

An Invigorating,
Hands-on Approach

P R I N C I P L E S O F
COMPUTER

SCIENCE

Joshua Crotts

Copyright © 2024 by Joshua Crotts

ISBN-13: 978-1-60427-199-7

Printed and bound in the U.S.A. Printed on acid-free paper.

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data can be found in the WAV
section of the publisher’s website at jrosspub.com/wav.

This publication contains information obtained from authentic and highly
regarded sources. Reprinted material is used with permission, and sources are
indicated. Reasonable effort has been made to publish reliable data and informa-
tion, but the author and the publisher cannot assume responsibility for the validity
of all materials or for the consequences of their use.

All rights reserved. Neither this publication nor any part thereof may be repro-
duced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without the prior
written permission of the publisher.

The copyright owner’s consent does not extend to copying for general distribu-
tion for promotion, for creating new works, or for resale. Specific permission must
be obtained from J. Ross Publishing for such purposes.

Direct all inquiries to J. Ross Publishing, Inc., 151 N. Nob Hill Rd., Suite 476,
Plantation, FL 33324.

Phone: (954) 727-9333
Fax: (561) 892-0700

Web: www.jrosspub.com

ii

To my Viola.

Acknowledgments

Many were skeptical of my desire to not only write but finish a textbook. Some
tried to dissuade me from the idea altogether, claiming it was too much of a time
sink. Indeed, while it took over much of my life, I am proud to present the finished
product.

Special thanks to the many students and UIs from C211/H211 (Introduction to
Computer Science) and C212 (Introduction to Software Systems) at Indiana Uni-
versity for their encouragements and willingness to read the book upon release.
Moreover, my friends at IU and UNC Greensboro have constantly provided exten-
sive motivation to continue when times were tough.

I very much appreciate William Orrell, Peter Stratta, and Cliff Mansfield for taking
the time to read through partial drafts of the book.

The help and work invested by Gabriel Costa de Oliveira into the first chapter is
extremely acknowledged and appreciated.

I thank those who answered the many questions that I posted to the TEX StackEx-
change regarding LATEX formatting issues; I hope they are as invaluable to others
as they were for myself.

Andrew (Matsurf) Matzureff is always a joy to talk with, and his comments on
parts of the book and discussions on continuations were hilariously informative.

In writing Principles of Computer Science, I drew inspiration from many authors
of other textbooks: including Jeremy Siek, Dan Friedman, Daniel Holden, Robert
(Bob) Nystrom, Matthias Felleisen, and others as cited in the bibliography.

Andy Huber’s comments, suggestions, and corrections turned this from a textbook
into a work of art.

Thanks also to those professors and teachers who taught me everything I know and
love about both logic and computer science: Steve Tate, Insa Lawler, Nancy Green,
Dan Friedman, Gary Ebbs, Chung-chieh (Ken) Shan, and Sam Tobin-Hochstadt
(as well as those not listed). Moreover, Mary Beth Ferrell instilled many lessons on
grammar and writing from her AP Literature and Composition course that I utilize
to this day (alongside the ever present nightmares of having to complete in-class
essays or forgetting to finish an assignment).

I am also sincerely grateful for the inspirational comments from my parents and my
wife.

Lastly, I am absolutely and deeply indebted to Tony Smith: my former Advanced
Placement Computer Science teacher. Thanks for everything.

v

Table of Contents

Preface xv

1 A Computing Mindset 1
1.1 Computer Heuristics . 1

2 A Logic Primer 7
2.1 Zeroth-Order Logic . 7
2.2 First-Order Logic . 21
2.3 Sets . 26
2.4 Functions . 29
2.5 Proofs . 35
2.6 Natural Deduction . 41
2.7 Numbering Systems . 47

3 Data Structures 53
3.1 Motivation for Data Structures . 53
3.2 Arrays . 53
3.3 Lists . 54
3.4 Stacks . 55
3.5 Queues . 56
3.6 Sets . 57
3.7 Maps/Dictionaries . 57
3.8 Trees . 57
3.9 Graphs . 58

4 Formal Languages 61
4.1 Languages . 61
4.2 Finite Automata . 65
4.3 Syntactic Analysis . 73
4.4 Analyzing λ-Calculus . 75

5 Programming and Design 79
5.1 Recitation of Elementary Arithmetic 79
5.2 LPF1: Our First Language . 158
5.3 LPF2: Now With Environments . 186

6 Interpretation 197
6.1 LCOND: Conditionals and Decisions 197

vii

6.2 LLOCAL: Local Identifiers and Values 213
6.3 LPROC1 & LPROC2: Recursive Procedures 220
6.4 Working with Even More Data . 237

7 Functional Programming 253
7.1 Quotes, Pairs, Lists, and Quasiquotes 253
7.2 Variadic Arguments . 274
7.3 First-Class and Higher-Order Functions 278
7.4 Evaluation and Application at the Interpreter Level 282
7.5 Constructive Recursion . 286
7.6 Nested Interpreters . 302
7.7 Types and Type Systems . 385

8 Imperative Programming 391
8.1 Side-Effects . 391
8.2 LBEGIN: Sequential Expressions . 402
8.3 LOUT: Fancier Output . 406
8.4 Parameter Passing Styles . 410
8.5 L∗EVAL: A Metacircular Evaluator 420
8.6 L∗ASM: A Micro-Assembly Interpreter 427
8.7 L∗IMPERATIVE: Thinking Imperatively 433
8.8 Object-Oriented Programming . 443
8.9 LVECTOR: Static Data Structures 466
8.10 LLIB: External Libraries . 477
8.11 L∗GRAPH: Graph Library Implementation 481
8.12 LBIGNUM: Arbitrarily-Precise Numbers 492
8.13 LIN: Improved User Input . 497
8.14 LFILE I/O: File Input and Output 498
8.15 LLOOP: An Iterative Approach to Problem-Solving 510
8.16 LMACRO: A Simple Macro System 516
8.17 L∗MATCH: A Pattern Matcher . 542
8.18 L∗SCHELOG: Logic Programming . 553
8.19 LGRAPHIC: Turtles and Graphics Galore 564
8.20 L∗COROUTINE Coroutines and Continuations 573

9 Compilation 579
9.1 Code Generation . 579
9.2 Compiling L−PF1 to L−PF1x64

. 595
9.3 Compiling LPF2 to LPF2x64

. 604

9.4 Compiling L−COND to L−CONDx64
. 610

9.5 Compiling L+
COND to L+

CONDx64
. 617

9.6 Compiling L−PROC to L−PROCx64
. 619

9.7 Compiling LPROC to LPROCx64
. 622

9.8 Compiling LARRAY to LARRAYx64
. 629

9.9 Compiling LFLOAT to LFLOATx64
. 635

9.10 Optimizing Generating Assembly . 645

viii

10.1 Memory Allocation . 651
10.2 Reference-Counted Garbage Collection 661

11 Event-Driven Programming 667
11.1 Concurrent Programming . 667
11.2 Multi-threading and Garbage Collection 698
11.3 A Powerful Garbage Collector . 705

Epilogue 707

Environment and Code Setup 709

Graphics Library Source Code 723

Assembly Environment Setup 729

Bibliography 729

Index 735

10 Memory Management 651

ix

List of Figures

2.1 Truth Table of Proposition ‘p’ . 15
2.2 Truth Table of ‘¬p’ . 15
2.3 Truth Table of ‘p ∧ q’. 16
2.4 Truth Table of ‘p ∨ q’. 16
2.5 Truth Table of ‘p→ q’. 17
2.6 Truth Table of ‘p↔ q’. 17
2.7 Evaluation Tree of ‘¬r ∨ ¬((p ∧ q) ∧ (¬r ↔ ¬p))’ 18
2.8 Parse Tree of ‘2 + 4 · 3’ . 19
2.9 Ambiguous Parse Tree of ‘2 + 4 · 3’ . 19
2.10 Base Ten and Base Two Equivalents from Zero to Seven 47

3.1 Example of “Undo” Event Stack in Text-Editing Program 56
3.2 Example of Printer Task Queue . 56
3.3 Mapping of names to ages. 57
3.4 Example of Binary Tree. 58
3.5 Illustration of Graph G1 . 58
3.6 Illustration of Graph G2 . 59
3.7 Illustration of Graph G3 . 59
3.8 Adjacency List for G1 . 60
3.9 Adjacency List for G3 . 60

4.1 Partial Grammar for S-V-O Language 62
4.2 Complete Grammar for S-V-O Language 62
4.3 (EBNF) Grammar for Prefix Notation Arithmetic Expression Language 64
4.4 Light Switch Encoded as Finite Automaton 65
4.5 Complete Light Switch Encoding as DFA 66
4.6 Finite Automaton Accepting Odd Binary Strings. 66
4.7 Finite Automaton Accepting String Multiples of aaa. 67
4.8 Finite Automaton Accepting Substrings of a or bb. 67
4.9 Finite Automaton Accepting Integers. 68
4.10 Finite Automaton Accepting Decimal Numbers. 68
4.11 Finite Automaton Accepting Infix Expressions 69
4.12 Finite Automaton Accepting Some Keywords. 70
4.13 (EBNF) Grammar for Postfix Notation Arithmetic Expression Language 73
4.14 Parse Tree of ‘(1 (23 41 ·) +)’ . 73
4.15 Parse Tree of ‘((9 8 +) (17 81 −) ·)’ . 74
4.16 Abstract Syntax Tree of ‘((9 8 +) (17 81 −) ·)’ 74

xi

5.1 Linked List Example with Annotated Struct Fields 117
5.2 Midpoint-Riemann Approximation of a Function 141
5.3 Right-Riemann Approximation of a Function 141
5.4 Praying Mantis . 148
5.5 No Red Channel . 148
5.6 Negative Image . 148
5.7 Grayscale Image . 148
5.8 Red & Green Swapped . 148
5.9 Green & Blue Swapped . 148
5.10 Mirror Along y-axis . 149
5.11 Mirror Along x-axis . 149
5.12 Brightness −50 Decrease . 149
5.13 Contrast 2X Increase . 149
5.14 Clockwise Rotation . 150
5.15 Four Cloclwise Rotations . 150
5.16 Colored Mandelbrot Fractal . 153
5.17 EBNF Grammar for “Helpful Productions” 160
5.18 EBNF Grammar for LPF1 . 160
5.19 Abstract Syntax Tree of Arithmetic S-Expression 166
5.20 Extended BNF Grammar for LPF2 . 186

6.1 Extended BNF Grammar for LCOND1 198
6.2 Extended BNF Grammar for LCOND2 200
6.3 Extended BNF Grammar for LCOND3 202
6.4 Extended BNF Grammar for LLOCAL 214
6.5 Environment Extension within let* Binding Expressions 218
6.6 Extended BNF Grammar for LPROC1 220
6.7 Collision Detection Between Rectangles. 228
6.8 Extended BNF Grammar for Haskell-esque Lambda 228
6.9 Exponential Recursive Blowup of Fib(9) 231
6.10 Extended BNF Grammar for LLETREC 232
6.11 Extended BNF Grammar for LCHAR . 237
6.12 Extended BNF Grammar for LSTRING 239

7.1 Extended BNF Grammar for LQUOTE 253
7.2 Extended BNF Grammar for LLIST . 255
7.3 Extended BNF Grammar for LQUASI 268
7.4 Extended BNF Grammar for LVARIADIC 274
7.5 Extended BNF Grammar for LEVAL . 282
7.6 Examples of Schemata in CNF . 327
7.7 Negation of Quantifiers . 333
7.8 Negation of Quantifiers . 333
7.9 Merge Sort Illustration . 348
7.10 Trie Derivation of “Peter Piper picked a peck of pickled peppers”. 351
7.11 Trie Derivation of “Hungry Harry alphabetizes his alphabetic soup with

alphabet letters” . 352
7.12 Trie Derivation of “Hungry Harry alphabetizes his alphabetic soup” . . 352
7.13 Simple DFA Example #1. 357

xii

7.14 Simple DFA Example #2. 361
7.15 Simple DFA Example #3. 362
7.16 Case Analysis Operations in L∗TURING 364

8.1 Extended BNF Grammar for LSET . 391
8.2 Execution Environment Trace of Listing 8.9 395
8.3 Extended BNF Grammar for LBEGIN 403
8.4 Extended BNF Grammar for LOUT . 406
8.5 BNF Grammar for L∗ASM . 428
8.6 Extended BNF Grammar for LVECTOR 466
8.7 Extended BNF Grammar for LLIB . 477
8.8 Pictorial Representation of the Graph G1 481
8.9 Pictorial Representation of the Graph G2 485
8.10 Pictorial Representation of Complex Graph 486
8.11 College Building Keycard Access Graph 489
8.12 College Computer Science Course Prerequisites 490
8.13 Directed Acyclic Graph Example . 490
8.14 Extended BNF Grammar for LLOOP . 510
8.15 Extended BNF Grammar for LMACRO 517
8.16 Extended BNF Grammar for Simple Programming Language 562
8.17 Typing Rules for the Simple Programming Language 562
8.18 Fractal Tree and Colorful Spiral . 567
8.19 Spiral Star and Yarn Ball . 567
8.20 Turtle Listing 8.400 Graphical Output 571

9.1 Extended BNF Grammar for L−PF1 . 595
9.2 Extended BNF Grammar for LPF1 . 601
9.3 Extended BNF Grammar for LPF2 . 604
9.4 Extended BNF Grammar for Arithmetic Operators 609
9.5 Extended BNF Grammar for L−COND . 610
9.6 Extended BNF Grammar for LCOND . 615
9.7 Extended BNF Grammar for L+

COND . 617
9.8 Extended BNF Grammar for L−PROC . 619
9.9 Extended BNF Grammar for LPROC . 622
9.10 Mapping of Argument Positions to Registers 622
9.11 Extended BNF Grammar for LARRAY 629
9.12 Extended BNF Grammar for LFLOAT . 636

11.1 Factorial Function Performance on 2021 MacBook Pro 706

xiii

Preface

In July 2021, I had the privilege of meeting Dan Friedman, an esteemed figure in the
realms of theoretical computer science and programming languages. Our encounter
opened the door for me to delve into the realm of functional programming, par-
ticularly in the context of Scheme. I concluded that the best approach to learning
Scheme was by implementing it myself. Thus, I embarked on the journey of crafting
a simple Scheme interpreter using Java, which, although functional, remained rudi-
mentary. Nevertheless, my affection for the language continued to blossom. Despite
being content with the initial version of the interpreter, I made the daring decision
to rewrite the entire project in C, an undertaking brimming with both excitement
and peril. Drawing inspiration from Dan Holden’s remarkable work, Build Your
Own Lisp, and his exceptional parser combinator library, I undertook the task of
reconstructing a Scheme in the C language.

Why should you, as the reader, care about all of this? It led me to a profound re-
alization that certain subjects within theoretical computer science, such as language
design and implementation, are often inaccessible to beginners without significant
programming experience. I found myself pondering, “How can I make these con-
cepts approachable for those new to this field?” and “What steps can I take to
showcase the awe-inspiring nature of computer science to readers?” Undoubtedly,
computer science can be intimidating and requires time to master. Some individu-
als may have the curiosity and drive to embark on this journey, while others may
initially fail to recognize or comprehend its allure. This book endeavors to enlighten
both these curious audiences and many more, introducing them to a world of design,
creativity, and boundless expression.

Prerequisite Knowledge

The primary target audience for this book is individuals who do not have a back-
ground in computer science. We assume that readers possess only high-school level
knowledge of algebra, and for the majority of the text, we relax the requirement
for trigonometry. While an interest in computing is preferred, it is not strictly nec-
essary, as we aim to cultivate that interest through each successive chapter. The
book is structured linearly, intending that readers progress from the beginning to
the end in most cases. Those with a background in discrete math or some aspects
of computer science, however, have the option to skip the first five chapters should
they so choose. Similarly, programmers proficient in C may skip Chapter 5.2. By
this point, our goal is that all readers are at least familiar with the topics presented,
thereby leveling the playing field, so to speak.

xv

Exercises

Practice makes perfect in computer science, which is why we supplement our
text with code listings and exercises, the latter of which range in difficulty using
the following scale:

• Exercises marked with one star (⋆) are “finger exercises”, meaning they can
be completed in either a few seconds or, at most, a couple of minutes. They
often involve writing one or two lines of code or a sentence derivation.

• Exercises marked with two stars (⋆⋆) are slightly more complex, as they may
entail defining a function or something that requires a bit more thinking, taking
around 5 to 15 minutes to complete.

• Exercises marked with three stars (⋆⋆⋆) are moderately difficult and may take
some time to understand and finish. Depending on the reader, this time may
be between 15 minutes and an hour. Large function definitions, or complicated
code, are common in this type of exercise.

• Exercises marked with four stars (⋆⋆⋆⋆) are the most challenging problems.
Significant thought must be invested into these exercises, but once complete,
demonstrate extremely high proficiency. Very large programs, multiple func-
tion definitions, and more are what lie ahead, taking multiple hours or even
(broken up) days to finish.

• Exercises marked with five gold stars (⋆⋆⋆⋆⋆) often introduce new concepts to
coincide with the presented task. While we present all the relevant material to
complete the problem, some outside references or resources may be necessary
to fully understand everything. Gold star problems are even harder than four
star problems, but they do not necessarily entail writing more code than the
latter.

Every exercise in this book is designed to be achievable for any reader and are
presented to stimulate creativity. We firmly believe in not writing exercises that
are overly (and perhaps unnecessarily) challenging and may demotivate learners. If
you find an exercise to be too difficult after making a genuine effort, feel free to skip
it and return to it later at your own pace.

Programming Environment

The majority of the code presented in this text is written in C (do not worry if
you are not familiar with C yet). As a result, all C listings are tailored to function
on MacOS and Linux operating systems, which regrettably excludes Windows users,
who form a significant portion of the audience. One possible workaround for Win-
dows users could be to utilize an online compiler, e.g., https://replit.com. In the
event that any readers have trouble setting up their coding environment, we pro-
vide a setup on replit containing all necessary files and packages. Appendix 11.3
describes how to get started with programming in C on MacOS, Linux, and the
replit sandbox.

xvi

Reading Tips and Tricks

In order to make the most of reading this book, it is important to approach it
with care and a deliberate pace. Remember, the words will always be there on the
page, and there is no rush to reach the non-existent finish line. It can be beneficial
to have a pencil or pen at hand to take notes in the margins. For digital readers,
using markup software to annotate the text can serve the same purpose. It is
not mandatory to code alongside the text, as doing so may potentially disrupt the
reading experience. At the end of each section, however, it is advisable to practice
with the code that has been provided, as it offers an opportunity for hands-on
learning.

The diction and punctuation throughout this book have been carefully chosen
and scrutinized. We introduce commas to break a sentence up into chunks, which
aid in conveying either a message or serve as to make the dialog more conversational.
Semi-colons, on the other hand, relate concepts together whose central idea would
be weakened if separated by a full-stop period. Colons are often accompanied
by an explanation, code listing, or exercise; they denote the significance of what
immediately follows the colon. Footnotes often provide further information about
a topic, reference a popular citation/author, or break up the text monotony. These
footnotes should not be ignored, and ought to be read as soon as you arrive at their
linking footnote index.

One Last Remark

Being a PhD student, I acknowledge that my teaching qualifications may be
deemed modest and subject to scrutiny. I sincerely hope that the absence of a
formal background, for now at least, does not diminish my aspirations for both the
audience and myself. In the process of imparting knowledge to my students, I am
constantly learning alongside them. Teaching is a deep-rooted passion of mine, yet
I firmly believe that learning is a perpetual skill that we can never truly master.

Have a blast!
Joshua Crotts

xvii

At J. Ross Publishing we are committed to providing today’s professional
with practical, hands-on tools that enhance the learning experience and give
read-ers an opportunity to apply what they have learned. That is why we
offer free ancillary materials available for download on this book and all
participating Web Added Value™ publications. These online resources may
include interac-tive versions of the material that appears in the book or
supplemental templates, worksheets, models, plans, case studies, proposals,
spreadsheets and assessment tools, among other things. Whenever you
see the WAV™ symbol in any of our publications, it means bonus materials
accompany the book and are available from the Web Added Value Download
Resource Center at www.jrosspub.com.

Downloads for Principles of Computer Science include the Library of
Congress Cataloging-in-Publication data and information on a GitHub
repository featuring instructional material for classroom use (lecture slides,
exercise solutions, etc.).

xix

1 A Computing Mindset

Any sufficiently advanced technology is indistinguishable from magic.

—Arthur C. Clarke

1.1 Computer Heuristics

And magic, it is! Or... is it? Instead of going straight to ones and zeros, let us take
several steps back in an attempt to look at these fantastic machines with the critical
eyes of a careful spectator in a magic show. As we watch the wondrous tricks and
disappearing elephants,1 we will examine how we got there and how much of that
magic can be mastered through many different methods. To this end, we will use
a descriptive approach to explore the nature of a computer, its functions, and the
manner in which it operates.

A Filing System

Remember those big-old filing cabinets? Perhaps you are too young for that. You
might have seen them in movies at some point. Regardless, imagine for a second you
are in the 1950’s equipped with no digital computers.2 Every aspect of your day-
to-day life, both significant and otherwise, involves laborious manual accounting for
your self-established retail business.

Your company has various employees: sales people, front-desk assistants, general
managers, and so on. Every single employee has a file in your main filing system.
Each file has information on it such as the employee’s name, their address, their
general salary, commission rate, etc. We will call that information data.

1Perhaps “elephant” is an ill-phrased metaphor for some magical phenomena.
2The term computer was first used in ”The Yong Mans Gleanings”, where it referred to an individual

who performed monotonous mathematical calculations [Braithwaite, 1613]. In the early 20th century,
to support the effort towards the United States’ involvement in World War II, women were hired as
computers for this very task, often overshadowed by their male counterparts [Smith, 2013].

1

1.1 Computer Heuristics 2

Every month, you must compute your general expenses. You gather your ac-
counting team to meticulously examine each file, adding up the general salaries of
all employees. For sales personnel, they locate an additional file containing monthly
sales information, including the salesperson’s name and the amount sold. Account-
ing then applies the commission rate from their records, multiplying it by the sales
figure. Voila! They record each employee’s total in a substantial accounting book,
calculate the sum, and that becomes your general expenses. The same process is
more or less followed for revenue, but you can imagine that part. This repetitive
task is carried out month after month.

Now, just picture for a moment that you are presented with a new employee.
This individual possesses extraordinary speed—five times faster than your entire
accounting team. It seems magical! There is one predicament, however: this em-
ployee lacks intelligence. To enable them to adequately perform the job, you must
meticulously document every single task they need to carry out.

An Algorithm

On its first day at work, your faster-than-human employee sits at a desk and finds
this on a notecard:

1. Go to the second floor.

2. Open the cabinet that reads: “Employees”

3. For all cards in the “Employees” cabinet, write down, in the accounting
book, their name in the first column and their salary in the second column.

4. If the employee is a salesperson, find the monthly sales book.

5. Look up the total sales for that employee and multiply that number by the
employees commission rate on their card.

6. Sum the result with their base salary and write down the total value next
to their name in the accounting book.

7. When you are done with all the employees in the cabinet, sum all of the
payments and write down that number as the last entry in the accounting
book.

This, as simplified as it can be, is an algorithm: A set of well-established in-
structions that can be performed potentially repeatedly by your employee. Once
written down, it can be interpreted in a way that, in the end, produces a desirable
result, assuming it is clearly written.1

1A “clearly written” algorithm is one that is unambiguous. The unplugged “peanut butter and jelly
sandwich” (wherein students write a meticulous algorithm that a computer might use to construct a
peanut butter and jelly sandwich) project is an excellent introduction to this idea.

2

3 A Computing Mindset

Now, is this not delightful? We not only save precious time, but our employee
becomes more cost-effective. But why stop there? Picture this: your staffing agency
presents you with an even faster employee. This individual is absolutely astonish-
ing, approximately ten times swifter than your previous superhuman staff member.
Quite appealing, right? There is just one small snag: this new addition lacks
knowledge of division and multiplication. Their speed, however, is unparalleled–
truly remarkable. This employee can retrieve information so rapidly that you are
contemplating breaking down your algorithm even further! All you need to do is
create lookup tables for multiplication. Even better, you can define multiplication
as the consecutive addition of a number to itself. For example, 3 times 5 is sim-
ply 5 + 5 + 5. So, now you proceed to devise a methodology for explaining how
multiplication works to your new employee. Perhaps something like what follows:

To multiply two numbers a and b together, do the following:

1. Look up the multiplication table for a.

2. Find the value where it crosses b in the table.

3. Get result.

This would be pretty easy for the new employee. After all, they are really fast
at looking things up. An alternative would be:

To multiply two numbers a and b together, do the following:

1. Get the larger number and add to itself as many times as the smaller
number.

This is a solution that involves just adding the number, your new employee
knows how to add, and does it fast!1 Now, we have simplified this as an example,
but the ideal trajectory should be clear.

Our next call from the staffing agent promises the impossible. There is a new
guy; one with, dare we say, unrivaled potential. Nearly as fast as the speed of light,
things for this magical creature happen basically instantaneously. So you are asking
yourself: “What is the catch?” Well, the new employee does not know how to read.
In fact, it cannot derive meaning out of anything. All your previous algorithms are
no longer useful, but you must, somehow, tap into this employee’s power!

A Computer Language

The staffing agency informs you that this new individual excels at information
retrieval and basic operations, given the right set of instructions. Moreover, they
have no need for rest or sustenance, nor do they require a salary. Allow us to explain
how this particular employee functions.

1We will ignore the complexities of determining the “largest” of two numbers for the time being and
assume the new employee understands this concept.

3

1.1 Computer Heuristics 4

Firstly, they possess the ability to look up information. Secondly, they can store
a limited amount of data in their memory. Thirdly, they are capable of performing
basic arithmetic. It is important to note, though, that their knowledge is restricted
to only eight digits.

At this point, you might express concern regarding the limitations of such a
narrow numerical range. How could they possibly accomplish anything with only
two eight digits?

Rest assured, the staffing agency states, with utmost confidence, that they have
a solution. All you need to do is codify your filing system in a way that enables the
employee to navigate and identify the desired information. For instance, you can
devise a system where the first two digits indicate the floor of a file, the following two
digits indicate the room, and the last four digits indicate the cabinet. Admittedly,
this system, even for the most astute among us, is not the most optimal 8-bit
system. Nevertheless, it allows you to encode your files accordingly. The first two
numbers can represent the department to which the file belongs, and so on. You
can easily envision where this is leading.

At this point you may starting to convince yourself that maybe this poor fool
of a machine can actually be useful. You think, to yourself: “if all I need to do is
codify my file system and algorithm, then this can work!”

So you start codifying your file system; that was easy. You then start writing
instructions.

1. Go to 00010100

2. Go to 00000101

3. Put value of 00100010 in Memory 0

4. Go to 01001000

5. Go to 00010000

6. Put value of 00100011 in Memory 1

7. Add value in Memory 0 to value in Memory 1.

8. Write result in 00000100

You look at it with a puzzled gaze. You do not remember what any of these 1’s
and 0’s mean. You tell yourself: “this will not work; how can any one keep track of
any of this? It is impossible!”

Along comes Alice, who is your smartest employee. She’s been working at the
company for many years and she is on track to be its newest CEO next year. She
informs you that this can work; all you need to do is to make this thing readable
and devise a way where the readable bit can be turned into this primitive set of
instructions for your new machine.

4

5 A Computing Mindset

Alright, fasten your seat-belts because the adventure is about to begin! What
you’ve read so far was just a prelude to the exciting journey that lies ahead. It
is not simply about employees racing through a company’s building or the basic
functions of computers; it is a thrilling exploration of the intricate world of comput-
ers and how they shape our lives. Let us make one thing clear: computer science
goes beyond the physical machines; we dive deep into programming language de-
sign, unraveling its mysteries alongside the underlying mathematics. We embrace
the challenges, unearthing the secrets of computation and pushing the boundaries
of what is possible. So, get ready to embark on this epic adventure where the
foundations of computer science and its theoretical concepts blend harmoniously
with practical applications. Brace yourself for a wild ride, as we delve deeper into
uncharted territories and satisfy your thirst for knowledge with each turn of the
page.

5

2 A Logic Primer

Science is not a substitute for common sense, but an extension of it.

—Willard Van Orman Quine

2.1 Zeroth-Order Logic

What is logic? A general definition is the use of reasoning to determine the truth-
fulness of some claim. For instance, it is logical to close the refrigerator door after
opening it and retrieving your desired items because if we did not, the cold temper-
ature is no longer encapsulated, leading to some foods or ingredients going bad. We
can simply say something to the effect of, “If I do not close the refrigerator door,
my food will go bad.” This is known as an argument involving deductive reasoning.
In other words, we used a form of reasoning which involves premises that lead to, or
imply, a conclusion. For this small example, it is easy to understand the reasoning
behind the argument. What happens, though, if we create a larger and more com-
plicated argument? Suppose that, in the following example, each itemized bullet
point is a proposition to an argument (note that we will examine the argument in
greater detail later in the chapter—we introduce it here as motivation).

• Janet goes to university.

• If someone is a mathematician, then they have a lot of experience with using
computers.

• Janet does not know how chemicals interact if she is not a chemist.

• Janet is either a chemist or a mathematician if Janet goes to university.

• Janet goes to university as a computer science student.

• Janet is a chemist if and only if she is not a mathematician.

• Therefore, Janet does not know how chemicals interact.

We analyze logical arguments through two lenses: validity and soundness. An
argument that is valid has premises that logically imply the conclusion. Though,
what is a premise and conclusion, and what in the world does the phrase “logically
imply” mean?

7

2.1 Zeroth-Order Logic 8

Form of an Argument

Firstly, statements that express a true or false claim/idea are propositions. For
example, “The sky is blue”, “2 + 2 = 5”, “If (n)2 = 4 then n is either −2 or 2”. A
proposition can be either true or false, but it must be a statement as opposed to an
exclamatory, command, or question, as these do not have associated truth values.1

Premises are propositions that support an argument claim. In other words, a
premise expresses truth or falsity. Conclusions, similar to premises, also express
the truth of a claim, but serve as a judgment to the claim as a whole. A collection
of premises either support or reject the judgment asserted by a conclusion. Such
support is called a logical implication of a premise to a conclusion.

Before we discuss what it means for one premise to logically imply another, we
must describe the notion of truth values. A truth value takes the form of true,
i.e., ⊤, or false, i.e., ⊥. Because of this, any proposition will, by default, have two
possible values: ⊤ or ⊥. As a corollary point, all propositions are either true or
they are not true. As an example, “Either 2+2 = 5 or 2+2 ̸= 5”. In this example,
the proposition is “2 + 2 = 5”. This is clearly an absurdity, i.e., 2 + 2 = 5 is ⊥,
but for the purposes of this claim, it does not matter, as it is true that 2 + 2 ̸= 5,
and false that 2 + 2 = 5. This style of argument is otherwise known as the law of
excluded middle.

Defining truth in such a bivalent respect is a problem rooted deep in philosophy.
Alfred Tarski coined the idea of using schemata, or formulae of our logic language,
to provide a differentiation between the use of truth as a literal versus truth in the
conceptual sense. In a broad sense, we state a claim in our language, then it is
provided a truth value from our metalanguage. The classic example is, “Snow is
white” is true if and only if snow is white.

In this text, we will represent propositions as lower-case letters, e.g., ‘p’, ‘q’, ‘r’,
. . ., ‘z’.2 To symbolize the above claim, let p : “2 + 2 = 5”. Now, let us substitute
this into our statement: “Either p or 2+2 ̸= 5”. We have run into a small roadblock;
how do we represent the negation of a proposition? Negating propositions requires
a connective, which we will now explain.

The Connectives

Every day we use connectives in our speech or text without realizing. Connec-
tives link related phrases/words/ideas together with the intent of strengthening or
weakening expressed statements.

1If this does not make sense so far, think of a command that you might tell someone, e.g., “Go to
the store and buy a loaf of bread”. Is it possible to express the truthiness of this command and, if so,
what is it? Another example might be to ask someone, “What time is it?”. How can a question, in and
of itself, be true or false?

2Different authors describe different notation(s), or syntax, to represent the same semantic idea.

8

9 A Logic Primer

Negation

In most instances, for any proposition ‘p’, it is safe to use the phrase, “It is not the
case that ‘p’ is true”, to represent the logical negation of ‘p’. This is rather cum-
bersome to spell out, however, so we symbolically use ‘¬p’ to denote the negation
of proposition ‘p’. Now, let us retry our substitution method from earlier: “Either
‘p’ or ‘¬p’ is true”. Note that ‘¬p’ denotes “It is not the case that 2 + 2 = 5 is
true”, which is semantically equivalent to 2 + 2 ̸= 5 (we may read this as “Two
plus two is not equal to five”), but even this is still a bit awkward to read as we are
intertwining logic and proposition symbols with English statements.

The issue with negation in natural language is that, often times, sentences do
not have a straightforward binary conversion between non-negation and negation.
For instance, suppose we have the two propositions, “Bob is happy”, and “Bob is
sad”. Could we say that the latter is a mere negation of the former? In this case,
we have to analyze what it means to be “not happy”. Someone who is not happy
may not necessarily be sad; they may be angry, neutral, or many other emotions.
All we can express from the proposition that “Bob is happy” is that its negation
is, “Bob is not happy”, or equivalently as aforementioned, “It is not the case that
Bob is happy”.

English Equivalents. As we stated, negation in natural language is complicated at
best and ambiguous at worst. Some equivalents of “negation” in natural language
include “not” and “it is not the case that”. Continuing with the explanation from
the previous paragraph about converting a proposition into its negated counterpart,
if we have the phrase “Bob is happy”, we cannot prefix the phrase “happy” with
“un-”, as it does not indicate the negation of “happy”. Furthermore, as we will see
later on, negating quantified statements is also challenging. Suppose we have the
following proposition: “Everyone is happy”. Can we negate this by saying “Nobody
is happy”? No, we cannot; the negation of “Everyone is happy” would be “It is
not the case that everyone is happy”, or more concisely, “Everyone is not happy”.
This suggests that there is someone that is not happy, but it does not suggest
that nobody is happy. Negating statements takes practice and an understanding of
English semantics.

Disjunction

“Either. . . or. . .” is the form of the first binary, or two-place, connective we will
analyze. Symbolically, we represent this with ∨, also known as logical disjunction
or alternation. Other non-symbolic representations of disjunction include, “or”.
Returning to the prior example, we can now use symbols to fully convert the previous
example to symbolic logic: ‘p ∨ ¬p’.

9

2.1 Zeroth-Order Logic 10

English Equivalents. Logical disjunction, as we stated, is most often conveyed in
the word “or”, e.g., “Jill may have cake or ice cream”. Sometimes, it is implicitly
used as part of an enumeration of choices, e.g., “Jill may have one of ice cream,
cake, or donuts”. There are other equivalents such as “otherwise” and “alternative”,
all of which convey inclusivity. Interestingly enough, in common speech, logical
disjunction is often used in the exclusivity sense, i.e., a choice between options is
mandatory, and nothing in between is permitted. In logic, we convey exclusive
disjunction (also called exclusive or) commonly using “Either p or ‘q’ but not both
(and not neither)”. In a purely logical interpretation of propositions, however, both
‘p’ and ‘q’ being true is allowed. Considering one of the examples from before, if
Jill has both cake and ice cream, this still expresses a true proposition, because
they had at least one of cake and ice cream. If we introduce exclusivity via “Jill
may have either ice cream or cake, but not both (and not neither)”, if Jill has both
desserts or neither of the desserts, the proposition is false.

Conjunction

Next, we will discuss conjunction, or the connection of propositions with non-
symbolic words such as “and” and “but”. A logical conjunction between schemata
expresses the idea that each schema individually must be true in order for the con-
junction to resolve as true. For example, consider the schemata ‘p’ and ‘q’. If we
know that both ‘p’ and ‘q’ are individually true, then we can say ‘p ∧ q’ is true.
Conversely, if either ‘p’ or ‘q’ are false, then ‘p∧ q’ is false. Symbolically, as we just
demonstrated, this connective uses the inverted wedge (∧) to designate a logical
conjunction.

English Equivalents. English equivalents of logical conjunction are used frequently
in day-to-day speech. For example, “Steve is a cook and a swimmer” is a conjunc-
tion between the two propositions of Steve being a cook and Steve being a swimmer.
Adverbs such as “additionally” and “moreover”, in general, express the same idea as
logical conjunction. So, “Steve is a swimmer. Additionally, he is a cook”, and “Steve
is a swimmer. Moreover, he is a cook” express semantically-equivalent propositions.

Example. Suppose we want to represent the statement, “John is a computer science
major and Billy does not like to fish”. Again, we assign the propositions to letters,
e.g., p :“John is a computer science major”, and q :“Billy does not like to fish”.
right? Not quite, in this scenario. When negating a schema, we use the ¬ symbol,
e.g., ‘¬q’. If we assign ‘q’ as we did, then there is no negation on the propositional
letter. While this is not incorrect, it is correct and widely accepted to always assign
the positive version of a proposition to a letter. Thus, instead, q :“Billy likes to
fish”, meaning when we attach a negation to the proposition via ‘¬q’ we get the
statement, “It is not the case that Billy likes to fish”, one that is semantically
equivalent to the original. Finally, the symbolic logic expression is ‘p∧¬q’ since we
must conjoin the two sub-schemata.

10

11 A Logic Primer

Logical Conditional

The logical conditional operator is the most complex connective that we will inves-
tigate in zeroth-order logic. Its semantic meaning in context is not always obvious.
Conditionals are used in sentences where the following phrases exist: “if”, “only
if”, “then”, and “implies” (note that, as before, this is a non-exhaustive list of
hints). Symbolically, this connective uses an arrow (→) to designate a logical con-
ditional. A point should be made about a logical conditional and its semantics:
Logical conditionals are created, as we stated, with the arrow, e.g., ‘p→ q’. Logical
implication, on the other hand, is a related concept but requires its own descrip-
tion: it ascribes the truth conditions between a collection of schemata and another
individual schema. In summary, logical implication explains, in our system, how
propositions imply one another, whereas the logical conditional (also sometimes re-
ferred to as the conditional with the “logical” dropped) is nothing more than a new
syntactic connective.1 We will use logical conditional in the following example.

English Equivalents. Conversion of the logical conditional into speech is more
difficult because of its obtuse and confusing meaning. It is still possible, though, to
translate using phrases such as those mentioned above. Time-based or action-based
adverbs are also sometimes indicators of a conditional. “Whenever Joe is cooking,
he smiles” expresses the idea that if Joe cooks, then he smiles. “When”, “Given
that” and “In the case of” all share the same sentiment of the conditional.

Example. Suppose we want to convert the following sentence into symbolic logic:
“Katherine is not good at tennis only if she does not practice and she is not
motivated to play”. Let us first symbolize the propositions: We will assign the
proposition p : “Katherine is good at tennis”, q : “Katherine practices tennis”, and
r : “Katherine is motivated to play tennis”. Notice how we took some liberties in
substituting pronouns for names, as well as adding details to clarify the proposi-
tions. This is always acceptable and desired in symbolic logic; as long as it remains
semantically equivalent to the original proposition, any translation is valid.

1Another way of reasoning about these contrasting ideas is to take two arbitrary schemata ‘p’ and
‘q’, then stick a conditional in between, i.e., ‘p → q’. The existence of a logical conditional does not
guarantee, or even necessarily suggest, that ‘p’ implies ‘q’. Once we get to truth conditions, we will
better understand why this is the case.

11

2.1 Zeroth-Order Logic 12

Logical Biconditional

Logical biconditional is often paraphrased as, “. . .if and only if. . .”, “just in case”,
“iff”, and symbolically represented as, ↔ (note that this should not be conflated
with “if” and “only if”, as there is an important distinction with “if and only
if”). For example, “Computers are necessary if and only if they are used by
everyone in the world” uses the propositions p : “Computers are necessary” and
q : “Computers are used by everyone in the world”. Symbolically, ‘p↔ q’. The im-
portant piece of this is hidden by the syntactic sugaring of↔; in actuality, a bicondi-
tional is nothing more than the conjunction of two conditionals: ‘(p→ q)∧(q → p)’.
In other words, two propositions must imply one another in order to represent a
logical biconditional. Each sub-component of the expression, i.e., ‘(p → q)’ and
‘(q → p)’, corresponds to either the “if” or the “only if”. The left-hand side rep-
resents “if”, whereas the right-hand side represents “only if”. We can, of course,
convert any “if” expression to an “only if”, although it may not be a valid expression
at that point.

English Equivalents. Compared to other connectives, the biconditional is a bit
harder to find variants of, besides the standard “if and only if”. We want to use
phrases that express equivalence of two ideas. So, “is equivalent to”, “exactly
when”, and “necessary and sufficient” are good replacements for a biconditional in
speech. The last example exemplifies the nature of the biconditional. That is, a
proposition ‘q’ being necessary for ‘p’ is expressed by ‘p→ q’, whereas a proposition
‘q’ being sufficient for ‘p’ is expressed by ‘q → p’. Combining these together with
a conjunction forms ‘(p → q) ∧ (q → p)’. A property of the biconditional is its
slight ambiguity in mathematical proofs. The phrase “if and only if” may seem to
connect directly with the previous schematization, but this is not the case. ‘p→ q’
expresses, “q if p”, or, “p only if q”. This means that the left-hand side of the
conjunction is, in actuality, the “only if” direction of the conditional, and the right-
hand side refers to the “if” direction. Another interpretation of this is to say that
the “if” refers to, “if p, then q”, which suggests the ordering of the connectives
is correct. Either way, because logical conjunction is commutative (i.e., ‘p ∧ q’ is
equivalent to ‘q ∧ p’), it matters not so much.

So, returning to the previous example, we now know what “only if” is symboli-
cally, so we can convert the entire sentence into symbolic logic: ‘(¬q ∧ ¬p) ∧ ¬r’.

12

13 A Logic Primer

Ambiguous Expressions

We can complicate things slightly by adding ambiguity into the equation. For ex-
ample, let us convert the statement, “Samantha does not play video games or Ryan
is a server and Paul is a pianist” into zeroth-order logic. Right away, we find an
issue with our translation process: Firstly, there are three propositions instead of
two. Thankfully, this does not hinder our progress significantly. What does, on
the other hand, is the ambiguity of the expression. Similar to rules for operator
precedence and associativity for basic mathematical operations such as addition
and subtraction, logical connectives also have precedence values: We evaluate nega-
tions first, conjunctions second, disjunctions third, logical conditionals fourth, and
biconditionals last. With this guideline in hand, we can now schematize the English
sentence.

Example. Suppose p : “Samantha plays video games”, q : “Ryan is a server”, and
r : “Paul is a pianist”. Symbolically, this is equivalent to, ‘¬p ∨ (q ∧ r)’. According
to our precedence rules, we evaluate the conjunction, i.e., “and” before “or”. So,
while it is not strictly necessary in this case since we laid out precedence rules, not
all sources on symbolic logic provide a precedence list. In these instances, much
like mathematical expressions, we insert parentheses to denote that an operator
evaluation has higher priority. For example, ‘¬p ∨ (q ∧ r)’. For completeness, we
can insert outer parentheses to group ‘¬p’ and ‘q ∧ r’ with the ∨ operator, but it is
unnecessary: ‘(¬p ∨ (q ∧ r))’.

Converting entire arguments, instead of individual sentences containing proposi-
tions, is fortunately very simple. The premises of a valid argument, when conjoined,
imply the consequent. Sound arguments are both valid and have only true premises.
We will construct a model for arguments. Let A(P, c) denote an argument A with a
collection of premises AP and a conclusion Ac. So, suppose we have an argument A
such that AP = {a, b} and Ac = c.1 An argument can have zero or more premises,
but it must have a conclusion. Thus, A is logically valid if and only if ‘(a ∧ b)→ c’
is true. In a later section, we will investigate what it means for a proposition to be
true or false.

We finally have all the tools necessary to convert the argument on page 21 into
symbolic logic.

Example. Let p : “Janet knows how chemicals interact”, q : “Janet is a chemist”,
r : “Janet is a mathematician”, s : “Janet goes to university”. We need to iden-
tify our premise set and conclusion. The conclusion of an argument is, in many
instances, easy to identify if told outright. We can use conclusion word indicators,
e.g., therefore, so, hence, thus, and more. In the argument, we are told, “Therefore,
Janet does not know how chemicals react”. So, our conclusion is, symbolically, ¬p.
The remaining sentences are, as such, premises. Let us construct each premise piece
by piece.

(i) “Janet does not know how chemicals interact if she is not a chemistry student”
is represented as ‘¬q → ¬p’.

1What we allude to, in regards to the representation of AP , is called a set, and we will introduce
them in the next section of this chapter.

13

2.1 Zeroth-Order Logic 14

(ii) “Janet is either a chemistry student or a computer science student if Janet
goes to university” is represented as ‘s→ (q ∨ r)’.

(iii) “Janet goes to university and is a computer science student” is represented as
‘r ∧ s’.

(iv) “Janet is a chemistry major if and only if she is not a computer science major”
is represented as ‘p↔ ¬s’.

Now that we have schematized each premise individually, we can combine them
using the conjunction operator, then connect the resulting conjunction to the con-
clusion with the conditional: ‘((((¬q → ¬p)∧ (q ∨ r))∧ (r ∧ s))∧ (p↔ ¬s))→ ¬p’.
Neither the validity nor soundness of this argument are of concern to us for now;
we simply wanted to symbolize its premises and conclusion. The form of a symbolic
logic formula was also of no concern since we only had small sentences.

Inductively Defining Zeroth-Order Logic

In order to properly parse and evaluate large ones, to ensure no errors are made,
we need to inductively define valid expressions within our symbolic logic language.
An inductive definition allows us to build the components of our language, which
when combined together provide larger components.

1. All individual proposition letters, i.e., ‘p’, ‘q’, ‘r’, . . ., ‘z’ are symbolic logic
expressions.

2. If W is a symbolic logic expression defined by only a single proposition letter,
i.e., (1), then ¬W is a symbolic logic expression.

3. If W1 and W2 are symbolic logic expressions, then

(a) (W1 ∨W2) is a symbolic logic expression,

(b) (W1 ∧W2) is a symbolic logic expression,

(c) (W1 →W2) is a symbolic logic expression,

(d) (W1 ↔W2) is a symbolic logic expression.

4. If W is a symbolic logic expression not defined by only a single proposition
letter, i.e., (3), then ¬W is a symbolic logic expression.

With this inductive definition and construction plan, we can also simplify certain
expressions with redundant parentheses. For instance, we may omit the outer-most
parentheses in an expression. As an example, ‘((¬s ∧ p) ↔ ¬(q → ¬r))’ becomes
‘(¬s ∧ p) ↔ ¬(q → ¬r)’ with this omission. Moreover, we often use the terms
symbolic logic expression and schema interchangeably, which also holds true for
their plurals: symbolic logic expressions and schemata.

14

15 A Logic Primer

Truth Assignment and Truth Tables

What does it actually mean for two propositions to be joined by a connective? We
have seen quite a few examples of translation from English to symbolic logic, but
we need to ascribe a meaning to argument validity. We can do this through truth
values. Recall when we stated that all propositions are either true or false; verity
(truth) and falsity are representable via a construct known as a truth table. Suppose
we have a proposition ‘p’; its possible truth values are either ⊤ or ⊥. The left-hand
column in the table below demonstrates this, whereas the right-hand column shows
the result of an expression.

p p

⊤ ⊤
⊥ ⊥

Figure 2.1: Truth Table of Proposition ‘p’

Obviously, with a single proposition, the right-hand column is rather meaning-
less. What if we decide to use two propositions with a connective? When given a
slightly more complex expression such as ‘p ∨ q’, how do we know its truth value?

First, when drawing a truth table, it is imperative to draw n+1 columns, where
the first n columns correspond to how many distinct propositions are used in the
provided expression. Next, we need to have rows for each possible assignment ,
or interpretation, of truth values to each proposition. Because we only have two
possible input values for each proposition, this directly correlates to the number
of rows in a truth table, namely being 2n. Each row corresponds to a different,
distinct truth assignment.

First, let us cover the simplest operator: unary negation. A negation flips all
truth values of a proposition. Again, we use the ‘¬p’ to negate a proposition ‘p’.
Though, if we have more than one proposition to negate, e.g., if we wanted to negate
the expression ‘(p ∨ q)’, we place a large dash on the outside of said expression:
‘¬(p∨ q)’. This, appropriately, flips all truth values of the inner, nested expression.

p ¬p
⊤ ⊥
⊥ ⊤

Figure 2.2: Truth Table of ‘¬p’

Now we move into binary operators; or those operators that use two operands.
With logical conjunction, the expression is true if and only if both operands are true.
The idea is that, when we have two propositions combined with the conjunction
connective, we wish to express the idea that ‘p’ is true at the same time that ‘q’ is
true.

15

2.1 Zeroth-Order Logic 16

p q p ∧ q
⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊥ ⊥

Figure 2.3: Truth Table of ‘p ∧ q’.

Logical disjunction, or alternation, is true if and only if at least one of its
operands is true. The idea is that, when we have two propositions combined with
∨, we wish to express the idea that at least ‘p’ ought to be true or ‘q’ ought to be
true. So, if they are both false, then this idea is not expressed.

p q p ∨ q
⊤ ⊤ ⊤
⊤ ⊥ ⊤
⊥ ⊤ ⊤
⊥ ⊥ ⊥

Figure 2.4: Truth Table of ‘p ∨ q’.

Logical conditionals are true if and only if the antecedent, i.e., the left-hand
operand, is not true and the consequent is not false. Conditionals are a tricky
subject for many people, as the idea behind their meaning is unintuitive at first
glance, not to mention the conflation of logical implication versus the conditional.
Let us examine the rows which evaluate to true before the false row.

“⊤ → ⊤ evaluates to ⊤” should, hopefully, be self-explanatory. If we state that,
when some proposition, i.e., the antecedent, is true, another proposition, i.e., the
consequent, is also true, then it is true that if the antecedent is true, then the
consequent holds true.

“⊥ → ⊤ evaluates to ⊤” is a little trickier. Let us examine this with an example
using two propositions. “If 2 + 2 = 5 then 3 + 3 = 6”. Clearly, the antecedent is
false whereas the consequent is true. The expression, therefore, evaluates to true
because the conditional dictates only what happens when the antecedent is true;
not when it is false.

“⊥ → ⊥ evaluates to ⊤” is even trickier since both operands are false yet the
expression somehow results in truth. If a false antecedent implies a false consequent,
this suggests that, even though both expressions are false, it does not falsify the
entire conditional since the original antecedent never promised, so to speak, that the
consequent is true when the antecedent is false. As we have therefore demonstrated,
false implies anything, whether it be true or false, resolves to true.

We may now investigate the only false case of the conditional: “⊤ → ⊥ evaluates
to ⊥” is the second easiest truth assignment to understand. Our conditional is
somewhat akin to a promise, and by the antecedent being true alongside the presence
of a false consequent, we are suggesting that the antecedent does not, in fact, imply
the consequent. This is an absurdity, which falsifies the implicative.

16

17 A Logic Primer

A phrase to know about the relationship between the conditional and logical
implication is, “Implication is the validity of the conditional”. That is, a schema
implies another schema if the conditional asserts their validity.

p q p→ q

⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊤
⊥ ⊥ ⊤

Figure 2.5: Truth Table of ‘p→ q’.

Finally, logical biconditional is also known as logical equivalence. This alterna-
tive name provides insight into its results; the expression ‘p↔ q’ is true if and only
if ‘p’ and ‘q’ are identical in truth value.

p q p↔ q

⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊥ ⊤

Figure 2.6: Truth Table of ‘p↔ q’.

Like the conditional, the relationship between equivalence and the biconditional
is stated as, “Equivalence is the validity of the biconditional”. So, two schemata
are equivalent just in case the biconditional expresses valid of those schemata.

After combining these newfound truth tables together, we can evaluate the truth
of any expression defined within our logic language. We first, however, need to
establish a notion of the “main operator” of an expression.

Main Operator

The main operator of a schema is the last operator that we investigate when per-
forming a full truth analysis of the schema. Another definition is that the main
operator is the first-parsed operator when evaluating a schema constructed through
the inductive definition. What does this mean for us? Let us walk through an
example to see.

17

2.1 Zeroth-Order Logic 18

Let us determine the main operator of ‘¬r ∨¬((p∧ q)∧ (¬r ↔ ¬p))’. According
to our rules for evaluation, we evaluate parenthesized expressions first. Inside the
right-hand expression, i.e., ‘¬((p ∧ q) ∧ (¬r ↔ ¬p))’, we see a conjunction of two
expressions, one of which is another parenthesized expression, i.e., ‘(¬r ↔ ¬p)’. The
biconditional is broken down into two negated propositions, which resolve into their
non-negated counterparts. If we start to rebuild this expression, we can quickly find
the main operator. Combining the biconditional with the chain of conjunctions, i.e.,
‘p∧q’ gets us ‘(p∧q)∧(¬r ↔ ¬p)’. This is then negated as ‘¬((p∧q)∧(¬r ↔ ¬p))’.
Finally, we combine this with the disjunction operator where the left-hand operand
is ‘¬r’. Therefore the disjunction operator is the main operator.

Evaluation Trees

If we view the previous schema as an evaluation tree, it is even easier to understand,
since each operator is broken into separate components for evaluation. Each branch
describes a subexpression which, when combined via traversing up the tree, produces
either a valid sub-expression or the original expression.

¬r ∨ ¬((p ∧ q) ∧ (¬r ↔ ¬p))

¬r
r

¬((p ∧ q) ∧ (¬r ↔ ¬p))
(p ∧ q) ∧ (¬r ↔ ¬p)

p ∧ q

p q

¬r ↔ ¬p

¬r
r

¬p
p

Figure 2.7: Evaluation Tree of ‘¬r ∨ ¬((p ∧ q) ∧ (¬r ↔ ¬p))’

Evaluation trees break down the structure of something into sub-components
for further evaluation. In the context of zeroth-order logic schemata, we decompose
a schema in one of two ways: if the formula is negated, its subsequent formula is
stacked. Otherwise, it produces a branch into two further evaluation trees. In the
above example, the main operator is ∨, meaning it is split into ‘¬r’ and ‘¬((p∧ q)∧
(¬r ↔ ¬p))’. The left-hand side decomposes into ‘r’ because its main operator is
¬, indicating a stacked schema. After this, the left-hand parse tree can no longer
decompose, meaning we proceed to the right-hand side. The schema ‘¬((p ∧ q) ∧
(¬r ↔ ¬p))’, similarly, has a main operator of ¬, so we perform a similar operator
removal. From there, the main operator is ∧, indicating a branch with each sub-
schemata. This process continues until all branches cannot be further reduced.

18

19 A Logic Primer

We could also describe evaluation trees via parse trees. Parse trees are fun-
damental structures not only in computer science, but also other fields such as
(computational) linguistics, where parse trees provide the structure of sentences us-
ing parts-of-speech. Furthermore, parse trees express the contextual knowledge of
the composition of an input schema. As an example, we might parse an arithmatic
expression, e.g., ‘2 + 4 · 3’ as follows.1

exp

exp

exp

num

3

·exp

num

4

+exp

num

2

Figure 2.8: Parse Tree of ‘2 + 4 · 3’

Expressions exp are comprised of two expressions and an operator in between.
An exp can lead towards a num. In this example, the main operator so happens to
be ‘+’, meaning we add its left-hand expression 2 to its right-hand expression 4·3. Its
resulting value is, therefore, 14. Let us consider another approach: what is stopping
us from interpreting this as an expression whose main operator is multiplication?
Nothing at all! Let us see the parse tree for an expression with multiplication as
the last-to-evaluate expression instead.

exp

exp

num

3

·exp

exp

num

4

+exp

num

2

Figure 2.9: Ambiguous Parse Tree of ‘2 + 4 · 3’
1The word “parse” stems from the Latin phrase “pars orationis”.

19

2.1 Zeroth-Order Logic 20

From the above figures, we see that, if we change the order of evaluation, we get
a completely different answer than the one that is most likely intended.1 Evaluating
the expression as such gives us a value of 24. In due time, parse trees will reappear,
so if their purpose is not as clear at the moment as we hope, do not fret.

1“Intended” on the grounds that the standard order of operations, i.e., where multiplicatives are
evaluated before additives, apply.

20

21 A Logic Primer

2.2 First-Order Logic

In the previous section, we created propositions that represented a collective idea or
claim. We will quickly understand, however, that zeroth-order logic is rather weak
in comparison to first-order logic. As a motivating example, suppose we want to
represent the sentence, “All students go to college or school” in zeroth-order logic.
There is really only one way to do so; because the disjunction connective exists, we
can let p : “All students go to college”, and q : “All students go to school”. Sym-
bolically, the schema is ‘p∨q’. While this is feasible in our zeroth-order logic system,
there is no possible way of adequately representing a quantification of variables, e.g.,
“All students”, and therefore, we lose a large chunk of the semantics behind our
statement. First-order logic rectifies this with the introduction of predicates, as
well as three new connectives: the universal quantifier, the existential quantifier,
and the identity symbol.

A predicate is a statement that provides context to some input variable(s). For
example, we can let ‘S(x)’ represent the idea that some ‘x’ is a student. Similarly,
let ‘C(x)’ represent the idea that some x go to college. Finally, let ‘D(x)’ represent
the idea that some ‘x’ goes to school. Using predicates in this fashion, i.e., with
only one input variable is known as monadic first-order logic. Later, we will analyze
polyadic first-order logic, i.e., first-order logic where predicates use more than one
input variable.

The Quantifiers

Quantifiers are necessary in first-order logic for one reason: as their name suggests,
they quantify, or provide numeric amounts to, some entity. There are two powerful
quantifier connectives in first-order logic: the universal and existential quantifiers.

21

2.2 First-Order Logic 22

Universal

If we want to say, “All math majors are smart”, then we are quantifying the propo-
sition “math majors are smart” via “All”. In other words, every thing that is a
math major has the property of “smart”. Additionally, we may claim that “No
person who is not smart lives on Earth”, which quantifies the proposition “smart
people exist” via “No”. In other words, anyone that lives on Earth is smart. We
classify phrases and keywords as universal because they apply to an entire domain—
nothing is excluded. In mathematical and logic contexts, the phrase, “For all”, or
“For every” is often utilized as an English representation of the universal quanti-
fier . As an example, “For all integers x greater than one, x2 is greater than 2x”.
If we wanted to instead use symbols, this may be represented as “∀x ∈ Z such that
x > 1, x2 > 2x”.1 This symbolage is not reserved only for the phrase “For all”; it is
equivalently suited for “No”, “Every”, “None”, etc. One key rule-of-thumb is that,
when quantifying with a universal over some domain, use an implication to indicate
a relationship. We will show an example of where this falls apart soon. This may
seem obvious to some, but while the universal quantifier is rather straightforward,
it quickly descends into madness after introducing its existential counterpart. Be-
fore doing so, let us write a few examples of translating natural language universal
quantifiers into schemata.

Suppose we want to translate, “All intelligent beings are either from Earth or
from Mars”. We need three predicates: I(x) meaning x is an intelligent being, E(x)
meaning x is from Earth, and M(x) meaning x is from Mars. We need to express
that, anything we choose from our domain, i.e., what we quantify over, if that thing
is an intelligent being, then they are either from Earth or Mars. Thus we translate
the sentence into the schema ‘∀x(I(x)→ (E(x) ∨M(x)))’.

Let us consider an example of where not using an implication gets us into trouble.
Suppose we want to translate, “All cats and dogs can fly.” We need three predicates:
C(x) means x is a cat, D(x) means x is a dog, and F (x) means F can fly. Attempting
to translate this proposition using only a conjunction connective gets us the schema
‘∀x(C(x) ∧ D(x) ∧ F (x))’, which expresses an incorrect proposition; namely that
all things are cats and dogs and they fly. We, instead, should use the disjunction
operator with an implication to express that, if something is either a cat or a dog,
then it flies: ‘∀x((C(x) ∨D(x))→ F (x))’.

1The Z symbol denotes any integer. So, ∀x ∈ Z says, “for any integer” or equivalently “for every
integer”.

22

23 A Logic Primer

Existential

Unlike the universal quantifier whose scope is, as its name says, universal, the
existential quantifier is simultaneously more and less specific. Take, for instance,
“Not all cows have spots”. It is important to understand that this claim does not
say, “No cow has spots”, nor something akin; it merely states that there exists
a cow that does not have spots. What is more interesting about the existential
quantifier is its power in representing propositions. Take, for instance, there exists
an integer x such that x2 is greater than 2x. Symbolically, ∃x ∈ Z such that
x2 > 2x. Existentials do not express as strong of a statement as those expressed by
its universal counterpart; indeed, an existential ‘∃xP (x)’ states the existence of at
least one x that satisfies the predicate P . It does not, however, express that there
is only one x, or exactly one x; the existential quantifier does not, in and of itself,
denote an exact quantity of objects that satisfy a predicate. Therefore if we wanted
to translate the proposition, “Most people are smart”, we would use an existential
quantifier via ‘∃x(P (x)∧S(x))’, where S(x) means x is smart and P (x) means x is
a person. The determiners “Most”, “Many”, “Some”, “A lot”, “A”, “An”, “Any”,
all refer to the existential quantifier. “Any”, however, becomes confusing, as does
“every”, when combined into a conditional. Let us see what this means via two
examples.

First, suppose we want to schematize, “If Kate can solve any math problem,
then she can solve every math problem”. Of course, let k represent Kate, S(x, y)
to mean x solves y, and M(x) to mean x is a math problem. One may believe that
the use of “any” refers to a universal quantifier, resulting in ‘∀x(M(x)∧S(k, x))→
∀x(M(x) → S(k, x))’. This, however, is a tautological statement, because when
the antecedent is true, the consequent is never false. We could also equivalently
schematize this as ‘∀x((M(x) ∧ S(k, x)) → (M(x) → S(k, x)))’, since ‘∀x(P (x) →
Q(x))’ is logically equivalent to ‘(P (x) → ∀xQ(x))’. We should, instead, treat
this use of “any” as an existential quantifier, meaning that the proposition would
unambiguously express that, “If Kate can solve at least one math problem, then
she can solve every math problem”. Schematizing such a proposition results in
an existential quantifier in the antecedent: ‘∃x(M(x) ∧ S(k, x)) → ∀y(M(y) →
S(k, y))’. Note that the use of “any” in the antecedent suggests an existential
quantifier, but what happens if we place it in the consequent?

Suppose we want to schematize, “If Kate can solve every math problem, then
she can solve any math problem.” Using the same schematization of predicates, we
translate this as ‘∀x(M(x) → S(k, x)) → ∃x(M(x) → S(k, x))’, right? If we apply
the same idea insofar as using an existential quantifier for “any”, we express, yet
again, a tautology, but not for the same reason as before. It is true and hopefully
apparent that the schema ‘∀xP (x)→ ∃xP (x)’ is tautological, because if everything
satisfies P , then by definition, there is something that satisfies P . So, using an
existential in the consequent leads us to a weaker assertion than our original desired
proposition. We want to express that, because Kate can solve every math problem,
then she can solve any math problem, where any means that, given an arbitrary
math problem, Kate solves that problem. It should be clear that this is expresses the
same proposition as the antecedent, leading us to instead use a universal quantifier
in the consequent: “∀x(M(x) ∧ S(k, x))→ ∀x(M(x) ∧ S(k, x))”.

23

2.2 First-Order Logic 24

Identity

Suppose we have two constants in our domain representing the individuals Alan
Turing and Katherine Johnson as a and k respectively. We can definitively state
that a and k do not refer to the same entity, and symbolically, we say ‘¬(a = k)’.
Perhaps we want to represent the North Star as n and Polaris as p, and because we
know that the North Star is the same thing as Polaris, we write ‘n = p’.

Identity is a two-place predicate amongst variables and constants, as opposed
to symbolic logic expressions like the other (unary and binary) connectives. Let us
use identity inside a schema to show how it works: imagine we want to express the
proposition that anyone who is the best computer scientist, is Katherine Johnson.
To do so, we need a predicate C(x) to indicate that x is a computer scientist, a
predicate B(x, y), denoting that x is better than y.1 Our schema is, therefore,
‘∀x(C(x)→ ∀y((C(y) ∧B(x, y))→ x = k))’.

Identity is also useful for determining uniqueness amongst objects in our domain.
For instance, to say that there is at most one computer scientist, then we write
the following schema: ‘∀x∀y((C(x) ∧ C(y)) → x = y)’, which suggests that any
computer scientists that we choose from our domain must refer to the same computer
scientist.

To say that there are at least two computer scientists, then we need to instead
use existential quantification: ‘∃x∃y((C(x) ∧ C(y)) ∧ ¬(x = y))’, which suggests
that there are at least two computer scientists that we can poll from our domain
that do not refer to the same computer scientist.

Combining these ideas together allows us to represent exactness; suppose we
wish to express that there are exactly two computer scientists. We might use the
following schema: ‘∃x∃y((C(x) ∧C(y)) ∧ ¬(x = y)) ∧ ∀z(C(z)→ (x = z ∨ y = z))’,
which first states that there are at least two computer scientists, but follows this
with a restriction stating that any computer scientist chosen from our domain must
be (identical to) either x or y.

Finally, let us translate the proposition “Alan Turing is a computer scientist
who is smarter than Alonzo Church, but Katherine Johnson is the smartest” using
predicates S(x, y) to represent that x is smarter than y, and c to represent Alonzo
Church. We schematize this proposition as ‘(S(a, c) ∧ C(a)) ∧ ∀x(¬(x = k) →
S(k, x))’ (note that we do not express the propositions that Alonzo Church or
Katherine Johnson are computer scientists).

Inductively Defining First-Order Logic

Much like our definition for zeroth-order logic, we can inductively define first-order
logic schemata. Note that our first-order logic system uses constants and vari-
ables, whereas some textbooks and introductions to the material omit constants
altogether.

1There are, perhaps, arguments against our interpretation of someone being better than everyone
else to mean they are the best.

24

25 A Logic Primer

1. Variables are defined as t, u, v, . . . , z, t′, . . . , z′, but are themselves not symbolic
logic expressions.

2. Constants are defined as a, b, c, . . . , s, a′, . . . , s′, but are themselves not sym-
bolic logic expressions.

3. All predicates, i.e., A,B,C, . . . , Z,A′, . . . , Z ′, followed by one or more vari-
ables or constants wrapped in parentheses and commas are symbolic logic
expressions.

4. If W is a symbolic logic expression, then ¬W is a symbolic logic expression.

5. If W is a symbolic logic expression and ω is a variable, then

(a) ‘∀ωW ’ is a symbolic logic expression.

(b) ‘∃ωW ’ is a symbolic logic expression.

6. If W1 and W2 are symbolic logic expressions, then

(a) (W1 ∨W2) is a symbolic logic expression.

(b) (W1 ∧W2) is a symbolic logic expression.

(c) (W1 →W2) is a symbolic logic expression.

(d) (W1 ↔W2) is a symbolic logic expression.

7. If w1 and w2 are either variables or constants as defined in either (1) or (2),
then (w1 = w2) is a symbolic logic expression.

Once again, as we did with zeroth-order logic, we may drop the outer-most
parentheses of an expression given that it does not ambiguate said expression. For
instance, the schema ‘(∀x(∀y(P (x)→ ¬Q(y))) ∨ ∃zQ(z))’ becomes ‘∀x(∀y(P (x)→
¬Q(y))) ∨ ∃zQ(z)’. The scope of a quantifier extends over the schema to its im-
mediate right, meaning that the x bound by ‘∀x’ has scope over the sub-schema
‘∀y(P (x) → ¬Q(y))’. Consequently, we could remove the parentheses surround-
ing the ‘∀y’ quantifier, producing a semantically-equivalent schema: ‘∀x∀y(P (x)→
¬Q(y)) ∨ ∃zQ(z)’.

25

2.3 Sets 26

2.3 Sets

Sets are a fundamental construct in computer science, mathematics, and many
other fields. A set is a collection of objects, or elements, with arbitrary ordering.

Sets are delimited by braces, i.e., {. . .}. Objects within a set are delimited by
commas, i.e., {. . . , . . .}. For example, A = {9, 8, 1, 4}, B = {a, 2, 54, bd, e}, C =
{{7, 8, 9},−6, {1, a, q}, 9} are all proper sets because they do not contain duplicate
elements. D = {12, 12,−6, 80} is what we will denote as an improper set , because
it has duplicates. A set that contains duplicates is equivalent to the same set
with all duplicates removed. For instance, {9, 8, 12, 12, 4, 9, 10, 12} is equivalent to
{9, 8, 12, 4, 10}.

We say that an element x ∈ S if x is a member of S. With the preceding
example, 9 ∈ A, {12, abcd, qrst} ∈ C, but 10 ̸∈ B.

The size, or cardinality , of a set S is denoted as |S|. For example, in the preceding
examples, |A| = 4, |B| = 5, and |C| = 4. Elements within a nested set of a set,
as exemplified with set C, do not count towards the cardinality of a set. Duplicate
elements also do not affect a set’s cardinality; the set E = {a, a, a, a, a} has |E| = 1
because there is only one distinct element, namely a, in E. Accordingly we also
categorize E as improper.

A set can be empty, as denoted by the empty set, i.e., ∅. In other words, there
does not exist an element x that is a member of ∅. Symbolically, ∀x, x ̸∈ ∅.

S′ is a subset of some set S if and only if every element of S′ is a member of S.
Symbolically, we represent subset as S′ ⊆ S, and we can formulate our definition
as ‘∀S∀S′(S′ ⊆ S ↔ ∀x((x ∈ S′) ∧ (x ∈ S)))’. S′′ is a proper subset of S if and
only if every element of S′′ is a member of S, but S′′ ̸= S. In other words, S′′ is
not the same set as S. Symbolically, we represent this idea as ‘∀S∀S′′(S′′ ⊂ S ↔
∀x(x ∈ S′′) ∧ (x ∈ S) ∧ (S′′ ̸= S))’. A way of remembering the difference comes
through the appearance of the symbol. In algebra, we represent, “x is less than or
equal to y” as x ≤ y with the bar underneath. The same idea holds for subsets; we
represent “S′ is a proper subset or equal to S” as “S′ ⊆ S”.

Two sets are equivalent if and only if they share the same elements. Note that
this definition does not account for element ordering/positioning and duplicate ele-
ments, because these properties are irrelevant when working with sets. For instance,
with the previous example, D is equivalent to the set D′ = {12,−6, 80}, which is
equivalent to the set D′′ = {80, 12,−6}. We symbolize this as, ‘∀A∀B(∀x(x ∈
A ∧ x ∈ B) → A = B)’. To clarify, this says, for any two sets A and B, A is
equal to B if every element x is both a member of A and B. Interestingly, we can
create another definition using subsets to define equality as follows: ‘∀A∀B((A ⊆
B) ∧ (B ⊆ A)→ A = B)’.

We say S is the union of two sets A and B if and only if S contains all elements
that are members of A or members of B. We use the “cup” to represent set union,
i.e., A ∪ B. Formalizing the definition, ‘∀A∀B∀S(∀x((x ∈ S) ↔ (x ∈ A ∨ x ∈
B)) → S = A ∪B)’. For example, let A = {5, 6, 7, 8, 9} and B = {3, 4, 5, 6, 7}.
Thus, A∪B = {3, 4, 5, 6, 7, 8, 9}. Note that it is impossible for the union of two sets
to be the empty set as long as |A|+ |B| > 0.

26

27 A Logic Primer

We say S is the intersection of two sets A and B if and only if S contains
all elements that are members of both A and B. We use the “cap” to repre-
sent set intersection, i.e., A ∩ B. Formalizing the definition, ‘∀A∀B∀S(∀x((x ∈
S) ↔ (x ∈ A) ∧ (x ∈ B)) → S = A ∩B)’. For example, let A = {a, b, c, d, e, f},
and B = {q, r, s, c, d, t, u}. Thus, A ∩ B = {c, d}. Another example is, let C =
{12, 340, {q, r, s}, {{900}}}, and D = {{q, s, r}, {{900}}, 341}. Thus, C ∩ D =
{{900}}. Some may find it confusing that the nested set {q, r, s} is not part of the
intersection. Recall that the definition is that {q, r, s} from C must be a member of
D, which it is not, as {q, s, r} ∈ D. Finally, one more example is let E = {a, b, c},
and F = {d, e}. Thus, E ∩ F = ∅. It should, hopefully, be apparent that the
intersection of any set with the empty set always results in the empty set.

We say S is the difference of two sets A and B if and only if S contains all
elements that are in A but not in B. We use the backslash, i.e., \, to represent
set difference, i.e., A \B. Formalizing the definition, ‘∀A∀B∀S(∀x((x ∈ S)↔ (x ∈
A)∧ (x ̸∈ B))→ S = A \B)’. For example, let A = {a, b, c, d}, and B = {b, c, d, e}.
Thus, A − B = {a}. Another example is, let C = {q, r}, and D = {q, r, s, t, u, v}.
Thus, C − D = ∅. Finally, one more example is, let E = {1, 2, {3, 4}, 5}, and
F = {{4, 3}, 2, 6}. Thus, E − F = {1, {3, 4}, 5}.

Common Mathematical Sets

There are several popularized sets in mathematics, each being referenced by a spe-
cific special symbol.

Integers

The set of integers, i.e., Z, has all positive and negative whole numbers, including
zero. Thus Z = {. . . ,−2,−1, 0, 1, 2, . . .}. The set of integers has no limit on either
side and continues forever.

Natural Numbers

The set of natural numbers, i.e., N, contains all positive integers and zero. In
computer science, we generally define N as N = {0, 1, 2, . . .}. Defining the natural
numbers like this is controversial, since some mathematicians consider zero to not
be a natural number. A way around this approach is to consider the set of non-zero
positive integers, i.e., N+ or even Z+.1

Rational Numbers

The set of rational numbers, i.e., Q, contains all numbers that are representable as
a ratio p

q for some integers p and q.

1It is provable that mathematicians can never be pleased no matter the compromise.

27

2.3 Sets 28

Real Numbers

The set of real numbers, i.e., R, contains all numbers that we know, including π,
e, and is the only set, out of the four that we have described, which is uncountably
infinite.1 In essence, this means that we cannot find an end to the representation
of a number. To exemplify this idea, imagine we have the real number 0.01. By the
definition of R, we also have 0.00000000000001 as a real number. But we also have

1
10999999999 as a real number. We can always add a zero to the decimal representation
making the number smaller than it was previously. The general idea of countably
infinite sets versus uncountably infinite sets is to create a pairing between a set
and the natural numbers. For instance, we can create a mapping between Z and
N by mapping all positive integers in Z to odd natural numbers in N, and map all
negative integers in Z to even natural numbers in N. Because we can create this
correspondence, we can formally prove that the set of integers is countably infinite.
On the contrary, we cannot do this with the set of real numbers, because no matter
what possible mapping we attempt, even if we mapped each added zero to 0.00 . . . 01
to a natural number, we would never even get past this “first” real number. The
notion of creating a correspondence, or map, between sets is described in further
detail in the next section.

1By the phrase “that we know”, we mean to exclude the set of imaginary numbers.

28

29 A Logic Primer

2.4 Functions

Functions are often introduced to students in middle or high school. Though, it
is rare that curricula at this level discuss the theory behind what general function
actually does. As an example, we can denote the square root of a number x via a
function Sqrt.

A function, as an informal reintroduction, is a construct that receives some
input, performs some operation, and returns an output. For example, we can write
a function f(x) = x2 to square a number x. In this definition, f is the function
name, x is the input argument, and the body, i.e., the operation to-be performed
is x2. The data returned is the result after applying, or unwrapping, the value
of x inside the operation. We can proceed through this derivation step-by-step to
understand it better.

f(x) = x2 (2.1)

f(3) = x2 (2.2)

f(3) = 32 (2.3)

f(3) = 9 (2.4)

Line (2.1) simply repeats our function name, input variable name, and function
body for convenience. Line (2.2) invokes a call to f with an input of 3. Line (2.3)
shows the process of applying the values of the input variable x to every occurrence
of x in the function body. Lastly, in (2.4), we compute the result of the expression.

Domain, Codomain, and Range

Functions are maps over sets. We map an element x from a set A to an element y
of a set B if f(a) = b for a function f . Let us narrow our set scope for a minute to
get a better picture of function properties. The domain D of a function f is a set of
its possible inputs. The codomain D′ of a function f is a set of its possible outputs.
The range R of a function f is the set of mapped values from D to D′. That is, if
there exists x and y such that f(x) = y, then y ∈ D′. Let us see an example before
continuing further.

Example. Let D = {a, b, c} and D′ = {1, 2, 3, 4}. Further suppose that a function g
maps values from D to D′, namely as g(a) = 2, g(b) = 4, g(c) = 2. The range of g
is therefore {2, 4}.

Image and Pre-image

The image of a function f , denoted as f(I), is a set such that, when given a set
I ⊆ D, we get all elements mapped to those in I. The pre-image of a function f ,
denoted as f−1(I), is a set such that, when given a set I ⊆ D′, we get all mapping
values from D. Again, we present an example.

Example. Using the definitions of D and D′ from earlier, we can deduce multiple
images and pre-images.

29

2.4 Functions 30

Possible images:

f({a}) = {2}
f({b, c}) = {4, 2}
f({d}) = ∅

Possible pre-images:

f−1({1, 2, 3}) = {a, c}
f−1({1, 4}) = b

f−1({1, 3}) = ∅

A good rule-of-thumb for images is to ask, “For these values of D, what values
do I get from D′?”, and for pre-images we ask, “For these values of D′, what values
map them from D?”.

Importantly, functions must map one value to only one other value. Therefore
a function f cannot map an input x to distinct outputs y and y′.

For a “square” function, its domain might be Z with its codomain as N. The
“square root” function, on the other hand, is a function only if we limit its codomain
to the set of real numbers greater than or equal to zero because

√
x maps input

elements to multiple output elements in that its result can be either positive or
negative. E.g.,

√
25 = ± 5. Note that its domain might be the set of real numbers

greater than or equal to zero; negative real numbers are undefined for the square
root function.

The most commonly-presented functions throughout primary/secondary edu-
cation are unary functions, i.e., functions of one input such as f(x). Nothing is
stopping us from defining a function that has multiple inputs. As an example, let
h(a, b) = 5, where a, b ∈ D and 5 ∈ D′. Functions of two arguments are binary, and
use ordered pairs to denote their inclusion in the domain. The set of possible inputs
is defined as the cross product D × D → D′. We use binary functions almost, if
not, daily without realizing. Suppose we define addition as a binary function Add
over the set of natural numbers. We know that N × N = {(0, 0), (0, 1), (0, 2), . . .},
and can define Add(m,n) = m+ n. Of course, we rely on the definition of addition
from the + symbol, but this simplification helps our discussion, since we can con-
clude that m + n ∈ N. Ternary functions are also possible, requiring three inputs
rather than one or two. We could go on, but any non-negative number of inputs to
a function is definable.

30

31 A Logic Primer

Operations and Properties

Functions are sometimes called operations when they exhibit certain properties.
Addition, or +, is an associative and commutative binary operation over the set
of real numbers. An operation ◦ is associative over a set S if, for all elements
x, y, z ∈ S, x ◦ (y ◦ z) is equal to (x ◦ y) ◦ z. For instance, if x, y, z ∈ Z, (x+ y)+ z is
equal to (x+(y+z)). An operation ◦ is commutative over a set S if, for all elements
x, y ∈ S, x ◦ y is equal to y ◦ x. For instance, if x, y ∈ Z, x + y is equal to y + x.
Another example of an associative and commutative operation is multiplication over
the set of real numbers. Subtraction, on the other hand, is neither commutative
nor associative over the set real numbers. It is, however, both associative and
commutative over the set {x, x, x, . . .} for any real number x. We can change the
properties of an operation by modifying the set it is over. Classifying properties of
operations in this way is not as interesting, since we most often care about larger
sets such as the natural numbers, integers, or reals. We can categorize an operation
◦ and a set S as a group if ◦ is associative, there exists an element e such that
e ◦x = e for all x ∈ S, and there is a (not necessarily distinct) y such that x ◦ y = e
for all x ∈ S. As an example, we can form a group G as + over Z because addition
is associative, any integer added to zero gets us that integer, and every integer has
a negative counterpart we can add to get zero. Group theory and abstract algebra
present these topics in far greater detail, so we will end the discussion here.

Recursive Functions

Recursive functions, and the idea behind recursion confuses many students and
beginners to computer science, but a proper understanding is fundamental to pro-
gramming and mathematics. A recursive function is a function f that calls itself.
For example, the simplest recursive function may be defined as f() = f(), which
states that f is a function that receives no arguments and calls itself. When we
call a recursive function, we substitute the call with the function body. This is a
bit difficult to visualize with a function of no arguments, so why not introduce a
function g(x) that receives some argument x whose definition adds x to a recursive
call to g, i.e., g(x) = x+ g(x). When we evaluate the recursion, we see this resolves
to g(x) = x+ x+ x+ · · ·+ x, for an infinite number of x’s. Though, what is inter-
esting about recursion is that we can define primitive operations, such as addition,
via recursion. This form of recursion will be over the set of natural numbers. Hence
we refer to recursive functions over N as naturally-recursive functions.

When we add two numbers, say, 3 and 2, we certainly know that their sum is
5. Though, what if we did not know how to add two numbers? Suppose that all
we were given are two functions add1(x) and sub1(x), where add1(x) returns the
next natural number after x, namely x + 1. sub1(x), on the contrary, returns the
previous natural number before x, namely x−1.1 Assuming that these are the only
two possible ways we can add numbers, we can write the function, x + y, using
recursion.

1The range of the sub1 function is only positive integers; meaning ∀n ≤ 1, sub1(n) = 0.

31

2.4 Functions 32

Because of our prior knowledge on elementary arithmetic, we can say, with
absolute certainty, that 3+2 is equal to 4+1 which is equal to 5+0. Conveniently
enough, we know that x + 0 = x for any number x. We can use this to determine
a terminating condition, i.e., when to stop recursing. That is, when y = 0, we stop
recursively adding values, since x + 0 is just x. Let us walk through the example
step-by-step.

(i) Given 3+2, we know that, with x = 3 and y = 2, y is not zero, so we can add
one to x and subtract one from y. Namely, add1(3) + sub1(2) = 4 + 1.

(ii) We now have 4 + 1, we know that, with x = 4 and y = 2, y is not zero, so
we can add one to x and subtract one from y. Namely, add1(4) + sub1(1) =
5 + 0.

(iii) We now have 5 + 0, we know that, with x = 5 and y = 0, y is equal to zero,
so we simply return x, which is 5. Therefore, the correct result is obtained.

So, we continuously subtract one from y and continuously add one to x until y
is zero. We can define this as a piece-wise function (recall the definition of such
functions from the previous sections) where add(x, y) corresponds to x+ y.

add(x, y) =
{
x if y = 0

add(add1(x), sub1(y)) if y > 0

As another example, we will add 10 and 4 using this recursive algorithm. Though,
we will be a bit less verbose and not explicitly mention the values for x and y.

(i) We have 10 + 4. Clearly, y is not zero, so we, instead, compute add1(10) +
sub1(4) = 11 + 3.

(ii) We now have 11+3. Clearly, y is not zero, so we compute add1(11) + sub1(3)
= 12 + 2.

(iii) We have 12 + 2. Clearly, y is not zero, so we compute add1(12) + sub1(2) =
13 + 1.

(iv) We now have 13+1. Clearly, y is not zero, so we compute add1(13) + sub1(1)
= 14 + 0.

(v) We now have 14 + 0. Clearly, y is zero, so we return x, which is 14.

32

33 A Logic Primer

With addition out of the way, let us implement monus. No, that is not a spelling
mistake—monus is a subtraction-like operation defined only for natural numbers.
That is, x´ y is defined only for those x that are greater than or equal to y. Thus,
x ´ y ≥ 0. We need this notion of monus, and not minus, in order to write a
recursive algorithm because again, we need a terminating condition. We know that
x ´ 0 = x, so we can use this as our terminating condition. Namely, when y = 0,
return x. Otherwise, call the function recursively. How can we do this using only
add1 and sub1? Well, firstly, we need only to use sub1 because we know that, for
instance, 5 ´ 3 is equal to 4 ´ 2 which is equal to 3 ´ 1, which is equal to 2 ´ 0.
So, instead of adding one to x as part of the recursive step, we subtract one from
both operands and only stop once y reaches zero. Let us walk through the example
step-by-step.

(i) Given 5 ´ 3, we know that y is not zero, so we can subtract one from x and
subtract one from y. Namely, sub1(5) ´ sub1(3) = 4 ´ 2.

(ii) We now have 4 ´ 2. y is not zero, so we can subtract one from both x and y.
Namely, sub1(4) ´ sub1(2) = 3 ´ 1.

(iii) We now have 3 ´ 1. y is not zero, so we can subtract one from both x and y.
Namely, sub1(3) ´ sub1(1) = 2 ´ 0.

(iv) We now have 2 ´ 0. y is zero, so we can return 2.

This completes the example. Let us define monus as a recursive piecewise function
similar to our approach to addition. We will use sub(x y) to represent x´ y.

sub(x, y) =
{
x if y = 0

sub(sub1(x), sub1(y)) if y > 0

What about multiplication over natural numbers? We can actually use our
definition of addition in a definition for a recursive multiplication function. Let us
take an example. Once again, because of our prior knowledge, we know that 5 · 3
is equal to 15. Though, we can represent this as follows. 5 · 3 = 5 + (5 · 2) which is
equal to 5 + 5+ (5 · 1) which is equal to 5 + 5+ 5. So, we see that multiplication is
nothing more than repeated addition. Instead of zero, however, we use one as our
terminating condition, because x · 1 = x. Thus, when y = 1 in x · y, we return x.
Let us walk through the example step-by-step.

(i) Given 5·3, we know that y is not one, so let us add x to the result of multiplying
x by sub1(y). Namely, 5 + (5 · sub1(3)) = 5 + (5 · 2).

(ii) We now must compute 5 · 2. y is not one, so let us add x to the recursive
function call. Namely, 5 + (5 · sub1(2)) = 5 + (5 · 1)

(iii) We now must compute 5 · 1. y is clearly one, so we return 5.

At this point, we start a process called recursion unwinding. That is, we have
the result of the base case, but we need to substitute these values in for the previous
recursive calls. We evaluate these “recursive unwinds” from bottom-to-top.

33

2.4 Functions 34

(i) 5 is the base case for 5 · 1. We substitute 5 in for this expression in 5 + (5 · 1)
to get 5 + 5 = 10, which is the value of (5 · 2).

(ii) We can substitute 10 in for the expression 5+ (5 · 2) to get 5+ 10 = 15, which
is the value of (5 · 3), which is our answer.

With this example, we can write our recursive piece-wise definition for multipli-
cation in terms of addition. We will use mult(x, y) to represent x · y, or xy without
the explicit symbol:

mult(x, y) =
{
x if y = 1

add(x,mult(x, sub1(y))) if y > 1

Now that we have explained recursion for simple arithmetic functions, we can
move on to slightly harder concepts found in subsequent chapters. We will revisit
and reintroduce natural recursion in Chapter 5 with the added benefit of imple-
menting these rules in a programming language!

34

35 A Logic Primer

2.5 Proofs

What is a proof? A proof is a sequence of logical deductions from premises to a
conclusion. When we prove something, we state facts in an attempt to convince
ourselves, or others, that the conclusion is true. There are several methods of proof,
and we will go through many examples.

When writing proofs, it is important to be diligent and careful with explanations.
Similarly, stating things that are perhaps obvious to some, is always a good idea,
e.g., definitions of even/odd numbers. In addition, all proofs should begin with
Proof: and conclude with “QED”, or a square □. QED, or the square, symbolizes
the Latin phrase, “Quod erat demonstrandum”, which translates to, “which was to
be stated”. In other words, it designates the end of a proof.1

Direct Proofs

A direct proof takes the form of an implication, namely, “If p then q”. When
we prove such statements directly, we assume the antecedent p, and with this, we
attempt to show that the consequent q cannot be false.

Example. “If x is even, then (x)2 is even”.

Proof. First, we assume the antecedent, namely “x is even”, is true. Thus, x is an
even number of the form 2k for some integer k. Now, we need to show that (x)2 is
also even. Let us plug in 2k for x to get (2k)2. Expanding this out, we get (2k ·2k),
which after factoring, we get 2(k + k). If we let l = (k + k), we can substitute
the parenthesized expression for l to get 2l, which by definition is an even number.
Therefore, if x is even, then (x)2 is even. QED.

Example. “If x and y are odd integers, then x+ y is even”.

Proof. Assume that x and y are odd, meaning they are of the form x = 2k + 1
and y = 2m + 1 for some integers k and m. Substituting these in for x + y gets
us (2k + 1) + (2m + 1) = 2k + 2m + 2. Factoring gets us 2(k +m + 1). If we let
l = k+m+1, we can substitute the parenthesized expression for l to get 2l, which
by definition is an even number. Therefore, if x and y are odd integers, then x+ y
is even. QED.

Example. “The square of an odd integer is always odd”.

Proof. Let us turn this statement into a conditional: “If x is an odd integer, then
(x)2 is odd”. Now, assume x is odd, meaning x = 2k + 1 for some integer k. Thus,
(x)2 = (2k+1) ·(2k+1) = 4k+4+1. Factoring this result gets us 2(2k+2)+1. Let
l = 2k + 2, which after substituting gets us 2l+ 1, the definition of an odd integer.
Thus, if x is an odd integer, then (x)2 is odd. QED.

1Formatting a proof in this fashion is largely a stylistic choice; as long as the argument and reasoning
are clear, any variation is acceptable.

35

2.5 Proofs 36

Example. “If a | b and b | c, then a | c”.
Recall the definition of a | b: a | b means that ax = b for some integer x. In

other words, we can evenly divide b by a to get some integer x. Example: 3 | 6
because 3(2) = 6.

This proof asks us to prove the transitive property of division: if we can divide
some number b by a, and we can further divide some number c by b, then we can
divide c by a, i.e., a is a multiple of both b and c.

Proof. Assume that the antecedent is true, indicating a | b and b | c. This claim
means that ax = b and by = c for some integers x and y. We can substitute the
value of b in by = c with the former equation, i.e., ax = b, as follows: (ax)y = c.
Now, because multiplication is associative, (ax)y = a(xy). Thus, we get the form
a(xy) = c, which, if we let l = xy, we get al = c. An equivalent representation is
a | c. Therefore, if a | b and b | c, then a | c. QED.

Example. “If x | y and y is odd, then x is odd”.

Proof. We will prove that the two conditions x | y and y imply that x is odd. First,
assume the antecedent, which means that xm = 2k + 1 for some integers m and k.
This implies that the product of x and m results in an odd integer. The product of
two integers is odd only when one of its operands is odd. Therefore x must be odd.
Hence, if x | y and y are odd, then x is odd. QED.

Proof by Contraposition

A conditional may be easier to prove if we use its contrapositive. That is, recall
that, ‘p → q’ is equivalent to ‘¬q → ¬p’. This equivalence is particularly useful
when the antecedent of an implication is complex and full of schemata.

Example. ‘If x and y are integers and x + y is even, then x and y have the same
parity”.

We will prove this by contraposition. Namely, the contrapositive of the statement
is, “If x and y do not have the same parity, then x+ y is odd” (note that we do not
negate the piece of the premise that states that x and y are integers).

Proof. Assume, by contraposition, x and y do not have the same parity. That is,
one of the values is even and the other is odd. Without loss of generality, we can
assume that if the consequent holds for when x is even and y is odd, we can conclude
that it holds for when x is odd and y is even. So, assume x is even and y is odd,
meaning x = 2k and y = 2l+ 1 for some integers k and l. Let us now substitute in
these values for x and y in x + y: (2k) + (2l + 1) = 2k + 2l + 1. Factoring out 2
gets us 2(k+ l)+ 1. If we let m = k+ l, we get 2m+1, which is the definition of an
odd integer. Therefore, by contraposition, if x and y are integers and x+ y is even,
then x and y have the same parity. QED.

Example. “If x and y are real numbers where xy is irrational, then either x or y
must be irrational”.

36

37 A Logic Primer

Proof. Assume, by contraposition, that neither x nor y are irrational. This means
that we can write x = p/q and y = r/s where the fractions p/q and r/s are rational
numbers written in their lowest terms. We wish to show that xy is rational. We
can substitute in our fractions for xy to get (p/q)(r/s) = pq/rs where q ̸= 0 and
s ̸= 0. Thus, we can represent the product of x and y as a fraction, meaning it
is rational. Therefore, by contraposition, if x and y are real numbers where xy is
irrational, then either x or y must be irrational. QED.

Proof by Contradiction

A proof by contradiction, as the name implies, is an attempt to show that two
claims cannot exist at the same time and, by extension, the original statement is
true. For instance, a contradiction is saying that an integer x is both even and odd.
A proof by contradiction is also known as an indirect proof.

Proving a direct statement ‘p’ by contradiction assumes that ‘¬p’ is true and
attempts to derive a contradiction via this assumption. We know that this schema
is a logical contradiction because ‘p ∧ ¬p’ is always false for any truth value of ‘p’.

Proving an implication of the form ‘p → q’ by contradiction assumes that ‘p’
is true and ‘¬q’ is true. For the implication to hold, a contradiction must arise,
because an implication of the form ‘⊤ → ⊥’ is false. The reason we make the
aforesaid assumptions is because the goal is to prove that ‘−(p→ q)’ does not hold
true. Pushing the negation inward and rewriting the implication into a disjunction
gives us the schema ‘(p∧¬q)’. Accordingly, if we demonstrate that ‘¬p’ or ‘q’ hold
true, then this contradicts with the true value derived from the conjunction.

Example. “If (x)3 is odd, then x is odd”.

Proof. We will prove that, if (x)3 is odd and x is even, then we arrive at a logical
contradiction. Since x is even, we can write it as 2m for some integer k. Plugging
this into (x)3 gets us (2m)3 = (2m ·2m ·2m). We can factor 2 out to get 2(4mmm).
If we let l = 4mmm, we can substitute this in to get 2l, the definition of an even
integer. But we assumed that x3 is odd. Therefore, by contradiction, if x3 is odd,
then x is odd. QED.

Example. “There does not exist a largest integer”.

Proof. To the contrary, we assume that there is a largest integer, which we call N .
Thus, for all n, N > n. Now, suppose m = N + 1. m is an integer because it is
the sum of two integers. However, m > N , which contradicts our claim that N
is the largest integer. Therefore, by contradiction, there does not exist a largest
integer. QED.

Example. “
√
2 is irrational”.

37

2.5 Proofs 38

Proof. Aiming for a contradiction, we assume that
√
2 is rational. This means we

can write
√
2 as a rational number p/q in its lowest terms. Namely,

√
2 = p/q.

Squaring both sides gets us (
√
2)2 = (p/q)2 = 2 = p2/q2. We can rewrite this in

terms of p2 to get p2 = 2q2. From our first direct proof example, we know that
when an integer x is even, x2 is also even. Thus, p must be even, meaning we
can represent it as p = 2k for some integer k. Let us substitute this back into
the equation: 2 = (2k)2/q2, and simplifying gets us 2 = 4k2/q2. Rewriting this to
isolate 4k2 results in 2q2 = 4k2. Finally, dividing both sides by 2 gives q2=2k2.
Again, since q2 is even (notice the 2k2), q must be even. Since p and q are even,
then we know 2 | p and 2 | q. This contradicts our original assumption that p/q is
written in its lowest terms. Therefore, by contradiction,

√
2 is irrational. QED.

Proof by Cases

Sometimes, it is necessary to prove multiple parts, or sub-pieces, of a conditional.
This usually occurs when there are obvious cases in which a condition only may
occur. The idea is to assume the premise within the case is true, then derive that
the consequent of the original statement must also be true. When we encounter
such a situation, we preface each case, or scenario, with Case #n.

Example. “If y is odd and x is an integer, then x(x+ y) is even”.

Proof. Assume that the antecedent is true, namely that y is odd and x is an integer,
where y = 2k + 1 for some integer k. There are two cases: one in which x is even,
and one in which x is odd. We will prove that the consequent holds true for both
cases:

Case 1: Assume that x is even, where x = 2l for some integer l. Then, we can
substitute in our values for x and y into the consequent expression: 2l(2l+2k+1).
If m = 2l + 2k + 1, we get 2m, which is an even integer.

Case 2: Assume that x is odd, where x = 2l + 1 for some integer l. Then,
we can substitute in our values for x and y into the consequent expression: (2l +
1)(2l + 1 + 2k + 1) = (2l + 1)(2l + 2k + 2) = 4l2 + 2lk + 6l + 2k + 2. Factoring out
2 gets us 2(2l2 + 3l/2 + k + 1). Let m = 2l2 + 3l/2 + k + 1. Thus, we get the form
2m, which by definition is an even integer (note that the fractional 3l/2 cancels out
when multiplying the expression by two).

This covers both cases where x is an integer. Therefore, if y is odd and x is an
integer, then x(x+ y) is even. QED.

38

39 A Logic Primer

If and Only If Proofs

If and only if proofs consist of two core components: proving the “if” direction,
then proving the “only if” direction. Because an if and only if is comprised of
two conjoined implications, namely p ↔ q is equivalent to (p → q) ∧ (q → p),
we need to write proofs for two implications. When writing the subproofs, it is
important to distinguish between the two. Therefore, writing If: or →, and Only
if: or ←. Remember that the rules for proving these implications remain the same,
meaning we can prove the contrapositive of one implication but not the other and
still achieve a correct and conclusive result. Note that for the following first example,
we explicitly state the sub-implications. In future examples, we will only use the
arrows to indicate the direction of the implication used in the subproof.

Example. “The sum of two integers x and y is odd if and only if exactly one of x
or y is odd”.

Proof.
(→) We will first prove the implication, “If x+ y is odd, then exactly one of x or y
is odd”. We will prove this by contraposition. Assume that it is not the case that
exactly one of x or y is odd. This means that there are two cases:

Case 1: Assume that both x and y are odd. This means that x = 2k + 1 and
y = 2m + 1 for some integers k and m. x + y is, therefore, (2k + 1) + (2m + 1) =
2k + 2m+ 2 = 2(k +m+ 1), which is by definition an even integer. Thus, x+ y is
even.

Case 2: Assume that both x and y are even. This means that x = 2k and
y = 2m for some integers k and m. x + y is, therefore, (2k) + (2m) = 2k + 2m =
2(k +m), which is by definition an even integer, meaning x+ y is even.

So, by cases and contraposition, if x + y is odd, then exactly one of x or y is
odd.

(←) We will now prove the converse, “If exactly one of x or y is odd, then x+ y is
odd”. Assume that exactly one of x or y is odd. Without loss of generality, we can
assume that x is the odd integer. Thus, x = 2k + 1 for some integer k, meaning
y = 2m for some integer m (because y cannot be odd). So, x+y = (2k+1)+2m =
2k + 2m+ 1 = 2(k +m) + 1, which is the definition of an odd integer. Thus, x+ y
is odd.

We have proved both implications. Therefore, the sum of two integers x and y
is odd if and only if exactly one of x or y is odd. QED.

Example. “x3 − y3 is even if and only if x− y is even”.

39

2.5 Proofs 40

Proof.
(→) We will prove this by contraposition, and assume that x− y is odd. The only
way that x − y can be odd is if exactly one of x or y is odd. So, without loss of
generality, we can assume that x = 2k + 1 and y = 2m for some integers k and
m. Plugging these into x− y shows that the result is odd. Substituting these into
x3− y3 gets us (2k+1)3− (2m)3. Expanding this out results in (8k3 +12k2 +6k+
1) − (2m · 2m · 2m) which simplifies to 2(4k3 + 6k2 + 3k) − 2(4mmm) + 1. If we
let l = (4k3 + 6k2 + 3k)− 2(4mmm), our result is of the form 2l + 1, which is the
definition of an odd integer. Therefore, by contraposition, x3 − y3 is odd.

(←) Assume that x − y is even. This occurs when x and y have the same parity.
That is, either both x and y are even, or they are both odd. We can, therefore, use
case analysis:

Case 1: Assume that x and y are even, in that x = 2k and y = 2l for any
integers k and l. Thus, to reaffirm our assumption, (2k)− (2l) = 2(k − l), an even
integer. Moreover, x3−y3 = (2k)3−(2l)3 = 2(4k3−4l3), an even integer. Therefore,
x3 − y3 is even.

Case 2: Assume that x and y are odd, in that x = 2k+1 and y = 2l+1 for any
integers k and l. Thus, to reaffirm our assumption, (2k + 1) − (2l + 1) = 2(k − l),
an even integer. Moreover, x3 − y3 = (2k + 1)3 − (2l + 1)3 = 2(4k3 − 4l3 + 6k2 −
6l2 + 3k − 3l), an even integer.

So, by cases, x3 − y3 is even.

We have proved both implications. Therefore, x3−y3 is even if and only if x−y
is even. QED.

Example. Prove that x+ y is even if and only if x− y is even for all integers x and
y.

Proof.
(→) We will prove this directly and assume that x + y is even. This means that
x + y = 2k where k is some integer. Let us write an equation in an attempt to
substitute 2k into x− y:

x+ y = 2k

x = 2k − y
x− y = (2k − y)− y
x− y = (2k − 2y)

x− y = 2(k − y)

Let m = k − y, which gets us 2m where m is some integer. Thus, if x+ y is even,
then x− y is even.

40

41 A Logic Primer

(←) We will prove this by contraposition, in which we have the statement if x+y is
odd, then x−y is odd. Let us assume that x+y is odd, meaning that x+y = 2k+1
where k is some integer. Let us again write an equation in an attempt to substitute
2k + 1 into x− y:

x+ y = 2k + 1

x = 2k + 1− y
x− y = (2k + 1− y)− y
x− y = (2k + 1− 2y)

x− y = 2(k − y) + 1

Let m = k − y, which gets us 2m + 1 where m is some integer. Thus, if x + y is
odd, then x− y is odd.

We have proved both conditionals. Therefore, x+ y is even if and only if x− y
is even. QED.

2.6 Natural Deduction

Most proofs are completed via a sequence, or chain, of deductive steps to reach a
logical conclusion. One such approach for proving statements is via natural deduc-
tion. While this method of proof has different names in slightly different contexts,
the idea is to apply predefined rules and axioms to a set of premises to arrive at
the desired conclusion. A benefit to using natural deduction is that its rules, in
general, flow from what makes sense intuitively, hence the “natural” qualifier. For
our purposes, we will apply natural deduction to both zeroth and first-order logic
problems, starting with the former.

In a natural deduction proof, we have an argument A(P, c), where P may be
extended with premises and derivations towards the conclusion. Let us do a ton of
examples to present this technique and its axioms. As we said, however, natural
deduction is taught in numerous ways, applicable to many contexts; our technique
will be similar with the exception of adding and removing axioms when necessary
out of simplicity.

Example. A({p → q, p}, q). When we begin a natural deduction style proof, we
write down each premise one after another on separate lines with annotations to
the right that state that they are, in fact, premises. Subsequent lines are derivations
from these premises or other presumed assumptions (more on this later).

1 p→ q P

2 p P

41

2.6 Natural Deduction 42

Where do we go from here? We want to prove ‘q’, and we know that ‘p→ q’ and
‘p’ are true by the assertion that they are premises. Recall from its truth table that
an implication is true if and only if it is not the case that the antecedent is true
and the consequent is false. Therefore, because the antecedent, namely ‘p’, is true,
it must be the case that ‘q’ is true. Intuitively, this idea should also make sense.
So, we conclude that ‘q’ is true via modus ponens, or →-elimination (abbreviated
as →elim). In a natural deduction proof, after a derivation step, we specify the rule
as well as the lines used in that rule.

1 p→ q P

2 p P

3 q →elim, 1, 2

Because we reached the conclusion, this completes the proof. QED.

Example. A({p→ q, q → r}, p→ r)

1 p→ q P

2 q → r P

This proof is slightly more complicated because it brings rise to a new rule,
namely →-introduction (abbreviated as →intro). We want to show that, if ‘p → q’
is true and ‘q → r’ is true, then it holds that ‘p→ r’ is true. Some may view this as
a transitive implication, and that line of thought is exactly correct. Furthermore,
this style of argumentation is, in fact, an axiom in many natural deduction systems
called hypothetical syllogism. For us, however, we will prove the implication holds
true through the notion of sub-proofs and →intro. The →intro rule is defined as
follows: if, by assuming φ we can derive ψ, then we can derive ‘φ → ψ’. So, the
first part of the →intro rule is to assume the antecedent of the implication is true.
Because we are trying to deduce that ‘r’ is true under the assumption that ‘p’ is
true, we will indent this as a sub-proof.

1 p→ q P

2 q → r P

3 p Ass.

Now we show that ‘q’ is true by →elim, and from this, show that r is true by the
same logic.

1 p→ q P

2 q → r P

3 p Ass.

4 q →elim, 1, 3

5 r →elim, 2, 4

We have shown that, if we assume ‘p’, we can deduce ‘r’. Hence, we may conclude
that ‘p→ r’. Because this completes the sub-proof, we un-indent its conclusion.

42

43 A Logic Primer

1 p→ q P

2 q → r P

3 p Ass.

4 q →elim, 1, 3

5 r →elim, 2, 4

6 p→ r →intro, 3––5

This, of course, completes the collective proof. QED.

Example. A({p, q, p ∧ r}, p ∧ (q ∧ r))
1 p P

2 q P

This next proof is incredibly simple and showcases two rules involving conjunc-
tion: ∧intro and ∧elim. The former allows us to conjoin any two schemata that are
currently “active”. On the other hand, the latter rule allows us to prove either
proposition of a conjunction. Recall that a conjunction is true if and only if both
operands are true. So, if we want to create our desired conclusion, we should split
‘p ∧ r’ to get ‘r’, then use the introduction rule twice.

1 p P

2 q P

3 p ∧ r P

4 r ∧elim, 3
5 q ∧ r ∧intro, 2, 4
6 p ∧ (q ∧ r) ∧intro, 1, 5

This completes the proof. QED.

Example. A({t, (r ∧ ¬s)→ p,¬s, t→ r}, p ∨ q)
Let us put the rules that we have learned so far to the test and introduce a

new rule: ∨intro. ∨intro allows us to take any schema and affix any other arbitrary
schema with disjunction. Recall that a disjunction is true if and only if at least one
of its operands are true. So, if we know that an arbitrary schema φ is true, then
it must be the case that ‘φ ∨ ψ’ is true for any schema ψ. In this proof, we must
isolate ‘p’ so we may apply ∨intro.

1 t P

2 (r ∧ ¬s)→ p P

3 ¬s P

4 t→ r P

5 r →elim, 1, 4

6 r ∧ ¬s ∧intro, 6, 3
7 p →elim, 2, 6

8 p ∨ q ∨intro, 7

This completes the proof. QED.

43

2.6 Natural Deduction 44

Example. A({p ∨ q, p→ r, q → r}, r)
1 p ∨ q P

2 p→ r P

3 q → r P

A natural deduction proof technique that we have omitted until now is otherwise
called an indirect proof or a proof by contradiction. We saw how this works for
formal proofs with numbers and other statements, but we can generalize it with
schemata. That is, assume ‘¬A’ for some schema A. Then, show that, by assuming
‘¬A’, we reach a contradiction. We are then allowed to conclude that ‘¬A’ must
be true. Recall that we reach a contraction when, for any premise ‘¬A’, we deduce
‘A ∧ ¬A’. Let us try this out by proving another form of →elim, namely modus
tollens: the law of contraposition. In addition, we will make use of two new rules:
double negation elimination (DNE), which allows us to conclude a proposition A
from ‘¬¬A’, as well as double negation introduction (DNI), which allows us to
conclude ‘¬¬A’ from a proposition A.

Example. A({p→ q,¬q},¬p)
1 p→ q P

2 ¬q P

3 ¬¬p Ass.

4 p DNE, 3

5 q →elim, 1, 4

6 q ∧ ¬q ∧intro
7 ⊥ False, 6

8 ¬p IP, 3–7

This completes the proof. QED.

Example. A({p ∨ q,¬p}, q)
Let us prove disjunctive syllogism (DS). Though, there is one extra rule that we

must introduce in order to complete this proof: the explosion principle. In summary,
it says that from a contradiction, we may infer any premise at all. Note that this is
different from an indirect proof/proof by contradiction where we explicitly assume
‘¬A’ to derive a contradiction that produces A. If we find a contradiction without
any previous assumptions that aim toward a contradiction, any formula is provable
(including the conclusion itself!). The proof of disjunctive syllogism may look a little
funky because we nest a proof by cases inside; we need to show that by assuming
‘p’ and assuming ‘q’ separately, we deduce ‘q’. The latter case is obvious, but the
former requires the explosion principle.

44

45 A Logic Primer

1 p ∨ q P

2 ¬p P

3 p Ass.

4 p ∧ ¬p ∧intro
5 ⊥ False, 4

6 q Explode, 5

7 q Ass.

8 q Rep, 7

9 q Cases, 1–2, 3–6, 7–8

This completes the proof. QED.

Example. A({p→ q, r → s, p ∨ r}, q ∨ s)
Let us try another argument form: constructive dilemma. We will show that by

assuming either antecedent of the provided implications, we can always derive the
argument conclusion.

1 p→ q P

2 r → s P

3 p ∨ r P

4 p Ass.

5 q →elim, 1, 4

6 q ∨ s ∨intro, 5
7 p→ (q ∨ s) →intro, 4–6

8 r Ass.

9 s →elim, 2, 8

10 q ∨ s ∨intro, 9
11 r → (q ∨ s) →intro, 8–10

12 q ∨ s Cases, 1–3, 7, 11

This completes the proof. QED.

Example. A({p→ q, r → s,¬q ∨ ¬s},¬p ∨ ¬r)
Up next, we shall prove destructive dilemma: the dual to constructive dilemma.

45

2.6 Natural Deduction 46

1 p→ q P

2 r → s P

3 ¬q ∨ ¬s P

4 p Ass.

5 q →elim, 1, 4

6 ¬ ¬ q DNI, 5

7 ¬s DS, 3, 6

8 ¬r MT, 2, 7

9 ¬p ∨ ¬r ∨intro
10 p→ ¬p ∨ ¬r →intro, 4–9

11 r Ass.

12 s →elim, 2, 11

13 ¬ ¬ s DNI, 12

14 ¬q DS, 3, 13

15 ¬p MT, 1, 14

16 ¬p ∨ ¬r ∨intro
17 r → ¬p ∨ ¬r →intro, 11–16

18 ¬p ∨ ¬r Cases 1-3, 10, 16

This completes the proof. QED.

46

47 A Logic Primer

2.7 Numbering Systems

Binary

We, as the readers, use base ten numbering in our daily lives.1 That is, we have ten
digits ranging from 0 to 9, which form base ten numbers. After 9, we wrap around
to 10, proceeding to 19, and rolling right into 20. This continues until we run out of
“tens” decimal places at 99, hence we roll over to 100, repeating ad nauseam. Base
ten is convenient because we can represent a very large number with only a few
digit positions. Compare this to the base two system that computers use, otherwise
called binary . In base ten, or decimal, we have digits, whereas in binary we have
bits, or binary digits. Each bit is either 0 or 1, hence the base two name. Similar
to base ten, we wrap around and introduce a new bit once we exhaust all possible
values. Let us take a look at a table to better visualize the concept.

Base 10 Base 2

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111

Figure 2.10: Base Ten and Base Two Equivalents from Zero to Seven

Hopefully, the pattern is evident. We will also note of a type of notation used
to distinguish between bases: we use a subscript x10 to indicate that x is written in
base ten, whereas y2 is used to indicate a binary base. In general, we adopt the style
zb to designate that the number z is in base b. Some may beg the question as to why
computers do not work with base ten, since it is the system we, as humans, rely on
daily. The answer boils down to the fact that computers use electricity and circuits;
electricity in a system either flows or it does not. This binary representation is ideal
for designing logic gates since we only work with two possibilities. Of course, this
raises another point: how do we convert from base ten to base two, or vice-versa?
Let us walk through this by a few examples, and then we can devise an algorithm.

Example. Convert 1710 into base two.

To convert 1710 into base two, we will continuously divide the number by 2,
taking the remainder and pushing it in an output space. We continue to divide our
number until its quotient is zero.

1This claim is made under the assumption that we do not switch numbering systems, or a new species
introduces us to something superior.

47

2.7 Numbering Systems 48

Input Quotient Remainder Output

17 8 1 1
8 4 0 01
4 2 0 001
2 1 0 0001
1 0 1 10001

At each step, we compute the quotient, its remainder, and push the resulting
remainder to the output. 1710 = 100012. There is a simple verification method to
check our work, but we will save this until we get to the section on converting from
base two to base ten.

Example. Convert 6310 into base two.

Input Quotient Remainder Output

63 31 1 1
31 15 1 11
15 7 1 111
7 3 1 1111
3 1 1 11111
1 0 1 111111

6310 = 1111112.

Example. Convert 10110 into base two.

Input Quotient Remainder Output

101 50 1 1
50 25 0 01
25 12 1 101
12 6 0 0101
6 3 0 00101
3 1 1 100101
1 0 1 1100101

10110 = 11001012.

Example. Convert 72410 into base two.

Input Quotient Remainder Output

724 362 0 0
362 281 0 00
181 90 1 100
90 45 0 0100
45 22 1 10100
22 11 0 010100
11 5 1 1010100
5 2 1 11010100
2 1 0 011010100
1 0 1 1011010100

48

49 A Logic Primer

72410 = 10110101002.

In each of these examples, we perform the same steps to reach the desired out-
come. Consequently, we can write an algorithm to convert between base ten to base
two as a procedure:

(1) Store input into N .

(2) Store N/A into Result.

(3) If N is greater than zero GoTo (4), Else GoTo (7)

(4) Append (N mod 2) to front of Result.

(5) Set N to the quotient of N and 2.

(6) GoTo (3)

(7) Display Result.

Converting from base two to base ten is even simpler than the other way around.
First, let us reason about what a decimal number is, at its core, and how its digit
positions interplay. For instance, consider the number 34210. If we didn’t know that
34210 is 342 in base ten, we could check by multiplying each digit by its position
as a power of ten, then summing the result. Thus, our answer is

= 3 · 102 + 4 · 101 + 2 · 100

= 3 · 100 + 4 · 10 + 2 · 1
= 300 + 40 + 2

= 342

This exact principle is shared among any base and not exclusive to base ten. To
demonstrate, let us convert the base two values from the previous exercises back
into base ten.

Example. Convert 100012 to base ten.

Like we said, we can use the principle that each bit corresponds to a power of
two, multiply them by the bit at that position, and sum the results.

= 1 · 24 + 0 · 23 + 0 · 22 + 0 · 21 + 1 · 20

= 1 · 16 + 0 · 8 + 0 · 4 + 0 · 2 + 1 · 1
= 16 + 0 + 0 + 0 + 1

= 17

So, 100012 = 1710.

49

2.7 Numbering Systems 50

Example. Convert 1111112 to base ten.

= 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20

= 1 · 32 + 1 · 16 + 1 · 8 + 1 · 4 + 1 · 2 + 1 · 1
= 32 + 16 + 8 + 4 + 2 + 1

= 63

So, 1111112 = 6310.

Example. Convert 11001012 to base ten.

= 1 · 26 + 1 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 1 · 20

= 1 · 64 + 1 · 32 + 0 · 16 + 0 · 8 + 1 · 4 + 0 · 2 + 1 · 1
= 64 + 32 + 0 + 0 + 4 + 0 + 1

= 101

So, 11001012 = 10110.

Example. Convert 10110101002 to base ten.

= 1 · 29 + 0 · 28 + 1 · 27 + 1 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 0 · 21 + 0 · 20

= 1 · 512 + 0 · 256 + 1 · 128 + 1 · 64 + 0 · 32 + 1 · 16 + 0 · 8 + 1 · 4 + 0 · 2 + 0 · 1
= 512 + 0 + 128 + 64 + 0 + 16 + 8 + 4 + 0 + 0

= 724

So, 10110101002 = 72410.

Hexadecimal

The last non-decimal numbering system that is important to us as computer scien-
tists (that we mention, at least) is hexadecimal. Using context clues, we can infer
that the prefix ‘hexa’ means six, and the prefix ‘deci ’ means ten. Therefore hexadec-
imal has sixteen possible values, ranging from 0 to 9, then A to F, representing 10
to 15 respectively. Converting between binary and hexadecimal is amazingly trivial.
Because this is the case, we will not describe the approach to converting directly to
and from base ten to hexadecimal since it is more cumbersome and largely resem-
bles the conversion from decimal to binary, just with base 16 powers rather than
base two. Hexadecimal has interesting uses in computer programming, including a
compact representation for colors, and memory address layout numbering.

Example. Convert 8A16 into base two.

To convert 8A16, we split the number character-by-character, and convert each
hexadecimal character individually. 816 is 10002, and A16 is 1010, which is 10102.
From there we conjoin the two binary numbers to get 8A16 = 100010102.

Example. Convert 94C0B5316 into base two.

Although this number is rather large, the process is the same as before, just
more laborious. 916 = 10012, 416 = 01002, C16 = 11002, 016 = 00002, B16 = 10112,
516 = 01012, 316 = 00112. Conjoining each sub-binary number gets us 94C0B5316 =
10010100110000001011010100112.

50

51 A Logic Primer

Let us go the other direction and convert a binary number into hexadecimal.
Fortunately the process brings nothing new to the table, although it begins to feel
mundane.

Example. Convert 1000112 to hexadecimal.

Converting 1000112 into hexadecimal may seem scary at first because the number
of bits is not divisible by four. Worry not, though, because we can just pad leading
zeroes to the front of the number if we so choose without losing any semantic detail.
So, 00102 = 216 and 00112 = 316, meaning 1000112 = 2316.

Example. Convert 11000101110100011012 to hexadecimal.

Again, we split the binary number into groups of four bits as follows: 01102 =
616, 00102 = 216, 11102 = E16, 10002 = 816, and 11012 = D16. Thus we arrive at
the result 11000101110100011012 = 62E8D16.

51

3 Data Structures

Bad programmers worry about the code. Good programmers
worry about data structures and their relationships.

—Linus Torvalds

3.1 Motivation for Data Structures

Our discussion of data structures will be one that is language-agnostic. In other
words, we shall cover the theoretical aspects of data structures rather than imple-
ment them in a specific programming language. The lessons we take from this,
however, will be invaluable later on, particularly once we start programming and
writing our interpreters. For now, though, we will use mostly descriptions, dia-
grams, and pseudocode—a dialect that mimics real programming code. The benefit
of using pseudocode is that we do not need to worry about the syntax or intricacies
of any particular language.

3.2 Arrays

Arrays are contiguous blocks of storage where each block contains space for n el-
ements of a given type.1 For example, we may declare an array of size 10 to hold
integers. Arrays can store only one type of value and are not resizable. The lo-
cations of elements in an array are called indices, which range from 0 to (n − 1).
Thus, the first element in an array is at index 0, while the last is at index n− 1.2

An advantage to using arrays are their quick access times. Because an array is
a contiguous block of slots in memory, we can retrieve an element at a requested
index instantly. A disadvantage of arrays is, as we stated, they are not resizable,
their size must be known before creation, and can store only one type of element.
For instance, we cannot store strings and integers, together, in an array.

1Types, for our purposes, categorize certain values, e.g., integers, floating-point numbers, strings,
and so forth.

2Some programming languages do not abide by this widely-used convention, e.g., Matlab, FOR-
TRAN, and Lua, instead opting to index from 1 to n inclusive.

3.3 Lists 54

3.3 Lists

Lists are possibly the most frequently-used data structure due to their versatility
and accessibility. There are two broad types of lists: array-based lists, or array lists,
as well as linked lists. We will cover each in great detail.

Array Lists

Like arrays, array lists store elements of a type. Unlike arrays, however, array lists
are resizable, meaning we can remove and add elements as we please. Think of an
array list like a collection of items needed by a shopper when at the grocery store;
each time the shopper finds an item, they cross it off the list, and if they suddenly
think of another item they need which is not presently on the list, it (the new item)
gets added to the bottom of the list. Inserting elements only at the rear/bottom of
an array list is not mandatory; insertion between other elements is possible.

Array lists are commonly used as wrappers around arrays. What this means
is, when we use array lists, the underlying structure is just an array of some static
size n. If we want to increase the capacity of our array list, the underlying array is
re-created of the new size, and its preexisting elements are copied over.

Some advantages to array lists are their accessibility and ease of use; most im-
plementations are quick to set up and understand which leads to their widespread
usage compared to other data structures. Additionally, like arrays, they have in-
stant element-access times, and unlike arrays, are resizable. This feature comes
with a caveat, however, in that array resizing or element deletion are not as quick
of operations. Though, the way that most array lists are used, these disadvantages
are often severely overshadowed and matter much less than one may expect. On
the other hand, suppose that we have a situation where we need to constantly re-
move elements from the front of an array list. Recall that arrays are not resizable,
meaning that each time we delete an element at the front of an array, we have to
copy over all elements from index [1, (n−1)] to a new array of size n−1. Doing this
repeatedly induces severe performance penalties. There are performance optimiza-
tions and workarounds to prevent these types of slowdowns, but the better choice
would be to use a data structure that is not restricted to a statically-sized array.

Linked Lists

Linked lists remove us from the shackles of array-based data structures, in that,
as their name implies, they are a series of nodes, or elements, linked together in a
chain of sorts. These nodes need not be adjacent in memory, but rather reference
each other to find what comes next in the chain/list. For instance, if we create a
linked list, it has a front/head element that always references, or points, to the first
element in the list (upon initialization, the head refers to nothing). If we add a
new element, the head now points to this first element. Subsequent additions to
the list continue growing the chain and links. Namely, element 1 points to element
2, element 2 to 3, and so on.

54

55 Data Structures

Elements, of course, have an associated index and value, but unlike array lists,
are not necessarily restricted to using values of the same type.1 They are also not
constrained to a static size even in the underlying implementation! So, we can add
and remove links from the chain whenever we please with no shuffling of values
around aside from links from within the chain.

Of course, these advantages are not without their disadvantages. Reading and
modifying elements are slower operations than the array counterparts since the
elements are not contiguous blocks in memory. Adding and removing elements are
“faster” in the sense that, as we stated, copying values over to a new array is out
of the question. Because of this, though, we need to iterate/traverse through the
list each time we wish to reference a provided index. The same goes for inserting
elements into the list. Adding or removing elements from the front or rear of the list,
on the other hand, are instant operations since we keep track of the first element
of the list (and we can, similarly, keep track of the last!). Linked lists are also the
backbone of many other data structures as we will soon see.

3.4 Stacks

Imagine you are washing dishes, by hand, at the kitchen sink. These dishes are
assorted in a single stack to your left. A dish cannot be removed from anywhere
but the top of the stack because displacement anywhere else will destroy the stack.
Additionally, further imagine that people are, to your dismay, adding more dishes
to the stack. Again, dishes cannot be added anywhere else but the top of the stack.

The stack data structure is as simple as it sounds—a collection of elements that
operate on the principle of last-in-first-out, or LIFO. In other words, the last thing
that we enter is the first thing removed. Stack implementations contain at least
the following operations: pop and push, where the former removes the top-most
element from the stack (if one exists), and the latter adds a new element to the
top of the stack. There may also exist an operation to view, but not remove, the
top-most element via peek.

Stacks have the advantages of instant insertion and removal times but are obvi-
ously not as flexible as an array or linked list. A practical example of a stack data
structure would be an “undo” function in a document-editing program—whenever
an action is made, it is pushed to an event stack. An “undo” event would resemble
popping an action off this stack. We illustrate this concept in Figure 3.1.

1Using identical types throughout a data structure is highly recommended! That is, mixing data
such as strings and numbers causes interpretation issues when we need to analyze those values in a data
structure.

55

3.5 Queues 56

Paste Text

Highlight Paragraph

Change Font Size

Add Paragraph

Remove Text

Most Recent Event

Oldest Event

Figure 3.1: Example of “Undo” Event Stack in Text-Editing Program

3.5 Queues

Imagine you are in line at an amusement park for the most intense roller coaster
in the world. Another, perhaps more generic term for a “line” is a queue. In this
metaphor, riders enqueue the line at the back and board the roller coaster (and
hence dequeue from the line) at the front.

What we have described is a practical example of the queue data structure. In a
queue, elements are enqueued, or inserted, to the back of the line and are dequeued,
or removed, from the front. Queues operate on the principle of first-in-first-out, or
FIFO. The implementation of a queue data structure may contain different names
for their operations, but at their core should contain operations for inserting an
element to the back of the queue (e.g., enqueue) and removing an element from
the front of the queue (e.g., dequeue).

Like the operations on a stack, these are also constant-time, since we may always
keep a reference to the front and rear elements of a stack. Queues share similar
drawbacks to stacks in that elements are not randomly accessible, in that we only
know what exists at the front of a queue. Figure 3.2 demonstrates the task queue
of a printer, which has a sequence of files to print one after the other.

exam1.txt project.png pocs.pdf journal.txt

Next-to-Print File Last-to-Print File

Figure 3.2: Example of Printer Task Queue

56

57 Data Structures

3.6 Sets

Sets are similar to array, with the restriction that sets cannot contain duplicate
elements. Moreover, unlike arrays, there is no defined ordering of elements to a
set. Thus, questions such as “What is the first/last element in the set?” are rather
meaningless; the property of position is, in effect, non-existent for the users of the
set data structure. Supported operations include adding and removing elements
from the set, determining membership, and cardinality. We discussed sets from a
mathematical perspective in Chapter 2.

3.7 Maps/Dictionaries

Dictionaries or maps associate keys with values. We can think of this as if we have
a bunch of physical keys to physical boxes. Opening a box with its associated key
retrieves its contents. Noteworthy functions include get, which retrieves a value
for a given key, put which adds an association, size which returns the number
of associations, and containsKey which, as its name suggests, returns whether a
key has an association. Figure 3.3 illustrates a mapping of names to ages, where
“Quine” maps to 46, “Carnap” maps to 30, and both “Gödel” and “Putnam” map
to 25.

Gödel

Carnap 46

Putnam 25

Quine 30
...

...

Figure 3.3: Mapping of names to ages.

3.8 Trees

Trees are fundamental data structures in computer science. Trees share a similar
structure to linked lists, with the exception that elements may have multiple asso-
ciated links. Trees have a root element, or node, and have branches that lead to
other nodes in the tree. The nodes at the bottom of a branch are called leaves.
Unlike trees in real life, however, trees grow from top-to-bottom, wherein the root
exists at the top and leaves are at the bottom.1

1Many presume that trees in computer science contexts grow top-down because computer scientists
never go outside. There is some partial truth to this claim.

57

3.9 Graphs 58

Trees are recursive data structures because the elements of a tree are trees them-
selves. A popular variant of a tree is a binary tree, which is a tree that has at most
two children. Being that trees are recursive data structures, it means that these
children have at most two children, and so on through the tree. Below is an example
of a binary tree that stores integers. In addition to integers, we may also store any
data type we wish in tree nodes.

17

3

1

4

8

5 10

9 12

54

32 61

Figure 3.4: Example of Binary Tree.

3.9 Graphs

Graphs, in computer science, are not what students traditionally learn about in
elementary geometry and algebra courses. In abstract math and computer science,
a graph is a tuple ⟨V,E⟩, where V is the set of vertices, or nodes, and E is the
set of edges. Edges are tuples, which serve as links between vertices. For example,
Figure 3.5 shows a graph G1 whose vertices V = {a, b, c, d, e, f} and whose edge
set E = {⟨a, b⟩, ⟨b, a⟩, ⟨b, c⟩, ⟨b, d⟩, ⟨b, f⟩,
⟨c, b⟩, ⟨c, e⟩, ⟨d, b⟩, ⟨d, e⟩, ⟨e, c⟩, ⟨e, d⟩, ⟨e, f⟩, ⟨f, b⟩, ⟨f, e⟩}.

d f

eca

b

Figure 3.5: Illustration of Graph G1

58

59 Data Structures

Edges can have a direction or be bidirectional. We see that G1 has all bidirec-
tional edges, since none use (directed) arrows to point towards a vertex. Directions
on an edge disallow travel along the edge in the opposite direction. Moreover, if
a graph G has an edge {v1, v2} and also has the edge {v2, v1}, then that edge is
bidirectional. Figure 3.6 shows an example of a graph G2 using a directed edge set
E = {⟨a, b⟩, ⟨b, d⟩, ⟨c, b⟩, ⟨d, e⟩, ⟨e, c⟩, ⟨f, b⟩, ⟨f, e⟩}.

d f

eca

b

Figure 3.6: Illustration of Graph G2

In addition to directions, edges in a graph may also be either weighted or un-
weighted , denoting a “cost”, so to speak, to travel along an edge from one vertex to
another. The edge set of a weighted graph contains triples ⟨v1, v2, k⟩, where k ∈ R
is the cost from v1 to v2. Unweighted graphs have a constant edge weight k of one
(or any other number). Figure 3.7 is an example of a graph with weights on the
(directed) edges E = {⟨a, b, 6⟩, ⟨b, d, 9⟩, ⟨c, b, 3⟩, ⟨d, e, 4⟩, ⟨e, c, 2⟩, ⟨f, b, 8⟩, ⟨f, e, 5⟩}.

d f

eca

b

6

2

9

4

3
5

8

Figure 3.7: Illustration of Graph G3

Representing graphs with the tuple/triple notation is cumbersome and prone to
errors. To compensate, we can use adjacency matrices or adjacency lists. Adjacency
matrices are matrices, or two-dimensional grids, where each entry corresponds to
an edge between vertices. These entries contain either an edge distance or, if the
graph is fully undirected, “1” indicates the existence of an edge, and “∞” indicates
no edge. If a node does not have a “self-loop”, its distance to itself is zero. The
matrix row and column labels are the graph vertices, in which we read the entries
as ⟨i, j⟩ for the ith row and the jth column.

59

3.9 Graphs 60

a b c d e f

a 0 1 ∞ ∞ ∞ ∞
b ∞ 0 ∞ 1 ∞ ∞
c ∞ 1 0 ∞ ∞ ∞
d ∞ ∞ ∞ 0 1 ∞
e ∞ ∞ 1 ∞ 0 ∞
f ∞ 1 ∞ ∞ 1 0

Table 3.1: Adjacency Matrix of G1

a b c d e f

a 0 6 ∞ ∞ ∞ ∞
b ∞ 0 ∞ 9 ∞ ∞
c ∞ 3 0 ∞ ∞ ∞
d ∞ ∞ ∞ 0 4 ∞
e ∞ ∞ 2 ∞ 0 ∞
f ∞ 8 ∞ ∞ 5 0

Table 3.2: Adjacency Matrix of G3

Compare this with the adjacency list representation, which uses a linked list-
esque model to designate edges and weights. For unweighted graphs, each vertex
points to a list of nodes to represent connections. For weighted graphs, each vertex
points to a list of tuples ⟨v, k⟩ where v is the linked vertex and k is the edge weight.

a b

b d

c b

d e

e c

f b e

Figure 3.8: Adjacency List for G1

a b 6

b d 9

c b 3

d e 4

e c 2

f b 8 e 5

Figure 3.9: Adjacency List for G3

Graphs are important because they provide a powerful tool for modeling and
analyzing relationships between objects or entities. For one, they provide a concise
and intuitive way to depict connections, interactions, dependencies, and patterns
among different elements. Interestingly, many real-world problems can be mapped
to graph problems, such as finding the shortest path, identifying connected compo-
nents, or optimizing routes.

60

4 Formal Languages

The ultimate outcome of [syntactic] investigations should be a theory of linguistic
structure in which the descriptive devices utilized in particular grammars

are presented and studied abstractly with no specific reference to
particular languages.

—Noam Chomsky

Much of our time together thus far has consisted of discussions about the history
of computer science, formal logic, and elementary discrete mathematics. In this
chapter, we will shift even further away from “practical” computer science in favor
of explaining the fundamentals of languages and, more specifically, formal languages.

4.1 Languages

To talk about languages, we first need to define an alphabet. Alphabets are sets,
Σ, where each element is a distinct symbol or a grouping of symbols. For example,
Σ = {a, b, c, 1, 2, π, γρσ} is an alphabet containing seven members. Alphabets
may, in theory, be infinite, but in practice are of a fixed size, or carnality.

We define a language L over an alphabet Σ as a subset of Σ where each element
is an arrangement, or a permutation, of the letters in Σ. An arrangement of letters
in an alphabet is denoted as a word or a string . For instance, if we assume L
is the language over alphabet Σ = {a, b, c}, a word w in L may be abc, ac, bc,
cba, ccc, ccccccba, and so on. An example of a word that does not belong in L is
dcba, because d ̸∈ Σ. Sometimes, it is useful to represent a string of no length,
called the empty string, symbolically written as ε or λ (in this text we will use ε for
canonical purposes). The empty string, ε, is by default not included in an alphabet;
we include its usage via an asterisk, i.e., Σ∗, also known as the Kleene star. Namely,
Σ∗ = Σ ∪ {ε}, meaning Σ is a subset of Σ∗.

Languages may also have constraints and rules that define the “well-formed”
property of the language. That is, a language’s constraints construct its valid
words.

4.1 Languages 62

Grammars

Grammars describe the syntax of a language. Generally, we consider the grammar
of the English language when determining if a sequence of words forms a sentence
in accordance to the grammar rules. We will reconsider this as an example in due
time, but to start off simple, we restrict our language to a very small set of strings.
We define a grammar G as a set of terminals T , a set of non-terminals T ′, and a set
of production rules R. A terminal is an atomic literal result of a production rule. A
non-terminal is a set of possible paths that a string can take in a production rule.
Finally, production rules combine and define the relationship between terminals and
non-terminals. Let us see an example. Consider a language that has sentences of
the form “Subject ‘ ’ Verb ‘ ’ Object”. Take note that in between Subject and Verb
as well as between Verb and Object, we have exactly one space in each spot.

T ::= "John" | "Alan" | "Siobahn" | "Katherine"
| "likes" | "enjoys" | "loathes" | "despises"
| "books" | "video games" | "clothes" | "food"

T’ ::= R* S V O

Figure 4.1: Partial Grammar for S-V-O Language

We define T as the set of terminals, which includes several strings of subjects,
verbs, and objects. The terminal set T does not place terminals into subsets; its
sole purpose is to describe all possible terminals in a grammar. T ′ has four non-
terminals: S, V , O, and R∗, designating subjects, verbs, objects, and the root
production.1 These on their own have no semantic meaning, but when combined
with R, we begin to see the possible strings of this grammar.

T ::= "John" | "Alan" | "Siobahn" | "Katherine"
| "likes" | "enjoys" | "loathes" | "despises"
| "books" | "video games" | "clothes" | "food"

T’ ::= R* S V O S
V ::= "likes" | "enjoys" | "loathes" | "despises"
O ::= "books" | "video games" | "clothes" | "food"
R* ::= S WS V WS O

Figure 4.2: Complete Grammar for S-V-O Language

Every grammar must have the non-terminal R∗, referencing the starting non-
terminal, i.e., where the grammar starts for input strings. The production rule
“X ::= Y Z | W” says that the left-hand non-terminal X produced the right-hand
expression Y followed by Z, or the right-hand expression W, but not both. The
expressions Y, Z, and W could all be terminals or non-terminals; it does not matter
when describing the syntax of production rules.

1We also include a non-terminalWS, which defines a single (blank) space for separating productions.

62

63 Formal Languages

Grammars, as we said, form the syntax of some language, wherein it validates
strings as either part of or not part of the language. For example, using the prior
definition of G, we may test the input string “Siobahn likes books” for presence
in the language. To do so, we perform a sequence of substitution steps of the
production rules for terminals and non-terminals. When checking a terminal against
a non-terminal, we verify that the string is in the set of terminals produced by the
non-terminal. Let us see the derivation of the string “Siobahn likes books”:

R∗ ::= S WS V WS O

R∗ ::= “Siobahn” ∈ {“John”, . . . , “Katherine”} WS V WS O

R∗ ::= “Siobahn” “ ” ∈ {“ ”} V WS O

R∗ ::= “Siobahn ” “likes” ∈ {“likes”, . . . , “despises”} WS O

R∗ ::= “Siobahn likes” “ ” ∈ {“ ”} O
R∗ ::= “Siobahn likes ” “books” ∈ {“books”, “clothes”, “food”, “video games”}
R∗ ::= “Siobahn likes books”

Because we reach the end of the production rule and our input string has been
fully examined, we conclude that the string “Siobahn likes books” is in the language
described by G.

Let us write a counter example to show a non-present string, e.g., “Doug enjoys
food”.

R ::= “Doug” ̸∈ {John, . . . ,Katherine} WS V WS O

Because “Doug” is not in the terminals produced by the non-terminal S, we reject
“Doug enjoys food” from the language.

What we describe as grammars follows a specification called Backus-Naur Form
(BNF) grammars, also sometimes referred to as its extended counterpart: Extended
Backus-Naur form (EBNF) grammars. EBNF grammars use certain symbols to
ascribe repetition or options to a production rule. As an example, the use of the
Kleene closure says that a preceding expression is used zero or more times.

The potential of grammars far exceeds what we mention in this section. A
grammar can be defined recursively wherein non-terminals refer to themselves. Let
us see the grammar for a prefix notation arithmatic expression language.

This grammar describes a language that accepts prefix notation arithmatic ex-
pressions, e.g., ‘(+ 2 (∗ 4 5))’. For the most part, this is relatively straightforward;
expressions are built in terms of themselves via EXPR or NUM non-terminals. Let
us show an abbreviated derivation of the example string we provided.

63

4.1 Languages 64

T ::= "0" | "1" | ... | "9" | "+" | "-" | "*" | "/"
T’ ::= R* WS NUM OP EXPR
WS ::= " "
NUM ::= ("0" | "1" | ... | "9")+
OP ::= "+" | "-" | "*" | "/"
EXPR ::= "(" OP WS EXPR WS EXPR ")"

| NUM
R* ::= EXPR

Figure 4.3: (EBNF) Grammar for Prefix Notation Arithmetic Expression Language

R∗ ::= EXPR

R∗ ::= “(” ∈ {“(”} OP WS EXPR WS EXPR “)”

R∗ ::= “(” “ + ” ∈ {“ + ”, “− ”, “ ∗ ”, “/”} OP WS EXPR WS EXPR ”)”

R∗ ::= “(+” “ ” ∈ {“ ”} EXPR WS EXPR “)”

R∗ ::= “(+ ” “2” ∈ {“0”, “1”, . . . , “9”} EXPR WS EXPR “)”

...

R∗ ::= “(+ 2 (∗ 4 5))”

One piece that is easy to omit is the use of a ‘+’ and parentheses around the
choices of the non-terminal NUM. The parentheses indicate a grouping of symbols,
similar to how parentheses operate in traditional expressions. The plus sign without
quotes, on the other hand, indicates that in order to successfully match the group,
there must be at least one of the group bound to the ‘+’. In English, the non-
terminal NUM refers to any sequence of digits. In contrast to the Kleene star, ‘+’
is sometimes called the Kleene plus, indicating one or more matches as opposed to
zero or more. Namely, we may define the Kleene plus in terms of the Kleene star as
Σ+ = ΣΣ∗. None of this answers the question of what features distinguish a Backus-
Naur form grammar from an extended Backus-Naur form grammar. Grammars
defined in BNF are not allowed to use these special symbols. In essence, EBNF
grammars are much more expressive in their syntax; EBNF and BNF grammars
are semantically equivalent and any idea expressed in the former is possible in the
latter. We will describe these special symbols, e.g., Kleene star and others after we
discuss regular expressions and finite automata; the latter of which takes precedence
over the former.

64

65 Formal Languages

4.2 Finite Automata

Finite automata are, in essence, very weak computers, or models of computation.
Finite automata describe transitions between states in some model. To be specific,
a state is an identifier referring to a “location” or property. The common example
people refer to when explaining finite automata is a light switch. That is, a light
switch has a set of states Q = {ON,OFF}, and a transition function δ describing
the paths between each state, as well as the input used to get between states. Each
transition requires data to “traverse” the transition, so to speak. Finite automata
use input symbols belonging to an alphabet Σ. Imagine that this light switch finite
automaton has the symbols Σ = {0, 1}. We may have a transition that goes from
OFF to ON using the input 1. Moreover, we may have another transition from
ON to OFF using the input 0. Thus, our transition function is a binary function
Q × Σ→ Q, mapping inputs of a state and a symbol to another state. The above
example, therefore, has a transition function of two inputs: δ(OFF, 1) = ON and
δ(ON, 0) = OFF. A finite automaton such as this is non-deterministic, because
it is unknown what to do if the machine receives a 1 symbol while in the ON
state. In other words, δ(ON, 1) does not have a mapped output. To make this
deterministic, we need an output for every input possibility. Accordingly, each
state q must have |Σ| transitions, meaning that for a deterministic finite automaton,
|δ| = |Q| · |Σ|. Transition functions do not necessarily need to lead to distinct states.
Indeed, to complete the transition function, we may define δ(ONE, 1) = ONE, and
δ(OFF, 0) = OFF. Drawing the automaton would reveal itself as follows.

OFF ON

1
0

0

1

Figure 4.4: Light Switch Encoded as Finite Automaton

This, however, is not a complete (deterministic) finite automaton, as it misses a
few key elements. First, all finite automata have a single starting state qs. A starting
state indicates where input begins reading into the automaton. Additionally, we
need a set of final states F . A final state f ∈ F determines whether an input is
accepted or rejected. A rejected input is one that ends on a state q ̸∈ F . Each time
we traverse a path in the automaton, a symbol is consumed from the input string.
If, by the time we reach the end of the input, we are on a final state, we accept the
input string. So, a deterministic finite automaton D is a quintuple (Q,Σ, δ, qs, F)
whose values are those described above. Let us complete the light switch analogy
automaton by adding a start state, say qs = OFF, as well as adding ON to F .

65

4.2 Finite Automata 66

OFFstart ON

1

0

0

1

Figure 4.5: Complete Light Switch Encoding as DFA

As we said, though, finite automata consume strings of input. So, let us assume
the light switch automaton receives the input string s = 100101, to see the termi-
nating state. We can imagine this as the light switch being turned on, then off,
then attempting to turn it off again, back on, then off, then finally on again. When
we “attempt” to turn it off when it is in the off state, we loop back. Similarly,
attempting to turn on a light that is already on loops back around. Because we end
on a final state (i.e., when |s| = 0, the current state q ∈ F), the input is accepted.

We can model most devices with state using finite automata, such as elevators,
transmission systems, and more practical, “real world” examples. Though, finite
automata are commonly implemented to recognize languages of strings.

Example. Let us consider a deterministic finite automaton that recognizes all odd
integers represented as binary strings. Such a DFA needs only two states Q =
{EVEN,ODD}. We know from Chapter 2 that all binary numbers whose least-
significant bit is 1 is odd. So, we can design a DFA that transitions from EVEN to
ODD if it reads a 1 symbol. ODD should, therefore, be an accepting state, belonging
to F . If we read a zero while on the ODD state, we travel back to EVEN.

EVENstart ODD

1

0

0

1

Figure 4.6: Finite Automaton Accepting Odd Binary Strings.

What a coincidence; this DFA accepts the same language as the one from our
light switch automaton!

Example. Let us design a DFA that accepts strings of the form aaa whose length is a
multiple of three. The language of this DFA is, therefore, L = {ε, aaa, aaaaaa, . . .}.
Assume that the input alphabet is Σ = {a, b}. If the automaton reads any b sym-
bols, it automatically rejects the string. The thing is, there is no notion of “auto-
matically rejecting” a string with a DFA. The way to simulate this is to use a “dead
state”. A dead state is a non-accepting state in which all transitions out are loops
back onto itself, meaning that once we reach this state, there is no way out. We
use ∅ to indicate a dead state.

66

67 Formal Languages

q0start q1 q2

∅

a

b

a, b

a

b

a

b

Figure 4.7: Finite Automaton Accepting String Multiples of aaa.

Example. Let us design a DFA that accepts strings that are either a or bb, and are
sequences of either of these strings, possibly interleaved. We can once again assume
Σ = {a, b}. So, L = {a, bb, aa, abb, aabb, bba, bbaa, . . .}. We need a dead state to
represent the transition from q1 when we read an a, since strings of the form ba are
not possible. Further note the inclusion of q0 to exclude the empty string from our
language L.

q0start q2

q1∅

a

b

a

b

a

b

a, b

Figure 4.8: Finite Automaton Accepting Substrings of a or bb.

Example. Let us ramp up the difficulty and design a DFA that accepts strings rep-
resenting all integers. To complicate things, imagine our alphabet contains special
characters, digits, and letters (both upper and lower-case) designated by the sets
SC, D, and L respectively. So, Σ = {SC ∪D∪L}. A positive integer consists of an
optional sign, i.e., + or −, followed by at least one digit. Any other characters send
us to a dead state. Any character aside from a digit or a sign sends us to the dead
state from the initial state, which we will denote as the set ND = Σ \ {−,+} ∪D.
The set Σ \D represents the set of alphabet symbols that are not digits.

67

4.2 Finite Automata 68

q0start

q1

q2

∅

D

−,+
ND

Σ \D

D

D

Σ \D

Σ

Figure 4.9: Finite Automaton Accepting Integers.

Example. Let us design a DFA that accepts any decimal number. This requires
only a few changes to our previous DFA. Those changes include allowing for a
single decimal symbol after an optional symbol, followed by any number of digits.
The alphabet is the same as before. Further assume that BC = Σ \ {−,+, .} ∪D,
where BC (standing for Bad Character) is the set of any character that is not a
sign, decimal, or digit.

q0start

q1

q2 q3

∅

D

−,+

.

BC

D

.

BC

D, .

BC

D

BC

Σ

Figure 4.10: Finite Automaton Accepting Decimal Numbers.

68

69 Formal Languages

Example. Let us design a DFA that accepts any infix expression. An infix expression
consists of numbers and/or operations, e.g., 4 + 5, 9, 6 · 10 − 9 · 12. There are no
parenthesized expressions. Assume that our alphabet Σ = OP∪NUM, where NUM
is the DFA that we designed in the previous example (for decimal numbers), and
OP = {+,−, ·, /}. So, we can say that the infix expression is any amount of numbers
(zero or more) followed by operations, followed by a required number. The required
number is twofold: first, if we enter a string without an operator, then the first part
of the grammar is omitted. Second, it allows us to continuously define numbers and
operators, only stopping after we do not add an operator past the last number.

q0start q1 q2

∅

NUM

OP

OP

OP

NUM

Σ

Figure 4.11: Finite Automaton Accepting Infix Expressions

Example. Let us design a DFA that accepts a few “keywords” from a programming
language: main, int, and char, separated by underscores. We can assume that the
alphabet is any lowercase letter. This DFA begins to show the power of a DFA for
recognizing words, albeit while taking a bit of time to construct. To condense the
DFA, we will omit any transitions to the dead state, since each transition is simply
the difference between Σ and the letter on the other transition(s).

69

4.2 Finite Automata 70

q0start

q1 q2 q3 q4

q5 q6 q7

q8 q9 q10 q11

m

i

c

a i n

n t

h a r

Figure 4.12: Finite Automaton Accepting Some Keywords.

Exercise 4.1. (⋆⋆)
Design a DFA that accepts a language consisting of strings with an even number of
‘a’ symbols, followed by an even number of ‘b’ symbols.

Exercise 4.2. (⋆⋆)
Design a DFA that accepts a language consisting of strings over the alphabet Σ =
{0, 1} that represent binary numbers divisible by eight.

Exercise 4.3. (⋆⋆)
Design a DFA that accepts a language consisting of strings over the alphabet Σ =
{0, 1} that represent binary numbers with an odd number of ‘0’ symbols and ‘1’
symbols.

Exercise 4.4. (⋆⋆)
Design a DFA that accepts a language consisting of strings over the alphabet Σ =
{a, b} that start and end with the same symbol.

Exercise 4.5. (⋆⋆⋆)
Design a DFA that accepts a language consisting of strings over the alphabet Σ =
{a, b} such that each string is anbm, where m, n ≥ 0, and m − n is even.

Exercise 4.6. (⋆⋆⋆)
Design a DFA that accepts a language consisting of strings over the alphabet Σ =
{a, b, c} such that all strings begin with c and end with b, but do not contain either
substrings cac, bab, or aaa.

70

71 Formal Languages

Exercise 4.7. (⋆⋆⋆)
Design a DFA over the alphabet of digits, upper and lowercase letters, and the
following symbols: ‘+’, ‘−’, ‘∗’, ‘/’, ‘(’, ‘)’, ‘ ’, ‘$’, ‘−’, ‘%’, ‘ˆ’, ‘\’, ‘@’, ‘#’, and
‘&’. The language describes valid variable identifiers for the Java programming
language. A variable identifier in Java must start with a non-digit, and contain
only uppercase and lowercase letters, digits, ‘$’, and underscores ‘ ’. Any other
inputs should be rejected.

Regular Expressions

Regular languages are languages recognized by a deterministic finite automaton. We
describe regular languages using regular expressions, or regex(es), for short. Regexes
are more compact than DFAs, and are used extensively in computer science. Any
DFA can be converted into a regular expression and vice versa. In future chapters,
we will make extensive use of regexes, so learning them now is extremely beneficial.

Regular expressions are constructed using symbols, which denote properties of
the recognizing language. Let us explain some of these symbols specific to regexes.

To say that a regex accepts any sequence of some symbol, we use the Kleene
star, or the asterisk, which we briefly explained at the start of this chapter. As an
example, the language of any number of a’s is a∗ = {ε, a, aa, aaa, ...}. Sometimes,
though, we want to exclude the empty string from the language, which we do via
‘+’. E.g., if Σ = {a}, then L+ = {a, aa, aaa, ...}. If we want to choose between
regexes, we use the vertical bar ‘|’. E.g., the language of zero or more a or bb
is ‘(a | bb)∗’. To designate grouping, we utilize parentheses, just as we would in
mathematical equations.

Regular expressions, as noted, are translatable into equivalent DFAs, and vice
versa. So, let us translate a few language descriptions into regular expressions.

Example. Write a regex for the language consisting of one or more a’s followed by
one b. The solution is simple: ‘a+b’.

Example. Write a regex for the language consisting of any number of a’s or b’s,
preceded and followed by exactly three c’s. We will group the “a or b” portion using
parentheses and a Kleene star, and add the c’s before and after. ccc(a | bb)∗ccc.
Example. Write a regex for the language consisting of an even number as a binary
string, followed by an odd number as a binary string. As we saw with the respective
DFA, all even binary numbers end with a zero, and all odd binary numbers end with
a one. So, let us encode this into a regex: ‘(0 | 1)∗0(0 | 1)∗1’.
Example. Write a regex for the language consisting of all positive integers, as
binary strings, divisible by two. For this example, we must recognize that any
binary number divisible by two ends in a zero. Note that this problem is equivalent
to asking if n mod 2 is zero and therefore the regular expression is ‘(0 | 1)∗0’.

71

4.2 Finite Automata 72

Example. Write a regex for the language consisting of all integers. To condense our
solution, we will make use of character classes, which are substitutes for large chains
of “choice” operators. To demonstrate, the character class of any digit is represented
as [0-9], which is semantically equivalent to (0 | 1 | 2 | ... | 9). Additionally, we need
a way of representing “optional” symbols or groups, i.e., whether something occurs
exactly zero or one times. This is represented by a ‘?’. We need this to designate
that the sign in front of an integer is optional: ‘(+ | −)?[0−9]+’.
Example. Write a regex for the language consisting of any real, or decimal, number.
Fortunately, this is just a re-telling of the corresponding DFA we designed earlier:
‘(+ | −)?[0−9]∗(.[0−9]∗)?’.1

Example. Write a regex for the language consisting of strings of lower-cased vowels.
‘(a | e | i | o | u)+’.
Example. Write a regex for the language consisting of infixed expressions. To make
our lives easier, we will reuse the “decimal number” regular expression as “num”,
and “op” is the regular expression (+ | − | ∗ | /): (num op)∗num.

Lexical Analysis

Lexical analysis involves assigning meaning to sequences of characters. For example,
in a string containing “1+23·41”, we might tokenize these lexemes by assigning the
token Number to the lexemes ‘1’, ‘23’, and ‘41’. Similarly, we could characterize
‘+’ and ‘·’ as Operator tokens. As suggested, tokens are categorizations of lexemes,
which are members of those categorizations. We use lexical analysis primarily
when designing the grammar of a programming language. Notice that, with regular
expressions, we designed the tokens num and op to match against numbers and
operators respectively. We then use these tokens for further syntactic and semantic
analysis.

1Note the inclusion of the wildcard symbol ‘.’ inside the regular expression; we do not include the
period that ends the sentence in the regular expression and hence use quotes to surround the regex.

72

73 Formal Languages

4.3 Syntactic Analysis

Syntactic analysis, also called parsing, is determining whether a sequence of tokens
conform to a language grammar. When parsing tokens, we build data structures
called parse trees, which are then converted into abstract syntax trees. Parse trees,
as we referred to them in Chapter 2, are hierarchical representations of tokens.
For instance, in Figure 4.13 we have a grammar for simple postfix-style arithmatic
expressions. Parsing the expression ‘(1 (23 41 ·) +)’ produces the parse tree shown
in Figure 4.14.

exp ::= ‘(’ (exp exp op) ‘)’
| num

op ::= ‘+’ | ‘-’ | ‘·’ | ‘/’
num ::= digit+
digit ::= [0-9]

Figure 4.13: (EBNF) Grammar for Postfix Notation Arithmetic Expression Language

exp

‘)’op

‘+’

exp

‘)’op

‘·’

exp

41

exp

23

‘(’

exp

1

‘(’

Figure 4.14: Parse Tree of ‘(1 (23 41 ·) +)’

Whereas parse trees describe the syntactic structure of an input, abstract syntax
trees explains the relationships between subtrees. Moreover, abstract syntax trees
strip extraneous characters such as separators that do not contribute to a node in
the tree. As an example, consider the expression ‘((9 8 +) (17 81 −) ·)’, whose
parse tree contains the parentheses to indicate grouping. The abstract syntax tree
counterpart removes these since they contribute nothing to the overall tree structure;
the addition and subtraction subtrees already enforce the groups.

73

4.3 Syntactic Analysis 74

exp

‘)’op

‘·’

exp

‘)’op

‘−’

exp

81

exp

17

‘(’

exp

‘)’op

‘+’

exp

8

exp

9

‘(’

‘(’

Figure 4.15: Parse Tree of ‘((9 8 +) (17 81 −) ·)’

Mult

Sub

8117

Add

89

Figure 4.16: Abstract Syntax Tree of ‘((9 8 +) (17 81 −) ·)’

We will make prolific use of abstract syntax trees in later chapters, so while they
may appear to be nothing more than a theory-focused concept/data structure, they
play extensive roles in practice! Furthermore, other textbooks and sources delve into
the theory and intricacies of parsing, offering a wealth of additional information.

74

75 Formal Languages

4.4 Analyzing λ-Calculus

Alonzo Church created the lambda calculus, or the λ-calculus in the early 1930s
as an abstract machine for modeling computation in the scope of mathematics.
Traditional lambda calculus, so to speak, is rather limiting in what it provides
on the surface, but it helps lay the groundwork for several fundamental computer
science concepts, including variables, function declaration, and function application.

Church’s lambda calculus, much like classical logic, builds its schemata/well-
formed formulas in terms of induction. The smallest unit is a variable, i.e., a
lower-case letter usually beginning at x. Variables represent parameters or some
kind of value. Next, we have the idea of function abstraction. Function abstractions
are, in effect, function definitions, i.e., (λx.M), where M is any lambda calculus
term. Function abstractions define a function that receives some argument, e.g., x,
and has a body M . Finally, because we have function abstraction, we need a way
of “invoking” a function. Thus, we have function application, i.e., (M N) where M
and N are arbitrary lambda calculus terms. For function application to make sense
semantically, M must be some term that reduces to a function abstraction. Let us
see a few examples of lambda calculus schemata.

• x

• y

• (λz.z)

• (((λx.(λy.x)) z) w)

• ((λx.(x x))(λx.(x x)))

The lambda calculus also concerns us with the “scope” of variables, i.e., whether
a variable is bound, free, or neither. A variable x in a lambda-calculus term is
bound if and only if there exists a function abstraction M whose formal parameter
is x and x occurs somewhere (as a non-formal parameter) in the body of M . An
example is (λy.(λz.y)), where y is bound because it is the formal parameter of the
outer-most function abstraction, and exists as a non-formal parameter in the inner
function application. A free variable is the opposite of a bound variable in that a
free variable x is one that exists without being the formal parameter to a function
abstraction. An example is (λx.y), where y is free because it occurs without a
matching function application.

α-substitution is a substitution principle in which we can substitute letters in a
λ-calculus term for any non-bound letter. E.g., λx.x is α-equivalent to λy.y if we
substitute x for y.

β-reduction is a substitution principle closely related to function application.
We know that function application entails applying a function or operator to its
arguments. As we saw in 2, for a function f(x), we apply a function f to an
argument by substituting the formal parameter x for the argument in the body of
f . E.g., f(x) = x+5, f(5)[x 7→ 5], f(5) = 5+5, thus, f(5) = 10. This idea holds true
for λ-calculus abstractions and applications; we β-reduce function applications by
substituting the formal parameter of a lambda abstraction by its argument operand.

75

4.4 Analyzing λ-Calculus 76

Example. β-reduce the following term: ((λx.x) y)

= y

Example. β-reduce the following term: ((λx.(λy.(x y))(λz.x))(λx.x))

= ((λy.((λx.x) y)) z)

= ((λx.x) z)

= z

We can extend the syntax of the λ-calculus to make it more convenient to humans
to use. What makes this formalism interesting, though, is that such an extension
is entirely unnecessary–we can represent any algorithm with only the presented
syntax and semantics. This includes arithmetic, decision structures, recursion, and
everything else. For examples, numbers, i.e., natural numbers are representable by
sequential lambda abstraction and application. Namely, zero is encoded as λf.λx.x,
designating that we never apply the given function f to x. One is encoded as
λf.λx.(f x). Two is encoded as λf.λx.(f (f x)), and so on ad infinitum. In essence,
we apply a function f , n times, where n is the natural number we wish to represent.
It is important to understand that the lambda abstraction itself represents the
natural number; not the evaluation of said lambda abstraction. What is more is
that we can even represent, say, successor and addition with this encoding of natural
numbers. Let us look at how to encode successor first as it is simpler. Recall that
the successor function succ receives a natural number n and returns n+1. If we
encode numbers as we have described, each number is represented as a function
compositionally applied to an argument x. Thus, we can define succ as applying a
function f to some given x, n times.

succ(n) = λn.λf.λx.(f ((n f) x))

As this shows, the successor function is a function of three (curried) arguments: the
input n to compute the successor of, the function f to use, and x which we apply
f onto.

Example. Suppose we want to compute succ(3):

3 = λf.λx.(f (f (f x)))

succ(3) = (λn.λf.λx.(f ((n f) x)))(λf.λx.(f (f (f x))))

= λf.λx.(f (((λf.λx.(f (f (f x)))) f) x))

= λf.λx.(f ((λx.(f (f (f x)))) x))

4 = λf.λx.(f (f (f (f x))))

We can also compute the sum of two church numbers m and n. The addition
of m and n as natural numbers boils down to computing n successors of m. For
instance, consider 4+3:

4+3 = 3+succ(0)+succ(0)+succ(0)+succ(0)

76

77 Formal Languages

Zero, or 0, in our instance, is roughly symmetrical with x. So, we apply n to
the successor function f to get n copies. From there, we get a function that we can
apply to m.

Add(x, y) = λm.λn.λf.λx.((n succ) m)

Of course, computing these λ−calculus reductions manually is repetitive and
prone to errors. We describe some implementation of traditional arithmetic in this
language as a baseline for function definition and application at a fundamental level.
For instance, as numbers, we may represent boolean values, i.e., ⊤ and ⊥, as well
as conditionals, i.e., if x is true, then y, else z. For example, consider representing
⊤ as a two-argument (curried) function that returns its first argument.

⊤ = λx.λy.x

Closely related, suppose we represent ⊥ as a two-argument (curried) function
that returns its second argument.

⊥ = λx.λy.y

Remember the crucial thing about church encoding: these values, themselves,
represent their encoded value; not their evaluated forms.

77

5 Programming and Design

Computer Science is a science of abstraction-creating the right
model for a problem and devising the appropriate

mechanizable techniques to solve it.

—Alfred Aho

5.1 Recitation of Elementary Arithmetic

Suppose that you are back in elementary school, around the age of ten or so. You
were just given that night’s math homework on the order of operations and asked
to evaluate expressions. Confident as ever, you race to pick up your pencil to begin
the first question. It reads:

Evaluate the following expression:

3 − ((7 · −9) + (6 − (−3 / 2)))

Hopefully, you are not overwhelmed by the length of the problem, and you
gracefully touch the pencil to the paper and sketch the solution. Assuming you
really are confident in your memory of the order of operations, you write the answer
“58.5”. As you wipe the sweat from your forehead, you notice some small words in
italics which read, “Show all work!”.

If this did not send shivers down your spine, then great! Otherwise, you certainly
remember being required to write out verbose solutions to seemingly simple prob-
lems that you could solve instantly with a calculator (or your head!). Begrudgingly,
you would pick up the pencil and begin to solve each expression from the inside
out:

= 3 − ((7 · −9) + (6 − (−3 / 2)))
= 3 − (−63 + (6 − (−1.5)))
= 3 − (−63 + 7.5)

= 3 − −55.5
= 58.5

5.1 Recitation of Elementary Arithmetic 80

We imagine that, for our intended readers, solving an expression of this caliber is
of little difficulty (if it is, do not necessarily fret, though). Let us take a step back
and think about this though, even if it seems unnecessary. How, actually, are we
solving this? Depending on where you live(d), you learned the order of operations
differently, but it is largely standardized as follows: parentheses are evaluated first,
then exponents, then from left to right: multiplication and division, and lastly again
from left to right: addition and subtraction. Such a standardization introduces the
concepts of precedence, i.e., a decision of which operator is evaluated before another,
and associativity, i.e., which direction to evaluate an operator.1 One detail that is
almost always omitted in these discussions, though, is the style of said expressions.
We classify expressions such as these using the “infix” term. Infix expressions place
the operator between its operands. As an example, 5+6 is an infix expression.
Contrastingly, we can write an equivalent expression without this infix limitation.
As a proof of concept, suppose we want to represent this with the operator written
before the operands! This seems rather simple at first glance, and we can do so as
follows: + 5 6. Of course, with this toy example, it is trivial, but what if we ramp
up the difficulty with the expression from before: 3−((7 · −9) + (6−(−3/2))). How
do we write this as a prefix expression? Fortunately, it is similarly trivial! Here’s
the general procedure:

1. Determine the “main” operator of the expression.2 This is the one that you
would evaluate last in the standard infix notation. If there is no operator, i.e.,
it is a number, just keep the number.

2. Put the left-hand operand immediately after the operator from step 1, and
put the right-hand operand after the left-hand.

3. Repeat step 1, but on the left and right operands.

Notice that, in using this procedure, we did exactly that with our toy 5+6 expres-
sion. The “main” operator is addition, +, and our left-hand operand is 5, whereas
the right-hand operand is 6. Thus, we write + 5 6. Let us apply this rule to the
complex expression:

(i) –3 ((7 · –9) + (6 – (–3 / 2)))

(ii) –3 + (7 · –9) (6 – (–3 / 2))

(iii) –3 + · 7 –9 (6 – (–3 / 2))

(iv) –3 + · 7 –9 – 6 (–3 / 2)

(v) –3 + · 7 –9 – 6 / –3 2

1Recall our discussion on associativity as it relates to binary operators and groups from Chapter 2.
2Recall the “main” operator in zeroth/first-order logic schemata; the idea is shared here.

80

81 Programming and Design

One detail that we omitted was the notion of parentheses; what exactly is the
purpose of parentheses in arithmetic? In the standard infix notation, they group
expressions we wish to evaluate before others. Expressions written in prefix nota-
tion, though, remove this inherent limitation. We always evaluate prefix expressions
from left-to-right. The thing is, though, we also use parentheses to “clean up” an
expression. While a prefix expression does not necessarily need parentheses, it is a
good idea to group operations together for readability and, as we will investigate
later, the ease of parsing:

(i) (–3 ((7 · –9) + (6 – (–3 / 2))))

(ii) (–3 (+ (7 · –9) (6 – (–3 / 2))))

(iii) (–3 (+ (· 7 –9) (6 – (–3 / 2))))

(iv) (–3 (+ (· 7 –9) (–6 (–3 / 2))))

(v) (–3 (+ (· 7 –9) (–6 (/ –3 2))))

If we want to dictate this expression with words in English, we could easily do so as,
“The difference of 3 and a sub-expression containing the sum of a sub-expression
containing the product of 7 and −9, and a sub-expression containing the difference
of 6 and a sub-expression containing the quotient of −3 and 2”. If we chose to
do so, we could write this expression another way, using multiple lines, to clarify
evaluation:

(–3
(+

(· 7 –9)
(–6

(/ –3 2)))))

Now, again, let us think about how we would actually evaluate this expression, from
the ground up. Assuming we know how to evaluate an operator such as + or −,
what is the algorithm?

1. Determine if the expression is of the form (<OP> <EXPR1> <EXPR2>), or
<NUMBER>.

2. If the expression is a <NUMBER>, just display the NUMBER.

3. Otherwise, evaluate OP using EXPR1 as the left-hand operand using step (1)
and EXPR2 as the right-hand operand using step (1).

Fortunately for us, evaluating prefix expressions is significantly easier for a com-
puter than evaluating infix expressions (at least in terms of writing the “how-to”
component). This algorithm is only three steps long, and thankfully, computers are
fully aware of how to compute expressions via the primitive arithmetic operations,
so it is now only a matter of deciding how we are going to instruct the computer to
do so.

81

5.1 Recitation of Elementary Arithmetic 82

What Language for Our Language?

Programming can be seen as an art, where programming languages serve as a kind
of paintbrush. There are several languages, or paintbrushes, we could use, e.g.,
Python, Java, C++, Rust, and others, but we will use the C programming language.
C is what many consider a “medium-level” language: one that is higher-level than
mnemonic-driven instructions and binary encoding, but lower-level insofar as its
close interaction with the computer hardware. Experienced computer scientists and
programmers may view our decision to use C as rather odd, since it allows beginners
to fall into bad programming practice traps and is significantly more “dangerous”
than many others of its kind.1 We argue, however, that C is a simple and small
programming language, containing few keywords and programming abstractions.
Furthermore, C is a procedural programming language, which means that it follows
a step-by-step execution model. This aligns well with how beginners generally
think and approach problem solving. Procedural programming allows beginners to
grasp the concept of sequential execution, making it easier to understand the logic
behind their programs. Finally, C serves as a solid foundation for learning other
programming languages, as many modern languages, such as those we listed above,
have C as their underlying influence.

In this section, we finally start writing code! In addition, we will reintroduce
some concepts that we discussed from Chapters 2, 3, and 4. This time, however,
we emphasize their relationships to programming as opposed to focusing solely on
their theoretical potential.

Hello World!

Every programming introduction uses the famous, “Hello World!” program of some
variety, and our textbook is no exception. Refer to Appendix 11.3 to set up your
programming environment.

Listing 5.1—Hello World Program (main.c)
1 #include <stdio.h>
2
3 int main(void) {
4 printf("Hello, world!");
5 return 0;
6 }

Hello, world!

What does this program do? We will go line-by-line in our analysis.

Line 1 includes functions from the standard input and output library in C. This
contains several functions that allow programmers to output information to the
console, files, as well as read information from the user.

1By “dangerous”, we mean its security vulnerabilities.

82

83 Programming and Design

Line 3 declares a function called main that has no arguments which returns
a value of type int. A function, as we can recall from Chapter 2, is a series of
computations to perform a task. In C, every program needs a main function. There
are some slight variations that main may take the form, but for now, we consider
those irrelevant. There is also an opening curly brace {. All functions in C require
a pair of opening and closing braces {, } to designate the body of a function, i.e.,
where the steps to perform a task resides.

Line 4 calls the printf function with the string argument “Hello, world!”.
The printf function formats output information to the console, and can be a
bit complex for people to wrap their heads around initially. We will explore this
function a bit more later in our C primer, but for now, we can just make note of
the fact that it outputs a string to the console.

Line 5 says that the main function returns a value of 0. For all intents and
purposes of our adventure in this textbook, the fact that main returns a value at all
is somewhat superfluous. For completeness, however, we will say that main returns
an integer value based on the “state” of the program. In other words, returning a
value of 0 from main indicates that the program, or main function for that matter,
terminated successfully. If by chance there was an error that occurred somewhere,
we could return a nonzero integer such as 1 or -1.

Finally, line 6 has the closing brace for the main function.

Natural Recursion

In Chapter 2, we introduced the notion of recursive functions, i.e., functions that
call themselves. To gently introduce the notion of recursive functions in the C pro-
gramming language, we will write some primitive operations via natural recursion.
Natural recursion is a type of recursion that operates over the natural numbers, i.e.,
N, or numbers from {0, 1, 2, 3, ...}. Since such a concept is rather abstract at first
glance, let us illustrate this with what appears to be a simple example: Add(x, y).

Addition with Natural Recursion

How do we add two natural numbers x and y? If we actually sit down and think
about how addition works, there are almost certainly some shortcuts people take.
For instance, if x = 19 and y = 43, we can say that x is very close to 20, so we can
simply add 20 to y and subtract one. Though, we are still missing this notion of
addition. If we wish to think about this problem recursively, it would be wise to
introduce a base case.

83

5.1 Recitation of Elementary Arithmetic 84

What happens if we add zero to any natural number? We simply get back the
natural number. So, this can be treated as our base case. What about the recursive
step? Let us assume, for the sake of constructing the solution to a larger problem,
that we understand the idea behind adding exactly one to a value and subtracting
exactly one to a value. If we have two natural numbers x and y, we can recursively
compute the sum of x and y by taking the successor of x and subtracting one from y.
The successor of some natural number n is equal to n + 1, using the function Succ.
E.g., Succ(5) = 6. So, our definition of addition, Add(x, y) = Succ(Add(x, y − 1)).

Base case: If y is 0, return x.

Recursive step: Return 1+Add(x, y − 1)

Like always, a good motivation for understanding comes through an example. Using
the preceding base case and recursive step, let us add x = 9, and y = 3.

(i) First, we call Add(9, 3). Is 3 equal to 0? Clearly not, so we do not return 9.
We return 1+Add(9, 2).

(ii) Is 2 equal to 0? Clearly not, so we do not return 9. We return 1+Add(9, 1).

(iii) Is 1 equal to 0? Clearly not, so we do not return 9. We return 1+Add(9, 0).

(iv) Is 0 equal to 0? Clearly, so we return 9. We now begin the process of reversing
through the recursive calls since we reached our base case.

(v) Previously, we had 1+Add(9, 0). We now know that Add(9, 0) = 9, so we
return 1+9 = 10.

(vi) Previously, we had 1+Add(9, 1). We now know that Add(9, 1) = 10, so we
return 1+10 = 11.

(vii) Previously, we had 1+Add(9, 2). We now know that Add(9, 2) = 11, so we
return 1+11 = 12.

(viii) We are out of recursive calls, so our final result is 12.

As shown above, the function returns 12 for x = 9 and y = 3, which is correct, as
9+3 = 12. Let us now write some C code to replicate this algorithm. Note that we
will only list the function and not the main function or headers.

Listing 5.2—Naturally-Recursive Addition (main.c)
1 int add(int x, int y) {
2 if (0 == y) { return x; }
3 else { return 1 + add(x, y - 1); }
4 }

An important note about computing Add(x, y) via natural recursion is that this
algorithm does not work if y is any negative integer. Our base case checks to see
if y is equal to zero. The current approach subtracts one from y every time we
recursively call Add. This means that y will never be zero, and is therefore stuck in
infinite recursion.

84

85 Programming and Design

Multiplication with Natural Recursion

Now that we understand the notion of natural recursion with addition, we should
write a program to multiply two natural numbers. When we multiply two natural
numbers x and y using natural recursion, we define multiplication in terms of ad-
dition. Namely, we add x to itself y times. Our base case is trivial: any number
multiplied by zero results in zero. Then, we add recursively add n to the result of
invoking Mult.

Base case: If y is 0, return 0.

Recursive step: Return Add(x, Mult(x, y − 1)))

Again, let us use a simple example. Suppose we wish to multiply x = 8 and y = 4.

(i) First, we call Mult(8, 4). Is 4 equal to 0? Clearly not, so we do not return 0.
We return Add(8, Mult(8, 3)).

(ii) Is 3 equal to 0? Clearly not, so we do not return 0. We return Add(8, Mult(8, 2)).

(iii) Is 2 equal to 0? Clearly not, so we do not return 0. We return Add(8, Mult(8, 1)).

