: 0.0051 mm Y: 0.0049 mm Z: 0.0040 mm 

According to eqn. (7.20), the standard error of length is given by sL = 0.007 

At a confidence level of 99%, corresponding to a 3-sigma coverage factor, the theoretical length 
measurement error according to eqn. (7.21) is given by E = 0.020 mm. The value agrees with an 
empirical result from multiple tests which gave a value between 0.019 and 0.025 mm (C ≈ 4).  

Example 7.2: 
The artefact in Fig. 7.13a was used to test an AXIOS stereo camera (Fig. 3.127a, bases b = 200 mm, 
measuring volume up to 3.0 m distance). The following RMS values of object coordinates were 
obtained following system calibration by bundle adjustment (72 images per camera): 

RMS (1-sigma) X: 0.007 mm Y: 0.007 mm Z: 0.007 mm 

The standard error of length was calculated using eqn. (7.20) and eqn. (7.21) which resulted in 
sL = 0.01 mm and E = 0.03 mm. 

In subsequent independent measurements of a 1.63 m long reference scale bar, oriented randomly 
in space at distances h between 1 m and 3 m (h/b between 5:1 and 15:1), an LME of 0.9 mm was 
obtained. In this example, the LME in online mode is larger by a factor of 128 compared with the single 
standard deviation from the system calibration. The example demonstrates the potential large 
difference between the accuracy estimates from the bundle adjustment and the intersections. 

... Testing of area-scanning systems  
Part 2 of the VDI/VDE 2634 guidelines recommends parameters and methods for 
acceptance and re-verification testing of optical 3D systems using, for example, fringe 
projection, tracked laser line scanners and image correlation methods. 
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Fig. 7.19: Method of determining probing error. 

The probing error parameter describes the error effects associated with surface point 
coordinates in a small measurement volume. It is derived from the measurement of a 
calibrated spherical surface to which a best-fitting sphere with variable radius is 
fitted. The range SA of the measurement deviations from the best-fit sphere defines 
the probing error. The reference sphere is positioned at multiple locations within the 
measurement volume as illustrated in Fig. 7.19. The sphere’s diameter should amount 
to around 10–20 % of the diagonal L0 of the measurement space. 

SE
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Fig. 7.20: Method of determining flatness error. 

The flatness error parameter indicates the capability of the test system to measure a 
plane surface. For this purpose, a reference flat surface is measured at multiple 
locations within the test volume and the range of deviations of the measurements 
from a best-fit reference plane is determined at each (Fig. 7.20). The length of the 
reference flat should be around 0.5 · L0. 

The sphere-spacing error parameter indicates the deviation between the 
calibrated and measured separation of two spheres whose surfaces are scanned and 
centres found using a best-fit sphere with a given radius (Fig. 7.21). The sphere-
spacing error must be representative of the entire measurement volume. The length 
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of the dumbbell artefact used for this purpose should be around 0.3 · L0 with a sphere 
diameter of 0.1–0.2 · L0. Since the probing error is not a part of the test parameter, due 
to multiple scanning and subsequent best fit of spheres, an ISO-compliant length 
measurement error is not generated (ISO 10360-2). Generally, the sphere-spacing 
error is always smaller than the length measurement error. 

L0
0.3 L0

0.1–0.2 L0

 

Fig. 7.21: Method of determining sphere-spacing error. 

When testing area scanning systems it is generally acceptable to eliminate up to 3 ‰ 
of the measured points from the raw data. This acknowledges the existence of 
unavoidable outliers in the data which are caused, for example, by reflective 
highlights off the object surface. It is also the case that many scanning methods 
acquire several million measurement points per scan and, as a matter of practicality, 
a thinning or filtering of the point cloud is necessary. 

  

Fig. 7.22: Moving object with fixed sensor 
position. 

Fig. 7.23: Moving sensor with fixed object 
position. 

Part 3 of the VDI/VDE 2634 guidelines deals with systems that combine area scanning 
with multiple sensor orientations (multiple point clouds) in order to measure objects 
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that are larger than the direct measuring volume of a surface measuring sensor. As 
examples, multiple point clouds can be created by moving the object (Fig. 7.22) 
and/or the sensor (Fig. 7.23), or by combining multiple sensors into one measurement 
system. Here it is necessary to deal with the task of merging individual point clouds 
into a single point cloud (registration), i.e. transforming them into a common 
coordinate system (compare with section 6.9).  

As with VDI/VDE 2634/2, the characteristics of probing error, sphere-spacing 
error and length measurement error are again evaluated. Practical constraints ensure 
that the recommended testing procedures of 2634/3 differ from those of 2634/2. In 
2634/3, the probing error Form describes the span of the radial distances of the 
measuring points from a calculated best-fit sphere with free radius, while the probing 
error Size is calculated from the difference between the measured diameter and the 
calibrated diameter of the sphere. It is highly recommended to study the guidelines 
carefully for specific requirements and parameter definitions. 

  

Fig. 7.24: Dumbbell with random pattern. Fig. 7.25: Reference object with calibrated 
geometric elements. 

In addition to the diverse reference artefacts proposed in various guidelines, there are 
a number of other suggestions for quality checking of area-probing systems. Fig. 7.24 
displays a dumbbell with random pattern that is used to check photogrammetric 
systems based on digital image correlation or SfM. Fig. 7.25 shows an artefact 
composed of different geometric elements (half cylinder, planes, steps) whose 
nominal shape is calibrated by a high-accuracy coordinate measuring machine 
(CMM). Fig. 7.26 illustrates a reference body for the measurement of free-form 
surfaces. This is also calibrated by a CMM and has its own local coordinate system 
defined by the reference spheres in the corners. The assessment of measuring 
uncertainty is done using a nominal-to-actual comparison of the measured surface 
with the CMM reference surface. This is achieved, for example, by a best-fit which 
minimizes the distances between both surfaces. 
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Fig. 7.26: Reference object with free-form 
surfaces (NPL London). 

Fig. 7.27: Reference object for determination of 
spatial resolution.  

Fig. 7.27 shows a reference artefact designed for measuring the lateral spatial 
resolution of an area-based probing system. The wedge located in the centre has 
sharp edges. As it gets narrower towards the apex, there is a point at which the width 
is smaller than the resolution of the measuring system. This enables the system’s 
ability to measure edges to be evaluated, as well as determining the minimum object 
size which the system can sensibly determine.  

. Strategies for camera calibration 

.. Calibration methods 

The purpose of camera calibration is to determine the geometric camera model 
described by the parameters of interior orientation (see section 3.3.2): 
– spatial location of the perspective centre in the image coordinate system: 

principal distance and image coordinates of principal point; 
– parameters describing image errors: distortion and sensor corrections. 

In general, the interior orientation is assumed to be known and constant for metric 
cameras. The problem of camera calibration therefore mainly concerns those imaging 
systems, e.g. semi- metric cameras, commercially available digital cameras, whose 
geometry is subject to variation over time. However, depending on the actual 
accuracy specifications, even metric cameras may have to be calibrated for the 
duration of image acquisition. 

The calibration of an imaging system is of major importance in many 
photogrammetric applications where the measurement must be optimized with 
respect to accuracy and economical aspects. Already at the planning stage it is 
therefore necessary to evaluate if a pre-calibrated camera can be used, if a pre-
calibration can be done immediately before the measurement, if the camera can be 
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calibrated simultaneously with the measurement or if the camera can be calibrated 
after the measurement (with the camera settings used on site).  

In general, imaging systems can be classified as follows: 
– 1 uncalibrated, or approximately calibrated, camera for general network 

configuration; 
– 1 pre-calibrated, stable camera for general network configuration; 
– multiple uncalibrated cameras in flexible imaging configuration; 
– several calibrated and oriented cameras in a mechanically fixed configuration. 

If time and configuration conditions permit, then sufficient images can be taken 
during object measurement such that the camera can be calibrated simultaneously 
with the 3D object reconstruction (section 7.3.1.3). This procedure is often selected in 
offline photogrammetry and normally results in the highest measurement accuracy. 

If only a restricted or weak camera network can be configured, then the camera 
can only be partly calibrated or not at all. In this case, if possible, the camera must be 
calibrated in a separate process directly before or after object measurement (e.g. 
using a test field, section 7.3.1.1). Here the validity of the camera parameters directly 
depends on its mechanical stability. 

Today, camera calibration techniques involve a computational solution for 
camera parameters (camera model) which often cannot be separated from the actual 
object measurement. Consequently, an understanding of the different approaches to 
calibration requires a detailed knowledge of photogrammetric orientation and object 
reconstruction, especially bundle adjustment (see section 4.4).  

Two calibration methods can effectively be distinguished. These are 
characterized by the reference object used and by the time and location of 
calibration2: 
– test-field calibration (section 7.3.1.1); 
– self-calibration (section 7.3.1.4). 

... Test-field calibration 
Test-field calibration is based on a suitable targeted field of object points with 
optionally known coordinates or distances. This test field is imaged from several 
camera stations, ensuring good ray intersections and filling the image format. Test 
fields can be mobile (Fig. 7.28a), or stationary, e.g. a building wall. In general, there 
is a distinction between plane test fields, such as checkerboards, or spatial test fields 
where the 3D points are spatially distributed in 3D space (example in Fig. 7.28b, see 
also section 7.3.2). 

 
2 Laboratory calibration with goniometers or collimators is an older concept no longer discussed 
here. 
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The parameters of the camera model are then calculated as part of a bundle 
adjustment in which the parameters of exterior orientation and the unknown 3D 
object coordinates are also normally calculated. Any known data (coordinates, 
distances) can be incorporated in different ways and are used to provide scale.  

  
a) Portable plane test field b) Spatial test field 

Fig. 7.28: Examples of photogrammetric test fields. 

It is not necessary for the target points in a test field to be reference points with 
nominal coordinates of superior accuracy. In fact, potential errors in reference 
coordinates, perhaps due to displacements caused by stresses in the supporting 
structure, can result in an erroneous or inaccurate camera calibration without any 
indicators in the bundle adjustment. It is therefore better to provide good quality 
measurement and then determine their 3D coordinates using a free-net bundle 
adjustment. Scale bars can, of course, also be introduced to provide the bundle with 
absolute scale. However, cameras can be calibrated without scale information 
because directions are being corrected and these are independent of scale.  

X
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Z

test field

 

Fig. 7.29: Imaging configuration for test-field calibration. 
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Fig. 7.29 shows a suitable image configuration for test-field calibration. In order to 
calibrate the camera, eight images are sufficient in this example. They should image 
the test field perpendicularly and obliquely and each image should have a relative 
rotation of 90° around the optical axis (see also Fig. 7.33). The number of object points 
and the imaging configuration should be chosen such that, considering all the 
images, the complete sensor format is filled with imaged points. It is additionally 
advantageous if not all images completely cover the object but only show a part of it. 
As a consequence, the total number of required images is increased. Fig. 7.30 shows 
a series of images acquired for test-field calibration. Further imaging configurations 
are discussed in section 7.3.2. 

       
 

       

Fig. 7.30: Image series for test-field calibration. 

Measured image coordinates and approximately known object data are processed by 
bundle adjustment to give the parameters of the camera model (interior orientation) 
as well as the adjusted test-field coordinates and the parameters of exterior 
orientation.  

For test-field calibration, the datum should be defined by an unconstrained 
technique (section 4.4.3) in order that possible inconsistencies between object point 
coordinates do not have a negative influence on the calculated parameters. An 
unconstrained datum can be created by a free net adjustment of the 3-2-1 method.  

Numerical calculations can lead to unwanted correlations between the 
calculated parameters but these can largely be avoided by suitable imaging 
configurations. It is most important to provide at least one piece of scale information 
along the viewing direction in order to compute the principal distance. This can, for 
example, be achieved by a reference distance, by spatially distributed test-field points 
or by oblique images of a plane test field. Images rotated by 90° around the optical 
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axis are used primarily to determine the principal point coordinates and affinity 
parameters. Three-dimensional test fields, e.g. with out-of-plane points, have the 
advantage over flat test fields that they can offer more points in depth which ensures 
that parameters are easier to determine and have smaller correlations (see section 
7.3.2.2). 

Normally, test-field calibrations are done when a simultaneous calibration as 
part of an object measurement is not possible or an accuracy evaluation of a camera 
is required. In general, the design of the test field should represent the actual object 
to be measured. The number and distribution of image points are of major importance 
for an accurate determination of distortion parameters (see also section 7.3.5). In 
order to preserve the calibration parameters, there should never be any changes made 
to the camera (focusing, different lens) between test-field measurement and object 
reconstruction. 

... Plumb-line calibration 
The plumb-line method uses a test field with several straight lines, created for 
example by vertically hanging wires (plumb lines, Fig. 7.31). Since, in theory, the 
projection of straight lines is invariant for perspective geometry, all departures from 
this condition must be caused by distortion effects. The deformed test field lines can 
only be used to determine distortion parameters and are insufficient to determine also 
principal distance and principal point. The calculated distortion parameters are not 
correlated with the further parameters of interior orientation or the exterior 
orientation parameters. 

test field

image  

Fig. 7.31: Plumb-line method for test-field calibration. 
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In a practical implementation of a plumb-line test field, targets can be added to the 
lines and these individually measured in the image. The lines can also be continuous 
features, such as thin white plastic cords set against a dark background for enhanced 
contrast. This arrangement facilitates automatic line following at high point 
densities. Alternatively, natural straight-line object features such as building edges 
can be used for calibration. 

Plumb-line calibration can be sensibly applied in cases where a pre-calibration 
of distortion parameters is desired, e.g. if lenses with high distortions such as fish-eye 
lenses are used and the measured image coordinates are to be corrected for distortion 
prior to a system calibration (see section 7.3.1.5). Distance-dependent changes in 
distortion can also be determined by the plumb-line method. 

... On-the-job calibration 
The term on-the-job calibration is often used where a test-field calibration (recording 
of a known point field) is combined with the actual object measurement. This 
approach is reasonable, for example, if the measuring object itself does not provide 
suitable geometry to enable self-calibration (see section 7.3.1.4).  

A simple solution is provided by a portable frame consisting of several spatially 
distributed scale bars, positioned beside the measuring object and photographed 
simultaneously with it. The local coordinate system of the test field can be used as a 
three-dimensional object coordinate system and further reference points are not 
required.  

... Self-calibration 
An extension to on-the-job calibration is self-calibration which simultaneously uses 
the images acquired for the actual object measurement also for the calibration. In 
effect, the test field is replaced by the object itself which must be imaged under 
conditions similar to those required for test-field calibration (spatial depth, tilted 
images and suitable ray intersections). Fig. 4.57 illustrates multiple imaging of a 
targeted car door which calibrates the camera as well as calculating the 
configurations of the ray bundles and the target coordinates. 

The essential advantage of self-calibration is that the parameters of interior 
orientation are determined simultaneously with measurement of the object, so 
providing the highest of accuracies in object reconstruction. Any remaining 
numerical correlations between the calculated parameters, in particular between 
those of interior and exterior orientation, have a lower influence in self-calibration 
analyses. With regard to the actual adjustment process, the observations generate the 
best possible result for the parameters and the calculated set of object points (point 
cloud) is in conformance with those parameters. 

Self-calibration does not require coordinates of known reference points. The 
parameters of interior orientation can be calculated solely by the photogrammetric 
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determination of the object shape, i.e. by incorporating only image information and 
intersection conditions for unknown object points. If employed, reference points can 
be used to define a particular global coordinate system for the parameters of exterior 
orientation. In order to define scale, it is sufficient to measure a single reference 
length in object space although it is good practice to measure multiple reference 
lengths.  

In many applications that are evaluated using Structure-from-Motion, the camera 
is also calibrated simultaneously. Essentially, the same requirements for camera 
calibration apply as described above and in the following sections. Deficiencies in the 
mechanical stability of the camera or in the imaging configuration are often not 
directly visible. This is because the number of images and pixels are frequently large 
and this obscures the influence of the interior orientation (smearing effect, see section 
4.4.6.2). If present, calibration deficiencies can be reflected as errors in the object 
space, e.g. as deformations. It should be further noted that most SfM programs state 
the parameters of interior orientation in pixel units which, if required, must be 
converted into equivalent metric units, e.g. mm (see section 3.3.6).  

If the object to be measured does not permit a suitable image configuration, or if 
a multi-camera online system is used, then a test-field or on-the-job calibration must 
normally be performed. 

... System calibration 
The expression system calibration is generally used for the determination of all 
geometric parameters of a complete measurement system, i.e. the interior and 
exterior orientation parameters of all the system components. System calibration is 
relevant to digital multi-camera systems that are either mobile and can be freely 
configured, for example dual camera online systems, or are mounted in a fixed 
position, such as a 16-camera system for the inspection of pipes (see section 6.6.2.1). 

For dual-camera online systems it is possible to calibrate each camera 
individually in advance. Alternatively, self-calibration can be applied to a set of 
images which have been acquired with both cameras simultaneously. 

During operation, multi-camera systems on fixed mountings require particular 
care in monitoring and calibration. Such mechanical restrictions can cause problems, 
for instance, by not permitting convergent or tilted images. In general, exterior 
orientation parameters can be monitored on a regular basis by the use of reference 
points and, if necessary, can be recalculated by bundle adjustment or spatial 
resection. However, the interior orientation parameters can only be determined by 
object fields with a suitable distribution of object points. Fig. 1.42 shows an example 
of a multi-camera system which can be oriented and calibrated by a motor-driven 
rotating test field and where the orientation of the rotary table itself is simultaneously 
calculated.  
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.. Imaging configurations 

The following imaging configurations are principally designed for self-calibration by 
bundle adjustment. The illustrated configurations of point fields and camera stations 
are a limited selection from many possibilities. Modifications and combinations are 
possible and often unavoidable. For stationary objects the camera is suitably 
positioned at locations around the object in order to obtain a good spatial distribution 
of images. For a stationary camera a mobile object is observed which is placed in 
different positions and angular orientations within the camera’s field of view.  

... Calibration using a plane point field 
If only a plane point field (flat test field or measurement object) is available, several 
convergent images are necessary. The minimum number of images depends on the 
availability and distribution of reference points with known coordinates. If reference 
points are not provided, known distances (scale bars) in object space can also be used 
for calibration. 

X

Y

Z

 X

Y

Z

 

a) 2 camera stations above test field with 
reference points 

b) 8 camera stations above test field with no 
reference points 

reference point target point 

Fig. 7.32: Calibration configurations for plane test fields (after Wester-Ebbinghaus 1983, 1985).  

Fig. 7.32a illustrates a minimal image configuration for a plane test field with known 
reference points and an invariant camera interior orientation. The points are 
obliquely imaged with convergent camera axes and different roll angles (rotations 
about the camera axis). For a test field without control points, Fig. 7.32b shows a 
configuration of 8 images which generates better ray intersections, higher 
redundancy and improved use of the image format (more reliable determination of 
distortion).  
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... Calibration using a spatial point field 
Self-calibration is more reliable if object points are spatially distributed in three 
dimensions. Spatial point fields area preferable if the measuring task permits.  
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a) 1 image above spatial test field with reference 
points 

b) 2 different cameras C1,C2 above test field with 
5 scales and no reference points 
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c) 4 images with arbitrary roll angles above 
spatial test field with no reference points  

d) 8 images above spatial test field with 3 scales 
and no reference points 

reference point target point known distance 
Fig. 7.33: Calibration configurations for spatial test fields (Wester-Ebbinghaus 1983, 1985).  

Fig. 7.33a shows an example of single image calibration using a known 3D test field 
(see section 4.2.3.2). The camera can be calibrated by means of an extended space 
resection or linear projective methods (see section 4.2.4). Fig. 7.33b illustrates the 
minimal configuration for a system composed of two different cameras (image-
variant interior orientation), for example an online dual camera system. Explicitly 
rolled images are not necessary if at least four convergent images of a spatial point 
field are available (Fig. 7.33c). Finally, Fig. 7.33d displays the most demanding but 
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also most reliable imaging configuration comprising eight images tilted with respect 
to each other and arranged above a spatial point field containing known distances. 
Similar configurations with around 16–25 images are recommended, although the 
total number is, in principle, unlimited. 

In principle, all the imaging configurations shown above can be created by 
placing a portable test field in multiple positions with respect to the camera to be 
calibrated, such that the same perspective conditions between test field and camera 
are generated. 

... Calibration with moving scale bar  
The principle of on-the-job calibration described in section 7.3.1.3 assumes that one 
or more cameras can be moved around the object in order to generate a sufficient 
number of convergent ray bundles. Alternatively, where cameras are in fixed 
locations, a test field can be moved into various positions in the object space. In this 
case, exterior orientations are initially based on the individual test field locations and 
must subsequently be transformed into a common coordinate system. 

An alternative technique for calibrating and orienting sensors in fixed locations 
uses observations of a scale bar which is moved to multiple positions in the object 
space and is therefore measured from different directions (Fig. 7.34). This creates a 
set of unknown object points and at every scale bar position there is a length 
observation between a pair of points. Datum definition is achieved by a free net 
adjustment (six degrees of freedom) and scale information is derived from the length 
observations. In addition to the simple implementation, the method has the further 
advantage that the object space is completely defined by known lengths. 

 

Fig. 7.34: Calibration of an imaging system with a moving scale bar. 
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The method is particularly applicable for multi-camera systems which record image 
sequences and can automatically track and measure the targets on the scale bar. This 
type of system can be found in medical navigation (Fig. 8.85) or applications of 
motion capture (Fig. 6.98). 

.. Calibration of multi-camera and non-standard imaging systems 

... Calibration of stereo and multi-camera systems 
Imaging systems with two or more cameras mounted in a fixed relative position are 
normally calibrated using the multi-image schemes described above. In addition to 
the interior orientation of each camera, their relative orientation, or exterior 
orientation in a machine coordinate system, must also be determined. The following 
calibration strategies can be identified: 
– Separate camera calibration and subsequent relative or exterior orientation: 

Prior to mounting on a system frame, the interior orientation of each camera is 
calibrated independently of the others by a test-field calibration designed to 
minimize correlations with exterior parameters. After assembling into a 
mechanical device, the exterior orientations are separately determined using 
fixed interior orientation parameters, e.g. by bundle adjustment without self-
calibration. 

– Simultaneous camera calibration with orientation (full system calibration): 
The fully assembled measuring system is calibrated as a complete unit by test 
field calibration, i.e. all parameters of interior and relative or external orientation 
are calculated simultaneously. Since it is assumed that the relative camera 
positions remain constant in subsequent applications, constraints on the relative 
orientation of pairs of cameras can be introduced into the bundle adjustment as 
outlined in section 4.4.2.3. This approach leads to a more accurate system 
calibration.  

