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Preface to the Instructor

This fifth edition of Physics for Scientists and Engineers: A 
Strategic Approach continues to build on the research-driven 
instructional techniques introduced in the first edition and the 
extensive feedback from thousands of users. From the begin-
ning, the objectives have been:

 ■ To produce a textbook that is more focused and coherent, 
less encyclopedic.

 ■ To integrate proven results from physics education research 
into the classroom in a way that allows instructors to use a 
range of teaching styles.

 ■ To provide a balance of quantitative reasoning and con-
ceptual understanding, with special attention to concepts 
known to cause student difficulties.

 ■ To develop students’ problem-solving skills in a systematic 
manner.

A more complete explanation of 
these goals and the rationale behind 
them can be found in the Ready-To-
Go Teaching Modules and in my 
 paperback book, Five Easy  Lessons: 
Strategies for Successful Physics 
Teaching. Please request a copy 
from your local Pearson sales rep-
resentative if it is of interest to you  
(ISBN 978-0-805-38702-5).

What’s New to This Edition
The fifth edition of Physics for Scientists and Engineers con-
tinues to utilize the best results from educational research and 
to tailor them for this course and its students. At the same time, 
the extensive feedback we’ve received from both instructors 
and students has led to many changes and improvements to 
the text, the figures, and the end-of-chapter problems. Changes 
include:

 ■ The Chapter 6 section on drag has been expanded to in-
clude drag in a viscous fluid (Stokes’ law). The Reynolds 
number is introduced as an indicator of whether drag is pri-
marily viscous or primarily inertial.

 ■ Chapter 14 on fluids now includes the flow of viscous flu-
ids (Poiseuille’s equation) and a discussion of turbulence.

 ■ An optional Advanced Topic section on coupled oscilla-
tions and normal modes has been added to Chapter 15.

 ■ Chapter 20 now includes an extensive quantitative section 
on entropy and its application.

 ■ A vector review has been added to Chapter 22, the first 
electricity chapter, and the worked examples make extra 

effort to remind students how to work with vectors. 
Returning to vectors after not having used them exten-
sively since mechanics is a stumbling block for many 
students.

 ■ The number of applications illustrated with sidebar figures 
has been increased and now includes accelerometers, heli-
copter rotors, quartz oscillators, laser printers, and wireless 
chargers.

 ■ There are more than 400 new or significantly revised end-
of-chapter problems. Scores of other problems have been 
edited to improve clarity. Difficulty ratings have been reca-
librated based on Mastering® Physics.

 ■ Several substantial new Challenge Problems have been 
added to cover interesting and contemporary topics such as 
gravitational waves, normal modes of the carbon dioxide 
molecule, and Bose-Einstein condensates.

 ■ New Ready-To-Go Teaching Modules are an easy-to-use 
online instructor’s guide. These modules provide back-
ground information about topics and techniques that are 
known student stumbling blocks along with suggestions 
and assignments for use before, during, and after class.

Textbook Organization
Physics for Scientists and Engineers is divided into eight parts: 
Part I: Newton’s Laws, Part II: Conservation Laws, Part III: 
 Applications of Newtonian Mechanics, Part IV: Oscillations 
and Waves, Part V: Thermodynamics, Part VI: Electricity and 
Magnetism, Part VII: Optics, and Part VIII: Relativity and 
Quantum Mechanics. Note that covering the parts in this or-
der is by no means essential. Each topic is self-contained, and 
Parts III–VII can be rearranged to suit an instructor’s needs. 
Part VII: Optics does need to follow Part IV: Oscillations and 
Waves; optics can be taught either before or after electricity 
and magnetism.

The complete 42-chapter version of Physics for Scien-
tists and Engineers is intended for a three-semester course. A 
two-semester course typically covers 30–32 chapters with the 
judicious omission of a few sections.

There’s a growing sentiment that quantum physics is be-
coming the province of engineers, not just physicists, and 
that even a two-semester course should include a reasonable 
introduction to quantum ideas. The Ready-To-Go Teaching 
Modules outline a couple of routes through the book that 
allow many of the quantum physics chapters to be included 
in a two-semester course. I’ve written the book with the hope 
that an increasing number of instructors will choose one of 
these routes.
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The Student Workbook
A key component of Physics for Scientists and Engineers: A 
Strategic Approach is the accompanying Student Workbook. 
The workbook bridges the gap between textbook and home-
work problems by providing students the opportunity to learn 
and practice skills prior to using those skills in quantitative end-
of-chapter problems, much as a musician practices technique 
separately from performance pieces. The workbook  exercises, 
which are keyed to each section of the textbook, focus on  
developing specific skills, ranging from identifying forces and 
drawing free-body diagrams to interpreting wave functions.

The workbook exercises, which are 
generally qualitative and/or graphical, 
draw heavily upon the physics educa-
tion research literature. The exercises 
deal with issues known to cause student 
difficulties and employ techniques that 
have proven to be effective at overcom-
ing those difficulties. The workbook 
exercises can be used in class as part 
of an active-learning teaching strategy, 
in recitation sections, or as assigned 
homework.

Force and Motion . C H A P T E R 5

9.

a. 2m b. 0.5m

Use triangles to show four points for the object of
mass 2m, then draw a line through the points. Use
squares for the object of mass 0.5m.

10. A constant force applied to object A causes A to
accelerate at 5 m/s2. The same force applied to object B
causes an acceleration of 3 m/s2. Applied to object C, it
causes an acceleration of 8 m/s2.

a. Which object has the largest mass? 

b. Which object has the smallest mass? 

c. What is the ratio of mass A to mass B? (mA/mB) = 

11. A constant force applied to an object causes the object to accelerate at 10 m/s2. What will the
acceleration of this object be if

a. The force is doubled? b. The mass is doubled? 

c. The force is doubled and the mass is doubled? 

d. The force is doubled and the mass is halved? 

12. A constant force applied to an object causes the object to accelerate at 8 m/s2. What will the
acceleration of this object be if

a. The force is halved? b. The mass is halved? 

c. The force is halved and the mass is halved? 

d. The force is halved and the mass is doubled? 

13. Forces are shown on two objects. For each:

a. Draw and label the net force vector. Do this right on the figure.
b. Below the figure, draw and label the object’s acceleration vector.

x
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The figure shows an acceleration-versus-force graph for
an object of mass m. Data have been plotted as individual
points, and a line has been drawn through the points.

Draw and label, directly on the figure, the acceleration-
versus-force graphs for objects of mass

Instructor Resources
A variety of resources are available to help instructors teach 
more effectively and efficiently. These can be downloaded 
from the Instructor Resources area of Mastering® Physics.

 ■ Ready-To-Go Teaching Modules are an online instruc-
tor’s guide. Each chapter contains background information 
on what is known from physics education research about 
student misconceptions and difficulties, suggested teaching 
strategies, suggested lecture demonstrations, and suggested 
pre- and post-class assignments.

 ■ Mastering® Physics is Pearson’s online homework system 
through which the instructor can assign pre-class reading 
quizzes, tutorials that help students solve a problem with 
hints and wrong-answer feedback, direct-measurement vid-
eos, and end-of-chapter questions and problems. Instructors 
can set up their own assignments or utilize pre-built assign-
ments that have been designed with a balance of problem 
types and difficulties.

 ■ PowerPoint Lecture Slides can be modified by the in-
structor but provide an excellent starting point for class 
presentations. The lecture slides include QuickCheck 
questions.

 ■ QuickCheck “Clicker Questions” are conceptual ques-
tions, based on known student misconceptions, for in-
class use with some form of personal response system. 

They are designed to be used as part of an active-learning 
teaching strategy. The Ready-To-Go teaching modules 
provide information on the effective use of QuickCheck 
questions.

 ■ The Instructor’s Solution Manual is available in both 
Word and PDF formats. We do require that solutions for 
student use be posted only on a secure course website.

 ■ All of the textbook figures, key equations, Problem-Solving 
Strategies, Tactics Boxes, and more can be downloaded.

 ■ The TestGen Test Bank contains over 2000 conceptual and 
multiple-choice questions. Test files are provided in both 
TestGen® and Word formats.
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Preface to the Student
From Me to You
The most incomprehensible thing about the universe is that it is 
comprehensible.

—Albert Einstein

The day I went into physics class it was death.
—Sylvia Plath, The Bell Jar

Let’s have a little chat before we start. A rather one-sided chat, 
admittedly, because you can’t respond, but that’s OK. I’ve 
 talked with many of your fellow students over the years, so I 
have a pretty good idea of what’s on your mind.

What’s your reaction to taking physics? Fear and loathing? 
Uncertainty? Excitement? All the above? Let’s face it, physics 
has a bit of an image problem on campus. You’ve probably 
heard that it’s difficult, maybe impossible unless you’re an 
Einstein. Things that you’ve heard, your experiences in other 
science courses, and many other factors all color your expecta-
tions about what this course is going to be like.

It’s true that there are many new ideas to be learned in phys-
ics and that the course, like college courses in general, is going 
to be much faster paced than science courses you had in high 
school. I think it’s fair to say that it will be an intense course. 
But we can avoid many potential problems and difficulties if 
we can establish, here at the beginning, what this course is 
about and what is expected of you—and of me!

Just what is physics, anyway? Physics is a way of thinking 
about the physical aspects of nature. Physics is not better than 
art or biology or poetry or religion, which are also ways to 
think about nature; it’s simply different. One of the things this 
course will emphasize is that physics is a human endeavor. The 
ideas presented in this book were not found in a cave or con-
veyed to us by aliens; they were discovered and developed by 
real people engaged in a struggle with real issues.

You might be surprised to hear that physics is not about 
“facts.” Oh, not that facts are unimportant, but physics is far 
more focused on discovering relationships and patterns than 
on learning facts for their own sake.

For example, the colors of the 
rainbow appear both when white 
light passes through a prism 
and—as in this photo—when 
white light reflects from a thin 
film of oil on water. What does 
this pattern tell us about the na-
ture of light?

Our emphasis on relation-
ships and patterns means that 
there’s not a lot of memorization 

when you study physics. Some—there are still definitions 
and equations to learn—but less than in many other courses. 
Our emphasis, instead, will be on thinking and reasoning. 
This is important to factor into your expectations for the 
course.

Perhaps most important of all, physics is not math! Physics 
is much broader. We’re going to look for patterns and relation-
ships in nature, develop the logic that relates different ideas, 
and search for the reasons why things happen as they do. In 
doing so, we’re going to stress qualitative reasoning, pictorial 
and graphical reasoning, and reasoning by analogy. And yes, 
we will use math, but it’s just one tool among many.

It will save you much frustration if you’re aware of this 
physics–math distinction up front. Many of you, I know, want 
to find a formula and plug numbers into it—that is, to do a math 
problem. Maybe that worked in high school science courses, 
but it is not what this course expects of you. We’ll certainly do 
many calculations, but the specific numbers are usually the last 
and least important step in the analysis.

As you study, you’ll sometimes be baffled, puzzled, and 
confused. That’s perfectly normal and to be expected. Making 
mistakes is OK too if you’re willing to learn from the expe-
rience. No one is born knowing how to do physics any more 
than he or she is born knowing how to play the piano or shoot 
basketballs. The ability to do physics comes from practice, rep-
etition, and struggling with the ideas until you “own” them and 
can apply them yourself in new situations. There’s no way to 
make learning effortless, at least for anything worth learning, so 
expect to have some difficult moments ahead. But also expect 
to have some moments of excitement at the joy of discovery. 
There will be instants at which the pieces suddenly click into 
place and you know that you understand a powerful idea. There 
will be times when you’ll surprise yourself by successfully  
working a difficult problem that you didn’t think you could 
solve. My hope, as an author, is that the excitement and sense 
of adventure will far outweigh the difficulties and frustrations.

Getting the Most Out of Your Course
Many of you, I suspect, would like to know the “best” way to 
study for this course. There is no best way. People are different 
and what works for one student is less effective for another. But  
I do want to stress that reading the text is vitally important. 
The basic knowledge for this course is written down on these 
 pages, and your instructor’s number-one expectation is that 
you will read carefully to find and learn that knowledge.

Despite there being no best way to study, I will suggest one 
way that is successful for many students.

1. Read each chapter before it is discussed in class. I can-
not stress too strongly how important this step is. Class at-
tendance is much more effective if you are prepared. When 
you first read a chapter, focus on learning new vocabulary, 
definitions, and notation. There’s a list of terms and nota-
tions at the end of each chapter. Learn them! You won’t un-
derstand what’s being discussed or how the ideas are being 
used if you don’t know what the terms and symbols mean.
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2. Participate actively in class. Take notes, ask and  
answer questions, and participate in discussion groups. 
There is ample scientific evidence that active partici-
pation is much more effective for learning science than 
passive listening.

3. After class, go back for a careful re-reading of the 
chapter. In your second reading, pay closer attention 
to the details and the worked examples. Look for the 
logic behind each example (I’ve highlighted this to 
make it clear), not just at what formula is being used. 
And use the textbook tools that are designed to help 
your learning, such as the problem-solving strategies, 
the chapter summaries, and the exercises in the Student 
Workbook.

4. Finally, apply what you have learned to the home-
work problems at the end of each chapter. I strongly 
encourage you to form a study group with two or three 
classmates. There’s good evidence that students who 
study regularly with a group do better than the rugged 
individualists who try to go it alone.

Did someone mention a workbook? The companion Student 
Workbook is a vital part of the course. Its questions and exercises  
ask you to reason qualitatively, to use graphical informa-
tion, and to give explanations. It is through these exercises 
that you will learn what the concepts mean and will practice 
the reasoning skills appropriate to the chapter. You will then 
have acquired the baseline knowledge and confidence you 
need before turning to the end-of-chapter homework prob-
lems. In sports or in music, you would never think of per-
forming before you practice, so why would you want to do 
so in physics? The workbook is where you practice and work 
on basic skills.

Many of you, I know, will be tempted to go straight to the 
homework problems and then thumb through the text looking 
for a formula that seems like it will work. That approach will 
not succeed in this course, and it’s guaranteed to make you 
frustrated and discouraged. Very few homework problems are 
of the “plug and chug” variety where you simply put numbers 
into a formula. To work the homework problems successfully, 
you need a better study strategy—either the one outlined above 
or your own—that helps you learn the concepts and the rela-
tionships between the ideas.

Getting the Most Out of Your Textbook
Your textbook provides many features designed to help you learn 
the concepts of physics and solve problems more effectively.

 ■ TACTICS BOXES give step-by-step procedures for particular 
skills, such as interpreting graphs or drawing special dia-
grams. Tactics Box steps are explicitly illustrated in sub-
sequent worked examples, and these are often the starting 
point of a full Problem-Solving Strategy.

 ■ PROBLEM-SOLVING STRATEGIES are provided for each broad 
class of problems—problems characteristic of a chapter or 
group of chapters. The strategies follow a consistent four-
step approach to help you develop confidence and proficient 
problem-solving skills: MODEL, VISUALIZE, SOLVE, REVIEW.

 ■ Worked EXAMPLES illustrate good problem-solving 
practices through the consistent use of the four-step 
problem-solving approach The worked examples are 
often very detailed and carefully lead you through the 
reasoning behind the solution as well as the numerical 
calculations.

 ■ STOP TO THINK questions embedded in the chapter allow you 
to quickly assess whether you’ve understood the main idea 
of a section. A correct answer will give you confidence to 
move on to the next section. An incorrect answer will alert 
you to re-read the previous section.

 ■ Blue annotations on figures 
help you better understand 
what the figure is show-
ing. They will help you to 
interpret graphs; translate 
between graphs, math, and 
pictures; grasp difficult 
concepts through a visual 
analogy; and develop many 
other important skills.

 ■ Schematic Chapter Summaries help you organize what you 
have learned into a hierarchy, from general principles (top) 
to applications (bottom). Side-by-side pictorial, graphical, 
textual, and mathematical representations are used to help 
you translate between these key representations.

 ■ Each part of the book ends with a KNOWLEDGE STRUCTURE 
designed to help you see the forest rather than just the trees.

Now that you know more about what is expected of you, 
what can you expect of me? That’s a little trickier because the 
book is already written! Nonetheless, the book was prepared 
on the basis of what I think my students throughout the years 
have expected—and wanted—from their physics textbook. 
Further, I’ve listened to the extensive feedback I have received 
from thousands of students like you, and their instructors, who 
used the first four editions of this book.

You should know that these course materials—the text 
and the workbook—are based on extensive research about 
how  students learn physics and the challenges they face. The 
effec tiveness of many of the exercises has been demonstrated 
through extensive class testing. I’ve written the book in an in-
formal style that I hope you will find appealing and that will 
encourage you to do the reading. And, finally, I have endeav-
ored to make clear not only that physics, as a technical body of 
knowledge, is relevant to your profession but also that physics 
is an exciting adventure of the human mind.

I hope you’ll enjoy the time we’re going to spend together.

I

The current in a wire is
the same at all points.

I = constant
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Useful Data

Me Mass of the earth 5.97 * 1024 kg
Re Radius of the earth 6.37 * 106 m
g Free-fall acceleration on earth 9.80 m/s2

G Gravitational constant 6.67 * 10-11 N m2/kg2

kB Boltzmann’s constant 1.38 * 10-23 J/K
R Gas constant 8.31 J/mol K
NA Avogadro’s number 6.02 * 1023 particles/mol
T0 Absolute zero -273°C
s Stefan-Boltzmann constant 5.67 * 10-8 W/m2 K4

patm Standard atmosphere 101,300 Pa
vsound Speed of sound in air at 20°C 343 m/s
mp Mass of the proton (and the neutron) 1.67 * 10-27 kg
me Mass of the electron 9.11 * 10-31 kg
K Coulomb’s law constant (1/4pP0) 8.99 * 109 N m2/C2

P0 Permittivity constant 8.85 * 10-12 C2/N m2

m0 Permeability constant 1.26 * 10-6 T m/A
e Fundamental unit of charge 1.60 * 10-19 C
c Speed of light in vacuum 3.00 * 108 m/s
h Planck’s constant 6.63 * 10-34 J s 4.14 * 10-15 e V s
U Planck’s constant 1.05 * 10-34 J s 6.58 * 10-16 e V s
aB Bohr radius 5.29 * 10-11 m

Common Prefixes

Prefix Meaning

femto- 10-15

pico- 10-12

nano- 10-9

micro- 10-6

milli- 10-3

centi- 10-2

kilo- 103

mega- 106

giga- 109

terra- 1012

Conversion Factors

Length
1 in = 2.54 cm
1 mi = 1.609 km
1 m = 39.37 in
1 km = 0.621 mi

Velocity
1 mph = 0.447 m/s
1 m/s = 2.24 mph = 3.28 ft/s

Mass and energy
1 u = 1.661 * 10-27 kg
1 cal = 4.19 J
1 eV = 1.60 * 10-19 J

Time
1 day = 86,400 s
1 year = 3.16 * 107 s

Pressure
1 atm = 101.3 kPa = 760 mm of Hg
1 atm = 14.7 lb/in2

Rotation
1 rad = 180°/p = 57.3°
1 rev = 360° = 2p rad
1 rev/s = 60 rpm

Mathematical Approximations

Binomial approximation: (1 + x)n ≈ 1 + nx if x V 1
Small-angle approximation: sin u ≈ tan u ≈ u and cos u ≈ 1 if u V 1 radian

Greek Letters Used in Physics

Alpha a Mu m

Beta b Pi p

Gamma Γ g Rho r

Delta ∆ d Sigma g s

Epsilon P Tau t

Eta h Phi Φ f

Theta ϴ u Psi c

Lambda l Omega Ω v
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Motion can be slow and steady, or fast and sudden. 
This rocket, with its rapid acceleration, is responding to 
forces exerted on it by thrust, gravity, and the air.

OVERVIEW

Why Things Move
Each of the seven parts of this book opens with an overview to give you a look 
ahead, a glimpse at where your journey will take you in the next few chapters. 
It’s easy to lose sight of the big picture while you’re busy negotiating the terrain 
of each chapter. In addition, each part closes with a Knowledge Structure to help 
you consolidate your knowledge. You might want to look ahead now to the Part I 
Knowledge Structure on page 230. 

In Part I, the big picture, in a word, is motion.

 ■ How do we describe motion? It is easy to say that an object moves, but it’s 
not obvious how we should measure or characterize the motion if we want to 
analyze it mathematically. The mathematical description of motion is called 
kinematics, and it is the subject matter of Chapters 1 through 4.

 ■ How do we explain motion? Why do objects have the particular motion they 
do? Why, when you toss a ball upward, does it go up and then come back 
down rather than keep going up? What “laws of nature” allow us to predict 
an object’s motion? The explanation of motion in terms of its causes is called 
dynamics, and it is the topic of Chapters 5 through 8.

Two key ideas for answering these questions are force (the “cause”) and accel-
eration (the “effect”). A variety of pictorial and graphical tools will be developed 
in Chapters 1 through 5 to help you develop an intuition for the connection be-
tween force and acceleration. You’ll then put this knowledge to use in Chapters 5 
through 8 as you analyze motion of increasing complexity.

Another important tool will be the use of models. Reality is extremely com-
plicated. We would never be able to develop a science if we had to keep track 
of every little detail of every situation. A model is a simplified description of 
reality—much as a model airplane is a simplified version of a real airplane—used 
to reduce the complexity of a problem to the point where it can be analyzed and 
understood. We will introduce several important models of motion, paying close 
attention, especially in these earlier chapters, to where simplifying assumptions 
are being made, and why.

The laws of motion were discovered by Isaac Newton roughly 350 years ago, 
so the study of motion is hardly cutting-edge science. Nonetheless, it is still ex-
tremely important. Mechanics—the science of motion—is the basis for much of 
engineering and applied science, and many of the ideas introduced here will be 
needed later to understand things like the motion of waves and the motion of 
electrons through circuits. Newton’s mechanics is the foundation of much of con-
temporary science, thus we will start at the beginning.

Newton’s Laws
PA R T

I
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Concepts of Motion

What is a chapter preview?
Each chapter starts with an overview. Think of it as a roadmap 
to help you get oriented and make the most of your studying.
❮❮ LOOKING BACK A Looking Back reference tells you what material from 
previous chapters is especially important for understanding the new 
topics. A quick review will help your learning. You will find additional 
Looking Back references within the chapter, right at the point they’re 
needed.

What is motion?
Before solving motion problems, we must 
learn to describe motion. We will use

■■ Motion diagrams
■■ Graphs
■■ Pictures

Motion concepts introduced in this 
chapter include position, velocity, and 
acceleration.

Why do we need vectors?
Many of the quantities used to describe 
 motion, such as velocity, have both a size 
and a direction. We use vectors to represent 
these quantities. This chapter introduces 
graphical techniques to add and subtract 
vectors. Chapter 3 will explore vectors in 
more detail.

Why are units and significant  
figures important?
Scientists and engineers must commu-
nicate their ideas to others. To do so, we 
have to agree about the units in which 
quantities are measured. In physics we 
use metric units, called SI units. We also  
need rules for telling others how accurately  
a quantity is known. You will learn the rules  
for using significant figures correctly.