(iv) Is 1 equal to 0? Clearly not, so we do not return 0. We return Add(8, Mult(8, 0)).

(v) Is 0 equal to 0? Clearly, so we return 0. We now begin the process of reversing
through the recursive calls since we reached our base case.

(vi) Previously, we had Add(8, Mult(8, 0)). We now know that Mult(8, 0) = 0, so
we return 8+0 = 8.

(vii) Previously, we had Add(8, Mult(8, 1)). We now know that Mult(8, 1) = 8, so
we return 8+8 = 16.

(viii) Previously, we had Add(8, Mult(8, 2)). We now know that Mult(8, 2) = 16, so
we return 8+16 = 24.

(ix) Previously, we had Add(8, Mult(8, 3)). We now know that Mult(8, 3) = 24, so
we return 8+24 = 32.

(x) We are out of recursive calls, so our final result is 32.

Listing 5.3—Naturally-Recursive Multiplication (main.c)
1 int mult(int x, int y) {
2 if (0 == y) { return 0; }
3 else { return add(x, mult(x, y\;-\;1)); }
4 }

85

5.1 Recitation of Elementary Arithmetic 86

Exponentials with Natural Recursion

We will derive another naturally-recursive function: Pow(x, y), which is equivalent
to xy, or xmultiplied by itself y times. As before, we need a base case and a recursive
step. Assuming x and y are natural numbers, then x0 = 1 should certainly be our
base case. The recursive step is fortunately only slightly harder: xy = x·x(y − 1).
Written out formally, we can, and should, express exponentiation in terms of Mult:

Base case: If y is 0, return 1.

Recursive step: Return Mult(x, Pow(x, y − 1)).

And the code is just a retailing of the formal definition:

Listing 5.4—Naturally-Recursive Exponentiation (main.c)
1 int pow(int x, int y) {
2 if (0 == y) { return 1; }
3 else { return mult(x, pow(x, y - 1)); }
4 }

Factorial with Natural Recursion

Let us ramp things up a bit more and write a slightly harder function, which main
will invoke, i.e., call. We saw fact(n), a function that computes the factorial of a
positive integer n, in Chapter 2. We noted the base case and the recursive step of
fact.

Base case: If n ≤ 1, return 1.

Recursive step: Return n·fact(n−1)

In C, it is quite trivial to replicate this behavior! We can use the conditional if
to mimic the base case. Unlike the section on natural recursion, we will first write
the code to compute fact(n), then walk through a computation example.

Listing 5.5—Naturally-Recursive Factorial (main.c)
1 #include <stdio.h>
2
3 int fact(int n) {
4 if (n <= 1) { return 1; }
5 else { return n * fact(n - 1); }
6 }
7
8 int main() {
9 int x = 6;

10 printf("The factorial of %d is %d\n", x, fact(x));
11 return 0;
12 }

The factorial of
6 is 720

Inside the main function, we declare an integer x with the value of 6. Variables
serve as placeholders for a value. This means that wherever we refer to x, the
program will interpret this as the integer 6.

86

87 Programming and Design

Our printf statement looks a bit complex now, so what did we do? Fear not,
however, as even though it appears difficult to understand, its behavior is entirely
predictable. The first argument to printf is what we call a format string. A format
string is a string that has placeholders for data. These placeholders can represent
anything: integers, floating-point values, characters, strings, memory addresses, or
whatever we desire! In this case, we are printing out the characters “The factorial
of ”, then we encounter a %d. This is a placeholder for a value. Since it is the first
placeholder in this string, it is going to search through the rest of the arguments to
printf, i.e., x and fact(x), and display the value of the first argument, being the
value of x. It then prints the characters “ is ”, followed by another placeholder
%d.1 Since this is the second placeholder, it will extract the value of fact(x) This,
however, is a function, so it will need to compute the value of fact(x)before printing
it out.

Let us trace through a computation of fact(3) to clarify some certainly-present
confusion about recursion.2

(i) First, we call fact(3) from main. We ask, “Is 3 less than or equal to 1?” Clearly
not, so we do not execute the code inside the if body. We compute 3·fact(2).

(ii) fact(2) is called. We ask, “Is 2 less than or equal to 1?” Clearly not, so we do
not execute the code inside the if body. We then compute 2·fact(1).

(iii) fact(1) is called. We ask, “Is 1 less than or equal to 1?” Clearly this is true,
so we execute the code inside the if body. We return 1. We now begin the
process of reversing through the recursive calls since we reached our base case.

(iv) Previously, we had 2·fact(1). We now know fact(1) = 1, so we return 2·1 = 2.

(v) Previously, we had 3·fact(2). We now know fact(2) = 2, so we return 3·2 = 6.

(vi) We are out of recursive calls, so our final result is 6.

As shown above, the function returns 6 for n = 3, which is correct, as 3! =
3·2·1 = 6.

Computing Catalan Numbers with Natural Recursion

The catalan numbers are a sequence of natural numbers that fall “nicely” into a
recursive formula. This formula may look a little scary, but it is nothing more than
another form of natural recursion.3

C0 = 1

Cn =
2(2n−1)
n + 1

·Cn−1

1Note that there is another special character ‘\n’ This causes the program to return to the next line.
It is akin to pressing “Enter”.

2We use 3 instead of 6 to shorten the redundancy of the explanation.
3While their uses are not important for us, we note that they aid in combinatorics, i.e., permutations.

87

5.1 Recitation of Elementary Arithmetic 88

Listing 5.6—Naturally-Recursive Catalan Numbers (main.c)
1 int catalan(int n) {
2 if (n == 0) { return 1; }
3 else { return (int) ((2.0 * (2 * n - 1)) / (n + 1)) * catalan(n - 1); }
4 }

Interestingly, we use 2.0 for the first 2 in our formula. We do so because, oth-
erwise, C will treat our division as integer division, thereby truncating any decimal
places. For example, 5 / 2 = 2 according to integer division, but if either operand
has a decimal, it will correctly give us 2.5.1

Ackermann’s Function

The Ackermann function is a fundamental recursive function in a subfield of com-
puter science called computability theory. Regardless, its definition is the most
complex that we have seen thus far.

A(0, n) = n+1 ∀n ≥ 0

A(m, 0) = A(m − 1, 1) ∀m > 0

A(m, n) = A(m − 1, A(m, n − 1)) ∀m, n > 0

Ackermann’s function, A, is a binary function of two arguments. Second, its second
argument in case 3 is, itself, a recursive call to A. Therefore, while it may not appear
as such, the output of A grows astronomically fast even in very small changes of m
and n. Let us write the function in C and investigate some inputs.

Listing 5.7—Ackermann’s Function (main.c)
1 int A(int m, int n) {
2 if (m == 0) { return n + 1; }
3 else if (n == 0) { return A(m - 1, 1); }
4 else { return A(m - 1, A(m, n - 1)); }
5 }
6
7 int main(void) {
8 printf("%d\n", A(2, 1));
9 printf("%d\n", A(2, 2));

10 printf("%d\n", A(3, 0));
11 printf("%d\n", A(3, 1));
12 printf("%d\n", A(3, 2));
13 printf("%d\n", A(3, 3));
14 printf("%d\n", A(3, 4));
15 printf("%d\n", A(4, 0));
16 return 0;
17 }

5
7
5
13
29
61
125
13

If we try to evaluate A(4, 1), we see that the function takes around twenty or so
seconds to give the result 65533.2 We advise not evaluating A(4, 2), because even
though we know its result to be 265533−3, a modern machine cannot realistically
compute this value on its own within a reasonable time frame.

1We use the casting operator (int) to convert the result from a double to an int. We can cast
types to other types, but information is not always preserved. For instance, casting a double to an int
truncates its decimal.

2This time was recorded on a 2021 MacBook Pro with the M1 Pro chip.

88

89 Programming and Design

Function Intricacies

Functions in C must be declared before they are invoked. For instance, if we write
a function f , which calls a function g, then g must be defined above f . What if,
however, g mutually-recurses on f? That is, g calls f , and f calls g? In this instance
it is impossible for one function to be fully defined above the other. Function
prototypes serve as the silver bullet; a function prototype is the signature of a
function without its body. Function prototypes in a source file should be defined
above every other function.

Listing 5.8—Function Prototypes (main.c)
1 // Function prototypes.
2 int f(...);
3 int g(...);
4
5 int f(...) {
6 ...
7 g();
8 }
9

10 int g(...) {
11 ...
12 f();
13 }

We will make extensive and full-fledged use of function prototypes in the sections
and chapters to come.

Exercise 5.1. (⋆⋆)
The Collatz conjecture questions whether every positive integer, if given to the
following recursive function, always converges to one [Lagarias, 1985].

Collatz(n) =
{
⌊n/2⌋, if n is even
3n+1, if n is odd

}
Write the collatz function, which receives a positive integer n and prints out each
number in the Collatz sequence generated by Collatz(n).

Listing 5.9—Collatz Conjecture Skeleton Code (main.c)
1 void collatz(int n) { // TODO. }
2
3 int main(void) {
4 collatz(10);
5 return 0;
6 }

10
5
16
8
4
2
1

89

5.1 Recitation of Elementary Arithmetic 90

Counting with Natural Recursion

We have been using natural recursion to “count down” so to speak to a base case
condition. Let us write a program that will actually interact with the user and print
out some information, via natural recursion. Our goal is to allow the user to enter
a number n, and the program will output a sequence of digits starting from n down
to 0, followed by “Blast off!”. We will call this function Countdown(n). Unlike
our previous examples, however, our recursive calls will not return a numeric value.
Instead, we are simply performing an action at each step of the computation. We
can illustrate this with the formal definitions:

Base case: If n is 0, Print Blast off!
Recursive step: Print n, and call Countdown(n − 1).

In the C language, we can imitate the behavior of “Print” using the format print
function printf, as we did with the factorial example. Let us now write the corre-
sponding code.

Listing 5.10—Countdown with Natural Recursion (main.c)
1 void countdown(int n) {
2 if (n > 0) {
3 printf("%d ", n);
4 countdown(n - 1);
5 } else {
6 printf("Blast off!");
7 }
8 }

With this example, we slightly amended our recursive definition. We check to
see if n is greater than 0, and if so, we print the corresponding value of n, followed
by a call to countdown with a value of n - 1. What is new is the else keyword
and block. An else block is always paired with if. We can read it as, “If expr
true, evaluate the if body. Otherwise, evaluate the else body”, where expr is
some expression that is true or false. This differs in one significant way from the
code examples laid out before: when the program is in the “reversing the recursion”
process, if our if body does not have a return statement, execution resumes outside
the body of the if statement. Consider the following code:

Listing 5.11—Incorrect Implementation of countdown (main.c)
1 void countdown(int n) {
2 if (n > 0) {
3 printf("%d ", n);
4 countdown(n - 1);
5 }
6 printf("Blast off!");
7 }

90

91 Programming and Design

If we try to call this function with a value of 3, it will print 3 2 1 Blast
off!Blast off!Blast off!. Assuming you have not accidentally already made
this mistake, its behavior might surprise the uninformed. When we return from
a block of code, execution completely terminates from that function forever in the
scope of that recursive call. If we omit return or do not insert an else block, once
the recursive call unwinds, it will resume execution after the function call. Because
it is at the end of the if statement body, we return to outside the if and execute
code from there. For completeness, as a technicality, even when we include the else
statement in the Countdown example, the reversal of the recursion still returns to
the point of calling countdown. The only noteworthy difference is that there is
no other code to execute in the body of the function, since an else body is only
executed when the preceding if expression is false.

Conditionals

Our natural recursion primer showed several examples of conditional operators.
Conditionals, in C, redirect program control. To illustrate, if we want to print out
the square of some integer x only when x is even, we can use an if/else statement
chain. The code inside the parentheses of an if is called a predicate and, if the
predicate is true, the corresponding body (i.e., code immediately following the if) is
executed. In the event that the predicate is false, the else block body is executed.
For the following example, we print the value of x if it is odd.

Listing 5.12—If/Else Statements (main.c)
1 #include <stdio.h>
2
3 int main(void) {
4 int x = 8;
5 if (x % 2 == 0) { printf("xˆ2 = %d\n", x * x); }
6 else { printf("x = %d\n", x); }
7 return 0;
8 }

xˆ2 = 64

We can compare variables, constants, and function calls against one another.
We can even assign variables inside the predicate of an if statement. In C, any
non-zero value is “truthy”, so if we assign x to be the constant 5 as the predicate, it
evaluates x after the assignment and determines the “truthiness” of x. Comparing
a variable against the constant zero opens the possibility for an egregious mistake
by not using the double equals ‘==’ comparison operator in favor of accidentally
using the assignment ‘=’ operator.

Listing 5.13—Assigning Values Inside a Conditional

1 #include <stdio.h>
2
3 int main(void) {
4 int x = 8;
5 if (x = 5) { printf("x is 5...\n"); }
6 else { printf("How did we get here?\n"); }
7
8 if (x = 0) { printf("Not possible!\n"); }
9 else { printf("Always here!\n"); }

10 return 0;
11 }

x is 5...
Always here!

91

5.1 Recitation of Elementary Arithmetic 92

When making comparisons of l-values, i.e., variables, against r-values, i.e., non-
variables, it is an encouraged practice to place the constant/r-value on the left-
hand side of the expression. This way, the compiler produces an error stating
that assignment to an r-value is not possible if we accidentally use the assignment
operator where we intend to use the logical equals comparison operator.

Listing 5.14—L-Values vs. R-Values (main.c)
1 #include <stdio.h>
2
3 int main(void) {
4 int x = 8;
5 if (5 == x) { printf("x is 5...\n"); }
6 else { printf("How did we get here?\n"); }
7
8 if (0 == x) { printf("Not possible!\n"); }
9 else { printf("Always here!\n"); }

10 return 0;
11 }

How did we get here?
Not possible!

Comparisons are not always binary; sometimes we want to use multiple condi-
tionals to solve some problem. For instance, suppose we want to write the signum
function,1 which returns −1 if the input number is negative, 0 if it is zero, and 1
if it is positive. In such instances, we take advantage of the else if construct.
Just in case a preceding if condition is false, the succeeding else if condition is
evaluated.

Listing 5.15—If, Else-If, Else

1 #include <stdio.h>
2
3 int signum(int n) {
4 if (0 == n) { return 0; }
5 else if (n < 0) { return -1; }
6 else { return 1; }
7 }
8
9 int main(void) {

10 printf("Signum of 5 is %d\n", signum(5));
11 printf("Signum of -5 is %d\n", signum(-5));
12 printf("Signum of 0 is %d\n", signum(0));
13 return 0;
14 }

1
-1
0

Of course, what is to stop us from using a sequence of if statements rather than
else if, or omitting an else? All of these are possibilities in real-world programs.
Consider the following two code segments:2

Listing 5.16—If vs. Else-If (main.c)
1 #include <stdio.h>
2
3 int main(void) {
4 int x = 0;
5 int y = 0;
6 if (0 == x) { printf("x=0"); }
7 else if (0 == y) { printf("y=0"); }
8 else { printf("x,y non-zero"); }
9 return 0;

10 }

#include <stdio.h>

int main(void) {
int x = 0;
int y = 0;
if (0 == x) { printf("x=0"); }
if (0 == y) { printf("y=0"); }
printf("x,y non-zero");
return 0;

}

1We read “signum” as the sign of a number.
2We omit the new-line character \n and condense the output messages to preserve horizontal space.

92

93 Programming and Design

In the left-hand version, we use an if, else if, then an else. As such, the if
predicate is evaluated and, because it is true, only “x is zero!” is printed. Clauses
inside an else if or else are evaluated only when their preceding conditionals are
false. Compare this to the right-hand side which uses an if followed by another
if, without an else. The else if principle does not apply in this scenario, and
thus not only does the program output “x=0” and “y=0” but it also outputs “x,y
non-zero” because this line is not within the body of a conditional.

We can combine predicates together using the logical comparison operators “&&”
and “||” denoting logical and/logical or respectively. These operators obey the
same rules as the propositional logic conjunction and disjunction connectives, but
have a peculiar difference: the ability to short-circuit. Consider the following code
segments:

Listing 5.17—Short-Circuit Evaluation (main.c)
1 #include <stdio.h>
2
3 int main(void) {
4 int x = 0;
5 int y = 0;
6 if (0 == x || 5 == y) {
7 printf("x=%d, y=%d\n", x, y);
8 }
9 if (5 == y && 0 == x) {

10 printf("y=5 and x=0\n");
11 }
12 return 0;
13 }

x=0,y=0

In the first if condition, we check to see if x is equal to zero or if y is equal
to five. Because x is equal to zero, and we are using, effectively, the disjunction
connective, only one operand must be true. As a consequence, the predicate 5 ==
y is never evaluated. Comparatively, the second if condition checks to see if y is
equal to 5 and if x is equal to zero. Because both operands of a conjunction must
be true for the connective to resolve to true, the predicate 0 == x is never evaluated
because y is, in fact, not equal to five. Hence, the body of the second conditional
is not executed.

Let us consider the following sloppy code that adds an assignment statement to
the mix, hence the use of the sloppy adjective.1

Listing 5.18—Sloppy Code via Short-Circuiting (main.c)
1 #include <stdio.h>
2
3 int main(void) {
4 int x = 1;
5 int y = 0;
6 if (0 == x || (y = 5)) {
7 printf("x=%d, y=%d\n", x, y);
8 }
9 if (0 == x && (y = 5)) {

10 printf("x=%d, y=%d\n", x, y);
11 }
12 return 0;
13 }

x=0, y=0
x=0, y=5

1Interestingly, we have to try to make this code sloppy since the precedence of || is higher than
assignment, so we add parentheses around the assignment.

93

5.1 Recitation of Elementary Arithmetic 94

We consider the previous code as sloppy because of the conditionally-evaluated
assignment operation. The value of y changes based on the logical comparison op-
erator we use due to short-circuiting. Furthermore, assignments statements inside a
conditional should be used with caution; their use is sometimes perfectly warranted
and we will demonstrate such instances. Introducing these nested assignment con-
ditionals when unnecessary hurts code readability and makes it harder to debug.
Many real-world C programming projects outright disallow this as a coding style.

One-armed if statements, which are if statements without an else clause, are
highly discouraged if at all possible due to the potential for bugs.1

Exercise 5.2. (⋆)
Write conditional statements that determines if an integer n is greater than 100. If
so, output n divided by two. If the number is less than 50, output n divided by 5.
In any other case, print the string “N/A”.
Exercise 5.3. (⋆)
Given an integer variable age in years, write conditional statements to determine
if the age is able to vote in the United States. For reference, someone may legally
once they turn eighteen years old. Output a relevant message string using printf.
Exercise 5.4. (⋆)
Write conditional statements to output the number of days that are in a given
month represented as an integer from 1 (January) to 12 (December). Do not use
more than three conditional statements. You can consider February to always have
exactly 28 days.

Exercise 5.5. (⋆⋆)
Given a year, output whether or not it is a leap year. Leap years are years that are
divisible by four or if the year is divisible by 400, but if the year is divisible by 100
and not divisible by 400, it is not a leap year. As an example, 1996 is a leap year
because 4 | 1996, 2000 is a leap year because 400 | 2000, whereas 1900 is not a leap
year because 100 | 1900 and 400 /∈ 1900.

Exercise 5.6. (⋆⋆)
Write conditional statements to determine if a quadratic of the form ax2+bx+c has
real solutions.2 Assume that there exist double variables a, b, and c with arbitrary
values. Use the quadratic formula. You will need to include the math.h header to
access the square root function.

−b ±
√
b2−4ac

2a

Your solution should print “2” if the quadratic has two real solutions, “1” if the
solutions are equivalent, and “0” if there are no real solutions.

Exercise 5.7. (⋆⋆)
Write a function max that returns the maximum of three integers a, b, and c. Do
not use any built-in (C library) functions.

1We make this assertion under the assumption that new programmers should strictly consider the
alternative case(s).

2A “real solution” means that x ∈ R.

94

95 Programming and Design

Exercise 5.8. (⋆⋆)
Write conditional statements to determine the letter grade of a given integer grade.
Namely, if the grade is greater than 90 and less than or equal to 100, output “A”. If
it is greater than 80, output “B”. If it is greater than 70, output “C”. If it is greater
than 60, output “D”. Otherwise, output “F”. Note that, for instance, if the grade is
74”, the program should not output “ABC”; only “C” should be displayed.

Iteration

Recursion allows us to execute code multiple times until we arrive at some condition.
For example, in the case of factorial, we recurse until n is less than or equal to one.
Unfortunately, recursion often falls short of the silver bullet image it projects; in
some instances, a recursive pattern is spotted rather easily. For other scenarios,
however, the recursive solution may be ridiculously convoluted. More often than
not, iteration can be used to effectively solve the same problem. Iteration allows us
to repeat a segment of code until some condition is met (does that sound familiar?).
Let us convert the recursive factorial function into its iterative counterpart:

Listing 5.19—Recursive vs. Iterative Factorial (main.c)
1 int fact(int n) {
2 if (n <= 1) { return 1; }
3 else { return n * fact(n - 1); }
4 }
5
6
7
8

int fact(int n) {
int result = 1;
while (n > 1) {
result = result * n;
n = n - 1;

}
return result;

}

We use the while construct for iteration. A while loop receives a predicate and,
if it is true, we execute the body of the loop. If it is false, execution jumps from the
predicate to immediately after the loop body. For the factorial example, we declare
a local variable result to store the intermediary factorial calculation. For each
iteration, or pass through the loop body, we multiply result by n, then decrement
n by one. The recursive version does these exact operations, just through a different
lens, metaphorically speaking. If the function receives a value less than or equal to
one, the body of the loop never executes, because n starts off as not being greater
than one, hence the predicate is false. Let us convert another recursive function
from earlier in the chapter such as integer exponentiation:

Listing 5.20—Recursive vs. Iterative Exponentiation (main.c)
1 int expt(int b, int n) {
2 if (0 == n) { return 1; }
3 else { return b * expt(b, n - 1); }
4 }

1 int expt(int n, int b) {
2 int result = 1;
3 while (0 != b) {
4 result = result * n;
5 b = b - 1;
6 }
7 return result;
8 }

95

5.1 Recitation of Elementary Arithmetic 96

Much like factorial, this example accumulates the result, while a counter, namely
b, decrements down to zero. The issue with this approach is that it is not very id-
iomatic; while loops are best reserved for indeterminately-timed conditions. Know-
ing that the loop terminates after a finite number of steps (in the case of factorial
this is n) serves as a good indication to use a for loop. for loops have three
components: an initializer, a predicate, and a stepper. Let us view this with an
example:1

Listing 5.21—Factorial with For Loop (main.c)
1 int fact(int n) {
2 int result = 1;
3 for (int i = 1; i <= n; i++) {
4 result *= i;
5 }
6 return result;
7 }

As we said, for loops contain three components. In the previous listing, we
initialize the integer i to 1. Any variables declared in the initializer, which may
be more than one delimited by a comma, are local to the loop body.2 Each pass
through the loop, we check to ensure the predicate (e.g., i <= n) is true and, if so,
we execute the loop body. Afterwards, we execute the “step” statement. A step
statement is, in general, used to lead towards making the predicate false. In the
factorial example, i approaches n, which eventually results in i being greater than
n, thus falsifying the condition. All for loops can be written in terms of while
loops and vice-versa. We will also convert the exponential function to use a for
loop, which we see is slightly simpler than the factorial function because we only
use i as a means to an end, rather than using its value in the loop body:

Listing 5.22—Exponentiation with For Loop (main.c)
1 int expt(int n, int b) {
2 int result = 1;
3 for (int i = 1; i <= b; i++) {
4 result *= n;
5 }
6 return result;
7 }

1We make use of the *= operator, also called the augmented assignment operator, to produce an
expression equivalent to result = result * i;.

2An example of declaring more than one variable in a for loop initializer is for (int i = 0, j = 0;
...; i++, j++).

96

97 Programming and Design

Loop variables, as we will refer to them, need not to always start from 1. In fact,
a declaration is not mandatory, nor is any other part of the loop! Indeed, we can
create an infinite for loop using the construct for (;;).1 Let us write a for loop to
determine if a number is prime.2 We know that a number n is prime if and only if
it cannot be divided by any positive integer other than one and itself. A for loop
needs only to check up to the square root of n for primality. To do so, we include the
math.h header, which includes the square root and ceiling functions. We include
a check at the top of the function for the inputs 0 and 1 because, mathematically
speaking, they are not prime.3

Listing 5.23—Determining Primality with For Loop (main.c)
1 #include <math.h>
2 #include <stdbool.h>
3
4 bool is_prime(int n) {
5 if (n < 2) { return false; }
6 else {
7 int bound = (int) ceil(sqrt(n));
8 for (int i = 2; i <= bound; i++) {
9 if (0 == n % i) { return false; }

10 }
11 return true;
12 }
13 }

We can also nest loops inside other loops! For instance, let us write a loop that
computes a basic multiplication table of the integers 1 to 12:

Listing 5.24—For Loop to Draw Multiplication Table (main.c)
1 void multiplication_table(void) {
2 for (int i = 1; i <= 12; i++) {
3 for (int j = 1; j <= 12; j++) {
4 printf("%d * %d = %d\n", i, j, i * j);
5 }
6 }
7 }

1 * 1 = 1
1 * 2 = 2
...

12 * 11 = 132
12 * 12 = 144

Notice that, for every iteration of the i loop, there are 12 iterations of the j
loop.4 Therefore, there are a total of 12·12 = 144 iterations.

Exercise 5.9. (⋆)
Use a loop to compute the integer sum from a given integer a to a given integer b.
Operate under the assumption that a is strictly less than b, where a, b ∈ Z.

1This is rarely necessary since while (true) is more idiomatic and serves the same purpose.
2We include the stdbool.h header to define the true and false boolean datatype.
3Even though it seems sensible for ceil to return an int, it returns a double to account for the fact

that taking the ceiling of the largest possible int should still produce a valid number.
4The use of “for” here was entirely intentional.

97

5.1 Recitation of Elementary Arithmetic 98

Pointers

Pointers often confuse many beginning programmers, but fortunately, the definition
of a pointer is simple to grasp. A pointer is a memory address. Pointers, as their
name suggests, point to a location in memory. If we wish to declare a pointer to
the address of some value, we affix an asterisk ‘*’ after the type declaration. As an
example, suppose we want a pointer to point to the address of an integer variable
val. We first declare a pointer ptr as int *ptr;, then declare our variable var:
int var = 10;. Finally, we assign the pointer by retrieving the address of val. To
get the address of a variable, prefix the variable name with the ampersand &, i.e.,
ptr = &val;. A pointer can point to nothing at all per the NULL keyword, which
is literally address zero.

Listing 5.25—Basic Pointer Example (main.c)
1 int main(void) {
2 int *ptr = NULL;
3 int val = 10;
4 ptr = &val;
5 }

Initially, ptr points to nothing, i.e., NULL, but by reassigning ptr to the address
of val, ptr points to val’s address in memory. To print out this address via printf,
use the format specifier %p, e.g., printf("%p", ptr);. We can replicate this via the
ampersand operator on val to see that ptr correctly identifies the address of val,
i.e., printf("%p", &val);. How do retrieve the value of the address pointed to by
the pointer? In other words, what if we want to see the data at an address instead
of the address itself? To answer this question, let us first consider the significance
and necessity of pointers, since this motivation is often unclear. Suppose we want
to write a program to swap the values of two variables.

Listing 5.26—Swapping by Value (main.c)
1 void swap(int x, int y) {
2 int temp = x;
3 x = y;
4 y = temp;
5 }
6
7 int main(void) {
8 int x = 5;
9 int y = 10;

10 printf("Before swapping: x=%d, y=%d\n", x, y);
11 swap(x, y);
12 printf("After swapping: x=%d, y=%d\n", x, y);
13 return 0;
14 }

98

99 Programming and Design

One may be tempted to think that this works, but unfortunately, it does not go as
expected. Both calls to output x and y output the same data: 5 and 10 respectively.
We, instead, want it to output 10 and 5. C is a pass-by-value programming language,
which means all values are copied before being passed to arguments. Thus, the
values of 5 and 10 retrieved inside swap are copies and not the original variables
declared inside main. What we want to do is change those variable values. We
use pointers for this very paradigm; if we want to mutate/modify a value from one
function inside another, we want to pass it by pointer. So, let us first adjust our
swap function to instead receive two integer pointers instead of two integers. Then,
we need to update the call to swap inside main. We want to pass the memory
address of x and y to swap, and we now know that to get the address of a value,
we use the ampersand operator:

Listing 5.27—Swapping by Pointer (main.c)
1 void swap(int *x, int *y) {
2 int temp = x;
3 x = y;
4 y = temp;
5 }
6
7 int main(void) {
8 int x = 5;
9 int y = 10;

10 printf("Before swapping: x=%d, y=%d\n", x, y);
11 swap(&x, &y);
12 printf("After swapping: x=%d, y=%d\n", x, y);
13 return 0;
14 }

We must now update the code inside swap. Right now, we are swapping the
values of the pointers and not the data inside the pointer. To get the data pointed
to by a pointer, i.e., the values of x and y, we use the dereference operator , which
confusingly enough is also the asterisk. We can use the dereference operator to
mutate the value stored at a pointer.

Listing 5.28—Examining swap (main.c)
1 void swap(int *x, int *y) {
2 int temp = *x;
3 *x = *y;
4 *y = temp;
5 }

We first dereference x to retrieve its value, then store it inside temp. Then,
we again use dereferencing to set the value at the pointer to x to the value at the
pointer to y. Finally, we set the value at the pointer to y to temp.

The pointers we have shown are comparatively simple to the pointers that many
new C programmers fear. We said that pointers are nothing more than memory
addresses, and pointers declared within the body of a function only exist within
that body. As an example, in the following code segment, the pointer to x exists
only inside the scope of ptr function.

99

5.1 Recitation of Elementary Arithmetic 100

Listing 5.29—Pointer Lifetime (main.c)
1 int *ptr_function(void) {
2 int *x;
3 return x; // Invalid!
4 }

What if we want to create a pointer that lives beyond the scope of a function
while still being declared within that function? This requires us to use dynamic
memory allocation via malloc from the stdlib.h library. The malloc function
allocates a chunk of memory and returns a pointer to the address of the chunk.
malloc receives a parameter denoting the size of the chunk in bytes, and we can
use the sizeof operator to correctly allocate a pointer.

Listing 5.30—Pointer via malloc (main.c)
1 #include <stdlib.h>
2
3 int *ptr_function(void) {
4 int *x = malloc(sizeof(int));
5 return x;
6 }

The memory chunk pointed to by the pointer x is the size of an int, which is
usually 32 bits, or four bytes. More importantly, though, we can reference this ad-
dress outside of ptr function. Take the following program; it declares an integer
pointer, stores the value 5000 at the address location, and returns the pointer from
ptr function. We see that the program correctly prints 5000 as the value stored
at the pointer, and we can change this value as we please in the main function (or
any other function).

Listing 5.31—Transferring Dynamically-Allocated Pointers (main.c)
1 int *ptr_function(void) {
2 int *x = malloc(sizeof(int));
3 *x = 5000;
4 return x;
5 }
6
7 int main(void) {
8 int *y = ptr_function();
9 printf("value at ptr=%d\n", *y);

10 *y = *y / 2;
11 printf("value at ptr=%d\n", *y);
12 return 0;
13 }

value at ptr=5000
value at ptr=2500

One thing to note is that any and all dynamically-allocated memory should be
freed via free. Freeing allocated chunks, in essence, reclaims the memory, meaning
it can be reused elsewhere by the program if necessary. So, because ptr function
dynamically allocates a pointer, we shall free this pointer when we are done using
its contents.

100

101 Programming and Design

Listing 5.32—Freeing Dynamically-Allocated Pointer (main.c)
1 int *ptr_function(void) {
2 int *x = malloc(sizeof(int));
3 *x = 5000;
4 return x;
5 }
6
7 int main(void) {
8 int *y = ptr_function();
9 ...

10 free(y);
11 return 0;
12 }

Finally we note the potential for failure among malloc: if the program cannot
allocate any memory for the requested chunk, malloc returns NULL. Consequently
we should always check the return value of a call to functions that dynamically
allocate memory such as malloc.

Listing 5.33—Error-Checking malloc Function (main.c)
1 int *ptr_function(void) {
2 int *x = malloc(sizeof(int));
3 if (NULL == x) {
4 fprintf(stderr, "ptr_function: malloc failed\n");
5 exit(EXIT_FAILURE);
6 } else {
7 return x;
8 }
9 }

In C, pointers are an absolutely crucial concept to understand. We will explore
pointers and how to use them in greater detail/applications in the following sections.

Arrays

Playing with numbers can be enjoyable, but would not it be even more entertaining
to have a collection of numbers for interactive exploration? Arrays make this a
possibility.

An array , as we mentioned in our discussion on data structures, is a sequence
of contiguous elements, or things. For example, {3, 4, 5, 6} is an array of integers.
Arrays can store any number of elements, including no elements. Arrays also may
store duplicate elements, unlike a mathematical set. Lastly, all elements in a set
must be of the same type. As an example, if we declare A as an array of integers,
A = {3, 3.14, 5} is not a valid array in C since 3.14 is a floating-point/decimal value
and not an integer. On the contrary, if we declare B as an array of floating-point
values, B = {3.213, −98.123, 0, 0, 6, −7} is a valid array because all integers are
floating-point values by definition. Though, what is interesting is how C handles
storing an integer in a floating-point context. As an example, storing the integer 0
in an array of floating-point values automatically results in its conversion into 0.0.

101

5.1 Recitation of Elementary Arithmetic 102

Arrays are indexable, meaning we can retrieve and modify an element by its
location in the array. Arrays, at least in the C language, always have a starting
index of 0. We access array elements using brackets []. For example, using the
definition of B, B[0] = 3.213, B[3] = 0, B[5] = −7. All indices of an array are
represented as (discrete) integers, meaning that using a floating-point value as an
index, e.g., B[0.5] fails to compile. Mathematically, the maximum index for any
array is defined as its length minus one. Negative indices are invalid and are deemed
out-of-bounds. It is common to think of indices as addresses. As an example, the
value 3.213 “lives” at the address specified by B[0] (though, this breaks down quickly
if the array has duplicate values).

In C, we declare an array using the following syntax: type id[size];. For
example, we can declare an array of integers that holds five elements, A, as int
A[5];. To initialize an array of integers to preset values, we can use a construct
called an initializer list as follows: int B[5] = {4, 3, 0, -3, 12};. We can pass
arrays to functions, but in doing so we must also pass the size of the array. For
instance, if we want to write a function that returns the sum of an array of double
elements, we would write the following:1

Listing 5.34—Passing Arrays to Functions (main.c)
1 double sum_array(double arr[], const int size) {
2 double sum = 0;
3 for (int i = 0; i < size; i++) { sum += arr[i]; }
4 return sum;
5 }
6
7 int main(void) {
8 const int SIZE = 3;
9 double vals[SIZE] = {10.5, 11.25, 9.85};

10 double sum = sum_array(vals, SIZE);
11 return 0;
12 }

Imagine a scenario in which we do not know the size of the array prior to program
execution, i.e., compile-time. In these instances, we can take advantage of our
newly-acquired dynamic memory allocation function malloc. If we want to allocate
n elements, each of which is the size of an int, we can do so as follows:

Listing 5.35—Passing Arrays to Functions (main.c)
1 int main(void) {
2 // We do not know the value of n.
3 int n = ...
4 int *vals = malloc(n * sizeof(int));
5 if (NULL == vals) {
6 fprintf(stderr, "main: malloc failed\n");
7 exit(EXIT_FAILURE);
8 }
9 return 0;

10 }

1Values may be passed to functions as const parameters, which indicates that they are not modified
inside the function; only referenced/read. Most of the time, declaring a parameter as const helps to
indicate that the value should not (and, by definition, cannot) be mutated.

102

103 Programming and Design

Notice the use of an asterisk in the array declaration instead of brackets on
line 4. Interestingly, arrays are nothing more than pointers at the end of the day;
we can access pointer elements using brackets or through dereferencing the pointer
and performing pointer arithmetic. For example, the following code segments are
equivalent ways of accessing index four of an array of int values. Note that we
omit the error check and headers for conciseness.1

Listing 5.36—Array Indexing via Brackets and Pointer Arithmetic (main.c)
1 int main(void) {
2 int n = ...
3 int *vals = malloc(n * sizeof(int));
4 printf("vals[4] = %d\n", vals[4]);
5 free(vals);
6 return 0;
7 }

int main(void) {
int n = ...
int *vals = malloc(n * sizeof(int));
printf("vals[4] = %d\n", *(vals + 4));
free(vals);
return 0;

}

Pointer arithmetic answers the question of “Why do we index from zero instead
of one?”; we see that if we were to add zero onto a pointer followed by a dereference,
that would be equivalent to only a dereference operation.

Exercise 5.10. (⋆)
Write a function that receives an array of double values aod and its corresponding
length l. Compute and return the product of this array.

Exercise 5.11. (⋆⋆)
Write a function that receives an array of int values aoi and its corresponding
length l. Compute and return the sum of all prime numbers.

Exercise 5.12. (⋆⋆⋆)
Jagged arrays are multi-dimensional arrays whose element-arrays do not have a
uniform length.2 For example, consider the following array:

{{4, 3, 1}, {2, 3}, {88, 9, 31, 23}, {100}}

This array has four sub-arrays, where each have differing sizes. We can create a
jagged array in C by declaring a one-dimensional array of one-dimensional values.
To do so without using dynamic memory allocation, e.g., malloc, we must specify
the number of sub-arrays. Note that we cannot use initializer lists for jagged sub-
arrays.

Listing 5.37

1 int main(void) {
2 int arr1[3] = {4, 3, 1};
3 int arr2[2] = {2, 3};
4 int arr3[4] = {88, 9, 31, 23};
5 int arr4[1] = {100};
6 int *jagged_arr[4] = {arr1, arr2, arr3, arr4};
7 return 0;
8 }

1Pointer arithmetic accounts for the size offset of a datatype, so there is no need to perform a
multiplicative offset.

2Some may question the need for jagged arrays. In many circumstances, they are unnecessary, but
one example of their usefulness comes through sparse matrices; a (two-dimensional) matrix may often
have empty (zeroed) elements, meaning that allocating the space for an entire two-dimensional array is
often wasteful.

103

5.1 Recitation of Elementary Arithmetic 104

If we want to write a function that processes such jagged arrays, we have to pass
another array containing the lengths of the sub-arrays, as well as the number of
jagged arrays.

Listing 5.38

1 int main(void) {
2 int arr1[3] = {4, 3, 1};
3 int arr2[2] = {2, 3};
4 int arr3[4] = {88, 9, 31, 23};
5 int arr4[1] = {100};
6 int *jagged_arr[4] = {arr1, arr2, arr3, arr4};
7 int *jagged_arr_lens = {3, 2, 4, 1};
8 int num_jagged_arrs = 4;
9 return 0;

10 }

Write the flatten jagged array function, which receives an array of jagged
arrays of integers, an array of jagged array lengths, and the number of jagged
arrays. Return a new one-dimensional array of integers containing all elements
from the collection of jagged arrays. You will need to dynamically-allocate the
flattened array.

Listing 5.39

1 /**
2 * Prints a 1D-array of integers of the form
3 * [x, y, z, ...]
4 *
5 * @param int * - array of values.
6 * @param int - number of values in array.
7 */
8 void print_int_array(int *arr, int n) { ... }
9

10 int *flatten_jagged_array(int *jagged_arr[],
11 int *jagged_arr_lens,
12 int num_jagged_arrs) {
13 // TODO.
14 }
15
16 int main(void) {
17 ...
18 int *flattened_arr =
19 flatten_jagged_array(jagged_arr,
20 jagged_arr_lens,
21 num_jagged_arrs);
22 print_int_array(flattened_arr, 10);
23 free(flattened_arr);
24 return 0;
25 }

[4, 3, 1, 2, 3,
88, 9, 31, 23, 100]

Strings

The previous two sections discussed arrays and pointers, as well as their dual re-
lationship. Furthermore, in Chapter 4, we described strings and languages as they
relate to theoretical computer science. Fortunately, strings in C are very similar
and, overall, less complicated.

104

105 Programming and Design

Strings, as we know, are arrays of characters. In C, there are two broad types of
strings: strings declared as arrays/pointers and string literals. To allocate memory
for a string declared as an array or pointer, we use either a static array or the malloc
function. For instance, what follows are two possible ways of storing a string:1

Listing 5.40—Two Ways to Create Strings (main.c)
1 int main(void) {
2 char str1[128];
3 char *str2 = malloc(128);
4 ...
5 free(str2);
6 return 0;
7 }

The variable str1 is declared on the stack, since it does not use malloc, whereas
the memory pointed to by str2 is stored on the heap. To store some arbitrary string
in the array, however, we must copy it into the array one character at a time by
virtue of the fact that strings are merely character arrays. An additional caveat
concerning strings is that they are terminated using the NUL-byte, i.e., \0.2

Listing 5.41—Assigning Characters One-by-One (main.c)
1 int main(void) {
2 char str1[128];
3 char *str2 = malloc(128);
4
5 // Copy "Hello!" into str1.
6 str[0] = 'H';
7 str[1] = 'e';
8 str[2] = 'l';
9 str[3] = 'l';

10 str[4] = 'o';
11 str[5] = '!';
12 str[6] = '\0';
13 free(str2);
14 return 0;
15 }

We could do the same with str2. The benefits of using malloc over a statically-
allocated array include the ability to dynamically create a string without knowing
its length a priori. Though, copying a string character by character is cumbersome
at best. We will revisit this topic after discussing string literals.

String literals are declared using double quotes. We have been using string
literals for a while now when invoking printf. String literals are a special case of
strings because they cannot be mutated. In addition, string literals are implicitly
NUL-terminated. We can declare a string literal in a variable as follows:

Listing 5.42—String Literal Assignments (main.c)
1 int main(void) {
2 char str1[128] = "Hello!";
3 char *str2 = "Hello!";
4 return 0;
5 }

1We omit the malloc error checks out of a desire for conciseness.
2In subsequent listings, we will only #include headers as they are introduced to preserve vertical

code listing space.

105

5.1 Recitation of Elementary Arithmetic 106

What we cannot do, however, is change a character at a given index. So, the
following code crashes upon execution.

Listing 5.43—Manipulating String Literals is Not Allowed (main.c)
1 int main(void) {
2 char str1[128] = "Hello!";
3 str1[2] = 'L';
4 return 0;
5 }

Recall, from earlier, the painful process of copying characters into a string. To
circumvent this, we can make use of a function from the string.h header, namely
strcpy.

Listing 5.44—Using strcpy for Strings (main.c)
1 #include <string.h>
2
3 int main(void) {
4 char str1[128];
5 strcpy(str1, "Hello!");
6 return 0;
7 }

The convenient thing about strcpy is that it automatically NUL-terminates the
string. The above code copies the string literal "Hello!" into the string str1. Now,
we may modify str1 since it is not a string literal.

Listing 5.45—Modifying a String Literal after strcpy (main.c)
1 int main(void) {
2 char str1[128];
3 strcpy(str1, "Hello!");
4 str[2] = 'L';
5 return 0;
6 }

There are several useful functions inside string.h; one of which is strdup: a
function that duplicates the supplied string. strdup dynamically allocates memory
when invoked, so using it should consequently imply the existence of a corresponding
free.

Listing 5.46—Dynamically Copying Strings with strdup (main.c)
1 int main(void) {
2 char *str1 = strdup("Hello!");
3 free(str1);
4 return 0;
5 }

106

107 Programming and Design

Determining equality between strings is handy, and the perfect function for this
task is strcmp; it performs a lexicographic comparison of strings. Some may be
surprised by the fact that we can compare strings as we do with numbers, but re-
member that the characters of a string are, at the end of the day, numbers. Thus,
it is possible for a letter to be, e.g., “less than” another. A general rule of thumb
to follow is the SNUL pattern: Special (Characters), Number, Uppercase, Low-
ercase. This pattern indicates that special characters, e.g., punctuation, are “less
than” numbers, uppercase, and lowercase letters. For instance, "HELLO" is less than
"hello" because it contains all uppercase letters. As another example, "heLlo" is
greater than "heLLo" because the second ‘l’ in the former string is greater than the
second ‘L’ in the latter string. strcmp returns a negative integer if its first string
argument is less than its second, 0 if they are equal, and a positive integer if its first
string argument is greater than its second. The exact value returned by strcmp
depends on the lexicographical character difference. That is, the strings "a" and
"e" have a character separated by four letters, meaning strcmp("a", "e") returns
-4, since ‘e’ is four characters ahead of ‘a’. strcmp is an incredibly helpful function
that we will make extensive use of later on.1

Listing 5.47—Comparing Strings Lexicographically (main.c)
1 int main(void) {
2 char *str1 = "heLlo";
3 char *str2 = "heLLo";
4 printf("%d\n", strcmp(str1, str2));
5
6 char *str3 = "hi there";
7 char *str4 = "hi there";
8 printf("%d\n", strcmp(str3, str4));
9 return 0;

10 }

1
0

Retrieving the length of a string via strlen is also incredibly beneficial. The
length of a C string is determined by the location of the NUL-termination byte.
For instance, strlen("Hello, world!") returns 13 because all string literals are
implicitly NUL-terminated. Conversely, suppose foo is declared as follows:

Listing 5.48—Prematurely NUL-terminating Strings (main.c)
1 int main(void) {
2 char foo[128];
3 strcpy(foo, "Hello\0, world!");
4 return 0;
5 }

Despite the implicit NUL-termination character at the end of the string literal,
invoking strlen on foo returns 5. Again, the length of the string is defined as the
number of non NUL characters that occur before the first NUL byte. Though, what
happens if we copy characters into an array of chars but forgo a NUL byte?

1Interestingly, the C programming language standard states that only the sign of the return value
from strcmp is important, i.e., whether it is positive, negative, or zero. Moreover, if the compiler sees
that a strcmp operation can be optimized into a constant like those shown in the following listing, it
will only return −1, 1, or 0. We can disable these optimizations, should we choose to do so, via the -O0
compilation flag.

107

5.1 Recitation of Elementary Arithmetic 108

Listing 5.49—Do Not Forget to NUL-terminate! (main.c)
1 int main(void) {
2 char foo[128];
3 foo[0] = 'H';
4 foo[1] = 'e';
5 foo[2] = 'l';
6 foo[3] = 'l';
7 foo[4] = 'o';
8 return 0;
9 }

Can we guarantee that strlen(foo) is 5? No, we cannot! The reason is that we
do not know what data is at foo[5]. Declaring foo[128] only guarantees that we
have 128 bytes of available space to use. It makes no assumptions or presuppositions
about said space, meaning that there may be preexisting “junk” at those memory
addresses. If want to circumvent this issue, we may decide to use memset, from
string.h, as follows:

Listing 5.50—Clear Stack-Allocated Memory for String (main.c)
1 int main(void) {
2 char foo[128];
3 memset(foo, 0, sizeof(foo));
4 ...
5 return 0;
6 }

From here, if we copy the characters from the string "Hello" into foo, we do
not need to explicitly add a NUL-termination character since we already have via
the call to memset. As a brief description, memset allows us to set the values of an
array. For example, if we wanted to set each value of some array of 256 characters
called foo to the letter 'A', we may use memset(foo, 'A', 256).

Finally, we will discuss strcat: a function for concatenating, or conjoining,
strings. Suppose we declare a string array, then want to copy into it multiple string
literals. We may use strcat to append a string onto the end of another string. It
looks for the first NUL byte in the destination string, then sets the next n characters
to those characters in the source string of length n. It also adds a NUL-termination
character to the end of the string, meaning it copies n + 1 characters into the
destination string.

Listing 5.51—Concatenating Strings with strcat (main.c)
1 int main(void) {
2 char str[128];
3 // Clear out string.
4 memset(str, 0, 128);
5 strcpy(str, "Hello, world!");
6 strcat(str, " How are you?");
7 printf("%s\n", str);
8 return 0;
9 }

Hello, world! How are you?

There are several other handy functions in the string header, but we will de-
scribe them as they are used in the future.

108

109 Programming and Design

Exercise 5.13. (⋆)
Write your own implementation of strlen that does not use the built-in strlen
function. Hint: use a while loop.

Exercise 5.14. (⋆)
Write your own implementation of strcmp that does not use the built-in strcmp
function. Hint: this function receives two strings; there are two cases: when the
strings are of unequal length and when they are of equal length.

Exercise 5.15. (⋆)
Write the streq function that receives two strings and returns true if they are
lexicographically equivalent and false otherwise. This should be extremely simple,
and we will make use of this function throughout the book.

Exercise 5.16. (⋆⋆)
The strcpy function is infamous due to its security weaknesses. In the code below,
the problem is that strcpy has no bounds checking and, even if the destination ar-
ray cannot store all characters in the source, it will copy them anyways, potentially
overwriting preexisting data! The strncpy function exists to serve as a “safe alter-
native” to strcpy by requiring a “maximum length” n, meaning it copies exactly n
characters from the source string into the destination.1 Unfortunately, if the source
string does not have any NUL characters, strncpy will not add a NUL byte to the end
of the destination string. Write your own implementation of strncpy that does not
use the built-in strcpy nor strncpy functions, and NUL-terminates the destination
string.

Listing 5.52—strcpy is Unsafe! (main.c)
1 int main(void) {
2 char buffer[8];
3 strcpy(buffer, "Hello world how are you doing?");
4 return 0;
5 }

Exercise 5.17. (⋆⋆)
Like strcpy, strcat falls victim to the same security weakness. Fortunately, its
strncat counterpart does, in fact, NUL-terminate the destination string. Write your
own implementation of strncat that does not use the built-in strcat nor strncat
functions.2

Exercise 5.18. (⋆⋆)
Write your own version of strdup that does not use the built-in strdup function.

Exercise 5.19. (⋆⋆)
Write a function strreverse that returns a reversed version of the given string.
This string should be dynamically-allocated.

1If the source string has less than n characters, the destination string is padded with NUL-byte
characters.

2Hilariously (or not so much, depending on your perspective), even strncat fails to be a safe coun-
terpart to strcat. It always writes the NUL-byte character to the destination buffer, meaning that if we
write n characters to a buffer containing n elements, strncat egregiously writes n+1 bytes due to the
NUL-termination character!

109

5.1 Recitation of Elementary Arithmetic 110

Exercise 5.20. (⋆⋆⋆)
Write a function most frequent char that returns the most frequently-occurring
character in a given string. Hint: use an array to keep track of each character’s
“count”.

Enumerations

When we enumerate something, we typically associate it with the act of counting.
An enum, in C, is a wrapper, of sorts, that provides meaning to values that otherwise
have no discernible meaning. For instance, suppose we want to write a program
that allows the user to pick between different preset colors. We may use an enum to
represent the possible colors. To create an instance of an enumeration, we simply
declare a variable of the given enumeration type. Then, to assign it a particular
color, we can simply reference the enumeration values.

Listing 5.53—Color Enumeration & Assignment (main.c)
1 enum Color { RED, BLUE, GREEN, YELLOW, ORANGE, PURPLE, BLACK, WHITE };
2
3 enum Color my_clr = BLUE;

If we want to display an enum, we can, of course, use printf, but what is the
format specifier? Recall that we said an enumeration is a form of counting. Under
the hood, C associates integers from zero to the number of enumeration values minus
one to a given enum. This means that my color has a value of 1 since BLUE is the
second enumeration value listed in the Color enum. We can compare enumeration
values just like numbers and other data types. Though, at the same time, because
enumerations are nothing but “named numbers”, we can compare values that are
entirely distinct enum declarations and return a true result—a potentially undesired
outcome.

Listing 5.54—Comparison of Different Enumerations (main.c)
1 enum Color { ... };
2 enum Suit { HEARTS, SPADES, CLUBS, DIAMONDS };
3
4 int main(void) {
5 enum Color my_clr = BLUE;
6 printf("Color: %d\n", my_clr);
7 enum Suit my_st = SPADES;
8 printf("Suit: %d\n", my_st);
9 printf("BLUE == SPADES? %d\n", my_clr == my_st);

10 return 0;
11 }

Color: 1
Suit: 1
BLUE == SPADES? 1

Structs

Imagine that we are writing a program to process pairs of Cartesian coordinates,
i.e., (x, y). How can we represent this in C? One cumbersome method is to declare
two arrays: one for the x-coordinate and another for the y-coordinate, where each
index corresponds to one pair. E.g., x[0] = 3.14 and y[0] = 2.718 represents the
pair (3.14, 2.718). As one can see, having to keep track of two separate values in
two distinct arrays is annoying at best and problematic at worst. The solution is
to define a structure.

110

111 Programming and Design

A structure, or a struct, is a grouping of data. Structs give meaning to values.
For instance, we can declare a point struct with two double variables x and y to
represent a single point. Each datum declared in the struct is called a field . If we
want to initialize a point, we declare it like any other variable. To modify the fields
in a struct, we use the dot operator “.” as follows:

Listing 5.55—Declaring a point Struct (main.c)
1 struct point {
2 double x;
3 double y;
4 };
5
6 int main(void) {
7 struct point p1;
8 p1.x = 3.14;
9 p1.y = 2.718;

10 return 0;
11 }

We can also use an initializer list, similar to arrays, to initialize the fields in one
fell swoop. Note that the order of values in an initializer list matches to the fields
of the struct.

Listing 5.56—Quickly Initializing a Structure (main.c)
1 int main(void) {
2 struct point p1 = { 3.14, 2.718 };
3 return 0;
4 }

If the struct variable is declared as a pointer, we use the arrow “->” operator.
Note that the pointer must point to valid, allocated memory via, e.g., malloc. We
cannot use an initializer list with a struct pointer.

Listing 5.57—Dynamically-Allocated point Structure (main.c)
1 int main(void) {
2 struct point *p1 = malloc(sizeof(struct point));
3 p1->x = 3.14;
4 p1->y = 2.718;
5 return 0;
6 }

If we want to have a collection of structs, we can always declare an array where
the struct is the type. Remember that we can store any variable type in an array,
including pointers to structs.

Listing 5.58—Initializing an Array of Structures (main.c)
1 int main(void) {
2 struct point array_of_points[10];
3 // Set the x-coordinate to be the value of i.
4 for (int i = 0; i < 10; i++) {
5 array_of_points[i].x = i;
6 array_of_points[i].y = 0;
7 }
8 return 0;
9 }

111

5.1 Recitation of Elementary Arithmetic 112

Furthermore, suppose we do not know how many structures we wish to allocate
at compile-time, i.e., before the program is compiled. Just like with arrays, we may
use the dynamic memory allocation technique. What is more is that we can allocate
an array of structure pointers where each element is a pointer.1 to a dynamically-
allocated structure.2

Listing 5.59—Dynamically-Allocated Array of struct point * (main.c)
1 int main(void) {
2 const size_t SIZE = 10;
3 struct point **points_arr = malloc(SIZE * sizeof(struct point *));
4
5 // Set the x-coordinate to be the value of i.
6 for (int i = 0; i < SIZE; i++) {
7 points_arr[i] = malloc(sizeof(struct point));
8 points_arr[i]->x = i;
9 points_arr[i]->y = 0;

10 }
11
12 // Free each individual point first.
13 for (int i = 0; i < SIZE; i++) {
14 free(points_arr[i]);
15 }
16
17 // Free the overall array.
18 free(points_arr);
19 return 0;
20 }

We can pass structs to functions either by value or by pointer. It is almost
always better to pass a struct by pointer since, when passed by value, the entire
struct, including fields, are copied to the function. Furthermore, if we modify the
struct inside the function, the original struct is not modified if we pass by value. We
will first demonstrate pass-by-value. The programs outputs a seemingly erroneous
result.

Listing 5.60—Passing Structures by Value (main.c)
1 void add_scalar_to_point(struct point pt, int s) {
2 pt.x += s;
3 pt.y += s;
4 }
5
6 int main(void) {
7 struct point p = { 3.14, 2.718 };
8 add_scalar_to_point(p, 1.618);
9 printf("New coordinates: (%d, %d)\n", p.x, p.y);

10 return 0;
11 }

New coordinates:
(3.14, 2.718)

Compare this with the pass-by-pointer example, which outputs the following
(now correct) result:

1Notice that, inside malloc, each element is of size struct point * and not struct point. This is a
crucial distinction to understand. Sometimes it is appropriate to use the former and other times the
latter.

2The double asterisks ** indicates an array of pointers; that is all!

112

113 Programming and Design

Listing 5.61—Passing Structures by Pointer (main.c)
1 void add_scalar_to_point(struct point *pt, int s) {
2 pt->x += s;
3 pt->y += s;
4 }
5
6 int main(void) {
7 struct point p = {3.14, 2.718};
8 add_scalar_to_point(&p, 1.618);
9 printf("New coordinates: (%d, %d)\n", p.x, p.y);

10 return 0;
11 }

New coordinates:
(4.758, 4.336)

The only difference between the two examples is the use of the “address-of”
operator ‘&’ and the modification to the signature of add scalar to point. We
could, similarly, declare the struct in main as a pointer, then pass it to the function.

Listing 5.62—Altering a Passed Structure inside a Function (main.c)
1 void add_scalar_to_point(struct point *pt, int s) {
2 pt->x += s;
3 pt->y += s;
4 }
5
6 int main(void) {
7 struct point *p = malloc(sizeof(struct point));
8 p->x = 3.14;
9 p->y = 2.718;

10 add_scalar_to_point(p, 1.618);
11 printf("New coordinates: (%d, %d)\n", p.x, p.y);
12 free(p);
13 return 0;
14 }

What if we want to write a function that initializes the coordinates of a point to
the x,y origin? An unassuming programmer may be inclined to write the following
function:

Listing 5.63—Dynamically Allocating Struct in Function (main.c)
1 struct point *point_create(void) {
2 struct point *p = malloc(sizeof(struct point));
3 p->x = 0;
4 p->y = 0;
5 return p;
6 }
7
8 int main(void) {
9 struct point *p1 = point_create();

10 // Some further use of p1.
11 }

113

5.1 Recitation of Elementary Arithmetic 114

Such a point create function largely works as intended, but it restricts the
caller to only having a dynamically-allocated struct. Moreover, the programmer
now has to explicitly free the pointer returned by point create, despite no real
indication of the need to do so. These types of functions are sometimes referred to as
constructor functions, in that they create a struct in memory while also potentially
initializing its corresponding fields. An alternative solution is to pass a pointer to
a struct point and have the function only initialize the fields. This refactoring
decouples the allocation responsibility from the point representation and places it
onto the programmer, with the added benefit that a struct passed to the function
needs not to be allocated dynamically. On the other hand, the constructor function
must dynamically allocate its struct so it lives beyond the scope of the function.

Listing 5.64—Better Point Initialization Function (main.c)
1 void point_init(struct point *p) {
2 p->x = 0;
3 p->y = 0;
4 }

Exercise 5.21. (⋆)
Design a string struct that stores the contents of a string as well as its length.
This serves as an optimization because we no longer need to call strlen on the
backing char * whenever we need to reference its size.

Exercise 5.22. (⋆⋆)
Design an int-array struct that stores an integer array as a pointer as well as
its length. This serves as an optimization and quality-of-life improvement to the
programmer because we no longer need to pass its length, explicitly, to a function.

Type Definitions

Much like integers, characters, doubles, floats, and structs, we can define our own
type using the typedef construct. Type definitions are comprised of two “com-
ponents”: a base type and the type identifier. For example, suppose we want to
shorten unsigned char to instead be referred to as a byte. To do so, we write the
following:

Listing 5.65—Type Definition Example (main.c)
1 typedef unsigned char byte;
2
3 int main(void) {
4 // The following lines are equivalent:
5 byte x = 7;
6 unsigned char y = 7;
7 return 0;
8 }

Redefining built-in types is not as interesting, though. We most often use type
definitions in conjunction with structs. When declaring a struct, we must use the
struct keyword. If we affix the struct definition with a typedef, however, we can
omit struct when declaring a variable of that type:

114

115 Programming and Design

Listing 5.66—Using Type Definitions with Structs (main.c)
1 typedef struct point {
2 double x;
3 double y;
4 } point;
5
6 int main(void) {
7 point pt1 = { 10, 20 };
8 return 0;
9 }

As we see, the “base type” is the struct point definition, and its type identifier
is point.

Unions

Structs are useful for gathering several components together into one collective
identity. For example, a point has two possible components: an x-coordinate and a
y-coordinate. Both fields are accessible and mutable at any time. Unions, on the
other hand, provide access to one (and only one) field at a time. Namely, if a union
has n fields, only one of those n fields is properly-accessible1 Let us use a simple
example to illustrate the use of unions.

Listing 5.67—Union of Multiple Fields (main.c)
1 union data {
2 char cval; double dval; int ival; char *sval;
3 };

We declare a union (type) called data with four fields. Unions, internally, create
enough space to hold the largest possible data type within the union. In this
instance, data is eight bytes long, because pointers are eight bytes in size. When
working with data, if we want to store an integer, we access the ival field.

Listing 5.68—Accessing One Field of a Union (main.c)
1 union data {
2 char cval; double dval; int ival; char *sval;
3 };
4
5 int main(void) {
6 union data d;
7 d.ival = 10;
8 return 0;
9 }

This stores an integer value 10 in the union d. Because integers are four bytes
long, four of the eight possible bytes are filled by the populated ival field. The rest
of the space is thereby unused.

Additionally, union data fields are aligned on eight-byte boundaries. This simply
means that, if the size of the largest field is not a multiple of eight, the compiler
automatically increases the size of the union. Suppose we have the following union
definition:

1We use the terminology “properly-accessible” to later present a problem with union.

115

5.1 Recitation of Elementary Arithmetic 116

Listing 5.69—Size Alignment of Unions (main.c)
1 union data {
2 char cval;
3 double dval;
4 int ival;
5 char sval[10];
6 };
7
8 int main(void) {
9 union data d;

10 printf("Size of data union: %zu\n",
11 sizeof(union data));
12 return 0;
13 }

16

At first glance, we are inclined to believe that the union is ten bytes in size,
because the largest field is a char array of ten elements. This is incorrect, however,
because the compiler resizes this union to be the next largest multiple of eight.

Suppose we set d.ival to 10. If we were to access the other fields, e.g., dval,
sval, or cval, the program would certainly compile, but it would either crash or
print a potentially invalid result. Let us see what happens if we, instead, populate
the sval array of ten characters, then try to access ival.

Listing 5.70—Accessing Multiple Union Fields (main.c)
1 union data {
2 char cval;
3 double dval;
4 int ival;
5 char sval[10];
6 };
7
8 int main(void) {
9 union data d;

10 strcpy(d.sval, "ABCDEFGHI");
11 printf("sval: %s\n", d.sval);
12 printf("ival: %d\n", d.ival);
13 return 0;
14 }

ABCDEFGHI
1145258561

We get the desired output of sval, but what in the world is going on with ival,
and more confusingly, what is that large number? Recall that when we erroneously
access ival, we also inadvertently access other data (fields) within the union. In
this case, because integers are four bytes in size, it accesses the first four bytes of the
sval array and attempts to view them as an integer. The first four bytes of the string
"ABCD" are stored as 4110, 4210, 4310, and 4410 in base ten respectively. Converting
these into binary and then base ten results in 109486163610, but that is not the
number that we see in the output window! Indeed, the most popular computer
architectures, i.e., ARM and Intel x86, store bytes using the little endian system.
Endianness refers to the ordering of bytes in memory [Bryant and O’Hallaron,
2010].1 Little endian systems store bytes in reverse order, meaning that instead
of storing our four byte string in our specified order of 4142434416, it reverses the
byte ordering thereby producing 4443424116. We can convert this value to base ten,
which results in the output value.

1Danny Cohen, in his On Holy Wars and a Plea for Peace, coined the use of “endianness” and
categorized those who support the most-significant byte as being first are “Big-Endians”, whereas those
who support the least-significant byte as being first are “Little Endians”.

116

117 Programming and Design

Linked Lists

In one of the previous sections, we discussed arrays and their usefulness for storing
a determinate amount of data. What if, on the other hand, we do not know how
many values to store ahead of time? The linked list data structure, from Chapter 3,
allows us to add, insert, remove, and lookup elements without the need to worry
about array size constraints. Conceptually, a linked list is a chain of pointers, where
each node in the chain stores two values, the first of which is the data at the block,
and the second of which is a pointer to the next node in the list. Linked lists are
held together in a chain. Thus, if a link is broken, it loses reference to the data after
the chain break. The simplest linked list node implementation is one that contains
an associated value (we will use an integer) and a “next” pointer.

Listing 5.71—Node Structure for Linked List (main.c)
1 struct node {
2 int value;
3 struct node *next;
4 };

63 17 101

int value struct node *next

Figure 5.1: Linked List Example with Annotated Struct Fields

Linked lists are dynamically-allocated, meaning we have to use malloc. This is
because, at compile-time, we do not know, for certain, the length of a linked list;
we can add and remove nodes in the chain dynamically. So, let us write a helper
function that initializes an arbitrary node with an argument-specified value.1

Listing 5.72—Creating a Node (main.c)
1 struct node *node_create(int value) {
2 struct node *n = malloc(sizeof(struct node));
3 n->value = value;
4 n->next = NULL;
5 return n;
6 }

Every non-empty linked list contains a head element, i.e., a node that starts the
linked list. So, to create the linked list in the previous diagram, we access the next
pointer of the root to add a node with value 63. Then, we access that node’s next
pointer to add a node with value 17, and so on. Of course, because we allocate
nodes, we must accompany those allocations with invocations to free.

1We recognize and acknowledge that we are breaking our “only initialize; never create” paradigm;
for these small code segments, consider such an egregious act as acceptable. Plus, this principle is,
in general, applicable to code library maintainers and developers whose code will be used by other
developers.

117

5.1 Recitation of Elementary Arithmetic 118

Listing 5.73—Manually Adding Nodes to Linked List (main.c)
1 int main(void) {
2 struct node *head = node_create(63);
3 head->next = node_create(17);
4 head->next->next = node_create(101);
5 head->next->next->next = node_create(217);
6 head->next->next->next->next = node_create(42);
7
8 free(head->next->next->next->next);
9 free(head->next->next->next);

10 free(head->next->next);
11 free(head->next);
12 free(head);
13
14 return 0;
15 }

If we want to print out a linked list, we can recurse from the head and, as long
as we have not encountered a NULL node, we print its value and recursively print
the rest of the list.

Listing 5.74—Recursively Printing a Linked List (main.c)
1 void list_print(struct node *head) {
2 if (head != NULL) {
3 printf("%d ", head->value);
4 list_print(head->next);
5 }
6 }
7
8 int main(void) {
9 ...

10 list_print(head);
11 ...
12 }

63 17 101 217 42

We can also compute the length of a linked list via the same recursive pattern;
that is, if the current node is NULL, we return 0. Otherwise, recursively add one.
Printing out the list from before produces the expected length of 5.

Listing 5.75—Naturally-Recursive Linked List Length (main.c)
1 int list_length(struct node *head) {
2 if (NULL == head) {
3 return 0;
4 } else {
5 return 1 + list_length(head->next);
6 }
7 }
8
9 int main(void) {

10 ...
11 printf("Length of linked list: %d\n", list_length(head));
12 ...
13 }

Recursion is not always the best tool to solve a problem; if our list grows to be
hundreds of elements in size, the recursive solution falls apart in terms of efficiency
for reasons we will explain in subsequent chapters. Let us rewrite list length to
instead use a loop.1

1We declare a temporary node pointer so that as we reassign the pointer variables through the loop,
the original head remains pointed to the linked list head.

118

119 Programming and Design

Listing 5.76—Loop-Based Linked List Length (main.c)
1 int list_length(struct node *head) {
2 int len = 0;
3 struct node *tmp = head;
4 while (NULL != tmp) {
5 len++;
6 tmp = tmp->next;
7 }
8 }

Adding values to the end of a list is rather cumbersome since we have to access
deeper and deeper next pointers. Therefore, we can write a function that adds an
integer value to the end of a given head. The algorithm is as follows: if the next
pointer of the provided head is NULL, create a node with the argument-specified
value.

Listing 5.77—Add Value to Linked List (main.c)
1 void list_add(struct node *head, int value) {
2 if (NULL == head->next) {
3 head->next = node_create(value);
4 } else {
5 list_add(head->next, value);
6 }
7 }

Now, we can invoke list add to add numbers instead of painstakingly accessing
next pointers.

Listing 5.78—Adding Elements to Linked List (main.c)
1 int main(void) {
2 struct node *head = node_create(63);
3 list_add(head, 17);
4 list_add(head, 101);
5 list_add(head, 217);
6 list_add(head, 42);
7 list_print(head);
8 ...
9 return 0;

10 }

63 17 101 217 42

Freeing a linked list is also cumbersome with our current setup since it requires
knowing exactly how many links are declared. Let us write a list free function.
Freeing a list opens up a world of potential mistakes because the order in which it
is freed is significant. We need to recursively traverse to the end of the chain and
free from the end to the head.

119

5.1 Recitation of Elementary Arithmetic 120

Listing 5.79—Recursively Freeing a Linked List (main.c)
1 void tree_free(struct node *t) {
2 if (t != NULL) {
3 tree_free(t->next);
4 free(t);
5 }
6 }
7
8 int main(void) {
9 struct node *head = node_create(63);

10 list_add(head, 17);
11 list_add(head, 101);
12 list_add(head, 217);
13 list_add(head, 42);
14 list_print(head);
15 tree_free(head);
16 return 0;
17 }

Exercise 5.23. (⋆)
Write two functions: list min and list max, which compute the minimum and
maximum values of a list respectively.

Exercise 5.24. (⋆)
Write a function list contains that returns true if the provided list contains the
specified value and false otherwise.

Exercise 5.25. (⋆⋆)
Write a function list remove that removes the first occurrence of a specified value
from a list. Be aware of edge cases, i.e., removing the head element or the end
element of a list!

Exercise 5.26. (⋆⋆)
Write a function that removes the largest value from a list. Hint: Utilize the two
functions alluded to in the preceding exercises.

Exercise 5.27. (⋆⋆⋆⋆)
The linked list data structure we have come to know and appreciate is referred
to as singly-linked , as designated by each node having one link to its next node.
Doubly-linked lists, on the other hand, have not only links to the next node, but
also its predecessor. Correspondingly, it is possible to traverse a doubly-linked list
forwards and backwards. Implement doubly-linked lists as a structure, then design
functions to add/insert/remove nodes, and delete said lists. Which functions are
now simpler to design in comparison to singly-linked lists?

120

121 Programming and Design

Exercise 5.28. (⋆⋆⋆⋆⋆)
A popular problem in the field of natural language processing concerns the similar-
ity of sentences. We can, primitively, measure the similarity between two sen-
tences s1 and s2 by computing the cosine similarity of the words in the sen-
tence [Singhal, 2001]. The words of a two sentences s1 and s2, where words are
strings separated by spaces, form vectors v1 and v2, where each element rep-
resents the frequency of that word in the sentence. For instance, consider the
two sentences s1: “peter piper likes to pick plenty of peppers” and s2: “pep-
pery piper loves to eat tons of peppers”. We create a (unioned) word vector
w = {peter, piper, likes, to, pick, plenty, of, peppers, peppery, loves, tons}. Then,
we define v1 and v2 as vectors whose elements act as counters, which map to elements
of w. So, v1 = {1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0}, and v2 = {0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1}.
Using these vectors, we compute their similarity using the following formula:1

cos(θ) =

∑n
i=1Ai·Bi√

(
∑n
i=1(Ai)

2)·(
∑n
i=1(Bi)

2)

The reason we call this the cosine similarity is because we measure the angle between
the two generated vectors. Namely, the closer the result is to one, the similar
the sentences. This means that, if θ is one, then the sentences share all their
words. Conversely, when θ is zero, then there are no shared words.2 Implement
the cosine similarity function, which receives two strings and returns the cosine
similarity. It is to your benefit to write several helper functions when solving this
exercise.

Trees

A tree, as we discussed in Chapter 3, is a chain similar to that of a linked list. The
difference, however, is that trees may have multiple attached links. Namely, trees
have a root as well as children. Let us visualize a tree.

31

2 39

The tree in the figure above has a root node whose associated value is 31 with
two children. Its left child has a value of 2, and its right child has a value of 39.
The children of trees are themselves trees. Accordingly, we can treat 2 as the root
of another tree which has its own children. Similarly, 39 is the root of another tree.
In this example, however, neither 2 nor 39 have children, so they are denoted as
leaves.

1The dot in between Ai·Bi is a multiplication sign.
2This basic cosine similarity algorithm only measures syntactic similarity between sentences, but

even this syntactic characteristic is only extended to the words themselves and not their ordering.

121

5.1 Recitation of Elementary Arithmetic 122

Trees have an inherent relationship to recursive algorithms. Think about it: if
we have a tree, and its children are also trees, any algorithm we run on the tree’s
root is applicable to that tree’s children! For instance, suppose we have the following
tree and wish to know if the tree contains any element whose value is between 13
and 19 inclusive.

31

2

1 3

15

7

5 13

11

19

16

14

23

17 29

39

34

32

101

219

How might we design a recursive algorithm to compute such a result? Well, the
idea could be to determine if the current element’s value is in this interval and if so,
return true. Otherwise, we, recursively, check the children of said element using the
same algorithm. For simplicity, we will assume that the tree is a binary tree, i.e.,
a tree that has at most two children. Thus, the recursive algorithm is as follows:
if the current element’s value is within the interval, return true. Otherwise, check
the left and right subtrees and, if either tree returns true, return true (and false
otherwise).

Before we tackle this problem, let us design a tree struct and write some code
to initialize trees.

Trees, much like linked lists, are generally dynamically-allocated.1 Thus, we
must use malloc to construct trees. So, we can write a helper function to allocate
a tree structure and assign it a value, The preferred approach, though, is to pass
a pointer to a tree struct which may or may not be dynamically-allocated (the
point is to defer that responsibility away from tree init). We should also write a
tree free function that recursively frees the elements of a dynamically-allocated
tree.

1We attach the “generally” qualifier because trees may be backed by a static/fixed-size array, al-
though this method of implementation is much less common.

122

123 Programming and Design

Listing 5.80—Tree Structure and Creation (main.c)
1 struct tree {
2 int value;
3 struct tree *left;
4 struct tree *right;
5 };
6
7 void tree_init(struct tree *t, int value) {
8 t->value = value;
9 t->left = NULL;

10 t->right = NULL;
11 }
12
13 void tree_free(struct tree *t) {
14 if (t->left != NULL) { tree_free(t->left); }
15 if (t->right != NULL) { tree_free(t->right); }
16 free(t);
17 }
18
19 int main(void) {
20 struct tree *root = malloc(sizeof(struct tree));
21 tree_init(root, 3);
22 ...
23 tree_free(root);
24 return 0;
25 }

Now, if we want to assign children to root, we can directly access and modify
them. This more clearly demonstrates how each child is, itself, a tree and nothing
more. At this point, manually recreating the tree from above is trivial, albeit a bit
time-consuming.

Listing 5.81—Manual Leaf Creation in Binary Tree (main.c)
1 int main(void) {
2 struct tree *root = malloc(size(struct tree));
3 root->left = malloc(sizeof(struct tree));
4 root->right = malloc(sizeof(struct tree));
5
6 tree_init(root, 31);
7 tree_init(root->left, 2);
8 tree_init(root->right, 39);
9 tree_free(root);

10 return 0;
11 }

Now we can write a few functions that act on this, and similar, trees. Let us
begin by writing the function that returns whether or not the tree contains a number
between 13 and 19 inclusive.

Listing 5.82—Recursive Implementation of Tree Interval Check (main.c)
1 bool tree_has_between_interval(struct tree *t) {
2 if (NULL == t) {
3 return false;
4 } else if (t->value >= 13 && t->value <= 19) {
5 return true;
6 } else {
7 return tree_has_between_interval(t->left)
8 || tree_has_between_interval(t->right);
9 }

10 return false;
11 }

123

5.1 Recitation of Elementary Arithmetic 124

So, we see that, if the passed tree is NULL, this means that we have not encoun-
tered a value between the stated interval, and as such return false. If the value is
between the interval, we of course return true. Otherwise, we check both subtrees
and return true if at least one subtree has a valid value somewhere within the tree.
For practice, we can also write a function to compute the number of leaf elements
in a tree. We know that a leaf element is one that has no children, i.e., node->left
== NULL and node->right == NULL. So, whenever we encounter a leaf node, we
return 1 and sum these values together, similar to natural recursion for summation!

Listing 5.83—Naturally-Recursive Binary Tree Leaf Counting (main.c)
1 int count_leaf_elements(struct tree *t) {
2 if (NULL == t) { return 0; }
3 else if (NULL == t->left && NULL == t->right) { return 1; }
4 return count_leaf_nodes(t->left) + count_leaf_nodes(t->right);
5 }

Using the complex tree from before, we visually see that there are exactly eight
leaf nodes. Running the tree through the program gets us the expected output of
eight. How does this work, though? Recall that trees contain either subtrees or
nothing at all. So, for instance, when one tree has one leaf, its parent tree must
have at least one leaf element. Let us write three procedures to print the values in a
binary tree in three orders: pre-order, in-order, and post-order. That is, a pre-order
traversal prints the current node, then recurses down the left and right subtrees.
The right sub-figure is a pre-order traversal of the large tree.

Listing 5.84—Pre-order Binary Tree Traversal (main.c)
1 void tree_print_preorder(struct tree *t) {
2 if (NULL == t) { return; }
3 else {
4 printf("%d ", t->value);
5 tree_print_preorder(t->left);
6 tree_print_preorder(t->right);
7 }
8 }

31 2 1 3 15 7 5 13 11 19
16 14 23 17 29 39 34 32
101 219

An in-order traversal is only slightly different. Instead of immediately printing
the value of the current element, we traverse down the left subtree and then print
the node. Then, we traverse the right subtree. The neat property of an in-order
traversal is if the tree holds a certain property, then the elements of the tree are
printed in sorted increasing-order.

Listing 5.85—In-order Binary Tree Traversal (main.c)
1 void tree_print_inorder(struct tree *t) {
2 if (NULL == t) { return; }
3 else {
4 tree_print_inorder(t->left);
5 printf("%d ", t->value);
6 tree_print_inorder(t->right);
7 }
8 }

1 2 3 5 7 11 13 15 14 16
19 17 23 29 31 32 34 39
101 219

124

125 Programming and Design

Finally, a post-order traversal consists of traversing down the left and right
subtrees and only then printing the value of the current element. Therefore, all
subtrees are printed before printing the root of a tree. E.g., 31 is the last-printed
element since it is the root of the entire tree.

Listing 5.86—Postorder Binary Tree Traversal (main.c)
1 void tree_print_postorder(struct tree *t) {
2 if (NULL == t) { return; }
3 else {
4 tree_print_postorder(t->left);
5 tree_print_postorder(t->right);
6 printf("%d ", t->value);
7 }
8 }

1 5 11 13 7 14 16 17 29
23 19 15 3 2 32 34 219
101 39 31

Exercise 5.29. (⋆⋆)
Write a function tree size that returns how many elements are in a given tree.

Exercise 5.30. (⋆⋆)
Write a function tree sum that returns the sum of the values of each element in a
given tree.

Exercise 5.31. (⋆⋆)
Write a function tree average that returns the average of the values of each
element in a given tree. Hint: use the two functions from the previous exercise.

Exercise 5.32. (⋆⋆)
Write a function tree is balanced that returns true if the left and right subtrees
of a tree contain the same number of elements, and false otherwise.

Exercise 5.33. (⋆⋆)
Write a function tree is sum balanced that returns true if the left and right
subtrees of a tree sum to the same number, and false otherwise.

Exercise 5.34. (⋆⋆)
Write a function tree increment that adds five to the value of each element in
the tree.

Exercise 5.35. (⋆⋆)
Write a function tree overwrite root that replaces the value of the root if a tree
with the largest valued element in the tree. Note that this does not mean we swap
any elements; rather, just overwrite the value of the root with the largest value
found in the tree.

Exercise 5.36. (⋆⋆⋆)
Write two functions tree min and tree max that return the minimum and max-
imum values in a tree respectively. It may be tempting to use a global variable to
keep track of the “current” minimum and maximum, but try to do this without a
global variable. Hint: these functions should always return a number. If an element
is a leaf then it, of course, just returns its value. If it has any children, return the
minimum and maximum of those via a post-order traversal. When implementing
these functions, we must ensure that the passed tree is never NULL, since a NULL el-
ement has no value. How can we do that? Finally, if a tree has only one child, what
do we do? Implementing one of these two functions correctly effectively implements
both; the only difference being an operator flip.

125

5.1 Recitation of Elementary Arithmetic 126

Exercise 5.37. (⋆⋆⋆)
Write a function tree mirror that mirrors the elements of a binary tree. That
is, if we have a binary tree t and it has two subtrees l and r, l becomes r and r
becomes l. Apply this process recursively throughout the binary tree. Hint: apply
the algorithm one step at a time; draw examples of mirrored binary trees to help
the visualization. Perform this operation in a post-order fashion. An indicator of
success is if the in-order traversal of the now-mirrored tree is reversed.

Function Pointers

Sometimes, it is convenient to have a pointer to some instructions. In other words,
we may want to pass around a function for later evaluation. As we will later see,
this concept in functional programming is called the use of first-class functions,
or the equivalent treatment of data and functions. In C, we can emulate this
behavior via function pointers. Despite the somewhat frightening name, the concept
is straightforward. A function pointer, as the name suggests, points to a function.
It can then invoke the function that it points to with some arguments. Let us look
at an example. Suppose that we want to store a pointer to a function that adds
two numbers.

Listing 5.87

1 int add(int x, int y) { return x + y; }
2
3 int main(void) {
4 int (*function_ptr)(int, int) = &add;
5 }

We first create a function add that receives two integer arguments, x and y,
and returns their sum.1 Next, we declare a pointer to a function that receives
two integers as parameters and returns an integer. Notice that the pointer type
declaration matches the signature of the intended function. Further, note the use
of parentheses around the pointer name; this, alongside the immediately-following
type parameters, is what designates function ptr as a function pointer. We then
assign it to be the address of add. We can, thereafter, invoke function ptr as if
it were any standard function.

Listing 5.88

1 int add(int x, int y) { return x + y; }
2
3 int main(void) {
4 int (*function_ptr)(int, int) = &add;
5 int sum = (*function_ptr)(10, 20);
6 printf("The sum of %d and %d is %d.\n", 10, 20, sum);
7 }

Function pointers can be stored in structs, passed as parameters, and even re-
turned from other functions. This is the whole idea behind treating functions as
data—just as we can pass around variables, e.g., doubles and integers, we can do
the same with function pointers. Let us write a function that receives a function
pointer as a parameter.

1Ignore the fact that such a function is superfluous.

126

127 Programming and Design

Listing 5.89

1 int name_length(const char *str) { ... }
2
3 int compute(const char *name, int (*fn)(const char *)) {
4 return (fn)(name);
5 }

Here we declare a function name length whose body is, for our purposes, irrel-
evant. What is relevant is the next function, compute. It receives a const char *,
as well as a pointer to a function fn that receives one const char * as an argument
and returns an integer. So, we can invoke fn with the first argument. Note that,
with function pointers, it is optional to add variable names to the formal param-
eters of a function pointer. This is because a function pointer needs not to store
the names of the formal parameters of the function it points to; that is the job of
the function itself. So, when the function is invoked, it has the job of finding the
provided formal parameters.

Headers and Source Files

Thus far, all of our programs have been inside a single source file (.c). Larger
programs require more files for modularity purposes. Header and source files provide
a sense of abstraction among function and struct implementations. In essence,
header files (.h) define function prototypes for functions whose implementation lies
in a corresponding source file.

Imagine we want to design a line struct that we can use across multiple files.
We can define the relevant struct inside the header file, then include said header
file in another file, e.g., main.c. Unlike C library functions, however, header files
that we define, use double quotes "" instead of < and > in their include directives.
While it is compiler-dependent, in general, the use of double quotes tells the C
preprocessor to look at locally-defined header files before searching through system
files, i.e., where pre-defined headers are located [ISO, 1999].

Listing 5.90—Line Header File (line.h)
1 typedef struct line {
2 int x1, y1, x2, y2;
3 } line;

Listing 5.91—Using Line Header in Main Source File (main.c)
1 #include "line.h"
2
3 int main(void) { ... }

127

5.1 Recitation of Elementary Arithmetic 128

This is nice, but what if we want to add functionality to the line struct? For
instance, perhaps we want to define a distance function to compute the distance
from both endpoints of the line. We may want a function that returns a boolean
based on whether the line passes through a given point. The purpose of a header
file is to tell the “includer” of what definitions exist and are available to use. Header
files do not provide function definitions; only signatures of available functions. This
design philosophy suggests that an “includer” may use the functions, but should
not concern themselves with their (function) definitions. These definitions must
exist somewhere though, and indeed, we place them inside the line.c source file
after including the line.h header.

Listing 5.92—Adding Functions to Line (line.h)
1 typedef struct line {
2 int x1, y1, x2, y2;
3 } line;
4
5 void line_init(line *l, int x1, int y1, int x2, int y2);
6 double line_distance(const line *l);
7 bool line_contains_point(const line *l, int x1, int y1);

Listing 5.93—Line Function Definitions (line.c)
1 #include "line.h"
2
3 void line_init(line *l, int x1, int y1, int x2, int y2) {
4 l->x1 = x1;
5 l->y1 = y1;
6 l->x2 = x2;
7 l->y2 = y2;
8 }
9

10 double line_distance(const line *l) {
11 double xsq = (l->x1 - l->x2) * (l->x1 - l->x2);
12 double ysq = (l->y1 - l->y2) * (l->y1 - l->y2);
13 return sqrt(xsq + ysq);
14 }
15
16 bool line_contains_point(const line *l, int x1, int y1) {
17 int slope = (double) ((l->y2 - l->y1) / (l->x2 - l->x1));
18 double y_int = l->y1 - slope * l->x1;
19 double exp_y = slope * x1 + y_int;
20 return exp_y == y1;
21 }

The C preprocessor , in effect, looks at include statements, and copies the code
from those headers into the source file. In the end, a C compiler only sees one giant
“file” of code and has no knowledge of files. This begs the question of what happens
if multiple files include the same header, and indeed, this happens all the time; if
our main.c source file includes the line.h header file, which itself is included by
line.c, there would exist repeated definitions. The solution to this situation lies
in header guards. Header/include guards are preprocessor directives that establish
a symbol and, only if the symbol has not been defined before, we proceed to define
it along with the remaining content of the header. Otherwise, the definition is
bypassed. It can be compared to employing a conditional statement and a boolean
flag, except in this case, these definitions remain hidden from the compiler and serve
as a clever technique to avoid duplicate symbol definitions.

128

129 Programming and Design

To create a header guard, begin by choosing a unique symbol name that will serve
as the identifier for the header guard. It is common practice to use the header file
name in uppercase, replacing any dots or dashes with underscores. At the beginning
of the header file, before any code or declarations, we add a preprocessor directive
to check if the symbol has been defined. This is typically done using the #ifndef
(standing for ”if not defined”) directive, followed by the symbol name. Immediately
after the #ifndef directive, insert a corresponding #define directive to define the
symbol. This effectively marks the beginning of the header guard. Any and all code
that belongs to the header should, at this point, be added. Finally, at the end of
the header file, add a closing preprocessor directive using #endif to mark the end
of the header guard.

Listing 5.94—Header Guard Example (line.h)
1 #ifndef LINE_H
2 #define LINE_H
3

4
...

5
6 #endif // LINE_H

We can now safely include line.h in both line.c and main.c without the
compiler displaying duplicate symbol errors.

On the topic of functions in source files, static functions are locally-defined
functions. That is, by declaring a function as static, we limit its visibility to the
file in which it is defined. This helps in encapsulating/hiding the implementation
details of the function and prevents it from being accessed by other files. It promotes
information hiding and allows you to control access to certain functions, keeping
them private to the file in which they are defined. This is particularly useful when
you have helper functions or internal implementation details that should not be
exposed to the outside world, so to speak.

Exercise 5.38. (⋆⋆⋆)
Design a “stack” data structure to store integers. Given your knowledge on trees
and, in particular, linked lists, this should be fairly straightforward. We provide a
sample header file alongside function stubs and comments in the source file to guide
your implementation.1

Listing 5.95—Stack Header File (stack.h)
1 #ifndef STACK_H
2 #define STACK_H
3
4 typedef struct stack stack;
5
6 void stack_init(stack *stk);
7 void stack_push(const stack *stk, int v);
8 int stack_pop(stack *stk);
9 int stack_peek(stack *stk);

10 int stack_num_elements(const stack *stk);
11 void stack_destroy(stack *stk);
12
13 #endif // STACK_H

1Some may question the type definition in the stack header file without its body. This is done to
constrain access to the structure fields to only those functions inside the corresponding source file.

129

5.1 Recitation of Elementary Arithmetic 130

Listing 5.96—Stack Source File (stack.c)
1 #include "stack.h"
2
3 typedef struct stack_node {
4 int value;
5 struct stack_node *next;
6 } stack_node;
7
8 typedef struct stack {
9 int num_elements;

10 stack_node *top;
11 } stack;
12
13 /**
14 * Receives a pointer to a stack and instantiates its fields.
15 * @param stack * ptr to stack.
16 */
17 void stack_init(stack *stk) { // TODO. }
18
19 /**
20 * Pushes a new node to the top of the stack.
21 * @param stack *stk - stack to modify.
22 * @param int v - value to push.
23 */
24 void stack_push(stack *stk, int v) { // TODO. }
25
26 /**
27 * Removes the top node from the stack.
28 * @param stack *stk - stack to pop from.
29 * @return int - top of stack.
30 */
31 int stack_pop(stack *stk) { // TODO. }
32
33 /**
34 * Returns, but does not remove, the top node from the stack.
35 * @param const stack *stk - stack to peek from.
36 * @return int - top of stack.
37 */
38 int stack_peek(const stack *stk) { // TODO. }
39
40 /**
41 * Returns the number of values/nodes in the stack.
42 * @param const stack *stk - stack to determine the size of.
43 */
44 int stack_num_elements(const stack *stk) { // TODO. }
45
46 /**
47 * Prints the values in the stack from top-to-bottom.
48 * @param const stack *stk - stack to print.
49 */
50 void stack_print(const stack *stk) { // TODO. }
51
52 /**
53 * De-allocates all nodes in the given stack.
54 * @param const stack *stk - stack to free elements from.
55 */
56 void stack_destroy(stack *stk) { // TODO. }

130

131 Programming and Design

Listing 5.97—Testing Stack Implementation (main.c)
1 #include "stack.h"
2
3 int main(void) {
4 stack stk;
5 stack_init(&stk);
6 stack_push(&stk, 5);
7 stack_push(&stk, 10);
8 stack_push(&stk, 15);
9 stack_print(&stk);

10 printf("Previous top=%d\n",
11 stack_pop(&stk));
12 printf("Current top=%d\n",
13 stack_peek(&stk));
14 stack_push(&stk, 25);
15 stack_push(&stk, 1);
16 stack_push(&stk, 10);
17 stack_print(&stk);
18 stack_destroy(&stk);
19 return 0;
20 }

[15, 10, 5]
Previous top=15
Current top=10
[10, 1, 25, 10, 5]

Exercise 5.39. (⋆⋆⋆)
Design a “queue” data structure to store strings. This should require only a few
changes to the stack data structure aside from the identifiers and structure defini-
tion, which includes changing the structure from last-in-first-out to first-in-first-out.
When storing strings in a data structure, be sure to duplicate the string due to pos-
sibly passing a string literal to the enqueue function.

Exercise 5.40. (⋆⋆⋆)
Rework the previous stack and queue implementations to use an array-backed rep-
resentation rather than a linked list. That is, instead of dynamically-allocating a
node whenever pushing/enqueueing a new value, you can simply insert a value into
the next-available slot, and resize the backing array when necessary. Compare and
contrast the different approaches.

Exercise 5.41. (⋆⋆⋆⋆)
Suppose we want to have a stack data structure that stores, say, characters, floats,
doubles, or some other structure. With the current implementation, we would
need to modify the existing type stored inside the stack structure. In doing so
we break any code that makes use of the old int-based stack. The solution is,
instead of storing int or any other specific data type, we can make our approach
by using the generic void * data type. When initializing stack, we need to pass to
it a function that de-allocates the data stored at a node. For example, if our stack
stores dynamically-allocated point structures, we must tell the stack how to destroy
a point when clearing the stack.1 Note that stack print is not possible without
passing a to string function that converts its input to a string representation.
We provide an abridged version of the source file to showcase some of the necessary
changes, as well as a test file.23

1The passed function pointer may, in fact, be NULL if the stored data is not dynamically-allocated.
2Our test suite passes references to int variables. This is done so we are able to properly type-cast

and dereference the data stored at a node on the stack.
3Casting from a void * to an int requires us to cast the void * to an integer pointer, i.e., int *, which

can then be de-referenced via the asterisk * operator. Pay careful attention to the order of operations!

131

5.1 Recitation of Elementary Arithmetic 132

Listing 5.98—Generic Stack Source File (stack.c)
1 #include "stack.h"
2
3 typedef struct stack_node {
4 void *value;
5 stack_node *next;
6 } stack_node;
7
8 typedef struct stack {
9 int num_elements;

10 stack_node *top;
11 void (*dfree)(void *);
12 } stack;
13
14 /**
15 * Receives a pointer to a stack and instantiates its fields.
16 * @param stack * ptr to stack.
17 */
18 void stack_init(stack *stk, void (*dfree)(void *)) { // TODO. }

Listing 5.99—Testing Generic Stack Implementation (main.c)
1 #include "stack.h"
2
3 int main(void) {
4 int v1 = 5; int v2 = 10; int v3 = 15;
5 int v4 = 25; int v5 = 1; int v6 = 10;
6 stack stk;
7 stack_init(&stk, NULL);
8 stack_push(&stk, (void *) &v1);
9 stack_push(&stk, (void *) &v2);

10 stack_push(&stk, (void *) &v3);
11 printf("Previous top=%d\n",
12 *((int *) stack_pop(&stk)));
13 printf("Current top=%d\n",
14 *((int *) stack_peek(&stk)));
15 stack_push(&stk, (void *) &v4);
16 stack_push(&stk, (void *) &v5);
17 stack_push(&stk, (void *) &v6);
18 stack_destroy(&stk);
19 return 0;
20 }

Previous top=15
Current top=10

Macros

Macros in C are used for symbolic replacement of code. For example, if we want
to create a macro that determines the maximum of two values, we might write the
following:

Listing 5.100—C Macro Example (main.c)
1 #define MAX(x, y) (((x) < (y)) ? (y) : (x))

132

133 Programming and Design

Then, to reference/use the macro, we pass (to it) arguments like an ordinary
function. The difference between macros and ordinary functions, however, is that
the C preprocessor takes the macro definition and inserts it directly into wherever
it was invoked. It should be stated, however, that macros are textual substitution,
and nothing more, and do not necessarily need to be formed as “functions”.1 This
consequently results in a lack of type-checking as well as the potential ambiguity
of expressions due to no enforcement of operator precedence. We present these as
examples in the following listing:

Listing 5.101—Preprocessor Macro Expansion (main.c)
1 #define MULT(x, y) ((x) * (y))
2 #define BAD_MULT(x, y) (x * y)
3
4 int main(void) {
5 int x = 6;
6 int y = 3;
7 printf("%d\n",
8 MULT(x + 1, y + 1));
9 printf("%d\n",

10 BAD_MULT(x + 1, y + 1));
11 return 0;
12 }

1 #define MULT(x, y) ((x) * (y))
2 #define BAD_MULT(x, y) (x * y)
3
4 int main(void) {
5 int x = 6;
6 int y = 3;
7 printf("%d\n",
8 ((x + 1) * (y + 1)));
9 printf("%d\n",

10 (x + 1 * y + 1));
11 return 0;
12 }

While it is a bit silly to write a macro that expands out (to) a multiplicative
expression, this demonstrates a problem with writing macros the wrong way; BAD -
MULT does not add parentheses around the inner x and y variables, meaning that
instead of x+1 being multiplied by y+1, y is incorrectly multiplied by one. Therefore
the program prints (6+1)·(3+1) = 28 followed by (6+1·3+1) = 10.

Despite their shortcomings, macros are useful in shortening redundant code that
is not necessarily best served as a function. Furthermore, because macros are verba-
tim text replacements, they have zero overhead compared to function invocations,
with the added cost of increased code size at compile-time. Multi-line macros are
possible with the backslash \ symbol. For the sake of an example, let us create a
macro that asserts whether or not a given value is NULL and, if so, prints to standard
error and exits the program.

Listing 5.102—Conditionals Within Macros (main.c)
1 #define ASSERT_NON_NULL(ptr) \
2 if (NULL == ptr) { \
3 fprintf(stderr, "ptr is null\n"); \
4 exit(1); \
5 }
6
7 int main() {
8 int *ptr = NULL;
9 ASSERT_NON_NULL(ptr);

10 return 0;
11 }

1Indeed, we may write constants as preprocessor (macro) definitions, and we will do so throughout
the rest of the text.

133

5.1 Recitation of Elementary Arithmetic 134

Exercise 5.42. (⋆⋆)
Many times in this text we will write to the standard error stream to display an
error message. The standard error stream is a location for programs to output
error messages (as opposed to standard output, where printf messages are sent).
We do this via fprintf(stderr, msg). This is ever-so-slightly cumbersome to
repeatedly type when we know exactly where the message is to be sent and its
format. Implement the EPF macro, which receives a format-string message to display
and outputs the message to standard error using fprintf. Recall, though, that
fprintf is a variadic function, meaning it takes as many arguments as necessary.
You will need to make use of the VA ARGS and the special VA OPT -
function macros; the former is a stand-in for the variadic arguments passed to the
macro, and the latter specifies that, if the macro invocation contains no variadic
arguments, then it expands to nothing. We provide the skeleton code and two test
cases in the following listing. Fill in (a), (b), and (c).

Listing 5.103—EPF Macro Skeleton (main.c)
1 #define EPF((a)) \
2 (b)((c), fmt __VA_OPT__(,) __VA_ARGS__)
3
4 int main(void) {
5 EPF("Unknown file %s\n", "in.txt");
6 EPF("Invalid input!\n");
7 return 0;
8 }

Exercise 5.43. (⋆⋆)
We know that malloc returns a pointer to newly-allocated memory. We also know
that it has the potential to fail as indicated by a NULL return value. Having to
constantly check these return values can clutter up a code-base quickly. Write the
ASSERT ALLOC macro which, given a pointer to memory and a string, does nothing
if the pointer is non-NULL. If, however, it is NULL, the program writes to stderr with
a message saying the allocation failed, with the supplied string, and terminates the
program. An example of this is as follows:

Listing 5.104—Example of Assertion Allocation Macro Failing

1 #define ASSERT_ALLOC(ptr, msg) // TODO.
2
3 int main(void) {
4 int *ptr = malloc(1024);
5 // Assuming this fails, we get the output:
6 ASSERT_ALLOC(ptr, "main");
7 return 0;
8 }

main: allocation failed!

134

135 Programming and Design

User Input

Computer programs are powerful in their own right insofar as the ability to crunch
numbers and make decisions quickly. We limit the potential of a program’s usability,
though, if we do not allow users to interact with that program. As programmers,
we can write a function to compute the factorial of some predefined variable, but
suppose we want to let non-programmers (who do not have access to the program
source code) to use the calculator for themselves. We shall discuss two different
ways of retrieving data from the user: standard input and terminal arguments.

Reading from Standard Input. There are many methods for receiving input while
a program is running; some are good, whereas others are not so good. First, let us
discuss ways to read a line from standard input. Standard input is, in general, where
keyboard input is read from in a terminal application, acting as the dual to standard
output. We use either fgets or getline, the former of which reads into a pre-
allocated char buffer, and the latter dynamically allocates memory, as needed, to fill
a buffer. Like fgets, the getline function may receive a pre-allocated buffer, but
if it is not large enough to store the entered string, the buffer is resized accordingly.
When the input buffer is NULL, getline simply allocates enough memory to the
given pointer. Both fgets and getline are referred to as blocking input functions,
which refers to how they stop program execution until it receives data or some
indication to continue.

Listing 5.105—Reading Standard Input via fgets and getline (main.c)
1 int main(void) {
2 char buff_fgets[2048];
3 char *ret_fgets = fgets(buff_fgets, sizeof(buff_fgets), stdin);
4 if (NULL == ret_fgets) {
5 EPF("main: fgets failed to read data\n");
6 exit(EXIT_FAILURE);
7 }
8
9 char *buff_getline = NULL;

10 size_t n = 0;
11 size_t ret_getline = getline(&buff_getline, &n, stdin);
12 if (-1 == ret_getline) {
13 EPF("main: getline failed to read data\n");
14 exit(EXIT_FAILURE);
15 }
16
17 free(buff_getline);
18 return 0;
19 }

Both functions return values indicating success or failure. fgets returns a
pointer to its input argument if it successfully read data, and NULL otherwise.
getline, on the contrary, returns the number of read characters, and -1 if it failed
to read any data. Interestingly, getline also receives a pointer to a size t vari-
able; in the event that the input buffer is not large enough, the passed size t value
is modified to reflect the new size of the buffer. Moreover, because the input buffer
is modified (i.e., its pointer is re-allocated as necessary), we must pass a reference
to the string, rather than just the string itself. Similar to malloc, we should always
check the returned value(s).

135

5.1 Recitation of Elementary Arithmetic 136

Neither functions are sufficient, on their own, to help us with our problem of
allowing the user to enter a number to compute its factorial because we can only
read strings. Hence we introduce the sscanf function, which receives a string and,
much like printf, uses format specifiers to search for desired contents. Unlike
printf, however, sscanf stores the extracted data into variables rather than out
of variables. Let us see how to extract an integer from a string using sscanf:1

Listing 5.106—Using sscanf to Extract Integer from String (main.c)
1 int main(void) {
2 char *buff_getline = NULL;
3 size_t n = -1;
4 size_t ret_getline = getline(&buff_getline, &n, stdin);
5
6 int fact_value = 0;
7 size_t tokens = sscanf(buff_getline, "%d", &fact_value);
8 if (1 != tokens) {
9 EPF("main: sscanf failed to read a number\n");

10 exit(EXIT_FAILURE);
11 }
12 return 0;
13 }

To extract, or tokenize, an integer from a string, we use the %d format specifier.
We also pass a reference to the variable we want to hold the integer. sscanf returns
the number of extracted tokens, and EOF if the input is only whitespace or empty.

Many C programming tutorials offer two ways to read user input: gets and
scanf. The former looks eerily similar to fgets; it reads strings only from standard
input, but falls victim to buffer overflow vulnerabilities. scanf, on the other hand,
also reads data only from standard input, but also is susceptible to buffer overflow.
Consider the following code:2

Listing 5.107—Buffer Overflow Example

1 int main(void) {
2 int y = 500;
3 char buff_gets[10];
4 gets(buff_gets);
5
6 printf("%s, %d, %x\n", buff_gets, y, y);
7 return 0;
8 }

The gets function reads all data from standard input and stores these charac-
ters, excluding the newline yet including a NUL-terminator, into the given buffer.
Imagine the user enters a string that is fourteen characters long. Our buff gets
buffer only stores up to ten characters, but that data has to go somewhere, meaning
the last four characters override whatever, if any, data was located at the memory
addresses of those trailing characters. In our case, because we declare buff gets
immediately after declaring the integer y, those four remaining characters populate
where 500 is stored. Let us see the output for a few different test cases:

1The error check for getline is omitted out of conciseness.
2Note the inclusion of the format specifier %x to output the hexadecimal representation of an integer.

136

137 Programming and Design

Listing 5.108—Testing Buffer Overflow Program

> "Hello"←↩
> "Helloworl"←↩
> "Helloworld"←↩
> "Helloworld1234"←↩
> "Helloworld1"←↩

Hello, 500, 1f4
Helloworl, 500, 1f4
Helloworld, 256, 100
Helloworld, 875770417, 34333231
Helloworld, 49, 31

Case one is simple: we enter a string of five characters excluding the NUL-
terminator, which all fit inside our buffer. Case two fills the buffer entirely with
ten characters including the NUL-terminator. Case three overfills the buffer by one
character because of the NUL-terminator. Thus the corresponding numeric value for
the NUL-terminator is 010, which as an 8-bit binary number is just 02. Recollecting
our knowledge of little endianness from the section on unions, we know that 50010
is stored as the 32-bit integer 11110100 00000001 00000000 000000002. Overwriting
the first byte with 02 in little endian gets us 00000000 00000001 00000000 000000002,
which converts to 10016. Case four fills the buffer five characters past the limit
including the NUL-terminator, resulting in the value of y being changed to the
representation of the string "1234" in binary. Each of these characters correspond
to 3116, 3216, 3316, and 3416. Again, because the computer uses little endian, we
flip these values to get a hexadecimal representation of 3433323116. Case five over-
fills the buffer by two bytes including the NUL-terminator. Because it takes only
two bytes to represent 50010, we overwrite these two bytes with the numeric values
corresponding to "1" and the NUL-terminator, getting us the hexadecimal number
3116.

Understanding why these two functions are dangerous is important, but not as
much as simply not using them in favor of their safer fgets and getline counter-
parts. So do not be discouraged if the above discussion went a bit over your head.
In fact, gcc emits a warning for any use of gets in a C program.

Reading Terminal Arguments. The main function that we have presented is se-
cretly deceiving; as a matter of fact, it actually receives two arguments, rather than
void:

Listing 5.109—Main Function Signature (main.c)
1 int main(int argc, char *argv[]) { ... }

We see that main receives a number of arguments, specified by argc, and an
array of strings, specified by argv. These arguments correspond to those given to
the program upon its execution. For instance, if we want to pass three numbers
and a string as arguments to a program, we would use the following:

Listing 5.110—Terminal Arguments Example (main.c)
./program 5 10 1000 "This is a string argument"

137

5.1 Recitation of Elementary Arithmetic 138

Then inside the respective main function, argc is equal to five, and each element
of argv is populated with the arguments we provide. This seems to contradict
what we pass to the executable because we only specify four arguments: 5, 10, 15,
and "This is a string argument". Omitting the program name, i.e., program,
as the first argument is a common mistake. The name of the program is always
included as the first argument, and therefore if we provide n arguments, the value
of argc is n+1.

With our understanding of string data extraction from the last section, we are
very easily able to extract a number from a string terminal argument:

Listing 5.111—Converting Argument Two to an Integer

1 int main(int argc, char *argv[]) {
2 int val = 0;
3 size_t tokens = sscanf(argv[1], "%d", &val);
4 return 0;
5 }

Exercise 5.44. (⋆⋆)
Write a small program that computes and prints the sum of all integers given as
terminal arguments. You will need to write a function that determines if a string
is an integer.1 Below are some sample inputs and outputs:

Listing 5.112

1 > ./sum 5 10 15 20
2 > ./sum 5 10 Hello 20
3 > ./sum Hiya 10 Hey 20
4 > ./sum Hello Hi Howdy

50
35
30
0

Exercise 5.45. (⋆⋆)
Write a program that computes the factorial of all odd integers given, and the nth

Fibonacci number of all even integers given. You do not need to consider cases
when the input is a non-positive integer. Print each result on new lines with some
indication of which function was used for the given input.

Listing 5.113

1 > ./fact-or-fib 5 6 10 11 24 5! = 120
fib(6) = 8
fib(10) = 55
11! = 39916800
fib(24) = 28657

Exercise 5.46. (⋆⋆⋆)
Redo the sum exercise, but this time, use recursion (if you used recursion in the
previous exercise, then use a loop instead). That is, write a recursive function sum,
which receive no arguments itself, but calls a local helper function sum helper.
Your helper function should have no local variables defined.

1Once you have some practice writing C functions, you may take advantage of the strtod standard
library function.

138

139 Programming and Design

Exercise 5.47. (⋆⋆⋆)
Design a program that allows the user to enter a sequence of integers from standard
input. The program should output a “sequence sum” of the entered values, as well
as any adjacent duplicate values. If there are no adjacent duplicates, output the
string “No duplicates.”. As an added challenge, do not use any integer arrays
or other data structures for storing the numbers. To print the results all at once,
construct two char[] buffers for the output result. Below are some sample tests.

Listing 5.114

> 1 7 8 9

> 11 11 11 5 5 6 5 3 5 5

> 11 12 11 12

> 5 5 5 5 5 5 5 5 5 5 5

1 8 16 25
No duplicates.

11 22 33 38 43 49 54 57 62 67
11 5 5

11 23 34 46
No duplicates.

5 10 15 20 25 30 35 40 45 50 55
5

Exercise 5.48. (⋆⋆⋆)
A keylogger is an application that records a user’s input strokes/key presses. Most
often, unfortunately, keyloggers are designed for nefarious purposes, such as stealing
passwords. An infected user may be tempted to ”scramble” their input if they, for
whatever reason, know that the keylogger is active. For instance, suppose they type
some text into a password field; the keylogger picks up the following keystrokes (as
integers):

100 97 119 107 108 8 8 8 112 51 52 8 8 8 8 8 98 111 107 102 8 8 75 9
51 52 8 8 8 8 97 100 112 107 102 109 8 8 8 97 107 102 109 52 49 50 8
8 112 108 109 102 122 8 8 8 8 8 8 8 8 8 115 115 57 52 56 112 102 107
8 8 8 8 8 8 119 69 87 8 8 111 82 8 114 42 38 36 8 8 68 100 100 8 8 8
100 49 49 49 49 8 8 8 8 50 51 50 51 8 8 9 9 52 53 101 8 8 8 8 8 8 51

To the untrained eye, this looks like gibberish! The keylogger is able to decipher this
into the victim’s password: "badpassword"! How did they decipher the absolutely
amazing encryption scheme? Design the decrypt function, which unscrambles a
given array of characters.1 Hint: the decimal 8 represents the backspace character.

Exercise 5.49. (⋆⋆⋆⋆)
Many programming courses/textbooks present an exercise that asks students to
write a “calculator” application to the following effect:

1Note that decrypt must also receive the number of read characters.

139

5.1 Recitation of Elementary Arithmetic 140

1. Addition
2. Subtraction
3. Multiplication
4. Division

Enter an operation:
> 3
Enter your first number:
> 7
Enter your second number:
> 12

Your result is 84. Do you want to continue (Y/n)?
> n

This is a rather verbose program; an improved alternative would be to design a
program that receives operands and operators to perform some computation.

> 4 + 3
7
> 81 * 9
729
> 325.25 / 45
7.22777778
> sin 45
0.8509

Design such a program. The more (correctly-implemented) features you include,
the better, so be creative!

Exercise 5.50. (⋆⋆⋆⋆⋆)

The definite integral of a function f , defined as
∫ b
a
f(x)dx, produces the area under

the curve of f on the interval [a, b]. The thing is, though, integrals are defined
in terms of Riemann summations, which provide estimations on the area under a
curve. Riemann sums approximate the area by creating rectangles of a fixed width
∆, as shown in 5.2 for an arbitrary function f . Left-Riemann, right-Riemann,
and midpoint-Riemann approximations define the focal point, i.e., the height, of
the rectangle. Notice that, in Figure 5.2, we use a midpoint-Riemann sum with
∆ = 0.2, in which the collective sum of all the rectangle areas is the Riemann
approximation. Your job is to use this idea to approximate the area of a circle.

140

141 Programming and Design

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Figure 5.2: Midpoint-Riemann Approximation of a Function

Allow the user to enter a radius r and a delta ∆, then compute a left/right-
Riemann approximation of the area of a circle. Hint: if you compute the left/right-
Riemann approximation of one quadrant, you can very easily obtain an approxima-
tion of the total circle area. We illustrate this hint in Figure 5.3 where ∆ = 0.5 and
its radius r = 2. Note that the approximated area will vary based on the chosen
Riemann approximation.1 Further note that no calculus knowledge is necessary to
solve this exercise.

−2 −1 1 2

−2

−1

1

2

x

y

Figure 5.3: Right-Riemann Approximation of a Function

1A left-Riemann sum under-approximates the area, whereas a right-Riemann sum provides an over-
approximation. A midpoint approximation uses the average between the left and right approximations.
It should be noted that, in the general case, these statements do not hold as they depend on the interval
we integrate our function over.

141

5.1 Recitation of Elementary Arithmetic 142

Bitwise Operations and Flags

At their core, computers understand nothing more than zeroes and ones, i.e., binary
values. Decimal numbers are nothing more than an abstraction for humans.

For instance, consider the number 510, where n10 informs us that n is a base ten
number, or decimal. How can we represent the same idea, but in binary? Recall
from Chapter 2 that there are ten digits: 0 to 9. In binary, there are only two
possible values: 0 and 1. So, intuitively, how can we encode zero? The simplest
answer is to say that 010 = 02, where n2 lets us know that n is a base two number,
or binary. What about one? 110 = 12. We run into a problem with 210 because
2 is not a valid value in binary! So, like we do in decimal when we reach ten,
we simply roll the next value over by one and reset the right position to zero.
Thus, 210 = 102. This pattern cycles ad infinitum, and so therefore 510 = 1012.
3510 = 1000112. Perhaps we should write a function that converts a positive decimal
value into a corresponding binary value string. E.g., 3510 = "100011". Though,
there is an issue: we do not know how many bits a decimal number uses, right?
Wrong! Logarithms are to the rescue. If we take log235, we get approximately
5.192. We saw that it takes six bits, or binary digits, to represent 3510 in binary.
It may be tempting to round our decimal value to the next closest integer with the
ceiling function. This will not work, however, because it fails to account for exact
powers of two. E.g., ⌈log216⌉ = 4, but 1610 = 100002, meaning we should add one,
then take the floor of the result, i.e., ⌊log2n+1⌋. We use the math.h header for the
relevant functions.

Listing 5.115—Positive Decimal Values to Binary Function Stub (main.c)
1 char *decimal_to_binary(int n) {
2 // Negatives are impossible with this function.
3 if (0 > n) {
4 EPF("decimal_to_binary: n must be > 0!\n");
5 exit(EXIT_FAILURE);
6 }
7 // Handle zero case.
8 else if (0 == n) { // TODO. }
9 else { // TODO. }

10 return NULL;
11 }

This function should return a dynamically-allocated string representing the con-
verted value in binary. The (any base) logarithm of zero is undefined, so we need to
manually account for this case. Returning a string literal is not appropriate since
string literals are not dynamically-allocated; a duplicated string literal is therefore
warranted!

142

143 Programming and Design

Listing 5.116—Handling Zero Case in Decimal-to-Binary Conversion (main.c)
1 char *decimal_to_binary(int n) {
2 char *result = NULL;
3
4 // Negatives are impossible with this function.
5 if (0 > n) {
6 EPF("decimal_to_binary: n must be > 0!\n");
7 exit(EXIT_FAILURE);
8 }
9 // Handle zero case.

10 else if (0 == n) {
11 result = strdup("0");
12 } else { // TODO. }
13
14 return result;
15 }

Now comes the interesting case. Using the logic on logarithms and bits from
earlier, we know how many elements should be in our string: the number of required
bits plus one for the NUL-termination character.

Listing 5.117—Handling Zero Case in Decimal-to-Binary Conversion (main.c)
1 char *decimal_to_binary(int n) {
2 char *result = NULL;
3 ...
4 if (0 > n) { ... }
5 // Handle zero case.
6 else if (0 == n) { ... }
7 else {
8 int no_bits = (int) floor(log2(n) + 1);
9 result = malloc(no_bits + 1);

10 ...
11 }
12 return result;
13 }

We now need to traverse through the number and determine, at each binary
digit, whether it is a one or zero, and concatenate the relevant character. How do
we do this? We need to introduce bitwise operators, or operations that act on bits,
as the name suggests.1

First, we will discuss bitwise OR, denoted as ‘|’. When we take the bitwise
OR of two integer values m and n, we create a result whose bits are set if the
corresponding bit is set in at least m or n. For instance, take 14510 | 9110. The
binary representation of these values is 101000012 | 010110112. All we need to do
is see if a bit is set at each position in the binary value, leading to 110110112 or
21910.

Up next is bitwise AND, denoted as ‘&’. Bitwise AND is similar to OR with
the exception that the corresponding bit must be set in both m and n. Using the
numbers from before, 14510 & 9110 is 100012 or 1710.

Now, there is bitwise XOR, denoted as ‘ˆ’. Bitwise XOR has its corresponding
bits set if exactly one of m or n has the bit set. Thus, 14510 ˆ 9110 is 110010102 or
20210.

1We could use the modulo operation, but that is not as fun!

143

5.1 Recitation of Elementary Arithmetic 144

Finally, we have bitwise NOT, otherwise known as one’s complement denoted
by ‘∼’. Bitwise NOT flips all bits in a number, meaning it is a one-place operator.
Though, bitwise NOT has a very special property that must be explained: it does
not account for only the bits used in its representation, but rather also leading
zeroes.1 For instance, suppose we store 91 in a 32-bit int. This, to the program/-
computer, looks like 00000000 00000000 00000000 010110112. When we perform a
bitwise NOT on said value, we flip all bits, including any leading zeroes. Thus, we
end up with 11111111 11111111 11111111 101001002, which is a number over four
billion, right? Technically yes, but according to C, this is not correct. According
to the program, we stored this value as a signed integer, meaning it has a single
bit denoting whether it is positive or negative. The sign bit is the most-significant
bit, i.e., the “farthest-left bit”. So, rather than representing numbers from 0 until
232 − 1, we represent numbers from −231 until 231 − 1. Though, this still does
not necessarily answer the question—what is ∼91? “It certainly is not negative two
billion”, is a correct response. In order to accurately represent a negative number,
C uses the two’s complement representation. We stated that bitwise NOT uses
one’s complement, which simply flips every bit. Two’s complement, on the other
hand, flips every bit except the sign bit and adds one to the result. Thus, taking
the previous result of 11111111 11111111 11111111 101001002 and flipping every bit
except for the sign bit results in 10000000 00000000 00000000 010110112. Finally,
we add one to the number to get 10000000 00000000 00000000 010111002, which
is equivalent to −9210. An astute reader may notice that this is just adding one
to 9110 and negating the result. Once again, this is a correct observation! Thus,
bitwise NOT adds one and negates its value.

Let us briefly return to the decimal to binary function. We know that we
can use bitwise AND to determine whether the least significant bit is set via n & 1.
Though, how can we test the next bit, i.e., the second-least significant bit, and so
on? That brings us to the topic of bit-shifting operators.

Bitwise shifting is very intuitive from both a computer’s and human’s perspec-
tive. When we bit shift a number, it means that we take its binary digits and, liter-
ally, shift them either to the left or to the right. As an example, 1110111012 = 47710
bit shifted to the left becomes 11101110102 = 94410. Conversely, bit shifting to the
right becomes 111011102 = 23810. Thus, shifting left adds a trailing zero and shift-
ing right adds a leading (but implicit) zero.2, which is −110 after performing two’s
complement arithmetic. Another perspective is to say that shifting a positive inte-
ger to the left by one multiplies said integer by two, and shifting to the right divides
said integer by two (using integer division). It is better to say, though, that shifting
either multiplies or divides the number by a power of two. E.g., shifting by three
multiplies or divides the value by 23 = 8.

1While all bitwise operators operate on the entire operand, we were operating under the assumption
that our values were stored as 8-bit integers in the preceding examples and explanations on the binary
bitwise operators.

2Bitwise right-shifting throws a wrench into the complexity by dealing with sign-extension. That is,
suppose we bitwise right-shift a negative number. The sign bit is set, and as such, we carry that into the
shifted result. E.g., −6410, as a 32-bit integer, is 11111111 11111111 11111111 110000002, but shifting
it to the right by 210 gets us 11111111 11111111 11111111 111100002, or −1610. Moreover, if we shift
a positive integer to the left, we might accidentally overwrite the sign bit with a one! E.g., 1610, as a
32-bit integer, is 00000000 00000000 00000000 000100002, but shifting it to the left by twenty eight bits
gets us 10000000 00000000 00000000 000000002

144

145 Programming and Design

Using this logic, we can finish our decimal to binary function. That is, we
check each bit of our number using bit shifting and bitwise AND. If the correspond-
ing bit is set, we add the character ‘1’ to the character array and otherwise add
‘0’.

Listing 5.118—Integrating Bitshifting (main.c)
1 char *decimal_to_binary(int n) {
2 char *result = NULL;
3 ...
4 else {
5 int no_bits = (int) floor(log2(n) + 1);
6 result = malloc(no_bits + 1);
7 for (int i = 0; i < no_bits; i++) {
8 if (0 == ((n >> i) & 1)) {
9 result[i] = '1';

10 } else {
11 result[i] = '0';
12 }
13 }
14 result[no_bits] = '\0';
15 }
16 return result;
17 }

Interestingly, these bitwise operations are applicable to boolean values as well.
E.g., true | true is nothing more than 1 | 1. Similarly, false & true is nothing
more than 0 & 1 = 0. A purpose of using bitwise operations, however, is to combine
multiple boolean values into one integer. Consider a file on a computer. Files
have different permission properties, i.e., information that says who can access and
mutate a file or its contents. Suppose our computer has three user classifications:
file owners, groups, and others. The user who created a file, as its name suggests,
is the file owner. We categorize a collection of individuals under some identifier,
e.g., “students” or “faculty” as a group. Finally, there are others, which accounts
for all users that are not the owner nor part of a group. Further imagine that a
file has three permission types: read, write, and execute. If we had to keep track
of individual booleans, we would have to worry about altering the state of nine
booleans for every file! Even if we store these in an array, it is still cumbersome.
Bitwise operations are our friend. If we use a “short” data type, we have sixteen
bits to work with—more than enough. We designate the three least significant bits
for “other user” permission, the next three are for “group” permission, and the
following three bits are for “owner” permission. Correspondingly, we use define to
give names to these bit positions.

Listing 5.119

1 #define OTHER_EXEC 0x0001
2 #define OTHER_WRITE 0x0002
3 #define OTHER_READ 0x0004
4
5 #define GROUP_EXEC 0x0008
6 #define GROUP_WRITE 0x0010
7 #define GROUP_READ 0x0020
8
9 #define OWNER_EXEC 0x0040

10 #define OWNER_WRITE 0x0080
11 #define OWNER_READ 0x0100

145

5.1 Recitation of Elementary Arithmetic 146

Because each permission has exactly one set bit, as demonstrated by using powers
of two, we can combine file permissions. For instance, if we want to say that a file
can be read, written, and executed by only the owner, we use a bitwise OR to set
the three respective constants.

Listing 5.120

perm = OWNER_READ | OWNER_WRITE | OWNER_EXEC;

Which translates, in hexadecimal, to perm = 000116 | 000216 | 000416 = 01C016.

If we want to check to see if a file has a certain permission, we use bitwise
AND to check if the corresponding bit is set. Essentially, we want to see if the
result of a bitwise AND with the relevant position is a non-zero value (because
if we bitwise AND two numbers, only sharing set bits are set in the result). For
example, checking “perm” to see if GROUP EXEC is set looks like (perm & GROUP -
EXEC). In C, as we have mentioned, a conditional resolves non-zero values as true,
meaning that as long as this is a non-zero value, it indicates that the flag is set.
To set a flag, we use bitwise OR: perm = perm | GROUP EXEC, or the less verbose
augmented assignment operator: perm |= GROUP EXEC. To disable a flag, we use
bitwise AND combined with bitwise NOT: perm = perm & ∼GROUP EXEC, or perm
&= ∼GROUP EXEC. The reason this works is because, if GROUP EXEC is 000816, then
∼GROUP EXEC = FFF716. So, bitwise AND-ing any number with this bit toggled
will disable it, and if it is already disabled, nothing happens. To “toggle” a bit, we
use bitwise XOR: perm ˆ= GROUP EXEC. Again, if the bit is set in perm, because
GROUP EXEC’s bit is always trivially set, that bit in perm is disabled due to the
properties of XOR. If it is disabled because of XOR properties, it becomes set (i.e.,
0 ˆ 1 = 1).

Another reason to work with bitwise operations comes through how colors are
(typically) represented in computers. Most often, computers store colors as alpha-
red-green-blue integers, since as we have repeatedly mentioned, computers only
understand numbers at their core. Namely, a 32-bit integer stores the data asso-
ciated with a color where the most-significant byte stores the alpha channel, the
next byte stores the red channel, the next stores the green, and the least-significant
byte stores the blue channel. A channel, as suggested, is a value between 0 and
255 inclusive. Often times, colors are represented using hexadecimal as a means of
shortening the notation. E.g., 0xffff00ff represents a color whose alpha channel
is 255, red is 255, green is 0, and blue is 255. It may be tempting to say that this
is a fully-opaque purple color since mixing red and blue colors gets us purple. In
terms of ARGB, though, this is not correct! It is, in fact, magenta. Why do we
care about this, though? We can extract individual channels of an ARGB value
using bitshifting and bitwise AND. For instance, to extract the red channel from an
ARGB value c requires us to bit shift the value down by 24 and perform a bitwise
AND on 255, i.e., (c ≫ 24) & 255.

146

147 Programming and Design

Exercise 5.51. (⋆⋆⋆⋆⋆)
Jef Poskanzer invented the PPM image file format in the late 1980’s [Henderson,
2019]. Its advantages over other image file formats include its listing of pixel data
as explicit RGB values. PPM files also specify the image dimensions. For example,
the following lines describe a 2 × 3 (pixel) image with red, green, and blue pixels
in the first row, followed by blue, green, and red pixels in the second.

P3
2 3
255
255 0 0 0 255 0 0 0 255
0 0 255 0 255 0 255 0 0

Write two functions: compress and decompress. The former receives a two-
dimensional array of integers corresponding to the RGB pixels of a PPM file. Its job
is to create a new two-dimensional array that condenses these byte values into 32-
bit integers. For instance, the color values 255 0 0 are compressible into ff000016

using bitwise operations. Use the following macro to retrieve the corresponding
value of given RGB channels:

Listing 5.121

1 #define COLOR_RGB(R, G, B) \
2 ((((R) << 16) & 0xff0000) \
3 | (((G) << 8) & 0x00ff00) \
4 | ((B) & 0x0000ff))

The latter decompress function, on the other hand, does the opposite; it re-
ceives an array of integers and expands their values into separate red, green, and
blue channels, returning a new two-dimensional array. Use the following macros to
extract each color channel of an integer:

Listing 5.122

1 #define GET_RED(C) (((C) >> 16) & 0xff)
2 #define GET_GREEN(C) (((C) >> 8) & 0xff)
3 #define GET_BLUE(C) ((C) & 0xff)

The following exercises will use an image of a praying mantis as shown in Figure 5.4.1

Exercise 5.52. (⋆)
Design a struct image to hold (integer) pixel data, as well as its (the image) cor-
responding width and height. The pixel data should be the “compressed” integers
as described previously. We provide a template as follows:

Listing 5.123

1 typedef struct image {
2 // TODO (you fill this in!).
3 } image;

Exercise 5.53. (⋆⋆⋆)
Write a function zero red, which receives an image and returns a new image where
the red channel of all pixels is set to zero (see Figure 5.5).

1The image is authored by Rick van der Haar, provided by unsplash.

147

5.1 Recitation of Elementary Arithmetic 148

Figure 5.4: Praying Mantis Figure 5.5: No Red Channel

Exercise 5.54. (⋆⋆⋆)
Write a function negative, which receives an image and returns a new image where
each color is converted to its negative counterpart. The negative of a color is the
color created when each channel is subtracted from 255 (see Figure 5.6).

Exercise 5.55. (⋆⋆⋆)
Write a function grayscale, which receives an image and returns a new image
where each color is converted to its grayscale counterpart. The grayscale of a color
is the average of its color channels (see Figure 5.7).

Figure 5.6: Negative Image Figure 5.7: Grayscale Image

Exercise 5.56. (⋆⋆⋆)
Write a function swap red green, which receives an image and returns a new
image where each color has its red and green channels swapped (see Figure 5.8).
Then, write another function swap green blue, which swaps the green and blue
channels of a given image (see Figure 5.9).

Figure 5.8: Red & Green Swapped Figure 5.9: Green & Blue Swapped

Exercise 5.57. (⋆⋆⋆)
Write functions mirror vert and mirror horz, which return new images where
the pixels are flipped along the y and x axes respectively (see Figures 5.11 and 5.10).

148

149 Programming and Design

Figure 5.10: Mirror Along y-axis Figure 5.11: Mirror Along x-axis

Exercise 5.58. (⋆⋆⋆)
Brightness and contrast are two properties of images, where brightness describes
how close each pixel is to their maximum values, and contrast describes the distance
between pixels in the image. In essence, the more contrast, the brighter the bright
colors, and the darker the dark colors. These two properties are described by f(x) =
αx+β, where α and β represent contrast and brightness respectively. Contrast
α is a multiplicative value, wherein an α ∈ (0, 1) lowers the contrast, and an
α > 1 increases the contrast. Brightness, on the other hand, is a linear additive
value, wherein positive values of β increase the brightness, and negative values
decrease the brightness. The variable x is a color channel. For this exercise, write
a function alter brightness contrast that receives an α and β, modifying the
corresponding components. You will need to write a function that “clamps” a value
between 0 and 255 (see Figures 5.12 and 5.13).

Figure 5.12: Brightness −50 Decrease Figure 5.13: Contrast 2X Increase

Exercise 5.59. (⋆⋆⋆⋆)
Write a function clockwise that receives an image and returns a new image where
its pixels are rotated clockwise (see Figure 5.14).

Exercise 5.60. (⋆⋆⋆⋆)
Write a function clockwise four that receives an image and returns a new image
containing the pixel data of the original image rotated four times. The top-left
quadrant should contain the original (image), the top-right is one clockwise iter-
ation, the bottom-right is two clockwise iterations, and the bottom-left is three
clockwise iterations (see Figure 5.15).

149

5.1 Recitation of Elementary Arithmetic 150

Figure 5.14: Clockwise Rotation Figure 5.15: Four Cloclwise Rotations

Exercise 5.61. (⋆⋆⋆⋆⋆)
Benôıt Mandelbrot discovered the Mandelbrot set in the very early 1980’s [Mandel-
brot, 1980].1 To even begin discussing what the Mandelbrot set is, we need to very
quickly introduce complex numbers.

Complex numbers have a real and imaginary component, in which the imaginary
component is multiplied by the imaginary constant i, or

√
−1. For example, 4 + 3i

has a real component 4 and an imaginary component i. We can add/subtract and
multiply complex numbers as follows:

(a + bi) ± (c + di) = (a ± c) + i(b ± d)
(a + bi)·(c + di) = (ac − bd) + i(ad + bc)

Because this exercise is so involved, we will expand it into several sub-exercises.

Exercise 5.62. (⋆⋆⋆)
First, design a struct for working with complex numbers. This should, of course,
contain two fields: a double for the real and a double for the imaginary.2 Then
write the addition and multiplication functions over complex numbers. Finally, de-
sign the abs function, which returns the distance to the complex number in the
plane from the origin. The absolute value of a complex number c is the square
root of the sum of its squared real and imaginary components, i.e., abs(c) =√
real(c)2 + imag(c)2.

1There is a common debate between which researcher(s) discovered the set; even though it is
named after Mandelbrot himself, Brooks and Matelski published a paper with the equation and a text-
representation of the fractal prior to Mandelbrot’s publications [Brooks and Matelski, 1981].

2The i that accompanies the imaginary component is only present if we print the complex number;
you should not store this value in any way inside the structure definition.

150

151 Programming and Design

Listing 5.124—Skeleton Code for Complex Numbers Implementation

1 typedef struct complex {
2 // TODO.
3 } complex;
4
5 /**
6 * Initializes the given complex number with the given
7 * real and imaginary components.
8 */
9 void complex_create(complex *c, double re, double im) { ... }

10
11 /**
12 * Adds the complex number b to the complex number a.
13 * We modify the components of a.
14 */
15 void complex_add(complex *a, const complex *b) { ... }
16
17 /**
18 * Multiplies the complex number b with the complex number a.
19 * We modify the components of a.
20 */
21 void complex_mult(complex *a, const complex *b) { ... }
22
23 /**
24 * Returns the absolute value of the given complex number.
25 * This distance is from the complex components to (0, 0i).
26 */
27 double complex_abs(const complex *a) { ... }

Exercise 5.63. (⋆⋆)
Design an exponentiation function over complex numbers. This may be defined
using natural recursion. The exponent argument must be a positive integer.

Exercise 5.64. (⋆⋆)
Later on, we will need to normalize values from one interval to another. Namely,
the Mandelbrot set exists between the values [−2, 2] on both axes of the complex
plane. Design the normalize function, which receives five double values: a number
to normalize, an old range, and a new range. The idea is, given a value x ∈ [m, n]
where n ≥ m, we want to determine what value x would be if it were between
another range [m′, n′]. We present a sequence of examples as follows:

Listing 5.125—Normalization Function Examples

1 /**
2 * Normalizes a given value from one range to another.
3 */
4 double normalize(double n, double old_min,
5 double old_max, double new_min,
6 double new_max) { ... }
7
8 int main(void) {
9 printf("%f\n", normalize(5, 1, 10, -1, 1));

10 printf("%f\n", normalize(2.5, 1, 10, 0, 1));
11 printf("%f\n", normalize(2.5, -5, 5, 1, 100));
12 return 0;
13 }

0
0.25
75

151

5.1 Recitation of Elementary Arithmetic 152

With these details now covered, we can begin our discussion. The Mandelbrot
set is a set of complex numbers such that, if we iterate over every point in the
complex plane using some function f(c), if c diverges (to infinity), it is not part of
the set. Conversely, if f(c), after repeated iteration, appears to converge to a value,
then it is in the set. We can then plot these points onto an image. The function f
that we are discussing is actually the following recursive definition, where c is the
complex number that we are iterating: zn + 1 = zn + c.

Exercise 5.65. (⋆⋆)
Design the mandelbrot iterate function, which receives two complex numbers: z
and c, as well as an integer m denoting the maximum number of possible iterations.
Continuously apply the preceding recursive definition onto z until we either exceed
m or the absolute value of z is less than two. The former case means the value
diverges, whereas the latter means the value converges and is, therefore, in the set.
Return the number of iterations used to plot c. Note that, the higher value of m
we use, the more precise the Mandelbrot set.

Exercise 5.66. (⋆⋆⋆⋆)
Design the mandelbrot function, which receives four double values representing the
minimum and maximum values along the complex plane. For instance, to draw the
entire fractal, we should pass −2, −2, 2, 2.1 Our mandelbrot function normalizes
the received x and y coordinates to the provided argument ranges, then invokes
the iteration function. If the returned number of iterations exceeds the allowed
maximum, set the pixel color to white. Otherwise, set it to black. Return these
pixel values in an image struct. The desired image dimensions are up to you.

1When we say “the entire fractal”, we mean as opposed to a zoomed-in section of the fractal.

152

153 Programming and Design

Listing 5.126—Mandelbrot Skeleton Code

1 #define IMAGE_WIDTH ___
2 #define IMAGE_HEIGHT ___
3 #define MAX_ITERATIONS ___
4
5 /**
6 * Iterates the Mandelbrot set function using the given complex
7 * values of z and c. We iterate at most m times.
8 */
9 int mandelbrot_iterate(complex *z, complex *c, int m) {

10 for (int i = 0; i < m; i++) {
11 if (___) { return ___; }
12 else { z = ___; }
13 }
14 return ___;
15 }
16
17 /**
18 * Constructs a PPM image of the Mandelbrot set. The parameters
19 * specify the starting and ending coordinates of the fractal "canvas".
20 */
21 image *mandelbrot(double mincx, double mincy,
22 double maxcx, double maxcy) {
23 image *img = ___;
24 // Initialize the img fields accordingly.
25
26 for (int x = 0; x < img->w; x++) {
27 for (int y = 0; y < img->h; y++) {
28 double cx = normalize(x, 0, IMAGE_WIDTH, ___, ___);
29 double cy = normalize(y, 0, IMAGE_HEIGHT, ___, ___);
30
31 complex z, c;
32 complex_create(&z, cx, cy);
33 complex_create(&c, cx ,cy);
34 int num_it = mandelbrot_iterate(___, ___, MAX_ITERATIONS);
35 img->pixels[y][x] = ___;
36 }
37 }
38 return img;
39 }

Interestingly, we can map colors to the Mandelbrot fractal using a variety of
techniques. We present one possible to show what is possible with enough creativity
in Figure 5.16.

Figure 5.16: Colored Mandelbrot Fractal

153

5.1 Recitation of Elementary Arithmetic 154

Exercise 5.67. (⋆⋆⋆⋆⋆)
Digital data is transmitted via network communication. While it might seem
straightforward to send an image to a friend, the process actually involves sig-
nificant complexity on the networking end. In the upcoming exercises, we will
replicate a basic networking system where hosts have the ability to exchange data
with other hosts (this simulation grossly oversimplifies the complexities of network
programming, but serves as a nice programming exercise).

We will be working with bits and bytes in this exercise, even more so than before.
The standard C datatypes are subject to change based on the architecture and C
compiler, which means that an int may not always store 32 bits. On the other
hand, the uint32 t type is guaranteed by the stdint.h library to always store the
necessary bits for an unsigned 32-bit integer.

A host, in our network, has an identifier id specified by a 32-bit integer. Hosts
send and receive data packets, which contain a header and a data field. Hosts store
a stack of packet pointers, which reference packets where they (the specified host)
are the intended recipient. The header of a packet stores a preamble, a start-of-data
byte, a destination host identifier, a source host identifier, and a length-of-packet.
The preamble is a sequence of three bytes containing 00110011 11001100 00110011,
followed by the start-of-data 11001101. The destination and source host identifiers
are four-byte integers, and the length-of-packet is a two-byte value corresponding to
the total number of bytes used for the given packet. The idea is that any arbitrary
host will continuously read sequences of data and, if it intercepts a packet, it stores
the packet in its stack only if it is the intended host. All packets are broadcasted
to every device on the network, but are “dropped” if they are not the intended
destination host.

Exercise 5.68. (⋆⋆)
Design a host structure and type definition as specified above. Create the host -
init function, which receives a pointer to a host structure to initialize with a given
identifier. In the interest of time, also write the host add packet function that
adds a packet to the host’s stack of packets.

Listing 5.127—Host Header Skeleton (host.h)
1 #ifndef HOST_H
2 #define HOST_H
3
4 #include <stdint.h>
5
6 typedef struct host host;
7
8 void host_init(uint32_t id);
9 void host_add_packet(host *h, packet *pkt);

10
11 #endif // HOST_H

154

155 Programming and Design

Listing 5.128—Host Source Skeleton (host.c)
1 #include "host.h"
2
3 typedef struct host {
4 ___;
5 ___;
6 } host;
7
8 /**
9 * Initializes a host with the given identifier.

10 */
11 void host_init(host *h, uint32_t id) {
12 // TODO.
13 }
14
15 /**
16 * Adds a packet to the given host's message stack.
17 */
18 void host_add_packet(host *h, packet *pkt) {
19 // TODO.
20 }

Exercise 5.69. (⋆⋆)
Design the packet structure and type definition. It should include a nested struc-
ture definition for a header. From there, write the packet init function, which
receives a pointer to a packet, a sender, a receiver, as well as an array of uint8 t
data, and initializes its fields as specified. Do not return the packet; only initialize
the required fields. Remember to initialize the preamble and start-of-packet fields.

Listing 5.129—Packet Header Skeleton (packet.h)
1 #ifndef PACKET_H
2 #define PACKET_H
3
4 #include <stdint.h>
5
6 typedef struct packet packet;
7
8 void packet_init(packet *pkt, uint32_t send, uint32_t recv,
9 uint8_t *data, uint16_t size_of_data);

10
11 #endif // PACKET_H

Listing 5.130 (packet.c)
1 #include "packet.h"
2
3 typedef struct packet {
4 struct header {
5 ___ preamble; ___ start_of_data; ___ send;
6 ___ recv; ___ size_of_data;
7 } hdr;
8 ___ data;
9 };

10
11 /**
12 * Initializes a packet with the given data and the other required fields.
13 */
14 void packet_init(packet *pkt, uint32_t send, uint32_t recv,
15 uint8_t *data, uint16_t size_of_data) { // TODO. }

155

5.1 Recitation of Elementary Arithmetic 156

Exercise 5.70. (⋆⋆⋆)
Using the skeleton code in Listing 5.131, write the forward function, which receives
a packet and forwards it, appropriately, to the intended recipient. The forward
function should also receive an array of hosts and the number of hosts on the
network.

Listing 5.131—Skeleton Code for Networking Exercise (network.c)
1 #include "host.h"
2 #include "packet.h"
3
4 #define NUM_HOSTS 5
5
6 void forward(packet *pkt, host *hosts, size_t num_hosts) {
7 for (int i = 0; i < num_hosts; i++) {
8 host curr_host = ___;
9 if (___) {

10 host_add_packet(___, ___);
11 }
12 }
13 }
14
15 int main(void) {
16 // Declare 5 hosts.
17 struct host hosts[NUM_HOSTS];
18 host_init(&hosts[0], 3232238081);
19 host_init(&hosts[1], 3232238126);
20 host_init(&hosts[2], 3232238131);
21 host_init(&hosts[3], 3232238224);
22 host_init(&hosts[4], 3232238292);
23
24 // A random packet with data.
25 packet pkt;
26 uint8_t data[15] = {72, 101, 108, 108, 111, 44, 32, 104,
27 111, 115, 116, 32, 52, 54, 33};
28 packet_init(&pkt, 3232238224, 3232238081, data, sizeof(data) + HEADER_SIZE);
29
30 // Forward the packet.
31 forward(&pkt, hosts, NUM_HOSTS);
32
33 return 0;
34 }

Exercise 5.71. (⋆⋆⋆⋆)
Write an interface, either through standard input or terminal arguments, for the
end-user to connect to a host and view its stored messages in the following format:

Message 1/1
Sender: 192.168.10.144
Receiver: 192.168.10.1

Hello, host 46!

To do this, write three functions: get host id, get msg, and print message.
The two former functions receive pointers to strings and store the host identifier
and message in those strings. The latter receives three strings representing the
sender and receiver addresses, the message itself as a string, the message number,
and how many messages the host who calls print message has stored inside its
packets stack. The host identifier is printed as an IPv4 address, which is nothing
more than a 32-bit integer separated into four octets.

156

157 Programming and Design

Listing 5.132—Skeleton Code for Utility Functions in Networking Exercise (network.c)
1 void print_msg(char *send, char *recv, char *msg,
2 size_t n, size_t msg_count) { // TODO. }
3
4 /**
5 * Populates the pointer buffer with a string representing
6 * the "IPv4 address" of the given value.
7 * E.g., if id=3232238224, then *ptr="192.168.10.144"
8 */
9 void get_ip(char **ptr, uint32_t id) {

10 int ret = -1;
11 if (NULL == *ptr) { ret = asprintf(ptr, ___, ___); }
12 else { ret = sprintf(*ptr, ___, ___); }
13 if (0 > ret) {
14 EPF("get_ip: failed to output host id to string\n");
15 *ptr = NULL;
16 }
17 }
18
19 /**
20 * Populates the pointer buffer with the data contents. If
21 * ptr is passed as NULL, allocate to it the number of
22 * characters necessary to store the data.
23 */
24 void get_msg(char **ptr, uint8_t *data, size_t len) {
25 if (NULL == *ptr) { *ptr = calloc(___, 1); }
26 for (int i = 0; i < len; i++) {
27 (*ptr)[i] = ___;
28 }
29 }

157

5.2 LPF1: Our First Language 158

5.2 LPF1: Our First Language

For our first language, we will write a program that evaluates simple prefix arith-
metic expressions such as those we discussed in the previous section. This basic
language will use only four operators: +, −, ·, and /, representing n-ary addi-
tion, subtraction, multiplication, and division, respectively. An expression can
contain parenthesized expressions, such as (+ 3 (· 5 4)), or be as simple as a
number. We will also include unary plus and negation operators. A number x is a
NUMBER if x ∈ R. As examples, 3, 4.5, −123, −19.345123 are all of type NUM-
BER. To serve as a quick preview, our program will evaluate expressions such as
(+ (− 9 1) (· (− 5 3) (· 2 10))) and return the correct mathematical result, which in
this case is 48.

As discussed in Chapter 4, the problems of lexical, syntactical, and semantic
analysis are complex enough on their own. Accordingly, we will not write our own
lexer and parser. Instead, we will utilize a small yet powerful library, mpc: “Micro
Parser Combinators”.

Generating Grammars

The mpc library allows us to write parsers for language grammars. The language
that we will design bears resemblance to Scheme/Racket/other LISP-esque lan-
guages. These types of languages are otherwise known as symbolic expression, or s-
expression, languages and utilize the prefix notation of operator/operand placement
as described earlier in this chapter. Designing a programming language from the
ground up is complicated. There are many elements and factors to consider, such
as lexical/dynamic scoping, static/dynamic typing, should it be object-oriented,
functional or imperative, and several others.1 For larger languages, and as we will
discuss further in the chapter on compilation, it is also important to determine the
target architecture or back-end framework. For example, whether we should target
x86/64, ARM, the JVM, LLVM, MIPS, and so on.2 In this section and chapter, we
will write a very small interpreter at first, then gradually expand its functionality
and implementation into a language that is rather practical for a good subset of
elementary-to-intermediate terminal-based projects.

We will now describe the grammar of our first interpreter and language: LPF1, an
acronym for, “PreFix 1”. This language will support only numbers, basic arithmetic
operations, and comments, but even this will keep us busy for a while; designing
the internal representation of structures, functions, numbers, symbols, etc., is a not-
so-easy task. Below are some examples of inputs for LPF1 and their corresponding
outputs.

1Understanding what these terms mean or their related significance is unimportant for the time
being.

2These categories are “back-ends” for a programming language; compilers often target specific ar-
chitectures with differing instruction sets and capabilities.

158

159 Programming and Design

Listing 5.133

> 5
> (+ 2 3)
> (* (+ 6 7) (- 11 8 (- 6)))
> (- (+ (* 3.05 (- 3.14 5)))

(* (/ 12 (* 9.5 1.25))))

5
5
117
-6.6835263157

As we can see, LPF1 supports four n-ary operations: addition, subtraction, mul-
tiplication, and division. These operators are dubbed n-ary because we can apply
them to any positive, non-zero number of arguments. Each operation is applicable
to floating-point numbers of type long double in C (note that, in a later sec-
tion, we will extend the language to support arbitrarily large numbers). As with
the style of prefix notation expressions, we always preface a function application
with parentheses, followed by the operator, followed by its operands. Additionally,
an application can be invoked with brackets [] or curly braces {} so long as they
are balanced (e.g., (...] is invalid). This notation will help us distinguish between
conjoined applications.

159

5.2 LPF1: Our First Language 160

Chapter 4 described the idea behind EBNF grammars. We will use EBNF
grammars to describe each of our languages, starting with LPF1.

1 In addition,
we will design a few “helper” supplemental rules to make our grammar easier to
understand.

upcase ::= [A-Z]
downcase ::= [a-z]
special ::= [+-*/ =!?<>]
digit ::= [0-9]
symchar ::= upcase | downcase | special

Figure 5.17: EBNF Grammar for “Helpful Productions”

expr ::= application
| datum
| comment

application ::= ‘(’ expr* ‘)’
| ‘[’ expr* ‘]’
| ‘{’ expr* ‘}’

datum ::= number
| symbol

comment ::= ‘;’ (. - ‘\n’)*
number ::= (‘+’|‘-’)? (digit)+ (‘.’ (digit) *)?
symbol ::= symchar (symchar | number)*
pf1 ::= expr+

Figure 5.18: EBNF Grammar for LPF1

The root rule of our language is pf1, which states that a program in pf1 consists
of at least one expression.

An expr is either an application, i.e., the invocation of an operator, a datum,
i.e., a number, a symbol, or a comment.

Applications are, again, surrounded by parentheses; the left-hand argument is
the operator expression, which is followed by zero or more expressions.

A number must contain at least one digit, and may or may not have a floating-
point/decimal component (note: representing numbers like this causes issues with
the internal C type representation, which we will address later). Additionally, num-
bers have an optional sign, e.g., -5, +7, and 7 are all valid numbers according to
the parser.

1It is important to recognize the limitations of symbol and number length in C, which our EBNF
grammar does not consider.

160

161 Programming and Design

Finally, a symbol starts with a letter, an underscore, plus, minus, asterisk, for-
ward slash, less than, equal to, greater than signs, an exclamation point, or a
question mark, followed by the same symbols with the addition of numbers. We
cannot start symbols with a number, as this will cause the grammar to get confused
and possibly misrepresent a number as a symbol or vice-versa. We will come back
to comments, but for now, comments are a semicolon followed by any non-newline
character.

Let us now embed this into C with mpc. Again, the internal representation of
input through mpc is converted into a traversable abstract syntax tree. We can use
the AST to extract vital information, then choose how to evaluate it according to
our language.

Embedding our grammar into mpc is simple, yet easy to mess up if one is not
careful. First, create two files: parser.c and parser.h. We need to initialize our
grammar rules as global variables so we can share access across separate functions.
Inside parser.h, we will declare two functions for initializing and cleaning up mpc
parser functionality.

Listing 5.134—Parser Header File (parser.h)
1 #ifndef PARSER_H
2 #define PARSER_H
3
4 void parser_init(const char *filename);
5 void parser_cleanup(void);
6
7 #endif // PARSER_H

Then, inside parser.c, we need to declare these functions as well as the mpc
parser rules. We will declare the latter as static since they should be invisible
to outside modules. In addition, we will write two static functions for initializing
parser rules and deciding what to do with input. We will call said functions inside
parser init:

Listing 5.135—Initial Parser Source File (parser.c)
1 #include "parser.h"
2 #include "mpc.h"
3
4 /* Static function prototypes. */
5 static void parser_read(const char *filename);
6 static void parser_init_rules(void);
7
8 /* Global parser rule declarations. */
9 static mpc_parser_t *expr_rule;

10 static mpc_parser_t *application_rule;
11 static mpc_parser_t *datum_rule;
12 static mpc_parser_t *comment_rule;
13 static mpc_parser_t *number_rule;
14 static mpc_parser_t *symbol_rule;
15 static mpc_parser_t *pf1_rule;
16
17 void parser_init(const char *filename) {
18 parser_init_rules();
19 parser_read(filename);
20 }
21
22 void parser_cleanup(void) { // TODO. }
23 static void parser_init_rules(void) { // TODO. }
24 static void parser_read(const char *filename) { // TODO. }

161

5.2 LPF1: Our First Language 162

Thus far, we created four functions and seven parser rules. The latter cor-
responds directly to our grammar, whereas the former consists of two “helper”
functions, and two that will be called outside this module.

Let us now skip down to parser init rules to write our grammar, since this
is the hardest and easiest to incorrectly write part. While we are in this section
of the code, we can add the one line to parser cleanup needed to clean and free
parser rules generated by mpc.1

Listing 5.136—Defining Grammar Rules in mpc (parser.c)
1 void parser_cleanup (void) {
2 mpc_cleanup (7, expr_rule , application_rule , datum_rule ,
3 comment_rule , number_rule , symbol_rule , pf1_rule);
4 }
5
6 static void parser_init_rules (void) {
7 /* First , define / instantiate the rules. */
8 expr_rule = mpc_new ("expr");
9 application_rule = mpc_new (" application ");

10 datum_rule = mpc_new ("datum");
11 comment_rule = mpc_new (" comment ");
12 number_rule = mpc_new (" number ");
13 symbol_rule = mpc_new (" symbol ");
14 pf1_rule = mpc_new ("pf1");
15
16 /* Now , define the grammar : */
17 mpc_err_t *error = mpca_lang (MPCA_LANG_DEFAULT ,
18 "expr : <application > \n"
19 " | <datum > \n"
20 " | <comment > ; \n"
21 " application : ('('<expr >*')') \n"
22 " | ('{'<expr >*'}') \n"
23 " | ('['<expr >*']') ; \n"
24 "datum : <number > \n"
25 " | <symbol > ; \n"
26 " comment : ';' /[ˆ\\n]*/ ; \n"
27 " number : /(+ -) ?[0 -9]+(\\.[0 -9]+) ?/ ; \n"
28 " symbol : /[a-zA -Z\\ -\\+_* <= >\\/!\\?] \n"
29 " [a-zA -Z0 -9\\ -\\+_ * <= >\\/!\\?]*/ ; \n"
30 "pf1 : <expr >+ ; \n",
31 expr_rule , application_rule , datum_rule , comment_rule ,
32 number_rule , symbol_rule , pf1_rule , NULL);
33
34 if (NULL != error) {
35 mpc_err_print (error);
36 exit(EXIT_FAILURE);
37 }
38 }

Notice how each rule consists of its name, a colon, then the body of the rule.
The bodies are consistent with the earlier EBNF grammar specification. To create
a language with mpc, we use the mpca lang function which accepts a language
“type”, a string representing the grammar, followed by the parser rules. Again, it
is imperative that the code is written exactly as stated, or the parser will display
errors since it cannot interpret an incorrectly-specified grammar. If an error is
encountered, we store it inside a mpc err t struct. On the other hand, if error is
NULL, this means an error did not occur and we can safely continue. Otherwise, we
display the error using the library function mpc err print, then quit the program
altogether.

1We use a slightly different typography style for the font in the following code listing to preserve
horizontal space and alignment within each rule.

162

163 Programming and Design

We now have our grammar specification for LPF1, and all we must do in parser.c
is write parser read. Depending on how the user runs the program, they may
want to evaluate input they enter through the terminal or the contents of a file.
Passing a file name allows such interchangeability. If the file name that is sent
to the function is NULL, then we should interpret that as the user wishing to type
expressions in the terminal. Anything else we can, at the very least, try to interpret
as a file. In C, we wrap files with a construct called FILE. To open a file, we
call fopen(filename, mode); with a given file name and “mode of access”, which
returns a FILE *. For example, FILE *fp = fopen("test.txt", "r"); says that
we wish to open test.txt for reading (hence the "r"), and we want to store the
value of the opened file inside the pointer fp. Importantly, this does not mean that
we have read anything from the file; it only means that we have a FILE * available
to manipulate depending on the mode.

Fortunately, mpc provides two useful functions for reading the contents of a file
and a standard string: mpc parse file and mpc parse respectively.

Listing 5.137—Reading Content into Parser (parser.c)
1 void parser_read(const char *filename) {
2 // We need to keep track of what is parsed.
3 mpc_result_t result;
4 int code;
5
6 // If the file is null or empty, we read from the terminal.
7 if (NULL == filename || streq(filename, "")) {
8 code = mpc_parse_pipe("<stdin>", stdin, pf1_rule, &result);
9 } else {

10 FILE *fp = fopen(filename, "r");
11 // If an error occurs with the file, NULL is returned.
12 if (NULL == fp) {
13 EPF("Error opening file");
14 exit(EXIT_FAILURE);
15 } else {
16 code = mpc_parse_file(filename, fp, pf1_rule, &result);
17 }
18
19 // Close all file handles after opening.
20 fclose(fp);
21 }
22
23 // Check to make sure we parsed correctly!
24 if (0 > code) {
25 mpc_err_print(result.error);
26 mpc_err_delete(result.error);
27 } else {
28 mpc_ast_print(result.output);
29 mpc_ast_delete(result.output);
30 }
31 }

Hopefully, the above code is not too overwhelming. First, we declare two vari-
ables to keep track of our result abstract syntax tree and “code”. A “code” is
simply a number representing success or failure. Many C functions return values
depending on if they succeed or fail. As examples, both fopen and mpc parse -
file return “codes” to indicate success or failure. Often, a code of zero, NULL, or
a negative number indicates failure, but this is, unfortunately, not a gold standard.
Additionally, C functions might set the global errno constant to a specific value.
This constant is defined and accessible from errno.h. As an example, malloc will
set errno to the preprocessor definition ENOMEM if it fails to allocate memory.

163

5.2 LPF1: Our First Language 164

Listing 5.138—Checking the Value of errno Constant (main.c)
1 int main(void) {
2 // Clear out existing check.
3 errno = 0;
4 int *ptr = malloc(10000000000000000);
5 if (0 != errno) {
6 printf("%s (%d)\n", strerror(errno),
7 errno);
8 } else {
9 free(ptr);

10 }
11 return 0;
12 }

Cannot allocate memory (12)

After these declarations, we check to see if the file passed is either NULL or the
empty string, and if so, we intend to only parse contents from the terminal. The
question now is, “How do we read content from the terminal?” We will answer this
question in a bit. Jumping down to the else block indicates that there is something
in the filename variable. We attempt to interpret said variable as a file name
via fopen. If, for example, the variable does not contain a valid file name, or a
file name at all, e.g., a number, then fopen returns a value of NULL. Otherwise,
we know that the file opened successfully and we can read/parse its contents with
mpc parse file. This function, similarly, returns a code. If the input content is
not well-formed according to the grammar, then the function returns a value less
than or equal to zero, indicating an error. If an error is found, we display the error,
then delete the result. Otherwise, we print the abstract syntax tree generated by
the parser followed immediately by its deletion.1

Let us now write the code to initialize and construct the abstract syntax tree.
Create a main.c file with the following contents:

Listing 5.139—Initialize and Cleanup Parser (main.c)
1 #include "parser.h"
2
3 int main(int argc, char *argv[]) {
4 parser_init("program1.pf1");
5 parser_cleanup();
6 return 0;
7 }

So, we can finally write a test program! Open a new file called program1.pf1 and
add the text (+ 2 3). Upon executing the program, the terminal should produce
a complex yet digestible output.

Listing 5.140

expr|>
application|>
char:1:1 '('
expr|datum|symbol|regex:1:2 '+'
expr|datum|number|regex:1:4 '2'
expr|datum|number|regex:1:6 '3'
char:1:7 ')'

1In future iterations of the interpreter, we will not want to delete intermediate abstract syntax trees
as they may contain declarations/expressions used later in the program!

164

165 Programming and Design

What does this output mean? We can trace through it as a parse tree to get a
better idea. The program begins at the root node of the tree and parses an expres-
sion. An expression consists of either an application or a datum. Since our input file
contains an application of + to the values 2 and 3, it chooses the former rule. This
particular application contains five pieces: the opening parenthesis, a symbol, i.e.,
‘+’, a number, i.e., ‘2’, another number, i.e., ‘3’, and a closing parenthesis. Notice
how the parser creates the syntax tree–we designate an application to consist of
the outer parentheses, an expression representing the operator, and any number of
operand expressions. In this example, we include two operands for the + operator.

Congratulations! These are the beginning steps of writing the interpreter for
basic arithmetic expressions.

Let us try a complicated expression, such as the one that we created when
describing the grammar. Store it in a file program2.pf1. Save the file, and change
main.c to read from this file instead of program1.pf1. Recompile your code, and
run the output executable. With any luck, the output should look like the following:

Listing 5.141

(- (+ (* 3.05 (- 3.14 5)))
(* (/ 12 (* 9.5 1.25))))

expr|>
application|>
char:1:1 '('
expr|datum|symbol|regex:1:2 '-'
expr|application|>
char:1:4 '('
expr|datum|symbol|regex:1:5 '+'
expr|application|>
char:1:7 '('
expr|datum|symbol|regex:1:8 '*'
expr|datum|number|regex:1:10 '3.05'
expr|application|>
char:1:15 '('
expr|datum|symbol|regex:1:16 '-'
expr|datum|number|regex:1:18 '3.14'
expr|datum|number|regex:1:23 '5'
char:1:24 ')'

char:1:25 ')'
char:1:26 ')'

expr|application|>
char:2:1 '('
expr|datum|symbol|regex:2:2 '*'
expr|application|>
char:2:4 '('
expr|datum|symbol|regex:2:5 '/'
expr|datum|number|regex:2:7 '12'
expr|application|>
char:2:10 '('
expr|datum|symbol|regex:2:11 '*'
expr|datum|number|regex:2:13 '9.5'
expr|datum|number|regex:2:17 '1.25'
char:2:21 ')'

char:2:22 ')'
char:2:23 ')'

char:2:24 ')'

Whoa! That is a lot of information to unfold! Indeed, that is correct. The
thing, though, is that mpc only outputs the parse tree of an expression and not
the abstract syntax tree. Recall that a parse tree shows all parts that comprise a
rule, including constant literals such as parentheses. An abstract syntax tree, on
the other hand, removes small details and focuses on the semantics of a node, as
shown in Figure 5.19.

165

5.2 LPF1: Our First Language 166

−

+
∗

3.05 −

3.14 5

∗
/

12 ∗

9.5 1.25

Figure 5.19: Abstract Syntax Tree of Arithmetic S-Expression

Representation Independence with Respect to Abstract Syntax Trees

All interpreters and languages we write in this book will use the mpc library.
Though, what if, down the road, we want to modify which library we use? We
would need to go through and change every instance of mpc to this new library. For
parser, we do not have much of a choice but to rely heavily on the functionality
built into mpc because of its grammar construction rules. What we can do, how-
ever, is create a ubiquitous abstract syntax tree representation and helper functions
for accessing components of an abstract syntax tree. This way our interpreters
will only access the helper functions without relying or worrying about how they
work. Moreover, if we want to swap mpc for another library, we need not to touch
the interpreter–only the abstract syntax tree representation and parser should be
modified. This is a programming paradigm known as abstraction or representation
independence.

First, let us create a representation for abstract syntax trees and some helper
functions for accessing fields. Let us assume that any abstract syntax tree will have a
list of nodes/children, a “number of children”, and a string identifier. Additionally,
there are several abstract syntax tree functions to write, including initialization,
destruction, child access, size access, and tag access. It may seem odd to write these
“accessor” functions when we can directly access fields within a struct. Though,
it would be greatly beneficial if we could create the type-defined struct inside the
source file and omit any outside sources directly accessing these fields to prevent
accidental modification. Then, in the corresponding source file, we define those
aforesaid functions.

166

167 Programming and Design

Listing 5.142—Abstract Syntax Tree Header (ast.h)
1 #ifndef AST_H
2 #define AST_H
3
4 #include <stdlib.h>
5 #include <string.h>
6
7 typedef struct ast ast;
8
9 void ast_init(ast *t, void *data, char *tag, size_t children_num, char *contents);

10 ast *ast_child(const ast *tree, const size_t idx);
11 size_t ast_children_num(const ast *tree);
12 char *ast_tag(const ast *tree);
13 bool ast_is_type(const ast *tree, const char *tag);
14 void ast_print(const ast *tree);
15 char *ast_contents(const ast *tree);
16 void ast_destroy(ast *tree);
17
18 #endif // AST_H

Listing 5.143

1 #include "ast.h"
2
3 #include "mpc.h"
4
5 typedef struct ast {
6 size_t children_num;
7 struct ast **children;
8 char *tag;
9 char *contents;

10 size_t row;
11 size_t col;
12 } ast;
13
14 static void ast_print_helper(ast *tree, int indent);

Listing 5.144—Abstract Syntax Tree Initialization Function (ast.c)
1 void ast_init(ast *tree, void *data, char *tag,
2 size_t children_num, char *contents) {
3 // Copy tag and contents.
4 tree->tag = strdup(tag);
5 tree->contents = strdup(contents);
6
7 // Allocate children.
8 tree->children_num = children_num;
9 tree->children = calloc(tree->children_num, sizeof(ast *));

10 ASSERT_ALLOC(tree->children, "ast_init");
11 mpc_ast_t *tdata = (mpc_ast_t *) data;
12
13 // Copy the children over.
14 for (int i = 0; i < tdata->children_num; i++) {
15 mpc_ast_t *curr = tdata->children[i];
16 tree->children[i] = malloc(sizeof(ast));
17 ASSERT_ALLOC(tree->children[i], "ast_init");
18 ast_init(tree->children[i], curr, curr->tag,
19 curr->children_num, curr->contents);
20 }
21
22 // Copy over the row and column positions of the tree.
23 tree->row = tdata->state.row;
24 tree->col = tdata->state.col;
25 }

167

5.2 LPF1: Our First Language 168

Listing 5.145—Abstract Syntax Tree Attribute Accessor Functions (ast.c)
1 ast *ast_child(const ast *tree, const size_t idx) {
2 if (0 > idx || idx >= tree->children_num) {
3 EPF("ast_child: tried to index %zu in tree of size %zu\n",
4 idx, tree->children_num);
5 exit(EXIT_FAILURE);
6 }
7 return tree->children[idx];
8 }
9

10 size_t ast_children_num(const ast *tree) { return tree->children_num; }
11 char *ast_tag(const ast *tree) { return tree->tag; }
12 char *ast_contents(const ast *tree) { return tree->contents; }
13 void ast_print(ast *tree) { ast_print_helper(tree, 0); }

Listing 5.146—Abstract Syntax Tree Destructor and Printer Functions (ast.c)
1 void ast_destroy(ast *tree) {
2 // Free the children first, then its contents.
3 for (int i = 0; i < tree->children_num; i++) {
4 ast_destroy(tree->children[i]);
5 }
6 free(tree->children);
7 free(tree->tag);
8 free(tree->contents);
9 }

10
11 static void ast_print_helper(ast *tree, int indent) {
12 if (NULL == tree) { return; }
13 for (int i = 0; i < indent; i++) { printf(" "); }
14
15 printf("%s", tree->tag);
16 if (strlen(tree->contents) > 0) {
17 printf("%lu:%lu '%s'", tree->row + 1, tree->col + 1, tree->contents);
18 }
19 printf("\n");
20
21 for (int i = 0; i < tree->children_num; i++) {
22 ast_print_helper(tree->children[i], indent + 1);
23 }
24 }

Most of this should be rather self-explanatory. The void pointer in the ast -
init function is perhaps a little perplexing. When we create an abstract syntax tree,
the creation function does not need to know what kind of tree “data” it is given, i.e.,
whether it is an mpc ast t tree or something else. Thus, a void pointer says that
there exists a pointer to something, i.e., some kind of data; the function just does
not know what. The “what” is abstracted away by our abstract syntax tree type,
and is inaccessible to the programmer, at least on the interpreter side. Another
point of confusion is the ast print function. It is recursive and calls a static
helper function ast print helper. In essence, we print out the abstract syntax
tree one node (i.e., its contents) at a time. Then, we recursively print its children
at an increased indentation level to indicate that the child is one-level deeper.1 Let
us modify parser read to create one of our abstract syntax trees and pass it along
to eval ast in the interpreter.

1Understanding the entirety of ast print helper is not necessary—we add it for the sake of com-
pleteness, since we will repeatedly print the abstract syntax trees for the purposes of debugging.

168

169 Programming and Design

Listing 5.147—Adding Abstract Syntax Trees to Parser (parser.c)
1 #include "ast.h"
2
3 void parser_read(const char *filename) {
4 ...
5 else {
6 mpc_ast_print(result.output);
7 // Extract the fields out from the library AST. This is unavoidable.
8 mpc_ast_t *mpc_ast = (mpc_ast_t *) result.output;
9 ast *my_ast = malloc(sizeof(ast));

10 ASSERT_ALLOC(my_ast, "parser_read");
11 ast_init(my_ast, result.output, NULL, NULL, NULL);
12 ...
13 ast_destroy(my_ast);
14 free(my_ast);
15 }
16 }

Right now, we are not doing anything with the abstract syntax tree—we create
it, then immediately after it is destroyed.

Another thing that is important about the abstract syntax tree initialization is
its decoupling from the external representation of the abstract syntax tree. Namely,
after we create our version of the abstract syntax tree, i.e., ast, we stop using mpc
altogether.

In our root evaluator, we extensively use strstr to determine the type of the
abstract syntax tree to evaluate. As part of our representation independence, we
should hide the implementation of tags by writing ast is type. This function
receives the abstract syntax tree and a string tag and returns true if the AST has
the provided tag and false otherwise. We can then replace all calls to strstr for
determining tags with this function. We use strstr (to search for the desired
tag) rather than strcmp (to compare for the desired tag) because the mpc library
supplements matches with additional information about the data, which we do not
strictly need to analyze. We will show an example of such information in a few
paragraphs.

Listing 5.148—Hiding Tag Determination for ASTs (eval.c)
1 bool ast_is_type(const ast *tree, const char *tag) {
2 return strstr(tree, tag) != NULL;
3 }

Evaluation and Application

We would like our program to actually evaluate a given expression instead of this
large and complex syntax tree mess. Before we write the code to do this, however,
we need to discuss the nature of evaluation and application.

Evaluation is the process by which we compute the value of an expression. Often,
this is in tandem with application, i.e., function application. For example, numbers
evaluate to numbers.

Application is the process of interpreting a function and, as its name suggests,
applying it to a set of arguments. For example, we can apply the function + to the
arguments 1, 2, 4, and 10 to get a result of 1+2+4+10 = 17.

169

5.2 LPF1: Our First Language 170

One important step we must do before worrying about evaluation and application
is to handle s-values. An s-value, or a symbolic expression, is an expression that
resolves to some value. For example, the s-value 3 resolves to the literal 3, and
the s-value + resolves to the literal symbol +. This may seem rather intuitive at
first, but we need to construct a way of representing and interpreting different s-
values, since the way we interpret, say, a number, is different than how we interpret
symbols. We will do this via a structure.

Let us create a file sval.h to represent an s-value struct. We now must decide
what an s-value should store. One particular field should be its type. As suggested,
different s-values can represent different values, e.g., symbols or numbers. We can
create an enum to categorize the possible s-value types.

Listing 5.149—S-value Header File (sval.h)
1 #ifndef SVAL_H
2 #define SVAL_H
3
4 enum sval_type { SVAL_NUMBER, SVAL_SYMBOL };
5
6 struct sval {
7 enum sval_type type;
8 union data {
9 long double number;

10 char *symbol;
11 } data;
12 };
13
14 struct sval *sval_number_create(long double value);
15 struct sval *sval_symbol_create(char *symbol);
16 void sval_destroy(struct sval *sv);
17
18 #endif // SVAL_H

So far, this should look familiar. We are declaring an enum called sval type
with two possibilities: SVAL NUMBER and SVAL SYMBOL. From there, we declare
a struct of type sval which stores an sval type to keep track of, as its name
suggests, its s-value type. As of now, we will only use two s-value types, but this
will grow as we expand our language.

Finally, we get to the oddball of the bunch: the nested union. Recall that a union
is simply a decision-based data definition—namely, we can set an s-value to contain
either a long double number or a char * symbol, but not both. This definition
differentiation proves to be extremely helpful later when we evaluate s-values.

Now, let us write the corresponding source file, sval.c. In this file, we will
create the three functions specified by the header: sval number create, sval -
symbol create, and sval destroy. The former two create s-values for given
numbers and symbols respectively, whereas the latter frees any associated memory
from an s-value. We need the ‘creator’ because we have to allocate s-values such
that they are available for reference in other functions. Analogously, we need the
‘destroyer’ to remove, or free, said allocated memory. We once again break the
“only initialize; never create” principle of struct allocation on the grounds that,
because we control the life cycle and pipeline of s-values, we will not worry about
when and where they are allocated.

170

171 Programming and Design

Inside sval.c, we will write a static helper function, sval create which re-
ceives an s-value type, then allocates and returns the memory for an sval pointer.
Notice that we are using the calloc function instead of malloc; we use it because
our struct definition for s-values contains many fields, some of which (later on) need
to be zero-initialized.

Listing 5.150—S-value Source File (sval.c)
1 #include <stdio.h>
2 #include <stdlib.h>
3
4 #include "sval.h"
5
6 struct sval *sval_number_create(long double number) {
7 struct sval *sv = sval_create(SVAL_NUMBER);
8 sv->data.number = number;
9 return sv;

10 }
11
12 struct sval *sval_symbol_create(char *symbol) {
13 struct sval *sv = sval_create(SVAL_SYMBOL);
14 sv->data.symbol = strdup(symbol);
15 return sv;
16 }
17
18 void sval_destroy(struct sval *sv) {
19 if (SVAL_SYMBOL == sv->type) {
20 free(sv->data.symbol);
21 }
22 free(sv);
23 }
24
25 static struct sval *sval_create(const enum sval_type type) {
26 struct sval *sv = calloc(1, sizeof(struct sval));
27 ASSERT_ALLOC(sv, "sval_create");
28 sv->type = type;
29 return sv;
30 }

Modularity is a big component of program design, and we will begin good prac-
tices early. We want to abstract, or hide, most of the details of the data union from
the rest of the program, as it does nothing but complicate the implementation. Ad-
ditionally, we wrap the allocation of struct sval pointers in a function to adhere
to the DRY: Do not Repeat Yourself, principle.

The number creation function, i.e., sval number create, is simple to read,
but what is with the strdup function? Well, strings and pointers in C are, as we
have mentioned many times, weird and unintuitive. Since we may not always have
access to the contents of the abstract syntax tree, we need to guarantee that we
have access to the contents of this tree, namely, its symbol. mpc stores the contents
as a string, or char *. If we lose access to the data inside symbol, and we do not
copy its content memory over, we, therefore, lose access to the symbol data as well.
strdup creates a copy of its passed string and returns a pointer to its location. We
store this inside our data union. Since this function creates a copy of the string,
we know that it is allocated and, thus, must be destroyed. Fortunately, we have
a function for destroying s-values, so all we need to do is amend its definition to
destroy symbols.