... Calibration of fisheye cameras 
Camera-lens combinations with very large field angles (> 110°) usually have large 
distortions which do not correspond to the conventional central-projective imaging 
model (see section 3.3.7). The following approaches are suitable for modelling their 
imaging properties: 
– Spherical imaging model:  

A strictly spherical imaging model can be implemented in a bundle adjustment, 
e.g. according to eqn. (3.82) to (3.85), and optionally extended with conventional 
functions for lens distortion. 
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– Prior correction with a lens-map function and subsequent conventional 
modelling:  
If the lens manufacturer provides a lens-map function, e.g. as a table of distortion 
values along the image diagonal, the original image can either be rectified (see 
below) or the measured image coordinates can be corrected a priori by the given 
distortion values. Then the remaining distortions can be modelled by 
conventional distortion methods. 

– Correction grid:  
In principle, every imaging device can be modelled with a finite-element 
correction grid as outlined in section 3.3.4.5. However, the calculation of a 
correction grid assumes a sufficient number of measured image points 
distributed over all regions of the sensor in order to avoid negative extrapolation 
effects. 

Due to the wide field of view, it is often difficult to provide a test field sufficiently large 
to cover a significant part of the imaging sensor and which also ensures that the 
highly distorted targets can still be measured. Fig. 7.35a shows the original image of 
a fisheye camera taken from above a plane object with circular targets. The targets 
are increasingly distorted towards the image edges, to the extent that they then 
cannot be measured with normal processing software. In contrast, if the image has 
been rectified according to the manufacturer’s lens-map function, the imaged targets 
are close to ellipses (Fig. 7.35b) and these can be conventionally processed. However, 
the reduced quality at the image borders cannot be corrected. 

 

a) Original image with highly distorted targets 

 

b) Rectified image with measurable targets 

Fig. 7.35: Image taken by a fisheye camera above a plane object.  

Lower distortions occur if the fisheye camera images a test field which surrounds its 
field of view. Fig. 7.36a shows, for example, a test field defined by the inner surface 
of a hemisphere. The corresponding original image (Fig. 7.36b) shows circular targets 
in focus across the whole image format. It should be noted that a spherical surface for 
fisheye calibration has a similar geometric effect to a plane surface used for 
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calibrating a normal central-projective camera. In these cases, the result is higher 
uncertainty in determining the principal distance and increased correlations between 
interior and exterior parameters.  

 

a) Hemispherical test field  

 

b) Original image with non-distorted targets 

Fig. 7.36: Hemispherical test field. 

... Calibration of underwater cameras 
In principle, cameras designed for use under water, or in media other than air, should 
be calibrated using the imaging models of multi-media photogrammetry (section 4.6). 
To a first approximation, cameras with a hemispherical lens housing (Fig. 4.97) can 
be calibrated using the central-projective model and its associated distortion 
functions. Similar approaches can be applied if the optical axis of the camera passes 
perpendicularly through a plane cover glass since then the image rays refracted at the 
plane interfaces can be modelled by radial distortion functions. In both cases, the 
calibration should be conducted in situ, i.e. within the media which defines the actual 
measurement space since its temperature and chemical properties, such as salt 
concentration, will influence the refraction effects. 

For applications which do not permit in-situ calibration, the camera can be 
calibrated in the lab under similar measurement conditions. However, there may be 
a loss of accuracy due to potential mechanical instabilities of the camera and optical 
conditions in the lab which differ from the actual measurement conditions. If need 
be, interior orientation parameters can be updated in situ using a calibrating space 
resection (section 4.2.3.2). 

.. Quality criteria for camera calibration  

Assessing the quality of camera calibration is complex. In simple terms, camera 
calibration is good enough if subsequent 3D measurements achieve the required 
accuracy. Despite the detailed procedures for bundle adjustment (section 4.4) and 
calibration (section 3.3) it is still often difficult to identify the reasons for a weak 3D 
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measurement accuracy. Since the camera is generally the most critical component in 
photogrammetry, objective criteria for the quality of camera calibration should be 
defined and adopted if possible. 

Internal quality measures for precision in camera calibration provide a first hint 
as to the reliability of the camera model and the strength of the imaging 
configuration. Usually, the a posteriori standard deviations of principal distance and 
principal point should be of the same order as the accuracy of image measurement 
(see also section 4.4.5.5). For the adjusted distortion parameters, the standard 
deviation should be one order of magnitude smaller than the parameter itself.  

More complex quality statements can be derived from the minimum description 
length MDL which describes how efficiently the model reflects the input data:  
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where 
n: number of observations 
k: number of parameters modelling the interior orientation  

2
0ŝ : standard deviation of unit weight (image measuring precision) 

The MDL value increases with k (complexity of the model) and the squared sum of 
corrections vTPv (noise, precision of the model), and is reciprocally proportional to 
the image measuring precision 2

0ŝ . In theory, a better image measuring accuracy 
would allow for a more complex imaging model. 

The quality of self-calibration can also be assessed by the quality of the adjusted 
3D coordinates of the object points. Here it should be checked if the standard 
deviations of object coordinates (see section 4.4.5.4) are of the same magnitude as the 
specified accuracy. It should be noted that network strains introduced by reference 
points can affect the calculated camera parameters without this being apparent in the 
bundle adjustment results. Camera calibration is therefore typically carried out using 
a free-net adjustment. 

The most thorough method of quality assessment is, however, an independent 
comparison of measured values with reference values of superior accuracy. The 
length measuring error described in section 7.2.3 is the preferred parameter since it is 
obtained under real and reproducible measurement conditions.   

.. Problems with self-calibration 

Practical problems with camera calibration typically arise in the following cases: 
– Inadequate modelling of the interior orientation:  

Limitations in the mathematical modelling of the interior orientation usually lead 
to residual errors in the self-calibration. This can result in a lower precision 
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(sigma 0), in systematic residual patterns within the image measurements or in 
systematic errors in object space. Fig. 7.37a shows a systematic distribution of 
residuals after bundle adjustment, which indicates an incomplete model (here: 
aspherical lens, see section 3.1.4). In contrast, Fig. 7.37b shows a distribution 
without recognisably systematic errors, so indicating a well-developed model 
(see also section 4.4.5.3). 

 

a) Systematic pattern  

 

b) Random pattern 

Fig. 7.37: Image measurement residuals after simultaneous self-calibration. 

– Correlations between parameters:  
Using a bundle adjustment with self-calibration for the estimation of interior 
orientation parameters usually results in correlations between adjusted 
parameters. The presence of any significant correlations can be ascertained from 
analysis of the covariance matrix. High correlation values indicate linear 
dependencies between single parameters and should be avoided. Correlations 
often arise between the following parameters: 
– principal distance, principal point and exterior orientation; 
– A1, A2 and A3 will always be correlated to some extent as they are sequential 

terms in the radial lens polynomial model; 
– principal point x'0 and affine parameter C1 or alternatively y'0 and C2. 

Fig. 7.38 illustrates the correlation matrix between the parameters of interior 
orientation. The corresponding measurement network consists of 140 images of 
the 3D test object shown in Fig. 7.13a. Larger correlation coefficients appear, as 
expected, between the A parameters, as well as between the principal point 
coordinates and the B parameters of the tangential distortion. 
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C      1.000 
X0     0.017   1.000 
Y0    -0.071   0.011   1.000 
A1    -0.122  -0.001   0.010   1.000 
A2     0.037  -0.002  -0.010  -0.966   1.000 
A3    -0.006   0.005   0.010   0.905  -0.981   1.000 
B1     0.018   0.930   0.010  -0.003  -0.005   0.006   1.000 
B2    -0.034   0.010   0.905   0.004   0.002  -0.002   0.006   1.000 
C1     0.147  -0.010  -0.002   0.077  -0.106   0.108  -0.019  -0.006   1.000 
C2     0.002  -0.028  -0.028   0.007  -0.009   0.010  -0.014  -0.036   0.000   1.000 
         C       X0      Y0      A1      A2      A3      B1      B2      C1      C2       
 

Fig. 7.38: Example of correlation between calibrated camera parameters. 

In addition, principal distance and principal point are correlated with the 
parameters of exterior orientation of individual images. All-around 
configurations of 3D objects help to compensate for these correlations, i.e. they 
generate no explicit relationship between the exterior orientation of an image 
with the corresponding position of the perspective centre of the camera. For a set 
of images taken from one object side only, for example a hemispherical 
distribution over a plane test object, the correlations between interior and 
exterior orientations are higher and they appear between explicit parameters, for 
example c is correlated with Z0 (Z=viewing direction). In general, a camera 
calibration which makes use of a spatially distributed point field results in 
smaller correlations and more reliable camera parameters. 

Correlations between parameters can largely be neglected if object 
reconstruction and camera calibration are calculated in one simultaneous 
computation, as is the case for bundle adjustment with self-calibration. 
Nevertheless, parameters with no statistical significance can be detected by 
suitable test procedures and eliminated from the functional model. If individual 
interior orientation parameters are correlated and then used in subsequent, 
separate calculations, they no longer completely represent the chosen 
mathematical camera model. For example, if cameras in a fixed online measuring 
system are pre-calibrated using a different imaging configuration, then the 
subsequent online use of the resulting parameters can lead to errors in the 
computation of 3D coordinates. As already indicated, calibration against a spatial 
test field results in lower correlations and more reliable camera parameters. 
However, calibration as part of a space resection (section 4.2.3.2) or DLT (section 
4.2.4.1) can be problematic since interior and exterior orientation are highly 
correlated, especially for object fields without significant depth. 

– Over- and under-parametrization:  
Under-parametrization means that the selected mathematical model does not 
sufficiently represent the real imaging characteristics of the camera. In this case, 
the resulting errors in camera calibration have a significant impact on 
subsequent measurements, depending on the specified accuracy level. An 
example of under-parametrization is the absence of tangential distortion in some 
calibration approaches used in computer vision. 
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Over-parametrization occurs when correlation between selected parameters 
is close to 1, i.e. in principle the one parameter is completely modelled by the 
correlated parameter. In the example of Fig. 7.38, the correlation between 
parameters A2 and A3 is –0.981. Here it could be argued that A3 is not required for 
this specific camera. However, empirical experience has shown that this kind of 
over-parametrization does not damage the overall result and has no significantly 
negative effect on the final measurement result. 

– Images without relative roll angles:  
Images with relative roll angles (rotations about the optical axis) are necessary 
for the determination of principal point coordinates, and possible affine 
transformation parameters, if the test field does not provide a suitable 
distribution of reference points, or if sufficient convergent images cannot be 
taken. The coordinates of the principal point are highly correlated with the 
parameters of exterior orientation if rolled images are not available. 

– Missing scale information in the viewing direction: 
If scale information in the viewing direction is missing, as in the case of 
orthogonal images of plane test fields, principal distance and object distance 
cannot be uniquely determined. Just one known distance in the viewing 
direction, e.g. through the use of known reference points, or one known 
coordinate component, e.g. for convergent imagery of a plane test field, is 
sufficient for the calculation of principal distance. As a simple alternative, a 
network of convergent images of a planar target field will allow recovery of 
principal distance, but such a solution requires careful assessment. Another 
alternative is to set the principal distance to a fixed value, and not determine it in 
the bundle adjustment. Compensation for any potential scale error arising from 
this procedure in subsequent measurements can only be made using reference 
lengths in object space.  

– Incomplete use of the image format: 
The imaging sequence for camera calibration should be arranged in such a way 
that, within the full set of images, use of the complete image format is achieved. 
Only then is it possible to determine distortion parameters which are valid across 
this whole format (Fig. 7.39). It should also be noted that the optical axis should 
not, in all images, be directed at the centre of the object. The camera should be 
pointed in different directions, including if necessary, at only part of the object.  
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Fig. 7.39: Optimal (left) and poor (right) 
distribution of image points. 

Fig. 7.40: Sensor format and principal distance. 

– Use of high distortion lenses:  
Many wide-angle and super wide-angle lenses cause large distortions in the 
image corners. For these lenses standard distortion models are often insufficient 
and result in lower accuracies of points imaged in the corners. The problem 
becomes even more critical if the image format is incompletely used at the 
calibration stage. In cases where there is any doubt, it is good practice to ignore 
any image measurements made in the outer 10 % of the image format. 

– Lack of camera stability:  
Determination of interior orientation becomes more uncertain if the camera 
geometry changes from image to image within a sequence, for example due to 
thermal effects, loose attachment of the lens or unstable mounting of the image 
sensor in the camera housing. Each variation in this case must be handled by 
defining a separate camera in the adjustment model. However, many imaging 
configurations only permit the simultaneously calibration of a small number of 
cameras. In section 4.4.2.4 an approach to the calibration of image-variant 
parameters is discussed. 

– Unknown pixel size in the image sensor:  
For many simple digital cameras (consumer cameras, mobile phone cameras) 
there is often insufficient technical data available. If there is missing information 
to determine the pixel size of the image sensor or the physical sensor format, then 
an arbitrary pixel size can be set. Although the image coordinate system is also 
arbitrarily scaled in this case, the calibrated parameters (in particular the 
principal distance) are determined with respect to the selected sensor scale. The 
form of the ray bundle defined by the interior orientation will, in fact, remain the 
same (Fig. 7.40). 



 
https://doi.org/10.1515/9783111029672-008 

 Example applications 

The techniques of close-range photogrammetry provide universal methods and 
approaches to the geometric measurement of almost any kind of object. As a result, 
there are a wide range of potential application areas. The following example 
applications represent only a small selection from the entire spectrum of possibilities. 
They are restricted to sample images, results and key technical specifications. 
Examples processed using film cameras can, conveniently and without restriction, be 
implemented using current digital cameras. References to examples can be found in 
section 9.8. 

. Architecture, archaeology and cultural heritage 

.. Photogrammetric building records 

Photogrammetric building records mostly aim to generate 2D and 3D data of buildings 
and monuments for the following applications:  
– preservation and restoration of the building; 
– planning conversions, renovations and extensions; 
– art historical analysis; 
– digital twins; 
– geometric documentation. 

The essential technical requirements for this field of architectural photogrammetry 
were already developed in the 19th century (see section 1.4). Today's optical 
technologies of 3D measurement techniques (photogrammetry, laser scanning) offer 
a number of advantages for building surveys:  
– non-contact measurement avoiding scaffolding on the façade; 
– fast on-site image acquisition;  
– high accuracy; 
– high resolution; 
– three-dimensional coordinate measurement; 
– measurement of free-form contours, surfaces (ornamental details) and complete 

3D object models; 
– recording of colours and textures in different spectral bands 
– image rectifications (orthophotos, photo maps); 
– subsequent object measurement from archived images or historical photos. 

It is emphasized that cooperation between photogrammetrists, architects and 
heritage experts is of major importance. This ensures that imagery and point clouds 
are also correctly interpreted with regard to architectural and artistic features, 
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cultural heritage issues and relevant construction methods. In this context, historical, 
ethical and technical requirements must be brought into harmony, as specified, for 
example, by national regulations on heritage protection or by internationally 
recognised recommendations (e.g. London Charter) or organisations (e.g. ICOMOS, 
CIPA). This also applies to the recording of smaller cultural heritage objects, which is 
dealt with in section 8.2. 

Photogrammetric data acquisition is carried out with suitable digital cameras, as 
well as with terrestrial laser scanning (TLS) and mobile scanning systems, which 
usually also employ cameras. Signalized points (targets) are mostly used for control 
point marking (georeferencing) and image orientation (registration). The actual 3D 
reconstruction is done using imaged natural features of the object. 

Depending on environmental conditions and object shape, photogrammetric 
image recording can be carried out from locations on the ground, elevated locations 
(ladder, crane) and drones. As usual, the imaging configuration must be selected 
such that every object point of interest is recorded in at least two images with a good 
intersection angle, with recording in three images preferred for structure-from-
motion (SfM). This requires many more images when recording interiors or courtyards 
than when structures are recorded from the outside. For applications using SfM, 
appropriate image overlaps must be selected (see section 5.5.2.2). 

Processing can be achieved using SfM programs (see section 6.4.2), 
photogrammetric stereo workstations, interactive digital multi-image processing 
systems with CAD functionality (section 6.4.1) and CAD systems with functions for 
analysing images or point clouds. Monoplotting functions are also applicable in 
combination with 3D point clouds from laserscanning or photogrammetry (see 
section 4.2.7). Furthermore, with digital processing systems it is easy to generate 
rectified images e.g. for generation of façades (Fig. 8.3) or orthophotos (Fig. 8.36). 

The reconstruction of complex building structures is increasingly achieved by 
processing 3D point clouds which are created using SfM and TLS. Newer technologies 
for mobile scanning have become more popular but have accuracy limitations. Their 
advantage is the simple object capture and highly automated registration. The 
disadvantage is the capture of a large amount of data relating to unstructured object 
points. This must then be reduced to essential geometric features, typically by 
manual evaluation. Point clouds can be visualised and processed with numerous 
software packages, e.g. CloudCompare, 3D Systems Geomagic, Autodesk ReCap or 
Bentley PointTools. Software packages such as Rhino, AutoCAD or Revit CAD or BIM 
(Building Information Modelling) applications, are also used for further processing of 
point clouds. 

Data can be stored in standard 3D formats such as E57, OBJ, STL and FBX. 
Attention is increasingly focused on standardized 3D graphics languages such as 
X3D, 3DS or CityGML that include textures and which enable system-independent 
visualisations and interaction with the 3D model. Visualisation examples are shown 
in Fig. 1.6, Fig. 4.30 and Fig. 8.5, as well as in following sections. 
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... Drawings 
Drawings include floor plans and elevations, profile sections and deformation-related 
measurements (as a basis of further as-built and damage mapping) of objects that are 
captured in two- or three-dimensional form as vector data. They are created by 
interpreting image data or point clouds, i.e. during analysis the relevant features are 
visually extracted by the user and, if necessary, are reduced, simplified or 
generalized. Fig. 8.1 shows an example of a line drawing obtained by interactive 
stereo evaluation using an analytical plotter.  Fig. 8.2 shows contour extraction based 
on point clouds in an orthogonal view for an HBIM model (Historical Building 
Information Modelling) (see also Fig. 8.8). 

   

Fig. 8.1: Analogue metric image (UMK) and stereoscopic mapping of façade (Messbildstelle).   

   
a) Original image b) 3D point cloud c) HBIM model 

Fig. 8.2: Example of contour extraction based on point clouds (University of Bamberg).  
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... 3D building models 
If a building's 3D CAD data is available in a topologically structured form, e.g. from a 
photogrammetric process, 3D visualisation methods (section 5.3.3: texture mapping) 
can generate a photo-realistic representation. In addition to the purely aesthetic 
effect, these models also have practical application in building planning, facility 
management or BIM.  

3D point clouds are often themselves regarded as 3D models although they simply 
consist of an unstructured set of surface data. However, when a point cloud is meshed 
(triangular meshing) a closed surface is generated which is suitable for purposes of 
visualisation or 3D calculations, such as volumes and deformations. In a narrower 
sense, 3D models exist if single components are modelled together with sematic or 
topological information, comparable to a CAD or GIS model. The latter is mainly used 
for BIM and HBIM (see also section 8.4.1.2 for the Scan-to-BIM approach). Examples 
of 3D building models are shown in Fig. 8.5, Fig. 8.7 and Fig. 8.11. 

... Image plans and orthophotos 
In the place of scaled 2D drawings, there is an increasing demand for rectified metric 
image plans of building facades. They have a significantly greater information 
content and they offer an objective representation of the object which has not been 
interpreted and generalized as in the case of a drawing. 

Fig. 8.3 shows a rectified image of a row of buildings. Each building was 
separately rectified by plane projective transformation (section 4.2.8.1) with the aid 
of reference points measured on site. Based on the rectifications, façade plans were 
subsequently derived by manual drawing. 

 

Fig. 8.3: Graphical elevation and rectified image of a building terrace (IAPG).  

Fig. 8.4 is an example of a true othophoto of a façade (see also section 4.2.8.2). In this 
case, a triangular meshing of a laser-scanned (TLS) point cloud was available. Images 
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were oriented using Agisoft PhotoScan using reference points extracted from the TLS 
point cloud and converted to orthophotos based on the meshing. Here, there is a 
specific problem in that the window reveals are not modelled correctly by the 
meshing process and at those locations, lateral errors appear in the orthophotos. 
Since laser scanning and image recording were carried out from locations at street 
level, these errors occur mainly around windows on the upper stories. The resolution 
of the orthophoto is 5 mm and the absolute positioning error of image points is 
estimated to be of the order of 7 – 10 mm. 

It must be noted that accuracy and completeness of the integrated surface model 
is of fundamental importance to the quality of the final orthophoto. Depending on the 
application, TLS point clouds can improve the quality of SfM point clouds, or vice 
versa. Since modern SfM software enables automatic point cloud generation, 
meshing and orthophoto production in one closed workflow, this if often the 
preferred and most cost-effective solution in practice. In general, true orthophotos 
are the most reliable metric representation of building façades if the required digital 
surface model and available images are of sufficient quality (see section 4.2.8.2). 

   

Fig. 8.4: True orthophoto of a façade with close-up detail (SPM3D).  

.. Examples of photogrammetric building reconstructions 

... Torhaus Seedorf 
Fig. 8.5 shows an example of 3D measurement using SfM. Here the model is of the 
Torhaus Seedorf which is close to Bad Segeberg (Germany) and was built in 1583. A 
combination of terrestrial images (Nikon D7000 and Nikon D800) and UAV images 
(Canon IXUS 125 HS) enabled all exterior walls, and the complex roof structures, to 
be modelled. A total of 215 images were jointly processed using Agisoft PhotoScan 
and residuals at 18 reference points were reported to be around 1.2 cm. The absolute 
accuracy, however, is probably in the range of 2 – 3 cm. 
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Fig. 8.5: 3D model of Torhaus Seedorf (HCU Hamburg). 

... The Milan Cathedral 
The photogrammetric reconstruction of Milan Cathedral is a prime example of the 
measurement of a complex building in an environment with restricted access. The 
objective is to produce precise plans, detailed illustrations and 3D data for research 
purposes and preservation of both the external facade and the interior. Accuracy and 
resolution have been specified to less than 2–3 cm for map scales of 1:20 – 1:50. The 
structure is the fifth largest church in the world with dimensions of 158 m x 93 m x 
108 m. 

     

Fig. 8.6: Examples of Milan Cathedral's complex areas (Politecnico di Milano).  