Why is motion important?
The universe is in motion, from the smallest scale of 
 electrons and atoms to the largest scale of entire  
galaxies. We’ll start with the motion of everyday objects,  
such as cars and balls and people. Later we’ll study  
the motions of waves, of atoms in gases, and of electrons  
in circuits. Motion is the one theme that will be with us  
from the first chapter to the last.

IN THIS CHAPTER, you will learn the fundamental concepts of motion.

1

Motion takes many 
forms. The cyclists seen 
here are an example of 
translational motion.

a
u

v
u

x0 = v0x = t0 = 0

ax

x1

x
x0

Known

ax = 2.0 m/s2

Find
x1

A
u

A + B
u u

B
u

0.00620 = 6.20 * 10-3
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1.1 Motion Diagrams 25

1.1 Motion Diagrams
Motion is a theme that will appear in one form or another throughout this entire 
book. Although we all have intuition about motion, based on our experiences, some 
of the important aspects of motion turn out to be rather subtle. So rather than jumping 
immediately into a lot of mathematics and calculations, this first chapter focuses on 
visualizing motion and becoming familiar with the concepts needed to describe a 
moving object. Our goal is to lay the foundations for understanding motion.

Linear motion Circular motion Projectile motion Rotational motion

FIGURE 1.1 Four basic types of motion.

To begin, let’s define motion as the change of an object’s position with time. 
FIGURE 1.1 shows four basic types of motion that we will study in this book. The first 
three—linear, circular, and projectile motion—in which the object moves through 
space are called translational motion. The path along which the object moves, 
whether straight or curved, is called the object’s trajectory. Rotational motion 
is somewhat different because there’s movement but the object as a whole doesn’t 
change position. We’ll defer rotational motion until later and, for now, focus on 
translational motion.

Making a Motion Diagram
An easy way to study motion is to make a video of a moving object. A video camera, 
as you probably know, takes images at a fixed rate, typically 30 every second. Each 
separate image is called a frame. As an example, FIGURE 1.2 shows four frames from a 
video of a car going past. Not surprisingly, the car is in a somewhat different position 
in each frame.

Suppose we edit the video by layering the frames on top of each other, creating 
the composite image shown in FIGURE 1.3. This edited image, showing an object’s 
position at several equally spaced instants of time, is called a motion diagram. As 
the examples below show, we can define concepts such as constant speed, speeding 
up, and slowing down in terms of how an object appears in a motion diagram.

   NOTE    It’s important to keep the camera in a fixed position as the object moves by. 
Don’t “pan” it to track the moving object.

Examples of motion diagrams

Images that are equally spaced indicate an 
object moving with constant speed.

An increasing distance between the images 
shows that the object is speeding up.

A decreasing distance between the images 
shows that the object is slowing down.

FIGURE 1.2 Four frames from a video.

The same amount of time elapses
between each image and the next.

FIGURE 1.3 A motion diagram of the car 
shows all the frames simultaneously.
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26 CHAPTER 1 Concepts of Motion

   NOTE    Each chapter will have several Stop to Think questions. These questions are 
designed to see if you’ve understood the basic ideas that have been presented. The 
answers are given at the end of the book, but you should make a serious effort to 
think about these questions before turning to the answers.

1.2 Models and Modeling
The real world is messy and complicated. Our goal in physics is to brush aside many of 
the real-world details in order to discern patterns that occur over and over. For example, 
a swinging pendulum, a vibrating guitar string, a sound wave, and jiggling atoms in a 
crystal are all very different—yet perhaps not so different. Each is an example of a 
system moving back and forth around an equilibrium position. If we focus on under-
standing a very simple oscillating system, such as a mass on a spring, we’ll automati-
cally understand quite a bit about the many real-world manifestations of oscillations.

Stripping away the details to focus on essential features is a process called 
modeling. A model is a highly simplified picture of reality, but one that still captures 
the essence of what we want to study. Thus “mass on a spring” is a simple but realistic 
model of almost all oscillating systems.

Models allow us to make sense of complex situations by providing a framework for 
thinking about them. One could go so far as to say that developing and testing models 
is at the heart of the scientific process. Albert Einstein once said, “Physics should 
be as simple as possible—but not simpler.” We want to find the simplest model that 
allows us to understand the phenomenon we’re studying, but we can’t make the model 
so simple that key aspects of the phenomenon get lost.

We’ll develop and use many models throughout this textbook; they’ll be one of our 
most important thinking tools. These models will be of two types:

■■ Descriptive models: What are the essential characteristics and properties of a 
phenomenon? How do we describe it in the simplest possible terms? For example, 
the mass-on-a-spring model of an oscillating system is a descriptive model.

■■ Explanatory models: Why do things happen as they do? Explanatory models, based 
on the laws of physics, have predictive power, allowing us to test—against experi-
mental data—whether a model provides an adequate explanation of our observations.

The Particle Model
For many types of motion, such as that of balls, cars, and rockets, the motion of the 
object as a whole is not influenced by the details of the object’s size and shape. All we 
really need to keep track of is the motion of a single point on the object, so we can treat 
the object as if all its mass were concentrated into this single point. An object that can 
be represented as a mass at a single point in space is called a particle. A particle has  
no size, no shape, and no distinction between top and bottom or between front and back.

If we model an object as a particle, we can represent the object in each frame of a  
motion diagram as a simple dot rather than having to draw a full picture. FIGURE 1.4 
shows how much simpler motion diagrams appear when the object is represented as 
a particle. Note that the dots have been numbered 0, 1, 2, . . . to tell the sequence in 
which the frames were taken.

0
1

2

3

(a) Motion diagram of a rocket launch

(b) Motion diagram of a car stopping

Numbers show
the order in
which the frames
were taken.

4

0

The same amount of time elapses
between each image and the next.

1 2 3 4

FIGURE 1.4 Motion diagrams in which the 
object is modeled as a particle.

We can model an airplane’s takeoff as a 
particle (a descriptive model) undergoing 
constant acceleration (a descriptive 
model) in response to constant forces 
(an explanatory model).

STOP TO THINK 1.1 Which car is going faster, A or B? Assume there are equal intervals of time between 
the frames of both videos.

Car A Car B
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1.3 Position, Time, and Displacement 27

Treating an object as a particle is, of course, a simplification of reality—but that’s 
what modeling is all about. The particle model of motion is a simplification in which 
we treat a moving object as if all of its mass were concentrated at a single point. The 
particle model is an excellent approximation of reality for the translational motion of 
cars, planes, rockets, and similar objects.

Of course, not everything can be modeled as a particle; models have their limits. 
Consider, for example, a rotating gear. The center doesn’t move at all while each tooth is 
moving in a different direction. We’ll need to develop new models when we get to new 
types of motion, but the particle model will serve us well throughout Part I of this book.

STOP TO THINK 1.2 Three motion diagrams 
are shown. Which is a dust particle settling to the 
floor at constant speed, which is a ball dropped 
from the roof of a building, and which is a 
descending rocket slowing to make a soft landing  
on Mars?

(a) (c) 0

1

2

3

4
5

0
1

2

3

4

5

(b) 0

1

2

3

4

5

1.3 Position, Time, and Displacement
To use a motion diagram, you would like to know where the object is (i.e., its position) 
and when the object was at that position (i.e., the time). Position measurements can  
be made by laying a coordinate-system grid over a motion diagram. You can then 
measure the 1x, y2 coordinates of each point in the motion diagram. Of course, the 
world does not come with a coordinate system attached. A coordinate system is an 
artificial grid that you place over a problem in order to analyze the motion. You place 
the origin of your coordinate system wherever you wish, and different observers of a 
moving object might all choose to use different origins.

Time, in a sense, is also a coordinate system, although you may never have thought 
of time this way. You can pick an arbitrary point in the motion and label it ;t = 0 
seconds.” This is simply the instant you decide to start your clock or stopwatch, so 
it is the origin of your time coordinate. Different observers might choose to start 
their clocks at different moments. A video frame labeled ;t = 4 seconds” was taken 
4  seconds after you started your clock.

We typically choose t = 0 to represent the “beginning” of a problem, but the object 
may have been moving before then. Those earlier instants would be measured as neg-
ative times, just as objects on the x-axis to the left of the origin have negative values of 
position. Negative numbers are not to be avoided; they simply locate an event in space 
or time relative to an origin.

To illustrate, FIGURE 1.5a shows a sled sliding down a snow-covered hill. FIGURE 1.5b is  
a motion diagram for the sled, over which we’ve drawn an xy-coordinate system. You 
can see that the sled’s position is 1x3, y32 = 115 m, 15 m2 at time t3 = 3 s. Notice how 
we’ve used subscripts to indicate the time and the object’s position in a specific frame 
of the motion diagram.

   NOTE    The frame at t = 0 s is frame 0. That is why the fourth frame is labeled 3.

Another way to locate the sled is to draw its position vector: an arrow from the 
origin to the point representing the sled. The position vector is given the symbol r u. 
Figure 1.5b shows the position vector r u

3 = 121 m, 45°2. The position vector r u does not 
tell us anything different than the coordinates 1x, y2. It simply provides the informa-
tion in an alternative form.

(a)

The sled’s position in frame 3
can be specified with coordinates.

Alternatively, the position
can be specified by the
position vector.

r3 = (21 m, 45°)

(x3, y3) = (15 m, 15 m)
t3 = 3 s

u

(b)

45°

y (m)

x (m) 0

10

20

100 20 30

FIGURE 1.5 Motion diagram of a sled with 
frames made every 1 s.
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28 CHAPTER 1 Concepts of Motion

Scalars and Vectors
Some physical quantities, such as time, mass, and temperature, can be described com-
pletely by a single number with a unit. For example, the mass of an object is 6 kg 
and its temperature is 30°C. A single number (with a unit) that describes a physical 
quantity is called a scalar. A scalar can be positive, negative, or zero.

Many other quantities, however, have a directional aspect and cannot be described 
by a single number. To describe the motion of a car, for example, you must specify not 
only how fast it is moving, but also the direction in which it is moving. A quantity hav-
ing both a size (the “How far?” or “How fast?”) and a direction (the “Which way?”) is 
called a vector. The size or length of a vector is called its magnitude. Vectors will be 
studied thoroughly in Chapter 3, so all we need for now is a little basic information.

We indicate a vector by drawing an arrow over the letter that represents the quan-
tity. Thus r u and A

u
 are symbols for vectors, whereas r and A, without the arrows, are 

symbols for scalars. In handwritten work you must draw arrows over all symbols that 
represent vectors. This may seem strange until you get used to it, but it is very important 
because we will often use both r and r u, or both A and A

u
, in the same problem, and they 

mean different things! Note that the arrow over the symbol always points to the right, 
regardless of which direction the actual vector points. Thus we write r u or A

u
, never r z or A

z
.

Displacement
We said that motion is the change in an object’s position with time, but how do we 
show a change of position? A motion diagram is the perfect tool. FIGURE 1.6 is the 
motion diagram of a sled sliding down a snow-covered hill. To show how the sled’s 
position changes between, say, t3 = 3 s and t4 = 4 s, we draw a vector arrow between 
the two dots of the motion diagram. This vector is the sled’s displacement, which  
is given the symbol ∆r u. The Greek letter delta 1∆2 is used in math and science to 
indicate the change in a quantity. In this case, as we’ll show, the displacement ∆r u is 
the change in an object’s position.

   NOTE    ∆r u is a single symbol. It shows “from here to there.” You cannot cancel out 
or remove the ∆.

Notice how the sled’s position vector r u
4 is a combination of its early position r u

3 with  
the displacement vector ∆r u. In fact, r u

4 is the vector sum of the vectors r u
3 and  

∆r u. This is written

    r u
4 = r u

3 + ∆r u (1.1)

Here we’re adding vector quantities, not numbers, and vector addition differs from “reg-
ular” addition. We’ll explore vector addition more thoroughly in Chapter 3, but for now 
you can add two vectors A

u
 and B

u
 with the three-step procedure of ❮❮■TACTICS BOX 1.1.

The sled’s displacement between
t3 = 3 s and t4 = 4 s is the vector 
drawn from one postion to the next.

t3 = 3 s

t4 = 4 s

r4
u

r3
u

∆r
u

y (m)

x (m)0

10

20

100 20 30

FIGURE 1.6 The sled undergoes a 
displacement ∆r u from position r u

3 
to position r u

4.

TACTICS BOX 1.1

Vector addition
1

2

3

To add B to A: Draw A.

Place the tail of
B at the tip of A.

Draw an arrow from
the tail of A to the
tip of B. This is
vector A + B. A + B

A
u

B
u

A
u

A
u

A
u

B
u

u

u

u

u

u

u

u

u u

uu

B
u
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1.3 Position, Time, and Displacement 29

If you examine Figure 1.6, you’ll see that the steps of Tactics Box 1.1 are exactly 
how r u

3 and ∆r u are added to give r u
4.

   NOTE    A vector is not tied to a particular location on the page. You can move a 
vector around as long as you don’t change its length or the direction it points. Vector 
B
u

 is not changed by sliding it to where its tail is at the tip of A
u

.

Equation 1.1 told us that r u
4 = r u

3 + ∆r u. This is easily rearranged to give a more 
precise definition of displacement: The displacement 𝚫ru of an object as it moves 
from one position rua to a different position rub is

 ∆ru = rub - rua (1.2)

That is, displacement is the change (i.e., the difference) in position. Graphically, 𝚫ru 
is a vector arrow drawn from position rua to position rub.

Motion Diagrams with Displacement Vectors
The first step in analyzing a motion diagram is to determine all of the displacement 
vectors, which are simply the arrows connecting each dot to the next. Label each 
arrow with a vector symbol ∆r u

n, starting with n = 0. FIGURE 1.7 shows the motion dia-
grams of Figure 1.4 redrawn to include the displacement vectors.

   NOTE    When an object either starts from rest or ends at rest, the initial or final dots 
are as close together as you can draw the displacement vector arrow connecting 
them. In addition, just to be clear, you should write “Start” or “Stop” beside the 
initial or final dot. It is important to distinguish stopping from merely slowing down.

Now we can conclude, more precisely than before, that, as time proceeds:

■■ An object is speeding up if its displacement vectors are increasing in length.
■■ An object is slowing down if its displacement vectors are decreasing in length.

(a) Rocket launch

(b) Car stopping 

Start

Stop

∆r3

∆r2

∆r1

∆r0

∆r1 ∆r2 ∆r3

u

u

u

u

∆r0
u u u u

FIGURE 1.7 Motion diagrams with the 
displacement vectors.

Alice is sliding along a smooth, icy road on her sled when she suddenly runs headfirst  
into a large, very soft snowbank that gradually brings her to a halt. Draw a motion 
diagram for Alice. Show and label all displacement vectors.

MODEL The details of Alice and the sled—their size, shape, color, and so on—are not 
relevant to understanding their overall motion. So we can model Alice and the sled as 
one particle.

VISUALIZE FIGURE 1.8 shows a motion diagram. The problem statement suggests that 
the sled’s speed is very nearly constant until it hits the snowbank. Thus the displacement 
vectors are of equal length as Alice slides along the icy road. She begins slowing when 
she hits the snowbank, so the displacement vectors then get shorter until the sled stops. 
We’re told that her stop is gradual, so we want the vector lengths to get shorter gradually 
rather than suddenly.

EXAMPLE 1.1 ■ Headfirst into the snow

The displacement vectors
are getting shorter, so she’s
slowing down.

Stop

Hits snowbank

This is motion at constant speed
because the displacement vectors 
are a constant length.

∆r0 ∆r1 ∆r2 ∆r3
u u u u ∆r4

u ∆r5
u ∆r6

u

FIGURE 1.8 The motion diagram of Alice and the sled.
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30 CHAPTER 1 Concepts of Motion

Time Interval
It’s also useful to consider a change in time. For example, the clock readings of two 
frames of a video might be t1 and t2. The specific values are arbitrary because they 
are timed relative to an arbitrary instant that you chose to call t = 0. But the time 
interval ∆t = t2 - t1 is not arbitrary. It represents the elapsed time for the object to 
move from one position to the next.

The time interval 𝚫t ∙ tb ∙ ta measures the elapsed time as an object moves 
from position rua at time ta to position rub at time tb. The value of 𝚫t is independent 
of the specific clock used to measure the times.

To summarize the main idea of this section, we have added coordinate systems 
and clocks to our motion diagrams in order to measure when each frame was exposed 
and where the object was located at that time. Different observers of the motion may 
choose different coordinate systems and different clocks. However, all observers find 
the same values for the displacements ∆r u and the time intervals ∆t because these are 
independent of the specific coordinate system used to measure them.

1.4 Velocity
It’s no surprise that, during a given time interval, a speeding bullet travels farther than 
a speeding snail. To extend our study of motion so that we can compare the bullet to 
the snail, we need a way to measure how fast or how slowly an object moves.

One quantity that measures an object’s fastness or slowness is its average speed, 
defined as the ratio

   average speed =
distance traveled

time interval spent traveling
=

d
∆t

 (1.3)

If you drive 15 miles (mi) in 30 minutes 11
2 h2, your average speed is

   average speed =
15 mi

1
2 h

= 30 mph (1.4)

Although the concept of speed is widely used in our day-to-day lives, it is not a 
sufficient basis for a science of motion. To see why, imagine you’re trying to land a jet 
plane on an aircraft carrier. It matters a great deal to you whether the aircraft carrier 
is moving at 20 mph (miles per hour) to the north or 20 mph to the east. Simply know-
ing that the ship’s speed is 20 mph is not enough information!

It’s the displacement ∆r u, a vector quantity, that tells us not only the distance trav-
eled by a moving object, but also the direction of motion. Consequently, a more useful 
ratio than d /∆t is the ratio ∆r u/∆t. In addition to measuring how fast an object moves, 
this ratio is a vector that points in the direction of motion.

It is convenient to give this ratio a name. We call it the average velocity, and it 
has the symbol v 

u
avg. The average velocity of an object during the time interval 𝚫  t, 

in which the object undergoes a displacement 𝚫ru, is the vector

   v 

u
avg =

∆r u

∆t
 (1.5)

An object’s average velocity vector points in the same direction as the displace-
ment vector 𝚫ru. This is the direction of motion.

   NOTE    In everyday language we do not make a distinction between speed and 
velocity, but in physics the distinction is very important. In particular, speed is 
simply “How fast?” whereas velocity is “How fast, and in which direction?” As we 
go along we will be giving other words more precise meanings in physics than they 
have in everyday language.

A stopwatch is used to measure a time 
interval.

The victory goes to the runner with the 
highest average speed.
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1.4 Velocity 31

As an example, FIGURE 1.9a shows two ships that move 5 miles in 15 minutes. Using 
Equation 1.5 with ∆t = 0.25 h, we find

 v 

u
avg  A = (20 mph, north) 

 v 

u
avg  B = (20 mph, east) 

(1.6)

Both ships have a speed of 20 mph, but their velocities differ. Notice how the velocity 
vectors in FIGURE 1.9b point in the direction of motion.

   NOTE    Our goal in this chapter is to visualize motion with motion diagrams. Strictly 
speaking, the vector we have defined in Equation 1.5, and the vector we will show on 
motion diagrams, is the average velocity v 

u
avg. But to allow the motion diagram to be 

a useful tool, we will drop the subscript and refer to the average velocity as simply v 

u. 
Our definitions and symbols, which somewhat blur the distinction between average 
and instantaneous quantities, are adequate for visualization purposes, but they’re not 
the final word. We will refine these definitions in Chapter 2, where our goal will be  
to develop the mathematics of motion.

Motion Diagrams with Velocity Vectors
The velocity vector points in the same direction as the displacement ∆r u, and the 
length of v 

u is directly proportional to the length of ∆r u. Consequently, the vectors 
connecting each dot of a motion diagram to the next, which we previously labeled as 
displacements, could equally well be identified as velocity vectors.

This idea is illustrated in FIGURE 1.10, which shows four frames from the motion 
diagram of a tortoise racing a hare. The vectors connecting the dots are now labeled 
as velocity vectors v 

u. The length of a velocity vector represents the average speed 
with which the object moves between the two points. Longer velocity vectors indi-
cate faster motion. You can see that the hare moves faster than the tortoise.

Notice that the hare’s velocity vectors do not change; each has the same length and 
direction. We say the hare is moving with constant velocity. The tortoise is also mov-
ing with its own constant velocity.

vavg A = (20 mph, north)
u

(a)

vavg B = (20 mph, east)

(b)

A

B

∆rA = (5 mi, north)

∆rB = (5 mi, east)

The velocity vectors point
in the direction of motion.

u

u

u

FIGURE 1.9 The displacement vectors and 
velocities of ships A and B.

v1
u

v2
u

v0
u

v1
u

v2
u

v0
u

The length of each arrow represents
the average speed. The hare moves
faster than the tortoise.

These are average velocity vectors.

Hare

Tortoise

FIGURE 1.10 Motion diagram of the 
tortoise racing the hare.

EXAMPLE 1.2 ■ Accelerating up a hill

The light turns green and a car accelerates, starting from rest, up a 20° hill. Draw a motion 
diagram showing the car’s velocity.

MODEL Use the particle model to represent the car as a dot.

VISUALIZE The car’s motion takes place along a straight line, but the line is neither hor-
izontal nor vertical. A motion diagram should show the object moving with the correct 
orientation—in this case, at an angle of 20°. FIGURE 1.11 shows several frames of the 
motion diagram, where we see the car speeding up. The car starts from rest, so the first 
arrow is drawn as short as possible and the first dot is labeled “Start.” The displacement 
vectors have been drawn from each dot to the next, but then they are identified and labeled 
as average velocity vectors v 

u.

v
u

This labels the whole row of
vectors as velocity vectors.

The velocity vectors
are getting longer, so
the car is speeding up.Start

FIGURE 1.11 Motion diagram of a car accelerating up a hill.
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32 CHAPTER 1 Concepts of Motion

1.5 Linear Acceleration
Position, time, and velocity are important concepts, and at first glance they might 
appear to be sufficient to describe motion. But that is not the case. Sometimes an 
object’s velocity is constant, as it was in Figure 1.10. More often, an object’s velocity 
changes as it moves, as in Figures 1.11 and 1.12. We need one more motion concept to 
describe a change in the velocity.

Because velocity is a vector, it can change in two possible ways:

1. The magnitude can change, indicating a change in speed; or
2. The direction can change, indicating that the object has changed direction.

We will concentrate for now on the first case, a change in speed. The car accel-
erating up a hill in Figure 1.11 was an example in which the magnitude of the  
velocity vector changed but not the direction. We’ll return to the second case in 
Chapter 4.

When we wanted to measure changes in position, the ratio ∆r u/∆t was useful. This 
ratio is the rate of change of position. By analogy, consider an object whose velocity 
changes from v 

u
a to v 

u
b during the time interval ∆t. Just as ∆r u = r u

b - r u
a is the change 

of position, the quantity ∆v 

u = v 

u
b - v 

u
a is the change of velocity. The ratio ∆v 

u
 /∆t is 

then the rate of change of velocity. It has a large magnitude for objects that speed up 
quickly and a small magnitude for objects that speed up slowly.