171

5.2 LPF1: Our First Language 172

We now have a representation of s-values! Now, the fun begins: we need to
evaluate a given LPF1 program, which may be as simple as a single number or
symbol, and as complex as a large chain of arithmetic expressions. Let us first
create two pairs of files: a source/header pair for eval, and a source/header pair
for apply. As previously mentioned, the purpose of eval is to recursively evaluate
a LPF1 program. The latter will apply a function to given arguments. We will start
with evaluation. Fortunately, eval.h is straightforward—we only need one global,
or public, accessible function, eval ast. This function receives an abstract syntax
tree representing the program, or expression, to evaluate. Inside this function, we
will break down the tree into children and evaluate each one piece by piece.

Listing 5.151—Preliminary Evaluation Header (eval.h)
1 #ifndef EVAL_H
2 #define EVAL_H
3
4 #include "ast.h"
5
6 void eval_ast(ast *ast);
7
8 #endif // EVAL_H

Listing 5.152—Preliminary Evaluation Source File (eval.c)
1 #include "eval.h"
2 #include "sval.h"
3
4 void eval_ast(ast *ast) {
5 for (int i = 0; i < ast->children_num; i++) {
6 struct sval *sv = eval(ast->children[i]);
7 }
8 }
9

10 static struct sval *eval(ast *ast) {
11 if (ast_is_type(ast, "number")) { return eval_number(ast); }
12 else if (ast_is_type(ast, "symbol")) { return eval_symbol(ast); }
13 else if (ast_is_type(ast, "comment")) { return NULL; }
14 else { return NULL; }
15 }
16
17 static struct sval *eval_number(ast *number) { // TODO. }
18 static struct sval *eval_symbol(ast *symbol) { // TODO. }

172

173 Programming and Design

This may look like a lot of complex code, but let us break it down. Since the
header file defines eval ast, we better declare it in this file! This function iterates
over the children of the passed abstract syntax tree and calls eval on each child.
What is eval, though? We want a way to evaluate different types of abstract
syntax trees through their tags. Tags, in the mpc library, are similar to the types
of s-values with the exception that tags are strings and not enums. So, in this
function, for numbers, we check to see if the tag of the passed abstract syntax tree
contains "number", and if so, we call the eval number function. Correspondingly,
if the tag contains "symbol", we call the eval symbol function. Comments are
the simplest—since we want the interpreter to ignore comments, we just return
NULL to advance onto the next expression to interpret, if any exist. This notion
begs the question, “Why not just check to see if the tag is equal to the string
instead of checking to see if it contains "number" or "symbol"? Well, if we did
this, we would rarely, if ever, evaluate a number or symbol. The reasoning is not
so clear at first glance, but recall the abstract syntax tree generated from a single
number. Namely, the tag for such a tree is “expr|datum|number|regex”, which
is obviously not equal to the string "number", but it does contain said string. We
use the function strstr to see if one string is a sub-string of another. Though,
note that we abstracted this function away into ast is type when making our
abstract syntax trees representation-independent.

Now, we move to two important evaluation functions: eval number and eval -
symbol. Since the two functions are very similar, we can write their definitions
together.

Listing 5.153—Evaluating Numbers and Symbols (eval.c)
1 static struct sval *eval_number(ast *number) {
2 struct sval *num = NULL;
3 // TODO extract the contents, i.e., the number, from the ast.
4 return num;
5 }
6
7 static struct sval *eval_symbol(ast *symbol) {
8 struct sval *sym = NULL;
9 // TODO extract the contents, i.e., the symbol text, from the ast.

10 return sym;
11 }

Both functions declare a struct sval * with an initial value of NULL. Right
before we return from the functions, we will invoke the relevant sval create func-
tion, i.e., either the one for symbols or numbers. The differences in the code (aside
from variable names) begin at this point. eval number must interpret the contents
of number to see if it is a number and, if so, store it in the data union. The defi-
nition of a number, at this time, is a C long double. We make use of the sscanf
function to see if the tree contains a valid number.

173

5.2 LPF1: Our First Language 174

Listing 5.154—Number Evaluation (eval.c)
1 static struct sval *eval_number(ast *number) {
2 struct sval *num = NULL;
3 long double num_value;
4 int scanned = sscanf(ast_contents(number), "%Lf", &num_value);
5 if (0 == scanned) {
6 EPF("eval_number: unrecognized input\n");
7 exit(EXIT_FAILURE);
8 }
9 num = sval_number_create(num_value);

10 return num;
11 }

Let us now transition to symbol evaluation, which overall is significantly easier
to digest than number evaluation. The symbol is the contents of the corresponding
abstract syntax tree. We should only free the symbol char * if it has an associated
(non-NULL) value. Numbers, of course, do not have a symbol because they are not
symbols, and we cannot free non-allocated memory.

Listing 5.155—Symbol Evaluation (eval.c)
1 static struct sval *eval_symbol(ast *symbol) {
2 return sval_symbol_create(ast_contents(symbol));
3 }

Listing 5.156—Destructor Function for S-values (eval.c)
1 void sval_destroy(struct sval *sv) {
2 if (SVAL_SYMBOL == sv->type) { free(sv->data.symbol); }
3 free(sv);
4 }

Excellent! Our code successfully evaluates numbers and symbols. Though, we
are still not sure how to display said numbers and symbols in the output window.
mpc provides a nice abstract syntax tree printing function, so it would be great if
we had a similar function but for s-values; let us write one!

Listing 5.157—Printing Number & Symbol S-values (eval.c)
1 void sval_print(const struct sval *sv) {
2 if (SVAL_NUMBER == sv->type) {
3 printf("%Lg\n", sv->data.number);
4 } else if (SVAL_SYMBOL == sv->type) {
5 printf("%s\n", sv->data.symbol);
6 } else {
7 EPF("sval_print: invalid sval: %d\n", sv->type);
8 }
9 }

This function checks the type of the s-value and prints out the appropriate
data from the union. If we somehow encounter an s-value that is not part of our
definition (which is impossible at the moment), we display an error and exit the
program. Note: be sure to add the function prototype to sval.h!

Now, let us update eval ast to print the s-value if one exists. At the moment,
it is impossible for an s-value to not exist, but we do not always want to immediately
exit the program when one does not exist, so to prevent any confusion down the
road, we throw in a NULL check.

174

175 Programming and Design

Listing 5.158—Root Evaluation Function (eval.c)
1 void eval_ast(ast *ast) {
2 for (int i = 0; i < ast->children_num; i++) {
3 struct sval *sv = eval(ast->children[i]);
4 if (NULL != sv) { sval_print(sv); }
5 }
6 }

Finally, we need to change parser read to evaluate the resulting abstract syn-
tax tree instead of simply printing it out. Then, at the end, we destroy our abstract
syntax tree, as well as the mpc abstract syntax tree.

Listing 5.159—Sending AST from Parser to Evaluator (eval.c)
1 ...
2 // Check to make sure we parsed correctly!
3 if (code < 0) {
4 mpc_err_print(result.error);
5 mpc_err_delete(result.error);
6 } else {
7 ...
8 eval_ast(my_ast);
9 ast_destroy(my_ast);

10 mpc_ast_delete(result.output);
11 }

As a brief aside, it may be a bit perplexing to have two separate functions
for destroying our abstract syntax tree and the mpc variant. Since we wrapped
mpc inside our ast struct, why not delete the associated mpc tree when we invoke
ast destroy? The problem revolves around toys. Imagine that a teacher of an el-
ementary school represents the root abstract syntax tree. Each teacher has children
to manage, and each child has a “toy”. Whenever we create a new abstract syntax
tree via ast create, we are creating a new, literal child. This child has a toy, i.e.,
part of the mpc abstract syntax tree, that it can “play with”, i.e., use. Now, when
it is time to clean up the toys, the teacher is very particular about the process and
controls the entire pipeline, meaning they (the teacher) go around to each child and
manually put up their toy. If a child puts up their toy before the teacher proclaims
that it is clean-up time, the universe collapses in on itself. This analogy is rather
comical, but it helps to understand why an abstract syntax tree cannot free its mpc
abstract syntax tree. If we do, then we end up free-ing a piece of the tree that,
when we call mpc ast delete on the root, it will see the associated data is freed,
then try to free it anyways! Thus, we encounter a double-free bug.1

Returning to our interpreter, if we try to run a simple program that has only one
value, we, to our dismay, receive a blank output. What went wrong? Well, the issue
is that eval ast expects a tree with at least one child. With our current grammar
structure, combined with the inner working of mpc, having only one simple s-value
produces an abstract syntax tree with zero children. In this instance, we need only
to evaluate the root of the tree. Otherwise, we recursively evaluate its children.
When executing the program, we finally receive some output!

1If we dug into the mpc library, we could add a clause that only frees non-NULL abstract syntax trees,
and simply set the pointer to NULL upon freeing our version of the representation-independent abstract
syntax tree.

175

5.2 LPF1: Our First Language 176

Listing 5.160—Recursively Evaluating ASTs (eval.c)
1 void eval_ast(ast *ast) {
2 // If there are no children,
3 // we simply evaluate that ast.
4 if (0 == ast_children_num(ast)) {
5 struct sval *sv = eval(ast);
6 if (NULL != sv) { sval_print(sv); }
7 else {
8 // Otherwise, evaluate the children recursively.
9 for (int i = 0; i < ast_children_num(ast); i++) {

10 struct sval *sv = eval(ast_child(ast, i));
11 if (NULL != sv) { sval_print(sv); }
12 }
13 }
14 }
15 }

173

Awesome! LPF1 now prints out numbers, only when we provide it with a single
number. This may not seem exciting, but we only have to make a few more additions
to complete LPF1, so we have come a long way! Let us now add function application.

The core of function application lies in apply, but we need first must write a
new function in eval to invoke the application process.

Listing 5.161—Evaluation Function Stems (eval.c)
1 #include "apply.h"
2 #include "eval.h"
3
4 static struct sval *eval(ast *ast);
5 static struct sval *eval_number(ast *number);
6 static struct sval *eval_symbol(ast *symbol);
7 static struct sval *eval_application(ast *application);
8
9 void eval_ast(ast *ast) { ... }

10 static struct sval *eval(ast *ast) { ... }
11 static struct sval *eval_number(ast *number) { ... }
12 static struct sval *eval_symbol(ast *symbol) { ... }
13 static struct sval *eval_application(ast *application) {
14 // TODO evaluate the function, its arguments, then apply.
15 }

What is a function application? Consider the expression (+ 2 (- 5 4)). A
function application takes the function, + and applies it to its arguments, namely
2 and (- 5 4). What about the nested application? Well, it is evaluated before
we apply +: We take the function - and apply it to its arguments, namely 5 and 4.
This cycle is known as an evaluation-application loop. In order to apply a function,
we must first evaluate its arguments. For LPF1, this means that an arithmetic
expression must evaluate any nested expressions before applying the function. How
do we do this? We first need to dive into the structure of an application abstract
syntax tree to extract the needed elements. Consider the abstract syntax tree of
the above expression.

expr|>
application|>
char:1:1 '('
expr|datum|symbol|regex:1:2 '+'
expr|datum|number|regex:1:4 '2'
expr|application|>
char:1:6 '('
expr|datum|symbol|regex:1:7 '-'
expr|datum|number|regex:1:9 '5'
expr|datum|number|regex:1:11 '4'

176

177 Programming and Design

char:1:12 ')'
char:1:13 ')'

With any function application, we have a few invariants, i.e., properties that
never change: the first character, or node, in the tree is always an opening paren-
thesis. Immediately after is the function we wish to use. Any subsequent nodes
except the last (which is the closing parenthesis) are arguments to this function. Let
us define this inductively; a function application with this setup must have at least
three children: the opening parenthesis, function symbol, and the closing paren-
thesis (note that this means some functions may not have any arguments, which
is acceptable!). Since we know that the function application is always the second
child, we can represent this as a constant in eval.c: APPLICATION FUNCTION IDX
with a value of 1. Any arguments are in the indices [2, ..., n−2] where n represents
the number of children in this abstract syntax tree. Remember that the n−1th child
of the tree is the closing parenthesis. So, any arguments to the function can exist
at these and only these indices.

We have finished our evaluation description; we just have to translate it into
code. Let us recap: we want to first evaluate the function “symbol”, i.e., the
symbol which encodes the function. So, we resolve this first. Then, we iterate
through the arguments and evaluate each one in succession. Finally, we apply the
function to these evaluated arguments.

Listing 5.162—Function Application Stem (eval.c)
1 static struct sval *eval_application(ast *application) {
2 struct sval *function = eval(ast_child(application, APPLICATION_FUNCTION_IDX));
3 for (...) {
4 // TODO evaluate each argument.
5 }
6 // TODO apply the function to its arguments.
7 }

We have run into a small roadblock, unfortunately. How do we evaluate a func-
tion with an indeterminate amount of arguments at runtime? In other words,
addition, i.e., + evaluates as many arguments as it is provided. We cannot say for
certain how many arguments it needs to evaluate, right? Wrong! We already know
how many arguments it has by the aforementioned for loop! We simply take the
number of children in the tree and subtract four. This will give us the number of
arguments to evaluate.

Our problem does not stop there, however; we still have the issue of storing each
evaluated s-value, so what do we do? The answer to this problem is a dynamically-
allocated list. Recall that static array sizes must be known at compile-time, and
since we do not know the number of arguments in a tree until it is parsed, we cannot
use a statically-allocated list.1 If we want to declare an array of, say, n integers
with dynamic allocation, we use the following code:

Listing 5.163—Dynamically-Allocated Integer Array

1 int *array = malloc(n * sizeof(int));

1Certain C compilers offer support for variable-length arrays (VLA): stack-based arrays of variable
length [Kochan, 2004].

177

5.2 LPF1: Our First Language 178

This code says that we wish to allocate n spaces of memory, each of size int.
Though, our program uses struct sval *, and not int, so what do we do? Simple:
we just replace int with struct sval *.

Listing 5.164—Double Pointer of S-values

1 struct sval **arguments = malloc(n * sizeof(struct sval *));

The above declaration says that arguments is a pointer to an array of n slots
to store struct sval *. This is precisely what we are after! For example, suppose
we wish to apply + to the arguments 125, 94 and 101. We have three arguments to
the function and therefore need to store three struct sval *. Thus, arguments is
assigned malloc(3 * sizeof(struct sval *)).

The final question is, “How do we evaluate the arguments?” Conveniently
enough, we have a nice function, eval, to evaluate any expression! Let us sim-
ply call that when evaluating the arguments to an application.

Listing 5.165—Recursive Argument Evaluation (eval.c)
1 static struct sval *eval_application(ast *application) {
2 struct sval *function = eval(ast_child(application, APPLICATION_FUNCTION_IDX));
3
4 // Number of arguments to use.
5 size_t num_args = application->children_num - 3;
6
7 // Allocate an array of arguments.
8 struct sval **arguments = malloc(num_args * sizeof(struct sval *));
9 ASSERT_ALLOC(arguments, "eval_application");

10
11 // Evaluate each argument.
12 for (int i = 0; i < num_args; i++) {
13 arguments[i] = eval(ast_child(application, i + 2));
14 }
15
16 struct sval *result = apply(function, arguments, num_args);
17
18 // Delete the allocated arguments array.
19 free(arguments);
20 return result;
21 }

Not a whole lot has changed; we allocate the correct number of arguments,
iterate over the children of the abstract syntax tree, evaluate each argument, and
store its computed result inside the arguments array.1 Then, we call a mystery
function apply with the function, its arguments, and the number of arguments.
Finally, we free the array of arguments since it is no longer necessary, then return
the result. Evaluation is complete! Now, let us dive deep into the apply header
and source files.

1The offset of i + 2 in the abstract syntax tree list of children may seem bizarre, but remember the
structure of an application abstract syntax tree

178

179 Programming and Design

Listing 5.166—Function Application Header (apply.h)
1 #ifndef APPLY_H
2 #define APPLY_H
3
4 #include "sval.h"
5
6 struct sval *apply(const struct sval *function, struct sval **arguments,
7 const size_t num_args);
8
9 #endif // APPLY_H

Fortunately, the apply.h header is not too complex—we define the prototype
for the apply function so it is visible to eval.c. Let us now jump into apply.c.
Before we begin coding, however, let us take a step back and think about what
arithmetic operations LPF1 supports. For now, it is addition, subtraction, multi-
plication, and division. Thus, we need to declare four static functions: apply -
addition, apply subtraction, apply multiplication, and apply division.
Each of these functions will receive an array of arguments, i.e., an array of struct
sval *, similar to the “root” apply function. Analogous to how eval works, apply
will check the function we pass and call the appropriate static function.

Listing 5.167—Function Application Source File (apply.c)
1 #include "apply.h"
2
3 struct sval *apply(const struct sval *function, struct sval **args,
4 const size_t num_args) {
5 char *fn = function->data.symbol;
6 if (streq(fn, "+")) { return apply_add(args, num_args); }
7 else if (streq(fn, "-")) { return apply_sub(args, num_args); }
8 else if (streq(fn, "*")) { return apply_mul(args, num_args); }
9 else if (streq(fn, "/")) { return apply_div(args, num_args); }

10 else {
11 EPF("apply: unknown function");
12 return NULL;
13 }
14 }
15
16 static struct sval *apply_add(struct sval **args, const size_t nargs) {// TODO.}
17 static struct sval *apply_sub(struct sval **args, const size_t nargs) {// TODO.}
18 static struct sval *apply_mul(struct sval **args, const size_t nargs) {// TODO.}
19 static struct sval *apply_div(struct sval **args, const size_t nargs) {// TODO.}

apply, as we can see, grabs the symbol representing the function “identifier”,
i.e., the string that says what this function is called. We then check to see if it is one
of the four arithmetic operators supported by LPF1, and if so, we call its respective
apply function. Let us finally write the code to apply an arithmetic operation to
some arguments. We will do addition and subtraction together.

Inside apply addition, we have two arguments: the evaluated s-values, and
a number representing how many arguments to which we apply addition. So, we
first create a long double to represent the current sum. Then, we loop over the
arguments array and add the data, i.e., the value inside the data union, to the data
in our running sum. Finally, we create a new s-value containing the sum.

179

5.2 LPF1: Our First Language 180

Listing 5.168—Addition Application (apply.c)
1 static struct sval *apply_add(struct sval **args, size_t num_args) {
2 long double current_sum = 0;
3 for (int i = 0; i < num_args; i++) {
4 current_sum += args[i]->data.number;
5 }
6 return sval_number_create(current_sum);
7 }

We can write very similar code for applying subtraction to a list of arguments.
The only difference (no pun intended) is that, because subtraction is not commuta-
tive, we have to subtract from left to right. For example, (- 4 5 6 7) evaluates to
-14 because 4−5−6−7 = −14. Thus, we cannot start the difference at zero as we
did for “sum”. Moreover, we cannot start our loop from 0 because this would mean
that we subtract our first number from the first number; a redundant operation.
Finally, we have to make a small adjustment to account for unary negation: if there
is only one argument, e.g., (- 4), we negate and return that value.

Listing 5.169—Subtraction and Unary Negation Application (apply.c)
1 static struct sval *apply_sub(struct sval **args, size_t num_args) {
2 long double difference = args[0]->data.number;
3 // Unary negation.
4 if (1 == num_args) { difference = -difference; }
5 // Subtraction.
6 for (int i = 1; i < num_args; i++) {
7 difference -= args[i]->data.number;
8 }
9 return sval_number_create(difference);

10 }

The code for multiplication and division evaluation is trivial:

Listing 5.170—Multiplication & Division Application (tester.c)
1 static struct sval *apply_mul(struct sval **args, size_t num_args) {
2 long double product = 1;
3 for (int i = 0; i < num_args; i++) { product *= args[i]->data.number; }
4 return sval_number_create(product);
5 }
6
7 static struct sval *apply_div(struct sval **args, size_t num_args) {
8 long double quotient = args[0]->data.number;
9 for (int i = 1; i < num_args; i++) {

10 long double value = args[i]->data.number;
11 quotient /= value;
12 }
13 return sval_number_create(quotient);
14 }

Last but certainly not least, to complete our implementation of LPF1, we need
to add a line to the eval function that interprets function applications:

Listing 5.171—Adding Application Evaluation (tester.c)
1 static struct sval *eval(ast *ast) {
2 if (ast_is_type(ast, "number")) { return eval_number(ast); }
3 else if (ast_is_type(ast, "symbol")) { return eval_symbol(ast); }
4 else if (ast_is_type(ast, "application")) { return eval_application(ast); }
5 else { return NULL; }
6 }

180

181 Programming and Design

Treading and Testing

Excellent! Let us run this code on, say, a simple expression, e.g., (+ 4 3). This
should produce 7. Now, let us try some slightly harder examples:

Listing 5.172

> (+ 2 (- 5 4))
> (* 3 1 4)
> (* 3 1 (- 2 4))
> (+ 2.05 9.5)
> (- (+ (* 3.05 (- 3.14 5)))

(* (/ 12 (* 9.5 1.25))))
> (- 4 5 6 7)
> (- 3 (+ (* 7 (- 9))

(- 6 (/ -3 2))))
> (+ (- 9 1)

(* (- 5 3)
(* 2 10)))

> (/ 5 0)

3
12
-6
11.55
-6.68353

-14
58.5

48

inf

Though, what happens if we try to compute mathematical heresy, i.e., division-
by-zero? It looks like C handles division-by-zero by labeling it as infinity, but is
this the true answer? Mathematically, division-by-zero is undefined, as so in C. So,
we should adjust our interpreter, namely apply division, to account for division
by zero.

Listing 5.173—Accounting for Divide-by-Zero (tester.c)
1 static struct sval *apply_div(struct sval **args, size_t num_args) {
2 long double quotient = args[0]->data.number;
3 for (int i = 1; i < num_args; i++) {
4 long double value = args[i]->data.number;
5 if (0 == value) {
6 EPF("apply_div: attempted to divide by zero\n");
7 return sval_number_create(0);
8 } else { quotient /= value; }
9 }

10 return sval_number_create(quotient);
11 }

If we retry division by zero, we receive "Div by zero". Next, let us see what
happens if we input a symbol for one of the operands of an expression:

Listing 5.174

> (+ 4 5 jdkaw) 9

This produces a “correct” answer, but would it not be better if we instead
displayed an error? How do we do that? jdkaw is a symbol as defined by our
language grammar. So, we can insert a check for each arithmetic operation that
ensures each argument is a SVAL NUMBER, and if not, we display an error message.

181

5.2 LPF1: Our First Language 182

Listing 5.175—Type-checking Arithmatic Functions (apply.c)
1 static struct sval *apply_add(struct sval **args, size_t num_args) {
2 long double current_sum = 0;
3 for (int i = 0; i < num_args; i++) {
4 if (SVAL_NUMBER != args[i]->type) {
5 EPF("+ expected number; did not receive number\n");
6 exit(EXIT_FAILURE);
7 } else { current_sum += args[i]->data.number; }
8 }
9 return sval_number_create(current_sum);

10 }

We can propagate this check to each function since all four expect only numeric
arguments. Re-running the test produces the expected error message.

Right now, these error messages are a little vague—it would serve the program-
mer better if, for example, they knew exactly what the function received instead
of a number. Also, all of our errors thus far “terminate-on-error”, meaning that as
soon as an error is encountered, the entire program ends. If we attempt to divide
by zero, it may be beneficial to continue running the interpreter and simply not
evaluate the erroneous expression. We will explore these ideas later on.

Faster and Stronger Tests. Testing programs as they are built is essential to
computer programmers. So far, our system allows us to specify a file as input
representing a program in LPF1. As our interpreter grows and the languages become
ever more complex, we will need to test more programs. Doing this one test at a
time is inefficient and prone to errors. In this section, we will write a module for
testing a series of programs in our interpreter.

Firstly, when we run a program through LPF1, we expect some output (assuming
it does not crash or otherwise produce a non-sensical answer). Then, as humans, we
compare this output to the expected, or intended, output. Automating this process
would greatly reduce the possibility of overlooking a bug or accidentally introducing
one when implementing new language features.

Ideally, we want a program that compares the output of executing a program
in our language to the expected output. The input programs use the extension of
the language, e.g., .pf1, whereas the output files have the extension .out. We can
create a directory tests at the same level as the src directory that contains each
test and its corresponding expected output file. For instance, program1.pf1 may
contain 3, and the expected output file program1.out also contains 3.

Let us create a file tester.c. This file has its own main function as its existence
is disjoint from the existence of LPF1 or any of its respective code. When we run
tester, we want to specify how many tests to run. We extract out this value from
the terminal arguments array argv[1] using sscanf:

182

183 Programming and Design

Listing 5.176—Using Terminal Arguments to Read Data (tester.c)
1 int main(int argc, char *argv[]) {
2 if (2 != argc) {
3 EPF("usage: tester [number of tests]\n");
4 } else {
5 size_t number_of_tests = 0;
6 sscanf(argv[1], "%zu", &number_of_tests);
7 for (int i = 0; i < number_of_tests; i++) {
8 ...
9 }

10 }
11 return 0;
12 }

We now need to iterate through each possible test, execute it, and determine if it
passes or not. There are two file names we need to examine: the input and output
files. To store these, we use the asprintf function. asprintf formats its given
arguments, similar to printf, into a char *. Recall that printf formats its given
arguments into a format string char *, which is sent to standard output. asprintf,
on the other hand, formats its arguments into a saved char *, which is dynamically-
allocated if the given char * is NULL. Note that we must pass a reference, i.e., a
double pointer, to the char * since the function modifies its contents. Each file
contains the words program followed by a number as a “test identifier”, and the
extension.

Listing 5.177—Formatting Test Input and Expected Output Files (tester.c)
1 int main(int argc, char *argv[]) {
2 ...
3 for (int i = 0; i < number_of_tests; i++) {
4 char *in_file = NULL;
5 char *out_file = NULL;
6 asprintf(&in_file, "tests/program%zu.pf1", i + 1);
7 asprintf(&out_file, "tests/program%zu.out", i + 1);
8 ...
9 free(out_file);

10 free(in_file);
11 }
12 return 0;
13 }

We now have both file names available. Ideally, we want a function, e.g., test -
file, that returns true if the program output matches the expected output, and
false otherwise. When a program fails to match, however, we should specify what
the program received as well as what it expected. This brings up the point that,
sometimes, we want to modify parameters as they are passed to a function. Passing
a pointer to the object to modify is the only way to do this within an arbitrary
function. Recall from our discussion on pointers that, when we wish to swap the
values at two integers, we must pass them by pointer to a swap function. The
same is true for char * values; all we need to do is pass these by pointer and we
are good to go. Though, it is a bit confusing for newcomers to the C programming
language because char * is already being passed as a pointer. Remember that char
* is synonymous with “string”, and passing a char * by value means that we only
modify a local copy of the string and not the original. Accordingly, in addition to
the two file names, test file receives two more parameters: one to populate the
expected output, and another to populate the actual output of the program.

183

5.2 LPF1: Our First Language 184

Listing 5.178—Test Evaluation (tester.c)
1 int main(int argc, char *argv[]) {
2 ...
3 for (size_t i = 0; i < number_of_tests; i++) {
4 char *in_file = NULL;
5 char *out_file = NULL;
6 char *expected_output = NULL;
7 char *actual_output = NULL;
8 ...
9 bool passes = test_file(in_file, out_file,

10 &expected_output, &actual_output);
11 }
12 return 0;
13 }

Listing 5.179—Implementing test file (tester.c)
1 bool test_file(const char *in_file, const char *out_file,
2 char **expected_contents, char **actual_contents) {
3 FILE *out_file_fp = fopen("out_file", "r");
4 if (NULL == out_file) {
5 EPF("test_file: failed to open expected output file %s\n", out_file);
6 }
7 }

So, we have opened the expected output file. We now need a way of running a
command, i.e., ./pf1, through C. A pipe allows us to implement this feature. We
will not discuss the intricacies of pipes at the moment, so just know that they are
a way of sending and receiving data between programs. In addition, we will also
read the contents of the expected output file.

Listing 5.180—Read Actual and Expected Program Outputs (tester.c)
1 bool test_file(const char *in_file, const char *out_file,
2 char **expected_contents, char **actual_contents) {
3 ...
4 /* Open the command for reading. */
5 char *cmd = NULL;
6 asprintf(&cmd, "./pf1 %s", in_file);
7 fp = popen(cmd, "r");
8
9 size_t sz;

10 getline(actual_contents, &sz, fp);
11 size_t sz2;
12 getline(expected_contents, &sz2, outfile);
13 ...
14 return false;
15 }

At this point, actual contents and expected contents have strings that we
can compare directly for equality. If they match, then the test program succeeded
in producing a correct result. Otherwise, something is amiss, and we must return
false. Because both getline and asprintf dynamically-allocate data, we need to
free these variables before returning a result from test file.

184

185 Programming and Design

Listing 5.181—Store Comparison Data in Argument Pointers (tester.c)
1 bool test_file(const char *in_file, const char *out_file,
2 char **expected_contents, char **actual_contents) {
3 ...
4 bool c = true;
5 if (!streq(*expected_contents, *actual_contents)) { c = false; }
6 pclose(fp);
7 fclose(outfile);
8 free(cmd);
9 return c;

10 }

Returning to main, we can now use the result obtained by calling test file.
If the boolean value is true, we print an “ok” status report. Otherwise, we display
an error message that states what the output ought to be and what it (that is, the
program input) actually produced.

Listing 5.182—Tester Source File (tester.c)
1 int main(int argc, char *argv[]) {
2 ...
3 printf("Test %zu: ", i + 1);
4 if (passes) { printf("OK\n"); }
5 else {
6 printf("FAILED");
7 printf("\t\tExpected %s; Received: %s\n",
8 expected_output, actual_output);
9 }

10 ...
11 return 0;
12 }

Because asprintf is used not only in this function but also across test file,
we must free those four variables in every iteration of the for loop. To execute
this program, we need to first compile LPF1 using make, then compile tester via
gcc.1

Listing 5.183—Tester Source File (tester.c)
1 int main(int argc, char *argv[]) {
2 ...
3 for (size_t i = 0; i < number_of_tests; i++) {
4 printf("Test %zu: ", i + 1);
5 if (passes) { printf("OK\n"); }
6 else {
7 printf("FAILED");
8 printf("\t\tExpected %s; Received: %s\n",
9 expected_output, actual_output);

10 }
11 free(expected_output);
12 free(actual_output);
13 free(in_file);
14 free(out_file);
15 }
16 return 0;
17 }
18
19 ./tester.o 5

Test 1: OK
Test 2: OK
Test 3: OK
Test 4: OK
Test 5: OK

1We could also add tester as a target in our Makefile.
185

5.3 LPF2: Now With Environments 186

5.3 LPF2: Now With Environments

Our current language, LPF1, is nice and all, but adding variables to the language
would help immensely. First, let us define a new language, LPF2, which is a superset
of LPF1 with the addition of environments and variables. Now, let us discuss what
a variable looks like in LPF2, and define this notion of environments.

By now, you certainly understand what variables are in the C programming
language. Fortunately for us, variables in LPF2 are not so different. We define
variables via define. For example, (define x 10) defines a variable x with a
value of 10.

With this idea in mind, we need to update our language grammar to include the
ability to define variables.

expr ::= define
| application
| datum;

define ::= ‘(’ ‘define’ symbol expr ‘)’
pf2 ::= expr+;

Figure 5.20: Extended BNF Grammar for LPF2

We amend two preexisting grammar rules and add one that is entirely new.
Expressions are now either definitions, function applications, or a type of data.
Definitions are similar to function applications, except that define always contains
two arguments: the first being a symbol and the second being an expression that
is bound to the symbol. Finally, we change all existing instances of LPF1 to LPF2,
and we declare that a program in LPF2 consists of one or more expressions. Such a
modification allows us to define multiple variables and evaluate multiple expressions.

Let us begin by testing some basic programs in LPF2 to determine their abstract
syntax trees.

Listing 5.184—Assignment and Addition Expressions

(define x 10)

> (+ x 10)

expr|define|>
char:1:1 '('
string:1:2 'define'
symbol|regex:1:9 'x'
expr|datum|number|regex:1:11 '10'
char:1:13 ')'

expr|application|>
char:2:1 '('
expr|datum|symbol|regex:2:2 '+'
expr|datum|symbol|regex:2:4 'x'
expr|datum|number|regex:2:6 '10'
char:2:8 ')'

186

187 Programming and Design

If we try to evaluate this program, our interpreter will completely ignore the
definition on the first line. Following this, it finds that x is not a number and hence
displays the error, "+ expected number; did not receive number". What we
would like for our interpreter to do is resolve the variable x to its numeric represen-
tation and substitute it for x.

An environment is an association between symbols, i.e., variables, and values,
i.e., s-values. For instance, with the preceding example, we associate the symbol x
with the value 10. Whenever we define a new symbol, it and its value are stored
in the current environment. So, how can we represent this structure? With a C
struct, of course! We create a source/header pair for an env where the header is
the following:

Listing 5.185—Environment Header (env.h)
1 #ifndef ENV_H
2 #define ENV_H
3
4 #include "sval.h"
5
6 struct env_pair {
7 char *key;
8 struct sval *value;
9 struct env_pair *next;

10 };
11
12 struct environment {
13 struct environment *parent;
14 struct env_pair *head;
15 size_t num_associations;
16 };
17
18 struct environment *environment_create(struct environment *parent);
19 struct sval *environment_lookup(struct environment *env, const char *key);
20 void environment_put(struct environment *env, char *key, struct sval *value);
21 void environment_destroy(struct environment *env);
22
23 #endif // ENV_H

An environment has four functions: one for creating an environment, one for
looking up a symbol’s value, one for inserting a new symbol and value into the
environment, and one for deleting the environment from memory.

Notice that the first function, the creator, receives an environment as a param-
eter, called parent. This pointer is useless for us in LPF2, and we will revisit and
explain its necessity in Chapter 6.

Next, we have a function for looking up a symbol in the environment and re-
turning its associated s-value. For example, if we look up the value of x, we would
receive 10.

Third, a function for inserting a symbol and its associated s-value exists. We
need this to add symbol bindings to the environment.

Lastly, because we have a creation function, we need an accompanying destroyer
function, which frees any memory associated with the environment.

187

5.3 LPF2: Now With Environments 188

Essentially, an environment consists of association pairs. Pairs map case-sensitive
identifiers, i.e., symbolic names, to expressions. The environment association pairs
contain an identifier and an expression. For instance, if we defined a variable x to
the expression 10, the environment would contain a single association pair x:10,
where the identifier is x and its corresponding expression is 10. Therefore, whenever
we wish to reference x, its expression, namely 10, is returned. Since we do not know
how many variables our environment will store at compile-time, using a linked-list
data structure is a good idea. As we will mention in the next section, however, it
matters little how we represent our pairs.

We choose to represent the environment, as we mentioned, as a linked list. Linked
lists, as we know from Chapter 3 and earlier in this chapter, allow us to dynamically
add new elements whenever, and particularly wherever, we please. Though, while it
is quick to add a definition to the environment, it is slower to retrieve the value of a
definition as the environment grows in size. Recall the get function in a linked-list;
it runs in linear time, compared to faster data structures such as trees.1 Because
we want our environments to be simple to implement at this time, however, such a
trade-off is appropriately warranted.

Let us write each environment function one by one. First, we will create env.c
with the template functions. Then, we will write the function to construct and
return a new environment.

Listing 5.186—Environment Source File Function Stems (env.c)
1 #include "env.h"
2
3 struct environment *environment_create(struct environment *parent) {...}
4 struct sval *environment_lookup(struct environment *env, const char *key) {...}
5 void environment_put(struct environment *env, char *key, struct sval *value) {...}
6 void environment_destroy(struct environment *env) {...}

Listing 5.187—Environment Constructor Function (env.c)
1 struct environment *
2 environment_create(struct environment *parent) {
3 struct environment *env = malloc(sizeof(struct environment));
4 ASSERT_ALLOC(env, environment_create);
5 env->head = NULL;
6 env->parent = parent;
7 env->num_associations = 0;
8 return env;
9 }

As always, we allocate memory for an environment, and since we have this lone
parent pointer lying about, we will assign it as NULL for the time being.

Next, let us write the function for looking up the s-value of a symbol.

Listing 5.188—Symbol Lookup in Environment (env.c)
1 struct sval *environment_lookup(struct environment *env, const char *key) {
2 for (struct env_pair *curr; curr != NULL; curr = curr->next) {
3 if (streq(curr->key, key)) { return curr->value; }
4 }
5 return NULL;
6 }

1Linear time roughly indicates that an algorithm’s performance scales proportionally to the input
size.

188

189 Programming and Design

In this function, we iterate over each association pair in the environment and
determine if there is a key that shares the same name as the passed parameter key.
If so, then we know that there is an associated value to return, which we retrieve
from the environment list.

Now, we need a function for inserting association pairs into the environment. It
should be noted that, if we attempt to redefine an existing symbol, the new binding
takes precedence over the old one, hence shadowing the original definition.

Listing 5.189—Insert Symbol Binding in Environment (env.c)
1 void environment_put(struct environment *env, char *key, struct sval *value) {
2 struct env_pair *pair = malloc(sizeof(struct env_pair));
3 ASSERT_ALLOC(pair, "environment_put");
4 pair->key = strdup(key);
5 pair->value = value;
6
7 pair->next = env->head;
8 env->head = pair;
9 env->num_associations++;

10 }

Finally, we need a way of destroying an environment and its associated bindings.
All we need to do is traverse the environment, find each environment pair (binding),
then free its key and the node. Notice the parallels between this and the destruction
of a linked-list.

Listing 5.190—Environment Destructor Function (env.c)
1 void environment_destroy(struct environment *env) {
2 while (env->head != NULL) {
3 struct env_pair curr = env->head;
4 env->head = env->head->next;
5 free(curr->key);
6 free(curr);
7 }
8 free(env);
9 }

189

5.3 LPF2: Now With Environments 190

Representation Independence with Respect to Environments

Our model of environments is a linked-list of association pairs, as we repeatedly
emphasized. It is important to stress that this representation is merely a (peda-
gogical) design choice, and it may be a good idea to alter this representation down
the road during development. For this reason, we want our environment to be
representation-independent . In other words, when we designed the environment,
we wrote several functions that act on an environment that are then called by our
interpreter. It is not the responsibility of the interpreter to know how the environ-
ment works or its representation; its job is to use the environment for what it is
worth.1Thus, creating a framework for a representation-independent environment
that our interpreter can use is absolutely essential for good software and program
design. If the structure of our environment changes, then the only functions that
should require alteration under this paradigm are environment-labeled functions;
the interpreter and any other modules that rely on environments should not need
changing. Representation-independence is often referred to as a means of abstrac-
tion; we hide the implementation of something (in our case, the environment) and
focus on using said something. Such a paradigm allows us to rely on “the what”,
rather than “the how”.2

In future chapters, we will repeat this paradigm for several features in our in-
terpreter. So, understanding its purpose and role in the project (and programming
as a whole) is, in our opinion, crucial.

A Place to Call Home: Built-in Functions

In LPF1 and LPF2, we have four primitive arithmetic operations: +, -, *, and /,
representing addition, subtraction, multiplication, and division respectively. The
thing is, what if we want to add more functions? Suppose, for instance, that we
want to add an operation that raises a base b to an exponent x, i.e., the power
function. We, obviously, need to add a function to apply.c which performs this
operation, but we also have to modify the non-static function apply to now account
for power. We have to modify this function each and every time we add or remove
functions. Would it not be better and more structured if we included a way of
defining built-in functions that our interpreter and language automatically looks
up? In our next language, we will do just that—our interpreter will keep track of
a “base” environment with built-in functions, primitive operations, and constants.
What is even better about this method is that it allows the programmer to override
the default definition of these functions/constants. Case in point, if, for whatever
reason, a programmer wanted to override + to store the value of 5 instead of a
function, while certainly an odd decision, it is a possibility.

1Even with the wonderful idea of representation independence, we must be sure to construct an
unambiguous definition that is abstract enough so as to not have to leak information into the object
(i.e., the interpreter) using said model (i.e., the environment). A crucial example of this is the fact that
our environment model semantics shadow previously-defined identifiers. Such behavioral semantics are
required to effectively and correctly use a model and its underlying implementation.

2The term representation independence was established by John C. Mitchell in his Representation
independence and data abstraction paper, as it relates to operations on the stack data structure and
the λ-calculus [Mitchell, 1986]. Going even further back, David Parnas’ paper describes encapsulation
and modularity for designing and maintaining complex systems [Parnas, 1972].

190

191 Programming and Design

First, we need to amend our definition of the sval struct to include the ability
to store a function. Just like variables, we can store functions as data! In other
words, we can create a function pointer, as noted earlier in the chapter, to store the
location of instructions to perform a task. As an example, suppose we create an
s-value to store the addition function. Within this s-value, we also store a function
pointer to the apply-addition function. So, let us update our struct definition.

Listing 5.191—S-value Enumeration for Built-in Functions (sval.h)
1 enum sval_type { SVAL_NUMBER, SVAL_SYMBOL, SVAL_BUILTIN };
2
3 struct sval {
4 enum sval_type type;
5 union data {
6 long double number;
7 char *symbol;
8 struct sval *(*builtin)(struct sval **args, const size_t num_args,
9 struct environment *env);

10 } data;
11 };

We made two alterations: the first is that we have a new SVAL type in our enum:
SVAL BUILTIN. Second, with the union inside our struct, we keep track of a function
pointer called builtin. All applications receive an array of s-values, a number of
arguments, and an environment in which the function is applied. One assumption
we make with this function pointer is that any function we assign to it is a built-in
function with a set definition ahead of time. For example, we know how the +
operator should work, and we have pre-programmed this into apply addition.

Now, inside apply, let us write a function builtin functions init which
receives an environment to populate. Inside this function we declare s-values for
each built-in operation, assign the relevant data (i.e., function pointers), and put
them in the environment for later reference/look-up.

Listing 5.192—Built-in Function Table (apply.c)
1 void builtin_functions_init(struct environment *env) {
2 environment_put(env, "+", sval_builtin_create(apply_add));
3 environment_put(env, "-", sval_builtin_create(apply_sub));
4 environment_put(env, "*", sval_builtin_create(apply_mul));
5 environment_put(env, "/", sval_builtin_create(apply_div));
6 }
7
8 struct sval *apply(const struct sval *function, struct sval **args,
9 size_t num_args, struct environment *env) {

10 if (SVAL_BUILTIN == function->type) {
11 return (function->data.builtin)(args, num_args, args);
12 } else {
13 EPF("apply: unknown function");
14 exit(EXIT_FAILURE);
15 }
16 }

To make this slightly easier to understand and cleaner, we wrote a helper func-
tion, sval builtin create inside sval.c that receives a function pointer and
automatically creates a populated s-value.

191

5.3 LPF2: Now With Environments 192

Listing 5.193—Constructor for S-value Built-ins (sval.c)
1 struct sval *
2 sval_create_builtin(struct sval *(*builtin)(struct sval **args,
3 size_t num_args, struct environment *env)) {
4 struct sval *sv = sval_create(SVAL_BUILTIN, NULL);
5 sv->data.builtin = builtin;
6 return sv;
7 }

One last addition: we need to modify eval ast to initialize the global environ-
ment with the built-in functions.

Listing 5.194—Initializing Built-in Functions (eval.c)
1 void eval_ast(ast *ast) {
2 struct environment *global_env = environment_create(NULL);
3 builtin_functions_init(global_env);
4
5 // If there are no children, simply evaluate that ast.
6 if (0 == ast_children_num(ast)) {
7 struct sval *sv = eval(ast, global_env);
8 if (sv != NULL) { sval_print(sv); }
9 } else {

10 // Otherwise, evaluate its children recursively.
11 for (int i = 0; i < ast_children_num(ast); i++) {
12 struct sval *sv = eval(ast_child(ast, i), global_env);
13 if (NULL != sv) { sval_print(sv); }
14 }
15 }
16 environment_destroy(global_env);
17 }

Note: because add builtin functions has global scope, it needs to be added
as a function prototype in apply.h.

Great! The apply function is now significantly easier to digest and, better yet, we
need not modify its definition each and every time we add a new built-in function
to our system. Let us execute the interpreter, and, we should see no change in
functionality. One change we encourage is to update the s-value print function to
account for s-value functions:

Listing 5.195—Printing S-value Built-ins (sval.c)
1 void sval_print(const struct sval *sv) {
2 if (SVAL_NUMBER == sv->type) {
3 printf("%Lg\n", sv->data.number);
4 } else if (SVAL_SYMBOL == sv->type) {
5 printf("%s\n", sv->data.symbol);
6 } else if (SVAL_BUILTIN == sv->type) {
7 printf("%s\n", "<function>");
8 } else {
9 EPF("sval_print: invalid sval");

10 exit(EXIT_FAILURE);
11 }
12 }

Thus, if the program contains, say, lone function, e.g., + or -, it will produce the
following output:

Listing 5.196

> +
> -

<function>
<function>

192

193 Programming and Design

Let us add three new built-in functions to our language: pow, floor, and ceil.
pow receives a base number b and raises it to a given exponent x, i.e., bx. floor
rounds a floating-point value down to the nearest integer, e.g., floor(4.7) = 4.
ceil, on the other hand, rounds a floating-point value up to the nearest integer,
e.g., floor(4.01) = 5. We can use the C standard math library for these functions
instead of writing them on our own.1 As always, it is important to write proper
error checks and coherent code.

Listing 5.197—Power Function (apply.c)
1 static struct sval *apply_power(struct sval **args, size_t num_args,
2 struct environment *env) {
3 // Check the number of arguments - pow expects 2.
4 if (2 != num_args) {
5 EPF("apply_power: pow expects two arguments but got %zu\n", num_args);
6 exit(EXIT_FAILURE);
7 }
8 // Pull the operands out of the args array.
9 struct sval *base = args[0];

10 struct sval *expt = args[1];
11
12 // Error checking.
13 if (SVAL_NUMBER != base->type) {
14 EPF("apply_power: pow expects argument 1 to be a number");
15 exit(EXIT_FAILURE);
16 } else if (SVAL_NUMBER != expt->type) {
17 EPF("apply_power: pow expects argument 2 to be a number");
18 exit(EXIT_FAILURE);
19 }
20
21 // Use the standard library function powl (pow with long doubles).
22 return sval_number_create(powl(base->data.number, expt->data.number));
23 }

Listing 5.198—Floor Function (apply.c)
1 static struct sval *apply_floor(struct sval **args, size_t num_args,
2 struct environment *env) {
3 // Check the number of arguments - floor expects 1.
4 if (1 != num_args) {
5 EPF("apply_floor: floor expects one argument but got %zu\n", num_args);
6 exit(EXIT_FAILURE);
7 }
8 // Pull the operands out of the args array.
9 struct sval *operand = args[0];

10
11 // Error checking.
12 if (SVAL_NUMBER != operand->type) {
13 EPF("apply_floor: floor expects argument 1 to be a number");
14 exit(EXIT_FAILURE);
15 }
16
17 // Use the standard library function.
18 return sval_number_create(floorl(operand->data.number));
19 }

1To remain consistent with our representation independence theme, we must explicitly specify the
requirements of function arguments, e.g., the second argument of pow must be a positive integer.

193

5.3 LPF2: Now With Environments 194

Listing 5.199—Ceiling Function (apply.c)
1 static struct sval *apply_ceil(struct sval **args, size_t num_args,
2 struct environment *env) {
3 // Check the number of arguments - ceil expects 1.
4 if (1 != num_args) {
5 EPF("apply_ceil: ceil expects one argument but got %zu\n", num_args);
6 exit(EXIT_FAILURE);
7 }
8 // Pull the operands out of the args array.
9 struct sval *operand = args[0];

10
11 // Error checking.
12 if (SVAL_NUMBER != operand->type) {
13 EPF("apply_ceil: ceil expects argument 1 to be a number");
14 exit(EXIT_FAILURE);
15 }
16
17 // Use the standard library function.
18 return sval_number_create(ceill(operand->data.number));
19 }

And lastly, we must add these three to the global environment as they are predefined
functions. We follow this addition up with some test cases:

Listing 5.200—Adding Other Math Built-ins (apply.c)
1 void builtin_functions_init(struct environment *env) {
2 ...
3 environment_put(env, "pow", sval_builtin_create(apply_power));
4 environment_put(env, "floor", sval_builtin_create(apply_floor));
5 environment_put(env, "ceil", sval_builtin_create(apply_ceil));
6 }

Listing 5.201

> (ceil 5.5)
> (floor 5.5)
> (ceil (* 3.14 12))
> (floor (* 3.14 12))
> (pow 2 8)
> (pow 2 (pow 2 2))
> (pow 3 (floor (- 3.5 1.125)))

6
5
38
37
256
16
9

We highly encourage the readers to design many more built-in (arithmatic) func-
tions. Furthermore, in subsequent languages, we will add more functions that oper-
ate on more than just numbers, e.g., booleans, characters, and so on. Get creative!

In this chapter, we first reviewed elementary arithmetic in prefix notation, dis-
cussed the C programming language and its intricacies, and designed three prefix-
based languages and interpreters. We also described environments and the idea
behind representation independence with respect to environments.

194

195 Programming and Design

There are many resources available for learning C. Thankfully, C has not changed
too much since its original implementation. Compared to “modern” counterparts,
C is a tiny programming language, which comes with associated advantages and
drawbacks. The canonical resource for learning C is Brian Kernighan and Dennis
Ritchie’s [Kernighan and Ritchie, 1988] book commonly referred to as “K&R”,
although some of its examples and code style are antiquated compared to those
typically exemplified today. K. N. King’s [King, 2008] text on C is an excellent
overview and academic perspective on the language, providing plentiful exercises.
Finally, Peter van der Linden’s book [van der Linden, 1994] is a more advanced
book, hence the Expert C title, but it travels deep into the land of C, offering
historical perspectives, security vulnerabilities, and miscellaneous tips and tricks on
writing more complex C code. Because C is essentially everywhere we look in one
way or another, there is no shortage of tutorials and references on the language, for
both good and bad.

195

6 Interpretation

First, we want to establish the idea that a computer language is not
just a way of getting a computer to perform operations but rather

that it is a novel formal medium for expressing ideas
about methodology.

—Hal Abelson & Gerald Jay Sussman

6.1 LCOND: Conditionals and Decisions

Decision/control structures are a fundamental component of programming—we of-
ten need them in order to make a decision about what to do with data or values. In
Chapter 5, we used conditionals extensively for natural recursion, error checking,
and much more. For more information about writing conditional statements in C,
please revisit Chapter 5.

In this chapter, we will start by writing LCOND1: an extension of LPF2 that
includes boolean variables and literals. Then, we will write LCOND2: an extension
of LCOND1 to include decision-based arithmetic expressions. Afterward, we will
write LCOND3: a drastic jump from LCOND2 which brings conditional expressions
to the table.

Logical Expressions

Up until this point, all expressions in LPF2 compute a numeric result, e.g., addition,
subtraction, power, ceiling, so on and so forth. What if we want to write expressions
that are decision-based, or rather, return a true/false value? In C, we can write
a statement to evaluate a boolean expression, e.g., bool t = 5 < 4;. It would
perhaps be convenient if our language included such semantics. With that, it is
time to introduce LCOND1: now with boolean literals.

Implementing Boolean Values

A boolean, similar to C, is a true or false value. We represent true and false in
LCOND1 as #t and #f respectively. Let us extend our grammar to include our
changes. Booleans, like numbers and symbols, are a type of data, or datum:

6.1 LCOND: Conditionals and Decisions 198

datum ::= number
| boolean
| symbol

boolean ::= ‘#’ (‘t’ | ‘f’)

Figure 6.1: Extended BNF Grammar for LCOND1

Listing 6.1—Extended mpc Grammar for LCOND1

1 static void parser_init_rules (void) {
2 ...
3 boolean_rule = mpc_new (" boolean ");
4
5 mpc_err_t *error =
6 mpca_lang (MPCA_LANG_DEFAULT ,
7 "datum : <number > \n"
8 " | <symbol > \n"
9 " | <boolean > \n"

10 " boolean : '#'('t'|'f') ",
11 ..., boolean_rule , NULL);
12 ...
13 }

That is all we need to do to our grammar; most of the changes come through the
addition of a new s-value. We need to add a new enum to sval type, and update
the union inside the sval struct to include booleans. For our purposes, we will
represent booleans as the C bool type.1 We also need to add a creation function
for boolean s-values.

Listing 6.2—Adding Boolean S-values (sval.h)
1 enum sval_type { ..., SVAL_BOOLEAN, ... };
2
3 struct sval {
4 ...
5 union data {
6 ...
7 bool boolean;
8 ...
9 } data;

10 };
11 ...
12 struct sval *sval_boolean_create(bool boolean);

Now, we need to modify sval.c to support the printing of booleans. We make
the decision, out of consistency, to textually represent an output boolean identical
to its input representation. That is, any boolean expression will output either #t
or #f instead of, perhaps, true or false. Lastly, we need to add a function for
processing boolean s-values.

1Make sure to include the stdbool.h header at the top of sval.h!

198

199 Interpretation

Listing 6.3—Constructor Function for Boolean S-values (sval.c)
1 struct sval *sval_boolean_create(bool boolean) {
2 struct sval *sv = sval_create(SVAL_BOOLEAN);
3 sv->data.boolean = boolean;
4 return sv;
5 }
6 ...
7 void sval_print(const struct sval *sv) {
8 ...
9 else if (sv->type == SVAL_BOOLEAN) {

10 printf("#%c\n", sv->data.boolean ? 't' : 'f');
11 }
12 ...
13 }

Listing 6.4—Evaluating Booleans (eval.c)
1 static struct sval *eval(ast *ast, struct environment *env) {
2 ...
3 else if (ast_is_type(ast, "boolean")) {
4 return eval_boolean(ast, env);
5 }
6 ...
7 }
8 ...
9 static struct sval *eval_boolean(ast *boolean, struct environment *env) {

10 bool booll = streq(ast_contents(ast_child(boolean, 1)), "t");
11 return sval_boolean_create(booll);
12 }

You may be thinking to yourself, “That is all we had to write for eval -
boolean?” Yes, it is! Recall that streq returns a boolean—we check to see if
the contents of the abstract syntax tree is identical to "t". If so, then the data
should be true, and false otherwise, but note that the only other possibility is
"f".

What may confuse some readers is the need to dive into the children of the
boolean abstract syntax tree node. Would it not be simpler to just evaluate the
contents of that node? Yes, it certainly is, but the problem is in the structure of
our grammar rule for booleans. Let us investigate the output abstract syntax tree
of a boolean.

Listing 6.5

> #t expr|datum|boolean|>
char:1:12 '#'
char:1:13 't'

As we can see, a boolean has two children: the first represents the # character,
and the second represents the letter corresponding to true or false. As hinted, we
only need to check the contents of the second child since the hash sign is always
present (try and print out the contents of the boolean abstract syntax tree node;
what do you see, or rather, what do you not see?).

Now, if we try to execute the program and define, then evaluate, a couple of
booleans.

199

6.1 LCOND: Conditionals and Decisions 200

Listing 6.6

(define b1 #t)
(define b2 #f)

> b1
> b2

#t
#f

Our LCOND1 language now understands booleans. Excellent! Though, having
booleans on their own serves very little purpose other than to constantly beg for
companioning logical operators!

As a motivating example, suppose we want to write a program that determines
if two numeric values are equivalent. Sadly, LCOND1 is incapable of doing so, since
it has no way of comparing values.

Let us extend LCOND1 to LCOND2 via the addition of five numeric comparison
operators: numeric equals =, <, <=, >, >=, and one boolean negation operator:
not. All six operators will be implemented as functions, meaning their definitions,
fortunately, reside only in apply.c.

expr ::= application | ...
application ::= boolexpr | ...
boolexpr ::= (‘<’|‘>’|‘<=’|‘>=’|‘=’|‘not’) ‘ ’ expr+

Figure 6.2: Extended BNF Grammar for LCOND2

First, let us write the six static function prototypes. Note that we have abbre-
viated the function names for spacing purposes.

Listing 6.7—Comparison Operator Application Functions (apply.c)
1 static struct sval *apply_num_eq(struct sval **args, size_t num_args);
2 static struct sval *apply_num_lt(struct sval **args, size_t num_args);
3 static struct sval *apply_num_leq(struct sval **args, size_t num_args);
4 static struct sval *apply_num_gt(struct sval **args, size_t num_args);
5 static struct sval *apply_num_geq(struct sval **args, size_t num_args);
6 static struct sval *apply_not(struct sval **args, size_t num_args);

The first five functions are similar in that they reference the number portion of
the s-value’s union, whereas apply not instead references the boolean. We will
write apply num eq and apply not together, since after writing the former two,
the remaining four are just as trivial and repetitive.

Numeric equals, i.e., ‘=’ works as it does in traditional mathematics, with the
exception that instead of restricting it to being a binary operator, it can be an n-ary
operator. For instance, if we want to check whether several variables are numerically
equivalent, we can use (= x y z a b). Unlike the arithmetic functions, however,
these six functions return boolean s-values, i.e., s-values which represent a true or
false value.

200

201 Interpretation

Listing 6.8—Numeric Equality Function Definition (apply.c)
1 static struct sval *apply_num_eq(struct sval **args, size_t num_args) {
2 if (num_args < 2) {
3 EPF("apply_num_eq: = expects at least two arguments but got %zu\n",
4 num_args);
5 exit(EXIT_FAILURE);
6 }
7
8 bool eq_result = true;
9 struct sval *curr_number = args[0];

10
11 // Iterate over each number and make sure they're equivalent.
12 for (int i = 1; i < num_args; i++) {
13 if (curr_number->data.number != args[i]->data.number) {
14 eq_result = false;
15 break;
16 }
17 curr_number = args[i];
18 }
19 return sval_boolean_create(eq_result);
20 }

Numeric less than, i.e., ‘<’ is also not solely a binary operator—in fact, we can
compare any number of, well, numbers, that we desire. The only requirement is that
for less than to return true, all operands must be less than the next. For instance,
(< 3 4 5) returns #t, but (< 3 1 5 7 9) returns #f. Identical to ‘=’, ‘<’ requires
at least two arguments, as any fewer would be non-sensical.

Listing 6.9—Numeric “Less Than” Function Definition (apply.c)
1 static struct sval *apply_num_lt(struct sval **args, size_t num_args) {
2 if (num_args < 2) {
3 EPF("apply_num_lt: < expects at least two arguments but got %zu\n",
4 num_args);
5 exit(EXIT_FAILURE);
6 }
7
8 bool lt_result = true;
9 struct sval *curr_number = args[0];

10
11 for (int i = 1; i < num_args; i++) {
12 if (curr_number->data.number >= args[i]->data.number) {
13 lt_result = false;
14 break;
15 }
16 curr_number = args[i];
17 }
18 return sval_boolean_create(lt_result);
19 }

Logical negation, i.e., ‘not’ flips the given boolean operator, identical to how
it works in C. That is, if we pass an expression that resolves to #t, applying not
resolves to #f, and vice versa. The only remaining steps are to add the functions
to the global (built-in) environment, and write test cases.1

1We make use of the ASSERT ARITY macro, which allows us to quickly assert whether a function
received the correct number of arguments. The macro only accounts for functions with a definitive arity
and does not work with variadic functions, e.g., addition, numeric equals, and so forth.

201

6.1 LCOND: Conditionals and Decisions 202

Listing 6.10—Logical “Not” Function Definition (apply.c)
1 static struct sval *apply_not(struct sval **args, size_t num_args) {
2 ASSERT_ARITY("not", 1, num_args);
3 return sval_boolean_create(!args[0]->data.boolean);
4 }

Listing 6.11

(define x 5)
(define y (+ x 10))
(define z (- y 5))
(define w (+ (- z y) x))

> (= x y z w)
> (< x y z w)
> (= 2 2 2 (+ 2 (- 4 (+ 8 (- 4)))))
> (not (= 2 2))
> (>= 9 8 7 6 x 4 3 2 1)
> (> 9 8 7 6 5 x 4 3 2 1)

#f
#f
#t
#f
#t
#f

Lo and behold, we get the correct and sensible answers! Now that we have an
adequate representation of boolean expressions and operators, we can jump right
into the meat of this section: conditional, or case analysis, expressions.

Decision Structures via cond and if

We will write LCOND3: the extension to LCOND2 which includes two ways of repre-
senting case analysis expressions: cond and if. The former is similar to a series of
if, else if chains in imperative languages, e.g., C, whereas if contains only one
clause for truth case, and one clause for the false case.

expr ::= application | ...
application ::= cond | if | ...
cond ::= ‘(cond’ cond-clause* else-clause ‘)’
cond-clause ::= ‘[’ expr ‘ ’ expr ‘]’
else-clause ::= ‘[’ ‘else’ ‘ ’ expr ‘]’
if ::= ‘(if ’ expr ‘ ’ expr ‘ ’ expr‘)’

Figure 6.3: Extended BNF Grammar for LCOND3

One key distinction between conditionals in LCOND1 and those written in, say,
C, is that both cond and if are expressions, i.e., when evaluated, they return values.
Let us see an example:

Listing 6.12

> (if (< 10 20) 5 10) 5

In C, we cannot write such expressions—the closest we come is via a function to
emulate the “return style” behavior. Along this vein, consider the following code
segment:

202

203 Interpretation

Listing 6.13

(define result
(cond
[(<= 10 (+ 5 2)) 800]
[(= 20 (+ 5 2)) 700]
[else 600]))

We see that the variable result uses a cond to determine its numeric value.
Fortunately, thanks to the additions of LCOND2, we have the operators to handle
such comparisons.

We stated the grammar for LCOND3, but it is important to discuss the particulars
of both decision expressions. First off, both cond and if require “alternative”
expressions. In other words, “one-armed if” expressions are not possible like they
are in other languages, e.g., C. Consider the following code:

Listing 6.14

(define var1 5)
(define var2 (if (= var1 10) 50))

var1 is certainly not equal to 10, so the expression does not evaluate the “conse-
quent”; rather, it resolves to nothing at all! So, it begs the question: what value is
stored in var2? We do not really know, and to prevent such questions from arising
in our language, we outright disallow such expressions. The same holds true for
cond: it must contain at least one case analysis and end with an else case. As
such, this means that it is possible for the only case in a cond clause to be else,
but this would be pointless.

As suggested, LCOND3 will recognize two conditional forms: cond and if. While
cond is useful for instances of multiple conditions, if is best used when the outcome
is binary, i.e., one of two possibilities. Additionally, we place some further restric-
tions on conditional expressions, namely that cond must contain an else clause,
and if expressions must contain three expressions representing the predicate, con-
sequent, and alternative outcome respectively.

What is rather convenient about these modifications is that we need not touch
apply nor sval, nor even the grammar, as both case analysis forms are mere syn-
tactic evaluations. Accordingly, let us begin to design their respective evaluation
functions. cond and if are both special forms of application; the only difference
to normal functions is that we evaluate these two differently. Thus, in eval -
application, we could add checks to see if the function (symbol) is one of these
predefined forms:

203

6.1 LCOND: Conditionals and Decisions 204

Listing 6.15—Evaluating Conditionals (eval.c)
1 static struct sval *eval_application(ast *application,
2 struct environment *env) {
3 struct sval *function = eval(ast_child(application,
4 APPLICATION_FUNCTION_IDX),
5 env);
6
7 // First, check to see if "function" is one of the special forms.
8 if (streq(function->data.symbol, "cond")) {
9 return eval_cond(function->data.symbol, env);

10 } else if (streq(function->data.symbol, "if")) {
11 return eval_if(ast, env);
12 }
13 ...
14 }
15
16 static struct sval *eval_cond(ast *cond, struct environment *env) { // TODO. }
17 static struct sval *eval_if(ast *ifc, struct environment *env) { // TODO. }

Though, this would be rather cumbersome if we add more special forms like we
certainly will in Chapters 7 and 8. Perhaps the better and more modular approach
would be to write a lookup system, similar to environments, but for special forms.
To do this, we first need a data structural representation of special forms. A special
form has a keyword indicating the form, e.g., "if", and an evaluation function
(pointer). Additionally, we need a pointer to the “next” special form since we will
mimic the environment linked list structure.

Listing 6.16—Special Form Header File (sform.h)
1 #ifndef SFORM_H
2 #define SFORM_H
3
4 #include "ast.h"
5 #include "env.h"
6 #include "sval.h"
7
8 struct sform {
9 char *form;

10 struct sval *(*eval_form)(ast *ast, struct environment *env);
11 struct sform *next;
12 };

Now, much like environments, we need a “root” representation, i.e., a way to
access all special forms. Environments store a head pointer, so we should store a
similar pointer in, say, a forms table.

Listing 6.17—Special Form Table Definition (sform.h)
1 struct forms_table {
2 struct sform *head;
3 };

Now to design the necessary functions. We need four: one for creating a special
form, one for lookup, one to determine if something is a valid special form, and one
to destroy/free the special forms at the end of the program.

204

205 Interpretation

Listing 6.18—Special Form Function Prototypes (sform.h)
1 void special_forms_create(char *form,
2 struct sval *(eval_form)
3 (ast *ast, struct environment *env));
4 struct sval *(*special_forms_lookup(char *form))(ast *, struct environment *);
5 bool special_forms_exists(char *form);
6 void special_forms_destroy(void);

The nice part about creating a special form is that we can, almost verbatim, reuse
the code for storing a value in environments. This also holds true for destroying
special forms.

Listing 6.19—Creation and Destruction of Special Forms (sform.c)
1 #include "sform.h"
2
3 static struct forms_table table;
4
5 void special_forms_create(char *form,
6 struct sval *(eval_form)
7 (ast *ast, struct environment *env)) {
8 struct sform *f = malloc(sizeof(struct sform));
9 ASSERT_ALLOC(f, "special_forms_create");

10 f->form = strdup(form);
11 f->eval_form = eval_form;
12 f->next = table.head;
13 table.head = f;
14 }
15
16 bool special_forms_exists(char *form) { // TODO. }
17
18 struct sval *
19 (*special_forms_lookup(char *form))(ast *, struct environment *) { // TODO. }
20
21 void special_forms_destroy(void) {
22 struct sform *front = table.head;
23 while (NULL != front) {
24 struct sform *curr = front;
25 front = front->next;
26 free(curr->form);
27 free(curr);
28 }
29 }

Now we write the middle two functions. special forms exists is trivial be-
cause it uses the result from the lookup function; if it returns NULL, then the form
is not a special form.

Listing 6.20—Determine if Special Form Exists (sform.c)
1 bool special_forms_exists(char *form) {
2 return NULL != special_forms_lookup(form);
3 }

Finally, we come to the weird-looking function whose return value is complex
enough to drive some people mad. Do not let this discourage you because all this
says is we are returning a pointer to a function that receives two arguments: an
abstract syntax tree, and an environment. Hopefully, that structure is familiar, as
all static functions within eval.c use that very signature. So, what do we do within
this function? We iterate through each special form to find the one that we want,
and return its stored function pointer if there is a match. Otherwise, we return
NULL, indicating that the passed argument is not a special form.

205

6.1 LCOND: Conditionals and Decisions 206

Listing 6.21—Special Form Lookup Function (eval.c)
1 struct sval *
2 (*special_forms_lookup(char *form))(ast *, struct environment *) {
3 for (struct sform *curr = table.head; curr != NULL; curr = curr->next) {
4 if (streq(curr->form, form)) { return curr->eval_form; }
5 }
6 return NULL;
7 }

Let us jump over to eval.c and initialize some special forms. Let us declare a
static function to do this. Inside, we will call special forms create and pass our
two existing special forms, i.e., if and cond, alongside their evaluation functions.

Listing 6.22—Adding cond and if Special Forms (eval.c)
1 static void special_forms_init(void) {
2 ...
3 special_forms_create("if", eval_if);
4 special_forms_create("cond", eval_cond);
5 }

Only two more steps: initialize the special forms table in the root evaluation
function, i.e., eval ast, where the global environment is similarly established. At
the end of this function, we invoke the destroyer to free the associated memory.

Listing 6.23—Initialization of Special Forms Table (eval.c)
1 void eval_ast(ast *ast) {
2 struct environment *global_env = environment_create(NULL);
3 builtin_functions_init(global_env);
4 special_forms_init();
5 ...
6 // Evaluation...
7 ...
8 special_forms_destroy();
9 environment_destroy(global_env);

10 }

Last, but certainly not least, in eval application, we add a clause to deter-
mine if the function to be applied is one of the special forms and, if so, invoke its
stored function pointer.

Listing 6.24—Checking for Special Forms in Application (eval.c)
1 static struct sval *eval_application(ast *application,
2 struct environment *env) {
3 struct sval *function = eval(ast_child(application, APPLICATION_FUNCTION_IDX),
4 env);
5
6 // First, check to see if "function" is one of the special forms.
7 if (special_forms_exists(function->data.symbol)) {
8 return special_forms_lookup(function->data.symbol)(application, env);
9 }

10 ...
11 }

This may seem like a lot of upfront work to invest compared to a chain of
conditionals, but this mindset of modularity and abstraction goes a long way in the
scalability of program and language design.

Returning to conditionals, because if uses a predictable and predefined syntax
structure, we will analyze and design it before its cond counterpart.

206

207 Interpretation

Let us write a very simple example of an if expression in LCOND3. This way,
we can deconstruct the abstract syntax tree to determine where, when, and what
we need to evaluate.

Listing 6.25

> (if (< 2 3) 10 20) expr|>
application|>

char:1:1 '('
expr|datum|symbol|regex:1:2 'if'
expr|application|>

char:1:5 '('
expr|datum|symbol|regex:1:6 '<'
expr|datum|number|regex:1:8 '2'
expr|datum|number|regex:1:10 '3'
char:1:11 ')'

expr|datum|number|regex:1:13 '10'
expr|datum|number|regex:1:16 '20'
char:1:18 ')'

We know that if contains three valuable components: the predicate, the con-
sequent case, and the alternative case. Scanning over the abstract syntax tree, we
make note that the predicate is child 3 (index 2), the consequent is child 4 (index
3), and the consequent is child 5 (index 4). Since these numbers are somewhat
arbitrary in design, we can refactor them as constants at the top of eval.c so we
better understand their intention:

Listing 6.26—Defining Conditional Expression Indices (eval.c)
1 #include "mpc.h"
2
3 #define APPLICATION_FUNCTION_IDX 1
4 #define IF_PREDICATE_IDX 2
5 #define IF_CONSEQUENT_IDX 3
6 #define IF_ALTERNATE_IDX 4

Now, using these, we can actually evaluate if expressions, but in what order?
First, we evaluate the predicate to see if it returns true and, if so, we evaluate the
consequent (expression). On the contrary, we evaluate the alternate (expression).
Upon adding if, we should write test cases.

Listing 6.27—Evaluation of if Expressions (eval.c)
1 static struct sval *eval_if(ast *ifc, struct environment *env) {
2 // First, evaluate the predicate.
3 struct sval *predicate_value = eval(ast_child(ifc, IF_PREDICATE_IDX), env);
4
5 // Depending on its result, either evaluate the consequent or alternate.
6 if (predicate_value->data.boolean) {
7 return eval(ast_child(ifc, IF_CONSEQUENT_IDX), env);
8 } else {
9 return eval(ast_child(ifc, IF_ALTERNATE_IDX), env);

10 }
11 }

Listing 6.28

> (if (> 3 2) (- 3 2) (+ 3 2))
> (if (< 2 3) 10 20)
> (if (= (+ 10 20 30) (+ 30 20 9))

(+ 90 60 30)
(- 90 60 30))

1
10
0

207

6.1 LCOND: Conditionals and Decisions 208

From this framework we can easily implement cond. The neat thing about these
(cond and if) constructs is that it is possible to implement one in terms of the
other since they mimic behaviors. Our approach, though, will not take advantage
of this interchangeability due to the structure of our abstract syntax trees. To start,
let us see another example of cond:

Listing 6.29

(cond
[(= 20 30) 40]
[(< 20 15) 100]
[else 60])

The cond form, as we have stated, evaluates each predicate listed as the first of
two expressions written in brackets. So, LCOND3 evaluates (= 20 30) to determine
if it is true. If so, it returns 40. In the case it is not true, we skip evaluation of
40 and continue to the next case, repeating ad nauseam. The only exception to
this specification is when all explicit predicates are false. When this occurs, similar
to other languages, e.g., C, there is a “fall back” case that we evaluate. In other
words, it serves as somewhat of a “last resort” clause. In our small code snippet,
since neither of the preceding predicates resolves to true, we evaluate, then return,
60. Let us now view the abstract syntax tree of a sample cond expression. Recall
that, as a special form, cond is merely an application with some fancy window
dressing.

expr|>
application|>

char:1:1 '('
expr|datum|symbol|regex:1:2 'cond'
expr|application|>

char:2:3 '['
expr|application|>

char:2:4 '('
expr|datum|symbol|regex:2:5 '='
expr|datum|number|regex:2:7 '20'
expr|datum|number|regex:2:10 '30'
char:2:12 ')'

expr|datum|number|regex:2:14 '40'
char:2:16 ']'

expr|application|>
char:3:3 '['
expr|application|>

char:3:4 '('
expr|datum|symbol|regex:3:5 '<'
expr|datum|number|regex:3:7 '20'
expr|datum|number|regex:3:10 '15'
char:3:12 ')'

expr|datum|number|regex:3:14 '100'
char:3:17 ']'

expr|application|>
char:4:3 '['
expr|datum|symbol|regex:4:4 'else'
expr|datum|number|regex:4:9 '60'
char:4:11 ']'

char:4:12 ')'

208

209 Interpretation

We can break a cond down into sub-components for easier analysis: A cond
should have at least two applications, the second of which has a special form as
its function name, namely else. Each application will consist of two further sub-
components: a predicate and its pairing consequent. Because these two pieces
are an application, the third child (index 2) is the predicate, and the fourth child
(index 3) is its consequent. All we need to do is iterate through each clause and,
once we evaluate a predicate that resolves to true, we evaluate, then return, its
consequent. Because there exists the very likely possibility of traversing through
each clause, we need to keep track of how many clauses are present in the cond
expression. Namely, if a cond has n children in its abstract syntax tree, we know
that three of those children are syntax and not part of the expression, i.e., the
opening parenthesis, the cond string, and the closing parenthesis. Thus, there
should be n−3 predicate/consequent clauses, where the last of which encompasses
the alternative, i.e., else clause.

Listing 6.30—Evaluation of cond (eval.c)
1 #define COND_CLAUSE_IDX 2
2 #define COND_CLAUSE_COUNT 3
3 ...
4 static struct sval *eval_cond(ast *cond, struct environment *env) {
5 int num_clauses = ast_children_num(cond) - COND_CLAUSE_COUNT;
6
7 // For every clause (except the else), we grab it,
8 // determine if its true, and if so, return its consequent.
9 for (int i = 0; i < num_clauses - 1; i++) { // TODO. }

10
11 // If we get here, the else clause should be evaluated and returned.
12 }

Now, we need to keep track of two s-value positions: the current clause predicate,
and the current clause consequent. We already have a number to keep track of where
to start counting clauses from, so we should simply offset from that value!

Listing 6.31—Offset for cond Evaluation (eval.c)
1 static struct sval *eval_cond(ast *cond, struct environment *env) {
2 int num_clauses = ast_children_num(cond) - COND_CLAUSE_COUNT;
3
4 // For every clause (except the else), we grab it,
5 // determine if its true, and return its consequent.
6 for (int i = 0; i < num_clauses - 1; i++) {
7 ast *clause = ast_child(cond, COND_CLAUSE_IDX + i);
8 struct sval *predicate = eval(ast_child(clause, COND_PREDICATE_IDX), env);
9

10 if (predicate->data.boolean) {
11 return eval(ast_child(clause, COND_CONSEQUENT_IDX), env);
12 }
13 }
14 ...
15 }

We iterate from 0 up to the number of clauses minus one because we want to
examine every clause except the last as it is of a special “form”. Inside the body
of the loop, we retrieve each clause, then extract and evaluate its predicate. If it
returns true, i.e., the predicate is true, we then evaluate and return the consequent.
All that is left is to analyze the else case. The cond abstract syntax tree has n
children, and we know that child n−1 is the last closing parentheses. Therefore,
the else clause must be at position n−2.

209

6.1 LCOND: Conditionals and Decisions 210

Listing 6.32—Evaluation of Last Child in cond (eval.c)
1 static struct sval *eval_cond(ast *cond, struct environment *env) {
2 ...
3 return eval(ast_child(ast_child(cond, ast_children_num(cond) - 2), 2), env);
4 }

But wait, we are not done quite yet! Recall that this child is also an application of
a special form. Accordingly, we can unwrap and evaluate the clause here to simplify
the procedure. An else clause, because it is an application, has m children, where
childm−1 is the closing parentheses. Therefore, the alternate expression to evaluate
is at index m−2. Let us write the code and at the same time refactor the code to
use preprocessor definitions instead of magic numbers:

Listing 6.33—Refactoring Constants (eval.c)
1 #define COND_ELSE_OFFSET_IDX 2
2 #define COND_ELSE_CONSEQUENT_IDX 2
3 ...
4 static struct sval *eval_cond(ast *cond, struct environment *env) {
5 ...
6 return eval(ast_child(ast_child(cond,
7 ast_children_num(cond) - COND_ELSE_OFFSET_IDX),
8 COND_ELSE_CONSEQUENT_IDX), env);
9 }

That will do it! Now, let us write some test cases.

Listing 6.34

> (cond
[(= 20 30) 40]
[(< 20 15) 100]
[else 60])

60

Here is another test case that computes interest rate based on a given amount,
then computes the sum of those values:1

Listing 6.35

(define amount 7500)
(define interest-rate
(cond
[(<= amount 1000) 0.040]
[(<= amount 5000) 0.045]
[(<= amount 10000) 0.055]
[else 0.060]))

> (+ amount (* amount interest-rate)) 7912.5

Exercise 6.1. (⋆⋆⋆)
Earlier, we implemented cond and if where the former must include an else as its
last predicate, and the latter is not one-armed. Add the necessary functionality to
make one-armed if expressions possible, as well as cond statements with no else.
In the event that there is no true predicate, NULL should be returned instead of a
populated s-value.

1If you are having trouble with executing the below program, make sure your decimal values have a
leading zero!

210

211 Interpretation

Short-Circuiting with Logical Operators

As we explored in Chapter 5, there exist operators for evaluating multiple boolean
expressions. For example, if we want to evaluate an expression only when three
conditions are true, we can use “&&”, e.g., if (x && y && z). Along those lines,
if we want to evaluate an expression when at least one condition is true, we can
use “||”, e.g., if (x || y || z). LCOND3 allows us to mimic such behavior via a
chain of “cond” expressions:

Listing 6.36

(cond
[x
(cond
[y
(cond
[z ...])])])

But, as we can see, this quickly diverges into chaos. Some may consider writing
a built-in function that only evaluates an expression “e” when all its previous argu-
ments are true. There are two problems with this approach: first, we do not know
how many arguments will be passed to this mystery function, and second, which is a
significantly worse problem, we cannot short-circuit evaluate the operator with this
approach. Recall that, via function application, all arguments are evaluated prior
to invoking the function. With boolean operators such as “and”, and “or” that
potentially short-circuit, it is impossible and irresponsible to preemptively evaluate
the arguments. Thus, we need to introduce two new special forms: “and”, and
“or”. Each special form will evaluate each passed expression one at a time from left
to right. For “and”, if we encounter a false condition, we immediately return false,
and therefore stop the execution of the remaining clauses. On the other hand, for
“or”, if we encounter a true condition, we immediately return true, and therefore
stop the execution of the remaining clauses.

Now, let us implement these short-circuit operators. As we said, each operator
is a special form that we can add to our lookup table. Both definitions are similar
in design, so if we implement one, we can copy it over to the other and make the
necessary alterations.

Implementing Logical And/Or

First, we need to know how many clauses to evaluate. Similar to cond and if we
have a minimum number of expected children in the abstract syntax tree. Namely,
we have the pair of opening and closing parentheses, then the and/or keyword.
Thus, if an abstract syntax tree contains n children, it contains n−3 clauses.

211

6.1 LCOND: Conditionals and Decisions 212

Listing 6.37—Evaluation of Logical And (eval.c)
1 #define LOGICAL_CLAUSE_IDX 3
2 #define LOGICAL_CLAUSE_OFFSET 2
3 ...
4 static struct sval *eval_and(ast *and, struct environment *env) {
5 size_t num_clauses = ast_children_num(and) - LOGICAL_CLAUSE_IDX;
6 for (int i = 0; i < num_clauses; i++) {
7 struct sval *boolean_sval = eval(ast_child(and, i + LOGICAL_CLAUSE_OFFSET),
8 env);
9 if (!boolean_sval->data.boolean) {

10 return sval_boolean_create(false);
11 }
12 }
13 return sval_boolean_create(true);
14 }

The code largely annotates itself; we evaluate each argument of the logical op-
erator. In the case of and, when we find an argument which resolves to false, and
short-circuits, thereby returning false. Conversely, in the case of or, when we find
an argument which resolves to true, or short-circuits, thereby returning true. For
either operator, the “fall-through” case aligns with the intention of said operator.
For instance, we return true when all arguments to and are true, and similarly, when
all the arguments to or are false, we return false. Following this, we can finally test
some more simple programs:

Listing 6.38

(define a 10)
(define b 20)
(define c 30)

> (and #t #t #t)
> (and (= a (+ 10 b)) (= (- c b)))
> (and (= a b) (= b c) (= a c))
> (or #f #f #f)
> (or #f #f #t #f #f)

#t
#f
#f
#f
#t

With these operators, we can implement other logical operators, e.g., conditional,
biconditional, and exclusive-or.

Exercise 6.2. (⋆)
Add the apply conditional function that receives two booleans and returns false
if the first is true and the second is false, and true otherwise.

Exercise 6.3. (⋆)
Add the apply biconditional function that receives at least two booleans and
returns true if they are all the same truth value, and false otherwise.

Exercise 6.4. (⋆)
Add the apply xor function that receives at least two booleans and XORs their
values. Do not implement short-circuit evaluation for XOR.

212

213 Interpretation

6.2 LLOCAL: Local Identifiers and Values

Thus far, our programs have defined variables and expressions in what is known as
global scope. In C, we often declare local variables inside functions, i.e., variables
that are only visible inside the function in use. Right now, LCOND3 does not have
such a counterpart. In this section, we will write LLOCAL: an extension to LCOND3

that includes the ability to use local environments for expressions.

Before we jump into our implementation of LLOCAL, we need to explain two
paradigms of “scoping”. The scope of a variable, as we explained, is the visibility
of a variable in a piece of code. C is what we refer to as a lexically-scoped language.
Lexical scoping is a type of variable binding that attaches value based on its location
in code. Let us see what we mean by an example in C. We first assign a local variable
x to be 20 inside main, then invoke bar with an argument of 30. This is followed
by an invocation of foo that prints the global variable x, namely 10. Inside bar,
its x variable references the one passed as an argument, namely 30, meaning the
program outputs the following under lexical scoping:

Listing 6.39—Lexically-Scoped Variables

1 int x = 10;
2
3 void foo(void) {
4 printf("x in foo: %d\n", x);
5 }
6
7 void bar(int x) {
8 foo();
9 printf("x in bar: %d\n", x);

10 }
11
12 int main(void) {
13 int x = 20;
14 bar(30);
15 return 0;
16 }

x in foo: 10
x in bar: 30

Another scoping paradigm is called dynamic scoping . Under dynamic scoping, a
variable’s value is determined by its most recent assignment rather than its location
in code. Reusing the above code example, rather than printing 10 inside foo, it
actually prints 30, which makes little sense intuitively; we assign x to be 20 only
inside main, meaning foo should have no idea of this assignment. Though, under
dynamic scope, this is exactly what happens!1 For this reason, many programming
languages avoid the use of dynamic scope in favor of lexical scoping, and we will do
the same in LLOCAL.

1Note that we cannot test this code because C uses lexical scoping.

213

6.2 LLOCAL: Local Identifiers and Values 214

expr ::= application | ...
application ::= let | letstar | ...
let ::= ‘let (’ let-bndg+ ‘)’ expr
letstar ::= ‘let* (’ let-bndg+ ‘)’ expr
let-bndg ::= id ‘ ’ expr

Figure 6.4: Extended BNF Grammar for LLOCAL

let Expressions

As a motivating example for local variable definitions, suppose we have the following
code:

Listing 6.40

(define x 5)
(define y 6)

> (+ x y) 11

This, obviously, produces 11. Though, we have run into a pretty pertinent
problem: x and y now populate global scope, i.e., the global environment, and we
cannot change their values in LCOND3. It would be rather convenient if we had
a way of declaring local variables in the event that we do not wish to pollute the
global environment.

Listing 6.41

(let ([x 5]
[y 6])

(+ x y))

Readers, take a minute to think about what this expression does. We see that we
have something called let with what appears to be an application of applications
of x and y to values. Instead, this binds x to the literal 5 and y to the literal 6.
From there, we see a trivial application of addition to x and y. A let expression
allows us to define, then use, local variables. Any declarations are visible only to
the body of the let expression, and are, effectively, destroyed afterward. This begs
the question: what happens if we define a variable to be in both global and local
scope? Take the following code segment:

Listing 6.42

(define x 10)

(let ([x 20]
[y 30])

(if (= x 10)
(* x 100)
(* x 200)))

(if (= x 10)
(* x 100)
(* x 200))

214

215 Interpretation

The code first defines a variable x in global scope, then creates a let with two
variables x and y. The body consists of a case analysis that checks to see if x is
equal to 10. The thing is, which x does it reference? In this case, it references the
x created by the let construct. Thus, the output of the let expression is 4000.
This paradigm is known as lexical scoping. Lastly, we have a duplicate case analysis
outside the let which references the x declared globally, meaning it outputs 1000.

We must consider what actually happens, in detail, when LLOCAL encounters a
let expression. Instead of adding variables to the global environment, it extends
the current environment. That is, we create an environment that holds the values
of variables declared within the let, which has a pointer, or link, to its parent
environment. For instance, we know that the program contains a global parent
environment, which we call e0. When a let is evaluated, we create an extension of
the current environment, say e1. The environment e1 contains the bindings of all
declared variables. Then, once the body is evaluated, e1 is destroyed. Symbolically,
we will use e1 ⇝ e0 to designate that environment e0 is the parent environment of
e1, or equivalently, environment e1 chains to the environment e0.

This again raises an important question: what happens if a symbol within a
let is not declared within the let? Simple! We check the let environment for a
declaration, and if it does not exist, it searches the parent environment. If we hit
the (global) parent environment and the variable does not exist, we return NULL.
Of course, this means we need to amend our env lookup function definition.

Listing 6.43—Parent Environment Lookup (env.c)
1 struct sval *environment_lookup(struct environment *env, const char *key) {
2 ...
3 if (NULL != env->parent) {
4 return environment_lookup(env->parent, key);
5 }
6 return NULL;
7 }

Until now, we had no need for the parent environment pointer that we intro-
duced in Chapter 5, because all variables and expressions were declared in the global
environment.

With the preliminary discussion out of the way, let us implement let in LLOCAL.
Similar to cond and if, let is a special form, meaning it is a type of application.
Accordingly, let us take a look at a sample abstract syntax tree:

expr|>
application|>

char:1:1 '('
expr|datum|symbol|regex:1:2 'let'
expr|application|>

char:1:6 '('
expr|application|>

char:1:7 '('
expr|datum|symbol|regex:1:8 'x'
expr|datum|number|regex:1:10 '5'
char:1:11 ')'

expr|application|>
char:2:7 '('
expr|datum|symbol|regex:2:8 'y'
expr|datum|number|regex:2:10 '6'
char:2:11 ')'

char:2:12 ')'
expr|application|>

215

6.2 LLOCAL: Local Identifiers and Values 216

char:3:3 '('
expr|datum|symbol|regex:3:4 '+'
expr|datum|symbol|regex:3:6 'x'
expr|datum|symbol|regex:3:8 'y'
char:3:9 ')'

char:3:10 ')'

As we see, let expressions contain two important components: variable/iden-
tifier bindings and its body. As previously described, let expressions introduce a
new environment that extends its parent environment. Therefore we can establish
some skeleton code for evaluating let:

Listing 6.44—Function Stub for let Evaluation (eval.c)
1 static struct sval *eval_let(ast *let, struct environment *env) {
2 struct environment *new_env = environment_create(env);
3 // TODO populate new_env with the let variable bindings.
4
5 // Evaluate the body with new_env.
6 return eval(..., new_env);
7 }

We need a way of computing the number of bindings that we define within the
let. Similar to how we compute the number of clauses within a cond, we will use
the abstract syntax tree as a base. The third child (index two) of a let abstract
syntax tree is where the variable binding nodes begin. So, we can use this sub-tree
to compute the number of bindings. The application contains at least two children
because of the opening and closing parentheses. Accordingly, if the subtree contains
n children, then it has n−2 variable bindings.

Listing 6.45—Removing Constants (eval.c)
1 #define LET_BINDING_OFFSET_IDX 2
2 #define LET_ALL_BINDINGS_IDX 2
3 #define LET_BINDING_IDX 1
4 #define LET_SYMBOL_IDX 1
5 #define LET_EXPR_IDX 2
6 #define LET_BODY_OFFSET_IDX 2
7 ...
8 static struct sval *eval_let(ast *let, struct environment *env) {
9 // Initialize the new environment with env as its parent.

10 struct environment *new_env = environment_create(env);
11 ast *bindings = ast_child(let, LET_ALL_BINDINGS_IDX);
12 int num_bindings = ast_children_num(bindings) - LET_BINDING_OFFSET_IDX;
13
14 // Populate the environment with the variables and their evaluated expressions.
15 for (int i = 0; i < num_bindings; i++) {
16 ast *curr_binding = ast_child(bindings, LET_BINDING_IDX + i);
17 ast *sym_tree = ast_child(curr_binding, LET_SYMBOL_IDX);
18 struct sval *expr = eval(ast_child(curr_binding, LET_EXPR_IDX), env);
19 environment_put(new_env, ast_contents(sym_tree), expr);
20 }
21
22 // Evaluate the body with new_env.
23 return eval(ast_child(let, ast_children_num(let) - LET_BODY_OFFSET_IDX),
24 new_env);
25 }

216

217 Interpretation

Does this look familiar? It certainly should! It is almost identical to the code we
wrote for cond with the exception that we introduce a new environment. There is,
however, another difference that should be noted. When we evaluate the expression,
notice that we do not evaluate the symbol. This is because if a binding already exists
for said symbol, its evaluation resolves to its environment binding, which is not the
desired outcome.

The only remaining item is to modify special forms init to accept our new
special form:

Listing 6.46—Add let Special Form (eval.c)
1 static void special_forms_init(void) {
2 special_forms_create("if", eval_if);
3 special_forms_create("cond", eval_cond);
4 special_forms_create("and", eval_and);
5 special_forms_create("or", eval_or);
6 special_forms_create("let", eval_let);
7 }

Now, evaluating a simple let expression should produce the expected output:

Listing 6.47

> (let ([x 5]
[y 6])

(+ x y))

11

Let us try nested let expressions, as well as declaring the same variable in both
global and local scope:

Listing 6.48

> (let ([x 20]
[y 30])

(let ([z (+ x y)])
(* x y z)))

30000

Listing 6.49

(define x 10)

> (let ([x 20]
[y 30])

(if (= x 10)
(* x 100)
(* x 200)))

> (if (= x 10)
(* x 100)
(* x 200))

4000

1000

Fantastic, it works well! There is one small problem though: what happens if
we want to use definitions inside of another definition? For instance, examine the
following code:

Listing 6.50

(let ([x 20]
[y 30]
[z (+ x y)])

(* x y z))

217

6.2 LLOCAL: Local Identifiers and Values 218

This, in a perfect world, outputs 30000, since we define z in terms of x and y.
The problem is that these definitions of x and y are only visible to the body of
the let expression. So, to the local declaration of z, it sees x and y as unbound
symbols. One workaround is to use nested let expressions.

Listing 6.51

(let ([x 20])
(let ([y 30])
(let ([z (+ x y)])
(* x y z))))

Thus, the body has access to all three variables, z has access to x and y, and
y has access to x. It is somewhat inconvenient and cumbersome to have to write
nested let expressions in this fashion. Let us rectify this issue with let*.

let* Expressions

There is an important environmental/scope distinction between let and let* ex-
pressions: a let evaluates all variable bindings with respect to the parent environ-
ment. On the other hand, let* initializes each binding in a separate environment
where the environment of successive variables references the previous. To explain,
we will use the previous “problematic” let example, but modify it to instead use
let*.

Listing 6.52

(let* ([x 20]
[y 30]
[z (+ x y)])

(* x y z))

First, assume that there exists a parent environment e0 that the let* is declared
within. When we evaluate the expression paired with x, we create an environment
e1 ⇝ e0, which holds the value of the evaluated x. Likewise, we create an envi-
ronment e2 ⇝ e1, which holds the value of the evaluated y. Lastly, we create an
environment e3 ⇝ e2, which holds the value of the evaluated z. Then, the let*
body is evaluated in e3. So, let us add this as a special form to our language.

... e0

[x 7→ 20] e1

[y 7→ 30] e2

[z 7→ 50] e3

Figure 6.5: Environment Extension within let* Binding Expressions

218

219 Interpretation

Listing 6.53—Evaluation of let* (eval.c)
1 static struct sval *eval_letstar(ast *letstar, struct environment *env) {
2 struct environment *curr = env;
3 ast *bindings = ast_child(letstar, LET_ALL_BINDINGS_IDX);
4 int num_bindings = ast_children_num(bindings) - LET_BINDING_OFFSET_IDX;
5
6 for (int i = 0; i < num_bindings; i++) {
7 struct environment *new_env = environment_create(curr);
8 ast *curr_binding = ast_child(bindings, LET_BINDING_IDX + i);
9 ast *sym_tree = ast_child(curr_binding, LET_SYMBOL_IDX);

10 struct sval *expr = eval(ast_child(curr_binding, LET_EXPR_IDX), curr);
11 environment_put(new_env, ast_contents(sym_tree), expr);
12 curr = new_env;
13 }
14
15 return eval(ast_child(letstar, ast_children_num(letstar) - LET_BODY_OFFSET_IDX),
16 curr);
17 }

Conveniently enough, not much needs to be altered from our definition for let
expressions. We first create a temporary variable to hold the “current” environ-
ment. We define the “current” environment to be the environment that is in use
by the variable bindings. So, before the loop begins, the current environment is the
passed environment, i.e., the environment wherein we define this let* expression.
Upon entering the loop, we create a new environment whose parent is the “current”
environment. After evaluating the current variable binding, we set the current envi-
ronment to be the new environment we made so that we, effectively, create a chain
of environments.

After adding the special form to the table, we can test the program:

Listing 6.54

> (let* ([x 20]
[y 30]
[z (+ x y)])

(* x y z))

30000

219

6.3 LPROC1 & LPROC2: Recursive Procedures 220

6.3 LPROC1 & LPROC2: Recursive Procedures

Thus far, we have written several languages with support for variables, environ-
ments, conditionals, and local scope. The only important and fundamental currently-
omitted feature is procedures. We have previously used procedures in LLOCAL via
applications of primitive procedures such as +. In this section, we will write LPROC1:
an extension to LLOCAL to include procedures and recursion.

expr ::= application | ...
application ::= proc | ...
proc ::= ‘lambda’ ‘(’ id* ‘)’ expr

Figure 6.6: Extended BNF Grammar for LPROC1

Procedure Representation

We represent a procedure as a symbol enclosed by parentheses. Procedures may
or may not have arguments. For example, if we want to define a procedure add
that adds two natural numbers using natural recursion in LPROC1, we would use
the following syntax.

Listing 6.55

; A NaturalNumber is an Integer greater than or equal to zero.

;; add : NaturalNumber NaturalNumber -> NaturalNumber
;; Recursively adds two natural numbers.
(define add
(lambda (n m)
(cond
[(= n 0) m]
[else (+ 1 (add (- n 1) m))])))

We see that a procedure is represented similarly to a variable with the added
exception that the definition consists of a lambda expression. The keyword lambda
defines a function. We represent functions/procedures as (lambda (p1 p2 ... pn)
body) where the second clause, i.e., (p1 p2 ... pn) are its formal parameters, and
body refers to the function body.1 Complex functions whose definitions are not as
apparent contain documentation comments above their function signature.

1While there are semantic differences between procedures and functions, our text refers to them
interchangeably.

220

221 Interpretation

Documentation comments have two parts: a type header, and a purpose state-
ment. Type headers loosely describe the input and output data types of the func-
tion; they do not necessarily need to match the exact data type name. Types to
the left of an arrow are function inputs, whereas the type to the right is its output.
A function purpose statement explains why we want the function and its intended
use; it should not serve as a verbatim retelling of the code. Note that, sometimes,
we will include data definitions, as inspired from Felleisen’s How to Design Pro-
grams [Felleisen et al., 2018], to give significance to names. For example, we can
say that a NaturalNumber “is a” Number greater than or equal to zero, or a Func-
tion is {X}{Y}[X → Y] for any types X and Y. Brackets indicate a grouping of
symbols, generally denoting a function or data structure (as we will show in Chap-
ter 7. Braces describe generic types, meaning {X} does not say that {X} is a formal
parameter, but is a placeholder for a type. As a look ahead, we will make significant
use of data definitions in subsequent chapters. We restate that these documentation
comments are for the programmer who reads (your) code and should therefore be
clear, thorough, and concise.

Throughout the rest of this book, we will use λ to designate the keyword lambda
when defining a procedure/function to conserve code listing space.

Let us write a few simple procedures to clean up our naturally recursive definition
of add in an attempt to remove constant values, e.g., 1 and 0. Because of their
suggestive identifiers, we will use these functions in place of comparisons against
zero, adding one, and subtracting one whenever necessary to reduce redundancy.

Listing 6.56—Useful Arithmetic Functions

(define zero?
(λ (n)
(= n 0)))

(define add1
(λ (n)
(+ n 1)))

(define sub1
(λ (n)
(- n 1)))

(define add
(λ (n m)
(cond
[(zero? n) m]
[else (add1 (add (sub1 n) m))])))

We are now ready to begin constructing procedures. First, let us create an
s-value representation of procedures. A procedure has a list of symbols represent-
ing the formal parameters and a body. So, we can create a struct to represent a
procedure, and insert it as part of the data union. Note that we already have
an enum representing procedures, namely SVAL BUILTIN, so we can create a new
enum value: SVAL PROCEDURE.

221

6.3 LPROC1 & LPROC2: Recursive Procedures 222

Listing 6.57—Procedure S-Value Representation (sval.c)
1 struct procedure {
2 char **formals;
3 size_t num_formals;
4 ast *body;
5 };
6
7 struct sval {
8 ...
9 union data {

10 ...
11 struct procedure *proc;
12 } data;
13 };
14 ...
15 struct sval *sval_procedure_create(char **formals, size_t num_formals, ast *body);

You may be wondering why does the procedure not store an identifier. Well,
think about it—the procedure itself has no reason to store an identifier. Consider
the following example:

Listing 6.58

(define add (λ (...) ...))

We bind the procedure to the name add. Therefore, it is superfluous to give a
name to a lambda. It only makes sense to say that add, in this case, is bound to a
lambda expression. In fact, because procedures are first-class, i.e., treated as data,
providing a name complicates the structure even more.

Now, we should write the function to create the s-value for a lambda procedure.

Listing 6.59—S-value Procedure Creation (sval.c)
1 struct sval *sval_procedure_create(char **formals,
2 size_t num_formals, ast *body) {
3 struct sval *sv = sval_create(SVAL_PROCEDURE);
4 struct procedure *proc = malloc(sizeof(struct procedure));
5 ASSERT_ALLOC(proc, "sval_procedure_create");
6 proc->num_formals = num_formals;
7 proc->formals = formals;
8 proc->body = body;
9 sv->data.proc = proc;

10 return sv;
11 }

Hopefully, nothing in the above code looks too foreign—we create the appro-
priate s-value, its corresponding procedure struct to store the number of formals,
the formals themselves (represented as strings), and the body of the procedure
represented as an abstract syntax tree.

Next, we should amend the sval print function to now print both built-in and
user-defined functions.

222

223 Interpretation

Listing 6.60—Printing Procedure S-values (sval.c)
1 void sval_print(const struct sval *sv) {
2 ...
3 else if (SVAL_PROCEDURE == sv->type || SVAL_BUILTIN == sv->type) {
4 printf("%s\n", "<function>");
5 }
6 ...
7 }

Finally, we update the sval destroy function to free the data associated with
the procedure, namely the array of formals (and each corresponding formal), and
the body abstract syntax tree.

Listing 6.61—Procedure S-value Destruction (sval.c)
1 void sval_destroy(struct sval *sv) {
2 ...
3 else if (SVAL_PROCEDURE == sv->type) {
4 // Free the formals.
5 for (int i = 0; i < sv->data.proc->num_formals; i++) {
6 free(sv->data.proc->formals[i]);
7 }
8 // Free the procedure itself.
9 free(sv->data.proc);

10 }
11 ...
12 }

Now to head into the meat of this problem. In eval.c, we will write the code to
first interpret a lambda. Afterward, we will update our function application code
to handle both built-in functions and user-defined procedures.

Listing 6.62—lambda Evaluation Function Stub (eval.c)
1 static struct sval *eval_lambda(ast *lambda, struct environment *env) { // TODO. }

We now answer the question, “How do we interpret a lambda?” Fortunately, it
is even simpler than, say, a let or cond expression! lambda is a special form, so it
is a type of application, which consists of three primary parts: the lambda keyword,
the list of formals, and the body. Let us look at a simple lambda expression and its
abstract syntax tree:

Listing 6.63

(λ (x) (+ x 1)) expr|>
application|>
char:1:1 '('
expr|datum|symbol|regex:1:2 'lambda'
expr|application|>
char:1:9 '('
expr|datum|symbol|regex:1:10 'x'
char:1:11 ')'

expr|application|>
char:1:13 '('
expr|datum|symbol|regex:1:14 '+'
expr|datum|symbol|regex:1:16 'x'
expr|datum|number|regex:1:18 '1'
char:1:19 ')'

char:1:20 ')'

223

6.3 LPROC1 & LPROC2: Recursive Procedures 224

We see that the formals are also treated as an application subtree. Thus, if we
extract and analyze this tree, we can determine how many formals are declared
within this lambda. The application has at least two children, being the pair of
parentheses. Thus, if the subtree has n children, there are n−2 declared formals.
Moreover, we see that the abstract syntax tree of a lambda node starts with the
opening parentheses, then the lambda keyword. Therefore, the formal declarations
are always child 3 (index 2) of the lambda abstract syntax tree, both of which we
can declare as constants.

Listing 6.64—Removing Constants (eval.c)
1 #define LAMBDA_FORMALS_IDX 2
2 #define LAMBDA_FORMALS_OFFSET 2
3 ...
4 static struct sval *eval_lambda(ast *lambda, struct environment *env) {
5 ast *formals_ast = lambda->children[LAMBDA_FORMALS_IDX];
6 size_t num_formals = formals_ast->children_num - LAMBDA_FORMALS_OFFSET;
7 // TODO.
8 }

Now, we need to extract each formal from the abstract syntax tree and store
them in an array. Because we are declaring an array of strings, we should use a
char **.

Listing 6.65—Allocation of Formals Array (eval.c)
1 static struct sval *eval_lambda(ast *lambda, struct environment *env) {
2 ...
3 char **formals = malloc(num_formals * sizeof(char *));
4 ASSERT_ALLOC(formals, "eval_lambda");
5 // TODO.
6 }

With this, we can copy over each formal string to its corresponding position in
the array. In addition, we should also go ahead and extract the body from the tree.
The body is one index behind the closing parentheses of the lambda tree. Thus, if
the tree has n children, the body subtree is child n−1 (index n−2). Since we have
the necessary pieces to create a procedure, all we need to do now is invoke, then
return, sval procedure create.

Listing 6.66—lambda Evaluation (eval.c)
1 static struct sval *eval_lambda(ast *lambda, struct environment *env) {
2 ...
3 // Copy the formals over to the array.
4 for (int i = 0; i < num_formals; i++) {
5 formals[i] = strdup(formals_ast->children[1 + i]->contents);
6 }
7 ast *body = lambda->children[LAMBDA_BODY_IDX];
8 return sval_procedure_create(formals, num_formals, body);
9 }

That is all there is to interpreting a lambda expression (aside from adding the
relevant special form to eval application, of course). Now, if we create a sample
program that defines one, LLOCAL should correctly output that it is a function.

224

225 Interpretation

Listing 6.67

(define identity (λ (x) x))

> identity <function>

If we try to invoke identity, then, sadly, the program will not work, because
LLOCAL does not understand user-defined procedure application. It will soon,
though, with the invention of LPROC2.

The only difference between LPROC1 and LPROC2 is that the latter understands
how to apply a user-defined procedure to its arguments. We have seen how LPF3

does this with primitive built-in procedures, and the process for user-defined pro-
cedures is only slightly different.

How exactly do we apply a user-defined procedure to its arguments? We need to
bind the formals of the procedure to the arguments. Take, for instance, the identity
procedure from above:

Listing 6.68

(define identity (λ (x) x))

Suppose we invoke identity with the argument 10. Upon doing so, LPROC2

searches the current environment for the definition of identity and retrieves its
stored formals and body, followed by a binding of the only formal parameter, x, to
the argument 10. Subsequently, it evaluates the body with respect to the binding
of x to 10. Binding formal parameters to arguments is known as extending the
current environment. We will write a function in env.c to do this for us:

Listing 6.69—Environment Extension (env.c)
1 struct environment *environment_extend(struct environment *parent,
2 struct sval *procedure,
3 struct sval **arguments) {
4 struct environment *new_env = environment_create(parent);
5 struct procedure *proc = procedure->data.proc;
6
7 // Copy formals over.
8 for (int i = 0; i < proc->num_formals; i++) {
9 environment_put(new_env, proc->formals[i], arguments[i]);

10 }
11 return new_env;
12 }

We first create an environment that links itself to the parent environment, similar
to how let works. Then, we retrieve the stored procedure and assign each formal
(identifier) to the evaluated argument. Switching over to eval application, we
can see this in action:

225

6.3 LPROC1 & LPROC2: Recursive Procedures 226

Listing 6.70—Binding Formals to Arguments (eval.c)
1 static struct sval *eval_application(ast *application,
2 struct environment *env) {
3 ...
4 // If it is a built-in function, evaluate here.
5 struct sval *result = NULL;
6 if (function->type == SVAL_BUILTIN) {
7 result = apply(function, arguments, num_args);
8 } else {
9 // Otherwise, extend the current environment.

10 struct environment *new_env = environment_extend(env, function, arguments);
11 result = eval(function->data.proc->body, new_env);
12 environment_destroy(new_env);
13 }
14 ...
15 }

We need to amend this definition rather heavily, in that we first check to see if
the function is either built-in or a user-defined procedure. If it is the former, then
we call apply. Otherwise, we perform a more interesting evaluation. We extend the
current environment with the formal bindings, then evaluate the body with respect
to the new environment. Let us run and invoke identity:

Listing 6.71

(define identity (λ (x) x))

> (identity 10) 10

Suppose we want to write a procedure that computes the sales tax of some dollar
amount and then write another function that computes the total of a sale with the
sum of the sales tax and amount:

Listing 6.72

(define sales-tax
(λ (amt)
(* 0.07 amt)))

(define total
(λ (amt)
(+ (sales-tax amt) amt)))

> (total 50)
> (total 49.99)
> (total 149.99)
> (total 299.99)

53.5
53.4893
160.489
320.989

With these additions, we now have a very respectable language and interpreter!
One thing we want to try out, though, is the use of recursion with our procedures.

Recursive Procedures

LPROC2 is smart enough to understand and correctly interpret recursive procedures.
Below are a few examples:

226

227 Interpretation

Listing 6.73

(define zero?
(λ (n)
(= n 0)))

(define sub1
(λ (n)
(- n 1)))

(define fact
(λ (n)
(cond
[(zero? n) 1]
[else (* n (fact (sub1 n)))])))

> (fact 5) 120

Exercise 6.5. (⋆)
Design the f2c function, which receives a temperature in Fahrenheit and converts
it to Celsius.

Exercise 6.6. (⋆)
Design the combineDigits function, which receives two digits, as numbers, and
returns a number representing their conjunction. For example, (combineDigits 2
4) resolves to 24.
Exercise 6.7. (⋆⋆)
Design the sub function, which defines subtraction over natural numbers using
sub1.
Exercise 6.8. (⋆⋆)
Design the mult function, which defines multiplication over natural numbers using
add and sub1 .

Exercise 6.9. (⋆⋆)
Design the expt function, which defines exponentiation over natural numbers using
mult and sub1.
Exercise 6.10. (⋆⋆)
Design the tetr function, which defines tetration: a lesser-known operation that
represents repeated exponentiation. For instance, (tetr 2 3) represents 22

2

, which
is equivalent to (22)2, which is 16.

Exercise 6.11. (⋆⋆)
Video games often deal with collision detection between objects, which determines
when two objects overlap, or collide, with one another. Three-dimensional games
are extremely complex, so we will dial our scope back to “Pong-esque” (two-
dimensional) games, where all objects were rectangular. Write the rect-collide?
function in LPROC2, which receives two rectangle definitions and returns true if they
overlap and false otherwise. A rectangle definition consists of an (x, y) coordinate
pair, as well as a width and height. In Figure 6.7, the left-hand two rectangles
overlap, but the right-hand two rectangles do not overlap.

227

6.3 LPROC1 & LPROC2: Recursive Procedures 228

x

y

w1

h1

w2

h2

w3

h3

w4

h4

Figure 6.7: Collision Detection Between Rectangles.

Exercise 6.12. (⋆⋆)
The Haskell programming language uses the following grammar to denote (anony-
mous) lambda functions.

lambda ::= ‘\ ’ vars expr
vars ::= ‘(’ (symbol ‘ ’)* symbol? ‘)’

Figure 6.8: Extended BNF Grammar for Haskell-esque Lambda

Add this as a syntactic extension to LPROC2. Below is an example of its intended
usage.

Listing 6.74

(define !
(\ (n)
(cond
[(zero? n) 1]
[else (* n (! (sub1 n)))])))

228

229 Interpretation

Exercise 6.13. (⋆⋆⋆)
We have seen that we can represent tetration in terms of exponentiation, with ex-
ponentiation in terms of multiplication, with multiplication in terms of addition,
and with addition in terms of adding and subtracting one. We can continue this
pattern indefinitely, even though the operations will quickly blow up to incredibly
large numbers. For instance, pentation is repeated tetration. What if we want to
write a generator that, when given a number, corresponds to returning a function
that performs an operation. For instance, if we call generate with zero, we return
an addition function. If generate receives one, we return a multiplication function.
If generate receives two, we return an exponentiation function, and so on ad in-
finitum. Design the generate function. You should be inspired by your add, mult,
expt, and tetr functions. As a hint, consider the observed patterns in the designs
of those naturally-recursive functions. You should not call any other functions in-
side generate besides add1, sub1, and generate. We provide the skeleton code
below, as well as examples.1

Listing 6.75—Skeleton Code for generate
; A NN is a NaturalNumber.

;; generate : NN -> [NN NN -> NN]
;; Returns a binary function corresponding to
;; the naturally-recursive arithmetic operation.
(define generate
(λ (i)
(λ (n m)
(cond
; Base cases.
[(zero? m)
(cond
[(zero? i) ___]
[(zero? (sub1 i)) ___]
[else ___])]

; Case analysis on i.
[(zero? i) ___]
[else ___]))))

Listing 6.76—Examples of generate
(define add (G 0))
(define mult (G 1))
(define expt (G 2))
(define tetr (G 3))

> (add 12 4)
> (mult 4 7)
> (expt 2 5)
> (tetr 3 2)

16
28
32
27

1This is Ackermann’s original function; the one shown in Chapter 5 was a binary function, whereas
this one receives three arguments.

229

6.3 LPROC1 & LPROC2: Recursive Procedures 230

LLETREC: One More Time with letrec

The recursive procedures we have written thus far are incredibly effective at writing
meaningful programs. Though, it is sometimes to our advantages to write helper
functions for recursive algorithms. For instance, suppose we want to write a function
that computes the Fibonacci sequence in accumulator-passing style. This means
that our procedure does not build a result via unwinding a series of recursive calls,
but rather, the result is accumulated through parameter-passing. Let us write the
associated Fibonacci function to accomplish this task.

We first need a function that gets the job done, i.e., computes the nth Fibonacci
number. Recall that the nth Fibonacci number is the sum of its previous two
Fibonacci numbers, starting from zero and one:

Fib(n) =

0 if n = 0

1 if n = 1

Fib(n−1) + Fib(n−2)

We can very easily translate this into LPROC2 by following the formula pattern:

Listing 6.77

(define fib
(λ (n)
(cond
[(= n 0) 0]
[(= n 1) 1]
[else (+ (fib (- n 1))

(fib (- n 2)))])))

230

231 Interpretation

The thing is, this is a very (and we mean very) inefficient way of computing
Fibonacci numbers. Why? Consider the following computation of Fib(9). According
to the above algorithm, Fib(9) is computed as the sum of Fib(8) and Fib(7). These
recursive calls must be resolved themselves. Namely, Fib(8) is the sum of Fib(7)
and Fib(6), whereas Fib(7) is the sum of Fib(6) and Fib(5), and so on. As we
can see, multiple results are unnecessarily computed more than once! This scales
exponentially as the input to Fib increases.

Fib(9)

Fib(8)

Fib(7)

Fib(6)

...
...

Fib(5)

...
...

Fib(6)

Fib(5)

...
...

Fib(4)

...
...

Fib(7)

Fib(6)

Fib(5)

...
...

Fib(4)

...
...

Fib(5)

Fib(4)

...
...

Fib(3)

...
...

Figure 6.9: Exponential Recursive Blowup of Fib(9)

A better algorithm, as we previously stated, is to store previous results along the
way and use those in further computations. What does this entail? Well, we need
to store two values: a and b, as these represent the previous Fibonacci values. We
also must store the current Fibonacci result. Lastly, we need to keep track of which
Fibonacci number we are computing, let us say n. Therefore, each time we compute
a new Fibonacci result, we subtract one from this value until it reaches one. Our
base cases are, as described by the equation, when n = 0 or n = 1. Though, in this
case, we do not want to return any direct result, but rather return the value we are
accumulating through parameter-passing, i.e., res.

Listing 6.78

(define fib
(λ (a b res n)
(cond
[(or (zero? n) (zero? (sub1 n))) res]
[else
(let ([new-fib (+ a b)])
(fib b new-fib new-fib (- n 1)))])))

So, if we want to compute the nth Fibonacci number using this new algorithm,
we must also pass three additional arguments: a, b, and res. Fib(0) = 0, and
Fib(1) = 1, so those are our initial values for a and b. res also starts off as 0. The
example below computes the tenth Fibonacci number, which resolves to 55.

Listing 6.79

> (fib 0 1 0 10) 55

231

6.3 LPROC1 & LPROC2: Recursive Procedures 232

The problem is that we have exposed much of the internal algorithm to the caller
of fib. It would be remarkable to have this fast-performing Fibonacci function that
does not require the user to specify the starting values of a, b, and res. To solve
this, we will write LLETREC: an extension to LPROC2 that adds the ability to define
local recursive procedures.

expr ::= application | ...
application ::= letrec | ...
letrec ::= ‘letrec (’ let-bndg+ ‘)’ expr

Figure 6.10: Extended BNF Grammar for LLETREC

Here’s the actual problem: let us say that we abstract the code that generates
the Fibonacci sequence via a function, e.g., fib-helper. We then write fib to call
fib-helper with the required initial values:

Listing 6.80

(define fib
(λ (n)
(fib-helper 0 1 0 n)))

(define fib-helper
(λ (a b res n)
(cond
[(or (zero? n) (zero? (sub1 n))) res]
[else
(let ([new-fib (+ a b)])
(fib-helper b new-fib new-fib (sub1 n)))])))

> (fib 10) 55

Doing this solves one of two issues, one of which is that the caller of fib needs
not to worry about how Fibonacci values are computed. The bigger issue, however,
is that fib-helper is still exposed as a top-level definition. A clever reader may
think to define fib as we have, then internalize fib-helper as a let definition.

Listing 6.81

(define fib
(λ (n)
(let ([fib-helper

(λ (a b res n)
(cond
[(or (zero? n) (zero? (sub1 n))) res]
[else
(let ([new-fib (+ a b)])
(fib-helper b new-fib new-fib (sub1 n)))]))])

(fib-helper 0 1 0 n))))

This looks like it works, right? Well, unfortunately, there is a pretty big problem,
namely how let operates. let creates definitional bindings only after the body of
a variable has been evaluated. Thus, when attempting to evaluate the recursive
fib-helper procedure, it does not see its existence in the current environment
because let has not declared its existence. We can resolve this problem via a new
language construct, namely letrec.

232

233 Interpretation

letrec adds the definitional identifier bindings for a variable prior to its body
evaluation. Hence, when a recursive procedure is evaluated, its body recognizes the
procedure name in its environment. To add letrec to our language, we can begin
by declaring it as a special application form.

Listing 6.82—letrec Evaluation Function Stub (eval.c)
1 static struct sval *eval_letrec(ast *letrec, struct environment *env) { // TODO. }
2 ...
3 static void special_forms_init(void) {
4 ...
5 special_forms_create("letrec", eval_letrec);
6 }

Much like the standard let definition, we will retrieve the bindings and create a
new environment. The difference is that, when evaluating the current binding, we
evaluate it with respect to the newly-created environment. Note the similarity and
important(!) differences to let*.

Listing 6.83—Evaluation of letrec (eval.c)
1 static struct sval *eval_letrec(ast *letrec, struct environment *env) {
2 // Initialize the new environment with env as its parent.
3 struct environment *new_env = environment_create(env);
4 ast *bindings = ast_child(letrec, LET_ALL_BINDINGS_IDX);
5 int num_bindings = ast_children_num(bindings) - LET_BINDING_OFFSET_IDX;
6
7 // Create the new bindings and store them in the new env.
8 for (int i = 0; i < num_bindings; i++) {
9 ast *curr_binding = ast_child(bindings, LET_BINDING_IDX + i);

10 ast *sym_tree = ast_child(curr_binding, LET_SYMBOL_IDX);
11 struct sval *expr = eval(ast_child(curr_binding, LET_EXPR_IDX), new_env);
12 environment_put(new_env, ast_contents(sym_tree), expr);
13 }
14
15 // Evaluate the body with new_env.
16 return eval(ast_child(letrec,
17 ast_children_num(letrec) - LET_BODY_OFFSET_IDX), new_env);
18 }

At last, we can re-write our program to use letrec as opposed to lousy top-level
definitions.

Listing 6.84

(define fib
(λ (n)
(letrec ([fib-helper

(λ (a b res n)
(cond
[(or (zero? n) (zero? (sub1 n))) res]
[else
(let ([new-fib (+ a b)])
(fib-helper b

new-fib
new-fib
(sub1 n)))]))])

(fib-helper 0 1 0 n))))

> (fib 10) 55

Let us get a bit more practice with letrec by writing fact using accumulative
recursion. We will pass the accumulating product along as a parameter and when
our number reaches zero, we return the product.

233

6.3 LPROC1 & LPROC2: Recursive Procedures 234

Listing 6.85

(define fact
(λ (n)
(letrec ([fact-helper

(λ (m product)
(cond
[(zero? n) product]
[else
(fact-helper (sub1 m)

(* m product))]))])
(fact-helper n 1))))

> (fact 5) 120

If we did not have letrec, we would need to either use a different algorithm
or expose the internals of fact-helper as a top-level definition. Neither of these
outcomes are always acceptable solutions, though.

letrec allows for recursive function bindings, as we have demonstrated and
implemented. Though, it is fundamental to state that letrec is not at all necessary
for “recursion” inside a let binding! We can simulate recursion in an interesting
way via the U-combinator . Recall that the issue with recursive bindings in a let
block: the extended environment is only visible to the body of the let. So, trying
to reference an identifier declared from within a let binding inside the binding itself
quickly leads to trouble. What if, instead, we passed a function as an argument
to our binding and invoke that recursively? There is nothing that says we cannot
invoke a function argument onto itself. For instance, let us convert the factorial
function from letrec to a let using this paradigm.

Listing 6.86—Letrec to Let Equivalence Conversion

(letrec
([!

(λ (n)
(cond
[(zero? n) 1]
[else
(* n (! (sub1 n)))]))])

(! 5))

(let
([!

(λ (f)
(λ (n)
(cond
[(zero? n) 1]
[else
(* n ((f f) (sub1 n)))])))])

((! !) 5))

As shown, we never invoke function identifier itself. Rather, we create a function
that receives a function and returns another function expecting a value. We saw this
idea in Chapter 4 with the λ-calculus, and it shows up here as well. The confusing
part about all of this is that the initial invocation of the function in the let body
is invoked on itself. Remember, though, that this returns a function expecting the
input to the factorial, namely n. There is nothing special to what is going on, and
the same thing happens when we make the “recursive call” to f by applying it onto
itself. In reality, this is not recursion at all, because it simply passes a function
to another function for continued evaluation. Still, it demonstrates that, although
letrec is convenient, it is largely superfluous!1 Moreover, because we have support
for multi-arity functions, we could simply pass the function and input as arguments
to a two-argument function.

1By “superfluous”, we mean to say that it is a form of syntactic sugar, which implies an abstraction.

234

235 Interpretation

Listing 6.87

> (let ([!
(λ (f n)
(cond
[(zero? n) 1]
[else (* n (f f (sub1 n)))]))])

(! ! 5))

120

Exercise 6.14. (⋆⋆⋆⋆)
The Racket and Scheme programming languages provide a construct called the
“named let”, which allows the programmer to define a recursive function without
the need for letrec or a top-level function. We provide an example as follows:

Listing 6.88

> (let loop ([i 10])
(cond
[(zero? i) '()]
[else (cons i (loop (sub1 i)))]))

(10 9 8 7 6 5 4 3 2 1)

Implement named let bindings into LLETREC. Its syntax includes the let
keyword, an identifier, and any number of variable bindings that act as formal
parameters. The extended environment should contain the named let identifier as
a procedure that is local only to that block.

LCLOSURE: Closures

Procedures in LLETREC are rather simple so far. Though, in a “real Scheme”,
procedures are able to store and recall the environment used in their definition.
Procedures like these are called closures. A closure stores a body and the environ-
ment used in its definition. Let us write LCLOSURE: an extension to LLETREC that
uses closures.

Right now, there is no true motivating example to explain the benefits of closures.
In Chapter 8, when we introduce side-effects (and procedures that have side-effects),
we shall explain the reason and significance of closures.

Because each procedure also stores a pointer to an environment, we need to
amend our struct definition for procedures in sval.h. Similarly, we should update
its creation function to take an environment as an argument.

Listing 6.89—Closure Representation (sval.c)
1 #include "env.h"
2 ...
3 struct procedure {
4 char **formals;
5 size_t num_formals;
6 ast *body;
7 struct environment *env;
8 };
9 ...

10 struct sval *sval_procedure_create(char **formals, size_t num_formals, ast *body,
11 struct environment *env);

235

6.3 LPROC1 & LPROC2: Recursive Procedures 236

Now to update eval application to instead use the closure’s environment
rather than the one passed as an argument. Warning, though: we still need to
evaluate the arguments in the non-closure environment—we only evaluate the body
of a procedure with the closure’s extended environment.

Listing 6.90—Updating Function Application to Respect Closures (eval.c)
1 static struct sval *eval_application(ast *application,
2 struct environment *env) {
3 ...
4 else {
5 // Otherwise, extend the current environment.
6 struct environment *new_env = environment_extend(function->data.proc->env,
7 function, arguments);
8 result = eval(function->data.proc->body, new_env);
9 environment_destroy(new_env);

10 }
11 ...
12 }

Exercise 6.15. (⋆⋆)
We represent procedures with lambda. Though, many Scheme interpreters also
allow the usage of the following syntax to define procedures. Modify LCLOSURE to
allow both forms of procedure definitions. This should require no changes to the
grammar or parser; only make changes in the evaluator.

Listing 6.91

(define (fact n)
(cond
[(zero? n) 1]
[else (* n (fact (sub1 n)))]))

236

237 Interpretation

6.4 Working with Even More Data

Recursive procedures are exceedingly useful, but being limited to only numeric data
is somewhat boring. In the following sections, we will write subsequent interpreters
that introduce important and fundamental data types.

LCHAR: Characters and Character Operations

In this section, we will write LCHAR: a superset of LCLOSURE that adds character
literals.

A character literal is a single character, e.g., ‘A’, ‘B’, ‘4’, ‘0’. In LCHAR, we
will prefix character literals with a hash and backslash, i.e., #\, followed by the
desired character, e.g., #\A represents the character ‘A’. To add these into LCHAR,
we need to modify our grammar to accept characters in this manner. As a corollary,
characters are a type of datum, identical to numbers and booleans.

datum ::= number
| boolean
| symbol
| character;

character ::= ‘\’‘#’ symchar;

Figure 6.11: Extended BNF Grammar for LCHAR

Now, to add this to our parser, we first add the pound sign. Then, we need
to tell the parser to properly escape the backslash. As we discussed in our primer
on C, there are certain characters that perform specific tasks when prefixed by a
backlash, e.g., \n creates a line break. To display an actual backslash and not
escape a character, we escape the backslash, i.e., \\. The parser that we are using
allows us to escape characters as we have seen with symbols such as +. Because
we want to insert the literal backslash to escape certain symbols in the parser, we
have to escape the backslash in the grammar, i.e., \\+. Thus, we need to use four
backslashes to indicate that we want to insert two backslash characters as part of
the grammar rule, where the former backslash escapes the latter backslash. This is
followed by any single character as allowed by our grammar.

237

6.4 Working with Even More Data 238

Listing 6.92—Adding Character Parser Rule (parser.c)
1 static void parser_init_rules (void) {
2 ...
3 character_rule = mpc_new (" character ");
4 ...
5 mpc_err_t *error =
6 mpca_lang (MPCA_LANG_DEFAULT ,
7 "datum : <number > \n"
8 " | <boolean > \n"
9 " | <symbol > \n"

10 " | <character > \n"
11 " character : '#''\\\\'/[a-zA -Z0 -9\\ -\\+_ * <= >\\/!\\?]/;\ n",
12 ..., character_rule , NULL);
13 ...
14 }

Now, let us look at the abstract syntax tree of a character:

Listing 6.93

> \#A expr|datum|>
character|>

char:1:1 '#'
char:1:2 '\'
regex:1:3 'A'

We can safely ignore the first two components of a character node and focus
solely on the regular expression at child three (index 2). Let us add a character
component to our s-values.

Listing 6.94—Character S-value Representation (sval.h)
1 enum sval_type { ..., SVAL_CHARACTER }
2 ...
3 struct sval {
4 ...
5 union data {
6 ...
7 char character;
8 ...
9 }

10 }

A limitation of the mpc library is that it does not support Unicode characters,
meaning we are limited to the keys on a typical QWERTY keyboard, or more
broadly, ASCII (American Standard Code for Information Interchange).1 If, on the
other hand, we were not restricted to this subset, we could use different symbols,
e.g., λ instead of “lambda” to represent procedures. So, we use a simple char to
hold our character data.2 Now, let us write the corresponding s-value constructor
function. At the same time, we should update the printer function. When displaying
a character, we want to affix the backslash and the pound sign to the character.

1The Unicode standard is a character encoding that aims to support thousands of symbols across
different languages and domains.

2The char datatype, as mentioned in Chapter 5, is defined by the C-standard to be at least one byte
long. Unicode characters are designed to hold multiple bytes of information since Unicode characters
are not representable with only one allotted byte. In these cases, we can use a string, i.e., char * to hold
as many bytes of data as necessary to represent the Unicode character.

238

239 Interpretation

Listing 6.95—Printing Character S-values (sval.c)
1 struct sval *sval_character_create(char *character) {
2 struct sval *sv = sval_create(SVAL_CHARACTER);
3 sv->data.character = character;
4 return sv;
5 }
6 ...
7 struct sval *sval_print(sval *sv) {
8 ...
9 else if (SVAL_CHARACTER == sv->type) {

10 printf("#\\%c", sv->data.character);
11 }
12 ...
13 }

Now, all that we need to add is the respective character evaluation function.

Listing 6.96—Evaluation of Characters (eval.c)
1 static struct sval *eval(ast *ast, struct environment *env) {
2 ...
3 else if (ast_is_type(ast, "character")) {
4 return eval_character(ast, env);
5 }
6 }
7 ...
8 static struct sval *eval_character(ast *character, struct environment *env) {
9 char ch = ast_contents(ast_child(character, CHARACTER_IDX))[0];

10 return sval_character_create(ch);
11 }

Strings comprise the contents of an abstract syntax tree node. We know by our
grammar that the contents of the third child of a character node consist of a single
character. Since we are operating on a string, we need to extract the first character
(at index 0).

LSTRING: String and String Operations

In this section we will write LSTRING: an extension of LCHAR that adds a new data
type: strings.

A string, as we recall from C, is a sequence of characters. We enclose strings
by double quotes, e.g., "Hello, world!". We first must modify our grammar by
adding the string rule. Strings contain any non-double-quote characters, including
no characters at all, or completely blank characters.

datum ::= number
| boolean
| symbol
| character
| string

string ::= ‘"’ symchar+ ‘"’

Figure 6.12: Extended BNF Grammar for LSTRING

239

6.4 Working with Even More Data 240

While this grammar rule may frighten some, it is all easily explainable—namely,
as we stated, a string consists of any (hence the wildcard period character, i.e., “.”.)
non-double-quoted (hence the “[ˆ"]” rule) characters, enclosed by double quotes.

Next, we must amend the mpc grammar. One noteworthy detail about embed-
ding a “string” rule into the mpc library is that, internally, it creates rules that
have a label of “string”. So, to prevent name collisions, we should use a different
name for our strings, perhaps, “mystring”. Be aware that, much like the rule for
symbols, it is imperative that the rule is copied verbatim.

Listing 6.97—Adding String Rule to Parser (sval.c)
1 static mpc_parser_t * string_rule ;
2 ...
3 void parser_cleanup (void) {
4 mpc_cleanup (..., ..., string_rule);
5 }
6 ...
7 static void parser_init_rules (void) {
8 ...
9 string_rule = mpc_new (" mystring ");

10 ...
11 mpc_err_t *error =
12 mpca_lang (MPCA_LANG_DEFAULT ,
13 "datum: <number > \n"
14 " | <boolean > \n"
15 " | <character > \n"
16 " | <symbol > \n"
17 " | <mystring >; \n"
18 " mystring : /\\" (\\.|[\ˆ\\ "])\\"/; \n",
19 ..., string_rule , NULL);
20 ...
21 }

Let us view the abstract syntax tree for the string "Hello, world!".

Listing 6.98

> "Hello, world!" expr|datum|>
mystring|>

char:1:1 '"'
regex:1:2 'Hello, world!'
char:1:15 '"'

Perfect! Just what we are looking for. Next, we need to modify both the s-
value union and enumeration to account for strings, as well as add the appropriate
constructor function.

Listing 6.99—Adding String S-value to Data Union (sval.h)
1 enum sval_type {..., SVAL_STRING };*)
2 struct sval {
3 enum sval_type type;
4 union data {
5 ...
6 char *string;
7 ...
8 } data;
9 };

10 ...
11 struct sval *sval_string_create(char *string);

We will store a string as a char *, containing all characters used to create the
string.

240

241 Interpretation

Listing 6.100—String S-value Creation (sval.c)
1 struct sval *sval_string_create(char *string) {
2 struct sval *sv = sval_create(SVAL_STRING);
3 sv->data.string = string;
4 return sv;
5 }

Last but not least, we add the recognition code within the evaluator. Here’s
where things get a bit tricky. String evaluation is a bit less straightforward than
what one may expect at first glance. When the parser reads a string, it must be
enclosed in double quotes. The string s-value, on the other hand, must only receive
the string data itself and not its quotes. In subsequent sections when we manipulate
and write functions on strings, we want those functions to work only on the string
data itself and not the quotes. Though, when we display the string variable, we want
to enclose it with quotes. Therefore, we add quotes around the string in sval -
print, but extract out the important contents in eval string. The question, of
course, is how can we copy every character except the first and last of a string? We
dynamically allocate a string to store every character except the two quotes, as well
as the NUL-byte. From there, we use strncpy to copy over the characters between
the opening and closing quotes.

Listing 6.101—String Evaluation (eval.c)
1 static struct sval *eval(ast *ast, struct environment *env) {
2 ...
3 else if (ast_is_type(ast, "mystring")) {
4 return eval_string(ast, env);
5 }
6 }
7 ...
8 static struct sval *eval_string(ast *string, struct environment *env) {
9 char *str = ast_contents(string);

10 size_t slen = strlen(str) - 1;
11 // if the raw string has n >= 2 characters, we allocate n - 1 bytes.
12 char *new_str = malloc(slen);
13 strcpy(new_str, str + 1);
14 return sval_string_create(new_str);
15 }

Functions Operating on Strings

Strings are useful themselves, similar to characters, but perhaps we want to add
some built-in functions that operate on strings. For instance, we may want to
grab a specific character of a string, extract a substring, find the first occurrence
of a substring, append strings together, or find the length of a string. We will the
following five functions to apply.c:

• string-length receives a string s as an argument and returns the number
of characters in s excluding the opening and closing double quotes. E.g.,
(string-length "Hello, world!") evaluates to 13.

• string-append receives at least two strings and returns a string where the
resulting string is comprised of each argument string concatenated together.
E.g., (string-append "Hello" "," " " "world!") evaluates to "Hello, world!".

241

6.4 Working with Even More Data 242

• char-at receives a string s and an index i and returns the character at index
i of s. E.g., (char-at "Hello, world!" 4) evaluates to \#o. If i is out-of-
bounds, we return the NUL-byte character.1

• substring receives a string s and two indices, m, n, and returns the sub-
string s′ from indices m to n where n is exclusive. E.g., (substring "Hello,
world!" 0 5) evaluates to "Hello". E.g., (substring "Hello, world!" 0
1) evaluates to "H". If n > m or either m or n are out of bounds, the empty
string is returned. A rule of thumb with this form of substring is that the
number of characters returned is equal to n - m. Consequently, if m = n,
then we return the empty string.

• index-of receives two strings s1 and s2 and returns the index of the first
occurrence of s2 in s1. If s2 never occurs in s1, or the length of s2 is greater than
s1, it returns −1. E.g., (index-of "Hello, world!" "world") evaluates to
7. E.g., (index-of "Hello, world!" "a") evaluates to -1. If s2 is the empty
string, we return zero.

Let us implement these built-in functions one by one. We will add the prototypes
and the function pointers at the end.

First, note that we can always just take and return the length of the string since
we do not store the double quotes of a string.

Listing 6.102—Built-in String Length Function (apply.c)
1 static struct sval *apply_string_length(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 ASSERT_ARITY("string-length", 1, num_args);
5 return sval_number_create(strlen(args[0]->data.string));
6 }

Next up is string-append. We need to compute the length of each string, then
dynamically allocate a string of said size plus one for the NUL-byte. Lastly, we
copy each string and the NUL-byte into the newly-created string. This is then sent
to a string s-value. Note the use of pointer arithmetic on the second instance of
calling strcpy.2

1Out-of-bounds, in this context, means that i is negative or exceeds the length of the string.
2Pointer arithmetic allows us to directly apply an offset to a pointer. For example, if we have a

pointer int *p = malloc(1024);, we can advance p to the next four-byte address by incrementing p, i.e.,
p++. Pointer arithmetic applies offsets based on the size of the datatype of the pointer, which means, in
this context, adding one to p actually adds a four byte offset, since an int is four bytes. In fact, array
indexing is syntactic sugar for arithmetic!

242

243 Interpretation

Listing 6.103—Built-in String Append Function (apply.c)
1 static struct sval *apply_string_append(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 if (2 > num_args) {
5 EPF("apply_string_append: string-append expects at least
6 two arguments but got %zu\n", num_args);
7 exit(EXIT_FAILURE);
8 }
9 size_t l1 = strlen(s1);

10 size_t l2 = strlen(s2);
11 char *new_str = malloc(l1 + l2 + 1);
12 ASSERT_ALLOC(new_str, "apply_string_append");
13 strcpy(new_str, s1);
14 strcpy(new_str + l1, s2);
15 return sval_string_create(new_str);
16 }

Now we have char-at, which retrieves the character at a given index of a string.

Listing 6.104—Built-in Character “At” Function (apply.c)
1 static struct sval *apply_string_char_at(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 ASSERT_ARITY("char-at", 2, num_args);
5 char *str = args[0]->data.string;
6 int idx = (int) args[1]->data.number;
7 if (idx < 0 || idx >= strlen(str)) { return sval_character_create('\0'); }
8 else { return sval_character_create(str[idx]); }
9 }

The substring function is up next, and it creates a new string out of the current
string from index m, inclusive, to index n, exclusive, where n > m. The easiest
solution is to allocate n−m+1 bytes of space for a new string, then copy the char-
acters starting from the mth character up to but not including n. We again make
use of strncpy to avoid the need for a redundant loop.

Listing 6.105—Built-in Substring Function (apply.c)
1 static struct sval *apply_string_substring(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 ASSERT_ARITY("substring", 3, num_args);
5 char *str = args[0]->data.string;
6 size_t slen = strlen(str);
7 int m = (int) args[1]->data.number;
8 int n = (int) args[2]->data.number;
9

10 // Error checks!
11 if (m < 0 || n < 0 || m > n || m >= slen || n >= slen) {
12 return sval_string_create(strdup(""));
13 } else {
14 // Create a string of length n - m + 1 for NUL-byte.
15 size_t num_characters = n - m;
16 char *new_str = malloc(num_characters + 1);
17 ASSERT_ALLOC(new_str, "apply_string_substring");
18 strncpy(new_str, str + m, num_characters);
19 return sval_string_create(new_str);
20 }
21 }

243

6.4 Working with Even More Data 244

The last built-in function we will write is index-of, which receives two strings s1
and s2 and returns the index of the first occurrence of s2 in s1, or -1 otherwise. We
will, once again, make use of the strstr function (recall its initial usage was in the
evaluator). strstr receives two strings and returns a pointer to the character that
starts the substring. For instance, strstr("Hello, world!", "lo, w") returns
a char * to the string starting at "lo, world!". Though, we need the index of
this position and not the pointer. The simplest and most convenient solution is to
do some pointer arithmetic. That is, if we subtract the returned substring pointer
from the start of the string, we calculate an offset that amounts to the number of
characters between the substring and the start of the string. Using the previous
example, if we subtract the base string pointer from the substring pointer, we get
3. Note that if s2 is not in s1 or the length of s2 > s1, then strstr returns NULL.
In this scenario, our index-of should evaluate to -1. Even more surprisingly, if
s2 is the empty string, then strstr returns a pointer to s1. In this scenario, our
index-of should return 0.

Listing 6.106—Built-in String Index Of Function (apply.c)
1 static struct sval *apply_string_index_of(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 ASSERT_ARITY("index-of", 2, num_args);
5 char *s1 = args[0]->data.string;
6 char *s2 = args[1]->data.string;
7 char *sub = strstr(s1, s2);
8 if (NULL == sub) { return sval_number_create("-1"); }
9 else if (sub == s1) { return sval_number_create("0"); }

10 else { return sval_string_create(sub - s1); }
11 }

Now, to test, we must add these as function prototypes and as built-in proce-
dures.

Exercise 6.16. (⋆)
Write a predicate, both in LSTRING and in C, called string-empty? that returns
true if the string has length zero and false otherwise.

Exercise 6.17. (⋆)
Write a recursive function index-of-char that receives a string s and a character
ch that returns the first index of ch in s. If ch is not in s, return -1.
Exercise 6.18. (⋆⋆)
In string-append, notice that we invoke strlen twice, once for each string. If
we call string-append many times, we end up wasting a lot of time with strlen.
Modify the sval struct such that, when a string s-value is created, its length is
stored alongside. Strings are immutable anyways, so it is impossible for this field
to change!

Exercise 6.19. (⋆⋆)
Write a recursive function string-replace* that receives a string s, a string k, and
a string m. The function should recursively replace any occurrences of the string
k with the string m, creating a new string. You do not need to consider inputs
where k is a substring of m, which induce infinite replacements without proper
safeguards. Though, if you do want to consider this as a challenge, increase the
exercise difficulty to (⋆⋆⋆) three stars.

244

245 Interpretation

Exercise 6.20. (⋆⋆)
Write a recursive function string-trim that receives a string s and removes leading
and trailing whitespace, returning a new string. For instance, invoking string-trim
on the string " hello " should resolve to "hello".
Exercise 6.21. (⋆⋆⋆)
Write a recursive function string-remove that receives a string s and a string key
k. The function should recursively remove all occurrences of k in s. For instance, in
the string (string-remove "abbababaabb" "ab") returns b, and (string-remove
"aaabbb" "ab") returns "". Hint: use substring and index-of.
Exercise 6.22. (⋆⋆⋆)
Write a function string-search that receives a string s and a string k. The func-
tion should return a string containing the surrounding characters of k if k exists
in s. If there are multiple occurrences of k in s, return the first. By “surrounding
characters”, we mean twenty characters preceding k, and 20 + |k| characters suc-
ceeding k. If there are not enough characters on either side, take all of them on the
respective side. Hint: min and max are useful functions!

Data Conversion

Suppose we have the string “34” embedded in our language somewhere, and we
want to treat it as a numeric value. The converse is equally applicable; if we have
a number, what if we wish to represent it as a string? What about representing
booleans as strings and vice-versa? In this section, we will write a few helper
functions to convert between data types.

• number->string converts a given number into its string counterpart. For
example, (number->string 57.85) evaluates to "57.85".

• string->number converts a given string into a number if it is possible to do
so. E.g., (string->number "200.325") evaluates to the number 200.325,
but on the contrary, (number->string "Hello!") displays an error.

• number->char converts a number, as an integer, to its ASCII character coun-
terpart, if it is possible to do so. E.g., (number->char 80) evaluates to \#P,
but on the contrary, (number->char -9) displays an error.

• char->number converts a character into its integer counterpart if it is possible
to do so. E.g., (char->number \#P) evaluates to 80, but on the contrary, the
invocation of (char->number 80) displays an error.

245

6.4 Working with Even More Data 246

Any other conversion functions, e.g., string->char, can be written in terms
of these primitive functions. Fortunately, only one of these functions, apply -
number to string is a bit hard to understand. We need a way of converting a
number to a string. One way to do this is to use the snprintf function which
receives a format string and some data, to which it converts the provided data
to a string and stores it in a string. The way we use it is relatively simple to
understand: we declare a char * where the format string is allocated and stored.
Then, we tell it the maximum number of characters to store. Finally, we give it the
same arguments we would to printf: a format specifier for long double numbers
and the value itself. We then send this string to sval string create. Though,
we should not carelessly convert all numbers to a floating-point representation via
the %lf format specifier. Instead, we will test numbers for “integerness” and format
them as such in the output string.

Listing 6.107—Built-in Number-String Conversion Function (apply.c)
1 static struct sval *apply_number_to_string(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 ASSERT_ARITY("number->string", 1, num_args);
5 char *str_num = NULL;
6 long double val = args[0]->data.number;
7 size_t nchars;
8 // Test for "integerness".
9 if (val == (int) val) {

10 nchars = asprintf(str_num, "%d" , (int) args[0]->data.number);
11 } else {
12 nchars = asprintf(str_num, "%lf" , args[0]->data.number);
13 }
14 return sval_string_create(str_num);
15 }

Listing 6.108—Built-in String-Number Conversion Function (apply.c)
1 static struct sval *apply_string_to_number(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 ASSERT_ARITY("string->number", 1, num_args);
5 return sval_number_create(args[0]->data.string);
6 }

Listing 6.109—Built-in Number-Character Conversion Function (apply.c)
1 static struct sval *apply_number_to_char(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 ASSERT_ARITY("number->char", 1, num_args);
5 return sval_character_create((char) (args[0]->data.number));
6 }

Listing 6.110—Built-in Character-Number Conversion Function (apply.c)
1 static struct sval *apply_char_to_number(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 ASSERT_ARITY("char->number", 1, num_args);
5 struct sval *character = args[0];
6 return sval_number_create(character->data.character);
7 }

Now, we can test the examples from before.

246

247 Interpretation

Listing 6.111

> (number->string 57.85)
> (string->number "200.325")
> (number->char 80)
> (char->number \#P)

"57.85"
200.325
\#P
80

Exercise 6.23. (⋆)
Write a function in LSTRING: string->boolean that converts a string into a
boolean, e.g., (string->boolean "true") resolves to #t. Then, write another
function, boolean->string that converts a boolean into a string, e.g., (boolean->string
#f) resolves to "false".
Exercise 6.24. (⋆)
Write a function in LSTRING: char->string that converts a character into a string,
e.g., (char->string \#P) resolves to "P".
Exercise 6.25. (⋆⋆)
Write two predicates in LSTRING: char-is-uppercase? that determines whether
or not a character is a uppercase letter, and char-is-lowercase? that determines
whether or not a character is a lowercase letter. If the input is not a letter, return
false. Hint: use char->number.
Exercise 6.26. (⋆⋆)
Write two predicates in LSTRING: char-is-digit? that determines whether or not
a character is a digit, and char-is-special? that determines whether or not a
character is a special character, i.e., any non-digit or letter.

Exercise 6.27. (⋆⋆)
Write a predicate in LSTRING: string-integer? that determines whether or not
the given string is an integer.

Exercise 6.28. (⋆⋆⋆)
Write a predicate in LSTRING: string-number? that determines whether or not
the given string is a number. Note that a number, by our definition, is any real
number written in non-scientific notation. Refer to Chapter 4 for a deterministic
finite automaton numeric recognizer.

LEQUAL: Equivalence and Equality

In this section we will write LEQUAL: an extension to LSTRING that adds the ability
to check values for equality, their types, and other useful comparison functions.

LEQUAL, as of now, supports checking numbers for equality as well as comparison
operators such as < and >. Comparing other data types would be extremely helpful
as would the ability to determine the type of a value. We will first implement the
latter as a predicate, then move on to comparing the other three data types at our
disposal.

LEQUAL adds five new type-determination predicates: number?, char?, string?,
boolean?, and symbol?. Each predicate receives a value and returns true if it is of
the type queried by the predicate and false otherwise.

247

6.4 Working with Even More Data 248

Listing 6.112

> (number? 10)
> (number? #f)
> (string? 10)
> (string? "10")
> (string? "#f")
> (boolean? "#t")
> (boolean? (= 10 20))

#t
#f
#f
#t
#t
#f
#t

All five of these procedures are identical with the exception that each query the s-
value type enum for a different type. As such, we will show only the implementation
of apply number predicate.

Listing 6.113—Built-in Number Predicate Function (apply.c)
1 static struct sval *apply_number_predicate(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 ASSERT_ARITY("number?", 1, num_args);
5 return sval_boolean_create(SVAL_NUMBER == args[0]->type);
6 }

Now, imagine we are writing a program to check whether two symbols or strings
are equivalent. How might we do this? We have a general solution and a specific
solution. The former is to write a function that determines if two values are equiv-
alent, whereas the latter is to write separate functions for comparing each datum
individually. We will implement the latter first, then write an equivalence checker
in terms of individual datum checks.

We presently have a check to determine if two numbers are equivalent, namely
via the function apply num eq. We need four more functions for checking symbol,
string, character, and boolean equality. Each function receives at least two argu-
ments and returns #t if and only if each argument is equal to one another according
to some criteria. Strings are equivalent if and only if they are exact copies of one
another. Symbols are equivalent if and only they are exact copies of one another.
Booleans are equivalent if and only if they share the same truth value. Finally,
characters are equivalent if and only if they share the same character value. We
will implement char=? and string=? and leave it as an exercise to the reader to
implement the other two predicates. Notice the striking parallels between these two
functions and the comparison for numeric equality.

248

249 Interpretation

Listing 6.114—Built-in Character Equivalency Function (apply.c)
1 static struct sval *apply_char_eq(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 if (2 > num_args) {
5 EPF("apply_char_eq: char=? expects at least two arguments; got %zu\n",
6 num_args);
7 exit(EXIT_FAILURE);
8 }
9

10 bool eq_result = true;
11 struct sval *curr_char = args[0];
12 for (int i = 1; i < num_args; i++) {
13 if (curr_char->data.character != args[i]->data.character) {
14 eq_result = false;
15 break;
16 }
17 }
18 return sval_boolean_create(eq_result);
19 }

Listing 6.115—Built-in String Equivalency Function (apply.c)
1 static struct sval *apply_string_eq(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 if (2 > num_args) {
5 EPF("apply_string_eq: string=? expects >= 2 arguments; got %zu\n",
6 num_args);
7 exit(EXIT_FAILURE);
8 }
9

10 bool eq_result = true;
11 struct sval *curr_string = args[0];
12 for (int i = 1; i < num_args; i++) {
13 if (!streq(curr_string->data.string, args[i]->data.string)) {
14 eq_result = false;
15 break;
16 }
17 }
18 return sval_boolean_create(eq_result);
19 }

Recall that in C, characters are just numbers with some fancy coating, meaning
we can compare them using, for example, == and !=. Strings, on the other hand,
require iterative processing to check character-by-character or the use of a helper
function, e.g., strcmp or streq.

With these four functions under our belt, we can now write a generalized eqv?
function that determines if any two values are equivalent to one another. Accord-
ingly, if we have two values, α and β, they are equivalent if and only if exactly one
of the following holds true:

1. α and β are both expressions that resolve to numbers and resolve to the same
number.

2. α and β are both expressions that resolve to booleans and share the same
truth value.

3. α and β are both expressions that resolve to symbols and resolve to the same
symbol.

249

6.4 Working with Even More Data 250

4. α and β are both expressions that resolve to strings and resolve to strings that
are equal in length and character placement.

5. α and β are both expressions that resolve to characters and resolve to the
same character.

Therefore, eqv? can simply invoke the five equality checkers for each type and
return their result. In any other case, we return #f.

Listing 6.116—Built-in Data Equivalency Function (apply.c)
1 static struct sval *apply_eqv_predicate(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 ASSERT_ARITY("eqv?", 2, num_args);
5 // If they do not share the same type then they're automatically not eqv.
6 if (args[0]->type != args[1]->type) {
7 return sval_boolean_create(false);
8 } else {
9 switch (args[0]->type) {

10 case SVAL_NUMBER: return apply_num_eq(args, num_args, env);
11 case SVAL_BOOLEAN: return apply_boolean_eq(args, num_args, env);
12 case SVAL_CHARACTER: return apply_char_eq(args, num_args, env);
13 case SVAL_STRING: return apply_string_eq(args, num_args, env);
14 case SVAL_SYMBOL: return apply_symbol_eq(args, num_args, env);
15 default: return sval_boolean_create(false);
16 }
17 }
18 }

At last, we can check any given type against any other type.

Exercise 6.29. (⋆)
It is sometimes useful to know whether or not a given value is a procedure. Write
apply procedure predicate that returns true if its argument is a procedure
s-value and false otherwise.

Exercise 6.30. (⋆⋆)
Lisp and Scheme both provide the ability to compare pointer values via the eq?
function. Its result on certain s-values depends on the implementation, but its
intended output is to show whether two objects point to the same object in memory.1

Implement this as a function in LEQUAL. We provide some example inputs and
outputs.

1Literals or constants, e.g., 3, #f, are often thought to be eq? to themselves, and indeed, this is
true in most Scheme/Lisp implementations. What differs, though, is the comparison against different
types of numbers such as floating-point values/integers. Our eq? definition will treat these as if they
are identical.

250

251 Interpretation

Listing 6.117—Use of eq? Predicate.

(define a 'a)
(define b a)
(define c 'b)
(define d 'a)
(define e #t)

> (eq? a a)
> (eq? a b)
> (eq? a c)
> (eq? a d)
> (eq? b d)
> (eq? 3 3.0)
> (eq? 3 3)
> (eq? #f #f)
> (eq? #t e)

#t
#t
#f
#t
#t
#t
#t
#t
#t

Exercise 6.31. (⋆⋆⋆)
The Levenshtein distance between two strings s and t measures the number of
required alterations on s to arrive at t, also called the edit distance.1 For example,
consider the strings “numeric” and “nominal”. To translate the former into the
latter, we need to change the u to an o, the e to an i, the n to an r, the i to
an a, and the c to an l. Thus we need to change five characters, which means
the Levenshtein distance between “numeric” and “nominal” is five. Let us consider
another example: “pipeline” and “plurality”. To translate the former into the latter,
we need to change the i to an l, the (second) p to a u, the (first) e to an r, the l to an
a, the n to a t, and add an additional y. Thus we need to change five characters and
add one, which means the Levenshtein distance between “pipeline” and “plurality”
is six. Below is a recursive algorithm to compute the Levenshtein distance of two
strings s and t:

leven(s, t) =

|s| if |t| is zero.
|t| if |s| is zero.
leven(substr(s, 1), (substr(t, 1))) if s[0] == s[1]

1+min

leven(substr(s, 1), t)
leven(s, (substr(t, 1)))
leven(substr(s, 1), (substr(t, 1)))

otherwise

The substr function corresponds to substring from earlier in this chapter. Im-
plement this as a recursive algorithm. One thing to note, however, is that this is a
horribly inefficient algorithm and will not be able to compute Levenshtein distances
of strings longer than a few characters.

1Vladimir Levenshtein’s interest in edit distances originated from the desire to transmit optimal
correction codes for strings [Levenshtein, 1966].

251

7 Functional Programming

The ability to juggle with code is the beauty of functional programming, and once
you get it, it will feel like second nature. Just like when you learn to juggle or ride
a bicycle. But just as you cannot learn the latter two without actual practice and
not just by reading a book or watching videos, you must write code to move to the

next level.

—Erik Meijer

In Chapter 5, we introduced the C programming language and started to build
our interpreter. Then, in Chapter 6, we continued on this adventure by adding
procedures, conditionals, and other data types. In this chapter, we will implement
more “functional” programming language features. By functional, we suggest the
programming paradigm of function application and composition, rather than state-
fulness, reassignment, and sequence.1

7.1 Quotes, Pairs, Lists, and Quasiquotes

LQUOTE: Quoted Expressions

In our previous interpreters and languages, symbols were always evaluated. In
other words, if we ask the interpreter to interpret the symbol x, it looks up the
value of x with respect to its environment. What if, however, we do not want
the interpreter to evaluate x, or for that matter any arbitrarily complex expression?
Quoted expressions help us with this problem. In this section, we will write LQUOTE:
an extension to LCLOSURE that adds the ability to quote any expression.

expr ::= quoted | ...
quoted ::= ‘'’ expr

Figure 7.1: Extended BNF Grammar for LQUOTE

A quoted expression is any LQUOTE expression that is prepended by a single
quote, i.e., ‘'’. Quoted expressions resolve to data—not code. As with the above
example, if we define a variable x, then wish to see the value of x, we would write
the following code.

1“Statefulness” means rememberance of values/variables in a system across time.

7.1 Quotes, Pairs, Lists, and Quasiquotes 254

Listing 7.1

(define x 10)

> x 10

Though, there are times, as we will soon see, when the binding of a variable
is wrapped in a quoted expression, meaning we can only retrieve the data of the
symbol rather than the data at said symbol. For example, quoting x as 'x will
display the literal x and not the associated value. There are a few exceptions to
this rule. First, self-evaluating expressions, e.g., numbers, characters, strings, and
booleans are evaluated even if they are quoted. So, quoting a number, e.g., '5 still
resolves to the numeric value 5. Thus, we can write the following expressions.

Listing 7.2

(define x 100)

> (+ x '5) 105

If we try to do this when quoting the symbol x, i.e., 'x, our interpreter will
display an error saying that the plus operator expects a number.

Listing 7.3

(define x '5)

> (+ 'x '5) Error!

Let us add quoted expressions to our interpreter. Quoted expressions using ‘'’
are not a special form, meaning they have to be added as a parser rule.1 As we
said, a quoted expression is just any expression with a quote prepended. Moreover,
quoted expressions are a type of datum.

Notice that the quote is escaped because we want to insert the literal quote
symbol in front of an expression. Now, time to add it into the evaluator.

Listing 7.4—Quoted Expression Evaluation (eval.c)
1 #define QUOTED_EXPR_IDX 1
2 static struct sval *eval_quoted(ast *quoted, struct environment *env) {
3 ast *quoted_expr = ast_child(quoted, QUOTED_EXPR_IDX);
4 char *quoted_sym = ast_contents(quoted_expr);
5 struct sval *sym = NULL;
6
7 if (ast_is_type(quoted_expr, "number")) {
8 sym = eval_number(quoted_expr, env);
9 } else if (ast_is_type(quoted_expr, "boolean")) {

10 sym = eval_boolean(quoted_expr, env);
11 } else if (ast_is_type(quoted_expr, "string")) {
12 sym = eval_string(quoted_expr, env);
13 } else if (ast_is_type(quoted_expr, "character")) {
14 sym = eval_boolean(quoted_expr, env);
15 } else {
16 sym = sval_symbol_create(quoted_sym);
17 }
18 return sym;
19 }

1We make this clarification for reasons listed in subsequent sections.

254

255 Functional Programming

None of the cases should be particularly interesting. We simply evaluate the
self-evaluating expressions, and otherwise, pass it forward as a symbol. Let us test
this out.

Listing 7.5

> '5
> (+ '5 5)
> (and '#f #t)
> '(if #t 1000 2000)

5
10
#f
(if #t 1000 2000)

Excellent–quoted expressions now work as intended. The thing is, via the special
case of quoted applications, we are inadvertently building a storage system—we can
store values inside a quoted application. What might this lead us towards?

LLIST: Pairs and Lists

Up until this point, our interpreter has no understanding of internal data structures
such as arrays. In this section, we will write LLIST: an extension to LQUOTE which
adds pairs and lists, as well as several built-in functions. Note that we will take
full advantage of the features we added in LQUOTE, so if you skipped that section,
please go back!

expr ::= application | ...
application ::= cons

| cons-pred
| first
| rest
| list
| ...

cons ::= ‘cons ’ expr expr
cons-pred ::= ‘cons? ’ expr
first ::= ‘first ’ expr
rest ::= ‘rest ’ expr

Figure 7.2: Extended BNF Grammar for LLIST

255

7.1 Quotes, Pairs, Lists, and Quasiquotes 256

Before discussing lists, we need to explain the concept of pairs. A pair of non-
pair elements e1 and e2 is constructed using the cons function. So, calling (cons
e1 e2) produces an s-value displayed as (e1 . e2). Every pair, in this style,
has a first element referenced by first, and a second element referenced by rest
(pronounced “rest”). Thus, if we define p1 to be the aforementioned pair, then
invoke first and rest on p1, we get, respectively, e1 and e2. In the future, we
will constantly reference data stored in pairs. Accordingly, we will refer to the
functions using the “typewriter” font, e.g., first. When referencing the element(s)
of a pair, we shall use italicized roman letters, e.g., first.1 cons pairs may be defined
in terms of themselves, e.g., (cons (cons 'x 'y) (cons 'z (cons 'w 'u))) is a
perfectly valid cons pair. Moreover, we can functionally compose first and rest
to get different elements in a nested pair. For instance, if we have the following
pair:

Listing 7.6

(define p1 (cons (cons 'x 'y)
(cons 'z

(cons 'w 'u))))

We can access the elements 'x via (first (first p1)) (pronounced as “the
first of the first”) and 'y via (rest (first p1)) (pronounced as the rest of the
first).

Let us write the s-value definition for a pair. We know that a pair has two parts:
the first and the rest. These are, themselves, s-values. We can add the relevant
enumeration to sval type, as well as declare a construction function for pairs.

Listing 7.7—Pair S-value Representation (sval.h)
1 enum sval_type { ..., SVAL_PAIR };
2
3 struct pair {
4 struct sval *first;
5 struct sval *rest;
6 };
7
8 struct sval {
9 enum sval_type type;

10 union data {
11 ...
12 struct pair pair;
13 } data;
14 };
15
16 struct sval *sval_pair_create(struct sval *first, struct sval *rest);

As we stated, a pair receives two values representing the first and the rest re-
spectively. So, its constructor definition does nothing more than initialize these
fields.

1Interestingly, the original Lisp language did not use first and rest, but rather car and cdr. John
McCarthy’s original Lisp implementation was written on the IBM 704, which contained macros for
retrieving the contents of the address part (car) of the register and the contents of the decrement part
of the register (cdr). Registers, in this context, are synonymous with memory locations; the car and
cdr macros loaded pointers to the elements of a cons cell. Each memory location stored 36 bits, with 15
bits each reserved for the first and second elements of a cons pair respectively. The remaining six bits
encoded the operation type and indexing [McCarthy, 1962] [McCarthy, 1978]. Modern implementations
of Lisp-esque languages, including our prefixed language, use the more conventional first and rest
operations.

256

257 Functional Programming

Listing 7.8—Pair S-value Creation (sval.c)
1 struct sval *sval_pair_create(struct sval *first, struct sval *rest) {
2 struct sval *sv = sval_create(SVAL_PAIR);
3 sv->data.pair.first = first;
4 sv->data.pair.rest = rest;
5 return sv;
6 }

Now, before we go any further with pairs, we need to make a detour into a
discussion on lists and how they interconnect with pairs.

A list is one of two values: either the empty list or a cons pair whose rest is a list.
This definition complicates things a bit because we now need to distinguish between
pairs and lists, right? The answer is yes and no at the same time. We define a list in
terms of pairs. For instance, (cons 1 (cons 2 (cons 3 '()))) is a list because
it is recursively defined as cons pairs whose rest is either the empty list or another
cons pair. The empty list is denoted by '(). In addition to this differentiation
between lists and pairs, we also need to mention proper versus improper lists. A
proper list is a list that ends with the empty list. An improper list is a list that is
not a proper list. This seems a bit circular, but let us use an example to explain.
(cons 1 (cons 2 (cons 3 4))) is not a proper list because it does not end with
the empty list. On the other hand, (cons 1 (cons 2 (cons 3 '()))) is a proper
list because it does end with the empty list. Interestingly, a list may itself be a
proper list yet have elements that are improper. For instance, (cons (cons (cons
1 2) 3) (cons 4 '())) is a proper list, but (cons (cons 1 2) 3) is an improper
nested list.

So we now know the distinction between lists and pairs, but do we really care
about the distinction between a proper and improper list? Not at the interpretation
level, no; we only care about this difference at the “printing level”. In other words,
a list needs only be viewed as improper if it is improper, but at the interpretation
level, it is just seen as a list s-value. We will circle back to printing lists and pairs
soon.

Let us now write the corresponding s-value constructor for lists. Since lists are
just fancy pairs, we do not need to create a separate enumeration value nor add a
field in the data union. A list receives many elements that are, themselves, s-values.
Since we do not know how many elements a list may contain, we pass an array of
s-values to the constructor.

How do we initialize a list from a sequence of s-values? It is relatively easy: we
create a “blank pair” called curr where its first and rest are both NULL. Then, we
iterate over the list of arguments, set the first of curr to be the ith argument, set
its rest to be a “blank pair”, then set curr to be its own rest. Finally, we return a
pointer to the front of the list.

257

7.1 Quotes, Pairs, Lists, and Quasiquotes 258

Listing 7.9—S-value List Creation Implementation (sval.c)
1 struct sval *sval_list_create(struct sval **args, size_t num_args) {
2 struct sval *curr = sval_pair_create(NULL, NULL);
3 struct sval *front = curr;
4 for (int i = 0; i < num_args; i++) {
5 curr->data.pair.first = args[i];
6 curr->data.pair.rest = sval_pair_create(NULL, NULL);
7 curr = curr->data.pair.rest;
8 }
9 curr->data.pair.rest = NULL;

10 return front;
11 }

When constructing a list, there are many possible values that are storable. Sym-
bols in a list should be the literal symbol and not an evaluated symbol. This is the
only exception to the rule—anything else to be added to a list should be evaluated.

Lists are somewhat complex to define at the meta-language level. We have seen
that a cons pair allows us to conjoin two values, and a series of cons pairs where
the rest of the final element is the empty list is a proper list. So, since we now
understand the notion of cons pairs, we should define lists in terms of cons pairs.
The algorithm is as follows: create a blank (i.e., where the first and rest are both
NULL) cons pair p. For each element e in the list abstract syntax tree, evaluate
e according to an algorithm A, producing A(e). Then, set the first of p to A(e).
Initialize the rest of p to a new blank cons pair. Finally, assign p to be the rest of
p.

Listing 7.10—List Evaluation (eval.c)
1 static struct sval *eval_list(ast *list, struct environment *env) {
2 // Create a pair object and iterate through the chain to create firsts/rsts.
3 struct sval *curr = sval_pair_create(NULL, NULL);
4 struct sval *front = curr;
5 size_t num_elements = ast_children_num(list) - QUOTED_ELEMENTS_OFFSET;
6
7 // Each time we find a pair, add the data as first and new pair as rst.
8 for (int i = 0; i < num_elements; i++) {
9 struct sval *curr_sym = NULL;

10 ast *next = ast_child(list, i + QUOTED_CONTENT_OFFSET);
11 curr_sym = eval_list_element(next, env);
12
13 curr->data.pair.first = curr_sym;
14 curr->data.pair.rest = sval_pair_create(NULL, NULL);
15 curr = curr->data.pair.rest;
16 }
17 return front;
18 }

We made note of a mysterious algorithm A, so what does that do? A corresponds
to eval list element in the above listing. The evaluation of element e in the list
depends on its type. For example, symbols do not resolve to values—they resolve to
the symbol themselves. E.g., '(x y) resolves to the list (x y) and not the values
of x and y, assuming they are bound/defined. Additionally, a syntactic application
within a list is simply another list. By syntactic, we mean, e.g., '((3 4) 5), the
parser recognizes the inner list (3 4) as an application, but it is in fact a list. So,
we evaluate that child as if it were a list. Otherwise, we want to evaluate elements
as they are. For instance, numbers can resolve to the numbers themselves.

258

259 Functional Programming

Listing 7.11—List Element Evaluation (eval.c)
1 static struct sval *eval_list_element(ast *element, struct environment *env) {
2 struct sval *curr_sym = NULL;
3 if (ast_is_type(element, "application")) {
4 curr_sym = eval_list(element, env);
5 } else if (ast_is_type(element, "symbol")) {
6 curr_sym = sval_symbol_create(ast_contents(element));
7 } else {
8 curr_sym = eval(element, env);
9 }

10 return curr_sym;
11 }

There is little point in having pairs and lists without a way of retrieving their
internal data. In LLIST, we will add a few built-in functions: first, rest, cons,
null?, and cons?. The first three are functions we have repeatedly described, but
we relist them for emphasis.

• first receives a pair/list as an argument and returns the first element of a
pair/list. For instance, (first '(1 2 3 4)) returns 1.

• rest receives a pair/list as an argument and returns everything except the
first element of a pair/list. For instance, (rest '(1 2 3 4)) returns (2 3
4).

• cons receives two arguments and creates a pair where the first operand is the
first, and the second operand is the rest. For instance, (cons 2 5) returns (2
. 5).

• null? receives an argument and returns true if and only if it is a pair/list and
both its first and its rest are NULL.

• cons? receives an argument and returns true if and only if it is a valid cons
pair. If the list/pair is empty, it is not valid, and thus the function returns
false.

Implementing these functions is relatively straightforward. As such, we will only
show the implementations of first, null?, and cons.

Listing 7.12—Built-in first Function (apply.c)
1 static struct sval *apply_first(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("first", 1, num_args);
4 struct sval *sv = args[0];
5 return sv->data.pair.first;
6 }

259

7.1 Quotes, Pairs, Lists, and Quasiquotes 260

Listing 7.13—Built-in null Predicate Function (apply.c)
1 static struct sval *apply_null_predicate(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("null?", 1, num_args);
4 bool null_result = false;
5
6 // The predicate needs to be a list and have zero elements for null? to be true.
7 if (SVAL_PAIR == args[0]->type
8 && NULL == args[0]->data.pair.first
9 && NULL == args[0]->data.pair.rest) {

10 null_result = true;
11 }
12 return sval_boolean_create(null_result);
13 }

Listing 7.14—Built-in cons Function (apply.c)
1 static struct sval *apply_cons(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("cons", 2, num_args);
4 return sval_pair_create(args[0], args[1]);
5 }

One last alteration is necessary. Inside eval quoted, we need to add a clause
for evaluating lists. Lists are a special type of application. Thus, whenever we
encounter, e.g., '(...), we pass the application child forward as a list to eval -
list.

Listing 7.15—Evaluating Pseudo-Application in Quoted Expressions (eval.c)
1 static struct sval *eval_quoted(ast *quoted, struct environment *env) {
2 ...
3 if (ast_is_type(quoted_expr, "application")) {
4 sym = eval_list(quoted_expr, env);
5 }
6 ...
7 }

At long last, we return to the problem of printing pairs and lists, which is the
only time we must distinguish between the two (as well as the notion of proper
versus improper lists).

First, we need a way of determining if a list is proper or not. If a list is proper,
it does not contain dots. Note that a list may contain a sublist that is improper
and hence has dots. Recall that a list is proper if and only if it is a list terminated
by the empty list. So, all we need to do is recursively check the given s-value to
determine one of two properties:

1. If either the s-value or its first are NULL, it is a proper list.

2. If the first is non-NULL and its rest is not a list, it is not a proper list.

All other cases recursively check the rest of the given list.

260

261 Functional Programming

Listing 7.16—Determining If A Pair is Proper (sval.c)
1 static bool is_proper_list(const struct sval *ls) {
2 if (NULL == ls || NULL == ls->data.pair.first) { return true; }
3 else if (NULL != ls->data.pair.first
4 && NULL != ls->data.pair.rest
5 && SVAL_PAIR != ls->data.pair.rest->type) { return false; }
6 else { return is_proper_list(ls->data.pair.rest); }
7 }

We now have a case analysis. Let us handle the easier case first: if the list is
not proper, then we print its first and rest with a dot separator ‘.’ encased in
parentheses.

Listing 7.17—Printing S-value Pair (sval.c)
1 void sval_print(struct sval *sv) {
2 ...
3 else if (SVAL_PAIR == sv->type) {
4 printf("(");
5 if (is_proper_list(sv)) {
6 struct sval *curr = sv;
7 // TODO...
8 } else if (NULL != sv) {
9 sval_print(sv->data.pair.first);

10 printf(" . ");
11 sval_print(sv->data.pair.rest);
12 }
13 printf(")");
14 }
15 }

Next, we iteratively print the first of the list, keeping track of a curr pointer
that is constantly updated.

Listing 7.18—Printing S-value Pair (sval.c)
1 void sval_print(struct sval *sv) {
2 ...
3 else if (SVAL_PAIR == sv->type) {
4 printf("(");
5 if (is_proper_list(sv)) {
6 struct sval *curr = sv;
7 // If the list is null then it is automatically proper.
8 if (curr->data.pair.first != NULL) {
9 while (curr->data.pair.rest->data.pair.rest != NULL) {

10 sval_print(curr->data.pair.first);
11 curr = curr->data.pair.rest;
12 printf(" ");
13 }
14 sval_print(curr->data.pair.first);
15 }
16 } else if (NULL != sv) {
17 sval_print(sv->data.pair.first);
18 printf(" . ");
19 sval_print(sv->data.pair.rest);
20 }
21 printf(")");
22 }
23 ...
24 }

Recognition, evaluation, and s-value construction of pairs and lists are now com-
plete. Let us write a few tests.

261

7.1 Quotes, Pairs, Lists, and Quasiquotes 262

Listing 7.19

(define l1 '(1 2 3 4))
(define l2 (cons (cons 1 2) (cons 3 (cons 4 5))))
(define l3 (cons 1 (cons 2 (cons 3 (cons 4 '())))))

> (first l1)
> (first l2)
> (first l3)
> (rest l1)
> (rest l2)
> (rest l3)
> (first (rest l2))
> (first (rest l3))

1
(1 . 2)
1
(2 3 4)
(3 . (4 . 5))
(2 3 4)
(1 . 2)
2

Notice that we composed a first operation immediately following from a rest
invocation. We can write a function that hides the explicit function composition as
follows:

Listing 7.20

(define second
(λ (l)
(first (rest l))))

Be aware that retrieving the second of a list that has no second crashes the
program.

One supplemental change we need to make is to the built-in eqv? function.
Namely, we need to ensure that eqv? returns true if both of its arguments are
the empty list. Some may consider implementing the functionality to recursively
compare lists, but this is not necessary; we can write a language-level function to
determine if lists are recursively equivalent.