The project has been running since 2008. Various photogrammetric and geodetic 
methods are used. The structure of the object requires free multi-image recording with 
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different camera-lens combinations including fisheye systems (see Fig. 6.103b) for 
very narrow areas. Since the use of drones was not permitted, the upper areas had to 
be photographed from a crane (Fig. 8.7). A GSD of 2 mm was achieved on the outer 
façade. In total, more than 12000 images have been taken and evaluated so far. The 
evaluation is mainly done by SfM, but depending on the local conditions, images also 
have to be oriented manually. A total of approximately four billion 3D points were 
captured. Georeferencing was carried out via 122 control points measured by 
totalstation. Manual line drawings by stereo photogrammetry, automatically 
generated profile sections (Fig. 8.8), orthophoto plans as well as 3D meshings and 
BIM models were derived from the raw data obtained. 

       

Fig. 8.7: Image recording by crane and final 3D-point cloud (Politecnico di Milano).  

 

Fig. 8.8: Profile sections extracted from point clouds (Politecnico di Milano).  



  8 Example applications 

Fig. 8.9 shows the image recording paths around the cathedral and an example point 
cloud of a very confined space, acquired with the fisheye camera system shown in 
section 6.11.1.2. Since the unfavourable image configuration without loop closure 
entails poor error propagation, the system calibration (interior and relative 
orientation of the cameras) must be highly accurate so that the subsequent 
orientation by Visual SLAM (section 5.5.7.6) and bundle adjustment generate the 
required accuracy. Usually, control points cannot be provided in such environments. 

   

Fig. 8.9: Imaging paths and 3D model of narrow spaces (Politecnico di Milano).  

... Lurji monastery 
A combination of terrestrial laser scanning, UAV and terrestrial photogrammetry was 
used for the 3D recording of historic church buildings in Tbilisi, Georgia, including 
the Lurji Monastery. The measurements were carried out under conditions made 
difficult by restricted recording locations and visual occlusions.  

Leica BLK360 and Faro Focus 3D X330 scanners were used for terrestrial laser 
scanning. Registration was carried out using checkerboard markers at signalized 
points. These were then further used as control points for the photogrammetric 
evaluation. Resolution and registration accuracy were about 5mm. 

A Canon EOS 6D Mark II full-frame SLR camera with 24-50 mm zoom lens (26 
Mpixel) was used for terrestrial image acquisition. The image overlap was designed 
to be 80-90% with a GSD of 3-5 mm. A total of about 1000 images were taken of the 
monastery (example photos in Fig. 8.10).  

The drone images were taken with a manually controlled DJI Mavic Pro with FC 
200 camera and 4.7 mm lens (12 Mpixel). The flight path was a meandering stripe 
pattern with two circular orbits around the church tower. For the drone imagery, a 
total of 368 photos were taken with GSDs of 5-11 mm (examples in Fig. 8.10).  

Data processing was done with the RealityCapture software package. This offers 
a particular advantage in that laser scans and photogrammetric image data can be 
simultaneously analysed. The registered laser scans are used as coordinate reference. 
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In RealityCapture, synthetic image cubes are calculated for each laser position (see 
section 5.5.2.2), and these are linked with the photogrammetric images via feature 
matching. The result is a high-resolution 3D model with textures that correspond to 
the quality of the photographic images (Fig. 8.11). The overall accuracy achieved is 
about 5 mm in areas close to the ground and about 10 mm in areas of the tower that 
are difficult to access. Detailed views of the 3D model show the high quality of the 
reconstruction which reproduces some of the smallest object details. 

   

   

Fig. 8.10: Sample measurement images: top: UAV, bottom: terrestrial (IAPG, Uni Bamberg).  

 

 
 

 
a) 3D model  b) Detailed views of the 3D model 

Fig. 8.11: 3D model of the Lurji Monastery (IAPG, Uni Bamberg).  
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. Cultural heritage artefacts 

.. Art and museum pieces 

For art historical tasks, restoration work, provenance research, virtual museums or 
documentation of objects collections, e.g. sculptures or decorations, digital copies 
(digital twins) with exact representation of geometry and surface patterns (colour, 
texture) must be generated. Objects of this kind are often unique, valuable, sensitive 
and not easy to transport, so must be measured using mobile non-contact systems.  

Conventional stereo measurement is suitable for line extraction if the object 
surface has distinct contours (example in Fig. 8.27). Objects without natural surface 
texture are usually measured by fringe or pattern projection systems using both high-
accuracy industrial systems (section 6.7.3) and low-cost and hand-held systems 
(section 6.9.6). Smooth and polished surfaces are often sprayed with white powder in 
preparation for measurement, if permitted. Most projection-based systems have a 
limited measurement volume, so that larger and more complex objects are recorded 
from multiple measuring locations. Individual point clouds are registered by means 
of reference points or other tools such as rotary tables or measuring arms (see section 
6.9).  

3D modelling with correct (calibrated) colour representation are of increasing 
importance. Here the measuring process typically incorporates RGB cameras, 
calibrated light sources, white balance and colour calibration charts in order to 
generate true colour representation of the measured object.  

The raw measured 3D data are passed through the processing steps of triangle 
meshing, registration, smoothing and thinning after which Bézier or NURBS surfaces 
can be generated (see section 2.3.3). The derived 3D CAD data can be used, for 
example, to control 3D printers, NC milling machines or stereo lithography 
processing in order to generate facsimiles of the objects. They are also applicable in 
diverse aspects of 3D visualisation, e.g. in virtual museums or animations.  

... Statues and sculptures 
Statues and sculptures mostly have complex surface shapes which cannot be 
interpreted as a 2½D surface and measured from only one side. If the objects of 
interest can be measured under controlled lighting conditions, e.g. in a laboratory or 
room with no external light, and they have reasonably bright, diffusely reflecting 
surfaces, then a fringe projection system is suitable for 3D recording. 

For cultural heritage recording, the registration of individual 3D point clouds is 
generally achieved using the object’s own geometry (natural points, distinctive 
surface features). As an alternative, or in combination, additional 
photogrammetrically measured control points can be used, either to bridge areas 
lacking in natural detail, or to enhance or control the overall accuracy. Smaller 
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objects can make use of a servo positioning, e.g. rotary tables, to generate part scans 
in a common coordinate system. 

   
a) Terracotta warrior 
(Xi'an, China) 

b) Gargoyle (Freiburg Minster) c) Statue of Heracles (Antalya 
Museum) 

Fig. 8.12: 3D digitizing of statues and sculptures (AICON/Breuckmann).  

Fig. 8.12 shows examples of digital, all-round surface measurement of diverse statues. 
Fig. 8.13 shows the measurement sequence in a fringe projection system. 

 

Fig. 8.13: Projected pattern and image sequence in a fringe projection system (AICON/Breuckmann).  

... Death mask of pharaoh Tutankhamun 
Fig. 8.14 shows how the gold death mask of the Egyptian pharaoh Tutankhamun was 
measured with a GOM ATOS III fringe projection system (resolution 0.25 mm) and 
photogrammetric reference points (Nikon D800, f = 35 mm). The 3D data will be used 
for purposes of evaluation and restoration, as well as to manufacture fitted 
transportation cases for the mask. It was not permitted to prepare the surface with 
powder, and as a result some gaps and artefacts remained in the 3D model around the 
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face. By selecting suitable scan parameters and multiple scan stations, the 3D 
modelling quality was sufficient for CNC milling of the transportation cases and for 
documenting the restoration work. 

   
a) 3D scan with projected fringes b) 3D model c) Transport mask 

Fig. 8.14: Reconstruction of Tutankhamun’s death mask (i3mainz, RGZM).  

The project was a cooperation between the Mainz University of Applied Sciences, the 
Romano-Germanic Central Museum, the German Archaeological Institute and the 
Egyptian Museum in Cairo. It was funded by the German Ministry of Foreign Affairs 
and the Gerda Henkel foundation. 

... Sarcophagus of the Spouses 
The Sarcophagus of the Spouses (Fig. 8.15) is a unique heritage masterpiece, an 
Etruscan anthropoid Sarcophagus dating back to the late 6th century BC. It is made of 
terracotta and was once brightly painted; it measures about 2 m wide, 1.5 m high, 1 m 
deep. The sarcophagus was digitized using close range photogrammetry in 2013. 

The planning of the photogrammetric image acquisition entailed several factors 
and constraints such as location, environmental illumination (mixed lighting), 
limited space around the asset, and the required resolution for the photographic 
texture of the mesh of 0.3 mm. These parameters guided the choice of the 
photographic equipment, consisting of a Nikon D3X 24-Mpixel camera with a Nikkor 
50 mm f/1.8 D lens (GSD about 0.12 mm). Two photographic lamps placed 
symmetrically about the camera's optical axis were used to mitigate the effect of 
shadows. Cross polarization (section 3.1.1.5) of the light was used to give images 
virtually free from specular reflection components. Colours appear more saturated 
(pure) and lighting more homogeneous all over the photographic subject (Fig. 8.15 
right). 
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Fig. 8.15: The Sarcophagus of the Spouses; top right: image recorded under regular lighting; bottom 
right: image recorded with cross polarization (FBK Trento).  

Fig. 8.16a shows the imaging configuration with about 520 images consisting of 
orthogonal, rolled and convergent images. The photogrammetric network was scaled 
using a 300 mm scale bar placed at 10 different positions around the sarcophagus and 
verified to have an RMS value of about 80 µm after SfM evaluation. The accuracy of 
the 3D coordinates of the tie points was about 60 µm (Fig. 8.16b). A high-resolution 
mesh was created with a spatial resolution of 0.5 mm and a texture of 0.3 mm, 
resulting in about 50 million triangles (Fig. 8.17). 

  
a) Camera network b) Tie points coloured according to precision 

Fig. 8.16: Results of photogrammetric reconstruction (FBK Trento).  
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Fig. 8.17: Texturized 3D mesh model of the Sarcophagus of the Spouses (FBK Trento).  

... Goethe elephant skull 
The historically significant Goethe elephant skull in the Kassel Museum for Natural 
History was digitised using SfM and hand-held scanners (Fig. 8.18). The skull was 
examined around 1784 by Johann Wolfgang von Goethe for anatomical studies and 
consists of three parts (skullcap, main skull and lower jaw). The overall dimensions 
are approximately 80 cm x 60 cm x 80 cm. The images captured with a DSLR were 
colour calibrated and then processed in Agisoft Metashape. A Creaform Go!Scan 
hand-held scanner was used which achieves a measuring accuracy of approx. 
0.05 mm at a maximum resolution of 0.2 mm.  

Several precision scale bars were introduced to scale the photogrammetric 
model. Each object part was measured separately and subsequently fused into an 
overall model using ICP procedures (Fig. 8.19).  

Fig. 8.18: Acquisition of the Goethe elephant skull with SfM (left) and hand scanner (right) (IAPG).  
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Fig. 8.19: 3D models of the individual object parts and overall model (IAPG).  

.. Archaeological recordings 

... 3D record of Pompeii  
The complete recording of the excavations at Pompeii illustrates well the use of 
diverse data sources to create a full 3D documentation of a large, extended object. The 
approximately 350 finds distributed around the site, as well as the standing walls and 
their details, must be recorded in a single 3D model. This is required in order to 
prepare the data at different levels of resolution for purposes of digital conservation, 
animation (virtual reality) and connection to archaeological databases.  

 

Fig. 8.20: Point cloud derived from terrestrial laser scanning (FBK Trento, Politecnico di Milano).  

Aerial and terrestrial imagery, as well as terrestrial laser scanning, are used for data 
acquisition and, by means of GNSS measurements, transformed into a global 
coordinate system. Accuracy requirements are in the cm range for aerial images and 
the mm range for terrestrial measurements. 

Fig. 8.20 shows a representative 3D point cloud created by merging multiple 
individual laser scans. Fig. 8.21 shows the complete model of the Forum in Pompeii 
and Fig. 8.22 shows detailed sections of the model with texture overlays. 
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Fig. 8.21: 3D model of the Forum in Pompeii (FBK Trento, Politecnico di Milano).  

      

Fig. 8.22: Detail sections of the 3D model of Pompeii (FBK Trento, Politecnico di Milano).  

... Temple of Hadrian 
The 3D reconstruction of the Temple of Hadrian in Ephesus (Turkey) illustrates the 
measurement of a large, complex object with the aid of fringe projection and 
photogrammetric orientation of the scanning stations. Some 75 coded targets were 
attached to the object (Fig. 8.23a) and recorded in a multi-image network using a 
Nikon D3 digital camera. They were located in 3D using the AICON DPA Pro system. 
In addition, 35 of the points were intersected by theodolite which was used to 
reference them to the local geodetic coordinate system. The accuracy of the control 
points was around 1–2 mm. 
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a) Temple with photogrammetric 
targets  

b) 3D model of the main entrance 

Fig. 8.23: Recording the Temple of Hadrian using fringe projection and photogrammetry 
(AICON/Breuckmann, Austrian Archaeological Institute).  

  
a) 3D model with natural texture b) 3D model without texture 

Fig. 8.24: Detail views of the Temple of Hadrian (AICON/Breuckmann). 

Because fringe projection systems are sensitive to extraneous light, in particular 
sunlight, all scanning was performed at night. The temple extends across a volume 
of around 10 m x 10 m x 8 m and was recorded by around 1800 individual scans which 
generated a total of more than 1 million surface points. Fig. 8.23b shows the 3D model 
of the front view of the temple. Fig. 8.24 shows a detail view of the model, with and 
without texture, from which it can be seen that the model without texture gives a 
better 3D impression of the object. 
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... Otzing burial chamber 
The burial chamber in Otzing, Bavaria, dates back to the iron age. Due to the delicate 
and fragile findings, the site was excavated as a single block (2.3 m x 1.7 m) which was 
removed layer by layer. A 3D record of two of the exposed layers was made using an 
GOM ATOS III fringe projection system and a colour camera. For the first 
measurement in 2012, an area of 1.0 m x 1.0 m x 1.0 m was scanned at a resolution of 
0.5 mm. The second measurement in 2015 scanned an area of 0.5 m x 0.5 m x 0.5 m 
with a pixel resolution of 0.25 mm. Colour information was provided by an additional 
set of images taken using a Nikon D800 camera with a 35 mm fixed-focus lens. 
Photogrammetric accuracy was estimated at around 0.03 mm (RMS of corrections at 
scale bars). This ensured that the surface model generated by fringe projection could 
be correctly combined geometrically with the colour information. 

  
a) Surface scanning using fringe projection  b) 3D model of two excavation epochs (2012 

and 2015) with detail enlargement top right 

Fig. 8.25: 3D modelling of an excavation block (i3mainz).  

 

Fig. 8.26: Coloured 3D model (i3mainz).  
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Fig. 8.25a shows the measurement being made with the fringe-projection scanner. 
The 3D model from two excavation epochs is shown in Fig. 8.25b. Fig. 8.26 shows 
the3D model combined with colour information. As part of the documentation, the 
intention is to present the archaeological findings in a multi-layered geographic 
information system (GIS). This will utilize 2½D/3D data and metric orthophotos. In 
addition, replicas of specific findings will be produced by 3D printing and an 
interactive virtual model will be provided.    

... Survey of the Bremen cog  
The Hansa cog (a type of ship), found in Bremen harbour and dating from the 14th 
century, was completely measured by photogrammetry prior to water conservation 
lasting from 1982–1999. Recording and analysis were done using analogue cameras 
and analytical stereoplotters. Results were scaled plans with the principal contour 
lines of the object (Fig. 8.27). Following removal from the conservation tanks and a 
drying period of several years, a new digital measurement was made in 2003. This 
provided 3D profiles and models used to document changes in the cog during the 
conservation process and its subsequent presentation to the German Maritime 
Museum in Bremerhaven. 

 

Fig. 8.27: Stereoscopic line extraction (Bremen Cog, IPI Hanover).  

The entire set of targeted points and lines were digitally measured in the 
approximately 100 digital images. The image network was oriented and analysed 
using PhotoModeler (EOS System). At image scales between 1:100 and 1:900, object 
point accuracies of around 1–2 mm in XY and 8–10 mm in Z were achieved. Fig. 8.28 
shows the digital imaging configuration and an example comparison of profiles. 

Starting in 2020, a system for monitoring critical object deformations (> 2 mm) has 
been established. Based on extensive feasibility studies, a suitable concept for the 
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geometric monitoring of the cog was developed. On the one hand, a set of reference 
points surrounding the cog was established by laser tracker to an accuracy of 0.04 mm 
(RMSXYZ 1-sigma). On the other hand, a photogrammetric measurement was 
conducted.  

  
a) Digital image network configuration b) Comparison of profiles 

Fig. 8.28: Digital survey of the Bremen Cog (IPI Hanover).  

  
a) Cog in exhibition hall (2017) b) 3D laser scan and planning of network 

Fig. 8.29: Bremen Cog in 2017 (IAPG).  

Fig. 8.29 shows a TLS point cloud of the exhibition hall, used for planning the 
geodetic and photogrammetric networks. One specific problem for a 
photogrammetric solution is that the reference points are located outside the ship and 
significant extra effort was required to measure them photogrammetrically to a 
sufficiently high accuracy. Fig. 8.30 shows the photogrammetric imaging 
configuration and the measured object points (superimposed on the laser scan). The 
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photogrammetric result achieved a precision of 0.07 mm (1-sigma RMSXYZ) with 
maximum uncertainties of 0.15 mm for the exterior reference points. 

  
a) Imaging configuration b) Measured points 

Fig. 8.30: Photogrammetric measurement (IAPG).  

... Megalithic tomb Kleinenkneten 
The prehistoric megalithic tomb Kleinenkneten II was excavated in the 1930s and 
subsequently reconstructed with some rearrangements. To analyse the excavation 
situation at the time, the current situation was recorded three-dimensionally using 
terrestrial images, UAV flights and TLS measurements. In addition to the newly 
created 3D models and orthophotos for documentation and visualisation, 
uncalibrated historical photographs were digitized (Fig. 8.31). Some of these images 
could be oriented using the DLT (section 4.2.4.1) or via SfM (Fig. 8.32). This made it 
possible to locate earlier excavation details and relate them to the present situation. 
The project was conducted in cooperation with the Oldenburg State Museum of 
Nature and Mankind (LMNM). 

  

Fig. 8.31: Historical photo 
(LMNM).  

Fig. 8.32: 3D point cloud-from historical photos (IAPG).  
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The UAV flights were carried out with an ultra-light DJI Mavic Mini drone (example in 
Fig. 8.33). Terrestrial laser scanning was carried out with a Leica RTC 360. Signalized 
control points measured with GNSS were used for georeferencing. The object 
resolution was approx. 4-5 mm. 

 

Fig. 8.33: UAV image (IAPG).  

On the basis of the 3D data (example section in Fig. 8.34), changes to the layout of the 
stone grave after excavation could be demonstrated. Furthermore, individual 
historical photos could be oriented via tie points in the system of the 3D model (Fig. 
8.35). 

  

Fig. 8.34: Detailed view of the 3D model 
(IAPG).  

Fig. 8.35: Tie points between 3D model and one of 
the historical photographs (IAPG).  
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. 3D city and landscape models 

.. City models 

The application of 3D city models is becoming widespread, for example in: 
– urban planning; 
– emissions analysis (sound, exhaust gases); 
– planning mobile telephone networks; 
– setting up information systems (operational planning for rescue services, 

transport management); 
– tourism (websites); 
– three-dimensional city maps and navigation systems. 

These applications require the 3D model to be visually appealing, up-to-date and 
complete, rather than having high accuracy in the geometry and detail. Fast 
generation of city models can be achieved through: 
– aerial photogrammetry (automatic extraction of buildings); 
– airborne laser scanning (extraction of buildings from discontinuities in the height 

model; alignment with ground plan);  
– video and laser scanning acquisition from moving vehicles (mobile mapping, 

section 6.11.1). 

   
a) Addition of snowfall b) Addition of trees c) Complex building geometry 

Fig. 8.36: Extracts from 3D city models (Oldenburg campus, IAPG).  

Fig. 8.36 shows extracts from 3D city models whose components have been derived 
from aerial photography. Textures obtained from close-range imagery have been 
applied to the façades and create a realistic impression of street scenes. Different 
visual impressions can be further achieved by the addition of computer-generated 
graphics and animations, for example trees or snowfall. 

Due to the large area covered by some of the façades, some of the textured images 
in this example have been created from a number of individual images. For this 
purpose the separate images are rectified in a common coordinate system and 
subsequently connected in an image mosaic (Fig. 8.37). 
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Fig. 8.37: Texture image created from a number of individual images (IAPG).  

.. Generation of terrain models from multi-spectral image data 

The output from a photogrammetric terrain measurement is normally a digital surface 
model (DSM) in which the point cloud could well represent the surface defined by the 
ground vegetation, but not the ground itself (Fig. 8.38). In contrast, airborne laser 
scanning can detect the ground by analysing the return signals (first pulse, last 
pulse), provided that the vegetation cover is sufficiently open for the laser beam, in 
part, to penetrate through. 

 

Fig. 8.38: Profile section through a DTM including vegetation (Frankfurt UAS).  

Photogrammetric terrain measurement of the ground, when vegetation is present, 
can be achieved using multispectral imaging in the near infrared band (NIR, see Table 
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3.1). Vegetation indices known from remote sensing, e.g. the Normalized Difference 
Vegetation Index NDVI, can be used to separate vegetation from other object classes.  

Fig. 8.39 shows RGB and NIR images from a UAV survey of a restored waste site. 
Two Sigma DP2 cameras with Foveon sensors (section 3.4.1.6) were used. One was 
modified for infrared imaging by replacing the normal IR filter by one which only 
transmitted wave lengths > 720 nm. Ground sample distance (GSD) amounts to 4 cm. 
A four-channel orthophoto mosaic is derived from a point cloud created by SfM. In 
order to detect trees and bushes, and ignoring grassed areas (lawns, fields), regions 
are masked where the NDVI exceeds a given threshold (Fig. 8.40). At these locations, 
the surface model is filtered, i.e. their related heights are interpolated from 
neighbouring elements. Finally, at areas of residual vegetation the height model is 
interpolated on the basis of terrain slope in order to generate the final terrain model 
of the ground (Fig. 8.41).  

   

Fig. 8.39: RGB and NIR image from a drone (Frankfurt UAS).  

 

Fig. 8.40: Masked vegetation regions after NDVI analysis (Frankfurt UAS).  
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Fig. 8.41: DTM with deviations caused by vegetation (left) and NDVI-filtered DTM (right) (Frankfurt 
UAS).  