Marcos kicks a soccer ball. It rolls along the ground until stopped 
by Jose. Draw a motion diagram of the ball.

MODEL This example is typical of how many problems in science 
and engineering are worded. The problem does not give a clear 
statement of where the motion begins or ends. Are we interested in 
the motion of the ball just during the time it is rolling between Mar-
cos and Jose? What about the motion as Marcos kicks it (ball rap-
idly speeding up) or as Jose stops it (ball rapidly slowing down)? 
The point is that you will often be called on to make a reasonable 
interpretation of a problem statement. In this problem, the details 
of kicking and stopping the ball are complex. The motion of the 
ball across the ground is easier to describe, and it’s a motion you 
might expect to learn about in a physics class. So our interpretation 
is that the motion diagram should start as the ball leaves Marcos’s 
foot (ball already moving) and should end the instant it touches 

Jose’s foot (ball still moving). In between, the ball will slow down 
a little. We will model the ball as a particle.

VISUALIZE With this interpretation in mind, FIGURE 1.12 shows 
the motion diagram of the ball. Notice how, in contrast to the car 
of Figure 1.11, the ball is already moving as the motion diagram 
video begins. As before, the average velocity vectors are found 
by connecting the dots. You can see that the average velocity vec-
tors get shorter as the ball slows. Each v  

u is different, so this is not 
constant-velocity motion.

EXAMPLE 1.3 ■ A rolling soccer ball

v
u

Marcos Jose

The velocity vectors are gradually getting shorter.

FIGURE 1.12 Motion diagram of a soccer ball rolling from 
Marcos to Jose.

STOP TO THINK 1.3 A particle moves from position 1 to position 2 during the time 
interval ∆t. Which vector shows the particle’s average velocity?

(e)(d)(c)(b)(a)

1

2

y

x
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1.5 Linear Acceleration 33

The ratio ∆vu  /∆t is called the average acceleration, and its symbol is auavg. The 
average acceleration of an object during the time interval 𝚫t, in which the object’s 
velocity changes by 𝚫v 

u, is the vector

   auavg =
∆v 

u

∆t
 (1.7)

The average acceleration vector points in the same direction as the vector 𝚫v 

u.
Acceleration is a fairly abstract concept. Yet it is essential to develop a good in-

tuition about acceleration because it will be a key concept for understanding why 
objects move as they do. Motion diagrams will be an important tool for developing 
that intuition.

   NOTE    As we did with velocity, we will drop the subscript and refer to the average 
acceleration as simply au. This is adequate for visualization purposes, but not the 
final word. We will refine the definition of acceleration in Chapter 2.

Finding the Acceleration Vectors on a Motion Diagram
Perhaps the most important use of a motion diagram is to determine the acceleration 
vector au at each point in the motion. From its definition in Equation 1.7, we see that  
au points in the same direction as ∆v 

u, the change of velocity, so we need to find the 
direction of ∆v 

u. To do so, we rewrite the definition ∆v 

u = v 

u
b - v 

u
a as v 

u
b = v 

u
a + ∆v 

u. 
This is now a vector addition problem: What vector must be added to v 

u
a to turn it into 

v 

u
b? Tactics Box 1.2 shows how to do this.

The Audi TT accelerates from 0 to 60 mph 
in 6 s.

TACTICS BOX 1.2

Finding the acceleration vector

a
u

3

1

Return to the original motion 
diagram. Draw a vector at the 
middle dot in the direction of
∆v; label it a. This is the average
acceleration at the midpoint
between va and vb. 

Draw velocity vectors va and vb with
their tails together.

2 Draw the vector from the tip of va

to the tip of vb. This is ∆v because
vb = va + ∆v.

vb

va

vb

va

u

u

u

va
u

u

u

vb
u

va
u

vb
u

uu

u u

To find the acceleration as the
velocity changes from va to vb,
we must determine the change
of velocity ∆v = vb - va.

u u

u u u

u

uu

uuu

u u

∆v

Exercises 21–24 

Many Tactics Boxes will refer you to exercises in the 
Student Workbook where you can practice the new skill.

M01B_KNIG8221_05_GE_C01.indd   33 02/06/2022   15:50



34 CHAPTER 1 Concepts of Motion

Notice that the acceleration vector goes beside the middle dot, not beside the veloc-
ity vectors. This is because each acceleration vector is determined by the difference 
between the two velocity vectors on either side of a dot. The length of au does not have 
to be the exact length of ∆v 

u; it is the direction of au that is most important.
The procedure of ❮❮■TACTICS BOX 1.2 can be repeated to find au at each point in the 

motion diagram. Note that we cannot determine au at the first and last points because 
we have only one velocity vector and can’t find ∆v 

u.

The Complete Motion Diagram
You’ve now seen two Tactics Boxes. Tactics Boxes to help you accomplish specific 
tasks will appear in nearly every chapter in this book. We’ll also, where appropriate, 
provide Problem-Solving Strategies.

PROBLEM-SOLVING STRATEGY 1.1

Motion diagrams

MODEL Determine whether it is appropriate to model the moving object as a parti-
cle. Make simplifying assumptions when interpreting the problem statement.

VISUALIZE A complete motion diagram consists of:
■■ The position of the object in each frame of the video, shown as a dot. Use five 
or six dots to make the motion clear but without overcrowding the picture. The 
motion should change gradually from one dot to the next, not drastically. More 
complex motions will need more dots.

■■ The average velocity vectors, found by connecting each dot in the motion dia-
gram to the next with a vector arrow. There is one velocity vector linking each 
two position dots. Label the row of velocity vectors v 

u.

■■ The average acceleration vectors, found using Tactics Box 1.2. There is one 
acceleration vector linking each two velocity vectors. Each acceleration vector 
is drawn at the dot between the two velocity vectors it links. Use 0

u
 to indicate a 

point at which the acceleration is zero. Label the row of acceleration vectors au.

STOP TO THINK 1.4 A particle undergoes acceleration au while 
moving from point 1 to point 2. Which of the choices shows the 
most likely velocity vector v  

u
2 as the particle leaves point 2?

2

(a)

2

(c)

2

(d)

v22

(b)

u
v2
u

v2
u

v2
u

a
u

v1
u

2 1

Examples of Motion Diagrams
Let’s look at some examples of the full strategy for drawing motion diagrams.
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1.5 Linear Acceleration 35

A spaceship carrying the first astronauts to Mars descends safely 
to the surface. Draw a motion diagram for the last few seconds of 
the descent.

MODEL The spaceship is small in comparison with the distance 
traveled, and the spaceship does not change size or shape, so it’s 
reasonable to model the spaceship as a particle. We’ll assume that 
its motion in the last few seconds is straight down. The problem 
ends as the spacecraft touches the surface.

VISUALIZE FIGURE 1.13 shows a complete motion diagram as the 
spaceship descends and slows, using its rockets, until it comes  
to rest on the surface. Notice how the dots get closer together as  
it slows. The inset uses the steps of Tactics Box 1.2 (numbered 
circles) to show how the acceleration vector au is determined at one 
point. All the other acceleration vectors will be similar because  
for each pair of velocity vectors the earlier one is longer than the 
later one.

EXAMPLE 1.4 ■ The first astronauts land on Mars

v and a point in opposite 
directions. The object is 
slowing down.

v
u

u

a
u

u

a
u

∆v

va
u

va
u

vb
u

vb
u

Stops

1

2

3

u

FIGURE 1.13 Motion diagram of a spaceship landing on Mars.

A skier glides along smooth, horizontal snow at constant speed, then speeds up going 
down a hill. Draw the skier’s motion diagram.

MODEL Model the skier as a particle. It’s reasonable to assume that the downhill slope is a 
straight line. Although the motion as a whole is not linear, we can treat the skier’s motion 
as two separate linear motions.

VISUALIZE FIGURE 1.14 shows a complete motion diagram of the skier. The dots are 
equally spaced for the horizontal motion, indicating constant speed; then the dots get 
farther apart as the skier speeds up going down the hill. The insets show how the average 
acceleration vector au is determined for the horizontal motion and along the slope. All the 
other acceleration vectors along the slope will be similar to the one shown because each 
velocity vector is longer than the preceding one. Notice that we’ve explicitly written 0

u
 

for the acceleration beside the dots where the velocity is constant. The acceleration at the 
point where the direction changes will be considered in Chapter 4.

EXAMPLE 1.5 ■ Skiing through the woods

∆v = 0

0
u

0
u

u

v
u

a
u

a
u

a
u

va
u

vc
u

vb
u

vb
u

vd
u

vd
u

v and a point in the same direction. 
The object is speeding up.

va
u

vc
u

u ∆v
u

u u

FIGURE 1.14 Motion diagram of a skier.
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36 CHAPTER 1 Concepts of Motion

Notice something interesting in Figures 1.13 and 1.14. Where the object is speed-
ing up, the acceleration and velocity vectors point in the same direction. Where 
the object is slowing down, the acceleration and velocity vectors point in opposite 
directions. These results are always true for motion in a straight line. For motion 
along a line:

■■ An object is speeding up if and only if v u and au point in the same direction.
■■ An object is slowing down if and only if v u and au point in opposite directions.
■■ An object’s velocity is constant if and only if au ∙ 0

u
.

   NOTE    In everyday language, we use the word accelerate to mean “speed up” and the 
word decelerate to mean “slow down.” But speeding up and slowing down are both 
changes in the velocity and consequently, by our definition, both are accelerations. 
In physics, acceleration refers to changing the velocity, no matter what the change 
is, and not just to speeding up.

Draw the motion diagram of a ball tossed straight up in the air.

MODEL This problem calls for some interpretation. Should we in-
clude the toss itself, or only the motion after the ball is released? 
What about catching it? It appears that this problem is really con-
cerned with the ball’s motion through the air. Consequently, we 
begin the motion diagram at the instant that the tosser releases the 
ball and end the diagram at the instant the ball touches his hand. We 
will consider neither the toss nor the catch. And, of course, we will 
model the ball as a particle.

VISUALIZE We have a slight difficulty here because the ball retraces 
its route as it falls. A literal motion diagram would show the upward 
motion and downward motion on top of each other, leading to con-
fusion. We can avoid this difficulty by horizontally separating the 
upward motion and downward motion diagrams. This will not af-
fect our conclusions because it does not change any of the vectors. 
FIGURE 1.15 shows the motion diagram drawn this way. Notice that 
the very top dot is shown twice—as the end point of the upward 
motion and the beginning point of the downward motion.

The ball slows down as it rises. You’ve learned that the accel-
eration vectors point opposite the velocity vectors for an object 
that is slowing down along a line, and they are shown accordingly. 
Similarly, au and vu point in the same direction as the falling ball 
speeds up. Notice something interesting: The acceleration vectors 
point downward both while the ball is rising and while it is fall-
ing. Both “speeding up” and “slowing down” occur with the same 
acceleration vector. This is an important conclusion, one worth 
pausing to think about.

Now look at the top point on the ball’s trajectory. The velocity 
vectors point upward but are getting shorter as the ball approaches 
the top. As the ball starts to fall, the velocity vectors point down-
ward and are getting longer. There must be a moment—just an 
instant as vu switches from pointing up to pointing down—when 
the velocity is zero. Indeed, the ball’s velocity is zero for an in-
stant at the precise top of the motion!

But what about the acceleration at the top? The inset shows 
how the average acceleration is determined from the last upward 
velocity before the top point and the first downward velocity. We 

find that the acceleration at the top is pointing downward, just as it 
does elsewhere in the motion.

Many people expect the acceleration to be zero at the highest 
point. But the velocity at the top point is changing—from up to 
down. If the velocity is changing, there must be an acceleration. 
A downward-pointing acceleration vector is needed to turn the ve-
locity vector from up to down. Another way to think about this is 
to note that zero acceleration would mean no change of velocity. 
When the ball reached zero velocity at the top, it would hang there 
and not fall if the acceleration were also zero!

EXAMPLE 1.6 ■ Tossing a ball

v
u

v
u

a
u

a
u

a
u

a
u

a
u

a
u

∆v
u

∆v
u

∆v
u

va

ve

vc
u

vb
u

vf
u

vb
u

vf
u

vc
u

ve
u

va
u

vd
u

Finding a while
going down

Finding a while
going up

u

u

For clarity, we displace the upward and downward 
motions. They really occur along the same line.

The topmost point is 
shown twice for clarity.

The acceleration at
the top is not zero.

Finding a at the top
u

vd
u

u

u

FIGURE 1.15 Motion diagram of a ball tossed straight up in the air.
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1.6 Motion in One Dimension
An object’s motion can be described in terms of three fundamental quantities: its posi-
tion r u, velocity v 

u, and acceleration au. These are vectors, but for motion in one dimen-
sion, the vectors are restricted to point only “forward” or “backward.” Consequently, 
we can describe one-dimensional motion with the simpler quantities x, vx  , and ax 
(or y, vy  , and ay). However, we need to give each of these quantities an explicit sign, 
positive or negative, to indicate whether the position, velocity, or acceleration vector 
points forward or backward.

Determining the Signs of Position, Velocity,  
and Acceleration
Position, velocity, and acceleration are measured with respect to a coordinate system, 
a grid or axis that you impose on a problem to analyze the motion. We will find it 
convenient to use an x-axis to describe both horizontal motion and motion along an 
inclined plane. A y-axis will be used for vertical motion. A coordinate axis has two 
essential features:

1. An origin to define zero; and
2. An x or y label (with units) at the positive end of the axis.

   NOTE    In this textbook, we will follow the convention that the positive end of an 
x-axis is to the right and the positive end of a y-axis is up. The signs of position, 
velocity, and acceleration are based on this convention.

TACTICS BOX 1.3

Determining the sign of the position, velocity, and acceleration

a
u

a
u

a
u

a
u

v
u

v
u

v
u

v
u

x x 7 0

y 7 0 y 6 0

Position to right of origin.

Position above origin. Position below origin.

vy 7 0 vy 6 0

Direction of motion is up. Direction of motion is down.

ay 7 0 ay 6 0

Acceleration vector points up. Acceleration vector points down.

Position to left of origin.

Direction of motion is to the right.

Direction of motion is to the left.

Acceleration vector points to the right.

Acceleration vector points to the left.

x 6 0

vx 7 0

vx 6 0

ax 7 0

ax 6 0

0

y

0

y

0
x

0

The sign of position (x or y) tells us where an object is.

The sign of velocity (vx or vy) tells us which direction 
the object is moving.

The sign of acceleration (ax or ay) tells us which way 
the acceleration vector points, not whether the object 
is speeding up or slowing down.

Exercises 30–31 
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38 CHAPTER 1 Concepts of Motion

Acceleration is where things get a bit tricky. A natural tendency is to think that a 
positive value of ax or ay describes an object that is speeding up while a negative value 
describes an object that is slowing down (decelerating). However, this interpretation 
does not work.

Acceleration is defined as auavg = ∆vu  /∆t. The direction of au can be determined by 
using a motion diagram to find the direction of ∆v 

u. The one-dimensional acceleration 
ax (or ay) is then positive if the vector au points to the right (or up), negative if au points 
to the left (or down).

FIGURE 1.16 shows that this method for determining the sign of a does not con-
form to the simple idea of speeding up and slowing down. The object in Figure 1.16a 
has a positive acceleration 1ax 7 02 not because it is speeding up but because the 
vector au points in the positive direction. Compare this with the motion diagram of 
Figure 1.16b. Here the object is slowing down, but it still has a positive acceleration 
1ax 7 02 because au points to the right.

In the previous section, we found that an object is speeding up if v 

u and au point 
in the same direction, slowing down if they point in opposite directions. For 
one-dimensional motion this rule becomes:

■■ An object is speeding up if and only if vx and ax have the same sign.
■■ An object is slowing down if and only if vx and ax have opposite signs.
■■ An object’s velocity is constant if and only if ax = 0.

Notice how the first two of these rules are at work in Figure 1.16.

Position-versus-Time Graphs
FIGURE 1.17 is a motion diagram, made at 1 frame per minute, of a student walking to 
school. You can see that she leaves home at a time we choose to call t = 0 min and 
makes steady progress for a while. Beginning at t = 3 min there is a period where the 
distance traveled during each time interval becomes less—perhaps she slowed down 
to speak with a friend. Then she picks up the pace, and the distances within each 
interval are longer.

a
u

v
u

a
u

v
u

x
x 7 0 vx 6 0 ax 7 00

x
x 7 0 vx 7 0 ax 7 00

(a) Speeding up to the right

(b) Slowing down to the left

FIGURE 1.16 One of these objects is 
speeding up, the other slowing down, but 
they both have a positive acceleration ax.

u
v

x (m)
0 100

1 frame per minute

200 300 400 500

t = 0 min

FIGURE 1.17 The motion diagram of a student walking to school and a coordinate axis for 
making measurements.

TABLE 1.1 Measured positions of a 
student walking to school

Time  
t (min)

Position  
x (m)

Time  
t (min)

Position  
x (m)

0   0 5 220

1  60 6 240

2 120 7 340

3 180 8 440

4 200 9 540

Figure 1.17 includes a coordinate axis, and you can see that every dot in a motion 
diagram occurs at a specific position. TABLE 1.1 shows the student’s positions at dif-
ferent times as measured along this axis. For example, she is at position x = 120 m  
at t = 2 min.

The motion diagram is one way to represent the student’s motion. Another is to 
make a graph of the measurements in Table 1.1. FIGURE 1.18a is a graph of x versus t for 
the student. The motion diagram tells us only where the student is at a few discrete 
points of time, so this graph of the data shows only points, no lines.

   NOTE    A graph of “a versus b” means that a is graphed on the vertical axis and b 
on the horizontal axis. Saying “graph a versus b” is really a shorthand way of saying 
“graph a as a function of b.”
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1.7 Solving Problems in Physics 39

However, common sense tells us the following. First, the student was some-
where specific at all times. That is, there was never a time when she failed to have 
a well-defined position, nor could she occupy two positions at one time. Second, the 
student moved continuously through all intervening points of space. She could not go 
from x = 100 m to x = 200 m without passing through every point in between. It is 
thus quite reasonable to believe that her motion can be shown as a continuous line pass-
ing through the measured points, as shown in FIGURE 1.18b. A continuous line or curve 
showing an object’s position as a function of time is called a position-versus-time 
graph or, sometimes, just a position graph.

   NOTE    A graph is not a “picture” of the motion. The student is walking along a 
straight line, but the graph itself is not a straight line. Further, we’ve graphed her 
position on the vertical axis even though her motion is horizontal. Graphs are 
abstract representations of motion. We will place significant emphasis on the 
process of interpreting graphs, and many of the exercises and problems will give you 
a chance to practice these skills.

t (min)

t (min)

x (m)

x (m)

0 2 4 6 8 10

600

400

200

0

0 2 4 6 8 10

600

400

200

0

(a)

(b)

Dots show the student’s position
at discrete instants of time.

A continuous line shows her
position at all instants of time.

FIGURE 1.18 Position graphs of the 
student’s motion.

The graph in FIGURE 1.19a represents the motion of a car along a 
straight road. Describe the motion of the car.

MODEL We’ll model the car as a particle with a precise position at 
each instant.

VISUALIZE As FIGURE 1.19b shows, the graph represents a car that 
travels to the left for 30 minutes, stops for 10 minutes, then travels 
back to the right for 40 minutes.

EXAMPLE 1.7 ■ Interpreting a position graph

t (min)

x (km)

20 40 60 80

(a)

20

10

0

-10

-20

t (min)

x (km)

20 40 60 80

(b)

20

10

0

-10

-20

1. At t = 0 min, the car is 10 km
    to the right of the origin.

5. The car reaches the
 origin at t = 80 min.

4. The car starts moving back
 to the right at t = 40 min.

2. The value of x decreases for
 30 min, indicating that the car
 is moving to the left.

3. The car stops for 10 min at a position
    20 km to the left of the origin.

FIGURE 1.19 Position-versus-time graph of a car.

1.7 Solving Problems in Physics
Physics is not mathematics. Math problems are clearly stated, such as “What is 
2 + 2?< Physics is about the world around us, and to describe that world we must use 
language. Now, language is wonderful—we couldn’t communicate without it—but 
language can sometimes be imprecise or ambiguous.

The challenge when reading a physics problem is to translate the words into 
symbols that can be manipulated, calculated, and graphed. The translation from 
words to symbols is the heart of problem solving in physics. This is the point 
where ambiguous words and phrases must be clarified, where the imprecise must 
be made precise, and where you arrive at an understanding of exactly what the 
question is asking.
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Using Symbols
Symbols are a language that allows us to talk with precision about the relationships 
in a problem. As with any language, we all need to agree to use words or symbols in 
the same way if we want to communicate with each other. Many of the ways we use 
symbols in science and engineering are somewhat arbitrary, often reflecting historical 
roots. Nonetheless, practicing scientists and engineers have come to agree on how to 
use the language of symbols. Learning this language is part of learning physics.

We will use subscripts on symbols, such as x3, to designate a particular point in the 
problem. Scientists usually label the starting point of the problem with the subscript 
“0,” not the subscript “1” that you might expect. When using subscripts, make sure 
that all symbols referring to the same point in the problem have the same numerical 
subscript. To have the same point in a problem characterized by position x1 but veloc-
ity v2x is guaranteed to lead to confusion!

Drawing Pictures
You may have been told that the first step in solving a physics problem is to “draw a 
picture,” but perhaps you didn’t know why, or what to draw. The purpose of drawing a 
picture is to aid you in the words-to-symbols translation. Complex problems have far 
more information than you can keep in your head at one time. Think of a picture as a 
“memory extension,” helping you organize and keep track of vital information.

Although any picture is better than none, there really is a method for draw-
ing pictures that will help you be a better problem solver. It is called the pictorial 
representation of the problem. We’ll add other pictorial representations as we go 
along, but the following procedure is appropriate for motion problems.

TACTICS BOX 1.4

Drawing a pictorial representation
1  Draw a motion diagram. The motion diagram develops your intuition for the 

motion.
2  Establish a coordinate system. Select your axes and origin to match the mo-

tion. For one-dimensional motion, you want either the x-axis or the y-axis  
parallel to the motion. The coordinate system determines whether the signs of 
v and a are positive or negative.

3  Sketch the situation. Not just any sketch. Show the object at the beginning of the 
motion, at the end, and at any point where the character of the motion changes. 
Show the object, not just a dot, but very simple drawings are adequate.

4  Define symbols. Use the sketch to define symbols representing quantities such as 
position, velocity, acceleration, and time. Every variable used later in the mathe-
matical solution should be defined on the sketch. Some will have known values, 
others are initially unknown, but all should be given symbolic names.