Listing 7.21

> (eqv? '() '())
> (eqv? '(10) '(10))
> (eqv? '(a b) '(a))

#t
#f
#f

Because we had no intuition of lists in LQUOTE, we omitted a small yet notewor-
thy language feature: quoted expressions that are, themselves, quoted! Consider
the following expression: ''(+ 2 3). What might this evaluate to? Well, we should
think of this as a list whose first is ' and whose rest is (+ 2 3). This approach
generalizes to any number of quotes, e.g., ''''(+ 2 3) is converted into the fol-
lowing:

Listing 7.22

(quote (quote (quote (+ 2 3))))

We, without much reasoning, introduced this new function “quote”. This is
simply another method of writing a quoted expression. Furthermore, it allows us to
visualize the fact that this is a list whose first is a quote and whose rest is another
arbitrary expression. How can we represent this in our interpreter? First, we need
to amend the definition of eval quoted to check for quoted expressions. If we find
one, we create a two-element list (note that it is not a cons pair) whose first is the
symbol quote and whose rest is the “sub” quoted expression.

262

263 Functional Programming

Listing 7.23—Creating a Quoted S-Value (sval.c)
1 struct sval *sval_quote_create(struct sval *rest) {
2 struct sval **args = malloc(2 * sizeof(struct sval *));
3 struct sval *s = sval_symbol_create("quote");
4 args[0] = s;
5 args[1] = rest;
6 struct sval *sym = sval_list_create(args, 2);
7 free(args);
8 return sym;
9 }

Listing 7.24—Quoted Expressions That Are Quoted (eval.c)
1 static struct sval *eval_quoted(ast *quoted, struct environment *env) {
2 ast *quoted_expr = ast_child(quoted, QUOTED_EXPR_IDX);
3 char *quoted_sym = ast_contents(quoted_expr);
4 struct sval *sym = NULL;
5 ...
6 else if (ast_is_type(quoted_expr, "quoted")) {
7 struct sval *rest = eval_quoted(ast_child(quoted_expr, 1), env);
8 sym = sval_quote_create(rest);
9 }

10 }

Fortunately, since we already have the mechanism for printing lists, there is
nothing left to do. Let us write a few tests (this is, admittedly, a lot of test cases,
but we want to convey the structure of quoted expressions):

Listing 7.25

(define qexp '''(+ 2 3))

> (first qexp)
> (rest qexp)
> (first (rest qexp))
> (rest (rest qexp))
> (first (first (rest qexp)))
> (first (rest (first (rest qexp))))
> (first (first (rest (first (rest qexp)))))
> (rest (first (rest (first (rest qexp)))))

quote
((quote (+ 2 3)))
(quote (+ 2 3))
()
quote
(+ 2 3)
+
(2 3)

With the notion of the quote special form and the ' symbol, we want them to
be treated, semantically, the same. In other words, we also want the programmer to
be able to invoke quote as if they were using its symbolic counterpart. So, one way
to circumvent any issues is to write two “helper functions”, eval quoted symbol
and eval quoted form that pass different children of their abstract syntax trees
to eval quoted. This means that eval quoted only has to care about how to
deal with its expression rather than extracting it from the abstract syntax tree.

Listing 7.26—Quoted Special Form (eval.c)
1 #define QUOTE_SYMBOL_EXPR_IDX 1
2 #define QUOTE_FORM_EXPR_IDX 2
3 static struct sval *eval_quoted_symbol(ast *quote_symbol,
4 struct environment *env) {
5 return eval_quoted(ast_child(quote_symbol, QUOTE_SYMBOL_EXPR_IDX), env);
6 }
7
8 static struct sval *eval_quoted_form(ast *quote_form,
9 struct environment *env) {

10 return eval_quoted(ast_child(quote_form, QUOTE_FORM_EXPR_IDX), env);
11 }

263

7.1 Quotes, Pairs, Lists, and Quasiquotes 264

Two pieces of the puzzle remain: modify eval quoted function to operate on
the passed abstract syntax tree rather than a child, and update the root eval
function to instead call eval quoted form. Note that the simplest way to make
the former change is to rename the abstract syntax tree formal parameter and
remove the declaration of a separate variable inside the function.

Listing 7.27—Evaluating Quoted Expression (eval.c)
1 static struct sval *eval(ast *ast, struct environment *env) {
2 ...
3 else if (ast_is_type(ast, "quoted")) {
4 return eval_quoted_symbol(ast, env);
5 }
6 }
7
8 static struct sval *eval_quoted(ast *quoted_expr, struct environment *env) { ... }

Exercise 7.1. (⋆)
Write a function third that retrieves the third element of a list using only first
and rest. Assume that the input list contains at least three arguments.

Exercise 7.2. (⋆)
Write a function init to compute a list of all elements, except the last, of a list. If
the list is empty, return the empty list.

Exercise 7.3. (⋆)
Write a function last to retrieve the last element of a list. If the list is empty,
return the empty list. Hint: the last element of the list must have an empty rest.

Exercise 7.4. (⋆)
Write a function append to append two lists ls1 and ls2 Hint: think about how
to solve this recursively; if ls1 is empty, return ls2. Otherwise, return a list where
the first of ls1 is cons’d onto ls2.
Exercise 7.5. (⋆)
Write a function loc->string that receives a list of characters and returns a
string that results when conjoining, or concatenating, each character. As an ex-
ample, (loc->string '(#\h #\e #\l #\l #\o #\w #\o #\r #\l #\d)) resolves
to “helloworld”.
Exercise 7.6. (⋆⋆)
In Chapter 5, we referenced the Collatz conjecture as an exercise to be implemented
as a C function. Design the collatz function in LLIST, only this time, accumulate
the Collatz intermediary values in a list.

Listing 7.28

> (collatz 10) (10 5 16 8 4 2 1)

Exercise 7.7. (⋆⋆)
Write a function n-in-a-row*? to determine if a list contains some value v, n times
sequentially. For example, calling (n-in-a-row*? ls 'a 3) returns true when ls
is '(a a b c a a a b b) and false for (n-in-a-row*? ls 'b 3) .

264

265 Functional Programming

Exercise 7.8. (⋆⋆)
Write a function collect-seq, which receives a list ls and a value v, returning a list
of the same values, except where the longest sequence of v is within its own nested
list. For instance, if ls is '(a a b c a a a b b) and v is 'a, then collect-seq
returns (a a b c (a a a) b b).
Exercise 7.9. (⋆⋆)
Write a function contiguous-str?, which receives a list of strings and determines
if the list is “contiguous”. A list of strings is contiguous if each string has its first
character equal to the last character of its predecessor string. For example, if ls is
'("aa" "ab" "bccd" "df"), then contiguous-str? returns true. On the other
hand, if ls is '("ab" "cd"), then contiguous-str? returns false. Consider this
problem as a sequence of case analyses. If the list is empty or contains only one
element, it cannot be contiguous.

Exercise 7.10. (⋆⋆)
Design the combineDigits* function, which receives a list of digits and com-
bines them into one number. For example, (combineDigits* ’(2 5 8 1)) returns
2581.
Exercise 7.11. (⋆⋆⋆)
The Scheme and Racket programming languages have a “case dispatch” keyword
conveniently named case.1 It receives an expression e to evaluate and a sequence
of clauses similar to cond. Each clause contains two expressions: a comparison
expression ci and a resulting expression ri. Unlike cond, however, each ci must
be a quoted expression. If ci is a self-evaluating expression and it is eqv? to e,
its corresponding ri is evaluated. If ci a list, its elements are compared against
e and, if any are eqv? to e, the corresponding ri is evaluated. If none of the
preceding clauses have a comparison expression that matches against e, the result
of the else clause is evaluated. We present some examples below. Add case to
LLIST. Hint: use sval quote create to quote each comparison expression before
evaluation. It may be helpful to write a recursive function, e.g., sval equals that
determines if two s-values are equivalent. It may also be helpful to write the sval -
list contains function which receives a SVAL PAIR list ls and another s-value v,
returning true if v is in ls and false otherwise.

1Our description does not perfectly resemble either Scheme or Racket’s implementation of case—we
describe a hybrid between the two.

265

7.1 Quotes, Pairs, Lists, and Quasiquotes 266

Listing 7.29

> (case (first '(f g))
['(a e i o u) 'vowel]
['(w y) 'semi-vowel]
[else 'consonant])

> (case 5
['1 'one]
['2 'two]
['3 'three]
['4 'four]
['5 'five]
[else 'something-else])

> (case (* 1 5)
['0 'non-existent]
['(1 2 3) 'tiny]
['(4 5 6) 'normal]
['(7 8 9) 'large]
['(10 11 12) 'huge]
[else 'gigantic])

consonant

five

normal

Exercise 7.12. (⋆⋆⋆⋆⋆)
Antimetabole is a rhetorical device in which words in one half of the sentence are
reversed in the second half [Harris et al., 2018]. For example, consider the sentence
“We are one for all, but he is all for one.” We see that “one for all” and “all for
one” form the antimetabole example. Implement a function antimetabole, which
receives two sub-sentences s1 and s2, and returns a list of words that exemplify
antimetabole. For example, (antimetabole s1 s2), where s1 is “we are one for
all” and s2 is “but he is all for one”, should return ("one" "for" "all"). You
may assume that both sub-sentences contain contain only lowercase letters and
no punctuation. You may further assume that s1 and s2 indeed have exactly one
instance of antimetabole.

Exercise 7.13. (⋆⋆⋆⋆⋆)
Parison is defined as parallelism between the parts-of-speech of a sentence [Harris
et al., 2018]. For example, “the fox jumped over the lazy dog, but the octopus
swam beneath the giant shark” exemplifies parison due to the syntactic similar-
ity between s1: “the fox jumped over the lazy dog” and s2:“the octopus swam
beneath the giant shark”. The parts-of-speech used are DT/the/the, NN/fox/octo-
pus, VBD/jumped/swam, IN/over/beneath, DT/the/the, JJ/lazy/giant, and NN/-
dog/shark.1 The previous notation has the part-of-speech as the first value, the
corresponding word in s1 as the second value, and the corresponding word in s2 as
the third value. Design the parison function, which receives a string s and a list of
the parts-of-speech of each word in s. The function should identify the substrings
that comprise the parison example, and return a list of those substrings. Note
that an example of parison may consist of more than two sub-sentences. You may
assume that every provided sentence contains exactly one instance of parison and
that the words are all lowercase letters, contain no punctuation, and are separated
by spaces. We present an example as follows:

1Worrying about what these part-of-speech abbreviations mean is not part of this exercise.

266

267 Functional Programming

Listing 7.30

(define s1
"the fox jumped over the lazy
dog but the octopus swam beneath
the giant shark"

(define lopos
'(DT NN VBD IN DT JJ NN CC

DT NN VBD IN DT JJ NN))

> (parison s1 lopos) ("the fox jumped over the lazy dog"
"the octopus swam beneath the
giant shark")

LQUASI: Quasiquotes

We have seen how to define lists of data in LLIST, e.g., '(1 2 3 4) or (cons 1 2)
or even '(1 x (3 y) 5 z). Let us investigate that last list for a moment. What is
its resulting value? Under our current constraints, we receive the following output
for the given input:

Listing 7.31

> '(1 x (3 y) 5 z) (1 x (3 y) 5 z)

Suppose that, instead of inserting the raw symbols x, y, and z, we want to give
meaning to these values in a list. For example, if we define those variables as follows:

Listing 7.32

(define x 10)
(define y 30)
(define z 50)

And, similarly, with an input of (1 x (3 y) 5 z), we wish to output the fol-
lowing list:

Listing 7.33

(1 10 (3 30) 5 50)

How do we do this? In this section, we will write LQUASI: an extension of LLIST

to include the ability to evaluate parts of a list via quasiquotes.

Quasiquotes are almost identical to quotes, but come with the added ability to
“unquote” portions of a list. Using the previous code as a base, we get the desired
output using the code below:

Listing 7.34

`(1 ,x (3 ,y) 5 ,z)

The comma ‘,’ is known as unquote; it evaluates the succeeding expression. As
we said before, a quote is identical to a quasiquote, meaning the following code
segments are equivalent:

267

7.1 Quotes, Pairs, Lists, and Quasiquotes 268

Listing 7.35

'(1 x (3 y) 5 z)
`(1 x (3 y) 5 z)

Though, with the standard, non-quasiquote, we cannot unquote expressions. So,
let us implement this feature! We first need to introduce two new datum rules to
our grammar: quasiquoted and unquoted.

datum ::= quoted
| quasiquoted
| unquoted
| number
| boolean
| symbol

quasiquoted ::= ‘`’ expr
unquoted ::= ‘,’ expr

Figure 7.3: Extended BNF Grammar for LQUASI

Note that, with this grammar, this means we can unquote or quasiquote as
many expressions as we want, even if it does not make sense. Our interpreter,
for the time being, only handles valid input, so we will omit the discussion of se-
mantic error-checking analysis for such rules. Embed these into the parser, and all
we need to do is modify the code for evaluating standard quoted expressions. We
can, thankfully, condense the quoted-expression handler to simply pass the expres-
sion forward to eval quoted if we are not unquoting the data. In the previous
section(s) on quoted expressions, however, we deferred handling multiple quoted
expressions until after our discussion on lists and pairs. Since we now have a fun-
damental understanding, we will integrate the special form quasiquote and its
symbolic counterpart directly into the interpreter. As before, we write two helper
functions: eval quasiquoted symbol and eval quasiquoted form that both
invoke eval quasiquoted with the corresponding quasiquoted expression. Fortu-
nately, we may reuse the constants defined for retrieving the correct index of the
quoted expression in the abstract syntax tree.

268

269 Functional Programming

Listing 7.36—Quasiquoted Expression Evaluation (eval.c)
1 static struct sval *eval_quasiquoted_symbol(ast *quasiquoted_symbol,
2 struct environment *env) {
3 return eval_quasiquoted(ast_child(quasiquoted_symbol, QUOTE_SYMBOL_EXPR_IDX),
4 env);
5 }
6
7 static struct sval *eval_quasiquoted_form(ast *quasiquoted_form,
8 struct environment *env) {
9 return eval_quasiquoted(ast_child(quasiquoted_form, QUOTE_FORM_EXPR_IDX), env);

10 }
11
12 static struct sval *eval_quasiquoted(ast *quasiquoted_expr,
13 struct environment *env) {
14 char *quasiquoted_sym = ast_contents(quasiquoted_expr);
15 struct sval *sym = NULL;
16
17 if (ast_is_type(quasiquoted_expr, "application")) {
18 sym = eval_list(quasiquoted_expr, env);
19 } else if (ast_is_type(quasiquoted_expr, "unquoted")) {
20 sym = eval(ast_child(quasiquoted_expr, 1), env);
21 } else {
22 sym = eval_quoted(quasiquoted_expr, env);
23 }
24 return sym;
25 }

Notice we added only a single clause for handling unquotes (and removed the
other redundant self-evaluating clauses). We need to check to see if the quasiquote
contains an immediately following unquote, e.g., `,x. If so, we evaluate that node
in the abstract syntax tree. Otherwise, we continue as we did previously. Let us
look at a sample abstract syntax tree that matches this scenario:

>
expr|define|>
char:1:1 '('
string:1:2 'define'
symbol|regex:1:9 'x'
expr|datum|number|regex:1:11 '10'
char:1:13 ')'

expr|datum|quasiquoted|>
char:2:1 '`'
expr|datum|unquoted|>
char:2:2 '',
expr|datum|symbol|regex:2:3 'x'

expr|datum|symbol|regex:2:3 'x'

We see that, in an unquoted expression, the expression we wish to evaluate is
always the second child (index 1). So, we can refactor that into a preprocessor
definition.

Listing 7.37—Unquoted Expression Evaluation (eval.c)
1 #define QUASIQUOTED_EXPR_IDX 1
2 ...
3 static struct sval *eval_quasiquoted(ast *quasiquoted_expr,
4 struct environment *env) {
5 ...
6 else if (ast_is_type(quasiquoted_expr, "unquoted")) {
7 sym = eval(ast_child(quasiquoted_expr, QUASIQUOTED_EXPR_IDX), env);
8 }
9 }

269

7.1 Quotes, Pairs, Lists, and Quasiquotes 270

Lastly, we update the root eval function. It is important to check for quasiquoted
above quoted because both strings contain the substring quoted, meaning a quasiquoted
expression will erroneously match a quoted expression. In addition, be sure to only
invoke eval quasiquoted form rather than eval quasiquoted for the aforemen-
tioned reasons.

Listing 7.38—Adding Quoted and Quasiquoted Expressions (eval.c)
1 static struct sval *eval(ast *ast, struct environment *env) {
2 ...
3 // Check for "quasiquoted" before "quoted" due to substring!
4 else if (ast_is_type(ast, "quasiquoted")) {
5 return eval_quasiquoted_form(ast, env);
6 } else if (ast_is_type(ast, "quoted")) {
7 return eval_quoted_form(ast, env);
8 }
9 }

Running a simple example produces the correct answer.

Listing 7.39

(define x 10)

> `,x
> (quasiquote ,x)

10
10

Unfortunately, we forgot to handle unquoted expressions within a list. Let us
modify eval list element to account for this, and after testing, we should see
our changes:

Listing 7.40—Evaluating Unquoted Expressions (eval.c)
1 static struct sval *eval_list_element(ast *element, struct environment *env) {
2 ...
3 else if (ast_is_type(element, "unquoted")) {
4 curr_sym = eval(ast_child(element, QUASIQUOTED_EXPR_IDX), env);
5 }
6 }

Listing 7.41

(define x 10)
(define y 30)
(define z 50)

> `(1 ,x (3 ,y) 5 ,z) (1 10 (3 30) 5 50)

What is interesting about quasiquoting and unquoting is that the expression to
unquote can be as complex or simple as we want. For instance, let us embed an
arithmetic expression into our quasiquote list.

Listing 7.42

(define x 10)
(define y 30)
(define z 50)

> `(1 ,(* 5 x) (3 ,y) 5 ,(* z y)) (1 50 (3 30) 5 150)

Brilliant! We now have a way of representing unquoted data in LQUASI.

270

271 Functional Programming

Exercise 7.14. (⋆)
In addition to the special form quasiquote, there is a similar special form unquote.
Implement this into your interpreter.

Exercise 7.15. (⋆⋆⋆)
Many Scheme interpreters/dialects allow for the “unquote-splicing” operator. In
summary, it allows us to embed the elements from a list inside a quasiquoted ex-
pression inside the resulting expression. We present an example below. Notice the
difference between a standard unquote and the unquote-splice; the former simply
sticks the list, as a symbol, inside the outer list. The latter, on the other hand,
takes each element of the unquoted list, one by one, and inserts them into the outer
list. Add unquote-splicing to your interpreter. Hint: you will need to modify the
grammar, but you should only otherwise modify eval list since you need access
to the original list as well as the unquote-spliced list elements). As a note, unquote-
splicing on a non-list element (or a variable that does not resolve to a list) should
produce an error.

Listing 7.43

(define ls1 '(2 3 4))

> `(1 ,ls1 5)
> `(1 ,@ls1 5)

(1 (2 3 4) 5)
(1 2 3 4 5)

Exercise 7.16. (⋆⋆)
If you did not add the unquote-splice special form from the previous exercise, do
so now.

A Shortcut for Pair Creation

Creating a cons pair is convenient for grouping two values together, or starting a
list. Though, it may be slightly inconvenient to have to invoke the cons function
each time we simply want to conjoin two values. For instance, suppose we have the
following code:

Listing 7.44

(define x 5)
(define y 10)
(define pair (cons x y))

> pair (5 . 10)

271

7.1 Quotes, Pairs, Lists, and Quasiquotes 272

Creating a cons pair defined only in terms of two values is a little cumbersome.
Why not introduce a syntax that allows the programmer to form cons pairs without
the need for cons? That is, we give the programmer control over where and what
is the first and rest of the pair. We know that, for a cons pair, the dot “.”
separates the two aforementioned values. So, ideally, we might introduce a syntax
that combines the dot notation with our newly-found quasiquoting: `(,x . ,y).
Hence, this would be equivalent to (cons x y). We first need to establish a rule
about the “dot operator”. A dot, when used in this context, can only occur within
a list expression. In addition, there must be one and only one element following a
dot. Lastly, there must be at least one element preceding the dot. So, where do we
go in the interpreter? We need only to make a small change in eval list: instead
of immediately evaluating the list element according to eval list element, we
must check the “ahead” element, i.e., the element one position ahead of the current
to see if it is the dot. If so, we define e to be a cons pair where its first is the current
element, and its rest is the element ahead of the dot.

Listing 7.45—Using Dots in Cons Pair (eval.c)
1 static struct sval *eval_list(ast *list, struct environment *env) {
2 ...
3 for (int i = 0; i < num_elements; i++) {
4 ...
5 if (i < num_elements - 1 &&
6 streq(".", ast_contents(ast_child(list, 1 + i + QUOTED_CONTENT_OFFSET)))) {
7 curr->data.pair.first =
8 eval_list_element(ast_child(list, i + QUOTED_CONTENT_OFFSET), env);
9 curr->data.pair.rest =

10 eval_list_element(ast_child(list, 2 + i + QUOTED_CONTENT_OFFSET), env);
11 break;
12 }
13 }
14 }

The second piece of the conditional should make sense—we ensure that the
element ahead of the current is a dot. Though, what about the former? Why do
we need a check to keep 1 less than num elements - 1? Simple! If we are on the
last element of the list, then we cannot possibly check the “ahead” element because
it is non-existent!1 Let us test this feature out:

Listing 7.46

(define dotted-list '(5 . 6))
(define cons-list (cons 5 6))

> dotted-list
> cons-list

(5 . 6)
(5 . 6)

So, as we stated, using the quote and dot operators is almost equivalent to using
cons. We say almost because there is an important distinction between quoting
and cons, and that distinction comes from argument evaluation. The function
cons evaluates its arguments,2 whereas a quoted dot pair does not. Let us look at
the following example:

1Technically, it is possible, but this is otherwise known as an out-of-bounds memory access and
should be avoided at all costs.

2Although Dan Friedman and David Wise vehemently disagree with this idea in their CONS Should
Not Evaluate its Arguments paper [Friedman and Wise, 1976].

272

273 Functional Programming

Listing 7.47

(define x 5)
(define y 6)
(define dotted-list '(x . y))
(define cons-list (cons x y))

> dotted-list
> cons-list

(x . y)
(5 . 6)

Notice how the former list declaration using the quote does not evaluate x and
y—it instead inserts the literal symbols. If we want to equalize this with the behav-
ior of a cons invocation, we must use quasiquoting and the comma to evaluate the
values bound to the symbols x and y. We can, of course, use the pair operations
first and rest to extract the contents of a dot-constructed pair.

Listing 7.48

(define x 5)
(define y 6)
(define dotted-list `(,x . ,y))
(define cons-list (cons x y))

> dotted-list
> cons-list
> (first dotted-list)
> (rest dotted-list)

(5 . 6)
(5 . 6)
5
6

Lastly, let us use our newly-built pair construct inductively. That is, we can
define a dotted pair in terms of another pair:

Listing 7.49

(define double-dotted-list
'((5 . 6) . 7))

(define double-cons-list
(cons (cons 5 6) 7))

> double-cons-list
> double-dotted-list
> (first double-dotted-list)
> (first (first double-dotted-list))
> (rest (first double-dotted-list))
> (rest double-dotted-list)

((5 . 6) . 7)
((5 . 6) . 7)
(5 . 6)
5
6
7

We apply a general rule-of-thumb for using quasiquotes to construct pairs/lists:
if it clutters the expression to use quasiquotes, prefer to use cons. On the other hand,
if we want to unquote several variables at once to form a list, then quasiquotes/un-
quotes are the better choice.1

1We will demonstrate examples of these instances when we introduce association lists.

273

7.2 Variadic Arguments 274

7.2 Variadic Arguments

When writing a procedure definition, we may not always know a priori how many
arguments it should receive. If we want to process any given number of values in
a function call, we need to introduce the idea of variadic arguments. For instance,
suppose we are writing a function foo, which we wish to define as using variadic
arguments. This consequently implies that we can invoke foo with any number of
arguments.

Listing 7.50

(foo 1 2 3 4 5)
(foo)
(foo 1 2 3)

Though, how do we address this in our interpreter? Right now, when writing
a procedure, we use the notion of formal parameters to specify the names of a
parameter to a function. The problem is that variadic arguments do not know
ahead of time how many arguments to expect. Representing variadic arguments as
lists is the solution. Thus, if we want to compute the number of arguments to a
variadic function, we first need a function to compute the length of a list.

Listing 7.51

(define length
(λ (ls)
(cond
[(null? ls) 0]
[else (add1 (length (rest ls)))])))

From here, we can define the syntax and semantics of variadic-argument func-
tions via LVARIADIC: an extension of LQUASI.

expr ::= application | ...
application ::= proc | proc-var | ...
proc ::= ‘lambda’ ‘(’ id* ‘)’ expr
proc-var ::= ‘lambda-var’ ‘(’ id ‘)’ expr

Figure 7.4: Extended BNF Grammar for LVARIADIC

We will say that a function that receives any number of arguments is defined as
a lambda-var, where its formal parameter is a single list. For instance, consider
the following code segment:

Listing 7.52

(define process-any-args
(λ-var (args)
(length args)))

Thus we, internally, treat args as a list. So, we may invoke process-any-args
with, as its name says, any number of arguments:

274

275 Functional Programming

Listing 7.53

> (process-any-args 1 2 3 (+ 4 5) 6 7)
> (process-any-args)

6
0

Note that, with variadic-argument functions, each argument is individually eval-
uated before passing the result forward. Additionally, the argument defined in the
procedure is bound to the list created by evaluating each argument. In other words,
args is bound to '(1 2 3 (+ 4 5) 6 7). Fortunately, we do not need to make
any alterations to the grammar—we only need to add a special form to account for
lambda-var and update function application. Let us work on the former task first.

Listing 7.54—Evaluation of Variadic Lambdas (eval.c)
1 #define LAMBDAVAR_FORMALS_IDX 2
2 #define LAMBDAVAR_SYMBOL_IDX 1
3
4 static struct sval *eval_lambdavar(ast *lambdavar, struct environment *env) {
5 ast *formal_ast = ast_child(lambdavar, LAMBDAVAR_FORMALS_IDX);
6 char **formals = malloc(sizeof(char *));
7 ASSERT_ALLOC(formals, "eval_lambdavar");
8 char *formal_name = ast_contents(ast_child(formal_ast, LAMBDAVAR_SYMBOL_IDX));
9 formals[0] = strdup(formal_name);

10 return sval_procedure_create(formals, 1, ast_child(lambdavar, LAMBDA_BODY_IDX),
11 env, true);
12 }

What is going on here? Like normal, non-variadic-argument procedures, we need
to keep track of the formal parameter listings. In this case, we only have one formal
parameter, namely the list of arguments. So, we allocate space for one formal, then
create the procedure as normal. One change we also made is the addition of a
“flag” in the procedure struct that notes whether or not a procedure uses variadic
arguments. Hence, the inclusion of true as the last argument to the modified
sval procedure create function.

Now, let us jump down to function application. The changes here are more
important and potentially more difficult to understand.

Listing 7.55—Handling Variadic Arguments in Function Application (eval.c)
1 static struct sval *eval_application(ast *application, struct environment *env) {
2 ...
3 struct sval *result = NULL;
4 if (SVAL_BUILTIN == function->type) {
5 result = apply(function, arguments, num_args, env);
6 } else {
7 // If it is variadic, we need to create a list out of the arguments.
8 if (function->data.proc->is_variadic) {
9 struct sval *list = sval_list_create(arguments, num_args);

10 arguments = realloc(arguments, sizeof(struct sval *));
11 ASSERT_ALLOC(arguments, "eval_application");
12 arguments[0] = list;
13 }
14 // Otherwise, extend the current environment.
15 struct environment *new_env =
16 environment_extend(function->data.proc->env, function, arguments);
17 result = eval(function->data.proc->body, new_env);
18 }
19 ...
20 }

275

7.2 Variadic Arguments 276

In the else block, we have a second if clause that accounts for variadic func-
tions. We already have an array of evaluated arguments, so we can simply create
an s-value to represent a list.1 We still need to use an array of arguments to store
the newly-initialized list, so we should reuse that space via realloc. The first, and
only argument, is a pointer to the list (of given arguments). Lastly, we evaluate the
function body as normal via environment extension. Let us now try the “length”
example from before:

Listing 7.56

(define length
(λ (ls)
(cond
[(null? ls) 0]
[else (add1 (length (rest ls)))])))

(define process-any-args
(λ-var (args)
(length args)))

> (process-any-args 1 2 3 4 5 6)
> (process-any-args 1 2 3)
> (process-any-args)

6
3
0

A benefit of writing variadic functions is that we can implement generalized
“helper” functions. For instance, it would be nice to have, say, a “list” function
that creates a list of its evaluated arguments (note the distinction between this and
a quoted list). We must write a helper function to extract each element from the
variadic argument which creates a list of cons pairs:

Listing 7.57

(define list
(letrec ([list-helper

(λ (ls)
(cond
[(null? ls) '()]
[else
(cons (first ls)

(list-helper (rest ls)))]))])
(λ-var (args)
(list-helper args))))

> (list (+ 2 3) 4 5 6 7 (- 8 3)) (5 4 5 6 7 5)

Exercise 7.17. (⋆⋆)
Redesign the combineDigits* function to be variadic rather than receiving a list
of digits.

Exercise 7.18. (⋆⋆)
The Racket programming language supports variadic arguments in functions, but
with a slightly different syntax than our lambda-var implementation. args, in the
following left-hand code listing, is an array of arguments passed to foo. Though,
Racket similarly supports defining functions using a form of syntactic sugar that
abstracts away the lambda which we demonstrate in the right-hand code listing.
Remove λ-var and replace it with the “non-syntactic sugar’d” Racket variant. Hint:
the formal parameter, in this instance, is not a special form!

1This function is equivalent to applying the built-in list procedure. We abstracted away the proce-
dure to minimize redundancy.

276

277 Functional Programming

Listing 7.58

(define foo
(λ args
...))

(define (foo . args)
...)

Exercise 7.19. (⋆⋆)
Implement the second “syntactic sugar’d” Racket variant of variadic-argument pro-
cedures. This relies on the successful implementation of “syntactic sugar’d” func-
tions, which was a previous exercise.

Exercise 7.20. (⋆⋆⋆)
In addition to specifying variadic argument functions, we can specify functions that
receive “at least n” arguments. For instance, the below function requires that foo
receive at least two arguments when invoked. The first two are bound to arg1
and arg2, and any subsequent arguments are stored as a list in argl. We will
designate these as n-variadic argument functions. Implement n-variadic argument
functions first as the non-syntactic sugared variant, and second as the syntactic
sugar’d variant.

Listing 7.59

(define foo
(λ (arg1 arg2 . argl)
...))

277

7.3 First-Class and Higher-Order Functions 278

7.3 First-Class and Higher-Order Functions

Variables are, for all intents and purposes, data. That is, a variable encapsulates
information about some particular value. With this notion of data, we often manipu-
late data through functions by passing them as arguments. Functions, contrastingly,
are often viewed as constructs that receive, then return, data, wherein some claim
that functions themselves are not data. For instance, many programming languages
do not support the ability to “store” or pass functions around as arguments. C,
funnily enough, mimics this behavior via function pointers. Our languages, on the
other hand, fully support first-class functions, i.e., treating variables and functions
equivalently as data. So, we can pass functions to other functions as arguments just
like we can with numbers, symbols, et. cetera. Along those lines, functions may
return other functions. As an example, let us write a function perform, in LQUASI,
which receives three arguments: a binary function f , and two expressions e1 and
e2. perform returns the result of applying f to e1 and e2.

Listing 7.60

(define perform
(λ (f e1 e2)
(f e1 e2)))

The above code may appear redundant, since, because f is a function, we can
invoke it on e1 and e2. But alas, this code demonstrates the potential of first-class
functions—because functions are data, we are able to pass them as arguments and
return functions from functions. Another example, one that returns a function, is
defined below.

Listing 7.61

(define return-function
(λ ()
(λ (x) (+ x 10))))

What happens if we invoke this function? Because it receives no arguments, we
invoke it via (return-function). The output window should say that this function
returns a function, which is correct! We can, therefore, apply the return value of
this function to any numeric value.

Listing 7.62

(define return-function
(λ ()
(λ (x) (+ x 10))))

> (return-function)
> ((return-function) 20)

<function>
30

Functions that return other functions requiring arguments is commonplace in
functional programming. In fact, Haskell Curry helped develop the concept of
currying , which reduces functions of multiple arguments into functions of only one
argument. For example, consider the following equivalent functions, where the left-
hand definition receives four arguments, and the right-hand definition receives one
but returns a sequence of functions wherein each receive one argument as well.
Currying helps translate functions to the λ-calculus for analysis of their properties.

278

279 Functional Programming

Listing 7.63—Function Currying

(define sum-of-squares
(λ (x y z w)
(+ (* x x)

(* y y)
(* z z)
(* w w))))

(define sum-of-squares
(λ (x)
(λ (y)
(λ (z)
(λ (w)
(+ (* x x)

(* y y)
(* z z)
(* w w)))))))

Additionally, function currying allows us to partially define a function, then
perhaps extend its capabilities down the line without the need to rewrite its invo-
cations. Consider a sequence of functions where we pass the desired tip percentage
of a restaurant bill, the tax percentage, and finally two values representing the bill
subtotal and non-taxable service fees. The use of first-class functions means we can
return and store a function that always computes, say, fifteen percent gratuity:

Listing 7.64—Restaurant “Bill” Calculator

(define compute-bill
(λ (tip-pt)
(λ (tax-pt)
(λ (sub serv)
(let ([tax-amt

(+ sub
(* sub

(/ tip-pt 100)))])
(+ (+ tax-amt

(* (/ tax-pt 100)
tax-amt))

serv))))))

(define t15 (compute-bill 15))
(define t15x7 ((compute-bill 15) 7))

> (((compute-bill 30) 8.5) 127.50 25)
> ((t15 9.5) 99.95 15)
> (t15x7 65.00 5)

204.84
140.86
84.98

The concept of higher-order functions is a fundamental concept in functional
programming. A higher-order function is a function that intentionally receives a
function(s) as arguments. One popular example is map: it receives a function and
a list, then applies the function to every element of the list, resulting in a new
(returned) list.

Listing 7.65

(define map
(λ (f ls)
(cond
[(null? ls) '()]
[else (cons (f (first ls))

(map f (rest ls)))])))

(define ls1 '(1 2 3 4 5)

> (map (λ (x) (* x x)) ls1) (2 4 6 8 10)

Another higher-order function example is filter, which removes elements that
do not satisfy a given predicate p. In other words, all elements e such that (p e)
returns true are collected.

279

7.3 First-Class and Higher-Order Functions 280

Listing 7.66

(define filter
(λ (p ls)
(cond
[(null? ls) '()]
[(p (first ls))
(cons (first ls)

(filter p (rest ls)))]
[else (filter p (rest ls))])))

(define ls '(1 2 3 4 5 6))

> (filter even? ls)
> (filter odd? ls)
> (filter zero? ls)

(2 4 6)
(1 3 5)
()

A third example is foldr: a function that receives a binary function, an accu-
mulator, and a list of values. foldr applies the function to both the accumulator
and the first of the list, stores this result back into the accumulator, and continues
until the list is empty.1

Listing 7.67

(define foldr
(λ (f acc ls)
(cond
[(null? ls) acc]
[else (foldr f

(f (first ls) acc)
(rest ls))])))

(define ls1 '(10 2 49 1))
(define ls2 '("Hello, " "Jane"))

> (foldr + 0 ls1)
> (foldr string-append "" ls2)
> (foldr max (first ls1) (rest ls1))

62
"Hello, Jane"
49

A fourth example is zipf, which receives a binary function and two lists. It then
applies the binary function to each element of the two lists, returning a new list in
the process. Our version of zipf only considers lists that are of the same length.

Listing 7.68

(define zipf
(λ (f ls1 ls2)
(cond
[(null? ls) '()]
[else
(cons
(f (first ls1) (first ls2))
(zip f (rest ls1) (rest ls2)))))))

(define ls1 '(1 3 5 7 9 11)
(define ls2 '(2 4 6 8 10 12)

> (zipf + ls1 ls2) (3 7 11 15 19 23)

Exercise 7.21. (⋆⋆)
Implement the higher-order function andmap, which receives a predicate and a list.
andmap returns #t if all elements of the given list satisfy the predicate, and #f
otherwise.

1The max function receives two numbers and returns the larger of the two.

280

281 Functional Programming

Exercise 7.22. (⋆⋆)
Implement the higher-order function ormap, which receives a predicate and a list.
ormap returns #t if at least one element of the given list satisfies the predicate, and
#f otherwise.

Exercise 7.23. (⋆⋆)
Implement the higher-order function compose2, which receives two functions and
returns a function representing their composition. Recall that the composition of
two functions f and g is f◦g, or g applied to its argument x, which is then passed
to f , i.e., λx.(f(g(x))).

Exercise 7.24. (⋆⋆⋆)
Implement the higher-order function compose, which receives at least two functions
and returns a function representing their collective composition. You will need to
use a variadic argument function. For instance, if compose receives functions f , g,
h, and i, compose returns a function λx.(f(g(h(i(x))))). Hint: a variant of foldr,
namely foldl, is incredibly helpful in making this solution as clean and concise as
possible.

Exercise 7.25. (⋆⋆⋆⋆)
Recall the cosine similarity exercise from Chapter 5. Repeat the exercise, only this
time, implement your algorithm at the LVARIADIC level. We present this exercise
in this section due to the relevancy of foldr, map, and zip and how they help to
simplify the problem.

281

7.4 Evaluation and Application at the Interpreter Level 282

7.4 Evaluation and Application at the Interpreter Level

Our languages perform expression evaluation and function application at the meta-
interpreter level, i.e., in the interpreter (C) code. It is extremely important to allow
the programmer to use eval and apply as functions at the interpreter level, whose
motivation follows shortly. In this section, we will write LEVAL: an extension to
LVARIADIC that introduces eval and apply as functions.

expr ::= application | ...
application ::= eval | apply | ...
eval ::= ‘eval ’ expr
apply ::= ‘apply ’ expr

Figure 7.5: Extended BNF Grammar for LEVAL

First, let us discuss what eval and apply should do at the interpreter level.
eval takes an expression and evaluates it as code rather than data. This means
that, if the program generates an s-expression at runtime, rather than one we type
in the code editor, we may use eval to produce the value of that s-expression data
as if it were executable code. For example, if we supply eval with the following
inputs, we receive the corresponding outputs:

Listing 7.69

(define x 5)
(define y 6)

> (eval 5)
> (eval '(+ 2 3))
> (eval ''y)
> (eval (eval ''y))
> (eval `(+ ,x ,y))

5
5
y
6
11

Its apply counterpart, on the other hand, receives two arguments: a function
and a list of arguments to the function. As its name may suggest, it applies the
function to all elements inside the provided list. See the below examples.

Listing 7.70

> (apply + '(1 2 3 4 5))
> (apply * '(1 2 3 4 5))
> (apply cons '(1 2))
> (apply append '((a b c) (d e f)))
> (apply (λ (x) (+ 5 x)) '(100))

15
120
(1 . 2)
(a b c d e f)
105

Importantly, apply does not return a list; its return value is entirely dependent
on the provided function.

282

283 Functional Programming

There are a couple of ways we could implement these two functions into our lan-
guage, and we will start with eval. The simplest approach may be a bit inefficient,
but it is the most intuitive. A naive approach to our problem is to call the root
eval function on the result of evaluating the argument. We quickly realize, though,
that eval requires an abstract syntax tree as input, not an s-value! So, instead of
writing a function from s-values to s-values, let us take a “backdoor approach” by
using our parser, since that gives us the desired abstract syntax tree.

The result of any evaluated expression is some s-value printed to the terminal
via sval-print. What if, instead, we wrote code to first evaluate the argument to
eval, then convert the corresponding s-value result to a string, and feed that into
the parser? This gives us the following process diagram:

→ s = eval eval(...)
→ s'= sval tostring(s)
→ t = parser create ast(s')
→ eval(t)

eval eval is the special form evaluation function. We begin by evaluating the
argument to eval. From there, we take the resulting s-value and convert it to a
string.

Listing 7.71—Function to Evaluate eval (eval.c)
1 static struct sval *eval_eval(ast *eval_ast, struct environment *env) {
2 struct sval *sv = eval(ast_child(eval_ast, EVAL_EXPR_IDX), env);
3 char *sv_str = sval_tostring(sv);
4 return NULL;
5 }

The sval tostring function is not difficult (to write), but requires some refac-
toring. Right now, sval print outputs the string representation to standard out-
put. We want the representation to be stored as a string! To do this without having
to rewrite a ton of code, we will create a new function: sval fprint, which receives
an s-value and a FILE * destination. Fortunately, all we need to do is go through
the code for sval print and change any printf invocation to fprintf. In making
this change, we will redefine sval print to call sval fprint with stdout as the
FILE * input stream.

Listing 7.72—Abstracting From sval print Definition (sval.c)
1 void sval_print(struct sval *sv) {
2 sval_fprint(sv, stdout);
3 }
4
5 static void sval_fprint(struct sval *sv, FILE *stream) { ... }

283

7.4 Evaluation and Application at the Interpreter Level 284

This, in and of itself, does not solve our problem of outputting the s-value as a
char *. To do so, we will write another function: sval tostring which receives
an s-value and returns the desired char *. What is more interesting about this
function is how we output the s-value to a string. Recall that sval fprint also
receives a FILE *; we can use the open memstream function to direct data written
to the stream into the provided char *.

Listing 7.73—Converting S-Value to char * (sval.c)
1 char *sval_tostring(struct sval *sv) {
2 char *buffer = NULL;
3 size_t buffer_size = 0;
4 FILE *stream = open_memstream(&buffer, &buffer_size);
5 sval_fprint(sv, stream);
6 fclose(stream);
7 return buffer;
8 }

Now that we have the necessary char *, we can invoke the parser! Though,
we need a function that receives an input string and returns an abstract syntax
tree–something we currently do not have because the logic/function for parsing an
abstract syntax tree lies within parser parse.

Listing 7.74—Create an AST From String (parser.c)
1 ast *parser_create_ast(const char *contents) {
2 mpc_ast_t *mpc_ast = parser_open(contents, PARSE_STRING);
3 ast *tree = malloc(sizeof(ast));
4 ASSERT_ALLOC(tree, "parser_create_ast");
5 ast_create(tree, mpc_ast, mpc_ast->tag,
6 mpc_ast->children_num, mpc_ast->contents);
7 return tree;
8 }

Finally, inside eval eval, we free the string returned by sval tostring be-
cause it was dynamically allocated by open-memstream. Then, we may call the root
evaluation eval function and pass it the newly-made abstract syntax tree.

Listing 7.75—Evaluating New AST (eval.c)
1 static struct sval *eval_eval(ast *eval_ast, struct environment *env) {
2 struct sval *sv = eval(ast_child(eval_ast, EVAL_EXPR_IDX), env);
3 char *sv_str = sval_tostring(sv);
4 ast *new_ast = parser_create_ast(sv_str);
5 free(sv_str);
6 return eval(new_ast, env);
7 }

Running the tests from before prove to be successful.

Let us switch gears from evaluation and move into function application. As we
stated, apply receives a function and a list of arguments. The provided function
must be of the same arity as the number of elements in the list. For instance, + in
(apply + '(1 2 3 4)) requires at least one argument. Another example is (apply
append '((a b c) (d e f))); append requires two arguments and the provided
argument list has two elements which, themselves, are lists. We begin by writing
eval apply where we extract and evaluate the function and its list of arguments
respectively. The goal of this function is to apply the function to an array of s-value
arguments (notice the similarity to eval application!).

284

285 Functional Programming

Listing 7.76—Initial Evaluation of apply (eval.c)
1 #define APPLY_ARGS_IDX 3
2 #define APPLY_FUNCTION_IDX 2
3
4 static struct sval *eval_apply(ast *apply_ast, struct environment *env) {
5 struct sval *function = eval(ast_child(apply_ast, APPLY_FUNCTION_IDX), env);
6 struct sval *loargs = eval(ast_child(apply_ast, APPLY_ARGS_IDX), env);
7 ...
8 }

From here, we initialize the array of s-value arguments and traverse through our
list of arguments to the function. Since the s-value must be a list, we can traverse
it as if we were traversing any other list with a relevant first and rest.

Listing 7.77—Converting Elements into List of S-Values (eval.c)
1 static struct sval *eval_apply(ast *apply_ast, struct environment *env) {
2 ...
3 struct sval **arguments = NULL;
4 struct sval *curr = loargs;
5
6 // Since it is a list, we go element-by-element.
7 int i = 0;
8 while (true) {
9 arguments = realloc(arguments, (i + 1) * sizeof(struct sval *));

10 ASSERT_ALLOC(arguments, "eval_apply");
11 arguments[i] = curr->data.pair.first;
12 if (NULL == curr->data.pair.rest) { break; }
13 i++;
14 curr = curr->data.pair.rest;
15 }
16 ...
17 }

Finally, we can apply the function to its arguments. Though, instead of painstak-
ingly copying or rewriting the code we already have inside eval application, we
should abstract from this and write a function that both eval application and
eval apply can call. This new function: eval function application, receives
an s-value representing the function, an array of s-value arguments, the number of
arguments passed, and the environment to apply the function inside. Because its
definition is identical to the latter half of the previous implementation of eval -
application, we will omit the details.

Listing 7.78—Abstracting from Identical Code in Function Application (eval.c)
1 static struct sval *eval_apply(ast *apply_ast, struct environment *env) {
2 ...
3 return eval_function_application(function, arguments, num_args, env);
4 }
5
6 static struct sval *eval_application(ast *application, struct environment *env) {
7 ...
8 return eval_function_application(function, arguments, num_args, env);
9 }

10
11 static struct sval *eval_function_application(struct sval *function,
12 struct sval **arguments,
13 size_t num_args,
14 struct environment *env) { ... }

Rerunning the previous tests also pass as expected.

285

7.5 Constructive Recursion 286

7.5 Constructive Recursion

Accumulator-Passing Style

We have repeatedly seen examples of recursive functions, many of which are singly
recursive, in which we break a problem down into smaller problem(s) and invoke
recursive calls. Let us consider the factorial function as an example. So long as n >
0, we multiply n by a recursive call with ‘n−1’. That is, we started with the problem
of computing ‘n!’, and we decomposed it into ‘n·(n−1)!’. This problem is then
potentially broken down into a step further, thereby resolving to ‘n·(n−1)·(n−2)!’.1
In this section, we will introduce the concept of accumulator-passing style, which
serves to optimize recursive functions.

A component of accumulator-passing style functions is the fact that a function
of this form is, by definition, tail recursive. A tail recursive function is a function
where the last operation performed is a single recursive function call. Consider the
following definition of length:

Listing 7.79

(define length
(λ (ls)
(cond
[(null? ls) 0]
[else (add1 (length (rest ls)))])))

Let us analyze the recursive stack trace of this function using the input list '(5
10 15 20).

(length ())

(length '(20))

Return 4

(length '(15 20))

Return 3(length '(10 15 20))

Return 2

(length '(5 10 15 20))

Return 1

Return 0

We see that, in the second cond clause, the outermost expression is add1 and
not a recursive call. Therefore, this version of length is not tail recursive and,
therefore, does not use accumulator-passing style. We also know this because the
recursion unwinds—that is, the arrows to the right-hand side correspond to the
recursive unwinding process. Recall that the last step in the function of the non-
base case is an addition operation of 1 and the sum of the next recursive call. Let
us now take a look at a version that keeps track of the length via an argument to
the recursive call.

1We use the word “potentially” because this depends on the input number.

286

287 Functional Programming

Listing 7.80

(define length
(letrec ([length-helper

(λ (ls n)
(cond
[(null? ls) n]
[else (length-helper (rest ls) (add1 n))]))])

(λ (ls)
(length-helper ls 0))))

Let us once again analyze the recursive trace of this function using the input list
'(5 10 15 20):

(length-helper '() 4)

(length-helper '(20) 3)

(length-helper '(15 20) 2)

(length-helper '(10 15 20) 1)

(length-helper '(5 10 15 20) 0)

(length '(5 10 15 20))

Once our tail recursive solution reaches the base case, i.e., an empty list, we im-
mediately return n, which in this example is 4. It is, therefore, more efficient to use
the tail recursive version as opposed to non-tail recursive. For those skeptical read-
ers who question our claim, consider the sum of the number of recursive calls made
plus the number of unwindings versus the number of tail-recursive calls. When pro-
cessing larger lists, the performance benefits of accumulator-passing style begin to
shine brighter than it may originally appear. Of course, accumulator-passing style
functions, in general, should be written with a helper function to accommodate the
additional passed parameter(s) so as to not burden the function caller with remem-
bering their initial values. Another amazing property of tail recursive functions is
their direct correspondence to iterative structures, e.g., loops. Any tail recursive
function may be converted into a function that uses some loop, bypassing the need
for recursion at all.

Continuation-Passing Style

Before we gravitate into a discussion on continuations and the need for continuation-
passing style as a whole, let us begin with a motivating example. Suppose we have
the following function that computes the product of a list of numbers (assuming
that an empty list returns 1):

287

7.5 Constructive Recursion 288

Listing 7.81

(define product-lon
(λ (ls)
(cond
[(null? ls) 1]
[else (* (first ls) (product-lon (rest ls)))])))

This works as intended, but what happens if one of our elements is a zero? The
entire product resolves to zero, of course! The core issue is slightly less subtle,
however: when we encounter a zero, the product of the remaining numbers in the
list is still computed, despite it always resulting in zero. What if there was a way to
circumvent this issue? In C, for instance, we have explicit return statements that
terminate a procedure early.1

Listing 7.82

1 long double product-lon(long double *lon, size_t n) {
2 long double product = 1;
3 for (int i = 0; i < n; i++) {
4 if (0 == lon[i]) { return 0; }
5 else { product = product * lon[i]; }
6 }
7 return product;
8 }

We check to see if the current element is zero and, if so, immediately return 0
thereby cancelling the rest of the loop. We are, sadly, not afforded this luxury in
our languages. A curious reader may pose the following question: “Could we not
just add an additional cond clause to the mix that resolves to zero if the first of
lon is 0?” For instance, suppose we made the following alteration:

Listing 7.83

(define product-lon
(λ (ls)
(cond
[(null? ls) 1]
[(zero? (first ls)) 0]
[else (* (first ls) (product-lon (rest ls)))])))

Would this not work as intended? While it would allow us to break out of the
current recursive step, it would do nothing to prevent the unnecessary recursive
unwinding. This alternative base case is treated identically to the null? base case,
meaning that when it is reached, the program unwinds the recursion up to that
point if it exists (which, for our example, clearly does!). Continuations allow us to
implement this behavior.

A continuation is, in effect, the next “step” of a computation. More specifically,
it denotes where the result of a previous computation is sent. So, using the word in
its definition, it allows us to see where we continue evaluation. Continuations are
somewhat meaningless without the notion of continuation-passing style. A function
written in CPS receives one extra argument: a continuation k, which is sent the
result of a computation.2 Let us write a very simple example where we convert
addition into continuation-passing style.

1Instead of using a recursive algorithm, we will use the iterative approach since it is simpler to
implement and understand in a C context.

2We intentionally do not further elaborate on the continuation representation.

288

289 Functional Programming

Suppose we have a binary function add that we want to convert to continuation-
passing style.

Listing 7.84

(define add
(λ (n m)
(+ n m)))

The first step is to rename the function with an affixed -cps. This is not manda-
tory, but it helps to distinguish it from its non-CPS’d counterpart:

Listing 7.85

(define add-cps
(λ (n m)
(+ n m)))

Next, we must add an extra formal parameter to the function: the continuation
k:

Listing 7.86

(define add-cps
(λ (n m k)
(+ n m)))

Finally, everywhere there exists a “simple” operator we wrap in an invocation
to k. For the time being, we assume that continuations are functions:

Listing 7.87

(define add-cps
(λ (n m k)
(k (+ n m))))

So, what exactly is going on in this example? We add the numbers n and m and
send the result of the computation to the continuation k. The question that is likely
on everyone’s mind at this point is, “What is the continuation?”. The answer is
anything ! An answer like this is somewhat disappointing since it may not clarify
anything, but let us continue with the example and see if it fills in the gaps.

We want to designate the empty continuation, i.e., the “base” continuation. This
continuation, since we are using a functional representation of continuations, is just
the identity function.

Listing 7.88

(define empty-k
(λ ()
(λ (v) v)))

So, when we invoke empty-k, we receive a function whose input is echoed back
out. Let us see what this looks like in the context of our add-cps function. Recall
that it now takes three arguments: two numbers and a continuation. Upon its
invocation, we supply said numbers and the empty continuation.

289

7.5 Constructive Recursion 290

Listing 7.89

(define add-cps
(λ (n m k)
(k (+ n m))))

(define empty-k
(λ ()
(λ (v) v)))

> (add-cps 5 10 (empty-k)) 15

Let us magnify this a bit to see how it works. Invoking add-cps resolves its
arguments as follows:

Listing 7.90

(add-cps 5 10 (λ (v) v))
((λ (v) v) (+ 5 10))
((λ (v) v) 15)
15

Invoking (empty-k) evaluates to the identity function. Therefore passing the
expression (+ 5 10) resolves to itself, which reduces to 15.

An example with only addition is not very fun nor enlightening, so let us now ap-
ply our knowledge to the original problem. We want to bail out of the product-lon
function early. We can implement this behavior by sending a value to a continuation
which, in effect, breaks the chain of recursive calls and prevents unwinding. Recall
that a continuation is the next step of a computation, or the next thing to do, so
to speak. When invoking a continuation, everything, i.e., function invocations, etc.,
performed before the continuation is stopped. Therefore, this behavior is exactly
what we are after—if we encounter a 0 in our list of numbers, we know that the
product can never not be zero from that point forward, meaning that we should
simply invoke the continuation with 0. Let us start by converting our product-lon
function into continuation-passing style:

Listing 7.91

(define product-lon-cps
(λ (ls k)
(cond
[(null? ls) ...]
[(zero? (first ls)) ...]
[else ...])))

We took the liberty of affixing -cps to the function name as well as adding
k to the formal parameter list. Now, we have three cases; the first two of which
are trivial. Numbers are “simple”, meaning that all we need to do is invoke the
continuation in these cases.

Listing 7.92

(define product-lon-cps
(λ (ls k)
(cond
[(null? ls) (k 1)]
[(zero? (first ls)) (k 0)]
[else ...])))

290

291 Functional Programming

The recursive case, unfortunately, is not “simple”. A characteristic (and, by
definition, a requirement) of all functions written in continuation-passing style is
that they are tail recursive, akin to accumulator-passing style. With this in mind,
let us write the corresponding skeleton code:

Listing 7.93

(define product-lon-cps
(λ (ls k)
(cond
[(null? ls) (k 1)]
[(zero? (first ls)) (k 0)]
[else (product-lon-cps (rest ls) ...)])))

The first argument, ls, is the same as before, meaning we pass the rest of ls. Our
second argument, i.e., the continuation, is more complex. Recall that we assume
our continuation representation are functions of one argument. This assumption
allows us to write more into the skeleton. The second argument is a function of one
argument, say v:

Listing 7.94

(define product-lon-cps
(λ (ls k)
(cond
[...]
[else (product-lon-cps

(rest ls)
(λ (v)
...))])))

What is v, one should ask? It is the result of computing (product-lon-cps
(rest ls)). Therefore, whatever result is returned from this recursive function
invocation is “stored” in v. Remember that k is a function and, by invoking it, we
pass the argument to the function. In all cases aside from the empty continuation,
this will be the (λ (v) ...) function we declare. So, what do we do with v? Well,
what does the original function do? We multiply the result of the recursive call
(which in this instance is v) with the first of ls, and we can do the same thing
here!

Listing 7.95

(define product-lon-cps
(λ (ls k)
(cond
[...]
[else (product-lon-cps

(rest ls)
(λ (v)
(* v (first ls))))])))

Are we done yet? Almost! We absolutely must not forget to apply k to the
result of the passed continuation function. Otherwise, the correct result will never
be computed and sent to future continuations. Remember that we can only apply
the continuation to “simple” values. Fortunately, a multiplication * is simple, so
we are safe to invoke the continuation on the result:

291

7.5 Constructive Recursion 292

Listing 7.96

(define product-lon-cps
(λ (ls k)
(cond
[(null? ls) (k 1)]
[(zero? (first ls)) (k 0)]
[else (product-lon-cps

(rest ls)
(λ (v)
(k (* v (first ls)))))])))

Invoking our function with the empty continuation from before gives us delightful
(albeit predictable) results:

Listing 7.97

> (product-lon-cps
'(5 8 0 17 2 1 8 2 8 1 27 81 82 72 27 17 61 623)
(empty-k))

> (product-lon-cps
'(73 81 62 83 76 18 62 8)
(empty-k))

0

20646452185344

This looks identical to what it would look like if we did not bother with contin-
uations and continuation-passing style. Indeed, the output perfectly mirrors said
counterpart. What is obscured by our changes, however, is the performance gain
when using very large lists or lists that have, say, a zero near the front of the list.

Practicality of Continuation-Passing Style

We now present another topic that benefits from continuation-passing style seman-
tics: exceptions. Consider the following function to divide a number n by m:

Listing 7.98

(define divide
(λ (n m)
(/ n m)))

Of course, if we set m = 0, the program crashes because dividing by zero is
undefined. Though, what if we did not want the program to crash? We may, instead,
want to return a message to the programmer. We could, therefore, implement the
following code:

Listing 7.99

(define divide-or-error
(λ (n m)
(cond
[(zero? m) "div/0"]
[else (/ n m)])))

292

293 Functional Programming

While this solves our problem, it is a bit cumbersome. Furthermore, it now
carries an assumption that the programmer must deal with: if the function has an
error, it returns a string. Otherwise, a number is returned. It would be nice to give
the function caller a say in how errors are handled. This is, again, where we may use
continuations. Imagine that we have two different “pipelines”, so to speak, where
we dedicate the former pipeline for errors and the latter for “successful” functions,
i.e., those that do not error. We have seen that we can pass values to continuations,
so we can implement these pipelines as continuations! Thus, if a function errors, it
sends a value to the “error continuation” and otherwise sends the function result
to the “success continuation”. Let us rewrite the function using these ideas:

Listing 7.100

(define divide-or-error
(λ (n m err-k succ-k)
(cond
[(zero? m) (err-k "div/0")]
[else (succ-k (/ n m))])))

Then, we may invoke the function with continuations (as functions themselves)
that handle received values differently. For instance, if the function sends a value to
the error continuation, we may want to print it using printf. On the other hand,
if the function does not error, we should just resolve to the value itself.

Listing 7.101

> (divide-or-error 5 0
(λ (err) (printf "ERR: ∼a∼n" err))
(λ (succ) succ))

> (divide-or-error 66.5 7
(λ (err) (printf "ERR: ∼a∼n" err))
(λ (succ) succ))

"ERR: div/0"

"9.5"

We could wrap this behavior in another function, e.g., divide, that abstracts
away the explicit continuation definitions.

Listing 7.102

(define divide
(λ (n m)
(divide-or-error n m
(λ (err) (printf "ERR: ∼a∼n" err))
(λ (succ) succ))))

Aside from programming language constructs such as exception-handling, is
there another reason why converting functions into continuation-passing style is
worth the hassle? Of course; any function can be converted into continuation-
passing style. Consequently, a CPS’d function is in tail position. We can eliminate
tail calls as a form of program optimization, whose benefits shall soon become ap-
parent.

293

7.5 Constructive Recursion 294

Exercise 7.26. (⋆⋆⋆)
Properties of functions are sometimes deterministic, and other times not. In general,
though, it is impossible to write an algorithm that solves non-trivial semantic prop-
erties of functions.1 Fortunately for us, determining if a (simple) function is tail-
recursive is neither non-trivial nor a semantic property! Write the tail-recursive?
predicate that determines whether a quoted function is tail-recursive. Account for
cond, if, lambda, zero?, add1, sub1, as well as the two-argument + and * functions.
You may assume that the expression mimics a locally-recursive function definition.
We present a few examples to guide your design.

Listing 7.103

(define f1
'(! (lambda (n)

(cond
[(zero? n) 1]
[else (* n (! (sub1 n)))]))))

(define f2
'(!-tr (lambda (n acc)

(cond
[(zero? n) acc]
[else (!-tr (sub1 n) (* n acc))]))))

(define f3
'(fib (lambda (n)

(cond
[(zero? n) 0]
[(zero? (sub1 n)) 1]
[else (+ (fib (sub1 n))

(fib (sub1 (sub1 n))))]))))

> (tail-recursive? f1)
> (tail-recursive? f2)
> (tail-recursive? f3)

#f
#t
#f

A Flavor of Tail-Call Optimization

We have discussed both accumulator-passing and continuation-passing styles, but
why not put them to use? In this section, we will explore the need for accumulator-
passing style and how it plays a role in tail-call optimization.

1All thanks to Henry Gordon Rice.

294

295 Functional Programming

We now understand why tail recursion is significant when dealing with recursive
functions, so what if we simply translate every function that uses non-tail recursion
into ones that do use tail recursion? This is possible and many compilers/imple-
mentations do this, but it is quite complicated. Moreover, the manual translation
of a large function may drastically increase in complexity when converting it to its
tail recursive counterpart. Fortunately, in “real” Scheme implementations, tail-call
optimization is a requirement, which means the procedure call stack will never over-
flow from a function that otherwise might (e.g., from a non-tail recursive function
use). Our interpreter does not use tail recursion nor does it perform any optimiza-
tions to do such. This, unfortunately, implies that writing a function that uses
tail recursion in our language poses minimal performance benefits.1 Consider the
following recursive trivial recursive implementation of the factorial function; testing
this function on a small number produces expected results. Though, if we try a
rather large number, e.g., 15000, gives us a segmentation fault.

Listing 7.104

(define !
(λ (n)
(if (zero? n)

1
(* n (! (- n 1))))))

> (! 5)
> (! 15000)

120
Segmentation fault.

First, we need to know why this segmentation faults with a large number as
input. Let us look at the Valgrind output to determine the problem:2

==93175== Stack overflow in thread #1: can't grow stack to 0x1ffe801000
==93175==
==93175== Process terminating with default action of signal 11 (SIGSEGV)
==93175== Access not within mapped region at address 0x1FFE801E60
==93175== Stack overflow in thread #1: can't grow stack to 0x1ffe801000
==93175== at 0x495EE6C: ??? (in /usr/lib/aarch64-linux-gnu/libgmp.so.10.4.1)
==93175== If you believe this happened as a result of a stack
==93175== overflow in your program's main thread (unlikely but
==93175== possible), you can try to increase the size of the
==93175== main thread stack using the --main-stacksize= flag.

Valgrind states that the interpreter crashed, most likely, due to a stack overflow.
Recursive functions written in a non-tail recursive manner push activation records,
continuously, onto the call stack. There is a limit to how many activation records
can go on the call stack at a time. So, rewriting ! into t-tr is as follows:

1Testing the recursive versus tail recursive factorial functions prove to show a difference in favor of
the tail recursive solution by only a few milliseconds.

2Valgrind is a program that allows programmers to debug C memory problems and crashes.

295

7.5 Constructive Recursion 296

Listing 7.105

(define !-tr
(λ (n)
(!-tr-helper n 1)))

(define !-tr-helper
(λ (n acc)
(if (zero? n)

acc
(!-tr-helper (sub1 n)

(* n acc)))))

> (!-tr 5)
> (!-tr 15000)
> (!-tr 30000)

120
2746599...
Segmentation fault.

Sadly, this also causes a stack overflow, albeit allowing for a slightly higher
input value, as we see that the second test case works. What is the problem? Our
interpreter is written in such a way that does not account for tail recursive functions.
Recall how the function eval application works: we recursively evaluate the
arguments to a function, then recursively evaluate the function body. The last
sentence is the issue we need to resolve. Let us take this one step at a time,
however, and analyze a very small interpreted language: one that supports global
definitions, if, and non-variadic function application. We, of course, need to allow
numbers, booleans, and symbols.

The reason we care about tail-call optimization in the first place is that we can
represent tail recursive function calls as infinite loops! That is, instead of recursing
on the body of the function upon function application, why not create some global
static variables that keep track of the current expression to evaluate? Namely, if we
create two pointers: ast * and struct environment *env, we can continuously
reassign them when evaluating.

Listing 7.106—Creating Global Variables for TCO (eval.c)
1 static ast *ast_out = NULL;
2 static struct environment *env_out = NULL;

From here, we need to update eval application to assign values to the global
“out” variables. Again, these designate the “next” abstract syntax tree and envi-
ronment to evaluate in a non-recursive context.

Listing 7.107 (eval.c)
1 static struct sval *eval_application(ast *application,
2 struct environment *env) {
3 ...
4 if (SVAL_BUILTIN == function->type) {
5 result = apply(function, arguments, num_args, env);
6 } else {
7 ast_out = function->data.proc->body;
8 env_out = environment_extend(function->data.proc->env, function, arguments);
9 }

10 ...
11 }

Inside the root eval function, we first wrap the body inside an infinite loop:

296

297 Functional Programming

Listing 7.108—Adding Infinite Loop to Root Evaluation (eval.c)
1 static struct sval *eval(ast *expr, struct environment *env) {
2 while (true) {
3 ...
4 else {
5 EPF("eval: Unknown ast: %p, tag: %s\n", expr, ast_tag(expr));
6 exit(EXIT_FAILURE);
7 }
8 }
9 }

Up next we reassign the expr and env arguments in the root evaluation function.
This presents an issue, though: eval application returns an s-value whenever we
apply a builtin function and NULL otherwise. The solution is to return said s-value
if and only if it is non-NULL.

Listing 7.109 (eval.c)
1 static struct sval *eval(ast *expr, struct environment *env) {
2 while (true) {
3 ...
4 else if (ast_is_type(expr, "application")) {
5 struct sval *sv = eval_application(expr, env);
6 if (NULL != sv) { return sv; }
7 else {
8 expr = ast_out;
9 env = env_out;

10 }
11 }
12 ...
13 }
14 }

It is tempting to try out the tail recursive factorial program now, but there is
another issue: special forms may or may not return NULL with this setup! Namely,
eval if no longer return a meaningful s-value since we assign ast out to be either
the consequent or alternative abstract syntax tree. To account for all special forms,
we should create a global static flag cont that, when enabled, continues the loop
and, when disabled, returns the provided s-value. We need to always disable the
flag after the NULL check.

297

7.5 Constructive Recursion 298

Listing 7.110 (eval.c)
1 static bool cont = false;
2 ...
3 static struct sval *eval(ast *expr, struct environment *env) {
4 while (true) {
5 ...
6 else if (ast_is_type(expr, "application")) {
7 struct sval *sv = eval_application(expr, env);
8 if (NULL != sv || !cont) { return sv; }
9 else {

10 expr = ast_out;
11 env = env_out;
12 }
13 cont = false;
14 }
15 ...
16 }
17 }
18
19 static struct sval *eval_if(ast *ifc, struct environment *env) {
20 struct sval *predicate_value = eval(ast_child(ifc, IF_PREDICATE_IDX), env);
21 bool pv = predicate_value->data.boolean;
22 ast_out = ast_child(ifc, pv ? IF_CONSEQUENT_IDX : IF_ALTERNATE_IDX);
23 cont = true;
24 return NULL;
25 }

Finally, we must disable the flag if we apply a builtin function and enable it
otherwise. Returning an s-value after applying a builtin function is never NULL
unless an error occurs.

Listing 7.111 (eval.c)
1 static struct sval *eval_application(ast *application,
2 struct environment *env) {
3 ...
4 struct sval *result = NULL;
5 if (SVAL_BUILTIN == function->type) {
6 cont = false;
7 result = apply(function, arguments, num_args, env);
8 } else {
9 cont = true;

10 env_out = environment_extend(...);
11 ast_out = function->data.proc->body;
12 }
13 ...
14 }

And that is it! We now have an interpreter that respects tail recursion. We did
not have to modify the signatures for any functions at all. Let us write an infinite
recursive “loop” function as an example of our not-so-difficult work.

Listing 7.112

(define inf
(λ ()
(inf)))

Of course, this never terminates.1 In the old implementation, this would quickly
result in a segmentation fault. Trying a very large input on the tail recursive
factorial function also no longer immediately segfaults.

1It does eventually crash because we are liberal with how we free dynamic memory.

298

299 Functional Programming

Exercise 7.27. (⋆⋆)
Implement tail-call optimization for cond expressions.

Exercise 7.28. (⋆⋆)
Implement tail-call optimization for let, let*, and letrec expressions.

Environment Memoization

In the previous section we implemented tail-call optimization for function applica-
tions, leaving conditionals and local bindings as exercises. One thing to note is that
our program does eventually crash with a SIGSEGV. We exemplify this with the inf
program from before.

Listing 7.113

(define inf
(λ ()
(inf)))

> (inf) SIGSEGV

The reason this occurs, as our footnote stated, is because we constantly allocate
memory. Though, it is somewhat unclear as to where this occurs. Upon investi-
gation, we notice that, whenever we call a function, we extend the environment to
include new formal parameter bindings. This is fine for most functions, but consider
what happens if the arguments do not change in between recursive calls? Would
it not be more efficient to “share” environments rather than creating one that is
exactly the same as a previous function call? Indeed, this is the case. Though, to
do so, we need two important details: how to compare s-values and environments
for equality.

S-value equality requires checking both s-value types and their internal val-
ues. We have functions/operators to compare characters, booleans, numbers, and
strings/symbols, so the only s-value type we must consider is SVAL PAIR. Two pairs
are equivalent if both their first and rest are equivalent. Note that we implemented
almost this exact behavior when adding eqv? to our language; the difference be-
ing that sval equals only returns a bool rather than a boolean s-value and for
comparing exactly two s-values.

299

7.5 Constructive Recursion 300

Listing 7.114—S-Value Equality (sval.c)
1 bool sval_equals(struct sval *sv1, struct sval *sv2) {
2 if ((NULL == sv1) ˆ (NULL == sv2)) { return false; }
3 else if (sv1->type != sv2->type) { return false; } else {
4 switch (sv1->type) {
5 case SVAL_NUMBER:
6 return bignum_equal(sv1->data.number, sv2->data.number);
7 case SVAL_SYMBOL:
8 return 0 == strcmp(sv1->data.symbol, sv2->data.symbol);
9 case SVAL_BOOLEAN:

10 return sv1->data.boolean == sv2->data.boolean;
11 case SVAL_CHARACTER:
12 return sv1->data.character == sv2->data.character;
13 case SVAL_STRING:
14 return 0 == strcmp(sv1->data.string, sv2->data.string);
15 case SVAL_PAIR:
16 if (NULL == sv1->data.pair.first && NULL == sv2->data.pair.first) {
17 return true;
18 } else if (sval_equals(sv1->data.pair.first, sv2->data.pair.first)) {
19 return sval_equals(sv1->data.pair.rest, sv2->data.pair.rest);
20 } else {
21 return false;
22 }
23 default:
24 return false;
25 }
26 }
27 }

In comparing memoized environment bindings, we only want to check if the
memoized environment itself is equal to the new formal parameter bindings made
by the recursive call. Recall that environment lookup recursively checks its par-
ent environment is a binding is not found. The solution is to write a helper function
environment lookup one that searches only the provided environment for a bind-
ing. With this, we can rewrite environment lookup to invoke this procedure.

Listing 7.115—Refactoring Environment Lookup Functions (env.c)
1 struct sval *environment_lookup(struct environment *env, const char *key) {
2 struct sval *value = environment_lookup_one(env, key);
3 if (NULL == value && NULL != env) {
4 return environment_lookup(env->parent, key);
5 } else {
6 return value;
7 }
8 }
9 ...

10 static struct sval *environment_lookup_one(struct environment *env,
11 const char *key) {
12 if (NULL == env) { return NULL; }
13 for (struct env_pair *curr = env->head; NULL != curr; curr = curr->next) {
14 if (streq(curr->key, key)) { return curr->value; }
15 }
16 return NULL;
17 }

Now that we have environment lookup one, we can write a function to com-
pare an environment e against the formal parameters to a function f . We can
memoize the environment to a function’s formal parameters and new argument
bindings if

1. The environment e has bindings to all of the formal parameters of f and only
those formal parameters.

300

301 Functional Programming

2. The environment e’s bindings are equal to f ’s given arguments.

Listing 7.116—Memoized Environment Equality (env.c)
1 static bool environment_equals(struct environment *e, struct sval *f,
2 struct sval **args) {
3 if (NULL == e) { return false; }
4 struct procedure *proc = f->data.proc;
5 if (e->num_associations != proc->num_formals) { return false; }
6 ...
7 }

There is one additional problem we must account for: procedure differentiation.
If one procedure calls another procedure that has the same environment bindings,
then the environment memoizer will assume it is the same procedure as before and
erroneously return the memoized environment. The easy solution is twofold: store
the previously-called procedure alongside the memoized environment and check to
determine if the one passed to environment extend is (via pointer comparison)
the memoized procedure.

Listing 7.117—Environment Extension Modifications (env.c)
1 struct environment *environment_extend(struct environment *e, struct sval *f,
2 struct sval **args) {
3 // Determine if the parent has the same bindings as the new env.
4 if (procedure->data.proc == memo.proc
5 && environment_equals(memo.menv, procedure, arguments)) {
6 return memo.menv;
7 }
8 struct environment *new_env = environment_create(parent);
9 struct procedure *proc = procedure->data.proc;

10
11 // Copy formals over.
12 for (int i = 0; i < proc->num_formals; i++) {
13 environment_put(new_env, proc->formals[i], arguments[i]);
14 }
15 memo.menv = new_env;
16 memo.proc = proc;
17 return new_env;
18 }

And voilà, we have an interpreter that can run truly infinite programs without
segmentation faulting or receiving a kill signal. The obvious disadvantage to this
approach is that we can only infinitely recurse on functions whose arguments are
constant.

301

7.6 Nested Interpreters 302

7.6 Nested Interpreters

Right now, we have written several interpreters in C to parse and evaluate a subset
of the Scheme programming language. Now, because our language is powerful
enough, we will move away from writing in C to writing in the language of our
latest interpreter to write an interpreter! This may seem like madness, but worry
not, we will start out small.

First off, how can we even evaluate expressions in our interpreter? Do we not
need a complex lexer and parser? As a matter of fact, we have all the necessary
ingredients to parse complicated programs already available. Imagine we have a
function called value-of, which computes the value of (hence the name!) some
arbitrary expression. What would that function look like? Or, more importantly,
what would the input data look like? We have a representation of storing an inde-
terminate number of items: lists. If we wanted to compute the value of, e.g., '(3
+ 4), what would we do? Well, we might start by extracting each piece of the list
into variables.

Listing 7.118

(define input '(3 + 4))
(let ([lhs-rand (first input)]

[rator (second input)]
[rhs-rand (third input)])

...)

Extracting an element via first is familiar, but what are second and third?
Each is a mere composition of first and rest. Thus, (second ls) is equiva-
lent to (first (rest ls)), and (third ls) is equivalent to (first (rest (rest
ls))). This allows us to extract specific elements from a list of determined values.
At this point, we may be tempted to apply the rator to the arguments lhs-rand
and rhs-rand. Though, we need to stop and think about what we are evaluat-
ing. Right now, rator is not a procedure; it is a symbol inside a list. We need a
method of mapping between symbols and corresponding procedures. For example,
we want to be able to map the symbol '+ to the procedure +. Fortunately, we can
achieve this via association lists. In Chapter 5, we discussed association lists as
a representation for environments, and we will use them here as our environment
representation (for the time being, our environments will not be representation in-
dependent). Thus, we can create an environment e0 to contain a list of cons pairs,
where the first is the symbol, and the rest is the associated primitive procedure.
For the moment, we will define the global environment as containing the primitive
operations for addition and subtraction. To maintain representation independence,
we should design extend-env and empty-env alongside the global environment:

302

303 Functional Programming

Listing 7.119

(define extend-env
(λ (x arg env)
(cons (cons x arg) env)))

(define empty-env
(λ ()
`()))

(define global-env
(extend-env '+ +
(extend-env '- -
(empty-env))))

The cons pairs denote that the first represents the symbol to search for in the
environment, and the rest is the its bound value. In the case of '+ and '-, the
bound values are the addition and subtraction procedures respectively. Now, we
need a function to lookup the value of symbol in the environment. Suppose we call
this function apply-env, which receives two arguments: a symbol to lookup, v, and
an environment, env. apply-env recursively searches the environment for a cons
pair p where the first of p matches v. If one exists, we return the rest of the first
of the pair, i.e., the corresponding mapped value. Note that, because we are using
cons pairs, we do not need to wrap the rest invocation in a call to first.

Listing 7.120

(define apply-env
(λ (v env)
(cond
[(null? env) 'error]
[(eqv? (first (first env)) v) (rest (first env))]
[else (apply-env v (rest env))])))

We are on our way there! Let us continue by writing some of the value-of
procedure. Some expressions are simple and do not require further evaluation, e.g.,
numbers. Symbols need to be resolved/looked up in the environment.

Listing 7.121

(define value-of
(λ (expr env)
(cond
[(number? expr) expr]
[(symbol? expr) (apply-env expr env)]
[else 'error])))

Interestingly enough, this interpreter, as it stands, is all that is necessary to
write a very simple program; one that outputs the same number that it is provided.
This is rather boring; why not spice it up by adding arithmatic expressions?

Listing 7.122

> (value-of '5 global-env) 5

303

7.6 Nested Interpreters 304

Recognizer and Reducer Functions

We classify a nested interpreter as an interpreter for a language specification that
we write in the language of our interpreter.1 The languages that we have been de-
signing so far use the fancy L with a subscript serving as the name of the language
(extension). Nested interpreters also use subscript identifiers, but include a super-
script asterisk, i.e., L∗. In essence, any and all code written for these languages is
nested inside the C-written interpreter, hence its name.

The nested interpreters that we will design throughout the rest of this book,
in general, utilize two categorizations of functions: recognizers and reducers. A
recognizer function, or recognition function, is a predicate that determines whether
a given expression resembles a form. For example, to determine if an arbitrary
s-expression is a prefixed binary addition operator, we can design the recognizer
add?, which verifies that the s-expression is a list containing three elements, and its
first is the '+ symbol.

Listing 7.123—Example of add? Recognizer Function

(define add?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (first exp) '+))))

Every recognizer function has an accompanying reducer function that describes
how to process or evaluate the form determined by the recognizer. In the add exam-
ple, we may write the value-of-add reducer to add its two components together.
Note that we often recursively evaluate components of a form via a root reduction
dispatch function, such as value-of. We also extract the form components into
local variables to aid in our discussion of the reducer.

Listing 7.124—Example of value-of-add Reducer Function

(define value-of-add
(λ (exp)
(let ([lhs (value-of (second exp))]

[rhs (value-of (third exp))])
(+ lhs rhs))))

Recognition and reduction functions go hand-in-hand, and we will generally
combine them into one listing (frame) to condense the vertical space as necessary.
Recognition functions will always have the name <name?> whereas reducers will
always have the name <value-of-name>.

1John Reynolds uses the term “definitional interpreter” to illustrate the same concepts [Reynolds,
1972].

304

305 Functional Programming

L∗INFIX: An Infix Calculator

A few chapters ago, we began our journey by exploring prefix arithmetic expressions.
In this and subsequent sections, we will begin our journey of writing interpreters
within our interpreter. Each interpreter will have a suffixed asterisk (*) to designate
that it is a nested interpreter. So, in this section, we will write L∗INFIX: a language
to parse simple binary infix expressions.

In the previous section, we implied that some readers may feel inclined to define
three variables for the three components of an infix binary operator, those being the
lhs-rand, rator, and rhs-rand. Interestingly enough, this is part of what we need
to do in order to parse infix expressions. First, we have to be able to recognize a
binary infix expression. A binary infix expression contains the three aforementioned
components in a list, and the rator is a symbol. We can write a function, e.g.,
binop? to test if an expression is a binary infix expression. We will need to write a
helper function, length, to compute the length of a list. We also need to write and
define second, and third (which we will omit in the listings). All that is remaining
is evaluation of a binary infix expression. Similar to those interpreters we have
written in C, as a function application, we evaluate the arguments before applying.
So, let us write a function, e.g., value-of-binop, which receives an expression and
an environment, and evaluates the arguments then applies the respective binary
operator. Following these additions, we should create a few relevant test cases.

Listing 7.125

(define binop?
(λ (expr)
(and (cons? expr)

(= (length expr) 3)
(symbol? (second expr)))))

(define value-of-binop
(λ (expr env)
(let ([lhs-rand (first expr)]

[rator (second expr)]
[rhs-rand (third expr)])

((value-of rator env)
(value-of lhs-rand env)
(value-of rhs-rand env)))))

Listing 7.126

(define value-of
(λ (expr env)
(cond
[(number? expr) (value-of-number expr)]
[(symbol? expr) (apply-env expr env)]
[(binop? expr) ...]
[else 'error])))

Listing 7.127

> (value-of '(3 + 4) global-env)
> (value-of '((3 + 4) + (9 - 6)) global-env)

7
10

Is this not absolutely invigorating? We have written a series of (increasingly-
difficult) interpreters in C, wherein the last one is now powerful enough that we can
write an interpreter within the interpreter.

305

7.6 Nested Interpreters 306

Exercise 7.29. (⋆⋆⋆⋆⋆)
In many instances, infix expressions come across as intuitive to those of us who
use them regularly compared to prefix, as we have demonstrated. Though, one
downside of L∗INFIX is its requirement of parentheses to force precedence and asso-
ciativity. Modify L∗INFIX to allow for expressions that use the following precedence
and associativity rules: parenthesized expressions are evaluated first, then expo-
nents, then multiplication/division, and finally addition/subtraction. Multiplica-
tion, division, addition, and subtraction are all left-associative, whereas exponents
are right-associative. We present some test cases below.

Listing 7.128

> (value-of '(2 - 3 - 4 - 5) global-env)
> (value-of '(2 * 4 + 3 * 5 - 9 * 8) global-env)
> (value-of '(2 + 3 * 4 - 5) '() global-env)
> (value-of '(1 + 2 + 3 + 4) '() global-env)
> (value-of '(2 * 4 + 3 - 5 * 9) global-env)
> (value-of '(2 * (4 * 7 + 5) * 9) global-env)
> (value-of '(2 - (4 + 7 + 5) * 9) global-env)
> (value-of '(2 * 4) global-env)
> (value-of '(3 - 9 + 8 - 7 + 6) global-env)

-10
-49
9
10
-34
594
-142
8
1

Hint: write a flatmap* function that recursively applies a function f to all
sublists of a list ls. Take the following invocations for examples of how this function
might be used.

Listing 7.129—“Flat Map” Skeleton Code and Examples

; A MaybeList is one of:
; - X
; - (cons X MaybeList)

;; flatmap : {X} {Y} [[ListOf X] -> Y]
;; [ListOf [MaybeList X]]
;; -> [ListOf Y]
;; Applies a function f over lists to a list potential
;; lists. If an element is a sublist, it is flattened
;; and f is applied to it. If an element is any other
;; value, it is copied over to the resulting list.
(define flatmap*
(λ (f ls)
(cond
[(null? ls) ___]
[(cons? (first ls)) ___]
[else ___])))

> (flatmap* length '(1 (2) ((3)) (4 ((5 6 7)) 8)))
> (flatmap* length '(((1 2) 3 (4 ((5) (6)) 7)) 8 9))
> (flatmap* length '(1 (((((2 3 4 5) (6)))) 7) 8 9))

(1 1 1 3)
(3 8 9)
(1 2 8 9)

306

307 Functional Programming

L∗COND: Booleans and Conditionals

In this section we will extend L∗INFIX to include boolean literals and conditionals
via if in the L∗COND language.

First, we need a way of recognizing boolean values. So, similar to numbers,
we can simply add a clause in value-of that checks to see if a value is a boolean
using the predefined predicate. Similar to the number and symbol counterparts, we
do not need a recognizer for the primitive boolean type, meaning we just write its
reducer.

Listing 7.130

(define value-of-boolean
(λ (expr env)
expr))

After this addition to the root evaluation function, we can now evaluate boolean
literals.

Listing 7.131

> (value-of '#f global-env)
> (value-of '#t global-env)

#f
#t

Now that our nested interpreter understands boolean values, let us switch our
interpreter to use prefixed expressions instead of infix. In doing this, we will want to
redefine our arithmetic expressions. We shall create two procedures for evaluating
addition and subtraction of arbitrary numbers. These expressions, therefore, will
be of type “add” and “sub” respectively. Each expression consists of an operator
and the two operands. Conveniently enough, both decision predicates are almost
identical—the only distinction being the predicate name and the symbol to check.
Let us also write two reducer functions for computing the value of addition and
subtraction expressions.

Listing 7.132

(define add?
(λ (expr)
(and (cons? expr)

(= (length expr) 3)
(eqv? (first expr) '+))))

(define value-of-add
(λ (expr env)
(let ([lhs-rand (second expr)]

[rhs-rand (third expr)])
(+ (value-of lhs-rand env)

(value-of rhs-rand env)))))

Listing 7.133

(define sub?
(λ (expr)
(and (cons? expr)

(= (length expr) 3)
(eqv? (first expr) '-))))

(define value-of-sub
(λ (expr env)
(let ([lhs-rand (second expr)]

[rhs-rand (third expr)])
(- (value-of lhs-rand env)

(value-of rhs-rand env)))))

307

7.6 Nested Interpreters 308

Listing 7.134

(define value-of
(λ (expr env)
(cond
[(number? expr) (value-of-number expr env)]
[(symbol? expr) (apply-env expr env)]
[(boolean? expr) (value-of-boolean expr env)]
[(add? expr) (value-of-add expr env)]
[(sub? expr) (value-of-sub expr env)]
[else 'error])))

Now, we can execute a few test cases.

Listing 7.135

> (value-of '(- 10 3) global-env)
> (value-of '(+ 2 3) global-env)

7
5

With this, we can add a couple of special yet familiar procedures to our inter-
preter: sub1, add1, and zero?. Their recognition and reducer functions are similar
to the binary add and sub functions.

Listing 7.136

(define zero?
(λ (expr)
(and (cons? expr)

(= (length expr) 2)
(eqv? (first expr) 'zero?))))

(define value-of-zero
(λ (expr env)
(let ([rand (second expr)])
(= (value-of rand env) 0))))

Listing 7.137

(define add1?
(λ (expr)
(and (cons? expr)

(= (length expr) 2)
(eqv? (first expr) 'add1))))

(define value-of-add1
(λ (expr env)
(let ([rand (second expr)])
(+ (value-of rand env) 1))))

Listing 7.138

(define sub1?
(λ (expr)
(and (cons? expr)

(= (length expr) 2)
(eqv? (first expr) 'sub1))))

(define value-of-sub1
(λ (expr env)
(let ([rand (second expr)])
(- (value-of rand env) 1))))

Now, all that is left is to add these forms to value-of.

Listing 7.139

(define value-of
(λ (expr env)
(cond
[(number? expr) (value-of-number expr env)]
[(symbol? expr) (apply-env expr env)]
[(boolean? expr) (value-of-boolean expr env)]
[(add1? expr) (value-of-add1 expr env)]
[(sub1? expr) (value-of-sub1 expr env)]
[(zero? expr) (value-of-zero expr env)]
[(add? expr) (value-of-add expr env)]
[(sub? expr) (value-of-sub expr env)]
[else 'error])))

As always, let us test the modifications.

308

309 Functional Programming

Listing 7.140

> (value-of '(add1 (add1 (add1 (add1 (add1 0)))))
global-env)

> (value-of '(+ (add1 (add1 10)) (sub1 9))
global-env)

> (value-of '(zero? 10)
global-env)

> (value-of '(zero? (sub1 (sub1 (sub1 (sub1 4)))))
global-env)

5

20

#f

#t

Next, we should add support for conditionals. This is simple enough—a con-
ditional in L∗COND takes the form of a list where the first is if, the second is the
predicate to test, the third is the consequent, and the fourth is the alternative. As
we did in LCOND3, we first evaluate the predicate and, if it resolves to true, we
evaluate the consequent. Otherwise, we evaluate the alternative.

Listing 7.141

(define if?
(λ (expr)
(and (cons? expr)

(= (length expr) 4)
(eqv? (first expr) 'if))))

(define value-of-if
(λ (expr env)
(let ([predicate (second expr)]

[consequent (third expr)]
[alternative (fourth expr)])

(if (value-of predicate env)
(value-of consequent env)
(value-of alternative env)))))

Now, once again, we test.

Listing 7.142

> (value-of '(if (zero? 0) (+ 5 5) (+ 10 10))
global-env)

> (value-of '(if (zero? (sub1 (sub1 (+ 1 2)))) 100 200)
global-env)

10

200

309

7.6 Nested Interpreters 310

L∗PROC: Procedures and Variables

Because the interpreter is rather small, we will limit the scope of procedure and
variable definitions by a considerable amount. We define this limit to be a super-set
of the λ-calculus. For instance, our interpreter will be able to correctly evaluate the
following expressions.

Listing 7.143

'((lambda (x) x) 5)

'((lambda (x) (if (zero? x) 20 30)) 0)

'(let ([x 10]) (+ x 20))

'(let ([z 10]) (let ([y 500]) (if (zero? (- y y)) z (add1 z))))

So, this means our interpreter should understand lexically-scoped variables via
one-binding let declarations, and one-argument lambda procedures. Implementing
the former is a bit easier than the latter, so we will begin from there.

Recall, from Chapters 5 and 6, the notion of environment extension. When we
extend an environment e0, we create a new environment e1 which has a pointer
to e0 alongside any new variable bindings (i.e., e1 ⇝ e0). So, when we create,
for instance, a let binding, we create a new environment, then add the variable
name and associated value to said environment. In our interpreter, we first want
to recognize let expressions of one variable binding. A let expression has three
components: the let symbol itself, a variable binding, and the body. Because
we want our let declarations to mimic ones from our implementing language, the
bindings are stored within a list of a list, e.g., ([x 10]). Thus, the symbol to bind
is the first of the first of the second, i.e., x, and the expression to evaluate, i.e., 10,
then bind to x is the second of the first of the second. A complete example is (let
([x 10]) x). So, let us now write the code for evaluating a let expression. We
need to evaluate the variable binding expression first, then use that evaluation in
the body of the let. Furthermore, we need to extend the current environment to
support the new variable binding.

Listing 7.144

(define let?
(λ (expr)
(and (cons? expr)

(= (length expr) 3)
(eqv? (first expr) 'let)
(symbol?
(first
(first (second expr)))))))

(define value-of-let
(λ (expr env)
(let* ([lobindings (second expr)]

[binding (first lobindings)]
[var (first expr)]
[res-var (second expr)]
[body (third expr)])

...)))

We are going to go step-by-step to show exactly what is happening in this evalu-
ation. We first extract the three components of the let declaration. Now, we need
to evaluate the body in an environment that contains the new symbol. Remem-
ber that in Chapters 5 and 6, we introduced extend-env: a procedure to add a
new symbol and expression to an environment as a new environment. Extending
the environment, as we have seen previously, returns a new environment with the
appended symbol binding.

310

311 Functional Programming

Listing 7.145

(define value-of-let
(λ (expr env)
(let* ([lobindings (second expr)]

[binding (first lobindings)]
[var (first expr)]
[res-var (second expr)]
[body (third expr)])

(value-of body (extend-env var (value-of res-var env) env)))))

Here’s the deal: our environment, right now, uses an association list as its rep-
resentation. Fortunately, our interpreter is already representation independent be-
cause there are no references to environments other than apply-env (which ab-
stracts the code to find a symbol binding). The only thing that is left is to write
extend-env and update value-of. We might also consider rewriting global -
env to use extend-env rather than relying on the non-representation-independent
association list representation.

Listing 7.146

(define extend-env
(λ (x arg env)
(cons (cons x arg) env)))

(define value-of
(λ (expr env)
(cond
[...]
[(let? expr) (value-of-let expr env)]
[...])))

Let us see how the tests that use let fair with our changes.

Listing 7.147

> (value-of '(let ([x 10])
(+ x 20))

global-env)
> (value-of '(let ([z 10])

(let ([y 500])
(if (zero? (- y y))

z
(add1 z))))

global-env)

30

10

Awesome! Lexical bindings now work beautifully. Let us now tackle the monster
that is lambda procedures (which is not actually a monster).

A lambda procedure has three components akin to let: the lambda symbol, a
formal parameter as a list element, i.e., (x), and the body. Let us write the code
to determine if an arbitrary expression is a lambda expression.

Listing 7.148

(define lambda?
(λ (expr)
(and (cons? expr)

(= (length expr) 3)
(eqv? (first expr) 'lambda)
(symbol? (first (second expr))))))

311

7.6 Nested Interpreters 312

Now, we need to write the code for evaluating a lambda expression. How do we do
this? A lambda is a procedure, so it should certainly return one! In this procedure,
once invoked, we evaluate the body with respect to the formal parameter. Thus,
when the function is invoked, it receives one argument which is then bound, in a
new environment, to the listed formal parameter. In the code listing, the argument
passed to the lambda is arg, which is bound to the formal parameter specified by
param.

Listing 7.149

(define value-of-lambda
(λ (expr env)
(let* ([loparams (second expr)]

[param (first loparams)]
[body (third expr)])

(λ (arg)
(value-of body (extend-env param arg env))))))

Lastly, we must add function application. There is little use in having lambda
functions without any way of invoking them somehow. A function application has
two components represented as elements of a list: an operator, or “rator” for short,
and an operand, or “rand” for short. A “rator” is either a symbol, a lambda
function, or another application (notice the recursive definition). The former is
only possible when said symbol is defined as a lambda procedure, e.g., in a lexical
scoped environment, i.e., let. The “rand” can be any possible value, so long as it
is a valid argument to the procedure.

Listing 7.150

(define application?
(λ (expr)
(and (cons? expr)

(= (length expr) 2)
(or (symbol? (first expr))

(lambda? (first expr))
(application? (first expr))))))

Now to evaluate function applications. Fortunately, this component is signifi-
cantly easier than the application step in the previous interpreters! All we need to
do is evaluate both the “rator” and “rand”, then invoke “rator” as a function with
“rand” as its argument.

Listing 7.151

(define value-of-application
(λ (expr env)
(let ([rator (first expr)]

[rand (second expr)])
((value-of rator env) (value-of rand env)))))

Tying everything together gets us the following.

312

313 Functional Programming

Listing 7.152

(define value-of
(λ (expr env)
(cond
[...]
[(lambda? expr) (value-of-lambda expr env)]
[(application? expr) (value-of-application expr env)]
[...])))

Let us see some test cases! To make things slightly more interesting, we added
a binary multiplication operator to L∗PROC.

Listing 7.153

> (value-of '((lambda (x) x) 5)
global-env)

> (value-of '((lambda (x) (add1 x)) 5)
global-env)

> (value-of '(let ([! (lambda (x) (* x x))])
(let ([! (lambda (n)

(if (zero? n)
1
(* n (! (sub1 n)))))])

(! 5)))
global-env)

> (value-of '(let ([y (* 3 4)])
((lambda (x) (* x y)) (sub1 6)))

global-env)

5

6

60

80

This mini-interpreter and L∗PROC are now so powerful that they recognize and
correctly evaluate recursive procedures. How amazing is that?

Representation Independence With Respect to Closures

Our interpreter is representation-independent with respect to environments. That
is, the interpreter calls the environment helper functions apply-env, extend-env,
and empty-env. Using these functions instead of manipulating/accessing the en-
vironment directly allows us greater flexibility in our representation of the envi-
ronment. At the moment, this is not the case for closures. Closures are created
when we declare a lambda function, and are applied when invoking the function,
i.e., value-of-lambda and value-of-application respectively. Our current in-
terpreter assumes that closures use a functional representation; value-of-lambda
returns a function, and value-of-application applies the evaluated operator onto
its evaluated operand. An improved approach is to use representation-independent
closures. In this short section, we will implement two helper functions to achieve
this goal.

What functions do we need to get representation-independence with respect to
closures? Well, there are only two cases in which closures are used: when they are
created and when they are applied. So, we should aptly call these create closure
and apply closure respectively.

313

7.6 Nested Interpreters 314

create closure receives two arguments: a body and an environment. It is up
to the implementation of the closure to decide how it wants to represent the closure.
For instance, we may choose to represent it using functions, as we currently do, or
we may choose to use a data-structural representation such as a tagged list. To
showcase the differences between the two, we shall implement closures with tagged
lists. Let us begin by writing the function stub.

Listing 7.154

(define create-closure
(λ (body env)
...))

Because we choose to represent closures as tagged lists, we create a list whose first
element (first) is 'create-closure, whose second element (second) is the formal
parameter to the closure, whose third element (third) is the body to evaluate, and
whose fourth element (fourth) is the environment to evaluate the closure within.
Handily, this is easily doable with quasiquotes.

Listing 7.155

(define create-closure
(λ (x body env)
`(create-closure ,x ,body ,env)))

Now, the “true” wizardry is upon us with apply-closure. apply-closure re-
ceives an operator and an operand. By definition, the operator must be a create-clo
sure tagged list. Before, the operator must have been a function since we were us-
ing a non-representation-independent, functional representation of closures. So, we
can extract out the values from the tagged list using a let, then evaluate the body
with respect to its extended environment. Recall that we have to bind the formal
parameter x to the operand passed to apply-closure.

Listing 7.156

(define apply-closure
(λ (rator rand)
(let ([x (second rator)]

[body (third rator)]
[env (fourth rator)])

(value-of body (extend-env x rand env)))))

Remember the whole motivation behind representation independence: it is not
the job of the interpreter to know how we choose to implement environments or clo-
sures. That is, it sees these structures as black boxes, accessible or mutable through
the helper functions. Therefore, if we decide to change the representation of one or
both structures, the interpreter works the same (assuming we correctly implement
the underlying representation, of course!). Let us finally add these two functions to
the interpreter to make it truly representation-independent. The only two functions
we need to update are value-of-lambda and value-of-application. After doing
so, the previous tests should work as expected.

314

315 Functional Programming

Listing 7.157

(define value-of-lambda
(λ (expr env)
(let* ([loparam (second expr)]

[param (first loparam)]
[body (third expr)])

(create-closure param body env))))

(define value-of-application
(λ (expr env)
(let ([rator (first expr)]

[rand (second expr)])
(apply-closure rator rand))))

Lexical Scoping Implementation

The previous nested interpreter added local bindings via let. Because we continu-
ously pass the environment inside to the expression body, these bindings use lexical
scoping. If we want to add recursive bindings via letrec, we need to amend our in-
terpreter to explicitly use lexical scoping wherein we return the environment used in
the evaluation of an arbitrary expression. This translation propagates through the
entire interpreter. So, to pass two values as the result of some evaluation, we use a
cons pair. Returning pairs from an expression is nothing new, but it is significantly
more convenient to update our representation of both closures and environments to
work with a similar representation. Closures use a functional representation whereas
environments use association lists. We will convert both to use a tagged list repre-
sentation. Tagged lists are data whose first is some identifying “tag”, or symbol,
denoting the purpose of the list contents. So, in particular, we need to update our
definition of apply-env to recognize each environment tag and perform the appro-
priate dispatch. Closures, conveniently, are somewhat simpler compared to their
functional counterparts, omitting the need for the additional lambda expression to
check for the argument to the closure.

315

7.6 Nested Interpreters 316

Listing 7.158—Tagged List Representation for Closures and Environments

(define empty-env
(λ ()
`(empty-env)))

(define extend-env
(λ (x arg env)
`(extend-env ,x ,arg ,env)))

(define apply-env
(λ (y env)
(let ([tag (first env)])
(cond
[(eqv? tag 'empty-env) 'unknown-identifier]
[(eqv? tag 'extend-env)
(let ([x (second env)]

[arg (third env)]
[envˆ (fourth env)])

(cond
[(eqv? y x) arg]
[else (apply-env y envˆ)]))]

[else #f]))))

(define make-closure
(λ (x body env)
`(make-closure ,x ,body ,env)))

(define apply-closure
(λ (rator rand env)
(let ([tag (first rator)])
(cond
[(eqv? tag 'make-closure)
(let ([x (second rator)]

[body (third rator)]
[envˆ (fourth rator)])

(value-of body (extend-env x rand envˆ)))]
[else #f]))))

Now, in the (interpreter) reducer functions, we need to update each place where
we return a value to return a cons pair whose first is the evaluated expression and
whose rest is the environment in which that expression was evaluated. For certain
expressions that recursively call value-of, there is no need to wrap it in such a
pair because the resulting expression is already wrapped. It is also important to
account for the fact that each call to value-of will return a pair, meaning that
in cases where said value is significant, e.g., when evaluating (+ x y), x and y are
extracted out and used in the subsequent pair. In most cases, the lexically-scoped
environment returned is irrelevant, meaning we will omit its extraction. Moreover,
because many of these changes are purely mechanical, we will only show a couple
of recognizer/reducer pairs.

316

317 Functional Programming

Listing 7.159—Lexically-Scopifying Our Interpreter

(define value-of-number
(λ (exp env)
(let ([n exp])
`(,n . ,env))))

(define value-of-zero?
(λ (exp env)
(let ([n (second exp)])
(let* ([pair-n (value-of n env)] [res-of-n (first pair-n)])
`(,(= res-of-n 0) . ,env)))))

(define value-of-mul
(λ (exp env)
(let ([x (second exp)] [y (third exp)])
(let* ([pair-x (value-of x env)] [res-of-x (first pair-x)]

[pair-y (value-of y env)] [res-of-y (first pair-y)])
`(,(* res-of-x res-of-y) . ,env)))))

(define value-of-if
(λ (exp env)
(let ([p (second exp)] [c (third exp)] [a (fourth exp)])
(let* ([pair-p (value-of p env)] [res-of-p (first pair-p)])
(if res-of-p

(value-of c env)
(value-of a env))))))

(define value-of-let
(λ (exp env)
(let ([x (first (first (second exp)))] [binding (second (first (second exp)))] [body (third

exp)])
(let* ([pair-binding (value-of binding env)]

[res-of-binding (first pair-binding)])
(value-of body (extend-env x res-of-binding env))))))

We can throw a few tests at the updated to show its changes. Doing so demon-
strates that our result is, of course, a pair. To get the result, all we would need to
do is retrieve the first. Additionally, we see the tagged list representation in action.1

1Some may question the lack of parentheses upon invoking extend-env for the first time in the tagged
list representation. This is because of how we print lists–if the list generated by extend-env ends in the
empty list, which it does, then it is treated as cons’ing onto a cons cell, thus removing parentheses.

317

7.6 Nested Interpreters 318

Listing 7.160

> (value-of '5
(empty-env))

> (value-of '(lambda (x)
(lambda (y)
(+ x y)))

(empty-env))

> (value-of '(((lambda (x)
(lambda (y)
(+ x y)))

5)
6)

(empty-env))

> (value-of '(let ([add
(lambda (x)
(lambda (y)
(+ x y)))])

((add 5) 10))
(empty-env))

> (value-of
'(let ([f (lambda (x) x)])

(let ([g (lambda (y) (+ (f y) 3))])
(let ([f (lambda (z) (+ 3 z))])
(g 3))))

(empty-env))

'(5 empty-env)

'((make-closure x
(lambda (y) (+ x y))
(empty-env))

empty-env)

'(11 extend-env y 6
(extend-env x 5 (empty-env)))

'(15 extend-env y 10
(extend-env x 5 (empty-env)))

'(6 extend-env y 3
(extend-env
f
(make-closure x x (empty-env))
(empty-env)))

With this brief detour put to bed, we can now implement letrec into our system.
This version of letrec is harder than the one we defined at the interpreter (C)
level because we do not have side-effects in our language. That form of letrec
declared all variable identifiers in an environment prior to evaluating their respective
bindings. As each binding was “uncovered”, so to speak, its respective value was
changed in the environment via environment-set!. We have no such environment
alteration capabilities, so we will need another approach. A not-very-well-known but
classic method is through “half-closures”. Closures, as we know, store an expression
to evaluate and the environment in which it was created. The problem with letrec
is that a binding is allowed to be recursive, meaning that an identifier is referenceable
within the binding. Consider the following definition of factorial that uses letrec.
Note that this code is, at the moment, only executable outside the nested interpreter.

Listing 7.161—Implementation of Factorial using letrec
> (letrec ([!

(λ (n)
(if (zero? n)

1
(* n (! (sub1 n)))))])

(! 5))

120

We somehow need a way of telling our interpreter that letrec contains an
identifier whose binding is referenced only when it (i.e., the identifier) is referenced.

318

319 Functional Programming

So, let us first add the recognizer, reducer, and clause to the interpreter for
letrec expressions. The magic comes not from any of these, but in fact from
apply-env which we will amend shortly. In writing the corresponding reducer
function, we need to communicate to apply-env that the environment passed to
the letrec body evaluation is special since it contains a half-closure. Thus, we will
write a make-letrec-env function that has a unique tag identifier.

Listing 7.162

(define make-letrec-env
(λ (1/2-closure env)
`(letrec-env ,1/2-closure ,env)))

(define letrec?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (first exp) 'letrec))))

(define value-of-letrec
(λ (exp env)
(let ([1/2-closure (second exp)] [body (third exp)])
(value-of body (make-letrec-env 1/2-closure env)))))

(define value-of
(λ (exp env)
(cond
[...]
[(letrec? exp) (value-of-letrec exp env)]
[(application? exp) (value-of-application exp env)]
[else 'error])))

As we said, the heart of the logic lies within apply-env. It encompasses three
(meaningful) clauses: empty-env, extend-env, and now letrec-env. We first
extract the necessary fields from the tagged list. We then retrieve the binding asso-
ciated with the identifier in the half-closure using assv and second. This binding
is evaluated with respect to the environment referenced by y. Again, because this
result is a cons value/environment pair, we return the result defined by its first.

Listing 7.163

(define apply-env
(λ (y env)
(let ([tag (first env)])
(cond
[...]
[(eqv? tag 'letrec-env)
(let* ([1/2-closure (second env)] [envˆ (third env)])
(let* ([p (assv y 1/2-closure)]

[1/2-closure-binding (second p)]
[pair-1/2-closure (value-of 1/2-closure-binding env)]
[res-of-1/2-closure (first pair-1/2-closure)])

res-of-1/2-closure))]
[else #f])))

This modification allows us to evaluate the ! expression from before in our
nested interpreter.

319

7.6 Nested Interpreters 320

Listing 7.164

> (value-of
'(letrec ([!

(lambda (n)
(if (zero? n)

1
(* n (! (sub1 n)))))])

(! 5))
(empty-env))

120

On the other hand, suppose that the half-closure binding is not used recursively.
These instances inherently question the use of letrec in the first place. Regardless,
our interpreter should appropriately handle such cases as if they were recursive.
If we, for example, declare an identifier num to bind the expression 10, the half-
closure is ((num 10)). Whenever we reference num in the body of our letrec, we
invoke apply-env to see that, of course, the corresponding environment is tagged
as make-letrec-env. From there, we evaluate the bound expression with respect
to this environment to see that its value is not a closure, but instead a constant
paired with a “letrec environment”. Note that this idea propagates to defining
functions that are not recursive in a letrec environment; the only difference is that
instead of a constant being returned from the environment, a closure is returned
that is simply not called within its body.

Listing 7.165

> (value-of
'(letrec ([num 10])

(+ num num))
(empty-env))

> (value-of
'(letrec ([even?

(lambda (n)
(zero?
(remainder n 2)))])

(even? 71))
(empty-env))

'(20
letrec-env ((num 10)) (empty-env))

'(#f extend-env n 71
(letrec-env
((even?
(lambda (n)
(zero?
(remainder n 2)))))

(empty-env)))

320

321 Functional Programming

L∗LOOP: Iteration Through Obscured Recursion

In this section, we will write L∗LOOP: an extension to L∗PROC that adds a “non-
recursive” loop to our language. We say “non-recursive” with quotes because the
implementing language, i.e., L∗LOOP will use recursion to emulate the loop. In
essence, L∗LOOP abstracts the recursion away from the programmer.

In Chapter 8, we will explore loops in greater detail in the non-nested inter-
preter. For the moment, in this section, we will add a special form to our nested
interpreter called do. As a look-ahead, the do form in non-functional chapter is sig-
nificantly easier to digest than the one we are about to implement simply because
the capability of our form is limited by our language “toolset”.

A do loop is represented as a list with four elements: the first (first) is the symbol
do, the second (second) is a condition c, the third (third) is a “step expression” s,
and the last (fourth) is the body to evaluate. The do loop executes the body until c
is false. Each time the loop repeats, we evaluate three expressions in the following
order: c, s, and the body. If c is false, neither s nor the body are evaluated.
Programming languages with explicit iteration statements, e.g., C, introduce “side-
effects”, because the last component of a for loop, in most instances, modifies the
value of a variable directly. As an example, consider the following loop in C:

Listing 7.166

1 for (int i = 10; i > 0; i--) { ... }

The body of this for loop is irrelevant and is, therefore, grayed out by ellipses.
Rather, focus on the last component: i--. Such an expression decrements the value
of i by one, then stores it back into i. Because we modify the state of i, we say
that the loop has a side-effect. Our language, in its current state, does not have
side-effects, so we need to circumvent the problem of explicit variable updates. A
simple and effective solution is to shadow variables. Suppose we have the following
code:

Listing 7.167

(value-of '(let ([i 10])
(do [(zero? i) 0]

(- i 1)
(display i)))

global-env)

321

7.6 Nested Interpreters 322

Notice that we specify four components: the variable declaration, the condition,
step, and the loop body expressions. First off, the condition consists of two sub-
components: the condition to continue iteration, and the terminating expression.
Before executing the loop body, we first evaluate the if which, correspondingly,
checks to see if i is zero. When i finally reaches zero, the do expression resolves
to the terminating expression, which in this instance is 0. The step expression says
that, each time the body of the loop is executed, we decrement i by one. Again,
we cannot directly mutate the value of i. So, what we can do is add i with its
new value, namely i-1, to the environment, then pass it forward to subsequent
expression evaluations.1 Finally, we evaluate the body of the do expression.

Let us get to work! We must start by writing the code to recognize, or parse,
a do expression. Again, the first (first) is the do symbol, the second (second) is
an expression which resolves to true or false, the third (third) is an expression that
alters the value of some symbol, and the last (fourth) is the do-body. Revisiting
the expression extracted by third, when we say it “alters the value of some symbol”,
we restrict the possibilities of said expression. Namely, the expression should be a
binary operator where the first operand is a symbol and the second is an arbitrary
expression. E.g., (+ i 1), (- i 1), and so on.

Listing 7.168

(define do?
(λ (expr)
(and (cons? expr)

(= (length expr) 4)
(eqv? (first expr) 'do)
(symbol? (sthird expr)))))

The last expression in the and chain may look a bit complex, but tracing through
a simple do expression will hopefully reduce any induced stress. Now, let us write
the accompanying value-of-do. Be warned that this function is more complicated
than any form we have seen so far, so we need to take it one step at a time. To
start, let us extract the four components from the expression: the condition, the
terminating expression, the step, and the body. Then, we certainly need a letrec
to simulate the iteration. Within the letrec, we declare a function repeat that is
invoked as long as condition resolves to true.

Listing 7.169

(define value-of-do
(λ (expr env)
(let* ([locondition (second expr)]

[condition (first locondition)]
[term (second locondition)]
[step (third expr)]
[body (fourth expr)])

(letrec ([repeat
(λ (...)
...)])

(repeat ...)))))

1This code example also integrates display which calls the built-in display function. We omit its
implementation due to its simplicity. In essence, all it does is calls sval tostring on the given argument.

322

323 Functional Programming

So, what should we pass to repeat? Recall the intended behavior of do: evaluate
the condition expression, and as long as it is true, evaluate the body and extend
the environment to include the updated step value. If the condition is false, return
the terminating expression. So, to keep track of the extended environment, we
should pass it as an argument to repeat. But recall that we also want to evaluate
the body of the loop. Since we are only allowed one expression in the body of a
lambda, we should wrap the invocation of evaluating the body into the recursive
call as an argument.

Listing 7.170

(define value-of-do
(λ (expr env)
(let* ([locondition (second expr)]

[condition (first locondition)]
[term (second locondition)]
[step (third expr)]
[body (fourth expr)])

(letrec ([repeat
(λ (prev-expr prev-env)
...)])

(repeat body env)))))

What is next? We evaluate the condition expression and when it is true, invoke
repeat with an evaluated body and extended environment.

Listing 7.171

(define value-of-do
(λ (expr env)
(let* ([locondition (second expr)]

[condition (first locondition)]
[term (second locondition)]
[step (third expr)]
[body (fourth expr)])

(letrec ([repeat
(λ (prev-expr prev-env)
(cond
[(value-of condition prev-env)
(repeat
(value-of body prev-env)
(extend-env (second step) (value-of step prev-env) prev-env))]

[else term]))])
(repeat body env)))))

When extending the environment, we have a couple of guarantees. The first is
that step is a list. The second is that step is represented as a binary operator
application where the first operand is a symbol. So, we can extract the symbol
with second, evaluate the step expression, then store this result into the new en-
vironment. This is passed along to the recursive call to repeat for subsequent
evaluations. Let us try out the do loop from the preceding example.

Listing 7.172

> (value-of '(let ([i 10])
(do [(if (zero? i) #f #t) 0]

(- i 1)
(display i)))

global-env)

109876543210

As expected, the loop body outputs the numbers in decreasing order from ten
down to one. Then, the loop resolves to 0 once the provided condition is false.

323

7.6 Nested Interpreters 324

L∗LOGIC: A Logical Formula Interpreter

In Chapter 2, we introduced propositional logic, namely logical connectives, atoms,
satisfiability, and proofs. In this section, we will write L∗LOGIC: a nested interpreter
to parse and evaluate propositional logical expressions.

As a refresher, a propositional logic formula contains connectives and atoms.
These connectives include logical conjunction, disjunction, implication, equivalence,
and negation. Our connectives will take the form of tagged lists, where the tag is a
connective identifier, and the rest of the elements represent propositional formulas.
Additionally, atoms will also be tagged lists where the tag is atom. Let us look at
a few examples.

Listing 7.173

(define p1 `(atom p))
(define p2 `(atom q))
`(and ,p1 ,p2)
`(or ,p1 (atom r))
`(imp ,p2 (not (atom p)))
`(iff (not (and ,p1 ,p2))

(imp (not ,p2) (not ,p1)))

Right now, these formulas are not very interesting because there are no associ-
ated truth values. In our previous interpreters, we used environments to store the
corresponding values of symbols. In this language, environments will store either #t
or #f to each atom as an association list. E.g., suppose we define an environment
env as follows.

Listing 7.174

(define env `((p . #t) (q . #f) (r . #f)))

Let us begin! We will first create the data definition for a schema. Then, we can
write the basic evaluator and make the implementation representation-independent.

Listing 7.175

; An AtomSchema is an 'atom

; A UnaryConnective is a 'not

; A BinaryConnective is one of:
; - 'and
; - 'or
; - 'imp
; - 'iff

; A Schema is one of:
; - (ListOf AtomSchema Atom)
; - (ListOf UnaryConnective Schema)
; - (ListOf BinaryConnective Schema Schema)

;; value-of : Schema Environment -> Schema
;; Evaluates a zeroth-order logic schema according to an
;; assignment of truth values in the environment.
(define value-of
(λ (exp env)
(...)))

324

325 Functional Programming

Each logical connective needs a recognition predicate as well as an evaluation
procedure. We can go ahead and fill the gaps inside value-of to streamline our
design.

Listing 7.176

(define value-of
(λ (exp env)
(cond
[(negation? exp) (value-of-negation exp env)]
[(conjunction? exp) (value-of-conjunction exp env)]
[(disjunction? exp) (value-of-disjunction exp env)]
[(implication? exp) (value-of-implication exp env)]
[(biconditional? exp) (value-of-biconditional exp env)]
[else 'error])))

Now let us write the recognition predicates. Again, all we need to do is verify the
number of operands and the list tag. Each recognition predicate is almost identical
to one another; the only difference being the tag and required list length. After
this, we evaluate each of the five connectives according to their logical rules.

Listing 7.177

(define negation?
(λ (exp)
(and (eqv? (first exp) 'not)

(= (length exp) 2))))

(define value-of-negation
(λ (exp env)
(let
([vexp (value-of (second exp) env)])
(if vexp #f #t))))

Listing 7.178

(define conjunction?
(λ (exp)
(and (eqv? (first exp) 'and)

(= (length exp) 3))))

(define value-of-conjunction
(λ (exp env)
(let*
([lhs (value-of (second exp) env)]
[rhs (value-of (third exp) env)])

(and lhs rhs))))

Listing 7.179

(define disjunction?
(λ (exp)
(and (eqv? (first exp) 'or)

(= (length exp) 3))))

(define value-of-disjunction
(λ (exp env)
(let*
([lhs (value-of (second exp) env)]
[rhs (value-of (third exp) env)])

(or lhs rhs))))

Listing 7.180

(define implication?
(λ (exp)
(and (eqv? (first exp) 'imp)

(= (length exp) 3))))

(define value-of-implication
(λ (exp env)
(let*
([lhs (value-of (second exp) env)]
[rhs (value-of (third exp) env)])

(or (not lhs) rhs))))

Listing 7.181

(define biconditional?
(λ (exp)
(and (eqv? (first exp) 'iff)

(= (length exp) 3))))

(define value-of-biconditional
(λ (exp env)
(let*
([lhs (value-of (second exp) env)]
[rhs (value-of (third exp) env)])

(eqv? lhs rhs))))

325

7.6 Nested Interpreters 326

Notice that we recursively evaluate the operands before applying the “connec-
tive” as the operator. Now, the only remaining pieces of the puzzle are atom?,
value-of-atom, and lookup. The former reducer simply invokes lookup on the
atom symbol (which is represented as (second exp), whereas the latter traverses
through the environment to find the corresponding truth value.

Listing 7.182

(define atom?
(λ (exp)
(and (eqv? (first exp) 'atom)

(= (length exp) 2))))

(define value-of-atom
(λ (exp env)
(let ([aexp (second exp)])
(apply-env aexp env))))

Listing 7.183

(define lookup
(λ (y env)
(let ([binding (first env)])
(cond
[(eqv? (first binding) y) (rest binding)]
[else (lookup y (rest env))]))))

Last but certainly not least, we need some test cases!

Listing 7.184

> (value-of
'(atom q)
'((p . #t) (q . #t)))

> (value-of
'(and (atom p) (atom q))
'((p . #t) (q . #t)))

> (value-of
'(and (or (atom p) (not (atom q)))

(not (atom r)))
'((p . #f) (q . #f) (r . #t)))

#t

#t

#t

So, we can use this interpreter to parse simple propositional logic formulas! Let
us make it representation-independent with respect to environments. Fortunately,
we only need one helper function: apply-env. Because it is impossible to add new
atoms to a formula after the start of evaluation, we need not extend the environment.

326

327 Functional Programming

L∗CNF: Conjunctive Normal Form Constructor

Continuing with the trend of formal logic, in this section we will write L∗CNF: an
interpreter for converting propositional logic formulas into conjunctive normal form.

Let us start off with some definitions before proceeding into a discussion on the
importance of conjunctive normal form schemata. A propositional logic schema
S is in conjunctive normal form, or CNF, if and only if it is a conjunction of
disjunctive sub-schemata, composed of only simple schemata, i.e., negated or non-
negated atoms.

‘p ∧ (q ∨ r)’
‘¬q’
‘((¬p ∨ ¬q) ∨ ¬r) ∧ (p ∨ (¬q ∨ ¬r))’

Figure 7.6: Examples of Schemata in CNF

A schema in CNF cannot contain any connective other than logical conjunction,
disjunction, and negation. A schema S is a k-CNF schema if each sub-schema S′

contains k simple schemata. As an example, the previous schema ‘((¬p ∨ ¬q) ∨
¬r) ∧ (p ∨ (¬q ∨ ¬r))’ has two sub-schemata as operands of the (main operator)
conjunction: ‘((¬p ∨ ¬q) ∨ ¬r)’ and ‘(p ∨ (¬q ∨ ¬r))’. The former of these
schemata is comprised of the sub-schemata ‘¬p’, ‘¬q’, and ‘¬r’, all of which are
only (negated) atoms. Similarly, the latter of these schemata is comprised of the
sub-schemata ‘p’, ‘¬q’, and ‘¬r’, all of which are only (negated) atoms. Moreover,
these sub-schemata each have three simple schemata as operands. Therefore if we
assume that we only have p, q, and r as propositional letters in our language, this
is a 3-CNF schema.

Why do we even care about conjunctive normal form? Every propositional logic
schema can be converted into an equivalent CNF. is useful for reducing the com-
plexity and size of logic circuitry, as it relates to propositional logic. Standardizing,
or normalizing, a representation for schemata helps quickly test software that rely
on boolean schemata. Moreover, boolean satisfiability is a fundamental computer
science problem, and converting a schema into its CNF equivalent allows us to
quickly determine a falsifying assignment (should one exist). To do so, we look at
an arbitrary clause of a CNF schema and assign ⊥ to all negated atoms and ⊤ to all
non-negated atoms. Because every conjunct of a CNF schema must be true for the
overarching schema to be true, a falsifying interpretation of a conjunct falsifies the
overarching schema (missing atoms from the sub-schema can be assigned arbitrary
values).

327

7.6 Nested Interpreters 328

Example. Determine a falsifying truth value assignment for the CNF schema ‘(p ∨
¬r) ∧ (¬q ∨ ¬p)’. First we pick a schema at random and assign truth values using
the aforementioned rules. Let ‘p’=⊥ and ‘¬r’= ⊤. Thus, ‘(⊥ ∨ ⊥)’ resolves to ⊥.
Because ‘q’ is not at all used in the sub-schema, we can say that there are at least
two falsifying assignments: ‘p’=⊥, ‘q’=⊤, ‘r’= ⊥, and ‘p’=⊥, ‘q’=⊥, ‘r’= ⊥. So we
quickly conclude that this schema is not a tautology.

Interestingly, a schema that is in full-CNF may be quickly assessed for satisfi-
ability. A schema is in full-CNF if it is in k-CNF where k is equal to the num-
ber of atoms in the language. A full-CNF schema S is a tautology if there are
2k clauses, meaning every possible (truth value) interpretation is a clause in the
full-CNF schema. A full-CNF schema S is unsatisfiable if, after removing logically-
contradicting schemata from the conjunction, the schema is empty. A full-CNF
schema S is satisfiable if it is not unsatisfiable.

Example. Determine if the full-CNF schema ‘((¬p ∨ ¬q) ∨ ¬r) ∧ (p ∨ (¬q ∨ ¬r))’
is satisfiable, assuming a language containing the atoms ‘p, ‘q’, and ’r’. Because
the schema contains no logical contradictions, there are no schemata to remove.
Therefore this schema is satisfiable.

With the theory background taken care of, let us write a nested interpreter! Not
quite, because we need to implement the conversion procedure! Given a schema,
we convert it to CNF using the following steps (not necessarily in this order):

1. Remove all conditionals, i.e., ‘p→ q’ converts into ‘¬p ∨ q’.

2. Remove all biconditionals, i.e,. ‘p↔ q’ converts into ‘(p ∧ q) ∨ (¬p ∧ ¬q)’.

3. Distribute negations inward using equivalences.

(i) ‘¬¬p’ converts into ‘p’.

(ii) ‘¬(p ∨ q)’ converts into ‘¬p ∧ ¬q’.
(iii) ‘¬(p ∧ q)’ converts into ‘¬p ∨ ¬q’.
(iv) ‘¬(p→ q)’ converts into ‘(p ∧ ¬q)’.
(v) ‘¬(p↔ q)’ converts into ‘(p ∧ ¬q) ∨ (¬p ∧ q)’.

4. Distribute ‘∨’ over ‘∧’.

We will use the previous connective recognizers from L∗LOGIC, only needing to
modify the reducers. We do make one modification in that atoms are now repre-
sented as symbols rather than a tagged list.1 The root reducer serves as a standard
dispatch function.

1The former representation was (atom a) where a was a symbol. Our current representation omits
the tag and list.

328

329 Functional Programming

Listing 7.185

(define value-of-cnf
(λ (wff)
(cond
[(atom? wff) wff]
[(negation? wff) (value-of-negation wff)]
[(conjunction? wff) (value-of-conjunction wff)]
[(disjunction? wff) (value-of-disjunction wff)]
[(implication? wff) (value-of-implication wff)]
[(biconditional? wff) (value-of-biconditional wff)]
[else #f])))

Let us start by writing value-of-conjunction, which converts both operands
of the conjunction, recursively, to CNF.

Listing 7.186

(define value-of-conjunction
(λ (wff)
(let ([lhs (value-of-cnf (second wff))]

[rhs (value-of-cnf (third wff))])
`(and ,lhs ,rhs))))

Up next we write value-of-implication and value-of-biconditional, which
convert the schemata using the equivalence rules as previously specified. These
newly-constructed schemata are then passed to the CNF conversion function.

Listing 7.187

(define value-of-implication
(λ (wff)
(let ([lhs (second exp)]

[rhs (third exp)])
(value-of-cnf `(or (not ,lhs) ,rhs)))))

Listing 7.188

(define value-of-biconditional
(λ (wff)
(let ([lhs (second wff)]

[rhs (third wff)])
(value-of-cnf `(or (and ,lhs ,rhs)

(and (not ,lhs) (not ,rhs))))))))

Now we must handle negation via value-of-negation. There are two types
of negated schemata: simply and complexly. Simply-negated schemata are of the
form ¬¬S for any schema S, in which we remove the negations. Complexly-negated
schemata are any negated binary connective. In either case, every negated schema
has a second representing the negated schema that we denote as val. If val is an
atom, we do nothing except return the original expression, since an atom cannot
be converted further. If val is a negated schema, we recursively convert the sub-
schema of val, thereby removing the double negation. If val is either a conditional
or biconditional, we recursively convert the equivalent translation.1

1If we pre-processed the input schema into negated normal form, or NNF, we would not need these
clauses. We present this as an exercise.

329

.

7.6 Nested Interpreters 330

Listing 7.189

(define value-of-negation
(λ (wff)
(let ([val (second wff)])
(cond
[(atom? val) wff]
[(negation? val)
(value-of-cnf (second val))]

[(implication? val)
(value-of-cnf `(and ,(second val) (not ,(third val))))]

[(biconditional? val)
(value-of-cnf `(or (and ,(second val) (not ,(third val)))

(and (not ,(second val)) ,(third val))))]
[...]))))

We now consider negated conjunctions and disjunctions, which prepend a nega-
tion in front of both operands of the connectives. Since this is a repeated pro-
cess where the only difference lies in the connective, we will write a function
distribute-negation, which affixes a negation connective onto the operands. Us-
ing this, we create a connective that is the dual of the one that is negated.

Listing 7.190

(define distribute-negation
(λ (exp)

(map (λ (wff) (list 'not wff)) exp)))

Listing 7.191

(define value-of-negation
(λ (wff)
(let ([val (second wff)])
(cond
[...]
[(disjunction? val)
(value-of-cnf (cons 'and (distribute-negation (rest val))))]

[(conjunction? val)
(value-of-cnf (cons 'or (distribute-negation (rest val))))]))))

Last but certainly not least we come to value-of-disjunction. We know
that we need to distribute logical disjunction over logical conjunction, but we
only do this in the event where at least one operand is a conjunction. Let us
write distribute-disjunction: it receives two expressions, which represent the
operands of a disjunction, and recursively performs a distribution. If neither operand
is a conjunction, then we return the schemata as operands of a disjunction (effec-
tively reconstructing the original schema). Without loss of generality, we consider
the case where the left-hand schema is a conjunction. So, we need to distribute
the right-hand schema over the left-hand. For example, such a schema may be
‘(p ∧ q) ∨ r’. To correctly distribute the connective, we take the right-hand schema
and recursively distribute a disjunction with ‘p’ as the left-hand schema and ‘r’
as the right-hand, forming ‘p ∨ r’. We then distribute over the other operand,
resulting in ‘q ∨ r’. We then collapse these schemata into a conjunction, i.e.,
‘(p ∨ r) ∧ (q ∨ r)’, which is in CNF.

330

331 Functional Programming

Listing 7.192

;; distribute-disjunction : Schema Schema -> Schema
;; Distributes logical disjunction over logical conjunction.
(define distribute-disjunction

(λ (lhs rhs)
(cond

[(conjunction? lhs)
(list 'and
(distribute-disjunction (second lhs) rhs)
(distribute-disjunction (third lhs) rhs))]

[(conjunction? rhs)
(list 'and
(distribute-disjunction lhs (second rhs))
(distribute-disjunction lhs (third rhs)))]

[else (or-wff lhs rhs)])))

We realize this explanation is a bit hard to follow, so we supplement it with two
examples.

Example. Distribute ∨ over ∧ in ‘(p ∧ ¬s) ∨ (¬q ∧ ¬r)’.

= ‘[(p ∧ ¬s) ∨ ¬q] ∧ [(p ∧ ¬s) ∨ ¬r]’
= ‘[(p ∧ ¬q) ∧ (¬s ∨ ¬q)] ∧ [(p ∨ ¬r) ∧ (¬s ∨ ¬r)]’

Example. Distribute ∨ over ∧ in ‘((q ∧ r) ∧ s) ∨ (¬r ∧ ¬s)’.

= ‘[(¬r ∧ ¬s) ∨ s] ∧ [(¬r ∧ ¬s) ∨ (q ∧ r)]’
= ‘[(s ∨ ¬r) ∧ (s ∨ ¬s)] ∧ {[(¬r ∧ ¬s) ∨ q] ∧ [(¬r ∧ ¬s) ∨ r)]}’
= ‘[(s ∨ ¬r) ∧ (s ∨ ¬s)] ∧ {[(q ∨ ¬r) ∧ (q ∨ ¬s)] ∧ [(r ∨ ¬r) ∧ (r ∨ ¬s)]}’

Because disjunction and conjunction are both commutative operations, the order in
which we check the operands of a logical disjunction is irrelevant. Therefore there
are multiple logically correct and equivalent answers to every CNF; the order we
choose is purely coincidental, although applying heuristics to this decision could
lower the size of the output (CNF) schema. We present some of these condensing
operations as exercises.

We can finally put the pieces together and implement value-of-disjunction,
which receives a schema and recursively converts its operands into CNF as argu-
ments to the disjunction distribution function.

Listing 7.193

(define value-of-disjunction
(λ (wff)
(let ([lhs (second exp)]

[rhs (third exp)])
(distribute-disjunction
(value-of-cnf lhs)
(value-of-cnf rhs)))))

Let us test few schemata to see the results. We will use the examples that we
converted, including schemata that use conditionals and biconditionals.

331

7.6 Nested Interpreters 332

Listing 7.194

> (value-of-cnf
'(or p (and q r)))

> (value-of-cnf
'(or (and p (not s))

(and (not q)
(not r))))

> (value-of-cnf
'(imp p (and p q)))

> (value-of-cnf
'(imp (or (not p) (not q))

(not (not q))))

> (value-of-cnf
'(iff (or p q) r))

(and (or p q) (or p r))

(and (and (or p (not q))
(or p (not r)))

(and (or (not s) (not q))
(or (not s) (not r))))

(and (or (not p) p) (or (not p) q))

(and (or p q) (or q q))

(and (and (and (or (or p q) (not p))
(or (or p q) (not q)))

(or (or p q) (not r)))
(and (and (or r (not p))

(or r (not q)))
(or r (not r))))

Converting the output into a readable format shows they are, indeed, in CNF.1

‘(p ∨ q) ∧ (p ∨ r)’
‘(p ∨ ¬q) ∧ (p ∨ ¬r) ∧ (¬s ∨ ¬q) ∧ (¬s ∨ ¬r)’
‘(¬p ∨ p) ∧ (¬p ∨ q)’
‘(p ∨ q) ∧ (q ∨ q)’
‘(p ∨ q ∨ ¬p) ∧ (p ∨ q ∨ ¬q) ∧ (p ∨ q ∨ ¬r) ∧ (r ∨ ¬p) ∧ (r ∨ ¬q) ∧ (r ∨ ¬r)’

Exercise 7.30. (⋆⋆⋆)
Implement a pp-cnf function that receives a schema in prefix notation and converts
it to infix. As an example, the schema '(and (or q r) (imp (not s) (not r)))
might be “pretty printed” as ((q + r) & (∼s -> ∼r)).
Exercise 7.31. (⋆⋆⋆)
As we see, converting a schema into CNF can blow up the output schema due
to redundant and tautological clauses. Add an optimization to the interpreter
that removes redundant clauses, i.e., ‘p ↔ p’, ‘p → p’, ‘p ∨ p’, and ‘p ∧ p’ all
reduce to ‘p’. Then, add a pass that removes tautological clauses, e.g., ‘p ∨ ¬p’, or
‘(q ∨ ¬r) ∨ ¬(q ∨ ¬r)’.
Exercise 7.32. (⋆⋆⋆⋆)
Using variadic-argument logical conjunction and disjunction removes redundant
connectives in the final CNF schema. Implement this behavior into the interpreter.
Such a modification requires altering the corresponding recognizers and distribu-
tion functions. This is tricky to get right, which is why we label it as a four star
problem.

1To condense the representation, we will assume the logical conjunction and disjunction connectives
are n-ary rather than binary. Such an assumption provably preserves the semantic behavior.

332

333 Functional Programming

Exercise 7.33. (⋆⋆⋆⋆)
First-order logic adds variables, constants, predicates, and quantifiers to zeroth-
order logic, whilst removing atoms. Design a nested interpreter to process first-order
logic schemata. The root reducer function should return whether the schema is well-
formed. A first-order logic schema is well-formed if it conforms to the inductive
definition from Chapter 2.

Exercise 7.34. (⋆⋆⋆⋆⋆)
Using the previous exercise as a basis, write an algorithm that rewrites a first-
order logic schema in prenex normal form (PNF).1 A first-order logic is in PNF
if it is of the form Q1V1Q2V2...QnVnM , where Q1...Qn are quantifiers, V1...Vn are
variables, and M is a quantifier-free schema called the matrix. Schemata in PNF
obey similar rules to those in CNF schemata, namely that there are no condi-
tionals or biconditionals, and negations are pushed inwards using equivalence rules
as listed in Figure 7.7. Quantifiers are extracted using equivalence rules as listed
in Figure 7.8.2 Additionally, PNF schemata variables are rewritten so no shad-
owing occurs. For example, the x bound by ‘∃x’ shadows the x bound by ‘∀x’
in the schema ‘∀x(P (x) → ∃xQ(x, a))’. We rewrite this using a new variable
‘∀x(P (x) → ∃yQ(y, a))’. The PNF schema is ‘∀x(∃y(¬P (x) ∨ Q(y, a)))’. Hint:
you will need to keep track of which variables are used where (and when) in the
schema. Solving this problem in steps, as we did for the CNF nested interpreter,
is a good approach. Those steps include removing conditionals and bicondition-
als, pushing negations inward, renaming shadowed quantifiers and variables, then
pulling quantifiers outward.

¬∀xP (x) ↔ ∃x¬P (x)

¬∃xP (x) ↔ ∀x¬P (x)

Figure 7.7: Negation of Quantifiers

(ϕ ∨ ∀xψ) ↔ ∀x(ϕ ∨ ψ)
(ϕ ∨ ∃xψ) ↔ ∃x(ϕ ∨ ψ)
(ϕ ∧ ∀xψ) ↔ ∀x(ϕ ∧ ψ)
(ϕ ∧ ∃xψ) ↔ ∃x(ϕ ∧ ψ)

Figure 7.8: Negation of Quantifiers

1Why do we care about PNF schemata? Similar to CNF schemata, it serves as a normal form for
first-order logic automatic theorem proving software.

2The variable being quantified over within ∀xψ must not be free in ϕ so as to avoid accidental
variable capture.

333

7.6 Nested Interpreters 334

L∗BOUND: Bound Variable Determiner

In the λ-calculus, lambda terms contain two pieces: the formal parameter declara-
tion, and a body. Knowing what variables are bound versus those that are free is
often useful. In this section, we will write an interpreter to recognize simple lambda
calculus expressions whose main purpose is to count the number of bound variables.
Recall that, in a lambda calculus expression, a bound variable is one that occurs as
a formal parameter and also occurs in the body of said expression. For instance,
in (lambda (x) (...x...)), x is bound. The complexity of the inner expression is
irrelevant—as long as the variable occurs, it is bound. Conversely, in ((lambda (y)
x) y), y is not bound because it is not in the body of the lambda declaration.

As before, we will write a procedure to parse such an expression. Our interpreter
accepts three forms: a symbol, a lambda declaration, and function application.
Because their functionality is identical, we will reuse lambda? and application?
from the previous interpreters.

Listing 7.195

(define bound-count
(λ (exp env)
(cond
[(symbol? exp) ...]
[(lambda? exp) ...]
[(application? exp) ...]
[else 'error])))

Environments will have a different representation than they did in the former
interpreter. Namely, an environment is nothing more than a list of symbols that
were declared as formal parameters. Each time we encounter a lambda expression,
we extract the symbol and add it to this list for later lookup. Along those lines,
once we find a symbol, we search the environment for the variable and, if it exists,
we return 1 and otherwise 0. As we recurse over the different parts of the lambda
expression, we will continue counting variables—particularly, in the case of function
application, we add the result of recursively invoking bound-count on the operator
and operand. Let us go from the bottom-up and work on the application case
first.

Listing 7.196

(define application-bound-count
(λ (exp env)
(let ([rator (first exp)]

[rand (second exp)])
(+ (bound-count rator env)

(bound-count rand env)))))

(define bound-count
(λ (exp env)
(cond
[(symbol? exp) (symbol-bound-count exp env)]
[(lambda? exp) (lambda-bound-count exp env)]
[(application? exp) (application-bound-count exp env)]
[else 'error])))

334

335 Functional Programming

Next, we will work with a lambda declaration. We need to extract the formal
parameter, store in the environment, and recursively evaluate the body. Because
this form of an interpreter is significantly different from the previous, we will not
make the environments representation-independent. Moreover, the interpreter does
not evaluate any expressions; rather, it returns a single number and nothing more.

Listing 7.197

(define lambda-bound-count
(λ (exp env)
(let ([formal (second exp)]

[body (third exp)])
(bound-count body (cons formal env)))))

Lastly, let us evaluate symbols. If exp is a symbol, we need to search for it in
the environment. We can write a helper function, member?, which returns true if a
value is in the given list and false otherwise.

Listing 7.198

(define member?
(λ (obj ls)
(cond
[(null? ls) #f]
[(eqv? (first ls) obj) #t]
[else (member? obj (rest ls))])))

Listing 7.199

(define symbol-bound-count
(λ (exp env)
(cond
[(member? exp env) 1]
[else 0])))

Let us throw a few lambda expressions at this to test!

Listing 7.200

> (bound-count '(lambda (x) x) '())
> (bound-count '(lambda (y) x) '())
> (bound-count '((((lambda (x)

(lambda (y)
(x (lambda (z) (y z)))))

(lambda (q) (r s)))
(lambda (t) u))

(lambda (v)
(lambda (w)
(w (lambda (x) (x x))))))

'())

1
0
5

335

7.6 Nested Interpreters 336

L∗SETS: Set Operations Interpreter

In Chapter 2, we discussed sets as well as their accompanying operations and de-
tails on proving properties of sets. In this section, we will write L∗SETS: a nested
interpreter for computing properties of sets.

Our language will be completely functional; wherein we may define local variables
via let bindings. Sets are defined as lists whose first is the symbol set and whose
rest is a list of arbitrary values. Let us begin by writing a root reducer: value-of.
From there, we will write each recognizer and reducer side-by-side. Namely, each
recognizer and reducer correspond to a set operation, variable declaration, or set
definition. The only recognizer and reducer pair that we will not write are those
for numbers and variables (represented as symbols), which are trivial to handle.1

Listing 7.201

(define value-of
(λ (exp env)
(cond
[(number? exp) exp]
[(symbol? exp) (apply-env exp env)]
[(set? exp) (value-of-set exp env)]
[(let? exp) (value-of-let exp env)]
[(member-set? exp) (value-of-member-set exp env)]
[(union? exp) (value-of-union exp env)]
[(intersection? exp) (value-of-intersection exp env)]
[(difference? exp) (value-of-difference exp env)]
[(subset? exp) (value-of-subset exp env)]
[(proper-subset? exp) (value-of-proper-subset exp env)]
[(set-equal? exp) (value-of-set-equal exp env)]
[(firstdinality? exp) (value-of-cardinality exp env)]
[(complement? exp) (value-of-complement? exp env)]
[(firsttesian-product? exp) (value-of-cartesian-product exp env)]
[(power-set? exp) (value-of-power-set? exp env)]
[else 'error-unknown-set-operation])))

For simplicity, we will only implement the first six recognizers and reducers and
leave the remaining as exercises to the reader.

To start, we need a way of recognizing a set declaration. As we stated, a set is
defined as a list with a first tag. E.g., (set 4 3 2) is a valid set declaration. Let
us write the accompanying recognizer and reducer, neither of which are non-trivial.
Reducing a set is as simple as returning the defined set (list).

Listing 7.202

(define set?
(λ (exp)
(and (cons? exp)

(= (length exp) 2)
(eqv? (first exp) 'set))))

(define value-of-set
(λ (exp env)
(second exp)))

Let us now write the let recognizer and reducer. All we need to do is, when en-
countering a let, we evaluate the variable binding and evaluate the expression being
bound to the identifier. We then evaluate the body of the let with respect to an
extended environment containing a binding from the identifier to its corresponding
expression.

1L∗
SETS does not account for duplicate values in a set, meaning these reducers may produce incorrect

results when a set contains duplicates.

336

337 Functional Programming

Listing 7.203

(define let?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (first exp) 'let))))

(define value-of-let
(λ (exp env)
(let* ([lobindings (second exp)]

[binding (first lobindings)]
[id (first binding)]
[S (value-of

(second binding)
env)]

[body (third exp)])
(value-of body

(extend-env id S env)))))

This allows us to write expressions of the following format, e.g., we declare two
sets A and B as such. Note that, to keep with the general theme of set initialization,
we use braces to denote the elements of a set.

Listing 7.204

> (value-of
'(let ([A (set {1 2 3 4 5})])

(let ([B (set {3 5 7 9})])
A)))

(1 2 3 4 5)

Now that we have a notion of constructing sets and variables via local bindings,
we can begin to write operations that act on sets. We shall start with the simplest:
set membership, i.e., ‘∈’. An element x ∈ S where S is some set if and only if x is
a member of S. Fortunately for us, we wrote member? when designing L∗BOUND, so
we should reuse its definition in L∗SETS.

With member? in hand, we can write the membership recognizer and reducer.
L∗SETS uses infix operators rather than prefix, meaning that we must check the sec-
ond of an expression list for its operator rather than its first. Because our interpreter
does not support special characters, i.e., ‘∈’, we will encode set membership as the
symbol in. For instance, we may ask '(5 in (set 4 2 5 8)), which should, of
course, return #t. The reducer evaluates the argument, i.e., x, as well as the set
argument, i.e., S, then invokes the utility member? function.1

Listing 7.205

(define member-set?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (second exp) 'in))))

(define value-of-member-set
(λ (exp env)
(let ([x (value-of (first exp) env)]

[S (value-of (third exp) env)])
(member? x S))))

Now, let us write a difficult operation: set union, i.e., ‘∪’. Recall that the union
of two sets A and B, denoted by A ∪ B, is the set of elements that are in either
A or B. Our recognizer will use a capital U to denote union (which we will omit
in our listings due to redundancy). The reducer is a bit more complicated because
it should receive an expression and an environment, but compute the union of the
two set arguments. Consequently, we define a local recursive procedure union via
letrec, and extract then evaluate the set arguments via let. The object that is
returned from union, however, is not a “set” according to our definition, meaning
we should wrap it in quasiquotes.

1We must affix -set to the recognizer and reducer names so as to not conflict with our earlier (and
distinct) definition of member?.

337

7.6 Nested Interpreters 338

Listing 7.206

(define value-of-union
(letrec ([union

(λ (sA sB)
(...))])

(λ (exp env)
(let ([sA (value-of (first exp) env)]

[sB (value-of (third exp) env)])
(cons 'set (union sA sB))))))

Thinking about union algorithmically, we have three cases to consider, where
the first is trivial. If the first set is empty, we return the second. Now, we need to
do something based on the element at the first of sA which we will denote as e. If
e ∈ sB, then we should not add it to the recursively-constructed set because it
will be added in the fourth case to consider. So, we just call union with (rest sA)
and sB.

Listing 7.207

(define value-of-union
(letrec ([union

(λ (sA sB)
(cond
[...]
[(member? (first sA) sB) (union (rest sA) sB)]
[else ...]))])

...))

The last case is, of course, when e ̸∈ sB. If this is true, then we want to add
it to the recursively-constructed set since this is the only time that we will be able
to add e as sets do not contain duplicate values. Therefore, we create a cons pair
whose first is e and whose rest is the result of recursively applying union on (rest
sA) and sB.

Listing 7.208

(define value-of-union
(letrec ([union

(λ (sA sB)
(cond
[...]
[else (cons (first sA) (union (rest sA) sB))]))])

...))

Here’s the idea: if e ∈ sB, we skip over e. Eventually, sA will be the empty set,
meaning we can conjoin the remaining elements in sB onto the end of sA, hence the
base case. Let us write a test case.

Listing 7.209

> (value-of
'(let ([A (set {1 2 3 4 5})])

(let ([B (set {3 5 7 9})])
(A U B)))

(empty-env))

(set (1 2 3 4 5 7 9))

338

339 Functional Programming

Let us now write the recognizer and reducer for set difference. Recall that the
difference between two sets A and B, denoted by “\” consists of all elements that
are in A but not in B. In many programming languages, though, the backslash
is a reserved special character for representing other types of characters, therefore
we choose for set difference to use the arithmetic difference dash -. Much like
the reducer for set union, value-of-difference has a local recursive definition to
compute the intended result after extracting the sets via let.

Listing 7.210

(define difference?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (second exp) '-))))

(define value-of-difference
(letrec ([diff

(λ (sA sB)
(cond
[...]))])

(λ (exp env)
(let ([A (value-of (first exp) env)]

[B (value-of (third exp) env)])
(cons 'set (diff A B))))))

Again, let us consider the algorithm for computing set difference. We have two
base cases: when sB is empty and when sA is empty. In the former case, we return
sA, whereas for the latter, we return the empty list (because ∅−S = ∅ for any set
S). Next, we check to see if the first of sA is in sB and, if so, do not add it to
the recursively-constructed set. Otherwise, cons the first of sA onto the result of
recursively invoking diff with a trimmed sA. Notice the striking similarity to the
definition of value-of-union. In fact, the only differences include the extra base
case and call to (rest sB) in the third cond clause.

Listing 7.211

(define value-of-difference
(letrec ([diff

(λ (sA sB)
(cond
[(null? sB) sA]
[(null? sA) '()]
[(member? (first sA) sB) (diff (rest sA) (rest sB))]
[else (cons (first sA) (diff (rest sA) sB))]))])

(λ (exp env)
...)))

Let us throw a few tests at this, using different sets for each run.

339

7.6 Nested Interpreters 340

Listing 7.212

(define s1 '(set {3 4 5 6 7}))
(define s2 '(set {1 2 3 4}))
(define s3 '(set {1 4 7 10}))
(define s4 '(set {2 3 4 5 6}))
(define s5 '(set {1 2 3 4 10 12}))
(define s6 '(set {}))

> (value-of
`(let ([A ,s1]) (let ([B ,s2]) (A - B)))
(empty-env))

> (value-of
`(let ([C ,s3]) (let ([D ,s4]) (C - D)))
(empty-env))

> (value-of
`(let ([E ,s5]) (let ([F ,s6]) (E - F)))
(empty-env))

> (value-of
`(let ([G ,s2]) (let ([H ,s5]) (G - H)))
(empty-env))

(set {5 6 7})

(set {1 7 10})

(set {1 2 3 4 10 12})

(set {})

Exercise 7.35. (⋆)
The cardinality function, which we will denote in code as ‘size’, returns the number
of elements in a set. Write the recognizer/reducer pair card?/value-of-card.
Exercise 7.36. (⋆)
The intersection function, which we will denote in code as ‘ˆ’, returns a set of
elements that are in both A and B. For instance, (set {1 2 3 4}) ˆ (set {2 3
5 7}) resolves to (set {2 3}). Write the recognizer/reducer pair for computing
set intersections, i.e., inter?/value-of-inter.
Exercise 7.37. (⋆)
The proper subset function, which we will denote in code as ‘<’, returns #t if all
elements of a set A are in a set B but A is not equal to B. For instance, (set {1 2 3
4}) < (set {1 2 3 4 5}) resolves to #t, but (set {1 2 3}) < (set {1 2 3})
resolves to #f. Write the proper-subset?/value-of-proper-subset recognizer
and reducer pair.

Exercise 7.38. (⋆)
The subset function, which we will denote in code as ‘=<’, returns #t if all elements
of a set A are in a set B or if A is equal to B. For instance, (set {1 2 3 4})
=< (set {1 2 3 4 5}) resolves to #t and (set {1 2 3}) =< (set {1 2 3}) also
resolves to #t. Write the recognizer/reducer pair subset?/value-of-subset.
Exercise 7.39. (⋆⋆)
The set equality function, which we will denote in code as ‘=’, returns #t if two sets
A and B share the same elements and #f otherwise. Write the recognizer/reducer
pair set-equal?/value-of-set-equal. Hint: two sets are equal if they are subsets
of each other.

Exercise 7.40. (⋆⋆)
The complement function, which we will denote in code as ‘not’, returns the set
of all elements that are in a universe set U and are not in a set A. Suppose that
‘not’ is a binary operator where the set we want to compute the complement of is
the right-hand argument and the universe set is the left-hand argument. For in-
stance, (set {1 2 3 4 5 6 7 8 9 10}) not (set {2 3 4 5}) returns (set {1
6 7 8 9 10}). Write the recognizer/reducer pair comp?/value-of-comp.

340

341 Functional Programming

Exercise 7.41. (⋆⋆⋆)
The cartesian product, which we will denote in code as ‘X’, is for our purposes a
binary operator that computes a set of pairs such that for two sets A of n elements
and B of m elements, A X B resolves to the set with n·m resolves to the set:

{(a1, b1), (a2, b2), ..., (an, b1), ..., (an, bn)}

For instance, ((set {1 2}) X (set {a b c})) resolves to (set {(1 a) (1 b)
(1 c) (2 a) (2 b) (2 c)}). Write the recognizer/reducer pair cart-prod?/
value-of-cart-prod.
Exercise 7.42. (⋆⋆⋆⋆)
The power set, which we will denote in code as ‘pset’, computes a set of all possible
subsets of a set A. For instance, (pset (set {1 2 3}) resolves to

(set {(set {}) (set {1}) (set {2}) (set {3}) (set {1 2})
(set {1 3}) (set {2 3}) (set {1 2 3})})

Write the recognizer/reducer pair pset?/value-of-pset.

341

7.6 Nested Interpreters 342

L∗BST: A Functional Binary Search Tree and Sorting Algorithms

In Chapter 3, we discussed trees and, in particular, binary search trees. This section
is dedicated to writing a binary search tree, for numbers, in our interpreted language.

A binary search tree, as we recall, consists of a node with at most two children:
a left and right child. Binary search trees have the invariant , i.e., a property that
is forever true, that all values to the left of a node are less and all values to the
right are greater.1 Before we begin to work with values inside the tree, let us write
the definition for constructing an empty tree.

Listing 7.213

; A BinarySearchTree is one of:
; - '()
; - (ListOf Number BinarySearchTree BinarySearchTree)

(define bst-create-empty
(λ ()
'()))

(define bst-create
(λ (val l r)
(list val l r)))

The data definition and accompanying constructor functions are no trouble at
all—we define a binary search tree as a list. Namely, a binary search tree is either
empty, i.e., the empty list, or is a list whose first is a number, whose second is the
left-hand child, and whose third is the right-hand child.

Determining if a binary search tree is empty is an even easier task—we just check
if it is null?, meaning we can define a variable as the null? function as follows.

Listing 7.214

(define bst-empty? null?)

Up next is adding values to the binary search tree. Inserting values is, effectively,
a binary search procedure; if the given tree is null, we create a binary search tree
with the given value and empty children.

Listing 7.215

;; bst-add : BinarySearchTree Number -> BinarySearchTree
;; Adds a value into the binary search tree.
(define bst-add
(λ (t val)
(cond
[(bst-empty? t) (bst-create val (bst-create-empty) (bst-create-empty))]
[...]
[else #f])))

1Depending on the purpose, some implementations of binary search trees will mirror this invariant.

342

343 Functional Programming

The other cases are slightly more interesting. If t’s value is insert, then we just
return t because we cannot insert a preexisting value into a binary tree. In the
likely event that the number is not part of the tree, we check to see if it is less
than the current subtree root and, if so, recurse on the left-hand tree. Otherwise,
we recurse on the right-hand side.1 To simplify the implementation, we created
(but do not show) three helper functions: bst-value, bst-left, and bst-right,
which retrieve the value, left child, and right child of a provided binary search tree
respectively.

Listing 7.216

(define bst-add
(λ (t val)
(cond
[(bst-empty? t) (bst-create val (bst-create-empty) (bst-create-empty))]
[(= (bst-value t) val) t]
[(< (bst-value t) val) (bst-create (bst-value t)

(bst-left t)
(bst-add (bst-right t) val))]

[(> (bst-value t) val) (bst-create (bst-value t)
(bst-add (bst-left t) val)
(bst-right t))]

[else #f])))

Now that we can add values into a binary search tree, we should write a function
that looks up/determines the existence of values. Its template is very similar to
value insertion with the exception that we never create a binary search tree—we
instead recurse down either side of the tree depending on the input value. If we find
the value, we return true and, if the tree is empty, we return false.

Listing 7.217

;; bst-search : BinarySearchTree Value -> Boolean
;; Determines if a number exists in a binary search tree.
(define bst-search
(λ (t val)
(cond
[(bst-empty? t) #f]
[(= (bst-value t) val) #t]
[(< (bst-value t) val) (bst-search (bst-right t) val)]
[(> (bst-value t) val) (bst-search (bst-left t) val)]
[else #f])))

Next, we may want a function that computes the height of a binary search tree.
The height h of a tree t is the longest path from the root to a leaf. Because there are
two possible heights in a tree due to its left and right children, we take the largest
of the two computed values.

Listing 7.218

;; bst-height : BinarySearchTree -> Number
;; Returns the height of a binary search tree, which is the maximum length
;; from the root to a leaf node.
(define bst-height
(λ (t)
(cond
[(bst-empty? t) 0]
[else (add1 (max (bst-height (bst-left t))

(bst-height (bst-right t))))])))

1In our implementation, the logic is the same with the exception that our comparison is swapped; if
the current subtree root is less than the value, we recurse on the right-hand side and vice versa.

343

7.6 Nested Interpreters 344

Suppose we want a function that converts a list of numbers into a binary search
tree. This seems like it would be easy, and indeed the approach is not compli-
cated, but we will discuss a few key ideas about binary search trees alongside the
implementation. An arbitrary list of numbers may or may not be sorted. Values
in a binary search tree are inherently sorted. What this means is, we may write a
function list->bst that receives a list l and recursively constructs a binary search
tree from each value in the tree. We consider two cases: when the list is empty and
when it is non-empty. The empty case is trivial—an empty list corresponds directly
to an empty binary search tree. Otherwise, we create a binary search tree whose
value is the first of l.

Listing 7.219

(define list->bst
(λ (lon)
(cond
[(null? lon) (bst-create-empty)]
[else
(let ([val (first lon)]

[rest (rest lon)])
(make-bst val))])))

From here, we must add the two children to our new binary search tree. We
know by the binary search tree invariant that each value in a node’s left subtree
is less than that node’s value. Correspondingly, all values in the right subtree are
greater than that node’s value. So, we can filter these values out via filter and λ
expressions.

Listing 7.220

(define list->bst
(λ (lon)
(cond
[(null? lon) (bst-create-empty)]
[else
(let ([val (first lon)]

[rest (rest lon)])
(bst-create val

(list->bst (filter (λ (x) (< x val)) rest))
(list->bst (filter (λ (x) (> x val)) rest))))])))

While this is a convenient function to write, it suffers from a performance issue.
Binary search trees are used to search for values quickly. With our implementation
of list->bst, though, we end up creating a binary search tree that mirrors a linked
list if the values in the list are sorted. Linked lists require linear time to search,
whereas a binary search tree should, optimally, require only logarithmic time. How
can we resolve this predicament? Such a problem occurs when the input list is
sorted or is close to being sorted (in either ascending or descending order). So, why
not guarantee that the list is sorted, then create the binary tree from that list of
values? The only difference with our approach would be to insert values from the
middle of the list and create the respective left and right subtrees.

To start, we need a function that sorts a list of numbers. There are a dozen-plus
ways to sort a list of objects. Some algorithms are much faster, others require extra
space, and some are performant under certain circumstances. We will implement
the insertion sort : a sorting algorithm that works as follows:

344

345 Functional Programming

Algorithm 1 Pseudocode for Insertion Sort Algorithm

procedure Insert(e, ls)
if ls is empty then

return cons(e, empty)
else if e is less than first(ls) then

return cons(e, ls)
else

return cons(first(ls), Insert(e, rest(ls)))
end if

end procedure

procedure ISort(ls)
if ls is empty then

return empty
else

return foldr(insert, empty, ls)
end if

end procedure

We fold the insert function on the given input list.1 insert receives an element
e and a list ls and returns a new list where e is “properly inserted” into ls. Impor-
tantly, the ls passed to insert is sorted. Implementing this is straightforward from
the pseudocode, so we will use it without reiterating its implementation verbatim.
We will now write list->bst-better which sorts the input list of numbers and
constructs a balanced binary search tree.2 This is achieved by retrieving the middle
element of the list and recursively constructing left and right subtrees.3

Listing 7.221

;; list->bst-helper : [ListOf Number] -> BinarySearchTree
;; Constructs a "balanced" binary search tree from a list of numbers.
(define list->bst-better
(letrec ([list->bst-helper

(λ (lon low high)
(cond
[(>= low high) (bst-create-empty)]
[else (let* ([mid (quotient (+ low high) 2)]

[mide (list-ref mid lon)])
(bst-create mide

(list->bst-helper lon low mid)
(list->bst-helper lon (add1 mid) high)))]))])

(λ (lon)
(let* ([slon (i-sort lon)]

[len (length slon)])
(list->bst-helper slon 0 len)))))

Testing a few binary search trees with our new approach demonstrates immediate
improvements.

1Note that we could write this without the higher-order foldr function using natural recursion.
2We sort using i-sort whose definition is omitted.
3The “middle element” of a list is found by computing left and right indices of the sub list—each

subtree acts only on a given sub list. In the end, we use list-ref, which itself is a linear time function,
but this loss in performance is alleviated after the binary search tree is constructed.

345

7.6 Nested Interpreters 346

Listing 7.222

(define ls1 '(1 2 3 4 5))

> (list->bst ls1) (1 ()
(2 ()

(3 ()
(4 ()

(5 () ())))))

Listing 7.223

(define ls2 '(6 10 5 8 3 2 1 9 4 7))

> (list->bst ls2) (6 (5 (3 (2 (1 () ())
())

(4 () ()))
())

(10 (8 (7 () ())
(9 () ()))

()))

Listing 7.224

(define ls1 '(1 2 3 4 5 6 7 8 9 10))

> (list->bst-better ls1) (6 (3 (2 (1 () ()) ())
(5 (4 () ())

()))
(9 (8 (7 () ())

())
(10 () ())))

Listing 7.225

(define ls2 '(6 10 5 8 3 2 1 9 4 7))

> (list->bst-better ls2) (6 (3 (2 (1 () ()) ())
(5 (4 () ())

()))
(9 (8 (7 () ())

())
(10 () ())))

Imagine calling the former list->bst function on a list with, say, one million el-
ements. If the list was sorted, there would be no performance gains over just linearly
searching through the original list! Furthermore, notice that list->bst-better re-
turns the same binary search tree for both ls1 and ls2 which is expected behavior.

The insertion sort algorithm we chose is simple to implement. Along these lines,
we will demonstrate another easy-to-understand sorting algorithm: the selection
sort . Selection sort first extracts, and removes, the minimum element e from a list
l. This means that l−e = l′ and |l′| = |l|−1, so the list always shrinks. From this,
it constructs a new list where e is the first, and we recursively selection sort l′ as
the rest. So, let us write two helper functions: list-min and list-remove.1,2

1We will omit the definition of min as it is trivial to write.
2Note the use of the higher-order function foldr. Writing list-min without foldr is certainly possible,

but requires either a helper function or an extra parameter. Can you explain why?

346

347 Functional Programming

Listing 7.226

;; list-min : [NEListOf Number] -> Number
;; Finds the minimum number in a list of numbers.
(define list-min
(λ (ls)
(foldr min (first ls) ls)))

;; list-remove : [NEListOf Number] Number -> [ListOf Number]
;; Removes the first occurrence of some number in a list.
(define list-remove
(λ (ls m)
(cond
[(null? ls) '()]
[(eqv? (first ls) m) (rest ls)]
[else (cons (first ls) (list-remove (rest ls) m))])))

Now we have everything we need to implement s-sort. Its body uses our aux-
iliary functions and recursively constructs a sorted list.

Listing 7.227—Selection Sort Implementation

;; s-sort : [ListOf Number] -> [ListOf Number]
;; Selection sorts a list of numbers.
(define s-sort
(λ (ls)
(cond
[(null? ls) ls]
[else
(let* ([min-e (list-min ls)]

[n-ls (list-remove ls min-e)])
(cons min-e (s-sort n-ls)))])))

As we have stated, both the insertion and selection sorts make the most sense
intuitively but suffer from poor performance as the input list grows in size. A better
alternative, in most circumstances, is the merge sort : a popular divide-and-conquer
algorithm. It first subdivides a list into two lists (down the middle) and recursively
sorts those. These two lists are then merged (hence the name!) into one sorted list.
Consider sorting the following list: '(-1 5 -2 6 3 -7 -6 5).1

1Thanks, Steve Tate, for requiring us to draw this out in the UNC Greensboro algorithm analysis
course.

347

7.6 Nested Interpreters 348

'(-1 5 -2 6 3 -7 -6 5)

'(3 -7 -6 5) (5→8)

'(-6 5) (7→8)

'(5) (8)'(-6) (7)

'(3 -7) (5→6)

'(-7) (6)'(3) (5)

'(-1 5 -2 6) (1→4)

'(-2 6) (3→4)

'(6) (4)'(-2) (3)

'(-1 5) (1→2)

'(5) (2)'(-1) (1)

'(-7 -6 -2 -1 3 5 5 6) (1→8)

'(-7 -6 3 5) (5→8)

'(-6 5) (7→8)

'(5) (8)'(-6) (7)

'(-7 3) (5→6)

'(-7) (6)'(3) (5)

'(-2 -1 5 6) (1→4)

'(-2 6) (3→4)

'(6) (4)'(-2) (3)

'(-1 5) (1→2)

'(5) (2)'(-1) (1)

Figure 7.9: Merge Sort Illustration

As the diagram shows, we first divide the input list into sublists recursively, then
merge them together. All inputs to the merge part of the merge sort are already
sorted, so it is a simple linear time operation. Let us start by writing a function
that splits a list in half by returning the left half as the first of a cons pair and the
right half as the rest. This in and of itself, however, requires two helper functions:
take and drop. The former receives a list and an integer n and returns a list with
the first n elements of the list. The latter on the other hand receives a list and
an integer n and returns a list without the first n elements. We will show a few
examples of these functions but leave them as exercises to the reader to implement.

Listing 7.228

> (take '(1 2 3 4 5 6 7 8 9) 5)
> (drop '(1 2 3 4 5 6 7 8 9) 5)
> (take '(1 2 3 4 5 6 7 8 9) 0)
> (drop '(1 2 3 4 5 6 7 8 9) 0)

(1 2 3 4 5)
(6 7 8 9)
()
(1 2 3 4 5 6 7 8 9)

Using these two functions, we can now implement split:

348

349 Functional Programming

Listing 7.229

;; split : {X} [ListOf X] -> (cons [ListOf X] [ListOf X])
;; Returns a cons pair whose fst is the left-half
;; of the list and whose rst is the right-half.
(define split
(λ (ls)
(let ([len (length ls)]

[mid (quotient len 2)])
(cond
[(<= len 1) (cons '() ls)]
[else (cons (take ls mid) (drop ls mid))]))))

Up next is the merge function–it receives two sorted lists of elements and com-
bines their elements in sorted order.

Listing 7.230

;; merge : {X} [ListOf X] [ListOf X] -> [ListOf X]
;; Combines two sorted lists.
(define merge
(λ (ls1 ls2)
(cond
[(null? ls1) ls2]
[(null? ls2) ls1]
[(< (first ls1) (first ls2))
(cons (first ls1) (merge (rest ls1) ls2))]

[else
(cons (rest ls2) (merge ls1 (rest ls2)))])))

Lastly, we combine these functions to write m-sort. All we do is recursively call
m-sort on the left and right split lists and merge their contents.

Listing 7.231

;; m-sort : [ListOf Number] -> [ListOf Number]
;; Merge sorts a list of numbers.
(define m-sort
(λ (ls)
(let ([len (length ls)])
(cond
[(<= len 1) ls]
[else (let* ([mid (quotient len 2)]

[spair (split ls len mid)]
[lhs (first spair)]
[rhs (rest spair)])

(merge (m-sort lhs) (m-sort rhs)))]))))

Finally, we will discuss the quicksort : another divide-and-conquer sorting al-
gorithm. Fortunately, this function is the easiest to write since it requires writing
only one function. Quicksort returns the empty list if its input is empty. Otherwise,
we choose a pivot p, i.e., an element of the list. We then subdivide the list into
three partitions: l1, l2, and l3. l1 contains all elements that are strictly less than
the pivot, l2 contains all elements that are equal to the pivot, and l3 contains all
elements that are strictly greater than the pivot. This is easily achievable by using
the filter function:1

1It must be noted that writing an optimal quicksort algorithm is difficult, since the best value of p
would be to pick the middle element of the data set (wherein there are roughly one-half of the elements
on either side of p), which is not easily computable without sorting the list!

349

7.6 Nested Interpreters 350

Listing 7.232—Quicksort Filtering

(define q-sort
(λ (ls)
(cond
[(null? ls) '()]
[else (let* ([pivot (first ls)]

[ltpart (filter (λ (x) (< x pivot)) ls)]
[eqpart (filter (λ (x) (= x pivot)) ls)]
[gtpart (filter (λ (x) (> x pivot)) ls)])

...)])))

From here, we need to recursively sort the left and right partitions (note that we
do not sort eqpart as that is nonsensical). This is followed up by appending each
sublist to the resulting list.

Listing 7.233—Quicksort Implementation

;; q-sort : [ListOf Number] -> [ListOf Number]
;; Quicksorts a list of numbers.
(define q-sort
(λ (ls)
(cond
[(null? ls) '()]
[else
(let* ([pivot (first ls)]

[ltpart (filter (λ (x) (< x pivot)) ls)]
[eqpart (filter (λ (x) (= x pivot)) ls)]
[gtpart (filter (λ (x) (> x pivot)) ls)])

(let ([ltl (q-sort ltpart)]
[gtl (q-sort gtpart)])

(append ltl (append eqpart gtl))))])))

Interestingly enough, there exist data structures that automatically balance a
binary search tree called height-balancing trees, e.g., AVL, red-black, and B-trees.

L∗TRIE: A Compression Technique

Data compression is prominent and ever-present in computer science. Part of this
field is to find new and innovative ways to take data, in any arbitrary form, and
shrink it as much as possible while retaining some resemblance of the original
data. This measure of resemblance is traditionally broken down into two categories,
namely lossless versus lossy compression.

In this section, we will focus on a lossless compression1 technique for strings by
implementing a string compression data structure called a trie. This is not to be
confused with “tree”, even though a trie is a kind of tree, also sometimes referred
to as a prefix tree.

1Lossless data compression refers to the fact that the compression technique preserves all data when
compressing, and decompressing recovers the original data. Lossy compression, on the other hand, loses
some (generally insignificant) data upon compression.

350

351 Functional Programming

Prefix trees, as we stated, store strings and characters. Consider the following
repetitive sentence: “Peter Piper picked a peck of pickled peppers”. A trie de-
composes this sentence into prefix nodes. Each node corresponds to a letter in the
sentence, starting from the root of the trie, where each path from the root to a leaf
reconstructs a word in the original sentence. Decomposing the example sentence
(treating upper and lower-case letters the same) produces three nodes from the root
containing the letters ‘a’, ‘o’, and ‘p’. The ‘a’ subtrie has no children since the only
word that starts with ‘a’ is the word ‘a’ itself. The ‘o’ subtree has one child, namely
‘f’, which has no children since the only word beginning with ‘o’ is “of”. Finally,
we come to the most complex of the collection: words starting with ‘p’. ‘p’ has two
children: ‘e’ and ‘i’. Each of these have their own subtries containing letters ‘c’, ‘p’,
and ‘t’ for ‘e’, and ‘c’, ‘p’ for ‘i’ respectively, which further recursively decompose
until no more letters remain.

{}

a o

f

p

e

c

k

p

p

e

r

s

t

e

r

i

c

k

e

d

l

e

d

p

e

r

Figure 7.10: Trie Derivation of “Peter Piper picked a peck of pickled peppers”.

In addition to keeping track of which letters form what words, nodes that denote
the end of a word have a leaf “quantity” node. For example, the sentence “Hungry
Harry alphabetizes his alphabetic soup with alphabet letters” contains the prefix
“alphabet” three times, but the word “alphabet” itself appears only once (see Figure
7.11). Similarly, the sentence “Hungry Harry alphabetizes his alphabetic soup”
contains the prefix “alphabet”, but does not have alphabet as a word (see Figure
7.12).

351

7.6 Nested Interpreters 352

{}

a

l

p

h

a

b

e

t

1 i

c

1

z

e

s

1

h

a

r

r

y

1

i

s

1

u

n

g

r

y

1

l

e

t

t

e

r

s

1

s

o

u

p

1

w

i

t

h

1

Figure 7.11: Trie Derivation of “Hun-
gry Harry alphabetizes his alphabetic soup
with alphabet letters”

{}

a

l

p

h

a

b

e

t

i

c

1

z

e

s

1

h

a

r

r

y

1

i

s

1

u

n

g

r

y

1

s

o

u

p

1

Figure 7.12: Trie Derivation of “Hungry
Harry alphabetizes his alphabetic soup”

With these examples, let us begin to write a trie implementation. First, we need
to understand the structure of a trie. We will say that a Trie is a non-recursive
data structure, being either a tagged list representing a leaf (containing a count as
its second) or a list of what we will call TrieNodes. A TrieNode, on the other hand,
is a recursive structure; trie nodes are tagged lists with a character as its second
and a list of trie node children as its third (its first is the associated tag symbol):

Listing 7.234—Data Definition for Trie and TrieNode

; A Trie is one of:
; - (trie-leaf NaturalNumber)
; - [ListOf TrieNode]
;
; A TrieNode is (trie-node Char [ListOf Trie])

(define trie-char snd)
(define trie-children third)
(define leaf-count snd)

352

353 Functional Programming

Listing 7.235—Trie Recognizers and Constructors

(define trie?
(λ (t)
(eqv? (first t) 'trie-node)))

(define leaf?
(λ (t)
(eqv? (first t) 'trie-leaf)))

(define (make-trie ch trie-forest)
(list 'trie-node ch trie-forest))

(define (make-leaf)
(list 'trie-leaf 1))

Let us write a function that takes a word and inserts it into a trie node containing
said word and only that word. We recursively traverse the inner string contents,
letter by letter, starting with a make-trie, then ending with a make-leaf. Because
we want to receive a list of characters as input rather than just a string, we will use
the auxiliary string->loc function, which converts a string to a list of characters.

Listing 7.236

; A Word is a [ListOf Char]

;; word->trienode : Word -> TrieNode
;; Adds a word into an empty trienode.
(define word->trienode
(λ (w)
(cond
[(empty? w) (make-leaf)]
[else (make-trie

(first w)
(list (word->trienode

(rest w))))])))

> (word->trienode
(string->loc "hungry"))

(trie-node #\h
((trie-node #\u
((trie-node #\n
((trie-node #\g
((trie-node #\r
((trie-node #\y
((trie-leaf 1)))))))))))))

We now need a function that inserts a word into a preexisting trie. Such a
function will use two mutually-recursive locally-defined functions that insert one
letter at a time into the trie: trienode-insert and trie-insert-helper. Both
functions receive a word, whereas the former receives a trie and the latter receives
a list of trie nodes. The latter has two base cases, the first of which handles when
the list of trie nodes is empty, meaning we just return a list whose sole element
is the word inserted into a trie node. This case occurs when the trie does not
have a character as a child node. The second base case happens when we reach
the end of the word and the trie is a leaf node, in which we increment its counter
by one, meaning the word already exists in the trie. Let us write these two cases
and the starter code for both functions. make-leaf-add1 receives a leaf node and
increments its count by one, returning a new leaf in the process.