.. Landscape model from laser scanning and photogrammetry 

The reconstruction of the Tustan rock landscape close to Lviv (Ukraine) is a good 
example of the combination of photogrammetry and terrestrial laser scanning. Local 
tree density and limited measurement locations ensured that the TLS point clouds 
were incomplete and not registered, but complete photo coverage was available:  
– 8 separate point clouds (19 million points) covering approximately 70 % of the 

object; 
– 9 sets of images (6467 images in total) covering 100 % of the object. 

Processing had 3 stages: 
1. Registration of the TLS point clouds:  

Of the 8 point clouds, only 5 could be oriented using reference points and 
registered to each other by ICP. As a result, only 50 % of the object surface was 
covered. 

2. Calculation of a photogrammetric point cloud: 
By means of SfM (Agisoft PhotoScan), a dense point cloud was generated which, 
however, could not be oriented and scaled absolutely due to missing reference 
points. In addition, a non-metric camera was used.   

3. Fusion of point clouds: 
The registration of the TLS point cloud with the unscaled SfM point cloud was 
performed by a best-fit algorithm (CloudCompare). The mean of the 
transformation residuals was 3.3 cm. 
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Fig. 8.42: Terrain model from TLS and SfM (left) and virtual reconstruction of a castle (right) 
(SPM3D).  

The calculated surface model was ultimately used for the virtual reconstruction of an 
ancient castle (Fig. 8.42). 

. Engineering surveying and civil engineering 

.. 3D modelling of complex objects 

... As-built documentation 
As-built documentation encompasses the measurement and inventory recording of 
an existing production facility. Most commonly, the complex structures and 
arrangements of pipes and machinery must be measured three-dimensionally for the 
following purposes: 
– Generation of up-to-date construction plans and CAD models, to centimetre 

accuracy, for production planning and control, and plant information systems 
(facility management). 

– Provision of precise geometric data (millimetre accuracy or better) to enable the 
replacement of large components which are manufactured off site to fit existing 
mechanical interfaces. 

For power plants, and especially for nuclear facilities, on-site measurement time must 
be minimized in order to reduce the danger to personnel and avoid interruption of 
processes in operation. Components such as pipe sections, heat exchangers and 
boilers are replaced during regular shut-down periods and the necessary geometric 
data must be available in advance. Using targets attached to the objects, accuracies 
are specified to about 0.5 mm for object dimensions of 10–20 m. 
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Fig. 8.43: 3D model of a production facility (SPM3D).  

The documentation of complex pipework is of considerable importance. Relevant 
sites such as chemical plants, oil refineries and water works are characterized by 
difficult environmental conditions, bad visibility and complex geometries. The 
objective of documentation is to produce a correct inventory and plans which in 
practice can only be processed by 3D CAD systems due the three-dimensional nature 
of the facility. The data acquired can be used for 2D and 3D views (Fig. 8.43), inventory 
analysis such as parts lists or the location of pipes, as well as the simulation of 
production processes. 

A purely photogrammetric measurement of industrial facilities is generally too 
laborious. A more efficient approach is to combine 3D laser scanning with 
photogrammetric image processing. 3D recording by laser scanner is fast and requires 
relatively little effort on site. The further processing of the measurements of these 
complex structures is then simplified using images which have been recorded at the 
same time and oriented to the laser scanned data in a common coordinate system. For 
example, monoplotting (section 4.2.7) can be used for visual interpretation and 
identification of structural elements while the actual 3D measurement is performed 
by interpolation within the point cloud (see Fig. 4.23). In general, oriented images are 
always useful for interpreting the measured scene, even if the actual measurement is 
based on TLS point clouds only. 

... Building Information Modelling 
Building Information Modelling (BIM) takes a database approach to the digital 
documentation of the entire life of a building, from its planning through its 
construction and on to its monitoring and maintenance. Measurement of the 
building’s 3D geometry, both interior and exterior, is an essential component in this 
process and one which can be solved by the application of terrestrial laser scanning 
(TLS), photogrammetry or total stations, alone or in combination. The process of 
deriving a BIM model from 3D point clouds is known as Scan-to-BIM (Scan-2-BIM). 
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Fig. 8.44: BIM model for purposes of renovation and redesign (DhochN).  

BIM does not usually store individual 3D coordinates but instead defines object 
elements such as walls and doors, together with their dimensions, topological 
connections and semantic information. Fig. 8.44 shows the TLS point cloud of a 
building and derived elements for future renovation and redesign purposes. In this 
case, data processing was done both manually and semi-automatically (detection of 
walls, beams etc.) in Autodesk Revit, with parallel use of images in which object 
materials can often be identified more reliably than from (coloured) point clouds.  

Fig. 8.45a shows a dense point cloud derived from UAV images which has been 
combined with a TLS point cloud in order to generate facade elements for a BIM (Fig. 
8.45b). The specified accuracy was only 4 cm for measurement of object details larger 
than 10 cm and the data were processed in Autodesk Revit. 

  
a) Point cloud from UAV imagery b) 3D building model 

Fig. 8.45: Object modelling for BIM (SPM3D).  

Fig. 8.46 shows a photogrammetric system for monitoring construction sites. The 
hardware system is mounted on tower cranes and it is configured to collect nadir 
images of the site (GSD ca. 1 cm) every day automatically or on demand. Due to the 
rotation of the crane, images are arranged in a circular configuration. RTK GNSS and 
IMU measurements assist the processes of image selection and calculation of exterior 
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orientations. Photogrammetric image processing is done with Pix4Dcloud Advanced. 
The end results are an unclassified dense point cloud, an orthomosaic, and a set of 
oriented images which can be further processed manually. This includes the 
extraction of elements for BIM or the support of monitoring tasks such as the 
detection of planned or unplanned changes (change detection). As well as enabling 
geometric processing, the acquired images represent a valuable documentation of the 
construction progress which can be analysed at any future time.  

   

Fig. 8.46: 3D as-built modelling with a crane camera (IGP TU Braunschweig, Pix4D).  

... Stairwell measurement  
The three-dimensional recording of stairwells is a complex task due to the usual on-
site conditions (accessibility, visibility). The problem can be solved 
photogrammetrically when the elements to be measured (edges, corners, steps, 
handrails) are suitably targeted and an appropriate imaging configuration is selected. 

  
a) Targeting using special target adapters b) 3D analysis 

Fig. 8.47: Photogrammetric stairwell measurement (AICON, ThyssenKrupp).  
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Fig. 8.47a shows a stairwell targeted with adapters whose measurement points define 
a unique relationship to the actual point of interest, e.g. the edge of a step (see section 
6.2.2.3). The coding integrated into the adapters is designed so that the type of feature 
(corner, edge) is automatically identified. Measurement of features of interest is 
typically achieved to an accuracy of around 1 mm. 

.. Deformation analysis 

A key task in geodetic engineering surveys is to monitor deformations on buildings 
exposed to some particular mechanical or thermal loading. For these applications 
accuracy requirements are typically in the order of millimetres for object dimensions 
of more than 100m, for example cooling towers, chimneys, wind turbines, dams, 
bridges, sluices, cranes and historical buildings. 

Photogrammetric deformation analysis is usually applied in cases where object 
or environmental conditions do not allow sufficient time on-site for extensive 
geodetic point measurements, or a large number of object points are required. Image 
acquisition additionally provides an objective documentation of the object's state at 
the time of exposure and, if simultaneous measurements are made, can also record 
rapid object changes. 

High precision photogrammetric object measurement requires high resolution 
and mechanically stable cameras. Critical object points are targeted and a stable 
network of reference points is necessary for detecting possible object deformations or 
movements. 

Measurement of the targeted points is done using digital image processing 
methods (section 5.4.2) with an image measurement accuracy in the region of 1/10 to 
1/50 of a pixel. 3D object coordinates are calculated by bundle adjustment with 
simultaneous camera calibration and the inclusion of any additional geodetic 
measurements. Absolute scaling is essential and must be carried out either using 
high-precision measured reference distances or sufficiently precise control points 
(see section 6.3). Deformation analysis can also be performed within the bundle 
adjustment, or by separate 3D transformations of the object points in different 
measurement epochs. In addition to point-based deformation analysis, areal 
analyses based on point clouds are becoming increasingly important. 

... Deformation of concrete tanks 
In this example, the deformation of concrete tanks used for galvanizing and 
electroplating must be measured under working conditions. The tanks are 
constructed from a special concrete and have dimensions of approximately 4 m x 10 
m x 2 m. In operation they are slowly filled with liquid of total weight 7.5 tons. The 
tank walls are subject to critical deformations which must be observed 
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photogrammetrically at 10 minute intervals. Around 325 points must be measured to 
an accuracy of less than 0.1 mm. 

 

Fig. 8.48: Imaging configuration (IAPG).  

 

Fig. 8.49: Resulting deformation vectors between two sequential measurements (IAPG).  

Due to the very confined object environment, the shortest focal length available for a 
Fuji FinePix S2 digital camera (f = 14 mm) must be used. Fig. 8.48 shows the 
measurement configuration which makes use of two reference lengths to define scale. 
However, points on the smaller object side could not be observed with optimal 
intersection angles, hence object point accuracy is weaker in those areas. The image 
scales achieved were between 1:70 and 1:120. The calculated deformations show a 
systematic behaviour (Fig. 8.49).  

... Measurement of wind-turbine rotor blades 
In operation, the rotor blades of wind turbines are subject to various types of 
deformation such as bending, out-of-plane deflection and torsion. An understanding 
of these effects is important for optimizing the efficiency of power generation and 
designing for material properties relating to the blades’ strength and durability. 
However, it is a significant metrological challenge to measure an operational wind 
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turbine. These generators can have towers up to 200 m in height, blades with lengths 
>80 m and locations with challenging environmental conditions. In addition, 
accuracy requirements may be demanding, perhaps a few centimetres. This 
requirement is further complicated by the dynamic nature of the problem as the 
rotating blades respond differently to the changing wind conditions around the 
turbine and their changing position.  

Fig. 8.50 illustrates the principle of a photogrammetric solution using retro-
reflective targets attached to the components of the wind turbine. Images are 
recorded at a frequency of 100 Hz by two pairs of synchronized stereo cameras, 
relatively oriented to one another. Tower, nacelle and rotor blades can be measured 
point-by-point during operation. This enables the trajectories of the target points to 
be measured over a longer period of time in all positions of the rotor blades. 
Measurement accuracy is estimated to be around 5–10 mm at a distance of 110 m. 

     

Fig. 8.50: Photogrammetric measurement of rotor blades using individual targets (GOM).  

 

Fig. 8.51: Photogrammetric measurement of rotor blades using textured adhesive film  
(ForWind, Uni Hannover).  

Fig. 8.51 shows an alternative photogrammetric approach where the rotor blade is 
partially covered by a textured film so that a dense point cloud can be measured by 
correlation techniques. This approach enables a more accurate determination of 
torsion than is possible with a small number of individual targets. 
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Fig. 8.52: Photogrammetric measurement of rotor blade by contour extraction (IAPG).  

A drawback of both the above approaches is that the rotor blade must be signalized. 
For this, the turbine must be stopped, a process which has logistics requirements and 
generates financial costs. Targetless measurement techniques have therefore been 
developed. Fig. 8.52 shows a photogrammetric solution where the outer contours 
(grey-level edges) of the blade are measured in several images. A 3D model of the 
blade can be estimated by using the image coordinates along the contours, optionally 
combined with laser-scanned profiles, together with an integrated finite-element 
model of the blade’s distortion under load. 

60-75 m

100-120 m
50-80 m

camera

laserscanner  

a) Measuring concept 

 

b) Camera image for measurement of nacelle 
movement  

 

c) Measured rotor-blade profiles  

Fig. 8.53: Measurement of rotor blade using distance measurement only (IAPG).  
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Another targetless method uses either multiple laser scanners in 1D mode or several 
distance meters (see section 6.8.2). This technique involves only distance (range) 
measurements (Fig. 8.53). Here surface profiles are generated at locations where the 
blade rotates through the laser ranging beam. The assignment of profiles to the 
physical position of the blade is solved by using a camera which continuously 
monitors the rotation of the nacelle, and by orientation of the scanning system with 
respect to the turbine’s coordinate system.  

A general problem is the definition of the turbine’s coordinate system, usually at 
the centre of rotation, and the determination of the exterior orientation of the sensors. 
Errors in datum definition and/or orientation directly cause positional errors in the 
measured locations on the rotor blade and this may result in misinterpretation of 
deformations. 

.. Material testing 

... Surface measurement of mortar joints in brickwork  
The following application is an example of deformation analysis in building 
maintenance and is concerned with the measurement of erosion which is affecting 
the pointing (mortar joints) in brickwork. Over a period of some 10 years, the progress 
of erosion will be monitored on site every two years. The test sites are located on a 
church tower at a height of around 40 m (Fig. 8.54). Each test area is approximately 
360 mm x 220 mm and is measured by stereo imagery. Due to the difficult lighting 
conditions, fringe projection systems cannot be used. 

  
a) On-site location b) Sample image 

Fig. 8.54: Data acquisition for erosion measurement (IAPG).  



  8 Example applications 

 

Fig. 8.55: Surface model derived from stereo matching (IAPG). 

The accuracy is specified to about 0.1 mm. Four masonry bolts define a fixed object 
coordinate system. A separate reference frame containing calibrated reference points 
can be re-attached to a test area in order to deal with repeated measurement. A digital 
camera is used for image recording. Since the measurements must be made under 
difficult daylight conditions, a fringe projection system cannot be employed. The 
natural surface structure provides enough texture for image matching and 3D 
reconstruction. Results are presented in the form of contour lines and differential 
height models (Fig. 8.55). Typically, around 100000 surface points are measured.  

... Structural loading tests  
The following example describes the photogrammetric recording of deformations and 
cracks in fibre-reinforced concrete test objects (TU Dresden). The qualitative and 
quantitative development of cracks and deformations during the loading is of 
particular interest.  

Fig. 8.56 shows the imaging configuration for the measurements. The test load 
object is recorded in three dimensions using digital stereo cameras. Mirrors 
positioned to the side provide side views of the test object. Only one of each camera 
views each side in order to record crack development in those areas. Camera 
calibration and orientation is done prior to testing using a multi-image network with 
bundle adjustment and self-calibration. 
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Fig. 8.56: Imaging configuration for displacement and crack analysis (IPF TU Dresden).  

Cracks are detected by applying dense area-based matching to consecutive images 
and analysing the resulting shift of image patches for discrepancies. This way, cracks 
can be localized with pixel accuracy, and crack widths can be determined to an 
accuracy of about 1/20 pixel. Fig. 8.57a shows a greyscale-coded visualisation of the 
matching results, showing the position of cracks for one load stage. Cracks in the 
material are clearly distinguishable from the areas between them. Fig. 8.57b 
visualises measured crack patterns for single a load stage, where dZ denotes the 
width of the crack. A subsequent crack analysis (crack location and width) is made, 
for every load stage, along defined profiles shown in the image. The photogrammetric 
system permits continuous measurement of object deformation with an accuracy of 
up to 1 µm, and cracks with an accuracy of around 3–5 µm. 

  
a) Crack pattern with marked profiles b) Surface evaluation (around 1.8 million points) 

Fig. 8.57: Result of displacement and crack analysis (IPF TU Dresden).  
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.. Roof and façade measurement  

The measurement of building surfaces is valuable for the following applications:  
– measuring of façade areas for cleaning and painting; 
– measuring of façade areas for calculating quantities of construction and 

insulation material; 
– roof measurements for tiling; 
– simulation of building modifications and additions, e.g. colour, brickwork and 

tiles; 
– measurement of windows and doors; 
– roof measurements to plan for solar panels. 

Fig. 8.58 shows the result of measuring the façade an apartment block. For this image 
the plane projective transformation parameters are known (section 4.2.6) so that the 
side lengths of the façade, and the location and areas of windows and other objects 
within the façade, can be determined. In this case, transformation coefficients are 
calculated using the four corner points of a window with known dimensions. This 
results in extrapolation errors at the edges of the image.  

  

Fig. 8.58: Façade measurement and simulation of new building colour (IAPG).  

Fig. 8.59a shows a measurement image with a graphical overlay of a planned solar 
panel array. Plane transformation parameters are obtained through the use of a 
calibrated reference cross whose target points can be automatically found in the 
image (compare with Fig. 4.18). Planning accuracy is around 5 cm. The required solar 
modules were inserted interactively into the image from a databank and, with texture 
projection, given a realistic appearance. Using an approximately computed exterior 
orientation of the uncalibrated image, it is possible to estimate the locations of points 
which are perpendicularly offset from the plane of the roof, for example in order to 
visualise the appearance of a raised module (Fig. 8.59b). 
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Fig. 8.59: Image analysis for planning the installation of a solar panel array on a roof (IAPG). 

. Industrial applications 

The range of applications for photogrammetry and other optical 3D measurement 
methods in the industrial environment is very broad. It includes construction and 
design, quality assurance (form and position measurements, target/actual 
comparisons), incoming goods inspection, real-time control of machines and robots 
(inline measurement), metrological experiments (e.g. wind tunnel, crash test, driving 
characteristics), driver assistance systems and control of autonomous platforms. The 
digitalisation of all processes, interaction between man and machine as well as 
networking and analysis of data, which can be subsumed under the term Industry 
4.0, is becoming increasingly important. 

.. Power stations and production plants  

... Wind power stations  
There are a number of photogrammetric applications relevant to the construction and 
operation of wind power plants, for example: 
– Measurement of rotor blades:  

Rotor blades are made of fibre composites and core materials such as balsa wood, 
PET and PVC foams. Both glass and carbon fibres are increasingly used for load-
bearing elements. For quality assurance during manufacture, shape and size are 
partly controlled by physical reference gauges but increasingly also by optical 3D 
measuring systems. During the validation process, deformations and material 
strains are measured and bending lines determined from them. Here 
conventional techniques (wires, strain gauges) are also increasingly replaced by 
optical methods. Fig. 8.60 shows optical deformation measurement during a 
fatigue test. The dynamic blade deformation is recorded by a photogrammetry 
system, using measuring targets on the blade and fixed markers in the hall to 
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define a reference system. Deformation measurements on real wind energy 
systems in situ are discussed in section 8.4.2.2. 

 

Fig. 8.60: Rotor blade during a load test (red: photogrammetric targets) (Fraunhofer IWES).  

– Measurement of wind turbine tripods and rotor blade hubs:  
Checking the flatness and roundness of the base of the turbine tripod (support 
tower) is done directly on site. This helps to ensure that the turbine is assembled 
according to plan. Measurement is by offline photogrammetry using a multi-
image network which provides three-dimensional coordinates of targets attached 
to the surface of the tripod flange. Typical accuracy is around 0.1 mm for a base 
diameter of up to 4.5 m. Fig. 8.61 illustrates the tripod measurement and the 
results from analysis. Fig. 8.62 shows the measurement of offshore tripods which 
have heights of up to 60 m. 

   
Targeting the flange and form analysis of the tripod base showing areas of defects 

Fig. 8.61: Photogrammetric recording of wind turbine tripods (Hexagon).  
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b) Targeting with flange adapters 

 

a) Tripods for offshore wind turbines c) Measurement during production 

Fig. 8.62: Photogrammetric measurement of offshore structures (Hexagon).  

cameras

PIV laserPIV cameras

light sources

active grid

 

Fig. 8.63: Experimental set-up in the turbulence wind tunnel at Oldenburg University (IAPG, 
ForWind).  

– Measurements in wind tunnels:  
Experiments are carried out in wind tunnels to investigate the behaviour of the 
turbine under different wind conditions such as turbulent wind flow, or in 
aerodynamic cases such as fluid-structure interaction. Small-scale wind turbine 
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models are measured in the wind stream using photogrammetric methods and/or 
PIV (see section 6.10.2.4). For realistic investigations, considerably higher 
rotation speeds must be achieved, e.g. a factor 50 compared with a real wind 
turbine, due to the reduced size of the model, e.g. 1:70. Optical 3D acquisition in 
the wind tunnel requires the use of high-speed cameras under very high accuracy 
requirements (approx. 0.5 mm) to avoid negative extrapolation effects. Fig. 8.62 
shows a typical test setup in the wind tunnel. In this example, photogrammetric 
measurement methods and PIV are combined. Turbulent wind streams are 
created by an active grid to which the cameras are synchronized. From the 
synchronized data available in a common coordinate system, information on 
blade deformations and aerodynamics of the rotating system can be derived. 

... Particle accelerators  
The photogrammetric measurement of detectors in a particle accelerator at CERN is 
an example of large object measurement requiring very high accuracy. Fig. 8.64a 
shows a sub-detector in the ATLAS experiment, part of the LHC (Large Hadron 
Collider), which has a diameter of 27 m. The detector has 12 sectors, each with 22 
chambers and each marked with four targets. The objective of the measurement is the 
installation and determination of position of the chambers in the sub-detector 
system, as well as the alignment of the sub detector in the accelerator’s global 
coordinate system. 

  
a) Sub-detector (diameter 27 m) b) Photogrammetric analysis 

Fig. 8.64: Sub-detector of particle accelerator LHC (CERN).  

The photogrammetric task encompasses the recording of around 1200 object points 
using approximately 1000 images (Nikon D2XS, f = 17 mm und 24 mm)  which ensures 
coverage of areas which are difficult to access. In addition, measurements with a total 
station provide scale information to an accuracy of around 0.3 mm, and enable the 
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transformation of the photogrammetric data into the global coordinate system with 
an accuracy of around 0.5 mm. At average scales of 1:250–1:350, analysis with the 
AICON 3D Studio software provides an object coordinate precision of 0.022 mm in XY 
and 0.065 mm in Z (1-sigma RMS). Fig. 8.64b shows measured object points from part 
of the photogrammetric analysis. The absolute necessity for automatic outlier 
detection should be noted. Without this feature, a project like this, with some 89 000 
observations and 9400 unknowns, could not be processed successfully. 

.. Aerospace industry  

Photogrammetric applications in the aerospace industry are distinguished by 
extremely high accuracy specifications for very large objects. Typical specifications 
for relative accuracies are between 1:100 000 and 1:250 000 or more. Example 
application areas of manual and automated industrial photogrammetry include: 
– measurement of parabolic antennas; 
– measurement of large tooling jigs and mechanical gauges; 
– production control of large components and assembly interfaces; 
– completeness checks of assembled parts; 
– space simulations. 