5  List known information. Make a table of the quantities whose values you can 
determine from the problem statement or that can be found quickly with sim-
ple geometry or unit conversions. Some quantities are implied by the problem, 
rather than explicitly given. Others are determined by your choice of coordi-
nate system.

6  Identify the desired unknowns. What quantity or quantities will allow you 
to answer the question? These should have been defined as symbols in step 4. 
Don’t list every unknown, only the one or two needed to answer the question.

It’s not an overstatement to say that a well-done pictorial representation of the 
problem will take you halfway to the solution. The following example illustrates how 
to construct a pictorial representation for a problem that is typical of problems you 
will see in the next few chapters.
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1.7 Solving Problems in Physics 41

Draw a pictorial representation for the following problem: A rocket 
sled accelerates horizontally at 50 m/s2 for 5.0 s, then coasts for 
3.0 s. What is the total distance traveled?

VISUALIZE FIGURE 1.20 is the pictorial representation. The motion 
diagram shows an acceleration phase followed by a coasting phase. 
Because the motion is horizontal, the appropriate coordinate sys-
tem is an x-axis. We’ve chosen to place the origin at the starting 
point. The motion has a beginning, an end, and a point where the 
motion changes from accelerating to coasting, and these are the 
three sled positions sketched in the figure. The quantities x, vx 

, and 
t are needed at each of three points, so these have been defined on 

the sketch and distinguished by subscripts. Accelerations are asso-
ciated with intervals between the points, so only two accelerations 
are defined. Values for three quantities are given in the problem 
statement, although we need to use the motion diagram, where we 
find that au points to the right, to know that a0x = +50 m/s2 rather 
than -50 m/s2. The values x0 = 0 m and t0 = 0 s are choices we 
made when setting up the coordinate system. The value v0x = 0 m/s 
is part of our interpretation of the problem. Finally, we identify x2 
as the quantity that will answer the question. We now understand 
quite a bit about the problem and would be ready to start a quanti-
tative analysis.

EXAMPLE 1.8 ■ Drawing a pictorial representation

5

4

2

1

a
u
v
u

0
u

0
u

y

x

a0x

x0, v0x , t0 x1, v1x , t1 x2, v2x , t2

a1x

Sketch the situation.

Establish a
coordinate system.

Define symbols.

List known information.

Identify desired unknown. Find

t0 = 0 s

x2

a0x = 50 m/s2

a1x = 0 m/s2

t1 = 5.0 s

t2 = t1 + 3.0 s = 8.0 s

Known
x0 = 0 m  v0x = 0 m/s

Draw a
motion diagram.

3

6

FIGURE 1.20 A pictorial representation.

A new building requires careful planning. 
The architect’s visualization and drawings 
have to be complete before the detailed 
procedures of construction get under 
way. The same is true for solving prob-
lems in physics.

We didn’t solve the problem; that is not the purpose of the pictorial representation. The 
pictorial representation is a systematic way to go about interpreting a problem and getting 
ready for a mathematical solution. Although this is a simple problem, and you probably 
know how to solve it if you’ve taken physics before, you will soon be faced with much 
more challenging problems. Learning good problem-solving skills at the beginning, while 
the problems are easy, will make them second nature later when you really need them.

Representations
A picture is one way to represent your knowledge of a situation. You could also rep-
resent your knowledge using words, graphs, or equations. Each representation of 
knowledge gives us a different perspective on the problem. The more tools you have 
for thinking about a complex problem, the more likely you are to solve it.

There are four representations of knowledge that we will use over and over:

1. The verbal representation. A problem statement, in words, is a verbal represen-
tation of knowledge. So is an explanation that you write.

2. The pictorial representation. The pictorial representation, which we’ve just pre-
sented, is the most literal depiction of the situation.

3. The graphical representation. We will make extensive use of graphs.
4. The mathematical representation. Equations that can be used to find the numeri-

cal values of specific quantities are the mathematical representation.

   NOTE    The mathematical representation is only one of many. Much of physics is 
more about thinking and reasoning than it is about solving equations.
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42 CHAPTER 1 Concepts of Motion

A Problem-Solving Strategy
One of the goals of this textbook is to help you learn a strategy for solving physics prob-
lems. The purpose of a strategy is to guide you in the right direction with minimal wasted 
effort. The four-part problem-solving strategy—Model, Visualize, Solve, Review—is 
based on using different representations of knowledge. You will see this problem-solving 
strategy used consistently in the worked examples throughout this textbook, and you 
should endeavor to apply it to your own problem solving.

GENERAL PROBLEM-SOLVING STRATEGY

MODEL It’s impossible to treat every detail of a situation. Simplify the situation 
with a model that captures the essential features. For example, the object in a me-
chanics problem is often represented as a particle.

VISUALIZE This is where expert problem solvers put most of their effort.
■■ Draw a pictorial representation. This helps you visualize important aspects of 
the physics and assess the information you are given. It starts the process of 
translating the problem into symbols.

■■ Use a graphical representation if it is appropriate for the problem.
■■ Go back and forth between these representations; they need not be done in any 
particular order.

SOLVE Only after modeling and visualizing are complete is it time to develop a 
mathematical representation with specific equations that must be solved. All sym-
bols used here should have been defined in the pictorial representation.

REVIEW Is your result believable? Does it have proper units? Does it make sense?

Use the first two steps of the problem-solving strategy to analyze 
the following problem: A small rocket, such as those used for me-
teorological measurements of the atmosphere, is launched verti-
cally with an acceleration of 30 m/s2. It runs out of fuel after 30 s. 
What is its maximum altitude?

MODEL We need to do some interpretation. Common sense tells us 
that the rocket does not stop the instant it runs out of fuel. Instead, 
it continues upward, while slowing, until it reaches its maximum 
altitude. This second half of the motion, after running out of fuel, is 
like the ball that was tossed upward in the first half of Example 1.6. 
Because the problem does not ask about the rocket’s descent, we 
conclude that the problem ends at the point of maximum altitude. 
We’ll model the rocket as a particle.

VISUALIZE FIGURE 1.21 shows the pictorial representation in 
pencil-sketch style. The rocket is speeding up during the first half of 
the motion, so au0 points upward, in the positive y-direction. Thus the 
initial acceleration is a0y = 30 m/s2. During the second half, as the 
rocket slows, au1 points downward. Thus a1y is a negative number.

EXAMPLE 1.9 ■ Launching a weather rocket

FIGURE 1.21 Pictorial representation for the rocket.

Throughout this textbook we will emphasize the first two steps. They are the phys-
ics of the problem, as opposed to the mathematics of solving the resulting equations. 
This is not to say that those mathematical operations are always easy—in many cases 
they are not. But our primary goal is to understand the physics.

Textbook illustrations are obviously more sophisticated than what you would draw 
on your own paper. To show you a figure very much like what you should draw, the 
final example of this section is in a “pencil sketch” style. We will include one or more 
pencil-sketch examples in nearly every chapter to illustrate exactly what a good prob-
lem solver would draw.
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Our task in this chapter is not to solve problems—all that in due time—but to 
focus on what is happening in a problem. In other words, to make the translation from 
words to symbols in preparation for subsequent mathematical analysis. Modeling and 
the pictorial representation will be our most important tools.

1.8 Units and Significant Figures
Science is based upon experimental measurements, and measurements require units. 
The system of units used in science is called le Système Internationale d’Unités. 
These are commonly referred to as SI units. In casual speaking we often refer to 
metric units.

All of the quantities needed to understand motion can be expressed in terms of the 
three basic SI units shown in TABLE 1.2. Other quantities can be expressed as a combi-
nation of these basic units. Velocity, expressed in meters per second or m/s, is a ratio 
of the length unit to the time unit.

Time
The standard of time prior to 1960 was based on the mean solar day. As time-keeping 
accuracy and astronomical observations improved, it became apparent that the earth’s 
rotation is not perfectly steady. Meanwhile, physicists had been developing a device 
called an atomic clock. This instrument is able to measure, with incredibly high pre-
cision, the frequency of radio waves absorbed by atoms as they move between two 
closely spaced energy levels. This frequency can be reproduced with great accuracy at 
many laboratories around the world. Consequently, the SI unit of time—the second—
was redefined in 1967 as follows:

One second is the time required for 9,192,631,770 oscillations of the radio wave 
absorbed by the cesium-133 atom. The abbreviation for second is the letter s.

Several radio stations around the world broadcast a signal whose frequency 
is linked directly to the atomic clocks. This signal is the time standard, and any 
time-measuring equipment you use was calibrated from this time standard.

Length
The SI unit of length—the meter—was originally defined as one ten-millionth of the 
distance from the north pole to the equator along a line passing through Paris. There 
are obvious practical difficulties with implementing this definition, and it was later 
abandoned in favor of the distance between two scratches on a platinum-iridium bar 
stored in a special vault in Paris. The present definition, agreed to in 1983, is as follows:

One meter is the distance traveled by light in vacuum during 1/299,792,458 of a 
second. The abbreviation for meter is the letter m.

This is equivalent to defining the speed of light to be exactly 299,792,458 m/s. 
Laser technology is used in various national laboratories to implement this definition 
and to calibrate secondary standards that are easier to use. These standards ultimately 

An atomic clock at the National Institute 
of Standards and Technology is the pri-
mary standard of time.

This information is included with the known information. Al-
though the velocity v2y wasn’t given in the problem statement, it 
must—just like for the ball in Example 1.6—be zero at the very 
top of the trajectory. Last, we have identified y2 as the desired un-
known. This, of course, is not the only unknown in the problem, 
but it is the one we are specifically asked to find.

REVIEW If you’ve had a previous physics class, you may be tempted 
to assign a1y the value -9.8 m/s2, the free-fall acceleration. However,  
that would be true only if there is no air resistance on the rocket. We 
will need to consider the forces acting on the rocket during the sec-
ond half of its motion before we can determine a value for a1y. For 
now, all that we can safely conclude is that a1y is negative.

TABLE 1.2 The basic SI units

Quantity Unit Abbreviation

time second s

length meter m

mass kilogram kg
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44 CHAPTER 1 Concepts of Motion

make their way to your ruler or to a meter stick. It is worth keeping in mind that any 
measuring device you use is only as accurate as the care with which it was calibrated.

Mass
For 130 years, the kilogram was defined as the mass of a polished platinum-iridium 
cylinder stored in a vault in Paris. By the 1990s, this was the only SI unit still defined 
by a manufactured object rather than by natural phenomena. That changed in 2019 
with a new definition of the kilogram, although one that is rather hard to understand:

One kilogram is defined by fixing the value of the Planck constant—a quantity 
that appears in quantum physics—to be 6.626 070 15 * 10-34 kg m2/s . The abbre-
viation for kilogram is kg.

This obscure definition is implemented using a device called a Kibble balance in 
which an electromagnet is used to balance the weight of a test mass, and the required 
electric current is measured using quantum standards that depend on the Planck con-
stant. Despite the prefix kilo, it is the kilogram, not the gram, that is the SI unit.

Using Prefixes
We will have many occasions to use lengths, times, and masses that are either much 
less or much greater than the standards of 1 meter, 1 second, and 1 kilogram. We will 
do so by using prefixes to denote various powers of 10. TABLE 1.3 lists the common 
prefixes that will be used frequently throughout this book. Memorize it! Few things in 
science are learned by rote memory, but this list is one of them. A more extensive list 
of prefixes is shown inside the front cover of the book.

Although prefixes make it easier to talk about quantities, the SI units are seconds, 
meters, and kilograms. Quantities given with prefixed units must be converted to SI 
units before any calculations are done. Unit conversions are best done at the very be-
ginning of a problem, as part of the pictorial representation.

Unit Conversions
Although SI units are our standard, we cannot entirely forget that the United States 
still uses English units. Thus it remains important to be able to convert back and forth 
between SI units and English units. TABLE 1.4 shows several frequently used conver-
sions, and these are worth memorizing if you do not already know them. While the 
English system was originally based on the length of the king’s foot, it is interesting 
to note that today the conversion 1 in = 2.54 cm is the definition of the inch. In other 
words, the English system for lengths is now based on the meter!

There are various techniques for doing unit conversions. One effective method is to 
write the conversion factor as a ratio equal to one. For example, using information in 
Tables 1.3 and 1.4, we have

10-6 m
1 mm

= 1  and  
2.54 cm

1 in
= 1

Because multiplying any expression by 1 does not change its value, these ratios are 
easily used for conversions. To convert 3.5 mm to meters we compute

3.5 mm *
10-6 m
1 mm

= 3.5 * 10-6 m

Similarly, the conversion of 2 feet to meters is

2.00 ft *
12 in
1 ft

*
2.54 cm

1 in
*

10-2 m
1 cm

= 0.610 m

Notice how units in the numerator and in the denominator cancel until only the de-
sired units remain at the end. You can continue this process of multiplying by 1 as 
many times as necessary to complete all the conversions.

TABLE 1.3 Common prefixes

Prefix Power of 10 Abbreviation

giga- 109 G

mega- 106 M

kilo- 103 k

centi- 10-2 c

milli- 10-3 m

micro- 10-6 m

nano- 10-9 n

In 1999, the $125-million Mars Climate 
Orbiter burned up in the Martian 
atmosphere instead of entering a safe 
orbit. The problem was faulty units! 
The engineering team supplied data in 
English units, but the navigation team as-
sumed that the data were in metric units.

TABLE 1.4 Useful unit conversions

1 in = 2.54 cm

1 mi = 1.609 km

1 mph = 0.447 m/s

1 m = 39.37 in

1 km = 0.621 mi

1 m/s = 2.24 mph
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Assessment
As we get further into problem solving, you will need to decide whether or not the 
answer to a problem “makes sense.” To determine this, at least until you have more 
experience with SI units, you may need to convert from SI units back to the English 
units in which you think. But this conversion does not need to be very accurate. For 
example, if you are working a problem about automobile speeds and reach an answer 
of 35 m/s, all you really want to know is whether or not this is a realistic speed for a 
car. That requires a “quick and dirty” conversion, not a conversion of great accuracy.

TABLE 1.5 shows several approximate conversion factors that can be used to as-
sess the answer to a problem. Using 1 m/s ≈ 2 mph, you find that 35 m/s is roughly 
70 mph, a reasonable speed for a car. But an answer of 350 m/s, which you might get 
after making a calculation error, would be an unreasonable 700 mph. Practice with 
these will allow you to develop intuition for metric units.

   NOTE    These approximate conversion factors are accurate to only one significant 
figure. This is sufficient to assess the answer to a problem, but do not use the 
conversion factors from Table 1.5 for converting English units to SI units at the start 
of a problem. Use Table 1.4.

Significant Figures
It is necessary to say a few words about a perennial source of difficulty: significant 
figures. Mathematics is a subject where numbers and relationships can be as precise 
as desired, but physics deals with a real world of ambiguity. It is important in science 
and engineering to state clearly what you know about a situation—no less and, espe-
cially, no more. Numbers provide one way to specify your knowledge.

If you report that a length has a value of 6.2 m, the implication is that the actual 
value falls between 6.15 m and 6.25 m and thus rounds to 6.2 m. If that is the case, 
then reporting a value of simply 6 m is saying less than you know; you are with-
holding information. On the other hand, to report the number as 6.213 m is wrong. 
Any person reviewing your work—perhaps a client who hired you—would interpret 
the number 6.213 m as meaning that the actual length falls between 6.2125 m and 
6.2135 m, thus rounding to 6.213 m. In this case, you are claiming to have knowledge 
and information that you do not really possess.

The way to state your knowledge precisely is through the proper use of significant 
figures. You can think of a significant figure as being a digit that is reliably known. A 
number such as 6.2 m has two significant figures because the next decimal place—the 
one-hundredths—is not reliably known. As FIGURE 1.22 shows, the best way to deter-
mine how many significant figures a number has is to write it in scientific notation.

TABLE 1.5 Approximate conversion 
factors. Use these for assessment,  
not in problem solving.

1 cm ≈ 1
2 in

10 cm ≈ 4 in

1 m ≈ 1 yard

1 m ≈ 3 feet

1 km ≈ 0.6 mile

1 m/s ≈ 2 mph

c

A trailing zero after the
decimal place is reliably
known. It is significant.

Leading zeros locate the decimal point.
They are not significant.

The number of significant
figures is the number of
digits when written in
scientific notation.

The number of significant figures
≠ the number of decimal places.

Changing units shifts the decimal
point but does not change the
number of significant figures.

0.00620 = 6.20 * 10-3

FIGURE 1.22 Determining significant figures.

What about numbers like 320 m and 20 kg? Whole numbers with trailing zeros 
are ambiguous unless written in scientific notation. Even so, writing 2.0 * 101 kg is 
tedious, and few practicing scientists or engineers would do so. In this textbook, we’ll 
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46 CHAPTER 1 Concepts of Motion

   NOTE    Be careful! Many calculators have a default setting that shows two decimal 
places, such as 5.23. This is dangerous. If you need to calculate 5.23/58.5, your 
calculator will show 0.09 and it is all too easy to write that down as an answer. By 
doing so, you have reduced a calculation of two numbers having three significant 
figures to an answer with only one significant figure. The proper result of this div-
ision is 0.0894 or 8.94 * 10-2. You will avoid this error if you keep your calculator 
set to display numbers in scientific notation with two decimal places.

TACTICS BOX 1.5

Using significant figures
1  When multiplying or dividing several numbers, or taking roots, the number 

of significant figures in the answer should match the number of significant 
figures of the least precisely known number used in the calculation.

2  When adding or subtracting several numbers, the number of decimal places in 
the answer should match the smallest number of decimal places of any number 
used in the calculation.

3  Exact numbers are perfectly known and do not affect the number of signifi-
cant figures an answer should have. Examples of exact numbers are the 2 and 
the p in the formula C = 2pr for the circumference of a circle.

4  It is acceptable to keep one or two extra digits during intermediate steps of a 
calculation, to minimize rounding error, as long as the final answer is reported 
with the proper number of significant figures.

5  For examples and problems in this textbook, the appropriate number of sig-
nificant figures for the answer is determined by the data provided. Whole 
numbers with trailing zeros, such as 20 kg, are interpreted as having at least 
two significant figures.

Exercises 38–39 

An object consists of two pieces. The mass of one piece has been measured to be 6.47 kg.  
The volume of the second piece, which is made of aluminum, has been measured to be 
4.44 * 10-4 m3. A handbook lists the density of aluminum as 2.7 * 103 kg/m3. What is 
the total mass of the object?

SOLVE First, calculate the mass of the second piece:

  m = 14.44 * 10-4 m3212.7 * 103 kg/m32
  = 1.199 kg = 1.2 kg

EXAMPLE 1.10 ■ Using significant figures

adopt the rule that whole numbers always have at least two significant figures, even 
if one of those is a trailing zero. By this rule, 320 m, 20 kg, and 8000 s each have two 
significant figures, but 8050 s would have three.

Calculations with numbers follow the “weakest link” rule. The saying, which you prob-
ably know, is that “a chain is only as strong as its weakest link.” If nine out of ten links 
in a chain can support a 1000 pound weight, that strength is meaningless if the tenth link 
can support only 200 pounds. Nine out of the ten numbers used in a calculation might be 
known with a precision of 0.01%; but if the tenth number is poorly known, with a precision 
of only 10%, then the result of the calculation cannot possibly be more precise than 10%.
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Proper use of significant figures is part of the “culture” of science and engineer-
ing. We will frequently emphasize these “cultural issues” because you must learn to 
speak the same language as the natives if you wish to communicate effectively. Most 
students know the rules of significant figures, having learned them in high school, 
but many fail to apply them. It is important to understand the reasons for significant 
figures and to get in the habit of using them properly.

Orders of Magnitude and Estimating
Precise calculations are appropriate when we have precise data, but there are many 
times when a very rough estimate is sufficient. Suppose you see a rock fall off a cliff 
and would like to know how fast it was going when it hit the ground. By doing a 
mental comparison with the speeds of familiar objects, such as cars and bicycles, you 
might judge that the rock was traveling at “about” 20 mph.

This is a one-significant-figure estimate. With some luck, you can distinguish 
20 mph from either 10 mph or 30 mph, but you certainly cannot distinguish 20 mph 
from 21 mph. A one-significant-figure estimate or calculation, such as this, is called 
an order-of-magnitude estimate. An order-of-magnitude estimate is indicated by 
the symbol ∙ , which indicates even less precision than the “approximately equal” 
symbol ≈ . You would say that the speed of the rock is v ∙  20 mph.

A useful skill is to make reliable estimates on the basis of known informa-
tion, simple reasoning, and common sense. This is a skill that is acquired by prac-
tice. Many chapters in this book will have homework problems that ask you to 
make order-of-magnitude estimates. The following example is a typical estimation 
problem.

TABLES 1.6 and 1.7 have information that will be useful for doing estimates.

TABLE 1.6 Some approximate lengths

Length (m)

Altitude of jet planes 10,000

Distance across campus 1000

Length of a football field 100

Length of a classroom 10

Length of your arm 1

Width of a textbook 0.1

Length of a fingernail 0.01

TABLE 1.7 Some approximate masses

Mass (kg)

Small car 1000

Large human 100

Medium-size dog 10

Science textbook 1

Apple 0.1

Pencil 0.01

Raisin 0.001

The number of significant figures of a product must match that of the least precisely known 
number, which is the two-significant-figure density of aluminum. Now add the two masses:

6.47 kg
+  1.2  kg

7.7  kg

The sum is 7.67 kg, but the hundredths place is not reliable because the second mass has 
no reliable information about this digit. Thus we must round to the one decimal place of 
the 1.2 kg. The best we can say, with reliability, is that the total mass is 7.7 kg.
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Estimate the speed with which an Olympic sprinter crosses the finish line of the 100 m 
dash.

SOLVE We do need one piece of information, but it is a widely known piece of sports 
trivia. That is, world-class sprinters run the 100 m dash in about 10 s. Their average 
speed is vavg ≈ 1100 m2/110 s2 ≈ 10 m/s. But that’s only average. They go slower than 
average at the beginning, and they cross the finish line at a speed faster than average. How 
much faster? Twice as fast, 20 m/s, would be ≈40 mph. Sprinters don’t seem like they’re 
running as fast as a 40 mph car, so this probably is too fast. Let’s estimate that their final 
speed is 50% faster than the average. Thus they cross the finish line at v ∙  15 m/s.

EXAMPLE 1.11 ■ Estimating a sprinter’s speed

STOP TO THINK 1.5 Rank in order, from the most to the least, the number of 
significant figures in the following numbers. For example, if b has more than c,  
c has the same number as a, and a has more than d, you could give your answer as 
b 7 c = a 7 d.

a. 82 b. 0.0052 c. 0.430 d. 4.321 * 10-10
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Problem Solving
MODEL Make simplifying assumptions.

VISUALIZE Use:

• Pictorial representation

• Graphical representation
SOLVE Use a mathematical representation to find numerical 
answers.

REVIEW Does the answer have the proper units and correct sig-
nificant figures? Does it make sense?

Motion Diagrams
• Help visualize motion.