353

7.6 Nested Interpreters 354

Listing 7.237

(define (make-leaf-add1 lf)
(list 'trie-leaf (add1 (leaf-count lf))))

;; trie-insert : Word Trie -> Trie
;; Inserts a word into the trie. If the word is already in
;; the trie, its leaf counter is incremented.
(define trie-insert
(letrec ([trienode-insert

(λ (w t)
...)]

[trie-insert-helper
(λ (w f)
(cond
[(null? f) (list (word->trienode w))]
[(and (null? w) (leaf? (first f)))
(list (make-leaf-add1 (first f)))]))])

trie-insert-helper))

Of course, these two cases do not handle the necessarily interesting piece of the
puzzle, that being when we insert a letter in a trie that already contains the given
letter. In such instances, there are three possibilities:

1. If the word (list) is empty and there is not currently a leaf element at the list
of trie nodes, then we need to create one via make-leaf and cons. This occurs
when adding words that are prefixes of preexisting words.

2. If the first of the word is equivalent to the trie-char of the first of our list
of trie nodes, we recurse deeper into the trie by cons’ing the result of calling
trienode-insert on w with the trie node and the rest of the list of trie nodes.

3. Otherwise, we recursively create a pair out of the rest of the list of trie nodes.

Listing 7.238

(define trie-insert
(letrec ([...]

[trie-insert-helper
(λ (w f)
(cond
[...]
[(null? w) (cons (make-leaf) f)]
[(eqv? (first w) (trie-char (first f)))
(cons (trienode-insert w (first f)) (rest f))]

[else
(cons (first f) (trie-insert-helper w (rest f)))]))])

trie-insert-helper))

Let us now write trienode-insert, which receives a word and inserts it into a
non-empty trie.

Listing 7.239

(define trie-insert
(letrec ([trie-node

(λ (w t)
(make-trie (trie-char t)

(trie-insert-helper (rest w) (trie-children t))))]
[...])

...))

354

355 Functional Programming

These two functions are all we need to create a trie. Let us see an example using
the sentence from earlier.

Listing 7.240

(define t1
(trie-insert
(string->loc "hungry") '()))

(define t2
(trie-insert
(string->loc "harry") t1))

(define t3
(trie-insert
(string->loc "alphabetizes") t2))

(define t4
(trie-insert
(string->loc "his") t3))

(define t5
(trie-insert
(string->loc "alphabetic") t4))

(define t6
(trie-insert
(string->loc "soup") t5))

(define t7
(trie-insert
(string->loc "with") t6))

(define t8
(trie-insert
(string->loc "alphabet") t7))

> t8

'((trie -node #\h
((trie -node #\u

((trie -node #\n
((trie -node #\g

((trie -node #\r
((trie -node #\y

((trie -leaf 1)))))))))))
(trie -node #\a

((trie -node #\r
((trie -node #\r

((trie -node #\y
((trie -leaf 1)))))))))

(trie -node #\i
((trie -node #\s

((trie -leaf 1)))))))
(trie -node #\a

((trie -node #\l
((trie -node #\p

((trie -node #\h
((trie -node #\a

((trie -node #\b
((trie -node #\e

((trie -node #\t
((trie -leaf 1)

(trie -node #\i
((trie -node #\z

((trie -node #\e
((trie -node #\s

((trie -leaf 1)))))))
(trie -node #\c

((trie -leaf 1))))))))))
)))))))))))

(trie -node #\s
((trie -node #\o

((trie -node #\u
((trie -node #\p ((trie -leaf 1)))

))))))
(trie -node #\w

((trie -node #\i
((trie -node #\t

((trie -node #\h ((trie -leaf 1)))
)))))))

Searching for words in a trie is now a trivial and quick task! We pay, up front,
the price of creating a trie, but we recuperate most of those costs when querying
the inserted words.

Exercise 7.43. (⋆⋆)
Write the trie-word-count function that returns the number of times a word
appears in a trie. This should not involve any arithmatic operations.

Exercise 7.44. (⋆⋆)
Write the trie-contains? predicate which returns true if the given word exists
in the given trie and false otherwise. Assuming you wrote trie-word-count, this
should be trivial.

355

7.6 Nested Interpreters 356

Exercise 7.45. (⋆⋆⋆)
Write a list->trie function that converts a list of strings into a trie by inserting
each string into the trie one after another.

Exercise 7.46. (⋆⋆⋆)
Write a trie->list function that converts a trie into a list containing the words
from the given trie. Ensure that words are inserted into the list as many times as
they exist in the trie.

Exercise 7.47. (⋆⋆⋆)
Write a trie->remove function that removes a given word from the given trie. If
the word does not exist, then nothing is done. Breaking this problem up into sub-
problems may be helpful, e.g., if the trie contains the word and has a count greater
than one, if the trie contains the word and has a count equal to one, and if it is
non-existent in the trie.

356

357 Functional Programming

L∗DFA: Deterministic Finite Automaton Recognizer

In Chapter 4, we discussed finite automaton and regular expressions as methods of
symbol recognition in lexical analysis. In this section, we will write a deterministic
finite automaton recognizer and tester. While this stems away from our use of the
term “nested interpreter”, it is a useful program and allows us to explore how one
of these seemingly abstract machines works.

First, recall that a DFA has five components: a set of states Q, an alphabet Σ,
a transition function δ, a start state q, and a set of final states F . We will design
a DFA handler, which receives a description of some DFA, and returns a function
that allows us to test input strings for acceptance.

Though, how should we build this handler, and namely, how might we want to
structure our input data? We will write our DFA as a constructor closure that
receives a list of data. Managing the data is the complicated piece due to what
all we need to store. A DFA, as we said, contains a set of states Q, as well as a
transition function δ. Our handler will bring these units together. Namely, a state
in our DFA will be a tagged list where the tag, or the first, is a state identifier. A
state also contains an association list of pairs representing the transition function
(these pairs are structured such that the first is the input symbol and the rest is
the destination state). Finally, the third element of the set list is a list of state
properties. A state can be either a starting state (s), a final state (f), both (s
f), or neither (). We present an example as follows:

Listing 7.241

'((q0 ((a . q1) (b . q2)) (s))
(q1 ((a . q1) (b . q2)) ())
(q2 ((a . q2) (b . q2)) (f))

The above DFA corresponds to the following diagram:

q0start

q2

q1

a

b

a

b

a, b

Figure 7.13: Simple DFA Example #1.

Now, let us write the recognizer. As we said, we want this to be a function that
receives a list of state data (as described previously), then returns a function that
should receive, then test, a string.

357

7.6 Nested Interpreters 358

Listing 7.242

(define dfa
(λ (los)
(let ([states los])
(λ (input)
...))))

Right now, dfa is a function of one argument: a list-of-states which assigns a
field states to be the value of los just for book-keeping purposes. Inside the let
block, we want to write a recursive procedure that iterates over each symbol in the
input and traverses through the DFA. Let us walk through a simple example.

Suppose we want to determine if the list of symbols '(a a a b b), representing
the string "aaabb", is in the language defined by the above DFA.

(i) The starting state is q0. The next symbol is a. We transition to q1 using
(a, q1).

(ii) The next symbol is a. We transition to q1 using (a, q1).

(iii) The next symbol is a. We transition to q1 using (a, q1).

(iv) The next symbol is b. We transition to q2 using (b, q2).

(v) The next symbol is b. We transition to q2 using (b, q2).

(vi) We have no more symbols to scan. Because q2 is a final state, we accept the
input.

With this in mind, what do we need to do? We want a recursive function that
receives a symbol and the current state, which then scans the list of states, retrieves
the state of interest, then scans its transition function for the correct next state.
Let us write the template code for such a procedure.

Listing 7.243

(define dfa
(λ (los)
(let* ([states los])
(letrec ([test

(λ (sym curr-state)
...)])

(λ (input)
...)))))

Out of simplicity, we can assume that the first state in the list of states denotes
the start state. So, let us store this in a variable.

Listing 7.244

(define dfa
(λ (los)
(let* ([states los]

[start (first states)])
(letrec ([test

(λ (sym curr-state)
...)])

(λ (input)
...)))))

358

359 Functional Programming

In addition to the start state, we should write a procedure that, when given a
state, determines if it is a final state or not. We can do this by checking its state
property field, or element, for the symbol 'f.

Listing 7.245

(define dfa
...
(letrec ([final-state?

(λ (state)
(member? 'f (third state)))]

[test
(λ (sym curr-state)
...)])))

Now, let us write the hardest part: test. As we said, it receives two arguments:
a symbol and a state. First, we can write the base case. That is, if the symbol is
null, we can just query the current state to see if it is final, which in turn accepts
or rejects the input.

Listing 7.246

(define dfa
...
(letrec ([final-state? ...]

[tester
(λ (sym curr-state)
(cond
[(null? sym) (final-state? curr-state)]))])

...))

Otherwise, we extract the transitions from the current state, and at the same
time, find the next state. We can use a helper function assv, which receives a
symbol and an association list. For example:

Listing 7.247

(define assv
(λ (obj ls)
(cond
[(null? ls) #f]
[else
(let ([binding (first ls)])
(cond
[(eqv? (first binding) obj)
binding]

[else (assv obj (rest ls))]))])))

> (assv 'b '((a . 1) (b . 2) (c . 3)))
> (assv 'z '((a . 1) (b . 2) (c . 3)))

(b . 2)
#f

Therefore, we make the necessary changes in the dfa local definition of tester:

359

7.6 Nested Interpreters 360

Listing 7.248

(define dfa
...
(letrec ([...]

[tester
(λ (sym curr-state)
(cond
[(null? sym) (final-state? curr-state)]
[else
(let* ([transitions (second curr-state)]

[next (assv (first sym) transitions)])
...)]))])

...))

With these fields, we can re-invoke tester with the next symbol and state respec-
tively.

Listing 7.249

(define dfa
...
(letrec ([...]

[tester
(λ (sym curr-state)
(cond
[(null? sym) (final-state? curr-state)]
[else
(let* ([transitions (second curr-state)]

[next (assv (first sym) transitions)])
(tester (rest sym) (assv (second next) states)))]))])

...))

Notice that next is the transition pair, of the form '(sym state), used to get
to the subsequent state from curr-state. Finally, in the invocation to tester, we
call assv on the snd of next, which is a state identifier. The recursive calls continue
until s is empty. The last piece of the puzzle is to add a lambda function into the
body of the letrec which invokes tester with the input argument and the start
state start.

Listing 7.250

(define dfa
(λ (los)
(let* ([states los]

[start (first states)])
(letrec ([final-state?

(λ (state)
(member? 'f (third state)))]

[tester
(λ (sym curr-state)
(cond
[(null? sym) (final-state? curr-state)]
[else
(let* ([transitions (second curr-state)]

[next (assv (first sym) transitions)])
(tester (rest sym) (assv (second next) states)))]))])

(λ (input)
(tester input q0))))))

Now, let us construct the DFA from earlier, using the familiar syntax.

360

361 Functional Programming

Listing 7.251

(define d1 (dfa '((q0 ((a . q1) (b . q2)) (s))
(q1 ((a . q1) (b . q2)) ())
(q2 ((a . q2) (b . q2)) (f))))

If we output d1, we see it displays as a function, which makes sense because the
returned expression is the lambda which receives input and invokes tester. So, let
us invoke this with a few tests.

Listing 7.252

> (d1 '(a))
> (d1 '(b))
> (d1 '(a b))
> (d1 '(a a a a a a a))
> (d1 '(b a a a b a b))
> (d1 '(a a a a a a b))

#f
#t
#t
#f
#t
#t

We can, visually, explain the language described by this DFA. It is the language
of a’s and b’s such that the input contains at least one b. This is evident by test
cases 1 and 4. As another example, let us write the code to represent the following
DFA:

q1start q2

q3 q4

a

b

a

b

a

b

b

a

Figure 7.14: Simple DFA Example #2.

Going from a diagram, it is trivial to describe the transitions and state properties.
We quickly run into a severe problem, though! The start state is also a final state,
which means that the DFA accepts the empty string. So, what do we do in this case?
Our code currently runs under the assumption that the first state is guaranteed to
be the start state. So, why do we need a property that says if it is the starting
state? It is, effectively, superfluous. So, if the starting state is also a final state, we
can simply mark it as final and be rid of the 's tag.

With this modification, an accurate description of the DFA is possible.

361

7.6 Nested Interpreters 362

Listing 7.253

(define d2
(dfa '((q1 ((a . q1) (b . q2)) (s f))

(q2 ((a . q3) (b . q4)) (f))
(q3 ((a . q3) (b . q1)) ())
(q4 ((a . q3) (b . q4)) (f)))))

> (d2 '())
> (d2 '(a b))
> (d2 '(b a))
> (d2 '(a a a a a))
> (d2 '(b b a a))
> (d2 '(b b a a b))
> (d2 '(b b a b b a))
> (d2 '(a a a b b))

#t
#t
#f
#t
#f
#t
#f
#t

Hopefully, the pattern in the accepted language is apparent—this DFA accepts
all strings that are either empty, only contain a’s, or end with b.
Exercise 7.48. (⋆)
Describe the language of strings that the following automaton accepts, then encode
it into the interpreter.

q1start

q2

q3

a, b

a, b

a

b

Figure 7.15: Simple DFA Example #3.

362

363 Functional Programming

L∗TURING: Simulating a Turing Machine

It is astounding how little computing power is necessary to do “heavy-duty” tasks.
Of course, said tasks may take a seemingly infinite amount of time to complete, but
nonetheless, given enough time, they terminate. In this section, we will minimize our
programming syntax and semantics to support only two symbols, natural numbers,
and small data stores called registers. This language will be aptly named after Alan
Turing: L∗TURING. While not an exact replicate of the formal definition of a Turing
machine, its capabilities mimic the power of one.

L∗TURING recognizes two symbols: ‘+’ and ‘-’. These are the only storable sym-
bols. Said symbols are storable in registers, identified by positive integers, e.g., 1,
2, and so on. For example, to add a ‘+’ to register 1, we use the command (1 (+)).
If we want to store the symbols ‘-’, ‘-’, ‘+’, ‘-’, ‘-’ in register 2, we use (2 (- - +
- -)). Each insertion is issued as a cons pair whose first is the identifying register
and whose second is a list of symbols to add to the end of the register contents.
Instructions are executed sequentially, and each instruction is stored in a list. Take
the following program which stores a binary representation of the corresponding
register identifier in the register for registers 1 to 5, interpreting ‘+’ as one and
‘-’ as zero. The output window shows the environment representation, which is
nothing more than an association list of registers mapped to their contents.

Listing 7.254

'((1 (+))
(2 (+ -))
(3 (+ +))
(4 (+ - -))
(5 (+ - +)))

((1 . (+)) (2 . (+ -)) (3 . (+ +))
(4 . (+ - -)) (5 . (+ - +)))

As it would appear, this program does nothing all too interesting because it has
nothing to divert program flow. Therefore, we introduce two new commands: a
program counter decrementer and a program counter incrementer. The program
counter is a natural number corresponding to the currently-executing instruction.
After each statement is executed, the program counter increments by one, hence
the sequential nature of L∗TURING. To jump successive instructions, we use the ‘>’
operator. For example, to jump three instructions ahead, we use (> > >) as follows.

Listing 7.255

'((1 (+))
(> > >)
(2 (+ -))
(3 (+ +))
(4 (+ - -))
(5 (+ - +)))

((1 . +) (4 . + - -) (5 . + - +))

As demonstrated, we jump from instruction 2 to instruction 5. We will call this
a type of redirection operator, namely a “forward redirection”. Going the other
way allows us to mimic looping semantics from other programming languages. For
example, if we want to transfer control from instruction 5 back to the start of the
program, we use the “backward redirection” operator, i.e., <.

363

7.6 Nested Interpreters 364

Listing 7.256

'((1 (+))
(2 (+ -))
(3 (+ +))
(4 (+ - -))
(< < <)
(5 (+ - +)))

⊥

This program, as expected, never terminates; it continuously sets the values in
registers 1, 2, 3, and 4. So, redirection operators serve little purpose without aug-
menting our language with decision structures. Our machine interprets question
marks as case analyses on a register, based on its contents. We will perform case
analysis via (N ?) where N is a register. If the register contains no symbols, control
flow continues to the next sequential instruction. If the first value in the register
is ‘+’, the symbol is removed and we jump two instructions ahead. Lastly, if the
first value in the register is ‘-’, the symbol is removed and we jump three instruc-
tions ahead. The fact that we pop symbols off a register provides the potential to
continuously make decisions that lead to a program that terminates. Of course,
even though we have such a small set of operators, it remains easy to accidentally
wind up in an infinite loop, just as it is in any other programming language. See
Figure 7.16 for a condensed explanation of the case analysis algorithm.

First of (N ?) Register Behavior Instruction Jump

'() none Go To Next
'+ Remove + from N Jump 2 Instructions
'- Remove - from N Jump 3 Instructions

Figure 7.16: Case Analysis Operations in L∗
TURING

Let us write a L∗TURING that transfers the contents from register 1 to register 2
using our new syntax and semantics. Because programs in L∗TURING are somewhat
offputting to non-computer readers of the language, we will supplement the program
with adjacent comments. To begin, we will store an arbitrary set of input symbols
inside register 1.

Listing 7.257

'((1 (+ - - - + - - + - +))
(1 ?) ; Case analysis on R1.
(> > > > > >) ; If |R1 |=0 goto end.
(> > >) ; If R1 has + goto (2 (+))
(2 (-)) ; Add - to R2.
(< < < <) ; Back to (1 ?).
(2 (+)) ; Add + to R2.
(< < < < < <)) ; Back to (1 ?).

((1)
(2 . + - - - +

- - + - +))

On the other hand, if we want to copy the values from register 1 into register
2, we need to use an auxiliary register that transfers contents from register 1 to
register 3 while also inserting symbols into register 2. Afterwards, we remove all
symbols from register 3 and insert them back into register 1 using the same idea.
We cannot simply add symbols to the end of register 1 as that would cause an
infinitely looping program.

364

365 Functional Programming

Listing 7.258

'((1 (+ - - - + - - + - +))
;; First , move R1 into R2.
(1 ?) ; Cases on R1.
(> > > > > > > > >) ; Go to R3 copy.
(> >)
(> > > >)
(3 (+)) ; Push + to R3.
(2 (+)) ; Push + to R2.
(< < < < < <) ; Back to R1 case.
(3 (-)) ; Push - to R3.
(2 (-)) ; Push - to R2.
(< < < < < < < < <) ; Back to R1 case.
;; Now copy over from r3 back to r1.
(3 ?) ; Cases on R3.
(> > > > > > >) ; Go to end.
(> >)
(> > >)
(1 (+)) ; Push + to R1.
(< < < < <) ; Back to R3 case.
(1 (-)) ; Push - to R1.
(< < < < < < <))) ; Back to R2 case.

((1 . + - - - +
- - + - +)

(3)
(2 . + - - - +

- - + - +))

Notice that register 3 shows up in the output window, just without any contents.
We could implement a procedure to remove auxiliary registers like these, i.e., regis-
ters that are used during program execution, but are empty at program termination
time.

365

7.6 Nested Interpreters 366

L∗DERIVATIVE: A Symbolic Differentiator

In calculus, the notion of the derivative of a function comes up quite frequently.
Computing the derivative of a function by hand is a laborious task often reserved
for introductory students. In this section, we will write a symbolic differentiator,
which uses basic rules from calculus to find the derivative of a given function. Note:
even if the reader has not taken a course in elementary calculus, we present the
topic in a way that does not require knowledge of concepts from calculus.

The target outcome is to be able to take the derivative of a function represented
as an s-expression, e.g., x2 + cos(

√
x) is represented as (+ (expt x 2) (cos (sqrt

x))). Actually understanding what the derivative of a function is, is beyond the
scope of this textbook. We, on the other hand, will apply simple rules of calculus to
find the derivative of simple functions. Then, we can apply those rules on a larger
problem and break it down into sub-components.

First, we need to write a evaluation function that receives expressions/functions
and computes their derivative. We shall name this function deriv-of. For now, it
just returns #f since there are no dispatch clauses.

Listing 7.259

(define deriv-of
(λ (exp)
(cond
[else #f])))

Now, let us take the derivative of the simplest possible function: a constant
number.

Derivative of a constant: If we have a function f = c where c is any number,
the derivative of f is always zero. E.g., (deriv-of 5) resolves to 0. We need to
write the recognition and derivative evaluation functions for a constant.

Listing 7.260

(define constant?
(λ (exp)
(number? exp)))

(define deriv-of-constant
(λ (exp)
0))

Derivative of a variable: The second-simplest function to differentiate is when
the function is a single variable, e.g., f = ϕ, where ϕ is any variable, e.g., x, y. The
derivative of these functions is always one. E.g., (deriv-of 'x). The recognition
and evaluation functions are just as trivial as those for differentiating constants.

Listing 7.261

(define variable?
(λ (exp)
(symbol? exp)))

(define deriv-of-variable
(λ (exp)
1))

366

367 Functional Programming

Derivative of a Sum/Difference: To compute the derivative of the sum/d-
ifference of two functions f and g, namely f ± g, we differentiate f and g inde-
pendently, then either add or subtract the values. E.g., (deriv-of '(+ (+ (+ x
x) x) (+ 5 x))) resolves to 8 because the derivative of (+ (+ x x) x) is 3, and
the derivative of (+ 5 x) is 1. When differentiating a sum/difference, we need to
create a sum/difference expression. We can create two local functions make-sum and
make-difference that receive two expression functions f and g, and resolves them
based on their values. We can utilize useful properties of addition and subtraction
to “fold” the expressions. For instance, (+ x 0) is equivalent to x. Another ex-
ample is (- 13 6) which resolves to 7. If we cannot “fold” an expression, we just
return it as a sum/difference list.

Listing 7.262

(define sum?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (first exp) '+))))

(define deriv-of-sum
(λ (exp)
(let ([f (deriv-of (second exp))]

[g (deriv-of (third exp))])
(let
([make-sum

(λ (f g)
(cond
[(and (number? f) (zero? f)) g]
[(and (number? g) (zero? g)) f]
[(and (number? f) (number? g))
(+ f g)]

[else `(+ ,f ,g)]))])
(make-sum f g)))))

Listing 7.263

(define difference?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (first exp) '-))))

(define deriv-of-difference
(λ (exp)
(let ([f (deriv-of (second exp))]

[g (deriv-of (third exp))])
(let
([make-difference

(λ (f g)
(cond
[(and (number? f)

(number? g)
(zero? f))

(- g)]
[(and (number? g) (zero? g)) f]
[(and (number? f) (number? g))
(- f g)]

[else `(- ,f ,g)]))])
(make-difference f g)))))

Listing 7.264

> (deriv-of '(+ (+ (+ x x) x) (+ 5 x)))
> (deriv-of '(- 5 x))

8
1

367

7.6 Nested Interpreters 368

Derivative of a Product: Differentiating a product, e.g., f ·g, is ever-so-
slightly more difficult than sum and difference derivatives. The derivative of such a
product is (f ·g′)+(f ′·g) where f ′ and g′ are the derivatives of f and g respectively.
So, we can write the relevant recognition and reducer pair. Just like make-sum
and make-difference, we will create a make-product that folds constants, ze-
roes out expressions that multiply by zero, and eliminates multiplications by one.
With these, we can write deriv-of-product, which makes use of the previously-
implemented functions.

Listing 7.265

(define product?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (first exp) '*))))

(define deriv-of-product
(λ (exp)
(let ([f (second exp)]

[g (third exp)])
(let
([make-product

(λ (f g)
(cond
[(and (number? f) (zero? f)) 0]
[(and (number? g) (zero? g)) 0]
[(and (number? f) (= f 1)) g]
[(and (number? g) (= g 1)) f]
[(and (number? f) (number? g))
(* f g)]

[else `(* ,f ,g)]))])
(make-sum
(make-product (deriv-of f) g)
(make-product (deriv-of g) f))))))

Listing 7.266

> (deriv-of '(- (* 5 x) (* 11 x)))
> (deriv-of '(+ (* (* 3 x) x) (* 9 x)))

-6
(+ (+ (* 3 x) (* 3 x))

9)

Derivative of a Quotient: Opposite to products, we will now differentiate di-
vision, or quotients. The derivative of a quotient, f/g, is ((f ·g′) − (f ′·g))/(g2). So,
as we can see, it is eerily similar to differentiating a product with two modifications:
we subtract the right-hand side from the left (instead of addition), and divide the
difference by g squared, or g·g. Let us write the recognition/reducer functions as
well as make-quotient.

368

369 Functional Programming

Listing 7.267

(define quotient?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (first exp) '/))))

(define deriv-of-quotient
(λ (exp)
(let* ([f (second exp)]

[g (third exp)]
[df (deriv-of f)]
[dg (deriv-of g)])

(let
([make-quotient

(λ (f g)
(cond
[(and (number? f) (zero? f)) 0]
[(and (number? f) (number? g))
(/ f g)]

[else `(/ ,f ,g)])))]
(make-quotient
(make-difference
(make-product df g)
(make-product dg f))

(make-product g g))))))

Listing 7.268

> (deriv-of '(/ 1 x))
> (deriv-of '(/ 1 (make-product x x)))

(/ -1 (* x x))
(/ (- 0 (+ x x))

(* (* x x)
(* x x)))

Derivative of a (Simple) Exponent: The last function “class” that we will
implement is a simple exponential. A simple exponential takes the form ϕn where
ϕ is any variable and n is any integer. E.g., (expt x 2) is a simple exponent, but
(expt (cos x) 4) is not. The derivative of a simple exponential is n·xn−1. E.g.,
the derivative of x5 is 5·x4. Let us write the accompanying recognition/reducer pair
and “make” function. Note that we can make use of some simple algebraic rules to
fold exponentials, e.g., x0 = 1, x1 = x, and 0n = 0 for any n > 0.

Listing 7.269

(define expt?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(symbol? (second exp))
(eqv? (first exp) 'expt))))

(define deriv-of-expt
(λ (exp)
(let ([base (second exp)]

[power (third exp)])
(let
([make-expt

(λ (f g)
(cond
[(and (number? f) (zero? f)) 0]
[(and (number? g) (zero? g)) 1]
[(and (number? g) (= g 1)) f]
[(and (number? f) (number? g))
(expt f g)]

[else `(expt ,f ,g)]))))
(make-expt
(make-product power base)
(sub1 power))))))

369

7.6 Nested Interpreters 370

Listing 7.270

> (deriv-of '(expt x 3))

> (deriv-of '(* 4 (expt x 3))

> (deriv-of '(/ (* 2 x) (expt x 2)))

> (deriv-of '(/ (- (* 3 x) 4)
(- (* 2 (expt x 2))

1)))

(expt (* 3 x) 2)

(* (expt (* 3 x) 2) 4)

(/ (- (* 2 (expt x 2))
(* (* 2 x) (* 2 x)))

(expt (expt x 2) 2))

(/ (- (* 3 (- (* 2 (expt x 2)) 1))
(* (* (* 2 x) 2)

(- (* 3 x) 4)))
(expt (- (* 2 (expt x 2)) 1) 2))

Exercise 7.49. (⋆⋆)
Write two functions: deriv-of-sqrt and deriv-of-log, which take the derivative
of square roots and base ten logarithms respectively. The derivative of a square
root function is (1/2)·(f ′/

√
(f)) where f is some function. The derivative of a base

ten logarithmic function is f ′/f where f is some function.

Exercise 7.50. (⋆)
Write two functions: deriv-of-sin and deriv-of-cos, which take the derivative
of the sine and cosine functions respectively. The derivative of the sine function
is f ′·cos(f), where f is some function. The derivative of the cosine function is
f ′·−sin(f).
Exercise 7.51. (⋆⋆)
Write a function: deriv-of-tan which takes the derivative of the tangent function.
The derivative of the tangent function is 1+tan2(f)·f ′, where f is some function.

Exercise 7.52. (⋆⋆)
Turn the addition and subtraction functions, namely + and - into functions that use
any number greater than or equal to two of arguments. That is, allow differentiation
of functions such as (deriv-of (+ 5 6 7 8 ...)).

370

371 Functional Programming

L∗PROOF: Natural Deduction Proof Checker

In Chapter 2, we dedicated an entire section to propositional logic and its sig-
nificance in the world of computer science. Along those lines, we also discussed
proof techniques, one of which was natural deduction. In this section, we will write
L∗PROOF: a nested interpreter that determines whether or not a given natural de-
duction propositional logic proof is valid.

Let us look at a sample PL proof to see what we are getting into. We will then
explain our encoding scheme to translate the proof into a representation under-
standable by L∗PROOF.

1. p ∨ q Premise
2. ¬p Premise
3. q → r Premise
4. q 1, 2 DS
5. r 3, 4 MP
6. q ∧ r 4, 5 ∧-Intro

A natural deduction proof, as we have shown, contains premises and derivation
steps. At each step, we may apply a rule that follows from previous steps. Let us
envision a prefix encoding of this proof:

Listing 7.271

'(proof
((or (atom p) (atom q)) () Premise)
((not (atom q)) () Premise)
((implies (atom q) (atom r)) () Premise)
((atom q) (1 2) DS)
((atom r) (3 4) MP)
((and (atom q) (atom r)) (4 5) ConjIntro))

We encode a proof as a list of elements described by steps. Namely, a step is a
list that contains three elements: the first is the proposition declared by the step,
the second is a list of (previous) steps used in the derivation of its proposition, and
the third is the step “type”. Our goal is to take a proof written in this format and
output whether it is a valid proof or not. An invalid proof is one that, at some
point, incorrectly defines a step.

To start, we should implement a large evaluation function, i.e., check, which
receives a step using the aforementioned format and delegates evaluation of each
component via case analysis. It also receives the proof as a whole. We will come
back to explain the motivation behind this choice soon.

Listing 7.272

(define check
(λ (step proof)
(cond
[(rule-premise? step) (check-rule-premise step proof)]
[(rule-mp? step) (check-rule-mp step proof)]
[...]
[else #f])))

371

7.6 Nested Interpreters 372

Now, we can write the accompanying recognition functions. We will catego-
rize our recognition functions based on the type of recognizer. Namely, we have
propositions and rules. Rules consist of propositions, meaning we should write the
proposition recognizers first. For simplicity, we will only show the implementation
of two recognizers. As a data definition, we say that propositions are implemented
as a list where the first is the “type” of proposition, i.e., an implication, conjunc-
tion, atom, and so on. The remaining elements are arguments to the connective or
proposition type.

Listing 7.273

(define prop-atom?
(λ (p)
(and (cons? p)

(= (length p) 2)
(eqv? (first p) 'atom))))

(define prop-implies?
(λ (p)
(and (cons? p)

(= (length p) 3)
(eqv? (first p) 'implies))))

Next, we can write the “rule” recognizers. Rules act as derivation steps in a
proof, as we described earlier. Fortunately, these are almost identical to the prop-
recognizers.

Listing 7.274

(define rule-premise?
(λ (step)
(and (cons? step)

(= (length step) 3)
(eqv? (third step) 'Premise))))

(define rule-mp?
(λ (step)
(and (cons? step)

(= (length step) 3)
(= (length (second step)) 2)
(eqv? (third step) 'MP))))

Note that we do not implement reducers for prop- recognizers as there is no need;
we simply use these recognizers in tandem when invoking check-rule- reducers.
Speaking of those reducers, let us write those! check-rule- reducers return a
boolean value that designates whether the rule was applied correctly or incorrectly.
Premises are trivial and are always, by definition, applied correctly. So, we will
jump directly to check-rule-mp. All reducers receive two arguments: the step
that it evaluates on, and the entire proof as a list. We need this because we must
verify that derivation steps were applied correctly. So, when we reference a step in
the second list, we retrieve it from the proof using a naturally recursive function
get-proof-step.

372

373 Functional Programming

Listing 7.275

(define get-proof-step
(λ (step proof)
(cond
[(null? proof) #f]
[(= step 1) (first proof)]
[else (get-proof-step (- step 1) (rest proof))])))

(define check-rule-mp
(λ (mp proof)
(let* ([steps (second mp)]

[s1 (first (get-proof-step (first steps) proof))]
[s2 (first (get-proof-step (second steps) proof))])

...)))

We verify three properties when determining if a MP rule was correctly applied: if
s1 is an implication, if the antecedent of s1 is equal to s2, and if the consequent of
s2 is equal to the proposition defined by the step. Consider the following example.

Listing 7.276

'(((implies (atom p) (atom q)) () Premise)
((atom p) () Premise)
((atom q) (1 2) MP)))

When we encounter the final step of this proof, we see that it uses MP. So, we
look up the steps used in its derivation, namely 1 and 2. One thing that we have
yet to define is prop-=?: a predicate that determines if two propositions are the
same. Two prop-atom? are the same if they share the same proposition atom.
Two prop-implies? are the same if, according to prop-=?, their antecedents are
equivalent and their consequents are equivalent.

Listing 7.277

(define prop-=?
(λ (p1 p2)
(cond
[(and (prop-atom? p1) (prop-atom? p2))
(eqv? (second p1) (second p2))]

[(and (prop-implies? p1) (prop-implies? p2))
(and (prop-=? (first p1) (first p2)) (prop-=? (second p1) (second p2)))]

[else #f])))

We may now use this equality checker in check-rule-mp.

Listing 7.278

(define check-rule-mp
(λ (mp proof)
(let* (...)
(and (prop-implies? s1)

(prop-=? (second s1) s2)
(prop-=? (third s1) (first mp))))))

373

7.6 Nested Interpreters 374

Finally, we need a way of traversing through the proof to analyze each rule one
at a time sequentially. As we have repeatedly seen, the best approach is to use
letrec that localizes the recursion. Recall that we want to return #t if the proof
is correct and #f otherwise. Our base case is simple: if we have reached the end of
the proof, then every step prior must be correct, so the collective proof is correct.
We then check each step in succession. If we encounter a check that returns #t, we
continue checking the remaining steps. Upon encountering an incorrectly-applied
rule, we return #f.

Listing 7.279

(define check-proof
(letrec ([checker

(λ (step proof)
(cond
[(null? step) #t]
[(eqv? (check (first step) proof) #t)
(checker (rest step) proof)]

[else #f]))])
(λ (proof)
(checker proof proof))))

Let us try a very simple example: one that only uses atoms as the antecedent
and conclusion of an implication.

Listing 7.280

(define pf1
'(((implies (atom p) (atom q)) () Premise)

((atom p) () Premise)
((atom q) (1 2) MP)))

> (check-proof pf1) #t

374

375 Functional Programming

L∗CONTINUATION: A Continuation-Passing Style Interpreter

In a prior section, we mentioned the intricacies of continuations and continuation-
passing style. In this section, we will revise and extend L∗PROC into L∗CONTINUATION:
a language that supports continuations and the illustrious call/cc operator.

Our discussion on continuations was driven entirely by manual continuation de-
velopment. What we mean by this is that we wrote functions in explicit continuation-
passing style to exhibit the potential of continuations. Some languages, however,
come with built-in support for working with continuations. Scheme is one of these
languages with the call/cc, or call-with-current-continuation operator. Un-
like our current implementation of continuations, call/cc allows us to “jump out”
of a piece of code, terminating any subsequent expressions. For instance, consider
the following code:

Listing 7.281

(define foo-callcc
(+ 2 (call/cc

(λ (k)
(* 2 (k 3) 5)))))

call/cc inserts a “hole”, of sorts, into the outer addition expression, producing
(+ 2 ???). The ??? is a call/cc invocation. So, we look inside its definition
to see if the continuation, namely k, is invoked with an expression. If so, the
??? is replaced by this value. Since we call k with 3, we substitute ??? by 3,
resulting in (+ 2 3), which is of course 5. What is significant about call/cc is, like
our continuation-passing style exception-handling technique, it stops all subsequent
expression evaluation. In the above example, the body of the function passed to
call/cc is a multiplication of 2, (k 3), and 5. Because we invoke the continuation,
the multiplication step never finishes.

So, can we write a nested interpreter to implement call/cc? Certainly! We first
need to rewrite our previous interpreter, namely L∗PROC, in continuation-passing
style.

All functions written in CPS must be tail recursive, as we previously described.
So, let us start by supporting a subset of L∗PROC and working our way up. To start,
all functions that are written in CPS must receive the extra continuation argument.

Listing 7.282

(define value-of-cps
(λ (exp env k)
(cond
[(number? exp) ...]
[(symbol? exp) ...]
[(add? exp) ...]
[(lambda? exp) ...]
[(application? exp) ...])))

The idea is to apply the continuation k wherever the original interpreter resolves
to a value. For example, in the number? clause, it resolves to exp, meaning we
should apply k to exp, treating the continuation as a function.

375

7.6 Nested Interpreters 376

Listing 7.283

(define value-of-cps
(λ (exp env k)
(cond
[(number? exp) (k exp)]
[...])))

As a quick preview, let us write a test case to see what this design paradigm
entails. The initial call to value-of-cps should receive the empty continuation,
i.e., the identity function.

Listing 7.284

> (value-of-cps '5 (empty-env) (λ (v) v)) 5

Analyzing the trace of this function shows that when we arrive at the number?
case, we apply the continuation to the expression, resulting in ((lambda (v) v)
5), thus resolving to 5.

Symbol evaluation works the same—apply the continuation onto the result of
calling apply-env.

Addition is where things get a bit more complicated. Recall that we said a
function written in CPS must be tail recursive. Well, value-of-add-cps is not
directly tail recursive, but is what we will refer to as mutually-tail recursive. In
essence, value-of-cps calls value-of-add-cps, which calls value-of-cps. We
could, technically, inline the recognizer value-of-add-cps into the root evaluator;
we choose not to out of code cleanliness.

First, we extract the two operands of + out of the expression and evaluate them
in accordance to continuation-passing style semantics.

Listing 7.285

(define value-of-add-cps
(λ (exp env k)
(let ([v1 (second exp)]

[v2 (third exp)])
(value-of-cps v1 env
(λ (res-v1)
(value-of-cps v2 env
(λ (res-v2)
(k (+ res-v1 res-v2)))))))))

The lambda reducer applies the continuation to a function of two arguments
rather than one. We must explicitly pass a continuation in addition to the function
argument. Otherwise, everything is the same as the non-CPS’d interpreter.

Listing 7.286

(define value-of-lambda-cps
(λ (exp env k)
(let* ([loparam (second exp)]

[x (first loparam)]
[body (third exp)])

(k
(λ (arg kˆ)
(value-of-cps body (extend-env x arg env) kˆ))))))

376

377 Functional Programming

Application reduction, to the surprise of some readers, does not invoke the con-
tinuation. The reason is simple: function application ultimately reduces to one of
the other cases that apply the continuation on its result. Therefore, applying the
continuation onto the result of an application is redundant.

Listing 7.287

(define value-of-application-cps
(λ (exp env k)
(let ([rator (first exp)]

[rand (second exp)])
(value-of-cps rator env
(λ (rat)
(value-of-cps rand env
(λ (ran)
(rat ran k))))))))

Let us throw a few tests at this interpreter:

Listing 7.288

> (value-of-cps
'(+ ((lambda (x) (+ x x)) 10)

((lambda (x) (+ x (+ x x))) 20))
(empty-env)
(λ (v) v))

> (value-of-cps
'((((lambda (x)

(lambda (y)
(lambda (z) (+ x (+ y z))))) 10) 20) 30)

(empty-env)
(λ (v) v))

80

60

The interpreter works as intended. It is now time, at long last, to implement
call/cc. Let us write a few tests that show how it works:

377

7.6 Nested Interpreters 378

Listing 7.289

> (value-of-cps
'(call/cc (lambda (k) (+ 2000000 (k 5))))
(empty-env)
(λ (v) v))

> (value-of-cps
'(+ 10

(+ (call/cc (lambda (k)
(+ 10 (+ (k 20) 30))))

30))
(empty-env)
(λ (v) v))

> (value-of-cps
'(+ 10

(+ (call/cc (lambda (k) (+ 10 (+ 20 30))))
30))

(empty-env)
(λ (v) v))

> (value-of-cps
'(+ 10

(call/cc
(lambda (k)
(+ (call/cc

(lambda (kˆ)
(+ 10 (+ 20 (k 30)))))

9000))))
(empty-env)
(λ (v) v))

> (value-of-cps
'(+ 10

(call/cc
(lambda (k)
(+ 20 30))))

(empty-env)
(λ (v) v))

5

60

100

40

60

Let us begin by writing the recognizer; all we need to check for is that the first
is call/cc.

Listing 7.290

(define callcc?
(λ (exp)
(and (cons? exp)

(= (length exp) 2)
(eqv? (first exp) 'call/cc))))

Its reducer is the most complex we have seen yet. Here’s the idea: the ex-
pression to call/cc is a procedure of one argument representing the continuation.
Evaluating this function (body) in CPS gets us, of course, a continuation kˆ. We
should apply said continuation onto a procedure of two arguments: some value and
a new continuation kˆˆ. At this point, the current continuation is kˆˆ. Though,
we do not want to invoke kˆˆ on the passed value, but rather we want to invoke
the continuation provided at the time of evaluating the body, namely k.

378

379 Functional Programming

Listing 7.291

(define value-of-callcc-cps
(λ (exp env k)
(let ([body (second exp)])
(value-of-cps body env
(λ (f)
(f (λ (v kˆˆ) (k v)) k))))))

Running the above tests gets us the correct output as desired. Though, this
code is very difficult to understand at first (and staring at it for hours on end
rarely improves anything), so let us slow down and analyze each piece of this
puzzle. To do this, we need to also take a look at value-of-lambda-cps and
value-of-application-cps:

Listing 7.292

(define value-of-lambda-cps
(λ (exp env k)
(let* ([loparam (second exp)]

[x (first loparam)]
[body (third exp)])

(k (λ (arg kˆ)
(value-of-cps body (extend-env x arg env) kˆ))))))

(define value-of-application-cps
(λ (exp env k)
(let ([rator (first exp)]

[rand (second exp)])
(value-of-cps rator env
(λ (rat)
(value-of-cps rand env
(λ (ran)
(rat ran k))))))))

Let us clarify something that we somewhat glossed over when defining these two
functions. Our lambda case returns a procedure of two arguments: arg and kˆ,
meaning that whenever we invoke rat, or the operator of an application, we must
give it two operands: the operand to the function (which we have repeatedly seen
and is no different from the non-CPS’d counterpart) and the continuation to use in
subsequent evaluations.

With this understanding under our belt, let us analyze the call/cc reducer.
Because it is written in continuation-passing style, we evaluate the body of the
expression which, by definition, must be a procedure representing a continuation,
e.g., (call/cc (lambda (k) ...)). Accordingly, the expression will always invoke
the lambda reducer and return a procedure of two arguments. As such, we call this
procedure f to denote its existence as a procedure.

379

7.6 Nested Interpreters 380

Next, we call f and pass to it two arguments (as it should expect): a function
of two arguments (v and kˆ) and the current continuation k. Note that, because
f is returned by the lambda reducer, it binds the function of two arguments to
the formal parameter arg and the continuation to kˆ. Inside of our language,
whenever we decide to invoke the continuation, e.g., (call/cc (lambda (k) (+
2 (k 3)))), we, as the programmer, give the continuation one argument which
in this instance is 3. The other argument, namely the continuation, is passed by
the interpreter within function application reduction. What matters, however, is
what expression is bound to k. During evaluation of the call/cc’s lambda, we
extend its environment to include a binding of x to arg. x is the continuation
formal parameter, and arg is the two-argument (lambda (v kˆˆ) ...). Finally,
we run into two cases: either we invoke the continuation or we do not. In the
former case, the continuation from when the function was defined, i.e., k, is called
with a value v, sending v out of the current context. Therefore, any remaining
expressions to evaluate are “terminated”. In the latter case, k is never invoked,
meaning we never call k on some value v. The environment still contains a binding
of k to the continuation; we just never invoke it. Instead, the value is evaluated via
value-of-cps and returned like any other expression.

If we wanted, we could implement the remaining features in L∗PROC, e.g., condi-
tionals, local declarations, side-effects, and begin!, but we leave these as exercises
to the reader.

Exercise 7.53. (⋆)
As a preliminary exercise, update apply-env to include an extra parameter repre-
senting a continuation. In addition, update its definition to invoke the continuation
on the returned association value. This, consequently, means the dispatch value-of
function should no longer invoke k on the expression returned by apply-env.
Exercise 7.54. (⋆)
Right now, this interpreter is not representation-independent with respect to clo-
sures; namely, we treat closures as functions. Write the helper functions create-clo
sure and apply-closure. Note that apply-closure, like apply-env, should re-
ceive the continuation as a parameter. Then, update your value-of-lambda and
value-of-application to call the closure helper functions.

Exercise 7.55. (⋆)
In addition to making environments and closures representation independent, con-
tinuations ought to receive similar treatment. Our interpreter assumes that contin-
uations are functions, but that representation is by definition not mandatory! Write
the empty-k and apply-k helper functions and replace every instance of functional
continuations with these new functions. The representation of continuations is,
by definition, irrelevant, but a functional representation is certainly the easiest to
understand and use.

Exercise 7.56. (⋆⋆⋆)
Implement let/cc: a variant of call/cc that abstracts the lambda representation
of continuations away. Think of it as a let binding but only for continuations.
let/cc can be represented in terms of call/cc. For instance, the following two
forms are equivalent.

380

381 Functional Programming

Listing 7.293

(let/cc k (+ 2 3 (k 4))) (call/cc (lambda (k) (+ 2 3 (k 4))))

381

7.6 Nested Interpreters 382

L∗PARTIAL: Partial Evaluation Interpreter

Consider the following expression: ((lambda (x y) (+ (+ x x) (+ y y))) 10).
If we ran this in any of our current interpreters, the program would fail because the
function expects two arguments, namely x and y, but received only one. It might be
more beneficial, however, to have the program store the argument, namely x, inside
a closure, and to return the closure for future evaluation. This form of evaluation is
called partial evaluation. A function that does not receive all arguments necessary
to perform function application will return another function expecting those which
remain. In the case of the above example, a partial evaluator generates a closure
containing (+ (+ x x) (+ y y)), the formal parameter y, and a binding of x 7→ 10
inside the stored environment. In this section, we will write L∗PARTIAL: a nested
interpreter that implements a partial evaluator.

First, let us write the standard representation-independent (with respect to en-
vironments and closures) interpreter from earlier in this section. Our environment
model is the same; we use an association list representation (because of this, we
omit its inclusion in the listing). The closure model, though, differs because we will
use a tagged list rather than a functional closure representation since we want ac-
cess to formal parameter names. In addition to this change, we want our interpreter
to support multi-arity functions, since there would be no partial evaluation with
this exclusion. We will write a extend-env-bindings function that binds multiple
formal parameters to multiple arguments using foldr.

Listing 7.294

;; extend-env-bindings : [ListOf Symbol] [ListOf Any] Environment -> Environment
;; Binds a list of formal parameters to the arguments in the given environment.
(define extend-env-bindings
(λ (formals args env)
(foldr (λ (formal arg acc-env)

(extend-env formal arg acc-env))
env
formals
args)))

(define create-closure
(λ (vars body env)
(list 'create-closure vars body env)))

(define apply-closure
(λ (rator rands)
(cond
[(closure? rator) (value-of-closure rator rands)]
[else #f])))

The key to this nested interpreter rests inside value-of-closure. We want to
extract the values from the closure tagged list. If the number of formal parameters
to the closure is equal to the number of given arguments, then we perform standard
function application on the body. On the other hand, if the number of operands m
is less than the number of required formals n, we return a new closure containing an
extended environment with the first m formal parameters bound to each operand.
We also “truncate” the required formals from the closure, leaving n−m formals left
to be passed to the closure when invoked. To retrieve the first m or last m elements
of a list, we take advantage of the naturally-recursive take and drop functions.

382

383 Functional Programming

Listing 7.295

(define value-of-closure
(λ (rator rands)
(let ([vars (second rator)]

[body (third rator)]
[env (fourth rator)])

(cond
[(= (length vars) (length rands))
(value-of body (extend-env-bindings vars rands env))]

[else
(let ([n (length rands)])
(create-closure (drop vars n)

body
(extend-env-bindings (take vars n) rands env)))]))))

Now, we can run the example from before. Let us pass one argument to the
function, e.g., 10, which becomes bound in the generated closure. At the same
time, let us doubly invoke the function to see what happens:

Listing 7.296

> (value-of
'((lambda (x y) (+ (* x x) (y y))) 10)
(empty-env))

> (value-of
'(((lambda (x y) (+ (* x x) (* y y))) 10) 20)
(base-env))

(create-closure (y)
(+ (* x x) (y y))
((x . 10)))

500

When we call the function with only one argument, we receive a closure, as
expected, with x bound to 10. In the second invocation, the function produces
500 because all its arguments are fulfilled with values. Partial evaluation is handy
as it allows us to define functions without the need for explicit definitions of said
functions. As an example, we can write add1 as a partial application of the previous
procedure.

Listing 7.297

> (value-of
'((lambda (x y) (+ (* x x) (y y))) 1)
(empty-env))

> (value-of
'(((lambda (x y) (+ (* x x) (* y y))) 1) 15)
(base-env))

(create-closure (y)
(+ (* x x) (y y))
((x . 1)))

16

We could also write the higher-order function map that creates a map-add1 func-
tion that, as its name suggests, returns a mapping function that adds one to each
element of a list. First, let us write map in a let binding using the recursive lexical
scoping technique from Chapter 6.

383

7.6 Nested Interpreters 384

Listing 7.298

> (value-of
'(let ([map

(lambda (m f ls)
(if (null? ls)

(quote ())
(cons (f (first ls))

(m m f (rest ls)))))])
(map

map
(lambda (x) (+ x 1))
(cons 1
(cons 2
(cons 3
(cons 4
(quote ())))))))

(empty-env))

(2 3 4 5)

This is what we anticipated, but let us use partial evaluation to get the desired
map-add1 procedure.

Listing 7.299

> (value-of
'(let ([add1

(lambda (x) (+ x 1))]
(let ([map

(lambda (m f ls)
(if (null? ls)

(quote ())
(cons (f (first ls))

(m m f (rest ls)))))])
(let ([map-add1 (map map add1)])
(map-add1 (cons 1

(cons 2
(cons 3
(cons 4
(quote ()))))))))

(empty-env))

(2 3 4 5)

384

385 Functional Programming

7.7 Types and Type Systems

Types are a way of describing the categorical value associated with a variable or
function. For example, we constantly use types in C with function signatures via
return and formal parameters, function prototypes, and other such declarations.
Contrastingly, our programming language does not allow for explicit type annota-
tions. In other words, the type of an expression is known only at runtime rather
than compile-time. Such a type system is called dynamic, whereas the type system
for C is static. Static type systems allow for better compiler errors and provide less
of an opportunity for a program to crash after starting execution. Dynamic type
systems, on the other hand, are much more flexible in that the programmer needs
not to know the type of an expression before its definition. Though, this can result
in sometimes sloppy code. Consider the following code segment:

Listing 7.300

(define val (if #t 3 "Hello!"))

What is the type associated with val? A static type checker would see this
expression and complain because the consequent and alternative cases of the con-
ditional differ; the former is a number and the latter is a string. So, can we say
that val is of type “number or string”? Some programming languages do explicitly
allow for this annotation. Though, to mimic this behavior in C, the best we can
realistically do is use a union inside a struct that assigns the according field.1

Listing 7.301

1 union data {
2 int n;
3 char *s;
4 };
5
6 int main(void) {
7 union data d;
8 if (true) { d.n = 3; }
9 else { d.s = "Hello"; }

10 return 0;
11 }

As shown, this is not the most elegant code and, even though the if is always
true, we can assume an arbitrary instance where we do not know the fate of the
conditional at compile-time.

To provide a sense of how basic type-checkers work, we will write a small type
checker via L∗TYPE-CHECK. Type checking is a complex problem in computer science,
but at its core uses straightforward rules to determine whether an expression is well-
typed. For instance, given a function f : Number → Number, we can verify that
applying f to some value x is correct depending on the type of x. This process is
recursive in nature, meaning it works for expressions inside other expressions.

1This is not strictly the case due to generic void pointer assignment.

385

7.7 Types and Type Systems 386

When we type check an expression, we do not evaluate the expression, but rather
we determine if its type is correct. So, if we were to type check an if expression, we
do not evaluate the if expression (namely the components it comprises). Instead,
we determine if the predicate p is of type Boolean and its consequent c and alter-
native a share types. Normally, when evaluating an if expression, we only evaluate
either the consequent or the alternative depending on the result of the predicate.
Because we do not care about the result of the expression, we preemptively type
check all three clauses.

Let us go piece by piece. We will say that a number corresponds to type Num-
ber, booleans correspond to type Boolean, and strings correspond to type String.
Symbols look up their associated type in a context. Recall that, with previous in-
terpreters, we associate symbols with values. In a type checker, though, symbols
are associated with types in a context rather than an environment (though these
two structures are nearly identical from a relational standpoint—even down to the
empty-, extend-, and apply- representation-independence functions).

Listing 7.302

; A Type is an Atom

; A Context is an Environment

;; type-check : Expr Context -> Type
;; Determines if the given expression is well-typed.
(define type-check
(λ (exp ctx)
(cond
[(number? exp) 'Number]
[(boolean? exp) 'Boolean]
[(string? exp) 'String]
[(symbol? exp) (apply-ctx y ctx)]
[...])))

To type check, say, an if expression, we follow the steps outlined above. Though,
we need a way of determining if two types are equivalent. Because types are poten-
tially recursive due to functions, a simple eqv? symbol comparison is not sufficient.
We will write corresponding recognizer functions for Number, Boolean, and String
types, but then take a brief junction to talk about function types as these are the
only “recursive” types in our system.

A function f of one argument has an input type X and an output type Y denoted
as a list whose first element is X, whose second element is ->, and whose third
element is Y. Thus, the corresponding recognizer function is simple, but integrating
it into a type-equivalence checker requires a recursive call to check that the first
and rest of types t1 and t2 are equivalent.

386

387 Functional Programming

Listing 7.303

(define type-number? (λ (s) (eqv? s 'Number)))
(define type-boolean? (λ (s) (eqv? s 'Boolean)))
(define type-string? (λ (s) (eqv? s 'String)))
(define type-function?
(λ (s)
(and (cons? s)

(= (length s) 3)
(eqv? (second s) '->))))

;; type-equals? : Type Type -> Boolean
;; Determines if two types are equal.
(define type-equals?
(λ (t1 t2)
(cond
[(and (type-number? t1) (type-number? t2)) #t]
[(and (type-boolean? t1) (type-boolean? t2)) #t]
[(and (type-string? t1) (type-string? t2)) #t]
[(and (type-function? t1) (type-function? t2))
(and (type-equals? (first t1) (first t2))

(type-equals? (third t1) (third t2)))]
[else #f])))

Now, we will integrate conditional (if) expressions and functions into our type
checker. The latter requires creating a function type representation and type-
checking its body. There are two nuances to functions: First, functions require a
type annotation for its formal parameter. A type annotation tells the type checker
what is the type of an expression. Formal parameters need this annotation because,
otherwise, there is no way to determine its type.1. So, our notation for a function
will be (lambda (x : T) body) where the formal parameter is a list whose first
element is the symbol, the second element is a colon, and the third element is the
type of x.2

Listing 7.304—Type-Checking if Expressions

(define type-check-if
(λ (exp ctx)
(let* ([p (second exp)]

[c (third exp)]
[a (fourth exp)]
[tp (type-check p ctx)]
[tc (type-check c ctx)]
[ta (type-check a ctx)])

(if (and (type-boolean? tp) (type-equals? tc ta))
tc
'Type-Mismatch))))

Listing 7.305—Type-Checking lambda Expressions

(define type-check-lambda
(λ (exp ctx)
(let* ([fp (second exp)]

[x (first fp)]
[T (third fp)]
[body (third exp)])

(list T '-> (type-check body (extend-ctx x T ctx))))))

1There is a way around this that involves type inferencing. In summary, type inferring the body may
prove that the formal parameter is used in another typed context, i.e., addition. So, the type inferencer
can infer that the input type is a Number. This comes with the added benefit that a function can be
polymorphic, e.g., the identity function can receive and return any type in a type inferencer!

2Note that we simply ignore the colon as it is a stylistic choice and not important to the semantics
of a type annotation.

387

7.7 Types and Type Systems 388

Tying these supplemental reducers into the type-checking function gives us the
following:

Listing 7.306

(define type-check
(λ (exp ctx)
(cond
[(number? exp) 'Number]
[(boolean? exp) 'Boolean]
[(string? exp) 'String]
[(symbol? exp) (apply-ctx exp ctx)]
[(if? exp) (type-check-if exp ctx)]
[(lambda? exp) (type-check-lambda exp ctx)]
[else 'Type-Mismatch])))

Let us test out a few expressions:

Listing 7.307

> (type-check '5 (empty-ctx))

> (type-check '(if #t #f #t) (empty-ctx))

> (type-check '(lambda (x : Number) x) (empty-ctx))

> (type-check '(lambda (y : Boolean) (if y 5 10))
(empty-ctx))

> (type-check '(lambda (z : Boolean) (if 10 #f z))
(empty-ctx))

Number

Boolean

(Number -> Number)

(Boolean -> Number)

Type-Mismatch

We will also add support for type-checking unary function application. Doing so
is straightforward as well: we first check to ensure that the operator is a function.
Then, we type-check the first of the function type against the type of the operand.
If both of these checks succeed, we return the third of the function type.

Listing 7.308

(define type-check-application
(λ (exp ctx)
(let* ([rator (first exp)]

[rand (second exp)]
[trator (type-check rator ctx)]
[trand (type-check rand ctx)])

(cond
[(and (type-function? trator) (type-equals? (first trator) trand))
(third trator)]

[else 'Type-Mismatch]))))

(define type-check
(λ (exp ctx)
(cond
[...]
[(application? exp) (type-check-application exp ctx)]
[else 'Type-Mismatch])))

We also added a type-check-sum to type check for sum expressions where both
arguments must be of type Number.

388

389 Functional Programming

Listing 7.309

> (type-check '(lambda (x : Number) (+ x x))
(empty-ctx))

> (type-check '((lambda (x : Number) (+ x x)) 5)
(empty-ctx))

> (type-check '((lambda (b : Boolean)
(if b #f #t)) #f)

(empty-ctx))

> (type-check '((lambda (f : (Number -> Number))
(f 10))

(lambda (n : Number) n))
(empty-ctx))

> (type-check '(lambda (f : (Number -> Number))
(lambda (n : Number) (f n)))

(empty-ctx))

> (type-check '(((lambda (f : (Number -> Number))
(lambda (n : Number) (f n)))

(lambda (n : Number) (+ n n))) 50)
(empty-ctx))

(Number -> Number)

Number

Boolean

Number

((Number -> Number) ->
(Number -> Number))

Number

Exercise 7.57. (⋆⋆⋆⋆)
Design a nested interpreter for a typed language that resembles a hybrid of L∗PROC

and L∗TYPE-CHECK. That is, given a typed expression, the nested interpreter should
first verify that the types are correct, then evaluate its result. If an expression fails
to type-check, then do not evaluate the expression. We present some test cases (and
their expected outputs) to guide your design.

Listing 7.310

> (value-of '(((lambda (f : (Number -> Number))
(lambda (n : Number) (f n)))
(lambda (n : Number) (+ n n))) 50)

(empty-env))

> (value-of '(let ([x 50])
(let ([y #f])
(if y x (* x x))))

(empty-env))

> (value-of
'(let ([zero? (lambda (n : (Number -> Boolean))

(= n 0))])
(let ([x 0])
(let ([y #f])
(zero? (if y (+ x x) x)))))

(empty-env))

> (value-of
'(let ([zero? (lambda (n : (Number -> Boolean))

(= n 0))])
(let ([x #f])
(let ([y 5])
(zero? (if y (+ x x) x)))))

(empty-env))

100

2500

#f

'Type-Mismatch

389

8 Imperative Programming

Nevertheless, I consider OOP as an aspect of programming in the large;
that is, as an aspect that logically follows programming in the small

and requires sound knowledge of procedural programming.

—Niklaus Wirth

8.1 Side-Effects

In this chapter, we will write a few languages that introduce side-effects. Almost
all programming languages allow the programmer to redefine variables after their
initial declaration. In C, this is easily achievable as follows:

Listing 8.1

1 int main(void) {
2 int x = 5;
3 x = 10;
4 return 0;
5 }

Until now, side-effects were impossible in our interpreter.

LSET: Assignment Statements

In this section, we will write LSET: an extension to LQUASI which implements the
three side-effect-inducing functions set!, set-first!, and set-rest!.

expr ::= application | ...
application ::= set | setfirst | setrest | ...
set ::= ‘set! ’ symbol expr
setfirst ::= ‘set-first! ’ symbol expr
setrest ::= ‘set-rest! ’ symbol expr

Figure 8.1: Extended BNF Grammar for LSET

First, set! (pronounced “set bang”) takes two arguments: a symbol and an
expression. It modifies/replaces the currently-stored value at the symbol’s location
in the environment. If the symbol does not exist, an error is thrown.

8.1 Side-Effects 392

Next, set-first! takes two arguments: a list and an expression. It modi-
fies/replaces the currently-stored first in the list inside the environment. If the first
argument is not a list or the symbol does not exist, an error is thrown.

Lastly, set-rest! takes two arguments: a list and an expression. It modi-
fies/replaces the currently-stored rest in the list inside the environment. If the first
argument is not a list or the symbol does not exist, an error is thrown.

Unlike other built-in functions, these three are unique in that we do not strictly
evaluate their arguments. Hence, we cannot put these functions inside apply; they
are special forms and have their own respective eval functions.

Listing 8.2—Side-Effect Function Stubs (eval.c)
1 static struct sval *eval_set(ast *set, struct environment *env) {
2 // TODO.
3 }
4 static struct sval *eval_setfirst(ast *setfirst, struct environment *env) {
5 // TODO.
6 }
7 static struct sval *eval_setrest(ast *setrest, struct environment *env) {
8 // TODO.
9 }

Let us go through these one-by-one to examine how we update a variable or list
in its environment.

set! looks up the given variable in its current environment and changes the value
of the closest-bound variable with said name. To illustrate this point, consider the
following code segment that initializes several variables, in let bindings, of the same
name.

Listing 8.3

(let ([x 5])
(let ([x 10])
(let ([x 15])
(set! x 20))))

The set! used only modifies the value of the inner-most x declaration, meaning
that its value changes from 15 to 20. We also present, perhaps, a simpler example
that makes the alteration more evident.

Listing 8.4

(define x 10)

> (* x x)
> (set! x 15)
> (* x x)

100

225

Conveniently, implementing set! is straightforward. We first need to add a
function to our environment module: environment set, which receives the envi-
ronment to modify, a symbol, and its value to store. Much like environment -
lookup, we retrieve the association pair in the provided environment and overwrite
its existing value if it exists. Otherwise, we recursively set the symbol value in the
parent environment. If the symbol does not exist (meaning the parent environment
is eventually NULL), then an error is displayed.

392

393 Imperative Programming

Listing 8.5—Environment Manipulation (env.h)
1 #ifndef ENV_H
2 #define ENV_H
3 ...
4 void environment_set(struct environment *env, char *key, struct sval *value);
5 ...
6 #endif // ENV_H

Listing 8.6—Writing Environment Manipulation Function (env.c)
1 void environment_set(struct environment *env, char *key, struct sval *sv) {
2 for (struct env_pair *p = env->head; p != NULL; p = p->next) {
3 if (streq(p->key, key)) {
4 p->value = sv;
5 return;
6 }
7 }
8
9 if (NULL != env->parent) {

10 environment_set(env->parent, key, sv);
11 } else {
12 EPF("environment_set: cannot set %s\n, key");
13 exit(EXIT_FAILURE);
14 }
15 }

Using this newly-created function, we write eval set, which sets the value of
the provided symbol. We, however, must first evaluate the expression to assign. It
is crucial, though, to not evaluate the first argument, namely the symbol; resolving
the symbol (with respect to the current environment) will produce a value, i.e.,
the currently-bound value to said symbol, which is certainly not what we are after.
Therefore, all that we need to do is retrieve the relevant abstract syntax tree child
and update the environment accordingly.

Listing 8.7—Evaluating set! (eval.c)
1 static struct sval *eval_set(ast *set, struct environment *env) {
2 // Do NOT evaluate the first argument, do evaluate the second.
3 ast *symbol = ast_child(set, 2);
4 struct sval *expr = eval(ast_child(set, 3), env);
5 environment_set(env, ast_contents(symbol), expr);
6 return NULL;
7 }

Next, we will implement set-first! and set-rest!. Similar to set!, they
each receive a symbol to modify and an expression. Unlike set!, we must lookup
the s-value associated with the provided symbol because we wish to alter its first
and rest respectively. Thus, we need access to the s-value itself so we may change
its data union property. The implementations of set-first! and set-rest! are
almost identical; the only difference being the data field they update. Given this,
we will only show the implementation of set-first! due to the relative ease of
designing set-rest! afterwards.

393

8.1 Side-Effects 394

Listing 8.8—Evaluating set-first! (eval.c)
1 static struct sval *eval_setfirst(ast *setfirst, struct environment *env) {
2 // First, check to see if the symbol exists in the environment.
3 ast *symbol = ast_child(setfirst, 2);
4 struct sval *res_symbol = environment_lookup(env, ast_contents(symbol));
5 if (NULL == res_symbol) {
6 EPF("eval_setfirst: unknown symbol\n");
7 exit(EXIT_FAILURE);
8 } else {
9 ASSERT_ARG("set-first!", 1, SVAL_PAIR, res_symbol->type);

10 res_symbol->data.pair.first = eval(ast_child(setfirst, 3), env);
11 }
12 return NULL;
13 }

Exercise 8.1. (⋆)
Certain functions that produce side-effects such as set! do not return a value,
meaning their output is ignored by our evaluator. It is clearer, though, to say
that the function returns (void). Plus, having an explicit function at the meta-
interpreter level means we may specify that some piece of code returns no value.
Implement the void function in LSET. Its definition is one line long; do not over-
think the solution.

Purity versus Impurity

Purity describes a function’s behavior and its interaction with the outside world, so
to speak. A function is pure if it abides by the following two properties:

1. It has no side-effects. This means that it cannot alter any data outside of its
definition.

2. Its output is deterministic. In other words, if we run the function with the
same input, it should always produce the same output. That is, if f(x) = y
on some invocation of f , it should always produce y for any invocation of f .

Mutating non-local variable state is a side-effect, and is arguably the most com-
mon way for a function to be impure. Let us see some examples of C functions that
violate this principle:

Listing 8.9

1 int x = 5;
2 int y = 0;
3 int z = 0;
4
5 void foo() { x = 98; }
6
7 void bar() { y++; }
8
9 int baz(int n) {

10 z += n;
11 return z;
12 }
13
14 int main(void) {
15 bar();
16 bar();
17 bar();
18 }

394

395 Imperative Programming

In the previous code listing, we invoke bar three times, where each call incre-
ments the global y variable. Because y changes in between calls to bar, it violates
rule #1 of a pure function. Consider the following table, which labels the program
variable environment in between function calls.

Execution Number of bar Environment

0 [xG 7→ 0, yG 7→ 0, zG 7→ 0]
1 [xG 7→ 0, yG 7→ 1, zG 7→ 0]
2 [xG 7→ 0, yG 7→ 2, zG 7→ 0]
3 [xG 7→ 0, yG 7→ 3, zG 7→ 0]

Figure 8.2: Execution Environment Trace of Listing 8.9

To generalize Figure 8.2, any function that modifies a global variable (using a
vG subscript) is not pure. As we said, a pure function must have deterministic and
predictable output for any arbitrary input. So, a function that calls a naturally-
impure function results in “impurifying” the caller.

Some languages, e.g., Haskell, are purely functional, meaning programs written
in that language produce no side effects. How is that even a possibility if we want to
get any real work done? Reading in data from the user or files inherently produces
side effects. The answer lies within monads.

Monads in Programming

Monad is a scary term for a not-so-scary concept, at least in the context of functional
programming. A monad contains a value and some extra information about how
to operate on that value. A very common example of using monads comes through
exception-handling. Throwing an exception produces side-effects, meaning that
in a purely functional languages, exceptions in the traditional sense cannot exist.
Consider the following code:

Listing 8.10

1 double divide(double x, double y) {
2 return x / y;
3 }

Now, suppose we wish to compose divide with another pure function, say, add10.

Listing 8.11

1 double add10(double n) {
2 return n + 10;
3 }

Composing these two gets us something like add10(divide(x, y)). Here is the
problem: what if y is zero? We cannot divide by zero! So, in C, we might display
an error message saying that y must be non-zero and exit the program.

395

8.1 Side-Effects 396

Listing 8.12

1 double divide(double x, double y) {
2 if (0 == y) {
3 EPF("divide: y cannot be zero");
4 exit(EXIT_FAILURE);
5 } else {
6 return x / y;
7 }
8 }

In a functional programming world, this solution is not practical. Instead, we
want to keep running the program but somehow convey that an error was received
and we return, effectively, nothing. Hence, we introduce the Maybe monad. Since
we are in the land of C, we may construct Maybe as a struct of two fields: Just, or
Nothing. Just wraps a value representing the result of the computation. Nothing,
on the other hand, denotes that, whatever tried to compute the result of a Maybe,
failed (somehow) and does not have an answer, thereby placing true for the bool
nothing field. Normally, monads work on generic types, meaning they work with
any arbitrary value. Since we are in C, however, we will write a “double” specific
Maybe monad called MaybeDouble (we could make this generic with void *).

Listing 8.13—“Maybe” Monad

1 typedef struct {
2 double just;
3 bool nothing;
4 } maybe_double;

So, let us change divide to return a Maybe monad instead.

Listing 8.14

1 maybe_double divide(double x, double y) {
2 maybe_double res;
3 if (0 == y) { res.nothing = true; }
4 else { res.just = x / y; }
5 return res;
6 }

But here is the thing: the signature for add10 must receive a monad and we
have to check whether the result of invoking divide caused a Just or Nothing. This
quickly turns into a monotonous chore if there are more than a few functions to
update. Plus, this approach is not at all flexible! It requires us to always check the
state of the monad, namely, if nothing is false, we then may check the just field.
It would be better if we had a way to compose functions that use MaybeDouble.
Fortunately, if we follow the canonical monad design pattern, there exists such a
thing: the bind function. bind receives a monad to act on, a function that acts on
that monad, and returns a monad after applying said function to the given monad.
bind is the “pipeline of choice”, so to speak, for monads; it decides how to proceed
with the given monad state. In the case of MaybeDouble, we know that if the given
monad is Just, we should certainly continue program execution and, therefore, apply
the provided function on the value encapsulated by the monad. On the other hand,
if the given monad is Nothing, we just continue to return Nothing up the chain.

396

397 Imperative Programming

Let us redesign our maybe double monad to include a function pointer for
bind. As we stated, it receives a monad and a function that acts on that monad
and returns a new monad.

Listing 8.15

1 typedef struct maybe_double {
2 // bind : [M A] [A -> M B] -> [M B]
3 struct maybe_double
4 (*bind)(const struct maybe_double md,
5 struct maybe_double (*f)(const double));
6
7 double just;
8 bool nothing;
9 } maybe_double;

Otherwise, everything remains the same. One additional problem we have is
that we have no way of encapsulating a value in a monad. In other words, we need
a function that receives some value and returns a monad of that value. In our case,
we want a function to receive a double and return a MaybeDouble whose Just field is
populated. This in monadic terms is called “return”. Because we are programming
in C, we cannot use the keyword “return” as a name. Thus, we use “ret”.

Listing 8.16

1 typedef struct maybe_double {
2 // bind : [M A] [A -> M B] -> [M B]
3 struct maybe_double
4 (*bind)(const struct maybe_double md,
5 struct maybe_double (*f)(const double));
6
7 // ret : A -> [M A]
8 struct maybe_double (*ret)(const double v);
9

10 double just;
11 bool nothing;
12 } maybe_double;

So, let us write the two most important functions: maybe double bind, and
maybe double return. The former, of course, receives a MaybeDouble and a func-
tion from a double to a MaybeDouble, and if the provided MaybeDouble is Just, we
invoke the function on said Just. Otherwise, we return Nothing. The latter wraps
the provided double in a MaybeDouble.

Listing 8.17

1 maybe_double maybe_double_bind(const maybe_double md,
2 maybe_double (*f)(const double)) {
3 // If the monad has a value, we invoke f on that value.
4 if (!md.nothing) {
5 return f(md.just);
6 } else {
7 return maybe_double_nothing();
8 }
9 }

10
11 maybe_double maybe_double_return(const double v) {
12 return maybe_double_just(v);
13 }

397

8.1 Side-Effects 398

Now, let us write a few helper functions that create a “blank” MaybeDouble,
a Just MaybeDouble, and a Nothing MaybeDouble. We will also write a function
that outputs the value of a MaybeDouble. We know, however, that IO is side-effect-
inducing, but we will allow it for pedagogical purposes.

Listing 8.18

1 maybe_double maybe_double_create(void) {
2 maybe_double md;
3 md.bind = maybe_double_bind;
4 md.ret = maybe_double_return;
5 return md;
6 }
7
8 maybe_double maybe_double_just(const double d) {
9 maybe_double md = maybe_double_create();

10 md.just = d;
11 md.nothing = false;
12 return md;
13 }
14
15 maybe_double maybe_double_nothing(void) {
16 maybe_double md = maybe_double_create();
17 md.nothing = true;
18 return md;
19 }
20
21 void maybe_double_print(const maybe_double md) {
22 if (!md.nothing) {
23 printf("Just %f\n", md.just);
24 } else {
25 printf("Nothing\n");
26 }
27 }

Finally, let us rewrite divide to return instances of this newly-designed MaybeDou-
ble. Correspondingly, we should update add10 to return Just.

Listing 8.19

1 maybe_double divide(double x, double y) {
2 if (0 == y) { return maybe_double_nothing(); }
3 else { return maybe_double_just(x / y); }
4 }
5
6 maybe_double add10(double x) {
7 return maybe_double_just(x + 10);
8 }

At long last, here comes the time to use the monad. We can call divide with
two arbitrary variables a and b and assign its result into a monad. Now, if we wish
to compose the functions, we can do so. Moreover, to simulate the idea of repeated
function composition, we will not constantly reassign the value of the “result”.

398

399 Imperative Programming

Listing 8.20

1 int main(int argc, char *argv[]) {
2 double a = 174;
3 double b = 23;
4 maybe_double result =
5 maybe_double_bind(
6 maybe_double_bind(
7 divide(a, b), add10), add10);
8 maybe_double_print(result);
9 return 0;

10 }

Just 27.565217

174 divided by 23 gets us 7.565217, then composing add10 twice onto the result
gets us the new value. What happens if we assign 0 to b? Nothing. As expected, we
receive a Nothing; the division ‘fails’, meaning we return Nothing. Through bind,
add10 never has to care about the result of a divide; only that if it receives a Just
that it adds ten.

Let us write another monad that abstracts a powerful debugging tool: print
statements. Of course, IO is a side-effect, so if we can send along debugging messages
with the result of a computation rather than merely printing from a function, we
would remove a violation of impurity. Hence, we introduce the Writer monad.

The Writer monad contains two values: a value representing the current com-
putation, and a “log”. The log keeps track of information written to the log over
time. As an example, suppose we wish to print logging information about a chain
of mathematical expressions, e.g., the series of binds from the Maybe monad.

We will, once again, write a Writer monad that receives a double as its “value”.
Its log, on the other hand, is a bit more complex. Working with strings in C is
already difficult enough, so to simplify our implementation, we will assume that
the log can only be up to a certain size, namely LINE MAX, which is defined in the
limits.h header. Everything else remains the same as its Maybe monad counter-
part.

Listing 8.21

1 typedef struct writer_double {
2 // bind : [M A] [A -> M B] -> [M B]
3 struct writer_double
4 (*bind)(const struct writer_double wm,
5 struct writer_double (*f)(const double));
6 // ret : A -> [M A]
7 struct writer_double (*ret)(const double v, const char *log);
8
9 double value;

10 char log[LINE_MAX];
11 } writer_double;

Well, there is one additional change to make: writer double return receives
not only a value but a string to append to its log. By “append”, we mean strncpy.

Listing 8.22

1 writer_double writer_double_return(const double v, const char *log) {
2 writer_double wd = writer_double_create();
3 wd.value = v;
4 strncpy(wd.log, log, sizeof(wd.log) - 1);
5 return wd;
6 }

399

8.1 Side-Effects 400

writer double bind is a bit more complex. Like maybe double, we invoke
the given function pointer on the value stored in the passed monad. Unlike Maybe,
however, we work with two monads rather than one. bind receives Writer A, and
we compute Writer B from invoking f on the value stored in A. Finally, we create
one more monad that serves as the “return” monad. This return monad contains
the logs of both A and B, where B’s log is appended to the end of A’s log. Using
a series of strncat invocations is cumbersome and prone to errors. Therefore, we
shall make use of snprintf: a format printer for strings. Using this function, we
also insert a comma-separator between the log of A and the log of B.

Listing 8.23

1 writer_double writer_double_bind(const struct writer_double wd_a,
2 writer_double (*f)(const double)) {
3 // Apply f to the value in the writer monad.
4 writer_double wd_b = f(wd_a.value);
5
6 // Create a new writer to hold the new log.
7 writer_double wd_return;
8 wd_return.value = wd_b.value;
9

10 // Concatenate the logs of A and B onto the new log.
11 snprintf(wd_return.log, sizeof(wd_return.log), "%s,%s", wd_a.log, wd_b.log);
12 return wd_return;
13 }

Up next, we should write the Writer “helper” functions, i.e., create and print.
One small detail to note about create is that we clear (i.e., set its values to zero)
the memory allocated to the log. This is done to ensure that, when we concatenate
new strings into a log, we are not copying text into uninitialized garbage or cause
strncpy to fail due to there not being a NUL-byte. For print, we display the result
and log using the syntax for cons out of familiarity.

Listing 8.24

1 writer_double writer_double_create(void) {
2 writer_double md;
3 memset(md.log, 0, sizeof(md.log));
4 md.bind = writer_double_bind;
5 md.ret = writer_double_return;
6 return md;
7 }
8
9 void writer_double_print(const writer_double md) {

10 printf("(%f . \"%s\")\n", md.value, md.log);
11 }

Amazingly, nothing needs to change inside main aside from renaming the monad
type specifier. On the contrary, we should certainly modify the two functions that
use the Writer monad. Instead of using divide, let us write a function that computes
the square root of some value while also writing out to the log. add10 also reports
this information to its log.

400

401 Imperative Programming

Listing 8.25

1 writer_double sqrt_write(double x) {
2 return writer_double_return(sqrt(x), "Square root");
3 }
4
5 writer_double add10(double x) {
6 return writer_double_return(x + 10, "Added 10 to value");
7 }

Rerunning main produces the following output:

(33.190906 . "Square root,Added 10 to value,Added 10 to value")

It may seem like a lot of work up front to implement monads by hand, and
indeed, this is the case. In a purely functional language, however, many monads
are predefined. Furthermore, the principle of referential transparency (and thus no
side-effects) means that runtime errors are much less frequent and are, accordingly,
deterministic.

Exercise 8.2. (⋆⋆)
Random number generation is a seemingly non-deterministic and non-functional
process. On the contrary, computers generate pseudo random numbers by picking
a seed numeric value and, through (typically) complex algorithms, are able to poll
numbers that are “random enough” for most users.1 Though, the ability to gen-
erate random numbers is a feature of most programming languages. The Portable
Operating System Interface (POSIX) provides a set of random number generation
functions. For instance, to generate a random integer in the interval [0, 231), we
use lrand48 in the first code segment below. Notice that we first call srand48 with
time(NULL) as its argument. This sets the random number generator seed to the
current system time in seconds since January 1, 1970.2 Because this value is always
unique, i.e., generating a new number every second, choosing this as our seed works
sufficiently enough. Generating a random number between values involves modu-
lus and offsetting the value returned by lrand48. To generate a random integer
between −50 and 50 inclusive, we use code shown in the second listing. Write a
function, random int(int a, int b), that generates a random integer between
[a, b]. Then, integrate a similar function in our LSET language.

Listing 8.26

1 #include <time.h>
2
3 int main(void) {
4 srand48(time(NULL));
5 int r = lrand48();
6 return 0;
7 }

1By “random enough”, we mean enough to “fool” a common user, but are poor from a security
standpoint.

2This is also known as epoch time.

401

8.2 LBEGIN: Sequential Expressions 402

Listing 8.27

1 #include <time.h>
2
3 int main(void) {
4 srand48(time(NULL));
5 int lower_bound = -50;
6 int upper_bound = 50;
7 int r = lower_bound + (lrand48() % (upper_bound - lower_bound + 1));
8 return 0;
9 }

Exercise 8.3. (⋆)
Write a function, random, that generates a random double-precision value between
[0, 1). As a hint, use the mrand48() function. Then, integrate a similar function in
our LSET language.

Exercise 8.4. (⋆)
Write a function srandom(int seed) that sets the srand48 seed to the given input.
Then, integrate a similar function in our LSET language (we add this because the
programmer using LSET may want to use a preset seed for random number genera-
tion). Finally, integrate another function, srandom-default, that sets the srand48
seed to the current system time.

Exercise 8.5. (⋆⋆)
Having a program terminate upon receiving malformed input or due to some other
error is handy, but introduces problems with control flow. Continuations, as we
have shown in Chapter 7, aid in the ability to exit a series of recursive calls in the
event of an error. Write a function at the C LSET level called error, which receives
a string and outputs the string to standard error, followed by a call to exit(EXIT -
FAILURE);. Indeed, we place this exercise in Chapter 8 under side-effects because
quitting the program upon receiving an error, in this fashion, has the side-effect
of quitting the program (as well as outputting the string message to the standard
error output stream)!

Exercise 8.6. (⋆⋆)
Similar to the previous exercise, write a function at the C LSET level called exit,
which receives no arguments and calls exit(EXIT SUCCESS);. Unlike error, which
outputs a message to stderr, the exit function simply quits the program.

8.2 LBEGIN: Sequential Expressions

Introducing side-effects to our languages added some unforeseen predicaments, such
as the fact that any set expression does not return a value. In our interpreter, the
corresponding evaluation functions return NULL, signifying that their return value
is irrelevant. We, indeed, could make it so the return value of a set expression is
the value of the updated variable. Though, this behavior would detract from the
primary purpose of having side-effect-inducing functions. So, what do we do when
we want to do more than just set the value of a symbol? In this section, we will
write LBEGIN: an extension to LSET that allows the programmer to write sequential
expressions.

402

403 Imperative Programming

expr ::= application | ...
application ::= begin | ...
begin ::= ‘begin ’ expr+

Figure 8.3: Extended BNF Grammar for LBEGIN

Where do we begin? Well, with the begin special form, of course! Let us
first discuss its syntax. begin is a special form of function application that, when
evaluated, evaluates each of its arguments in sequential order, then returns the value
of the last expression. As an example, let us suppose we want to write code to set
the value of some variable, say, n, then return n.

Listing 8.28

(define n 100)
(begin
(set! n (+ n 100))
n)

The above expression binds n to the value 100, then sets it to 200. After setting,
we return n. In other words, the begin special form resolves to the last expression.
Consider the following example, in which we amend the value of n prior to using it
as the result of a cond case.

Listing 8.29

(define n 100)

> (cond
[(= (begin

(set! n (+ n 100))
n)

200)
'answer-is-200]

[else 'answer-is-not-200])

'answer-is-200

Now, let us implement the special form! Fortunately, begin is simpler than some
of the special forms, because all that is required of us is to determine the number
of inner expressions, then evaluate each one by one, and return the value of the
last expression. Because begin is a special form, it, by definition, has at least three
children, namely the pair of parentheses, and begin. Therefore, any begin form has
n−3 expressions to evaluate if we assume it has n ≥ 3 children. Note that, when
evaluating the inner expressions, we must offset by an index of 2 to account for the
opening parenthesis and begin symbol. We can refactor this into a preprocessor
definition. Similarly, we can refactor the 3 from n−3 into one as well.

403

8.2 LBEGIN: Sequential Expressions 404

Listing 8.30—Removing Constants from Begin Special Form (eval.c)
1 #define BEGIN_EXPR_COUNT 3
2 #define BEGIN_OFFSET 2
3
4 static struct sval *eval_begin(ast *begin, struct environment *env) {
5 size_t num_expr = ast_children_num(begin) - 3;
6 struct sval *return_expr = NULL;
7 for (int i = 0; i < num_expr; i++) {
8 return_expr = eval(ast_child(begin, BEGIN_OFFSET + i), env);
9 }

10 return return_expr;
11 }

Closures and Side-Effects

Back when we introduced closures and functions, we stated that the motivation
behind closures was not quite as clear and we would present said motivation later.
Now is later, so let us now see how we can use closures alongside side-effects. For
example, imagine we want to create a “counter” function that increments a variable
each time it is invoked. We want every separate created counter to be distinct.
Before side-effects, we had no way of achieving this goal, since incrementing a local
variable requires storing (and then later modifying) that local variable. The idea is
to generate a local (let) environment that is encapsulated by a closure. Inside the
closure body, we increment, then return, the variable. We generate the closure by
creating a procedure of no arguments. The closure, itself, returns a closure because
we want the act of re-invoking the closure to serve as a means of incrementing the
local variable.

Listing 8.31—Incrementing Variables Inside a Closure

(define counter
(λ ()
(let ([v 0])
(λ ()
(begin
(set! v (add1 v))
v)))))

(define c1 (counter))
(define c2 (counter))

> (c1)
> (c1)
> (c1)
> (c2)
> (c2)

1
2
3
1
2

Exercise 8.7. (⋆⋆)
Write a pay-bill function that receives a bill balance b and an amount to pay to-
wards the balance m. If m < b, return another function that receives one argument,
which will be used to pay more towards the remaining balance. If m ≥ b, return
true.

404

405 Imperative Programming

Exercise 8.8. (⋆⋆⋆)
Whenever we want to perform a sequence of expressions/statements, we must use
begin. This can be quite cumbersome, however, especially when the most common
action involves setting a variable and returning its updated value. To enhance the
interpreter’s functionality, it would be advantageous to integrate the behavior of
begin directly. In other words, any code block should interpret all subsequent ex-
pressions instead of solely evaluating and returning the result of the first expression.

To achieve this, we can develop a function that sequentially evaluates each ex-
pression in an abstract syntax tree. Add this feature to LBEGIN. As a hint, we
already did this for begin; changing its name to make it generic (e.g., eval -
sequence) is certainly a good idea, since every location where multiple blocks can
occur will need to be amended.

Exercise 8.9. (⋆⋆⋆)
Mixing functional programming paradigms with imperative constructs is often a
challenge. The higher-order function map receives a function and applies it to the
elements of a list thereby returning a new list. Write the map-void! function that,
given a function f , a base case expression b, and a list ls, applies f to every element
of ls. If ls is empty, then evaluate the base case expression. Note that this function
produces a value corresponding to b’s type; such value is meaningless, since we only
care about executing f on a list of elements, where f may or may not be pure.

Listing 8.32—Example of map-void Invocation with display Function

> (map-void!
(λ (x)
(display (* x x))
'(1 2 3 4 5)

1
4
9
16
25

405

8.3 LOUT: Fancier Output 406

8.3 LOUT: Fancier Output

Until now, we have used the built-in “print” functionality to retrieve the result of
some arbitrary expression. In this section, we will write LOUT: an extension to
LBEGIN that adds a format-printing construct.

expr ::= application | ...
application ::= printf | ...
printf ::= ‘printf’ expr expr*

Figure 8.4: Extended BNF Grammar for LOUT

C, alongside many other languages, allows the programmer to use format-strings
to output data. Recall from Chapter 4 that format string consists of strings of
characters and “format characters”. A format character is substituted with the
value of an expression after invoking the formatter. As an example, in C, we use
printf and the format character %d to substitute an integer into a format string.
E.g., printf("%d", 5 + 10); outputs 15 to standard output. We can, of course,
use other format characters for different data types, e.g., %s for strings, and so on.
How can we add this functionality to our language?

First, let us decide on the syntax of invoking/displaying a format string. C uses
percent signs, e.g., %, to denote that the next character is a format character. LOUT

will, instead, use the tilde ∼. As an example, to output a number, we might invoke
(printf "∼d" (+ 5 10)). To output a string, we may write ∼s. For s-values in
general, we will use ∼a, which is useful for outputting data structures, e.g., vectors,
lists, or pairs. Escape characters, e.g., a new-line character \n, will instead be
escaped via a tilde, e.g., ∼n. Thus, to output a tilde in text, we escape a tilde via
∼∼.

Because printf is a built-in function, we will add it to apply.c.

Listing 8.33—Adding Built-in printf (apply.c)
1 void builtin_functions_init(struct environment *env) {
2 ...
3 environment_put(env, "printf", sval_builtin_create(apply_printf));
4 }
5
6 struct sval *apply_printf(struct sval **args, size_t num_args,
7 struct environment *env) {
8 if (0 == num_args) {
9 EPF("printf requires at least one argument but got 0\n");

10 exit(EXIT_FAILURE);
11 }
12 ...
13 char *fstr = args[0]->data.string;
14 size_t len = strlen(fstr);
15 size_t arg_idx = 1;
16 }

406

407 Imperative Programming

We first extract the string argument from the array of arguments. It must, by
definition, be a string. Now, we need to traverse through the string and replace
any instances of “format characters” with their respective arguments, if any. For
now, we can assume that any arguments provided are correct and the input string
has exactly as many format characters as it does arguments (without the string
argument itself).

Listing 8.34—Evaluating Format Specifiers (apply.c)
1 struct sval *apply_printf(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ...
4 // Traverse through the string to find any occurrence of '∼'.
5 for (int i = 0; i < len; i++) {
6 char curr = fstr[i];
7 // If there is at least one more character available after a tilde, scan it.
8 if (i < len - 1) {
9 ...

10 }
11 }
12 ...
13 }

We do two things in this loop: first, we grab the current character. Then, if
there is at least one more character afterward, we scan it as well. This is known
as “lookahead”—we perform some action based on the current symbol and one
character ahead. Let us add the functionality for the new-line character.

Listing 8.35—Adding New Line Format Specifier (apply.c)
1 struct sval *apply_printf(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ...
4 for (int i = 0; i < len; i++) {
5 ...
6 if (i < len - 1) {
7 char next = fstr[i + 1];
8 if ('∼' == curr) {
9 switch (next) {

10 case 'n':
11 printf("\n");
12 break;
13 ...
14 }
15 }
16 ...
17 }
18 }
19 ...
20 }

Whenever we encounter a new-line character, i.e., n, we output a new line to
standard output. Let us handle the s-values next. Fortunately, we do not need
to distinguish between different s-values because we have a function to do that
already: sval print. So, if we encounter ∼a, we invoke sval print on the current
argument. The current argument starts at one because the argument at index zero
is the format string. Finally, because we found a format character, we increment i.
Notice that we only increment arg idx if we output an argument using, e.g., ∼a.
This is to prevent from going out of the bounds of the argument array if we want to
output something that is not raw data, such as a new line, tilde, or carriage return.

407

8.3 LOUT: Fancier Output 408

Listing 8.36—Array Indexing Depends On the Input (apply.c)
1 struct sval *apply_printf(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ...
4 if ('∼' == curr) {
5 switch (next) {
6 ...
7 case 'a':
8 sval_print(args[arg_idx++]);
9 break;

10 default:
11 printf("printf: unknown format specifier %c\n", next);
12 exit(EXIT_FAILURE);
13 }
14 i++;
15 }
16 }

There is one extra case we must account for, which is the simplest of them all:
if the current character is not a tilde, then we output said character.

Listing 8.37—Any Other Character Printing (apply.c)
1 struct sval *apply_printf(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ...
4 if (curr != '∼') {
5 printf("%c", curr);
6 }
7 return NULL;
8 }

Tying this together to the “non-functional”, printing values via printf has the
side-effect of outputting data to the standard output stream, i.e., the console. In-
tuitively, this may not necessarily seem like a side-effect because data is not being
directly altered, but remember that side-effects need not only be the altering of
variables directly; anything that is not “substitutable” via referential transparency
breaks the side-effect “promise”, so to speak. Astute readers may, therefore, ques-
tion why we chose not to affix an exclamation point to the end of printf, e.g.,
printf!. We made this decision because we use printf many times throughout
the remainder of this textbook, and caring about the fact that printf has side-
effects is not as necessary as are the conveniences it inherently provides.

Exercise 8.10. (⋆)
Add the following escape character sequences to the printf function:

Escape Character Functionality
∼r Carriage return character
∼∼ Print tilde character
∼" Print double quote character
∼' Print single quote character

408

409 Imperative Programming

Exercise 8.11. (⋆⋆⋆)
Some programming languages offer the ability to format strings directly without
printing them to an output via the format function. It receives the same arguments
as printf and behaves almost identically with the exception that the string is
returned from the function rather than printed to standard output. Implement
format as part of LOUT.

409

8.4 Parameter Passing Styles 410

8.4 Parameter Passing Styles

Pass-By-Value

All functions that we have written within our language are pass-by-value. When
we introduced the C programming language, we discussed both pass-by-value and
another style called pass-by-pointer. In this section, we will describe pass-by-value
in greater detail about what exactly occurs.

When we pass values to a function by value, it means that the function receives
a copy of that value and not the original. For example, suppose we create a variable
x and assign it the value 10.

Listing 8.38

1 int main(void) {
2 int x = 10;
3 return 0;
4 }

Now, further suppose that we pass this value to a function and alter its value
to, say, 20.

Listing 8.39

1 void alter(int val) {
2 val = 20;
3 }
4
5 int main(void) {
6 int x = 10;
7 printf("x before calling alter is %d\n", x);
8 alter(x);
9 printf("x after calling alter is %d\n", x);

10 }

10
10

Despite what we might expect at first glance, we are not actually modifying the
original x! We instead created a copy of x when we invoked alter. This copy is then
passed, and is, thereby, the one whose value we update to 20. Therefore, the output
of x both before and after calling alter remains 10. This also happens when we
supply, for instance, structs—namely, the entire struct (and its fields) copied when
passing by value. So, it is largely a disadvantage to pass structs by value. Arrays,
on the other hand, may only be passed by value, at least in C, when wrapped in a
struct. This is because arrays are treated as pointers in C and, therefore, are not
passable by value. In the languages we have written thus far, all values are passed
by value. As an example, when we supply a list, number, symbol, procedure, etc., to
a function, we pass a copy of the list. To exemplify this, let us write an interpreter,
in our language, that implements pass-by-value semantics.

410

411 Imperative Programming

Listing 8.40

(define reduce-symbol
(λ (exp env)
(let ([b (apply-env exp env)])
(unbox b))))

(define reduce-begin2
(λ (exp env)
(let ([rand1 (value-of-pbv (second exp) env)]

[rand2 (value-of-pbv (third exp) env)])
(begin

rand1
rand2))))

(define reduce-set
(λ (exp env)
(let ([y (second exp)]

[body (third exp)])
(set-box! (apply-env y env) (value-of-pbv body env)))))

(define reduce-application
(λ (exp env)
(let ([rator (value-of-pbv (first exp) env)]

[rand (value-of-pbv (second exp) env)])
(rator (box rand)))))

(define value-of-pbv
(λ (exp env)
(cond
[(number? exp) (reduce-number exp env)]
[(symbol? exp) (reduce-symbol exp env)]
[(add? exp) (reduce-add exp env)]
[(begin2? exp) (reduce-begin2 exp env)]
[(set? exp) (reduce-set exp env)]
[(fib? exp) (reduce-fib exp env)]
[(loop? exp) (reduce-loop exp env)]
[(lambda? exp) (reduce-lambda exp env)]
[(application? exp) (reduce-application exp env)]
[else #f])))

This interpreter looks not so different from previous interpreters that we have
written–the only distinction being that we add a few new forms that our evaluator
recognizes: begin2, set!, fib, loop. Moreover, our environment stores values as
boxes. Boxes store values, and we may change the box contents when we pass the
box across functions. Consider the following example:

Listing 8.41

(define alter
(λ (b)
(set-box! b 10)))

(define my-box (box 5))

> (unbox my-box)
> (alter my-box)
> (unbox my-box)

5

10

411

8.4 Parameter Passing Styles 412

We have the alter, which receives a box and replaces its stored value with 10.
Below the definition of alter we define my-box to wrap the constant integer 5.
To retrieve the value from within a box, we use the “unbox” function. So, as the
output suggests, before we modify the value inside the box, its value is 5. After
passing it to my-box, its contents are updated to 10. The question now is, why are
boxes important for pass-by-value? We will soon understand why! As a brief aside
from our discussion on parameter passing styles, we will implement boxes in LSET!

to show how they work under the hood.

Boxes are nothing more than fancy pairs whose first is the tag 'box and whose
rest is the item it encapsulates. So, if we want to create a box via a function
appropriately named box, we return a cons pair with the aforementioned contents.
The argument to this function is, hence, the value to wrap.

Listing 8.42

(define box
(λ (val)
(cons 'box val)))

If we want to test a value for “boxness”, i.e., whether it is a box or not, we may
write a predicate box?.

Listing 8.43

(define box?
(λ (b)
(and (cons? b)

(eqv? (first b) 'box))))

This definition is a little generic in that it means that pair whose first is the
symbol 'box, but such a lax framework allows us to easily implement boxes. Next,
we should write set-box! and unbox where the former receives a box and an
expression to assign, and the latter receives a box and returns its stored expression.1

Listing 8.44

(define set-box!
(λ (b exp)
(set-rest! b exp)))

(define unbox
(λ (b)
(rest b)))

Let us test this implementation using the small example from before.

Listing 8.45

(define alter
(λ (b)
(set-box! b 10)))

(define my-box (box 5))

> (unbox my-box)
> (alter my-box)
> (unbox my-box)

5

10

1Unboxing a box is, according to our implementation, equivalent to invoking rest on the box.

412

413 Imperative Programming

With our discussion on boxes, we can return to our pass-by-value interpreter and
see how it uses boxes. As we stated, environment symbols are wrapped in boxes. At
the moment, this will be rather meaningless since this is a pass-by-value interpreter.

This interpreter contains several new forms, including fib and loop. These are
two simple functions: fib implements the traditional doubly-recursive algorithm,
whereas loop simply loops infinitely. Given the simplicity of these functions, we
omit their inclusion. Though, some may wonder why we include them in the first
place. Again, this motivation will be brought to life soon.

We also omit the environment “helper” functions as well as the irrelevant rec-
ognizers and reducers so as to not clutter our discussion. We know that with pass-
by-value semantics, functions always evaluate their arguments before application.
Trying out a few programs, we see that, even arguments that are never referenced
in the body of a function, are still evaluated ahead of time. This is problematic
if that argument is an infinite loop, which means that the function is never fully
invoked!

Listing 8.46

> (value-of-pbv '((lambda (x)
((lambda (y)

(begin2
(set! y 2)
x)) x)) 5)

(empty-env))
> (value-of-pbv '(((lambda (x)

(lambda (y) x))
3)

(fib 40))
(empty-env))

> (value-of-pbv '(((lambda (x)
(lambda (y) x))
3)

(loop))
(empty-env))

5

3

⊥

Our first example shows that modifying the value of the argument y does not
change its original value. In other words, we pass a copy of y to the lambda
function and not a reference to y. The last two examples demonstrate the problems
that emerge when pass-by-value is the only option. In the second example, we
pass an invocation of (fib 40) to the function. Because we have to evaluate a
function’s arguments before its application, (fib 40) is evaluated, even though we
never actually reference the variable it binds! y never occurs bound in the function,
meaning its evaluation is superfluous. Our final example passes an invocation of
loop to a function. Because loop never terminates, this program will run forever (or
at least eventually crash). We use the up tack, ‘⊥’ or falsum, to reference a program
that never terminates. We will tackle this problem in the sections after next. For
the time being, though, we want to address this issue of altering values passed to
a function. In C, as we said, we call this notion pass-by-pointer, but because our
language has no pointers, we will instead refer to it as pass-by-reference.

413

8.4 Parameter Passing Styles 414

Pass-By-Reference

Passing values by reference allows us to change the data at the original reference
of a variable. Note that passing constants, e.g., numbers and symbols, by reference
is no different than the semantics present when passing by value. Let us see the
changes we need to make to the interpreter to implement pass-by-reference seman-
tics. Fortunately, we only need to add one recognizer and reducer (and change all
instances of value-of-pbv to value-of-pbr)!

Listing 8.47

(define symbol-application?
(λ (exp)
(and (cons? exp)

(= (length exp) 2)
(symbol? (second exp)))))

(define reduce-symbol-application
(λ (exp env)
(let ([rator (value-of-pbr (first exp) env)]

[rand (apply-env (second exp) env)])
(rator rand))))

(define value-of-pbr
(λ (exp env)
(cond
[...]
[(symbol-application? exp) (reduce-symbol-application exp env)]
[(application? exp) (reduce-application exp env)]
[else #f])))

Here’s the thing: what exactly is pass-by-reference? Well, we wrap all values
within boxes, right? So, if the argument in a function application is a symbol,
instead of passing the unboxed argument itself, we should pass the box! This way,
we can change the contents of the argument box, and these mutations are reflected
in the original. Other than this slight modification, everything is identical to the
pass-by-value interpreter. If we try the first example from the previous section, we
should receive 2 instead of 5 as our result.

The paradigm of passing values by reference does not solve the problem of ar-
guments, that are not referenced, being superfluously evaluated; it is made evident
if we decide to re-run either the fib or loop programs. So, how can we dispel this
predicament? By being lazy, of course!

414

415 Imperative Programming

Exercise 8.12. (⋆⋆⋆⋆⋆)
The Rust programming language uses references and borrowing for objects [Klabnik
and Nichols, 2018]. In essence, Rust contains a paradigm such that an object may
only have one owner at a time. An object, in this case, is anything that encapsulates
a value, e.g., boxes, lists, and so on. For example, if we create a box b with a
value 10, and pass b by reference to a function f , we say that f borrows b for the
lifetime of the function. Attempting to modify b inside f , at least in Rust, causes
a compilation error. Our interpreters are not compiled, so we will have to settle
for runtime errors. Implement function borrowing of lists (and by extension boxes),
in which if a function attempts to call set-fst!, set-rst!, or set-box! on the
borrowed reference, an error is displayed and the value is not altered. In addition
to this, allow the programmer to define variables that act as references themselves,
similar to pointers in C. This might be achieved via a tagged list:

Listing 8.48—Borrowed References in Nested Interpreter

> (value-of
'(let ([x (cons 1 (cons 2 (cons 3 (quote ()))))])

(let ([y (cons (quote ref) (cons x (quote ())))])
(let ([f (lambda (ls)

(begin2
(set-first! ls 5)
ls))])

(f y))))
(empty-env))

err: attempted to
alter immutable
object (1 2 3).

Passing y to a function indicates that y is an immutable reference to x. Note
that this is a multi-pronged exercise because it requires implementing cons, quote,
set-fst!, and set-rst! into the nested interpreter; none of which are substantially
more difficult than the other special forms.

Exercise 8.13. (⋆⋆⋆⋆⋆)
Rust also has mutable references, which allow the programmer to designate that a
reference may be altered by a function [Klabnik and Nichols, 2018]. Add mutable
references to the pass-by-reference interpreter via tagged lists, i.e., add the 'mut
symbol as the first of the provided box or list. Finally, it is not possible to have
both a mutable and immutable reference to the same variable in an environment.
For instance, the following program should display a relevant error because we
attempt to declare both mutable and immutable references to x:

Listing 8.49—Borrowed References in Nested Interpreter

> (value-of
'(let ([x (cons 1 (cons 2 (cons 3 (quote ()))))])

(let ([y (cons (quote ref) (cons x (quote ())))])
(let ([z (cons (quote mut)

(cons (quote ref)
(cons x (quote ()))))])

(+ (first x) (first y) (first z)))))
(empty-env))

err: cannot create
both mutable and
immutable
references to the
same object

On the other hand, the following example should be perfectly fine and produce
a result:

415

8.4 Parameter Passing Styles 416

Listing 8.50—Borrowed References in Nested Interpreter

> (value-of
'(let ([x (cons 1 (cons 2 (cons 3 (quote ()))))])

(let ([z (cons (quote mut)
(cons (quote ref)
(cons x (quote ()))))])

(begin2
(set-first! z 5)
z)))

(empty-env))

(5 2 3)

To compensate for the increased difficulty, you do not need to consider lists that
contain a 'mut tag without a 'ref tag.

Lazy Evaluation by Name

Deferred evaluation, or lazy evaluation, is a core concept in programming with
particular significance in certain data structures. Sometimes, we do not always
want to perform a computation immediately. We can defer evaluation of some
expression, until it is referenced, via thunks. Before we properly define a thunk, let
us look at a motivating example.

Listing 8.51

(define fib
(λ (n)
(cond
[(<= n 1) 1]
[else (+ (fib (- n 1))

(fib (- n 2)))])))

The above code segment is a definition of the standard Fibonacci function, as we
have repeatedly referenced. If we run this with any value of n > 20, this function
will take a while to compute. Let us say that we define a variable f to hold the
value of (fib 30).

Listing 8.52

(define f (fib 30))

Here’s the catch: what if this is the last line in our program? Or even worse:
what if we simply never reference f? Thus, we computed (fib 30) for absolutely
no reason, wasting valuable time. So, what can we do to fix the problem? If we
wrap the expression in a thunk, the issue disappears! Thunks are functions of no
arguments, and a thunk’s body is the code to lazily evaluate. Let us wrap f in a
thunk to see what this changes.

Listing 8.53

(define f (λ () (fib 20)))

If we run this program now, it instantaneously finishes because we did not com-
pute (fib 20)! f is now a thunk, and if we try to display the value of f, we will get
<procedure>. And, more importantly, we only evaluate (fib 20) upon invoking
f:

416

417 Imperative Programming

Listing 8.54

(define f (λ () (fib 20)))

> f
> (f)

<function>
10946

Aside from the fitting name of lazy-evaluation (compared to pass-by-value, which
is sometimes referred to as eager-evaluation), this parameter passing paradigm is
called pass-by-name.1 Let us make the necessary changes to our interpreter to
implement pass-by-name semantics.

Listing 8.55

(define reduce-symbol
(λ (exp env)
(let* ([b (apply-env exp env)]

[th (unbox b)])
(th))))

(define reduce-application
(λ (exp env)
(let ([rator (value-of-pbv (first exp) env)]

[rand (second exp)])
(rator (box

(λ ()
(value-of-pbname rand env)))))))

(define value-of-pbname
(λ (exp env)
(cond
[...]
[else #f])))

The only differences between this interpreter and the pass-by-value interpreter
occur in the symbol and application reductions. The latter is more important; we
create a thunk containing the code to evaluate later when invoked and then wrap
this in a box. The former, when a symbol is found, retrieves the box and unwraps
it, revealing a thunk. From there, it is as simple as invoking the thunk identical
to how we invoke regular functions. Re-running the long-winded examples from
before show us that neither fib nor loop are ever invoked: our desired outcome.
The third example, however, does invoke fib because we reference y in the addition
expression.

Listing 8.56

> (value-of-pbname '(((lambda (x)
(lambda (y) x)) 3)

(fib 40))
(empty-env))

> (value-of-pbname '(((lambda (x)
(lambda (y) x)) 3)

(loop))
(empty-env))

> (value-of-pbname '(((lambda (x)
(lambda (y) (+ y x)))

3)
(fib 30))

(empty-env))

3

3

1346272

1ALGOL 60 was the language that pioneered pass-by-name semantics, which is also called call-by-
name in the older literature [Backus et al., 1960].

417

8.4 Parameter Passing Styles 418

One problem with this pass-by-name approach is that we have to constantly
evaluate symbols each time they are encountered. Consider the following function:

Listing 8.57

(value-of-pbname '((lambda (x)
(+ x (+ x (+ x (+ x (+ x (+ x (+ x (+ x (+ x
(+ x (+ x (+ x (+ x (+ x (+ x (+ x (+ x (+ x
(+ x (+ x (+ x (+ x (+ x (+ x (+ x (+ x (+ x
x)))))))))))))))))))))))))))) (fib 30))

(empty-env))

While this is indeed a very silly example, it demonstrates the issue with pass-
by-name semantics. We want this code to evaluate (fib 30) exactly once since it
does not change anything in between invocations. A way to solve this is to evaluate
variable references once and only once. Then, store the result in the environment,
and simply retrieve it when it is referenced in the body. Pass-by-need semantics
solve this problem.1

Lazy Evaluation by Need

Some creative readers may be inclined to implement pass-by-need on their own by
setting the box of a thunk to its evaluated value.

Listing 8.58

(define reduce-symbol
(λ (exp env)
(let* ([b (apply-env exp env)]

[th (unbox b)]
[res-th (th)])

(begin
(set-box! b res-th)
res-th))))

Unfortunately, trying this out on the following simple example displays an error.

Listing 8.59

(value-of-pbneed '(((lambda (x) (lambda (y) (+ y y))) 3) (fib 5)) (empty-env))

The problem is that we are storing the result directly back into the box. Thus,
when we reference the symbol again, it assumes that there is a thunk in place of
the expression and, therefore, performs a function application. We can solve this by
simply wrapping the evaluated expression in another thunk, as the cost of creating
and evaluating thunks is effectively zero.

1Chris Wadsworth is credited with introducing pass-by-need, or call-by-need, semantics for the λ-
calculus in his PhD dissertation [Wadsworth, 1971]. Though, both Henderson & Morris [Henderson and
Morris, 1976] and Friedman & Wise [Friedman and Wise, 1976] independently introduced lazy evaluation
in 1976.

418

419 Imperative Programming

Listing 8.60

(define reduce-symbol
(λ (exp env)
(let* ([b (apply-env exp env)]

[th (unbox b)]
[res-th (th)])

(begin
(set-box! b (λ () res-th))
res-th))])

Executing the wildly silly example from before returns the result very quickly
since it only needs to compute (fib 30) once. The idea is to save the value of a com-
puted expression after its evaluation to avoid unnecessary computations. Caching
results in this manner is called memoization and provides extreme performance
improvements in certain scenarios like we have presented.

419

8.5 L∗
EVAL: A Metacircular Evaluator 420

8.5 L∗EVAL: A Metacircular Evaluator

At the beginning of the nested interpreters section of Chapter 7, we wrote an inter-
preter that evaluates simple expressions such as let bindings, one-argument lambda
procedures, conditionals, booleans, symbols, and numbers. In this section, we will
extend this idea into L∗EVAL: a nested interpreter that evaluates more complex
expressions and controls the entire evaluation pipeline.

When we say “metacircular evaluator”, we mean an evaluator that evaluates
expressions written in that language. We have, technically, written several metacir-
cular evaluators, but none to the extent that L∗EVAL shall be. In particular, when
we wrote L∗PROC, we only wrote value-of standing in for the evaluator. We relied
on the host interpreter to perform function application for any arbitrary function.
Furthermore, we also restricted the arity of some functions, e.g., addition, to only
two arguments. Sure, we can combine additive expressions together to simulate
multi-arity addition, but this is a bit too limiting. We want to be able to allow the
programmer to write any arbitrary procedure of any number of arguments... how
is this even possible?

First, we need to understand the “type” of expressions that our evaluator in-
terprets. Our language allows for “self-evaluating” expressions, e.g., numbers and
booleans that resolve to themselves. It also allows symbols that are looked up in
the current environment. Quoted expressions are similarly supported via the quote
function, e.g., (quote 5). Additionally, if, lambda, and function application are
all supported.

Fortunately, several functions/recognizers/reducers are identical to our previ-
ous implementations. Our environment helpers, i.e., apply-env, extend-env, and
empty-env, are identical and use association lists as the backing representation.

Listing 8.61

(define quote?
(λ (exp)
(eqv? (first exp) 'quote)))

(define eval-quote
(λ (exp env)
(second exp)))

Listing 8.62

(define if?
(λ (exp)
(eqv? (first exp) 'if)))

(define eval-if
(λ (exp env)
(if (eval (second exp) env)

(eval (third exp) env)
(eval (fourth exp) env))))

Listing 8.63

(define lambda?
(λ (exp)
(eqv? (first exp) 'lambda)))

(define eval-lambda
(λ (exp env)
...))

420

421 Imperative Programming

Listing 8.64

(define eval
(λ (exp env)
(cond
[(number? exp) exp]
[(symbol? exp) (apply-env exp env)]
[(quote? exp) (eval-quote exp env)]
[(if? exp) (eval-if exp env)]
[(lambda? exp) (eval-lambda exp env)]
[else #f])))

All of these definitions should be understandable by the reader. As a refresher,
though, evaluating a quoted expression simply returns the expression that is quoted.
if expressions evaluate the consequent if the predicate is true and the alternative
otherwise. lambda expressions are more complicated and require careful explana-
tion.

lambda expressions contain three components as a list: its first is the symbol
lambda, its second is a list of symbols representing the formal parameters, and its
third is the procedure body. As we have before, when we encounter a lambda, we
want to return a procedure. The thing is, however, we do not know how many ar-
guments the procedure will receive! Fortunately for us, we have variadic arguments
to the rescue!

Listing 8.65

(define eval-lambda
(λ (exp env)
(λ-var (args)
...)))

By using variadic arguments, we say that the lambda procedure that is returned
accepts any number of arguments. Inside the procedure definition, args is a list of
received arguments. When we had only one argument, we invoked extend-env to
bind the formal parameter of the lambda to the given argument. Because we may
have more than one argument, however, we need to write a procedure that binds
a list of formals to a list of arguments in an extended environment. We call this
procedure bind-formals. Also, as a measure of simplification, we do not consider
“malformed lists”, i.e., when the number of formals does not match the number of
arguments and vice-versa.

Listing 8.66

(define bind-formals
(λ (formals args env)
(cond
[(or (null? formals) (null? args)) env]
[else
(extend-env (first formals)

(first args)
(bind-formals (rest formals) (rest args)))])))

From here, we can complete the definition of eval-lambda. That is, we extract
the formal parameter list into a let* binding, invoke bind-formals, then evaluate
the body of the lambda. All of this, of course, is encapsulated within a lambda to
defer evaluation until its invocation.

421

8.5 L∗
EVAL: A Metacircular Evaluator 422

Listing 8.67

(define eval-lambda
(λ (exp env)
(λ-var (arg-list)
(let* ([formals (second exp)]

[args (first arg-list)]
[body (third exp)]
[new-env (bind-formals formals args env)])

(eval body new-env)))))

Last but not least, we need to handle function application. Recall how this
is done at the interpreter level: each argument is evaluated, then applied by the
function. Because function arity is unknown before runtime, we have to approach
this issue slightly differently. Namely, we will write a function apply that receives
a function and a list of arguments. apply is analogous (in fact almost identical in
how it operates) to eval application at the interpreter level.

Listing 8.68

(define apply
(λ (rator rands)
(rator rands)))

Furthermore, we do not permit apply to evaluate its operator and operand list,
but rather it assumes that these are already pre-evaluated coming into the function
definition. So, we must evaluate these in the body of eval—an easy task when
coupled with map.

Listing 8.69

(define eval
(λ (exp env)
(cond
[...]
[else (apply (eval (first exp) env)

(map (λ (a) (eval a env)) (rest exp)))])))

Sadly, there is a subtle issue with how apply works, or more specifically, how
we deal with function application. A function such as + does not receive a list of
arguments but rather any number of arguments! So, binding the symbol + to the
function + in the empty environment will not work for our purposes. Instead, we
need write a function, e.g., apply-plus, that receives a list of (evaluated) values
and computes their sum. We can do this in one of two ways: naturally recur-
sive or via foldr. For pedagogical reasons, we choose the former but note that
apply-plus can be written more succinctly with foldr. Updating the environment
is also mandatory, which we define as base-env so as to not constantly alter the
implementation of empty-env.

422

423 Imperative Programming

Listing 8.70

(define base-env
(λ ()
(extend-env '+ apply-plus (empty-env))))

(define apply-plus
(λ (rands)
(cond
[(null? rands) 0]
[else (+ (first rands)

(apply-plus (rest rands)))])))

At long last, we may write a few test cases to show that addition works as
intended.

Listing 8.71

> (eval '(+ 2 2) (base-env))
> (eval '(+ 50 (+ 100 20) 90) (base-env))
> (eval '(+ (+ (+ 1 2) 3 4 5 6) 7 8 (+ 9 10))

(base-env))

4
260
55

Excellent! Let us now write some lambda procedures; one test will receive only
one argument, another will return a function of one argument, and one more will
receive three arguments from the onset.

Listing 8.72

> (eval '((lambda (x) (+ x 5)) 10)
(base-env))

> (eval '(((lambda (x) (lambda (y) (+ x y))) 2) 3)
(base-env))

> (eval '((lambda (x y z)
(+ (+ x x) (+ y y) (+ z z)))

10 20 30)
(base-env))

15

5

120

Suppose that we wanted to implement side-effects, i.e., assignment statements
such as set!. How can we do that? The thing to note is that we have to modify our
environment to keep references to items. Because our interpreter passes lists by ref-
erence and not by value, if we somehow store a reference to a first or rest, we modify
the original list and not a copy. So, let us amend our environment implementation
to store boxed expressions as the rest of an association. This requires updating all
environment helper functions as well as the symbol? case of the evaluator to utilize
boxed values.

With this, we may implement assignment statements which alter the value within
a box.

Listing 8.73

(define eval-set
(λ (exp env)
(let* ([y (second exp)]

[b (apply-env y env)])
(set-box! b (eval (third exp) env)))))

Though, assignment statements are not very useful if our procedures are only
allowed one expression in their bodies. So, we should add chained expressions via
begin.

423

8.5 L∗
EVAL: A Metacircular Evaluator 424

Implementing a “variadic” begin handler is not difficult—the idea, exactly how
it is defined at the interpreter level, is to evaluate each expression sequentially and
return the result of the last-evaluated expression. Therefore, we must assume that
the list of expressions in a begin is non-empty. We define a local recursive procedure
so we may invoke it with the list of expressions to evaluate, trimming the 'begin
symbol at the front.

Listing 8.74

(define eval-begin
(letrec ([helper

(λ (exp env)
(cond
[(null? (rest exp)) (eval (first exp) env)]
[else
(begin
(eval (first exp) env)
(helper (rest exp) env))]))])

(λ (exp env)
(helper (rest exp) env))))

With this, we should certainly write a test or two that modifies/reassigns the
argument(s) to a lambda. The second example requires adding a function to apply
multiplication to a list of values.

Listing 8.75

> (eval '((lambda (x)
(begin
(set! x 100)
x))

50)
(base-env))

> (eval
'((lambda (x y z)

(begin
(set! x (+ x y z)) ; x=(+ 10 20 30) =60
(set! y (+ x y z)) ; y=(+ 60 20 30) =110
(set! z (+ x y z)) ; z=(+ 60 110 30) =200
(* x y z))) ; =(* 60 110 200)=1320000

10 20 30)
(base-env))

100

1320000

How about we allow programmers to write define statements? Is this even
possible? Of course it is! It requires a bit of work, but it is certainly manageable.

First, let us consider what happens when we invoke define. Rather than extend,
we amend the environment to include a new binding. We will revisit this again in
the next few sections, but the idea is as follows: we create a side-effect inducing
environment-utility function amend-env! that updates the environment passed as
an argument. Recall, though, that in order to modify a value by reference, it must
be passed as a box. Therefore, we must update our environment representation to
be pass-by-reference encapsulated in a box. This way, when we want to amend its
contents with a new binding, we update the environment itself and not just a local
copy passed to the function.

Again, because our environments use a representation-independent structure,
any modifications made to them should not require altering the interpreter/evalu-
ator, and this change is no exception.

424

425 Imperative Programming

Listing 8.76

(define apply-env
(λ (y env)
(let ([env (unbox env)])
(cond
[(null? env) #f]
[else
(let ([binding (first env)])
(cond
[(eqv? (first binding) y) (rest binding)]
[else (apply-env y (box (rest env)))]))]))))

(define extend-env
(λ (x arg env)
(box (cons (cons x (box arg)) (unbox env)))))

(define empty-env
(λ ()
(box '())))

With these updates, apply-env now unboxes the environment and searches its
content association list for a variable binding. If it does not exist, however, we
recursively “re-box” the environment so that in the next recursive step, we may “re-
unbox” the environment. extend-env unboxes the current environment, prepends
the new binding to the front of the old association list, and finally “re-boxes” the
environment. empty-env simply boxes the empty environment. Though, as we
stated, we need to write amend-env!, which we will do now.

Listing 8.77

(define amend-env!
(λ (x arg env)
(set-box! env (unbox (extend-env x arg env)))))

As an example, if we invoke (amend-env! 'x 5 e), where e is defined as an en-
vironment containing (extend-env 'y 10 (extend-env 'z 20 (box '()))), we
modify the box contents of e to be (extend-env 'x 5 (extend-env 'y 10 (exten
d-env 'z 20 (box '())))). This behavior is precisely what we are looking for
with define. So, we can now write the recognizer and reducer combination.

Listing 8.78

(define define?
(λ (exp)
(eqv? (first exp) 'define)))

(define eval-define
(λ (exp env)
(let ([x (second exp)]

[arg (eval (third exp) env)])
(amend-env! x arg env))))

That is all it takes! Adding this clause to the cond inside eval is trivial, and we
can now write a few tests. Note that to take full advantage of a define, we must
enclose it with begin. Below is an example of defining add using natural recursion.
Note that to implement this, one must first add a apply-minus function into the
empty environment (this is harder than it may first appear!).

425

8.5 L∗
EVAL: A Metacircular Evaluator 426

Listing 8.79

(eval '(begin
(define add1
(lambda (n) (+ n 1)))

(define sub1
(lambda (n) (- n 1)))

(define add
(lambda (n m)
(if (= m 0)

n
(add (add1 n) (sub1 m)))))

(add 5 7))
(base-env))

Exercise 8.14. (⋆⋆)
Implement local let bindings into the metacircular evaluator. To make this simpler,
you may start out by adding one-variable bindings and working your way up to any
number of bindings.

Exercise 8.15. (⋆⋆)
Implement let* bindings into the metacircular evaluator. If you got the previous
bindings to work, then this one should not be as difficult as all it requires is a bit
of manipulating and extending environments.

Exercise 8.16. (⋆⋆)
Write an invocation of eval that defines (then calls) factorial. To do this, you will
need to write three functions apply-=, apply-minus, and apply-mult (assuming
you have not done so previously).

Exercise 8.17. (⋆⋆⋆⋆)
Write the map* function, which receives at least two arguments, namely a function
f followed by lists of arguments to f . The function map* serves as a variadic variant
of the map function; f should share an arity with the number of list arguments.

Listing 8.80

> (map* cons '(2 3) '(4 5))

> (map* (lambda (x y z)
(+ (* x x) (* y y) (* z z)))

'(4 7 8 2)
'(9 8 3 4)
'(32 11 10 4))

((2 . 4) (3 . 5))

(1121 234 173 36)

426

427 Imperative Programming

8.6 L∗ASM: A Micro-Assembly Interpreter

In Chapter 5, we discussed compilation and the distinction between compiled and
interpreted programs. In this section, we will write a nested interpreter L∗ASM to
interpret a small subset of an assembly-like programming language.

The assembly-esque language we will write contains only statements—a stark
contrast from the nested interpreters we have experimented with previously. Recall
that a statement is an expression that does not resolve to a value. For instance, the
assignment statement x = 5 has a side-effect of setting the value of x to 5, but this
line of code does not, itself, resolve to some value.

Our assembly code consists of registers and labels. The language contains primi-
tive arithmetic operations, conditionals, and jump statements. There are four broad
types of operators: register-to-register, immediate-to-register, comparison-based op-
erations, and label-based operations.

A register-to-register operation uses only registers as its operands. An example
is add r1 r2 r3, which adds the values in registers r2 and r3 and stores the sum
in r1. An immediate-to-register operation performs on a register and an immediate
value, i.e., a constant. For instance, subi r5 15 subtracts 15 from the contents in
register r5.

A comparison-based operation is special in that it compares the values in two
registers and sets a flag based on the result. For instance, (cmp r2 r3) will subtract
r3 from r2, then store this result in the flag register.

Finally, we have jump-based operations, which act on labels. Recall that a label
is an identifier placed in code to signify a destination. Namely, we can jump to a
label with a jmp statement. The result of a comparison-based operation is accessible
via, for example, jez (jump if equal to zero), which checks if the zero flag in the flags
register is enabled and, if so, jumps to a given label. Our language also contains
two “non-assembly” primitives: begin and disp, where the former receives a list of
statements, and the latter outputs the contents of a register. These two will not be
listed in the language grammar definition.

427

8.6 L∗
ASM: A Micro-Assembly Interpreter 428

program ::= ‘(begin ’ stmt+ ‘)’
stmt ::= reg-to-reg

| imm-to-reg
| cmp-operation
| jmp-operation

reg-to-reg ::= ‘(’ reg-to-reg-op reg reg reg ‘)’
imm-to-reg ::= ‘(’ imm-to-reg-op reg imm ‘)’
cmp-operation ::= ‘(’ cmp-operation-op reg reg ‘)’
jmp-operation ::= ‘(’ jmp-operation-op lbl ‘)’
reg-to-reg-op ::= ‘add’ | ‘sub’ | ‘mul’ | ‘div’
imm-to-reg ::= ‘addi’ | ‘subi’ | ‘muli’ | ‘divi’ | ’li’
cmp-operation-op ::= ‘cmp’
jmp-operation-op ::= ‘jmp’ | ‘jez’ | ...
reg ::= ‘r’[1-9] | ‘fl’ | ‘pc’
imm ::= number
lbl ::= [a-zA-Z][a-zA-Z0-9]*

Figure 8.5: BNF Grammar for L∗
ASM

This grammar gives us some hints as to how we should design the language.
First, though, we need to establish some environment contingencies. Our “root”
environment will not be passed around to other functions since we need to modify
it throughout program execution. By default, it contains all registers set to zero
as association lists. We have two special registers: pc and fl. The former stores
the current instruction number to execute next while the latter is a “flags” register,
which is set by comparison-based operations and used by jump operations.

Listing 8.81

(define env `((r1 . 0) (r2 . 0) (r3 . 0) (r4 . 0) (r5 . 0) (pc . 0) (fl . 0)))

extend-env! updates env by prepending a cons pair that consists of an identi-
fier and a value. Updating the environment with an identifier that already exists,
therefore, shadows the original binding. This is somewhat akin to amend-env! from
our metacircular evaluator; the difference here, though, is that there are no envi-
ronments aside from the global root environment. Accordingly, we do not pass the
environment as a parameter to any functions, so it is acceptable to call set! on
the global environment object.

Listing 8.82

(define extend-env!
(λ (x arg)
(set! env (cons (cons x arg) env))))

Finally, apply-env uses assv to find a binding and, if it exists, we return the
value (i.e., the rest of the pair returned by assv).

428

429 Imperative Programming

Listing 8.83

(define apply-env
(λ (v)
(let ([res (assv v env)])
(cond
[(eqv? res #f) (printf "Value not found in env ∼a∼n" v)]
[else (rest res)]))))

Now, we need our recognition functions for each of the four operation classes.
We can distinguish between these by saying that a register-to-register operation
contains three registers, an immediate-to-register operation contains one register
and one immediate value, a comparison-based operation contains two registers,
and a label operation contains one symbol. With these descriptions, we can easily
design correct recognizers. Note that we also need to write recognizers for the two
primitives begin and disp.

Listing 8.84

(define reg-to-reg?
(λ (exp)
(and (cons? exp)

(= (length exp) 4)
(symbol? (second exp))
(symbol? (third exp))
(symbol? (fourth exp)))))

Listing 8.85

(define imm-to-reg?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(symbol? (second exp))
(number? (third exp)))))

Listing 8.86

(define cmp-operation?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(symbol? (second exp))
(symbol? (third exp)))))

Listing 8.87

(define lbl-operation?
(λ (exp)
(and (cons? exp)

(= (length exp) 2)
(symbol? (second exp)))))

Listing 8.88

(define begin?
(λ (exp)
(and (cons? exp)

(= (length exp) 2)
(eqv? (first exp) 'begin)
(cons? (second exp)))))

429

8.6 L∗
ASM: A Micro-Assembly Interpreter 430

Listing 8.89

(define disp?
(λ (exp)
(and (cons? exp)

(= (length exp) 2)
(eqv? (first exp) 'disp))))

Now we write the evaluation functions. Conveniently enough, the four operation
classes follow a very similar template. The latter two, however, are a bit more
involved. Consequently, we show those first.

Listing 8.90

(define value-of-begin
(λ (exp)
(let ([los (second exp)])
(letrec ([execute

(λ ()
(cond
[(>= (apply-env 'pc) (length los)) 'PROGRAM-TERMINATED]
[else
(begin
(value-of (list-ref (apply-env 'pc) los))
(extend-env! 'pc (add1 (apply-env 'pc)))
(execute))]))])

(execute)))))

Listing 8.91

(define value-of-disp
(λ (exp)
(let ([r (second exp)])
(printf "∼a∼n" (apply-env r)))))

Now, let us write the templates for the four operation classes.

Listing 8.92

(define value-of-reg-to-reg
(λ (exp)
(let ([op (first exp)]

[r1 (second exp)]
[r2 (third exp)]
[r3 (fourth exp)])

(cond
[(eqv? op 'add) ...]
[(eqv? op 'sub) ...]
[(eqv? op 'mul) ...]
[(eqv? op 'div) ...]
[else 'error-value-of-reg-to-reg]))))

Listing 8.93

(define value-of-imm-to-reg
(λ (exp)
(let ([op (first exp)]

[r (second exp)]
[i (third exp)])

(cond
[(eqv? op 'addi) ...]
[(eqv? op 'subi) ...]
[(eqv? op 'muli) ...]
[(eqv? op 'divi) ...]
[(eqv? op 'li) ...]
[else 'error-value-of-imm-to-reg]))))

430

431 Imperative Programming

Listing 8.94

(define value-of-cmp-operation
(λ (exp)
(let ([op (first exp)]

[r1 (second exp)]
[r2 (third exp)])

(cond
[(eqv? op 'cmp) ...]
[else 'error-value-of-cmp-operation]))))

Listing 8.95

(define value-of-lbl-operation
(λ (exp)
(let ([op (first exp)]

[name (second exp)])
(cond
[(eqv? op 'lbl) ...]
[(eqv? op 'jmp) ...]
[else 'error-value-of-lbl-operation]))))

Due to how similar many of these operations are, we will only implement a subset
and leave the rest as exercises to the reader.

First, let us implement the register-to-register operation add. As we said, it
adds the contents of two registers and stores the result in another register. All we
need to do is retrieve the contents of r2 and r3 with apply-env, then update the
environment to contain the new binding to r1.

Listing 8.96

(define value-of-reg-to-reg
(λ (exp)
...
[(eqv? op 'add) (extend-env! r1 (+ (apply-env r2) (apply-env r3)))]
...))

Our registers, at the start, contain only zeroes, so adding any two registers
together, at this point, makes little sense. We need a way of adding literal values
into a register. As hinted, we can do this via addi.

Listing 8.97

(define value-of-imm-to-reg
(λ (exp)
...
[(eqv? op 'addi) (extend-env! r (+ (apply-env r) i))]
...))

We stated that the comparison operator subtracts the contents of its register
arguments and stores the sign of the result in the fl register. Let us now add this
behavior to the relevant function.

Listing 8.98

(define value-of-cmp-operation
(λ (exp)
...
[(eqv? op 'cmp) (extend-env! 'fl (- (apply-env r1)

(apply-env r2)))]
...))

431

8.6 L∗
ASM: A Micro-Assembly Interpreter 432

As part of the label operators, we will implement lbl and jnez. lbl declares a
label and stores it in the environment. A label, in the environment, is stored as a
pair where the first is the label name and the rest is the associated program counter
value. jnez determines if the fl register is not zero and if so, we set the program
counter to be the value associated with the label that we jump to.

Listing 8.99

(define value-of-lbl-operation
(λ (exp)
...
[(eqv? op 'lbl) (extend-env! name (apply-env 'pc))]
[(eqv? op 'jnez) (if (not (zero? (apply-env 'fl)))

(extend-env! 'pc (apply-env name))
(extend-env! 'pc (+ (apply-env 'pc) 0)))]

...))

The only remaining piece is the value-of procedure.

Listing 8.100

(define value-of
(λ (exp)
(cond
[(begin? exp) (value-of-begin exp)]
[(disp? exp) (value-of-disp exp)]
[(lbl-operation? exp) (value-of-lbl-operation exp)]
[(cmp-operation? exp) (value-of-cmp-operation exp)]
[(imm-to-reg? exp) (value-of-imm-to-reg exp)]
[(reg-to-reg? exp) (value-of-reg-to-reg exp)]
[else 'error])))

As a proof-of-concept, we will write a program to compute the factorial of an
integer. Note that we also implemented the mul and subi operations to make this
a possibility.

Listing 8.101

> (value-of
'(begin

((li r1 1)
(li r2 5)
(li r3 0)
(lbl loop)
(mul r1 r1 r2)
(subi r2 1)
(cmp r2 r3)
(jnez loop)
(disp r1))))

120

We will explore a different dialect of the assembly programming language in
much greater detail in our later chapter on compilation. For now, though, we hope
that this brief exposure is enough to convince the readers that assembly, in general,
is a very low-level language!

Exercise 8.18. (⋆⋆)
Finish the rest of the interpreter to add support for sub, mul, div, and the remaining
immediate-to-register operations. The registers in a register-to-register operation
may all be the same. Division between two registers stores the result in r1 and its
remainder is discarded. Note the issue of dividing by zero!

432

433 Imperative Programming

8.7 L∗IMPERATIVE: Thinking Imperatively

In this section, we will take a big leap into the world of imperative language design
via L∗IMPERATIVE: a language with imperative constructs.

Imperative languages often use statements to express ideas with side effects,
as we have previously discussed. The most prominent of which is the assignment
statement. For example, x := 5 binds the value 5 to the variable x. More examples
include looping and decision statements, e.g., for, if, and while. In the C language,
none of these resolve to a value themselves, but rather they may return a value as
part of a function. L∗IMPERATIVE will differ slightly from this idea in that certain
constructs are still expressions and resolve to values accordingly. Let us look at an
example of a program written in L∗IMPERATIVE.

Listing 8.102

((fn fact n := (if (n = 0)
1
(n * (fact (n - 1)))))

(fn fib x := (if (x = 0)
0
(if (x = 1)

1
((fib (x - 1)) + (fib (x - 2))))))

(val1 := 5)
(val2 := (val1 + val1))
(z := (fact val1))
(w := (fib val2))
(z := (w * (fib (2 * (val2 - 5))))))

This program has a lot of details and new constructs to explain! Firstly, we
see that a program is a list of expressions or statements. Programs are evaluated
from top-to-bottom. A programming language is, from a convenience perspective,
rather incomplete without functions or procedures of some kind. So, we declare
two functions: fact and fib, which compute the factorial of some number n and
the xth Fibonacci number respectively. Next, we declare five variables and assign
them values. Unlike previous languages, binary operators are infix rather than
post-fix, i.e., instead of (+ 2 3), we write (2+3). Though, because such a notation
introduces precedence and associativity issues, all binary operators must be enclosed
by parentheses. Regarding the assignment statements, a variable can be reassigned
throughout program execution. In other variants of our interpreter, we allow such
modifications via set!, but as we know, this introduces the side-effect of altering
the value of a variable.

So, how do we begin? We first must introduce the notion of an environment stack
and how function invocation plays a role. Unlike our other interpreters, functions
may be of more than one argument and are not saved between function invocations.
Namely, once we invoke a function that declares a variable, say, z, the lifetime of
z extends only to the end of the function. To simulate this, as well as variable
modification, we need to keep track of environments on a stack. That is, each time
a function is invoked, we push an extended environment to the stack and, whenever
the function body is finished being evaluated, we pop this environment off the stack.

433

8.7 L∗
IMPERATIVE: Thinking Imperatively 434

How do we go about building an environment stack? Firstly, we need to have
some notion of empty and base environments. The base environment contains a
few built-in function operators as an association list, which extends the empty
environment.

Listing 8.103

(define empty-env
(λ ()
'()))

(define extend-env
(λ (x arg env)
(cons (cons x arg) env)))

(define base-env
(λ ()
(extend-env '+ +
(extend-env '- -
(extend-env '* *
(extend-env '/ /
(extend-env '= =)))))))

Now, we want to represent an environment stack. But before we construct
it, we should understand that, because environments are dynamic and may be
continuously updated (to contain a new variable or binding), we need to store
environments in boxes. Recall that we used boxes when implementing pass-by-
reference interpreters. This way, updating the environment alters the original copy
between function invocations.

Listing 8.104

(define environment-stack (list (box (empty-env))))

From here, we want to be able to access the current environment. By design, the
current environment, i.e., the environment in-use, is the environment on the top of
the stack. Because the stack is a list of boxes, we can retrieve the first, or top-most
value, via first.

Listing 8.105

(define current-env
(λ ()
(first environment-stack)))

Next, we need two procedures for adding an environment to the stack and remov-
ing the top-most environment. The latter is trivial, but the former is a bit more
abstract. Because we want the new environment to hold the same values as the
current environment, we first need to unbox the current, create a new environment
box, and prepend it to the front of the environment stack.

Listing 8.106

(define push-env!
(λ ()
(let ([cenv (unbox (current-env))])
(set! environment-stack (list (box cenv) environment-stack)))))

(define pop-env!
(λ ()
(set! environment-stack (rest environment-stack))))

434

435 Imperative Programming

Finally, we implement the environment extension and application functions. The
former has a few modifications to account for the fact that we retrieve, then alter,
the box of the current environment. On the other hand, the only change to the
latter is a removed parameter and an unboxing step.

Listing 8.107

(define apply-env
(λ (y)
(let ([res (assv y (unbox (current-env)))])
(cond
[(eqv? res #f) 'error-unknown-symbol]
[else (rest res)]))))

(define alter-env!
(λ (x arg)
(let* ([benv (current-env)]

[cenv (unbox benv)])
(set-box! benv (cons (cons x arg) cenv)))))

Now, we should design this language one step at a time, so let us think about how
we want to feed a program to the evaluator. An efficient solution would be to write
a letrec helper function that takes a list of statements/expressions representing
a program written in L∗IMPERATIVE and evaluates each one at a time in a similar
pattern to our evaluator for L∗ASM.

Listing 8.108

(letrec ([value-of-helper
(λ (lexp)
(cond
[(null? lexp) 'PROGRAM-TERMINATED]
[else
(let ([res (value-of (first lexp) (current-env))])
(begin
(printf "∼a∼n" res)
(value-of-helper (rest lexp))))]))])

(value-of-helper '()))

None of this code should be all too perplexing, as it is, effectively, identical to
the evaluation loop used in L∗ASM.

At this point, we should start writing the evaluator itself! Let us start by
evaluating number, symbol, and boolean since they are simple and require minimal
effort. Accordingly, we will not write separate recognizers and reducers.

Listing 8.109

(define value-of
(λ (exp env)
(cond
[(number? exp) exp]
[(symbol? exp) (apply-env exp)]
[(boolean? exp) exp]
[...])))

435

8.7 L∗
IMPERATIVE: Thinking Imperatively 436

Next, we can address assignment statements. An assignment statement is a
list where the first is a symbol representing the variable to use, the second is the
symbol :=, and the third is an expression to assign as the value. The recognizer
is, therefore, easy to write. Assignment evaluation is also straightforward since all
we need is to extract the important components, i.e., the variable and expression,
evaluate the latter, and invoke alter-env! to update the current environment.
One important detail to make note of is the fact that an assignment is considered
a statement and not an expression. Therefore, assignments do not return a value.
Our interpreter does not understand expressions/statements that do not produce
values. So, we should return a symbol, perhaps, 'ok to designate that the operation
was successful. Then, inside of value-of-helper, we can simply ignore, i.e., not
print, the value of the expression if it returns 'ok. Afterwards, we can amend the
definition of value-of, and lastly, write some test cases!

Listing 8.110

(define assignment?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(symbol? (first exp))
(eqv? (second exp) ':=))))

(define value-of-assignment
(λ (exp env)
(let ([var (first exp)]

[rhs (value-of (third exp)
env)])

(begin
(alter-env! var rhs)
'ok))))

Listing 8.111

(define value-of
(cond
...
[(assignment? exp) (value-of-assignment exp env)]))

Listing 8.112

(letrec ([value-of-helper
(λ (lexp)
(cond
[(null? lexp) 'PROGRAM-TERMINATED]
[else
(let ([res (value-of (first lexp) (current-env))])
(begin
(if (eqv? res 'ok)

(printf "")
(printf "∼a∼n" res))

(value-of-helper (rest lexp))))]))])
(value-of-helper '((x := 5)

x)))

Because our language is still extremely simple with no understanding of control
flow structures or procedures, we can only create, then display, variables, numbers,
and booleans.

436

437 Imperative Programming

Listing 8.113

> (value-of-helper '((x := 5)
x
(y := 10)
y
(y := x)
y
(x := 25)
x))

5
10
5
25
PROGRAM-TERMINATED

The next interesting piece of this language is the introduction of infix binary
operators. An infix operator expression list consists of two operands on either side
as the first and third respectively, and the operator as the second. So, once again, the
recognizer is familiar. Nicely enough, its evaluator is also a trivial matter. We need
to evaluate all three pieces of the expression, as the operands resolve to expressions
themselves, and the operator is a symbol retrieved from the environment. So, when
we retrieve the operator, we use the built-in function application to apply said
operator to the two operands.

Listing 8.114

(define binary-op?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(symbol? (second exp)))))

(define value-of-binary-op
(λ (exp env)
(let ([l (value-of (first exp) env)]

[f (value-of (second exp) env)]
[r (value-of (third exp) env)])

(f l r))))

Now, just add it into value-of, and let us introduce some tests.

Listing 8.115

> (value-of-helper
'((x := (5 * 10))

x
(y := (x + (7.5 * x)))
y
(y := ((x * x) + (y * y)))
y
(x := ((x / 2) - (y / 2)))
x))

50
425.0
183125.0
-91537.5
PROGRAM-TERMINATED

Conditionals are another fascinating part of programming, so let us add those
next. Because any if construct may be built in terms of if itself, e.g., else if,
else, or even cond, we will only implement if. An if expression, identical to
the counterpart in past interpreters, contains three components (aside from the
if symbol): a predicate as the second, the consequent case as the third, and the
alternative case as the fourth. So, both the recognizer and evaluation functions are
easy to write and understand. We first need to evaluate the predicate, and if it
is true, evaluate the consequent expression, and otherwise evaluate the alternative
expression.

437

8.7 L∗
IMPERATIVE: Thinking Imperatively 438

Listing 8.116

(define if?
(λ (exp)
(and (cons? exp)

(= (length exp) 4)
(eqv? (first exp) 'if))))

(define value-of-if
(λ (exp env)
(let ([test (second exp)]

[conseq (third exp)]
[alt (fourth exp)])

(if (value-of test env)
(value-of conseq env)
(value-of alt env)))))

Because we have booleans and not functions, we can only write simple if tests.

Listing 8.117

> (value-of-helper
'((x := (if #t 10 20))

x
(y := (if (3 = (1 + 2)) x (x + x)))
y
(z := (if (y = 20) (x * x) (y * y)))
z))

10
10
100
PROGRAM-TERMINATED

All we need now, to deem this language complete, are procedures. Procedures
are, by far, the hardest component of this process due to having to account for more
than one argument. First, let us write the recognizer for a procedure definition. A
procedure definition consists of the 'fn symbol as the first of a list, the function
name as its second, as well as its formal parameters, if any exist, as the remaining
components up until the ':= symbol. The last element of the “procedure list” is
the function body. We need to extract each of these components. Let us begin by
writing the recognizer.

Listing 8.118

(define function?
(λ (exp)
(and (cons? exp)

(>= (length exp) 4)
(eqv? (first exp) 'fn))))

Now, we need to write the evaluation function. When evaluating a function, we
know it is of the form (fn foo ... := body) where ... consists of the formal
parameters. Therefore, we need to, somehow, extract these into a list. We know
that the formal parameters end when we encounter the ':= symbol. Thus, we can
write a helper function get-formals to traverse over the function definition and
continuously accumulate a list of formals until we encounter the := symbol.

Listing 8.119

(define get-formals
(λ (lof)
(cond
[(eqv? (first lof) ':=) '()]
[else (cons (first lof) (get-formals (rest lof)))])))

438

439 Imperative Programming

In addition to the formals, we need a way of recognizing the body of a function.
The body occurs immediately after the ':= symbol. Though, more generally, we can
say that the body of a function is the last element of a list, and therefore, its rest
is the empty list. So, we can iterate through the function definition and, if we run
into the last element (meaning the rest of the current element is the empty list),
extract its contents.

Listing 8.120

(define get-body
(λ (exp)
(cond
[(null? (rest exp)) (first exp)]
[else (get-body (rest exp))])))

Now, we can evaluate a function definition. First, let us extract each component
in a let block. We know that the second is the function name, and that the formal
parameters exist until the ':= symbol. The only noteworthy piece of this function is
that we wrap the body in a list. We do this to account for how we store a procedure
in the environment. Because a function definition consists of its formal parameters
as well as its body, we need to wrap the body in a list. Otherwise, it will break
each element of the body up into separate elements; an undesired result.

Listing 8.121

(define value-of-function
(λ (exp env)
(let ([name (second exp)]

[formals (get-formals (rest (rest exp)))]
[body (list (get-body exp))])

...)))

Conveniently enough, the body of this function is rather simple—the only thing
we need to do is extend the environment to contain the function name as well as its
formal parameters and body. So, as an association list, the function will be stored
with its name as the first, and its rest is a pair where its first is the list of formal
parameters, and its rest is the function body. Because function definitions do not
inherently produce results, we need to wrap the body in a begin and return 'ok,
similar to how we handle variable assignments.

Listing 8.122

(define value-of-function
(λ (exp env)
(let ([name (second exp)]

[formals (get-formals (rest (rest exp)))]
[body (list (get-body exp))])

(begin
(alter-env! name (cons formals body))
'ok))))

With function definitions in the bag, we can move on to function application.
Similar to our previous languages, a function application consists of a function
name, i.e., a symbol, and its arguments, if any.

439

8.7 L∗
IMPERATIVE: Thinking Imperatively 440

Listing 8.123

(define application
(λ (exp)
(and (cons? exp)

(symbol? (first exp)))))

Evaluating a function is a bit more difficult than one may initially expect. We
need to retrieve, then evaluate, each argument from the function call, map them to
the formal parameters of the function, then finally invoke the function body. When
we map the arguments to the formal parameters, we push a new environment to
the environment stack that contains these (and only these) new bindings. This
way, they (the bindings) only live in the scope of the function body. Immediately
afterwards, we pop the environment off the stack, designating that those variables
are no longer live and, therefore, cannot be used.

Listing 8.124

(define value-of-application
(λ (exp env)
(let* ([fn (apply-env (first exp))]

[formals (first fn)]
[args (map (λ (a) (value-of a env)) (rest exp))]
[body (second fn)])

(begin
(push-env!)
(map-formals-args formals args)
(let ([res (value-of body (current-env))])
(begin
(pop-env!)
res))))))

Notice that we use the convenient helper function map. map, as we recall from
Chapter 7, receives a function and a list of values, and returns a list of values after
applying the supplied function to each of the list elements. As we said, we need to
evaluate each argument before binding its value to the formal parameters, and the
map function allows us to achieve this concisely. After retrieving the necessary com-
ponents, we push a new environment to the environment stack, map the arguments
to the function formal parameters, evaluate the function body, pop the top of the
environment stack, and return the expression resolved by the body.

After we implement function definitions and applications, we have enough to
write the complicated program we described earlier.

440

441 Imperative Programming

Listing 8.125

> (value-of-helper
'((fn fact n := (if (n = 0)

1
(n * (fact (n - 1)))))

(fn fib x := (if (x = 0)
0
(if (x = 1)

1
((fib (x - 1)) +
(fib (x - 2))))))

(val1 := 5)
(val2 := (val1 + val1))
(z := (fact val1))
(w := (fib val2))
val1
val2
z
w
(z := (w * (fib (2 * (val2 - 5)))))
z))

5
10
120
55
3025
PROGRAM-TERMINATED

Imperative languages often have a strict distinction between functions and vari-
ables. Namely, functions are not data and, therefore, cannot be passed around, i.e.,
returned from other functions or passed as arguments, as if they are a variable.
Our interpreters need not distinguish between the two, leading to the notion of
first-class functions as described in Chapters 6 and 7. Interestingly, because of how
we designed L∗IMPERATIVE, functions are, by default, first class and can, therefore,
be passed as arguments to other functions.

Listing 8.126

> (value-of-helper
'((fn fact n := (if (n = 0)

1
(n * (fact (n - 1)))))

(fn another-function f n := (f n))
(another-function fact 6)))

720

Exercise 8.19. (⋆⋆)
Write a function, product, in L∗IMPERATIVE that receives two arguments: a starting
natural number s, and an ending natural number n, that computes the product of
s to n inclusive. As a hint, a recursive helper function is essential.

Exercise 8.20. (⋆⋆)
Add a while loop, similar to the while statement in C, to L∗IMPERATIVE. Such a
loop should receive a boolean expression and, as long as that expression holds true,
the loop body continues. Do not implement this as a function—rather, add it as a
new language construct. Also, assume that while loops introduce a new variable
scope; meaning you must modify the environment stack as necessary.

441

8.7 L∗
IMPERATIVE: Thinking Imperatively 442

Exercise 8.21. (⋆⋆)
Add a for loop, similar to the for statement in C, to L∗IMPERATIVE. Such a loop
should receive three statements: an initialization counter, a conditional expression,
and a step statement. Only execute the body of the loop if its conditional expression
is true. After the body finishes its execution, evaluate the step expression. Do not
implement this as a function—rather, add it as a new language construct. Also,
because for loops introduce a new variable scope; meaning you must modify the
environment stack as necessary.

442

443 Imperative Programming

8.8 Object-Oriented Programming

In C, we have the notion of structures, which classify, or categorize, groups of
variables to collectively represent a broad concept or object. As an example, a
two-dimensional “Point” struct is comprised of two numbers x and y. Is it possible
to represent structs, or objects in our language?

Objects contain properties and methods. Methods resemble functions but with
the added exception that methods are associated with an object. Many computer
scientists interchangeably use functions and methods, but there are important dis-
tinctions between the two in different programming contexts.

Anyways, let us discuss object representation. There are a couple of ways we
can represent an object and its encapsulated state. The first is via tagged lists, and
the second is via closures. We will work with tagged lists first.

A tagged list , as previously defined, is a standard list where the first is a header
or identifier. For instance, we can represent a “point” and its values as a tagged
list, e.g., `(point ,x ,y) where x and y are arguments in a make-point function.
So, we can represent this as follows:

Listing 8.127

(define make-point
(λ (x y)
`(point ,x ,y)))

Next, let us say that we want to access these values. We can access x by retrieving
the second of the point. Likewise, we can retrieve y by retrieving the third of the
point. Accordingly, we should wrap this behavior inside of functions.

Listing 8.128

(define point-x
(λ (pt)
(second pt)))

(define point-y
(λ (pt)
(third pt)))

What happens if we want to mutate the values in the point? Simple: we can use
the setter functions, i.e., set-first!, that we recently investigated. So, to alter x,
we need to retrieve the rest of the point, then invoke set-first! to update the
value. Altering y requires only a slight change; we need to get the rest of the rest
of the point, then invoke set-first!.

Listing 8.129

(define point-set-x!
(λ (pt x)
(set-first! (rest pt) x)))

(define point-set-y!
(λ (pt y)
(set-first! (rest (rest pt)) y)))

Let us test this with some points:

443

8.8 Object-Oriented Programming 444

Listing 8.130

(define p1 (make-point 10 20))
(define p2 (make-point 17 25.5))

> (point-x p1)
> (point-y p1)
> (point-set-x! p1 30)
> (point-set-y! p1 50)
> (point-x p1)
> (point-y p1)

> (point-x p2)
> (point-y p2)
> (point-set-x! p2 77)
> (point-set-y! p2 190.25)
> (point-x p2)
> (point-y p2)

10
20

30
50

17
25.5

77
190.25

Something seems amiss with this representation. The problem that should be
scaring the readers is that these functions are all in global scope. Thus, any arbi-
trary object or function can access these “point methods”. We want to abstract
these away somehow. The answer to this dilemma comes through closures. Recall
closures from Chapter 6—a closure binds an environment and a function definition.
Whenever a closure is invoked, it restores, then uses, the environment from its dec-
laration. So, we can declare a closure, e.g., make-point which receives and keeps
track of two values x and y. The question, though, is what do we do with these
values? Well, we need to bind them somewhere in the environment, so why not
create a let to hold their bindings?

Listing 8.131

(define make-point
(λ (x y)
(let ([point-x x]

[point-y y])
...)))

Now, what exactly does this function return? One may be inclined to think that
it returns a “point”, but this is not necessarily the case. We want to be able to
invoke methods on a “point”, so what we could do is have some sort of command
central, so to speak, that delegates commands. For example, if we define a point p,
and we want to get the x coordinate, we can invoke a method, e.g., (p 'point-x).
So, we know that make-point should return a function that receives one argument:
a command. This command, depending on its symbol argument, determines the
action to take.

Listing 8.132

(define make-point
(λ (x y)
(let ([point-x x]

[point-y y])
(λ (cmd)
(cond
[(eqv? cmd 'point-x) point-x]
[(eqv? cmd 'point-y) point-y])))))

So, we can now create distinct “point” objects and only access the data from
said points:

444

445 Imperative Programming

Listing 8.133

(define p1 (make-point 2 10))
(define p2 (make-point 5.25 9.50))

> (p1 'point-x)
> (p1 'point-y)
> (p2 'point-x)
> (p2 'point-y)

2
10
5.25
9.50

What about data mutation? If we want to change the value of a coordinate, we
will need to return a function that receives an argument:

Listing 8.134

(define make-point
(λ (x y)
(let ([point-x x]

[point-y y])
(λ (cmd)
(cond
[(eqv? cmd 'point-x) point-x]
[(eqv? cmd 'point-y) point-y]
[(eqv? cmd 'point-set-x!) (λ (v) (set! point-x v))]
[(eqv? cmd 'point-set-y!) (λ (v) (set! point-y v))]
[else 'invalid-method])))))

Thus, invoking one of the setters returns a procedure:

Listing 8.135

(define p1 (make-point 2 10))

> (p1 'point-set-x!) <function>

We need to supply the setter with a value:

Listing 8.136

(define p1 (make-point 2 10))

> (p1 'point-x)
> ((p1 'point-set-x!) 50)
> (p1 'point-x)

<function>
2
50

Class Design and Development

Objects, methods, and properties were defined in the previous section. We will
continue to make use of these terms as well as a few new additions to the lineup,
such as classes, inheritance, polymorphism, and encapsulation.

445

8.8 Object-Oriented Programming 446

A class is the blueprint of an object, i.e., how an object is defined. We used
a form of classes without the term when designing make-point and the dispatch
commands. Let us create a class called, say, Point (similar to the one defined from
the previous section) that stores two properties: an x-coordinate and a y-coordinate.
Properties of a class are also called instance variables, because they belong to each
created instance of a class. In addition, we will now take a slight detour to describe
a fundamental property of object-oriented programming: encapsulation. In other
programming languages, e.g., Java, when defining instance variables for a class, we
make a design choice to either declare them as public or private instance variables. A
public instance variable is directly-modifiable from an instance of the class. Consider
the following Java example:

Listing 8.137—Java Implementation of Point Class

1 class Point {
2 int x-coordinate;
3 int y-coordinate;
4 }

Here we define a class called Point (as we will in our interpreter), with two
instance variables. We can create a Point object by using its constructor, i.e., Point
p = new Point(). The potential for trouble comes from our attempts to access the
instance variables. We can use the dot operator to modify and access their values,
e.g., p.x-coordinate = 5. Manipulation and accessibility in this fashion breaks
our encapsulation principle because a class should only be able to directly modify
its instance variables from inside the class. To fix this problem (in Java), we should
instead declare the instance variables as private. In doing so, we prohibit access
to the instance variables through an object. Though, what if we want to retrieve a
particular coordinate? By blocking access to the variables, does that not completely
restrict our access, and if so, why would we ever care about encapsulation? Indeed,
it does restrict our access, but not entirely; we can write an accessor method to
retrieve the property. Such a method, i.e., getX(), is callable from a constructed
Point object, e.g., p. Mutability is also preserved through mutator methods.

Listing 8.138—X-Coordinate Accessor Method in Java

1 class Point {
2 private int xCoordinate;
3 private int yCoordinate;
4 Point(int x, int y) {
5 xCoordinate = x;
6 yCoordinate = y;
7 }
8 int getX() { return xCoordinate; }
9 void setX(int x) { xCoordinate = x; }

10 }

446

447 Imperative Programming

So, if we want to declare p to have an x-coordinate of 5, we can do so by
invoking this method on the object, i.e., p.setX(5);. Again, newcomers to Java
in particular often question the need for verbose syntax to do what is a seemingly
innocuous task. It allows us to couple our class data with the class itself and separate
the behavior we provide to clients of the class and the behavior given to the class
implementer/designer. Circling back to our point class example in the interpreter,
we could return boxes to directly modify instance variables from outside the class.
Doing so, as we have repeatedly mentioned, breaks down encapsulation and hinders
things even more because our language would need to unbox the value to retrieve
it and set the box to update its contents. In our previous section, we somewhat
introduced the idea of accessor and mutator methods via the dispatch function
within the object closure without providing the context behind encapsulation as it
was not entirely necessary. An additional difference between our language and many
other object-oriented languages is that our interpreter returns callable methods
whenever we want to set a value, whereas Java hides this from the programmer,
invoking the method for them. Our accessor and mutator methods will be aptly
named get-x/y and set-x/y! respectively.

Listing 8.139

(define class-point
(λ (x y)
(let ([property-x x]

[property-y y])
(λ (dispatch)
(cond
[(eqv? dispatch 'get-x) (λ () property-x)]
[(eqv? dispatch 'get-y) (λ () property-y)]
[(eqv? dispatch 'set-x!) (λ (new-x) (set! property-x new-x))]
[(eqv? dispatch 'set-y!) (λ (new-y) (set! property-y new-y))]
[else 'invalid-method])))))

We know that, to construct a point, we invoke class-point with the x and y
we wish to store.

Listing 8.140

(define pt1 (class-point 10 20))

> ((pt1 'get-x))
> ((pt1 'set-x!) 30)
> ((pt1 'get-x))

10

30

447

8.8 Object-Oriented Programming 448

Though, imagine that, in addition to an (x, y) pair, we want to store an as-
sociated color. With our current knowledge of objects, there are, effectively, two
options. The first of which is to add a color property to class-point, whereas the
second requires us to create a separate class that includes the (x,y) pair as well as
the color. The disadvantage of the former should be apparent: we must modify our
original implementation of the point class to add an additional property. The issue
with this, however, is that we must alter all occurrences class-point invocation
with a supplemental color. What if we do not want all points to contain a color?
Changing the implementation of point in this manner means we have no choice.1 A
second option is to create a new class that has all three properties together. While
this option is more flexible than the former and requires less overhaul to existing
code, it means we have to rewrite existing code, namely the x and y properties.
A third solution is to use object inheritance. One class that inherits from another
is known as a subclass, and the class that is being inherited from is the super-
class. Any properties or methods defined in the superclass, in our implementation
at least, are accessible in the subclass. Therefore if we could somehow extend the
point class into a color-point class, we would not need to re-define the properties
and methods associated with the (x, y) pair. How is this even possible, though?
We will demonstrate by example. Let us write the starting code to represent a
color-point class. We know that, because we want color-point to be a subclass
of point, it should receive the same arguments as a point, but with the addition
of the color property.

Listing 8.141

(define class-color-point
(λ (x y color)
(let ([...]

[property-color color])
(λ (dispatch)
(cond
[...]))))

Though, how do we specify that this is a subclass and, therefore, use prop-
erties from the superclass? All we need to do is declare an instance of the su-
perclass inside the let binding before we initialize the properties owned solely
by class-color-point. When we declare the instance, we in essence invoke the
constructor of the superclass, meaning we need to pass along, to it, the x and y
arguments.

Listing 8.142

(define class-color-point
(λ (x y color)
(let ([super (class-point x y)]

[property-color color])
(λ (dispatch)
(cond
[...])))))

1Python has support for optional parameters, which remove the need to change all constructor
invocations when adding a parameter.

448

449 Imperative Programming

super is an object instance of the superclass. Now, if an instance of the subclass
calls a method, we need to tell the dispatch function to look up the method name in
the superclass if it does not exist in the subclass. We will also add the corresponding
accessor and mutator methods for the color property.

Listing 8.143

(define class-color-point
(λ (x y color)
(let ([super (class-point x y)]

[property-color color])
(λ (dispatch)
(cond
[(eqv? dispatch 'get-color) (λ () property-color)]
[else (super dispatch)])))))

So, if we declare an instance of the subclass and attempt to invoke a method
from its superclass, we see that it works perfectly.

Listing 8.144

(define pt1 (class-point 10 20))
(define cpt1 (class-color-point 30 50 "Blue"))

> ((pt1 'get-x))
> ((pt1 'get-color))
> ((cpt1 'get-color))
> ((cpt1 'get-y))

10
invalid method
"Blue"
50

Notice how we implement inheritance: we create an instance of the superclass
directly, then any methods that do not exist in the subclass, we look up in the
superclass. Class inheritance does not stop at one level, however, as we can create
as many subclasses as our heart desires. Imagine that we have a class that describes
the size of a color-point called sized-point. If we declare an instance of the
superclass, namely, color-point, it will inherit all of its properties, which include
those from point. In essence, the chain of inheritance may grow continuously.

We may also override a method’s functionality from its superclass. Suppose
that, in point, there is a method to string that returns a string representation of
the object. E.g., "(x=10, y=20)" may be a string representation of a point whose
property-x is 10, and whose property-y is 20.

Listing 8.145

(define class-point
(let ([property-x x]

[property-y y])
(λ (dispatch)
(cond
[...]
[(eqv? dispatch 'to-string)
(λ ()
(string-append "(x="

(number->string property-x)
", y="
(number->string property-y)
")"))]))

449

8.8 Object-Oriented Programming 450

If we want to add this functionality to color-point, we need to override the
method by redefining it in the subclass. Though, we may not want to re-type the
information provided by the to-string method from the superclass. Thus, we may
invoke the point to-string from within the subclass to-string method.

Listing 8.146

(define class-color-point
(λ (x y color)
(let ([super (class-point x y)]

[property-color color])
(λ (dispatch)
(cond
[...]
[(eqv? dispatch 'to-string)
(λ ()
(string-append (super dispatch)

",color="
color))]))

(define pt1 (class-point 10 20))
(define cpt1 (class-color-point 5 3 "Blue"))

> ((pt1 'to-string))
> ((cpt1 'to-string))

"(x=10, y=20)"
"(x=5, y=3),color=Blue"

What if, however, we want to directly access a method from the superclass? That
is, imagine we have an instance of a color-point, but decide that we would rather
only see the coordinate information instead of said pair and the color? We could
add a second parameter to the dispatch function, namely args, that provides extra
information to the invocation of a method. That is, if we pass the symbol 'super
when invoking a method, it means we want to access the superclass method rather
than the class that the object is an instance of. The problem with this approach is
that it requires us to modify the implementation of all other existing method calls.
A solution to this predicament is to utilize variadic arguments. Therefore, because
a variadic argument procedure receives a list of arguments, we can extract out both
the method name and “method flags” if they exist. To help with this problem, we
will write two helper functions that access the method name and flags.

Listing 8.147

(define method-name
(λ (args)
(first args)))

(define method-flags
(λ (flags)
(if (> (length flags) 1) (second flags) #f)))

Now, let us amend our implementation of both the superclass and subclass to use
variadic arguments. In the subclass, if the “flags” argument is the 'super symbol,
we immediately invoke the superclass with the specified method.

450

451 Imperative Programming

Listing 8.148

(define class-point
(λ (x y)
(let ([property-x x]

[property-y y])
(λ-var (dispatch)
(let ([method (method-name dispatch)]

[flags (method-flags dispatch)])
(cond
[...]))))))

Listing 8.149

(define class-color-point
(λ (x y color)
(let ([super (class-point x y)]

[property-color color])
(λ-var (dispatch)
(let ([method (method-name dispatch)]

[flags (method-flags dispatch)])
(cond
[(eqv? flags 'super) (super method)]
[...]))))))

Finally, we can add an additional test that invokes the superclass to-string
method from an instance of color-point.

Listing 8.150

(define cpt1 (class-color-point 5 3 "Blue"))

> ((cpt1 'to-string))
> ((cpt1 'to-string 'super))

"(x=5, y=3),color=Blue"
"(x=5, y=3)"

The power of object-oriented programming comes in many dimensions, but we
will show a convenient example. Imagine we want to write a program that will
compute the area of a given shape. To do so, we may write something of the
following form:

Listing 8.151

;; area: [ListOf Any] -> Number
;; Computes the area of a given shape. The first
;; value in the list is the shape type as a symbol.
(define area
(λ-var (args)
(let ([shape (first args)])
(cond
[(eqv? shape 'circle) (circle-area (rest args))]
[(eqv? shape 'rectangle) (rectangle-area (rest args))]
[(eqv? shape 'triangle) (triangle-area (rest args))]
[else #f]))))

Where we must also write accompanying shape-area computation functions.
This not only clutters the area definition, but continuously increases its size and
unwieldiness. Using objects allows us to write polymorphic methods, which is a way
of composing the solution to multiple problems in a compact manner. Let us create
a shape class that has an “area” method that, by default, returns zero.

451

8.8 Object-Oriented Programming 452

Listing 8.152

(define class-shape
(λ ()
(λ-var (dispatch)
(let ([method (method-name dispatch)]

[flags (method-flags dispatch)])
(cond
[(eqv? method 'area) (λ () 0)]
[(eqv? method 'to-string) (λ () "shape")]
[else 'invalid-method])))))

Now, we can create three subclasses of shape: circle, rectangle, and triangle
that all extend shape and have their own properties alongside and override the area
method.

Listing 8.153

(define class-circle
(λ (radius)
(let ([super (class-shape)]

[property-radius radius])
(λ-var (dispatch)
(let ([method (method-name dispatch)]

[flags (method-flags dispatch)])
(cond
[...]
[(eqv? method 'area)
(λ ()
(* property-radius property-radius pi))]

[(eqv? method 'to-string)
(λ ()
(string-append "radius=" property-radius))]

[else (super method)]))))))

Listing 8.154

(define class-rectangle
(λ (l w)
(let ([super (class-shape)]

[property-length l]
[property-width w])

(λ-var (dispatch)
(let ([method (method-name dispatch)]

[flags (method-flags dispatch)])
(cond
[...]
[(eqv? method 'area)
(λ ()
(* property-length property-width))]

[(eqv? method 'to-string)
(λ ()
(string-append "length=" property-length ", width=" property-width))]

[else (super method)]))))

452

453 Imperative Programming

Listing 8.155

(define class-triangle
(λ (b h)
(let ([super (class-shape)]

[property-base b]
[property-height h])

(λ-var (dispatch)
(let ([method (method-name dispatch)]

[flags (method-flags dispatch)])
(cond
[(eqv? method 'area)
(λ ()
(/ (* property-base property-height) 2))]

[...]
[(eqv? method 'to-string)
(λ ()
(string-append "base=" property-base ", height=" property-height))]

[else (super method)]))))

What makes this interesting is if we want to, say, have a list of different shapes,
then compute the area of every shape in the list!

Listing 8.156

(define los
(list (class-triangle 2.25 10)

(class-rectangle 10 20)
(class-circle 45)
(class-rectangle 47.75 15)
(class-triangle 100 200)
(class-circle 90)
(class-circle 439)))

> (map (λ (s) ((s 'area))) los) (11.25 200 6361.725 716.25 10000
25446.900 605450.878)

Inheritance, Polymorphism, Encapsulation, and Automation

Creating classes manually is cumbersome. Plus, the burden lies on the programmer
for having to worry about methods being returned from invoking a closure function
such as a setter. What if we could write a system that abstracted these concepts
away from the end user, but still allows for inheritance, encapsulation, polymor-
phism, and so on? That is what we will do! Our system will mimic that of Java,
using several fundamental properties it defines of classes and objects.

As we said, classes are blueprints for objects, but they contain more than just
instance variables and methods. Classes can, of course, extend another class and
override existing methods. What we have not seen before are static variables and
static methods. A member defined as static associates said member with the class
and not to any particular instance of the class. We will go over this in greater detail
once we get to a proper example.

453

8.8 Object-Oriented Programming 454

In Java, every class has six properties: a name, its superclass, its instance vari-
ables and methods, and its static variables and methods. We will represent this
structure as a list. Every class, if it does not extend any other class, implicitly
extends Object (which does not extend itself). A class can be instantiated which
makes a copy of the class as an object along with all instance variables, instance
methods, static methods, and a reference to the static variables among the class.
Our implementation will be different from Java in several ways, including:

• No interfaces. Interfaces are used to control behavior amongst a group of
classes. Enforcement of the “behavioral hierarchy” is done as a compile-time
check, meaning it makes little sense to replicate Java’s interfaces in our system.

• All instance and static variables are mutable and accessible only
from mutator and accessor methods predefined by the class. We
have seen that classes can have methods such as get-x and set-x, but these
had to be written directly by the programmer. Our class implementation will
automatically create accessor functions that return the requested variable, as
well as mutator functions that receive one argument and reassign the variable
accordingly. In a sense, this indicates that all variables are public because we
could directly access them from the class (list) structure, but preventing this
would be almost an impossibility at runtime.

• Method overloading is impossible. Overloading a method means that the
same method name exists, just with differing input parameters. For instance,
in Java, we may declare a method void foo(int x, int y), but also declare
another method void foo(String x, String y). The Java compiler checks
the method invocation to see which function to call based on the types. Our
system is dynamically typed, meaning we do not explicitly specify the types
of our data. So, this is not possible. This includes different constructors for a
class; a class can have at most one constructor.

Moreover, object-oriented programming languages frequently use compile-time
checks to their advantage, a la method overloading, as well as inheritance method
and variable usage. Since this language is not compiled, we forgo any benefits that
come with such semantic program analysis tricks. Fortunately, we do get access to
a neat system for designing and instantiating classes that does not restrict us to
using closures as the object representation.

454

455 Imperative Programming

Representation Independence with Respect to Classes

As mentioned, our previous object system used closures for storing properties and
methods of objects. Because we strive for representation independence whenever
possible, we extend this approach to our new class design system. We will write
several functions that build classes and add methods to those classes. Though, the
programmer should not have to worry about how objects are represented by the
system; whether it be via closures or data structures. Namely, a user of our system
should need only functions that define classes and methods. Note the distinction
between “define” and “build”: defining a class is similar to what we do in Java; we
use the class keyword, its identifier, and associated properties. What we do not see
is how classes are represented “under the hood” by Java; it is unnecessary for most
intents and purposes.

Let us begin writing define-class: a function that receives four arguments: a
tag representing the class name, the class it extends, a list of instance variables,
and a list of static variables. These variables are merely symbols at the end of the
day, and cannot be extended past the point of class construction. While we cannot
add or remove instance variables, their values may certainly change. As a corollary,
what can be extended are the methods used by a class. Because of this, we will use
boxes to store the lists of methods. For now, these boxes are empty, but we will
return to them in due time. Note that CLASS is simply the symbol 'CLASS.

Listing 8.157

(define define-class
(λ (id super loiv losv)
(let ([loim-box (box '())]

[losm-box (box '())])
(list CLASS id super loiv losv loim-box losm-box))))

We now need a way of adding both static and instance methods to a class.
Therefore, let us write add-static-method and add-instance-method which call
add-method.1 add-method is the true worker here: it receives a symbol denoting
the method name, a function describing the method to add, as well as a function
denoting the “type” of method to add (which is either class-instance-methods or
class-static-methods). There is one caveat here, and that is the fact that every
instance method must receive at least one argument called “self”. The “self”
argument is implicit and will be passed alongside the instance method, but it is
required because if we want to access a particular object’s properties, we need to
know what object were invoking the method on. For instance, in Java, we may have
a Point p, then call a method int getX() on it as follows: p.getX(). Although it
seems as if this method receives no arguments, it implicitly receives a reference to
“p” identified as this. Thus, inside the body of getX(), when we write “return
x”, it knows to refer to the particular x instance variable that belongs to p. Python
explicitly requires that a “self” reference be passed to the method. Consider the
following Python class:2

1As a corollary, what we are describing is a paradigm called reflection, in which we dynamically
modify or access elements of some structure. In this case, we have the ability to view the names of
class/instance variables, class/instance methods, and add new elements at runtime.