... Inspection of tooling jigs 
For the inspection of large tooling jigs in the aircraft industry, accuracy is typically 
specified to about 0.1 mm for object sizes up to 75 m (length of aircraft), i.e. a relative 
accuracy of up to 1:750 000 is required. This task can only be solved using highly 
redundant, multi-image networks or laser tracker measurements. Fig. 8.65a shows an 
older application of photogrammetric measurement using the Rollei LFC and GSI 
CRC-1 large-format analogue cameras (see section 1.4). Fig. 8.65b shows a similar task 
where the GSI INCA digital metric camera has been used. 

Verifying the achieved accuracy is problematic in measuring tasks of these 
dimensions. Reference scale bars longer than 3 m are difficult to handle in practice 
and significant effort is required to provide reference coordinates (see section 7.2.3). 
If time permits, laser trackers commonly offer a solution for reference measurement. 
However, with these systems target measurement is sequential and this option is 
expensive in terms of system and manpower resources. There is a further need for 
targeting which is measurable by both systems in order to connect their 
measurements together.  
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a) Periodic checking of a tooling jig using Rollei 
LFC and GSI CRC-1 film cameras 

b) Measurement of A380 fuselage interface with 
GSI INCA digital metric camera 

Fig. 8.65: Photogrammetric measurement of aircraft jigs and components (Airbus).  

... Production control 
Fig. 6.34 shows the application of online photogrammetry to process control in 
aircraft manufacture. Here two cameras are mounted on an unstable platform, i.e. 
their relative orientation is not constant. However, the exterior orientation is 
continuously updated by measurement of coded targets in fixed locations around the 
aircraft door, which is the component being measured. Simultaneous measurement 
of a manually placed touch probe at critical points around the door provides the 3D 
coordinates of the touch point in the same coordinate system. The achievable 
measurement accuracy is 10 μm + 10 μm/m. 

... Visual checking 
Fig. 8.66 shows an example of digitally supported visual checking in the aircraft 
industry. The CAD model of a part to be attached during assembly is projected onto 
the attachment location for a visual check that it is mounted in the right or wrong 
position, or warn if it is missing. A fringe projection system coupled with a projection 
device is used to make the correct geometric connection between the actual situation 
and the stored CAD models of parts to be checked (see also section 6.12.3). 
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Fig. 8.66: Visual conformance check in the aircraft industry (Premium AEROTEC)  
left: mounting ok; middle: erroneous position; right: missing part. 

... Antenna measurement 
For the measurement of parabolic antennas and mirror telescopes, the shape of a 
hyperbolic surface must be checked. Antenna sizes range from 1 m to over 100 m. 
Applications cover a spectrum which includes size and shape control under varying 
thermal loads and the adjustment of large mirrors to the correct form. Typically, the 
objects can only be measured from one side and the imaging configuration is 
designed so that every object point can be measured from as many convergent images 
as possible (see Fig. 7.6). The configuration is chosen to provide a homogeneous 
accuracy along all three coordinate axes. Retro-reflective targets are used to mark the 
object surface (Fig. 8.67). The size of the object, and access restrictions, typically 
demand the use of hydraulic lifting platforms (Fig. 8.68) which prevents the use of 
alternative techniques such as laser tracker measurement. 

  

Fig. 8.67: Targeted parabolic reflector (GDV, Vertex 
Antennentechnik). 

Fig. 8.68: Image acquisition from 
hydraulic platform (GDV, Vertex 
Antennentechnik). 
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The APEX telescope on the Chajnantor Plateau in the Chilean Andes (Fig. 8.67) 
provides a good example of the capabilities of photogrammetric measurement. Due 
to its position at 5100 m above sea level, only a limited time is available for 
measurement. The task is to measure the entire mirror surface (diameter 12 m) with a 
specified accuracy of 0.05 mm, in order to make adjustments to the component 
mirrors. Around 170 images are recorded using an INCA camera and evaluated using 
V-STARS (GSI). Measurement at approximately 1300 points determines the influence 
of gravity on the shape of the antenna in different positions. Measurement accuracy 
in object space is 10 µm (RMS 1-sigma). 

  
a) Imaging task in a thermal vacuum chamber b) Results of shape analysis 

Fig. 8.69: Measurement of a parabolic antenna in a space simulation chamber (GDV, IABG).  

If parabolic antennas are deployed in space, they are subject to extreme 
environmental conditions which can be re-created in a simulation chamber (Fig. 
8.69a). Here antennas up to 4 m in diameter are exposed to temperatures between  
–120° C and +150° C. Either the camera or the antenna can be moved on a circular 
path in order to create the regular multi-image network. Deformation analyses can 
then be derived from the measured object coordinates. Measurement accuracy is in 
the range 10–20 µm (1-sigma RMS). 

.. Car industry 

Three-dimensional measurement technology has, for some time, been one of the most 
important tools for quality control in the car industry. Mechanically probing 
coordinate measuring machines (CMMs) are mainly used for the high-precision 
measurement (1–10 µm) of small components. In contrast, optical 3D measuring 
methods, with typical accuracies of 0.05 to 0.2 mm, are mostly applied where an 
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object cannot be transported to a stationary measuring system, cannot be probed 
mechanically or a very large number of object points must be measured within a short 
time. Here is a selection of areas where photogrammetry can be applied: 
– production control (shape and size);  
– installation of production cells and assembly facilities; 
– robot control;  
– surface measurement of design models (reverse engineering); 
– car body measurement in a wind tunnel; 
– deformation measurement in torsion and car safety tests; 
– inspection of parts from third party suppliers (see windscreen measuring system, 

Fig. 6.46); 
– driver assistance systems; 
– control of production machines (e.g. brake pipes, Fig. 6.42). 

Measuring systems in production environments today almost exclusively utilize 
digital cameras, on or off line, in order to handle the necessary high data flows. In 
addition to the actual optical 3D measurement, these systems generally also provide 
data interfaces to CAD or CAM systems. 

... Rapid prototyping and reverse engineering 
Prototypes are designed and manufactured prior to series production. If the 
corresponding parts contain free-form contours or surfaces, then the conventional 
generation of production data, e.g. for milling machines, is a costly and normally 
iterative process. Rapid prototyping methods can lead to much faster manufacturing 
of prototypes. The measuring task is essentially the complete 3D acquisition of the 
model in order to derive machine control data (reverse engineering).  

Both single point and surface measurement systems are employed. They are 
portable, flexible and can be taken directly to the object. Since it is costly and time-
consuming to place targets, it is common here to use online systems with manual 
touch probing (target adapters and touch probes, see also section 6.5). For surface 
measurement, area-based systems are used. Where large surfaces must be covered, 
additional photogrammetrically measured reference points are used to register 
individual scans (see Fig. 6.55 and Fig. 6.87).  

Fig. 8.70 shows the photogrammetric measurement of local reference points 
placed on a car body. These are used to connect together individual surface point 
clouds generated by a fringe projection system. The final 3D model can be used for a 
variety of test and design tasks.   
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a) Photogrammetric reference point 
measurement 

b) Surface scan by fringe projection 

  
c) Reference points and individual surface scans d) Complete model from merged individual scans 

Fig. 8.70: 3D modelling of a car body (Zeiss).  

... Car safety tests  
In car safety tests (crash tests), photogrammetric evaluation of high-speed video is 
one of the tools used to the detailed displacements and changes in the car and 
dummies which represent the passengers (compare with section 3.5.3). 

Typical investigations in car safety testing include: 
– positioning of dummies; 
– front and side crashes;  
– protection of pedestrians;  
– deformation analyses (engine compartment, roof and window structures, 

footwells). 

Fig. 8.71 illustrates the Humanetics DPS (Dummy Positioning System), used for 
automated measurement of the pose (6DOF) at relevant points on the body of a crash 
test dummy. The system is based on AICON’s MoveInspect system (section 3.5.3). 
Deviations from nominal positions are displayed in real-time. Further relevant 
features can be added subsequently using a manual touch probe.  
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Fig. 8.71: Real-time dummy positioning (Humanetics).  

Here imaging configurations can be classified into two types (Fig. 8.72): 
– fixed camera(s) outside the car (A);  
– moving camera(s) installed inside the car (B).  

A

B

 

Fig. 8.72: Imaging configurations in car crash tests. 

In the case of fixed cameras, interior and exterior orientations remain constant. The 
object coordinate system can be defined on the car or outside it, for example in one 
of the cameras. If the cameras are attached to the car, then they are exposed to high 
accelerations and their orientation parameters may change. These can then only be 
determined by the simultaneous measurement of fixed reference points. 

To determine lateral displacements, image sequences are evaluated by 2D image 
analysis. To determine three-dimensional displacements and deformations, full 
photogrammetric techniques are employed. In crash tests, a typical accuracy is in the 
range 1–5 mm. 
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t = –15 ms 

 
t = 10 ms 

 
t = 0 ms 

 
t = 33 ms 

Fig. 8.73: Stereo image sequence of a head-impact test (Volkswagen).  

 t = –20 ms  t = 4 ms 

Fig. 8.74: Animated trajectory with overlay of acceleration vector (Volkswagen). 

Fig. 8.73 shows extracts from an image sequence used for head-impact tests. They 
were made using a NAC HiDcam with a stereo mirror attachment (see section 3.5.3, 
Fig. 3.124). The objective is to measure the penetration depth of the head impact on 
the bonnet (hood). Trajectories and orientations of the impacting head can be 
determined in a global coordinate system from the sets of photogrammetrically 
measured 3D points, as illustrated in Fig. 8.74. By a combination of 3D image 
sequence analysis and electronic sensor technology, the forces and accelerations in 
pedestrian safety and frontal crash tests can be visualised. 

... Car body deformations  
To evaluate the effects of dynamic and thermal loading, car parts or entire cars are 
measured photogrammetrically point-by-point. If the individual deformation states 
are quasi static and so remain unchanged over a short period of time, e.g. before and 
after testing in a climate chamber, then the target points can be measured by a multi-
image network using the offline photogrammetric method. 
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Fig. 8.75 shows the measurement of a car door used for deformation analysis in a 
climate chamber. The surface is marked with targets whose movement is shown, in 
this example, at a temperature of 80° C. The door is attached to a stable fixture which 
is marked with coded targets to establish a stable reference coordinate system. The 
accuracy is reported to be around 0.02 mm in object space. 

  
a) Metric image with targets  b) Measured deformations 

Fig. 8.75: Photogrammetric part testing in a climate chamber (GOM).  

.. Ship building industry 

Photogrammetric tasks in shipbuilding include the following: 
– measurement of steel plates and their orientation on metal cutting machines;  
– measurement of ship sections;  
– measurement of windows, hull and fittings;  
– surface inspection of hulls. 

Metrology applications in the ship building industry are characterized by: 
– measurement of large objects (>10 m); 
– restricted access; 
– vibrations and disadvantageous environmental conditions. 

An example of photogrammetric measurement in shipbuilding is the determination 
of shrinkage in the welding of large steel parts. For typical component sizes of 10–12 
m, shrinkage during welding can amount to several mm and is taken into account in 
the construction plan. Fig. 8.76 illustrates the process. 

Further typical applications are photogrammetric form measurement of hulls, 
and fixtures such as railings and windows. In addition to photogrammetric methods, 
geodetic techniques and laser tracker measurements are also applied. 
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a) Steel part  b) Targeting  

 

5m

3m

outer skin

 
c) Image acquisition from a crane d) Imaging configuration 

Fig. 8.76: Photogrammetric acquisition of welding shrinkage (Hexagon).  

. Underwater photogrammetry 

The use of photogrammetric measurement methods in or through the medium of 
water entails a number of additional challenges:  
– accounting for refraction, which is dependent on temperature and salinity, by 

suitable mathematical modelling of the optical path (see section 4.6); 
– degradation of optical image quality due to turbidity and the associated 

transmission and absorption properties; 
– any necessary artificial lighting; 
– waterproof housing corresponding to the required diving depth (pressure); 
– limited (wireless) data communication under water. 

.. Measurement of water and other fluid surfaces  

The measurement of water surfaces, especially waves, is an important precondition 
for determining the properties of river and tidal currents, ship resistance and other 
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hydro-mechanical parameters. Due to the reflective and transparent characteristics 
of water, a normal photogrammetric measurement is practical only if the water 
surface can be made visible with floating particles. However, the pollution this causes 
is normally undesirable, and the particles can also disturb the fluid properties. As an 
alternative, the position and normal vector at a particular location on the surface can 
be calculated from the distorted image of a three-dimensional point field under the 
water surface (example in Fig. 3.4). However, this solution only works for clear water 
and low wave amplitudes. 

reference
plane

α α

laser plane

camera

water level

V

H
n

  
a) Measurement principle b) 3D reconstruction 

Fig. 8.77: Photogrammetric wave measurement (IPF TU Dresden).  

Alternatively, Fig. 8.77a illustrates the side view of a photogrammetric set-up where 
a laser plane is projected at an angle onto the water surface where it is reflected onto 
two separated projection planes. The front plane (V), nearest to the laser projector, 
has vertical slits through which the laser plane is projected onto the back plane (H). 
A camera photographs the projected pattern which is detected in the image and 
measured to sub-pixel resolution. 

Fig. 8.78 shows images for a calm water surface and a moving water surface. The 
intersections of the reflected laser plane with the slits on the front projection plane 
correspond to the laser points on the back plane. By connecting corresponding points 
from front and back plane, a vector is defined which can be intersected with the 
projected laser plane (see solid lines in Fig. 8.77a). If the geometric configuration of 
the components is known, including a reference water level (from calibration), the 
coordinate of points on the water surface can be calculated. If the law of reflection 
(illustrated by angle α on the reference surface in Fig. 8.77b) is taken into account, 
the normal vector n can also be calculated (blue vector). Fig. 8.77b shows the 
interpolated 3D water surface from an image sequence taken at 25 fps. An accuracy of 
around 1/10 mm was demonstrated empirically. 
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Fig. 8.78: Camera images of a calm surface (left) and with waves (right) (IPF TU Dresden).  

.. Underwater measurement of welds 

A continuing growth in offshore construction such as wind farms, as well as 
expanding port and harbour development, naturally leads to increasing demands for 
welding inspection and checking, particularly underwater. Current visual inspection 
by divers is increasingly supported by sensor technologies. Subjective visual 
inspection is being usefully supplemented by (autonomous) optical 3D measurement 
tools which will increasingly be adopted in the future. In addition to the general 
challenges described above, particular problems include:  
– resolution of surface point clouds to less than 0.05 mm; 
– local accuracy of the order of 0.05 mm; 
– weld seam widths between 5 mm and 200 mm; 
– small systems to measure complex object shapes; 
– restricted depth of field with macro imagery; 
– suitable lighting and reduction of reflective hot spots at inhomogeneous 

surfaces; 

Fig. 8.79 shows a monocular system consisting of an industrial camera in an 
underwater housing with dome port, LED strip illumination and a stationary 
reference frame which is magnetically attached to the weld. By moving the camera, 
several camera positions in space can be oriented by bundle adjustment. Previously 
determined distances on the reference frame, and the previously calibrated 
parameters of the interior orientation of the optical system, are introduced as 
constraints. 
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a) Reference frame above weld b) Prototype on linear slide  

Fig. 8.79: Inspection system for weld seams (IAPG).  

The point cloud of the weld seam surface can be calculated by spatial intersections 
from at least two corresponding image points, which can be determined beforehand 
by area-based image matching, e.g. LSM (section 5.5.3.5). Local point clouds of partial 
sections of the seam can then be registered globally using ICP procedures (section 
6.9.6.2) to generate a complete surface model. The accuracy and completeness of the 
point cloud as well as the required computing time differ depending on the number 
and configuration of the available images, the surface texture and the available 
reference points.  

Fig. 8.80b shows an example of a reconstructed point cloud and the deviations 
(cloud-to-cloud) against a reference measurement of a 3D fringe projection system. 
The currently achievable average accuracy, in clear water and laboratory conditions, 
is approx. 0.05 mm and decreases to approx. 0.11 mm in artificially created, heavily 
turbid water (approx. 140 mm visibility). The measured 3D data can then be processed 
in such a way that geometries relevant to analysis, such as the “throat” parameter, 
can be derived automatically. 

  
a) Textured model with extracted profile lines b) Deviations against reference (cloud-to-cloud) 

Fig. 8.80: 3D reconstruction of a weld (IAPG).  
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.. Underwater photogrammetry of the Costa Concordia shipwreck 

A combination of close-range photogrammetry techniques, under and above the 
water, was used to document and digitally reconstruct the 3D shape of the damaged 
hull of the Italian cruise ship, Costa Concordia. The vessel partially sank off the coast 
of Giglio Island in Italy in 2012, coming to rest on her starboard side at an inclination 
of about 70 degrees to the vertical (Fig. 8.81). The technical investigation of the 
accident required a special surveying procedure of the damaged part, partially 
submerged, in a seamless solution including both the underwater and above-water 
parts. The photogrammetric survey, carried out in June 2012, was designed to provide 
a metric documentation to sub-centimetre accuracy and resolution when surveying 
the main leak and smaller cracks in the hulls.  

 

Fig. 8.81: The Costa Concordia resting on her starboard side at the main harbour of Giglio island, 
Italy (FBK Trento, Uniparthenope, Naples).  

An area of damage was surveyed which was 60m long and extended about 6m and 
4 m below the sea surface. A Nikon D300 with a 35 mm lens was used above water. for 
Fhe underwater survey, a camera with a 24 mm lens in a waterproof dome-port 
housing with flash was used. The recording configuration consisted of two separate 
blocks above and below water, each containing several strips of parallel and 
convergent images. Due to the shipwreck position, no control points could be 
measured. To define the scale, and to link the recorded measurement blocks above 
and below water, three 2 m scale bars and five 3 m rods were attached to the hull in 
such a way that they were partially submerged to link the two 3D models obtained 
from photogrammetry (SfM). Each rod consisted of three plates each with four coded 
targets whose 3D coordinates were accurately measured beforehand by 
photogrammetry (Fig. 8.82). In addition, about 500 circular magnetic targets were 
placed on the hull. 
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Fig. 8.82: A linking rod as seen in a picture taken above (left) and below (right) the water (FBK 
Trento, Uniparthenope, Naples).  

Seven local 3D models were created (five plates plus two image bundles above and 
below water) and were registered via a best-fit similarity transformation. An RMS of 
the spatial residuals between the models of 1.4 mm, with a maximum absolute value 
of 3.7 mm, were achieved. The transformation parameters produced a seamless 3D 
model with a resolution better than 5 mm (Fig. 8.83). 

 

Fig. 8.83: 3D mesh models of the damaged hull of the Costa Concordia obtained using close-range 
and underwater photogrammetry techniques (FBK Trento, Uniparthenope, Naples).  

. Medicine 

In medicine, photogrammetry is mainly used to measure parts of the body, for 
example: 
– to prepare and carry out operations (surgical instrument navigation, inserting 

implants, cutting, drilling and operational access); 
– to construct prostheses and implants; 
– in plastic surgery; 
– in the therapy for bone and spinal deformations; 
– in motion studies; 
– to monitor growth.  
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Photogrammetric solutions are applied in many areas of medicine such as 
orthopaedics, neurosurgery, dentistry and sports medicine. 

.. Surface measurement  

Medical surface measurements are mostly characterized by: 
– the measurement of unstructured, soft, free-form surfaces; 
– the recording of subjects which are moving or not static;  
– the absence of permanent reference points on the subject.  

Poorly textured, free-form surfaces must be given an artificial structure, e.g. by fringe 
or pattern projection (see section 6.7.3). Stereoscopic and multiple-image 
configurations can be chosen for surface measurement. In all cases image 
measurement must be synchronized to handle movement of the subject.  

Fig. 8.84 shows the schematic measurement of a human head from five images. 
The Face Shape Maxi5 3D system (Polishape 3D) was used for photogrammetric 
processing. This has a reported accuracy around 0.4 mm, which is considered 
sufficient for the flexible surface of the human body. Such 3D models can be used to 
plan operations for plastic surgery, to establish databases of the human face or for 
biometric face recognition. A similar approach is taken for other body parts. 

  
a) Schematic imaging configuration  b) Calculated 3D model 

Fig. 8.84: Face reconstruction by multi-image photogrammetry (from Deli et al. 2013). 

Features of the photogrammetric process are: 
– non-contact measurement avoiding stress to the patient; 
– short measurement time (tenths of a second); 
– no radiation exposure; 
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– suitable also for infants and children; 
– status documentation at a given time; 
– subsequent measurement and diagnostic comparisons over time. 

.. Online navigation systems 

Medicine increasingly uses digital, photogrammetric, online measuring systems with 
contact probing. Typically, the imaging unit is two cameras fixed a mobile housing.  

Fig. 8.85 shows examples of such dual camera, online systems with point-by-
point tactile probing. These can not only use target adapters with probing tips (see 
section 6.2.2.2), but also the actual tools used in operations, if equipped with suitable 
targets (Fig. 8.86). They are a critical component in image-based planning and 
execution of operations (image guided surgery, IGS) where a spatial relationship 
between patient and surgical instrument must be established. In medicine this 
process is known as navigation.  

  
a) Projection and measurement of a laser 
point (BrainLab)  

b) Online system for use in operation hall (Aesculap)  

Fig. 8.85: Dual-camera systems for medical applications. 

The key problem for navigation is the unstable position of the patient during the 
operation. For this reason, local reference target arrays (locators) are attached to the 
patient whose potential motion can then be continuously monitored by the 
navigation system. The spatial position of surgical tools or predefined operation data, 
e.g. related computer tomograms (CT), can be transformed into the coordinate system 
of the locator. Fig. 8.86b shows an example where a locator fixed to a bone is 
measured, together with a moving locator mounted on a surgical robot. In this way it 
is possible to compensate for any motion of the head. Furthermore, there are 
reference points (landmarks) at the head that also allow spatial reference to a CT. 
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a) Multi-function locator (Aesculap, AXIOS 3D) b) Surgical robot for cochlea implantation 

(Cascination)  

Fig. 8.86: Surgical tools with spatial reference points. 

Accuracy requirements for navigation systems depend on application and range from 
around 0.05 mm for cochlea implantation, 0.2-0.5 mm for spinal surgery, around 0.5-
1 mm for implanting knee and hip joints and up to 2 mm or so in brain surgery. Since 
the medical operation requires stereo-tracking cameras to be located some distance 
away, resulting in height-to-base ratios of 6:1 or greater, the accuracy requirements 
for the camera measurement technology are very high. These applications require 
measurement frequencies of 10 to 100 3D measurements per second, with up to 20 
points or more simultaneously measured or tracked in 3D space. Motion analysis 
requires significantly lower accuracies but much higher measurement frequencies 
(section 6.10.3). 