• Provide a tool for finding acceleration vectors.

v0
u

v1
u ∆v

u

a
u

a
u

v1
u

v0
u

Dots show positions at
equal time intervals.

Velocity vectors go dot to dot.

The acceleration
vector points in the
direction of ∆v.

u

▶ These are the average velocity and acceleration vectors.

General Strategy

Summary
 

The goal of Chapter 1 has been to learn the fundamental 
concepts of motion.

For motion along a line:
• Speeding up: vu and au point in the same direction, vx and ax have 

the same sign.

• Slowing down: vu and au point in opposite directions, vx and ax  
have opposite signs.

• Constant speed: au = 0
u
, ax = 0.

Acceleration ax is positive if au ptoints right, negative if au points 
left. The sign of ax does not imply speeding up or slowing down.

Pictorial Representation

1  Draw a motion diagram.

2  Establish coordinates.

3  Sketch the situation.

4  Define symbols.

5  List knowns.

6  Identify desired unknown.

Significant figures are reliably known digits. The number of 
significant figures for:

• Multiplication, division, powers is set by the value with the fewest 
significant figures.

• Addition, subtraction is set by the value with the smallest number 
of decimal places.

The appropriate number of significant figures in a calculation is 
determined by the data provided.

The particle model represents a moving object as if all its mass 
were concentrated at a single point.

Position locates an object with respect to a chosen coordinate sys-
tem. Change in position is called displacement.

Velocity is the rate of change of the position vector r u.

Acceleration is the rate of change of the velocity vector vu.

An object has an acceleration if it

• Changes speed and/or

• Changes direction.

Important Concepts

Applications

a
u

v
u

x0 = v0x = t0 = 0

ax

x0, v0x, t0 x1, v1x, t1

x
0

Known

ax = 2.0 m/s2  t1 = 2.0 s

Find
x1

motion
translational motion
trajectory
motion diagram
model
particle

particle model
position vector, r u

scalar
vector
displacement, ∆r u

time interval, ∆t

average speed
average velocity, vu

average acceleration, au

position-versus-time graph
pictorial representation
representation of knowledge

SI units
significant figures
order-of-magnitude estimate

Terms and Notation
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50 CHAPTER 1 Concepts of Motion

CONCEPTUAL QUESTIONS

1. How many significant figures does each of the following num-
bers have?
a. 9.90 b. 0.99 c. 0.099 d. 99

2. How many significant figures does each of the following num-
bers have?
a. 0.0044 b. 4.40 * 10-4 c. 440 d. 2.90

3. Is the particle in FIGURE Q1.3 speeding up? Slowing down? Or 
can you tell? Explain.

FIGURE Q1.3

v
u

FIGURE Q1.4

4. Does the object represented in FIGURE Q1.4 have 
a positive or negative value of ax? Explain.

5. Does the object represented in FIGURE Q1.5 have 
a positive or negative value of ay? Explain.

v
u

FIGURE Q1.5

6. Determine the signs (positive, negative, or zero) of the position, 
velocity, and acceleration for the particle in FIGURE Q1.6.

0
x

FIGURE Q1.6

0

y

FIGURE Q1.7

0

y

FIGURE Q1.8

7. Determine the signs (positive, negative, or zero) of the position, 
velocity, and acceleration for the particle in FIGURE Q1.7.

8. Determine the signs (positive, negative, or zero) of the position, 
velocity, and acceleration for the particle in FIGURE Q1.8.

EXERCISES AND PROBLEMS

Exercises

Section 1.1 Motion Diagrams

1. | A jet plane lands on the deck of an aircraft carrier and 
quickly comes to a halt. Draw a basic motion diagram, using 
the images from the video, from the time the jet touches down 
until it stops.

2. | You are watching a jet ski race. A racer speeds up from rest to 
70 mph in 10 s, then continues at a constant speed. Draw a basic 
motion diagram of the jet ski, using images from the video, from 
its start until 10 s after reaching top speed.

3. | A rocket is launched straight up. Draw a basic motion dia-
gram, using the images from the video, from the moment of lift-
off until the rocket is at an altitude of 500 m.

Section 1.2 Models and Modeling

4. | a. Write a paragraph describing the particle model. What is it, 
and why is it important?

b. Give two examples of situations, different from those  described 
in the text, for which the particle model is appropriate.

c. Give an example of a situation, different from those de-
scribed in the text, for which it would be inappropriate.

Section 1.3 Position, Time, and Displacement

Section 1.4 Velocity

5. | A baseball player starts running to the left to catch the ball as 
soon as the hit is made. Use the particle model to draw a motion 
diagram showing the position and average velocity vectors of the 
player during the first few seconds of the run.

6. | You drop a soccer ball from your third-story balcony. Use the 
particle model to draw a motion diagram showing the ball’s po-
sition and average velocity vectors from the time you release the 
ball until the instant it touches the ground.

7. | A car skids to a halt to avoid hitting an object in the road. Use 
the particle model to draw a motion diagram showing the car’s 
position and its average velocity from the time the skid begins 
until the car stops.

Section 1.5 Linear Acceleration

8.   |  a.   FIGURE EX1.8 shows the first three points of a motion 
diagram. Is the object’s average speed between points 1 
and 2 greater than, less than, or equal to its average speed 
between points 0 and 1? Explain how you can tell.

b. Use Tactics Box 1.2 to find the average acceleration vector 
at point 1. Draw the completed motion diagram, showing the 
velocity vectors and acceleration vector.

1

2

0

FIGURE EX1.8 FIGURE EX1.9

2 3 410

9. | FIGURE EX1.9 shows five points of a motion diagram. Use 
Tactics Box 1.2 to find the average acceleration vectors at points 
1, 2, and 3. Draw the completed motion diagram showing veloc-
ity vectors and acceleration vectors.
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Exercises and Problems 51

19. | Write a short description of the motion of a real object for 
which FIGURE EX1.19 would be a realistic position-versus-time 
graph.

10. || FIGURE EX1.10 shows two dots of a motion diagram and 
 vector vu2. Copy this figure, then add dot 4 and the next velocity 
vector vu3 if the acceleration vector au at dot 3 (a) points right and 
(b) points left.

2 3

v2
u

FIGURE EX 1.10

v
u

1 frame every 2 s

x (m)
0 200 400 600 800

FIGURE EX1.18

FIGURE EX1.11

v1

2

1

u

11. || FIGURE EX1.11 shows two dots of a motion diagram and 
 vector vu1. Copy this figure, then add dot 3 and the next velocity  
vector vu2 if the acceleration vector au at dot 2 (a) points up and  
(b) points down.

12. | A car travels to the left at a steady speed for a few seconds, 
then brakes for a stop sign. Draw a complete motion diagram of 
the car.

13. | A speed skater accelerates from rest and then keeps skating at 
a constant speed. Draw a complete motion diagram of the skater.

14. | A bowling ball rolls up an incline and then onto a smooth, 
level surface. Draw a complete motion diagram of the bowling 
ball. Don’t try to find the acceleration vector at the point where 
the motion changes direction; that’s an issue for Chapter 4.

15. | You use a long rubber band to launch a paper wad straight 
up. Draw a complete motion diagram of the paper wad from the 
moment you release the stretched rubber band until the paper 
wad reaches its highest point.

16. | A roof tile falls straight down from a two-story building. It 
lands in a swimming pool and settles gently to the bottom. Draw 
a complete motion diagram of the tile.

17. | Your roommate drops a tennis ball from a third-story bal-
cony. It hits the sidewalk and bounces as high as the second 
story. Draw a complete motion diagram of the tennis ball from 
the time it is released until it reaches the maximum height on its 
bounce. Be sure to determine and show the acceleration at the 
lowest point.

Section 1.6 Motion in One Dimension

18. || FIGURE EX1.18 shows the motion diagram of a drag racer. The 
camera took one frame every 2 s.

a. Measure the x-value of the racer at each dot. List your data 
in a table similar to Table 1.1, showing each position and the 
time at which it occurred.

b. Make a position-versus-time graph for the drag racer. Because 
you have data only at certain instants, your graph should con-
sist of dots that are not connected together.

9

6

3

0

y (m)

t (s)
0 10 20 30FIGURE EX 1.19

120

80

40

0

x (mi)

t (h)
543210FIGURE EX1.20

20. | Write a short description of the motion of a real object for 
which FIGURE EX1.20 would be a realistic position-versus-time 
graph.

Section 1.7 Solving Problems in Physics

21. || Draw a pictorial representation for the following problem. Do 
not solve the problem. What acceleration does a rocket need to 
reach a speed of 200 m/s at a height of 1.0 km?

22. || Draw a pictorial representation for the following problem. Do 
not solve the problem. The light turns green, and a bicyclist starts 
forward with an acceleration of 1.5 m/s2. How far must she travel 
to reach a speed of 7.5 m/s?

Section 1.8 Units and Significant Figures

23. | How many significant figures are there in each of the follow-
ing values?
a. 8.263 * 10-1 b. 0.0414
c. 75.0 d. 0.07 * 108

24. || Convert the following to basic SI units or a combination of 
basic SI units:
a. 8.0 in b. 66 ft/s
c. 60 mph d. 14 in2

25. | Convert the following to basic SI units or a combination of 
basic SI units:
a. 87 in b. 7.89 * 106 yr
c. 48 ft/day d. 1.7 * 103 mi2

26. || Using the approximate conversion factors in Table 1.5, con-
vert the following to SI units without using your calculator.
a. 20 ft
c. 60 mph

b. 60 mi
d. 8 in

27. | Using the approximate conversion factors in Table 1.5, con-
vert the following SI units to English units without using your 
calculator.
a. 50 cm b. 15 km
c. 35 m/s d. 3 m
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52 CHAPTER 1 Concepts of Motion

Problems 44 through 48 show a motion diagram. For each of these 
problems, write a one or two sentence “story” about a real object that 
has this motion diagram. Your stories should talk about people or ob-
jects by name and say what they are doing. Problems 34 through 43 
are examples of motion short stories.

44. |

45. |

46. |

47. |

48. |

28. | Perform the following calculations with the correct number of 
significant figures.
a. 159.31 * 204.6 b. 5.1125 + 0.67 + 3.2

FIGURE P1.48

a
u

v
u

0
u

FIGURE P1.46

a
u

a
u

a
u

v
u

v
u

Start

Stop

Same
point

FIGURE P1.47

Start

a
u

v
u

FIGURE P1.44 a
u

v
u

StopStart

FIGURE P1.45
a
uv

u

0
u

0
u

0
u

c. 7.662 - 7.425 d. 16.5/3.45
29. | Compute the following numbers, applying the significant fig-

ure rules adopted in this textbook.
a. 33.3 * 25.4 b. 33.3 - 25.4
c. 133.3 d. 333.3 , 25.4

30. | Estimate (don’t measure!) the length of a typical car. Give 
your answer in both feet and meters. Briefly describe how you 
arrived at this estimate.

31. | Estimate the height of a telephone pole. Give your answer in 
both feet and meters. Briefly describe how you arrived at this 
estimate.

32. || Estimate the average speed with which the hair on your head 
grows. Give your answer in both m/s and mm/hour. Briefly de-
scribe how you arrived at this estimate.

33. | Motor neurons in mammals transmit signals from the brain to 
skeletal muscles at approximately 25 m/s. Estimate how long in 
ms it takes a signal to get from your brain to your hand.

Problems
For Problems 34 through 43, draw a complete pictorial representa-
tion. Do not solve these problems or do any mathematics.
34. | A jet plane is cruising at 300 m/s when suddenly the pilot 

turns the engines up to full throttle. After traveling 4.0 km, the 
jet is moving with a speed of 400 m/s. What is the jet’s accelera-
tion as it speeds up?

35. | A Porsche accelerates from a stoplight at 5.0 m/s2 for five 
seconds, then coasts for three more seconds. How far has it 
traveled?

36. | Sam is recklessly driving 60 mph in a 30 mph speed zone 
when he suddenly sees the police. He steps on the brakes and 
slows to 30 mph in three seconds, looking nonchalant as he 
passes the officer. How far does he travel while braking?

37. | A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 
for 6.0 s, coasts for 2.0 s, and then slows at a rate of 2.5 m/s2 for 
the next stop sign. How far apart are the stop signs?

38. | Santa loses his footing and slides down a frictionless, 
snowy roof that is tilted at an angle of 30°. If Santa slides  
10 m before reaching the edge, what is his speed as he leaves 
the roof?

39. | A speed skater moving across frictionless ice at 8.0 m/s hits a 
5.0-m-wide patch of rough ice. She slows steadily, then continues 
on at 6.0 m/s. What is her acceleration on the rough ice?

40. | A motorist is traveling at 20 m/s. He is 60 m from a stoplight 
when he sees it turn yellow. His reaction time, before stepping on 
the brake, is 0.50 s. What steady deceleration while braking will 
bring him to a stop right at the light?

41. | A car traveling at 30 m/s runs out of gas while traveling up a 
10° slope. How far up the hill will the car coast before starting to 
roll back down?

42. || A Porsche challenges a Honda to a 400 m race. Because the 
Porsche’s acceleration of 3.5 m/s2 is greater than the Honda’s 
3.0 m/s2, the Honda gets a 1.0 s head start. Who wins?

43. || David is driving a steady 30 m/s when he passes Tina, who 
is sitting in her car at rest. Tina begins to accelerate at a steady 
2.0 m/s2 at the instant when David passes. How far does Tina 
drive before passing David?
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Exercises and Problems 53

57. || The quantity called mass density is the mass per unit volume 
of a substance. What are the mass densities in basic SI units of 
the following objects?
a. A 245 cm3 solid with a mass of 0.0159 kg
b. 82 cm3 of a liquid with a mass of 59 g

58. | FIGURE P1.58 shows a motion diagram of a car traveling down 
a street. The camera took one frame every 10 s. A distance scale 
is provided.

Problems 49 through 52 show a partial motion diagram. For each:
a. Complete the motion diagram by adding acceleration vectors.
b. Write a physics problem for which this is the correct motion 

diagram. Be imaginative! Don’t forget to include enough 
 information to make the problem complete and to state clearly 
what is to be found.

c. Draw a pictorial representation for your problem.

49. 

50. 

51. 

52. 

53. | As an architect, you are designing a new house. A window 
has a height between 140 cm and 150 cm and a width between  
74 cm and 70 cm. What are the smallest and largest areas that the 
window could be?

54. | A regulation soccer field for international play is a rectangle 
with a length between 100 m and 110 m and a width between  
64 m and 75 m. What are the smallest and largest areas that the 
field could be?

55. || A 5.8-cm-diameter cylinder has a length of 15.5 cm. What is 
the cylinder’s volume in basic SI units?

56. || An intravenous saline drip has 4.5 g of sodium chloride per 
liter of water. By definition, 1 mL = 1 cm3. Express the salt con-
centration in kg/m3.

FIGURE P1.49

v
u

FIGURE P1.50

v
u

Stop

FIGURE P1.52

v
u

Stop

Top view of motion
in a horizontal plane

FIGURE P1.60 
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FIGURE P1.59
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FIGURE P1.58
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1 frame every 10 s
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FIGURE P1.51

vA
u

vB
u

Start

Start
a. Measure the x-value of the car at each dot. Place your data in 

a table, similar to Table 1.1, showing each position and the 
instant of time at which it occurred.

b. Make a position-versus-time graph for the car. Because you 
have data only at certain instants of time, your graph should 
consist of dots that are not connected together.

59. | Write a short description of a real object for which 
FIGURE P1.59 would be a realistic position-versus-time graph.

60. | Write a short description of a real object for which 
FIGURE P1.60 would be a realistic position-versus-time graph.
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2

What is kinematics?
Kinematics is the mathematical description 
of motion. We begin with motion along a 
straight line. Our primary tools will be an 
object’s position, velocity, and acceleration.

❮❮ LOOKING BACK Sections 1.4–1.6 Velocity, 
acceleration, and Tactics Box 1.3 about signs

How are graphs used in kinematics?
Graphs are a very important visual 
 representation of motion, and learning to 
“think graphically” is one of our goals. We’ll 
work with graphs showing how position,  
velocity, and acceleration change with time. 
These graphs are related to each other:

■■ Velocity is the slope of the position graph.
■■ Acceleration is the slope of the velocity 

graph.

How is calculus used in kinematics?
Motion is change, and calculus is the 
mathematical tool for describing a  
quantity’s rate of change. We’ll find that

■■ Velocity is the time derivative of position.
■■ Acceleration is the time derivative of 

velocity.

What are models?
A model is a simplified  description  
of a situation that focuses on essential 
features while ignoring many details. 
Models allow us to make sense of complex 
situations by seeing them as variations  
on a common theme, all with the same  
underlying physics.

What is free fall?
Free fall is motion under the influence of 
 gravity only. Free fall is not literally “falling” 
 because it also applies to objects thrown 
straight up and to projectiles. Surprisingly,  
all objects in free fall, regardless of their  
mass, have the same acceleration. Motion  
on a  frictionless inclined plane is closely  
related to free-fall motion.

How will I use kinematics?
The equations of motion that you learn in this chapter will be 
used throughout the entire book. In Part I, we’ll see how an 
object’s  motion is related to forces acting on the object. We’ll 
later apply these kinematic equations to the motion of waves 
and to the  motion of charged particles in electric and magnetic  
fields.

IN THIS CHAPTER, you will learn to solve problems about motion along a straight line.

Kinematics in One Dimension

This Japanese “bullet train” 
accelerates slowly but 
steadily until reaching a 
speed of 300 km/h.

MODEL 2.1

Look for model boxes 
like this throughout the 
book.

■■ Key figures

■■ Key equations

■■ Model limitations

ax
u

vx
u

x

vx

t

t

Value

Slope

∆x = area

vx

t

Displacement is the
integral of velocity.

afree fall
u

v
u
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2.1 Uniform Motion 55

2.1 Uniform Motion
The simplest possible motion is motion along a straight line at a constant, unvarying 
speed. We call this uniform motion. Because velocity is the combination of speed 
and direction, uniform motion is motion with constant velocity.

FIGURE 2.1 shows the motion diagram of an object in uniform motion. For example, 
this might be you riding your bicycle along a straight line at a perfectly steady 5 m/s 
(≈10 mph). Notice how all the displacements are exactly the same; this is a charac-
teristic of uniform motion.

If we make a position-versus-time graph—remember that position is graphed on the 
vertical axis—it’s a straight line. In fact, an alternative definition is that an object’s 
 motion is uniform if and only if its position-versus-time graph is a straight line.

❮❮■SECTION 1.4 defined an object’s average velocity as ∆r u/∆t. For one-dimensional 
motion, this is simply ∆x/ ∆t (for horizontal motion) or ∆y/ ∆t (for vertical motion). 
Recall that ∆x is the object’s displacement during the time interval ∆t. You can see in 
Figure 2.1 that ∆x and ∆t are, respectively, the “rise” and “run” of the position graph. 
Because rise over run is the slope of a line,

 vavg K
∆x
∆t

  or  
∆y

∆t
= slope of the position@versus@time graph (2.1)

That is, the average velocity is the slope of the position-versus-time graph. Velocity 
has units of “length per time,” such as “miles per hour.” The SI units of velocity are 
meters per second, abbreviated m/s.

   NOTE    The symbol K in Equation 2.1 stands for “is defined as.” This is a stronger 
statement than the two sides simply being equal.

The constant slope of a straight-line graph is another way to see that the velocity is 
constant for uniform motion. There’s no real need to specify “average” for a velocity that 
doesn’t change, so we will drop the subscript and refer to the average velocity as vx or vy.

An object’s speed v is how fast it’s going, independent of direction. This is simply 
v = � vx �  or v = � vy �, the magnitude or absolute value of the object’s velocity. Although 
we will use speed from time to time, our mathematical analysis of motion is based  
on velocity, not speed. The subscript in vx or vy is an essential part of the notation, 
 reminding us that, even in one dimension, the velocity is a vector.

FIGURE 2.2 on the next page is the position-versus-time graph of  
a car.

a. Draw the car’s velocity-versus-time graph.

b. Describe the car’s motion.

MODEL Model the car as a particle, with a well-defined position at 
each instant of time.

VISUALIZE Figure 2.2 is the graphical representation.

SOLVE a. The car’s position-versus-time graph is a sequence 
of three straight lines. Each of these straight lines represents 
 uniform motion at a constant velocity. We can determine the 
car’s velocity during each interval of time by measuring the 
slope of the line.

The position graph starts out sloping downward—a negative 
slope. Although the car moves a distance of 4.0 m during the first 
2.0 s, its displacement is

∆x = xat 2.0 s - xat 0.0 s = -4.0 m - 0.0 m = -4.0 m

The time interval for this displacement is ∆t = 2.0 s, so the  velocity 
during this interval is

vx =
∆x
∆t

=
-4.0 m
2.0 s

= -2.0 m/s

The car’s position does not change from t = 2 s to t = 4 s 1∆x = 02, 
so vx = 0. Finally, the displacement between t = 4 s and t = 6 s is 
∆x = 10.0 m. Thus the velocity during this interval is

vx =
10.0 m
2.0 s

= 5.0 m/s

These velocities are shown on the velocity-versus-time graph of 
FIGURE 2.3 on the next page.

b. The car backs up for 2 s at 2.0 m/s, sits at rest for 2 s, then drives 
forward at 5.0 m/s for at least 2 s. We can’t tell from the graph what 
happens for t 7 6 s.

REVIEW The velocity graph and the position graph look completely 
different. The value of the velocity graph at any instant of time 
equals the slope of the position graph.

EXAMPLE 2.1 ■ Relating a velocity graph to a position graph

Continued

v
u

t

The position graph is a
straight line. Its slope
is ∆x/∆t. 

∆x is the displacement
during time interval ∆ t.

The displacements between
successive frames are the same.

x

∆x
∆t

FIGURE 2.1 Motion diagram and position 
graph for uniform motion.
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56 CHAPTER 2 Kinematics in One Dimension

   NOTE    We are distinguishing between the actual slope and the physically mean
ingful slope. If you were to use a ruler to measure the rise and the run of the graph,  
you could compute the actual slope of the line as drawn on the page. That is not the 
slope to which we are referring when we equate the velocity with the slope of the 
line. Instead, we find the physically meaningful slope by measuring the rise and run  
using the scales along the axes. The “rise” ∆x is some number of meters; the “run” 
∆t is some number of seconds. The physically meaningful rise and run include units,  
and the ratio of these units gives the units of the slope.

The Mathematics of Uniform Motion
The physics of the motion is the same regardless of whether an object moves along 
the x-axis, the y-axis, or any other straight line. Consequently, it will be convenient 
to write equations for a “generic axis” that we will call the s-axis. The position of an  
object will be represented by the symbol s and its velocity by vs.

   NOTE    In a specific problem you should use either x or y rather than s.

Consider an object in uniform motion along the s-axis with the linear position- 
versus-time graph shown in FIGURE 2.4. The object’s initial position is si at time ti. 
The term initial position, designated with subscript i, refers to the starting point of 
our analysis or the starting point in a problem; the object may or may not have been in 
motion prior to ti. At a later time tf, the ending point of our analysis, the object’s final 
position, denoted by f, is sf.