2The init function acts as the class constructor in Python.

455

8.8 Object-Oriented Programming 456

Listing 8.158

1 class Point {
2 def __init__(self, x, y):
3 self.x = x
4 self.y = y
5
6 def get_x(self): return self.x
7 def get_y(self): return self.y
8 def set_x(self, x): self.x = x
9 def set_y(self, y): self.y = y

10 }

Notice that each accessor and mutator method has a “self” parameter which
works as previously described. Because it is easier to visualize the process behind
Python’s design choice, we will mimic it rather than Java. This means that, every
instance method must receive a “self” as its first parameter.

Listing 8.159

;; add-method: Class Symbol Function Function -> Void
;; Adds a method of a given type to the given class definition.
(define add-method
(λ (class id body tp)
(set-box! (tp class) (cons (cons id body) (unbox (tp class))))))

;; add-instance-method-class : Class Symbol Function -> Void
;; Adds an instance method to a class definition.
(define add-instance-method
(λ (class id body)
(add-method class id body class-instance-methods)))

;; add-static-method-class : Class Symbol Function -> Void
;; Adds a static method to a class definition.
(define add-static-method
(λ (class id body)
(add-method class id body class-static-methods)))

All we do is update the class box based on the given method type tag by ap-
pending the method to the corresponding association list.

We can now add methods to a class! There is one immediate instance method
to add: a constructor. The constructor will receive a list of arguments to initialize
to an object’s instance variables in the received order. It then returns a newly-
created instance of the given class type with its instance variables initialized. How
do we represent an instance of a class, though? By make-instance, of course!
This function receives a class type and returns a new instance of the class with
its instance variables uninitialized. An incredibly important bit of information to
note is that this is not the class constructor; that is defined momentarily. What
we are writing via make-instance is the value returned from a constructor invo-
cation. make-instance returns the instance represented as a list whose first is the
symbol 'INSTANCE. Another important distinction is the fact that every instance
has a reference to an instance of its superclass defined. This is isomorphic to how
we define the superclass in the closure representation of objects. The root class,
namely object-class, cannot have a superclass, which is why we have a nested if
expression.

456

457 Imperative Programming

Listing 8.160

; An Instance is a (make-instance Class).

;; make-instance : Class -> Instance
;; Creates an instance of a class. An instance is an object whose
;; instance variables are declared but initialized to '(). If a
;; superclass exists, an instance is generated inside the current instance.
(define make-instance
(λ (cl)
(let* ([iv (class-instance-vars cl)]

[iv-ls (map (λ (x) (cons x (box '()))) iv)])
(list INSTANCE (class-id cl) (class-super cl) iv-ls (class-static-vars cl)

(class-instance-methods cl) (class-static-methods cl)
(if (false? (class-super cl))

#f
(make-instance (class-super cl)))))))

Let us now write the make-constructor function that allows the programmer to
define a constructor for a class. Fortunately, this function is only one line long: we
invoke add-instance-method with the symbol 'new and the constructor body. A
constructor should receive at least one argument: a self to which instance variables
are assigned.

Listing 8.161

;; make-constructor : Class Function -> Void
;; Defines a constructor for a class. Constructors are
;; invoked using 'new and must receive at least one parameter.
(define make-constructor
(λ (class fn)
(add-instance-method class 'new fn)))

We have repeatedly mentioned static methods and variables, but what are they
and what is their connection to objects?

Listing 8.162

(define build-class
(λ (...)
(let ([...]

[sv-box (cons 'new (λ-var (args) (build-object args)))])
...)))

We are going to further complicate our define-class definition a bit by adding
helper functions which add the accessor and mutator methods for the class instance
variables. Fortunately, we can make repeated use of add-instance-method, but
we need a separate function that appends symbols to other symbols. This is be-
cause we want to say that the accessor method names are prefixed by “get-”,
whereas mutator methods are prefixed by “set-”. Note that this requires writing
symbol->string and string->symbol or symbol->append at the interpreter level.
Either approach is acceptable, and due to this, we leave it as an exercise to the
reader.

457

8.8 Object-Oriented Programming 458

Let us write two pairs of functions: add-accessor/accessor-id for retrieving
instance variables, and add-mutator/mutator-id for mutating instance variables.
The respective “add” functions retrieve the instance method box and update its
contents accordingly to bind the generated method identifiers to lambda functions.
Each method receives a self parameter denoting the object we wish to access or
mutate. The setters, of course, receive an additional parameter denoting the new
value to which the respective instance variable is assigned. The “id” functions sim-
ply generate a unique identifier which bind the accessor and mutator methods in the
list of instance methods. All of these are local to a add-accessor-mutator-methods
function, since their visibly should not pollute the global namespace. This function
receives a list of the variables as well as a function describing which methods to
retrieve. For the time being, we want to create accessor and mutator methods for
all instance variables, but we can just as easily write accessor and mutator methods
for all static variables, which we leave as an exercise to the reader.

Listing 8.163

;; create-accessor-mutator-methods : [ListOf Symbol] Function -> [ListOf Symbol]
;; Declares the accessor/mutator methods for the provided instance variables.
;; Each accessor/mutator is prefixed with get- or set-, respectively, followed
;; by the instance variable identifier.
(define create-accessor-mutator-methods
(let ([accessor-id (λ (v) (symbol-append 'get- v))]

[mutator-id (λ (v) (symbol-append 'set- v))]
[add-accessor
(λ (v vars-fn)
(λ (self)
(unbox (rest (assv v (vars-fn self))))))]

[add-mutator
(λ (v vars-fn)
(λ (self nv)
(set-box! (rest (assv v (vars-fn self))) nv)))])

(λ (lov vars-fn))
...))

We want to create association pairs that bind accessor identifiers to their accessor
function, and similarly, for mutator identifiers and their mutator functions. To do
so, we will use foldr and return a list containing these newly-created methods. We
do so because we want to add these methods at class-definition time.1

Listing 8.164

(define add-accessor-mutator-methods
(let (...)
(λ (lov vars-fn)
(foldr
(λ (v acc)
(append (list (cons (accessor-id v) (add-accessor v vars-fn)))

(list (cons (mutator-id v) (add-mutator v vars-fn)))
acc))

'()
lov)))

Then, as we said, we update define-class to create accessor and mutator meth-
ods for all variables, both static and non-static. Again, these are stored as boxes
because the programmer adds custom-defined methods after a class declaration.

1The astute reader will question why append receives three arguments rather than the standard two.
We wrote a variadic append function; using two append invocations works just as well.

458

459 Imperative Programming

Listing 8.165

(define define-class
(λ (id super loiv losv)
(let ([loim-box (box (create-accessor-mutator-instance-methods loiv))]

[losm-box (box (create-accessor-mutator-static-methods losv))])
(list CLASS id super loiv losv loim-box losm-box))))

Lastly we arrive at, arguably, the most important function: our dispatcher.
Our old object-oriented system used closures to wrap the dispatch function; this
time, however, it is a top-level function that receives at least two arguments: a
recipient of a command and the command to perform. The recipient can be either
a class definition or an object instance. Passing a class definition is required to call
or reference static variables and methods, whereas passing an instance is required
to call or reference instance methods. Commands refer to any invokable method,
including object instantiation. Any subsequent arguments are used as arguments
to the command. Note that if the recipient is an object, we cons onto the list of
arguments the recipient, serving as the implicit (first) argument to each instance
method. We use the “apply” function to use function application on the arguments
provided by the dispatcher. We have one special case to deal with, and that is object
instantiation. We need to create an instance, using make-instance, and cons said
instance onto the list of constructor arguments, serving as the self parameter to
the constructor. To aid us, we will write local lookup functions to search class
definitions for desired methods. Because these are relatively repetitive and simple
to design, we omit their implementation for the time being.

Listing 8.166

;; send : Any Symbol ... -> Any
;; Dispatches a command to either an object or a class definition.
;; The function is variadic but must receive at least two arguments.
(define send
(λ-var (args)
(let ([recv (first args)] [cmd (second args)] [args (rest (rest args))])
(cond
[(eqv? 'new cmd)
(let ([instance (make-instance recv)])
(begin
(apply (constructor-lookup recv) (cons instance args))
instance))]

[(instance? recv)
(apply (instance-method-lookup recv cmd) (cons recv args))]

[(class? recv)
(apply (static-method-lookup recv cmd) args)]

[else
(printf "unknown command ∼a∼n" cmd)]))))

At long last, let us create a class! We first need to write the root “object-class”
that extends nothing, implements nothing, and has no instance or static variables.

Listing 8.167

(define object-class
(define-class 'object #f '() '()))

459

8.8 Object-Oriented Programming 460

To freshen things up, we will design a different set of classes rather than sticking
with the overused “point” examples. Let us implement a robot-class that has
five properties: x/y-coordinates, a direction they are facing, an item count, and its
residing world.

Listing 8.168—Definition and Constructor of Robot Class

(define robot-class
(define-class 'robot object-class '(x y dir item-count world) '()))

(make-constructor robot-class
(λ (self x y world)
(begin
(send self 'set-x x)
(send self 'set-y y)
(send self 'set-dir 0)
(send self 'set-item-count 0)
(send self 'set-world world))))

A World is a world-class; it stores a list of world positions as elements. Each
world position has a number denoting the number of items on the position. Item s
are arbitrary and tangible collectibles. When we create a World, we want to pass
it a width and height, representing the two-dimensional grid of world positions.
The backing world position list, however, is only a one-dimension list. This means
that, whenever we access an element index or reference a world position, we need to
convert from Cartesian coordinates to indices and vice versa. Namely, i = x+y·W ,
where W is the specified world width. Going the other direction, x = floor(i / W)
and y = i mod W .1 We want a robot to be able to place and collect items from
world positions. So, let us add methods to the World class that do as such: when
given an x, y position, we retrieve the respective world position and update its
item count. For the time being, we will not worry about a “negative” count. To
initialize the list of world positions to boxes, we can use foldr and a function that
returns a list of width · height numbers to fold over.2 The numbers, themselves,
are insignificant; they merely provide a bound on the number of recursive folds we
make. Rather, what is more interesting is how many items we store at each world
position. At its core, this number does not matter as much as some other values
in our program, and we could set it to whatever natural number our heart desires.
We could also store a random number of items on each world position. To keep the
discussion simple, every position starts with three items.

Listing 8.169—Definition and Constructor of World Class

(define world-class
(define-class 'world object-class '(lop) '()))

(make-constructor world-class
(λ (self width height)
(send self 'set-lop (foldr (λ (x acc)

(cons (box 3) acc))
'()
(iota 0 (* width height))))))

1In this coordinate system, like those in computer graphics, the origin (0,0) is in the top-left of the
grid.

2In programming and formal language theory, this is called the Iota ι function, which returns a list
of integers from the interval [i, j), e.g., ι(8) produces [0, 1, 2, 3, 4, 5, 6, 7].

460

461 Imperative Programming

We know that a robot exists at some location in the world. A robot that cannot
move without directly setting its coordinate values limits the potential of the robot.
Let us add two instance methods to the robot class: the ability to turn left via
turn-left as well as a movement forward (in whatever direction they are currently
facing) command via move-forward. Turning left is only a matter of adding ninety
degrees to the robot direction (angle) α, followed by α mod 360 to normalize the
direction into the correct range.1

Listing 8.170—Turn Left Method for Robot Class

(add-instance-method
robot-class
'turn-left
(λ (self)
(let ([d (send self 'get-dir)])
(send self 'set-dir (modulo (+ d 90) 360)))))

Moving the robot is no more complicated; rather just cumbersome to write.
Depending on the robot’s direction, we update the respective x or y coordinate.

Listing 8.171—Move Forward Method for Robot Class

(add-instance-method
robot-class
'move-forward
(λ (self)
(let ([d (send self 'get-dir)])
(cond
[(= d 0) (send self 'set-x (add1 (send self 'get-x)))]
[(= d 90) (send self 'set-y (sub1 (send self 'get-y)))]
[(= d 180) (send self 'set-x (sub1 (send self 'get-x)))]
[(= d 270) (send self 'set-y (add1 (send self 'get-y)))]
[else (printf "ERR: invalid direction∼n")]))))

We also need methods for interacting with the items placed around the world.
Now, the robot could directly modify the state of the world by altering the item
count of a world position, but this introduces an unnecessary coupling of unrelated
objects. A better solution is to write two World instance methods: collect-item
and place-item, which remove and add items from a given x and y world posi-
tion. Namely, collecting a item decrements the item count for its respective position
whereas placing a item increments its item counter. To get the logical world posi-
tion, we use the aforementioned offset formulas.

Listing 8.172—Collect Item Method for World Class

(add-instance-method
world-class
'collect-item
(λ (self x y)
(let* ([idx (+ x (* y (send self 'get-width)))]

[world-posns (send self 'get-lop)]
[item-box (list-ref world-posns idx)])

(set-box! item-box (sub1 (unbox item-box))))))

1We add ninety degrees to α rather than subtracting because we are following the unit circle, wherein
angles increase in a counter-clockwise motion, with zero degrees facing east.

461

8.8 Object-Oriented Programming 462

Listing 8.173—Place Item Method for World Class

(add-instance-method
world-class
'place-item
(λ (self x y)
(let* ([idx (+ x (* y (send self 'get-width)))]

[world-posns (send self 'get-lop)]
[item-box (list-ref world-posns idx)])

(set-box! item-box (add1 (unbox item-box))))))

Finally, we need to add two methods for the robot, designating how it interacts
with the world. It too shall have a collect-item and place-item method which
invokes the corresponding function from its world. The difference, however, is that
a robot who places down a item decrements its bag size rather than incrementing
it. Parallel reasoning explains the other case.

Listing 8.174—Collect Item Method for Robot Class

(add-instance-method
robot-class
'collect-item
(λ (self)
(let* ([rx (send self 'get-x)]

[ry (send self 'get-y)]
[rbc (send self 'get-item-count)]
[w (send self 'get-world)])

(begin
(send self 'set-item-count (add1 rbc))
(send w 'collect-item rx ry)))))

Listing 8.175—Place Item Method for Robot Class

(add-instance-method
robot-class
'place-item
(λ (self)
(let* ([rx (send self 'get-x)]

[ry (send self 'get-y)]
[rbc (send self 'get-item-count)]
[w (send self 'get-world)])

(begin
(send self 'set-item-count (sub1 rbc))
(send w 'place-item rx ry)))))

We can create an example world of size 10 × 10 and a robot, then test moving
and turning the robot to observe its stopping position. Note that a robot, as per
its constructor, has a starting direction α of zero. We will initialize its position to
the world origin.

462

463 Imperative Programming

Listing 8.176

(define world (send world-class 'new 10 10))
(define r1 (send robot-class 'new 0 0 world))

> (send r1 'move-forward)
> (send r1 'move-forward)
> (send r1 'move-forward)
> (send r1 'turn-left)
> (send r1 'turn-left)
> (send r1 'turn-left)
> (send r1 'move-forward)
> (send r1 'move-forward)
> (printf "x=∼a, y=∼a, dir=∼a∼n"

(send r1 'get-x)
(send r1 'get-y)
(send r1 'get-dir))

x=3, y=2, dir=270

As we expect, after moving forward three spots, turning left (counter-clockwise)
three times, then moving forward twice more, we end up in (3, 2), facing south
(α = 270).

Notice, though, that our robot had to turn left three times just to turn clockwise,
i.e., to its right. Why not add a method to robot that provides the ability to turn
right? Indeed, that is simple to do with our add-instance-method function!

Listing 8.177—Turn Right Method for Robot Class

(add-instance-method
robot-class
'turn-right
(λ (self)
(begin
(send self 'turn-left)
(send self 'turn-left)
(send self 'turn-left))))

Now, let us suppose that we want to write a robot that overrides the functionality
of a normal robot to move several squares at once when calling move-forward.
We do not want to add such functionality to the robot-class so as to obey the
black-box principle of object-oriented programming—extending object capabilities,
rather than “unboxing”, so to speak, a theoretically complete class, is an important
design paradigm. We want robot-class to remain, as basic as it is, in what
it represents. There is one problem that we see immediately after writing the
class definition, and that is the fact that we need to access the superclass (of the
subclass) inside the constructor to pass the x, y coordinates, as well as the world.
Fortunately, there is an easy solution to this problem: we store an generated instance
of the superclass when calling make-instance. The superclass instance is stored
inside the instance representation. For our purposes, we can write a representation-
independent function for retrieving the superclass instance such as instance-super.
Our instance (list) representation indicates that we store the superclass instance at
index nine, referenced by the tenth.

463

8.8 Object-Oriented Programming 464

Listing 8.178—Definition and Constructor for Long Mover Robot Class

(define long-mover-robot-class
(define-class 'long-mover-robot robot-class '() '()))

(make-constructor long-mover-robot-class
(λ (self x y world)

(send (instance-super self) 'set-x x)
(send (instance-super self) 'set-y y)
(send (instance-super self) 'set-dir 0)
(send (instance-super self) 'set-item-count 0)
(send (instance-super self) 'set-world world)
self))

With this addition, we can override move-forward to move however many times
we wish a Long Mover Robot to move.1

Listing 8.179—Overridden Move Forward Method for Long Mover Robot Class

(add-instance-method
long-mover-robot-class
'move-forward
(λ (self)
(begin
(send (instance-super self) 'move-forward)
(send (instance-super self) 'move-forward)
(send (instance-super self) 'move-forward)
(send (instance-super self) 'move-forward)
(send (instance-super self) 'move-forward))))

Following this addition, we can test a new long-mover-robot and call its
move-forward to see it matches the position and direction of a robot instance
that moves five times using its own move-forward method.

Listing 8.180

(define world (send world-class 'new 10 10))
(define long-mover-r

(send long-mover-robot-class 'new 0 0 world))

> (send long-mover-r 'move-forward)
> (send long-mover-r 'turn-left)
> (printf "x=∼a, y=∼a, dir=∼a∼n"

(send long-mover-r 'get-x)
(send long-mover-r 'get-y)
(send long-mover-r 'get-dir))

x=3, y=2, dir=270

Let us continue by designing another robot, perhaps one that bounces around
the world. The bounce-robot will move two spaces ahead of its current location.
Additionally, because the robot is bouncing, it shakes uncontrollably, causing it
to lose an item for every bounce. If it has no collected items, then it of course
drops none. Because its constructor is identical (aside from the name) to that
of long-mover-robot, we omit its implementation, opting to jump straight into
overriding the move-forward method:

1What do you think would happen if we accidentally called self instead of (instance-super self)?

464

465 Imperative Programming

Listing 8.181—Overriding Move Forward Method in Bouncer Robot Class

(add-instance-method
bouncer-robot-class
'move-forward
(λ (self)
(let ([rbc (send self 'get-item-count)])
(begin
(send (instance-super self) 'move-forward)
(send (instance-super self) 'move-forward)
(cond
[(zero? rbc) (void)]

[else (send self 'place-item!))]))))

Let us instantiate a bounce-robot and test its implementation.

Listing 8.182

(define bouncing-r (send bouncer-robot-class 'new 0 0
world))

(send bouncing-r 'move-forward)
(printf "x=∼a, y=∼a, num items=∼a\n" (send bouncing-r

'get-x) (send bouncing-r 'get-y) (send bouncing-r
'get-item-count))

(send bouncing-r 'move-forward)
(printf "x=∼a, y=∼a, num items=∼a\n" (send bouncing-r

'get-x) (send bouncing-r 'get-y) (send bouncing-r
'get-item-count))

(send bouncing-r 'move-forward)
(printf "x=∼a, y=∼a, num items=∼a\n" (send bouncing-r

'get-x) (send bouncing-r 'get-y) (send bouncing-r
'get-item-count))

(send bouncing-r 'move-forward)
(printf "x=∼a, y=∼a, num items=∼a\n" (send bouncing-r

'get-x) (send bouncing-r 'get-y) (send bouncing-r
'get-item-count))

x=2, y=0, num items=2
x=4, y=0, num items=1
x=6, y=0, num items=0
x=8, y=0, num items=0

Exercise 8.22. (⋆⋆)
Design a class SquareRobot that receives a parameter n. When invoking its move-forward
method, it moves in a square whose side length is n, picking up all items in the
square. After picking up these items, the robot returns to its original position and
direction.

465

8.9 LVECTOR: Static Data Structures 466

8.9 LVECTOR: Static Data Structures

In Chapter 7, we introduced lists and pairs—two constructs for encapsulating mul-
tiple pieces of data. Lists and pairs are flexible in that the number of elements is
not necessary to create a list. Contrast this behavior with static arrays from C,
whose size must be known at compile-time. We can create the following analogy:
linked lists in C are to lists, as arrays are to vectors. In this section, we will write
LVECTOR: an extension to LOUT that adds fixed-length vectors.

expr ::= application | ...
application ::= vector

| vector-set
| vector-get
| ...

vector ::= ‘make-vector’ expr
vector-set ::= ‘vector-set!’ id expr expr
vector-get ::= ‘vector-get’ id expr

Figure 8.6: Extended BNF Grammar for LVECTOR

One advantage of vectors over lists/pairs is element access times. A vector can
access an element in constant time, whereas a list must iterate from the start to the
end to find a specific element. Furthermore, the size of a list is determinate, but not
instantly; vectors are static, meaning their size is unchangeable. So, when a vector
is constructed, the programmer must provide a size to the vector. Additionally,
vectors are zero-indexed, identical to arrays in C.

Internally, a vector will be represented as an array of s-values. So, let us create
the corresponding s-value, its constructor, and type enumeration. Because the
vector should always keep track of its size internally, we need to wrap it (i.e., its
elements and size) in a struct.

Listing 8.183—Adding Vector S-value (sval.h)
1 enum sval_type {..., SVAL_VECTOR}
2
3 struct vector {
4 struct sval **elements;
5 size_t size;
6 };
7
8 struct sval {
9 ...

10 union data {
11 ...
12 struct vector vector;
13 } data;
14 };
15
16 struct sval *sval_vector_create(size_t vector_size);

466

467 Imperative Programming

Next, let us write the body of the constructor function. When we create a vector,
we pass a size, n, representing the number of elements to store in the vector. So,
we need to allocate an array of n s-values, hence the double pointer.

Listing 8.184—Vector S-value Creation Function (sval.c)
1 struct sval *sval_vector_create(size_t vector_size) {
2 struct sval *vector = sval_create(SVAL_VECTOR);
3 vector->data.vector.elements = malloc(vector_size * sizeof(struct sval *));
4 ASSERT_ALLOC(vector->data.vector.elements, "sval_vector_create");
5 vector->data.vector.size = vector_size;
6 return vector;
7 }

We now must consider the representation of vectors. That is, how do we want to
visually depict a vector? The solution is that we will prefix vectors with a hash, i.e.,
#, followed by a list-like syntax. E.g., #(1 2 3) is a vector of the three elements 1,
2, and 3. Let us amend sval print to include vectors. We will similarly update
sval type to return a string representation of the type enum for vectors.

Listing 8.185—Printing Vector S-value (sval.c)
1 void sval_print(struct sval *sv) {
2 ...
3 else if (SVAL_VECTOR == sv->type) {
4 printf("#(");
5 // Print all but the last element with spaces afterwards.
6 for (int i = 0; i < sv->data.vector.size - 1; i++) {
7 sval_print(sv->data.vector.elements[i]);
8 // Do not add a space after printing this element.
9 // If there are no elements then this is skipped over.

10 if (i < sv->data.vector.size - 1) {
11 printf(" ");
12 }
13 }
14 printf(")");
15 }
16 ...
17 }
18
19 const char *sval_type(const enum sval_type type) {
20 ...
21 case SVAL_VECTOR: return "vector";
22 }

Now, we need an internal, built-in procedure for initializing a vector of some
size. We will call this procedure “make-vector” which receives one value denoting
the size of the vector.

Listing 8.186—Built-in make-vector Function (apply.c)
1 void builtin_functions_init(struct environment *env) {
2 ...
3 environment_put(env, "make-vector", sval_builtin_create(apply_make_vector));
4 }
5
6 static struct sval *apply_make_vector(struct sval **args, size_t num_args,
7 struct environment *env) {
8 ASSERT_ARITY("make-vector", 1, num_args);
9 return sval_vector_create(args[0]->data.number);

10 }

467

8.9 LVECTOR: Static Data Structures 468

With this, we can now create empty vectors. But we encounter a pretty signif-
icant problem: there are ten element slots in the vector, sure, but what happens
if we try to print out the vector? Right now, our code simply attempts to print
the data at an element even if nothing exists. The question marks ? are used to
emphasize that we do not know what will be printed.

Listing 8.187

(define vec1 (make-vector 10))

> vec1 #(? ? ? ? ? ? ? ? ? ?)

The problem is the start of the sval print function. We attempt to retrieve
the type of an s-value that does not exist. So, if we find a NULL s-value, we should
print something akin to NULL. Though, the values themselves are not necessarily
null; they exist, just in a non-sensical state. So, we will represent a “null” s-value
as the string “nil”.

Listing 8.188—Printing Null S-value (sval.c)
1 void sval_print(struct sval *sv) {
2 if (NULL == sv) { printf("nil"); }
3 }

If we try to recompile the interpreter and rerun the test, we still get a segmen-
tation fault.1 What is going on? Executing the program through GDB shows that
the segmentation fault occurs on the same line in sval print. The problem is
how we are initializing the array of values. We call malloc to initialize an array of
s-values. The issue, as we saw in Chapter 5, is that malloc does not preinitialize
values; its sole purpose is to find available memory and provide it for use. Printing
out the pointer value of the passed s-value argument shows this in greater detail.

0x1000000000000000

This is certainly not NULL! A null value is exactly zero. So, reading from “unini-
tialized” memory before useful data is inserted often results in catastrophic and
head-banging errors. The solution is to populate this array with NULL values. We
should use the “calloc” function to specify that we want each array slot to be
“zero-initialized”.

Listing 8.189—Using calloc to “Zero-Initialize” Vector Elements (sval.c)
1 struct sval *sval_vector_create(size_t vector_size) {
2 struct sval *vector = sval_create(SVAL_VECTOR);
3 vector->data.vector.elements = calloc(vector_size, sizeof(struct sval *));
4 ASSERT_ALLOC(vector->data.vector.elements, "sval_vector_create");
5 vector->data.vector.size = vector_size;
6 return vector;
7 }

The only other noteworthy difference is that calloc receives one extra param-
eter: a count. This count designates how many slots we want to allocate. So, we
want vector size slots each of size sizeof(struct sval *). Now, the program
should work wonderfully.

1If we run this program several times, we may encounter a trial where the program is successful.
Memory layouts are likely to change upon program execution, so sometimes the allocator gets lucky and
finds a spot of ten zeroes in a row.

468

469 Imperative Programming

Listing 8.190

(define vec1 (make-vector 5))

> vec1 #(nil nil nil nil nil)

Let us add something useful: the ability to update and retrieve vector elements
via vector-set! and vector-get respectively.

vector-set! receives three arguments: a vector to manipulate, an index, and
the item to store at the index. vector-get, on the other hand, receives two argu-
ments: a vector to access, and the index of the element to retrieve. Neither of these
functions are overly complicated.

Listing 8.191—Built-in vector-set! & vector-get Functions (apply.c)
1 static struct sval *apply_vector_set(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("vector-set!", 3, num_args);
4 struct sval *vector = args[0];
5 struct sval *index = args[1];
6 struct sval *element = args[2];
7 vector->data.vector.elements[(int) index->data.number] = element;
8 return NULL;
9 }

10
11 static struct sval *apply_vector_get(struct sval **args, size_t num_args,
12 struct environment *env) {
13 ASSERT_ARITY("vector-get", 2, num_args);
14 struct sval *vector = args[0];
15 struct sval *index = args[1];
16 return vector->data.vector.elements[(int) index->data.number];
17 }

Remember that, when working with indices, we must use integers. So, the passed
index argument cannot be, for example, a floating-point number. So, trying this
out with our previous example:

Listing 8.192

(define vec1 (make-vector 5))

> vec1
> (vector-set! vec1 3 250)
> vec1

#(nil nil nil nil nil)

#(nil nil nil 250 nil)

Great! We are on our way to a useful data structure. Though, it would be nice
to have a function akin to “list”; one that creates a vector out of its arguments.
E.g., (vector 1 2 3 4) => #(1 2 3 4). So, let us write one! All we need to do
is write a procedure that takes any number of arguments, creates a vector where its
size is said number, then sets each element.

469

8.9 LVECTOR: Static Data Structures 470

Listing 8.193

(define vector
(letrec ([vector-helper

(λ (v l idx)
(cond
[(null? l) v]
[else
(begin
(vector-set! v idx (first l))
(vector-helper v (rest l) (+ idx 1)))]))])

(λ-var (args)
(let ([vec (make-vector (length args))])
(vector-helper vec args 0)))))

Before vectors, we implemented boxes as tagged cons pairs whose first is 'box
and whose rest is the encapsulated value. Vectors provide a slightly easier method
for designing boxes due to the vector-set! function. Let us rewrite our box
implementation to use a one-element vector rather than a tagged list. Again, this
implies that all one-element vectors are, by our standards, boxes. To do so, we must
create a vector? (recognition) predicate, something we leave as a trivial exercise
to the readers.

Listing 8.194

(define box
(λ (v)
(let ([vec (make-vector 1)])
(begin
(vector-set! vec 0 v)
vec))))

(define box?
(λ (v)
(and (vector? v)

(zero? (sub1 (vector-length v))))))

(define set-box!
(λ (bx v)
(vector-set! bx 0 v)))

(define unbox
(λ (bx)
(vector-get bx 0)))

Exercise 8.23. (⋆⋆⋆)
Vectors can be multidimensional and contain vectors as elements. Though, we can
always represent an n-dimensional vector using a one-dimensional vector by using
index and size offsets. For example, if we want to declare anm × n two-dimensional
vector, we could, instead, create a one-dimensional vector of size mn. To correctly
reference given indices x and y for a two-dimensional vector of size m × n, we use
the following calculation:

x+y·m

470

471 Imperative Programming

Recall that we saw an identical transformation in our object-oriented programming
discussion with worlds and robots; the only difference being that we used lists as
opposed to vectors. Implement functions for creating a two-dimensional vector:
(make-vector-2d m n), (vector-ref-2d v x y), and vector-set-2d! v x y
e). Note that to write the latter two functions, you will also need to provide m.
Perhaps an alternative solution is to wrap the two-dimensional vector in a closure
or tagged list containing m and n.

L∗
AL: An Array List Data Structure

It would be nice if there existed a data structure with the constant access times
of vectors but with the flexibility of dynamically adding and removing elements
that we get with traditional cons-style lists. Java has such a structure called an
array list , named as such because it is a hybrid of constant access time vectors and
resizable lists. In this section, we will write L∗AL: a language that implements a
similar data structure.

We previously wrote LVECTOR, which adds support for vectors: a non-resizable
data structure with constant element access time. What is exciting about this is
that we can create a data structure that uses vectors under the hood while providing
the flexibility of adding and removing any number of elements we so desire.

Our array list implementation will use a closure to store its properties and a
variadic dispatch function, identical to our object-oriented programming section.
By default, we will say that an array list stores ten values with a logical size of
zero. The logical size indicates how many meaningful elements exist in the list.
Moreover, as we hinted at, the underlying data structure will be a vector thanks to
its constant-access time operations.

Listing 8.195—Initial Array List Closure Definition

; How many elements can be stored initially?
(define INITIAL-CAPACITY 10)
; By what multiplicative factor will we resize the underlying vector?
(define RESIZE-FACTOR 2)
; Initially, we have zero elements in the list.
(define INITIAL-SIZE 0)

;; arraylist : Void -> [Symbol ... -> Any]
;; Creates a closure with the structure of an array list.
;;
;; An array list has an initial capacity of INITIAL-CAPACITY,
;; logical size of INITIAL-SIZE, and an elements vector. There
;; are several functions associated with an array list.
(define arraylist
(λ ()
(let* ([capacity INITIAL-CAPACITY]

[size INITIAL-SIZE]
[elements (make-vector capacity)])

(λ-var (args)
(let ([cmd (first args)]

[rest (rest args)])
...)))))

471

8.9 LVECTOR: Static Data Structures 472

The most important operation for such a data structure is add!, i.e., the ability
to add an element to the end of the array list. When we invoke add! on the array
list, the element to add is stored at the next-available index, which is referenced by
size. Let us begin working on add-val: a local procedure to add an element to the
array list. Upon adding a new value to the array list, we perform two side effects:
first, we add the element to the backing vector, and second, we increment the size
by one.

Listing 8.196—Add Element to Array List

(define arraylist
(λ ()
(let* (; Syntax: (lst add! val)

[add-val
(λ (val)
(begin
(vector-set! elements size val)
(set! size (add1 size))))]

(λ-var (args)
(let ([cmd (first args)]

[rest (rest args)])
(cond
[(eqv? cmd 'add!) (add-val (first rest))]
[else #f])))))))

Let us create an example array list and add some elements. We will make use
of the (omitted) print! function that displays the backing vector of an array list.

Listing 8.197

(define al (arraylist))

> (al 'print!)
> (al 'add! 106)
> (al 'add! 439)
> (al 'add! 521)
> (al 'add! 316)
> (al 'add! 17)
> (al 'print!)

#(nil nil nil nil nil
nil nil nil nil nil)

#(106 439 521 316 17
nil nil nil nil nil)

Our current setup is not very interesting—the question now is what happens
when we try to add an element to a “full” array list. As we know, a cons does
not suffer from this problem, and vectors are unfortunately plagued with such a
curse. The solution is to increase the size of the array list! Some may view this
with skepticism since vectors are static data structures. This may be the case, but
we can create a new vector with the old elements copied over and a new increased
capacity. What is more is that the user of the array list needs not to know this
happens. So, by what factor should the vector increase? We will choose a resizing
factor (RESIZE FACTOR) of two to double the vector capacity, i.e., the size goes
from 10 to 20, then to 40, then 80, and so on.

472

473 Imperative Programming

Another question that inevitably presents itself is when to resize a vector. It is
cumbersome to repeatedly check in the array list implementation. So, we will write
c-resize!: a function that conditionally resizes a vector. It receives, of course, a
vector, a logical size, and a current capacity. If the logical size is equal to the current
capacity (i.e., the array list is full), we increase the vector capacity by creating a
new vector and copying the old elements over. c-resize! returns its result as a
cons pair whose first is the new capacity and whose rest is the new vector. On
the other hand, if the logical size is less than the current capacity, we return the
original capacity and vector as a cons pair. This way, the array list data structure
does not concern itself with if a resize occurred. Rather, it presumes that a vector
with enough space is always present.

To write c-resize!, we need a recursive helper function for copying elements
from one vector to another. From here, the implementation is trivial.

Listing 8.198—“Resizing” a Vector

;; c-resize : {X} [VectorOf X] Number Number -> (cons Number [VectorOf X])
;; Conditionally resizes a vector from a given capacity to another.
;; If the capacity and given logical size are not equal (meaning a resize
;; is unnecessary), then the original is returned. A pair whose first is
;; the new capacity and whose rest is the new vector is returned.
(define c-resize!
(letrec ([copy-vector

(λ (e new-e sz)
(cond
[(zero? sz) new-e]
[else
(begin
(vector-set! new-e (sub1 sz) (vector-ref e (sub1 sz)))
(copy-vector e new-e (sub1 sz)))]))])

(λ (e size capacity)
(cond
[(= capacity size)
(let* ([new-c (* capacity RESIZE-FACTOR)]

[new-e (make-vector new-c)])
(cons new-c (copy-vector e new-e size)))]

[else (cons capacity e)]))))

We now use this function in our add-val implementation; the returned result is
a cons pair, so we extract out each component. We then reassign the capacity and
vector values using set!. Note that we still perform a (superfluous) assignment
even if the vector and capacity do not change.

473

8.9 LVECTOR: Static Data Structures 474

Listing 8.199

(define arraylist
(λ ()
(let* ([capacity INITIAL-CAPACITY]

[size INITIAL-SIZE]
[elements (make-vector capacity)]
; Syntax: (lst add! val)
[add-val
(λ (val)
(let* ([res-pair (c-resize! elements size capacity)]

[new-c (first res-pair)]
[new-e (rest res-pair)])

(begin
(set! capacity new-c)
(set! elements new-e)
(vector-set! elements size val)
(set! size (add1 size)))))])

...)))

Assuming that we have the same array list from before, we can add a few more
elements to demonstrate the vector resizing.

Listing 8.200

(define al (arraylist))
...
> (al 'add! 654)
> (al 'add! 505)
> (al 'add! 362)
> (al 'add! 250)
> (al 'add! 523)
> (al 'print!)
> (al 'add! 543)
> (al 'print!)

#(106 439 521 316 17 654 505
362 250 523)

#(106 439 521 316 17 654 505
362 250 523 543 nil nil nil
nil nil nil nil nil nil)

Adding elements is certainly one feature of array lists, but what about element
removal? In fact, what exactly does it mean to “delete” an element of a vector,
let alone an array list? Vectors have no inherent sense of element deletion because
they are not resizable. Though, with our new approach, could we create a new
vector that does not have a specific element? Sure, that is possible, but we present
an even simpler solution: shift all elements in the array list down by one index.
For example, consider the array list containing the values #(439 521 654 362 330
nil nil nil nil nil). If we want to remove the element 521, we can shift each
element past 521 one index to the left, overwriting 521 with the corresponding data
to its right. Finally, we decrement the array list logical size by one. Instead of a
function to remove a specific value, we will instead write a function to remove the
element at a particular index. Though, before we start, consider another operation
that can cause a “shift”. If we want to insert an element at some (valid) index, we
need to shift all elements past the given index to the right. Inserting 656 at index
2 of the array list produces #(439 521 656 654 362 330 nil nil nil nil). We
now have two operations, namely remove and insert, that rely on some shifting
mechanic. So, let us write a function shift! that receives a vector, a logical size,
an index to shift from, and a “shift direction”. Because left shifting uses a different
approach than right shifting, we define local recursive procedures which are invoked
depending on the given direction symbol.

474

475 Imperative Programming

Listing 8.201—Recursive Vector Shifting Function

; A Shift is one of:
; - 'LEFT
; - 'RIGHT

;; shift!: {X} [VectorOf X] Number Number Shift -> Void
;; Shifts the values in a vector one unit either to the left or the right.
;;
;; "size" represents the logical number of elements in the vector, whereas
;; "idx" represents the index to start (left)/stop (right) shifting from.
(define shift!
(letrec ([left

(λ (e n idx)
(cond
[(zero? n) '()]
[else
(begin
(vector-set! e idx (vector-ref e (add1 idx)))
(left e (sub1 n) (add1 idx)))]))]

[right
(λ (e n idx)
(cond
[(= n idx) '()]
[else
(begin
(vector-set! e n (vector-ref e (sub1 n)))
(right e (sub1 n) idx))]))])

(λ (e size idx direction)
(cond
[(eqv? direction 'LEFT) (left e size idx)]
[else (right e size idx)]))))

One important property of shift! is that it assumes the input vector has
enough room to shift its arguments (to the right). So, when we call shift! from
within our array list closure, we should first invoke c-resize!.

At last, we can write remove! and insert!, which are respectively declared as
the local functions remove-val and insert-val.

Listing 8.202

(define arraylist
(let* (; Syntax: (lst remove! idx)

[remove-val
(λ (idx)
(begin
(shift! elements size idx 'LEFT)
(set! size (sub1 size))))]

; Syntax: (lst insert! idx val)
[insert-val
(λ (idx val)
(begin
(shift! elements size idx 'RIGHT)
(vector-set! elements idx val)
(set! size (add1 size))))]

...)))

Testing this once more with the previous al definition yields predictable results.

475

8.9 LVECTOR: Static Data Structures 476

Listing 8.203

(define al (arraylist))

> (al 'print!)
> (al 'insert! 2 656)
> (al 'print!)
> (al 'remove! 1)
> (al 'print!)
> (al 'insert! 0 1000)
> (al 'print!)

#(106 439 521 316 17 nil nil nil nil nil)

#(106 439 656 521 316 17 nil nil nil nil)

#(106 656 521 316 17 nil nil nil nil nil)

#(1000 106 656 521 316 17 nil nil nil nil)

Exercise 8.24. (⋆)
Add the array list function get: {X} Number → X, which receives an index i and
returns the element at said index.

Exercise 8.25. (⋆)
Add the array list function set!: {X} Number X → X , which receives an index i
and an element e; e is stored at index i, overwriting the current value.

Exercise 8.26. (⋆)
Add the array list function contains?: {X} X → Boolean , which receives an
element e and returns true if it is in the array list and false otherwise.

Exercise 8.27. (⋆)
Add the array list function index-of: {X} X→ Number, which receives an element
e and returns the index of the first occurrence of e. If e is not present, return -1.
Exercise 8.28. (⋆)
Add the array list function empty?: Void→ Bool, which returns whether or not the
array list has any elements.

Exercise 8.29. (⋆⋆)
Add the array list higher-order function map!: {X} [X→ Y]→ Void, which applies
a function to every element of the vector.

Exercise 8.30. (⋆⋆)
Add the array list variadic function add-all: {X} X ... → Void, which receives
any number of elements and adds them all to the array list, dynamically resizing as
needed. Hint: use the map function.

Exercise 8.31. (⋆⋆⋆)
Add the array list higher-order function filter!: {X} [X → Bool] → Void, which
removes all elements from the vector that do not satisfy the given predicate.

476

477 Imperative Programming

8.10 LLIB: External Libraries

There are a ton of helper functions that we could write that drastically improve the
overall usability of our interpreter. In this section, we will write LLIB: an extension
to LVECTOR that adds support for loading other files with function definitions.
Some may question, “Why not just designate these as built-in functions within
apply?”. The answer is that functions in apply are intended to be “implementer-
level” functions, i.e., functions that cannot be implemented with the language itself.
For instance, there is no possible way to re-implement first or rest using the
constructs within LVECTOR. A library can provide convenience-functions that make
a programmer’s job easier and less “reinvent-the-wheel-y”.

expr ::= application | ...
application ::= include | ...
include ::= ‘include’ string

Figure 8.7: Extended BNF Grammar for LLIB

It may be tempting to simply write a function in apply that invokes the parser
to read a new file, bringing in its definitions and storing them into the environment.
While this is what we will eventually do, we first have to alter a few pieces of code.
Recall that in eval ast, we initialize the root/global environment as well as the
special forms and built-in function table. We should move these to a function,
i.e., eval init which is invoked directly in the main function. This way, if we do
need to load in a library or another file with definitions, it does not reinitialize any
preexisting data.

Listing 8.204—Initializing a Global Environment (eval.c)
1 static struct environment *global_env = NULL;
2
3 void eval_init(void) {
4 global_env = environment_create(NULL);
5 builtin_functions_init(global_env);
6 special_forms_init();
7 }

Notice that we also moved the global environment declaration into global scope.
This is acceptable because it is a static variable, meaning other files cannot modify
or access its contents/state.

Now, let us think about what we want to happen when we bring in a file with
new definitions. The idea is simple: parse a new file and store its definitions in
the global environment. This sounds easy enough, and we can write a convenient
function in apply to accomplish this task.

477

8.10 LLIB: External Libraries 478

Listing 8.205—Built-in include Function (apply.c)
1 struct sval *apply_include(struct sval **args, size_t num_args,
2 struct environment *env) {
3 if (1 != num_args) {
4 EPF("include expects one argument but got %zu\n", num_args);
5 exit(EXIT_FAILURE);
6 }
7 parser_parse(args[0]->data.string, PARSE_FILE);
8 return NULL;
9 }

We name the function “include” to designate that we are including other func-
tions/definitions from an outside file. Now, here’s the thing: we are destroying
the abstract syntax tree and backing mpc abstract syntax tree immediately after
invoking eval ast in parser.c, so we need to remove these function calls. But,
in doing this, we introduce a severe memory leak! What is the solution? We need
to introduce a buffer.

Blocks of space that are reserved for data are buffers. Recall that we cannot free
an mpc abstract syntax tree from anywhere other than the parser because other
abstract syntax trees reference the children of the root. If we free the root, then
any node that attempts to free its copy of the abstract syntax tree will receive a
double free error. So, to remedy this, we can simply declare a “tree buffer” which
keeps an array of all mpc abstract syntax trees in working memory. Then, at the
end, when the parser is cleaning up, it traverses the buffer and deletes the trees via
mpc ast delete.

Listing 8.206—Adding Buffer of Syntax Trees (parser.c)
1 #define MAX_TREES 10
2
3 /* Keeps track of all abstract available syntax trees. */
4 struct tree_buffer {
5 size_t tree_count;
6 mpc_ast_t *tree_buffer_array[MAX_TREES];
7 };
8
9 struct tree_buffer trees;

So, we create a syntax tree buffer struct that holds up to ten mpc abstract
syntax trees. Ten is a reasonable limit for most intents and purposes. Now, let us
modify the read and cleanup functions to add a new tree to the buffer and delete
all existing trees respectively.

478

479 Imperative Programming

Listing 8.207—Deleting Buffer of Syntax Trees (parser.c)
1 void parser_cleanup(void) {
2 ...
3 for (int i = 0; i < trees.tree_count; i++) {
4 mpc_ast_delete(trees.tree_buffer_array[i]);
5 }
6 }
7
8 static void parser_read(const char *contents, int mode) {
9 ...

10 mpc_ast_t *mpc_ast = (mpc_ast_t *) result.output;
11 trees.tree_buffer_array[trees.tree_count++] = mpc_ast;
12 ast *my_ast = ast_create(mpc_ast, mpc_ast->tag,
13 mpc_ast->children_num, mpc_ast->contents);
14 eval_ast(my_ast);
15 free(my_ast);
16 }

Now, let us create a library file: library.lib, and we can include it in a sample
test. Suppose that library.lib contains a definition for length. We can then
include this definition into another source file, which uses said definition.

Listing 8.208 (library.lib)
(define length
(lambda (ls)
(cond
[(null? ls) 0]
[else (add1 (length (rest ls)))])))

Listing 8.209 (main.lib)
(include "library.lib")

> (length '(1 2 3 a b c 4 5 6 d e f)) 12

That is all there is to it! The buffer solution is not the most elegant, but it
prevents absurd memory leaks, and also helps eradicate hard-to-debug errors, e.g,.
use-after-free and double-free. We can write tons of helper functions to include
(no pun intended!) in this file, e.g., map, append, vector, list, fold, filter,
compositions of first and rest, and so on. Additionally, we can remove a couple
of built-in functions, e.g., not, modulo, remainder.
Exercise 8.32. (⋆⋆⋆)
We have repeatedly seen the use of an association list to represent environments
in nested interpreters. Association lists are a type of dictionary, i.e., a mapping of
keys to values, and often come “preloaded” as a library in the language. Create the
dict.lib file that serves as a library for association lists. You can assume that all
keys are eqv?-comparable types. Inside, implement the following functions:

479

8.10 LLIB: External Libraries 480

Listing 8.210 (dict.lib)
; A DictionaryLabel is 'DICTIONARY.

; A Dictionary is a [ListOf DictionaryLabel [PairOf X Y]]
; X and Y are generic types.

;; dict-create : (Void) -> Dictionary
;; Creates a dictionary with the aforesaid label.
(define dict-key ...)

;; dict? : Any -> Boolean
;; Determines whether the given object is a Dictionary.
(define dict? ...)

;; dict-contains-key? : {X} Dictionary X -> Boolean
;; Returns whether the given key exists in the dictionary.
(define dict-contains-key? ...)

;; dict-ref : {X} {Y} Dictionary X -> Y
;; Finds a value given a key in the given dictionary.
;; If X is not in the dictionary, we throw an (error).
(define dict-ref ...)

;; dict-set : {X} {Y} Dictionary X Y -> Dictionary
;; Inserts a key/value mapping into a dictionary,
;; returning a new dictionary in the process.
(define dict-set ...)

;; dict-empty? : Dictionary -> Boolean
;; Determines if a dictionary contains any pairs.
(define dict-empty? ...)

;; dict-keys : {X} Dictionary -> [ListOf X]
;; Returns a list of all the keys in the given dictionary.
(define dict-keys ...)

Exercise 8.33. (⋆⋆⋆⋆)
Our library implementation omits a pretty severe problem that C takes care of with
include guards: circular inclusions. For instance, if we have two files library1.lib
and library2.lib, where each include the other, what is the resolution? Implement
a solution to this problem.

Exercise 8.34. (⋆⋆⋆⋆)
Similar to the previous exercise, what if a file includes two libraries that both
implement the same function? Whose function definition is used? Implement a
solution to this problem.

480

481 Imperative Programming

8.11 L∗GRAPH: Graph Library Implementation

In Chapter 3, we discussed the importance of the graph data structure. In this
section, we will create a small implementation of a graph library.

Recall that a graph G has a set of vertices GV and a set of edges GE . An edge
links two vertices together. We previously talked about two potential representa-
tions of graphs: adjacency lists and adjacency matrices. Our library will use the
former representation. Namely, a graph is an association list whose elements are
pairs where the first of each pair is a vertex and the rest is a list of adjacent vertices
which, therein, denote edges. For instance, let us encode the following undirected
graph:

a b c

d e
f

g h

Figure 8.8: Pictorial Representation of the Graph G1

We may encode the graph in Figure 8.8 as an association list, as follows. Note
that, since it is an undirected graph, an edge between two vertices u and v implies
that there is an edge from v to u, meaning that both (u, v) ∈ GE and (v, u) ∈ GE .

Listing 8.211

(define g1
'((a . (b)) (b . (a c d e)) (c . (b)) (d . (b f g))

(e . (b f h)) (f . (d e)) (g . (d)) (h . (e))))

Suppose that we want to add/remove a vertex or an edge to this graph. We need
to write functions, i.e., add/remove-vertex and add/remove-edge respectively.
Note that, unlike the general theme of this chapter on “non-functionality”, these
functions do not alter the original graph, but rather create a new graph with the
amendments. Let us begin by writing the vertex modification functions. All we
need to do in the case of addition is prepend the vertex, as a list, to the graph
(this means that we add a vertex with no edges to the graph). Removing a vertex
is more complicated since we not only have to remove the vertex but also remove
any connecting edges. A very helpful function to write (which may be stored in a
separate library file) is list-remove: a function that removes a given element from
a list. So, in effect, we remove the relevant vertex/edge pair from the graph and
clear all remaining vertex/edge pairs of the now-removed vertex. It is important to
understand that, in a graph that uses our design specification, the first references
the first vertex/edge pair p, the first of p references the first vertex v, and the rest
of p references v’s edge list.

481

8.11 L∗
GRAPH: Graph Library Implementation 482

Listing 8.212

;; add-vertex : Graph Atom -> Graph
;; Adds a vertex to the start of a graph's
;; adjacency list. The added vertex has no edges.
;; Adding a preexisting vertex to G is undefined.
(define add-vertex
(λ (G v)
`((,v) . ,G)))

Listing 8.213

;; remove-vertex : Graph Atom -> Graph
;; Removes a vertex from a graph. This also
;; recursively removes edges from any other nodes.
(define remove-vertex
(λ (G v)
(cond
[(null? G) '()]
[else
(let ([vtx-pair (first G)])
(cond
[(eqv? (first vtx-pair) v) (remove-vertex (rest G) v)]
[else
(let* ([edge-list (rest vtx-pair)]

[filtered-list (list-remove edge-list v)])
(cons (cons (first vtx-pair) filtered-list)

(remove-vertex (rest G) v)))]))])))

Next, let us work on adding and removing edges. Adding an edge, from vertex u
to vertex v, to a graph is a recursive function that searches for u in the adjacency list
and adds v to the neighbors of u. Since we do not modify the original graph, we must
handle all cases. Namely when the input graph is the empty list, when we have found
u, and when we have not found u. Because this graph is generic, we want to write
a procedure that adds both directed and undirected edges. An undirected edge is,
as we previously mentioned, just a directed edge from u to v and v to u. Therefore,
we may write a procedure add-undirected-edge in terms of add-directed-edge.
Thankfully, removing a directed edge is simpler than removing vertices; all we need
to do is search for the source vertex u and remove the destination vertex v from its
list of neighbors.

Listing 8.214

;; add-directed-edge : Graph Atom Atom -> Graph
;; Adds a directed edge to a graph. Directed edge
;; simply means that the edge "flows" from one
;; vertex to another and only in that direction.
(define add-directed-edge
(λ (G u v)
(cond
[(null? G) '()]
[else
(let ([vtx-pair (first G)])
(cond
[(eqv? (first vtx-pair) u) (cons (cons u (cons v (rest vtx-pair))) (rest G))]
[else (cons (first G) (add-directed-edge (rest G) u v))]))])))

;; add-undirected-edge : Graph Atom Atom -> Graph
;; Adds a undirected edge to a graph. An undirected
;; edge is nothing but a directed edge that points both ways.
(define add-undirected-edge
(λ (G u v)
(add-directed-edge (add-directed-edge G u v) v u)))

482

483 Imperative Programming

Listing 8.215

;; remove-edge : Graph Atom Atom -> Graph
;; Removes an edge from the graph.
(define remove-edge
(λ (G u v)
(cond
[(null? G) '()]
[else
(let ([vtx-pair (first G)])
(cond
[(eqv? (first vtx-pair) u) (cons (cons u (list-remove (rest vtx-pair) v))

(remove-edge (rest G) u v))]
[else (cons (first G) (remove-edge (rest G) u v))]))])))

Lastly, let us create two “convenience” procedures, namely one that receives an
adjacency list to “create” the graph, and another that returns the neighbors of a
vertex u (i.e., any vertices whose source is u).

Listing 8.216

; A Vertex is an Atom
;
; A Graph is
; - [ListOf (cons Vertex [ListOf Vertex])]
(define make-graph
(λ (adj-list)
adj-list))

;; get-neighbors : Graph Vertex -> [ListOf Vertex]
;; Returns the vertices adjacent to the given vertex u.
(define get-neighbors
(λ (G u)
(cond
[(null? G) #f]
[else
(let ([vtx-pair (first G)])
(cond
[(eqv? (first vtx-pair) u) (rest vtx-pair)]
[else (get-neighbors (rest G) u)]))])))

Let us test this implementation using the definition of g1 from above. Our
output will show the result of the newly-defined graphs.

Listing 8.217

(define g2 (add-vertex g1 'j))
(define g3
(add-undirected-edge g2 'j 'a))

(define g4
(add-undirected-edge g3 'c 'f))

(define g5 (remove-vertex g4 'd))
(define g6 (remove-edge g5 'e 'c))

> g2

> g3

> g4

> g5

> g6

((j) (a b) (b c d) (c b e)
(d b e) (e c d f) (f e))

((j a) (a j b) (b c d) (c b e)
(d b e) (e c d f) (f e))

((j a) (a j b) (b c d) (c f b e)
(d b e) (e c d f) (f c e))

((j a) (a j b) (b c) (c f b e)
(e c f) (f c e))

((j a) (a j b) (b c) (c f b e)
(e f) (f c e))

483

8.11 L∗
GRAPH: Graph Library Implementation 484

Depth-First and Breadth-First Search Algorithms

There are two famous and classically-studied graph-traversal algorithms: depth-first
search and breadth-first search.

Depth-first search on a graph receives a root node u and traverses the graph, as
its name implies, depth-first. By depth, we mean to say that the traversal goes as far
down a path as possible before backtracking to go down another branch. Consider
our prior definition of g1. If we perform a depth-first search traversal starting from
node ‘a’, we travel down to the only neighbor of ‘a’, namely ‘b’, which has three
neighbors: ‘c’, ‘d’, and ‘e’. Picking the next node to visit is an arbitrary choice, so
we will go in alphabetical order to ‘c’. Because ‘c’ has no children, we backtrack
to the next neighbor of ‘b’, namely ‘d’, which has three neighbors: ‘b’, ‘f ’, and ‘g’.
Because ‘b’ has already been visited, it is not re-visited. So, we travel to ‘f ’, which
has two neighbors, ‘d’ and ‘e’. We repeat the process until all nodes in the graph
have been visited. Fortunately, the algorithm is inherently recursive, but almost all
implementations use a “for each” construct when traversing over the neighbors N
of a vertex u. Because we do not yet have equivalent iteration construct, we will
write the recursive variant of depth-first search. To this end, we must pass around
a store containing the visited vertices. This introduces the concept of store-passing
style, which allows us to model state modification without directly modifying global
or local variables after their initialization. If we could not use store-passing style
variant, the visited vertex list must be wrapped in a box because the stack of visited
nodes would not be persistent among recursive calls.

The store-passing style algorithm returns the list of visited vertices if we find that
the given node is already a member of said list. Otherwise, we recursively fold the
dfs-helper function over the neighbors of the current vertex u where we end-cons
u onto the list of previously-seen vertices V , which acts as the store. You may be
wondering: “What is end-cons?” This is the opposite of the typical cons function;
instead of prepending a value u to the front of some pair P , we append u, as a list,
to the end of P . For example, while (cons 5 '(1 2 3)) is '(5 1 2 3), (end-cons
5 '(1 2 3)) resolves to '(1 2 3 5). We can represent this using either natural
recursion, or append and cons itself. We use end-cons because, otherwise, the DFS
traversal would be reversed.

Listing 8.218—Depth-First Search Traversal Algorithm

;; dfs : Graph Vertex -> [ListOf Vertex]
;; Performs a depth-first search on the given graph starting at the vertex v.
(define (dfs G v)
(letrec ([dfs-helper

(λ (u visited)
(cond
[(member? u visited) visited]
[else
(foldl dfs-helper (end-cons u visited) (get-neighbors G u))]))])

(dfs-helper v '())))

484

485 Imperative Programming

Breadth-first search uses a different traversal approach: instead of heading down
a path to its end, it gradually branches out one edge at a time at every step, keeping
track of the next elements to visit. For example, suppose we have a graph G2 as
follows. We see that vertex ‘a’ has three neighbors: ‘b’, ‘c’, and ‘d’. A depth-
first search would enqueue ‘b’ as the next node to visit and begin heading down
this branch. Breadth-first, on the other hand, enqueues all neighbors of ‘a’ and
processes them piecemeal. That is, the neighbors of vertex ‘b’ are enqueued only
after those neighbors of ‘c’ followed by ‘d’ are processed.

a

b c d

e

f g

h

Figure 8.9: Pictorial Representation of the Graph G2

The breadth-first search algorithm is similar to the depth-first search, with the
exception that the neighbors of the current node u are added to the queue on the
grounds that they have not already been visited in the traversal (hence the need
for filter). Each pass through the traversal, we dequeue our to-visit vertex queue
Q, enqueue its non-visited neighbors, and mark those non-visited neighbors as now-
visited, since they are added to the to-visit vertex queue.

Listing 8.219—Breadth-First Search Traversal Algorithm

;; bfs : Graph Vertex -> [ListOf Vertex]
;; Performs a breadth-first search on the given graph starting at the vertex v.
(define bfs
(letrec ([bfs-helper

(λ (G Q V)
(cond
[(null? Q) visited]
[else
(let* ([u (first Q)]

[nbrs (get-neighbors G u)]
[unvisited (filter (λ (n) (not (member? n V))) nbrs)])

(bfs-helper G
(append (rest queue) unvisited)
(append V unvisited)))]))])

(λ (G v)
(bfs-helper G (list v) (list v)))))

Let us encode G2 into our nested interpreter representation and perform both
depth-first and breadth-first searches starting from vertex ‘a’ to see the output
traversals:

485

8.11 L∗
GRAPH: Graph Library Implementation 486

Listing 8.220

(define g2
(make-graph
'((a . (b c d)) (b . (a c e))

(c . (a b g)) (d . (a e g))
(e . (b d f)) (f . (e h))
(g . (c d h)) (h . (f g)))))

> (dfs g2 'a)
> (bfs g2 'a)

(a b c g d e f h)
(a b c d e g f h)

An interesting application of breadth-first search is the ability to find paths
between nodes. For example, consider the following moderately complex graph:

a

b

c

d

e

f

g

x

y

z
w

Figure 8.10: Pictorial Representation of Complex Graph

Suppose we want to find a shortest path between vertices ‘f ’ and ‘w’. Clearly, to
us humans, we can quickly see that the path from f → c→ b→ x→ y → z → w is
a shortest.1 How can we use our new search algorithms to find this shortest path?
In traditional imperative algorithms, the idea is to compute the path from each node
to every other node, then once the target is found, return a shortest path found so
far. If we want to apply this to a functional programming language without side-
effects, we need to think creatively, because there do not exist “return” statements
to quit a function early. Continuations provide the control flow we desire. That is,
we write the algorithm using continuation-passing style semantics, and upon finding
the destination, we mimic returning the path by invoking the continuation at that
point.

We first need to write a function that “expands out” a path, where a path is a
list containing the vertices along said path. Given a list of paths P seen so far, a
current vertex u, and a list of unvisited vertices V , we want to append the vertices
in V onto the path in P that ends in u. For example, if our paths seen so far include
P = ((f), (f c), (f e), (f g)), u =‘c’, and V = (a, b, d), then we retrieve the path
‘(f c)’, and create new paths ‘(f c a)’, ‘(f c b)’, and ‘(f c d)’.

1We use the indefinite article ‘a’ to designate that our definition of “shortest” references the number
of edges between two nodes. Because of this, there are potentially multiple shortest paths from one
vertex to another.

486

487 Imperative Programming

Listing 8.221—Path-Expansion Algorithm

; A Path is a [ListOf [ListOf Vertex]]
;
;; expand-paths : Path Vertex [ListOf Vertex] -> Path
;; Creates new paths from the vertex u to every vertex in the second list.
(define expand-paths
(λ (ls1 x ls2)
(let ([flist (first (filter (λ (ls) (eqv? (last ls1) x)) ls))])
(append ls1 (map (λ (x) (end-cons x flist)) ls2)))))

It is provable that there must always exist exactly one distinct path in the list
that satisfies the filter predicate. In essence, if we breath-first search on some vertex
u such that there is an edge from u to v, where v is unvisited, then (u, v) ̸∈ P prior
to its insertion. Because each path is inserted exactly once, there cannot be two
identical paths in P .

Now we come to the heart of the algorithm: bfs-search, which is a heavily-
modified version of the bfs algorithm. There are two new locally-defined functions:
unvisited-nbrs and find-smallest-path, the former of which is nothing more
than a wrapper for a long filter invocation, whereas the latter finds all paths that
start with a vertex u and end with a vertex v. Because the paths are inserted with
respect to increasing size, the path at the front (which in fact satisfies this criteria)
is a shortest path from u to v.

Listing 8.222—Breadth-First Shortest Path Helper Functions

(define bfs-search
(letrec ([unvisited-nbrs

(λ (nbrs visited)
(filter (λ (n) (not (member? n visited))) nbrs))]

[find-smallest-path
(λ (paths u v)
(first (filter (λ (and (eqv? (first p) u) (eqv? (last p) v)))

paths)))]
[bfs-helper ...])

...))

Aside from these changes, we now turn our attention to bfs-helper, whose
signature has dramatically changed. It now receives a target vertex target, a list
of paths paths, and a continuation k. If the queue is empty, then it means there
is no path from u to v, meaning we invoke the continuation with false to designate
that no path was found. The let identifiers are the same aside from our call to
unvisited-nbrs. Where things change, though, is inside the cond clause; if the
currently-visited vertex is equal to the target, then we want to return the paths
seen so far, meaning we invoke the continuation with those paths. Otherwise, we
tail-recursively call bfs-helper with the same first three arguments as the original
bfs-helper. The target always stays the same, so it gets passed along. The
continuation k also remains the same, so we can pass it along without modification
as well. The paths must be expanded according to the current paths, u, and u’s
neighbors.

487

8.11 L∗
GRAPH: Graph Library Implementation 488

Listing 8.223—Breadth-First Shortest Path Algorithm

;; bfs-search : Graph Vertex Vertex Continuation -> [ListOf Vertex]
;; Performs a breadth-first search from u to v, returning a shortest path.
(define bfs-search
(letrec ([bfs-helper

(λ (G queue visited target paths k)
(cond
[(null? queue) (k #f)]
[else
(let* ([u (first queue)] [nbrs (get-neighbors G u)]

[unvisited (unvisited-nbrs nbrs visited)])
(cond
[(eqv? u target) (k paths)]
[else
(bfs-helper G (append (rest queue) unvisited)

(append visited unvisited) target
(expand-sublists paths u nbrs) k)]))]))])

(λ (G u v k)
(find-smallest-path
(bfs-helper G (list u) (list u) v (list (list u)) k) u v))))

The invocation of bfs-helper jump-starts the breadth-first search by passing
the starting vertex u as a nested list to the paths, which indicates that all paths
start at vertex u. Let us try our newly-designed search algorithm on G3 with several
starting and ending vertices:

Listing 8.224

> (bfs-search g3 'f 'w (λ (v) v))
> (bfs-search g3 'w 'f (λ (v) v))
> (bfs-search g3 'd 'w (λ (v) v))
> (bfs-search g3 'w 'e (λ (v) v))
> (bfs-search g3 'b 'e (λ (v) v))

(f c b x y z w)
(w z y x b c f)
(d a b x y z w)
(w z y x b e)
(b e)

Solving a real-world problem such as the shortest-path in a graph with continua-
tions serves to tie everything together; continuations certainly have their theoretical
potential, as do graphs. Demonstrating this potential separately often poses enough
of a challenge.

Exercise 8.35. (⋆⋆)
Design the contains-vertex? function that, when given a graph G and a vertex
v, returns true if v is a vertex of G and false otherwise.

Exercise 8.36. (⋆⋆)
Design the get-vertices function that, when given a graph G, returns the vertices
of G. Hint: use map.
Exercise 8.37. (⋆⋆⋆)
Unweighted graphs, as shown in this section, are great to work with, but are limited
in comparison to graphs with weights. Edge-weighted graphs are not only more
commonplace in practice, e.g., GPS, but are also studied more rigorously. Design
L∗W-GRAPH: a nested interpreter for edge-weighted graphs. The implementation
details are up to your creative imagination, but perhaps a good starting point
would be to use an edge data definition as containing a source, a destination, and
a weight.

488

489 Imperative Programming

Exercise 8.38. (⋆⋆⋆)
Consider a college building in which rooms are locked behind digital keycard access.
Figure 8.11 represents a building where each directed edge pointing vertex u to
vertex v indicates that, to get to v, someone must have card access to u.

a

b c d

e f

g h

i

j k l

m

Figure 8.11: College Building Keycard Access Graph

We can, of course, model this as a directed graph in our L∗GRAPH nested in-
terpreter. Imagine that an undergraduate student gains access to a research lab
inside this building. They are granted card access to that room, but in order to
gain access to the lab after hours, they must have keycard access to every door in
its path. Write a function that, when given a graph and a source and destination
“door”, returns the “doors” that the student should have added as keycard access.

Exercise 8.39. (⋆⋆⋆⋆)
Add functions to L∗GRAPH that operate on a non-functional basis. That is, de-
sign add-vertex!, remove-vertex!, add-edge!, and remove-edge! functions that
modify the contents of a graph rather than returning a new graph. While this exer-
cise is not as hard as some of the other exercises, we pose it as a four-star problem
due to its length/number of required functions.

Exercise 8.40. (⋆⋆⋆)
College courses, and their associated prerequisites, form a directed acyclic graph,
which means that there are no cycles, i.e., loops, and all edges are directed. Ver-
tices represent classes, whereas edges represent prerequisites. For instance, an edge
⟨A, B⟩ indicates that a student must take class A before taking class B. Consider
the following prerequisite flowchart:

489

8.11 L∗
GRAPH: Graph Library Implementation 490

CS100

CS200

CS210

CS220

CS300

CS310

CS320

CS330

CS340

CS400

CS405

CS410

CS420

CS439

CS500

Figure 8.12: College Computer Science Course Prerequisites

Encode this as a directed graph in L∗GRAPH. Then write a function that, given
a class A, returns a list of all the classes that succeed B. That is, the list returned
should be all courses where A is a prerequisite.

Exercise 8.41. (⋆⋆⋆⋆)
Write the transpose function that, when given a graph G, returns a new graph G′

where all edges from G are reversed. That is, if ⟨u, v⟩ ∈ G, then ⟨v, u⟩ ∈ G′. What
do the edges in G′ represent?

Exercise 8.42. (⋆⋆⋆⋆)
The topological sort algorithm, when performed on a directed acyclic graph, pro-
duces an ordering of the nodes L such that, for any edge ⟨u, v⟩ ∈ G, u comes before
v in L. Take the following graph as an example:

a

b

c

d

e

f

g

h

i

j

Figure 8.13: Directed Acyclic Graph Example

A valid topological ordering of the graph in Figure 8.13 is {a, b, d, c, f, g, i, e, h, j}.
Though, another possible ordering is {a, d, b, c, e, h, i, g, f, i}. There are multiple
possible topological orderings for this graph. Write the topological-sort function
that, when given a graph G, performs a topological sort on G, returning one pos-
sible topological ordering. You will need to design a helper utility function. Hint:
use map, the begin special form, and boxes. We provide skeleton code as follows:

490

491 Imperative Programming

Listing 8.225—Topological Sort Skeleton Code

;; topological-sort : Graph -> [ListOf Vertex]
;; Performs a topological sort on the given graph.
;; We use a utility search function that keeps track
;; of those vertices seen so far, as well as the output
;; stack of vertices.
(define topological-sort
(letrec ([topological-sort-vertex

(λ (G visited stack)
(λ (v)
; If we haven't visited v before, call "util".
(if ___ ___ #f)))]

[topological-sort-util
(λ (G visited stack)
(λ (v)
(begin
; Add v to "visited" list box.
(set-box! ___ (cons ___ ___))
; Add v to "stack" list box.
(set-box! ___ (cons ___ ___))
; If we haven't visited v before, call "vertex".
(map ___ ___))))])

(λ (G)
(let ([visited (box '())]

[stack (box '())])
(begin
(map ___ ___)
(reverse ___))))))

Exercise 8.43. (⋆⋆⋆⋆⋆)
Edgar Dijkstra created Dijkstra’s algorithm as an attempt to solve the shortest-path
problem on edge-weighted graphs [Dijkstra, 1959]. Do some outside exploring, and
try to come up with a shortest-path algorithm for weighted graphs. Then, if you feel
up to the challenge, re-implement Dijkstra’s algorithm in L∗W-GRAPH from Exercise
8.33.

491

8.12 LBIGNUM: Arbitrarily-Precise Numbers 492

8.12 LBIGNUM: Arbitrarily-Precise Numbers

In this section, we will write LBIGNUM: an extension to LLIB that adds support for
arbitrarily-large (real) numbers and arithmetic.

Representation Independence with Respect to Numbers

GNU’s mpfr library, which we will be using, is incredibly convenient and great to
work with due to its performance and relative ease of use. Though, we should be
thinking in terms of flexibility. What if, at some point, we wish to replace the library
with something more powerful or faster? We once again reintroduce our old friend:
representation independence. In this section, we will modify our implementation to
be representation-independent with respect to arbitrarily-large (real) numbers.

Abstracting away from the innards of mpfr is good in the same way that ab-
straction hides mpc functions—we, as the programmer, should not have to care
about the implementation of these libraries; only that they work. If, for instance,
mpfr breaks, or we want to switch the library for something else, we would need
to replace all occurrences of mpfr in the interpreter—a task that would frustrate
even the most patient of programmers. Thus, we will create a module for creating,
manipulating, and destroying big numbers, namely, bignum.

We will define a bignum typedef to prevent us from having to type out the
struct keyword every time we wish to reference a bignum. In addition, we will
create several function prototypes for bignum creation, alteration, and modification.
Any function that performs arithmetic on a bignum modifies the given argument
rather than returning it as a value. E.g., bignum floor receives a bignum as a
parameter, it computes the floor of said bignum, then stores the computation back
into the parameter. This prevents us from having to return bignum pointers from
any function except the creators.

Listing 8.226—Big Number Header File (bignum.h)
1 #ifndef BIGNUM_H
2 #define BIGNUM_H
3
4 #include <mpfr.h>
5 #include <gmp.h>
6
7 #define PREC 256
8
9 typedef struct bignum bignum;

10
11 bignum *bignum_create_str(const char *num_str);
12 bignum *bignum_create_num(const bignum *oth_num);
13 bignum *bignum_create_long(const long num_long);
14 void bignum_add(bignum *res, const bignum *rand);
15 bool bignum_equal(const bignum *rand1, const bignum *rand2);
16 int bignum_to_integer(const bignum *rand);
17 bool bignum_is_integer(const bignum *rand);
18 bool bignum_is_zero(const bignum *rand);
19 char *bignum_to_str(const bignum *rand);
20 void bignum_print(const bignum *rand);
21 void bignum_destroy(bignum *rand);
22 void bignum_cleanup(void);
23
24 #endif // BIGNUM_H

492

493 Imperative Programming

We have omitted the inclusion of several arithmetic functions and trigonometric
operators. These, while useful, are important on a case-by-case basis, and can
be implemented as exercises. More significant functions, e.g., comparing bignums,
converting to C data-types, and printing to standard output are shown instead.

First, let us discuss how to create a bignum. There are multiple creation func-
tions; the most prominent of which is bignum create str. Because bignum values
may be arbitrarily large, they, of course, may not fit inside a C int or double or
long. This function allocates space for a bignum, then invokes the appropriate
mpfr functions for initializing the mpfr value within the bignum struct (note that
we declare the struct itself within the source file—this is to prevent other files from
accessing the number field). Though, what is PREC? We defined it in Listing 8.225,
but what does it represent? Essentially, it designates how many bits of precision a
value may use, if necessary. Because we defined it as 256, any bignum has access of
up to 256 bits of floating-point precision.

Listing 8.227—Big Number Creation From String (bignum.c)
1 #include "bignum.h"
2
3 struct bignum { mpfr_t number; };
4
5 bignum *bignum_create_str(const char *num_str) {
6 bignum *operand = malloc(sizeof(bignum));
7 ASSERT_ALLOC(operand, "bignum_create_str");
8 mpfr_init2(operand->number, PREC);
9 mpfr_set_str(operand->number, num_str, 10, PREC);

10 return operand;
11 }

It is not always the case that our input is a string—depending on the arithmetic
operator or circumstance, we may want to create a bignum out of a long. The mpfr
library allows us to do this.

Listing 8.228—Creating Big Number from C long (bignum.c)
1 bignum *bignum_create_long(const long num_long) {
2 bignum *rand = malloc(sizeof(bignum));
3 ASSERT_ALLOC(rand, "bignum_create_long");
4 mpfr_init2(rand->number, PREC);
5 int flag = mpfr_set_si(rand->number, num_long, PREC);
6 assert(0 == flag);
7 return rand;
8 }

Let us now add the functionality to add two bignum values. bignum add receives
two arguments: a result variable res and a const operand rand. We will invoke
the mpfr addition function which adds the values of res and rand and stores their
sum back into res.

Listing 8.229—Adding Two Big Numbers (bignum.c)
1 void bignum_add(bignum *res, const bignum *rand) {
2 mpfr_add(res->number, res->number, rand->number, PREC);
3 }

493

8.12 LBIGNUM: Arbitrarily-Precise Numbers 494

Comparing numbers is relatively simple via the standard operators, e.g., < and
>, but we cannot use these on bignums. Instead, we rely on mpfr function invo-
cations. Similar to how strcmp works, bignum cmp returns -1 if rand1 is strictly
less than rand2, 1 if rand1 is strictly greater than rand2, or 0 if they are equal.

Listing 8.230—Comparison of Big Numbers (bignum.c)
1 int bignum_cmp(const bignum *rand1, const bignum *rand2) {
2 return mpfr_cmp(rand1->number, rand2->number);
3 }

Converting a bignum to a C data-type is extremely important at times, e.g.,
in vector-access functions where the index must be an integer. We will write two
functions: one for converting a bignum to a long double and another, more com-
plicated, function for converting a bignum to an int. For the latter function, we
will write a helper predicate bignum is integer to determine if the argument is
a valid integer.

Listing 8.231—Converting a Big Number to a Primitive (bignum.c)
1 long double bignum_to_double(const bignum *rand) {
2 return mpfr_get_ld(rand->number, PREC);
3 }

Listing 8.232—Determining If a Big Number is an Integer (bignum.c)
1 bool bignum_is_integer(const bignum *rand) {
2 return mpfr_integer_p(rand->number);
3 }

Listing 8.233—Converting Big Number to Integer (bignum.c)
1 int bignum_to_integer(const bignum *rand) {
2 if (bignum_is_integer(rand)) {
3 int res;
4 mpz_t z_res;
5 mpz_init(z_res);
6 mpfr_get_z(z_res, rand->number, PREC);
7 res = mpz_get_si(z_res);
8 mpz_clear(z_res);
9 return res;

10 } else {
11 EPF("bignum_to_integer: rand is not an integer\n");
12 exit(EXIT_FAILURE);
13 }
14 }

When converting a bignum to an int, we create a short-lived mpz t object that
acts as a conversion between the floating-point mpfr library to the integer-only mpz
library. From there, we retrieve the int component, if it exists and is valid.

Outputting a bignum to standard output is also quite important. In the case of a
floating-point value, we invoke the mpfr format print function. When the argument
is an integer, however, we need to be a bit more careful—printing trailing zeroes on
an integer, i.e., 5.00000 is superfluous and unnecessary. Therefore, if we discover
that the argument is an integer bignum, we should convert it to a mpz value and,
instead, send that value to standard output.

494

495 Imperative Programming

Listing 8.234—Printing Big Number (bignum.c)
1 void bignum_print(const bignum *rand) {
2 if (bignum_is_integer(rand)) {
3 mpz_t int_rep;
4 mpz_init(int_rep);
5 mpfr_get_z(int_rep, rand->number, MPFR_RNDN);
6 mpz_out_str(stdout, 10, int_rep);
7 mpz_clear(int_rep);
8 } else {
9 mpfr_printf("%Rf", rand->number);

10 }
11 }

Finally, we should implement the destructor function, which receives a bignum
argument and frees the associated memory. Namely, we need to invoke the appro-
priate mpfr clearing function and free the pointer allocated to the bignum.

Listing 8.235—Destructor Function for Big Numbers (bignum.c)
1 void bignum_destroy(bignum *operand) {
2 mpfr_clear(operand->number);
3 free(operand);
4 }

As a brief note: the mpfr library will often allocate memory and cache values
to improve performance. Consequently, there is a function for de-allocating said
memory via mpfr free cache. We invoke this function within bignum cleanup,
and invoke the cleanup function within main.c.

Listing 8.236—Freeing the mpfr Big Number Cache (bignum.c)
1 void bignum_cleanup(void) {
2 mpfr_free_cache();
3 }

Listing 8.237—Initializing Big Number Functions (main.c)
1 int main(int argc, char *argv[]) {
2 ...
3 ast_cleanup();
4 bignum_cleanup();
5 parser_cleanup();
6 ...
7 }

Exercise 8.44. (⋆)
Implement the remaining arithmetic functions, e.g., subtraction, multiplication,
division, floor, ceiling, and so on.

Exercise 8.45. (⋆)
Write a function that determines if two bignum values are equivalent. Note that this
should be a one-line function that invokes one of the functions that we implemented.

495

8.12 LBIGNUM: Arbitrarily-Precise Numbers 496

Exercise 8.46. (⋆⋆)
To simplify some of our future nested interpreters and code, we will not assume
a bignum implementation. Rather, we will resume with storing numeric values
as a long double type in the sval struct. As an exercise, though, go through
any arithmetic or number usage in our evaluator and function applier (eval.c and
apply.c respectively), and replace them with references to bignum values. Almost
all of these changes are purely mechanical, so do not overthink your design!

Exercise 8.47. (⋆⋆)
Write trigonometric functions that operate on bignum values, e.g., sine, cosine,
tangent, arcsine, arccosine, and arctangent.

496

497 Imperative Programming

8.13 LIN: Improved User Input

We revamped the output functionality in LOUT. In this section, we will write LIN:
an extension to LLIB that adds functions to read data from standard input.

Reading data or information from the user is an essential component of interac-
tive programs. Our language will support two functions to start: one for reading
strings and another for reading numbers.

A preliminary discussion of user input in the C programming language was had
in Chapter 5. read string reads a string from standard input using getline.
Recall that the string s-value constructor for a string does not dynamically allocate
memory, but getline does. Therefore, we do not need to allocate space ahead
of time to store the string in the s-value. Additionally, pressing the return key
signals, to the program, that we have finished entering our string and want to
continue execution. An unintended consequence is that the buffer now contains a
superfluous newline character. We want to trim this newline character from the end
of the string. An easy and elegant solution is to set the last character of the string
to be the NUL-character, i.e., \0.

Listing 8.238—Reading Strings from Standard Input (apply.c)
1 struct sval *apply_read_string(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("read-string", 0, num_args);
4 char *str = NULL;
5 size_t n_chars;
6 if (-1 == getline(&str, &n_chars, stdin)) {
7 EPF("read-string: expected an input but received nothing.\n");
8 exit(EXIT_FAILURE);
9 }

10 str[strlen(str) - 1] = '\0';
11 return sval_string_create(str);
12 }

The read number function reads a number from standard input using fgets
and sscanf, as we did so in Chapter 5. If sscanf fails to interpret the value stored
in the num buffer as a long double, we display an error and exit the program.

Listing 8.239—Reading Numbers from Standard Input (apply.c)
1 struct sval *apply_read_number(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("read-number", 0, num_args);
4 char num[LINE_MAX];
5 if (NULL == fgets(num, LINE_MAX, stdin)) {
6 EPF("read-number: expected an input but received nothing.\n");
7 exit(EXIT_FAILURE);
8 }
9 long double val;

10 if (1 != sscanf(num, "%Lf", &val)) {
11 EPF("read-number: could not read number.\n");
12 exit(EXIT_FAILURE);
13 }
14 return sval_number_create(num);
15 }

497

8.14 LFILE I/O: File Input and Output 498

8.14 LFILE I/O: File Input and Output

In the last section, we wrote LIN to read data from standard input. For this section,
we will extend LIN to LFILE I/O: a language that supports reading and writing data
to and from files.

This language supports eight new functions, which we describe below:

• file-open! receives two arguments: a string representing the file to open,
and a string denoting the file “mode”. File modes determine how the file is
used, e.g., whether we read ("r"), write ("w"), or append ("a") to said file.
file-open! returns a s-value associated with a particular file. This s-value
also contains a file “position”, indicating where in the file data should be
retrieved or inserted. By default, this position is placed at the beginning of
the file.

• file-close! receives a file s-value and closes the file for writing and reading,
meaning that it may no longer be worked with in subsequent expressions.

• file-read-line! receives a file s-value and returns a string s-value repre-
senting the next line of text read from said file. A line of text is terminated
by the newline character.

• file-read-integer! receives a file s-value and interprets the next available
data in the file as an integer. This integer is then returned in an s-value.

• file-write-line! receives a file s-value and a string, and writes said string
to the current end of the file. It is terminated by a newline character.

• file-write-integer! receives a file s-value and an integer, and writes said
integer to the current end of the file.

• file-has-next? receives a file s-value and returns a boolean s-value repre-
senting if the file has any data remaining to be read. Another way to view this
predicate is, if the file pointer is at the EOF character (designated as end-of-file),
we return #f; otherwise #t.

• file-reset! receives a file s-value and resets its file position to the beginning
of the file. This is useful for re-reading files without having to repeatedly close
and reopen said file.

First, let us begin by writing the corresponding s-value. A file s-value contains
two fields: a FILE pointer and a boolean to keep track of whether or not the file is
open for access. This requires including the stdio.h header since it defines FILE.
We also use a new datatype, namely off t, to store the current file position offset.
In doing so we must include the sys/types.h header.

498

499 Imperative Programming

Listing 8.240—Adding File S-value (sval.h)
1 #include <stdio.h>
2 #include <sys/types.h>
3
4 enum sval_type { ..., SVAL_FILE };
5
6 struct file {
7 FILE *fp;
8 bool is_open;
9 off_t position;

10 };
11
12 struct sval {
13 ...
14 union data {
15 ...
16 struct file file;
17 } data;
18 };
19
20 struct sval *sval_file_create(char *filename, char *mode);

Writing the constructor function is simple and akin to how we operated on files
in Chapter 5.

Listing 8.241—Constructor Function for S-values (sval.c)
1 struct sval *sval_file_create(char *filename, char *mode) {
2 struct sval *sv = sval_create(SVAL_FILE);
3 sv->data.file.fp = fopen(filename, mode);
4 if (NULL == sv->fp) {
5 EPF("could not open file %s with mode %s\n", filename, mode);
6 exit(EXIT_FAILURE);
7 }
8 sv->position = 0;
9 sv->data.file.is_open = true;

10 return sv;
11 }

Now, let us go through each function definition one-by-one. Remember that
the ten functions we described above are at the application level, meaning they are
defined in apply.c.

The respective file-open! and file-close! functions are trivial to write, as
they involve invoking functions that operate on FILE pointers.

Listing 8.242—Built-in File Open and Close Procedure (apply.c)
1 static struct sval *apply_file_open(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("file-open!", 2, num_args);
4 char *fname = args[0]->data.string;
5 char *fmode = args[1]->data.string;
6 return sval_file_create(fname, fmode);
7 }
8
9 static struct sval *apply_file_close(struct sval **args, size_t num_args,

10 struct environment *env) {
11 ASSERT_ARITY("file-close!", 1, num_args);
12 struct sval *f = args[0];
13 f->data.file.is_open = false;
14 fclose(f->data.file.fp);
15 return NULL;
16 }

499

8.14 LFILE I/O: File Input and Output 500

file-read-line!, as we stated, reads a single line from a file. We can use the
getline function since we only read in one line at a time. In addition to consuming
the current line, we trim the newline character. There is, however, one exception to
this function. If getline does not read any data, it returns -1. So, we must check
nchars and return an empty s-value string if no characters are read. Otherwise, we
risk writing data into a non-existent string.

Listing 8.243—Built-in Line Reading From File Function (apply.c)
1 static struct sval *apply_file_read_line(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("file-read-line!", 1, num_args);
4 // Read the current line into a buffer. Also trim its newline char.
5 struct sval *fsv = args[0];
6 char *line = NULL;
7 size_t sz;
8 ssize_t nchars = getline(&line, &sz, fsv->data.file.fp);
9 if (0 > nchars) {

10 return sval_string_create("");
11 } else {
12 line[nchars - 1] = '\0';
13 return sval_string_create(line);
14 }
15 }

file-read-integer! consumes the next integer from a file. Because we are
looking for an integer specifically, we may use the fscanf function. This is similar
to how scanf works with the exception that it allows us to specify a FILE pointer.

Listing 8.244—Built-in Integer Reading From File Function (apply.c)
1 static struct sval *apply_file_read_integer(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("file-read-integer!", 1, num_args);
4 // Scan the current item, assuming its an integer.
5 struct sval *fsv = args[0];
6 int n;
7 if (1 != fscanf(fsv->data.file.fp, "%d", &n)) {
8 EPF("file-read-integer!: failed to read integer.\n");
9 exit(EXIT_FAILURE);

10 }
11 return sval_number_create(n);
12 }

file-write-line! and file-write-integer! work similarly; they append
data to the file using fprintf. The second argument is the data to write. Thank-
fully, writing to a file updates its FILE * accordingly. The former function is slightly
different in that it appends a newline character to the end of the passed string.

500

501 Imperative Programming

Listing 8.245

1 static struct sval *apply_file_write_line(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("file-write-line!", 2, num_args);
4 struct sval *fsv = args[0];
5 struct sval *line = args[1];
6 fprintf(fsv->data.file.fp, "%s\n", line->data.string);
7 return NULL;
8 }
9

10 static struct sval *apply_file_write_integer(struct sval **args, size_t num_args,
11 struct environment *env) {
12 ASSERT_ARITY("file-write-integer!", 2, num_args);
13 struct sval *fsv = args[0];
14 struct sval *n = args[1];
15 fprintf(fsv->data.file.fp, "%d", bignum_to_integer(n->data.number));
16 return NULL;
17 }

Finally we come to file-has-next? and file-reset!, where the former de-
termines if the file is at the end (by using feof). The latter resets its file position
to the start of the file (via rewind).

Listing 8.246—Built-in File Has Data Predicate and Reset Functions (apply.c)
1 static struct sval *apply_file_has_next_predicate(struct sval **args,
2 size_t num_args,
3 struct environment *env) {
4 ASSERT_ARITY("file-has-next?", 1, num_args);
5 struct sval *fsv = args[0];
6 return sval_boolean_create(!feof(fsv->data.file.fp));
7 }
8
9 static struct sval *apply_file_reset(struct sval **args, size_t num_args,

10 struct environment *env) {
11 ASSERT_ARITY("file-reset!", 1, num_args);
12 struct sval *fsv = args[0];
13 rewind(fsv->data.file.fp);
14 return NULL;
15 }

It makes little sense to write all of these functions without plenty of tests! So,
let us do that. Create a file with the following contents and save it in the root of
your project directory:

Hi! I am a line.
935
The previous num was 935.
Goodbye!

501

8.14 LFILE I/O: File Input and Output 502

Listing 8.247

(define f1
(file-open! "test1.txt", "r"))

(printf "First line: '∼a'∼n"
(file-read-line! f1))

(printf "Number: '∼a'∼n"
(file-read-integer! f1))

(printf "Is there more data? '∼a'∼n"
(file-has-next? f1))

(printf "Next: '∼a'∼n"
(file-read-line! f1))

(printf "Last: '∼a'∼n"
(file-read-line! f1))

(printf "Is there more data? '∼a'∼n"
(file-has-next? f1))

(file-close! f1)

First line: '"Hi! I am a new line."'
Number: '935'
Is there more data? '\#t'
Next: '"The previous num was 935."'
Last: '"Goodbye!"'
Is there more data? '\#f'

Connecting this back to the motif of this chapter, we see that every function
(except for file-has-next?) is suffixed with an exclamation point, indicating that
they have side-effects. Of course, reading data from a file is, in and of itself, a side-
effect; many variables and values are altered “under the hood” when working with
files and I/O, e.g., file position pointers. It may make more sense to observe that
the file-write produce side-effects because they output data to a file. What some
may find a bit odd is that the file-read functions similarly induce side-effects for
the aforementioned reasons.

Exercise 8.48. (⋆⋆)
Write a function in LFILE I/O called file-read-lines! that, using file-read-line!,
reads all lines from an input file and stores them in a list.

Exercise 8.49. (⋆⋆)
Write a function in LFILE I/O called file-search! that opens a file, reads its
contents as lines, and searches for occurrences of a given string k. To this end, write
a lines-search function that performs the search logic rather than encapsulating
it all within file-search!. lines-search receives a list of strings ls and a search
string k; it returns a list of the lines containing k as a substring.

Exercise 8.50. (⋆⋆⋆)
Using file-read-integer!, write a program that reads a file containing numbers
on each line and computes the average of those numbers. Hint: use map.
Exercise 8.51. (⋆⋆⋆)
Write a program that reads a file containing commands for a robot. These com-
mands are strings representing four directions: UP, DOWN, LEFT, and RIGHT. After
reading the commands from the file, continuously move the robot along quadrant
one of the Cartesian coordinate plane. That is, assuming the robot starts at (0, 0),
when moving LEFT or RIGHT, decrement or increment the x-coordinate respectively.
Similarly, when moving UP or DOWN, increment or decrement the y-coordinate re-
spectively. Upon processing all commands, output the final robot position. As a
bonus challenge, try to complete this without side-effects aside from the file input.

502

503 Imperative Programming

Exercise 8.52. (⋆⋆⋆)
Write a program that removes all comments from a given file containing a Scheme
program. That is, given a file with Scheme code, remove all content following a
semicolon on a line. As a bonus challenge, do not remove comments inside strings.
For instance, "Hello ;comment World!" should output the same string. Multiline
comments start with #| and end with |#. 1

Exercise 8.53. (⋆⋆⋆⋆⋆)
Wordle is/was a popular game developed by Josh Wardle where the goal is to
guess the letters to a randomly-selected word.2. For this exercise, you are tasked
with recreating these game mechanics of a five-letter isogram-guessing puzzle. An
isogram is a word in which no letter appears more than once, e.g., “plans”.

1. Read in a list of five-letter isograms from a file. Design a function is-isogram
to aid in the search, as well as filter.

2. Write a function play-game, which receives a secret word s and a word to guess
g. The function should return a cons pair whose first represents the number
of correctly-positioned characters and whose rest represents the number of
correctly-identified characters. Note that a letter that is correctly-positioned
should not also be marked as correctly-identified (even though this is tauto-
logically the case).

3. Either allow the player to continue only if they have not yet exceeded a certain
number of guesses, or let them play indefinitely until they find all correctly-
positioned characters.

Listing 8.248

> (play-game "plans" "slant")
> (play-game "plans" "paint")
> (play-game "plans" "plans")

(3 . 1)
(2 . 1)
(5 . 0)

Data Serialization

In the previous section, we added the ability to read from and write to files. Though,
we would be remiss if we neglected to discuss data serialization. When we serialize
data, it means to convert it to a transmittable byte-oriented format. Normally,
this consists of “stringifying” a data representation. For example, suppose we use
a tagged list representation of personnel records in a program.

1This exercise is largely derived from the K&R C programming language book [Kernighan and
Ritchie, 1988].

2Wordle was inspired by Master Mind [Knuth, 1977], which was inspired by the even older Bulls
and Cows [ℵ0 (Aleph-Null), 1971]

503

8.14 LFILE I/O: File Input and Output 504

Listing 8.249

; A Person is a
; (make-person-record String
; Number String Number String).
(define make-person-record
(λ (name age job salary country)
`(person ,name ,age ,job ,salary ,country)))

> (make-person-record "Ada" 23
"Mathematician" 183800 "Eng")

(person "Ada" 23
"Mathematician" 183800
"Eng")

Now, imagine we want to store this record from the program out to a file con-
taining other records. We should not simply store the s-expression in the file as
that is not always an effective way to store data. We can, instead, serialize the
object into a string separated by a delimiter, e.g., commas.1 Let us write the
serialize-person-record function. It will receive a person tagged list and re-
turn a string with the corresponding five fields separated by commas. Because some
fields are numbers, we will write a corresponding conversion function that receives
any data and attempts to convert it to a string.

Listing 8.250

;; data->string : Any -> String
;; Attempts to convert the given datum to a string.
(define data->string
(λ (d)
(cond
[(string? d) d]
[(number? d) (number->string d)]
[(char? d) (char->string d)]
[else ""])))

;; serialize-person-record : Person -> String
;; Converts a Person to a string representation.
(define serialize-person-record
(letrec ([spr-helper

(λ (p)
(foldr (λ (d acc)

(string-append
acc "," (data->string d)))

(data->string (first p))
(rest p)))])

(λ (p)
(spr (rest p)))))

(define p1 (make-person-record "Ada" 23
"Mathematician" 183800 "Eng"))

> (serialize-person-record p1) "Ada,23,Mathematician,
183800,Eng"

1Serialization is not restricted to “stringification”; there are multiple ways to serialize data.

504

505 Imperative Programming

This string can then be written directly to a file. Though, suppose we have a file
containing such a record and we want to load it into our program. Such a process
is called deserialization, and it works in a similar manner to serialization, just with
most of the logic reversed. Let us write a deserialize-person-record function
that receives a string and parses it into a Person record. First, however, we will
write a helper tokenize function that splits a string based on the given delimiter,
returning a list of the substrings. To do this, we need to go up a step further and
write take-string and drop-string: two recursive functions that return strings.
The former receives a string and a delimiter and returns the substring up to the
first occurrence of the delimiter. The latter returns the substring past the first
occurrence of the delimiter.

Listing 8.251

;; take-string : String [1String] -> String
;; Returns the substring preceding the delimiter.
(define take-string
(λ (s delim)
(let ([idx (string-index s delim)])
(cond
[(zero? (add1 idx)) s]
[else (substring s 0 idx)]))))

> (take-string "ada,23" ",")
> (take-string "ada" ",")
> (take-string "" ",")
> (take-string "ada,23,lovelace" ",")
> (take-string "23,lovelace" ",")
> (take-string "lovelace" ",")

"ada"
"ada"
""
"ada"
"23"
"lovelace"

Listing 8.252

;; drop-string : String [1String] -> String
;; Returns the substring after the delimiter.
(define drop-string
(λ (s delim)
(let ([idx (string-index s delim)])
(cond
[(zero? (add1 idx)) ""]
[else (substring s

(add1 idx)
(string-length s))]))))

> (drop-string "ada,23" ",")
> (drop-string "ada" ",")
> (drop-string "" ",")
> (drop-string "ada,23,lovelace" ",")
> (drop-string "23,lovelace" ",")
> (drop-string "lovelace" ",")

"23"
""
""
"23,lovelace"
"lovelace"
""

This allow us to trivially define tokenize in terms of these functions.

505

8.14 LFILE I/O: File Input and Output 506

Listing 8.253

;; tokenize : String [1String] -> [ListOf String]
;; Computes the strings separated by the [1String]
;; in the given first string.
(define tokenize
(λ (line delim)
(cond
[(string-empty? line) '()]
[else (cons (take-string line delim)

(tokenize (drop-string line delim)
delim))])))

> (tokenize "haskell,28" ",")
> (tokenize "haskell" ",")
> (tokenize "" ",")
> (tokenize "haskell,28,cole" ",")
> (tokenize "28,cole" ",")
> (tokenize "cole" ",")

("haskell" "28")
("haskell")
()
("haskell" "28" "cole")
("28" "cole")
("cole")

Now, we make use of tokenize parse out each sub-component of the person
record.

Listing 8.254

;; deserialize-person-record : String -> Person
;; Converts a string, separated by commas, into
;; its corresponding person record.
(define deserialize-person-record
(λ (s)
(let* ([s (tokenize s ",")]

[name (first s)]
[age (string->number (second s))]
[occupation (third s)]
[salary (string->number (fourth s))]
[country (fifth s)])

(make-person-record name age occupation
salary country))))

(define p1 (make-person-record "Eve" 49
"hacker" 5000 "USA"))

(define sp1 (serialize-person-record p1))
(define dsp1 (deserialize-person-record sp1))

> p1

> sp1

> dsp1

(person "Eve" 49
"hacker" 5000 "USA")

"Eve,49,hacker,5000,USA"

(person "Eve" 49
"hacker" 5000 "USA")

As we can see, the original person record is identical to the serialized then
deserialized record. Guaranteeing an equivalence is paramount to data serialization!

Let us ramp up the difficulty a bit by using data serialization for entire file types,
e.g., CSV, or comma-separated value files. A CSV file consists of an optional row of
headers delimited by commas.1 Each subsequent row is populated with respective
data. Taking the previous example, a file may contain the following data:

1Our implementation will assume the headers always exist.

506

507 Imperative Programming

Listing 8.255

name,age,occupation,salary,country
joshua,23,scientist,125000,usa
flannery,39,novelist,200000,usa
willard,92,logician,100000,usa
ada,36,mathematician,425000,england
stephen,76,physicist,300000,england
bjarne,72,computer scientist,500000,denmark
alonzo,92,computer scientist,250000,usa
katherine johnson,101,computer scientist,450000,usa
mary,53,novelist,300000,england

We can write serialization and deserialization functions for CSV files. Of course,
we would like a way of serializing any type of data through some interface. Again,
representation independence comes to the rescue. Let us design two higher-order
functions: serialize and deserialize with the following signatures and defini-
tions. The idea is that we pass a specific serialization function to these representation-
independent functions. Using these passed serialization and deserialization func-
tions, it creates either a byte-oriented string for transmission or converts a byte-
oriented string into a respective data definition.

Listing 8.256

;; serialize : {X} X [X -> String] -> String
;; Applies a serialization function to a value.
(define serialize
(λ (v f)
(f v)))

;; deserialize : {X} String [String -> X] -> X
;; Applies a deserialization function to a string.
(define deserialize
(λ (v f)
(f v)))

These functions may seem cut and dry, and this is absolutely the case. For
example, if we want to serialize a person record, we can invoke serialize with the
data and its helper serialization function.

Listing 8.257

(define p1 (make-person-record "Quine" 48 "Logician" 195600 "USA"))
(define sp1 (serialize p1 serialize-person-record))

So, let us begin with writing a deserialize-csv function. Namely, we need to
describe a data definition that aptly fits the criteria of a CSV file. CSV files have
headers and elements, which aligns nicely with an association list. Namely, the first
of each pair is the header and the rest is a list of values under that header. We
denote that a Header is a String, and that each rest is a list encapsulated within
a box. The box is necessary because we will update the list as we parse values
from the CSV file. Therefore, we say that a CsvElement is also a String, but
a CsvElementList is a (box (ListOf CsvElement)). Finally, a category is one
column of a CSV file, matching one association pair in our list, indicating that a
Category is a (cons Header CsvElementList). Combining all of these elements
together produces the data definition for a CSV file.

507

8.14 LFILE I/O: File Input and Output 508

Listing 8.258

; A Header is a String.
; A CsvElement is a String.
; A CsvElementList is a (box [ListOf CsvElement]).
; A Category is a (cons Header CsvElementList).
; A Csv is a [ListOf Category].

;; deserialize-csv : String -> Csv
;; Reads a CSV file and returns a list of the headers with their
;; respective values inside a box.
(define deserialize-csv
(λ (lines)
...))

Reading in a CSV file is a recursive function, which begin by tokenizing the
header strings and storing these into a cons cell whose first is the header and whose
rest is a CSV element list.

Let us write a helper function that tokenizes the header string and returns the
corresponding list.

Listing 8.259

(define deserialize-csv
(letrec ([get-headers

(λ (line)
(map (λ (h)

(cons h (box '())))
(tokenize line ",")))])

(λ (lines)
(let* ([headers (get-headers (first lines))])
...))))

We now need a function that extracts the data from each line and adds it to
the respective box category. First, though, let us write the function to extract the
data out of one line, which we can then morph into another that handles all lines
in a list. The idea is to use the header category (association list) to search for the
desired box. Because we want to map over two lists sequentially, we need to invoke
the map2 function. Accordingly, extract-data! has no return value because it
modifies the existing contents of a list.1 We also need a list of only the headers
rather than categories for our map2 invocation.

Listing 8.260

(define deserialize-csv
(letrec ([get-headers ...]

[extract-data!
(λ (line headers)
(map2 (λ (e h)

(let* ([b (rest (assv h headers))]
[bv (unbox b)])

(set-box! b (cons e bv))))
(tokenize line ",")
(map fst headers)))]

(λ (lines)
(let* ([headers (get-headers (first lines))])
...))))

1It is more correct to say that extract-data has no meaningful return value, since it does return
something, albeit a list of void statements.

508

509 Imperative Programming

At last, we will design the function that extracts the data from every row in the
CSV file. Note the insignificance of the foldr return value—since we are modifying
the headers argument, the value it returns is irrelevant. We further drive this point
home by not using the accumulator argument to the passed binary function.

Listing 8.261

(define deserialize-csv
(letrec ([get-headers ...]

[extract-data! ...]
[extract-all-data!
(λ (lines headers)
(foldr (λ (line acc)

(extract-data! line headers))
'()
lines))])

(λ (lines)
(let* ([headers (get-headers (first lines))])
(begin
(extract-all-data! lines headers)
headers)))))

Running the aforementioned (abridged) CSV file of people and their basic infor-
mation on the deserializer produces the following output:

Listing 8.262

(define f-csv
(file-open! "people.csv", "r"))

(define lines (file-read-lines! f-csv))

> (deserialize lines) '(("name" . #(("flannery" "joshua")))
("age" . #(("39" "23")))
("occupation" . #(("novelist"

"scientist")))
("salary" . #(("200000" "125000")))
("country" . #(("usa" "usa"))))

509

8.15 LLOOP: An Iterative Approach to Problem-Solving 510

8.15 LLOOP: An Iterative Approach to Problem-Solving

In Chapter 7, we implemented a functional version of the do loop construct in
L∗IMPERATIVE. In this section we will write LLOOP: an extension to LBIGNUM that
adds iteration-based control structures.

expr ::= application | ...
application ::= do | ...
do ::= ‘do ’ expr expr

Figure 8.14: Extended BNF Grammar for LLOOP

C provides three methods of iteration: for loops, while loops, and do-while
loops. We will implement a construct similar to do-while called do. do is a special
form that has two components: a condition and a body. The body is evaluated as
long as the condition is true. As an example, in the following code segment, we
loop and execute the begin block while i is less than ten.

Listing 8.263

(let ([i 0])
(do [< i 10]
(begin
(printf "∼a∼n" i)
(set! i (+ i 1)))))

So, the intended and expected output is the integers from 0 to 9 inclusive. Let
us add this form to our interpreter.1

Listing 8.264—Evaluation of do (eval.c)
1 static void special_forms_init(void) {
2 special_forms_create("do", eval_do);
3 }
4
5 static struct sval *eval_do(ast *doc, struct environment *env) { // TODO. }

Performing a similar analysis of the abstract syntax tree, we see that the third
and fourth children (second and third indices) correspond to the condition and
body respectively. We want to test the loop condition first, then evaluate the body.
Additionally, a do expression should return the last evaluated expression before the
condition evaluates to false.

1Similar to if, the name of our special form is a keyword in C, so we need to append a suffix, e.g.,
c, to the name of the abstract syntax tree parameter.

510

511 Imperative Programming

Listing 8.265—Finishing do Implementation (eval.c)
1 #define DO_CONDITION_IDX 2
2 #define DO_BODY_IDX 3
3 ...
4 static struct sval *eval_do(ast *doc, struct environment *env) {
5 struct sval *return_expr;
6 while (true) {
7 ast *condition = ast_child(doc, DO_CONDITION_IDX);
8 ast *body = ast_child(doc, DO_BODY_IDX);
9 struct sval *eval_condition = eval(condition, env);

10 if (!eval_condition->data.boolean) { return return_expr; }
11 else { return_expr = eval(body, env); }
12 }
13 return NULL;
14 }

Testing the previous program produces a correct result. We can write another
program that computes the factorial of a natural number, and one more that com-
putes the nth Fibonacci number. Both programs use the iterative paradigm.

Listing 8.266

> (let ([n 5] [i 1] [res 1])
(begin
(do [<= i n]
(begin
(set! res (* res i))
(set! i (+ i 1))))

res))

120

Listing 8.267

> (let ([n 8] [a 0] [b 1] [res 1])
(cond
[(<= n 1) 1]
[else
(begin
(do [> n 1]
(begin
(set! res (+ a b))
(set! a b)
(set! b res)
(set! n (- n 1))))

res)]))

21

What happens if we wrap the Fibonacci loop in a function?

511

8.15 LLOOP: An Iterative Approach to Problem-Solving 512

Listing 8.268

(define fib-iter
(λ (v)
(let ([n v] [a 0] [b 1] [res 1])
(cond
[(<= n 1) 1]
[else
(begin
(do [> n 1]
(begin
(set! res (+ a b))
(set! a b)
(set! b res)
(set! n (- n 1))))

res)]))))

(printf "∼a∼n" (fib-iter 8))
(printf "∼a∼n" (fib-iter 5))
(printf "∼a" (fib-iter 9))

21
5
34

We can write nested do loops similar to other languages, but we must be careful
in doing so; it is easy to forget to reset the value of a variable in between loop
statements. For instance, consider the following code segment, which does not
“restart” the value of j. We observe that the inner do condition always remains
true and, therefore, no further iterations of the nested loop body are performed.

Listing 8.269—Forgetting to Reset Nested Loop Variable y

> (let ([x 1] [y 1])
(do [<= x 12]
(begin
(do [<= y 12]
(begin
(let ([res (* x y)])
(printf "∼a * ∼a = ∼a∼n"

x y res))
(set! y (add1 y))))

(set! x (add1 x)))))

1: 1 * 1 = 1
1: 1 * 2 = 2
1: 1 * 3 = 3
...
1: 1 * 11 = 11
1: 1 * 12 = 12

The fix, as we stated, is to restart the value of j prior to entering the nested
iteration loop. Another fix might be to declare separate let blocks altogether so as
to always refresh its variable within the environment:

512

513 Imperative Programming

Listing 8.270—Explicit Reset to Nested Loop Variable y and Local Iteration y

> (let ([x 1] [y 1])
(do [<= x 12]
(begin
(set! y 1)
(do [<= y 12]
(begin
(let ([res (* x y)])
(printf "1: ∼a * ∼a = ∼a∼n"

x y res))
(set! y (add1 y))))

(set! x (add1 x)))))

> (let ([x 1])
(do [<= x 12]
(begin
(let ([y 1])
(do [<= y 12]
(begin
(let ([res (* x y)])
(printf "2: ∼a * ∼a = ∼a∼n"

x y res))
(set! y (add1 y)))))

(set! x (add1 x)))))

1: 1 * 1 = 1
1: 1 * 2 = 2
1: 1 * 3 = 3
...
1: 12 * 11 = 132
1: 12 * 12 = 144

2: 1 * 1 = 1
2: 1 * 2 = 2
2: 1 * 3 = 3
...
2: 12 * 11 = 132
2: 12 * 12 = 144

Exercise 8.54. (⋆⋆⋆)
In Chapter 7, we ventured down the rabbit hole that is tail-call optimization. We
saw that any function call in tail position can be refactored into an iterative (loop)
equivalent. One way of doing this in the language of the interpreter is via trampolin-
ing.1 The idea is as follows: Write a function trampoline, which receives at least
one argument: a function f . Any subsequent arguments to trampoline serve as
arguments to f (meaning that trampoline is variadic). Invoke f . If the returned
value is a procedure, continuously invoke f until it resolves to a non-procedure
value.2 The trampoline “bouncing” analogy refers to our repeated calling of f until
we receive something that is not a procedure, in which we hop off the trampoline.
Making a function compatible with a trampoline is trivial: we wrap all tail calls in-
side a thunk. Because the recursive stack is irrelevant with tail calls, once the thunk
returns a non-procedure, we know that we reached the base case of the function.

Implement the trampoline function, using the “do” construct. We provide the
skeleton for implementing said function. Run the following test to verify that it
works.

1Trampolining is used in the following paper wherein the authors describe a translation pipeline for
Scheme programs to C [Garcia et al., nd].

2Such a case analysis requires implementing a procedure? predicate at the interpreter level.

513

8.15 LLOOP: An Iterative Approach to Problem-Solving 514

Listing 8.271—Trampoline Implementation Skeleton Code

(define trampoline
(λ-var args
(let ([f (first args)]

[f-args (rest args)])
(let ([result (apply ___ ___)])
(begin
(do [___]
(set! ___ ___)

___))))))

(define fact
(letrec ([fact-tr

(λ (n acc)
(cond
[(zero? n) acc]
[else
(λ ()
(fact-tr
(sub1 n)
(* n acc)))]))])

(λ (n)
(trampoline fact-tr n 1))))

> (fact 15) 1307674368000

Exercise 8.55. (⋆⋆⋆⋆⋆)
Recall the Levenshtein distance exercise from Chapter 6. We made a note about
the efficiency of the recursive algorithm, in that it is extremely slow. A better
approach would be to take advantage of dynamic programming : an algorithmic
technique that builds a solution from the bottom-up, constructing possibilities and
eliminating previous answers. The key about what makes dynamic programming
efficient is how it records prior computations by storing them in some data structure.
Then, instead of having to recompute the answer, we simply look it up in our table.
The thing is, though, dynamic programming algorithms often take advantage of
two-dimensional arrays, state, and iteration, none of which are easily accessible in
functional programming languages. Fortunately for us, we now have vectors and do
loops.1

1This is not to say that loops and vectors are strictly necessary; we could achieve the same function-
ality with recursion and lists.

514

515 Imperative Programming

Algorithm 2 Levenshtein Distance Dynamic Programming Algorithm

procedure Levenshtein-DP(s, t)
m← add1 (|s|)
n← add1 (|t|)
d← make-vector(m × n)
loop i← 1 to m

d[i][0]← i
end loop
loop j ← 1 to n

d[0][j]← j
end loop
loop j ← 1 to n

loop i← 1 to m
subCost← 0 if s[sub1(i)] == t[sub1(j)] else 1

d[i][j]← min

add1(d[sub1(i)][j])

add1(d[i][sub1(j)])

subCost + (d[sub1(i)][sub1(j)])
end loop

end loop
return d[m][n]

end procedure

In Algorithm 2 we list the pseudocode for a dynamic programming Levenshtein
distance algorithm as presented by Robert Wagner and Michael Fischer [Wagner
and Fischer, 1974].1,2 Implement this into your interpreter as an exercise. We leave
the task of translating the two-dimensional vector into a one-dimensional vector or
using another solution up to you! Hint: if you completed the respective exercise
from the section about vectors, this will make your life easier!

1All loop intervals are inclusive, i.e., loop j ← 1 to n means j increments by one up to and including
n before the loop terminates.

2The initialization loops of populating the first row and column of our two-dimensional vector are
not mandatory and can be computed via dynamic programming; we prepopulate these elements in
particular because we already know their values; the distance from a string of m characters to a string of
n characters is m−n, assuming they are identical. E.g., "s" to "ssss" requires 3 additional s characters,
but this is inherently computed during the dynamic programming approach. So, initializing the values
of the first row and column to 1 through 4 helps to reduce the number of necessary computations.

515

8.16 LMACRO: A Simple Macro System 516

8.16 LMACRO: A Simple Macro System

Macros

We have previously seen examples of macros in the C programming language in
Chapter 5. As a refresher, for all intents and purposes, in C, a macro is a textual
substitution. So, if we define a macro to square two numbers and invoke it a follows:

Listing 8.272

1 #define SQUARE(x) x * x
2 int main(void) {
3 printf("The square of 5 is %d\n", SQUARE(5));
4 }

Before the program is compiled, the preprocessor replaces all instances of macro
and preprocessor definitions with their respective bodies. To illustrate this idea, we
will manually expand the SQUARE macro.

Listing 8.273

1 int main(void) {
2 printf("The square of 5 is %d\n", 5 * 5);
3 }

Macros in C, unfortunately, can cause problems due to type-checking and oper-
ator precedence. Let us pass an expression to this macro instead of a literal.

Listing 8.274

1 int main(void) {
2 printf("The square of 3 + 4 (7) is %d\n", SQUARE(3 + 4));
3 }

Now, in its expansion, we see that, instead of outputting the intended answer
of 49, it outputs 5 as a result of direct substitution. Namely, the multiplication
operation is applied before the two additions.

Listing 8.275

1 int main(void) {
2 printf("The square of 3 + 4 (7) is %d\n", 3 + 4 * 3 + 4);
3 }

A fix for this is to add parentheses around the macro body and any instances of
its arguments:

Listing 8.276

1 #define SQUARE(x) ((x) * (x))

In this section, we will write LMACRO: an extension to LLOOP that adds support
for simple macros.

516

517 Imperative Programming

expr ::= application | ...
application ::= macro | ...
macro ::= ‘define-macro (’ id id* ‘)’ expr

Figure 8.15: Extended BNF Grammar for LMACRO

First, we should explain the motivation behind the desire for macros. Suppose
we want to add promises to a language, which are delayed, or deferred, expressions.
That is, a promise defers evaluation of an expression until it is forced, or told, to
evaluate. Recall from Chapter 7 the discussion of lazy evaluation via call-by-need
and call-by-name. If we want to add lazy evaluation to our non-nested interpreter,
we should add macros. Some curious thinkers out there may wonder why we cannot
just define two functions, delay and force, where the former creates a thunk out
of the passed expression, and force invokes the thunk. The latter function would
certainly be acceptable. delay, on the other hand, is impossible with our system.
Recall that, prior to applying a function, its arguments are evaluated. Therefore, if
we want to pass an expression to delay with the intent of deferring its evaluation,
we cannot design a function that immediately evaluates said argument. We can,
instead, write a delay macro that wraps the supplied expression in a thunk without
actually performing any evaluation.

Writing a macro system is somewhat challenging because it requires altering and
manipulating the syntax tree directly. When we create a macro, we treat it similar
to a procedure in that there are formals to bind and a macro body. Though, how do
we wish to recognize a macro and differentiate it from, say, a variable or procedure?
We can add a new special form to the language: define-macro. A define-macro
will look similar to any other define with the exception that the macro name and
formal parameters are wrapped in parentheses. The body is listed subsequently.

Listing 8.277

(define-macro (my-macro x y z)
(+ x y z))

Now, let us create the accompanying s-value.

517

8.16 LMACRO: A Simple Macro System 518

Listing 8.278—Macro S-value (sval.h)
1 enum sval_type { ..., SVAL_MACRO };
2
3 struct macro {
4 char **formals;
5 size_t num_formals;
6 ast *body;
7 };
8
9 struct sval {

10 ...
11 union data {
12 ...
13 struct macro *macro;
14 } data;
15 };
16
17 struct sval *sval_macro_create(char **formals, size_t num_formals, ast *body);

Next, we write the constructor function.

Listing 8.279—Macro S-value Constructor Function (sval.c)
1 struct sval *sval_macro_create(char **formals, size_t num_formals, ast *body) {
2 struct sval *sv = sval_create(SVAL_MACRO);
3 struct macro *macro = malloc(sizeof(struct macro));
4 ASSERT_ALLOC(macro, "sval_macro_create");
5 macro->num_formals = num_formals;
6 macro->formals = formals;
7 macro->body = body;
8 sv->data.macro = macro;
9 return sv;

10 }

Onto the evaluator—we need to write the recognizer. Conveniently enough, a
define-macro closely resembles the definition for a lambda.

Listing 8.280—Evaluation of Macro Declaration (eval.c)
1 static struct sval *eval_definition_macro(ast *defmacro,
2 struct environment *env) {
3 ast *formals_ast = ast_child(defmacro, MACRO_FORMALS_IDX);
4 size_t num_formals = ast_children_num(formals_ast) - MACRO_FORMALS_OFFSET;
5 char *macro_name = ast_contents(ast_child(formals_ast, MACRO_NAME_IDX));
6 char **formals = malloc(num_formals * sizeof(char *));
7 ASSERT_ALLOC(formals, "eval_definition_macro");
8
9 // Copy the formals over to the array.

10 for (int i = 0; i < num_formals; i++) {
11 char *f = ast_contents(ast_child(formals_ast, i + MACRO_CONTENTS_OFFSET));
12 formals[i] = strdup(f);
13 }
14
15 ast *body = ast_child(defmacro, 3);
16 struct sval *macro_sval = sval_macro_create(formals, num_formals, body);
17 environment_put(env, macro_name, macro_sval);
18 return NULL;
19 }

Now for the toughest piece: writing the macro evaluator. Before we begin, we
should add a clause to eval application that hands over the abstract syntax tree
to another function if it is a macro (similar to the behavior of special forms).

518

519 Imperative Programming

Listing 8.281—Evaluating Macro Within Application Evaluation (eval.c)
1 static struct sval *eval_application(ast *application, struct environment *env) {
2 ...
3 else if (SVAL_MACRO == function->type) {
4 return eval_application_macro(application, env);
5 }
6 }

Macro evaluation is complicated because, as we said, we have to directly alter the
abstract syntax tree. Not only this, but when we update the tree, we must be careful
to not update the original macro body definition. In other words, we need to create a
copy of the macro body abstract syntax tree so that subsequent macro evaluations
are not afflicted or overwritten. Moreover, we must replace each occurrence of
the formal parameter in the macro body with the correct substitution value. For
example, using the following macro definition, when we evaluate (my-macro 10 30
20), we must traverse the tree to find the x, y, and z nodes, then replace them with
the 10, 30, and 20 nodes respectively.

Listing 8.282

(define-macro (my-macro x y z)
(+ x (* y (* z z) x) (- y x z)))

Therefore, in writing eval application macro, we need to write two new
functions in our abstract syntax tree file: ast copy, and ast replace. The former
creates a “deep copy” of the provided abstract syntax tree (i.e., all fields are copied),
whereas the latter recursively traverses an abstract syntax tree to replace nodes with
other nodes.

Listing 8.283—Macro Substitution (eval.c)
1 static struct sval *eval_application_macro(ast *appmacro,
2 struct environment *env) {
3 struct sval *defmacro = eval(ast_child(appmacro, APPLICATION_FUNCTION_IDX), env);
4 ast *body = ast_copy(defmacro->data.macro->body);
5
6 // Replace each instance of the symbol with the argument.
7 for (int i = 0; i < defmacro->data.macro->num_formals; i++) {
8 body = ast_replace(body, ast_child(appmacro, i + 2),
9 defmacro->data.macro->formals[i]);

10 }
11
12 return eval(body, env);
13 }

When copying an abstract syntax tree, we must take some things into consid-
eration. First, what do we copy, and second: how do we copy them? An abstract
syntax tree consists of a tag, contents, and children. For the first two fields, because
they are strings, we allocate and copy them over like any other abstract syntax tree.
The latter, on the other hand, is even simpler—we recursively clone the children of
the current AST.

519

8.16 LMACRO: A Simple Macro System 520

Listing 8.284—Deep-copying an Abstract Syntax Tree (ast.c)
1 ast *ast_copy(const ast *old_tree) {
2 ast *tree = malloc(sizeof(ast));
3 ASSERT_ALLOC(tree, "ast_copy");
4 // Copy tag & contents over.
5 tree->tag = strdup(old_tree->tag);
6 tree->contents = strdup(old_tree->contents);
7
8 // Allocate children and flags.
9 tree->flags = 0;

10 tree->children_num = old_tree->children_num;
11 tree->children = malloc(tree->children_num * sizeof(ast *));
12 ASSERT_ALLOC(tree->children, "ast_copy");
13
14 // Copy the children.
15 for (int i = 0; i < tree->children_num; i++) {
16 tree->children[i] = ast_copy(old_tree->children[i]);
17 }
18
19 return tree;
20 }

Now, we need to write the ast replace function, which is the essential compo-
nent of a macro application. ast replace will search for any nodes in tree whose
contents are equivalent to needle. If so, the tree node is replaced with replacement.
One exception to this is singleton nodes. Namely, if a macro body contains only a
single symbol or literal value, then we need not to traverse the rest of the definition
(because it does not exist!); we should simply return the replacement. Otherwise,
we recursively search the rest of the tree for any occurrences and replace them if so.

Listing 8.285—Root AST Replacement Function (ast.c)
1 ast *ast_replace(ast *tree, ast *replacement, const char *needle) {
2 if (NULL == tree) {
3 return NULL;
4 } else if (0 == tree->children_num && streq(ast_contents(tree), needle)) {
5 return replacement;
6 } else {
7 ast_replace_subtree(tree, replacement, needle);
8 return tree;
9 }

10 }

Notice that the second case corresponds to a singleton node whose contents
match the needle. We return replacement in this instance. If the tree is not a
singleton, then we invoke a separate helper function, ast replace subtree.

Listing 8.286—Recursive Subtree Replacement Function (ast.c)
1 static void ast_replace_subtree(ast *tree, ast *replacement, const char *needle) {
2 if (NULL == tree) { return; }
3 else {
4 for (int i = 0; i < tree->children_num; i++) {
5 // If we find a node whose contents are the needle, we replace it.
6 if (streq(ast_contents(ast_child(tree, i)), needle)) {
7 ast_set_child(tree, replacement, i);
8 }
9 ast_replace_subtree(ast_child(tree, i), replacement, needle);

10 }
11 }
12 }

520

521 Imperative Programming

Fortunately, this function is not too difficult to understand. Like copying, we
traverse the children of a node, perform some operations, then recurse on the child.
If we find a child node whose symbol matches the needle, we pass the parent,
the replacement, and the child index to another function ast set child, which
performs almost identically to the replacement of a singleton.

Listing 8.287—Altering a Child of an AST (ast.c)
1 void ast_set_child(ast *root, ast *new_tree, const size_t idx) {
2 root->children[idx] = ast_copy(new_tree);
3 }

That is it! Let us write, then run, the test example from before.

Listing 8.288

(define-macro (my-macro x y z)
(+ x (* y (* z z) x) (- y x z)))

> (my-macro 10 30 20)
> (my-macro (+ 20 30) (+ 40 50) 60)

120010
16200030

So, we get the correct answers, but let us see how the macro expands these invoca-
tions.

Listing 8.289

(+ 10
(* 30 (* 20 20) 10)
(- 30 10 20))

(+ (+ 20 30)
(* (+ 40 50) (* 60 60) (+ 20 30))
(- (+ 40 50) (+ 20 30) 60))

With the macro implementation, we can finally add promises. Let us write a
small test to understand how a promise works. First, though, we will write delay
and force. The former creates a thunk out of the passed expression, whereas the
latter invokes the thunk.

Listing 8.290

(define-macro (delay exp)
(λ () exp))

(define-macro (force exp)
(exp))

Therefore, when invoking delay, we replace the expression with a thunked ver-
sion.

Listing 8.291

(define x 1)

(delay (begin (set! x 5) x))

(define x 1)

(delay (λ () (begin (set! x 5) x)))

Now, for the example.

521

8.16 LMACRO: A Simple Macro System 522

Listing 8.292

(define p 1)
(define q 2)
(define r 3)
(define v (delay (begin

(set! p 100)
(set! q 200)
(set! r 300))))

(printf "∼a∼n" p)
(printf "∼a∼n" q)
(printf "∼a∼n" r)
(force v)
(printf "∼n")
(printf "∼a∼n" p)
(printf "∼a∼n" q)
(printf "∼a" r)

1
2
3
100
200
300

Hygienic vs Unhygienic Macros

What is the output of the following macro replacement?

Listing 8.293

(define-macro (unhygienic-macro z)
(let ([q 100])
(set! z (+ q z))))

(let ([p 10]
[q 20])

(begin
(unhygienic-macro p)
(unhygienic-macro q)
(+ p q)))

You might think of two possible answers: 130 and 230. With our current macro
system, 130 is the returned result, but is that really the desired value? Notice
that we declare a variable q in the scope of our macro. This q shadows the
q declared within the let block outside the macro. As such, when we invoke
(unhygienic-macro q), it “captures” q.

Listing 8.294

(let ([p 10]
[q 20])

(begin
...
(let ([q 100])
(set! q (+ q q))))

(+ p q))

So, the outer-most q is never updated—only the q declared within the macro’s
local let environment. A macro that performs a variable capture like this is referred
to as an unhygienic macro. It would be highly preferable to write a macro system
that is hygienic, but how is that possible? One solution is to generate random
symbols for every formal parameter and variable occurrence in the body of the
macro. These random symbols would, ideally, be random enough to where a collision
between a programmer-defined and a macro-defined symbol name has an irrefutably
low probability.

522

523 Imperative Programming

When is it appropriate to rename symbols during a macro definition? Well, the
only time a macro has the potential to become unhygienic is when it introduces
a binding. For example, let, let*, letrec, and lambda all potentially introduce
symbol bindings, and therefore, introduce the risk of creating an unhygienic macro.
We said there were some ways to alleviate this bug, and we will discuss three. All
possibilities require altering the abstract syntax tree of the macro definition. The
first of these fixes is to generate random variable names in the context of a variable
binding within a macro. For example, if we define a macro as follows:

Listing 8.295

(define-macro (unhygienic-macro z)
(let ([q 100])
(set! z (+ q z))))

We should convert “temp” into a string of random characters to reduce the
likelihood of a binding collision. E.g.,

Listing 8.296

(define-macro (unhygienic-macro z)
(let ([UwObQNZJMhzZBDyyNfCm 100])
(set! z (+ UwObQNZJMhzZBDyyNfCm z))))

Though, the issue with this approach is that it does not truly remove the
“unhygienic-ness” of the macro—it only obscures and reduces the probability of an
unhygienic macro usage. What if we could remove that probability altogether? To
do this, we need some way of marking certain symbols as “unmatchable”. Namely,
when we declare a symbol within a binding context, we should set a flag in the
abstract syntax tree to denote that the symbol can never be equivalent to another,
non-flagged symbol. A symbol with this property is called an uninterned symbol.
Let us illustrate this with the previous example where we bind q to 100, which shad-
ows the previous declaration of q. Due to the overall complexity of this approach,
we will omit its inclusion in favor of a partially-hygienic macro system.

So, what are we after? We want to take a macro’s abstract syntax tree, then
obfuscate the variable bindings. The general approach will be to traverse the defini-
tion abstract syntax tree, look for let and lambda blocks, then append each bound
symbol with a random string of characters. Then, as we traverse the tree, if we
find a symbol declared elsewhere and it is one that was initialized in a binding, we
append the same random string. Because this is a multi-step process, we will break
it up.

First, let us write a function that receives an abstract syntax tree and invokes a
recursive “unintern” helper function.

523

8.16 LMACRO: A Simple Macro System 524

Listing 8.297—Uninterning Symbols of an AST (ast.c)
1 static void unintern_symbols_helper(ast *macro_ast, char ***us,
2 char ***obfs, size_t *nus);
3
4 static void unintern_symbols(ast *macro_ast) {
5 char **us = NULL;
6 char **obfuscations = NULL;
7 size_t nus = 0;
8 unintern_symbols_helper(macro_ast, &us, &obfuscations, &nus);
9 ...

10 }

First we had standard, single-pointers, then we introduced double-pointers, and
now there are triple-pointers!? What gives? Well, recall that, intuitively, we can
think of an array of strings as a char double pointer. Because we are modifying the
contents of this array of strings in a function, we need to pass a pointer to this array
of strings. Hence, the use of a triple-pointer! We declare two arrays of strings: one
for the uninterned “raw” symbols, and another for the obfuscations. Essentially,
when we find a binding, we want to store the identifier to search for later, as well as
the random string to append.1 We also need to keep track of how many elements
are in these arrays. Because they should always be the same size, we can share one
variable. Moreover, since we modify its value in between recursive calls, we pass
the value as a pointer.

Now, onto the complex function. First, we should have a check to see if the
input abstract syntax tree is NULL and, if so, just bail out from the function.

Listing 8.298—Recursive Uninterning Symbols Function (ast.c)
1 static void unintern_symbols_helper(ast *macro_ast, char ***us,
2 char ***obfs, size_t *nus) {
3 if (NULL == macro_ast) { return; }
4 }

Next, there is the case where the passed abstract syntax tree is an application.
If this is the case, then there are two possible values of interest: let and lambda.
We will investigate let first.

Listing 8.299—Recursive Uninterning Symbols Helper Function (ast.c)
1 static void unintern_symbols_helper(ast *macro_ast, char ***us,
2 char ***obfs, size_t *nus) {
3 if (NULL == macro_ast) { return; }
4 else if (ast_is_type(macro_ast, "application")) {
5 if (strstr(ast_contents(ast_child(macro_ast, 1)), "let") != NULL) { ... }
6 }
7 ...
8 }

What is nice about this function is that, similar to evaluating a let binding,
we need to extract the symbols and perform some action on them. So, we can just
reuse that code.

1Another term for arrays that correspond to one another is parallel arrays.

524

525 Imperative Programming

Listing 8.300—Uninterning a let (ast.c)
1 static void unintern_symbols_helper(ast *macro_ast, char ***us,
2 char ***obfs, size_t *nus) {
3 ...
4 if (strstr(ast_contents(ast_child(macro_ast, 1)), "let") != NULL) {
5 ast *let = macro_ast;
6 ast *bindings = ast_child(let, LET_ALL_BINDINGS_IDX);
7 int num_bindings = ast_children_num(bindings) - LET_BINDING_OFFSET_IDX;
8
9 for (int i = 0; i < num_bindings; i++) {

10 ast *curr_binding = ast_child(bindings, LET_BINDING_IDX + i);
11 ast *sym_tree = ast_child(curr_binding, LET_SYMBOL_IDX);
12 ...
13 }
14 }
15 }

In the following code blocks, we are going to make a lot of memory allocations.
So, be wary!

First, we need to resize both of our arrays to account for a new variable binding.
We also need to increment the passed array size variable.

Listing 8.301—Reallocation of Uninterned Symbol Storage Array (ast.c)
1 static void unintern_symbols_helper(ast *macro_ast, char ***us,
2 char ***obfs, size_t *nus) {
3 ...
4 (*nus)++; // Increment the size by one.
5 *us = realloc(*us, sizeof(char *) * (*nus));
6 *obfs = realloc(*obfs, sizeof(char *) * (*nus));
7 }

The above code resizes the two allocated arrays of strings to be one element
larger than they were previously. Note that we took a similar approach to when we
were replacing elements in the abstract syntax tree when implementing unhygienic
macros.

Now, we need to allocate space for the string to copy. us requires enough space
to store the original variable name, whereas obfs requires enough space to store
the obfuscated variable name. One very important detail to take note of is that the
dereference via the asterisk must happen before array indexing. According to the
C programming language, however, array indexing has higher operator precedence
than dereferencing a pointer. Thus, we wrap the dereference in parentheses to force
its evaluation first.

Listing 8.302—Ordering of Dereferencing Matters! (ast.c)
1 static void unintern_symbols_helper(ast *macro_ast, char ***us,
2 char ***obfs, size_t *nus) {
3 ...
4 (*obfs)[(*nus) - 1] = gensym();
5
6 // Allocate the space for the new strings.
7 (*us)[(*nus) - 1] = malloc(strlen(ast_contents(sym_tree)) + 1);
8 ASSERT_ALLOC((*us)[(*nus) - 1], "uninterned_symbol_helper);
9 }

525

8.16 LMACRO: A Simple Macro System 526

We have introduced a new function: gensym; what is that? The gensym function
allocates and generates a new string of random characters. The implementation is
not too difficult to understand, but assigning random letters, rather than integers,
is a little funky for newcomers to the language. First, we use a C macro to declare
a variable that keeps track of the length we want our to set our random strings.
Then, because this is a string used across multiple functions, we of course must
dynamically allocate the memory. Next, we traverse through the string and set
each character to be a random upper-case letter using the rand function. Though,
what is the deal with the modulus and addition operators? Well, rand is defined
to return an integer from 0 inclusive to a preset constant RAND MAX exclusive. For
our purposes, we do not know nor care what this value is other than the fact that
it is a sufficiently large number. Recall that we can use modulus to “truncate” a
number to a specific range. Thus, no matter what number is generated between
this range, it will always be an integer from 0 inclusive to 26 exclusive (note the
exclusivity of 26, meaning our range of possible integers is 0 to 25). From there,
we can treat character literals as numbers and perform arithmetic on them. As an
example, 'A' + 5 = 'E'. This allows us to generate a random letter from 'A’ to
'Z'. Finally, because sym is a string, we must NUL-terminate it.

Listing 8.303—Generating Pseudorandom Symbol Identifier (ast.c)
1 #define MAX_LENGTH 20
2
3 char *gensym(void) {
4 char *sym = malloc(MAX_LENGTH + 1);
5 ASSERT_ALLOC(sym, "gensym");
6 for (int i = 0; i < MAX_LENGTH; i++) {
7 sym[i] = 'A' + (rand() % 26);
8 }
9 sym[MAX_LENGTH] = '\0';

10 return sym;
11 }

Getting back on track, we must copy the symbol name into us, and amend the
abstract syntax tree with the obfuscated name.

Listing 8.304—Using strcpy to Copy Generated Symbol (ast.c)
1 static void unintern_symbols_helper(ast *macro_ast, char ***us,
2 char ***obfs, size_t *nus) {
3 ...
4 // Copy the contents over to the buffer.
5 strcpy((*us)[(*nus) - 1], ast_contents(sym_tree));
6 ast_strcat_contents(sym_tree, (*obfs)[(*nus) - 1]);
7 }

What is ast strcat contents? It is a new helper function we introduced; it
receives an abstract syntax tree and a string, then concatenates, or appends, the
passed string onto the contents of the tree. We need to re-size the contents to ensure
we have enough space for both the old and the new contents. In addition, we resize,
then amend, the contents of the underlying mpc abstract syntax tree.

526

527 Imperative Programming

Listing 8.305—Concatenating Contents of AST (ast.c)
1 void ast_strcat_contents(ast *ast, char *contents) {
2 size_t ast_len = strlen(ast->contents);
3 size_t con_len = strlen(contents);
4 ast->contents = realloc(ast->contents, ast_len + con_len + 1);
5 ASSERT_ALLOC(ast->contents, "ast_strcat_contents");
6 strcat(ast->contents, contents);
7 }

Okay! That is the hardest part out of the way. We will omit lambda declarations
so we can test our let bindings and then fix any problems we encounter (this will
be an exercise for the reader). We now need to add the clause for updating symbol
occurrences in the abstract syntax tree. In essence, whenever we find a symbol, we
search for its existence in us and, if there is a binding, it means that it was declared
within a block inside the macro, meaning we need to append the obfuscated string
onto the end.

Listing 8.306—Macro Substitution Implementation (ast.c)
1 static void unintern_symbols_helper(ast *macro_ast, char ***us,
2 char ***obfs, size_t *nus) {
3 ...
4 else if (ast_is_type(macro_ast, "symbol")) {
5 char *s = ast_contents(macro_ast);
6 for (int i = 0; i < *nus; i++) {
7 if (streq(s, *us[i])) {
8 ast_strcat_contents(macro_ast, (*obfs)[i]);
9 return;

10 }
11 }
12 }
13 ...
14 }

Last but not least, because this is a recursive function, we need to invoke this
function on each child of the passed abstract syntax tree node.

Listing 8.307—Recursively Uninterning AST Children (ast.c)
1 static void unintern_symbols_helper(ast *macro_ast, char ***us,
2 char ***obfs, size_t *nus) {
3 ...
4 for (int i = 0; i < ast_children_num(macro_ast); i++) {
5 unintern_symbols_helper(ast_child(macro_ast, i), us, obfs, nus);
6 }
7 }

We also must update eval definition macro to include a call to unintern -
symbols on the macro’s body.

Listing 8.308—Uninterning Macro Definitions (eval.c)
1 static struct sval *eval_definition_macro(ast *defmacro,
2 struct environment *env) {
3 ...
4 for (int i = 0; i < num_formals; i++) { ... }
5 ast *body = ast_child(defmacro, MACRO_BODY_IDX);
6 unintern_symbols(body);
7 struct sval *macro_sval = sval_macro_create(formals, num_formals, body);
8 environment_put(env, macro_name, macro_sval);
9 return NULL;

10 }

527

8.16 LMACRO: A Simple Macro System 528

Phew! That is a lot of programming to implement what is seemingly a simple
feature! Let us re-run the macro definition from before examine both the output
and AST.

Listing 8.309

(define-macro (hygienic-macro z)
(let ([q 100])
(set! z (+ q z))))

> (let ([p 10] [q 20])
(begin
(hygienic-macro p)
(hygienic-macro q)
(+ p q)))

230

expr|application|>
char:1:1 '('
expr|datum|symbol|regex:1:2 'define-macro'
expr|application|>
char:1:15 '('
expr|datum|symbol|regex:1:16 'hygienic-macro'
expr|datum|symbol|regex:1:33 'z'
char:1:34 ')'

expr|application|>
char:2:3 '('
expr|datum|symbol|regex:2:4 'let'
expr|application|>
char:2:8 '('
expr|application|>
char:2:9 '['
expr|datum|symbol|regex:2:10 'qJHRJEUOPABPUMOTBAHLB'
expr|datum|number|regex:2:12 '100'
char:2:15 ']'

char:2:16 ')'
expr|application|>
char:3:5 '('
expr|datum|symbol|regex:3:6 'set!'
expr|datum|symbol|regex:3:11 'z'
expr|application|>
char:3:13 '('
expr|datum|symbol|regex:3:14 '+'
expr|datum|symbol|regex:3:16 'qJHRJEUOPABPUMOTBAHLB'
expr|datum|symbol|regex:3:18 'z'
char:3:19 ')'

char:3:20 ')'
char:3:21 ')'

char:3:22 ')'

From the abstract syntax tree, we see that only the variables bound by the macro
let are obfuscated. Therefore, we see a “correct” output of 230 because q is no
longer captured by the macro. What a relief!

As another example of the benefits of using macros, we can define or2 and and2.
Recall that or and and are built-in operators in our language that do not strictly
evaluate their arguments. Treating them as standard functions would, of course,
not be correct because of their potential to short-circuit. Using macros, on the
other hand, allows us to bypass this limitation. Let us implement or2: a macro
that resolves to true if either of its arguments evaluate to true. If its first argument
evaluates to true, the macro short-circuits and does not evaluate the second.

Listing 8.310

(define-macro (or2 exp1 exp2)
(if exp1 #t (if exp2 #t) #f))

528

529 Imperative Programming

Suppose we now substitute two expressions for exp1 and exp2 where the latter
sets a variable. The macro guarantees that, if exp1 resolves to true, exp2 is never
evaluated. Using the below example, we see that the macro outputs #\t and 10,
because the second expression, of course, is never evaluated.

Listing 8.311

(define x 0)

> (or2 (begin
(set! x 10)
(> x 9))

(begin
(set! x 20)
#f))

> x

#t

10

Exercise 8.56. (⋆)
We wrote the or2 macro as an example. Implement and2 that returns true just in
case each operand is true. If the first expression is false, the second is not evaluated.

Exercise 8.57. (⋆)
Write a macro ifm that, similar to our built-in if, receives three expressions: a
predicate, a consequent, and an alternative. If the predicate is true, the consequent
is evaluated. Otherwise, the alternative is evaluated.

Exercise 8.58. (⋆⋆)
The Python programming language (along with several others) allows programmers
to write list comprehensions, which is a way of building lists from a filter. For
example, in the first code listing below is a method of squaring all the odd numbers
in a list of numbers from 1 to 10. In our language, we can do this via the map and
filter as demonstrated in the second listing. Though, it would be interesting to
see if we could implement the “Pythonic” method in our language using macros.
Write a macro list-comp that has the signature from the third listing.

Listing 8.312

lst = [1..10]
[x * x for x in lst if x % 2 == 1]

Listing 8.313

(define lst '(1 2 3 4 5 6 7 8 9 10))
(map (λ (x) (* x x))

(filter (λ (x) (odd? x)) lst))

Listing 8.314

(define-macro (list-comp map-expr for var in lst if filter-expr)
...)

for, in, and if are all constant “symbols” that are not evaluated since they
are just copied as raw text into the macro (realistically we could put anything in
these spots, but it is irrelevant since they are unused). We may invoke the macro
as follows:

529

8.16 LMACRO: A Simple Macro System 530

Listing 8.315

(define lst '(1 2 3 4 5 6 7 8 9 10))

> (list-comp (* x x) for x in lst if (odd? x)) (1 9 25 49 81)

Complete the definition of the list-comp macro. It should be only one (prettily
indented) line.

Exercise 8.59. (⋆⋆)
The Racket programming language also has list comprehensions via for/list. The
only difference is that this construct can receive any “iterable structure” as input.
As an example, consider the following code segments:

Listing 8.316

> (for/list i '(1 2 3 4)
(* i i))

> (for/list j "abcdef"
(char->number (string->char j)))

> (for/list k (vector 144 169 16 49 81)
(sqrt k))

(1 4 9 16)

(96 97 98 99 100 101)

(12 13 4 7 9)

For simplification purposes, we will consider only lists, vectors, and strings as
“iterable structures”. Write a macro for/list that behaves as we have described.

Exercise 8.60. (⋆⋆⋆)
The Racket programming language, in addition to for/list, has other iteration-
based constructs. One of these includes for/fold, which accumulates results as
they are generated. It receives an accumulator and its initial value, as well as an
iteration variable and a corresponding “iterable structure” as we described in the
preceding exercise. The expression resolves to the accumulator. As an example,
consider the following code segments:

Listing 8.317

> (for/fold sum 0 i '(1 2 3 4)
(+ sum i))

> (for/fold str "" j '(#\H #\e #\l #\l #\o)
(string-append j str))

10

"Hello"

Implement for/fold as a macro in LMACRO. Hint: this should be a one-line
definition, and should use foldl or foldr. Which variant works with the given
examples?

Exercise 8.61. (⋆⋆⋆⋆)
We can declare lambda functions inside a macro. For instance, consider the macro
in the listing below. foo is a macro that, itself, reduces to a procedure of one
argument: z. The problem is that this is an unhygienic macro that shadows any
occurrences of z in its environment. Implement uninterning for formal parameters
to lambda procedures.

530

531 Imperative Programming

Listing 8.318

(define-macro (foo x y)
(let ([tmp-x x]

[tmp-y y])
(λ (z)
(+ tmp-x tmp-y z))))

((foo 10 20) 30)

Exercise 8.62. (⋆⋆⋆⋆)
We do not intern symbols used both as “arguments” to a macro and as formal pa-
rameters to a lambda. An example is shown below. The reason is that these variable
occurrences are substituted with the “arguments” to the macro and, therefore, do
not need to be uninterned. Fix your implementation to only unintern formal pa-
rameters that are not “arguments” to the macro. Hint: eval definition macro
creates an array of formals—passing this, along with its size, to unintern symbols
may prove to be helpful.

Listing 8.319

(define-macro (my-lambda x body)
(λ (x) body))

((my-lambda y (+ y 5)) 10)

Streams

Designing macros into our language brings a lot of potential to the table. One
such feature is the notion of streams, or “infinite” data. Consider a trivial function
square that returns the square of a number. Now, suppose we want to return a
list of squared natural numbers. The inherent question that arises is, “How many
squares do we want to compute?”. Streams allow us to get infinitely many squares
without actually computing infinitely many squares. The problem there, of course,
is that if we wanted to get the square of every natural number in a predefined list,
that would be impossible since there are countably-infinite natural numbers.

Streams use lazy evaluation, which is now possible via macros. If we want to,
say, compute a theoretical infinite number of squared natural numbers, we surely
need to use cons. Unfortunately, this will not work, because cons always evaluates
its two arguments before creating the first and rest pair. What we need, instead, is
a macro cons$ that evaluates its first, but delays the evaluation of its rest. Recall
that we cannot define a cons$ function because it would evaluate its arguments!

Listing 8.320

(define-macro (cons$ a b)
(cons a (delay b)))

Now, we need two functions to access the pieces of a stream. fst$ is just first
with a fancy name. rst$, on the contrary, forces the thunk provided by delay.

531

8.16 LMACRO: A Simple Macro System 532

Listing 8.321

(define fst$ fst)

(define rst$ (λ (p) (force (rest p))))

Let us work our way up to creating a “squared natural number” stream. We
will start by writing a stream that produces “infinite numbers”. The idea is to use
cons$ that delays a seemingly infinite recursive function.

Listing 8.322

(define nat-copy$
(λ (n)
(cons$ n (nat-copy$ n))))

nat-copy$ produces a stream whose first is the input n and whose rest is a
promise that produces another copy of n.

Listing 8.323

(define num-3s$ (nat-copy$ 3))

> num-3s$
> (fst$ num-3s$)
> (rst$ num-3s$)
> (fst$ (rst$ num-3s$))

(3 . <function>)
3
<function>
3

So, while nat-copy$ is capable of producing an infinite stream of numbers,
having to painstakingly and manually invoke the helper fst$ and rst$ functions
seemingly invalidates the convenience. Let us write take$: a function that generates
n elements from a stream $ and stores them into a list.

Listing 8.324

(define take$
(λ (n $)
(cond
[(zero? n) '()]
[else
(cons (fst$ $)

(take$ (rst$ $)))])))

With this function, we can retrieve n copies of 3 in a list.

Listing 8.325

(define ten-3s (take$ 10 num-3$))

> ten-3s (3 3 3 3 3 3 3 3 3 3)

We can write streams to produce any kind of “infinite data” that we so de-
sire. For instance, suppose we want to write a stream that produces the Fibonacci
sequence. We first need a function that adds stream values together.

532

533 Imperative Programming

Listing 8.326

;; add$: [StreamOf Number] [StreamOf Number] -> [StreamOf Number]
;; Adds the elements of two number streams.
(define add$
(λ ($1 $2)
(let ([e1 (fst$ $1)]

[e2 (fst$ $2)])
(cons$ (+ e1 e2)

(add$ (rst$ $1) (rst$ $2))))))

From here, we write a fib$ function that computes the respective sequence
starting with the two base values of 0 and 1.

Listing 8.327

(define fib$
(cons$ 0

(cons$ 1
(add$ fib$

(rst$ fib$)))))

> (take 10 fib$) (0 1 1 2 3 5 8 13 21 34)

Now let us write the stream of squared numbers. Fortunately, because this is
a non-recursive procedure unlike the Fibonacci sequence, we need not to write a
separate multiply$. Rather, we write square-from$ that computes the square of
integers starting from some given value n. We then write square$ which invokes
square-from$ with a starting value of one. This allows us to nicely interweave our
take$ definition.

Listing 8.328

(define square-from$
(λ (n)
(cons$ (* n n)

(square-from$ (add1 n)))))

(define square$ (square-from$ 1))

> (take$ 5 square$) (1 4 9 16 25)

Exercise 8.63. (⋆⋆)
Design a stream random-ints$ that receives a number n returns a stream that
produces random numbers in the interval [0, n), where n is exclusive. To test your
design, use the take$ stream and poll ten numbers to see what you get!

533

8.16 LMACRO: A Simple Macro System 534

L∗
SYNTAX: Syntactic Transformations

Programs, and their accompanying syntax, may often be represented in several,
semantically-equivalent, ways. For instance, as one of the exercises, we asked read-
ers to implement the syntactic sugared version of function definitions, which ab-
stract away the lambda. Though, either form is equivalent in functionality to the
other, and interpreters will often rewrite syntactic sugar into its non-sugared coun-
terparts. Using the previous example, a function of the form (define (foo ...))
may be converted into (define foo (lambda (...))). Doing so implies that the
interpreter does not have to concern itself with ever seeing a syntactic sugar repre-
sentation, which reduces code size and complexity. Such transformations are called
semantic-preserving syntax transformations. In other words, a transformation from
one piece of code into another may perhaps change its appearance, but its end
behavior remains identical. A programming language that introduces such trans-
formations must ensure that these guarantees are in-place so code does not induce
unexpected behavior. Let us look at another syntactic sugar form, namely let.
let is equivalently constructive via lambda abstraction and function application.
That is, each binding has a identifier and a value, wherein the binding is a formal
parameter to a lambda and the values are corresponding arguments applied to the
lambda term.

Listing 8.329

(let ([x 5]
[y 10]
[z 100])

(+ x y z))

The above let block can be represented as a lambda term whose formal param-
eters are the identifiers. Each formal parameter is bound by function application
to the associated values from the bindings. The body of the let transfers nicely
as the body of our new lambda. If we wish, we could also, equivalently, curry this
function.

Listing 8.330

((λ (x y z)
(+ x y z))

5 10 100)

((((λ (x)
(λ (y)
(λ (z)
(+ x y z))))

5)
10)

100)

In this section, we will write L∗SYNTAX: a language for converting certain special
forms into more “primitive” counterparts.

534

535 Imperative Programming

By having syntactical transformation equivalences of forms in a programming
language, it reduces the overall complexity of the interpreter or compiler. Being able
to convert a let to a lambda means we could outright remove separate let evalua-
tion. Because of the complexities of C and modifying the abstract syntax trees, we
will only implement syntax transformation equivalence functions in our interpreted
language. We section this under our discussion of macros because macros are syn-
tactic transformations of code. In a more powerful programming language, e.g.,
Racket, we could certainly write macros to implement language constructs such as
let, let*, and more in terms of lambda, if we chose to do so.1

Our nested interpreter will perform desugaring, or unwrapping of syntactically-
sugared special forms. We have, thus far, seen one such form: let. Let us write
the recognizer and reducer for converting a let into a lambda. We need to extract
all formal parameters and bindings into separate lists. We can use map and a few
calls to list and append to get our desired result.

Before writing this recognizer/reducer pair, we should write the root reducer:
desugar.

Listing 8.331

;; desugar : Expression -> Expression
;; Desugars an expression from its syntactic-sugar'd form
;; into its non-sugar'd counterpart.
(define desugar
(λ (exp)
(cond
[(let? exp) (desugar-let exp)]
[else exp])))

We use map to collect the identifiers and values, then construct a lambda with
the identifiers as its formal parameters and the let body as its body. Finally, we
wrap this term in a function application to the values.

Listing 8.332

(define let?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (first exp) 'let))))

(define desugar-let
(λ (exp)
(let* ([bindings (second exp)]

[body (desugar (third exp))]
[vars (map first bindings)]
[values
(map second bindings)])

(append
(list (list 'lambda vars body))
values))))

Now, let us test our implementation.

Listing 8.333

> (desugar
'(let ([x 5]

[y 10]
[z 100])

(+ x y z)))

((lambda
(x y z)
(+ x y z))

5 10 100)

1This would be superfluous since the language performs built-in macro-expansion on special forms
anyways, but it is a good exercise nonetheless.

535

8.16 LMACRO: A Simple Macro System 536

With one special form out of the way, we should attempt to desugar let*.
We know that let* allows for mutually-referencing bindings. Our implementation
of let*, though, proved that it is nothing more than a sequence of nested let
expressions. With that in mind, the desugar-let* reducer is more complex than its
desugar-let counterpart since it uses a recursive definition, but its implementation
is, nonetheless, straightforward. The idea is to recursively construct “singleton” let
expressions, i.e., let expressions with exactly one identifier binding. The body of
each let is either another singleton let or the body of the original let* expression
as indicated by the recursive base case. Note that our definition does not use
unquote and quasiquote for clarity purposes; the symbolic expression is built using
list and local variable bindings.

Listing 8.334

(define let*?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (first exp) 'let*))))

(define desugar-let*
(letrec
([dl*-helper

(λ (vars vals body)
(cond
[(null? vars) body]
[else
(let ([curr-binding

(list
(list
(first vars)
(first vals)))]

[rest
(dl*-helper
(rest vars)
(rest vals)
body)])

(list 'let
curr-binding
rest))]))])

(λ (exp)
(let*
([bindings (second exp)]
[body (third exp)]
[vars (map first bindings)]
[values (map second bindings)])

(dl*-helper vars values body)))))

After including this recognizer/reducer pair in our root reducer, we can run a
test.

Listing 8.335

> (desugar
'(let* ([x 5]

[y 6]
[z (+ x y)])

(+ x y z)))

((lambda (x)
((lambda (y)
((lambda (z)
(+ x y z))

(+ x y)))
6))

5)

536

537 Imperative Programming

Let us take a detour from local variable desugaring and turn our attention to
cond. A cond expression is nothing more than a sequence of if expressions. Going
the other direction, an if expression is nothing more than a cond with only two
clauses. So, we could desugar either into the other, just like we could with let,
let*, and lambda, but we choose the former direction since it is more intuitive.
cond expressions may be represented as lists whose first is the symbol cond and
whose rest is a list of predicate/consequent pairings. We can extract these pairing
out, which we denote as cases, then collect these into separate lists. Finally, we
build symbolic if expressions, recursively, where the base case is the final clause in
the cond designated by the else keyword.

Listing 8.336

(define cond?
(λ (exp)
(and (cons? exp)

(>= (length exp) 2)
(eqv? (first exp) 'cond))))

(define desugar-cond
(letrec
([dc-helper

(λ (lop loc)
(cond
[(eqv? (first lop) 'else)
(first loc)]

[else
(let ([rest

(dc-helper (rest lop)
(rest loc))])

(list 'if
(first lop)
(first loc)
rest))]))])

(λ (exp)
(let* ([cases (rest exp)]

[lop (map first cases)]
[loc (map second cases)])

(desugar-cond-helper lop loc)))))

Listing 8.337

> (desugar
'(cond

[(eqv? x 5) 10]
[(zero? y) #f]
[else #t]))

(if (eqv? x 5)
10
(if (zero? y)

#f
#t))

There are a few other syntactic sugar forms that we could transform, and we
present those as exercises.

Exercise 8.64. (⋆)
In Chapter 6, we presented a form of function definitions that abstracts away
the lambda and asked readers to implement it into the interpreter. Add this form
to L∗SYNTAX. As a refresher, we provide an example, along with its desugared
counterpart, below.

Listing 8.338

> (desugar
'(define (! n)

(cond
[(zero? n) 1]
[else (* n (! (sub1 n)))])))

(define !
(lambda (n)
(if (zero? n)

1
(* n (! (sub1 n))))))

537

8.16 LMACRO: A Simple Macro System 538

Exercise 8.65. (⋆⋆)
and, as well as or, are specials form in our interpreter, but they can be equivalently
formed as a sequence of chained if expressions. Implement and/or into L∗SYNTAX.
We provide examples, along with their desugared counterparts, below.

Listing 8.339

> (desugar
'(and (odd? 4)

(even? 6)
(odd? 12)))

> (desugar
'(or (odd? 4)

(even? 6)
(odd? 12)))

(if (odd? 4) (if (even? 6)
(if (odd? 12) #t #f) #f) #f)

(if (odd? 4) #t (if (even? 6) #t
(if (odd? 12) #t #f)))

Exercise 8.66. (⋆⋆⋆)
Recall named let bindings from Chapter 6. A named let defines a locally-recursive
function with variable bindings that act as the formal parameters. Interestingly,
named let bindings can be desugared into letrec. Implement such a desugaring
function. Hint, remember that the number of bindings is equal to the number of
formal parameters that the defined procedure receives. The bound expressions act
as the arguments to the function.

Listing 8.340

> (desugar
'(let loop ([i 10])

(cond
[(zero? i) '()]
[else
(cons i (loop (sub1 i)))])))

(letrec
([loop

(λ (i)
(cond
[(zero? i) '()]
[else
(cons i (loop (sub1 i)))]))])

(loop 10))

Exercise 8.67. (⋆⋆⋆)
We have seen that Racket and Scheme allow the programmer to define functions
without an explicit lambda by wrapping the identifier in parentheses, e.g., (define
(foo x) ...). It is possible to return multiple functions, which unwrap as semi or
fully-curried functions. For instance, consider the following equivalence:

Listing 8.341

(define ((foo x) y) ...) (define foo
(λ (x)
(λ (y)
...)))

Each layer of parentheses desugars into a lambda. Extend L∗SYNTAX to support
this form of desugaring. Note that desugaring a function written like this should
still support a λ-defined function, for example:

538

539 Imperative Programming

Listing 8.342

(define (((foo x y) z w) v)
(λ (u)
...))

(define foo
(λ (x y)
(λ (z w)
(λ (v)
(λ (u)
...)))))

Exercise 8.68. (⋆⋆⋆)
We can auto-curry a function by desugaring its definition into a series of one-
argument functions. Taking the following definition of foo, we can curry it into a
long chain of λ expressions.

Listing 8.343

(define foo
(λ (x y)
(λ (z w)
(λ (v)
(λ (u)
...)))))

(define foo
(λ (x)
(λ (y)
(λ (z)
(λ (w)
(λ (v)
(λ (u)
...)))))))

Write a function that desugars a function, written with only lambda terms, into its
curried counterpart.

Exercise 8.69. (⋆⋆⋆)
begin, strangely enough, is also transformable. Its desugared form is a little less
obvious at first, but the idea is to evaluate each expression in the begin body
sequentially, while only caring about the result of the final expression. We may
represent this idea with chained function application, where we pass the return
value of an expression to subsequent lambda definitions without using the value.
Implement begin into L∗SYNTAX. We provide an example, along with its desugared
counterpart, below.

Listing 8.344

> (desugar
'(begin (set! x 10)

(+ 20 20)
(set! y 30)
(* 40 40)))

((lambda ()
((lambda (_)
((lambda (_)
((lambda (_)
((lambda (_) _)
(* 40 40)))

(set! y 30)))
(+ 20 20)))

(set! x 10))))

539

8.16 LMACRO: A Simple Macro System 540

Exercise 8.70. (⋆⋆⋆⋆⋆)
letrec is the hardest form to reduce, but we know how because of the explanation
from Chapter 6. Implement letrec into L∗SYNTAX. We provide two examples,
along with their desugared counterparts, below. Our desugared counterparts are
recursively desugared from let into lambda. Hint: you will need to generate new
symbols for each recursive function definition. It may be a good idea to implement
gensym as an interpreter-level function, callable from L∗SYNTAX, so as to get a seem-
ingly hygienic transformation. Consequently, the generated symbols that we show
will almost certainly be different from those from your interpreter. You will also
have to write a desugar-lambda function in order to desugar lambda procedure
bindings within the letrec construct. This should not be difficult, though, as it
only requires a structural reconstruction of the lambda term, its formal parameters,
and desugaring its body.

Listing 8.345

> (desugar
'(letrec ([fact

(lambda (n)
(cond
[(zero? n) 1]
[else
(* n

(fact
(sub1 n)))]))])

(fact 5)))
> (desugar

'(letrec ([is-even?
(lambda (n)
(or (zero? n)

(is-odd?
(sub1 n))))]

[is-odd?
(lambda (n)
(and (not (zero? n))

(is-even?
(sub1 n))))])

(is-odd? 11)))

((lambda (fact)
((fact fact) 5))

(lambda (g79037)
(lambda (n)
(if (zero? n)

1
(* n ((g79037 g79037)

(sub1 n))))))))

((lambda (is-even?)
((lambda (is-odd?)
((is-odd? is-even? is-odd?) 11))

(lambda (g85495 g85496)
(lambda (n)
(and (not (zero? n))

((g85495 g85495 g85496)
(sub1 n)))))))

(lambda (g85495 g85496)
(lambda (n)
(or (zero? n)
((g85496 g85495 g85496)
(sub1 n))))))

Exercise 8.71. (⋆⋆⋆⋆)
Some compilers optimize their instructions to use administrative normal form, or
ANF [Sabry and Felleisen, 1992a]. Administrative normal form rewrites complex
expressions, e.g., (+ (* 23 45) (- 17)), into ones that define temporary local
variables for function calls.1 The above example might be rewritten as follows:2

Listing 8.346

> (anf '(+ (* 23 45) (- 17)
(empty-env)))

(let ([t0 (* 23 45)])
(let ([t1 (- 17)])
(+ t0 t1)))

We can syntactically transform let expressions as well. Note that we do not
transform expressions that resolve to atomic/self-evaluating values, i.e., numbers,
booleans, or symbols.

1This exercise is inspired by two compiler transformations from Siek’s Essentials of Compila-
tion [Siek, 2023].

2Our code is not exactly in ANF due to allowing let blocks as the right-hand side of an identifier
binding.

540

541 Imperative Programming

Listing 8.347

> (anf
'(let ([x (* (- (+ 25 y)))])

(let ([z (+ (- x) (- y))])
(+ (* x x) (+ (* y y) (* z z)))))

(empty-env))

(let ([x
(let ([t0 (+ 25 y)])
(- t0))])

(let ([z
(let ([t1 (- x)])
(let ([t2 (- y)])
(+ t1 t2)))])

(let ([t3 (* x x)])
(let ([t4
(let ([t5 (* y y)])
(let ([t6 (* z z)])
(+ t5 t6)))])

(+ t3 t4)))))

Within local blocks, bindings that ultimately reduce to atomic non-symbol val-
ues should reduce to themselves. For instance, (let ([y 10]) y) reduces to 10.1
On the other hand, do not desugar (let ([y z]) y) into z. Write the anf root
reducer function, which receives a quoted expression and returns its ANF equiva-
lent. You only need to consider numbers, booleans, symbols, addition, subtraction,
multiplication, unary negation, and let bindings.2 Hint: write a function that
generates a new unique symbol each time it is invoked using closures. In the next
section, we will introduce gensym: a function at the interpreter-level that shares a
similar role.

1If we were to desugar this let into a lambda, we would see that we perform an application on the
identity function.

2What purpose does this seemingly verbose form serve, you might wonder? In transforming the
program to ANF, we are presented with the explicit control flow of variables and expressions, which
simplifies the writing of low-level instructions. Such rewriting is sometimes also referred to as static-
single assignment, or three-address code [Aho et al., 2006].

541

8.17 L∗
MATCH: A Pattern Matcher 542

8.17 L∗MATCH: A Pattern Matcher

Many programming languages offer the ability to pattern match expressions. That
is, given an arbitrary expression exp, we can determine its structure and manipulate
it accordingly. Here’s an example of something we may be able to do in another
language.

Listing 8.348

(match-pattern '(+ 2 3)
[n (guard? (number? n)) (* n n)]
[y (guard? (symbol? y)) y]
[(+ a a) (+ a a a a)]
[(+ a b) (+ a b)]
[_ #f]) => 5

Here we have a fairly complex function. match-pattern is a function of two
arguments: an expression to pattern match, and a list of patterns and qualifiers.
Patterns are expressions to match against; if the given expression is “bindable” to
the pattern, then it is deemed matchable. We can bind an expression to a pattern
if and only if exactly one of the following properties holds true:

1. The expression and pattern are both numbers, strings, booleans, or characters
and they are equal (according to eqv?), OR

2. The pattern is a symbol that has not been bound yet by the current context,
OR

3. The expression and pattern are both keywords and they are equal (according
to eqv?), OR

4. Both the expression and the pattern are lists each of whose elements are re-
cursively matchable.

And the following property is true: If there is a (guard? gpred) inside the
pattern and qualifier, then its predicate, namely gpred, is true under the current
context.

We introduced a lot of things with these rules. What exactly do we mean by
“bound” and “the current context”? Well, we can think of the context in terms of
an environment—take the expression '(1 2 3) and the pattern (x y z). Because
both are lists, we follow rule 3 and recursively try to match their elements. When
matching on 1 and x, we follow rule 2. At the start of a pattern match, the current
context is empty. Since this is the case at the start of the rule, x has no binding
expression, meaning we can extend the context to include the binding of x 7→ 1.
Then, if we find another occurrence of x in the pattern, we check to make sure its
corresponding expression is 1 and, if not, return a failed match.

A guard? is straightforward: in order for the match to succeed, the predicate
specified by guard? must be true under the current context. Otherwise, the match
fails.

542

543 Imperative Programming

This is a fairly complex nested interpreter and, in fact, requires us to use one of
our other nested interpreters, namely L∗CLOSURE: our representation-independent
(with respect to environments and closures) value-of nested interpreter. We will
build L∗PATTERN: a nested interpreter that allows the programmer to define patterns
like the one above.

In designing this function we will start very, very small. Our first match function
will only recognize self-evaluating expressions, i.e., expressions defined by property
1. Recall that match receives two arguments: a quoted expression and a list of
patterns.

We will start with find-match: a function that receives an Expr and a list of
Patterns. It returns an Expr if the given Expr pattern matches a Pattern, and false
otherwise. The returned Expr corresponds directly to the expression to evaluate if
a pattern match is successful.

Listing 8.349

; A Pattern is an Expr.

;; find-pattern : Expr [ListOf Pattern] -> Expr
;; Returns the expression-to-evaluate in the case of a successful match.
(define find-match
(λ (exp lpat)
(let ([curr-pair (first lpat)]

[curr-pat (first curr-pair)]
[curr-exp (second curr-pair)])

(cond
[(null? patterns) #f]
[(matches? exp curr-pat) curr-exp]
[else (find-match exp (rest lpat))]))))

find-match calls matches? with a specific Pattern. Because matches? is the
meat of the algorithm, so to speak, we will write it next.

matches? receives an Expr: namely, the expression to match, and a Pattern.
Again, to simplify the starting matcher, we only match against self-evaluating ex-
pressions.

Listing 8.350

;; matches? : Expr Expr -> Boolean
;; Determines if a given expression matches the given pattern.
;; Note that "pat" is not a Pattern, but rather the fst of a pattern.
;;
;; Four matching conditions:
;; 1. exp is not a symbol and it is eqv to the pattern.
;; 2. Only pat is a symbol and it either does not contain
;; a binding of the symbol in its context or, if it does,
;; the expression is eqv? to the pattern's stored expr.
;; 3. If the two symbols are "keywords" and are eqv?.
;; 4. Both exp and pat are lists and each element returns
;; #t when invoked with matches?.
(define matches?
(λ (exp pat)
(cond
[(and (not (symbol? exp)) (eqv? exp pat)) #t]
[else #f])))

543

8.17 L∗
MATCH: A Pattern Matcher 544

Lastly, we will write the “root” initialization function: match-pattern, which
receives an Expr and a ListOf Patterns and calls find-match. We want to eval-
uate the expression returned by find-match. So, we hand it off to our value-of
evaluator.

Listing 8.351

(define match-pattern
(λ (exp patterns)
(value-of (find-match exp patterns ctx) (empty-env))))

Calling match-pattern with a very simple expression yields predictable results
(note that this requires amending the root value-of dispatch function to include
strings as self-evaluating expressions).

Listing 8.352

> (match-pattern '3
'([4 "It is four"]

[5 "It is five"]
[3 "It is three!"]
[#t "It is true!"]))

"It is three!"

Let us ramp up the complexity a bit by introducing symbols. To do so we must
talk a bit more about contexts. Contexts are similar to environments; contexts map
variable bindings to expressions. If the pattern matcher encounters a symbol inside
a Pattern, we check to see if it already exists inside the context as a binding. If so,
we verify that its expression is eqv? to the checking expression. On the other hand
(i.e., if it is not bound), we append the symbol and the current “checking expression”
to the context (by checking expression, we mean the expression to evaluate after a
successful match). We need to update all our functions to now receive contexts as an
argument (except for match-pattern). The reason we make an explicit distinction
between contexts and environments is because we will soon use environments when
evaluating certain pieces of patterns.

Listing 8.353

; A Context is a (Box [ListOf [PairOf Expr Pattern]])

;; matches? : Expr Expr Context -> Boolean
;; Determines if the expression matches the pattern with the context.
(define matches?
(λ (exp pat ctx)
...))

;; find-pattern : Expr [ListOf Pattern] Context -> Expr
;; Recursively attempts to match the expression to each pattern.
;; If a match fails, the context is reset and we try the next pattern.
(define find-match
(λ (exp patterns ctx)
...))

544

545 Imperative Programming

Because our context changes over time, we will need to store it in a box. We
cannot return a context from functions since they already have values/results to
return. Therefore, the initial call to find-match must wrap the empty context in
a box. Moreover, inside the body of find-match, we need to reset the context to
the empty context before attempting to match on the next available pattern. We
do this so variables that are bound in a previous pattern are not bound in the new
pattern.

Listing 8.354

(define find-match
(λ (exp patterns ctx)
(cond
[(null? patterns) #f]
[else
(let* ([curr-pair (first patterns)]

[curr-pat (first curr-pair)]
[curr-exp (second curr-pair)])

(cond
[...]
[else
(begin
(set-box! ctx '())
(find-match exp (rest patterns) ctx))]))])))

When working with a context, we must apply the context to a symbol to deter-
mine its existence as a binding (note the connection to apply-env). apply-context?,
a new function, performs two actions: first, it determines if a binding exists and
returns true or false depending on the given checking expression. If the binding
does not exist, it extends the context to include this new binding and automatically
returns true because we implicitly state that the binding is successful, since there
was no preexisting binding. In other words, it is analogous to saying, “we did not
find a match, so we will create it ourselves”.

Listing 8.355

;; apply-context? : Expr Expr Context -> Boolean
;; Searches for an expression (the Pattern fst) in the given context.
(define apply-context?
(λ (exp pat ctx)
(let ([res (assv pat (unbox ctx))])
(cond
[(eqv? res #f)
(begin
(set-box! ctx (cons (cons pat exp) (unbox ctx)))
#t)]

[else (eqv? (rest res) exp)]))))

Now we add cases to matches? that recognize symbols. If the pattern is a
symbol, we call apply-context?. For the moment, it is difficult to understand why
we write such a handler. In due time, however, the reasoning will become clear.

Listing 8.356

(define matches?
(λ (exp pat ctx)
(cond
[...]
[(symbol? pat) (apply-context? exp pat ctx)]
[else #f])))

545

8.17 L∗
MATCH: A Pattern Matcher 546

Adding a new test is always beneficial.

Listing 8.357

> (match-pattern 'x
'([n "n is returned"]

[1 #t]
[2 #f]
[x (+ 100 200)]))

"n is returned"

The previous test may raise some eyebrows. This behavior, however, is to be
expected—n is an arbitrary symbol that we want to bind to x. The empty context
does not contain a binding of n, meaning it successfully binds and matches x.

We now turn our attention to guarded patterns. A guarded pattern is a pattern
that has three elements, where the second is a guard? predicate. Let us write its
recognizer.

Listing 8.358

;; guard-pattern? : Pattern -> Boolean
;; Determines if the given Pattern contains a (guard? ...) clause as its snd.
(define guard-pattern?
(λ (pat)
(and (cons? pat)

(= (length pat) 3)
(cons? (second pat))
(eqv? (first (second pat)) 'guard?))))

Then, we update find-match to call match-guarded? if it encounters a guarded
pattern. Note that, in order to resolve the expression bound to a guarded pattern,
the pattern must, of course, be guarded, but it must also successfully match. We
express this with and as well as not. Another necessary alteration is to remove the
let* binding for curr-exp since the second of a Pattern is no longer guaranteed
to be the resulting expression to resolve.

Listing 8.359

(define find-match
(λ (exp patterns ctx)
(cond
[(null? patterns) #f]
[else
(let* ([curr-pair (first patterns)]

[curr-pat (first curr-pair)])
(cond
[(and (guard-pattern? curr-pair) (matches-guard? exp curr-pair ctx))
(third curr-pair)]

[(and (not (guard-pattern? curr-pair)) (matches? exp curr-pat ctx))
(second curr-pair)]

[else ...]))])))