   

Fig. 8.87: Implementation plan for inserting a hip joint (Plus Orthopedics).  

Photogrammetric navigation systems are also employed for pre-operative planning 
which is usually derived from CT images. Fig. 8.87 shows an example of the planned 
insertion of a CAD-designed hip joint in a CT image. Using anatomical landmarks, the 
transformation between CT and real bone can be generated during the operation. 
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. Miscellaneous applications 

.. Forensic applications 

Forensic photogrammetry covers applications such as:  
– traffic accident recording; 
– recording and reconstruction of aircraft crashes; 
– scene-of-crime measurement; 
– estimating the height of criminals; 
– reconstructing bullet trajectories; 
– object reconstruction from amateur images; 
– body scanning of the living and the deceased; 
– detecting environmental pollution from aerial images. 

... Accident recording 
Accident recordings are usually carried out by means of laser scanning, and only now 
in rare cases with photogrammetry. Laser scanning and photogrammetry, also with 
the use of UAVs, can also be combined here. Since control points cannot usually be 
provided, the results are given in a local coordinate system. Results can be output as 
scaled plans, CAD drawings, visibility studies or coordinates of the accident site. In 
many European countries, photogrammetric measurements are accepted as valid 
evidence in criminal trials and legal disputes. 

A typical measurement situation at an accident site is shown in Fig. 8.88. The 
accident scene was recorded with a 7 Megapixel amateur camera, the Olympus 
C7070WZ. The area covered by the camera network and object points have an extent 
of 80 m and maximum height variation of only 2 m. Imaging restrictions on site lead 
to largely horizontal and narrow ray intersections which demand particularly robust 
image orientation methods. The iWitness software (Photometrix) was used to orient 
the network of 22 images and produce drawings and CAD models. Accuracy in object 
space was around 3 cm. 

In addition to surveying the accident site, issues such as the driver's perspectives 
are also relevant, Analysing these may require other optical 3D measurement 
methods, such as fringe projection systems (section 6.7.3) and hand-held scanners 
(section 6.9.7). Fig. 8.89 shows visibility analyses for a truck driver. Based on the 3D 
documentation of the truck, as well as measurements relating to the driver, the 
visibility range and the visibility ratio of the driver before turning (e.g. right in EU, 
left in UK) can be calculated. In particular, the mirrors (plane or curved) must be 
modelled with high precision here in order to be able to simulate a correct rear view. 
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a) Sample measurement images  

  
b) Imaging configuration c) Derived CAD model 

Fig. 8.88: Photogrammetric accident recording (Photometrix).  

  
a) Visibility range of the truck driver b) Visibility before turning right 

Fig. 8.89: Visibility analyses (3D Center Zürich).  

... Scene-of-crime recording  
The photogrammetric surveying of crime scenes is often now part of the process of 
securing evidence as it as it enables the scent to be recorded and documented to high 
accuracy without alterning the surrounding situation. 
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Fig. 8.90 shows the result of a scene-of-crime reconstruction with full modelling 
of the local scene (a), overlay of CAD model and photo detail (b), blood spray 
trajectories (c) and the possible locations of the individuals involved (d). The scene in 
this case was recorded using a Nikon D700 digital camera. Elcovision 10 (PMS) and 
AutoCAD (Autodesk) were used for photogrammetric analysis and modelling. 
Measurement accuracy was in the mm region. 

  
a) Measurement image from crime scene b) 3D model with image detail overlay 

  
c) Reconstructed blood spray trajectories d) Reconstructed positions of attacker and 

victim 

Fig. 8.90: Photogrammetric crime record (Institut für Rechtsmedizin, University of Bern).  

Fig. 8.91a shows a location surveyed with laser scanning, which was processed and 
meshed using various software packages. With the involvement of experts from other 
disciplines, such as ballistics and forensic pathology, the event can then be 
reconstructed (Fig. 8.91b). The achievable accuracy of approx. 3 mm is usually 
sufficient for forensic 3D reconstructions. In cases where higher accuracy is required, 
individual details can additionally be documented using more precise methods. 
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a) Laser scan of a crime scene b) Reconstruction of a dynamic event 

Fig. 8.91: Example of a crime reconstruction (3D Center Zürich).  

... Anthropological analyses 
Photogrammetric 3D data is also used in forensic anthropology. One approach is 
facial or whole-body documentation using a multi-camera system. This data can be 
used for a biometrical comparison of body dimensions, especially height, against 
video surveillance footage of crime suspects. Fig. 8.92a shows the generation of a 
whole-body model using 70 simultaneously triggered cameras. Fig. 8.92b shows the 
comparison of the reconstructed 3D body dimensions with a distortion-free computed 
surveillance video using a 3D laser scan of the environment visible in the video. This 
procedure does not identify suspects but can exclude them. Facial measurements can 
be used to compare identifying anthropological features. 

  
a) Full-body model b) Comparison with surveillance video 

Fig. 8.92: Perpetrator reconstruction (3D Center Zürich).  

.. Scientific applications  

Close-range photogrammetry can be advantageously applied in many scientific 
applications such as: 
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– recording physical phenomena;  
– reconstructing biological processes, e.g. plant and animal growth and form;  
– monitoring and modelling events for the earth sciences, e.g. landslides; 
– static and dynamic measurement of glaciers;  
– etc. 

... Monitoring glacier movements  
Another example of using photogrammetric analyses of image sequences is in 
monitoring glacier movements. The Jakobshavn Isbrae Glacier on the west coast of 
Greenland had, for many years, a constant speed of 20 m per day, but in more recent 
years this has increased to 40 m per day, combined with a dramatic retreat of the 
glacier front. Photogrammetric measurement campaigns were carried out in 2004, 
2007 and 2010 with the objective of determining the glacier’s spatial and temporal 
movement patterns using a sequence of terrestrial images taken with a digital camera 
from a hill. 

  
a) Camera in position b) Example of a measurement image 

Fig. 8.93: Photogrammetric recording of glacier movement (IPF TU Dresden).  

The intention is to determine two-dimensional movement vectors showing the glacier 
movement in the direction of flow, as well as movements in a vertical direction which 
are induced by tidal effects. The recorded data was a monocular sequence of images 
made with a digital SLR camera. Images were taken at 30-minute intervals over a 
period of 12–36 hours. Scale was introduced with the aid of a hybrid geodetic and 
photogrammetric network. The application of correlation techniques enabled 
movement and trajectory vectors to be determined with a standard deviation of 
around 0.1–0.2 % of the trajectory length over a whole day. Accuracy was mainly 
limited by the difficult topography presented by the glacier surface and the effect of 
shadows. 
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Fig. 8.93 shows the camera in position and one of the images. The height changes 
over a 24-hour period at a point on the glacier near the glacier front, as calculated 
from the image sequence, are shown in Fig. 8.94. Here the glacier movement shows 
an almost perfect correlation with the tidal curve. This proves that the glacier front is 
floating on the fjord. The tidal influence fades away about 1 km behind the front. From 
this the position of the grounding line can be determined (Fig. 8.95). The results of 
this terrestrial photogrammetric measurement form the basis of glaciological studies 
of the Jakobshavn Isbrae Glacier. 

 

Fig. 8.94: Calculated height changes at a glacier location over 24 hours (upper diagram) and 
corresponding tidal curve (lower diagram) (IPF TU Dresden). 

 

Fig. 8.95: Participation of the vertical glacier movement component with the tidal range (IPG/IPF TU 
Dresden).  

... Earth sciences  
Recording and quantifying processes relevant to the earth sciences demands precise 
measurement methods. Digital photogrammetry is applied to a wide range of projects 
at both close and long ranges. Often surfaces must be modelled in order to compare 
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them at different epochs. This may require the comparison of parameters such as 
roughness of the ground surface or an absolute comparison in order to quantify 
erosion and rates of material loss. 

For example, photogrammetric methods can be used to monitor changes in 
ground surface or the evolution of rill network development due to rain. This can 
either be natural rain or rain simulated in a laboratory. In lab tests, ground samples 
with an extent of 1 x 2 m2 up to 3.7 x 14.4 m2 are measured photogrammetrically on a 
grid with 3 x 3 mm2 resolution. For erosion research, comparison of surfaces at 
different epochs enables conclusions to be made concerning the change in surface 
roughness and the development and structure of drainage channels. Digital height 
models can be made in GIS software. Modelling such large areas to millimetre 
resolution places high demands on the design of the measurement network. 

1.5 m

7 m

 

1

2

3

4

5

 

 

 

b

1 m

stereo imaging area

h

 
a) Artificial rain generation and location of earth sample b) Imaging configuration 

Fig. 8.96: Schematic arrangement of a rainfall test (University of Bern).  

Fig. 8.96a shows the schematic arrangement of a rainfall test in the lab. Water drops 
(1) are formed on the end of capillary tubes from where they drop 1.5 m onto a net (2) 
in order to create a wider spectrum of drops. The drop from net to the upper edge of 
the sample box is approximately 6 m. This ensures that the drops reach a velocity 
corresponding to natural rainfall. The sample box (3) in this test has an area of 1 x 2 
m2 and is filled with a sample of earth or soil to be tested. Positioning struts (4) can be 
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used to alter the tilt of the box. The surface water runoff is drained away at the lower 
end of the box (5). Sediment and water samples are taken here. The surface of the 
sample is recorded from two camera positions (Fig. 8.96b). The principal points of the 
cameras are displaced using lenses with fixed shift (see section 3.4.3.6) in order to 
obtain as large an area of stereo coverage as possible. 

Fig. 8.97 shows the surface of the test sample before artificial rain (a), after 20 
minutes of simulated rainfall (b) and after 65 minutes (c). It can be see that after 20 
minutes the surface runoff has created a drainage pattern which becomes more 
established with increasing length of rainfall. Natural interaction makes the drainage 
pattern more efficient with time. 

   
a) Before raining b) After 20 min c) After 65 min 

Fig. 8.97: Photogrammetrically generated height model and drainage pattern (University of Bern).  

... Entomology  
Insects are particularly challenging objects for photogrammetry due to their small 
size, detailed structures and often “optically uncooperative” surfaces which might be 
reflective, semi-transparent or covered in fine hairs. On the other hand, insects often 
provide dense surface textures, are easy to handle and can be viewed from all sides if 
suitably mounted. Structure-from-motion can then be used for largely automated 
modelling (SfM, section 5.5.2.2).  

A specific problem to be solved when examining insects is the small depth of field 
available in the camera’s macro range. Focus stacking offers a solution in which the 
camera is moved towards or away from the sample to acquire one focussed plane after 
the other. Subsequently, image regions of best sharpness are combined to a final 
image with extended depth of field. 
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Fig. 8.98: The Darmstadt Insect Scanner (Hochschule Darmstadt / TU Darmstadt).  

An important application of 3D modelling by photogrammetry is the exact geometric 
recording of insect dimensions. Compared with conventional measurement by 
microscope, this has advantages in easier and more secure handling of the specimens 
and the digital archiving of results. In addition, physiologically important shape 
parameters such as volume and surface form can be determined reliably only from 3D 
models. 

Fig. 8.98a shows the “Darmstadt Insect Scanner DISC3D” (Hochschule 
Darmstadt, TU Darmstadt). The insect is placed on a rotating and tilting mount within 
two spherical half-shells that provide uniform illumination according to the principle 
of the integrating sphere (Ulbricht sphere which creates diffuse light). A total of 
approx. 400 poses are imaged, which provides all-around recording of the insect. Fig. 
8.98b shows the 3D model of a scanned insect (black-spotted pincer beetle, Rhagium 
mordax), which was created using Agisoft Metashape software. The pixel resolution 
on the object is approx. 5-10 µm. 

... Measurement of a soap bubble  
For a record attempt to create the largest free-flying soap bubble in the world, it was 
required to measure its volume by photogrammetry. Three PCO DIMAX high-speed 
cameras (Fig. 3.121a) recorded three orthogonal views of the object in synchronized 
image sequences (example in Fig. 8.99a). Calibration and orientation were calculated 
on site by means of a field of reference points measured in advance by offline 
photogrammetry. The images taken at the instant of maximum bubble size were 
rectified onto best-fit planes which were defined by contour points around the bubble 
(Fig. 8.99b,c). Within these rectifications, sections separated by small increments 
were defined and corresponding elliptical areas computed for them. In this way. the 
bubble’s total volume of 13.9 m³ was calculated by integration of the individual ellipse 
areas (Fig. 8.99d). By comparative measurement of reference bodies of known 
volume, the accuracy was estimated to about 10 % of the bubble’s volume.  

  
a) Set-up b) 3D model of an insect  
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a) Original front view 

 

d) Sections from side view  

 

b) Rectified side view  

 

c) Rectified top view  

Fig. 8.99: 3D measurement of a soap bubble (IAPG).  
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RGBD red, green, blue, distance 
RMS root mean square 
RMSE root mean square error 
RP resolving power 
RPAS remotely piloted aircraft system 
RPV remotely piloted vehicle 
RTI reflectance transformation imaging 
SAD sum of absolute differences 
sCMOS scientific CMOS 
SfM structure from motion 
SGM semi-global matching 
SIFT scale invariant feature transform 
SLR single lens reflex (camera) 
SMR spherically mounted retro-reflector 
SNR signal-to-noise ratio 
SPIE The International Society for Optics and Photonics; originally founded as the Society of 

Photographic Instrumentation Engineers 
SSD  sum of squared differences 
STL stereo lithography 
SURF speed-up robust features 
SUSAN smallest univalue segment assimilating nucleus 
SURF speed-up robust features 
SUSAN smallest univalue segment assimilating nucleus 
SVD single value decomposition 
SWIR short-wave infrared 



  Abbreviations 

  

TIFF tagged image file format 
TLS terrestrial laser scanning 
TOF time-of-flight 
UAS unmanned aerial system 
UAV unmanned aerial vehicle (also: unpiloted aerial vehicle) 
USB universal serial bus 
UTM universal transverse Mercator (projection) 
UV ultraviolet 
VDE Verband der Elektrotechnik, Elektronik, Informationstechnik e.V. 
VDI Verband Deutscher Ingenieure e.V. 
VLL vertical line locus 
VLOS visual line of sight 
VR virtual reality 
VRML virtual reality modelling language 
WFD wave form digitizer 
WiFi wireless fidelity 
WLAN wireless local area network 
WMV Windows media video 
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Image sources  

3D Center Zurich, Switzerland: 8.89, 8.91, 8.92 
Aeroscout GmbH, Hochdorf, Switzerland: 6.104 
Aesculap AG, Tuttlingen, Germany: 8.85b, 8.86a 
Agisoft LLC, St. Petersburg, Russia: 1.48, 6.22 
Airbus Operations GmbH, Hamburg, Germany: 8.65 
Apple Corp., Cupertino, CA, USA: 6.68a 
Artec Europe, Luxembourg: 6.91a 
Atesos, Switzerland: 6.5a 
Austrian Archaeological Institute (Österreichisches Archäologisches Institut), Vienna: 8.23 
Automated Precisions Inc. (API), Rockville, MD, USA: 6.8, 6.16, 6.19, 6.86b 
AWAIBA GmbH, Nürnberg, Germany: 3.112b 
AXIOS 3D Services GmbH, Oldenburg, Germany: 3.127a, 3.156, 4.14, 6.5b, 6.40, 6.45, 7.18, 8.86a 
Bayerische Staatsbibliothek München, Germany: 1.25, ZDB 131403-8; urn:nbn:de:bvb:12-
bsb10256151-0 
Boredom Projects: 6.39 
Boston Dynamics, Waltham, USA: 6.103d 
BrainLAB AG, Heimstetten, Germany: 8.85a 
Carl Zeiss AG (Zeiss, ZI Imaging, Oberkochen, Jena; Steinbichler, GOM), Germany: 1.29, 1.30, 1.33, 
1.35, 1.41, 3.47, 6.37, 6.55, 6.60, 6.65, 6.83, 6.84, 6.86a, 6.87, 8.50, 8.70, 8.75 
Cascination AG, Bern, Switzerland: 8.86b 
CERN, Switzerland: 8.64 (photo: Claudia Marcelloni) 
Cognex Corp., Natick, USA: 6.61 
Creaform, Canada; AMETEK GmbH, Leinfelden-Echterdingen, Germany: 6.36, 6.82, 6.85 
CycloMedia Technology B.V., Waardenburg, Netherlands: 3.139, 3.140 
Dantec Dynamics GmbH, Ulm, Germany: 6.97 
DhochN-Jade Digital Engineering GmbH, Oldenburg, Germany: 8.44 
Dr. Clauß Bild- und Datentechnik GmbH, Zwönitz, Germany: 6.78 
EOS Systems Inc., Vancouver, Canada: 1.47 
Excelitas PCO GmbH, Kehlheim, Germany: 3.91, 3.121a, 3.122 
Faro GmbH, Krefeld, Germany: 6.18 
Fokus GmbH, Leipzig, Germany: 4.29 
Fondazione Bruno Kessler (FBK) Trento, Italy: 8.15, 8.16, 8.17, 8.20, 8.21, 8.22, 8.81, 8.82, 8.83 
ForWind, Universität Hannover, Germany: 8.51, 8.63 
Frankfurt University of Applied Sciences (UAS), Germany: 8.38, 8.39, 8.40, 8.41 
Fraunhofer-Einrichtung für Großstrukturen in der Produktionstechnik (FhG IGP), Rostock, Germany: 
6.118b 
Fraunhofer-Institut für Angewandte Optik und Feinmechanik (FhG IOF), Jena, Germany: 3.157d, 6.52, 
6.56, 8.60 
Fraunhofer-Institut für Graphische Datenverarbeitung (FhG IGD), Darmstadt, Germany: 6.81 
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Fraunhofer-Institut für Windenergiesysteme (FhG IWES), Bremerhaven, Germany: 8.60 (photo: Frank 
Bauer) 
Fujifilm Europe GmbH, Düsseldorf, Germany: 3.114a 
GDV Systems GmbH, Bad Schwartau, Germany: 1.16, 8.67, 8.68, 8.69 
GEXCEL srl, Brescia, Italy: 6.102b 
Giroptic SAS, Lille, France: 3.141a 
GSI Geodetic Services Inc., Melbourne, FL, USA: 1.38, 1.45, 3.119, 3.157a b, 4.76, 5.2a, 5.34, 6.9, 
6.27b, 6.34, 6.35, 8.65 
HafenCity University (HCU) Hamburg, Geomatics Lab, Germany: 6.79, 6.115, 8.5 
Hasselblad Svenska AB, Göteborg, Sweden: 3.118 
Hexagon AB (Leica Geosystems, Wild, Kern, AICON, Breuckmann), Sweden: 1.31, 1.32, 1.34, 1.42, 
3.120, 3.121b, 3.127b, 3.157c, 3.161, 4.4, 6.12, 6.15, 6.17, 6.19, 6.23, 6.42, 6.43, 6.44, 6.49, 6.58, 
6.88, 6.94, 6.102a, 6.103c-d, 6.118a, 8.12, 8.13, 8.23, 8.24, 8.47, 8.61, 8.62, 8.76 
Hochschule Darmstadt / TU Darmstadt, Germany: 8.98 
Hochschule München, Germany: 3.145b 
High Speed Vision GmbH, Ettlingen, Germany: 3.124 
Hubbs Machine & Manufacturing Inc., Fenton, USA: 6.8b 
Humanetics Europe GmbH, Heidelberg, Germany: 6.30, 6.32, 8.71 
i3mainz, Hochschule Mainz, Germany: 8.14, 8.25, 8.26 
IES Elektronikentwicklung, Braunschweig, Germany: 3.123 
Imetric S.A., Porrentruy, Switzerland: 2.5 
Industrieanlagen-Betriebsgesellschaft mbH (IABG), Ottobrunn, Germany: 8.69 
InfraTec GmbH – Infrarotsensorik und Messtechnik, Dresden, Germany: 3.143 
iNovitas AG, Baden-Dättwil, Switzerland: 6.101 
Institut für Geodäsie und Photogrammetrie (IGP), ETH Zürich, Switzerland: 1.22 
Institut für Geologie, Universität Bern, Switzerland: 8.96, 8.97 
Institut für Photogrammetrie, TU Berlin, Germany: 1.26 
Institut für Photogrammetrie, Universität Bonn, Germany: 1.18 
Institut für Photogrammetrie und Fernerkundung (IPF), TU Dresden, Germany: 8.57, 8.77, 8.78, 8.93, 
8.94, 8.95 
Institut für Geodäsie und Photogrammetrie (IGP), TU Braunschweig, Germany: 8.46 
Institut für Photogrammetrie und GeoInformation (IPI), Leibniz Universität Hannover, Germany: 
8.27, 8.28 
Institut für Rechtsmedizin, Universität Bern, Switzerland: 8.90 
Intel Corp., Santa Clara, CA, USA: 6.68b-d, 6.69 
INVERS – Industrievermessung und -systeme, Essen, Germany: 1.21 
International Society for Photogrammetry and Remote Sensing (ISPRS): 6.24 
Jenoptik Laser-Optik-Systeme GmbH, Jena, Germany: 3.131 
Kodak AG, Stuttgart, Germany: 1.44 
KONTRON S&T AG, Augsburg, Germany: 3.129 
Landesmuseum Natur und Mensch, Oldenburg, Germany: 1.12, 1.13, 8.31 
Leica Camera AG, Solms, Germany: 3.48, 3.116, 3.117 
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LIMESS Messtechnik und Software GmbH, Krefeld, Germany: 6.66 
Lytro Inc., Mountain View, CA, USA: 6.71b 
Mantis Vision Ltd, Petach Tikva, Israel: 6.91b 
Mapvision Ltd, Espoo, Finland: 1.40, 6.46 
Messbildstelle GmbH, Dresden, Germany: 8.1 
Rotbucher Systeme, Bad Reichenhall, Germany: 6.8c 
Metronor AS, Nesbru, Norway: 6.27a, 6.29 
MicaSense, AgEagle, USA: 3.145a 
Microsoft Corp., Redmond, USA: 6.67, 6.116a 
National Physics Laboratory (NPL), London, UK: 7.26 
NavVis GmbH, Munich, Germany: 6.103a 
Nikon Corp,, Minato, Japan: 3.115 
Nikon Metrology, Metris, Leuven, Belgium: 3.128b, 6.93a 
Otto-Friedrich Universität Bamberg, Lehrstuhl für Digitale Denkmaltechnologien: 8.2 (student work 
by Cornelia Müller), Germany: 8.10, 8.11 
Panono Professional360 GmbH, Berlin, Germany: 3.141b 
Pentacon GmbH, Dresden, Germany: 3.132 
Phocad Ingenieurgesellschaft mbH, Aachen, Germany: 1.46, 4.23, 6.20 
Photogauge Inc., Alamo, CA, USA: 6.80 
Photometrix, Kew, Australia: 1.20, 6.21, 8.88 
Pix4D S.A., Lausanne, Switzerland: 8.46 
Plus Orthopedics, Precision Instruments, Smith & Nephews, Aarau, Switzerland: 8.87 
Photron, Tokyo, Japan: 6.13b 
Politecnico di Milano, Italy: 6.102, 8.6, 8.7, 8.8, 8.9, 8.20, 8.21, 8.22 
Porsche AG, Stuttgart, Germany: 6.95 
Premium AEROTEC GmbH, Nordenham, Germany: 8.66 
Propellor Aerobotics Pty Ltd, Surry Hills, NSW, Australia: 6.110 
Qualisys AB, Göteborg, Sweden: 1.19, 6.98 
Raytrix GmbH, Kiel, Germany: 6.71a 
Riegl Laser Measurement Systems GmbH, Horn, Austria: 4.23, 6.73c, 6.105 
Rollei Fototechnic GmbH, Rolleimetric GmbH, Braunschweig, Germany: 1.36, 1.37, 1.39, 1.43, 3.63, 
3.93, 8.65 
Römisch-Germanisches Zentralmuseum (RZGM), Mainz, Germany: 8.14 
Schneider Digital, Josef J. Schneider e. K., Miesbach, Germany: 6.114a 
Schölly Fiberoptik GmbH, Denzlingen, Germany: 3.142 
SenseFly Ltd, Cheseaux-Lausanne, Switzerland: 6.107 
SICK AG, Waldkirch, Germany: 6.76 
Sony Deutschland GmbH, Köln, Germany: 3.112c, 3.114b 
SpheronVR AG, Zweibrücken, Germany: 3.135 
SPM3D, Kiev, Ukraine: 8.4, 8.42, 8.43, 8.45 
ThyssenKrupp Accessibility BV, Krimpen aan den IJssel, Netherlands: 8.47 
Technical University Munich, Computer Vision Group, Germany: 5.107, 5.113 
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Teledyne Technologies Inc, USA: 3.75a 
Topcon Deutschland Positioning GmbH, Hamburg, Germany: 6.14 
Trimble GmbH, Raunheim, Germany: 6.100 
University College London (UCL), UK: 5.90, 6.89 
University of Naples, Parthenope, Italy: 8.81, 8.82, 8.83 
Vertex Antennentechnik GmbH, Duisburg, Germany: 1.16, 8.67, 8.68 
Vialux GmbH, Chemnitz, Germany: 6.53, 6.59 
Volkwagen AG, Wolfsburg, Germany: 1.15, 2.5, 3.126, 7.12, 8.73, 8.74 
Vuzix Corp., West Henrietta, NY, USA: 6.114b 
Winterthur, Switzerland: 6.113 
X-Rite Inc., Grand Rapids, MI, USA: 5.28b 
Zoller & Fröhlich GmbH, Wangen im Allgäu, Germany: 6.73a, 6.109 
 