The object’s velocity vs along the s-axis can be determined by finding the slope of 
the graph:

 vs =
rise
run

=
∆s
∆t

=
sf - si

tf - ti
 (2.2)

6

4

2

0

-2

-4

1 3 52 4 6

x (m)

t (s)

Slope = -2.0 m/s

Slope = 5.0 m/s

Slope = 0 m/s

Slopes on the position
graph become values
on the velocity graph.

6

4

2

0

-2
1 3 52 4 6

vx (m/s)

t (s)

Value = -2.0 m/s

Value = 5.0 m/s

Value = 0 m/s

FIGURE 2.3 The corresponding velocity-versus-time graph.FIGURE 2.2 Position-versus-time graph.

TACTICS BOX 2.1

Interpreting position-versus-time graphs
1  Steeper slopes correspond to faster speeds.
2  Negative slopes correspond to negative velocities and, hence, to motion to the 

left (or down).
3  The slope is a ratio of intervals, ∆x / ∆t, not a ratio of coordinates. That is, the 

slope is not simply x /t.

Exercises 1–3 

sf

ti tf

s

si
Initial
position

Final
position

∆t

∆s

t

The slope of the line is vs = ∆s /∆t.

We will use s as a generic label for position.
In practice, s could be either x or y.

FIGURE 2.4 The velocity is found from the 
slope of the position-versus-time graph.

Example 2.1 brought out several points that are worth emphasizing.
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2.1 Uniform Motion 57

Equation 2.2 is easily rearranged to give

 sf = si + vs ∆t  (uniform motion) (2.3)

Equation 2.3 tells us that the object’s position increases linearly as the elapsed time ∆t 
increases—exactly as we see in the straight-line position graph.

The Uniform-Motion Model
Chapter 1 introduced a model as a simplified picture of reality, but one that still 
captures the essence of what we want to study. When it comes to motion, few real 
objects move with a precisely constant velocity. Even so, there are many cases in 
which it is quite reasonable to model their motion as being uniform. That is, uni-
form motion is a very good approximation of their actual, but more complex, motion. 
The  uniform-motion model is a coherent set of representations—words, pictures, 
graphs, and equations—that allows us to explain an object’s motion and to predict 
where the object will be at a future instant of time.

Bob leaves home in Chicago at 9:00 a.m. and drives east at 60 mph. 
Susan, 400 miles to the east in Pittsburgh, leaves at the same time 
and travels west at 40 mph. Where will they meet for lunch?

MODEL Here is a problem where, for the first time, we can really  
put all four aspects of our problem-solving strategy into play.  
To begin, we’ll model Bob’s and Susan’s cars as being in uniform 

motion. Their real motion is certainly more complex, but over a 
long drive it’s reasonable to approximate their motion as constant 
speed along a straight line.

VISUALIZE FIGURE 2.5 shows the pictorial representation. The 
equal spacings of the dots in the motion diagram indicate that  
the motion is uniform. In evaluating the given information, we 

EXAMPLE 2.2 ■ Lunch in Cleveland?

FIGURE 2.5 Pictorial representation for Example 2.2.

Continued

MODEL 2.1

Uniform motion
For motion with constant velocity.

■■ Model the object as a particle moving  
in a straight line at constant speed:

■■ Mathematically:

• vs = ∆s/ ∆t

• sf = si + vs ∆t
■■ Limitations: Model fails if the particle has  
a significant change of speed or direction.

Exercise 4 

Straight line

s

si
t

The slope is vs.

Horizontal linevs

t

The velocity is constant.v
u

M02_KNIG8221_05_GE_C02.indd   57 02/06/2022   15:58



58 CHAPTER 2 Kinematics in One Dimension

It is instructive to look at this example from a graphical perspective. FIGURE 2.6 
shows position-versus-time graphs for Bob and Susan. Notice the negative slope for 
Susan’s graph, indicating her negative velocity. The point of interest is the intersection 
of the two lines; this is where Bob and Susan have the same position at the same time. 
Our method of solution, in which we equated 1x12B and 1x12S, is really just solving 
the mathematical problem of finding the intersection of two lines. This procedure is 
useful for many problems in which there are two moving objects.

 recognize that the starting time of 9:00 a.m. is not relevant to 
the problem. Consequently, the initial time is chosen as simply  
t0 = 0 h. Bob and Susan are traveling in opposite directions,  
hence one of the velocities must be a negative number. We have 
chosen a coordinate system in which Bob starts at the origin and 
moves to the right (east) while Susan is moving to the left (west). 
Thus Susan has the negative velocity. Notice how we’ve assigned 
position, velocity, and time symbols to each point in the motion. 
Pay special attention to how subscripts are used to distinguish 
 different points in the problem and to distinguish Bob’s symbols 
from Susan’s.

One purpose of the pictorial representation is to establish what 
we need to find. Bob and Susan meet when they have the same 
position at the same time t1. Thus we want to find 1x12B at the 
time when 1x12B = (x1)S. Notice that 1x12B and 1x12S are Bob’s and  
 Susan’s positions, which are equal when they meet, not the dis-
tances they have traveled.

SOLVE The goal of the mathematical representation is to proceed 
from the pictorial representation to a mathematical solution of the 
problem. We can begin by using Equation 2.3 to find Bob’s and 
Susan’s positions at time t1 when they meet:

 1x12B = 1x02B + 1vx 2B 1t1 - t02 = 1vx2B  t1

 1x12S = 1x02S + 1vx 2S 1t1 - t02 = 1x02S + 1vx2S  t1

Notice two things. First, we started by writing the full statement 
of Equation 2.3. Only then did we simplify by dropping those 
terms known to be zero. You’re less likely to make accidental er-
rors if you follow this procedure. Second, we replaced the generic 
 symbol s with the specific horizontal-position symbol x, and we 
replaced the generic subscripts i and f with the specific symbols 0 
and 1 that we defined in the pictorial representation. This is also 
good problem-solving technique.

The condition that Bob and Susan meet is

1x12B = 1x12S

By equating the right-hand sides of the above equations, we get

1vx2B  t1 = 1x02S + 1vx2S  t1

Solving for t1 we find that they meet at time

t1 =
1x02S

1vx2B - 1vx2S
=

400 miles
60 mph - 1-402 mph

= 4.0 hours

Finally, inserting this time back into the equation for 1x12B gives

1x12B = 160 
miles
hour 2 * 14.0 hours2 = 240 miles

As noted in Chapter 1, this textbook will assume that all data 
are good to at least two significant figures, even when one of those 
is a trailing zero. So 400 miles, 60 mph, and 40 mph each have two 
significant figures, and consequently we’ve calculated results to 
two significant figures.

While 240 miles is a number, it is not yet the answer to the 
question. The phrase “240 miles” by itself does not say anything 
meaningful. Because this is the value of Bob’s position, and 
Bob was driving east, the answer to the question is, “They meet 
240 miles east of Chicago.”

REVIEW Before stopping, we should check whether or not this an-
swer seems reasonable. We certainly expected an answer between 
0 miles and 400 miles. We also know that Bob is driving faster than 
Susan, so we expect that their meeting point will be more than half-
way from Chicago to Pittsburgh. Our review tells us that 240 miles 
is a reasonable answer.

t (h)

x (mi)

0 2 4 6

400

300

200

100

0

Susan

Slope = -40 mi/h

Bob

Bob and Susan
meet here.

Slope = 60 mi/h

FIGURE 2.6 Position-versus-time graphs 
for Bob and Susan.

STOP TO THINK 2.1 Which position- versus-time 
graph represents the motion shown in the motion 
diagram?

v
u

x
0

t

x

(b)

0 t t t

x x x

(c) (d) (e)

t

x

(a)

0 0 0 0

M02_KNIG8221_05_GE_C02.indd   58 02/06/2022   15:58



2.2 Instantaneous Velocity 59

2.2 Instantaneous Velocity
Uniform motion is simple, but objects rarely travel for long with a constant velocity. 
Far more common is a velocity that changes with time. For example, FIGURE 2.7 shows 
the motion diagram and position graph of a car speeding up after the light turns green. 
Notice how the velocity vectors increase in length, causing the graph to curve upward 
as the car’s displacements get larger and larger.

If you were to watch the car’s speedometer, you would see it increase from 0 mph 
to 10 mph to 20 mph and so on. At any instant of time, the speedometer tells you how 
fast the car is going at that instant. If we include directional information, we can 
 define an object’s instantaneous velocity—speed and direction—as its velocity at 
a single instant of time.

For uniform motion, the slope of the straight-line position graph is the object’s 
velocity. FIGURE 2.8 shows that there’s a similar connection between instantaneous 
 velocity and the slope of a curved position graph.

∆t

∆s

t

s

t

s

t

s

t t t

What is the velocity at time t? Zoom in on a very small segment of the
curve centered on the point of interest.
This little piece of the curve is essentially
a straight line. Its slope ∆s/∆t is the
average velocity during the interval ∆t.

The little segment of straight line,
when extended, is the tangent to
the curve at time t. Its slope is the
instantaneous velocity at time t.

FIGURE 2.8 Instantaneous velocity at time t is the slope of the tangent to the curve at that 
instant.

v
u

t

x

The position graph is
curved because the
velocity is changing.

The spacing between the dots
increases as the car speeds up.

FIGURE 2.7 Motion diagram and position 
graph of a car speeding up.

What we see graphically is that the average velocity vavg = ∆s/ ∆t becomes a 
 better and better approximation to the instantaneous velocity vs as the time interval 
∆t over which the average is taken gets smaller and smaller. We can state this idea 
mathematically in terms of the limit ∆t S 0:

 vs K lim
∆tS0

 
∆s
∆t

=
ds
dt
  (instantaneous velocity) (2.4)

As ∆t continues to get smaller, the average velocity vavg = ∆s/ ∆t reaches a con-
stant or limiting value. That is, the instantaneous velocity at time t is the  average 
 velocity during a time interval ∆t, centered on t, as ∆t approaches zero. In   
calculus, this limit is called the derivative of s with respect to t, and it is denoted  
ds/dt.

Graphically, ∆s/ ∆t is the slope of a straight line. As ∆t gets smaller (i.e., more 
and more magnification), the straight line becomes a better and better approxima-
tion of  the curve at that one point. In the limit ∆t S 0, the straight line is tangent  
to the curve. As Figure 2.8 shows, the instantaneous velocity at time t is the  
slope of the line that is tangent to the position-versus-time graph at time t.  
That is,

 vs = slope of the position@versus@time graph at time t (2.5)

The steeper the slope, the larger the magnitude of the velocity.
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60 CHAPTER 2 Kinematics in One Dimension

A Little Calculus: Derivatives
Calculus—invented simultaneously in England by Newton and in Germany by 
Leibniz—is designed to deal with instantaneous quantities. In other words, it provides 
us with the tools for evaluating limits such as the one in Equation 2.4.

The notation ds  /dt is called the derivative of s with respect to t, and Equation 2.4  
 defines it as the limiting value of a ratio. As Figure 2.8 showed, ds  /dt can be  interpreted 
graphically as the slope of the line that is tangent to the position graph.

The most common functions we will use in Parts I and II of this book are powers 
and polynomials. Consider the function u1t2 = ctn, where c and n are constants. The 
symbol u is a “dummy name” to represent any function of time, such as x1t2 or y1t2. 
The following result is proven in calculus:

 The derivative of u = ctn is 
du
dt

= nctn-1 (2.6)

For example, suppose the position of a particle as a function of time is s1t2 = 2t2 m, 
where t is in s. We can find the particle’s velocity vs = ds /dt by using Equation 2.6 
with c = 2 and n = 2 to calculate

vs =
ds
dt

= 2 # 2t2-1 = 4t

This is an expression for the particle’s velocity as a function of time.

FIGURE 2.9 shows the position-versus-time graph of an elevator.

a. At which labeled point or points does the elevator have the 
least velocity?

b. At which point or points does the elevator have maximum velocity?

c. Sketch an approximate velocity-versus-time graph for the elevator.

MODEL Model the elevator as a particle.

VISUALIZE Figure 2.9 is the graphical representation.

SOLVE a. At any instant, an object’s velocity is the slope of its 
 position graph. FIGURE 2.10a shows that the elevator has the least 
velocity—no velocity at all!—at points 1 and 3 where the slope 
is zero. At point 1, the velocity is only instantaneously zero. At 
point 3, the elevator has actually stopped and remains at rest.

b. The elevator has maximum velocity at 2, the point of steepest slope.

c. Although we cannot find an exact velocity-versus-time graph, we 
can see that the slope, and hence vy, is initially negative,  becomes 
zero at point 1, rises to a maximum value at point 2, decreases 
back to zero a little before point 3, then remains at zero  thereafter. 

Thus FIGURE 2.10b shows, at least approximately, the elevator’s 
 velocity-versus-time graph.

REVIEW Once again, the shape of the velocity graph bears no 
 resemblance to the shape of the position graph. You must transfer 
slope information from the position graph to value information on 
the velocity graph.

EXAMPLE 2.3 ■ Finding velocity from position graphically

1

2
0

3

t

y

FIGURE 2.9 Position-versus-time graph.

1

1

2

2

0

0

3

3

t

t

y Slope is maximum
at 2. This is where
vy is maximum.

Slope is zero at 1 and 3,
so the velocity is zero.

Slope is negative
before 1, so vy 6 0.

vy

(a)

(b)

FIGURE 2.10 The velocity-versus-time graph is found from the 
slope of the position graph.

Scientists and engineers must use calculus 
to calculate the orbits of satellites.
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2.2 Instantaneous Velocity 61

FIGURE 2.11 shows the particle’s position and velocity graphs. It is critically important  
to understand the relationship between these two graphs. The value of the velocity 
graph at any instant of time, which we can read directly off the vertical axis, is the 
slope of the position graph at that same time. This is illustrated at t = 3 s.

A value that doesn’t change with time, such as the position of an object at rest, can 
be represented by the function u = c = constant. That is, the exponent of tn is n = 0. 
You can see from Equation 2.6 that the derivative of a constant is zero. That is,

 
du
dt

= 0 if u = c = constant (2.7)

This makes sense. The graph of the function u = c is simply a horizontal line. The 
slope of a horizontal line—which is what the derivative du/dt measures—is zero.

The only other information we need about derivatives for now is how to evaluate 
the derivative of the sum of two functions. Let u and w be two separate functions of 
time. You will learn in calculus that

 
d
dt

 1u + w2 =
du
dt

+
dw
dt

 (2.8)

That is, the derivative of a sum is the sum of the derivatives.

   NOTE    You may have learned in calculus to take the derivative dy/dx, where y is a 
function of x. The derivatives we use in physics are the same; only the notation is 
different. We’re interested in how quantities change with time, so our derivatives are 
with respect to t instead of x.

40

20

0

20
16
12
8
4
0

0 1 2 3 4

0 1 2 3 4

s (m)
(a)

(b)

Position s = 2t2

Velocity vs = 4t

Slope = 12 m/s

Value = 12 m/s

t (s)

vs (m/s)

t (s)

FIGURE 2.11 Position-versus-time graph 
and the corresponding velocity-versus-
time graph.

A particle’s position is given by the function x1t2 = 1- t3 + 3t2 m, 
where t is in s.

a. What are the particle’s position and velocity at t = 2 s?

b. Draw graphs of x and vx during the interval -3 s … t … 3 s.

c. Draw a motion diagram to illustrate this motion.

SOLVE a. We can compute the position directly from the function x:

x1at t = 2 s2 = -1223 + 132122 = -8 + 6 = -2 m

The velocity is vx = dx/dt. The function for x is the sum of two 
polynomials, so

vx =
dx
dt

=
d
dt

 1- t3 + 3t2 =
d
dt

 1-t32 +
d
dt

 13t2
The first derivative is a power with c = -1 and n = 3; the second 
has c = 3 and n = 1. Using Equation 2.6, we have

vx = 1-3t2 + 32 m/s

where t is in s. Evaluating the velocity at t = 2 s gives

vx  1at t = 2 s2 = -31222 + 3 = -9 m/s

The negative sign indicates that the particle, at this instant of time, 
is moving to the left at a speed of 9 m/s.

b. FIGURE 2.12 shows the position graph and the velocity graph. You 
can make graphs like these with a graphing calculator or graphing 
software. The slope of the position-versus-time graph at t = 2 s is 
-9 m/s; this becomes the value that is graphed for the velocity at 
t = 2 s.

x (m)

vx (m/s)

t (s)

t (s)

20

10

0

-10

-20

10

0

-10

-20

-2 0 2-1 1 3

-2 0 2-1 1 3

Slope = -9 m/s

Value = -9 m/s

FIGURE 2.12 Position and velocity graphs.

Continued

EXAMPLE 2.4 ■ Using calculus to find the velocity
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62 CHAPTER 2 Kinematics in One Dimension

2.3 Finding Position from Velocity
Equation 2.4 allows us to find the instantaneous velocity vs if we know the position 
s as a function of time. But what about the reverse problem? Can we use the object’s 
velocity to calculate its position at some future time t? Equation 2.3, sf = si + vs ∆t, 
does this for the case of uniform motion with a constant velocity. We need to find a 
more general expression that is valid when vs is not constant.

FIGURE 2.14a is a velocity-versus-time graph for an object whose velocity varies with 
time. Suppose we know the object’s position to be si at an initial time ti. Our goal is to 
find its final position sf at a later time tf.

Because we know how to handle constant velocities, using Equation 2.3, let’s 
 approximate the velocity function of Figure 2.14a as a series of constant-velocity steps 
of width ∆t. This is illustrated in FIGURE 2.14b. During the first step, from time ti to 
time ti + ∆t, the velocity has the constant value 1vs21. The velocity during step k has 
the constant value 1vs2k. Although the approximation shown in the figure is rather 
rough, with only 11 steps, we can easily imagine that it could be made as accurate as 
desired by having more and more ever-narrower steps.

The velocity during each step is constant (uniform motion), so we can apply 
 Equation 2.3 to each step. The object’s displacement ∆s1 during the first step is simply  
∆s1 = 1vs21 ∆t. The displacement during the second step ∆s2 = 1vs22 ∆t, and during 
step k the displacement is ∆sk = 1vs2k ∆t.

c. Finally, we can interpret the graphs in Figure 2.12 to draw the 
motion diagram shown in FIGURE 2.13.

■■ The particle is initially to the right of the origin 1x 7 0 at t = -3 s2 
but moving to the left 1vx 6 02. Its speed is slowing 1v = � vx �  is 
decreasing2, so the velocity vector arrows are getting shorter.

■■ The particle passes the origin x = 0 m at t ≈ -1.5 s, but it is 
still moving to the left.

■■ The position reaches a minimum at t = -1 s; the particle is as 
far left as it is going. The velocity is instantaneously vx = 0 m/s 
as the particle reverses direction.

■■ The particle moves back to the right between t = -1 s and 
t = 1 s 1vx 7 02.

■■ The particle turns around again at t = 1 s and begins moving 
back to the left 1vx 6 02. It keeps speeding up, then disappears 
off to the left.

A point in the motion where a particle reverses direction is called a 
turning point. It is a point where the velocity is instantaneously  
zero while the position is a maximum or minimum. This particle  
has two turning points, at t = -1 s and again at t = +1 s. We will  
see many other examples of turning points.

v
u

v
u

-20 -10 0 10 20

Turn at t = 1 s

Turn at t = -1 s Position at t = -3 s.
The particle is moving to
the left (vx 6 0) and slowing.

Position at t = 3 s.
The particle is continuing
to speed up to the left.

The velocity is positive
between t = -1 s and t = 1 s.

x (m)

FIGURE 2.13 Motion diagram for Example 2.4.

STOP TO THINK 2.2 Which velocity-versus-time graph goes with the position- versus- 
time graph on the left?

s vsvsvsvs

t tttt

(a) (b) (c) (d)

tfti

tfti

vs

vs

The velocity varies
with time.

The velocity curve is
approximated by constant-
velocity steps of width ∆t.

St
ep

 1

St
ep

 k

St
ep

 N

t

t

∆t

(vs)k

(vs)1

(a)

(b)

FIGURE 2.14 Approximating a velocity-
versus-time graph with a series of 
constant-velocity steps.
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2.3 Finding Position from Velocity 63

The total displacement of the object between ti and tf can be approximated as the sum  
of all the individual displacements during each of the N constant-velocity steps. That is,

 ∆s = sf - si ≈ ∆s1 + ∆s2 + g + ∆sN = a
N

k=1
1vs2k ∆t (2.9)

where g  (Greek sigma) is the symbol for summation. With a simple rearrangement, 
the particle’s final position is

 sf ≈ si + a
N

k=1
1vs2k ∆t (2.10)

Our goal was to use the object’s velocity to find its final position sf. Equation 2.10  
nearly reaches that goal, but Equation 2.10 is only approximate because the 
 constant-velocity steps are only an approximation of the true velocity graph. But if we 
now let ∆t S 0, each step’s width approaches zero while the total number of steps N 
approaches infinity. In this limit, the series of steps becomes a perfect replica of the 
velocity-versus-time graph and Equation 2.10 becomes exact. Thus

 sf = si + lim
∆tS0a

N

k=1
1vs2k ∆t = si + 3

tf

ti

 vs dt (2.11)

The expression on the right is read, “the integral of vs dt from ti to tf.” Equation 2.11 is the 
result that we were seeking. It allows us to predict an object’s position sf at a future time tf.

We can give Equation 2.11 an important geometric interpretation. FIGURE 2.15 shows 
step k in the approximation of the velocity graph as a tall, thin rectangle of height 1vs2k 
and width ∆t. The product ∆sk = 1vs2k ∆t is the area 1base * height2 of this small rect-
angle. The sum in Equation 2.11 adds up all of these rectangular areas to give the total 
area enclosed between the t-axis and the tops of the steps. The limit of this sum as 
∆  t S 0 is the total area enclosed between the t-axis and the velocity curve. This is 
called the “area under the curve.” Thus a graphical interpretation of Equation 2.11 is

 sf = si + area under the velocity curve vs between ti and tf (2.12)

   NOTE    Wait a minute! The displacement ∆s = sf - si is a length. How can a length 
equal an area? Recall earlier, when we found that the velocity is the slope of the 
position graph, we made a distinction between the actual slope and the physically 
meaningful slope? The same distinction applies here. We need to measure the 
quantities we are using, vs and ∆t, by referring to the scales on the axes. ∆t is  
some number of seconds while vs is some number of meters per second. When  
these are multiplied together, the physically meaningful area has units of meters.

vs

t
ti tf

∆t

During step k, the product
∆sk = (vs)k∆t is the area
of the shaded rectangle.

During the interval ti to tf,
the total displacement ∆s is
the “area under the curve.”

FIGURE 2.15 The total displacement ∆s is 
the “area under the curve.”

FIGURE 2.16 shows the velocity-versus-time graph of a drag racer. 
How far does the racer move during the first 3.0 s?