546

547 Imperative Programming

Finally, we write matches-guarded?, which evaluates the guard predicate and
invokes matches?. Again, both must return true for matches-guarded? to return
true. Though, this brings to attention the idea of a “merged context”. We must
evaluate gpred, i.e., the guarded predicate, to determine if the guard holds true.
In doing this, we evaluate it using value-of, but we cannot just use the current
context because we lose the bindings from the “base” or empty environment for
the evaluator. So, we create a representation-independent merge-env function that
receives two environments (where the latter may be a context) and conjoins the
latter bindings onto the former. To demonstrate, we include its definition and a
relevant test.1

Listing 8.360

(define merge-env
(λ (new old)
(cond
[(null? new) old]
[else (cons (first new)

(merge-env (rest new) old))])))

(define env1 `((x . 5) (y . 6) (z . 7)))
(define env2 `((+ . ,+) (- . ,-)))

> (merge-env env1 env2) ((x . 5) (y . 6) (z . 7)
(+ . ,+) (- . ,-))

Listing 8.361

;; matches-guard? : Expr Pattern -> Boolean
;; Determines if the expression matches the given guarded Pattern.
(define matches-guard?
(λ (exp pat ctx)
(let ([p (first pat)]

[gexpr (rest pat)]
[logpred (first gexpr)]
[gpred (first (rest logpred))])

(and (matches? exp p ctx)
(value-of gpred (merge-env (unbox ctx) (empty-env)))))))

Because a guard? receives an arbitrary expression, we must update the base
evaluation environment to contain predicates we may use in a pattern matcher.
We only include four primitive predicates, but we encourage the readers to add
more should they see fit. Instead of using (and polluting) empty-env, we extend
a “base” environment to include primitives. This results in empty-env remaining
true to its name (note that we need to update apply-context? to include the base
environment rather than empty).

Listing 8.362

(define base-env
(λ ()
(extend-env 'number? number?
(extend-env 'symbol? symbol?
(extend-env 'string? string?
(extend-env 'boolean? boolean? (empty-env)))))))

(define empty-env
(λ ()
'()))

1Does this definition look suspiciously similar to another function, perhaps append? If so, then your
intuition is correct; we could define merge-env as append and it achieves an identical functionality.

547

8.17 L∗
MATCH: A Pattern Matcher 548

Another test is warranted:

Listing 8.363

> (match-pattern '5
'([n (guard? (number? n)) (+ n n)]

[y (guard? (symbol? y)) y]
[s (guard? (string? s)) "It is a string!"]
[b (guard? (boolean? b)) "It is a boolean!"]))

10

Next, we take care of matching against “keywords”. Keywords are any operation
defined at the meta-interpreter level. For instance, first, rest, and so on are all
“keywords”, in this sense. Therefore if we encounter a keyword, we should not
attempt a rebinding. Instead, we need to check if it matches the symbol defined by
the checking expression. We defined a list of keywords below and an accompanying
recognition predicate. All that is necessary is an amendment to matches? that
adds a case for handling keywords.

Listing 8.364

(define keywords '(first rst cons + - / * list? null? number? symbol? boolean?
string? char? lambda define))

(define keyword?
(λ (exp keywords)
(memv exp keywords)))

(define matches?
(λ (exp pat ctx)
(cond
[(and (keyword? exp keywords) (keyword? pat keywords))
(eqv? exp pat)]

[...])))

Matching keywords by themselves, though, is somewhat meaningless. It would
be much better if we could match, say, quoted applications! The last criterion,
namely pattern matching lists, is perhaps one of the easiest since it has well-defined
clauses.

We define matches-list? which receives a list (of expressions) lexp, a list of
expressions defined as a pattern lpat, and a context. Our four clauses/cases are as
follows:

1. If both lists are empty, then they match because the empty list matches the
empty list.

2. If exactly one of the lists is non-empty, we return false, because an empty list
does not match a non-empty list.

3. If the first of lexp matches the first of lpat, recursively match the rest of the
list against the pattern.

4. Otherwise, return false.

Determining if exactly one of the lists is non-empty is easy but requires redundant
code if we use the naive approach. We can, instead, use exclusive-or (xor) to test
this property (note that, to use xor, you will need to define a L∗MATCH function
apply xor).

548

549 Imperative Programming

Listing 8.365

;; matches-list? : [ListOf Expr] [ListOf Expr] -> Boolean
;; Recursively determines if each element of a list expression
;; match to each element of the pattern list. The second argument
;; is not a Pattern; just a list of expressions.
(define matches-list?
(λ (lexp lpat ctx)
(cond
[(and (null? lexp) (null? lpat)) #t]
[(xor (null? lexp) (null? lpat)) #f]
[(matches? (first lexp) (first lpat) ctx)
(matches-list? (rest lexp) (rest lpat) ctx)]

[else #f])))

Now we add a clause for list matching inside matches? as follows:

Listing 8.366

(define matches?
(λ (exp pat ctx)
(cond
[...]
[(and (cons? exp) (cons? pat))
(matches-list? exp pat ctx)]

[else #f])))

At long last, we run the original provided test case and get 5 as the result.

Listing 8.367

> (match-pattern '(+ 2 3)
'([n (guard? (number? n)) (* n n)]

[y (guard? (symbol? y)) y]
[(+ a a) (+ a a a a)]
[(+ a b) (+ a b)]
[_ #f]))

5

Another detail about variable bindings is that the bindings, themselves, are
significant only if they are reused in a Pattern. For example, consider the following
invocation of match-pattern:

Listing 8.368

(match-pattern (+ 5 5 5 5)
'([(+ x y z w) 1000]

[(+ x x x x) 2000]
[(+ x y x y) 3000]))

It may be tempting to say that the above match resolves to 2000, since the
second case binds x to 5 and the only number that exists in the given expression is 5.
Thinking this way, however, gets us in trouble since it suggests a misunderstanding
of how bindings occur. Consider the first pattern to match: (+ x y z w). We bind
x to 5, y to 5, z to 5, and w to 5. None of these variables are reused later in the
pattern, meaning there are no conflicting usages and, therefore, this match succeeds,
producing 1000. If we want to consider only the case where all variables are equal,
we need to make one of two alterations: either move the (+ x x x x) pattern to
the top, or add and and eqv? clauses to our evaluator (this is an exercise to the
reader). Reordering the clauses as follows produces our desired result of 2000, but
this, in actuality, does nothing to prevent, say, a “faulty match” of (+ x y z w),
in which using a guard is mandatory.

549

8.17 L∗
MATCH: A Pattern Matcher 550

Listing 8.369

(match-pattern (+ 5 5 5 5)
'([(+ x x x x) 2000]

[(+ x y z w) 1000]
[(+ x y x y) 3000]))

On a related note, is often handy to have a “wild card” match, i.e., a match that
always succeeds. In Listing 8.364, we denote the wild card match as the underscore
‘ ’ symbol. Choosing the underscore as the wild card symbol is a completely
arbitrary selection, but we label it as such since it denotes that we care so little
about the result so as to not explicitly name the bound variable. So, we can add a
clause in matches? that returns true if we encounter the wild card symbol.

Listing 8.370

(define wildcard '_)

(define matches?
(λ (exp pat ctx)
(cond
[(eqv? wildcard pat) #t]
[...])))

We may use the wildcard in several ways. For instance, we might use it to
indicate a failed match.

Listing 8.371

> (match-pattern '(cons (cons 10 20) (cons 20 10))
'([(cons (cons x y) (cons x y)) (+ x y)]

[(cons (cons y x) (cons x y)) (* x y)]
[(cons (cons (cons x y) x) (cons x y)) 1000]
[_ (print "Invalid match!")]))

200

This pattern matcher is not very elegant nor will it annihilate any “professional”
pattern matcher, but it goes to show how much we can truly express in our lan-
guages!

Exercise 8.72. (⋆⋆)
Our pattern matcher does not recognize symbols as input. For instance, if we want
to check that our input is a literal symbol, we would need to quote it. Unfortunately,
“double-quoted” expressions are complicated to implement. Thus, the solution is
to use the quote function as follows:

Listing 8.372

> (match-pattern 'x
'([y (guard? (eqv? y (quote x)))

"The symbol is x!"]
[y (guard? (eqv? y (quote z)))
"The symbol is z!"]

[_ "I do not know this symbol"]))

"The symbol is x!"

This exercise consists of two small parts: first, add quote to the evaluator.
Then, implement eqv?. Both of these come with respective recognizer and reducer
functions, neither of which should be complex. Notice that this also gives us the
flexibility of guarding over eqv? data.

550

551 Imperative Programming

Exercise 8.73. (⋆⋆)
Add the empty list () to value-of. That is, write the recognizer empty? and
the reducer value-of-empty. In doing so, we can write patterns that contain the
empty list if we, for instance, want to construct a pattern that reverses a list of
three distinct elements. Note that, in order to use the empty list, we must quote it
via quote as we would otherwise with '.

Listing 8.373

> (match-pattern '(1 2 3)
'([(x y z) (cons z (cons y (cons x (quote ()))))]

[_ #f]))

(3 2 1)

Exercise 8.74. (⋆⋆⋆⋆)
Using a nested evaluator, i.e., value-of, severely hinders the capabilities of our
pattern matcher. A better solution would be to use eval, but it is a bit more diffi-
cult because eval does not use an environment to look up symbol mappings. What
we need, instead, is to substitute the bound symbols in the environment for those
matched inside a pattern. For example, consider matching the pattern containing
a guard expression (x y) (guard? (< x y)) (* x y)) with the expression '(5
6). If we substitute x and y for 5 and 6 respectively in the result clause, we get (*
5 6), which can be evaluated using eval. Implement this feature into the pattern
matcher. Hint: this exercise is particularly tricky and requires a careful understand-
ing of how eval works. Any substitutions made must account for quoted symbols
and applications. E.g., attempting to match the symbol 'z to the pattern x needs
to bind x to an explicitly quoted z. There are two places where evaluation occurs:
after a successful pattern match and when encountering a guard? clause following
a successful pattern match. To get started, write a match-subst function that re-
ceives three arguments: an expression, a pattern, and an environment containing
variable bindings. Assume that the expression indeed matches the pattern, so all
that needs to happen is a substitution. We present some examples below to serve
as a guide.

Listing 8.374

> (match-subst '(+ 2 3)
'n
'())

> (match-subst '(+ x y)
'(+ x y)
'((x . 2) (y . 3)))

> (match-subst '(cons x y)
'(cons x y)
'((x . 1) (y . 2)))

> (match-subst '3
'3
'())

> (match-subst '(number? n)
'(number? n)
'((n . (+ 2 3))))

> (match-subst '(eqv? y (quote x))
'y
'((y . (quote x))))

(+ 2 3)

(+ 2 3)

(cons 1 2)

3

(number? '(+ 2 3))

(eqv? (quote x)
(quote x)))

551

8.17 L∗
MATCH: A Pattern Matcher 552

Exercise 8.75. (⋆⋆⋆⋆)
Assuming that quoted expressions work (in the pattern matcher) without a hitch,
this exercise should be a breeze! Implement a series of pattern matches to compute
the sum of a sequence of numbers in a list. Your solution should be recursive and
part of a function definition that uses match-pattern.

Listing 8.375

> (match-pattern
'(cons 10

(cons 20
(cons 30
(cons 40
'(quote ())))))

'([...]
[_ #f]))

100

552

553 Imperative Programming

8.18 L∗SCHELOG: Logic Programming

Suppose we have a “fact” database that stores information in the following format:

Listing 8.376

(child joe bob) (child steve joe) (child stephanie pauline)
(child jonah alfred) (child john carlos) (child breanna megan)
(male joe) (male bob) (male steve)
(male jonah) (male alfred) (male john)
(male carlos) (female stephanie) (female pauline)
(female breanna) (female megan)

This database stores facts as predicates in prefix form. E.g., (child john
carlos) indicates that john is a child of carlos. Similarly, (female breanna)
indicates that breanna is female. What if we wanted to determine relationships
about these individuals? For instance, we could write a rule to determine if someone
is a mother of someone else as follows:

Listing 8.377

(mother X Y) ← (child Y X) (female X)

The above rule reads as X is the mother of Y if Y is the child of X and X
is female. X and Y are variables that can be substituted for constants during
evaluation. If we execute a query on the database, e.g., (mother X Y), we will
receive a list of all solutions for X and Y that satisfy the mother rule. In the
previous database of facts, we see that (X=pauline, Y=stephanie) and (X=megan,
Y=breanna) are both solutions, so a list containing this tuple would be returned.
Similarly, we can write queries that determine the truthfulness of a claim. For
example, if we want to see whether pauline is a child of joe, we would run (child
pauline joe). In this instance the query should return ⊥ because this relation
does not hold. Conversely, (male carlos) returns ⊤ because this relation does
hold. In this section, we will explore logic programming and how to write a simple
nested interpreter for a language that interprets this style of programming.

Logic programming is commonly used as a form of declarative programming .
That is, instead of writing expressions that evaluate to a result, one presents a
list of rules and facts that compose the way to design and derive other facts and
information. In the previous paragraph, we described a logic programming language
almost identical in style to Prolog: a historical favorite among the early artificial
intelligence community. To design a language like Prolog is not very difficult as we
will show.1 We will write this nested language in a series of disjoint functions that,
in the end, conjoin into our final product.

First, we need to discuss how we will encode and represent information within
our system. Namely, we need to distinguish between constants and variables, as
well as facts and rules. Since we are working with the schemata of our previous
interpreters, let us say that variables are lists of the form (V X) where X is any
symbol. Constants are anything else, e.g., child, samantha, and so on. Terms
are any composition of variables and constants, e.g., (foo (V X) (bar (baz (V
Y)))). Let us write the accompanying recognizers.

1Optimizing such a language, however, is a challenge!

553

8.18 L∗
SCHELOG: Logic Programming 554

Listing 8.378

(define const?
(λ (tm)
(or (symbol? tm)

(null? tm))))

(define var?
(λ (tm)
(and (cons? tm)

(eqv? (first tm) 'V))))

Next, we want a function that extracts all variables from a term. We will write
a function get-vars to do so. get-vars makes use of the higher-order function
filter to extract out all variables from a term. There is the added issue in that a
term may be made up of sub terms, e.g., (foo (bar (baz (V 3)))). A potential
solution is to flatten the list which removes any and all nested lists. Using flatten
seems like a solid option until we realize that it also flattens variables! So, we need
to amend the definition of flatten to account for variables and not recursively flatten
them. From this, the definition of get-vars reveals itself.

Listing 8.379

(define flatten
(λ (lst)
(cond
[(null? lst) '()]
[(not (cons? lst)) (cons lst '())]
[(and (cons? (first lst)) (eqv? (first (first lst)) 'V))
(cons (first lst) (flatten (rest lst)))]

[else (append (flatten (first lst))
(flatten (rest lst)))])))

;; get-vars : Term -> [ListOf Term]
;; Extracts all variables of the form (V ...) from a
;; term if any exist.
(define get-vars
(λ (lst)
(filter var? (flatten lst))))

Now, we turn to the fundamental piece of any logic programming system: unify.
We wrote something similar to unify in our pattern matcher. This time, though,
it will return an environment where its inputs u and v are successfully unified, or
false if the unification failed. There are a few sub-parts to unification. First, if the
environment is false, then we immediately return false. Second, if u is a variable,
we attempt to match u with v, and the converse is true for v. If either u or v
(or both) is a constant, then we return the existing environment if they are equal,
designating that they are already unified and false otherwise. Lastly, we encounter
the case when u and v are both lists which need to be unified recursively. Since the
environment of a unification updates in between calls to unify, we pass it along to
the recursive unification of the rest of u and v.

554

555 Imperative Programming

Listing 8.380

;; unify : Term Term Environment -> Environment
;; Returns an environment where a successful unification
;; occurred, or #f otherwise.
(define unify
(λ (u v env)
(cond
[(false? env) #f]
[(var? u) (match-var u v env)]
[(var? v) (match-var v u env)]
[(or (const? u) (const? v))
(cond
[(equal? u v) env]
[else #f])]

[else
(let* ([envˆ (unify (first u) (first v) env)]

[envˆˆ (unify (rest u) (rest v) envˆ)])
envˆˆ)])))

Next we write match-var: a function that receives a variable v, a pattern to
match against p, and an environment env; it returns an environment with the vari-
able “matched against” the pattern. If v and p are equal, then it means that we do
not need to amend the environment, meaning we simply return env. Otherwise, we
retrieve the associated pattern with the given variable. If there is no association,
it means we can try to unify the pattern with p. Otherwise, we return an environ-
ment where v and p are associated. Notice that unify and match-var are mutually
recursive, i.e., they call each other. One additional note about this function, which
is extremely subtle, is that we use assv for looking up a value in an association list.
assv under the hood, as we know, uses eqv? for comparison. We need to write a
new function assoc that uses equal?.

Listing 8.381

;; assoc : Any [ListOf [PairOf Any Any]] -> Boolean/[PairOf Any Any]
;; Finds an association of the input v in an association list
;; ls using equal? for comparison. Returns #f is no association is found.
(define assoc
(λ (v ls)
(cond
[(null? ls) #f]
[else
(let ([pair (first ls)])
(cond
[(equal? (first pair) v) (first ls)]
[else (assoc v (rest ls))]))])))

;; match-var : Term Term Environment -> Environment
;; Returns an environment where v and p are associated.
(define (match-var v p env)
(cond
[(equal? v p) env]
[else
(let ([binding (assv v env)])
(cond
[(not (false? binding)) (unify (second binding) p env)]
[else (cons (list v p) env)]))]))

555

8.18 L∗
SCHELOG: Logic Programming 556

Notice one easy-to-overlook distinction from assv: we have this function ‘equal?’;
why not ‘eqv?’? Here is the thing: eqv? checks only individual terms for equality,
e.g., (eqv? v 50), (eqv? #f #t), and so on. We need a function that deter-
mines if lists are equivalent, i.e., have the same elements, including nested lists. It
is time we introduce equal?: a function identical to eqv? with the added benefit
of checking lists for equality.

Writing this function brings nothing new to the table; natural recursion is always
to the rescue.

Listing 8.382

;; list-eqv*? : {X} {Y} [ListOf X] [ListOf Y] -> Boolean
;; Determines whether all elements of two lists are identical.
;; This function also works on recursive/nested lists.
(define list-eqv*?
(λ (ls1 ls2)
(cond
[(and (null? ls1) (null? ls2)) #t]
[(equal? (first ls1) (first ls2))
(list-eqv*? (rest ls1) (rest ls2))]

[else #f])))

;; equal? : {X} {Y} X Y -> Boolean
;; Determines if two "things" are equal. Two "things" are equal
;; iff they are either eqv? or they are equivalent lists.
(define equal?
(λ (a b)
(cond
[(eqv? a b) #t]
[(and (cons? a) (cons? b)) (list-eqv*? a b)]
[else #f])))

Next, we write expand which receives a term and an environment. It returns
a term with all variables substituted for the constants that are unified with the
variables in the given environment. For instance, expanding (child (V Y) (V X))
with the environment '((X joe) (Y bob)) returns the term (child joe bob).

Listing 8.383

;; expand : Term Environment -> Term
;; Receives a term of two variables and an environment
;; with these variables unified and returns a term where the
;; variables are substituted with the constants.
(define expand
(λ (tm env)
(cond
[(null? env) tm]
[else
(let* ([binding (first env)]

[var (first binding)]
[const (second binding)])

(expand (subst var const tm) (rest env)))]))

expand makes use of a helper function: subst, which receives a variable, a
constant, and its “parent” term. If the term is only a constant, we return the term
itself. If the term is a variable, we return u if tm is equal? to v and tm otherwise.
If neither of these are true, then tm is a more complex term that must be recursively
substituted. So, we make clever use of map; each element of the term is substituted
individually and reconstructed via map.

556

557 Imperative Programming

Listing 8.384

;; subst : Term Term Term -> Term
;; Attempts to substitute a variable v with a replacement
;; term u in some term tm. If the variable occurs, we return
;; u, and otherwise return tm.
(define subst
(λ (v u tm)
(cond
[(const? tm) tm]
[(var? tm)
(cond
[(equal? tm v) u]
[else tm])]

[else (map (λ (t) (subst v u t)) tm)]))

Now we will write four functions for cleaning up the output. The first two of
these are expand-binding and extend-env. The former receives a binding and an
environment and returns a cons pair whose first is the first of our binding, i.e., the
variable, and whose rest is the expanded rest of binding. The latter receives a
term and an environment and calls extend-binding on each element of the term.

Listing 8.385

(define extend-binding
(λ (binding env)
(cons (first binding) (expand (rest binding) env)))

(define extend-env
(λ (e env)
(map (λ (binding) (extend-binding binding env)) e))

Up next is collapse-env, which performs a technique called environment re-
duction. That is, suppose we have two solutions to a query such as the following:
(foo (V (V M) 2))) ((V (V M) 2) (foo x)). We see that (V (V M) 2) binds
foo x, meaning we can substitute the “binder” into the first solution and omit the
second altogether, thereby producing (foo (foo x)).

Listing 8.386

;; collapse-env : Environment -> Environment
;; Reduces all variable occurrences to their bound constants
;; in a term, if they exist.
(define (collapse-env env)
(let* ([new-env (extend-env env env)])
(cond
[(equal? env new-env) new-env]
[else (collapse-env new-env)])))

Lastly we have filter-vars which filters out any non-variables from an envi-
ronment, e.g., variables unified with other variables, meaning our solutions specify
variable bindings to constants and only constants.

Listing 8.387

;; filter-vars : Environment [ListOf Term] -> [ListOf Term]
;; Removes all non-variable bindings from a list of terms.
(define filter-vars
(λ (env vars)
(filter (λ (v) (member? (first v) vars)) env))

557

8.18 L∗
SCHELOG: Logic Programming 558

Now come the functions that tie everything together: search and query. The
former is much more complex, so we will explain it thoroughly. search receives
a database of facts db, a list of goals goals, an environment env, and a “recursive
depth” d. First we handle the base case: if there are no more goals to solve, we
wrap the environment in a list.

Listing 8.388

;; search : [ListOf Term] [ListOf Term] Environment Number -> [ListOf Environment]
;; Recursively searches for solutions to the given goals.
(define search
(λ (db goals env d)
(cond
[(null? goals) (list env)]
[else ...]))

Next, we will use another higher-order function to collect results as they are
found: foldl. The binary function provided will receive a clause and the accu-
mulating value. We proceed by renaming the clause with a depth identifier to
“uniquify” the variable. Then, we retrieve the head and body of the clause and
attempt to unify the first goal with the head.

Listing 8.389

;; uniquify : Term Symbol -> Term
;; Renames all terms within a given term with a given value.
(define uniquify
(λ (tm name)
(cond
[(const? tm) tm]
[(var? tm) (list 'V v n)]
[else (map (λ (t) (uniquify t name)) tm)]))

;; search : [ListOf Term] [ListOf Term] Environment Number -> [ListOf Environment]
;; Recursively searches for solutions to the given goals.
(define search
(λ (db goals env d)
(cond
[(null? goals) (list env)]
[else
(foldl
(λ (clause acc)
(let* ([fresh (uniquify clause d)] [head (first fresh)]

[body (rest fresh)] [unifier (unify (first goals) head env)])
(cond
[(not unifier) ...]
[else ...]))))]))

If we succeed in unifying the head with the first goal, we need to expand out the
results provided by unifier as well as the existing body. These two combined get us
our new/next list of goals to satisfy. Because we recurse into search, we add one to
d to designate one further depth into the search. If the unification failed, however,
we can no longer proceed and must return. So, we return the accumulated value
from foldl. As we know from foldr, foldl similarly receives three arguments: a
binary function, a starting accumulator value, and the list to fold over. The starting
value is, of course, the empty list, and the list to fold over is our database.

558

559 Imperative Programming

Listing 8.390

(define (search db goals env d)
(λ (db goals env d)
(cond
[...]
[else
(foldl
(λ (clause acc)
(let* ([fresh (uniquify clause d)] [head (first fresh)]

[body (rest fresh)] [unifier (unify (first goals) head env)])
(cond
[(not unifier)
(let* ([exp-goals (map (λ (g) (expand g unifier)) (rest goals))]

[exp-body (map (λ (t) (expand t unifier)) body)]
[new-goals (append exp-body exp-goals)]
[new-acc (append acc (search db new-goals unifier (add1 d)))])

new-acc)]
[else acc])))

'()
db)]))

Last but certainly not least, we write query: the driver function for our system.
It receives a database and a list of goals and returns a list of solutions, if any exist.
We kick-start the function with the initial call to search, which returns a list of
unifiers. We then call collapse-env on these unifiers to condense the solution
list. This is followed by a call to filter-vars, which retrieves only those solutions
bound by variables from the original list of goals.

Listing 8.391

;; query : [ListOf Term] [ListOf Term] -> [ListOf Term]
;; "Jump-starts" the query and collects the results. If the
;; input is a 'fact' and has no solutions, the empty list is returned.
;; Otherwise, either a solution is returned or '(()) which designates
;; that a fact was successfully derived.
(define query
(λ (db goals)
(let* ([unifiers (search db goals '() 1)]

[solns (map collapse-env unifiers)])
(map (λ (u) (filter-vars u (get-vars goals))) solns)))

That is all there is to it! Let us write a family tree to test the program.

Listing 8.392

(define database
'(((female darlene)) ((female shannon)) ((female paula)) ((female madison))

((female abigail)) ((male mauricio)) ((male joshua)) ((male cameron))
((male dennis)) ((male travis)) ((male fred)) ((male clarence))
((parent darlene joshua)) ((parent mauricio joshua))
((parent shannon cameron)) ((parent paula madison))
((parent dennis madison)) ((parent mauricio abigail))
((parent paula abigail)) ((parent shannon darlene))
((parent clarence darlene)) ((parent fred clarence))
((parent travis clarence))))

We may also encode some rules into this database, e.g., X is the mother of Y if
X is female and X is the parent of Y . Another possibility is X is the ancestor of
Z if X is the parent of some Y and that Y is the parent of Z. Though, parents
are technically the ancestors to their children. So, we need two rules to govern the
ancestor relation.

559

8.18 L∗
SCHELOG: Logic Programming 560

Listing 8.393

(define database
'(...

((mother (V X) (V Y)) (female (V X)) (parent (V X) (V Y)))
((ancestor (V X) (V Z)) (parent (V X) (V Y)) (parent (V Y) (V Z)))
((ancestor (V X) (V Y)) (parent (V X) (V Y)))))

Let us run the following queries:

Listing 8.394

; Is paula the mother of madison?
> (query database '((mother paula madison)))

; Who is shannon the mother of?
> (query database '((mother shannon (V X))))

; Who is the mother of joshua?
> (query database '((mother (V X) joshua)))

; Is darlene the mother of fred?
> (query database '((mother darlene fred)))

; Who all is clarence an ancestor of?
> (query database '((ancestor clarence (V X))))

; Who are the ancestors of darlene?
> (query database '((ancestor (V X) darlene)))

(())

((((V X) cameron))
(((V X) darlene)))

((((V X) darlene)))

()

((((V X) joshua))
(((V X) darlene)))

((((V X) fred))
(((V X) travis))
(((V X) shannon))
(((V X) clarence)))

Excellent! We now have a pretty powerful logic programming language!

Exercise 8.76. (⋆⋆)
The logic programming language Prolog outputs results to queries in a more human-
centric way. For instance, the above queries would output something similar to the
following if we used Prolog:

true

Solution 1:
X = cameron
X = darlene

Solution 1:
X = darlene

false

Solution 1:
X = joshua
Solution 2:
X = darlene

Solution 1:
X = fred
Solution 2:
X = travis
Solution 3:
X = shannon
Solution 4:
X = clarence

Write a function query-print that receives the same parameters as query (and
calls query itself) but outputs the solutions/results in this tabular format.

560

561 Imperative Programming

Exercise 8.77. (⋆⋆)
Prolog allows the programmer to define lists using a construct similar to that of
cons using brackets. For example, if we have a list u and attempt to unify it with
the variable defined as [H | T], the head/first of u is unified with H, and T is unified
with the tail/rest of u. We do not have access to this fancy notation, but we can
certainly implement a cons logic predicate. A cons pair has an element as its first
and either 'nil or another pair as its rest. A cons pair p whose rest is defined in
terms of cons p′ is a pair if p′ is a valid cons pair. Implement cons into L∗SCHELOG.
This consists of a cons base case, and a recursive definition.

Exercise 8.78. (⋆⋆)
Variables are lists that are prefixed with 'V. In Prolog, however, any sequence of
characters that starts with an upper-case letter is considered a variable, e.g., the
variable X versus the non-variable x. Implement Prolog-style variables into your
interpreter. Assuming that you have designed them, you will need to take advantage
of two interpreter-level functions: symbol->string and char-upper-case?.
Exercise 8.79. (⋆⋆)
We can do a surprising amount of arithmetic in L∗SCHELOG, despite not having
built-in operators. We can inductively define a num with the base case and a succ
predicate as follows:

Listing 8.395

(define num-db
'(((num 0))

((num (succ (V N))) (num (V N)))))

The above database definitions state that 0 is a num, and that (succ N) is a num
if N is a num. Using this, define the (add X Y Z) predicate that adds X and Y to
produce Z.
Exercise 8.80. (⋆⋆)
Prolog is an optimistic logic programming language. Optimism, in this context,
refers to its approach to unification. Take the unification of X and f(X), for instance.
If we try to instantiate X to f(X), then this means the former f(X) becomes f(f(X)),
repeat ad nauseam. A way to fix this is through an algorithm called the occurs check.
When we attempt to match a variable with a term through match-var, we should
check to make sure the variable v does not occur anywhere inside the term p. Write
a recursive function occurs? that receives a variable v and a term p and returns
true if v occurs in p and false otherwise. As a hint, if p is a constant, then v cannot
occur in p. Similarly, if v is a variable and p is a variable, the only way v can occur
in p is if they are equal.

Exercise 8.81. (⋆⋆⋆⋆)
We can use logic programming to determine solutions to list operations such as
appending and even sorting. First, implement the cons predicate construct from
exercise 2.43. Then, using the three numeric comparison predicates we provide,
write the merge predicate, which merges the numbers in two sorted lists. We also
provide its two base cases, namely for when either list is empty. You should imple-
ment the other two (non-base) cases.

561

8.18 L∗
SCHELOG: Logic Programming 562

Listing 8.396

(define db
'(((num 0))

((num (succ (N))) (num (N)))
((eq 0 0))
((eq (succ (X)) (succ (Y))) (eq (X) (Y)))
((gt (succ (M)) 0))
((gt (succ (N)) (succ (M))) (gt (N) (M)))
((lt 0 (succ (M))))
((lt (succ (N)) (succ (M))) (lt (N) (M)))
((merge (L) nil (L)))
((merge nil (L) (L)))))

Exercise 8.82. (⋆⋆⋆⋆⋆)
In Chapter 7, we wrote a small type inferencer as a nested interpreter. Interest-
ingly, though, it is easier to build a type inferencer in logic programming languages.
Consider the following small programming language grammar:

exp ::= app | if | let | lam | var | num | bool
app ::= ‘(’ ‘app’ ‘ ’ exp ‘ ’ exp ‘)’
if ::= ‘(’ ‘if’ ‘ ’ exp ‘ ’ exp ‘ ’ exp ‘)’
lam ::= ‘(’ ‘lambda’ ‘(’ var ‘)’ exp ‘)’
var ::= ‘(’ ‘var’ symbol ‘)’
num ::= ‘(’ ‘num’ number ‘)’
bool ::= ‘(’ ‘bool’ boolean ‘)’

Figure 8.16: Extended BNF Grammar for Simple Programming Language

In which symbol is a lower-case identifier, number is defined in terms of succ,
and boolean is either true or false. We want to be able to infer types about
expressions written in this language. To do so, we need to list the typing rules, or
type judgments, of this language.

τ -var
((var v) : τ) ∈ Γ

Γ ⊢ v : τ

τ -num
(num n)

Γ ⊢ n : nat

τ -bool
(bool b)

Γ ⊢ b : bool

τ -if
Γ ⊢ b : bool Γ ⊢ e1, e2 : τ

Γ ⊢ (if b e1 e2) : τ

τ -lam
Γ :: ((var v) : τ1) ⊢ e : τ2
Γ ⊢ (lam v e) : τ1 → τ2

τ -app
Γ ⊢ f : τ1 → τ2 Γ ⊢ e : τ1

Γ ⊢ (app f e) : τ2

Figure 8.17: Typing Rules for the Simple Programming Language

562

563 Imperative Programming

Figure 8.17 shows a series of inference rules. Gamma, Γ, is a type environment
and τ is a type. Words written in typewriter refer to predicates defined by our
(logic) language; words in small capital letters are the types of an expression.
We read such inference rules from top-to-bottom, where the inference premises are
above the line and its conclusion is below the line. For example, to read τ−if, we
say “if we know that b is of type bool and both expressions e1 and e2 are of type
τ , then we conclude that the (conditional) expression (if b e1 e2) is of type τ”.
In the τ−lam rule, we must extend Γ to include the type binding of the formal
parameter v (where the double colon ‘::’ is synonymous with cons), meaning that
we read this rule as “If, by extending Γ to include v we can prove that e is of type
τ2, then we know (lam v e) is of type τ1 → τ2”.

Write the type predicate. It binds three arguments: a type environment G, an
expression E, and the type T . Your program should be able to infer the type of
some expression e given a type environment G. To get you started, we provide the
type predicate to infer the type of booleans and numbers.

Listing 8.397

(define type-db
'(((bool true)) ((bool false)) ((num zero))

((num (succ (V N))) (num (V N)))
((type (V G) (V N) nat) (num (V N)))
((type (V G) (V B) bool) (bool (V B)))))

(define exp1
'(succ (zero)))

(define exp2
'(fun (x) (fun (y) (fun (z)

(if (var x)
(add (var y)

(var z)
(succ (succ (succ zero))))

zero)))))

> (query type-db `((type nil ,exp1 (V T))))

> (query type-db `((type nil ,exp2 (V T))))

nat

(bool ->
(nat ->
(nat -> nat)))

This exercise requires a lot of work, including a rewrite of the cons predicates to
account for lists. As we mentioned, lam expressions must extend its environment to
include the type of its parameter, so use a cons on the provided type environment.
The system has three types: nat, bool, and arrow, the last of which has parameter
and body types.

563

8.19 LGRAPHIC: Turtles and Graphics Galore 564

8.19 LGRAPHIC: Turtles and Graphics Galore

Many beginning programmers enjoy working with graphical interfaces and loathe
the idea of staying confined to the world of a blinking cursor and text. In this
section, we will write LGRAPHIC: an extension to LMACRO that adds graphics and
the ability to draw to a screen.

A Representation-Independent Graphics Library

A preface to this section: we will not be demonstrating the inner-workings of a com-
plex graphical library in C, as they are mostly full of mysterious wonders. This ide-
ology is similar to the approach we took with MPC—the only difference being that
we wrote the code for this library. With this in mind, we provide a representation-
independent graphics library in the form of gfx.h and gfx.c, which uses the SDL
(Simple DirectMedia Layer) framework as a base. Appendix 11.3 describes how
to install SDL, and Appendix 11.3 shows the implementation of gfx.h and gfx.c.
There are several functions of interest to us:

gfx init initializes the graphics context. This function should be called at the
beginning of main.c regardless of if it is ever used or not.

gfx open window opens a graphical window of a given size, in pixels, and title.
The background, by default, is painted black. The origin, i.e., (0, 0) is located
at the top-left of the window. The maximum coordinate is (width−1, height−1),
located in the bottom-right of the window.

gfx clear paints the background of the window black. This is useful in loops
where, say, an animation occurs.

gfx draw line draws a single line with a given color starting at (x1, y1) and
ending at (x2, y2).

gfx draw rect draws a single rectangle with a given width, height, and color
starting at (x, y).

gfx delay tells the graphics context to halt execution for nmilliseconds. During
this time, the window still listens and responds to events, e.g., mouse clicks.

gfx cleanup shuts down the graphics system and frees any associated memory.1

Our language will use these functions to write a “turtle API”. Turtle is a
frequently-used approach to teaching computer science via graphics. It largely
emphasizes functions and iteration, but also creativity. LGRAPHIC adds several
functions for creating a turtle, moving it about the screen, and drawing objects
such as lines.

1Note that SDL, alongside many other graphics APIs, e.g., OpenGL, Vulkan, and so on often leak
memory. So, checking these programs with Valgrind will yield “false positive” memory leaks that the
programmer is at no fault for.

564

565 Imperative Programming

Before we work with turtles, though, we should integrate the graphics library
with our language. Namely, we should add a command that opens a window and
leaves it open for some unit of time, say, five seconds. Let us call these two functions
gfx-window and gfx-delay respectively. The former receives three arguments: a
window title, a width in pixels, and a height in pixels. The latter receives one
argument: the number of seconds to delay closing the window by. We can add
this functionality in apply.c. Because these functions introduce side-effects, e.g.,
opening a window, they only return NULL.

Listing 8.398—Bult-in Graphics Functions (apply.c)
1 static struct sval *apply_gfx_open(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("gfx-open", 3, num_args);
4 const char *title = args[0]->data.string;
5 const int width = args[1]->data.number;
6 const int height = args[2]->data.number;
7 gfx_open_window(title, width, height);
8 return NULL;
9 }

10
11 static struct sval *apply_gfx_delay(struct sval **args, size_t num_args,
12 struct environment *env) {
13 ASSERT_ARITY("gfx-delay", 1, num_args);
14 gfx_delay(args[0]->data.number);
15 return NULL;
16 }

A test program is as follows:

Listing 8.399

(gfx-open "GRAPHIC" 640 480)
(gfx-delay 5000)

Next, we need to write two functions for clearing the screen and updating the
contents of the screen. gfx clear and gfx refresh are the two functions of
interest. We will construct gfx-clear and gfx-refresh respectively. Both of
these functions receive zero arguments. We use gfx-clear to wipe any existing
graphics on the window. gfx-refresh, on the other hand, updates the window to
account for any changes made. We will explore this in greater detail soon.

Listing 8.400—More Built-in Graphics Functions (apply.c)
1 static struct sval *apply_gfx_clear(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("gfx-clear", 0, num_args);
4 gfx_clear();
5 return NULL;
6 }
7
8 static struct sval *apply_gfx_refresh(struct sval **args, size_t num_args,
9 struct environment *env) {

10 ASSERT_ARITY("gfx-refresh", 0, num_args);
11 gfx_refresh();
12 return NULL;
13 }

565

8.19 LGRAPHIC: Turtles and Graphics Galore 566

Finally, we need a way of drawing something to the screen. Lines are simple,
so we will implement these before any other primitive shapes. Recall that gfx -
draw line receives five arguments representing the starting and ending coordinates
of the line as well as its color. The color is perhaps the strangest argument of all
since it is received as a number.1 Colors, in most digital contexts, use what is known
as the RGB color spectrum. Namely, a color consists of three bytes, where each
byte is a channel of “color”. The first byte is the “amount of red” in the color, the
second is the “amount of green”, and the last byte is the “amount of blue”. Because
each channel is one byte in size, each channel is a natural number from 0 to 255,
where 0 represents no color, and 255 represents maximum color. Thus, we can
represent the color red via (255, 0, 0). Similarly, blue is (0, 0, 255). In our library,
however, there is one more channel called the alpha channel, which represents how
transparent, or visible, a color appears. For example, a fully-visible, i.e., opaque,
green color is (0, 255, 0, 255). A half-visible yellow is (255, 255, 0, 127). From
Chapter 5, we know that integers are 4 bytes long, meaning we can store all four
bytes of a color into an integer. gfx.h provides a useful macro for retrieving this
specific value: GET COLOR(r, g, b, a). So, we can write a function that receives
eight arguments which invokes the line-drawing function from gfx.c.

Listing 8.401—Built-in Line Drawing Function (apply.c)
1 static struct sval *apply_gfx_draw_line(struct sval **args, size_t num_args,
2 struct environment *env) {
3 ASSERT_ARITY("gfx-draw-line", 8, num_args);
4 const int x1 = args[0]->data.number;
5 const int y1 = args[1]->data.number;
6 const int x2 = args[2]->data.number;
7 const int y2 = args[3]->data.number;
8
9 int r = args[4]->data.number;

10 int g = args[5]->data.number;
11 int b = args[6]->data.number;
12 int a = args[7]->data.number;
13
14 gfx_draw_line(x1, y1, x2, y2,
15 GET_COLOR(r, g, b, a));
16 return NULL;
17 }

Let us draw a red line to the screen. Note that we need to invoke gfx-clear
and gfx-refresh to account for the newly-drawn line.

Listing 8.402

(gfx-open "GRAPHIC" 640 480)
(gfx-clear)
(gfx-line 300 300 300 400 255 0 0 255)
(gfx-refresh)
(gfx-delay 5000)

566

567 Imperative Programming

Figure 8.18: Fractal Tree and Colorful Spiral

Figure 8.19: Spiral Star and Yarn Ball

With just this gfx-line function, we can draw some spectacular images. Before
we continue into the turtle language, we provide a few possibilities of drawable art
in Figures 8.18 and 8.19.

We have everything we need to implement turtle graphics. Even though this
chapter is dedicated to non-functional programming, we will write L∗TURTLE: an in-
terpreter with turtle programming. Listing 8.405 demonstrates an example program
written in L∗TURTLE, and Figure 8.20 shows the graphical output.

1We reiterate this topic due to its inclusion only as an exercise in Chapter 5.

567

8.19 LGRAPHIC: Turtles and Graphics Galore 568

Listing 8.403

(gfx-open "GRAPHIC*" 640 480)
(gfx-clear)
(value-of
'(begin

((pen-color (255 0 0 255))
(forward 90)
(turn 45)
(pen-color (0 255 0 255))
(forward 60)
(turn 90)
(pen-color (0 0 255 255))
(forward 30))))

(gfx-refresh)
(gfx-delay 10000)

So, as we can see, this language, for now, contains three commands of interest:
pen-color, forward, and turn. pen-color changes the current line color. forward
moves the turtle in the direction it faces by a certain number of pixels. Lastly, turn
changes the angle that the turtle faces. Internally, we will work with radians, but
when calling/invoking this function, we will use degrees.

As always, we need to write the recognition functions. Fortunately enough, these
are not at all different from the style of previous recognition functions.

Listing 8.404

(define begin?
(λ (exp)
(and (cons? exp)

(eqv? (first exp) 'begin)
(= (length exp) 2)
(cons? (second exp)))))

(define forward?
(λ (exp)
(and (cons? exp)

(eqv? (first exp) 'forward)
(= (length exp) 2)
(number? (second exp)))))

(define turn?
(λ (exp)
(and (cons? exp)

(eqv? (first exp) 'turn)
(= (length exp) 2)
(number? (second exp)))))

(define pen-color?
(λ (exp)
(and (cons? exp)

(eqv? (first exp) 'pen-color)
(= (length exp) 2)
(cons? (second exp)))))

568

569 Imperative Programming

Before we go further and write the evaluation functions, we need to understand
our environment structure. Unlike previous nested interpreters (and the root lan-
guage interpreter we wrote in C), we will not pass the environment to functions
alongside the expression. Instead, it will be manipulated globally. Initially, the
environment will contain four values: the starting x and y coordinates of the turtle,
its angle, and the default pen color. To make the structure easier to understand,
we store these as an association list in the environment with tags. For example, we
could use the following default environment to initialize the turtle to (100, 100), an
angle of 0, and the default pen color to white.

Listing 8.405

(define root-env
`((x . 100) (y . 100) (angle . 0) (color . (255 255 255 255))))

With this in mind, apply-env and extend-env will be slightly different than
what we have previously written. The former will receive a tag to search and retrieve
the corresponding rest, or value, of the pair. E.g., (apply-env 'y) returns 100.
The latter modifies the environment to prepend a new value pairing, shadowing
previous declarations. For instance, if we modify the turtle’s position, we may
invoke (extend-env 'x 300), (extend-env 'y 150). These, accordingly, shadow
the original bindings. Thus, root-env is altered. With these descriptions, we can
write apply-env and extend-env.

Listing 8.406

(define root-env
`((x . 300) (y . 150) (x . 100) (y . 100)

(angle . 0) (color . (255 255 255 255))))

(define apply-env
(λ (tag)
(rest (assv tag root-env))))

(define extend-env
(λ (tag val)
(set! root-env (cons (cons tag val) root-env))))

Now, we can dive into the evaluation functions. A begin invocation receives a
list of commands to execute in sequential order. We can simulate this via a letrec
binding.

Listing 8.407

(define value-of-begin
(λ (exp)
(let ([loc (second exp)])
(letrec ([eval-cmd

(λ (c)
(cond
[(null? c) #f]
[else
(begin
(value-of (first c))
(eval-cmd (rest c)))]))])

(eval-cmd loc)))))

569

8.19 LGRAPHIC: Turtles and Graphics Galore 570

Next, forward moves the turtle by n units in the direction it faces. Thus, we will
need to use a bit of trigonometry to figure out the correct position of the turtle. After
this, we extend the environment to include the new positional bindings. Lastly, we
invoke gfx-line to draw a line from the old turtle position to its new location.
Additionally, because the color is stored as a list (where the red, green, blue, and
alpha channels are the elements), we extract these via list-accessor procedures (e.g.,
first, second, third, and fourth).

Listing 8.408

(define value-of-forward
(λ (exp)
(let ([n (second exp)])
(let* ([ox (apply-env 'x)]

[oy (apply-env 'y)]
[a (apply-env 'angle)]
[c (apply-env 'color)]
[nx (+ ox (* n (cos a)))]
[ny (+ oy (* n (sin a)))])

(begin
(extend-env 'x nx)
(extend-env 'y ny)
(gfx-line ox oy nx ny (first c) (second c) (third c) (fourth c)))))))

Now that we can move, we certainly want the turtle to be able to turn! Turning
is even simpler than moving, since all we do is extend the environment to bind the
new angle.

Listing 8.409

(define value-of-turn
(λ (exp)
(let* ([a (second exp)])

[oa (apply-env 'angle)]
[na (+ oa (* a (/ pi 180)))])

(extend-env 'angle na)))))

Finally, we have the easiest procedure of them all: pen-color extends the envi-
ronment to bind a new color.

Listing 8.410

(define value-of-pen-color
(λ (exp)
(let ([c (second exp)])
(begin
(extend-env 'color c)))))

Nicely enough, value-of is, once again, almost identical to other nested inter-
preters; the only difference being the recognition and evaluation function names.

Listing 8.411

(define value-of
(λ (exp)
(cond
[(begin? exp) (value-of-begin exp)]
[(forward? exp) (value-of-forward exp)]
[(turn? exp) (value-of-turn exp)]
[(pen-color? exp) (value-of-pen-color exp)]
[else 'error])))

Trying the program from Listing 8.400 produces the following output:

570

571 Imperative Programming

Figure 8.20: Turtle Listing 8.400 Graphical Output

If we want to complete this small spiral, we can write the following program:

Listing 8.412

(value-of
'(begin

((pen-color (255 0 0 255)) (forward 90) (turn 45)
(pen-color (0 255 0 255)) (forward 80) (turn 45)
(pen-color (0 0 255 255)) (forward 70) (turn 45)
(pen-color (255 0 0 255)) (forward 60) (turn 45)
(pen-color (0 255 0 255)) (forward 50) (turn 45)
(pen-color (0 0 255 255)) (forward 40) (turn 45)
(pen-color (255 0 0 255)) (forward 30) (turn 45)
(pen-color (0 255 0 255)) (forward 20) (turn 45)
(pen-color (0 0 255 255)) (forward 10) (turn 45))))

The thing is, this is a bit cumbersome to write. What if we want to extend this
to add a looping construct to repeat expressions multiple times? We, for instance,
could add (loop n exp), which evaluates exp n times. Let us add this! We need
to write the recognizer and reducer.

Listing 8.413

(define loop?
(λ (exp)
(and (cons? exp)

(eqv? (first exp) 'loop)
(= (length exp) 3)
(number? (second exp)))))

(define value-of-loop
(λ (exp)
(let ([i 0]

[n (second exp)]
[e (third exp)])

(do [< i n]
(begin
(value-of e)
(set! i (+ i 1)))))))

As a simple test, we can write some code to draw an octagon.

571

8.19 LGRAPHIC: Turtles and Graphics Galore 572

Listing 8.414

(value-of
'(begin

((pen-color (255 0 0 255))
(loop 8
(begin
((forward 45)
(turn 45)))))))

What is intriguing about this interpreter is that we could add symbols, functions,
and much more, similar to previous nested interpreters. Get creative!

572

573 Imperative Programming

8.20 L∗COROUTINE Coroutines and Continuations

In Chapter 11, we will explore concurrent programming, i.e., completing more
than one task simultaneously. In this section, however, we narrow our scope and
potential of events a bit by discussing coroutines and how to implement them into
our interpreter using continuations.

First, we provide a bit of background. A coroutine is, at a very high-level, a
program that can be stopped and resumed over time. Such programs are great
candidates for multi-tasking. So far, all of our programs are sequential and do
exactly one thing after another, including the related sections on continuations and
continuation-passing style. Writing coroutines and the ability to juggle different
tasks simultaneously is an immensely powerful programming construct. The thing
is, how exactly can we divert program control between a coroutine?

Let us consider the following scenario: we have some function producer that
adds data, e.g., random numbers, to a buffer. We also have another function
consumer that removes data from this buffer and prints it to standard output.
Both of these functions run indefinitely. This scenario is currently not possible un-
less we write a separate function that bounces back and forth between calling one
and the other. Indeed, this mindset is close to how coroutines work! A producer will
add some data to the buffer, then yield its control over to the next task to complete,
whether it is another producer or a consumer.1 Using this, we can depict something
akin to a thread, which oversees the execution of a specific action, regardless of its
nature.2

To illustrate the concept of threads, we will create a program in L∗COROUTINE

that implements threads as well as the notion of a producer/consumer corou-
tine. One important detail to note is that we will take advantage of the existing
L∗CONTINUATION interpreter from Chapter 7 along with some extra additions to
add support for identifier (re)assignment, let* bindings, and multi-argument func-
tion definitions.3 The reason for reusing L∗CONTINUATION is because we can model
coroutines using continuations! Program control is directed between one thread
and another (using as many as desired) to complete the coroutine. Swapping be-
tween threads, in this fashion, is a perfect practical example of continuations outside
tail-call optimization.

1Nothing restricts us to using exactly one consumer and exactly one producer; if we add more
producers, the buffer will fill faster than it can be consumed, and vice versa.

2For our purposes, a thread is something that executes a function. “Realistic” threads have limita-
tions imposed by their respective operating system.

3letrec is, fortunately, not required in this nested interpreter, but adding the other features still
means substantial changes to L∗

CONTINUATION that we will omit. We use global definitions via define,
but it is possible to use a let* block, or even let, to write all shown definitions.

573

8.20 L∗
COROUTINE Coroutines and Continuations 574

To start, we need to establish properties of a thread. Threads are created using
the spawn command, which receives a function denoting the thread action. A thread
action must contain a call to the yield function, relinquishing control from that
thread to one awaiting in the thread queue (the thread queue is nothing more than
a list of threads with associated functions for enqueueing and dequeueing elements).
Before the coroutine starts, all threads that execute actions on it are spawned. How,
exactly, do we “spawn” a thread? The thread queue contains, interestingly enough,
not threads, but continuations! Namely, when we invoke spawn, we push a contin-
uation to the thread queue, denoting a “point of initialization”, so to speak. The
continuation marks this point of initialization via call/cc. We will constantly refer
to the current continuation as a point of reference above the majority of a function
body and, because of this, we will write a thread-create-k function accordingly.
When we initially invoke spawn, the continuation will be a procedure generated by
call/cc, which is added to the rear of the thread queue. Threads/continuations
that are awoken, however, receive the AWAKE symbol and, therefore, either begin or
resume execution of the coroutine. In these instances, we want to invoke the thunk
provided to spawn.

Listing 8.415—Thread Queue Manipulation Functions

;; threads-enqueue : Continuation -> Void
;; Pushes a thread (as a continuation) to the existing thread queue.
(define threads-enqueue
(λ (th)
(set! threads (append threads (list th)))))

;; threads-dequeue : Void -> Void
;; Removes a thread from the existing thread queue.
(define threads-dequeue
(λ ()
(set! threads (rest threads))))

;; threads-rotate : Continuation -> Void
;; Adds a thread (as a continuation) to the thread queue while removing
;; the head of the queue.
(define threads-rotate
(λ (th)
(set! threads (append (rest threads) (list th)))))

574

575 Imperative Programming

Listing 8.416

(define thread-awake?
(λ (th)
(eqv? th 'AWAKE)))

(define thread-procedure?
(λ (th)
(not (thread-awake? th))))

;; thread-create-k : Void -> Continuation
;; Creates a continuation for a thread.
(define thread-create-k
(λ ()
(call/cc (λ (k) (k k)))))

;; spawn : Function -> Void
;; Creates and enqueues a thread to execute the given function.
(define spawn
(λ (th)
(let ([cc (thread-create-k)])
(cond
[(thread-procedure?)
(thread-enqueue (list cc))]

[else (th)]))))

Now that we have a way of creating threads, we need a way of running each
one sequentially, via run. run, itself, does not manage control over which thread is
currently under execution, meaning that it will execute a thread until it relinquishes
control to the system. We do, however, need to establish a form of program termi-
nation. We will generate a continuation, inside run, that after invoked, receives #t,
indicating that the coroutine is complete. So, our “jump-start” condition within
run is to check whether or not the generated continuation is true. In all but the
most trivial scenario (which includes when the list of threads is empty), we want
to retrieve the first thread from the queue and invoke it as if it were a continuation
(because it is a continuation!). This, in turn, is where we pass ’AWAKE; the continu-
ation created in spawn is, adequately named, awoken by the invocation and, because
it receives the aforesaid symbol, runs the thunk, thereby executing a “piece” of the
coroutine.

Listing 8.417

(define done #f)

;; run : Void -> Void
;; Runs all threads in the queue until the done flag is toggled.
(define run
(λ ()
(let ([cc (thread-create-k)])
(begin
(set! done (λ () (cc #t)))
(cond
[(or (null? threads) done) 'DONE]
[else
(let ([curr (first threads)])
(begin
(thread-dequeue)
(curr 'AWAKE)))])))))

575

8.20 L∗
COROUTINE Coroutines and Continuations 576

We now need the crucial function that defines a coroutine: yield. As we stated,
yield relinquishes control from one thread to the next in the thread queue. yield
shares much similarity to run; the difference between the two is that we enqueue
the newly-instantiated continuation into the queue while, as we said, awakening the
next in line.

Listing 8.418

;; yield : Void -> Void
;; Returns control to the next thread in the queue.
(define yield
(λ ()
(let ([cc (thread-create-k)])
(cond
[(thread-procedure? cc)
(let ([next (first threads)])
(begin
(thread-rotate (list cc))
(next 'AWAKE)))]

[else #f]))))

Lastly, we need to write a function that stops a thread, which we will name
join. To join a thread, in this context, means to stop its execution, but allow other
threads to continue. Eventually, all threads will invoke join themselves, and the
coroutine is complete. When there are no remaining threads in the thread queue,
we invoke the done continuation whose value is reset atop run.

Listing 8.419

;; join : Void -> Void
;; Polls each thread from the queue, stopping their execution.
(define join
(λ ()
(cond
[(null? threads) (done)]
[else
(let ([next (first threads)])
(begin
(thread-dequeue)
(next 'AWAKE)))])))

Suppose we want to recreate the producer/consumer pattern described at the
start of this section. This would require two thunk coroutines, since a thread can do
one or the other, i.e., be a producer or a consumer. We first need to define a buffer,
which will be the empty list. We then need a limit to the buffer, defining how many
numbers are insertable into the buffer before we reject further productions.

Listing 8.420

(define buffer '())
(define BUFFER-MAX 10)

The producer will continuously generate random numbers between 1 and 10 and
append them to the rear of the buffer, so long as the buffer is not full.

576

577 Imperative Programming

Listing 8.421

(define producer
(λ ()
(begin
(cond
[(< (length buffer) BUFFER-MAX)
(set! buffer (append buffer (list (random-int 1 10))))]

[else (printf "producer: full buffer∼n")])
(yield)
(producer))))

The consumer, on the other hand, retrieves and pops values from the buffer and
prints them out to standard output, so long as the buffer contains an element.

Listing 8.422

(define consumer
(λ ()
(begin
(cond
[(> (length buffer) 0)
(let ([next (first buffer)])
(begin
(set! buffer (rest buffer))
(printf "∼a∼n" next)))]

[else (printf "consumer: empty buffer∼n")])
(yield)
(consumer))))

Let us create exactly one producer and one consumer to see the behavior. Note
that the program never terminates, so we will show only a few lines of output.

Listing 8.423

> (spawn producer)
> (spawn consumer)
> (run)

8
3
6
9
5
7

Of course, we get a sequence of random numbers as expected. What happens
if we spawn more producers than consumers or vice versa? In the former case, the
producer threads will add values to the buffer, the consumer will then remove one,
and then the producers will try to add two values again, but receive a message
saying the buffer is full. Interestingly, this means that the buffer will never be fully
saturated of values. Conversely, when we have more consumers than producers,
there will only ever exist one value inside the buffer.

Listing 8.424

> (spawn producer)
> (spawn producer)
> (spawn consumer)
> (run)

7
3
...
producer: full buffer
4
producer: full buffer
3

577

8.20 L∗
COROUTINE Coroutines and Continuations 578

Listing 8.425

> (spawn producer)
> (spawn consumer)
> (spawn consumer)
> (run)

8
consumer: empty buffer
1
consumer: empty buffer
9
consumer: empty buffer
9

Modeling Preemption with Macros

Coroutines are not preemptive because they require manual invocation of yield. A
thread/process/routine is preemptive if some process can automatically switch out
the currently-executing thread in favor of the next in the queue. It is impossible
to model this behavior with our current setup because any thread that does not
call yield holds control over the routine forever. Even if we, say, created a “mas-
ter thread” that somehow managed all threads, it would proceed by relinquishing
control to the first thread which would then, itself, never relinquish control. It is
possible, however, to model preemption with macros. That is, if we define a macro,
e.g., make-thread-thunk-macro, that receives an identifier and a procedure body,
we can have the macro create a lambda thunk that invokes itself using the given
identifier, but also calls yield. Such a representation really only abstracts away the
yield from the programmer/user of the coroutine, but it is an interesting thought
experiment nonetheless. We demonstrate this with the following factorial example.
It is important to realize, though, that implementing this into the nested interpreter
would be extremely challenging because it would require evaluating a quoted macro
expression, something we do not cover in this text.

Listing 8.426

(define-macro
(make-thread-thunk ID BODY)
(begin
(letrec ([ID

(λ ()
BODY
(yield)
(ID))])

ID)))

(define make-factorial-thunk
(λ (id)
(make-thread-thunk
loop
(begin
(cond
[(zero? n) (join)]
[else #f])

(printf "Thread=∼a, n=∼a, f=∼a∼n"
id n f)

(set! f (* n f))
(set! n (sub1 n))))))

> (spawn (make-factorial-thunk '1))
> (spawn (make-factorial-thunk '2))
> (spawn (make-factorial-thunk '3))
> (spawn (make-factorial-thunk '4))
> (run)

Thread=1, n=10, f=1
Thread=2, n=9, f=10
Thread=3, n=8, f=90
Thread=4, n=7, f=720
Thread=1, n=6, f=5040
Thread=2, n=5, f=30240
Thread=3, n=4, f=151200
Thread=4, n=3, f=604800
Thread=1, n=2, f=1814400
Thread=2, n=1, f=3628800
'DONE

578

9 Compilation

“Trying to outsmart a compiler defeats much of the purpose of using one.”

—Brian W. Kernighan and Phillip James (P. J.) Plauger

Compilers are, understandably, fabulously complex. A compiler is a piece of
software that takes a program written in a high-level language, e.g., C, and translates
it into a semantically-equivalent low-level language such as assembly. Compilers
frequently generate machine-dependent assembly code, meaning compiled source
code that runs on one machine may not work on another.

There are two popular approaches to compiler design: the traditional “large-
pass” architecture, and the incremental “nano-pass” architecture made famous by
Sarkar’s 2004 paper [Sarkar et al., 2004]. Traditional compiler design consists of
five phases: lexical analysis, syntax analysis, semantic analysis, intermediate rep-
resentation generation, and finally code generation followed by optimization passes
[Aho et al., 2006].

In this chapter, we will delve into the challenging endeavor of developing a
compiler for subsets of the language utilized by our interpreter.

9.1 Code Generation

An Assembly Primer

Assembly is, effectively, one level above machine instructions written in binary. A
compiler, as we stated, translates code written in a high-level language into low-level
assembly. Assembly utilizes mnemonic instructions that move and alter values be-
tween registers. Registers contain values stored as “slots” in the CPU. For instance,
if we want to move a value, e.g., 5, into register R0, we may use an instruction that
resembles “movq 5, R0”. If we want to add two registers together, e.g., R0 and
R1, and store their sum in a third register R2, we may use an instruction similar
to “add R0, R1, R2”. We briefly saw this style of programming in Chapter 8.
In this chapter, however, we will explore a specific dialect of assembly in greater
detail, alongside how to write code that generates assembly from a high-level lan-
guage. Refer to Appendix 11.3 for setting up and compiling assembly language
source files.

9.1 Code Generation 580

Registers

First, we need to discuss a few preliminary details about the particular assembly
dialect that we will use: x64 AT&T Assembly.1 There are several flavors of assembly
that we could work with, but x86 assembly is widely used in introductory computer
organization courses, so the modern 64-bit counterpart is a great place to start. We
will introduce pieces of this assembly dialect at a time to ease the transition. We
have previously discussed what a register is, so it must be the case that assembly
has a few named registers, and indeed it does! The four most common registers
to work with are rax, rbx, rcx, and rdx. There are also a few more important
registers to know of such as rsi, rdi, rsp, and rbp. Finally, there are eight more
“general-purpose” registers labeled as r8 to r15. A register, as we recall, holds a
value. x64 assembly is 64-bit, meaning each register holds a 64-bit, or eight-byte,
value. These values are often referred to as “quad-words” due to the traditional
nomenclature of denoting 16-bit values as words, and 32-bit values as double-words.
Let us now introduce a few “need-to-know” instructions.

Moving Values

To move data between registers, we use “movq”, which stands for “move quad-word
value” We can move data or immediate values between registers. For instance, to
move the immediate value 9 into register rbx, we prefix the immediate value with a
dollar sign $, the register name with a percent sign %, and use the following syntax:
movq <src>, <dest>, e.g., movq $9, %rbx. Let us create a test file, hello.s, to
showcase what we know.

Listing 9.1—Move Constant into %rbx (hello.s)
.section .text
.global main

main:
movq $9, %rbx # Move the constant 9 into rbx.

We see that, before our movq instruction, we added .section .text. This
indicates that everything declared afterwards is code that should be either loaded
or executed somehow. One note about the assembly language is that the use of
short mnemonics makes reading the source code as a programmer quite laborious
if there is no assembly manual nearby. Thus, we comment almost all instructions
to provide humancentric context to their meaning.

1Brown University provides a nice cheat-sheet reference for several instructions and registers in x64
AT&T Assembly at https://cs.brown.edu/courses/cs033/docs/guides/x64 cheatsheet.pdf.

580

581 Compilation

Text (.text) Segment

Recall that in C, every program must have a main function somewhere, and indeed
this also holds true in x64 assembly! Defining functions in assembly, though, is a bit
different than C. We need to first declare “main” using the “global” directive, which
is effectively identical to how it is defined in a normal C program; other modules
have access to this function during the link phase of the compiler and assembler. We
then define main as a function by suffixing its name with a colon, and its body as
subsequent instructions. Also, all functions must end with a ret statement whose
return value is located in the rax register. Because our main function should return
0 upon success, we need to move 0 into rax before our retq instruction (note that
void functions disregard whatever is stored in rax).

Listing 9.2—Move Constant into %rbx (hello.s)
.section .text

.global main
main:

movq $9, %rbx # Move constant 9 into rax.
movq $0, %rax # Return 0 from main.
retq

Is it possible to print the value stored in the rbx register, before we return, to see
if our move instruction works as intended? Well, yes, we certainly can, but doing so
requires a bit more knowledge than we care do explain at the moment. In due time,
we will explain exactly how this printing works, but for the meantime, understand
that we can use the following function to output the value currently loaded into the
rax register.

Listing 9.3—Move Constant into %rbx (hello.s)
.section .data

fmt: .asciz "%d\n"
.section .text

.extern printf

.global main
print_rbx:

movq %rbx, %rsi # Move value from rbx to 2nd parameter.
leaq fmt(%rip), %rdi # Load fmt variable into 1st parameter.
movq $0, %rax # Move 0 to rax for variadic args printf.
callq printf
retq

main:
movq $9, %rbx # Move 9 to rbx for print_rbx.
callq print_rbx
movq $0, %rax # Return zero from main.
retq

581

9.1 Code Generation 582

Data (.data) Segment

This slice of code introduces what is known as a directive: the .data directive allows
us to define variables in memory as well as string literals. In C, string literals are
not defined as variables as we may think; they are, in reality, stored in a separate
section of memory called the “data” segment, hence the name. Oftentimes, when
using printf, we pass a string literal as the first argument which specifies the format
string. Accordingly, we need to store said format string, i.e., fmt used to print the
value in the rbx register. fmt is declared as a string that is NUL-terminated using
the .asciz directive, which stands for “ascii-zero”.

We can compare this assembly source to a roughly-equivalent C source.1 It is
important to realize that we cannot access registers directly in C, so we will need
to store our number in a variable to represent the rbx register.2

Listing 9.4

1 int main(void) {
2 const char *fmt = "%d";
3 int rbx = 9;
4 printf(fmt, rbx);
5 return 0;
6 }

We can use gcc to compile not only C, but also assemble programs written
in this dialect of assembly as follows: gcc hello.s -o hello, which creates the
executable hello. This is then runnable as we have seen before, to which we should
receive the correct output of 9.

Suppose we want to declare a number as a local variable. As we will soon see in
Chapter 10, local statically-allocated variables are declared on the stack. We can
access the stack contents, from the return address, via %rbp, which stands for the
register holding the “base pointer”. Within a function, we must declare how much
space is reserved for local variables in the event that they are necessary. If we want
to declare space for two quad-words, we must subtract sixteen bytes, eight for each
number, from the stack.3 Before we return from the function, however, we need to
re-add sixteen bytes to the stack to clear the space we designated for local variables.
Though, one extra bit of information that must be clarified is that, at the beginning
of every assembly function we must save the previous stack value by doing a push
of %rbp to the stack and then saving %rsp in %rbp to set up the new base pointer.
This allows us to easily locate not only local variables, but also parameters (if any
exist) of functions on the stack (not to mention that, as we will soon explain, it
preserves stack alignment). At the end of every function we restore the previous
stack and base pointers by reversing these steps and moving %rsp back to %rsp,
then popping the saved value of %rbp from the stack.

1We use the phrase “roughly-equivalent” because local variables are not at all the same as registers
on the CPU, as we will show in due time.

2This is technically false as we could use inlined assembly, but that is beyond the scope of this book.
3Why subtraction instead of addition? The stack (memory model) grows downwards, with higher

addresses towards the top and lower addresses at the bottom.

582

583 Compilation

Listing 9.5

.section .data
fmt: .asciz "\%d"

.section .text
...

print_rbx:
...

main:
pushq %rbp
movq %rsp, %rbp
subq $16, %rsp # Allocate 16 bytes for local vars.
...
addq $16, %rsp # Free 16 bytes for local vars.
movq $0, %rax # Return zero from main.
movq %rbp, %rsp
popq %rbp
retq

Unfortunately, unlike high-level languages, we cannot reference local variables
by symbolic name; rather, we must use offsets from the base pointer. These offsets
are negatively-indexed. For instance, bytes 0−7, offset downward from the base
pointer, may be used for the first number. Similarly, bytes 8−15 offset downward
may be used for the second. To make our discussion less cumbersome, we denote
the first value as x and the second as y. To access the value at an address stored in a
register, we enclose the register with parentheses. Offsets are computed by affixing
a constant to the front of a stack-access instruction, e.g., -8(%rsp). Local variables
are always declared as negative offsets from the base pointer. Thus, to access x,
we write -8(%rbp). To access y, write -16(%rbp). So, if we wish to declare two
variables x and y with the values 20 and 35 respectively:

Listing 9.6

.section .data
fmt: .asciz "%d\n"

.section .text
.extern printf
.global main

main:
pushq %rbp
movq %rsp, %rbp
subq $16, %rsp # Allocate 16 bytes for local vars.
movq $20, -8(%rbp) # Store 20 in "var 1".
movq $35, -16(%rbp) # Store 35 in "var 2".
addq $16, %rsp # Free 16 bytes for local vars.
movq %rbp, %rsp
popq %rbp
movq $0, %rax # Return zero from main.
retq

What if we want to define a global numeric variable like fmt? All we need to
do is use another directive for numeric quad-words, i.e., .quad. For instance, if we
want to define a global variable, num1, with a value of 200:

Listing 9.7

.section .data
num1: .quad 200
fmt: .asciz "%d\n"

Conveniently enough, we can also use movq to move numeric literals between
registers and memory.

583

9.1 Code Generation 584

Listing 9.8

.section .text
.global main

main:
...
movq num1(%rip), %rbx
callq print_rbx
...
retq

What if we want to do something slightly more useful than just playing with
numbers and move operations, e.g., calling functions? Functions take a bit of work
to mess around with in assembly, and we will exemplify this point with our definition
of printf.

Calling Convention

First, note that there is a calling convention that must be obeyed by the caller and
callee of functions. The main rule, when invoking a function, certain arguments
should be stored in specific registers. E.g., argument 1 is stored in %rdi, argument
2 is stored in %rsi, argument 3 in %rdx, argument 4 in %rcx, argument 5 in %r8, and
argument 6 in %r9 (see Figure 9.10). Any remaining arguments should be pushed
to the stack. In our definition of print rbx where we call printf, we know that
everything after the first argument is the data to-be formatted via printf. Thus,
when outputting the value in the rbx register, we move the value to the register
designated for argument 2, namely %rsi. Argument 1, on the other hand, is a
format string. Because strings are pointers, we need to load the address of the
format string into %rdi. Hence, we use leaq, which stands for “load effective
address (quadword)”, and says that we will load the starting address of fmt into
the rdi register. There is a special register that we use when referencing the address
of global variables: %rip. If we wish to load the address of some variable declared
in the .data segment, we need to load its address via leaq, offset from %rip, into
a register (understanding the reasoning behind this logic is not essential to our
primer on assembly and compilation). Finally, printf is special in that it is a
variadic-argument function, which we have taken advantage of hundreds of times
by now. Being that this is the case, x64 assembly has an oddly particular protocol
for handling variadic-argument functions: %rax should hold the value of how many
SSE registers will be used in the function. SSE registers are, effectively, 128-bit
registers for storing floating-point values; we will investigate these in greater detail
later in the chapter. Thus, any instance of invoking a variadic-argument procedure
always results in storing 0 in %rax. Finally, we invoke the function via callq. The
return value from a function must be stored in the rax register (if there is no return
value, this register is, effectively, ignored). Because neither printf nor print rbx
return a value, we simply end off the function with a retq.

584

585 Compilation

Memory Alignment

The x86/x64 assembly standard requires that all callers align the stack on sixteen-
byte boundaries. Calling a function places its return address on the stack, thereby
misaligning the stack. To compensate, we push the base pointer to the stack and
restore it upon termination of the program. By pushing the eight-byte base pointer,
our code intentionally realigns the stack. Therefore, the system, when calling main,
pushes an eight-byte address to the stack, which warrants our choice to push and
pop the base pointer at the beginning and end of the main function.

Using this logic, let us write a function that prints any value that is passed, as
an argument. We can use print rbx in our definition; namely, we move the value
from %rdi into %rbx, then invoke print rbx. We can then invoke print number
as follows:

Listing 9.9

.section .text
.global main

...
print_number:

pushq %rbp
movq %rsp, %rbp
movq %rdi, %rbx
callq print_rbx
movq %rbp, %rsp
popq %rbp
retq

main:
...
movq $300, %rdi
callq print_number
...
retq

Let us tie in a few arithmetic instructions, as well as the use of scanf. scanf is
an infamous and dangerous C function because of its lack of error-handling features
and how easy it is to write code that induces security vulnerabilities, e.g., buffer-
overflow attacks; hence why we heavily discouraged its use during our discussion
on user input in Chapter 5 in favor of getline, fgets, and sscanf. Regardless,
we will make use of it in our assembly programs. Let us write a small example of
reading a number (and only a number!) from the user using scanf in C.

Listing 9.10

1 #include <stdio.h>
2
3 int main(void) {
4 int x;
5 scanf("%d", &x);
6 return 0;
7 }

585

9.1 Code Generation 586

scanf reads from standard input, expecting data formatted according to its first
argument, i.e., a format string. The data that is received is stored in the variables
passed as arguments. These variables must be addresses, however, since scanf
wants to know where to store any received/scanned values. Now, we know enough
to write a basic assembly program. Suppose we want to write a program that
receives two numbers and computes the sum, difference, product, and quotient of
the two values (assuming both are integers and a non-zero divisor). As we stated
previously, these values shall be local to main, meaning we need to allocate space.
Because we push eight bytes to the stack with the base pointer, we allocate (only)
sixteen bytes for local variables, since the stack remains aligned.

Listing 9.11

.section .data
infmt: .asciz "%d"
sumoutfmt: .asciz "The sum is %d\n"

.section .text
.extern scanf
.extern printf
.global main

main:
pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
...
retq

Now, we know that scanf must receive a format string that reads a number, and
its second argument is the address of some number. Since we store local variables on
the stack, to get the address of a variable, we may use leaq. E.g., to get the address
located at %rbp, we invoke leaq on the rbp register using parentheses. Recall that
parentheses allow us to access the value at a memory location if we do not load the
address. On the off chance that we do, we, of course, retrieve its address. We intend
to store the two values we read in via scanf at memory addresses pointed to by
%rbp offset by minus eight and minus sixteen bytes respectively. Then, like printf,
scanf is a variadic-argument procedure, meaning we must modify the value in %rax
(in this case, we store zero). Now, -8(%rbp) stores the first number scanned by
scanf, and -16(%rbp), i.e., eight-bytes above the address pointed to by -16(%rbp),
stores the second number. We can now perform basic arithmetic on these numbers!
To compute their sum, we need to use an available register, e.g., rbx. Therefore,
we move the first number into rbx, then add to it the second number. Lastly, to
print the sum, using printf is a viable option.

586

587 Compilation

Listing 9.12

.section .data
infmt: .asciz "%d"
sumoutfmt: .asciz "The sum is %d\n"

.section .text
.extern scanf
.extern printf
.global main

main:
pushq %rbp
movq %rsp, %rbp
subq $16, %rsp # Allocate 16 bytes.
Read first number from user.
leaq -8(%rbp), %rsi # Move the first address at rbp into rsi.
leaq infmt(%rip), %rdi # Load the input format string into rdi.
movq $0, %rax # Clear rax since it is a var-args procedure.
callq scanf
Read second number from user.
leaq -16(%rbp), %rsi # Move the second address at rbp into rsi.
leaq infmt(%rip), %rdi # Reload the input format.
movq $0, %rax
callq scanf
Setup the output sum.
movq -8(%rsp), %rbx # Move first address into rbx.
addq -16(%rsp), %rbx # Compute sum of two values.
movq %rbx, %rsi # Move sum into second parameter.
leaq sumoutfmt(%rip), %rdi # Load output format into first parameter.
movq $0, %rax
callq printf
addq $16, %rsp # Free 24 bytes; 16 for vars, 8 for alignment.
movq %rbp, %rsp
popq %rbp
retq

Arrays

Arrays, in this language, must have a predefined (constant) size. Therefore, it is
illegal to create an array of some size n, where n is unknown at compile-time.1

What is the process of compiling arrays? Well, it is very similar to how it is done in
C: we declare enough space to store all elements in the array on the stack, just like
variables. Each slot in the array will be eight bytes long since the only data type
that we care about is eight-byte integers. We know from our discussion on arrays
and pointers in Chapter 5 that we can access array indices using pointer arithmetic,
and in fact, this is the only way to index array elements in x64 assembly! So, before
we begin to define and compile our language, let us discuss the structure of arrays
in assembly.

Suppose we wish to write a program that computes the average number of an
array of five integers. Let us write this program in C first, then assembly.

1Just like it is possible to use C library functions in assembly, we can also invoke dynamic memory
allocation functions such as malloc. Our comment assumes forgoing dynamically-allocated arrays.

587

9.1 Code Generation 588

Listing 9.13—Computing the Average of Five Integers Using Arrays

1 #include <stdio.h>
2
3 int main(void) {
4 long arr[5];
5 long sum = 0;
6 long average = 0;
7 long i = 0;
8 // Populate the array.
9 arr[0] = 100;

10 arr[1] = 91;
11 arr[2] = 62;
12 arr[3] = 77;
13 arr[4] = 84;
14 for (i = 0; i < 5; i++) {
15 sum += arr[i];
16 }
17 average = sum / 5;
18 printf("%ld\n", average)
19 return 0;
20 }

As we see, we declare four variables: a counter for the loop, a placeholder for
the running sum and average, and an array of values.

Let us compute the number of bytes required to store these local variables. The
long datatype is eight bytes in size, and we have an array of five long values.
Therefore, the array uses 40 bytes. The other three (long) variables take up 24
bytes for a total of 64 bytes. Now, we know how much space to subtract and add
from the stack pointer in the main prologue and epilogue.

Listing 9.14

main:
pushq %rbp
movq %rsp, %rbp
subq $64, %rsp
...
callq printf
addq $64, %rsp
movq %rbp, %rsp
popq %rbp
retq

Suppose we designate the array to be the first local value declared on the stack.
Since array index memory addresses grow from the bottom-up, the lowest index,
i.e., 0, will have the lowest memory address and, therefore, the highest (absolute)
offset value from the base pointer. Given that the array is the first local variable
declared, index n−1 is located at -8(%rbp), and index 0 is located at −8 × l, where
l is the length of the array.1 Let us see this written out.

1Due to how clunky −8·l appears, we instead opt to use the × symbol to denote multiplication.

588

589 Compilation

Listing 9.15

main:
pushq %rbp
movq %rsp, %rbp
subq $64, %rsp
...
movq $84, -8(%rbp) # arr[4] = 84
movq $77, -16(%rbp) # arr[3] = 77
movq $62, -24(%rbp) # arr[2] = 62
movq $91, -32(%rbp) # arr[1] = 91
movq $100, -40(%rbp) # arr[0] = 100

Array indexing is not quite as intuitive as one may think. The general formula
for computing the offset is as follows. Let A be an array, and let |A| denote the
number of elements A may hold. Then, let i be the index to access, and h is the
address of said index. Notice that we have to negate the calculation to produce a
negative offset value.

h = −(|A|−i)

In our code example, we want to compute the sum of each element in the array. An
ideal situation would be to use a loop to keep track of the current offset. We can
load the address of an array index by using “scale offset indexing”.1 Consider the
following line of x64 assembly: movq (%rbp, %r13, 8), %r13. This calculation
says that we want to load the address pointed to by this offset calculation: using
the address pointed to by %rbp, offset by 8 × %r13. Thus, to store the address of
index 1 in %rax, we write the following:

Listing 9.16

main:
...
movq $-4, %r13 # r13 = -(|A| (5) - i (1))
movq (%rbp, %r13, $8), %r13 # r13 = rbp + 8 * r13, i.e., arr[1]

To store a value in the index pointed to by %r13, we use a form of the dereference
operator. By enclosing the register in parentheses, we treat it as an address and
not a value.

Listing 9.17

main:
...
movq $84, (%r13)

Let us continue to write the “average” program. We certainly need a loop.
Assume that -64(%rbp) is the address of i and contains the length of the array,
i.e., 5.

1The term “scale” refers to the size of each element, and by multiplying the scale by the index, we
produce an offset from the zeroth element of the array pointer.

589

9.1 Code Generation 590

Listing 9.18

main:
...

loop:
movq -64(%rbp), %r13 # rax = i
cmpq $0, %r13 # is i = 0?
jz done
movq $5, %r13
subq -64(%rbp), %r13 # r13 = 5 - r13
negq %r13 # r13 = -r13
movq (%rbp, %r13, 8), %r13 # r13 = [(rbp + 8 * r13)]
addq %r13, -48(%rbp) # sum += r13
subq $1, -64(%rbp) # i -= 1
jmp loop

done:
...

System Calls

Most introduction-to-assembly tutorial mediums begin by writing the stereotypical
“Hello, world!” program. Writing said program using the external printf function
is rather simple and straightforward. On the other hand, there exist functions
that are not part of the C library and are, instead, system calls. A system call is a
function that interacts directly with the operating system. printf is an abstraction
over a system call that outputs data to standard output. What if, on the off chance,
printf is unavailable? How can we output data to standard out? By using a system
call, of course!

Outputting strings of text to standard output, using only system calls, involves
usage of the write system call. write receives three arguments: a file descriptor
fd where data is written, a buffer/sequence of bytes buffer to output to fd, and
the number of bytes to output n. Suppose we wish to output the string, “Hello,
world!\n” to standard output. We need three other pieces of information: the
standard output file descriptor, the number of bytes that our string contains, and the
system call identifier for write. We provide a reference chart for some frequently-
used system calls below.

Id. No. (%rax) System Call

0 sys read
1 sys write
2 sys open
3 sys close
4 sys stat

Reading the chart says that the system call identifier is stored in %rax, and the
relevant system call for write is 1. The file descriptor for standard output is also 1.
Lastly, our message contains fifteen bytes because it holds fourteen characters plus
one for the NUL-byte. We use the same process for passing arguments to functions
for supplying the arguments for a system call: the first argument is stored in %rdi,
second in %rsi, third in %rdx, and so on. The only differences are that we set the
system call identifier in %rax, and invoke the system call via syscall. Let us see
an example.

590

591 Compilation

Listing 9.19

.section .data
msg: .asciz "Hello, world!\n"
msglen: .quad 15

.section .text
.global main

main:
pushq %rbp
movq %rsp, %rbp
movq $1, %rdi # fd = %rdi (stdout: 1)
leaq msg(%rip), %rsi # buffer = %rsi (msg)
movq msglen(%rip), %rdx # n = %rdx (msglen)
movq $1, %rax # syscall = 1
syscallN the address
movq %rbp, %rsp
popq %rbp
retq

Hello, world!

There are several other system calls that we could use. One disadvantage of them
is that they severely handicap the programmer—outputting, say, format strings, is
excruciatingly difficult without printf. There is, however, a way that we can output
raw bytes directly. Recall that the second argument to write: namely buffer, is
a const void *, meaning it does not have to be a const char *, i.e., a string. If
we wish to output a character stored in a local variable, we can easily do so. All
we must do is convert a quadword integer into a quadword pointer. In C, we would
do this by retrieving the address of a variable via the ampersand operator. We can
mimic this result on a non-pointer variable by using leaq. So, imagine we wish to
output the character ‘A’. This corresponds to the ASCII value 65, meaning that if
we store 65 in a char, i.e., a .byte, the program will output ’A’ when invoked with
a system call.

591

9.1 Code Generation 592

Listing 9.20

.section .data
firststr: .asciz "The character to display is "
firststrlen: .quad 28
secondstr: .asciz ".\n"
secondstrlen: .quad 3
val: .byte 65

.section .text
.global main

main:
pushq %rbp
movq %rsp, %rbp

Output the first string.
movq $1, %rdi
leaq firststr(%rip), %rsi
movq firststrlen(%rip), %rdx
movq $1, %rax
syscall

Output the byte. Treat as char pointer.
movq $1, %rdi
leaq val(%rip), %rsi
movq $1, %rdx # One byte value.
movq $1, %rax
syscall

Output the second string.
movq $1, %rdi
leaq secondstr(%rip), %rsi
movq secondstrlen(%rip), %rdx
movq $1, %rax
syscall

movq %rbp, %rsp
popq %rbp
retq

The character to
display is A.

Suppose that we want to read an ASCII character from standard input, then
output it to the user via standard output using only system calls.1 Well, we first
need to declare a section of memory reserved for an input buffer. We can use the
.bss segment to declare storage for variables that by default can only be zero (0). In
C, we may do something similar with fgets wherein we create a char[] buffer of
some predetermined size. Because we plan to read only one character from standard
input (plus the trailing newline character), we can declare a buffer of size 2 with
the .space directive. In general, however, it is advised to declare a “more-than-
necessary” amount of space. As is typically done in C, we might declare an input
buffer to hold 1024 bytes.

Listing 9.21

.section .bss
buffer: .space 2

.section .text
.global main

main:
...

1This is commonly called an “echo” program.

592

593 Compilation

Let us now write the corresponding code to read a character from standard input
using system calls. As we know from the above table, the system call identifier for
sys read is 0. Otherwise, the arguments are identical to sys write, with the
only exception being that the supplied buffer is populated with whatever the user
enters.

Listing 9.22

.section .bss
buffer: .space 2

.section .text
.global main

main:
pushq %rbp
movq %rsp, %rbp
movq $0, %rdi # Standard input file descriptor.
leaq buffer(%rip), %rsi # Buffer for data read.
movq $2, %rdx # Max num. chars to read is 2.
movq $0, %rax # sys_read identifier.
syscall
...
movq %rbp, %rsp
popq %rbp
retq

At this point, we can invoke the write system call similar to how it was done
before.

Listing 9.23

main:
...
movq $1, %rdi # Standard output file descriptor.
leaq buffer(%rip), %rsi # Buffer for data to write from.
movq $2, %rdx # Max number of chars to display.
movq $1, %rax # sys_write identifier.
syscall
...
retq

Running the program allows us to type any key, and the program echos it back.

Exercise 9.1. (⋆⋆)
Write a program to output the number 127 using only system calls. Do not use
.asciz to do this. Hint: use .byte with comma-separated values to designate an
array, e.g., .byte 90, 80, 70. If you try to declare the array as .byte 1, 2, 7,
it will not work! Why?

Exercise 9.2. (⋆⋆)
Write a program that reads an (eight-byte) integer from standard input and out-
puts said integer to standard output only using system calls. Hint: it is perfectly
acceptable to echo the buffer read from standard input.

Exercise 9.3. (⋆⋆)
Write an x64 assembly function that computes the power of some base integer b
raised to some exponent x. You can do this recursively or iteratively.

593

9.1 Code Generation 594

Exercise 9.4. (⋆⋆)
Write an x64 assembly function that converts the ASCII representation of an integer
to its integer counterpart. Return this value from the function. For example, the
number 5 has an ASCII value of 53. Assume that only ASCII values that represent
the digits between 0 and 9 are possible arguments to the function.

Exercise 9.5. (⋆⋆⋆⋆)
Using the previous exercises as a basis, write a program that reads an integer from
standard input, writes that integer to standard output using only system calls and
by storing the number in a quadword. In other words, do not store the number as
a string (aside from the input buffer). This is a rather challenging problem, and
it may be helpful to attempt this in C or one of our interpreter’s languages before
trying it in assembly. Hint: sys read stores the number of characters it read from
standard input as a return value in %rax.1 Use this value to mathematically store
the ASCII numeric characters from a string as a quadword. Think about it this
way: 521 is equivalent to (102·5)+(101·2)+(100+1).

1It also returns the newline character in its length so be aware!

594

595 Compilation

9.2 Compiling L−PF1 to L−PF1x64

With our primitive knowledge of x64 assembly, we can finally begin to write a
compiler that converts code written in the language of our interpreters into x64
assembly! Instead of attempting to write the compiler in C (which would prove to
be a laborious undertaking), we will write all of our code in the interpreter (that
is right—our interpreter is now powerful enough to parse and compile programs!).
As with our incremental definitions and implementations of the interpreter and
languages for the said interpreter, we will grow our compiler in stages, adding
more features and complexities with each. This sub-journey begins similarly to
how it started for the interpreter: with LPF1, except it is not quite LPF1; our first
compiler will compile expressions that print integers. Therefore, since this is a
largely stripped-down language, we will classify it as L−PF1. Therefore, our compiler
will take source code written in L−PF1 and compile it to L−PF1x64

.

expr ::= ‘(call (print’ ‘ ’ constant ‘))’
constant ::= [0-9]+
pf1- ::= expr*

Figure 9.1: Extended BNF Grammar for L−
PF1

There are several steps to take when writing a compiler for L−PF1. We need
to generate the assembly preamble, i.e., data segment, compute the required local
stack space for main, convert each instruction into an assembly counterpart, then
generate the cleanup for main. Our compiler will be designed in several parts that,
when combined, generate x64 assembly for a program written in a slightly-extended
version L−PF1. We can write a procedure compile that receives a list of statements
(which, themselves, are lists), and compiles those statements. Note that we will
make modifications to compile as we design the compiler.

Listing 9.24

(define compile
(λ (los)
(begin
...)))

Let us now describe the variant of L−PF1 that we will compile: L−PF1x64
. It

supports exactly one function invocation: printing of variables with a newline via
print, and binary operators, e.g., (call print ...), where ... is any number. The
reason for such an odd syntax will become apparent later on.

595

9.2 Compiling L−
PF1 to L−

PF1x64
596

Assembly Preamble

Assembly programs that use global variables or string literals must have a data
segment as we have previously seen with printf/scanf. Because L−PF1x64

contains
a print procedure, we need a corresponding format string that outputs a number
and a newline. Additionally, the preamble will declare the .text segment, printf
as an .extern function, and define main as .global. It makes the most sense to
write a function that outputs the data to standard output via printf. Afterward,
we can add this as the first line to the begin clause of compile.

Listing 9.25

(define generate-preamble
(λ (los)
(begin
(printf ".section .data∼n")
(printf " outnumfmt: .asciz ∼"∼a∼n∼"∼n")
(printf ".section .text∼n")
(printf " .extern printf∼n")
(printf " .global main∼n"))))

(define compile
(λ (los)
(begin
(generate-preamble los))))

Statement Reduction

Statement reduction is the heart of our compiler. That is, we take our statements
written in the given input language and reduce them into assembly language coun-
terparts. We can write a procedure similar to value-of from our interpreters.
reduce, that receives a statement and converts it into its assembly counterpart.

Listing 9.26

(define reduce
(λ (stmt)
(cond
[...])))

L−PF1 recognizes only two types of statements: (numeric) constants and function
calls. Realistically, though, L−PF1 only directly reduces a call, since constants
cannot be reduced on their own without some integrated context. Let us add these
functions to reduce, then work on their implementation. Each recognizer and
reducer will be invoked here.

Listing 9.27

(define reduce
(λ (exp)
(cond
[(constant? exp) (reduce-constant exp)]
[(call? exp) (reduce-call exp)]
[else (printf "ERR: cannot reduce ∼a∼n" exp)])))

Now we can write the recognizer and reducer for a constant. Constants are
simple in that they reduce to themselves. The recognizer is similarly trivial since it
is effectively a wrapper around the number? predicate.

596

597 Compilation

Listing 9.28

(define constant?
(λ (exp)
(number? exp)))

(define reduce-constant
(λ (exp)
exp))

On the other hand, a function call is a list where the second is the function name,
and the rest of the rest is the list of arguments passed to the function. Of course,
we know that our current language only supports print calls, but generalizing the
approach is handy. Let us implement the recognizer first, as the corresponding
reducer is more complex.

Listing 9.29

(define call?
(λ (exp)
(and (cons? exp)

(>= (length exp) 2)
(eqv? (first exp) 'call))))

The call reducer should extract a few components out into a let* block, namely
the procedure name and its arguments.

Listing 9.30

(define reduce-call
(λ (exp)
(let* ([procname (second exp)]

[procargs (rest (rest exp))])
...)))

Now, we perform a case analysis on the procedure name and, if we invoke print,
we must output a series of instructions to invoke printf in assembly. We could
certainly use our built-in printf function to output instructions directly, but this
is a bit cumbersome and prone to errors. Why not write a procedure for outputting
instructions?

There are three broad types of instructions, where each type corresponds to the
number of arguments it receives. Namely, some instructions receive one argument,
some receive two, and the majority receive three. We will implement two and
three-argument printing functions for the time being.

When we output an instruction, there are a few considerations to make: whether
an operand references a register or is a constant. Let us write two functions:
print-instruction2 and print-instruction3. The arguments to the former
are the instruction to use and its operand. The arguments to the latter are the
instruction to use and its two operands. We will extract the components out in
let* blocks. In addition, we should invoke reduce on the operands as they may
themselves need to be reduced (this is impossible in the current language, but again,
future-proofing is important!).

597

9.2 Compiling L−
PF1 to L−

PF1x64
598

Listing 9.31

(define print-instruction2
(λ (stmt)
(let* ([op (first stmt)]

[rand1 (reduce (second stmt))])
...)))

(define print-instruction3
(λ (stmt)
(let* ([op (first stmt)]

[rand1 (reduce (second stmt))]
[rand2 (reduce (third stmt))])

...)))

print-instruction2, for the current language, needs to consider only two
“types” of operands: constants and registers. If its operand is a constant, we
affix a dollar sign, $, in front. Otherwise, we affix a percent sign %. We already
have a recognizer for constants, so let us write one for registers. As we discussed,
there are sixteen available registers. So, if we store these in a list, we can check to
see if something is a list by determining if it is a member of said list.

Listing 9.32

(define registers '(rax rbx rcx rdx rsp rbp rsi rdi
r8 r9 r10 r11 r12 r13 r14 r15))

(define register?
(λ (exp)
(member exp registers)))

Listing 9.33

(define print-instruction2
(λ (op rand)
(let* ([res-rand (reduce rand)])
(cond
[(constant? res-rand) (printf " ∼a $∼a∼n" op res-rand)]
[(register? res-rand) (printf " ∼a %∼a∼n" op res-rand)]
[else #f]))))

print-instruction3 is slightly more involved. Since the destination must al-
ways be a register, instructions with a constant destination argument (constant-
constant and register-constant) are impossible. The two other combinations with
the destination as a register (register-register and register-constant) are valid and
fair game.

Listing 9.34

(define print-instruction3
(λ (op src dest)
(let ([res-src (reduce src)]

[res-dest (reduce dest)])
(cond
[(and (register? res-src) (register? res-dest))
(printf " ∼a %∼a, %∼a∼n" op res-src res-dest)]

[(and (constant? res-src) (register? res-dest))
(printf " ∼a $∼a, %∼a∼n" op res-src res-dest)]

[else #f]))))

598

599 Compilation

These functions allow us to simply pass symbols that are conveniently format-
ted into a printf, meaning we do not need to worry about outputting an incorrect
symbol. With this, we can finish reduce-call’s print handler: output three in-
structions to move the argument into %rsi, load the output number format string
into %rdi, zero out %rax (remember why we need to do this from the note in the
assembly primer), then invoke printf. Notice, however, that we still must use a
leaq to invoke printf. This is because outnumfmt is neither a register nor a con-
stant, but a variable that resides in global memory. Our language, as of now, has
no understanding of variables whatsoever, so the print-instruction functions will
not work.

Listing 9.35

(define reduce-call
(λ (exp)
(let* ([procname (second exp)]

[procargs (rest (rest exp))])
(cond
[(eqv? procname 'print)
(let* ([arg (first procargs)])
(begin
(print-instruction3 ' movq arg 'rsi)
(printf " leaq outnumfmt(%rip), %rdi∼n")
(print-instruction3 ' movq 0 'rax)
(print-instruction2 ' callq 'printf)))]

[else #f]))))

With reduce-call and reduce-constant out of the way, we can integrate
reduce into a function that reduces a list of statements recursively. Then, we
can invoke said function in compile after generating the preamble. Because our in-
put is assumed to be a list of statements (represented as lists), we need a recursive
helper function to reduce each statement one-by-one.

Listing 9.36

(define reduce-statements
(λ (los)
(cond
[(null? los) (printf "")]
[else
(begin
(reduce (first los))
(reduce-statements (rest los)))])))

(define compile
(λ (los)
(begin
(generate-preamble)
(reduce-statements los))))

599

9.2 Compiling L−
PF1 to L−

PF1x64
600

Function Prologue

All functions in assembly (and C and other languages) contain what is known as the
prologue and an epilogue. Essentially, the prologue “sets up” the function, whereas
the epilogue “tears it down”. By setting up, we mean that it pushes callee-saved
registers to the stack and allocates memory for local variables. Understanding what
a “callee-saved” register is, at this point, is unnecessary. Similarly, we will explore
local variables in the next section. For now, we just need to know that the main
function has the following prologue. The general idea is as follows: we declare the
existence of the main function. Then, push %rbp to the stack. Finally, we move
%rsp into %rbp. Again, we will explore what these concepts mean in greater detail
later on. Because all functions have a prologue and epilogue, it makes sense to
generalize this function as much as possible by printing a symbol representing the
current function being reduced.

Listing 9.37

(define generate-prologue
(λ (los)
(begin
(printf "∼a:∼n" 'main)
(print-instruction2 'pushq 'rbp)
(print-instruction3 'movq 'rsp 'rbp))))

The main function prologue must come before reducing the statements in its
body.

Listing 9.38

(define compile
(λ (los)
(begin
(generate-preamble)
(generate-prologue los)
(reduce-statements los))))

Function Epilogue

Function epilogues are the mirror of function prologues; that is, we restore %rbp
to %rsp, and pop the old value of %rbp off the stack and, therefore, back into the
register.

Listing 9.39

(define generate-epilogue
(λ (los)
(begin
(print-instruction3 'movq 'rbp 'rsp)
(print-instruction2 'popq 'rbp)
(printf "ret∼n"))))

The main function epilogue must come after reducing the statements in its body.

600

601 Compilation

Listing 9.40

(define compile
(λ (los)
(begin
(generate-preamble)
(generate-prologue los)
(reduce-statements los)
(generate-epilogue los))))

So, we can now compile very simple programs that print integers to standard
output. Let us write one and examine its assembly output.

Listing 9.41

> (compile '((call print 5))) .section .data
outnumfmt: .asciz "%d\n"

.section .text
.extern printf
.global main

main:
pushq %rbp
movq %rsp, %rbp
movq $5, %rsi
leaq outnumfmt(%rip), %rdi
movq $0, %rax
callq printf
movq %rbp, %rsp
popq %rbp
retq

We obey the rules of the prologue and epilogue and invoke printf, which outputs
the integer 5 to standard out. Programs in L−PF1 are not restricted to one instruction,
meaning we can output multiple numbers if so desired.

Listing 9.42

(compile '((call print 5)
(call print 10)
(call print 15)))

Compiling LPF1 to LPF1x64

Compiling very simple print statements is exhilarating to see for the first time, but
it rapidly loses its appeal after trying a few different integers. To spice up this
adventure, let us compile LPF1 to LPF1x64

. The only noteworthy addition (no pun

intended) from L−PF1 to LPF1 is that we can inline arithmatic expressions into the
print statement. That is, expressions of the form, e.g., (call print (+ 5 10))
are reducible.

expr ::= ‘(call (print’ ‘ ’ (constant | arithexpr) ‘))’
arithexpr ::= ‘(’ binop ‘ ’ constant ‘ ’ constant ‘)’
binop ::= ‘+’ | ‘-’ | ‘*’ | ‘/’
constant ::= [0-9]+
pf1 ::= expr*

Figure 9.2: Extended BNF Grammar for LPF1

601

9.2 Compiling L−
PF1 to L−

PF1x64
602

Being that all four of the primitive arithmetic operators are implemented in sim-
ilar manners, we will only implement addition, i.e., addq. Let us write a recognizer
for an addition arithmatic expression.

Listing 9.43

(define add?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (first exp) '+))))

Its reducer is trivial—we reduce both operands, move the result of the first
operand into %rbx, add the second operand into %rbx, and finally return the symbol
’rbx to designate that the result is stored in %rbx. Though, this introduces a slight
problem with our reducer: registers do not currently reduce to anything. This is
easily fixable by adding a reduce-register function that, identical to constants,
reduces to itself. This allows us to fully implement reduce-add and amend our
definition of reduce.

Listing 9.44

(define reduce-register
(λ (exp)
exp))

(define reduce-add
(λ (exp)
(let* ([rand1 (reduce (second exp))]

[rand2 (reduce (third exp))])
(begin
(print-instruction3 'movq rand1 'rbx)
(print-instruction3 'addq rand2 'rbx)
'rbx))))

Listing 9.45

(define reduce
(λ (exp)
(cond
[(constant? exp) (reduce-constant exp)]
[(register? exp) (reduce-register exp)]
[(variable? exp) (reduce-variable exp)]
[(add? exp) (reduce-add exp)]
[(var? exp) (reduce-var exp)]
[(call? exp) (reduce-call exp)]
[else (printf "ERR: cannot reduce ∼a∼n" exp)])))

Let us write a program that computes the sum of the constants 5 and 10, and
look at the corresponding assembly instructions.

Listing 9.46

> (compile '((call print (+ 5 10)))) ...
movq $5, %rbx
addq $10, %rbx
movq %rbx, %rsi

...

602

603 Compilation

As we see, we utilize the rbx register to store the sum of this computation.
Namely, we move $5 into %rbx, then add to it the second immediate value $10.
Because we immediately invoke a call to print, this result is transferred into %rsi.
Interestingly, our compiler would certainly generate instructions to compute the
sum of some arbitrary expression without a place to store it, i.e., as an argument to
print. This would be meaningless, however, since the program would never re-use
said computation.

One important point to take note of is that arithmatic expressions may only
receive constants as arguments to the operator. This is because of how we apply
an arithmetic operator to its arguments: the first operand is moved into %rbx and
the second (operand) has the arithmetic operator applied to it and the value stored
in %rbx. This inherently limits the power of our expressions for the time being.
Once we introduce variables, though, we can circumvent this issue by assigning
sub-expression results to temporary variables.

Exercise 9.6. (⋆)
Add the remaining three binary operators for subtraction, multiplication, and divi-
sion.

603

9.3 Compiling LPF2 to LPF2x64
604

9.3 Compiling LPF2 to LPF2x64

LPF1 compiles only very simple expressions: those that compute, then print, the
result of some binary operator on two constants. What if we want to store values in
variables? In this section, we will compile LPF2, which introduces local variables,
down to LPF2x64

.

expr ::= call
| var
| arithexpr
| constant
| id

call ::= ‘(call (print’ ‘ ’ expr ‘))’
var ::= ‘(var ’ id ‘ = ’ expr‘)’
arithexpr ::= ‘(’ binop binopval binopval ‘)’
binopval ::= {call | constant | id};
id ::= [a-zA-Z]+
pf2 ::= expr*

Figure 9.3: Extended BNF Grammar for LPF2

Variable Homes

As we described in the assembly primer, each locally-declared variable has a “home”
located somewhere on the stack as an offset from the base pointer. Therefore, we
should use environments to create an association list that maps variables to their
offset number. E.g., if we declare three variables x, y, and z, perhaps x has an offset
of -8, y has an offset of -16, and z has an offset of -24. Unfortunately, it is not
quite this simple.

Procedures, aside from main, make defining local variables a bit more difficult
than it seems at first glance. We want to allow each function to have its own local
variable environment. A solution to this is to keep a list of “function associations”
in a root environment, e.g.,

Listing 9.47

(define env `((main . ())))

The problem with this approach is that we also need the function to know how
many local variables are declared within its scope, so as to assign correct homes to
variables. Therefore, we will say that a function, as an association, maps to a pair
whose first is a box representing the number of variables declared within its scope,
and whose rest is an association list of variables whose name is the first and whose
rest is its offset “home”. Let us rewrite the example from above that defines x, y,
and z as an environment.

Listing 9.48

(define env `((main . (,(box 3) . ,(box '((z . -24) . (y . -16) . (x . -8)))))))

604

605 Compilation

The default environment initializes the environment with main preloaded, in a
sense. In future languages, we will remove this default definition to allow a user-
defined main function.

Listing 9.49

(define env `((main . ,(cons (box 0) (box '())))))

Now, we want to write a function that extends the environment to contain a new
variable with a unique offset value. The box denoting the length of the environment,
i.e., the number of currently-stored variables, means we do not need to continuously
query the environment each time a definition is encountered.

Listing 9.50

(define extend-env!
(λ (var)
(let* ([proc-pair (assv 'main env)]

[offset-box (second proc-pair)]
[offset (add1 (unbox offset-box))]
[binding-box (rest (rest proc-pair))]
[binding-list (unbox binding-box)])

(begin
(set-box! binding-box (cons (cons var offset) binding-list))
(set-box! offset-box offset)))))

So, what all is taking place in this code segment? We retrieve the “procedure
pair” from the environment, as well as the boxes containing the offset length and
variable bindings. The first variable declared has an offset of -8, so we need to
increment the offset by one before assigning said variable an offset. After updating
the environment, we encapsulate the new offset back into its box for later query
and modification. With this procedure, we can begin writing assign-homes. The
general process is as follows: recursively iterate through the list of statements of a
function and, if we find a variable declaration, assign it an offset in the environment.
We could write a “global” definition recognizer since we may need it later, but
localizing the assignment in a letrec is a good use of abstraction.

Listing 9.51

(define var?
(λ (exp)
(and (cons? exp)

(= (length exp) 4)
(eqv? (first exp) 'var))))

605

9.3 Compiling LPF2 to LPF2x64
606

Listing 9.52

(define assign-homes
(letrec ([rec

(λ (los)
(cond
[(null? los) #f]
[else
(begin
(assign (first los))
(rec (rest los)))]))]

[assign
(λ (stmt)
(cond
[(var? stmt) (extend-env! (second stmt))]
[else #f]))])

rec))

Home assignment takes place during the prologue of a function since we need
to know the size of the environment to allocate the required space on the stack for
local variables.

Listing 9.53

(define generate-prologue
(λ (los)
(begin
(printf "∼a:∼n" 'main)
(assign-homes los)
(print-instruction2 'pushq 'rbp)
(print-instruction3 'movq 'rsp 'rbp))))

Another function to write, compute-stack-space, determines the required space
to store the local variables on the stack for a function. If we have an odd number
of variable declarations, we need to offset it by eight extra bytes to align the stack.

Listing 9.54

(define compute-stack-space
(λ (los)
(let ([size (length (unbox (rest (rest (assv 'main env)))))])
(if (odd? size) (* 8 (add1 size)) (* 8 size)))))

From this, we amend our definitions of generate-prologue and generate-epilogue
to include invocations of both assign-homes and compute-stack-space.

Listing 9.55

(define generate-prologue
(λ (los)
(begin
(printf "∼a:∼n" 'main)
(assign-homes los)
(print-instruction2 'pushq 'rbp)
(print-instruction3 'movq 'rsp 'rbp)
(print-instruction3 'subq (compute-stack-space los) 'rsp))))

(define generate-epilogue
(λ (los)
(begin
(print-instruction3 'addq (compute-stack-space los) 'rsp)
(print-instruction3 'movq 'rbp 'rsp)
(print-instruction2 'popq 'rbp)
(printf " retq∼n"))))

606

607 Compilation

We also need to update our print-instruction3 function to account for three
new statement types: register-to-memory, constant-to-memory, and memory-to-
register. To compute the offset of a given variable in memory, we look up its
value in the environment association list and multiply it by −8. Because we utilize
this result multiple times over in print-instruction3, we will write a function,
local-var-offset, to do the heavy lifting for us.

Listing 9.56

(define local-var-offset
(λ (var)
(let* ([proc-pair (assv current-proc env)]

[bindings (unbox (rest (rest proc-pair)))])
(* -8 (rest (assv var bindings))))))

Listing 9.57

(define print-instruction3
(λ (op src dest)
(let ([res-src (reduce src)]

[res-dest (reduce dest)])
(cond
...
; Register to memory.
[(and (register? res-src) (variable? res-dest))
(printf " ∼a %∼a, ∼a(%rbp)∼n" op res-src (local-var-offset res-dest))]

; Memory to register.
[(and (variable? res-src) (register? res-dest))
(printf " ∼a ∼a(%rbp), %∼a∼n" op (local-var-offset res-src) res-dest)]

; Constant to memory.
[(and (constant? res-src) (variable? res-dest))
(printf " ∼a $∼a, ∼a(%rbp)∼n" op res-src (local-var-offset res-dest))]

[else
(printf "ERR print-instruction:

cannot reduce 'op=∼a, res-src=∼a, res-dest=∼a'∼n" op res-src res-dest)]))))

All that is left is to implement the recognizer and reducer for variables and
variable declarations according to our language grammar.

Variables are neither constants nor registers; they are instead symbols that re-
solve to themselves.

Listing 9.58

(define variable?
(λ (exp)
(and (not (constant? exp))

(not (register? exp))
(symbol? exp))))

(define reduce-variable
(λ (exp)
exp))

Variable declaration reductions require only one assembly instruction. Recog-
nizing a variable declaration is just as simple as always.

Listing 9.59

(define var?
(λ (exp)
(and (cons? exp)

(= (length exp) 4)
(eqv? (first exp) 'var)
(variable? (second exp)))))

(define reduce-var
(λ (exp)
(let* ([v (second exp)]

[res (reduce (fourth exp))])
(print-instruction3 'movq res v)))))

Each recognizer and reducer are added to our current definition of reduce.

607

9.3 Compiling LPF2 to LPF2x64
608

Listing 9.60

(define reduce
(λ (stmt)
(cond
[(constant? stmt) (reduce-constant stmt)]
[(variable? stmt) (reduce-variable stmt)]
[(add? stmt) (reduce-add stmt)]
[(var? stmt) (reduce-var stmt)]
[(call? stmt) (reduce-call stmt)]
[else #f])))

Let us write a test program and investigate the compiled output.

Listing 9.61

> (compile
'((var x = 20)

(var y = 35)
(var z = (+ x

y))
(call
print
z)))

.section .data
outnumfmt: .asciz "%d\n"

.section .text
.extern printf
.global main

main:
pushq %rbp # Save value of %rbp.
movq %rsp, %rbp # Move %rsp into %rbp.
subq $16, %rsp # Alloc 16 bytes to x,y.
movq $20, -8(%rbp) # Move constant 20 into "x".
movq $35, -16(%rbp) # Move constant 35 into "y".
movq -8(%rbp), %rax # Move "x" into %rax.
addq -16(%rbp), %rax # Add "y" into %rax.
movq %rax, %rsi # Mv %rax into 2nd arg. reg.
leaq outnumfmt(%rip), %rdi # Mv fstr into 1st arg. reg.
movq $0, %rax # Clear rax reg for printf.
callq printf # Invoke C "printf" function.
addq $16, %rsp # De-allocate 16 bytes.
movq %rbp, %rsp # Restore %rsp val.
popq %rbp # Rst %rbp val from stack.
retq

We can slightly optimize our implementation of local variables by amending the
prologue and epilogue to exclude adding and subtracting bytes from the stack if no
local variable declarations exist in the function.

Exercise 9.7. (⋆)
Implement set!, which receives a previously-defined variable and assigns it a new
value, e.g., (set! x 10), or (set! y (+ 20 x)). The right-hand side of the
set! can be no more complex than those in var declaration statements.

Exercise 9.8. (⋆⋆)
Write an extension to LPF2x64

namely LINx64
, which adds a function read-integer

that uses scanf to read a number from standard input.

Exercise 9.9. (⋆⋆)
Add support for a function print-string that allows outputting of a string literal to
standard output. Note that this requires “pre-processing” of the input instructions
to scan for string literals since they must be stored in the .data segment. It is
acceptable (and a good idea, in fact) to generate random identifiers for strings.

Exercise 9.10. (⋆⋆)
Right now, the basic arithmetic operations only support two constant operands.
Rewrite +, -, and * to support any number of variables and constants. This, how-
ever, means that you will need to change the register used for arithmatic operations.
Use, and return, %r13. Follow the grammar given in Figure 9.4.

608

609 Compilation

expr ::= call | var | aexpr | const | id
call ::= ‘(call (print’ ‘ ’ expr ‘))’
var ::= ‘(var ’ id ‘ = ’ expr‘)’
aexpr ::= ‘(’ binop binopval+ ‘)’
binopval ::= {call | const | id};
id ::= [a-zA-Z]+
pf2 ::= expr*

Figure 9.4: Extended BNF Grammar for Arithmetic Operators

609

9.4 Compiling L−
COND to L−

CONDx64
610

9.4 Compiling L−COND to L−CONDx64

Every use of a conditional, whether it be through if, else if, else, or cond, has
been at a high level with said constructs that abstract what is truly going on with
a conditional. Assembly removes such abstractions and requires us to work with
conditional statements “directly”. So, before we compile LCOND, let us discuss how
conditionals and jump statements work in assembly, namely by compiling a subset
of LCOND: L

−
COND to assembly.

expr ::= cmp-expr | ...
cmp-expr ::= ‘(’ cmp-op ‘ ’ expr ‘ ’ expr ‘)’
cmp-op ::= ‘?=’ | ‘!=’ | ‘<’ | ‘<=’ | ‘>’ | ‘>=’
cond- ::= expr*

Figure 9.5: Extended BNF Grammar for L−
COND

Suppose we want to check whether two integers are equivalent. We, tradition-
ally, use =, e.g., (= x y), which returns #t if x is numerically equal to y, and #f
otherwise. How can we determine if two values are equivalent without a numeric
comparison like this? Well, we can subtract y from x and see if the result is zero.
Assembly allows us to do this very operation via cmp. cmp takes two registers, sub-
tracts them, and sets flags dependent on the result. For instance, assuming %r10
stores $5 and %r11 stores $3, the instruction cmpq %r10, %r11 takes two registers,
subtracts their values, and because the result is $2, $2 is obviously not zero, so
while some flags are set, the zero flag is not set. Let us write this in x64 assembly.

Listing 9.62

main:
...
movq $5, %r10 # Move 5 into rand1.
movq $3, %r11 # Move 3 into rand2.
cmpq %r10, %r11 # Compare 5 and 3.

Doing this comparison, on its own, is rather useless. We may want to do some-
thing with the fact that $2 is not equal to zero. If we write code such as, e.g.,
(define x (= 5 3)), we are stating that we want x to hold “true” if 5 is numeri-
cally equal to 3, and “false” otherwise. Our assembly language has no understanding
of “true” and “false”, so we must encode these choices as “1” and “0” respectively.
So, x in this example holds 0. But how can we represent this in x64 assembly?
We will use jump statements to illustrate. A jump statement allows us to change
program flow. For instance, if we want to set %r12 to one only when the zero flag is
set (indicating $5 and $3 are numerically equal), we may write a label that jumps
to an instruction that moves $1 into %r12. If the zero flag is not set, then the jump
statement is ignored.

610

611 Compilation

Listing 9.63

main:
...
movq $5, %r10 # Move 5 into rand1.
movq $3, %r11 # Move 3 into rand2.
cmpq %r10, %r11 # Compare 5 and 3.
je L1 # If 5==3, jump to L1.
movq $0, %r12 # Otherwise, move 'false' into bool reg.
jmp L2 # Alt. jump to L2.

L1: movq $1, %r12 # Move 'true' into bool reg.
...

L2: retq

Notice how the alternative case is written first, which jumps to a label after the
consequent case is written.1 So, going back through this, we first compare the r10
and r11 register values. If they are equal, we jump to label L1. If they are not equal,
we move “false”, i.e., 0, into %r12 and jump to label L2. This jump is pertinent to
avoiding the “true” case. We then write the consequent case which moves “true”,
i.e., 1 into %r12. Finally, we define a label L2 where code execution continues after
the conditional. A general template is as follows:

Compare V1, V2
If T is True, Jump to L1, otherwise, continue.
Code That Executes Only When T is False
Jump to L2
L1: Code That Executes Only When T is True
L2: ...

There are several other instructions for arithmatic comparisons: jne for jump
if not equal, js for jump if negative, jg for jump if greater than, jge for jump if
greater than or equal to, jl for jump if less than, and jle for jump if less than or
equal to. Full x64 assembly supports several more, but we omit their inclusion for
simplicity.

Let us begin the process of compiling L−COND to L−CONDx64
by allowing compari-

son expressions, e.g., (= 10 20). There are a few ways that we can implement this,
but we want a way that allows us to add as many comparison operators, and hence
be as flexible, as we see fit. Thus, let us write reduce-cmp. A comparison operator
reduces to an x64 cmp instruction, two jump labels, and code for the consequent
and alternative cases. We can extract out each of these values as follows:

Listing 9.64

(define reduce-cmp
(λ (exp)
(let ([op (first exp)]

[x (second exp)]
[y (third exp)]
[l1 (gen-label)]
[l2 (gen-label)])

(begin
...))))

1This is a completely arbitrary design choice; we could use a jne instruction to reverse the logic.

611

9.4 Compiling L−
COND to L−

CONDx64
612

We prematurely introduced l1 and l2 through a gen-label function; what is
that? Its implementation bears resemblance to how we previously used closures to
increment, e.g., a counter, each time it is invoked. In essence, we create a “current
label” counter, and each time we invoke gen-label, we increment the counter by
one and return its new value. It may seem tempting to return the label as a string
with ‘L’ prepended, but this is superfluous, as the only thing we need to generate
a label is its unique identifier, namely its “value”. In printf statements, we can
prepend ‘L’ as we see fit.

Listing 9.65

(define gen-label
(let ([curr-label 0])
(λ ()
(begin
(set! curr-label (add1 curr-label))
curr-label))))

Now, let us add the line that outputs cmp. We first must move x and y into
the r10 and r11 registers respectively. Fortunately, we already have a well-built
print-instruction function, so we may as well use that!

Listing 9.66

(define reduce-cmp
(λ (exp)
(let ([op (first exp)]

[x (second exp)]
[y (third exp)]
[l1 (gen-label)]
[l2 (gen-label)])

(begin
(print-instruction3 'cmpq x y)
...))))

We need to grab the appropriate x64 assembly comparison operator depending
on what we want to compile. For instance, we say that ?= corresponds directly
to je, and so on.1 We can write a predicate comparison? and an association list
cmp-ops which maps each high-level operator with its assembly counterpart. To
simplify our language so as to not need a separate negation function, we will add
!= to the grammar to represent “numeric not equal to”.

Listing 9.67

(define cmp-ops
'((?= . je) (!= . jne) (< . jl) (<= . jle) (> . jg) (>= . jeq)))

(define cmp?
(λ (exp)
(not (false? (assv exp cmp-ops)))))

At this point, we can extract the assembly operator via assv and pass that to
printf alongside l1.

1The suffix ‘?’ is to help in distinguishing the comparison operator from the assignment operator.

612

613 Compilation

Listing 9.68

(define reduce-cmp
(λ (exp)
(let ([...])
(begin
(print-instruction3 'movq x 'r10)
(print-instruction3 'movq y 'r11)
(print-instruction3 'cmpq 'r10 'r11)
(printf "∼a L∼a∼n" (rest (assv op cmp-ops)) l1)
...))))

Recall from the template: after the comparison result-dependent jump to l1, we
write the alternate case code which, in this case, sets %r12 to “false”, i.e., 0. We
then jump directly to l2.

Listing 9.69

(define reduce-cmp
(λ (exp)
(let ([...])
(begin
(print-instruction3 'movq x 'r10)
(print-instruction3 'movq y 'r11)
(print-instruction3 'cmpq 'r10 'r11)
(printf "∼a L∼a∼n" (rest (assv op cmp-ops)) l1)
(print-instruction3 'movq 0 'r12)
(printf " jmp L∼a∼n" l2)
...))))

Now we generate the consequent case with its l1 label as well as the “continue”
label l2. Finally, the register with the “boolean” value, namely %r12, is returned
as a symbol.

Listing 9.70

(define reduce-cmp
(λ (exp)
(let ([...])
(begin
(print-instruction3 'movq x 'r10)
(print-instruction3 'movq y 'r11)
(print-instruction3 'cmpq 'r10 'r11)
(printf " ∼a L∼a∼n" (rest (assv op cmp-ops)) l1)
(print-instruction3 'movq 0 'r12)
(printf " jmp L∼a∼n" l2)
(printf "L∼a:∼n" l1)
(print-instruction3 'movq 1 'r12)
(printf "L∼a:∼n" l2)
'r12))))

We can now add reduce-cmp to reduce. The recognizer, cmp?, uses comparison?,
but we have omitted its implementation.

Listing 9.71

(define reduce
(λ (stmt)
(cond
[...]
[(cmp? stmt) (reduce-cmp stmt)]
[else #f])))

Testing the following simple program, we can examine the output and labels.

613

9.4 Compiling L−
COND to L−

CONDx64
614

Listing 9.72

> (compile
'((call print

(?= 2 3))))

.section .data
outnumfmt: .asciz "%d\n"

.section .text
.extern printf
.global main

main:
pushq %rbp # Save rbp.
movq %rsp, %rbp # Move sp into bp.
movq $2, %r10 # Move 2 into rand1.
movq $3, %r11 # Move 3 into rand2.
cmpq %r10, %r11 # Compare 2 and 3.
je L1 # If 2==3 jump to L1.
movq $0, %r12 # Move false into bool reg.
jmp L2 # Alt. jump to L2.

L1:
movq $1, %r12 # Move 'true' to bool reg

L2:
movq %r12, %rsi # Mv bool reg to 2nd param
leaq outnumfmt(%rip), %rdi # Load fmt str to 1st param
movq $0, %rax
callq printf
movq %rbp, %rsp
popq %rbp
retq

This, of course, outputs 0, because $5 is not equal to $3. Let us determine if
two “boolean” values are equivalent.

Listing 9.73

> (compile
'((var x = (?= 5 5))

(var y = (?= 6 5))
(var z = (?= x y))
(call print z)))

Boolean expressions like this allow us to directly implement conditional state-
ments such as if.

614

615 Compilation

Compiling LCOND to LCONDx64

Suppose we wish to compile the following program:

Listing 9.74

> (compile
'((var x = 10)

(if (?= 10 x)
(call print 10)
(call print 20))))

How can we reduce if statements? L−COND allows us to write comparison ex-
pressions using logical operators, but these are not very powerful compared to state-
ments that alter program control. The if statement receives three expressions: a
predicate, a consequent, and an alternative. Additionally, both the consequent and
alternative receive destination labels. If the given predicate resolves to true, then
program control should jump to the consequent label and otherwise to the alterna-
tive label. Our implementation of the if statement will reflect this by using the
designated boolean register. In particular, we evaluate the predicate and, if it is
true, jump to a label Lt, followed by moving “true” into the boolean register. When
the predicate is false, we fall through to the consequent clause by not jumping to Lt,
moving “false” into the boolean register, and then jumping to a label Lf . Immedi-
ately following Lf is a boolean flag check: if the boolean register is true, we jump to
another label Lt′ , which begins the assembly code for the consequent. Otherwise,
we jump to a label Lf ′ , which begins the assembly code for the consequent. So, in
essence, we have four generated jump statements for every if statement: two that
govern the location of the predicate result, and two that control program flow for
evaluating either the consequent or the alternative.

expr ::= if | ...
if ::= ‘(if ’ expr expr expr ‘)’
cond ::= expr*

Figure 9.6: Extended BNF Grammar for LCOND

The if recognizer is straightforward as usual. Its reducer requires us to recur-
sively reduce each expression and place the labels in the appropriate locations. We
first produce the cmp instruction to receive the boolean result in %r12, output the
jump instruction to Lt′ , reduce the alternative case, jump to after the consequent
case, output Lt′ . We then reduce the consequent, followed immediately by Lf ′ .
Note that we handle the labels Lt and Lf via reducing a comparison instruction
through the predicate.

615

9.4 Compiling L−
COND to L−

CONDx64
616

Listing 9.75

(define if?
(λ (exp)
(and (cons? exp)

(= (length exp) 4)
(eqv? (first exp) 'if))))

(define reduce-if
(λ (exp)
(let* ([test (second exp)]

[conseq (third exp)]
[alt (fourth exp)]
[lt (gen-label)]
[lf (gen-label)])

(begin
(print-instruction3
'cmp 1 (reduce test))

(printf " jz L∼a∼n" lt)
(reduce alt)
(printf " jmp L∼a∼n" lf)
(printf "L∼a:∼n" lt)
(reduce conseq)
(printf "L∼a:∼n" lf)))))

Let us see the x64 assembly output of our previous example.

Listing 9.76

.section .data
outnumfmt: .asciz "%d\n"

.section .text
.extern printf
.global main

main:
pushq %rbp # Save rbp.
movq %rsp, %rbp # Move sp into bp.
subq $16, %rsp # Allocate 16 bytes for 'n' and align.
movq $10, -8(%rbp) # Move 10 into 'n'.
movq -8(%rbp), %r10 # Move n into rand1.
movq $10, %r11 # Move 10 into rand1.
cmpq %r10, %r11 # Compare 'n' and 10.
jz L3 # If 'n'==10, jump to L3.
movq $0, %r12 # Otherwise move 'false' into bool reg.
jmp L4 # Alt. jump to L4.

L3:
movq $1, %r12 # Move 'true' into bool reg.

L4:
cmpq $1, %r12 # Determine if the 'if' condition is true.
jz L1 # If so, jump to L1.
movq $20, %rsi # Move 20 into 2nd param.
leaq outnumfmt(%rip), %rdi # Load format str into 1st param.
movq $0, %rax
callq printf
jmp L2

L1:
movq $10, %rsi # Move 10 into 2nd param.
leaq outnumfmt(%rip), %rdi # Load format str into 1st param.
movq $0, %rax
callq printf

L2:
addq $16, %rsp # Free 16 bytes.
movq %rbp, %rsp
popq %rbp
retq

Exercise 9.11. (⋆⋆⋆)
Extend LCONDx64

by adding support for (begin e1 e2 ... en), which reduces state-
ments e1, e2, ..., en in sequential order. Note that variables cannot be declared
within a begin block.

616

617 Compilation

9.5 Compiling L+COND to L+CONDx64

Part of what makes a language feel more complete is the ability to perform actions
multiple times. In this section, we will extend our compiled LCOND language to
L+
COND, which adds a while loop construct.

expr ::= while | ...
while ::= ‘(while ’ expr ‘ ’ expr ‘)’
condplus ::= expr*

Figure 9.7: Extended BNF Grammar for L+
COND

Adding a while loop to our language is no harder than adding conditionals
because while loops, at their core, are nothing more than conditional jump state-
ments. If the condition, i.e., the predicate, is false, we jump to the bottom of
the loop code. We generate a label before the predicate that serves as the loop
continuation label.

Listing 9.77

(define while?
(λ (exp)
(and (cons? exp)

(= (length exp) 3)
(eqv? (first exp) 'while))))

(define reduce-while
(λ (exp)
(let* ([test (second exp)]

[body (third exp)]
[lt (gen-label)]
[lf (gen-label)])

(begin
(printf "L∼a:∼n" lt)
(print-instruction3
'cmp 1 (reduce test))

(printf " jne L∼a∼n" lf)
(reduce body)
(printf " jmp L∼a∼n" lt)
(printf "L∼a:∼n" lf)))))

To demonstrate this new addition, let us write a loop that computes the factorial
of five:

617

9.5 Compiling L+
COND to L+

CONDx64
618

Listing 9.78

> (compile
'((var n = 5)

(var fact = 1)
(while (!= n 1)
(begin
(set! fact (* fact n))
(set! n (- n 1))))

(call print fact)))

.section .data
outnumfmt: .asciz "%d\n"

.section .text
.extern printf
.global main

main:
pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
movq $5, -8(%rbp)
movq $1, -16(%rbp)

L2:
movq -8(%rbp), %r10
movq $1, %r11
cmpq %r10, %r11
jne L3
movq $0, %r12
jmp L4

L3:
movq $1, %r12

L4:
cmpq $1, %r12
jne L1
movq -16(%rbp), %rbx
imulq -8(%rbp), %rbx
movq %rbx, -16(%rbp)
movq -8(%rbp), %rbx
subq $1, %rbx
movq %rbx, -8(%rbp)
jmp L2

L1:
movq -16(%rbp), %rsi
leaq outnumfmt(%rip), %rdi
movq $0, %rax
callq printf
addq $16, %rsp
movq %rbp, %rsp
popq %rbp
retq

Exercise 9.12. (⋆⋆)
Write a program that computes the nth Fibonacci number using a while loop.

618

619 Compilation

9.6 Compiling L−PROC to L−PROCx64

In this section, we will further extend our compiler to generate assembly code for
simple procedures. Note that such a journey requires a bit of refactoring, so buckle
up!

expr ::= proc | ...
proc ::= ‘(proc ’ id ‘ ’ ‘(’ id* ‘)’ lstmt ‘)’
lstmt ::= expr lstmt | expr
id ::= [a-zA-Z]+
proc- ::= expr*

Figure 9.8: Extended BNF Grammar for L−
PROC

We denote our input language as L−PROC because we are compiling only simple
procedures. A simple procedure is a procedure that does not receive any arguments
and is not recursive. This may seem like a staggering limitation, which it certainly
is, but there is a lot of work to go before compiling even these.

Suppose we want to compile the following program, where fact5 computes 5!:

Listing 9.79

> (compile
'((proc fact5 ()

((var n = 5)
(var prod = 1)
(while (!= n 1)
(begin
(set! prod (* n prod))
(set! n (- n 1))))
(return prod)))

(proc main ()
((var y = (call fact5))
(call print y)))))

We need to modify a couple of pieces to our puzzle regarding procedures. Up
until now, we currently assumed that the only function that existed was main. Now,
though, we must differentiate between the scopes of functions. We can achieve
this goal by requiring that every procedure, including main, must be declared.
According to our grammar, a procedure declaration is a list containing the call
symbol, the procedure name, and a list of its arguments (if any exist), and a list of
statements designating its body.1 We must compute a unique prologue and epilogue
for every procedure. Thus, instead of generating those in reduce-statements, it
would be wise to invoke these functions from a procedure-reduction function, i.e.,
reduce-proc.

1Note that we acknowledge the existence of procedure arguments even though we do not use them
in L−

PROC in an attempt to future-proof our compiler.

619

9.6 Compiling L−
PROC to L−

PROCx64
620

Let us write the accompanying recognizer and reducer. reduce-proc stores the
newly-defined procedure in the environment, assigns variable homes, generates its
prologue, reduces its statements, and finally generates its epilogue. To make things
slightly more convenient, we use a global variable to keep track of what procedure
we are currently defining for stack size and variable home assignment purposes.
This change means that we need to update our definition of compute-stack-space
to use current-proc rather than a fixed ’main.

Listing 9.80

(define proc?
(λ (exp)
(and (cons? exp)

(= (length exp) 4)
(eqv? (first exp) 'proc)
(symbol? (second exp))
(cons? (third exp))
(cons? (fourth exp)))))

(define reduce-proc
(λ (proc)
(let* ([procname (second proc)]

[procargs (third proc)]
[procbody (fourth proc)])

(begin
(set! env

`((,procname . (,(box 0) .
,(box '()))) . ,env))

(set! current-proc procname)
(assign-homes procbody)
(generate-prologue procbody)
(reduce-statements procbody)
(generate-epilogue procbody)))))

With these changes, compile shrinks to only two lines in its body, because main
is now treated as any other user-defined procedure.

Listing 9.81

(define compile
(λ (los)
(begin
(generate-preamble)
(reduce-statements los))))

Now, we need to alter reduce-call to account for user-defined procedures.
Fortunately, all we need to do is add an else clause that calls the given procedure
name and returns %rax, as a symbol, since return values are always stored in the
rax register.

Listing 9.82

(define reduce-call
(λ (exp)
(let* ([procname (second exp)]

[procargs (rest (rest exp))])
(cond
[(eqv? procname 'print)
(let* ([arg (first procargs)])
(begin
(print-instruction3 'movq arg 'rsi)
(printf " leaq outnumfmt(%rip), %rdi∼n")
(print-instruction3 'movq 0 'rax)
(print-instruction2 'callq 'printf)))]

[else
(print-instruction2 'callq procname)]))))

Speaking of return values, let us handle statements of the form (return exp).
All we need to do is recognize and reduce the return expression by moving its result
into %rax.

620

621 Compilation

Listing 9.83

(define reduce-return
(λ (exp)
(let* ([retexp (reduce (second exp))])
(reduce-value 'movq retexp 'rax))))

Let us see the generated x64 assembly for fact5 as defined in Listing 9.80.

Listing 9.84

fact5:
pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
movq $5, -8(%rbp)
movq $1, -16(%rbp)

L2:
movq -8(%rbp), %r10
movq $1, %r11
cmpq %r10, %r11
jne L3
movq $0, %r12
jmp L4

L3:
movq $1, %r12

L4:
cmpq $1, %r12
jne L1
movq -8(%rbp), %rbx
imulq -16(%rbp), %rbx
movq %rbx, -16(%rbp)
movq -8(%rbp), %rbx
subq $1, %rbx
movq %rbx, -8(%rbp)
jmp L2

L1:
movq -16(%rbp), %rax
addq $16, %rsp
movq %rbp, %rsp
popq %rbp
retq

621

9.7 Compiling LPROC to LPROCx64
622

9.7 Compiling LPROC to LPROCx64

Our gentle introduction to compiling simple procedures is over—we will now take
a deep dive into compiling complex procedures. A complex procedure is one that
may receive parameters.

expr ::= call | proc
call ::= ‘(call ’ id ‘(’ expr* ‘))’
procdecl ::= ‘(proc ’ id ‘(’ id* ‘)’ expr* ‘)’
proc ::= expr+

Figure 9.9: Extended BNF Grammar for LPROC

All of our additions will reside in two functions: reduce-call and reduce-proc.
First, when we invoke a function, we evaluate its arguments via reduce. Then, we
move them into specific registers depending on their argument position. Passing
arguments in registers poses a problem: what happens if we pass more arguments
than we have assigned registers? LPROC does not solve this problem, but the x64
assembly solution is to push those arguments to the stack in reverse order.

Argument Position Register

1 %rdi
2 %rsi
3 %rdx
4 %rcx
5 %r8
6 %r9
≥ 7 stack

of SSE Registers %rax

Figure 9.10: Mapping of Argument Positions to Registers

We need a few local procedures to help us map evaluated arguments into regis-
ters. But first, let us discuss a subtle predicament that introduces itself only after
testing this language. What happens when we evaluate a procedure with multiple
calls as its arguments? Consider the following sequence of function calls:

Listing 9.85

(call foo (call bar 10 20) (call baz 30 40))

622

623 Compilation

A well-defined order of argument evaluation must be set in stone before we
continue. foo’s arguments should be evaluated as follows: we must reduce each
argument before moving its value into a register. In other words, if a procedure
has arguments a, b, and c, we must reduce a, b, and c, before moving any into
an argument register. The reasoning is because a, b, and c are all arguments that
represent some expression; these expressions may, themselves, be function calls. So,
if we were to, for instance, reduce argument a, then move it into %rdi, this results in
a possible argument-register interference. If argument b contains a call to a function
of at least one argument, it needs access to a free %rdi register. Overwriting the
value in %rdi erases the previous argument stored. A possible solution is to push
all argument register values to the stack and pop them before and after evaluating
an argument, but this is too cumbersome and only serves to hide the problem at
hand rather than solve it. Instead, we should, as we previously explained, reduce all
arguments to a call, then and only then, move the reduced arguments into registers.

Let us create a function that reduces every argument. Function arguments have
a property of guaranteed resolution, i.e., it is impossible for the argument to a
function to resolve to something that cannot be passed. Therefore, we can write a
local procedure, namely reduce-args, which invokes reduce on each argument.

Listing 9.86

(define reduce-call
(λ (exp)
(letrec ([...]

[reduce-args
(λ (args)
(cond
[(null? args) '()]
[else
(cons (reduce (first args)) (reduce-args (rest args)))]))])

...)))

Because map returns another list, we know by the property of guaranteed reso-
lution that this list contains a reduced value for each function argument. So, all we
must do is move these reduced values, one by one, into the appropriate argument
registers. We can use a function map-args to do this process.

Listing 9.87

(define reduce-call
(λ (exp)
(letrec ([...]

[map-args
(λ (redargs i)
(cond
[(null? redargs) (print-empty)]
[else
(begin
(print-instruction3
'movq (first redargs) (list-ref arg-registers i))

(map-args (rest redargs) (add1 I)))]))])
...)))

Finally, we compositionally invoke these procedures by feeding the output of
reduce-args into map-args: (map-args (reduce-args procargs)).

623

9.7 Compiling LPROC to LPROCx64
624

Listing 9.88

(define reduce-call
(λ (exp)
(letrec ([...])
(cond
[...]
[else
(begin
(map-args (reduce-args procargs) 0)
(print-instruction2 'callq procname)
'rax)]))))

Each argument is evaluated before being stored in an argument register. Now we
need to begin the process of unwrapping the registers and storing parameters on the
stack as local variables. To do this, we can write a local procedure reduce-params
inside reduce-proc that moves each value in the argument registers, as a parameter,
into a stack-declared variable. The idea is that we allocate enough space for not
only locally-declared variables but also parameters. This way, we do not need to
worry about where and which register an arbitrary argument is contained.

Listing 9.89

(define reduce-proc
(λ (proc)
(let* ([...]

[reduce-params
(λ (lop)
(map
(λ (a)
(print-instruction3
'movq
(list-ref arg-registers (index-of lop a))
a))

lop))])
...)))

Though, this introduces a problem: we now need a way to designate that param-
eters should be treated as local variables. A simple solution is to write another local
procedure: assign-param-homes that invokes extend-env! on each parameter.

Listing 9.90

(define reduce-proc
(λ (proc)
(let* ([...]

[assign-param-homes
(λ (lop)
(map extend-env! lop))])

...)))

Lastly, we must assign parameter homes before their reduction.

624

625 Compilation

Listing 9.91

(define reduce-proc
(λ (proc)
(let* (...)
(begin
(set! env `((,procname . (,(box 0) . ,(box '()))) . ,env))
(set! current-proc procname)
(assign-param-homes procparams)
(assign-homes procbody)
(generate-prologue procbody)
(reduce-params procparams)
(reduce-statements procbody)
(generate-epilogue procbody)))))

We can now analyze the code generated for reducing parameters into local vari-
able homes.

Listing 9.92

sum_of_args:
movq %rdi, -8(%rbp)
movq %rsi, -16(%rbp)
movq %rdx, -24(%rbp)
movq %rcx, -32(%rbp)

All of this preparation allows us to write functions that contain up to (and
including) six arguments. These functions may be recursive, so let us define addition
over natural recursion as an example. Assume that we also have add1, sub1, and
is zero defined.

Listing 9.93

> (compile
'((proc add (n m)

((if (call is_zero n)
(return m)
(return
(call add1
(call add
(call sub1 n)
m)))))))

add:
pushq %rbp
movq %rsp, %rbp
subq $16, %rsp
movq %rdi, -8(%rbp)
movq %rsi, -16(%rbp)
movq -8(%rbp), %rdi
callq is_zero
cmpq $1, %rax
jz L3
movq -8(%rbp), %rdi
callq sub1
movq %rax, %rdi
movq -16(%rbp), %rsi
callq add
movq %rax, %rdi
callq add1
movq %rax, %rax
jmp L4

L3:
movq -16(%rbp), %rax

L4:
addq $16, %rsp
movq %rbp, %rsp
popq %rbp
retq

625

9.7 Compiling LPROC to LPROCx64
626

Compiling L+
PROC to L+

PROCx64

Here’s the deal: LPROC compiles most procedures down to x64 assembly correctly.
There is a bit of an issue, however, when there are multiple arithmetic expres-
sions within the arguments of a function call. Consider the following tail recursive
Fibonacci code:

Listing 9.94

> (compile
'((proc fib_iter (a b n)

((if (?= n 0)
(return b)
(return (call fib_iter (+ a b) a (- n 1))))))

(proc fib (n)
((return (call fib_iter 1 0 n))))

(proc main ()
((call print (call fib 8))))))

Pay careful attention to the recursive call to fib iter. Namely, we pass to
it three arguments: an expression representing the sum of a and b, b, and an
expression representing the difference between n and 1. Now, let us investigate the
relevant x64 assembly output.

Listing 9.95

fib_iter:
...
movq -8(%rbp), %rax # Move a into rax.
addq -16(%rbp), %rax # Subtract b from a.
movq -24(%rbp), %rax # Move n into rax (collision!)
subq $1, %rax # Subtract 1 from n.
movq %rax, %rdi # Move (n-1) into arg 1.
movq -8(%rbp), %rsi # Move a into arg. 2.
movq %rax, %rdx # Move (n-1) into arg 3.
callq fib_iter

Notice that we have a race for who gets access to the rax register for arithmetic.
The problem is that we delay setting argument registers until after all arguments are
evaluated. It seems that we are back where we started—in a dilemma about when
we should move argument evaluations into argument-registers. We could create a
complex register-allocation algorithm, but that is not necessary; we have a stack for
a reason, right? Why not do the following: evaluate the arguments to a function in
reverse, push the result to the stack via pushq. Then, once all arguments have been
evaluated, pop the results off the stack into the appropriate argument-registers via
popq. The following is an example using the fib procedure from before.

626

627 Compilation

Listing 9.96

fib_iter:
movq -24(%rbp), %rax # Move n into rax.
subq $1, %rax # Subtract n-1 from rax.
movq %rax, %rax
pushq %rax # Push n-1 to stack.
movq -8(%rbp), %rax # Move a into rax.
pushq %rax # Push a to stack.
movq -8(%rbp), %rax # Move a into rax.
addq -16(%rbp), %rax # Add b to rax.
movq %rax, %rax
pushq %rax # Push (a+b) to stack.
popq %rdi # Pop (a+b) into rdi.
popq %rsi # Pop a into rsi.
popq %rdx # Pop (n-1) into rdx.
callq fib_iter

There are a few superfluous instructions, e.g,. movq %rax, %rax, but otherwise,
this code is relatively straightforward. We push each evaluated argument to the
stack in reverse order (i.e., we evaluate the nth argument first, down to the first).
Then, we pop each evaluated argument off the stack into the respective registers.
Since the first argument is the last one pushed, we can pop the values in the order
specified by arg-registers. Note that the following two functions, push-args and
pop-args, replace reduce-args and map-args respectively.

Listing 9.97

(define reduce-call
(λ (exp)
(letrec ([...]

[pop-args
(λ (args i)
(cond
[(null? args) (print-empty)]
[else
(begin
(print-instruction2 'popq (list-ref arg-registers i))
(pop-args (rest redargs) (add1 i)))]))])

...)))

Therefore, we invoke these helper functions as follows. From there, if we re-
compile the Fibonacci example from before, we get a pleasant surprise: a correct
result!

Listing 9.98

(define reduce-call
(λ (exp)
(letrec (...)
(cond
[...]
[else
(begin
(push-args (reverse procargs))
(pop-args procargs 0)
(print-instruction2 'callq procname)
'rax)]))))

627

9.7 Compiling LPROC to LPROCx64
628

One thing that we neglected to do, though, is conform to the requirement that,
across function calls, certain registers are to be preserved by the callee. In AT&T
x64 assembly, the following registers, should they be used in a function definition,
must store their current values onto the stack: %r12, %r13, %r14, %r15, %rsp,
%rbp, %rbx. We already preserve the base pointer register since we modify its
value upon making a function call. It is certainly rather brazen to push all seven
callee-saved registers to the stack even if they are not used in the function body,
but out of simplicity, we will add the relevant pushq and popq instructions to our
generate-prologue and generate-epilogue functions. Note that, in saving these
registers to the stack, we considerably increase our code size due to the lack of
optimization, but it is tolerated for the purposes of demonstration.

Listing 9.99

(define generate-prologue
(λ (los)
(begin
...
(print-instruction2 'pushq 'rbp)
(print-instruction2 'pushq 'rbx)
(print-instruction2 'pushq 'rsp)
(print-instruction2 'pushq 'r12)
(print-instruction2 'pushq 'r13)
(print-instruction2 'pushq 'r14)
(print-instruction2 'pushq 'r15)
...)))

(define generate-epilogue
(λ (los)
(begin
...
(print-instruction2 'popq 'r15)
(print-instruction2 'popq 'r14)
(print-instruction2 'popq 'r13)
(print-instruction2 'popq 'r12)
(print-instruction2 'popq 'rsp)
(print-instruction2 'popq 'rbx)
(print-instruction2 'popq 'rbp)
...)))

Exercise 9.13. (⋆⋆⋆⋆)
If a function has more than six parameters, according to the System V AMD64
ABI, they are to be pushed to the stack. Implement this feature into L+

PROC. This
means that parameters past the sixth will need to have assigned homes relative to
the stack frame pointer.

628

629 Compilation

9.8 Compiling LARRAY to LARRAYx64

In this section, we will compile LARRAY to LARRAYx64
: a language that allows for

locally-declared arrays.

expr ::= getindex | setindex | ...
decl ::= arraydecl | ...
arraydecl ::= ‘(array ’ number ‘)’
getindex ::= ‘(get-index ’ id ‘ ’ expr ‘)’
setindex ::= ‘(set-index ’ id ‘ ’ expr ‘ ’ expr ‘)’
array ::= decl* expr*

Figure 9.11: Extended BNF Grammar for LARRAY

Let us begin by writing a recognizer for array “declarations” as per the grammar.
Later on, we will see that its respective reducer is not necessary.

Listing 9.100

(define array?
(λ (stmt)
(and (cons? stmt)

(= (length stmt) 2)
(eqv? (first stmt) 'array))))

If we want to implement locally-declared arrays in our language, we have a long
way to go. Fortunately, many of the changes are not all that difficult—rather, they
can be pretty tedious since it involves editing existing code.

Our environments recognize only one datatype: quad-word integers. A local
variable, of this type, needs only to know its offset from the base pointer. Arrays,
on the other hand, need to keep track of a few bits of information: the size of the
datatype stored, its length, and the offset from the base pointer. We also need
the environment to recognize that a variable is an array and not just a standard
quad-word integer. Let us think about how to represent different data types in a
uniform fashion.

As we stated, each variable in the association list corresponds to its local variable
offset from the base pointer. We can modify this correspondence pair to have the
rest be a list where its first is a tag denoting the type of the variable, its second
denoting its offset, its third representing its size, and for arrays only, its fourth
representing the number of elements it contains. When we say “size”, we mean
how many bytes are used when storing the variable. Arrays are pointers, which we
know from our discussion in Chapter 5, so these should store eight bytes each. We
need to amend extend-env!. There are three instances in which extend-env! is
invoked:

1. Formal parameter extension.

2. Home assignment for local array variables in the function prologue.

3. Home assignment for local non-array variables in the function prologue.
629

9.8 Compiling LARRAY to LARRAYx64
630

So, our definition should be updated to account for these three types.

Listing 9.101

(define extend-env!
(λ (stmt)
(let* (...)
(cond
[(variable? stmt) ...]
[(and (var? stmt) (array? (third stmt))) ...]
[(var? stmt) ...]
[else (printf "ERR: invalid argument to extend-env!: ∼a∼n" stmt)]))))

The second clause is perhaps the most confusing—all we are checking is to see
if our statement is a variable declaration and if the expression-to-assign is an array.
The last clause (outside the error case) catches all non-array-based local variable
declarations.

Let us analyze these cases one by one. First, if our statement is a variable
and only a variable, e.g., y, we extend the environment to include it as we have
before. The only modification is that the rest of the association pair mapping for
the variable is now a list containing four elements as we described previously.

Listing 9.102

(define extend-env!
(λ (stmt)
(let* (...)
(cond
[(variable? stmt)
(begin
(set-box!
binding-box
(cons (cons stmt (list 'var offset 8 0)) binding-list))

(set-box! offset-box offset))]
[...]))))

Local array declarations are up next. The only difference is that the array size
should be added to the list instead of 0, as well as the change in the tag. Lastly, the
offset calculation accounts for the size of the array. We also include a let* block
to extract out the array declaration and variable identifier.

Listing 9.103

(define extend-env!
(λ (stmt)
(let* (...)
(cond
[...]
[(and (var? stmt) (array? (fourth stmt)))
(let* ([id (second stmt)]

[arr (fourth stmt)]
[size (second arr)])

(begin
(set-box!
binding-box
(cons (cons id (list 'array offset 8 size)) binding-list))

(set-box! offset-box (+ offset size))))]
[...]))))

Conveniently, the last case is simpler than the array but slightly more complex
than formal parameter extension. We extract out the variable identifier from the
declaration and add it to the environment.

630

631 Compilation

Listing 9.104

(define extend-env!
(λ (stmt)
(let* (...)
(cond
[...]
[(var? stmt)
(let* ([v (second stmt)])
(begin
(set-box!
binding-box
(cons (cons v (list 'var offset 8 0)) binding-list))

(set-box! offset-box offset)))]
[...]))))

These changes to extend-env! mean that we also must modify local-var-offset
to account for arrays.

Listing 9.105

(define local-var-offset
(λ (var)
(let* ([proc-pair (assv current-proc env)]

[bindings (unbox (rest (rest proc-pair)))]
[val (rest (assv var bindings))]
[tag (first val)])

(cond
[(eqv? tag 'var) ...]
[(eqv? tag 'array) ...]
[else (printf "ERR: local-var-offset invalid var ∼a∼n" var)]))))

With the 'var tag, we simply need to retrieve the offset and multiply it by -8.

Listing 9.106

(define local-var-offset
(λ (var)
(let* (...)
(cond
[(eqv? tag 'var) (* -8 (second val))]
[(eqv? tag 'array) ...]
[else (printf "ERR: local-var-offset invalid var ∼a∼n" var)]))))

Arrays are a bit more complicated. We first need to use the offset to compute
the position of the top, or end, of the array on the stack. This is just another
multiplication by -8. We then offset this value by adding on the length of the
array, multiplied by -8, to get the index of the first element.

Listing 9.107

(define local-var-offset
(λ (var)
(let* (...)
(cond
[...]
[(eqv? tag 'array) (+ (* -8 (fourth val))

(* -8 (second val)))]
[else (printf "ERR: local-var-offset invalid var ∼a∼n" var)]))))

The environments now recognize array declarations. Thus, we should write the
reducer... right? Wrong! There is never a case where an array will need to be
reduced and, therefore, should not be added to reduce as part of the case analysis.

631

9.8 Compiling LARRAY to LARRAYx64
632

Let us write a few test programs to see if it correctly allocates memory with the
right offsets.

Listing 9.108

> (compile '((proc main ()
((var arr1 = (array 5))))))

> (compile '((proc main ()
((var x = 2000)
(var arr1 = (array 8))))))

> (compile '((proc main ()
((var arr1 = (array 2))
(var y = 2000)))))

> (compile '((proc main ()
((var x = 1000)
(var arr1 = (array 3))
(var y = 2000)))))

We should expect the code to produce the following local variable offset amounts.
The columns indicate the test number, the number of non-array local variables, the
number of elements in the declared array, the starting index offset value, the ending
index offset value, and the number of bytes to dedicate to local variables.

Test # NALV |A| SAO EAO B

1 0 5 -48 -8 48
2 1 8 -72 -16 80
3 1 2 -16 -8 32
4 2 3 -32 -16 48

The calculations are as follows: test 1 requires 40 bytes to store the array, but
the function must be aligned on a 16-byte boundary, so we round it up to the next
multiple of 16, which is 48. Test 2 requires 64 bytes to store the array and 8 bytes
to store the non-array local variable. This amounts to 72 bytes, but the function
must be aligned, so we round up to 80. Test 3 requires 16 bytes to store the array
and 8 bytes to store the non-array local variable. This amounts to 24 bytes, but
the function must be aligned, so we round up to 32. Test 4 requires 24 bytes to
store the array and 16 bytes to store the two local variables. This amounts to 40
bytes, but the function must be aligned, so we round up to 48. The table also shows
the starting and ending offsets for the array bounds. We show these numbers to
emphasize the importance of ensuring the bounds are correct so as to not clobber
any other variables on the stack. Though, how can we test these programs to make
sure that they are correct? In other words, if we want to verify that we are not
clobbering the stack or otherwise overwriting preexisting data at another memory
location, what can we do? We should certainly write two functions to alter and
retrieve the values at an array: set-index and get-index respectively.

The recognizers for these functions are simple and more or less a carbon copy of
previous recognizers.

632

633 Compilation

Listing 9.109

(define get-index?
(λ (stmt)
(and (cons? stmt)

(= (length stmt) 3)
(eqv? (first stmt) 'get-index))))

(define set-index?
(λ (stmt)
(and (cons? stmt)

(= (length stmt) 4)
(eqv? (first stmt) 'set-index))))

Let us write set-index first because it is not only more difficult but also more
interesting. Retrieving the data at an index is worthless if no meaningful (i.e., non-
garbage) data exists there! An example of a set-index comes through this small
program that sets the values of an array equal to its index squared.

Listing 9.110

> (compile
'((proc main ()

((var arr = (array 10))
(var i = 0)
(while (!= i 10)
(begin
(set-index arr i (* i i))
(set! i (+ i 1))))))))

As we see, set-index receives three arguments: an identifier corresponding to
an array, an expression representing the index to modify, and an expression to assign
at that index.

First, we need to extract out the components of the set-index expression, i.e.,
the array identifier, the association pair that binds the identifier in the environment,
its offset, size/length, the index to assign, and the value to assign.

Listing 9.111

(define reduce-set-index
(λ (stmt)
(let* ([array (second stmt)]

[addr (assv array (unbox (rest (rest (assv current-proc env)))))]
[offset (third addr)]
[size (fourth addr)]
[idx (reduce (third stmt))]
[val (fourth stmt)])

...)))

idx may not be a constant; it could be an expression that resolves to a register.
So, we need to use this value and subtract it from the length of the array using
the equation we derived earlier. These are all assembly instructions that must be
emitted. This value must also be negated.

633

9.8 Compiling LARRAY to LARRAYx64
634

Listing 9.112

(define reduce-set-index
(λ (stmt)
(let* (...)
(begin
(print-instruction3 'movq idx 'r13)
(print-instruction3 'subq size 'r13)
(print-instruction2 'negq 'r13)))))

We load the address of the index we wish to modify via leaq using the given
offset into %r13. We also want to move the value to assign at the index into %rbx,
and finally, store this at the address designated by %r13.

Listing 9.113

(define reduce-set-index
(λ (stmt)
(let* (...)
(begin
...
(printf " leaq ∼a(%rbp, %r13, 8), %r13∼n" (* -8 (sub1 offset)))
(print-instruction3 'movq val 'rbx)
(printf " movq %rbx, (%r13)∼n")))))

Let us write a very small test program to see the generated assembly.

Listing 9.114

> (compile
'((proc

main ()
((var arr =

(array
10))

(set-index
arr
4
120)))))

main:
...
subq $88, %rsp # Allocate 88 bytes (8x10+8)
movq $4, %r13 # Move 4 into array idx reg.
subq $8, %r13 # Sub 8 from array idx reg
negq %r13 # Negate array idx val.
leaq 0(%rbp, %r13, 8), %r13 # Ld add. idx %r13 to %r13.
movq $120, %rbx # Move 120 value into rbx.
movq %rbx, (%r13) # Move 120 in idx ref. %r13.
addq $88, %rsp # Deallocate 80 + 8 bytes.
...

634

635 Compilation

9.9 Compiling LFLOAT to LFLOATx64

Interpretation of different values is simple. Their compilation, on the other hand,
introduces a whole host of new issues. In this section, we will compile LFLOAT to
LFLOATx64

: a language that allows for floating-point variables.

Unfortunately, adding floating-point value support to our programming language
and compiler is not as simple as changing a few operands and some recognizers. We
have to heavily restrict and modify our language subset to support both floating-
point and integer values. If we cannot even store a floating-point value in a standard
register, i.e., %rax, what do we do? The answer is to use the SSE (Streaming SIMD
Extensions) instruction set, which contains sixteen floating-point “registers”: %xmm0
to %xmm15.

For example, let us write two programs: one that loads a global float variable into
a floating-point register, and another that computes the average of three integers.

Listing 9.115

.section .data
num1: .double 123.456

.section .text
.global main

main:
movsd num1(%rip), %xmm0 # Load 123.456 into %xmm0.
retq

Listing 9.116

.section .data
avg: .double 0
sum: .quad 0
n: .quad 3

.section .text
.global main

main:
pushq %rbp
movq %rsp, %rbp
subq $32, %rsp # Allocate 32 bytes for 3 quadwords + 8 alignment.
movq $71, -8(%rbp)
movq $93, -16(%rbp)
movq $84, -24(%rbp)
movq -8(%rbp), %rbx
addq -16(%rbp), %rbx
addq -24(%rbp), %rbx
movq %rbx, sum(%rip) # Store %rbx in sum memory.
cvtsi2sd sum(%rip), %xmm0 # Load sum into %xmm0
cvtsi2sd n(%rip), %xmm1 # Load n into %xmm1
divsd %xmm1, %xmm0 # Divide %xmm0 by %xmm1, store quotient in %xmm0
movsd %xmm0, avg(%rip) # Store quotient in avg memory.
subq $32, %rsp
movq %rbp, %rsp
popq %rbp
retq

635

9.9 Compiling LFLOAT to LFLOATx64
636

The first few lines of main, where we compute the sum of three locally-declared
integers should be nothing new. What is new, however, is the cvtsi2sd instruction.
The long-winded cvtsi2sd (i.e., “ConVerT Signed Integer to Signed Double”) al-
lows us to take an integer from a register or direct memory and convert it into a
floating-point value. This value is then stored in a destination register. In our case,
we load the integer sum from direct memory, convert it into a floating-point value,
and store it in xmm0. Similarly, we load the integer n (representing how many num-
bers we want to compute the average of) from direct memory and convert it into a
floating-point value to store in %xmm1. Subsequently, we invoke divsd: an instruc-
tion to divide the destination register by the source register, storing the quotient
in the destination register. Finally, use movsd to store the floating-point quotient
from %xmm0 out to memory in avg.

Because working with floating-point values is such a chore, we will restrict our
input language LFLOAT. Namely, it contains no user-defined procedures other than
main, no immediate values, and all variables are declared in global scope. Primitive
operators, e.g., addition, receive exactly two operands. As an example, if we want
to define, store, then print the sum of two floating-point values, we use the following
program:

Listing 9.117

> (compile
'((var a = 5.25)

(var b = 10.1275)
(var sum = 0)
(proc main ()
((sum = (+ a b))
(call print-float sum)))))

expr ::= arithexpr | setexpr | callexpr
callexpr ::= ‘(call ’ id id* ‘)’
proc ::= ‘(proc main ()’ ‘(’ expr+ ‘))’
constant ::= number
float ::= vardecl* proc

Figure 9.12: Extended BNF Grammar for LFLOAT

Because LFLOAT has no local variables, there is no need to use extend-env!,
reset-env!, current-proc, or keep track of environments at all. A big change,
however, is the addition of a function compute-global-floats. As we stated (and
as the grammar illustrates), all variable declarations are global and appear before
the main function. So, this means we need to generate appropriate declarations.
That is, whenever we encounter a variable declaration, output a line containing its
identifier, a colon, the .double directive, and its value. This is eerily similar to how
we assign homes to local variables; the only difference is that instead of invoking
extend-env!, we output the variable to the .data segment.

636

637 Compilation

Listing 9.118

(define compute-global-floats
(letrec ([bind-float

(λ (stmt)
(let ([id (second stmt)]

[value (fourth stmt)])
(printf " ∼a: .double ∼a\n" id value)))]

[rec
(λ (los)
(cond
[(null? los) (print-empty)]
[(var? (first los))
(begin
(bind-float (first los))
(rec (rest los)))]

[else (rec (rest los))]))])
rec))

Then, to update generate-preamble. Note that we modified the output format
string to, instead, output a double rather than a 64-bit integer.

Listing 9.119

(define generate-preamble
(λ (los)
(printf ".section .data∼n")
(printf " outfloatfmt: .asciz ∼"%lf∼"∼n")
(compute-global-floats los)
(printf ".section .text∼n")
(printf " .extern printf∼n")
(printf " .global main∼n")))

Now, let us modify the addition (and other arithmatic operators) to work with
floating-point values. We will use %xmm1 and %xmm2 to hold the result of a com-
putation such as addition. We load the first operand, e.g., a, from memory into
%xmm1, then load the second operand, e.g., b, from memory into %xmm2. At last, we
perform the corresponding arithmetic operation on those registers where %xmm1 is
the destination register and %xmm2 is the source register. To move a floating-point
value between registers and memory, we use movsd.

Listing 9.120

(define reduce-add
(λ (exp)
(let* ([r1 (second exp)]

[r2 (third exp)])
(begin
(printf " movsd ∼a(%rip), %xmm1∼n" r1)
(printf " movsd ∼a(%rip), %xmm2∼n" r2)
(printf " addsd %xmm2, %xmm1∼n")
'xmm1))))

Let us also modify the reduction for setting variables to use movsd instead of
movq.

Listing 9.121

(define reduce-set
(λ (exp)
(let* ([var (first exp)]

[res (reduce (third exp))])
(begin
(printf " movsd %∼a, ∼a(%rip)∼n" res var)))))

637

9.9 Compiling LFLOAT to LFLOATx64
638

Finally, we need to write a version of print that receives floats and not integers.
We will call it print-float. Namely, its argument is an identifier that is loaded
into %xmm0. As we stated, %xmm0 is the first floating-point argument register. We
load the format string the same way as we did previously. Finally, since printf
is a variadic procedure, %rax must contain the number of floating-point arguments
(i.e., xmm registers) printf uses. In this case, we only use %xmm0, so the value in
%rax is 1.

Listing 9.122

(define reduce-call
(λ (exp)
(letrec (...)
(cond
[...]
[(eqv? procname 'print-float)
(let* ([arg (first procargs)])
(begin
(printf " movsd ∼a(%rip), %xmm0∼n" arg)
(printf " leaq outfloatfmt(%rip), %rdi∼n")
(printf " movq $1, %rax∼n")
(printf " callq printf∼n")))]))))

We may amend our definitions of generate-prologue and generate-epilogue
to exclude any mention of the stack or environments. We should also make the
necessary changes to reduce to only recognize expressions and statements defined
by FLOAT. Making these changes allows us to compile the aforementioned program
which produces the following assembly output (we added comments to help with
understanding):

Listing 9.123

.section .data
outfloatfmt: .asciz "%lf\n"
a: .double 5.25
b: .double 10.1275
sum: .double 0

.section .text
.extern printf
.global main

main:
pushq %rbp
...
movq %rsp, %rbp
movsd a(%rip), %xmm1 # Load 'a' into xmm1.
movsd b(%rip), %xmm2 # Load 'b' into xmm2.
addsd %xmm2, %xmm1 # Add xmm2 into xmm1.
movsd %xmm1, sum(%rip) # Store value in xmm1 out to 'sum'.
movsd sum(%rip), %xmm0 # Load 'sum' into xmm0 (f.p. arg. #1).
leaq outfloatfmt(%rip), %rdi # Load format string into 1st arg.
movq $1, %rax # rax stores var. args., # of xmm regs used.
callq printf
movq %rbp, %rsp
...
popq %rbp
retq

638

639 Compilation

Compiling the assembly outputs 15.377500. Let us write another program that
computes the square root of a sum of the squares of three floating-point numbers.
We run into a small roadblock: how do we get the square root of some arbitrary
value? There is an instruction designed specifically for this! Namely, sqrtsd is
exactly what we need. In other words, we want to compute

√
a2 + b2 + c2 where a,

b, and c are floating-point numbers. sqrtsd works differently than the way we will
implement it, however. It receives a source, computes the square root of said source,
and stores the result in a destination. Therefore, sqrtsd receives two arguments.
Our implementation will only provide one argument to the function and assume
that it returns the square root of the input argument in a register. This can be
used in other computations, e.g., storing out into a variable in memory.

Listing 9.124

(define reduce-call
(λ (exp)
(letrec (...)
(cond
[...]
[(eqv? procname 'sqrt)
(let* ([arg (first procargs)])
(begin
(printf " movsd ∼a(%rip), %xmm1∼n" arg)
(printf " sqrtsd %xmm1, %xmm1∼n")
'xmm1))]))))

Showing the abridged output of main produces the following results:

639

9.9 Compiling LFLOAT to LFLOATx64
640

Listing 9.125

.section .data
outfloatfmt: .asciz "%lf\n"
a: .double 6.125
b: .double 7.875
c: .double 13.5
aa: .double 0
bb: .double 0
cc: .double 0
aapbb: .double 0
sos: .double 0
sossqrt: .double 0

.section .text
.extern printf
.global main

main:
pushq %rbp
movq %rsp, %rbp
movsd a(%rip), %xmm1 # Load 'a' into xmm1.
movsd a(%rip), %xmm2 # Load 'a' into xmm2.
mulsd %xmm2, %xmm1 # Square 'a' and store the result in xmm1.
movsd %xmm1, aa(%rip) # Store val in xmm1 out to 'aa'.
movsd b(%rip), %xmm1 # Load 'b' into xmm1.
movsd b(%rip), %xmm2 # Load 'b' into xmm2.
mulsd %xmm2, %xmm1 # Square 'b' and store the result in xmm1.
movsd %xmm1, bb(%rip) # Store val in xmm1 out to 'bb'.
movsd c(%rip), %xmm1 # Load 'c' into xmm1.
movsd c(%rip), %xmm2 # Load 'c' into xmm2.
mulsd %xmm2, %xmm1 # Square 'c' and store the result in xmm1.
movsd %xmm1, cc(%rip) # Store val in xmm1 out to 'cc'.
movsd aa(%rip), %xmm1 # Load 'aa' into xmm1.
movsd bb(%rip), %xmm2 # Load 'bb' into xmm2.
addsd %xmm2, %xmm1 # Add 'bb' to 'aa'.
movsd %xmm1, aapbb(%rip) # Store sum out to 'aapbb'.
movsd aapbb(%rip), %xmm1 # Load 'aapbb' into xmm1.
movsd cc(%rip), %xmm2 # Load 'cc' into xmm2.
addsd %xmm2, %xmm1 # Add 'cc' to 'aapbb'.
movsd %xmm1, sos(%rip) # Store sum out to 'sos'.
movsd sos(%rip), %xmm1 # Load 'sos' into xmm1.
sqrtsd %xmm1, %xmm1 # Sqrt value in xmm1, store res. in xmm1.
movsd %xmm1, sossqrt(%rip) # Store sqrt out to 'sossqrt'.
movsd sossqrt(%rip), %xmm0
leaq outfloatfmt(%rip), %rdi
movq $1, %rax
callq printf
movq %rbp, %rsp
popq %rbp
retq

640

641 Compilation

If we try to implement certain functions, e.g., sine and cosine, we will see that
SSE actually does not provide any functions to do so. This is where the x87 floating-
point unit comes into play. x87 is an extension to x86/64 assembly that includes
support for certain floating-point instructions. A prime difference between SSE and
x87 is the fact that x87 does not use “registers” in the sense that x64 and SSE use
them. Namely, x87 has eight floating-point registers: %st(0) to %st(7). These
pseudo-registers act as a floating-point stack of values. Consequently, many x87
instructions only work off values pushed to this stack. For example, if we want to
compute the sine of some arbitrary value, we use the fsin instruction.1 Though,
we cannot just pass it a value, as it does not receive any arguments! Instead, we
load a value into the st(0) “register”, and invoking fsin computes the sine of the
value in %st(0), and stores it back into this “register”. So, we load a variable into
%st(0) via fldl. Invoke fsin, and store the newly-generated result of %st(0) back
into %xmm1. There is a catch, though! As we stated, fsin computes its result from
%st(0) and stores it into %st(0). We, unfortunately, cannot save the result to a
temporary register and then assign it to a target destination variable. As such,
we need to write the result out to a temporary variable, tmp, then load that into
an xmm register, and finally store it back out to the desired variable in memory via
movsd. Before our compilation step, let us hand-write the respective assembly code.
Suppose that we wish to compute the sine of 2.0944 radians.

Listing 9.126

.section .data
outfloatfmt: .asciz "%lf\n"
val: .double 2.0944
tmp: .double 0
sinres: .double 0

.section .text
.extern printf
.global main

main:
pushq %rbp
movq %rsp, %rbp
fldl val(%rip) # Load value into st(0)
fsin # Compute sine of st(0), store res. in st(0).
fstl tmp(%rip) # Store quadword sine in temp var 'tmp'.
movsd tmp(%rip), %xmm1 # Load 'tmp' into xmm1.
movsd %xmm1, sinres(%rip) # Store xmm1 out to 'sinres' value.
movsd sinres(%rip), %xmm0
leaq outfloatfmt(%rip), %rdi
movq $1, %rax
callq printf
movq %rbp, %rsp
popq %rbp
retq

1A rule of thumb is that all x87 instructions are prefixed with ‘f’.

641

9.9 Compiling LFLOAT to LFLOATx64
642

Now, let us up the ante by converting this result into degrees. sin(2.0944rad) ≈
49.62◦. To convert radians into degrees, we multiply the input radians by 180◦, then
divide this result by π (approximately 3.1415). Now, we could define a constant pi
in the .data segment, but this is not as accurate as using the fldpi instruction,
which loads a predefined constant pi onto the top of the stack. So, to convert a
value from radians to degrees, we need to use the relevant x87 instructions to push
the sine (radians) result to the FPU stack, push a variable holding the constant 180,
multiply these and store the result in %st(0), push π, then divide. There is a small
catch to this, and that is the division operation. We all know that division and
subtraction are not commutative operations. That is, a−b ̸= b−a and a/b ̸= b/a
for every a and b such that a ̸= b. Therefore, we need to swap the values in %st(0)
(containing π) and %st(1) (containing sin(120rad)·180). We can do this with fxch.
Let us write only the relevant code.

Listing 9.127

.section .data
RAD2DEG: .double 180
...

.section .text
...

main:
...
ffree %st(0) # Remove value from %st(0).
fldl sinres(%rip) # Push 'sinres' to the FP stack.
fldl RAD2DEG(%rip) # Push 'RAD2DEG' to the FP stack.
fmulp %st(0), %st(1) # Multiply st(0) by st(1), store result in %st(0) and pop.
fldpi # Push PI to FP stack.
fxch # Swap res and PI values so res is in st(0).
fdivp # Divide res by PI. Store res in %st(0).
fstl sinres(%rip) # Store st(0) in 'sinres'.
...

Let us walk through this since it is rather abstract. Because we load a value into
%st0 via an earlier invocation of fldl, we need to pop that value off the stack, and
we can do so with ffree. Then, we load sinres and RAD2DEG to the stack such that
sinres is in %st(1) and RAD2DEG is in %st(0). We then multiply these two values
together, store the result in %st(1), and pop %st(0) off the stack because RAD2DEG
is no longer an important value. Then, we push π to the stack via fldpi, storing
it in %st(0). We swap the values in %st(0) and %st(1) to designate the result as
the dividend and π as the divisor. fdivp divides %st(0) by %st(1) and stores the
result in %st(0). At long last, we store this result out to sinres in memory.

Here’s the thing: we could avoid all of this complicated logic by doing something
similar to what we did with printf: namely, use an external function to do the
work for us! One of those handy-dandy functions is sin. Let us declare this as an
extern function.

642

643 Compilation

Listing 9.128

.section .data
outfloatfmt: .asciz "%lf\n"
val: .double 2.0944
sinres: .double 0

.section .text
.extern sin
.extern printf
.global main

main:
...
movsd val(%rip), %xmm0 # Load value into first arg.
callq sin # Call sin procedure with 'val' in radians.
movsd %xmm0, sinres(%rip) # Store sine result out to 'sinres'.

As we can see, this is significantly easier to understand! Though this requires
dipping further into C libraries, the benefits largely outweigh the disadvantages.
One disadvantage, albeit incredibly minuscule, is the need to link the math library
when compiling via -lm. Below is a full program that computes the sine of val,
converts it from radians to degrees, and prints it to standard output.

Listing 9.129

.section .data
outfloatfmt: .asciz "%lf\n"
val: .double 2.0944
sinres: .double 0
PI: .double 3.14159265359
RAD2DEG: .double 180

.section .text
.global main

main:
pushq %rbp
movq %rsp, %rbp
movsd val(%rip), %xmm0 # Load value into first arg.
callq sin # Call sin procedure with 'val' in radians.
movsd %xmm0, sinres(%rip) # Store sine result out to 'sinres'.
movsd sinres(%rip), %xmm1 # Load 'sinres' into xmm1.
mulsd RAD2DEG(%rip), %xmm1 # Multiply 'sinres' by RAD2DEG.
divsd PI(%rip), %xmm1 # Divide above result by PI.
movsd %xmm1, sinres(%rip) # Store xmm1 out to 'sinres'.
movsd sinres(%rip), %xmm0 # Load 'sinres' into memory.
leaq outfloatfmt(%rip), %rdi
movq $1, %rax
callq printf
movq %rbp, %rsp
popq %rbp
retq

Let us write the compiler code that adds support for the sin function. These
changes are apparent in reduce-call (albeit we need to modify the preamble to
declare sin as an extern function). We add a clause to reduce sin function calls.
Much like sqrt, our sin function receives an argument and returns a result that
may be stored. E.g., (y = (call sin x)) where x is a previously-declared angle
in radians. Unlike sqrt, however, we return %xmm0 instead of %xmm1 because this
sin a C library function and, therefore, stores its return value in %xmm0.