 
All unspecified images were created either by the author or by the Institute for Applied Photogram-
metry and Geoinformatics (IAPG), Jade University in Oldenburg. All information was given to the best 
of our knowledge. 
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Index 
2½D surface  87 
  
3-2-1 method  58, 356, 678 
360° camera  244 
360° scanner  592 
3-chip method  199 
3D circle  84 
3D Helmert transformation  56 
3D printer  702 
3D projection  637, 736 
3D surface  88 
3D test field  683 
3DS  694 
  
4-parameter-transformation  37 
  
6DOF  153, 284, 539, 553, 604, 617 
6DOF target  539 
6-parameter transformation  38 
  
aberrations  135 
ability of parameter estimation  352 
absolute frequency  413 
absolute orientation  323 
absorption  206 
acceptance test  640, 663 
accident record  753 
accumulation of charge  191 
accuracy  4, 14, 102, 639, 660 
– for normal stereo case  159 
– of an object point  158 
– of bundle adjustment  656 
– of centroid  461 
– of digital point location  472 
– of image measuring  640 
– of intersection  379 
– of matrix sensors  204 
– of object coordinates  656 
– of online systems  562 
– of self-calibration  374 
– relative  658 
– stereo image processing  330 
acquisition 
– multi-image  154 
– single image  153 
– stereo image  153 

action camera  190 
adapter  751 
adapter cube  539 
additional parameter functions  351 
additional parameters  167 
adhesive patterned sheet  570 
adjustment 
– conditional least squares  100 
– general least squares  97 
– of direct observations  96 
adjustment methods  4 
adjustment techniques  93 
aerial image  624 
aerial photogrammetry  6, 338 
aerial refraction  394 
aerial triangulation  338 
Aeroscout  625 
aerospace industry  16, 735 
affine transformation  464 
– general  55 
– plane  38 
– spatial  56 
affinity  174, 375 
AICON  550, 557, 580, 581, 617, 708, 735, 

740 
airborne laser scanning  715 
Airy disc  126, 143 
all-around configuration  155, 159 
altimeter  628 
amateur camera  166 
ambiguity 
– of image matching  494 
ambiguity problem 
– for rotations  47 
anaglyphs  316, 633 
analogue photogrammetry  6 
analysis  13 
analytical form 
– straight line  65 
analytical photogrammetry  6, 24 
analytical stereoplotter  24 
anchor point method  297 
angle of convergence  153 
angular resolution  384 
animation  17 
anisotropic coefficient  414 



  Index 

  

antenna measurement  653, 737 
anthropology  756 
anti-aliasing filter  148 
aperture  130, 143 
aperture size  149, 202 
API  606 
Apple  589 
applicability  473 
approximate values 
– for 3D transformation  58 
– for bundle adjustment  362 
– for functional model  94 
– for panorama orientation  385 
– for relative orientation  312 
– for space resection  276 
– of unknown points  358 
– space intersections and resections  365 
– spatial successive creation of models  366 
– transformation of independent models  

367 
– with automated point measurement  368 
approximation  13, 73 
APS format sensor  197 
AR/VR  4, 17, 635 
archaeology  16, 624, 707 
architectural photogrammetry  7, 693 
archiving  13 
area-based matching  485 
ART  621 
Artec 3D  612 
artificial intelligence  402 
ArUco  539 
as-built documentation  546, 719 
assignment error  113 
astigmatism  139 
augmented reality  17, 635 
autocollimation point  129, 136, 162 
auto-correlation  462, 474 
AutoDesk  755 
automatic gain control  227 
automotive industries  16, 738 
auto-stereoscopic display  634 
auxiliary coordinate system  349 
AVI  228, 411 
AXIOS 3D  557, 563, 566, 567, 669 
  
Baarda  108, 114 
background  417 
background image  489 

background intensity  573 
background noise  207 
balanced observations  653 
balanced radial distortion  171 
ball plate  666 
band-interleaved  407 
band-pass filter  148, 225, 431, 438 
barcode  535 
basal plane  307 
base  see stereobase 
base components  310 
basic configuration  652 
Bayer pattern  200 
beam splitting display  634 
Bernstein polynomial  75 
best-fit cylinder  87 
best-fit element  381 
Bezier approximation  75 
bicubic convolution  454 
bilinear interpolation  453 
bilinear transformation  40 
BIM  see building information modelling 
bimodal histogram  418 
binarisation  458 
binary image  418 
binomial coefficients  434 
bit depth  148 
black body  122 
Block Mean Value  491 
blooming  207 
blunder  305 
blur circle  131 
BMP  408 
bootstrap simulation  650 
Boredom Projects  563 
borescope  245 
Box-Müller method  646 
breaklines  511 
BRIEF operator  482 
brightness  415, 425 
Brown's parameters  176 
B-spline  75, 92, 506 
bucket brigade device  192 
building information modelling  18, 696, 720 
building planning  696 
building records  693 
bundle adjustment  13, 336 
– accuracy  373 
– additional observations  347 



 Index   

  

– data flow  339 
– datum defect  343 
– divergence  377 
– elimination of observations  378 
– gross errors, blunders  378 
– linearisation  342 
– normal equations  343 
– observation equations  341 
– precision  373 
– report  371 
– reprojection error  371 
– results  340 
– Sigma 0  371 
– simulation  376 
– strategies  376 
bundle triangulation  10, 336 
bundles of rays  10, 336 
  
CAD  4, 64 
CAD model  301, 720 
CAD system  546, 653 
calculability of unknowns  106 
calibration  3, 166 
– image-variant  180 
– of fisheye cameras  685 
– of multi-camera systems  578 
– of robots  616 
– of stereo cameras  685 
– of underwater cameras  687 
– on-the-job  680 
– plumb line  679 
– quality criteria  687 
– self-  351, 680 
– system  681 
– test-field  676 
– with correction grid  686 
– with moving scale bar  684 
– with plane point field  682 
– with spatial point field  683 
calibration matrix  176, 322 
calibration methods  675 
camera 
– 360°  244 
– action  190 
– amateur  166 
– colour  198 
– compact  209 
– digital  189 
– digital SLR  230 

– fisheye  244 
– fisheye  187, 218 
– high-resolution  190 
– high-speed  190, 232 
– hyperspectral  248 
– industrial  226 
– light field  590 
– line scanning  239 
– macro scanning  238 
– metric  165 
– micro scanning  238 
– non-metric  166 
– panoramic  240 
– plenoptic  590 
– réseau-scanning  240 
– scanning-  191 
– semi-metric  166 
– single-lens reflex  209 
– stereo  236 
– stereometric  23 
– still-video  228 
– studio  210 
– super-wide angle  218 
– system  210 
– thermographic  246 
– three-line  237 
– video  190 
– view finder  209 
camera calibration  675 
camera constant  164 
camera coordinate system  33, 266 
camera stability  692 
CameraLink  228 
camera-view scanner  592 
Canny operator  446 
car industry  738 
car safety test  740 
car safety testing  613 
cartography  4 
cave  637 
CCD  121, 191 
CCD array sensor  193 
CCD line sensor  191, 237 
Census  490, 496 
central perspective  164 
central projection  7, 54, 268, 290 
centring target  536 
centroid 
– of coordinates  60 



  Index 

  

– of grey values  460 
– of initial points  359 
– optical  134 
CERN  734 
change detection  722 
characteristics  663 
charge  191 
charge read-out  192 
charge-coupled device  191 
charged particles  191 
Cholesky factorisation  119 
chroma keying  489 
chromatic aberration  137, 183 
CIE Lab  425 
CIE XYZ colour model  422 
cinematography  618 
circle 
– in 3D space  84 
– in plane  68 
– in space  509 
circle of confusion  131 
city model  715 
CityGML  694 
closed loop image configuration  345 
closing  435 
cloud-to-cloud  610 
cluster  444 
CMM  665 
CMM arm  606 
CMOS  121, 195, 232 
C-mount  227 
codec  411 
coded light approach  574 
coded target  486 
coefficient matrix  see Jacobian matrix 
cofactor matrix  95 
Cognex  583 
collinearity equations  57, 269, 308, 341, 

398, 503 
– for panoramic image  384 
COLMAP  548 
colour calibration  426, 702 
colour camera  198 
colour combinations  427 
colour distance  425 
colour edge  438 
colour space  420 
colour transformation  423 
compound lens  130 

computer graphics  4 
computer tomography  752 
computer vision  4 
computer-aided design  4 
confidence ellipsoid  112, 380 
confidence interval  104, 106 
confidence level  106 
configuration defect  354 
conic section  68, 70 
conjugate diameter  69 
connection matrix  344 
connectivity  405 
connectivity analysis  459 
constraint density  116 
constraint equations  100 
constraints 
– between unknowns  100 
contour lines  506 
contour measurement  381 
contrast  146, 413, 415 
contrast stretching  415 
contrast transfer function  146 
control points  12, 630, see reference points 
convergent imagery  133, 642 
convolution  432 
coordinate metrology  381 
coordinate system 
– camera  33 
– image  8, 33, 160 
– machine  35 
– model  34 
– model  309 
– national geodetic  35 
– object  35, 542 
– pixel  32 
– sensor  32 
– workpiece  35 
– world  35 
coordinates 
– cylindrical  63 
– homogeneous  36, 52 
– homogeneous  43 
– spherical  62 
coplanarity condition  322, 397 
coplanarity constraint  311 
corner feature  477 
correction 
– normalised  108 
correction equations  93 



 Index   

  

correction functions  168 
correction grid  686 
correlation 
– between parameters  95, 106, 374, 689 
– of distortion parameters  169 
– of grey values  462 
correlation coefficient  107, 450, 462, 492 
correspondence analysis  13, 483, 493 
cos4 law  140 
cost function  497, 513, 516 
covariance matrix  95, 102, 360, 652 
coverage factor  659 
Creaform  558, 559, 577, 603, 605 
cross correlation  492 
cross ratios  42 
cross-shaped features  471 
cultural heritage  702 
cumulative frequency function  416 
cursor  460 
curvature  91 
curvature of field  139 
curve 
– second order  68, 70 
cycles per pixel  204 
cylinder  86 
cylindrical coordinates  63 
  
danger cylinder  319 
danger surface  279 
Dantec Dynamics.  620 
dark current noise  207 
data snooping  114 
datum  36, 325, 353 
datum defect  99, 354 
datum definition  355, 651 
decentring distortion  163, 173, 375 
deep learning  402, 489 
deflectometry  577 
defocusing  126 
deformation analysis  723 
deformation measurement  585 
deformations  13, 723 
degrees of freedom  101 
Delaunay triangle meshing  88 
demodulation  574 
dense matching  548 
depth information  328 
depth of field  132, 642 
Deriche operator  446 

derivative 
– first  439 
– second  441 
descriptor  478 
design  see network design 
design factor  158, 330, 373, 652 
design matrix  645, see Jacobian matrix 
detector signal  149 
detector size  202 
detector spacing  149, 202 
diaphragm  130 
DIC  582 
difference image  420 
Differential Puls Code Modulation  411 
diffraction  125 
digital image correlation  582, 584 
digital image processing  4 
digital photogrammetry  6, 28 
digital surface model  88, 293, 728, 759 
digital system  11 
digital twin  702 
dilation  435 
Dirac pulse  150 
direct georeferencing  358 
direct linear transformation  160, 166, 280 
direction cosine  50, 77, 80 
discrete cosine transformation  409, 430 
disparity  153, 306, 328, 496 
dispersion  124, 248 
distance 
– point - 3D circle  85 
– point - circle  69 
– point - line  65 
distance measurement  592 
distance meter  599 
distortion  136, 165 
– balanced  171 
– decentring  163, 173 
– distance-dependent  178, 393 
– iterative correction  184 
– radial  161, 168 
– relative  136 
– tangential  163 
– tangential  173 
– total correction  175 
distortion curve  169 
distribution of image points  643 
DJI  626 
DLP projector  258 



  Index 

  

DLT  see direct linear transformation 
DMD  576 
DoG filter  479 
dome port  395 
double mapping  299 
Drawings  695 
DX format sensor  197 
dynamic matrix  525 
dynamic photogrammetry  613 
dynamic range  149, 207 
dynamic thresholding  418 
  
E57  694 
earth sciences  758 
eccentricity  509, 642 
economic efficiency  651 
edge  150 
edge extraction  438, 506 
edge measurement  261 
edge positioning  447 
eigenvalue  62, 111, 289, 380 
eigenvector  289, 380 
electromagnetic radiation  3, 121 
electromagnetic spectrum  122 
electron holes  191 
electronic flash  256 
electronic imaging system  189 
electronic shutter  212, 232 
ellipse  69, 469 
ellipse diameter  69 
ellipse measurement  471 
endoscope  245 
energy function  447, 518 
engineering  17 
engineering photogrammetry  7 
engineering surveying  4 
entomology  760 
entrance pupil  130, 161, 215, 216 
entropy  414 
environmental conditions  639 
EOS Systems  711 
epipolar geometry  619 
– for panoramic images  387 
epipolar images  315 
epipolar line  307, 314, 323, 328, 484, 494, 

500, 505 
– for panoramic images  387 
epipolar plane  307, 328 
– for panoramic images  387 

erosion  435 
error ellipse  360, 380, 475, 493 
essential matrix  323 
estimate  106 
etching  570 
Euklidian distance  492 
exit pupil  130, 161 
expanded uncertainty  659 
expected value  101, 104 
exposure time  614, 630 
exterior orientation  9, 265, 325 
extrinsic orientation  see exterior orientation 
  
f/number  130, 216 
facets  511 
facility management  696 
false colour  427 
Faro  580 
FAST operator  477 
feature detector  473 
feature extraction  484 
feature vector  478 
feature-based matching  485 
fiducial marks  33 
field of view  216, 643 
fill factor  196 
film industries  17 
film unflatness  177 
filter 
– band-pass  431 
– Gaussian  433, 442 
– high-pass  431 
– Kalman  525 
– Laplace  442 
– LoG  443 
– low-pass  431 
– median  434 
– morphological  434 
– sharpness  443 
– Sobel  441 
– Wallis  436 
filter matrix  432 
filter operator  432 
filtering  429 
final computing test  98 
Firewire  228 
fisheye camera  244 
fisheye lens  218, 375 
fisheye projection  187 



 Index   

  

fixed datum  355 
flange focal distance  215 
flatness error  672 
floating mark  154, 327, 334 
fluorescence  256, 567 
flying height  628 
focal length  129 
focal plane shutter  211 
focus  131 
focus stacking  760 
forensic photogrammetry  7, 753 
forensics  17 
format angle  216 
Förstner operator  474 
forward intersection  see spatial intersection 
forward motion compensation  624 
forward overlap  629 
Four Thirds  197 
Fourier transform  429 
Foveon  717 
FPGA  232 
frame  410 
frame grabber  228, 615 
frame transfer  193 
Fraunhofer  576, 580, 602, 638 
free-form surface  64, 293, 327, 750 
free-net adjustment  358, 651, 678 
frequency  121, 413 
frequency domain  430 
fringe modulation  573 
fringe projection  571, 703, 710, 739 
– multi-camera  578 
– single camera  576 
full waveform analysis  593 
full-format sensor  197 
full-frame transfer  194 
functional model  93 
fundamental equations of photogrammetry  

272 
fundamental matrix  322 
  
game engine  635 
Gamma correction  417 
gauge block  666 
Gaussian algorithm  118 
Gaussian distribution  104 
Gaussian filter  406, 433, 442 
Gauss-Markov model  96 
GDV  738 

geodetic engineering surveys  723 
geodetic surveying  4 
geo-information system  4 
geometric elements  64 
GeoTIFF  407 
gesture detection  587 
GIF  408 
Gigabit Ethernet  228 
gimbal lock  46 
GIS  4 
glacier monitoring  757 
global photo consistence  518 
global shutter  212 
GNSS  351, 358, 362, 363, 544, 628 
GOBO projector  259 
GOM  703, 710, see Zeiss 
goniometer  167 
gradient  440, 466, 509 
Gram-Schmidt  51 
graphical plotting  13 
GRAPHOS  550 
Gray code  574 
grey level depth  404 
grey level noise  432 
grey value  404 
– mean  413 
– variance  413 
grey value edge  438 
grey-value interpolation  452 
grid projection  580 
grid reflection  581 
grid width  511 
gross error  107, 112, 378 
ground sample distance  9 
Gruber points  318 
GSD  9, 628, 639, 640, 642 
GSI  550, 556, 558, 581, 738 
guide number  256 
GUM  663 
gyrocopter  624 
gyroscope  351 
  
H.264  411 
Haar function  431 
Hamming distance  490 
hand-held scanner  612 
Harris operator  476 
hashing  491 
HBIM  695 
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HCU Hamburg  600 
HDR  208 
HDR image  597 
height-to-base ratio  154, 159, 318, 330, 346, 

563, 630 
Helmert point error  111 
Hennes, M.  662 
heritage conservation  16 
Hessian  479 
Hewlett Packard  580 
Hexagon  565, 566, 608, 638, 744 
high dynamic range imaging  208 
high-pass filter  431, 438 
high-resolution camera  190 
high-speed camera  190, 232, 613, 618 
HIS colour space  421 
histogram  413 
– bimodal  418 
histogram equalization  416 
homogeneous coordinates  36, 43, 52, 282, 

289 
homography  43, 289 
homologous points  304 
horizontal parallax  308 
Hough transform  444 
HSL colour space  421 
Humanetics  554, 555 
hyperfocal distance  133 
hyperspectral camera  248 
  
IAPG  597 
ICP  524, 610, 612, 706 
illumination  260 
illumination model 
– Phong  508 
image arithmetic  419 
image beam splitting  224 
image blur  630 
image circle  217 
image components  459 
image compression  409 
image coordinate system  8, 33, 160, 164, 

266 
image coordinates  34 
image correlation  582 
image display  633 
image distance  129, 161 
image format  156, 196, 691 
image guided surgery  751 

image interpretation  3 
image masking  488 
image matching  482, 582 
– area-based  485, 502 
– feature based  485 
– image-based  486 
– in image pair  494 
– in image sequences  519 
– in image triplet  499 
– multi-image  499, 503 
– object-based  486, 507 
– unlimited number of images  502 
– with geometric constraints  503 
– with object models  507 
– with surface grids  511 
image measurement  3 
image measuring accuracy  640 
image mosaic  301, 694 
image negative  34 
image plane  163 
image positive  34 
image pyramid  405, 446, 478 
image quality  409 
image radius  163, 168 
image rectification  295 
image scale  9, 155, 628, 642 
image sequence  519, 613, 757 
image sharpening  443 
image space shift  290 
image stabilisation  214 
image storage  406 
image time interval  630 
image transformation  450 
image triplet  500 
image vector  165 
imaging 
– optical  128 
– sequential  614 
– synchronous  615 
imaging angle  642 
imaging configuration  153, 641 
– for camera calibration  682 
imaging errors  168 
imaging model 
– spherical  685 
imaging planning  639 
imaging scale  129 
IMU  358 
indirect rectification  452 
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individuality  473 
indoor mapping  622 
industrial camera  208, 226 
industrial metrology  4, 662 
industrial photogrammetry  7, 719 
inertial navigation unit  351 
information content  144, 406, 414 
information systems  18 
infrared  121, 257, 717 
infrared absorbing filter  206 
infrared filter  225 
initial values 
– for image measurements  458 
– for least-squares matching  466 
iNovitas  622 
integral image  411 
integrating sphere  761 
Intel  589 
intensity  125, 146, 592 
interest operator  473 
interference  125 
interferogram  573 
interferometry  5 
interior orientation  8, 34, 159, 164, 266, 