MODEL Model the drag racer as a particle with a well-defined position 
at all times.

VISUALIZE Figure 2.16 is the graphical representation.

SOLVE The question “How far?” indicates that we need to find a dis-
placement ∆x rather than a position x. According to Equation 2.12, 
the car’s displacement ∆x = xf - xi between t = 0 s and t = 3 s is 
the area under the curve from t = 0 s to t = 3 s. The curve in this case  
is an angled line, so the area is that of a triangle:

  ∆x = area of triangle between t = 0 s and t = 3 s

  = 1
2 * base * height

  = 1
2 * 3 s * 12 m/s = 18 m

The drag racer moves 18 m during the first 3 seconds.

REVIEW The “area” is a product of s with m/s, so ∆x has the proper 
units of m.

EXAMPLE 2.5 ■ The displacement during a drag race

vx (m/s)

16

12

8

4

0
0 1 2 3 4

t (s)

The line is the function
vx = 4t m/s.

The displacement
∆x is the area of the
shaded triangle.

FIGURE 2.16 Velocity-versus-time graph for Example 2.5.
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64 CHAPTER 2 Kinematics in One Dimension

A Little More Calculus: Integrals
Taking the derivative of a function is equivalent to finding the slope of a graph of the 
function. Similarly, evaluating an integral is equivalent to finding the area under a 
graph of the function. The graphical method is very important for building intuition 
about motion but is limited in its practical application. Just as derivatives of standard 
functions can be evaluated and tabulated, so can integrals.

The integral in Equation 2.11 is called a definite integral because there are two 
definite boundaries to the area we want to find. These boundaries are called the lower 
1ti2 and upper 1tf2 limits of integration. For the important function u1t2 = ctn, the 
essential result from calculus is that

 3
tf

ti

u dt = 3
tf

ti

ctn dt =
ctn+1

n + 1
  `

tf

ti

=
ctf 

n+1

n + 1
-

cti 

n+1

n + 1
   1n ≠ -12 (2.13)

The vertical bar in the third step with subscript ti and superscript tf is a shorthand 
 notation from calculus that means—as seen in the last step—the integral evaluated at 
the upper limit tf minus the integral evaluated at the lower limit ti. You also need to 
know that for two functions u and w,

 3
tf

ti

1u + w2 dt = 3
tf

ti

u dt + 3
tf

ti

w dt (2.14)

That is, the integral of a sum is equal to the sum of the integrals.

FIGURE 2.17 is the velocity graph for a particle that starts at 
xi = 30 m at time ti = 0 s.

a. Draw a motion diagram for the particle.

b. Where is the particle’s turning point?

c. At what time does the particle reach the origin?

VISUALIZE The particle is initially 30 m to the right of the origin 
and moving to the right 1vx 7 02 with a speed of 10 m/s. But vx is 
decreasing, so the particle is slowing down. At t = 2 s the veloci-
ty, just for an instant, is zero before becoming negative. This is the 
turning point. The velocity is negative for t 7 2 s, so the particle 
has reversed direction and moves back toward the origin. At some 
later time, which we want to find, the particle will pass x = 0 m.

SOLVE a. FIGURE 2.18 shows the motion diagram. The distance scale 
will be established in parts b and c but is shown here for convenience.

b. The particle reaches the turning point at t = 2 s. To learn where 
it is at that time we need to find the displacement during the first 
two seconds. We can do this by finding the area under the curve 
between t = 0 s and t = 2 s:

  x1at t = 2 s2 = xi + area under the curve between 0 s and 2 s

  = 30 m + 1
2 12 s - 0 s2110 m/s - 0 m/s2

  = 40 m

The turning point is at x = 40 m.

c. The particle needs to move ∆x = -40 m to get from the turning 
point to the origin. That is, the area under the curve from t = 2 s to 
the desired time t needs to be -40 m. Because the curve is below 
the axis, with negative values of vx, the area to the right of t = 2 s 
is a negative area. With a bit of geometry, you will find that the 
triangle with a base extending from t = 2 s to t = 6 s has an area of 
-40 m. Thus the particle reaches the origin at t = 6 s.

vx (m/s)

t (s)

10

0

-10

-20

2 4 6

FIGURE 2.17 Velocity-versus-time graph for the particle of 
Example 2.6.

v
u

0 m

t = 6 s t = 0 s

Start at xi = 30 m Turning point
at t = 2 s

10 m 20 m 30 m 40 m
x

FIGURE 2.18 Motion diagram for the particle whose velocity 
graph was shown in Figure 2.17.

EXAMPLE 2.6 ■ Finding the turning point

M02_KNIG8221_05_GE_C02.indd   64 02/06/2022   15:58



2.4 Motion with Constant Acceleration 65

2.4 Motion with Constant Acceleration
We need one more major concept to describe one-dimensional motion: acceleration. 
Acceleration, as we noted in Chapter 1, is a rather abstract concept. Nonetheless, 
 acceleration is the linchpin of mechanics. We will see very shortly that Newton’s laws 
relate the acceleration of an object to the forces that are exerted on it.

Let’s conduct a race between a Volkswagen Beetle and a Porsche to see which can 
reach a speed of 30 m/s 1≈60 mph2 in the shortest time. Both cars are equipped with 
computers that will record the speedometer reading 10 times each second. This gives 
a nearly continuous record of the instantaneous velocity of each car. TABLE 2.1 shows 
some of the data. The velocity-versus-time graphs, based on these data, are shown in 
FIGURE 2.19 on the next page.

How can we describe the difference in performance of the two cars? It is not that 
one has a different velocity from the other; both achieve every velocity between 0 and 
30 m/s. The distinction is how long it took each to change its velocity from 0 to 30 m/s. 
The Porsche changed velocity quickly, in 6.0 s, while the VW needed 15 s to make 

Use calculus to solve Example 2.6.

SOLVE Figure 2.17 is a linear graph. Its “y-intercept” is seen to  
be 10 m/s and its slope is -5 1m/s2/s. Thus the velocity can be 
described by the equation

vx = 110 - 5 t2 m/s

where t is in s. We can find the position x at time t by using   
Equation 2.11:

  x = xi + 3
t

0
vx dt = 30 m + 3

t

0
110 - 5 t2 dt

  = 30 m + 3
t

0
10 dt - 3

t

0
5 t dt

We used Equation 2.14 for the integral of a sum to get the final 
expression. The first integral is a function of the form u = ctn with 
c = 10 and n = 0; the second is of the form u = ctn with c = 5 and 
n = 1. Using Equation 2.13, we have

3
t

0
10 d t = 10 t `

t

0
= 10 # t - 10 # 0 = 10 t m

and   3
t

0
5t dt = 5

2 t2
 `

t

0
= 5

2
# t2 - 5

2
# 02 = 5

2 t2 m

Combining the pieces gives

x = 130 + 10 t - 5
2 t22  m

This is a general result for the position at any time t.
The particle’s turning point occurs at t = 2 s, and its position 

at that time is

x1at t = 2 s2 = 30 + 1102122 - 5
2 1222 = 40 m

The time at which the particle reaches the origin is found by setting 
x = 0 m:

30 + 10 t - 5
2 t2 = 0

This quadratic equation has two solutions: t = -2 s or t = 6 s.
When we solve a quadratic equation, we cannot just arbitrarily  

select the root we want. Instead, we must decide which is the 
meaningful root. Here the negative root refers to a time before the 
problem began, so the meaningful one is the positive root, t = 6 s.

REVIEW The results agree with the answers we found previously 
from a graphical solution.

STOP TO THINK 2.3 Which position-versus-time graph goes with the velocity-versus-time graph on the 
left? The particle’s position at ti = 0 s is xi = -10 m.

EXAMPLE 2.7 ■ Using calculus to find the position

vx (m/s) x (m)

4

2

0

-2

10

5

0

-5

-10

10

5

0

-5

-10

10

5

0

-5

-10

10

5

0

-5

-10

t (s)

x (m)

t (s)

x (m)

t (s)t (s)

x (m)

t (s)

(a) (b) (c) (d)

5 10 5 10 5 105 105 10

TABLE 2.1 Velocities of a Porsche and a 
Volkswagen Beetle

t (s) v Porsche (m/s) v VW (m/s)

0.0 0.0 0.0

0.1 0.5 0.2

0.2 1.0 0.4

0.3 1.5 0.6

f f f
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66 CHAPTER 2 Kinematics in One Dimension

the same velocity change. Because the Porsche had a velocity change ∆vs = 30 m/s 
during a time interval ∆t = 6.0 s, the rate at which its velocity changed was

 rate of velocity change =
∆vs

∆t
=

30 m/s
6.0 s

= 5.0 1m/s2/s (2.15)

Notice the units. They are units of “velocity per second.” A rate of velocity change 
of 5.0 “meters per second per second” means that the velocity increases by 5.0 m/s 
during the first second, by another 5.0 m/s during the next second, and so on. In fact, 
the velocity will increase by 5.0 m/s during any second in which it is changing at the 
rate of 5.0 1m/s2/s.

Chapter 1 introduced acceleration as “the rate of change of velocity.” That is, 
 acceleration measures how quickly or slowly an object’s velocity changes. In parallel 
with our treatment of velocity, let’s define the average acceleration aavg during the 
time interval ∆t to be

 aavg K
∆vs

∆t
  (average acceleration) (2.16)

Equations 2.15 and 2.16 show that the Porsche had the rather large acceleration of 
5.0 1m/s2/s.

Because ∆vs and ∆t are the “rise” and “run” of a velocity-versus-time graph, we see 
that aavg can be interpreted graphically as the slope of a straight-line velocity- versus- 
time graph. In other words,

 aavg = slope of the velocity@versus@time graph (2.17)

Figure 2.19 uses this idea to show that the VW’s average acceleration is

aVW avg =
∆vs

∆t
=

10 m/s
5.0 s

= 2.0 1m/s2/s

This is less than the acceleration of the Porsche, as expected.
An object whose velocity-versus-time graph is a straight-line graph has a steady 

and unchanging acceleration. There’s no need to specify “average” if the acceleration 
is constant, so we’ll use the symbol as as we discuss motion along the s-axis with 
constant acceleration.

Signs and Units
An important aspect of acceleration is its sign. Acceleration au, like position r u and 
 velocity v 

u, is a vector. For motion in one dimension, the sign of ax (or ay) is positive if 
the vector au points to the right (or up), negative if it points to the left (or down). This 
was illustrated in ❮❮ FIGURE 1.18 and the very important ❮❮ TACTICS BOX 1.3, which you  
may wish to review. It’s particularly important to emphasize that positive and negative  
values of as do not correspond to “speeding up” and “slowing down.”

a. A bicyclist has a velocity of 6 m/s and a constant acceleration 
of 2 1m/s2/s. What is her velocity 1 s later? 2 s later?

b. A bicyclist has a velocity of -6 m/s and a constant acceleration 
of 2 1m/s2/s. What is his velocity 1 s later? 2 s later?

SOLVE

a. An acceleration of 2 1m/s2/s means that the velocity  increases 
by 2 m/s every 1 s. If the bicyclist’s initial velocity is 6 m/s, then 
1 s later her velocity will be 8 m/s. After 2 s, which is 1 additional 

second later, it will increase by another 2 m /s to 10 m/s. After 3 s  
it will be 12 m/s. Here a positive ax is causing the bicyclist to 
speed up.

b. If the bicyclist’s initial velocity is a negative -6 m/s but the 
 acceleration is a positive +2 1m/s2/s, then 1 s later his velocity will 
be -4 m/s. After 2 s it will be -2 m/s, and so on. In this case, a 
positive ax is causing the object to slow down (decreasing speed v). 
This agrees with the rule from Tactics Box 1.3: An object is slowing 
down if and only if vx and ax have opposite signs.

EXAMPLE 2.8 ■ Relating acceleration to velocity

Porsche

The Porsche reaches 30 m/s
in 6 s. The VW takes 15 s.

VW
vs (m/s)

30

20

10

0
0 5 10 15

t (s)

Slope = aPorsche avg = 5.0 (m/s)/s

Slope = aVW avg = 2.0 (m/s)/s

∆t = 5.0 s

∆vs = 10 m/s

FIGURE 2.19 Velocity-versus-time graphs 
for the Porsche and the VW Beetle.
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2.4 Motion with Constant Acceleration 67

   NOTE    It is customary to abbreviate the acceleration units (m/s)/s as m/s2. For 
example, the bicyclists in Example 2.8 had an acceleration of 2 m/s2. We will use 
this notation, but keep in mind the meaning of the notation as “(meters per second) 
per second.”

A basketball player starts at the left end of the court and moves 
with the velocity shown in FIGURE 2.20. Draw a motion diagram 
and an acceleration-versus-time graph for the basketball player.

VISUALIZE The velocity is positive (motion to the right) and 
 increasing for the first 6 s, so the velocity arrows in the motion 
diagram are to the right and getting longer. From t = 6 s to 9 s the 
motion is still to the right (vx is still positive), but the arrows are 
getting shorter because vx is decreasing. There’s a turning point at 
t = 9 s, when vx = 0 m/s, and after that the motion is to the left (vx is  
negative) and getting faster. The motion diagram of FIGURE 2.21a 
shows the velocity and the acceleration vectors.

SOLVE Acceleration is the slope of the velocity graph. For the first 
6 s, the slope has the constant value

ax =
∆vx

∆t
=

6.0  m/s
6.0 s

= 1.0  m/s2

The velocity then decreases by 12 m/s during the 6 s interval from 
t = 6 s to t = 12 s, so

ax =
∆vx

∆t
=

-12 m/s
6.0 s

= -2.0 m/s2

The acceleration graph for these 12 s is shown in FIGURE 2.21b. 
 Notice that there is no change in the acceleration at t = 9 s, the 
 turning point.

REVIEW The sign of ax does not tell us whether the object is speed-
ing up or slowing down. The basketball player is slowing down 
from t = 6 s to t = 9 s, then speeding up from t = 9 s to t = 12 s. 
Nonetheless, his acceleration is negative during this entire interval 
because his acceleration vector, as seen in the motion diagram, al-
ways points to the left.

a
u

v
u

a
u

a
u

v
ut = 0 s

Maximum speed
at t = 6 s

Turning point
at t = 9 s

t = 12 s

2

1

0

-1

-2

t (s)

ax (m/s2)

3 6 9 12

(a)

(b)

Each segment of the motion 
has constant acceleration.

FIGURE 2.21 Motion diagram and acceleration graph for  
Example 2.9.

EXAMPLE 2.9 ■ Running the court

6

3

0

-3

-6

3 6 9 12
t (s)

vx (m/s)

FIGURE 2.20 Velocity-versus-time graph for the basketball player 
of Example 2.9.

The Kinematic Equations of Constant Acceleration
Consider an object whose acceleration as remains constant during the time interval 
∆t = tf - ti. At the beginning of this interval, at time ti, the object has initial velocity 
vis and initial position si. Note that ti is often zero, but it does not have to be. We would 
like to predict the object’s final position sf and final velocity vfs at time tf.

The object’s velocity is changing because the object is accelerating. FIGURE 2.22a 
shows the acceleration-versus-time graph, a horizontal line between ti and tf. It is not 
hard to find the object’s velocity vfs at a later time tf. By definition,

 as =
∆vs

∆t
=

vfs - vis

∆t
 (2.18)

which is easily rearranged to give

 vfs = vis + as ∆t (2.19)

The velocity-versus-time graph, shown in FIGURE 2.22b, is a straight line that starts at 
vis and has slope as.

Acceleration Constant acceleration as

Velocity

Constant slope = as

as

vfs

vis

0

0

∆t

as∆t

vis

ti tf

∆t

ti tf

t

t

Displacement ∆s is the area
under the curve, consisting of
a rectangle and a triangle.

(a)

(b)

FIGURE 2.22 Acceleration and velocity 
graphs for constant acceleration.
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68 CHAPTER 2 Kinematics in One Dimension

As you learned in the last section, the object’s final position is

 sf = si + area under the velocity curve vs between ti and tf (2.20)

The shaded area in Figure 2.22b can be subdivided into a rectangle of area vis ∆t and a 
triangle of area 12 1as ∆t21∆t2 = 1

2 as1∆t22. Adding these gives

 sf = si + vis ∆t + 1
2 as  1∆t22 (2.21)

where ∆t = tf - ti is the elapsed time. The quadratic dependence on ∆t causes the 
position-versus-time graph for constant-acceleration motion to have a parabolic shape, 
as shown in Model 2.2.

Equations 2.19 and 2.21 are two of the basic kinematic equations for motion with 
constant acceleration. They allow us to predict an object’s position and velocity at a 
future instant of time. We need one more equation to complete our set, a direct relation  
between position and velocity. First use Equation 2.19 to write ∆t = 1vfs - vis2/as. 
Substitute this into Equation 2.21, giving

 sf = si + vis  1vfs - vis

as
2 + 1

2 as  1vfs - vis

as
22

 (2.22)

With a bit of algebra, this is rearranged to read

 vfs 

2 = vis 

2 + 2as ∆s (2.23)

where ∆s = sf - si is the displacement (not the distance!). Equation 2.23 is the last of 
the three kinematic equations for motion with constant acceleration.

The Constant-Acceleration Model
Few objects with changing velocity have a perfectly constant acceleration, but it is 
often reasonable to model their acceleration as being constant. We do so by utilizing 
the constant-acceleration model. Once again, a model is a set of words, pictures, 
graphs, and equations that allows us to explain and predict an object’s motion.

Your phone contains a miniature 
accelerometer, smaller than a millimeter, 
built into an integrated-circuit chip 
like the one shown here. These little 
accelerometers—the long bar on the 
lower right—have a tiny block of metal 
attached to a thin cantilever that acts 
like a spring. The block and a nearby 
electrode form what’s called a capacitor, 
an electronic device you’ll study in 
Chapter 26. Acceleration causes the block 
to sway slightly toward or away from the 
electrode, thus changing a current that is 
continuously monitored and used to infer 
the acceleration along that axis. Miniature 
accelerometers are used in navigation 
systems, robotics, medical devices, and 
even the activity tracker you wear while 
exercising. Most devices have three 
independent sensors, one for each axis. 
A continuous record of acceleration can 
be numerically integrated to determine 
velocity and position changes.

MODEL 2.2

Constant acceleration
For motion with constant acceleration.

■■ Model the object as a particle moving  
in a straight line with constant acceleration.

■■ Mathematically:

• vfs = vis + as  ∆t

• sf = si + vis ∆t + 1
2 as  1∆t22

• vfs 

2 = vis 

2 + 2as ∆s
■■ Limitations: Model fails if the particle’s  
acceleration changes.

Exercise 16 

In this text, we’ll usually model runners, cars, planes, and rockets as having con-
stant acceleration. Their actual acceleration is often more complicated (for example, a 
car’s acceleration gradually decreases rather than remaining constant until full speed 
is reached), but the mathematical complexity of dealing with realistic accelerations 
would detract from the physics we’re trying to learn.

The constant-acceleration model is the basis for a problem-solving strategy.

Current
meter

VoltageFixed
electrode

Acceleration axisCantilever

L0.5 mm

Moveable
block

a
u

v
u

Parabola

s

si t

The slope is vs.

Horizontal lineas

0 t

The acceleration is constant.

Straight linevs

vis t

The slope is as.
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2.4 Motion with Constant Acceleration 69

   NOTE    You are strongly encouraged to solve problems on the Dynamics Worksheets 
found at the back of the Student Workbook. These worksheets will help you use the 
Problem-Solving Strategy and develop good problem-solving skills.

PROBLEM-SOLVING STRATEGY 2.1

Kinematics with constant acceleration

MODEL Model the object as having constant acceleration.

VISUALIZE Use different representations of the information in the problem.
■■ Draw a pictorial representation. This helps you assess the information you  
are given and starts the process of translating the problem into symbols.

■■ Use a graphical representation if it is appropriate for the problem.
■■ Go back and forth between these two representations as needed.

SOLVE The mathematical representation is based on the three kinematic equations:

 vfs = vis + as  ∆t

 sf = si + vis ∆t + 1
2 as  1∆t22

 vfs 

2 = vis 

2 + 2as ∆s

■■ Use x or y, as appropriate to the problem, rather than the generic s.
■■ Replace i and f with numerical subscripts defined in the pictorial representation.

REVIEW Check that your result has the correct units and significant figures, is 
 reasonable, and answers the question.

EXAMPLE 2.10 ■ The motion of a rocket sled

A rocket sled’s engines fire for 5.0 s, boosting the sled to a speed  
of 250 m/s. The sled then deploys a braking parachute, slowing by 
3.0 m/s per second until it stops. What is the total distance traveled?

MODEL We’re not given the sled’s initial acceleration, while the 
rockets are firing, but rocket sleds are aerodynamically shaped to 
minimize air resistance and so it seems reasonable to model the 
sled as a particle undergoing constant acceleration.

VISUALIZE FIGURE 2.23 shows the pictorial representation. We’ve 
made the reasonable assumptions that the sled starts from rest 
and that the braking parachute is deployed just as the rocket burn 
ends. There are three points of interest in this problem: the start, 
the change from propulsion to braking, and the stop. Each of these 
points has been assigned a position, velocity, and time. Notice 
that we’ve replaced the generic subscripts i and f of the kinematic 
equations with the numerical subscripts 0, 1, and 2. Accelerations 
are associated not with specific points in the motion but with the 

 intervals between the points, so acceleration a0x is the acceleration 
between points 0 and 1 while acceleration a1x is the acceleration 
between points 1 and 2. The acceleration vector au1 points to the left, 
so a1x is negative. The sled stops at the end point, so v2x = 0 m/s.

SOLVE We know how long the rocket burn lasts and the velocity 
at the end of the burn. Because we’re modeling the sled as having 
uniform acceleration, we can use the first kinematic equation of 
Problem-Solving Strategy 2.1 to write

v1x = v0x + a0x1t1 - t02 = a0x  t1

We started with the complete equation, then simplified by noting which 
terms were zero. Solving for the boost-phase acceleration, we have

a0x =
v1x

t1
=

250 m/s
5.0 s

= 50 m/s2

Notice that we worked algebraically until the last step—a hallmark 
of good problem-solving technique that minimizes the chances of  

FIGURE 2.23 Pictorial representation of the rocket sled.

Continued
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70 CHAPTER 2 Kinematics in One Dimension

calculation errors. Also, in accord with the significant figure  
rules of Chapter 1, 50 m/s2 is considered to have two significant 
figures.

Now we have enough information to find out how far the sled 
travels while the rockets are firing. The second kinematic equation 
of Problem-Solving Strategy 2.1 is

  x1 = x0 + v0x1t1 - t02 + 1
2 a0x1t1 - t022 = 1

2 a0x t1 

2

  = 1
2 150 m/s2215.0 s22 = 625 m

The braking phase is a little different because we don’t know how 
long it lasts. But we do know both the initial and final velocities, 
so we can use the third kinematic equation of Problem-Solving 
Strategy 2.1:

v2x 

2 = v1x 

2 + 2a1x ∆x = v1x 

2 + 2a1x1x2 - x12

Notice that ∆x is not x2; it’s the displacement 1x2 - x12 during the 
braking phase. We can now solve for x2:

  x2 = x1 +
v2x 

2 - v1x 

2

2a1x

  = 625 m +
0 - 1250 m/s22

21-3.0 m/s22 = 11,000 m

We kept three significant figures for x1 at an intermediate stage of 
the calculation but rounded to two significant figures at the end.