643

9.9 Compiling LFLOAT to LFLOATx64
644

Listing 9.130

(define reduce-call
(λ (exp)
(letrec ([...])
(cond
[...]
[(eqv? procname 'sin)
(let* ([arg (first procargs)])
(begin
(printf " movsd ∼a(%rip), %xmm0∼n" arg)
(printf " callq sin∼n")
'xmm0))]

[...]))))

Exercise 9.14. (⋆)
Add code to support the other two “main” trigonometric functions, i.e., cos and
tan.
Exercise 9.15. (⋆⋆)
Define an x64 assembly procedure rad2deg that receives a floating-point radian
value as an argument in %xmm0, converts it to degrees, and returns the result in
%xmm0. Use global variables, as we have before, for π and the conversion factor
180◦. You may also use fldpi as we did before.

Exercise 9.16. (⋆⋆)
Add support for calling the rad2deg function in your compiler. That is, it should
support a function call, e.g., (var deg = (call rad2deg rad)), where rad is de-
fined as some floating-point value.

644

645 Compilation

9.10 Optimizing Generating Assembly

The code that our compiler generates is certainly correct, but it can be improved by
a substantial amount. In this section, we will explore a few optimization techniques
used in real compilers.

Redundant Instruction Elimination

There are certain instances of instruction emitting that can be eliminated while
preserving the semantic behavior of our program. As an example, instructions
that move a value from a register into the same register are wasteful. Similarly,
arithmatic operations performed on identity elements are also superfluous, e.g.,
x+0, y−0, z·1. All we need to do is add, to the respective reducers, code that
checks for these conditions and, if they are true, does not emit code.

First, we will remove unnecessary instructions that are tautological, i.e., they
move a value into themselves, e.g., movq %rax, %rax. Hopefully the caveat of
this optimization is clear in that we can only remove instructions that do not
change the value of the destination register. We add the optimization directly
into print-instruction3 because it is the last “point of contact”, so to speak,
with the instruction before it is emitted. We can consider the print-empty func-
tion as one that invokes printf with the empty string. One important property of
compiler optimization, however, is to only remove operations that do not have side-
effects. Namely, if some operation sets the flag register, it should not be optimized
prematurely. For example, consider the statement orq %rax, %rax. Even though
this appears to be tautological, since performing a bitwise-OR on the same number
does nothing to the resulting register, it does affect the flags. So, if a program relies
on this instruction to perform a comparison, optimizing out the statement breaks
semantic equivalence.

Listing 9.131

(define print-instruction3
(λ (op src dest)
(let ([res-src (reduce src)]

[res-dest (reduce dest)])
(cond
[(and (eqv? res-src res-dest) (eqv? op 'movq)) (print-empty)]
[...])))))

To optimize our addition functions, we should rework reduce-add to only add
non-zero values into a register.

645

9.10 Optimizing Generating Assembly 646

Listing 9.132

(define reduce-add
(λ (exp)
(letrec ([rec

(λ (lon)
(cond
[(null? lon) (print-empty)]
[else
(let ([val (reduce (first lon))])
(cond
[(zero? val) (rec (rest lon))]
[else
(begin
(print-instruction3 'addq val 'rbx)
(rec (rest lon)))]))]))])

...)))

Listing 9.133

> (compile
'((proc main ()

((var y = 5)
(var x = (+ y 0))
(call print x)))))

main:
...
movq $5, -8(%rbp)
movq -8(%rbp), %rbx
addq $0, %rbx
movq %rbx, -16(%rbp)
movq -16(%rbp), %rsi
leaq outnumfmt(%rip), %rdi
movq $0, %rax
callq printf
...
retq

Exercise 9.17. (⋆⋆⋆⋆)
As we mentioned, some instructions cannot be prematurely optimized due to their
potential to cause side-effects on the flags register. This includes comparison, bit-
wise, and even arithmetic operations. For example, if we overflow a register when
performing an addition, the overflow flag is toggled. Perform some analysis with
your compiler and see if you can write code that only optimizes instructions that
preserve program semantic behavior.

Exercise 9.18. (⋆⋆⋆⋆⋆)
Dataflow analysis is the study of where and how data moves through a program.
Part of such analysis is determining variable propagation, i.e., where and when
variables are live/accessible. Pushing every callee-saved registers to the stack, even
if they are not used, is overly ambitious and wasteful. Add an optimization pass to
the compiler that determines whether a function body uses any callee-saved registers
and, if so, pushes only those to the stack.

Constant Folding

Consider the following expression; to what instructions does it compile?

646

647 Compilation

Listing 9.134

> (var x = (+ 5 10 15 20 25 30 35 40)) movq $5, %rax
addq $10, %rax
addq $15, %rax
addq $20, %rax
addq $25, %rax
addq $30, %rax
addq $35, %rax
addq $40, %rax
movq %rax, -8(%rbp)

There are nine instructions for one simple arithmetic and store operation! Would
it not be simpler to just move the sum of these values into %rax, then into the
memory location?1

Listing 9.135

movq $180, %rax
movq %rax, -8(%rbp)

What we are aiming for is an optimization technique called constant folding.
That is, instead of wasting time on simple arithmatic operations at the assembly
level, we can fold the constants into numbers and store them directly. Let us write
a function fold-constants that receives an arbitrary statement and returns said
statement with the operations, if any exist, reduced to a single number.

Now, it may be tempting to use a “fold” operation to sum the values in an addi-
tion operation, but this will not always work; if we have, say, an inlined expression
within the summation, we must account for it upon folding the overall expression.
So, this looks like a good opportunity to write a small interpreter that receives an
s-expression written in the input language and outputs another s-expression with
the necessary optimizations, should they exist. Note the the constant-folding pass
of our compiler occurs before we even see the assembly language; consider it a pre-
processing step. We will implement only fold-add and a few other special forms,
leaving the rest as exercises.

Listing 9.136

(define fold-constants
(λ (stmt)
(cond
[(number? stmt) stmt]
[(symbol? stmt) stmt]
[(var? stmt) (fold-var stmt)]
[(add? stmt) (fold-add stmt)]
[(cmp? stmt) (fold-cmp stmt)]
[(if? stmt) (fold-if stmt)]
[(return? stmt) (fold-return stmt)]
[(proc? stmt) (fold-proc stmt)]
[else stmt])))

We know that numbers and symbols resolve to themselves. So, the first re-
ducer to concern ourselves with is fold-var, which recursively folds its expression,
recreating the form of a var s-expression:

1In actuality, a smart compiler would remove the use of %rax if it were unnecessary.

647

9.10 Optimizing Generating Assembly 648

Listing 9.137

(define fold-var
(λ (stmt)
(let ([id (second stmt)]

[expr (fourth stmt)])
`(var ,id = ,(fold-constants expr)))))

Up next, we will fold addition expressions. The idea is to apply the foldr opera-
tion to the addition s-expression after mapping fold-constants over the expression
itself. This way, we fold constants in all sub-expressions.

Listing 9.138

(define fold-add
(λ (stmt)
(let ([expr (rest (rest stmt))])
(foldr + 0 (map fold-constants stmt)))))

To test our implementation, we should write a function for processing several
sequential statements using foldr, perhaps fold-statements:

Listing 9.139

(define fold-statements
(λ (los)
(foldr (λ (s acc)

(cons (fold-constants s)
acc))

'()
los)))

> (fold-statements
'((var x = (+ 20 30 40))))

> (fold-statements
'((var y = (+ (+ 20 20)

(+ 30 30)
(+ 40 40)))

(var z = (+ 100 (+ 70 100)))))

((var x = 90))

((var y = 180)
(var z = 270))

Let us search for possible constant folds within if statements as well; we must
search the predicate, consequent, and alternative. Within each clause rests an easy
call to fold-constants.

Listing 9.140

(define fold-if
(λ (stmt)
(let ([p (second stmt)]

[c (third stmt)]
[a (fourth stmt)])

(list 'if (fold-constants p) (fold-constants c) (fold-constants a)))))

Before we test fold-if, we need to fold constants found within expressions that
return booleans; fortunately we have a cmp? recognizer, which we will recycle. All
this requires is a fold over the two operands of a comparison operator:

648

649 Compilation

Listing 9.141

(define fold-cmp
(λ (stmt)
(let ([op (first stmt)]

[fst (second stmt)]
[snd (third stmt)])

(list op (fold-constants fst) (fold-constants snd)))))

Now, let us go ahead and implement constant folding for procedure definitions.
What is different about procedures is that their bodies consist of statement lists,
meaning we must use fold-statements rather than mapping fold-constants over
the statements. In doing this, we also have to account for return statements, which
we will omit due to redundancy.

Listing 9.142

(define fold-proc
(λ (stmt)
(let ([id (second stmt)]

[formals (third stmt)]
[body (fourth stmt)])

(list 'proc id formals (fold-statements body)))))

Let us put these two together in a couple of test cases.

Listing 9.143

> (fold-statements
'((proc foo (x y)

(if (?= x y)
(return (+ 10 20 30 40 50))
(return (+ 100

(+ 400 500)))))))

> (fold-statements
'((proc bar ()

(if (?= (+ 100 100) (+ 200 200))
(return (+ 10 20 30 40 50))
(return (+ 100

(+ 400 500)))))))

((proc foo (x y)
(if (?= x y)

(return 150)
(return 1000))))

((proc bar ()
(if (?= 200 400)

(return 150)
(return 1000))))

Exercise 9.19. (⋆)
Add constant folding for expressions containing subtraction operations. As an ex-
ample, (var x = (- 10 20 30)), which becomes (var x = -60).
Exercise 9.20. (⋆)
Add constant folding for multiplicative expressions. As an example, (var x = (*
10 20 30)), which becomes (var x = 6000).
Exercise 9.21. (⋆⋆⋆⋆)
Our implementation of the fold-add optimization falls apart if we throw a variable
into the mix, e.g., (var x = (+ 10 20 30 y 50)) . A smart compiler could opti-
mize this into (var x = (+ 110 y)), where y is some value to be utilized in the
assembly code. Implement this form of constant folding into your compiler.

649

10 Memory Management

One of the main causes of the fall of the Roman Empire was that, lacking zero,
they had no way to indicate successful termination of their C programs.

—Robert Firth

10.1 Memory Allocation

Our interpreters, so far, have relied on the fact that our programs are relatively
small and do not use copious amounts of memory. Though, what if we, once again,
write a program to compute the Fibonacci sequence of a double-digit number?

Listing 10.1

(define fib
(λ (n)
(cond
[(<= n 1) 1]
[else (+ (fib (- n 1))

(fib (- n 2)))])))

> (fib 15) 610

If we check the output of Valgrind, we observe that our interpreter leaks approx-
imately two megabytes of memory. Recall that, in the primer on C and memory
allocation, we said that it is a desire to free memory whenever it is previously
allocated. In this section, we will explain this desire in further detail.

Let us try computing the twentieth Fibonacci number. In doing so, we see that
Valgrind leaks around twenty-four megabytes of memory. This is starting to leave
the realm of insignificant memory losses, and we need to properly clean up what
we allocate. The big issue is that if we attempt to free, say, an s-value at any
point, we do not know when it will be referenced again. If we immediately free a
lambda procedure, then we no longer have access for function invocation. We need
to introduce a proper memory allocation system. Though, in order to do this, we
need to understand the fundamental differences between the two types of memory:
stack-allocated memory, and heap-allocated memory.

10.1 Memory Allocation 652

Stack-Based Memory

When we declare variables within a function, they are stored on the stack. The
stack is the location of all locally-defined variables as well as function calls. That
is, each call to a function stores an activation record on the stack. We can visualize
the stack as a sequence of memory addresses. As we stated, any local variables that
are not dynamically allocated via, e.g., malloc, calloc, or realloc, are stored on
the stack.1 When a function terminates, any variables declared within the function
are clobbered/destroyed from the stack.

One important distinction between stack-based variables and heap-allocated
memory comes through pointers. Suppose we declare a pointer as follows.

Listing 10.2

1 int main(void) {
2 char *foo = NULL;
3 return 0;
4 }

The pointer, namely foo, is stored on the stack. If we explicitly allocate memory
to foo via, e.g., malloc, that allocated memory is stored on the heap.

Function calls make prolific use of the stack through activation records. As we
discussed in Chapter 9, when we call a function, we push the address-to-return,
and certain arguments onto the stack. Once we jump to the first instruction of the
function in memory, if the function requires space for local variables, we make room
for these on the stack by subtracting from the stack pointer. Additionally, some
registers are “callee-saved”, meaning the function must push their contents to the
stack. Before returning from a function, we “de-allocate” the local variable/align-
ment space by simply moving the stack pointer back up to its prior location. We end
off by popping the callee-saved registers and return address from the stack.2 Due
to the fact that registers and stack space are reclaimed or popped off the stack only
upon reaching the end of a function, it becomes apparent how non-tail recursive
functions can be susceptible to segmentation faults. Consider a never-terminating
non-tail recursive factorial function:

Listing 10.3—Faulty Non-Tail-Recursive Function (main.c)
1 int fact(int n) {
2 if (n == 0) { return 1; }
3 else { return n * fact(n - 1); }
4 }
5
6 int main(void) {
7 fact(-1);
8 return 0;
9 }

1Recall from Chapter 9 that variables declared in the .data or .bss segments are not located on the
stack in our sense of the term.

2These definitions and explanations are applicable to AT&T x64 assembly and do not strictly apply
to all variants of assembly and architectures. For example, some architectures and standards require
different callee-saved registers.

652

653 Memory Management

By calling fact with -1, we never reach a base case, meaning we continuously
push more and more return addresses, arguments, and callee-saved registers to
the stack without ever unwinding any recursive calls. Eventually, the stack runs
out of its limited space, resulting in a segmentation fault. In other programming
languages with better-detailed error messages, this is known as a stack overflow
error/exception.

Heap-Based Memory

Dynamically-allocated memory is an incredibly important and sometimes frustrat-
ing concept not only in C, but also in all of computer science. Generally, we use
dynamically-allocated memory or variables when there is an indeterminate number
of allocations to be made. The heap, in and of itself, is a pool of memory that
a program may access/utilize/alter at runtime. Heap-allocated variables are also
accessible across functions. Recall from the previous section that all stack-based
variables are clobbered once a function terminates. Consider the following code
segment:

Listing 10.4

1 char *foo(void) {
2 char *str = malloc(1024);
3 return NULL;
4 }
5
6 int main(void) {
7 char *bar = foo();
8 return 0;
9 }

Once foo finishes execution, the pointer str is clobbered from the stack and we
lose the foo activation record. The difference, though, is that the memory pointed
to by str is not lost and still exists in the heap. What is unfortunate is that upon
losing reference to that memory by, e.g., not returning a valid pointer, we can no
longer access said memory, thus introducing a memory leak.

653

10.1 Memory Allocation 654

Garbage Collection

Garbage collection is a feature in many modern programming languages. A garbage
collector is a form of automatically managing dynamic memory allocation. In C,
when we allocate memory via malloc (or a similar function), there must be an
accompanying call to free. Until this point, we have been rather liberal in our use of
free or associated destructor functions (often opting to not use them at all) because
a premature de-allocation in an interpreter can cause troublesome segmentation
faults and bugs that are tricky to trace.

Writing a Lazy Garbage Collector

In contrast to the more powerful garbage collection algorithms that are available,
we will start by implementing a lazy garbage collector. A lazy garbage collector
will only automatically free allocated memory at the end of the program. Though,
the issue with this approach is a lazy garbage collector is only marginally better
than not freeing dynamically-allocated memory at all. So, there will still be times
when we want to free certain dynamic memory allocations, i.e., the garbage collector
should not intervene and free these pointers. These types of allocations are called
uncontrolled allocations, in contrast to controlled allocations, which are allocations
managed solely by the garbage collector. We will implement our lazy garbage
collector outside the interpreter first, then replace our dynamic allocation function
calls with ones suited for a garbage collector.

As a motivating example, let us write some C code to allocate some arrays of
integers, but forget to free some of the resources.

Listing 10.5

1 int main(int argc, char *argv[]) {
2 int *arr1 = malloc(1000 * sizeof(int));
3 int *arr2 = malloc(2000 * sizeof(int));
4 int *arr3 = malloc(3000 * sizeof(int));
5
6 free(arr2);
7 return 0;
8 }

Running this through Valgrind, we get a memory leak of 16,000 bytes, which is
expected, as we allocate a total of 6,000 integers, each using four bytes, for a total
of 24,000 bytes. Because we only free arr2, we only free 8,000 bytes. So, what
happens if we forget to do this on a much larger and harder-to-trace scale, i.e., our
interpreters? What we are after is a garbage collector. So, let us write one! We
first need an interface for tracking allocated and freed dynamic memory. Then, we
need a way of storing each tracker. Let us construct the former struct first. As an
aside, we abbreviate the garbage collector as mgc to stand in for, “Mini Garbage
Collector”.

654

655 Memory Management

Listing 10.6—Mini Garbage Collector Allocation Chunk (mgc.h)
1 #ifndef MGC_H
2 #define MGC_H
3
4 #include <stdbool.h>
5
6 struct mgc_allocation {
7 void *ptr;
8 struct mgc_allocation *next;
9 void (*dfree)(void *);

10 bool is_free;
11 };
12
13 #endif // MGC_H

Our garbage collector needs four pieces of information to manage a block of
dynamically-allocated memory: the pointer to the heap-allocated memory, the next
allocation in the linked list chain, a “method” of freeing the allocated chunk, and a
flag to keep track of the state of the allocation. If we, for instance, prematurely free
a chunk of memory, we want the garbage collector to know that it should not be
freed twice. Moreover, referencing a pointer that has been previously freed results
in a use-after-free vulnerability.

To keep track of allocations, we will introduce a type definition for the garbage
collector that stores the head and the tail of the linked list allocations.

Listing 10.7—Garbage Collector Linked List Definition (mgc.h)
1 struct mgc {
2 struct mgc_allocation *head;
3 struct mgc_allocation *tail;
4 };

Then in the corresponding source file, we should initialize a static mgc variable
(static is used to ensure that only mgc.c is aware of its existence). We initialize the
garbage collector by setting the head and tail pointers to NULL.

Listing 10.8—Initialization of Garbage Collection Linked List (mgc.c)
1 #include <stddef.h>
2
3 #include "mgc.h"
4
5 static struct mgc gc;
6
7 void mgc_init(void) {
8 gc.head = gc.tail = NULL;
9 }

We previously mentioned the idea of controlled versus uncontrolled allocations.
Controlled allocations are those that the garbage collector responds to. Namely,
when we create a controlled allocation, the garbage collector is informed of the al-
location’s existence. Therefore we need to write a function that creates a controlled
allocation.

Listing 10.9—Controlled Allocation Function Header (mgc.c)
1 void *mgc_alloc(size_t sz, void (*dfree)(void *)) { ... }

655

10.1 Memory Allocation 656

This function looks eerily similar to malloc with one added exception: the
function pointer dfree. Because we want our garbage collector to be as flexible as
possible, we need to tell it how to free certain objects. Consider the following code
example:

Listing 10.10

1 #include <stdlib.h>
2 #include <string.h>
3
4 struct student {
5 char *name;
6 double gpa;
7 };
8
9 void student_init(struct student *s, char *name, double gpa) {

10 s->name = strdup(name);
11 s->gpa = gpa;
12 }
13
14 void student_destroy(void *ptr) {
15 struct student *s = (struct student *) ptr;
16 free(s->name);
17 free(s);
18 }
19
20 int main(void) {
21 struct student *s = malloc(sizeof(struct student));
22 ASSERT_ALLOC(s, "main");
23 student_init(s, "Albert", 4.0);
24 ...
25 free(s);
26 ...
27 return 0;
28 }

We create a struct student with a dynamically-allocated field within, namely
the char * through a call to strdup. If we were to inform the garbage collector of
this allocation and told it that, in order to free a struct student, it is to invoke
free, then it would not be a correct deallocation because the memory allocated by
strdup to hold the name would no longer be reachable by the programmer. We,
instead, should pass student destroy as a function pointer.

Listing 10.11

1 #include "mgc.h"
2
3 void student_create(struct student *s, char *name, double gpa) {
4 s->name = strdup(name);
5 s->gpa = gpa;
6 return s;
7 }
8
9 int main(void) {

10 struct student *s = mgc_alloc(sizeof(struct student), student_destroy);
11 ...
12 return 0;
13 }

656

657 Memory Management

But we still have the problem of the name field. We could, theoretically, tell
the garbage collector that it too is a controlled allocation. If we do this, though,
we would need to change student destroy to not free name, because that is the
job of the garbage collector. Therefore, we introduce the notion of an uncontrolled
allocation, which is just a normal allocation and free with a fancy name. That is,
it is the programmer’s responsibility to handle the memory and not the garbage
collector. So, when the garbage collector attempts to destroy a struct student,
it not only frees said struct, but invokes an uncontrolled de-allocation. The only
reason it is uncontrolled is because we explicitly call free. Assuming we have a
function mgc ualloc to create an uncontrolled allocation, we may modify our code
to not use strdup as follows:

Listing 10.12

1 #include "mgc.h"
2
3 void student_create(struct student *s, char *name, double gpa) {
4 s->name = mgc_ualloc(strlen(name) + 1);
5 strcpy(s->name, name);
6 s->gpa = gpa;
7 return s;
8 }

Of course, our garbage collector could also contain a function, e.g., mgc strdup,
which allocates memory for the duplicated string in the garbage collector.1 In doing
so we relinquish responsibility of freeing the memory from the programmer, but they
then consequently lose control over when and where the de-allocation occurs.

With this simple example out of the way, we take a deep dive into the imple-
mentation of controlled allocations.

First, we must allocate a block of memory of some specified size. Then, we
should allocate a node to store inside the garbage collector. What is returned from
this function is ultimately a pointer to the allocated chunk of memory, so we may
as well add that in now to prevent confusion down the road.2

Listing 10.13—Chunk Allocation Node Creation (mgc.c)
1 void *mgc_alloc(size_t sz, void (*dfree)(void *)) {
2 void *ptr = calloc(1, sz);
3 ASSERT_ALLOC(ptr, "mgc_alloc");
4 struct mgc_allocation *alloc = calloc(1, sizeof(struct mgc_allocation));
5 ASSERT_ALLOC(ptr, "mgc_alloc");
6 ...
7 // TODO.
8 ...
9 return ptr;

10 }

So, because we have a node, we can directly access and mutate its fields ptr,
is free, and dfree.

1Moreover, the garbage collector might have many functions from the C standard library that by
default allocate memory for the programmer such as asprintf.

2As an aside, we use calloc rather than malloc to ensure that the memory allocated by our garbage
collector is zeroed before its utilization. Using malloc provides no guarantees on what exists in a memory
chunk; only that it is free to be read from or written to.

657

10.1 Memory Allocation 658

Listing 10.14—Assigning Chunk Allocation Node Fields (mgc.c)
1 void *mgc_alloc(size_t sz, void (*dfree)(void *)) {
2 ...
3 alloc->ptr = ptr;
4 alloc->is_free = false;
5 alloc->dfree = dfree;
6 ...
7 return ptr;
8 }

Finally, we need to append the allocation to the tail of the garbage collector
linked list.

Listing 10.15—Add Allocation Chunk to Linked List (mgc.c)
1 void *mgc_alloc(size_t sz, void (*dfree)(void *)) {
2 ...
3 // If there's nothing in the garbage collector list, then add it as the head.
4 if (NULL == gc.head) {
5 gc.head = gc.tail = alloc;
6 } else {
7 gc.tail->next = alloc;
8 gc.tail = alloc;
9 }

10 return ptr;
11 }

That is all there is to controlled allocations! An uncontrolled allocation, on the
other hand, is absolutely trivial.

Listing 10.16—Uncontrolled Allocation Creation (mgc.c)
1 void *mgc_ualloc(size_t sz) {
2 void *ptr = calloc(1, sz);
3 ASSERT_ALLOC(ptr, "mgc_ualloc");
4 return ptr;
5 }

At this point, because we have controlled allocations, we certainly need a way
for the garbage collector to free data inside its linked list. Accordingly, we will now
design mgc free which receives a pointer to a memory block to de-allocate. Then,
we traverse through the garbage collector and, if we find the memory chunk, we
only free it if it has not been previously freed.1

1Our implementation includes a check that validates the existence of the “free” function pointer for
safety purposes.

658

659 Memory Management

Listing 10.17—De-allocation of Controlled Allocation (mgc.c)
1 void mgc_free(void *ptr) {
2 for (struct mgc_allocation *curr = gc.head; curr != NULL; curr = curr->next) {
3 if (curr->ptr == ptr && curr->dfree) {
4 if (!curr->dfree) {
5 EPF("mgc_free: Address at %p does not have a destructor function\n", ptr);
6 exit(EXIT_FAILURE);
7 } else if (curr->is_free) {
8 EPF("mgc_free: Attempted to free a pointer that is already freed\n");
9 exit(EXIT_FAILURE);

10 }
11 curr->dfree(curr->ptr);
12 curr->is_free = true;
13 return;
14 }
15 }
16 }

So, if we ever invoke mgc free manually, i.e., without the intervention of the
garbage collector, it will not accidentally free the memory again thanks to the flag.
Conveniently, just like mgc ualloc, the accompanying mgc ufree is as simple as
they come.

Listing 10.18—Deallocation of Uncontrolled Allocation (mgc.c)
1 void mgc_ufree(void *ptr) {
2 if (ptr != NULL) { free(ptr); }
3 }

So, we have access to allocation functions which store memory that the garbage
collector oversees. What about when we want to run the garbage collector? Since
this is a lazy garbage collector, it will only run once the program terminates (or,
to be more precise, immediately before execution finishes). Thus, we will write
mgc cleanup that frees all memory inside the garbage collector using the stored
function pointers. We also free the mgc allocation nodes.

Listing 10.19—Destruction of All Mini Garbage Collector Chunks (mgc.c)
1 void mgc_cleanup(void) {
2 struct mgc_allocation *tmp = gc.head;
3 while (NULL != gc.head) {
4 tmp = gc.head;
5 gc.head = gc.head->next;
6 if (!tmp->is_free) {
7 tmp->dfree(tmp->ptr);
8 tmp->is_free = true;
9 }

10 free(tmp);
11 }
12 }

Lastly, inside our main function, we invoke the garbage collector initializer and
clean up functions. It is important that we activate the garbage collector only after
all other allocations are destroyed so as to not accidentally double-free variables
and pointers.

659

10.1 Memory Allocation 660

Listing 10.20—Adding Mini Garbage Collector to Interpreter (main.c)
1 int main(int argc, char *argv[]) {
2 srand(time(NULL));
3 mgc_init();
4 eval_init();
5 parser_init();
6
7 parser_parse(argv[1], PARSE_FILE);
8
9 ast_cleanup();

10 parser_cleanup();
11 mgc_cleanup();
12 return 0;
13 }

Though, before we go through the trouble of changing all dynamic allocations
to those that use the garbage collector, let us revisit our integer array allocation
example. We will modify the implementation to instead use mgc.

Listing 10.21

1 #include "mgc.h"
2
3 int main(int argc, char *argv[]) {
4 mgc_init();
5 int *arr1 = mgc_alloc(1000 * sizeof(int), free);
6 int *arr2 = mgc_alloc(2000 * sizeof(int), free);
7 int *arr3 = mgc_alloc(3000 * sizeof(int), free);
8 mgc_cleanup();
9 return 0;

10 }

Running this code through Valgrind shows that all memory was freed. The nice
thing about our lazy garbage collector implementation is that, if we manually free
the allocated memory (by calling mgc free), the garbage collector notices that the
allocations were freed and, therefore, skips over freeing that memory.

Listing 10.22

1 #include "mgc.h"
2
3 int main(int argc, char *argv[]) {
4 mgc_init();
5 int *arr1 = mgc_alloc(1000 * sizeof(int), free);
6 int *arr2 = mgc_alloc(2000 * sizeof(int), free);
7 int *arr3 = mgc_alloc(3000 * sizeof(int), free);
8
9 mgc_free(arr1);

10 mgc_free(arr2);
11 mgc_free(arr3);
12 mgc_cleanup();
13 return 0;
14 }

660

661 Memory Management

All that is left is to go and replace any calls to malloc and free to mgc alloc
and mgc free. Though, it is important to recall the problem with the student
struct example—if there exists a controlled allocation that has associated memory,
those variables should use uncontrolled allocations. When replacing each allocation,
be sure to incrementally test the interpreter, one piece at a time, to ensure every-
thing works in between modifications. We also reiterate that this garbage collector
is a lazy garbage collector and is only a step above not freeing memory at the end
of a program. mgc only keeps track of what memory is allocated; not what points
to it or if it is valid (or ever becomes invalid).

Exercise 10.1. (⋆)
Write two functions mgc calloc and mgc realloc that work similar to their non-
mgc counterparts.

Exercise 10.2. (⋆)
Write a function mgc urealloc that serves as an uncontrolled reallocation func-
tion.

10.2 Reference-Counted Garbage Collection

As we stated, our previous implementation is a very lazy garbage collector, and
is the one we will continue to use throughout the rest of our journey of computer
science due to its ease of implementation. As a brief aside, we will explore and
implement a more powerful garbage collection algorithm, which utilizes reference
counting.

A reference, at least in C, is often synonymous and used interchangeably with
“pointer”. We can declare a “reference” to some arbitrary pointer as follows:

Listing 10.23

1 int main(void) {
2 int *ptr = malloc(...);
3 int *ref = ptr;
4 return 0;
5 }

Now, ref refers to the same pointer as ptr. So, if we were to alter the data
pointed to by ptr in some way, ref would see these changes. Consider the following
example:

Listing 10.24

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main(void) {
5 int *ptr = malloc(10 * sizeof(int));
6 int *ref = ptr;
7 ptr[3] = 100;
8 printf("ptr[3]=%d\n", ptr[3]);
9 printf("ref[3]=%d\n", ref[3]);

10 free(ptr);
11 return 0;
12 }

100
100

661

10.2 Reference-Counted Garbage Collection 662

Both printf invocations output the same data. If we free the data pointed
to by ptr, the ref pointer still points to that freed data in memory, which when
accessed may result in a segmentation fault, but at the very least is an example of a
use-after-free vulnerability. How does this relate to garbage collection? A reference-
counting garbage collector stores a counter alongside each allocation. This counter
represents how many pointers reference the data. So, if we reassign references down
the road, we lose the ability to de-allocate that heap-allocated memory! A reference-
counting garbage collector alleviates this problem by de-allocating any memory that
is pointed to by exactly zero references. Let us create a garbage collector that follows
this approach: rcgc, i.e., “Reference-Counting Garbage Collector”.

The underlying data structure of rcgc is a linked list, much like mgc. We will
keep track of two structs: rcgc, and rcgc allocation. The former functions
identically to mgc, and the latter to mgc allocation.

Listing 10.25—Reference-Counting Garbage Collector Header (rcgc.h)
1 #ifndef RCGC_H
2 #define RCGC_H
3
4 struct rcgc_allocation {
5 void *data;
6 struct rcgc_allocation *next;
7 size_t counter;
8 bool is_free;
9 };

10
11 struct rcgc {
12 struct rcgc_allocation *head;
13 struct rcgc_allocation *tail;
14 };
15
16 #endif // RCGC_H

We now need to make a decision as to how we will allocate and assign references
to pointers. We need a way of informing the garbage collector that we wish to
allocate some memory and store it in the garbage collector. This is a trivial matter
and similar to that of the mgc allocator. What is not as trivial is how references
are swapped around. Normally, if we want to change a pointer’s value, we use the
assignment operator. We cannot do this with a reference-counting garbage collector,
because reassigning the pointer directly does not update the reference counter of
some allocated memory chunk. Thus, we will write a function rcgc assign that
receives a void ** argument dest and a void * argument src, with the intent of
assigning dest to point to the data pointed to by src. There are, therefore, two
cases to consider: first, if dest points to NULL, then dest does not point to memory
located within the garbage collector. On the contrary, if dest is non-NULL, then
whatever it points to must already exist in the garbage collector and that data
needs to have its reference count decremented, since dest will no longer point to
it. In either case the reference count of src must be incremented since dest now
refers to it.

662

663 Memory Management

With the explanations out of the way, let us begin by writing rcgc alloc: a
function that allocates memory into the garbage collector and returns a pointer to
said allocated memory, much like the functionality of mgc alloc. Since the imple-
mentation is rather redundant, we omit the code that adds the rcgc allocation
node to the linked list.

Listing 10.26—Reference-Counting Garbage Collector Chunk Allocation (rcgc.c)
1 void *rcgc_alloc(size_t sz) {
2 // Allocate the node in the tree.
3 struct rcgc_allocation *node = malloc(sizeof(struct rcgc_allocation));
4
5 // Add to linked list.
6 ...
7
8 // Now assign the ptr data.
9 void *ptr = calloc(1, sz);

10 ASSERT_ALLOC(ptr, "rcgc_alloc");
11 node->data = ptr;
12 node->counter = 1;
13 return ptr;
14 }

Next, we write the function that, effectively, manages references: rcgc assign.
This function takes the place of, e.g., ref = ptr in the previous code segment. That
is, whenever we want to change what a pointer points to, we use this function. As
we stated, if dest is NULL, then it currently does not exist in the garbage collector.
Otherwise, we need to find its reference and decrement the counter by one. src, on
the contrary, must always exist in the garbage collector. Otherwise, it would be an
invalid reference.

Listing 10.27—Reference/Pointer Assignment (rcgc.c)
1 void rcgc_assign(void **dest, void *src) {
2 // If "dest" is already in the tree, find it and decrement its ref ctr.
3 if (NULL != dest) {
4 struct rcgc_allocation *dest_alloc = rcgc_search(*dest);
5 if (NULL != dest_alloc) {
6 dest_alloc->counter--;
7 }
8 }
9

10 // If we cannot find the source, then it does not exist.
11 struct rcgc_allocation *src_alloc = rcgc_search(src);
12 if (NULL == src_alloc) {
13 EPF("rgrc_assign: Could not find memory address %p\n", src);
14 exit(EXIT_FAILURE);
15 }
16 src_alloc->counter++;
17 *dest = src;
18 }

We said that src must always be in the garbage collector, but what if we want to
assign a pointer to be NULL, i.e., clear its reference? We can write another function,
rcgc release! Note that, it is similarly non-sensical to assign a pointer that is
already NULL to NULL, so we add the case to check.

663

10.2 Reference-Counted Garbage Collection 664

Listing 10.28—Releasing an Acquired Reference (rcgc.c)
1 void rcgc_release(void **dest) {
2 if (NULL != dest) {
3 struct rcgc_allocation *dest_alloc = rcgc_search(*dest);
4 if (NULL != dest_alloc) {
5 dest_alloc->counter--;
6 }
7 *dest = NULL;
8 }
9 }

Searching through the linked list/garbage collector via rcgc search is simple:

Listing 10.29—Chunk Allocation Search Procedure (rcgc.c)
1 static struct rcgc_allocation *rcgc_search(void *ptr) {
2 for (struct rcgc_allocation *curr = gc.head; curr != NULL; curr = curr->next) {
3 if (ptr == curr->data) {
4 return curr;
5 }
6 }
7 return NULL;
8 }

We now need two more functions: one to activate the garbage collector, and
another to clean up everything within the garbage collector at the end of the pro-
gram. Let us write the former first. All we must do is traverse through the list, find
all references with a zero counter, and free the data (if it has not been previously
freed).

Listing 10.30—Activation of Garbage Collector (rcgc.c)
1 void rcgc_activate(void) {
2 for (struct rcgc_allocation *curr = gc.head; curr != NULL; curr = curr->next) {
3 if (0 == curr->counter && !curr->is_free) {
4 free(curr->data);
5 curr->data = NULL;
6 curr->is_free = true;
7 }
8 }
9 }

Lastly, we need to write a function that deletes all allocated memory from the
garbage collector. Being that it is identical to mgc’s underlying structure, we will
copy its cleanup function, only modifying it to work with rcgc allocation structs
rather than mgc allocation.

Listing 10.31—Destruction of Reference-Counting Chunk Allocations (rcgc.c)
1 void rcgc_cleanup(void) {
2 struct rcgc_allocation *tmp = gc.head;
3 while (gc.head != NULL) {
4 tmp = gc.head;
5 gc.head = gc.head->next;
6 if (!tmp->is_free) {
7 free(tmp->data);
8 tmp->is_free = true;
9 }

10 free(tmp);
11 }
12 }

That is all there is to it! Let us write some tests:
664

665 Memory Management

Listing 10.32

1 intmain(void) {
2 rcgc_init();
3 int *arr1 = rcgc_alloc(sizeof(int) * 10);
4 int *arr2 = NULL;
5 int *arr3 = rcgc_alloc(sizeof(int) * 100);
6 rcgc_assign((void **) &arr2, (void *) &arr1); // arr2 = arr1
7 rcgc_assign((void **) &arr3, (void *) &arr2); // arr3 = arr2
8 rcgc_assign((void **) &arr1, (void *) &arr2); // arr1 = arr2
9 rcgc_activate();

10 rcgc_cleanup();
11 return 0;
12 }

Upon running this code, we see that the memory pointed to by arr3 is lost once
we assign the pointer arr2 to arr3. So, after activating the garbage collector, it
determines that arr3 has zero references and, therefore, is eliminated.

There are some problems with our current reference-counting algorithm. Sup-
pose we are within a loop that repeatedly allocates memory that is pointed to by
the same pointer.

Listing 10.33

1 for (int i = 0; i < n; i++) {
2 int *arr = rcgc_alloc(...);
3 }

We now have a new problem to deal with: pointers that are prematurely reas-
signed no longer point to the data they were originally assigned, but rather whatever
was the last allocation in the loop. A reasonable solution is to pass the pointer, as
a reference, alongside our call to allocate memory. Therefore, the garbage collector
can check to see if that pointer already points to memory and, if so, decrement its
respective counter prior to reassigning the pointer.

Unfortunately, this does not solve the problem of pointers that go out of scope.
Consider the following code:

Listing 10.34

1 void foo() {
2 int *x = malloc(1024);
3 }

A smart compiler may see this line of code and optimize it out of execution
since it (the allocated memory) is never referenced or mutated outside the scope of
foo. This type of analysis, however, is beyond the scope of our chapter on memory
management. Though, rest assured that the memory is always freed at the end of
the program by the garbage collector, similar to how our implementation of mgc
works.

Garbage collection is not a feature of C, but is imperative to languages such
as Scheme, Lisp, and so forth. Think about how many allocations are necessary
for things such as cons pairs or lists. Any time that we return/create a new data
structure whose value results from a preexisting structure, we potentially lose a
reference. For instance, consider the following code segment:

665

10.2 Reference-Counted Garbage Collection 666

Listing 10.35

(define ls '(1 2 3))
(set! ls '(a b c))

The list '(1 2 3) is no longer pointed to by any existing and reachable variables,
so keeping its content in memory is wasteful. Now, scale this idea up to hundreds of
function calls and variable declarations, and we quickly understand the significance
of garbage collection in such functional (and non-functional) languages.

Exercise 10.3. (⋆⋆)
When de-allocating a block of memory due to a zeroed reference counter, we only
de-allocate the data itself and not the node, reserving the node cleanup for later.
Modify the current implementation to completely remove the node from the linked
list (hint: keep track of the previous node, then re-assign the links).

Exercise 10.4. (⋆⋆)
In the third-to-last paragraph, we described a solution to allocations made within a
block of code whose scope ends, such as a loop. In particular, we want to pass in an
allocation, i.e., a void *, then check to see if it exists in the garbage collector. If so,
decrement its reference counter by one and return a pointer to the new allocation.
Write a function void *rcgc owalloc(void *dest, size t sz), standing for
“overwrite allocation”, that implements this idea.

Exercise 10.5. (⋆⋆)
Explicitly casting the input to rcgc assign to type void ** is incredibly cumber-
some. A way around this is to use macros. Define a macro RCGC ASSIGN(dest,
src) that calls rcgc assign and casts its macro arguments. If you finished the
previous exercise, write RCGC OWALLOC(dest, sz) that calls rcgc owalloc and
casts its first argument to a void *.

666

11 Event-Driven Programming

For over a decade prophets have voiced the contention that the organization of a
single computer has reached its limits and that truly significant advances can

be made only by interconnection of a multiplicity of computers in such a
manner as to permit co-operative solutions.

—Gene Amdahl

11.1 Concurrent Programming

Our programs so far have been loaded in via files. What if we want to run a
program and make changes on the fly? This is where a REPL, or read-evaluate-
print-loop, comes into play. In essence, we use an infinite loop to read content from
the terminal, evaluate said content, print it out, and repeat. Implementing such a
system seems intuitive at first, and it largely is, with a few caveats. First, each line
must be parsed and sent to the evaluator. Second, all initialization functions must
occur before the REPL starts, and all cleanup functions can only occur at the end
(usually denoted by some sentinel character).

What does this have to do with concurrent programming? Our system must
be constantly listening for input, ready for action when the user presses a key. If
we write a program that forever listens, i.e., using an infinite loop, then we cannot
spend any time on interpretation. By using concurrency , we can both listen/read
input and run our interpreter simultaneously.

We will implement our REPL in the main function as a while loop that runs
forever. If the user specifies an argument when executing the program, we will
assume that they want to run a file through the interpreter.

Listing 11.1 (main.c)
1 int main(int argc, char *argv[]) {
2 ...
3 if (2 == argc) {
4 parser_parse(argv[1], PARSE_FILE);
5 } else {
6 while (true) { ... }
7 }
8 ...
9 return 0;

10 }

11.1 Concurrent Programming 668

There are a couple of ways that we can read input directly from standard input,
i.e., the terminal. One of those is through fgets and the other is getline. The
former uses a preallocated buffer to store input, whereas the latter may dynamically
allocate memory to store whatever is entered. Because getline allocates a large-
enough buffer (when receiving a NULL pointer), we will take advantage of it over
fgets. So, let us create a pointer inside the while loop and free it at the end.

Listing 11.2 (main.c)
1 int main(int argc, char *argv[]) {
2 ...
3 else {
4 while (true) {
5 char *input = NULL;
6 ...
7 free(input);
8 }
9 }

10 ...
11 return 0;
12 }

We will provide a prompt that informs the user that they can type something into
the interpreter. If they do not type anything and only press “Enter”, we designate
that key press as the end of the interpreter and break from the loop. Typing nothing
and pressing the return key is equivalent to only a newline character being present
in the input buffer, which we can check.

Listing 11.3 (main.c)
1 int main(int argc, char *argv[]) {
2 ...
3 else {
4 while (true) {
5 char *input = NULL;
6 size_t len;
7 ssize_t nread = -1;
8 memset(input, 0, sizeof(input));
9 printf("\n>>> ");

10 if ((nread = getline(&input, &len, stdin)) != -1) {
11 if ('\n' == input[0]) { break; }
12 parser_parse(input, PARSE_STRING);
13 }
14 free(input);
15 }
16 }
17 ...
18 return 0;
19 }

All that is left, at this stage at least, is to remove the line of code that frees the
current abstract syntax tree in parser read: mgc free(my ast);. Running the
program now allows us to enter one expression at a time.

>>> (define x 10)
>>> x
10
>>> (include "stdlib.scm")
>>> (define fact (lambda (n) (if (zero? n) 1 (* n (fact (sub1 n))))))
>>> (fact 5)
120

668

669 Event-Driven Programming

Event-Driven Programming

Input Events

When typing commands in a shell, it quickly becomes excruciating to type the same
command repeatedly. Thus, almost every (worthwhile) shell implements a feature
where, when the up or down arrows are pressed, the previous commands are visible
and displayed. Implementing such a feature from scratch involves several features
that we have not yet discussed, so before we dive into the deep end, we will imple-
ment previous command viewing via the GNU readline library (see Appendix 11.3
on installing and linking the library).

Using this library is extremely easy, as it only requires understanding a couple of
functions to make use of its most powerful features: read line and add history.

read line functions similarly to getline in that it dynamically-allocates mem-
ory to store the contents of a line, but different in that it also allows the programmer
to pass a prompt that is displayed before reading the input. Whenever we read a
line from standard input via read line, to make further use of it, we must add
it to the history, i.e., previously-typed expressions, via add history. To start,
we must include two new header files, and then we modify the REPL to use the
readline library functions:

Listing 11.4—Adding readline Library Functions (main.c)
1 #include <readline/readline.h>
2 #include <readline/history.h>
3
4 int main(int argc, char *argv[]) {
5 ...
6 else {
7 while (true) {
8 char *line = readline(">>> ");
9 add_history(line);

10 parser_parse(line, PARSE_STRING);
11 free(line);
12 printf("\n");
13 }
14 }
15 ...
16 return 0;
17 }

Now, upon running the interpreter, if we enter a few definitions, then press the
up arrow, we see what we typed previously. Such a convenient feature to have, for
sure!

Exercise 11.1. (⋆⋆⋆)
Tab-completion is a command auto-completion function that allows the user to enter
part of a command, press the Tab key, and the shell attempts to find the closest
match to what has been typed thus far. Investigate the readline documentation and
try to implement this on your own!

669

11.1 Concurrent Programming 670

Reinventing The Readline Wheel

Using GNU’s readline library is extraordinarily convenient, but perhaps mystifying
to those curious about its innards. Consequently, in this section, we will implement
the core functionality of GNU’s readline library on our own. Before we can begin,
though, there are a few concepts to thoroughly understand, e.g., the difference
between blocked versus non-blocked input and output, file descriptors, pipes, and
system calls.

Blocking versus Non-Blocking IO

Both fgets and getline are referred to as “blocked” input functions. That is,
main program execution halts entirely until something, i.e., data, is received by
these functions.1 While this is a rather loose description of blocking input, it helps
us understand the distinction. Why is this discussion necessary? Think about
how the readline library “scrolls” through history. The user presses the ‘Up’ and
‘Down’ arrow keys respectively but does not need to press “Enter” for the program
to parse and recognize these characters. If we want to mimic this functionality,
we will need to switch from blocking input to non-blocking. By default, read is a
blocking system call and to disable this behavior, we must make use of the fcntl,
or file control, function. In summary, we must change the state of the standard
input file descriptor to be non-blocking via the O NONBLOCK flag.

Listing 11.5

1 #include <fcntl.h>
2 #include <unistd.h>
3
4 int main(void) {
5 ...
6 int flags = fcntl(STDIN_FILENO, F_GETFL, 0);
7 fcntl(STDIN_FILENO, F_SETFL, flags | O_NONBLOCK);
8 ...
9 return 0;

10 }

File Descriptors. When interacting with files in C, we use the FILE * wrapper
structure alongside a few helpful functions. At a lower level there exist file descrip-
tors, which are identifiers for input and output resources. System calls make use of
file descriptors via, for example, the read and write functions, which we saw in our
compilation chapter in assembly. Though, file descriptors are more general than
just for writing and reading to and from standard output and input respectively.
The operating system creates a table of every open resource, thereby providing each
(resource) a unique file descriptor that a program may access. We very often make
use of the FILE * struct as a means of abstracting from the low-level representation
of file descriptors. Indeed, to retrieve the corresponding file descriptor of a FILE *,
invoke the int fileno(FILE *fp) function:

1We use this term “main program execution” to distinguish between what the programmer writes
versus the underlying implementation of fgets and getline.

670

671 Event-Driven Programming

Listing 11.6—Retrieve File Descriptor of FILE * (main.c)
1 #include <stdio.h>
2
3 int main(void) {
4 FILE *fp = fopen("test.txt", "r");
5 printf("fp file descriptor=%d\n", fileno(fp));
6 fclose(fp);
7 return 0;
8 }

fp file descriptor=3

We see that fp has a file descriptor of ‘3’. This is because stdin, stdout, and
stderr use the first three file descriptors 0, 1, and 2 respectively. Because there
are no other open resources, the next-available file descriptor is the one identified
by our test.txt file.

Like we stated, we can use file descriptors for more than reading and writing
to what we traditionally call “files”; any available resource, including networking
data, can be read/written to given the correct permissions.1 More importantly, we
can use pipes to pass information across processes.

Pipes and Multiprocessing. Pipes, as their name implies, are unidirectional paths
of information flow between processes, or independent programs, often mentioned as
a means of discussing inter-process communication. A pipe has a “read-end”, and a
“write-end”, meaning that one process reads data from the pipe while another writes
data into the pipe. Demonstrating an example of pipes without multiprocessing is
hard to visualize, so let us briefly describe how to create a process.

C programs, in and of themselves, are processes, but sometimes we wish to
have another process to perform some task or computation. To create a child
process from a parent process, we use the fork function, which returns an integer
representing the process identifier of the created child process, i.e., a pid t . Once
we fork a process, there are, in essence, two chains of program execution; the parent
process resumes after the fork, wherein its fork() return value is its own process
identifier. On the other hand, upon forking a child, the return value of fork is zero
to designate that it is a child process. Child processes are born during a call to fork
from the parent and exist thereafter. To distinguish between paths that the parent
and child take in the program, we use, of course, a case analysis on the fork return
value. Let us create a pipe using the pipe() system call; it receives an array of two
integers, where index zero refers to the “read-end” of the pipe and index one refers
to the “write-end” of the pipe. Our program will have the parent process write a
series of bytes to the pipe, and the child process will read bytes from the pipe until
it is exhausted. Note that in addition to the checks for child/parent processes, we
make sure to check whether or not the fork failed, as we do with the pipe:

1Operating systems often keep track of file descriptors on a per-process and a system-wide basis;
those allocated by the process are visible to only that process. Similarly, system-wide file descriptors
are accessible by other processes. Accordingly, the same identifiers can be used in each process for
per-process file descriptors.

671

11.1 Concurrent Programming 672

Listing 11.7—Using Pipes Across Processes (main.c)
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <unistd.h>
5
6 #define BUFFER_SIZE 64
7
8 int main(void) {
9 int fd[2];

10 // Pipe error check.
11 if (pipe(fd) < 0) {
12 EPF("main: pipe failed\n");
13 exit(EXIT_FAILURE);
14 } else {
15 pid_t pid = fork();
16 // Fork error check.
17 if (-1 == pid) {
18 EPF("main: fork failed\n");
19 exit(EXIT_FAILURE);
20 } else if (0 == pid) {
21 // Child process; reads from pipe.
22 char in_buffer[BUFFER_SIZE];
23 memset(in_buffer, 0, BUFFER_SIZE);
24 read(fd[0], in_buffer, BUFFER_SIZE);
25 printf("printf (%u): read from the buffer:
26 %s\n", pid, in_buffer);
27 } else {
28 // Parent process.
29 char out_buffer[BUFFER_SIZE];
30 memset(out_buffer, 0, BUFFER_SIZE);
31 sprintf(out_buffer, "data from process %u",
32 pid);
33 size_t len = strlen(out_buffer);
34 write(fd[1], out_buffer, len);
35 printf("printf (%u): wrote data\n", pid);
36 }
37 }
38 return 0;
39 }

printf (637308):
wrote data

printf (0):
read from the
buffer: data from
process 637308

Child processes can, of course, have their own child processes, which reflects
similarly to how the original parent process spawns its own child(ren). Namely,
the child has its own specific process identifier returned by the fork, and in its
child process fork will return zero. To obtain a child’s own process identifier from
within that child (or any other process), use the getpid function. Moreover, when a
parent process terminates, this does not mean that the child processes are finished.
So, running the following program will almost certainly produce output from the
child/grandchild processes, which is not desired.1

1By “not desired”, we mean that, a parent process that finishes its execution before its children is
somewhat confusing. A child can live on after its parent (process) terminates, thereby denoting it as
an orphan. Moreover, the exact behavior and output differs depending on the operating system process
scheduler; the parent process might terminate before it can even spawn a child process!

672

673 Event-Driven Programming

Listing 11.8—Child and Grandchild Processes (main.c)
1 #include <stdio.h>
2 #include <sys/wait.h>
3 #include <sys/time.h>
4 #include <unistd.h>
5
6 int main(void) {
7 pid_t pid = fork();
8 if (-1 == pid) { ... }
9 else if (0 == pid) {

10 pid_t gpid = fork();
11 if (-1 == gpid) { ... }
12 else if (0 == gpid) { printf("grandchild(%u)\n", getpid()); }
13 else { printf("child(%u)\n", getpid()); }
14 } else {
15 printf("parent(%u)\n", getpid());
16 }
17 printf("process %u finished\n", getpid());
18 return 0;
19 }

The solution to this problem is to introduce the wait(NULL) function; wait(NULL)
halts the parent process until one of its children is finished. What remains an issue
is that, if a parent process forks multiple children, as soon as one child terminates,
the parent terminates.1 To continuously poll for terminating children, we wrap
wait(NULL) inside a while loop, which returns the process identifier of the termi-
nated child, and -1 otherwise. In the output, notice that the child process has a
process identifier one greater than its parent, and likewise for the grandchild. These
numbers will certainly vary depending on how many active and inactive processes
there are on your individual computer.

Listing 11.9—Child and Grandchild Processes (main.c)
1 ...
2 int main(void) {
3 pid_t pid = fork();
4 ...
5 while (wait(NULL) > 0);
6 printf("process %u finished\n",
7 getpid());
8 return 0;
9 }

parent(722)
child(723)
grandchild(724)
process 724 finished
process 723 finished
process 722 finished

Why do we care this much about processes and pipes? Our prior discussion pre-
ludes much of our topics on multi-threading and serves as motivation for concurrent
programming. As shown in Chapter 5, we used pipes to communicate between two
programs: the evaluation tester and the evaluator itself. We excluded fork and
pipe in favor of popen , which opens a pipe, spawns a child process, and invokes a
command all-in-one.

1It is possible, however, that all child processes terminate before the parent terminates, depending
on the process scheduler.

673

11.1 Concurrent Programming 674

Termios. termios.h is C header file; termios is a set of functions that allows us
to modify certain properties of our terminal, including how it reads and processes
characters. The default behavior of the terminal is to read input while blocking.
Therefore we need to modify this behavior to use non-blocking input. First, we need
to write two functions: set terminal mode and reset terminal mode. The for-
mer alters and changes the input properties to use non-blocking input, whereas the
latter resets this change to its default behavior when the program exits. We need
to define an instance of a termios struct to keep track of the “old” terminal prop-
erties; it is declared, as static, outside of set terminal mode to remain persistent
and usable by our reset function. Inside set terminal mode, we declare a new
termios struct that contains the properties of the “old” struct, but we also initialize
the “old” struct via tcgetattr.

Listing 11.10—Saving Old Terminal Properties (repl.c)
1 #include <termios.h>
2
3 static struct termios old_termios;
4
5 void reset_terminal_mode(void) { // TODO. }
6
7 void set_terminal_mode(void) {
8 // Save properties of old terminal into old_termios.
9 tcgetattr(STDIN_FILENO, &old_termios);

10
11 // Copy over properties from old to new.
12 struct termios new_termios;
13 memcpy(&new_termios, &old_termios, sizeof(new_termios));
14 }

Now, we need to define the new termios mode to use raw, or unblocked, input.
We do this via cfmakeraw. Additionally, we should set an attribute that tells
termios to immediately change the terminal properties, rather than waiting for,
say, an empty file descriptor. We also want to tell the program that, upon exiting
the program, we should invoke the reset terminal mode function. This is done
via the TCSANOW flag in the respective tcsetattr call. Again, reset terminal -
mode changes the terminal attributes back into those previously-defined.

Listing 11.11—Changing Terminal Behavior to Raw Mode (repl.c)
1 void set_terminal_mode(void) {
2 ...
3 cfmakeraw(&new_termios);
4 tcsetattr(STDIN_FILENO, TCSANOW, &new_termios);
5 atexit(reset_terminal_mode);
6 }

Listing 11.12—Reset Terminal Mode Function (repl.c)
1 void reset_terminal_mode(void) {
2 tcsetattr(STDIN_FILENO, TCSANOW, &old_termios);
3 }

Up next we write the most important additional function: getch. getch reads
in a character from the input file descriptor and, depending on what said character
is, performs an action. Because we only care about ASCII keys, the returned result
is an unsigned character.

674

675 Event-Driven Programming

First, we use the read system call to read a single character from standard input.
If this fails, we return the error code, and otherwise continue onto evaluation of said
input character.

Listing 11.13—Using the read System Call (repl.c)
1 static unsigned char getch(void) {
2 int ret_code;
3 unsigned char ch;
4 if ((ret_code = read(STDIN_FILENO, &ch, sizeof(ch))) < 0) {
5 return ret_code;
6 } else {
7 // Do something...
8 }
9 }

To start off simply, let us just write code that writes back, to standard output,
whatever the user enters. Again, we use the system call write. Finally, getch
should return the character that it read.

Listing 11.14—Character Echoing (repl.c)
1 static unsigned char getch(void) {
2 int ret_code;
3 unsigned char ch;
4 if ((ret_code = read(STDIN_FILENO, &ch, sizeof(ch))) < 0) {
5 return ret_code;
6 } else {
7 write(1, &ch, sizeof(ch));
8 return ch;
9 }

10 }

Let us test this function! Inside main, we must call set termios mode at the
start and reset termios mode at the end (before return). In between, we have
an infinite loop that continuously reads characters. As a sanity test, if the user
enters ‘q’, the loop ends, simply because not having an easy way to break out of an
infinite loop is a recipe for disaster.

Listing 11.15

1 int main(void) {
2 set_terminal_mode();
3 unsigned char key = 0;
4 while (true) {
5 if ((key = getch()) == 'q') { break; }
6 }
7 return 0;
8 }

Compiling and running the program shows that we can enter any character with
a few exceptions. Pressing ‘Enter’ behaves differently than one may expect: instead
of returning to the next line, it simply shifts the cursor to the start of the line. This
notion is called a carriage return. This behavior is desired, but we also want to
output a new line character \n to standard output. So, we may add a conditional
to check and see if the input character is “Enter”, i.e., \r and, if so, write both a
carriage return and a new line character to standard output.

675

11.1 Concurrent Programming 676

Listing 11.16—Parsing “Enter” Key Events (repl.c)
1 static unsigned char getch(void) {
2 int ret_code;
3 unsigned char ch;
4 if ((ret_code = read(STDIN_FILENO, &ch, sizeof(ch))) < 0) {
5 return ret_code;
6 } else {
7 // Handle 'Enter' key presses--adds \r and \n.
8 if ('\r' == ch) {
9 write(STDOUT_FILENO, "\r\n", 2);

10 } else {
11 write(STDOUT_FILENO, &ch, sizeof(ch));
12 }
13 return ch;
14 }
15 }

That is one special character handled. Though, what if we want to process lines
of text and store them in a “history” like the library? There are a couple of things
we need to take care of before we begin our discussion on “history”. First and
foremost, recall that when reading blocked input, we use fgets or getline to read
one line at a time. We will use a similar methodology; the only difference being
we populate the “line” manually. So, we declare a local buffer of a large size, say,
2048 bytes. Then, whenever we read a character, we copy said character into the
next slot of the buffer. So, we will keep track of a global static “buffer idx”
which records the location of the next character (should be inserted) in the buffer.
Moreover, when we hit “Enter”, we clear the buffer.

Listing 11.17—Clearing Input Buffer After Pressing Enter (repl.c)
1 static int buffer_idx = 0;
2 ...
3 static unsigned char getch(void) {
4 char buffer[2048];
5 ...
6 else {
7 // If Enter is pressed.
8 if ('\r' == ch) {
9 buffer_idx = 0;

10 write(STDOUT_FILENO, "\r\n", 2);
11 memset(buffer, 0, sizeof(buffer));
12 }
13 }
14 }

676

677 Event-Driven Programming

What about deleting characters? Backspace does not seem to work as intended!
Indeed, since we are in raw mode, no special characters are processed, meaning
we must handle the backspace character ourselves. Upon pressing Backspace, read
returns a character whose ASCII code is 127, which corresponds with “Delete”. We
may, therefore, naively assume that all we need to do is NUL-terminate the buffer
at the previously-entered character index and subtract one. This line of thought,
however, forgets that we must also update the text that already exists in standard
output. An interesting and highly necessary bit of information about backspace
is that it does not actually delete a character by default—it merely moves the
“cursor”, or terminal position, backward by one. It is up to us, as the programmer,
to implement the typical backspace behavior. So, let us ask the question, what
actually happens when we press Backspace? The cursor moves back one spot, a
“blank” character, i.e., a space, is written, then the cursor moves backward again.
We mimic this behavior with a single call to write:

Listing 11.18—Parsing Backspace Character Input (repl.c)
1 #define ENTER 127
2
3 static unsigned char getch(void) {
4 ...
5 else {
6 // If Backspace is pressed.
7 if (ENTER == ch) {
8 if (0 == buffer_idx) {
9 return ch;

10 } else {
11 // Remove one character from the buffer.
12 buffer[--buffer_idx] = '\0';
13 write(STDOUT_FILENO, "\b \b", 3);
14 }
15 }
16 ...
17 }
18 }

With these preliminaries out of the way, we can finally begin our discussion on
how to implement a true command “history”. To do so, we need a data structure
that lets us quickly access the most recently entered information. This sounds
like a job for the stack data structure! Implementing such a structure is trivial
and mimics a linked list. The nodes inside the stack store a string, namely the
last-entered command.

Listing 11.19—Command Stack and Command Node Definitions (repl.c)
1 struct node {
2 char *value;
3 struct node *next;
4 };
5
6 struct stack {
7 struct node *top;
8 };

With this, let us write two convenience functions: stack push last command,
and stack write command. The former pushes the existing contents of the buffer
to the stack and clears the buffer, whereas the latter writes the contents of the
currently “focused item” to standard output; more on this later.

677

11.1 Concurrent Programming 678

Listing 11.20—Pushing Buffer to Command Stack (repl.c)
1 static void stack_push_last_command(char[] buffer) {
2 struct node *n = calloc(1, sizeof(struct node));
3 n->value = strdup(buffer);
4 if (NULL == stk.top) {
5 stk.top = n;
6 } else {
7 n->next = stk.top;
8 stk.top = n;
9 }

10 no_items++;
11 }
12
13 static void stack_write_command(void) {
14 // Traverse to the item idx.
15 struct node *curr = stk.top;
16 for (int i = 0; i < stack_idx; i++) {
17 curr = curr->next;
18 }
19 write(STDOUT_FILENO, curr->value, strlen(curr->value));
20 }

At this point we need to update the Enter clause. If we press “Enter”, we push
the current buffer to our history stack, clear the buffer, and reset the string position.

Listing 11.21—Pushing Last Command After Pressing “Enter” (repl.c)
1 static unsigned char getch(void) {
2 ...
3 else {
4 // If Enter is pressed.
5 if ('\r' == ch) {
6 // Push item to the stack and clear buffer.
7 stack_push_last_command(buffer);
8 memset(buffer, 0, sizeof(buffer));
9 buffer_idx = 0;

10 write(STDOUT_FILENO, "\r\n", 2);
11 }
12 ...
13 }
14 }

Now comes the fun part: handling “Up” and “Down” key presses. Interest-
ingly, pressing these keys is not as simple as reading an “Up” or “Down” key code.
Instead, when an arrow key is pressed, three characters are sent to standard in-
put: Escape, “[”, and either A, B, C, or D, representing “Up”, “Down”, “Left”, or
“Right”respectively. So, if “Up” is pressed, we enable a flag “scroll”, consume
‘[’, and process the corresponding direction. After processing, we disable the scroll
flag. We use flags so we can type ‘[’ without always assuming it is part of an arrow
direction key press.

678

679 Event-Driven Programming

Listing 11.22—Write Command Upon Pressing Arrow Keys (repl.c)
1 #define ESC 27
2
3 static void stack_write_command(void) {
4 // If the stack is empty, we cannot write anything.
5 if (0 == no_items) { return; }
6
7 // Otherwise, traverse to the item idx.
8 struct node *curr = stk.top;
9 for (int i = 0; i < stack_idx; i++) {

10 curr = curr->next;
11 }
12 write(1, curr->value, strlen(curr->value));
13 scroll = false;
14 }
15
16 static unsigned char getch(void) {
17 ...
18 else {
19 // If ESC is pressed.
20 if (ESC == ch) {
21 scroll = true;
22 }
23 // If we are actively "scrolling", consume '['.
24 else if (scroll && '[' == ch) {
25 return ch;
26 }
27 ...
28 }
29 }

So, what action do we perform after pressing “Up” or “Down”? Well, we update
the stack index variable accordingly and write the corresponding string to standard
output along with the carriage return and newline characters. Modifying the stack
index variable means to change the “focused item”. That is, when pressing the “Up”
key, we travel down the history stack for older commands hence increasing the stack
index, and pressing “Down” decreases the stack index to view newer commands. If
the stack is empty, we simply bail out. Though, it is not enough to write the data
to standard output; Rather, we also update the buffer contents.

Listing 11.23—Update Buffer Index After Scroll Command (repl.c)
1 static void stack_write_command(void) {
2 scroll = false;
3 // If the stack is empty, we cannot write anything.
4 if (0 == no_items) { return; }
5
6 // Otherwise, traverse to the item idx.
7 struct node *curr = stk.top;
8 for (int i = 0; i < stack_idx; i++) {
9 curr = curr->next;

10 }
11
12 // Write both the value and a CR+NL.
13 write(STDOUT_FILENO, curr->value, strlen(curr->value));
14 write(STDOUT_FILENO, "\r\n", 2);
15
16 // Copy text into buffer and update buffer idx.
17 strncpy(buffer, curr->value, sizeof(buffer));
18 buffer_idx += strlen(curr->value);
19 }

Trying this out allows us to enter text and see previously-entered text!

679

11.1 Concurrent Programming 680

All of this motivation allows us to integrate our command history implementation
into our interpreter. First, though, we should refactor some identifiers and functions
to resemble a library rather than a single file test example. We will move the stack
implementation to cmd stack and rewrite the history module into cmd history.

When we read input from the user, it is stored in a buffer. We “send” the buffer
to the parser after pressing “Enter”. Therefore, we need a flag that is enabled upon
pressing “Enter” that denotes the end of character reading. To use a familiar ap-
proach, we will write cmd history readline which receives a string denoting a
“prompt”. It then continuously receives characters and stores them in the static
string buffer. Upon pressing “Enter”, send is set to true, thereby creating a dupli-
cate of the string, deactivating the send flag, and returning the input.

Listing 11.24—Continuously Loop Until Time to Send (repl.c)
1 void cmd_history_init(void) {
2 ...
3 send = false;
4 ...
5 }
6
7 char *cmd_history_readline(void) {
8 memset(buffer, 0, sizeof(buffer));
9 while (!send) { cmd_history_getch(); }

10
11 // Create a duplicate of the current buffer. Turn off "sending".
12 send = false;
13 return strdup(buffer);
14 }
15
16 static unsigned char getch(void) {
17 ...
18 else {
19 ...
20 // If Enter is pressed.
21 else if (ENTER == ch) {
22 ...
23 send = true;
24 }
25 ...
26 }
27 }

Because we add the possibility of a prompt, we need to offset the buffer index,
meaning write sees characters written to a different index than they are stored in
the buffer itself. We compute this offset via the length of the prompt, which we
store in a variable for bookkeeping across functions. Note where we make these
modifications.

680

681 Event-Driven Programming

Listing 11.25—A Flexible “Read line” Function With Prompts (repl.c)
1 char *cmd_history_readline(char *prompt) {
2 // Clear the buffer, write the prompt, and offset buffer idx.
3 memset(buffer, 0, sizeof(buffer));
4 prompt_len = strlen(prompt);
5 write(STDOUT_FILENO, prompt, prompt_len);
6 buffer_idx = prompt_len;
7 ...
8 }
9

10 static unsigned char cmd_history_getch(void) {
11 ...
12 else {
13 ...
14 else {
15 buffer[(buffer_idx++) - prompt_len] = ch;
16 write(STDOUT_FILENO, &ch, sizeof(ch));
17 }
18 }
19 }
20
21 static void handle_backspace(void) {
22 if (0 == buffer_idx) { return; }
23 else {
24 // Remove one character from the buffer.
25 buffer[(--buffer_idx) - prompt_len] = '\0';
26 write(STDOUT_FILENO, "\b \b", 3);
27 }
28 }

In place of stack write command, we now use cmd history write to do,
effectively, the same task. The only noteworthy modification is that we offset the
buffer index from not just the command length, but also the prompt length.

Listing 11.26—Offset From Prompt Length and History Size (repl.c)
1 static void cmd_history_write(void) {
2 // Clear existing buffer.
3 memset(buffer, 0, sizeof(buffer));
4
5 // Now, output history and write it to the buffer.
6 char *cmd = cmd_stack_get(&stk, stack_idx);
7 size_t cmd_len = strlen(cmd) + 1;
8 write(STDOUT_FILENO, cmd, cmd_len);
9 buffer_idx = prompt_len + cmd_len;

10 strncpy(buffer, cmd, cmd_len);
11 }

We clear the buffer inside of cmd history write than delegate it to the “Up”
and “Down” key handlers. Their responsibility only consists of modifying the stack
index value and invoking cmd history write.

Listing 11.27

1 static void handle_up(void) {
2 int no_items = cmd_stack_get_num_elements(&stk);
3 stack_idx = stack_idx >= no_items - 1 ? no_items - 1 : stack_idx + 1;
4 cmd_history_write();
5 }
6
7 static void handle_down(void) {
8 stack_idx = stack_idx > 0 ? stack_idx - 1 : 0;
9 cmd_history_write();

10 }

681

11.1 Concurrent Programming 682

Everything else remains the same. We will omit showing cmd history getch
since it is almost identical to the previous implementation, except that keys now
have dedicated function handlers.

Lastly, we need a way of swapping to and from non-canonical mode. When we
input data, we want to use non-canonical mode so we may read the arrow characters
accordingly. After sending the data to the parser and interpreter, however, we
should re-enable canonical mode so the internal printing mechanisms used by the
interpreter are not adversely affected. The most straightforward approach is to
store two termios structs: one for canonical mode and another for non-canonical
mode. These two structs are populated in a helper function cmd history set -
terminal mode. From here, before and after we begin reading characters, we invoke
cmd history swap terminal mode.

Listing 11.28

1 void cmd_history_init(void) {
2 memset(buffer, 0, sizeof(buffer));
3 send = false;
4 scroll = false;
5 raw = false;
6 cmd_stack_init(&stk);
7 cmd_history_set_terminal_mode();
8 }
9

10 char *cmd_history_readline(char *prompt) {
11 ...
12 // Swap the terminal mode to raw for input.
13 cmd_history_swap_terminal_mode();
14 while (!send) { cmd_history_getch(); }
15 cmd_history_swap_terminal_mode();
16 ...
17 }
18
19 static void cmd_history_swap_terminal_mode(void) {
20 // If currently raw, we swap to normal and vice-versa. We also account for fcntl.
21 int flags = fcntl(STDIN_FILENO, F_GETFL, 0);
22 if (raw) {
23 tcsetattr(0, TCSANOW, &old_termios);
24 flags &= ~O_NONBLOCK;
25 } else {
26 tcsetattr(0, TCSANOW, &new_termios);
27 flags |= O_NONBLOCK;
28 }
29 fcntl(STDIN_FILENO, F_SETFL, flags | O_NONBLOCK);
30 raw = !raw;
31 }
32
33 static void cmd_history_set_terminal_mode(void) {
34 tcgetattr(0, &old_termios);
35 memcpy(&new_termios, &old_termios, sizeof(new_termios));
36 cfmakeraw(&new_termios);
37 }

Exercise 11.2. (⋆⋆)
As we saw with the readline library, when we scroll through our command history,
we do not simply output the previous command on a new line. Instead, we clear the
current line of text in standard out and replace it with the new text. Implement
this behavior in our new input system. As a hint: you should do this all inside
cmd history write. No new variables are necessary. Our solution incorporates
only one loop and one call to write.

682

683 Event-Driven Programming

Exercise 11.3. (⋆⋆⋆)
In almost all terminals, pressing the “Left” or “Right” keys move the cursor either
left or right respectively. This allows the user to correct typos they may have made
when typing a command. Implement this feature in our new input system.

Exercise 11.4. (⋆⋆⋆⋆⋆)
The shell is, as we know, the interface between a user and the (operating) system;
it allows the user to execute commands, scroll, change directories, and much more.
A basic project in some system programming/operating system courses is to design
a shell from scratch. At its core, a shell reads and parses commands from standard
input and creates sub-processes for executing commands. For instance, in a basic
Linux shell, if we execute the “list” command, i.e., ls, a new process is forked, which
executes ls, then once it finishes, the process finishes. While the child process is
executing, the parent (shell) process waits. Commands are executed from a process
using variants of the exec function. Do some research on these functions and
implement a very basic shell in C. Start small by adding the ability to execute basic
commands, without arguments, such as ls. Then, work your way up by adding
the ability to specify arguments to commands. Building a shell opens a portal for
effectively endless customization, so go crazy! Hint: changing directories via cd
cannot be done in a child process and must be parsed/handled separately from
other commands, using the chdir C function.

Multithreaded Approach

Our readline/command history implementation works well enough. Though, it
suffers from one subtle problem: the use of busy looping. With non-blocking I/O,
there is very little that we can do to prevent a constant loop that, in effect, listens
for standard input events. What we can do, however, is spin up a thread to listen
for these events. Threads manage separated sequence of actions for the current
program to execute. Multi-threaded programming allows us to write programs and
software that may take a while using only one thread, but are much faster with
multiple threads. Of course, this is certainly not a hard and fast rule, but we will
see how using a second thread helps us in our circumstances.1 We will make use of
the pthread library on Unix/Linux. Before diving deep into integrating a separate
thread for our interpreter, let us discuss the basics.

Pthreads. To create a pthread , we use pthread create. It receives four argu-
ments: a pointer to the pthread t to initialize, pthread attributes, a function
pointer that the thread controls, and arguments for said function pointer.

1Certain situations benefit from multi-threading, but performance gains are not guaranteed and,
depending on thread and process scheduling, a program may see a net performance loss due to multi-
threading.

683

11.1 Concurrent Programming 684

Mutexes and Condition Variables. Imagine this: two threads A and B attempt
to update a variable x by incrementing it by one. Suppose thread A increments x,
but before it finishes setting the variable, thread B comes into the picture and also
increments x where both threads use its (x’s) old value. The order is irrelevant; if
B performs the increment rather than A and A swoops in after, the end result is
the same; x contains an incorrect value. This is known as a race condition, i.e., a
problem where a program state is dependent on timing rather than preset condi-
tions. We, instead, want thread A to fully increment x, then B to fully increment
x, or vice-versa. The second thread should see the change made by the first and
act on it accordingly. As a larger motivating example, suppose each thread iterates
from 1 to a large number, say, one million, wherein x is incremented by one each it-
eration. If we have no mechanism for preventing one thread from altering data that
another accesses, the end result of x is non-deterministic. Namely, the value of x
depends on several factors, including the scheduling of the threads, the speed of the
processor, and other external factors. These factors introduce unpredictability and
make it difficult to determine the final value of x with certainty. Consequently, run-
ning the following program produced seemingly arbitrary numbers, highlighting the
need for synchronization mechanisms to ensure the correct execution of concurrent
programs.

Listing 11.29

1 #include <pthread.h>
2
3 #define ITERATIONS 1000000
4
5 static int x = 0;
6
7 static void * thread_handler(void *arg) {
8 for (int i = 0; i < ITERATIONS; i++) { x++; }
9 return NULL;

10 }
11
12 int main(void) {
13 // Initialize the threads.
14 pthread_t a;
15 pthread_t b;
16 pthread_create(&a, NULL, thread_handler, NULL);
17 pthread_create(&b, NULL, thread_handler, NULL);
18
19 // Now wait for them to finish.
20 pthread_join(a, NULL);
21 pthread_join(b, NULL);
22 printf("%d\n", x);
23 return 0;
24 }

1000164
1037486
1000020
1000000
1000297

Mutexes are the fix to this problem. A mutex , or a lock is, in effect, a guard to
a critical section, which is an area of code shared by multiple threads. Only one
thread may acquire a mutex at a time. If another thread attempts to enter a critical
section that does not have the lock, it “goes to sleep” until the lock is released. It is
desired to minimize the critical section size because, the longer a thread holds onto
a lock, the longer other threads take to complete their task that requires holding the
lock. With the alterations below, we should now, deterministically, see 2000000.

684

685 Event-Driven Programming

Listing 11.30

1 static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
2
3 static int x = 0;
4
5 static void *thread_handler(void *args) {
6 for (int i = 0; i < ITERATIONS; i++) {
7 pthread_mutex_lock(&mutex);
8 x++;
9 pthread_mutex_unlock(&mutex);

10 }
11 return NULL;
12 }
13
14 int main(void) {
15 // Initialize the threads.
16 pthread_t a;
17 pthread_t b;
18 pthread_create(&a, NULL, thread_handler, NULL);
19 pthread_create(&b, NULL, thread_handler, NULL);
20
21 // Now wait for them to finish.
22 pthread_join(a, NULL);
23 pthread_join(b, NULL);
24 printf("%d\n", ITERATIONS * 2);
25 return 0;
26 }

2000000

Let us build something more complex to demonstrate the power of multi-threaded
programming. Suppose we are writing a “task handler”. A task, in this context,
is a segment of code that a thread should execute.1 For instance, we may have a
thread to compute the nth Fibonacci number, or some other time-consuming task.
Running said code segments on the main thread is wasteful since we could spin up
another thread to handle said task and let the main thread continue to prompt the
user for another task. In essence, we want a program that provides a list of options,
or tasks, to the user. Upon selection, a separate thread is spun up to complete the
task. While said thread works on that task, the user may ask to complete different
tasks concurrently. We may also want to query the system for the result of any
previously-requested task. The part of this mini-project that is interesting is “a
separate thread is spun up to complete the task” because we need to introduce
condition variables.

A condition variable is, at a very high level, a mechanism that blocks or alerts a
thread based on some condition. For our “task handler”, we want a pool of threads
to listen for tasks. While no tasks are available, all of them, in a sense, “go to
sleep”. This is called a conditional wait . When a task become available, a thread
“wakes up” and evaluates the respective task. We refer to the awakening action as
the thread signal . As a somewhat odd analogy, it is akin to an alarm clock in that
people go to sleep, and when they need to wake up, the alarm goes off. The alarm
clock in this scenario is the thread signal, the act of “sleeping” is the conditional
wait, and “starting one’s day” is the task.

1Some contexts describe multi-threading as multi-tasking, and hence use the term “task” in place of
thread. We use it as a general unit of work to execute/perform.

685

11.1 Concurrent Programming 686

Let us begin this mini-project: First, we need a thread-safe queue. When we say
thread-safe, we mean that it is safe for concurrent access/modification. Fortunately,
all we need to do to make a normal queue implementation thread-safe is to add
mutexes wherever data or queue “state” is accessed/modified. Said queue will store
pending tasks for threads to execute. So, before we start implementing the queue,
we must define a task. Suppose that a task has a name, a function pointer, and
an argument. The name is for task identification purposes, whereas the function
pointer and argument are the “segments of code” to execute. Our data definition
for the task structure is as follows:

Listing 11.31—“Event” Task Data Definition (task.h)
1 #ifndef TASK_H
2 #define TASK_H
3
4 /**
5 * A 'struct task' contains:
6 * - name: Identifier of task.
7 * - fn: Function of one argument to execute.
8 * - args: Argument to fn.
9 */

10 typedef struct task {
11 char *name;
12 void *(*fn)(void *args);
13 void *args;
14 } task;
15
16 #endif // TASK_H

A task should not care about its function definition or its arguments. In other
words, it knows that they exist, but how they work is irrelevant to the task. There-
fore, we pass a function of one void * argument and return a void * result. More
importantly, this is the signature desired by pthread create. This way, we may
pass and return any desired datatypes.

Though, how do we know what type of task to construct? This is up to us
to decide. Suppose that we have a enum task type that defines the segment of
code for a task to execute. For the time being, we will say that the only possible
enum task type is FIB, which computes the nth Fibonacci number. task create
receives a enum task type and initializes the appropriate task. Its accompanying
destructor function, task destroy, frees the associated memory of a task.

Listing 11.32—Task Enumeration and Prototypes (task.h)
1 enum task_type { FIB };
2 ...
3 task *task_create(enum task_type tid, char *name, void *arg);
4 void task_destroy(task *tsk);

We will come back to the source file for task. For the time being, let us shift
gears and implement a non-thread-safe queue using a linked list as a template.
Afterwards, we will extend it to use mutexes for thread-safety. Each node in the
queue has two fields: a pointer to a task, and a next pointer. The accompanying
source file should be familiar.

686

687 Event-Driven Programming

Listing 11.33—Task Queue Header Definition (taskqueue.h)
1 #ifndef TASKQUEUE_H
2 #define TASKQUEUE_H
3
4 #include "task.h"
5
6 struct taskqueue_node {
7 struct task *tsk;
8 struct taskqueue_node *next;
9 };

10
11 typedef struct taskqueue {
12 struct taskqueue_node *head;
13 struct taskqueue_node *tail;
14 int no_elements;
15 } taskqueue;
16
17 void taskqueue_init(taskqueue *tq);
18 void taskqueue_enqueue(taskqueue *tq, struct task *tsk);
19 void taskqueue_destroy(taskqueue *tq);
20
21 #endif // TASKQUEUE_H

Listing 11.34—Task Queue Source Implementation (taskqueue.c)
1 #include "taskqueue.h"
2
3 void taskqueue_init(taskqueue *tq) {
4 tq->head = tq->tail = NULL;
5 tq->no_elements = 0;
6 }
7
8 void taskqueue_enqueue(taskqueue *tq, struct task *tsk) {
9 struct taskqueue_node *node = calloc(1, sizeof(struct taskqueue_node));

10 ASSERT_ALLOC(node, "taskqueue_enqueue");
11 node->tsk = tsk;
12 if (0 == tq->no_elements) { tq->head = tq->tail = node; }
13 else {
14 tq->tail->next = node;
15 tq->tail = node;
16 }
17 tq->no_elements++;
18 }
19
20 void taskqueue_destroy(taskqueue *tq) {
21 for (int i = 0; i < tq->no_elements; i++) {
22 struct taskqueue_node *curr = tq->head->next;
23 task_destroy(curr->tsk);
24 free(tq->head);
25 tq->head = curr;
26 }
27 }

Notice that we do not have a function for removing an element from the queue.
We will circle back to this fact. Let us add mutexes to make this a thread-safe
queue. In particular, a taskqueue now stores a pthread mutex t and, whenever
a function accesses or modifies a queue field, we lock the mutex and unlock after
we no longer access/modify the queue.

Listing 11.35—Adding Mutex to Task Queue (taskqueue.h)
1 typedef struct taskqueue {
2 ...
3 pthread_mutex_t tq_mutex;
4 } taskqueue;

687

11.1 Concurrent Programming 688

Starting with taskqueue init, we need to initialize the mutex via pthread -
mutex init. Before, we used PTHREAD MUTEX INITIALIZER, but this only works
if we create the mutex directly; we cannot do this if the mutex is stored inside a
struct or initialized after its declaration.1

Listing 11.36—Initializing the Queue Mutex (taskqueue.c)
1 void taskqueue_init(taskqueue *tq) {
2 tq->head = tq->tail = NULL;
3 tq->no_elements = 0;
4 pthread_mutex_init(&(tq->tq_mutex), NULL);
5 }

Inside taskqueue enqueue, we lock before we enter the conditional since it
accesses the no elements field. After updating, we unlock the mutex.

Listing 11.37—Acquiring and Releasing the Mutex in Queue Enqueue (taskqueue.c)
1 void taskqueue_enqueue(taskqueue *tq, struct task *tsk) {
2 ...
3 node->tsk = tsk;
4 pthread_mutex_lock(&(tq->tq_mutex));
5 if (0 == tq->no_elements) {
6 tq->head = tq->tail = node;
7 } else {
8 tq->tail->next = node;
9 tq->tail = node;

10 }
11 tq->no_elements++;
12 pthread_mutex_unlock(&(tq->tq_mutex));
13 }

In the destructor function, we lock before clearing the elements and unlock
afterwards.

Listing 11.38—Acquiring and Releasing the Mutex in Queue Destruction (taskqueue.c)
1 void taskqueue_destroy(taskqueue *tq) {
2 pthread_mutex_lock(&(tq->tq_mutex));
3 for (int i = 0; i < tq->no_elements; i++) {
4 ...
5 }
6 pthread_mutex_unlock(&(tq->tq_mutex));
7 }

Now we can think about what it means to be a task. As we stated, a task
contains a name, a function to execute, and an argument to said function. We
initialize the function to execute depending on the provided enumeration. Namely,
if our passed enumeration is FIB, we assign, to the task fn field, the static function
fib.

1The second argument to pthread mutex init being NULL tells the library to use the default mutex
attributes.

688

689 Event-Driven Programming

Listing 11.39—Creation and Destruction of an Arbitrary Task (task.c)
1 #include "task.h"
2
3 task *task_create(enum task_type tid, char *id, void *arg) {
4 task *tsk = calloc(1, sizeof(task));
5 tsk->id = strdup(id);
6 tsk->args = arg;
7 switch (tid) {
8 case FIB: {
9 tsk->fn = fib;

10 break;
11 }
12 default: {
13 printf("task_create: invalid id %d\n", tid);
14 exit(EXIT_FAILURE);
15 }
16 }
17 return tsk;
18 }
19
20 void task_destroy(task *tsk) {
21 free(tsk->id);
22 free(tsk);
23 }

But wait a minute, what even is fib? Based on the function pointer, it must be
of type (void *)→ (void *), so we can at least write the signature.

Listing 11.40—Describing the Fibonacci Task (task.c)
1 task *task_create(enum task_id tid, char *id, void *arg) { ... }
2 void task_destroy(task *tsk) { ... }
3 static void *fib(void *args) { return NULL; }

So, what is next? Surely we want this function to mimic a recursive Fibonacci
procedure. Indeed, this is true, but we need to do a bit of casting beforehand.
Recall that because this function receives a void *, we must cast its argument to
a number. One may be tempted to immediately cast to an int, but the C compiler
will warn that this is not a good idea because pointers are eight bytes (on 64-bit
machines) and integers are typically four bytes long. The type intptr t from
stdlib.h has us covered! If we cast all inputs to fib to void * and any returned
values to intptr t, we achieve the same effect as a normal recursive Fibonacci
function.1

Listing 11.41—Fibonacci Task Type Definition (task.c)
1 static void *fib(void *args) {
2 intptr_t n = (intptr_t) args;
3 if (n <= 1) { return (void *) 1; }
4 else {
5 intptr_t f1 = (intptr_t) fib((void *) (n - 1));
6 intptr_t f2 = (intptr_t) fib((void *) (n - 2));
7 return (void *) (f1 + f2);
8 }
9 }

1Having to intertwine our logic with integers and integer pointers is cumbersome, but it helps to
ensure our variables remain the same size across function calls.

689

11.1 Concurrent Programming 690

Two more pieces to this puzzle; we will solve the simpler of the two first: user
input. We want to have a continuous loop that prompts the user for tasks to do
(with the caveat that, for now, we only have one task, i.e., fib). All that is necessary
is an infinite loop inside the main function. We read in the “task to do” referred to
by its task enumeration identifier, name, and argument.

Listing 11.42—Helpful String Reading and Extraction Functions

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 /**
5 * Reads a line from standard input; dynamically allocated.
6 *
7 * @return char * line from standard input.
8 */
9 char *read_line(void) {

10 char *line = NULL;
11 size_t sz = 0;
12 ssize_t nread = -1;
13 if ((nread = getline(&line, &sz, stdin)) == -1) {
14 fprintf(stderr, "read_line: failed to read line from stdin\n");
15 free(line);
16 exit(EXIT_FAILURE);
17 } else {
18 return line;
19 }
20 }
21
22 /**
23 * Converts a string into an integer.
24 *
25 * @param char * pointer to string.
26 *
27 * @return integer
28 */
29 int string_to_number(char *s) {
30 int n = 0;
31 if (0 == sscanf(s, "%d", &n)) {
32 fprintf(stderr, "string_to_number: failed to scan number\n");
33 exit(EXIT_FAILURE);
34 } else {
35 return n;
36 }
37 }

690

691 Event-Driven Programming

Listing 11.43—Testing the Task Queue

1 #include "taskqueue.h"
2
3 struct taskqueue tq;
4
5 int main(int argc, char *argv[]) {
6 taskqueue_init(&tq);
7 while (true) {
8 // Enter task enumeration identifier.
9 printf("Enter something to do:\n");

10 printf("1. Fibonacci\n");
11 char *line = read_line();
12 intptr_t tid = (intptr_t) string_to_number(line);
13 free(line);
14
15 // Argument for the task.
16 printf("Okay, enter an argument:\n");
17 line = read_line();
18 intptr_t arg = (intptr_t) string_to_number(line);
19 free(line);
20
21 // String task identifier. If it fails to read, bail out.
22 printf("And finally a name for the task:\n");
23 char *id = read_line();
24
25 // Enqueue task into queue.
26 taskqueue_enqueue(&tq, task_create((enum task_type) (tid - 1), "", (void *) arg));
27 free(id);
28 }
29 taskqueue_destroy(&tq);
30 }

Last but not least, we come to the multi-threading part of this project. We
want to have a “pool” of several (say, four) threads, that constantly listen for a
task. If a task is not available, the thread goes to sleep. How do we know if a
task is available? Simple: if the queue size is at least one, then there is a task for
a thread to perform. We define a “pool of threads” to be an array of N threads,
declared in the taskqueue struct:

Listing 11.44—Thread Pool Creation in Task Queue (taskqueue.h)
1 #define NO_THREADS 4
2 ...
3 typedef struct taskqueue {
4 ...
5 pthread_t thread_pool[NO_THREADS];
6 ...
7 } taskqueue;

It is the responsibility of the taskqueue to initialize these threads. Each thread,
as we know, calls a provided function. We name this function taskqueue execute -
handler. In addition, we pass it a reference to the taskqueue (which must be casted
as void * since the signature of taskqueue execute handler is (void *) →
(void *).

691

11.1 Concurrent Programming 692

Listing 11.45—Thread Pool Initialization in Task Queue (taskqueue.c)
1 static void *taskqueue_execute_handler(void *arg);
2
3 void taskqueue_init(taskqueue *tq) {
4 tq->head = tq->tail = NULL;
5 tq->no_elements = 0;
6 pthread_mutex_init(&(tq->tq_mutex), NULL);
7
8 // Initialize the task thread pool.
9 for (int i = 0; i < NO_THREADS; i++) {

10 if (pthread_create(&(tq->thread_pool[i]), NULL,
11 taskqueue_execute_handler, (void *) tq) < 0) {
12 EPF("taskqueue_init: could not initialize thread pool\n");
13 exit(EXIT_FAILURE);
14 }
15 }
16 }
17
18 static void *taskqueue_execute_handler(void *arg) { return NULL; }

Each task, as we stated, loops indefinitely, listening for tasks as they become avail-
able.

Listing 11.46—Thread Handler Function Stub (taskqueue.c)
1 static void *taskqueue_execute_handler(void *arg) {
2 taskqueue *tq = (taskqueue *) arg;
3 while (true) { // TODO.}
4 return NULL;
5 }

Though, what exactly should we do while a task is not available? The naive
solution is to simply loop until the queue size is at least one, using a mutex where
mandatory. Then, we access the task by removing the head of the queue and
invoking the function pointer with its respective argument.

Listing 11.47—Thread Handler to Poll for Tasks (taskqueue.c)
1 static void *taskqueue_execute_handler(void *arg) {
2 taskqueue *tq = (taskqueue *) arg;
3 while (true) {
4 pthread_mutex_lock(&(tq->tq_mutex));
5 while (tq->no_elements < 1);
6
7 // Poll the head from the queue and update its pointers.
8 struct task *tsk = tq->head->tsk;
9 struct taskqueue_node *next = tq->head->next;

10 tq->head = next;
11 tq->no_elements--;
12 free(tq->head);
13 pthread_mutex_unlock(&(tq->tq_mutex));
14
15 // Execute the task, display its returned result, then destroy.
16 intptr_t result = (intptr_t) tsk->fn(tsk->args);
17 printf("Task %s produced %ld\n", tsk->id, result);
18 task_destroy(tsk);
19 }
20 return NULL;
21 }

692

693 Event-Driven Programming

This thread has a glaring problem: the busy loop. We do not want a thread to
constantly loop over and over, wasting CPU time, when it is entirely unnecessary.
Furthermore, we acquire the lock before checking the loop condition, meaning no
other thread can begin listening since they do not have the lock! Hence, the need
for some other solution: condition variables.1 We can conditionally wait inside the
loop and, when we invoke enqueue, we issue a thread signal, waking up a sleeping
thread. So, we must declare a pthread cond t field inside taskqueue:

Listing 11.48—Declaring Condition Variable in Task Queue Struct (taskqueue.h)
1 typedef struct taskqueue {
2 ...
3 pthread_cond_t tq_cond;
4 } taskqueue;

As with the mutex, we initialize the condition variable inside taskqueue init.

Listing 11.49—Initialization of Condition Variable in Queue (taskqueue.c)
1 void taskqueue_init(taskqueue *tq) {
2 ...
3 pthread_cond_init(&(tq->tq_cond), NULL);
4 }

We now update taskqueue enqueue to issue the thread signal via pthread -
cond signal and taskqueue execute handler to conditionally wait via pthread -
cond wait. Everything else remains the same. As a very important but supple-
mental note: in order to issue a thread signal or conditionally wait, a thread must
hold the specific lock associated with the condition variable. As reinforcement,
pthread cond wait receives both a reference to the condition variable and the
accompanying mutex. A conditional wait implicitly releases the lock by a thread
(since it “goes to sleep” it does not need the lock anymore!), whereas a thread
signal, in a sense, causes the thread to “reacquire” the lock (which is why we still
unlock the corresponding mutex after the conditional wait).

1If threads were created “on-demand”, so to speak, then we would not have this issue.

693

11.1 Concurrent Programming 694

Listing 11.50—Conditional Wait in Task Queue (taskqueue.c)
1 void taskqueue_enqueue(taskqueue *tq, struct task *tsk) {
2 struct taskqueue_node *node = calloc(1, sizeof(struct taskqueue_node));
3 if (NULL == node) { ... }
4 node->tsk = tsk;
5 pthread_mutex_lock(&(tq->tq_mutex));
6 if (0 == tq->no_elements) { tq->head = tq->tail = node; }
7 else {
8 tq->tail->next = node;
9 tq->tail = node;

10 }
11 tq->no_elements++;
12 pthread_cond_signal(&(tq->tq_cond));
13 pthread_mutex_unlock(&(tq->tq_mutex));
14 }
15
16 static void *taskqueue_execute_handler(void *arg) {
17 taskqueue *tq = (taskqueue *) arg;
18 while (true) {
19 pthread_mutex_lock(&(tq->tq_mutex));
20 while (tq->no_elements < 1) {
21 pthread_cond_wait(&(tq->tq_cond), &(tq->tq_mutex));
22 }
23
24 // Poll the head from the queue and update its pointers.
25 struct task *tsk = tq->head->tsk;
26 struct taskqueue_node *next = tq->head->next;
27 tq->head = next;
28 tq->no_elements--;
29 free(tq->head);
30 pthread_mutex_unlock(&(tq->tq_mutex));
31
32 // Execute the task, display its returned result, then destroy.
33 intptr_t result = (intptr_t) tsk->fn(tsk->arg);
34 printf("Task %s produced %ld\n", tsk->id, result);
35 task_destroy(tsk);
36 }
37 return NULL;
38 }

At long last, let us run the program. Dispatching a few ‘large’ Fibonacci tasks
will return their results in different times.

694

695 Event-Driven Programming

Listing 11.51

Enter something to do:
1. Fibonacci
1
Okay, enter an argument:
45
And finally a name for the task:
Fib45
Enter something to do:
1. Fibonacci
1
Okay, enter an argument:
42
And finally a name for the task:
Fib42
Enter something to do:
1. Fibonacci
1
Okay, enter an argument:
Task Fib42 produced 433494437
Task Fib45 produced 1836311903
35
And finally a name for the task:
Fib35
Enter something to do:
1. Fibonacci
Task Fib35 produced 14930352
ˆC

We see that the tasks are dispatched to different threads accordingly. Moreover,
we further see that response messages are intertwined with the user input. It would
be nice to not have them interrupt when the user is typing, i.e., stored in a “message
alert” system of sorts. We leave this as an exercise to the reader.

Let us detach from this mini-project and return to the initial reason for this
aside: condition variables for the REPL thread and why they are necessary. We
have a separate thread that constantly listens for input, reading characters as they
are typed. While this thread listens for individual character input, the main thread
waits until a full line is entered, thereby signaled by pressing the “Enter” key. We
want the main thread to sleep while waiting for a line of input, hence the need
for a condition variable. First, we need a separate function to process “Enter” key
presses. Our previous solution inlined the logic within cmd history getch, but
we now delegate it to another function:

Listing 11.52—Separating Logic for “Enter” Key Presses (repl.c)
1 static unsigned char cmd_history_getch(void) {
2 ...
3 else if ('\r' == ch) {
4 handle_enter();
5 }
6 ...
7 }
8
9 static void handle_enter(void) {

10 send = true;
11 write(STDOUT_FILENO, "\r\n", 2);
12 buffer_idx = 0;
13 stack_idx = 0;
14 }

695

11.1 Concurrent Programming 696

Up next we must modify cmd history readline to conditionally wait, while
holding the mutex, until the user presses the “Enter” key, designating a new line.
Once the send flag is set, the thread in control of the cmd history handler,
i.e., the individual character thread, issues a signal to awaken the read-line thread.
With this approach, the read-line thread does not need to use a busy loop and waste
CPU time while, effectively, doing nothing meaningful. Let us declare the mutex
and condition variable as global static variables. Fortunately, for the time being,
there are only critical sections: upon reading a line, inside the character read-loop,
and when modifying the send flag by pressing the “Enter” key.

Listing 11.53—Adding Mutex and Condition Variables to Command History (repl.c)
1 static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
2 static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
3 ...
4 char *cmd_history_readline(char *prompt) {
5 // Swap the terminal mode to raw for input.
6 cmd_history_swap_terminal_mode();
7 // Block the current thread until we get data from the "reader thread".
8 pthread_mutex_lock(&mutex);
9 while (!send) { pthread_cond_wait(&cond, &mutex); }

10 send = false;
11 pthread_mutex_unlock(&mutex);
12 cmd_history_swap_terminal_mode();
13 ...
14 }
15
16 static void *cmd_history_handler(void *args) {
17 while (true) {
18 pthread_mutex_lock(&mutex);
19 cmd_history_getch();
20 if (send) { pthread_cond_signal(&cond); }
21 pthread_mutex_unlock(&mutex);
22 }
23 return NULL;
24 }
25
26 static void handle_enter(void) {
27 ...
28 pthread_mutex_lock(&mutex);
29 send = true;
30 pthread_mutex_unlock(&mutex);
31 ...
32 }

All that is left is to create the thread that listens for single character input. We
designate cmd thread as this thread and initialize it appropriately. Its delegation
function, of course, is cmd history handler because it conveniently aligns with
the required function pointer signature for pthread initialization.

Listing 11.54—Creating Command Character Processor Thread (repl.c)
1 static pthread_t cmd_thread;
2 ...
3 void cmd_history_init(void) {
4 ...
5 // Create the thread and send it the command handler.
6 pthread_create(&cmd_thread, NULL, cmd_history_handler, NULL);
7 }

696

697 Event-Driven Programming

Everything else is already established, so all we need now is a destructor function
for the command history. We first acquire the lock and issue a broadcast command
to awake any asleep threads that are blocked on a condition variable. In doing
so we follow this with a pthread join, which blocks the issuing thread until its
given thread terminates. We want to block the main thread from continuing until
cmd thread finishes. Closing the program also resets the terminal mode from
non-blocking to blocking. Of course, this raises the question of how the command
thread knows when to quit the program. Indeed, we need a second flag, which keeps
track of when to shut down said thread. The only point of its modification comes
through cmd history destroy, which acquires the lock beforehand. Consequently
we must change the loop condition from an infinite loop to only looping while this
flag is false. Note the superfluity of toggling or untoggling send; the broadcast
signal serves as the remedy.1

Listing 11.55—Destructor Function for Command History (repl.c)
1 static bool done = false;
2 ...
3 static void *cmd_history_handler(void *args) {
4 while (!done) {
5 cmd_history_getch();
6 pthread_mutex_lock(&mutex);
7 if (send) { pthread_cond_signal(&cond); }
8 pthread_mutex_unlock(&mutex);
9 }

10 return NULL;
11 }
12
13 void cmd_history_destroy(void) {
14 pthread_mutex_lock(&mutex);
15 done = true;
16 pthread_cond_broadcast(&cond);
17 pthread_mutex_unlock(&mutex);
18 if (pthread_join(cmd_thread, NULL) < 0) {
19 fprintf(stderr, "cmd_history_destroy: failed to terminate cmd_thread\n");
20 exit(EXIT_FAILURE);
21 }
22 cmd_stack_destroy(&stk);
23 cmd_history_reset_terminal_mode();
24 }

1The stack destructor called by cmd stack destroy is akin to destroying a linked list, so we leave it
as an exercise to the reader to implement.

697

11.2 Multi-threading and Garbage Collection 698

11.2 Multi-threading and Garbage Collection

In Chapter 10, we discussed two very simple garbage collection approaches. The
latter of these two was a reference-counting garbage collector that we activate at
the end of the program. It would be nice, however, if we could periodically enable
the garbage collector to clean up any lost references while the program runs. Doing
this from the main thread causes problems because it means the main thread has
to halt its current job to tend to the garbage collector. What if we had a second
thread that manages the garbage collector and runs it periodically? In this section,
we will implement such a feature.

We can implement two methods to periodically “collect” memory that is no
longer accessible. The first method involves using a timer to constantly activate
the garbage collector after a period of allotted time. The second method involves
activating the garbage collector when a certain predetermined condition is met,
such as after a number of allocations are created.

Let us first implement the “timer” solution. We know that we can block a thread
using a condition variable, but there is another way to block a thread that involves a
timer: pthread cond timedwait. Similar to its non-timed counterpart, it receives
a reference to the condition variable and mutex, but it also receives a timespec
struct. The timespec struct is a way of denoting units of time. Specifically, we
need to specify that a segment of code should be executed by the waiting thread
every three seconds. Let us see how we can use timespec in conjunction with
pthread cond timedwait. The following code listing contains some starter code:

Listing 11.56

1 #include <time.h> // For struct timespec.
2
3 pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
4 pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
5
6 void *execute(void *arg) { return NULL; }
7
8 int main(void) {
9 pthread_t thread;

10 if (pthread_create(&thread, NULL, execute, NULL) < 0) {
11 EPF("main: failed to create pthread\n");
12 exit(EXIT_FAILURE);
13 }
14
15 if (pthread_join(thread, NULL) < 0) {
16 EPF("main: failed to join pthread\n");
17 exit(EXIT_FAILURE);
18 }
19 return 0;
20 }

Now, let us integrate an infinite loop into our thread handler function execute.
In this loop, we will perform a conditional wait for a given unit of time. How we
do this is unclear at the moment:

698

699 Event-Driven Programming

Listing 11.57

1 void *execute(void *arg) {
2 while (true) {
3 pthread_mutex_lock(&mutex);
4 // Wait on the condition variable.
5 pthread_mutex_unlock(&mutex);
6 }
7 return NULL;
8 }

We need to do two things: acquire the current time and offset it by a preset
value, say, three seconds. To get the current time, we first create a timespec struct
and pass it to the clock gettime function as the second argument. The first
argument, on the other hand, is a clock identifier, i.e., what source to “poll” time
from. In our case, we will use CLOCK REALTIME.

Listing 11.58

1 void *execute(void *arg) {
2 while (true) {
3 struct timespec current_time;
4 clock_gettime(CLOCK_REALTIME, ¤t_time);
5
6 pthread_mutex_lock(&mutex);
7 // Wait on the condition variable.
8 pthread_mutex_unlock(&mutex);
9 }

10 return NULL;
11 }

Let us now advance the current retrieved time by three seconds to indicate that,
from the time that the mutex acquires the lock, we want to wait on the condition
variable for three seconds. We do this by adding three to the tv sec field of the
timespec struct. To perform a timed wait on the condition variable, we pass a
reference to the current time variable.

Listing 11.59

1 #define PAUSE_TIME 3
2 ...
3 void *execute(void *arg) {
4 while (true) {
5 printf("This executes once every three seconds.\n");
6 struct timespec current_time;
7 clock_gettime(CLOCK_REALTIME, ¤t_time);
8 current_time.tv_sec += PAUSE_TIME;
9 pthread_mutex_lock(&mutex);

10 pthread_cond_timedwait(&mutex, &cond, ¤t_time);
11 pthread_mutex_unlock(&mutex);
12 }
13 return NULL;
14 }

If we run this program, a second thread is created that executes printf every
three seconds.

Before we invoke rcgc activate in our child thread, we must amend our
reference-counting garbage collector to use a mutex. Namely, whenever we allo-
cate memory or run the garbage collector, we need to lock a mutex to prevent any
race conditions between the two threads. So, let us add a mutex to the rcgc struct:

699

11.2 Multi-threading and Garbage Collection 700

Listing 11.60—Adding Lock to Reference-Counting Garbage Collector (rcgc.h)
1 struct rcgc {
2 struct rcgc_allocation *head;
3 struct rcgc_allocation *tail;
4 pthread_mutex_t mutex;
5 };

Now, like we did with the task queue, we initialize the mutex inside the relevant
rcgc init function, and lock/unlock inside any function that multiple threads
access.

Listing 11.61—Making Garbage Collector Thread-Safe (rcgc.c)
1 #include "rcgc.h"
2
3 void rcgc_init(void) {
4 pthread_mutex_init(&(gc.mutex), NULL);
5 gc.head = gc.tail = NULL;
6 }
7
8 void *rcgc_alloc(size_t sz) {
9 // Allocate the node in the tree.

10 struct rcgc_allocation *node = calloc(1, sizeof(struct rcgc_allocation));
11 ASSERT_ALLOC(node, "rcgc_alloc");
12 pthread_mutex_lock(&(gc.mutex));
13 // Add to linked list.
14 ...
15
16 // Now assign the ptr data.
17 ...
18
19 pthread_mutex_unlock(&(gc.mutex));
20 return ptr;
21 }
22
23 void rcgc_assign(void **dest, void **src) {
24 pthread_mutex_lock(&(gc.mutex));
25 ...
26 pthread_mutex_unlock(&(gc.mutex));
27 }
28
29 void rcgc_release(void **dest) {
30 pthread_mutex_lock(&(gc.mutex));
31 if (dest != NULL) { ... }
32 pthread_mutex_unlock(&(gc.mutex));
33 }
34
35 void rcgc_activate(void) {
36 pthread_mutex_lock(&(gc.mutex));
37 for (struct rcgc_allocation *curr = gc.head; curr != NULL; curr = curr->next) {
38 ...
39 }
40 pthread_mutex_unlock(&(gc.mutex));
41 }
42
43 void rcgc_cleanup(void) {
44 pthread_mutex_lock(&(gc.mutex));
45 struct rcgc_allocation *tmp = gc.head;
46 while (gc.head != NULL) { ... }
47 pthread_mutex_unlock(&(gc.mutex));
48 }
49
50 static struct rcgc_allocation *rcgc_search(void *ptr) {
51 for (struct rcgc_allocation *curr = gc.head; curr != NULL; curr = curr->next) {
52 if (ptr == curr->data) { return curr; }
53 }
54 return NULL;
55 }

700

701 Event-Driven Programming

Notice that we do not lock and unlock the mutex inside rcgc search. This is
because the only way for this function to be called is by a thread that already has
the lock acquired, i.e., from another function inside this source file. Thus, if we tried
to acquire the lock again, this would result in a deadlock since the thread would
wait until the lock that it is holding is available (threads are not quite as smart
or sentient as they may seem). Moreover, we do not lock and unlock in rcgc -
activate because, the only thread that has access to this function is the thread
handler which, by definition, must already acquire the lock.

Now, let us write some code in our main testing file to call the garbage collector
every three seconds. In addition, we will use a loop to continuously reallocate and
assign pointers to show that the garbage collector works as intended.

Listing 11.62—Allocations Inside a Loop (main rcgc.c)
1 #define PAUSE_TIME 3
2
3 static bool done = false;
4 static pthread_mutex_t rcgc_handler_mutex = PTHREAD_MUTEX_INITIALIZER;
5 static pthread_cond_t rcgc_handler_cond = PTHREAD_COND_INITIALIZER;
6
7 void *rcgc_thread_handler(void *arg) {
8 while (!done) {
9 // Get the current time and increment.

10 ...
11
12 // Wait for n seconds.
13 pthread_mutex_lock(&rcgc_handler_mutex);
14 pthread_cond_timedwait(&rcgc_handler_cond, &rcgc_handler_mutex, &ts);
15 rcgc_activate();
16 pthread_mutex_unlock(&rcgc_handler_mutex);
17 }
18 return NULL;
19 }
20
21 int main(void) {
22 rcgc_init();
23 // Create the gc thread handler.
24 pthread_t pid;
25 if (pthread_create(&pid, NULL, rcgc_thread_handler, NULL) < 0) {
26 EPF("main: failed to create rcgc thread handler\n");
27 exit(EXIT_FAILURE);
28 }
29
30 // Create a few arbitrary allocations and assignments.
31 int *arr1 = rcgc_alloc(sizeof(int) * 10);
32 int *arr2 = NULL;
33
34 // Do something for a while...
35 double val = 0;
36 while (val < 0) {
37 val += 0.0001;
38 arr1 = rcgc_realloc((void **) &arr1, sizeof(int));
39 rcgc_assign((void **) &arr2, (void **) &arr1);
40 }
41 done = true;
42 if (pthread_join(pid, NULL) < 0) {
43 EPF("main: failed to join rcgc thread handler\n");
44 exit(EXIT_FAILURE);
45 }
46 rcgc_cleanup();
47 return 0;
48 }

701

11.2 Multi-threading and Garbage Collection 702

On our system, we kept track of how many allocations the garbage collector
freed on each invocation. For the above test, we received the following output:

Activating the garbage collector, freed 6993 chunks.
Activating the garbage collector, freed 2895 chunks.
Activating the garbage collector, freed 113 chunks.

Because the final invocation of the garbage collector had so few chunks to free,
it is safe to assume that, soon after the second invocation, the “counting task”
finished.

Now, let us switch gears from a time-based garbage collection alert system to
one that alerts it based on the number of allocated chunks. Making this alteration
is not as trivial as using a timer; we need an additional mutex/condition variable
pair to let the allocator know that the garbage collector is running. Additionally, let
us move the thread handler mutex/condition variable pair into the type definition.
We also need a boolean flag for the condition variable to depend on, and a number
chunks currently allocated.

Listing 11.63—Modifying the Garbage Collector (rcgc.h)
1 struct rcgc {
2 struct rcgc_allocation *head;
3 struct rcgc_allocation *tail;
4
5 int num_chunks;
6 bool collect;
7
8 pthread_mutex_t mutex;
9 pthread_mutex_t chunk_mutex;

10 pthread_cond_t cond;
11 pthread_cond_t chunk_cond;
12 };

Initialization of these fields follows suit:

Listing 11.64

1 void rcgc_init(void) {
2 pthread_mutex_init(&(gc.mutex), NULL);
3 pthread_mutex_init(&(gc.chunk_mutex), NULL);
4 pthread_cond_init(&(gc.cond), NULL);
5 pthread_cond_init(&(gc.chunk_cond), NULL);
6 gc.head = gc.tail = NULL;
7 gc.num_chunks = 0;
8 gc.collect = false;
9 }

Here’s our end-goal: our garbage collector thread handler activates whenever
there are n allocations inside the garbage collector, where n is some predefined
constant. Upon activating, we block the main thread (or any other thread, for
that matter) from accessing or mutating the garbage collector using the chunk -
mutex and chunk cond pair. Accordingly, let us write a static function rcgc wait
that locks the mutex and waits until the garbage collector is finished clearing old
allocations using the gc.collect flag. If, on the other hand, the garbage collector
is not running, gc.collect is false, meaning we do not block on the condition
variable.

702

703 Event-Driven Programming

Listing 11.65—Block Until Garbage Collection Finishes (rcgc.c)
1 static void rcgc_wait(void) {
2 pthread_mutex_lock(&(gc.chunk_mutex));
3 while (gc.collect) {
4 pthread_cond_wait(&(gc.chunk_cond), &(gc.chunk_mutex));
5 }
6 pthread_mutex_unlock(&(gc.chunk_mutex));
7 }

We must invoke rcgc wait in every function that other threads (aside from the
thread handler) access.

Listing 11.66—Block Accessing/Mutating Garbage Collector If It Is “Active” (rcgc.c)
1 void *rcgc_alloc(size_t sz) {
2 rcgc_wait();
3 pthread_mutex_lock(&(gc.mutex));
4 ...
5 pthread_mutex_unlock(&(gc.mutex));
6 return ptr;
7 }
8
9 void *rcgc_owalloc(void *dest, size_t sz) {

10 rcgc_wait();
11 pthread_mutex_lock(&(gc.mutex));
12 if (NULL == dest) { ... }
13 else {
14 ...
15 pthread_mutex_unlock(&(gc.mutex));
16 return rcgc_alloc(sz);
17 }
18 }
19
20 void rcgc_assign(void **dest, void *src) {
21 rcgc_wait();
22 pthread_mutex_lock(&(gc.mutex));
23 ...
24 pthread_mutex_unlock(&(gc.mutex));
25 }
26
27 void rcgc_release(void **dest) {
28 rcgc_wait();
29 pthread_mutex_lock(&(gc.mutex));
30 ...
31 pthread_mutex_unlock(&(gc.mutex));
32 }

We now update rcgc alloc and rcgc activate to take advantage of our
new approach. The former increments the number of chunks and, if it is greater
than our limit, send a signal to the thread handler’s condition variable and enable
gc.collect.

703

11.2 Multi-threading and Garbage Collection 704

Listing 11.67—Invoking the Garbage Collector When Limit is Reached (rcgc.c)
1 void *rcgc_alloc(size_t sz) {
2 rcgc_wait();
3 pthread_mutex_lock(&(gc.mutex));
4 // Try to find a free node.
5 ...
6 // If we allocate more than enough chunks, send the signal.
7 gc.num_chunks++;
8 if (gc.num_chunks > MAX_CHUNKS) {
9 gc.collect = true;

10 pthread_cond_signal(&(gc.cond));
11 }
12 ...
13 pthread_mutex_unlock(&(gc.mutex));
14 return ptr;
15 }

On the other hand, the latter simply decrements the number of chunks in the
collector if we free an allocation. Additionally, we disable the gc.collect flag and
signal the chunk cond condition variable which, as we previously stated, blocks
concurrent modification while the collector is active.

Listing 11.68—Modifying Garbage Collector Activation (rcgc.c)
1 void rcgc_activate(void) {
2 for (struct rcgc_allocation *curr = gc.head; curr != NULL; curr = curr->next) {
3 if (0 == curr->counter && !curr->is_free) {
4 free(curr->data);
5 curr->data = NULL;
6 curr->is_free = true;
7 gc.num_chunks--;
8 }
9 }

10 gc.collect = false;
11 pthread_cond_signal(&(gc.chunk_cond));
12 }

Placing an upper-bound on the number of chunks to allocate before invoking the
garbage collector can be a bad idea. Consider a situation in which we allocate MAX -
CHUNKS blocks of memory, then proceed to allocate one more chunk. The garbage
collector then attempts to free some memory and finds one unreachable reference,
thereby freeing its associated memory. So, the collector now has MAX CHUNKS allo-
cated again, and if we allocate one more chunk again, the garbage collector reruns
after only one allocation. Invoking the garbage collector this often typically induces
a hit to performance. Some solutions might be to only run the garbage collector af-
ter some unit of time after the previous iteration passes, or only after some number
of chunks have been allocated since the previous iteration, and so forth.

704

705 Event-Driven Programming

11.3 A Powerful Garbage Collector

Writing a fully-featured and working garbage collector is, to put it bluntly, difficult.
Other languages such as Java, Racket, and more have built-in garbage collectors.
C, because it is designed to be a fast and small language, does not have one. For-
tunately, other people have designed libraries that we may take advantage of, such
as “gc” by Marc Kirchner (see Appendix 11.3).1

Like mpc, we can simply add the gc.c and gc.h files (alongside their logging
source files) into our working directory and compile them alongside our code. So,
let us rework mgc to hook into gc, which will be a breeze thanks to representation
independence! We no longer need to worry about uncontrolled and controlled alloca-
tions, since both are deferred to the garbage collector. Therefore we should remove
the code inside ufree and only invoke the pertinent garbage collector functions as
specified by the library.

Listing 11.69—Updating mgc to Use gc (mgc.c)
1 #include "mgc.h"
2 #include "gc.h"
3
4 void mgc_init(void) {}
5
6 void *mgc_alloc(size_t sz, void (*dfree)(void *)) {
7 return gc_calloc_ext(&gc, 1, sz, dfree);
8 }
9

10 void mgc_free(void *ptr) {
11 gc_free(&gc, ptr);
12 }
13
14 void *mgc_ualloc(size_t sz) {
15 return gc_calloc(&gc, 1, sz);
16 }
17
18 void *mgc_urealloc(void *ptr, size_t sz) {
19 return gc_realloc(&gc, ptr, sz);
20 }
21
22 void mgc_ufree(void *ptr) {}
23
24 void mgc_cleanup(void) {}

After changing mgc, we must start and stop the garbage collector inside our
main function. Garbage collectors in C require access to the bottom of the stack so
it can detect variables across the stack that point to live allocations in the heap.

Listing 11.70—Starting and Stopping Garbage Collector (main.c)
1 #include "gc.h"
2
3 int main(int argc, char *argv[]) {
4 gc_start(&gc, &argc);
5 ...
6 gc_stop(&gc);
7 return 0;
8 }

1These alterations were made on the minified interpreter language from our section on tail-call
optimization in Chapter 7.

705

11.3 A Powerful Garbage Collector 706

At long last, our language is fully able to run forever when given an infinitely
recursive function due to the garbage collector. We also now have definitive proof
that tail recursion, after implementing tail-call optimization, is much, much faster
than standard recursion. Moreover, our program no longer segmentation faults
because it runs out of memory.

Function Call Execution Time (seconds)

(! 1000) 8.14
(! 60000) > 500
(!-tr 1000) 0.029
(!-tr 60000) 1.31

Figure 11.1: Factorial Function Performance on 2021 MacBook Pro

706

Epilogue

Congratulations on reaching this point! You have taken a significant step towards a
future in computer science. Reaching the end of this book, however, does not mark
the end of your journey; it only provides a glimpse into the vast world of computer
science with intertwined theory and practice. This book covers a small fraction
of computer science; omitting topics such as cryptography, software engineering
practices, (advanced) algorithm analysis and data structures, machine learning,
data science, and many other seemingly infinite areas of knowledge. If our brief
exploration has sparked your motivation, we strongly encourage you to continue
forward. Some may find the theoretical side of computer science to be tedious and
opt for careers in software development, whereas others may be captivated by the
mathematical and so-called “academic” perspectives. Regardless of the path you
choose, as long as it excites you, it fulfills its purpose. Practice, hard work, and
endurance go far in this field: a ubiquitous mindset across all specializations and
domains.

Environment and Code Setup

Welcome to the back of the book; we hope this is not after you have finished the
book but rather before you have even started the main content! In this appendix,
we describe how to setup your programming environment across different operating
systems.

Environment Setup

Whatever your programming environment may be, make sure to choose a text edi-
tor that can display code with syntax highlighting. We recommend either VSCode
or Sublime Text. Other options exist, e.g., Vim, Emacs, but these are, in gen-
eral, geared towards (hardcore) users with programming experience. Do not use a
program such as Microsoft Word, Pages by Apple, or LibreOffice Writer, as these
save other information inside of the file as opposed to raw text, which is what we
want. It is best to have a program that allows you to save documents with custom
extensions.

Using the Online replit Sandbox

Using the online replit (sandbox) environment is ideal for someone who does not
want to download a ton of files to their own system. All of the libraries are installed
and ready to use.

Make a free account on https://replit.com. Then, go to the template provided
at https://replit.com/@Joshua Crotts/POCS?v=1. Click the button labeled,
“Use Template”. Afterwards, you will have a sandbox to write code. The right-
hand panel is the code output window and shell. Click in this window and type
“make”. There should be no errors. Then type ./myprogram, which should output
the following text:

Principles of Computer Science
MPFR version: 4.1.0
If your program output got to here
without crashing, the environment worked!

710

MacOS

To install certain programs on MacOS, we will take advantage of the brew package
manager. In short, this is a command-line application that lets users quickly down-
load applications without an absurdly large installation interface. To install brew,
follow the steps on the https://brew.sh/ website. From here, we must install
the C compiler gcc. Type ‘brew install gcc’, then allow the installation to pro-
ceed. Verify that gcc is installed by checking its version with the gcc --version
command.

Linux

We assume that Linux users, for the most part, know what they’re doing. Regard-
less, we will demonstrate installing the C compiler on both Debian-based Linux
distributions, e.g,. Ubuntu and Mint, as well as Arch-based Linux distributions,
e.g., Arch and Manjaro. In Linux, it is always important to ensure that packages
are up-to-date, so perform the necessary update commands to refresh the package
repositories.

Debian-Based Distributions

Use the apt package manager to download and install gcc along with other useful
project build utilities: ‘sudo apt install build-essential’. Verify that gcc is
installed by checking its version with the gcc --version command. Additionally,
install the package configuration command pkg-config with ‘sudo apt install
pkg-config’.

Arch-Based Distributions

Use the pacman package manager to download and install gcc: ‘sudo pacman -S
gcc’. Verify that gcc is installed by checking its version with the gcc --version
command. Additionally, install the package configuration command pkg-config
with ‘sudo pacman -S pkg-config’.

710

711 Environment and Code Setup

Using the C Compiler and Linker

Normal C Programs

To compile a .c file, we invoke gcc in the terminal via ‘gcc file.c’. After com-
piling the program, any errors or warnings will appear if they exist. Errors prevent
the compilation process from finishing successfully. Warnings, on the other hand,
allow the program to compile, but may result in unpredictable program behavior.
To this end, we always favor a program that compiles without any warnings at
all. We can compile multiple C source files by supplementing them as gcc argu-
ments, e.g., ‘gcc main.c list.c utils.c’. A successful compilation produces an
executable file a.out, executable (runnable) via ‘./a.out’. The file name a is not
very descriptive; we can customize the output file name with the -o flag, e.g., ‘gcc
main.c list.c utils.c -o program.out’.

The gcc compiler can be supplemented with flags, which give the compiler more
information about how to treat the resulting output file. For instance, we may en-
able an option -Werror that treats all warnings as errors. -Wall generates (almost)
all C warning messages that the program could generate (by default, the compiler
omits warnings that it, perhaps, deems unnecessary to warn the programmer of).
Enabling both of these flags is a good idea in every C program one writes. There
are several others that we will utilize, and we present an example configuration.

Listing .71—Example Compilation Command

1 gcc -g -Wall -Werror -Wno-unused-function
2 -Wno-unused-command-line-argument -Wno-unused-variable
3 -Wno-unused-but-set-variable
4 -Wformat-security -fPIE <src-files>
5 -o <output-file>

Linking Libraries

Sometimes external libraries and header files need to be directly linked to the com-
piler. We present the steps and commands necessary to get up and running below.
Note that some of these may not make sense at the start of your adventure with
this text, so come back as they appear in your reading.

711

712

Using MPC

Daniel Holden’s Micro Parser Combinators (mpc) library is easy to bundle into our
project. First, go to the GitHub repository where the source and header files are
located https://github.com/orangeduck/mpc, download mpc.c and mpc.h, then
drag these two into your project directory. Compiling these files is identical to how
we compile our own C programs; there is no linking process with mpc.

712

713 Environment and Code Setup

Using GC

Marc Kirchner’s garbage collection (gc) library is, similar to mpc, easy to bundle
into our project. First, go to the GitHub repository where the source and header
files are located https://github.com/mkirchner/gc, download gc.c, gc.h, log.c,
and log.h, then drag these two into your project directory. Compiling these files is
identical to how we compile our own C programs; there is no linking process with
gc.

713

714

Using GNU GMP and MPFR

We present three ways to install and link the GNU Multi-Precision Arithmetic and
the GNU Multi-Precision Floating Point libraries, whose approaches vary based on
your operating system. In the event that you are using the replit environment,
these two libraries are already installed.

GMP & MPFR on MacOS. Using brew, install gmp and mpfr via ‘brew install
gmp’ and ‘brew install mpfr’. To include the header files, execute the following
commands in your terminal and copy the results.

pkg-config --variable=includedir gmp
pkg-config --variable=includedir mpfr

Then, when invoking gcc, type the received results preceding by -I. E.g.,

gcc main.c -I/opt/homebrew/include -o program

We also need to link the libraries with the compiler. To do so, we need the location
of the (prebuilt) libraries on our system. Execute the following commands in your
terminal and copy the results.

pkg-config --libs gmp
pkg-config --libs mpfr

Then, when invoking gcc, type the received results preceding by -l. E.g.,

gcc main.c -I/.../ -lmpfr -lgmp -o program

GMP & MPFR on Debian-Based Distributions. Using apt, install gmp and mpfr
via ‘sudo apt install libgmp-dev’ and ‘sudo apt install libmpfr-dev’. To
include the header files, execute the following commands in your terminal and copy
the results.

pkg-config --variable=includedir gmp
pkg-config --variable=includedir mpfr

Then, when invoking gcc, type the received results preceding by -I. E.g.,

gcc main.c -I/usr/include -o program

We also need to link the libraries with the compiler. To do so, we need the location
of the (prebuilt) libraries on our system. Execute the following commands in your
terminal and copy the results.

pkg-config --libs gmp
pkg-config --libs mpfr

Then, when invoking gcc, type the received results preceding by -l. E.g.,

gcc main.c -I/.../ -lmpfr -lgmp -o program
714

715 Environment and Code Setup

GMP & MPFR on Arch-Based Distributions. Using pacman, install gmp and
mpfr via ‘sudo pacman -S gmp’ and ‘sudo pacman -S mpfr’. To include the header
files, execute the following commands in your terminal and copy the results.

pkg-config --variable=includedir gmp
pkg-config --variable=includedir mpfr

Then, when invoking gcc, type the received results preceding by -I. E.g.,

gcc main.c -I/usr/include -o program

We also need to link the libraries with the compiler. To do so, we need the location
of the (prebuilt) libraries on our system. Execute the following commands in your
terminal and copy the results.

pkg-config --libs gmp
pkg-config --libs mpfr

Then, when invoking gcc, type the received results preceding by -l. E.g.,

gcc main.c -I/.../ -lmpfr -lgmp -o program

715

716

Using SDL2

We present three ways to install and link the Simple DirectMedia Layer (version 2)
library, whose approach varies based on your operating system. In the event that
you are using the replit environment, SDL2 is already installed.

SDL2 on MacOS. Using brew, install SDL2 via the command ‘brew install
sdl2’. To include the header file(s), execute the following command in your terminal
and copy its result.

sdl2-config --cflags

Then, when invoking gcc, type the received results (which should already come
with a prefixed -I):

gcc main.c -I/opt/homebrew/include/SDL2 -D_THREAD_SAFE

We also need to link the libraries with the compiler. To do so, we need the location
of the (prebuilt) libraries on our system. Execute the following commands in your
terminal and copy the results.

sdl2-config --libs

Then, when invoking gcc, type the received results (which should come with a
prefixed -L).1 E.g.,

gcc main.c -I/.../ -L/opt/homebrew/lib -lSDL2 -o program

SDL2 on Debian-Based Distributions. Using apt, install SDL2 via the com-
mand ‘sudo apt install libsdl2-dev’. To include the header file(s), execute
the following command in your terminal and copy its result.

sdl2-config --cflags

Then, when invoking gcc, type the received results (which should already come
with a prefixed -I):

gcc main.c -I/usr/include/SDL2 -D_REENTRANT

We also need to link the libraries with the compiler. To do so, we need the location
of the (prebuilt) libraries on our system. Execute the following commands in your
terminal and copy the results.

sdl2-config --libs

Then, when invoking gcc, type the received results (which should come with a
prefixed -l), E.g.,

gcc main.c -I/.../ -lSDL2 -o program
1There is a difference between the upper-cased -L and lower-cased -l linker flags; the former refer-

ences a directory of libraries whereas the latter references a specific library.

716

717 Environment and Code Setup

SDL2 on Arch-Based Distributions. Using pacman, install SDL2 via the com-
mand ‘sudo pacman -S sdl2’. To include the header file(s), execute the following
command in your terminal and copy its result.

sdl2-config --cflags

Then, when invoking gcc, type the received results (which should already come
with a prefixed -I):

gcc main.c -I/usr/include/SDL2 -D_REENTRANT

We also need to link the libraries with the compiler. To do so, we need the location
of the (prebuilt) libraries on our system. Execute the following commands in your
terminal and copy the results.

sdl2-config --libs

Then, when invoking gcc, type the received results (which should come with a
prefixed -l), E.g.,

gcc main.c -I/.../ -lSDL2 -o program

Using GNU Readline

We present three ways to install the GNU Multi-Precision Arithmetic and the GNU
Multi-Precision Floating Point libraries, whose approach varies based on your oper-
ating system. In the event that you are using the replit environment, the library
is already installed.

GNU Readline on MacOS. Using brew, install readline via ‘brew install
readline’. To include the header file(s), execute the following command in your
terminal and copy its result.

pkg-config --variable=includedir readline

Then, when invoking gcc, type the received results preceding by -I. E.g.,

gcc main.c -I/opt/homebrew/include -o program

We also need to link the libraries with the compiler. To do so, we need the location
of the (prebuilt) libraries on our system. Execute the following commands in your
terminal and copy the results.

pkg-config --libs readline

Then, when invoking gcc, type the received results preceding by -l. E.g.,

gcc main.c -I/.../ -l?????? -o program

717

718

GNU Readline on Debian-Based Distributions. Using apt, install readline via
‘sudo apt install libreadline-dev’. To include the header file(s), execute the
following command in your terminal and copy the results.

pkg-config --variable=includedir libreadline-dev

Then, when invoking gcc, type the received results preceding by -I. E.g.,

gcc main.c -I/usr/include -o program

We also need to link the libraries with the compiler. To do so, we need the location
of the (prebuilt) libraries on our system. Execute the following commands in your
terminal and copy the results.

pkg-config --libs libreadline-dev

Then, when invoking gcc, type the received results preceding by -l. E.g.,

gcc main.c -I/.../ -lreadline -o program

GNU Readline on Arch-Based Distributions. On Arch, the readline package is
generally pre-installed as a prerequisite/dependency of Bash. In case not, though,
use pacman to install it via ‘sudo pacman -S readline’. To include the header
files, execute the following command in your terminal and copy its result.

pkg-config --variable=includedir readline

Then, when invoking gcc, type the received results preceding by -I. E.g.,

gcc main.c -I/usr/include -o program

We also need to link the libraries with the compiler. To do so, we need the location
of the (prebuilt) libraries on our system. Execute the following commands in your
terminal and copy the results.

pkg-config --libs readline

Then, when invoking gcc, type the received results preceding by -l. E.g.,

gcc main.c -I/.../ -lreadline -o program

718

719 Environment and Code Setup

Makefiles

Having to remember flags and compilation commands is cumbersome. In particular,
if we have to rewrite a compile command every time we want to test a program, then
we also have to ensure we do not forget, say, a new file addition. Makefiles are a
popular tool in software development for automating the compilation and building of
projects. They provide a convenient way to define dependencies between files and
specify the commands needed to build an executable or other targets. Makefiles
consist of rules that define how to create targets from prerequisites.

Installing make on MacOS

Install make with brew via ‘brew install make’.

Installing make on Debian-Based Distributions

The make build system comes with build-essential, so there is no need to install
a separate package.

Installing make on Arch-Based Distributions

Install make with pacman via ‘sudo pacman -S make’.

Designing a (Simple) Custom Makefile

Let us design a very simple yet highly effective makefile for our project(s).

CC = gcc

First, we need a rule to specify the compiler of choice, in this case that is gcc.1 The
left-hand side of a rule is its name, otherwise called the target. The right-hand side
is the expression that is substituted whenever we reference CC later on.

CFLAGS = ...

We can add and remove compilation flags as necessary with the CFLAGS target.

LDFLAGS = ...

When linking against external libraries, we need to add those under the LDFLAGS
target.

IFLAGS = ...

Any header files that we intend to use outside the C standard library and our own
source code must have a file path reference and linked under IFLAGS.

1It seems a bit superfluous to do this when we know for a fact that our compiler is gcc. For us,
such a belief is true, but there are more compilers than just gcc, and being flexible is a huge part of
programming and design!

719

720

SRC = $(wildcard src/*.c)
OBJS = $(SRCS:.c=.o)

When compiling a source file, we know that the resulting file is an object file.
We need to list these as targets in the make file to collectively reference them in
subsequent rules. All source files have a .c extension and all object files have a .o
extension. We also say that all source files are located in the src/ directory. The
OBJS expression looks a little strange, but all it says is that the object files share
the same name as their source counterparts, just with a different file extension.

TARGET = program
all = $(TARGET)

We must specify an output executable name that is the result of the compilation.
In this instance we refer to it as “program” in a target TARGET. Additionally, the
“all” target is implicitly referenced when we type “make” in the terminal. It is
certainly possible to create different targets to compile separate source files, but for
our purposes, we just say that compiling everything is equivalent to compiling our
program.

$(TARGET) = $(OBJS)
$(CC) $(LDFLAGS) $ˆ -o $@

Now we describe how the target program is built. The rule states that it uses
our compiler with the linker flags to build the target OBJS, producing an output
described by the target. The funny-looking symbols $ând $@ respectively represent
the dependencies necessary for the command to execute, and the rule target. So, the
rule requires the object files to be present when compiling, meaning $ˆ references
$(OBJS), whereas $@ refers to the rule target, which in our case is $(TARGET). These
short-hand forms allow us to change the names of TARGET and OBJS, should we so
choose, without having to change their names in several different places.

%.o: %.c
$(CC) $(CFLAGS) $(IFLAGS) -c $< -o $@

We now come to the most important rule in which the source files are compiled to
object files. We once again reference the C compiler of choice, then the compiler
and include flags, followed by the C source files using a shortcut command $<, and
finally succeeded by the output object file. In theory, we could write a separate
target for every object and source file pair, but there is absolutely no need to do so
in our case.

.PHONY clean:
rm -f $(OBJS) $(TARGET)

The last rule for “cleaning up”; it clears all object and build files from the directory.
This is helpful for deleting failed or previous compilation objects, or in the event
that we simply want to clean up our directory of output files.

Putting everything together gets us the following makefile example (note that
you need to include the appropriate headers and link libraries accordingly):

720

721 Environment and Code Setup

Listing .72—Makefile Example

Compiler of choice.
CC = gcc

Compiler flags.
CFLAGS = -g3 -Wall -Werror -Wno-unused-function -Wno-unused-command-line-argument

-Wno-unused-variable Wno-unused-but-set-variable -Wformat-security -fPIE

Linker flags.
LDFLAGS = ''

Include flags.
IFLAGS = ''

Source files.
SRCS = $(wildcard src/*.c)

Object files.
OBJS = $(SRCS:.c=.o)

Output executable.
TARGET = myprogram

Default target.
all: $(TARGET)

Rule to build the executable.
$(TARGET): $(OBJS)

$(CC) $(LDFLAGS) $ˆ -o $@

Rule to compile source files.
%.o: %.c

$(CC) $(CFLAGS) $(INCFLAGS) -c $< -o $@

Clean target.
.PHONY clean:

rm -f $(OBJS) $(TARGET)

721

Graphics Library Source Code

In the latter half of Chapter 8, we introduce a representation-independent graphics
library via LGRAPHIC without concern for the library internals. This appendix
provides, in text, the code for our library. You can safely use it with little-to-no
regard for how it works.

GFX Header

Listing .73—Graphics Library Header (gfx.h)
1 #ifndef GFX_H
2 #define GFX_H
3
4 #include "SDL.h"
5
6 void gfx_init(void);
7 void gfx_open_window(const char *title, const size_t width, const size_t height);
8 void gfx_poll_events(void);
9 void gfx_draw_rect(double x, double y,

10 double width, double height, unsigned int color);
11 void gfx_draw_circle(double cx, double cy, double radius, unsigned int color);
12 void gfx_draw_line(double x1, double y1,
13 double x2, double y2, unsigned int color);
14 void gfx_clear(void);
15 void gfx_refresh(void);
16 void gfx_delay(size_t ms);
17 long gfx_time_ns(void);
18 void gfx_cleanup(void);
19
20 #endif // GFX_H

GFX Source

Listing .74—Graphics Library “Include” Directives (gfx.c)
1 #include <math.h>
2 #include <stdbool.h>
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 #include "SDL.h"
7
8 #include "gfx.h"

724

Listing .75—Graphics Library Preprocessor Definitions (gfx.c)
1 #define MAX_NUM_EVENTS 256
2 #define MAX_SHAPES 2048
3 #define GET_COLOR(r, g, b, a) (((r) << 24) | ((g) << 16) | ((b) << 8) | (a))
4 #define RED(rgba) (((rgba) >> 24) & (0xff))
5 #define GREEN(rgba) (((rgba) >> 16) & (0xff))
6 #define BLUE(rgba) (((rgba) >> 8) & (0xff))
7 #define ALPHA(rgba) ((rgba) & (0xff))
8 #define TORADIANS(degree) ((degree) * (M_PI / 180.0))

Listing .76—Graphics Library Enumerations and Type Definitions (gfx.c)
1 enum ShapeType { FRECT, FLINE, FOVAL };
2
3 typedef struct shape_data {
4 void *data;
5 unsigned int color;
6 enum ShapeType TYPE;
7 } shape_data;
8
9 typedef struct gfx_context {

10 size_t width;
11 size_t height;
12
13 bool opened;
14
15 SDL_Window *window;
16 SDL_Renderer *renderer;
17 } gfx_context;

Listing .77—Graphics Library Static Variables and Prototypes (gfx.c)
1 static void gfx_draw_circle_helper(double cx, double cy, double radius);
2 static struct gfx_context ctx;

724

725 Graphics Library Source Code

Listing .78—Graphics Library Functions (gfx.c)
1 /**
2 * Initializes the SDL graphics context.
3 */
4 void gfx_init(void) {
5 // Check error code.
6 if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_EVENTS) < 0) {
7 SDL_Log("SDL could not be initialized! SDL_Error: %s\n", SDL_GetError());
8 exit(EXIT_FAILURE);
9 }

10 }
11
12 /**
13 * Opens the SDL graphics window with the given size and title.
14 * Events are also polled.
15 *
16 * @param const char * - title of window.
17 * @param const size_t - width of window.
18 * @param const size_t - height of window.
19 */
20 void gfx_open_window(const char *title, const size_t width, const size_t height) {
21 ctx.window = NULL;
22 ctx.renderer = NULL;
23 if (SDL_CreateWindowAndRenderer(width, height,
24 SDL_WINDOW_RESIZABLE, &ctx.window,
25 &ctx.renderer) < 0) {
26 SDL_Log("SDL could not initialize window and renderer. SDL_Error: %s\n",
27 SDL_GetError());
28 exit(EXIT_FAILURE);
29 }
30 SDL_SetWindowTitle(ctx.window, title);
31 ctx.opened = true;
32 gfx_clear();
33 gfx_poll_events();
34 gfx_refresh();
35 }
36
37 /**
38 * Draws a filled-in rectangle starting from the top-left (x, y)
39 * coordinates of a given size and color.
40 *
41 * @param double - top-left x coordinate.
42 * @param double - top-left y coordinate.
43 * @param double - width of rectangle.
44 * @param double - height of rectangle.
45 * @param unsigned int - 32bit color (ARGB).
46 */
47 void gfx_draw_rect(double x, double y, double width,
48 double height, unsigned int color) {
49 SDL_FRect fr = {x, y, width, height};
50 SDL_SetRenderDrawColor(ctx.renderer, RED(color), GREEN(color),
51 BLUE(color), ALPHA(color));
52 SDL_RenderFillRectF(ctx.renderer, &fr);
53 }
54
55 /**
56 * Draws a filled-in circle starting from the center (x, y)
57 * coordinates of a given radius and color.
58 *
59 * @param double - center x coordinate.
60 * @param double - center y coordinate.
61 * @param double - radius of circle.
62 * @param unsigned int - 32bit color (ARGB).
63 */
64 void gfx_draw_circle(double cx, double cy,
65 double radius, unsigned int color) {
66 SDL_SetRenderDrawColor(ctx.renderer, RED(color), GREEN(color),
67 BLUE(color), ALPHA(color));
68 gfx_draw_circle_helper(cx, cy, radius);
69 }
70

725

726

71 /**
72 * Draws a line from (x1, y1) to (x2, y2) of a given color.
73 *
74 * @param double - x coordinate of point 1.
75 * @param double - y coordinate of point 1.
76 * @param double - x coordinate of point 2.
77 * @param double - y coordinate of point 2.
78 * @param unsigned int - 32bit color (ARGB).
79 */
80 void gfx_draw_line(double x1, double y1,
81 double x2, double y2, unsigned int color) {
82 SDL_SetRenderDrawColor(ctx.renderer, RED(color), GREEN(color),
83 BLUE(color), ALPHA(color));
84 SDL_RenderDrawLineF(ctx.renderer, x1, y1, x2, y2);
85 }
86
87 /**
88 * Retrieves any queued events received by SDL and executes them.
89 * The only one of interest is the SDL_QUIT event.
90 */
91 void gfx_poll_events(void) {
92 if (ctx.opened) {
93 SDL_PumpEvents();
94 SDL_Event e[MAX_NUM_EVENTS];
95 int c = SDL_PeepEvents(e, MAX_NUM_EVENTS, SDL_GETEVENT,
96 SDL_FIRSTEVENT, SDL_LASTEVENT);
97 for (int i = 0; i < c; i++) {
98 SDL_Event ce = e[i];
99 switch (ce.type) {

100 case SDL_QUIT:
101 gfx_cleanup();
102 return;
103 }
104 }
105 }
106 }
107
108 /**
109 * Delays the SDL event poll by some time.
110 *
111 * @param size_t - number of milliseconds to delay.
112 */
113 void gfx_delay(size_t ms) {
114 long now = gfx_time_ns() / 1000;
115 long wait = now + ms;
116 while (now <= wait) {
117 gfx_poll_events();
118 now = gfx_time_ns();
119 }
120 }
121
122 /**
123 * Returns the number of ticks in nanoseconds.
124 *
125 * @return long - ticks in ns.
126 */
127 long gfx_time_ns(void) {
128 return SDL_GetTicks();
129 }
130
131 /**
132 * Clears the renderer with a black screen.
133 */
134 void gfx_clear(void) {
135 SDL_SetRenderDrawColor(ctx.renderer, 0, 0, 0, 0xff);
136 SDL_RenderClear(ctx.renderer);
137 }
138
139 /**
140 * Refreshes the current renderer context.
141 */
142 void gfx_refresh(void) {

726

727 Graphics Library Source Code

143 SDL_RenderPresent(ctx.renderer);
144 }
145
146 /**
147 * Frees all SDL memory and components.
148 */
149 void gfx_cleanup(void) {
150 if (ctx.opened) {
151 ctx.opened = false;
152 SDL_DestroyRenderer(ctx.renderer);
153 SDL_DestroyWindow(ctx.window);
154 SDL_Quit();
155 }
156 }
157
158 /**
159 * Draws a circle by drawing points representing octants of the circle.
160 *
161 * @param double - center x coordinate of circle.
162 * @param double - center y coordinate of circle.
163 * @param double - radius of circle.
164 */
165 static void gfx_draw_circle_helper(double cx, double cy, double radius) {
166 const float diameter = (radius * 2);
167 float x = (radius - 1);
168 float y = 0;
169 float tx = 1;
170 float ty = 1;
171 float error = (tx - diameter);
172 while (x >= y) {
173 // Each of the following renders an octant of the circle
174 SDL_RenderDrawPointF(ctx.renderer, cx + x, cy - y);
175 SDL_RenderDrawPointF(ctx.renderer, cx + x, cy + y);
176 SDL_RenderDrawPointF(ctx.renderer, cx - x, cy - y);
177 SDL_RenderDrawPointF(ctx.renderer, cx - x, cy + y);
178 SDL_RenderDrawPointF(ctx.renderer, cx + y, cy - x);
179 SDL_RenderDrawPointF(ctx.renderer, cx + y, cy + x);
180 SDL_RenderDrawPointF(ctx.renderer, cx - y, cy - x);
181 SDL_RenderDrawPointF(ctx.renderer, cx - y, cy + x);
182
183 if (error <= 0) {
184 ++y;
185 error += ty;
186 ty += 2;
187 }
188
189 if (error > 0) {
190 --x;
191 tx += 2;
192 error += (tx - diameter);
193 }
194 }
195 }

727

Assembly Environment Setup

By this point, you should be well-versed in functional and imperative programming.
We now turn our attention to setting up the assembly language programming en-
vironment. Because the setup is the same across all systems thanks to our choice
of C compiler, our instructions are environment-agnostic.

Assembly Files

Our assembly dialect is AT&T x64 assembly, which uses the .s file extension. Create
a file hello.s, and add the following contents without worrying what they mean
at the moment:

Listing .79—Assembly Test File (hello.s)
.section .data

out_str: .asciz "Hello, world!\n"
.section .text

.global main
main:

movq $1, %rax # Set sys_write syscall.
movq $1, %rdi # Stdout file descriptor.
leaq out_str(%rip), %rsi # Load data string into argument register.
movq $15, %rdx # Load string length into second arg. register.
syscall
retq

gcc can compile assembly code just as it does standard C code. Invoke the
compiler as normal, and pass hello.s to gcc.

gcc -g -fPIE hello.s -o hello.o

No error should appear, and this being the case, we run the program as ./hello.o
to see a Hello, world! output.

Bibliography

[Abelson et al., 1996] Abelson, H., Sussman, G. J., and with Julie Sussman (1996). Structure and
Interpretation of Computer Programs. MIT Press/McGraw-Hill, Cambridge, 2nd editon edition.

[Aho et al., 2006] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., USA.

[ℵ0 (Aleph-Null), 1971] ℵ0 (Aleph-Null) (1971). Computer recreations. Software: Practice and Expe-
rience, 1(2):201–204.

[Backus et al., 1960] Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Perlis, A. J.,
Rutishauser, H., Samelson, K., Vauquois, B., Wegstein, J. H., van Wijngaarden, A., Woodger, M.,
and Naur, P. (1960). Report on the algorithmic language algol 60. Commun. ACM, 3(5):299–314.

[Bergin et al., 2013] Bergin, J., Stehlik, M., Roberts, J., and Pattis, R. (2013). Karel J Robot: A Gentle
Introduction to the Art of Object-Oriented Programming in Java. John Wiley & Sons.

[Braithwaite, 1613] Braithwaite, R. (1613). The Yong Mans Gleanings.

[Bratko, 1990] Bratko, I. (1990). Prolog Programming for Artificial Intelligence. Addison-Wesley
Longman Publishing Co., Inc., USA, 2nd edition.

[Brooks and Matelski, 1981] Brooks, R. and Matelski, J. P. (1981). The Dynamics of 2-Generator
Subgroups of PSL(2, C), pages 65–72. Princeton University Press, Princeton.

[Bryant and O’Hallaron, 2010] Bryant, R. E. and O’Hallaron, D. R. (2010). Computer Systems: A
Programmer’s Perspective. Addison-Wesley Publishing Company, USA, 2nd edition.

[Butterick, 2016] Butterick, M. (2016). Beautiful Racket. 1.6 edition.

[Chomsky, 1957] Chomsky, N. (1957). Syntactic Structures. Mouton and Co., The Hague.

[Church, 1941] Church, A. (1941). The Calculi of Lambda Conversion. (AM-6). Princeton University
Press.

[Clarke, 1984] Clarke, A. (1984). Profiles of the Future: An Inquiry Into the Limits of the Possible.
Holt, Rinehart, and Winston.

[Cohen, 1981] Cohen, D. (1981). On holy wars and a plea for peace. Computer, 14(10):48–54.

[Cook, 1971] Cook, S. A. (1971). The Complexity of Theorem-Proving Procedures. In Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New York,
NY, USA. Association for Computing Machinery.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction
to Algorithms. The MIT Press, 3rd edition.

[Dijkstra, 1959] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numer.
Math., 1(1):269–271.

[Dybvig, 2009] Dybvig, R. K. (2009). The Scheme Programming Language, 4th Edition. The MIT
Press, 4th edition.

[Felleisen et al., 2018] Felleisen, M., Findler, R. B., Flatt, M., and Krishnamurthi, S. (2018). How to
Design Programs: An Introduction to Programming and Computing. The MIT Press.

[Friedman et al., 2018] Friedman, D. P., Byrd, W. E., Kiselyov, O., and Hemann, J. (2018). The Rea-
soned Schemer. The MIT Press, 2nd edition.

[Friedman and Felleisen, 1986] Friedman, D. P. and Felleisen, M. (1986). The Little Schemer. The MIT
Press, 4th edition.

[Friedman and Wand, 2008] Friedman, D. P. and Wand, M. (2008). Essentials of Programming Lan-
guages. The MIT Press. MIT Press, London, England, 3 edition.

[Friedman and Wise, 1976] Friedman, D. P. and Wise, D. S. (1976). Cons should not evaluate its argu-
ments. In International Colloquium on Automata, Languages and Programming.

Bibliography 732

[Garcia et al., nd] Garcia, R., Siek, J. G., Akavipat, R., Byrd, W., Chun, S., Mack, D. W., Platte,
A., Eoinestad, H., Blocher, K., Near, J. P., and et al. (n.d.). Using parenthec to transform scheme
programs to c or how to write interesting recursive programs in a spartan host (program counter).
Indiana University.

[Harris et al., 2018] Harris, R. A., Marco, C. D., Ruan, S., and O’Reilly, C. (2018). An annotation
scheme for rhetorical figures. Argument and Computation, 9(2):155–175.

[Hein, 2002] Hein, J. L. (2002). Discrete Structures, Logic, and Computability. Jones and Bartlett
Publishers, Inc., USA, 2nd edition.

[Hein, 2009] Hein, J. L. (2009). Prolog Experiments in Discrete Mathematics, Logic, and Computabil-
ity. Portland State University.

[Henderson, 2019] Henderson, B. (2019). Netpbm history.

[Henderson and Morris, 1976] Henderson, P. and Morris, J. H. (1976). A lazy evaluator. In Proceedings
of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles on Programming Languages, POPL
’76, page 95–103, New York, NY, USA. Association for Computing Machinery.

[Holden, 2014] Holden, D. (2014). Build Your Own LISP. Createspace Independent Publishing Plat-
form, North Charleston, SC.

[ISO, 1999] ISO (1999). Iso c standard 1999. Technical report. ISO/IEC 9899:1999 draft.

[Kernighan and Plauger, 1982] Kernighan, B. W. and Plauger, P. J. (1982). The Elements of Program-
ming Style. McGraw-Hill, Inc., USA, 2nd edition.

[Kernighan and Ritchie, 1988] Kernighan, B. W. and Ritchie, D. M. (1988). The C Programming Lan-
guage. Prentice Hall Professional Technical Reference, 2nd edition.

[King, 2008] King, K. N. (2008). C Programming: A Modern Approach, Second Edition. W.W. Norton
& Company.

[Klabnik and Nichols, 2018] Klabnik, S. and Nichols, C. (2018). The Rust Programming Language. No
Starch Press, USA.

[Knuth, 1977] Knuth, D. E. (1977). The computer as master mind. Journal of Recreational Mathe-
matics, 9:1–6.

[Kochan, 2004] Kochan, S. G. (2004). Programming in C. Sams Publishing, Indianapolis, IN, 3 edition.

[Lagarias, 1985] Lagarias, J. C. (1985). The 3x + 1 problem and its generalizations. The American
Mathematical Monthly, 92(1):3–23.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics Doklady, 10(8):707–710. Doklady Akademii Nauk SSSR, V163 No4
845-848 1965.

[Mandelbrot, 1980] Mandelbrot, B. B. (1980). Fractal aspects of the iteration of z → λz(1−z) for
complex λ and z. Annals of the New York Academy of Sciences, 357(1):249–259.

[Matz et al., 2012] Matz, M., Hubicka, J., Jaeger, A., and Mitchell, M. (2012). System V Application
Binary Interface AMD64 Architecture Processor Supplement. N/A, 0.99.6 edition.

[McCarthy, 1962] McCarthy, J. (1962). LISP 1.5 Programmer’s Manual. The MIT Press.

[McCarthy, 1978] McCarthy, J. (1978). History of LISP, page 173–185. Association for Computing
Machinery, New York, NY, USA.

[Mitchell, 1986] Mitchell, J. C. (1986). Representation independence and data abstraction. In Proceed-
ings of the 13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’86, page 263–276, New York, NY, USA. Association for Computing Machinery.

[Nystrom, 2021] Nystrom, R. (2021). Crafting Interpreters. Genever Benning.

[Okasaki, 1998] Okasaki, C. (1998). Purely Functional Data Structures. Cambridge University Press,
USA.

[Okasaki, 1999] Okasaki, C. (1999). Red-black trees in a functional setting. J. Funct. Program.,
9(4):471–477.

[Parnas, 1972] Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Commun. ACM, 15(12):1053–1058.

[Pattis, 1995] Pattis, R. E. (1995). Karel The Robot: A Gentle Introduction to the Art of Program-
ming. John Wiley & Sons.

[Pierce et al., 2021] Pierce, B. C., de Amorim, A. A., Casinghino, C., Gaboardi, M., Greenberg, M.,
Hriţcu, C., Sjöberg, V., Tolmach, A., and Yorgey, B. (2021). Programming Language Foundations,
volume 2 of Software Foundations. Electronic textbook.

[Reynolds, 1972] Reynolds, J. C. (1972). Definitional interpreters for higher-order programming lan-
guages. In Proceedings of the ACM Annual Conference - Volume 2, ACM ’72, page 717–740, New
York, NY, USA. Association for Computing Machinery.

732

733 Bibliography

[Russell and Norvig, 2009] Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern Ap-
proach. Prentice Hall Press, USA, 3rd edition.

[Sabry and Felleisen, 1992a] Sabry, A. and Felleisen, M. (1992a). Reasoning about programs in
continuation-passing style. SIGPLAN Lisp Pointers, V(1):288–298.

[Sabry and Felleisen, 1992b] Sabry, A. and Felleisen, M. (1992b). Reasoning about programs in
continuation-passing style. In Proceedings of the 1992 ACM Conference on LISP and Functional
Programming, LFP ’92, page 288–298, New York, NY, USA. Association for Computing Machinery.

[Sarkar et al., 2004] Sarkar, D., Waddell, O., and Dybvig, R. K. (2004). A nanopass infrastructure
for compiler education. In Proceedings of the Ninth ACM SIGPLAN International Conference on
Functional Programming, ICFP ’04, page 201–212, New York, NY, USA. Association for Computing
Machinery.

[Siek, 2023] Siek, J. G. (2023). Essentials of Compilation. MIT Press, London, England.

[Singhal, 2001] Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Eng.
Bull., 24:35–43.

[Sipser, 2013] Sipser, M. (2013). Introduction to the Theory of Computation. Course Technology,
Boston, MA, third edition.

[Smith, 2013] Smith, E. E. (2013). Recognizing a collective inheritance through the history of women
in computing. CLCWeb: Comparative Literature and Culture, 15(1).

[Springer and Friedman, 1989] Springer, G. and Friedman, D. P. (1989). Scheme and the Art of Pro-
gramming. MIT Press, Cambridge, MA, USA.

[Sterling and Shapiro, 1994] Sterling, L. and Shapiro, E. (1994). The Art of Prolog (2nd Ed.): Ad-
vanced Programming Techniques. MIT Press, Cambridge, MA, USA.

[van der Linden, 1994] van der Linden, P. (1994). Expert C Programming: Deep C Secrets. Prentice-
Hall, Inc., USA.

[van Orman Quine, 1950] van Orman Quine, W. (1950). Methods of Logic. Harvard University Press.

[Wadsworth, 1971] Wadsworth, C. P. (1971). Semantics and Pragmatics of the Lambda-calculus. Uni-
versity of Oxford.

[Wagner and Fischer, 1974] Wagner, R. A. and Fischer, M. J. (1974). The string-to-string correction
problem. J. ACM, 21(1):168–173.

[Weiss, 1998] Weiss, M. A. (1998). Data structures and problem solving using java. SIGACT News,
29(2):42–49.

[Whitehead and Russell, 1927] Whitehead, A. N. and Russell, B. A. W. (1927). Principia mathematica;
2nd ed. Cambridge Univ. Press, Cambridge.

733

Index

α-substitution, 75
β-reduction, 75
L∗

BOUND, 334
L∗

BST, 342
L∗

COROUTINE, 573
L∗

DERIVATIVE, 366
L∗

DFA, 357
L∗

GRAPH, 481
L∗

MATCH, 542
L∗

PROC, 310
L∗

SCHELOG, 553
L∗

SYNTAX, 534
L∗

TRIE, 350
LMACRO, 516
L∗

AL, 471
L∗

ASM, 427
L∗

CNF, 327
L∗

COND, 307
L∗

CONTINUATION, 375
L∗

EVAL, 420
L∗

IMPERATIVE, 433, 441,
510

L∗
INFIX, 305
L∗

LOGIC, 324
L∗

LOOP, 321
L∗

PARTIAL, 382
L∗

PROOF, 371
L∗

SETS, 336
L∗

TURING, 363
L∗

TYPE-CHECK, 385
LBEGIN, 402
LBIGNUM, 492
LCHAR, 237
LCLOSURE, 235
LCOND1, 197
LCOND2, 200, 202
LEQUAL, 247
LEVAL, 282
LFILE I/O, 498
LGRAPHIC, 564
LIN, 497
LLETREC, 232
LLIB, 477, 492
LLIST, 255
LLOCAL, 213
LLOOP, 510
LOUT, 406, 466
LPF1, 158
LPF2, 186
LPROC1, 220, 225
LQUOTE, 253
LSET, 391
LSTRING, 239
LVARIADIC, 274
LVECTOR, 466, 471, 477

On Holy Wars and a Plea
for Peace, 116

let/cc, 380
stdbool.h, 198
strncat, 109
strncpy, 109
FILE *, 670
NULL, 98
NUL-byte, 105
apply, 282
asprintf, 183
call-with-current-continuation,

375
call/cc, 375
cons?, 259
cons, 256, 259
else if, 92
else, 91
enum, 110
eval, 282
fgets, 135
first, 256, 259
fork, 671, 673
for, 96
getline, 135
getpid, 672
if, 91
letrec, 232
malloc, 105, 117
math.h, 97
memset, 108
null?, 259
pid t, 671
pipe, 671, 673
popen, 673
printf, 87, 90
quote, 262
rest, 256, 259
sscanf, 173
static, 129
strcat, 108
strcpy, 106
strdup, 106
string.h, 106
strstr, 169
struct, 111
unquote, 267
wait, 673
while, 95, 96

abstract machine, 75
abstract syntax tree, 73
abstraction, 166, 190
accessor method, 447
accumulative recursion, 233

accumulator-passing style,
286, 291

Ackermann, 88
activation record, 652
address-of operator, 113
adjacency list, 481
adjacency matrix, 481
administrative normal

form, 540
Alan Turing, 363
Alfred Aho, 79
algorithm, 2, 49, 81
Alonzo Church, 75
alphabet, 61
alternation, 9
alternative, 203
ambiguous, 25
ambiguous expressions, 13
antecedent, 35
antimetabole, 266
application, 75, 169
argument, 29, 31
array, 53, 101
array list, 54, 471
arrow operator, 111
Arthur C. Clarke, 1
ASCII, 238
assignment, 15
association list, 481
association pair, 188
associative, 31
AVL, 350

b-tree, 350
Backus-Naur Form, 63
Backus-Naur form, 64
base case, 84
base ten, 47
Benôıt Mandelbrot, 150
Big Endians, 116
binary, 47, 82, 142
binary function, 30
bit, 47
bitwise AND, 143
bitwise NOT, 144
bitwise OR, 143
bitwise shift, 144
bitwise XOR, 143
blocking, 135
blocking input, 670
boolean, 197
bound, 75
box, 470
breadth-first search, 485

Index 736

Brian W. Kernighan, 195,
579

broadcast signal, 697

cardinality, 26
Cartesian coordinate, 110
case analysis, 202
cases, 38
catalan numbers, 87
children, 121
class, 445, 446
closure, 235, 404, 444, 454
CNF, 327
codify, 4
codomain, 29
commutative, 31
comparison-based

operation, 427
compile-time, 102, 112, 454
complex numbers, 150
computability theory, 88
computation, 65, 75
compute, 2
computers, 1
conclusion, 8
concurrency, 667
concurrent programming,

673
condition variable, 685
conditional operator, 91
conditional wait, 685
conjunctive normal form,

327
connective, 8
consequent, 203
constructor, 114
contains, 57
continuation, 288, 486
continuation-passing style,

288, 486
contradiction, 37
contrapositive, 36
controlled allocation, 654
coroutine, 573
cosine similarity, 121, 281
countably infinite, 28
critical section, 684
curried, 76
currying, 278

Danny Cohen, 116
data, 1
data compression, 350
data structure, 53
dataflow analysis, 646
declaration, 75
declarative programming,

553
deductive reasoning, 7
Dennis Ritchie, 195
depth-first search, 484
dequeue, 56
dereference operator, 99
deterministic, 65
deterministic finite

automaton, 65,
71, 357

dictionary, 57
difference, 27
Dijkstra’s algorithm, 491
direct proof, 35

directed acyclic graph, 489
divide-and-conquer, 347,

349
documentation comment,

220
domain, 29
dot operator, 111, 272
doubly-linked, 120
doubly-linked list, 120
dynamic allocation, 653
dynamic memory, 298
dynamic memory

allocation, 112
dynamic programming, 514
dynamic scoping, 213
dynamic typing, 385

EBNF grammar, 160
Edgar Dijkstra, 491
edge, 481
element, 26, 53
empty string, 71
encapsulation, 445, 446
endianness, 116
enqueue, 56
enumerate, 110
environment, 187
environment extension, 215
equivalent, 26
Erik Meijer, 253
evaluation, 169
evaluation tree, 18
exactness, 24
exclusive disjunction, 10
existential quantifier, 23
exponential, 86
exponential-time, 231
extended Backus-Naur

form, 63, 64

fact, 553
factorial, 86
field, 111
file descriptor, 670
finite automata, 64, 65
first-class function, 126
first-class functions, 278
first-in-first-out, 56
first-order, 21, 24
formal language, 61
free, 75
function, 29
function abstraction, 75
function pointer, 126
function prototype, 89, 127
function signature, 220

garbage collection, 654
garbage collector, 654
Gene Amdahl, 667
Gerald Jay Sussman, 197
get, 57
global environment, 215
GNU readline, 669
grammar, 62
graph, 58, 481
group, 31

Hal Abelson, 197
Haskell Curry, 278
head, 54

header files, 127
heap, 653
heap-allocation, 651
hello world, 82
Henry Gordon Rice, 294
hexadecimal, 50
high-level, 82
higher-order function, 279
How to Design Programs,

221
hygienic macro, 522

if and only if, 12
iff, 12, 39
image, 29
improper set, 26
in-order traversal, 124
indexable, 102
indices, 53
infinite data structure, 531
infix, 69
infix expression, 80
inheritance, 445, 448, 454
initializer list, 102, 111
insertion sort, 344
instance variables, 446
inter-process

communication,
671

interpretation, 15
intersection, 27
invariant, 342
It should be noted that this

use of
“polymorphic”
is different from
“type
polymorphic”;
the latter refers
to functions
that receive any
argument type,
whereas the
former relates
to
object-oriented
programming.,
451

iteration, 95

Java, 71
jump-based operation, 427

K. N. King, 195
key, 57
keylogger, 139
Kleene closure, 63
Kleene plus, 64
Kleene star, 64, 71

l-value, 92
label, 427
lambda calculus, 75
language, 61
last-in-first-out, 55
lazy evaluation, 416, 531
leaf, 57, 121
Levenshtein distance, 251
lexeme, 72
lexical analysis, 72, 357

736

737 Index

lexical scoping, 213, 315,
383

lexically-scoped, 213
linear time, 188, 344
linked list, 54, 117, 121, 188
Linus Torvalds, 53
list, 54, 257
little endian, 116
Little Endians, 116
logarithmic time, 344
logic, 7
logic programming, 553
logical biconditional, 12, 17
logical conditional, 11, 16
logical conjunction, 10, 15
logical disjunction, 9, 16
logical equivalence, 17
logical implication, 11, 16
logical negation, 9, 15
lossless compression, 350
lossy compression, 350
low-level, 82

macro, 132, 516
main operator, 17, 18
Mandelbrot set, 150
map, 29, 57
medium-level, 82
memory address, 98
memory leak, 653
merge sort, 347
method, 443
method overloading, 454
Micro Parser Combinators,

158, 712
model, 65
monad, 395
monadic first-order, 21
monus, 33
multi-threaded

programming,
685

multi-threading, 673
multiprocessing, 671
mutator method, 447
mutex, 684
mutual recursion, 89

natural deduction, 41
natural language

processing, 121
natural numbers, 76
natural recursion, 31, 83,

90, 220
nested interpreter, 304
Niklaus Wirth, 391
Noam Chomsky, 61
node, 54, 57
non-blocking input, 670
non-deterministic, 65
non-terminal, 62
numbering system, 47

object, 443
object-oriented

programming,
443, 446, 451,
454, 463

one-armed if, 203
order, 26

parse tree, 19
pass-by-name, 417
pass-by-need, 418
pass-by-pointer, 112, 410
pass-by-reference, 413
pass-by-value, 99, 112, 410
path-expansion, 487
pattern match, 542
peek, 55
Peter van der Linden, 195
Phillip James (P. J.)

Plauger, 579
pipe, 184, 671
pivot, 349
pointer, 98
polyadic first-order, 21
polymorphic, 387, 451
polymorphism, 445, 451
pop, 55
post-order traversal, 125
pre-image, 29
pre-order traversal, 124
predicate, 21, 203
preemption, 578
preemptive, 578
prefix expression, 81
prefix node, 351
premise, 8
prenex normal form, 333
preprocessor, 128
procedural, 82
process, 671
production rule, 62
programming abstraction,

82
Prolog, 553
promise, 517
proof, 35
proof by contraposition, 36
proper set, 26
proper subset, 26
proposition, 8
pseudocode, 53
pthread, 683
pure, 394
push, 55
put, 57

qed, 35
quantification, 21
quantifiers, 21
quasiquotes, 267
queue, 56
quicksort, 349
quod erat demonstrandum,

35
quote, 253
quoted expression, 253

r-value, 92
race condition, 684
range, 29
read-evaluate-print-loop,

667
recognition function, 304
recognizer function, 304
recursion, 31, 122
recursive function, 31, 83
recursive step, 84
red-black, 350
reducer, 304

reference, 661
reference counter, 662
reference-counting, 662
regex, 71
register, 363
register-to-register

operation, 427
regular expression, 71, 357
regular expressions, 64
regular language, 71
representation

independence,
166, 190, 455

representation-
independent,
190

Robert Firth, 651
root, 57, 121
rule, 553

s-expression, 158
s-value, 170
schemata, 8
scope, 75
segmentation fault, 298,

299
selection sort, 346
semantic equivalence, 645
set, 13, 26, 57
set of integers, 27
set of natural numbers, 27,

31
set of rational numbers, 27
set of real numbers, 28
shadow, 189
short-circuit, 211
shortest path, 486
side-effect, 391
signature, 89
SIGSEGV, 299
singly-linked, 120
singly-linked list, 120
size, 57
sound, 13
source file, 127
special form, 204
stack, 55
stack overflow, 653
stack-allocation, 651
standard error, 134
standard error stream, 134
standard input, 82
standard output, 82
statements, 433
states, 65
static function, 129
static typing, 385
store-passing style, 484
stream, 531
string, 61, 105
string literal, 105
strlen, 114
structure, 111
subclass, 448, 452
subset, 26, 62
successor, 76, 84
superclass, 448
symbol, 61
symbolic differentiation,

366
symbolic expression, 158,

170

737

Index 738

tagged list, 443
tail recursion, 295, 298
tail recursive, 286, 287, 291,

295–298, 375,
376, 626, 652

tail-call optimization, 294
terminal, 62
terminating condition, 32
ternary function, 30
thread, 683
thread signal, 685
thread-safe, 686
thunk, 416
token, 72
transition, 65
tree, 57, 121

trie, 350
truth table, 15
type, 53, 55, 385

u-combinator, 234
unary function, 30
uncontrolled allocation, 654
uncountably infinite, 28
undirected graph, 481
unhygienic macro, 522
Unicode, 238
unification, 554
union, 26, 115
universal quantifier, 22
unquote-splicing, 271
unweighted, 59

use-after-free, 655, 662

valid, 13
value, 57
variable, 75
variadic arguments, 274
vector, 466
vertex, 481
vertices, 58

weighted, 59
Willard Van Orman Quine,

7
word, 61

zeroth-order, 14, 18, 21, 24

738

	Front Cover
	Title Page
	Copyright
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	Preface
	1. A Computing Mindset
	1.1 Computer Heuristics

	2. A Logic Primer
	2.1 Zeroth-Order Logic
	2.2 First-Order Logic
	2.3 Sets
	2.4 Functions
	2.5 Proofs
	2.6 Natural Deduction
	2.7 Numbering Systems

	3. Data Structures
	3.1 Motivation for Data Structures
	3.2 Arrays
	3.3 Lists
	3.4 Stacks
	3.5 Queues
	3.6 Sets
	3.7 Maps/Dictionaries
	3.8 Trees
	3.9 Graphs

	4. Formal Languages
	4.1 Languages
	4.2 Finite Automata
	4.3 Syntactic Analysis
	4.4 Analyzing ?-Calculus

	5. Programming and Design
	5.1 Recitation of Elementary Arithmetic
	5.2 LPF1: Our First Language
	5.3 LPF2: Now With Environments

	6. Interpretation
	6.1 LCOND: Conditionals and Decisions
	6.2 LLOCAL: Local Identifiers and Values
	6.3 LPROC1 & LPROC2: Recursive Procedures
	6.4 Working with Even More Data

	7. Functional Programming
	7.1 Quotes, Pairs, Lists, and Quasiquotes
	7.2 Variadic Arguments
	7.3 First-Class and Higher-Order Functions
	7.4 Evaluation and Application at the Interpreter Level
	7.5 Constructive Recursion
	7.6 Nested Interpreters
	7.7 Types and Type Systems

	8. Imperative Programming
	8.1 Side-Effects
	8.2 LBEGIN: Sequential Expressions
	8.3 LOUT: Fancier Output
	8.4 Parameter Passing Styles
	8.5 L*EVAL: A Metacircular Evaluator
	8.6 L*ASM: A Micro-Assembly Interpreter
	8.7 L*IMPERATIVE: Thinking Imperatively
	8.8 Object-Oriented Programming
	8.9 LVECTOR: Static Data Structures
	8.10 LLIB: External Libraries
	8.11 L*GRAPH: Graph Library Implementation
	8.12 LBIGNUM: Arbitrarily-Precise Numbers
	8.13 LIN: Improved User Input
	8.14 LFILE I/O: File Input and Output
	8.15 LLOOP: An Iterative Approach to Problem-Solving
	8.16 LMACRO: A Simple Macro System
	8.17 L*MATCH: A Pattern Matcher
	8.18 L*SCHELOG: Logic Programming
	8.19 LGRAPHIC: Turtles and Graphics Galore
	8.20 L*COROUTINE Coroutines and Continuations

	9. Compilation
	9.1 Code Generation
	9.2 Compiling L-PF1 to L-PF1x64
	9.3 Compiling LPF2 to LPF2x64
	9.4 Compiling L-COND to L-CONDx64
	9.5 Compiling L+COND to L+CONDx64
	9.6 Compiling L-PROC to L-PROCx64
	9.7 Compiling LPROC to LPROCx64
	9.8 Compiling LARRAY to LARRAYx64
	9.9 Compiling LFLOAT to LFLOATx64
	9.10 Optimizing Generating Assembly

	10. Memory Management
	10.1 Memory Allocation
	10.2 Reference-Counted Garbage Collection

	11. Event-Driven Programming
	11.1 Concurrent Programming
	11.2 Multi-threading and Garbage Collection
	11.3 A Powerful Garbage Collector

	Epilogue
	Environment and Code Setup
	Graphics Library Source Code
	Assembly Environment Setup
	Bibliography
	Index