688 
inter-lens shutter  211 
interline transfer  194 
intermediate coordinate system  58 
interpolation  72 
– within triangle  89 
intersection  379 
– of two lines in space  77 
– of two straight lines in plane  66 
– plane - plane  81 
– plane - straight line  81 
intersection angle  317, 365, 643, 653 
in-tolerance evaluation  662 
intrinsic orientation  159 
inventory recording  719 
inverse space resection  284 
iris diameter  215 
iterative closest point  610 
  
Jacobian matrix  94, 118, 645 
JCGM  663 
JPEG  408, 409 
  
Kalman filter  525, 585 
kd-tree  91 

key points  474 
Kinect  587 
Kruck  115 
  
L1 norm  116, 370 
L2 norm  96 
laboratory calibration  167 
Lagrange interpolation  454 
Lagrangian multipliers  101 
landmark  528 
landscape model  718 
Laplacian of Gaussian  see LoG filter 
Laplacian operator  442 
laser projection  567, 603 
laser projector  259 
laser scanner  260 
laser scanning  5, 715, 720 
laser tracker  544, 667 
laser tracking  5 
laser triangulation  571 
laser-scanning  591 
law of refraction  392 
LCD  576 
LCD projector  258 
LCOS  576 
LCOS projector  258 
least squares adjustment  96 
least-squares matching  450, 464, 492, 503 
– extensions  469 
– initial values  466 
– mathematical model  465 
– over-parametrisation  467 
– quality  467 
LED  256, 257 
length measurement error  664, 668 
lens distortion  130, 136 
lens equation  128 
lens map function  686 
Levenberg-Marquardt algorithm  99 
leverage point  116, 378 
LiDAR  592 
light fall-off  140 
light field camera  590 
light gathering capacity  215 
light sensitivity  149 
LIMESS  587, 594 
limiting bundles  126 
limiting frequency  202 
line extraction  702 
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line intersection 
– in space  77 
line pairs  144 
line pairs per pixel  204 
line photogrammetry  6 
line projection  260 
line widths per picture height  203 
linear programming  116 
linearization  118 
line-interleaved  407 
line-scanning camera  239 
line-section projector  619 
Livox  594 
LME  655 
local curvature  474 
local variance  473 
locator  284, 552, 556, 751 
LoG filter  443 
lookup table  414 
loop closure  527 
loss of information  3 
low-pass filter  431, 432 
LSM  464 
luminous intensity  140 
LUT  414 
  
Maas, H.-G.  619 
machine coordinate system  35 
machine learning  402, 489 
macro photogrammetry  6 
macro-scanning camera  238 
magnification  129 
Mahalanobis distance  493 
Mantis Vision  612 
mapping  624 
Mapvision  567 
matching  13, see image matching 
material testing  580, 727 
maximum permissible error  664 
mean of grey values  413 
mean point error  379 
measurand  659 
measurement  13 
– of antennas  735, 737 
– of car body  739 
– of complex surfaces  600 
– of cracks  728 
– of deformations  585 
– of distances  599 

– of environments  621 
– of façades  730 
– of gestures  587 
– of motion  620 
– of particle flow  619 
– of robots  616 
– of roofs  730 
– of rotor blades  586, 599, 724, 731 
– of sculptures  702 
– of ships  743 
– of soap bubble  761 
– of strain  582, 586 
– of surfaces  568 
– of tooling jigs  735 
– of welds  746 
– of wheels  617 
– of wind shields  567 
– tactile  552 
measurement design  639 
measurement error  660 
measurement standard  663 
measurement uncertainty  658, 661 
measuring systems  529 
media  123, 391 
media interface  124, 391 
– bundle-invariant  399 
– planar  392 
– spherical  395 
median filter  434 
medicine  749 
medicine and physiology  17 
Meshroom  548 
metric camera  165 
Metronor  554, 557 
MicMac  548 
micro scanning  238 
microlens array  198 
microlenses  196, 590 
micromirrors  259 
microprism  253 
Microsoft  587 
minimum description length  688 
Minolta  577 
mirror  251 
mixed reality  17, 635 
mobile mapping  6, 621 
mobile phone  190 
mobility  665 
MoCap  620 



 Index   

  

model 
– functional  93 
– stochastic  95 
model coordinate system  34, 309, 364 
model coordinates  313 
model matrix  see Jacobian matrix 
modulation  149 
modulation transfer  614 
modulation transfer function  126, 147 
– of a detector system  150 
moment preservation  449 
moments  449 
monoplotting  81, 88, 292, 596 
Monte Carlo simulation  646 
Moore-Penrose inverse  360 
morphing  451 
morphological operation  434 
mosaic  301, see image mosaic 
motion capture  620 
motion tracking  519 
MOV  411 
movement vectors  757 
MP4  411 
MPE  664 
MPEG  228, 411 
MTF  147 
MTF50  203 
multi-camera system  555 
multi-channel image  407 
multicopter  625 
multi-image configuration  154, 364 
multi-image matching  499, 503 
multi-image orientation  336, 362, 369 
multi-image photogrammetry  7 
multi-image processing  265, 378 
multi-image triangulation  154 
multi-media photogrammetry  6, 391, 619, 

744 
multi-model thresholding  418 
multistation  544 
Multi-view Stereo  499 
museum  702 
  
national geodetic coordinate system  35 
national standard  663 
natural sciences  18 
navigation  627, 751 
NCC  492 
nearest neighbour  453 

nearest neighbour search  610 
nearest sharp point  133 
neighbour  405 
net strain  351 
network design  651 
Nikon  734, 755 
nodal point  129, 242 
non-centrality parameter  96, 105, 109 
non-metric camera  166 
normal case of stereo photogrammetry  153, 

306, 308, 328 
normal distribution  104 
normal equation matrix  359 
normal equations  98 
normal vector  80 
normal-case stereo  images  315 
null hypothesis  109 
Nyquist frequency  147, 202 
  
object accuracy  158, 651 
object class  417 
object coordinate system  35, 323, 542, 639 
object distance  129, 156 
object environment  642 
object reconstruction  3 
object tracking  524 
object-based multi-image matching  507 
oblique images  629 
observation vector  93 
observation weights  653 
observer  251 
occlusions  468 
offline photogrammetry  7, 11, 29, 152 
offline photogrammetry system  557 
Olympus  753 
online photogrammetry  7, 11, 29, 152 
online photogrammetry system  559 
on-screen measurement  460 
on-the-job calibration  680, see self-

calibration 
opening  435 
optical axis  34 
optical flow  522 
optimization  651 
optimization of configuration  652 
optimization of imaging networks  651 
ORB operator  481 
order of calculation  365 
order of images  370 
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order of observations  344 
orientation  13 
– absolute  323 
– exterior  9, 265 
– interior  8, 34, 159 
– interior  164 
– of a panoramic image  385 
– of stereo pairs  305 
– relative  309 
– single image  272 
– space resection  272 
– with external systems  607 
– with reference targets  603 
– with surface feature points  609 
orientation parameters  264 
orthogonal  38 
orthonormal  38, 45, 51 
orthonormal matrix  282 
orthophoto  13, 264, 296, 511, 596, 694, 696 
– for panoramic images  389 
OSGM  513 
Ouster Velodyne  594 
outlier  13, 107, 112 
output of results  640 
overflow effect  207 
over-parametrisation  107, 177, 690, 692 
  
pan sharpening  428 
panorama stitching  241 
panoramic camera  240 
panoramic image  597, 599 
panoramic photogrammetry  6, 382 
panoramic scanner  592 
parabolic antennas  735 
parallax  153 
parallel projection  222, 295, 296 
parallelepiped  80 
parameter estimation  93 
parameter vector  93 
parametric form  65 
particle flow  619 
particle flow tracking  619 
particle image velocimetry  619 
PatchMatch stereo  516 
pattern projection  260, 570 
– aperiodic fringes  575 
– fringes  571 
– passive  567 
– stationary  571 

pattern projector  258 
payload  624 
period  592 
perspective centre  7, 161, 163 
Petzval surface  396 
phase angle  125 
phase difference  573 
phase measurement  572 
phase-shift method  573 
Phocad  546 
photogrammetry  2, 7, 19 
– aerial  6 
– analogue  6 
– analytical  6, 24 
– architectural  7, 693 
– close-range  4 
– digital  6, 28 
– dynamic  612, 613 
– engineering  7 
– forensic  7, 753 
– industrial  7, 719 
– line  6 
– macro  6 
– multi-image  7 
– multi-media  6, 391, 744 
– offline  7, 11, 29, 152 
– online  7, 11, 29, 152 
– panoramic  6, 382 
– plane table  6, 21 
– products  14 
– real-time  7, 11 
– satellite  6 
– single image  7, 287 
– stereo  7 
– terrestrial  6 
– UAV  6 
– underwater  392, 744 
Photometrix  547, 550, 753 
photon  191 
photo-scale  9 
phototheodolite  20 
PhoX  550 
pinhole camera  8 
Pix4D  548 
pixel  404 
pixel coordinate system  32, 404 
pixel size  692 
pixel spacing  149 
pixel-interleaved  407 
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Planck's constant  122 
Planck's law  122 
plane  79 
– best fit  81, 292 
plane projective transformation  41, 287 
plane resection  385 
plane similarity transformation  37 
plane sweep  516 
plane table photogrammetry  6, 21 
plenoptic camera  590 
plumb-line calibration  679 
Plus Orthopedics  752 
PLY  89 
PMS  755 
PNG  408 
point cloud  87, 91, 585, 721 
point density  653 
point diameter  473 
point error  111 
point of autocollimation  162 
point of symmetry  136, 161 
point projection  259 
point spread function  126 
polarisation  127 
polarisation filter  127 
polarised image display  633 
polarising filter  226 
polygon  72 
polynomial  73 
polynomial transformation  39 
Porsche  618 
pose  153, 552, 616 
powder spray  570 
power of test  109 
power spectrum  430 
precision  102, 362, 660 
– of adjusted object coordinates  373 
– of image coordinates  372 
pre-processing  13 
primary rotation  47 
PrimeSense  587 
principal distance  9, 129, 155, 161, 164, 374 
principal plane  129 
principal point  129, 162, 164, 374 
prism  124 
probability density  104 
probe  552, 553 
probing error  663, 672 
probing tools  537 

process 
– photogrammetric  3 
process control  13 
production control  736, 739 
profile scanner  598 
progressive-scan  202 
project planning  639 
projection 
– 3D  637 
– central  54 
– central perspective  188 
– equidistant  188 
– laser  603 
– orthographic  188 
– parallel  222 
– stereographic  188 
projection matrix  52, 176, 282 
projector  571, 619 
– GOBO  259 
– laser  259 
– pattern  258 
propagation of light  125 
pseudo colour  427 
pseudo inverse  360 
PTX  91 
pulse measurement  593 
pyramid  see image pyramid 
  
quadcopter  625 
quadrilateral  40 
Qualisys  620 
quality  639 
quality analysis  14 
quality control  4 
quality measure  655 
quantisation table  409 
quantum efficiency  191 
quaternion  47 
  
radar  121 
radial distortion  161, 168, 375 
radiance  123 
ramp change  442 
random error  104 
random variation  646 
range image  90 
rank defect  99, 353, 359 
RANSAC  117 
rapid prototyping  739 
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rarity  473 
raw data  407 
ray tracing  88, 297, 396 
read-out register  191 
RealityCapture  548 
RealSense  589 
real-time photogrammetry  7, 11 
reconnaissance  624 
rectification  13, 450, 696 
– differential  296 
– digital  296 
– image  295 
– indirect  452 
– plane  295 
– projective  295 
redundancy  101 
redundancy matrix  108 
redundancy number  108 
reference artefact  666, 674 
reference length  657 
reference pattern  450 
reference points  57, 323, 355, 542, 639, 657 
– inconsistencies  356 
– minimum configuration  355 
– observed  356 
reference scale bar  735 
reference targets  602 
reference tool  368 
reference value  659 
reflectance transformation imaging  262 
reflection  124 
– ambient  250 
– diffuse  250 
– mirrored  251 
reflection in a line  53 
reflection model  507 
reflective optics  223 
refraction  123 
refractive index  123 
registration  596, 600, 609, 674 
regression line  67 
– in space  79 
relative accuracy  658 
relative aperture  215 
relative distortion  136 
relative frequency  413 
relative orientation  309 
reliability  107, 651 
– external  111 

– internal  109 
remote control  627 
remoted piloted vehicle  624 
remotely piloted aircraft system  625 
rendering  451 
reprojection error  371 
resampling  452 
réseau  33, 165, 181 
réseau-scanning camera  240 
resection  see space resection 
– plane  385 
residuals  98, 114 
resolution  203, 642, 662 
resolution merging  428 
resolution of details  639 
resolution pyramid  see image pyramid 
resolving power  143, 144, 614, 662 
retro-target  253 
re-verification  663 
reverse engineering  739 
RGB  405, 420, 428 
RGB filter  199 
RGBD image  91 
Riegl  625 
rigid-body transformation  58 
ring flash  257 
ring operator  471 
RMS  103 
Roberts gradient  439 
robot calibration probe  616 
robot control  739 
robust adjustment  115 
robust estimation  115 
robustness  473 
Rodrigues matrix  50 
rolling shutter  213, 627 
root mean square  103 
rotating line scanner  240 
rotation 
– primary  47 
– secondary  47 
– spatial  44 
rotation axis  385 
rotation matrix  45, 53 
– for exterior orientation  267 
– orthonormalization  51 
– plane  38 
– Rodrigues  50 
– with direction cosines  50 
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– with quaternions  47 
rotation order  45 
rotation sequence  267 
rotationally symmetric shapes  82 
rotor blade  586 
roughness  251 
RPAS  625 
RTI  262 
run-length encoding  409 
  
SAD  490 
sampling  147 
sampling frequency  147 
satellite photogrammetry  6 
saturation  207 
scale  12, 540 
scale bar  667 
scale definition  653 
scale domain  431 
scale factor  56 
– for panoramic image  384 
scaling  10 
scaling factor  268 
scanning camera  191 
scanning theorem  202 
scan-to-BIM  720 
Scheimpflug condition  134, 210, 222 
Schiefspiegler  223 
Schneider Digital  634 
Scientific CMOS  207 
sCMOS  207 
search image  462 
secondary rotation  47 
segmentation  417, 435, 458 
Seidel series  169 
self-calibration  167, 351, 374, 680 
self-similarity  474 
semi-global matching  495 
– object-based  513 
semi-metric camera  166 
SenseFly  626 
sensor architecture  202 
sensor clock  228 
sensor coordinate system  32 
sensor element  147, 191 
sensor format  196, 692 
sensor unflatness  177, 204 
SfM  486 
SGM  495 

shading methods  5 
Shannon's sampling theorem  147 
shape from stereo  7 
sharpness filter  443 
shear  174, 375 
shift coefficients  504 
ship building industry  16, 743 
shutter  211 
SICK  594, 598 
side overlap  629 
Siemens star  144 
SIFT operator  478, 548 
signal-to-noise ratio  207 
significance level  109 
similarity measure  462 
similarity measures  489 
similarity transformation 
– plane  37 
– quaternions  61 
– spatial  56 
simulation  644 
simultaneous calibration  see self-

calibration 
simultaneous localization and mapping  527 
sinc function  150 
single image photogrammetry  7, 287 
single image processing  264, 265, 457 
single-camera system  553 
SLAM  527 
SLR camera  209 
smear  207 
smoothing filter  432 
SMR target  536, 544 
snakes  506 
Snell's law of refraction  124 
soap bubble  761 
Sobel operator  441 
software 
– e-learning  550 
– offline photogrammetry  549 
– structure-from-motion  548 
– with CAD  546 
solid state sensor  191 
solid-state lidar  594 
space multiplex  200 
space resection  272, 284, 540, 553, 617 
– for panoramic image  386 
– with minimum object information  276 
span  103 
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sparse technique  119 
spatial domain  430 
spatial frequency  144, 429 
spatial intersection  314, 332, 379 
– for panoramic images  389 
spatial resolution  675 
spatial similarity transformation  323 
spectral decomposition  379 
spectral sensitivity 
– of imaging sensors  206 
speed of propagation  121 
sphere  82, 672 
sphere-spacing error  665, 672 
spherical aberration  138 
spherical coordinates  62 
spherical media interface  395 
spherical mounted reflector  536 
spherical target  609 
spline  74 
split screen  633 
SSD  490 
standard deviation 
– a posteriori  96 
– a priori  96 
– of average value  97 
– of unit weight  96 
– of unknowns  102 
standard uncertainty  659 
star operator  469 
starting model  364 
stationary measuring systems  564 
step gauge  666 
stereo base  159, 224, 306, 328, 630 
stereo camera  236, 563 
stereo endoscope  246 
stereo glasses  634 
stereo image acquisition  153 
stereo image matching  304, 327 
stereo image processing  265 
stereo matching  303 
stereo monitor  633 
stereo projection  634 
stereo vision  327 
stereo vision system  562 
stereo workstation  633 
Stereoautograph  23 
stereocomparator  22 
stereometric camera  23, 583 
stereophotogrammetry  7 

Stereoplanigraph  23 
stereoplotter  24 
stereoscopic viewing  633 
still-video camera  228 
stitching  387 
STL  89 
stochastic model  95 
stop  130 
straight line 
– angle between two lines  67 
– best-fit  79 
– in plane  65 
– in space  76 
– regression line  67 
strain analysis  586 
structure resolution  145 
structured light  5 
structure-from-motion  7, 11, 14, 166, 486, 

548, 550, 631 
structuring element  434 
Student distribution  see t-distribution 
sub-pixel coordinates  405 
sub-pixel displacements  472 
sub-pixel interpolation  447 
sums of differences  490 
SURF operator  481 
surface  64, 87 
surface element  508 
surface material  251 
surface measurement  568 
surface model  88 
surface normal  262 
Surphaser  594 
SUSAN operator  476 
symmetry  414 
synchronisation  232, 233 
synchronisation error  615 
synchronisation time  256 
synthetic images  457 
system calibration  681 
system camera  210 
system scale  653, 691 
systematic error  101, 660 
  
tacheometer  see total station 
tactile probing  552, 554, 556, 751 
tangential distortion  163, 173, 375 
tangential images  390 
target  363 
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– 6DOF  539 
– centring  536 
– circular  530 
– coded  369, 486, 534 
– diameter  530 
– eccentricity  530 
– luminous  256 
– microprism  253 
– patterned  534 
– retro-reflective  253 
– SMR  536 
– spherical  532, 609 
target tracking  521, 585 
targeting  12, 529, 639 
t-distribution  105 
telecentric lens  222, 572 
Teledyne Optech  594 
telephoto lens  163 
temperature  541 
template  447 
template matching  464 
temporary coordinate system  397 
terrain model  511 
terrestrial photogrammetry  6 
test field  676 
test pattern  144 
test-field calibration  167, 346, 676 
tetrahedon  276 
texture  455, 569, 582 
texture analysis  438 
texture mapping  455 
thermal expansion coefficient  541 
thermal image  429 
thermographic camera  246 
thermography  121 
thresholding  417, 435, 458 
tie points  304, 318, 364 
TIFF  407 
tilted images  679, 681, 691 
tilt-shift lens  220 
time delayed integration  624 
time-multiplex method  199 
time-of-flight  5 
tolerance  104, 661 
Topcon  594 
total redundancy  107 
total station  543 
trace  360 
traceability  540, 663 

tracking  519, 620 
tracking system  634 
trajectory  612, 619, 757 
transformation 
– 3D Helmert  56 
– 4-parameter  37 
– 6-parameter  38 
– bilinear  40 
– general  52 
– general affine  55 
– homogeneous  36 
– of interior orientation parameters  186 
– pixel to image  34 
– plane affine  38 
– plane projective  41 
– plane similarity  37 
– polynomial  39 
– radiometric  464 
– spatial similarity  56, 323 
transition matrix  525 
translation matrix  53 
triangle meshing  88 
triangulation  5 
triangulation principle  665 
trifocal plane  501 
Trimble  594, 621 
trinocular camera  501 
true colour image  405 
true colour sensor  201 
true orthophoto  299, 696 
true value  101, 104, 659 
Tsai  176 
  
UAV  624, 625 
UAV photogrammetry  6 
Ulbricht sphere  761 
ultra-light aircraft  624 
uncertainty of image measurement  158 
under-parametrisation  690 
underwater photogrammetry  392, 744 
unflatness of film/sensor  177 
unflatness of sensor  182 
unmanned aerial vehicle  625 
unscented transformation  649 
unwrapping  574 
update  526 
USB  228 
UV filter  225 



  Index 

variance component estimation  114, 372 
variance of grey values  413 
variance-covariance propagation  644 
vario lens  219 
VDI  667 
VDI/VDE  663 
VDI/VDE 2634  231 
vector of image coordinates  34 
vector of inconsistencies  100 
vector of unknowns  93, 98 
vegetation  717 
velocity  614, 630 
velocity of propagation  123 
verification of accuracy  640 
vertical line locus  334, 505, 585 
Vialux  577, 582 
Vicon  621 
video camera  190 
video compression  410 
video formats  410 
video total station  543 
videogrammetry  6, 28 
vignetting  140 
VIM  658 
virtual museum  702 
virtual reality  17, 635, 707 
visibility  643 
visual odometry  527 
visual processing  327 
visualisation  696 
visualisation systems  633 
voxel  90 
Vuzix  634 

Wallis filter  417, 436 
warm-up effect  205 
wavelength  121, 592 
wavelet compression  409 
wavelet transformation  430 
weight matrix  95, 98 
weight of observation  97 
weighted datum  356 
Wester-Ebbinghaus, W.  682, 683 
white balance  426 
wide angle lens  692 
Wien's displacement law  123 
wire model  88 
WMV  228 
workpiece coordinate system  35 
workpiece edge  537 
world coordinate system  35 

X3D  694 
XOR operation  420 
x-parallax  306, 308, 328 
X-ray  121 

y-parallax  311, 313, 328, 657 

Zeiss  550, 557, 560, 577, 580, 583, 586, 
605, 606, 607 

zero crossing  439, 448 
Zhou operator  469 
Zoller & Fröhlich  631 
zoom lens  219 
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Measure 3D coordinates 
with TRITOP: 
Compact, mobile and 
highly accurate

TRITOP is the solution for measuring large parts under most 
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