REVIEW The total distance is 11 km ≈ 7 mi. That’s large but be-
lievable. Using the approximate conversion factor 1 m/s ≈ 2 mph  
from Table 1.5, we see that the top speed is ≈ 500 mph. It will 
take a long distance for the sled to gradually stop from such a 
high speed.

EXAMPLE 2.11 ■ A two-car race

Fred is driving his Volkswagen Beetle at a steady 20 m/s when he 
passes Betty sitting at rest in her Porsche. Betty instantly begins accel-
erating at 5.0 m/s2. How far does Betty have to drive to overtake Fred?

MODEL Model the VW as a particle in uniform motion and the 
Porsche as a particle with constant acceleration.

VISUALIZE FIGURE 2.24 is the pictorial representation. Fred’s motion 
diagram is one of uniform motion, while Betty’s shows uniform accel-
eration. Fred is ahead in frames 1, 2, and 3, but Betty catches up with 
him in frame 4. The coordinate system shows the cars with the same 
position at the start and at the end—but with the important difference 
that Betty’s Porsche has an acceleration while Fred’s VW does not.

SOLVE This problem is similar to Example 2.2, in which Bob 
and Susan met for lunch. As we did there, we want to find  Betty’s 
position 1x12B at the instant t1 when 1x12B = 1x12F. We know, 
from the models of uniform motion and uniform acceleration, that 
Fred’s position graph is a straight line but Betty’s is a parabola. 
The  position graphs in Figure 2.24 show that we’re solving for the 
intersection point of the line and the parabola.

Fred’s and Betty’s positions at t1 are

 1x12F = 1x02F + 1v0x2F1t1 - t02 = 1v0x2F t1

 1x12B = 1x02B + 1v0x2B1t1 - t02 + 1
2 1a0x2 B1t1 - t022 = 1

2 1a0x2B t1 

2

By equating these,

1v0x2F t1 = 1
2 1a0x2B t1 

2

we can solve for the time when Betty passes Fred:

t131
2  1a0x2B t1 - 1

  

v0x2F4 = 0

t1 = e0 s
21v0x2F /1a0x2B = 8.0 s

Interestingly, there are two solutions. That’s not surprising, when you 
think about it, because the line and the parabola of the position graphs 
have two intersection points: when Fred first passes Betty, and 8.0 s 
later when Betty passes Fred. We’re interested in only the second of 
these points. We can now use either of the distance equations to find 
1x12B = 1x12F = 160 m. Betty has to drive 160 m to overtake Fred.

REVIEW 160 m ≈ 160 yards. Because Betty starts from rest while 
Fred is moving at 20 m/s ≈ 40 mph, needing 160 yards to catch 
him seems reasonable.

   NOTE    The purpose of the Review step is not to prove that an 
answer must be right but to rule out answers that, with a little 
thought, are clearly wrong.

vF
u

vB
u

aB
u

0 1 2 3 4

0 1 2 3 4

x
0  (x0)F, (v0x)F, t0 (x1)F, (v1x)F, t1

x
0  (x0)B, (v0x)B, t0 (x1)B, (v1x)B, t1

Betty

Fred

Known

Find

(x0)F = 0 m  (x0)B = 0 m  t0 = 0 s
(v0x)F = 20 m/s     (v0x)B = 0 m/s
(a0x)B = 5.0 m/s2    (v1x)F = 20 m/s

(x1)B at t1 when (x1)B = (x1)F

x

t
t0 t1

Betty

Fred

Betty passes Fred
at time t1.

FIGURE 2.24 Pictorial representation for Example 2.11.
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2.5 Free Fall 71

2.5 Free Fall
The motion of an object moving under the influence of gravity only, and no other forces, 
is called free fall. Strictly speaking, free fall occurs only in a vacuum, where there is no 
air resistance. Fortunately, the effect of air resistance is small for “heavy objects,” so we’ll 
make only a very slight error in treating these objects as if they were in free fall. For very 
light objects, such as a feather, or for objects that fall through very large distances and gain 
very high speeds, the effect of air resistance is not negligible. Motion with air resistance is 
a problem we will study in Chapter 6. Until then, we will restrict our attention to “heavy 
objects” and will make the reasonable assumption that falling objects are in free fall.

Galileo, in the 17th century, was the first to make detailed measurements of falling 
objects. The story of Galileo dropping different weights from the leaning bell tower 
at the cathedral in Pisa is well known, although historians cannot confirm its truth. 
Based on his measurements, wherever they took place, Galileo developed a model for 
motion in the absence of air resistance:

■■ Two objects dropped from the same height will, if air resistance can be neglected, 
hit the ground at the same time and with the same speed.

■■ Consequently, any two objects in free fall, regardless of their mass, have the  
same acceleration aufree fall.

FIGURE 2.25a shows the motion diagram of an object that was released from rest and 
falls freely. FIGURE 2.25b shows the object’s velocity graph. The motion diagram and graph 
are identical for a falling pebble and a falling boulder. The fact that the velocity graph is a 
straight line tells us the motion is one of constant acceleration, and afree fall is found from 
the slope of the graph. Careful measurements show that the value of aufree fall varies ever so 
slightly at different places on the earth, due to the slightly nonspherical shape of the earth 
and to the fact that the earth is rotating. A global average, at sea level, is

 aufree fall = (9.80 m/s2, vertically downward) (2.24)

Vertically downward means along a line toward the center of the earth.
The length, or magnitude, of aufree fall is known as the free-fall acceleration, and 

it has the special symbol g:

g = 9.80 m/s2 (free@fall acceleration)

Several points about free fall are worthy of note:

■■ g, by definition, is always positive. There will never be a problem that will use a 
negative value for g. But, you say, objects fall when you release them rather than 
rise, so how can g be positive?

■■ g is not the acceleration afree fall, but simply its magnitude. Because we’ve chosen 
the y-axis to point vertically upward, the downward acceleration vector aufree fall has 
the vertical component

 ay = afree fall = -g (2.25)

It is ay that is negative, not g.

ax vx vx vx vx

0 0 0 0 0t t t t t

(a) (b) (c) (d)

STOP TO THINK 2.4 Which velocity-versus-time graph or graphs go with the 
 acceleration-versus-time graph on the left? The particle is initially moving to the right.

In a vacuum, the apple and feather fall at 
the same rate and hit the ground at the 
same time.

v
u

(a)

afree fall
u

FIGURE 2.25 Motion of an object in free 
fall.

afree fall = slope
 = -9.80 m/s2

(b)
vy (m/s)

t (s)0

-9.8

-19.6

-29.4

1 2 3
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72 CHAPTER 2 Kinematics in One Dimension

■■ We can model free fall as motion with constant acceleration, with ay = -g.
■■ g is not called “gravity.” Gravity is a force, not an acceleration. The symbol g 

 recognizes the influence of gravity, but g is the freefall acceleration. You may also 
see g called the acceleration due to gravity.

■■ g = 9.80 m/s2 only on earth. Other planets have different values of g. You will learn 
in Chapter 13 how to determine g for other planets.

   NOTE    Despite the name, free fall is not restricted to objects that are literally falling. 
Any object moving under the influence of gravity only, and no other forces, is in free 
fall. This includes objects falling straight down, objects that have been tossed or shot 
straight up, and projectile motion.

EXAMPLE 2.12 ■ A falling rock

A rock is dropped from the top of a 20-m-tall building. What is its 
impact velocity?

MODEL A rock is fairly heavy, and air resistance is probably not 
a serious concern in a fall of only 20 m. It seems reasonable to 
model the rock’s motion as free fall: constant acceleration with 
ay = afree fall = -g.

VISUALIZE FIGURE 2.26 shows the pictorial representation. We  
have placed the origin at the ground, which makes y0 = 20 m. 
Although the rock falls 20 m, it is important to notice that the 
 displacement is ∆y = y1 - y0 = -20 m.

SOLVE In this problem we know the displacement but not the time, 
which suggests that we use the third kinematic equation from 
 Problem-Solving Strategy 2.1:

v1y 

2 = v0y 

2 + 2ay   ∆y = -2g ∆y

We started by writing the general equation, then noted that 
v0y = 0 m/s and substituted ay = -g. Solving for v1y:

v1y = 2-2g∆y = 2-219.8 m/s221-20 m2 = {20 m/s

A common error would be to say, “The rock fell 20 m, so 
∆y = 20 m.” That would have you trying to take the square root 
of a negative number. As noted above, ∆y is a displacement, not a 
distance, and in this case ∆y = -20 m.

The { sign indicates that there are two mathematical solutions; 
therefore, we have to use physical reasoning to choose between 
them. The rock does hit with a speed of 20 m/s, but the question 
asks for the impact velocity. The velocity vector points down, so 
the sign of v1y is negative. Thus the impact velocity is -20 m/s.

REVIEW Is the answer reasonable? Well, 20 m is about 60 feet,  
or about the height of a five- or six-story building. Using 1 m/s ≈
2 mph, we see that 20 m/s ≈ 40 mph. That seems quite reasonable  
for the speed of an object after falling five or six stories. If we had 
misplaced a decimal point, though, and found 2.0 m/s, we would 
be suspicious that this was much too small after converting it  
to ≈4 mph.

a
u

v
u

0

ay

y0, v0y, t0

y1, v1y, t1

y

Known
y0 = 20 m
v0y = 0 m/s t0 = 0 s

ay = -g = -9.80 m/s2
y1 = 0 m

Find
v1y

Start

FIGURE 2.26 Pictorial representation of a falling rock.

The springbok, an antelope found 
in Africa, gets its name from its re-
markable jumping ability. When 
startled, a springbok will leap 
straight up into the air—a maneuver 
called a “pronk.” A springbok goes 
into a crouch to perform a pronk. It 
then extends its legs forcefully, ac-
celerating at 35 m/s2 for 0.70 m as 

its legs straighten. Legs fully extended, it leaves the ground and 
rises into the air. How high does it go?

MODEL The springbok is changing shape as it leaps, so can we 
reasonably model it as a particle? We can if we focus on the body 
of the springbok, treating the expanding legs like external springs. 
Initially, the body of the springbok is driven upward by its legs. 
We’ll model this as a particle—the body—undergoing constant 
acceleration. Once the springbok’s feet leave the ground, we’ll 
model the motion of the springbok’s body as a particle in free fall.

EXAMPLE 2.13 ■ Finding the height of a leap
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2.6 Motion on an Inclined Plane 73

2.6 Motion on an Inclined Plane
FIGURE 2.28a shows a problem closely related to free fall: that of motion down a straight, 
but frictionless, inclined plane, such as a skier going down a slope on frictionless snow. 
What is the object’s acceleration? Although we’re not yet prepared to give a rigorous 
derivation, we can deduce the acceleration with a plausibility argument.

FIGURE 2.28b shows the free-fall acceleration aufree fall the object would have if the in-
cline suddenly vanished. The free-fall acceleration points straight down. This vector 
can be broken into two pieces: a vector au ‘ that is parallel to the incline and a vector au# 
that is perpendicular to the incline. The surface of the incline somehow “blocks” au#  , 
through a process we will examine in Chapter 6, but au ‘ is unhindered. It is this piece 
of aufree fall , parallel to the incline, that accelerates the object.

By definition, the length, or magnitude, of aufree fall is g. Vector au ‘ is opposite angle u  
(Greek theta), so the length, or magnitude, of au ‘ must be g sin u. Consequently, the 
one-dimensional acceleration along the incline is

 as = {g sin u (2.26)

The correct sign depends on the direction in which the ramp is tilted. Examples will 
illustrate.

Equation 2.26 makes sense. Suppose the plane is perfectly horizontal. If you place 
an object on a horizontal surface, you expect it to stay at rest with no acceleration. 
Equation 2.26 gives as = 0 when u = 0°, in agreement with our expectations. Now sup-
pose you tilt the plane until it becomes vertical, at u = 90°. Without friction, an  object  
would simply fall, in free fall, parallel to the vertical surface. Equation 2.26 
gives  as = -g = afree fall when u = 90°, again in agreement with our expectations. 
Equation 2.26 gives the correct result in these limiting cases.

a
u

v
u

Same angle

(b)

Angle of
incline

(a)

u

u

u

This piece of afree fall

accelerates the object
down the incline.

a ‘

a#

afree fall

u

u

u

u

FIGURE 2.28 Acceleration on an inclined 
plane.

VISUALIZE FIGURE 2.27 shows the pictorial representation. This  
is a problem with a beginning point, an end point, and a point in 
between where the nature of the motion changes. We’ve identified 
these points with subscripts 0, 1, and 2. The motion from 0 to 1 
is a rapid upward acceleration until the springbok’s feet leave the 
ground at 1. Even though the springbok is moving upward from 1 
to 2, this is free-fall motion because the springbok is now moving 
under the influence of gravity only.

How do we put “How high?” into symbols? The clue is that 
the very top point of the trajectory is a turning point, and we’ve 
seen that the instantaneous velocity at a turning point is v2y = 0. 

This was not explicitly stated but is part of our interpretation of 
the problem.

SOLVE For the first part of the motion, pushing off, we know a  
displacement but not a time interval. We can use

 v1y 

2 = v0y 

2 +  2a0y ∆y = 2135 m/s2210.70 m2 = 49 m2/s2

 v1y = 249 m2/s2 = 7.0 m/s

The springbok leaves the ground with a velocity of 7.0 m/s. This is 
the starting point for the problem of a projectile launched straight 
up from the ground. One possible solution is to use the velocity 
equation to find how long it takes to reach maximum height, then 
the position equation to calculate the maximum height. But that 
takes two separate calculations. It is easier to make another use of 
the velocity-displacement equation:

v2y 

2 = 0 = v1y 

2 + 2a1y ∆y = v1y 

2 - 2g1y2 - y12
where now the acceleration is a1y = -g. Using y1 = 0, we can 
solve for y2, the height of the leap:

y2 =
v1y 

2

2g
=

17.0 m/s22

219.80 m/s22 = 2.5 m

REVIEW 2.5 m is a bit over 8 feet, a remarkable vertical jump. But 
these animals are known for their jumping ability, so the answer 
seems reasonable. Note that it is especially important in a multipart 
problem like this to use numerical subscripts to distinguish different  
points in the motion.

FIGURE 2.27 Pictorial representation of a startled springbok.
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74 CHAPTER 2 Kinematics in One Dimension

In the laboratory, a 2.00-m-long track has been inclined as shown 
in FIGURE 2.29. Your task is to measure the acceleration of a cart 
on the ramp and to compare your result with what you might have 
expected. You have available five “photogates” that measure the 
cart’s speed as it passes through. You place a gate every 30 cm 
from a line you mark near the top of the track as the starting line. 
One run generates the data shown in the table. The first entry isn’t 
a photogate, but it is a valid data point because you know the cart’s 
speed is zero at the point where you release it.

Distance (cm) Speed (m/s)

0 0.00

30 0.75

60 1.15

90 1.38

120 1.56

150 1.76

 NOTE   Physics is an experimental science. Our knowledge of 
the universe is grounded in observations and measurements. 
Consequently, some examples and homework problems 
throughout this book will be based on data. Data-based 
homework problems require the use of a spreadsheet, graphing 
software, or a graphing calculator in which you can “fit” data 
with a straight line.

MODEL Model the cart as a particle.

VISUALIZE FIGURE 2.30 shows the pictorial representation. The track 
and axis are tilted at angle u = tan-1 120.0 cm /180 cm2 = 6.34°. 
This is motion on an inclined plane, so you might expect the cart’s 
acceleration to be ax = g sin u = 1.08 m/s2.

SOLVE In analyzing data, we want to use all the data. Further, we 
almost always want to use graphs when we have a series of measure-
ments. We might start by graphing speed versus distance traveled. 
This is shown in FIGURE 2.31a, where we’ve converted distances to 
meters. As expected, speed increases with distance, but the graph 
isn’t linear and that makes it hard to analyze.

Rather than proceeding by trial and error, let’s be guided by 
theory. If the cart has constant acceleration—which we don’t yet 
know and need to confirm—the third kinematic equation tells us 
that velocity and displacement should be related by

vx 

2 = v0x 

2 +  2ax ∆x = 2ax  x

The last step was based on starting from rest 1v0x = 02 at the origin 
1∆x = x - x0 = x2.

Rather than graphing vx versus x, suppose we graph vx 

2 versus x.  
If we let y = vx 

2, the kinematic equation reads

y = 2ax  x

This is in the form of a linear equation: y = mx + b, where m is 
the slope and b is the y-intercept. In this case, m = 2ax and b = 0. 
So if the cart really does have constant acceleration, a graph of 
vx 

2 versus x should be linear with a y-intercept of zero. This is a 
prediction that we can test.

Thus our analysis has three steps:

1. Graph vx 

2 versus x. If the graph is a straight line with a y- intercept 
of zero (or very close to zero), then we can conclude that the cart 
has constant acceleration on the ramp. If not, the acceleration 
is not constant and we cannot use the kinematic equations for 
constant acceleration.

2. If the graph has the correct shape, we can determine its slope m.
3. Because kinematics predicts m = 2ax, the acceleration must be 

ax = m/2.

FIGURE 2.31b is the graph of vx 

2 versus x. It does turn out to be 
a straight line with a y-intercept of zero, and this is the evidence 
we need that the cart has a constant acceleration on the ramp. To 
proceed, we want to determine the slope by finding the straight 
line that is the “best fit” to the data. This is a statistical technique, 
justified in a statistics class, but one that is implemented in spread-
sheets and graphing calculators. The solid line in Figure 2.31b is 
the best-fit line for this data, and its equation is shown. We see 
that the slope is m = 2.06 m /s2. Slopes have units, and the units 
come not from the fitting procedure but by looking at the axes of 
the graph. Here the vertical axis is velocity squared, with units of 
m2/s2, while the horizontal axis is position, measured in m. Thus 
the slope, rise over run, has units of m/s2.

Finally, we can determine that the cart’s acceleration was

ax =
m
2

= 1.03 m/s2

This is about 5% less than the 1.08 m/s2 we expected. Two possibilities 
come to mind. Perhaps the distances used to find the tilt angle weren’t 
measured accurately. Or, more likely, the cart rolls with a small bit of 
friction. The predicted acceleration ax = g sin u is for a frictionless 
inclined plane; any friction would decrease the acceleration.

REVIEW The acceleration is just slightly less than predicted for a 
frictionless incline, so the result is reasonable.

180 cm

20.0 cm

FIGURE 2.29 The experimental 
setup.

EXAMPLE 2.14 ■ Measuring acceleration

3.0

0.0

1.0

2.0

0.0 0.3 0.6 0.9 1.51.2

y = 2.06x + 0.00

Best-fit line

x (m)

1.5

2.0

0.0

0.5

1.0

0.0 0.3 0.6 0.9 1.51.2

(b)
vx

2 (m2/s2)
(a)
vx (m/s)

x (m)

FIGURE 2.31 Graphs of velocity and of velocity squared. The 
equation of the best-fit line is given as y = because that is how it 
would be shown in a spreadsheet.

Known

0

Find

x0 = 0 m
t0 = 0 s u = 6.34°

v0x = 0 m/s

x0, v0x, t0 x, vx, t x

ax

ax

u

FIGURE 2.30 The pictorial representation of the cart on 
the track.
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2.6 Motion on an Inclined Plane 75

Thinking Graphically
A good way to solidify your intuitive understanding of motion is to consider the 
 problem of a hard, smooth ball rolling on a smooth track. The track is made up of 
several straight segments connected together. Each segment may be either horizontal 
or inclined. Your task is to analyze the ball’s motion graphically.

There are a small number of rules to follow:

1. Assume that the ball passes smoothly from one segment of the track to the next, 
with no abrupt change of speed and without ever leaving the track.

2. The graphs have no numbers, but they should show the correct relationships. 
For example, the position graph should be steeper in regions of higher speed.

3. The position s is the position measured along the track. Similarly, vs and as are 
the velocity and acceleration parallel to the track.

Draw position, velocity, and acceleration graphs for the ball on the 
smooth track of FIGURE 2.32.

VISUALIZE It is often easiest to begin with the velocity. There is 
no acceleration on the horizontal surface 1as = 0 if u = 0°2, so the 
velocity remains constant at v0s until the ball reaches the slope. The 
slope is an inclined plane where the ball has constant acceleration.  
The velocity increases linearly with time during constant- 
acceleration motion. The ball returns to constant-velocity motion 
after reaching the bottom horizontal segment. The middle graph of 
FIGURE 2.33 shows the velocity.

We can easily draw the acceleration graph. The acceleration is 
zero while the ball is on the horizontal segments and has a constant 
positive value on the slope. These accelerations are consistent with 
the slope of the velocity graph: zero slope, then positive slope, then a 
return to zero. The acceleration cannot really change instantly from 

zero to a nonzero value, but 
the change can be so quick 
that we do not see it on the 
time scale of the graph. That 
is what the vertical dashed 
lines imply.

Finally, we need to find 
the position- versus-time 
graph. The position in-
creases linearly with time 
during the first  segment at 
constant velocity. It also 
does so during the third 
segment of motion, but with 
a steeper slope to indicate a 
faster  velocity. In between, 
while the  acceleration is 
nonzero but constant, the 
position graph has a para
bolic shape. Notice that the parabolic section blends smoothly 
into the straight lines on either side. An abrupt change of slope (a 
“kink”) would indicate an abrupt change in velocity and would 
violate rule 1.

s

vs

v0s

as

t

t

t

The position graph changes
smoothly, without kinks.

FIGURE 2.33 Motion graphs for 
the ball in Example 2.15.

EXAMPLE 2.15 ■ From track to graphs

v0s 7 0

FIGURE 2.32 A ball rolling along a track.

FIGURE 2.34 shows a set of motion graphs for a ball moving on a 
track. Draw a picture of the track and describe the ball’s initial 
condition. Each segment of the track is straight, but the segments 
may be tilted.

VISUALIZE The ball starts with initial velocity v0s 7 0 and 
 maintains this velocity for awhile; there’s no acceleration. Thus the  
ball must start out rolling to the right on a horizontal track. At the  
end of the motion, the ball is again rolling on a horizontal track (no  
acceleration, constant velocity), but it’s rolling to the left because vs  
is negative. Further, the final speed 1 0 vs 0 2 is greater than the initial 
speed. The middle section of the graph shows us what happens. 
The ball starts slowing with constant acceleration (rolling uphill), 
reaches a turning point 1s is maximum, vs = 02, then speeds up in  
the opposite direction (rolling downhill). This is still a nega-
tive acceleration because the ball is speeding up in the  negative  

s

vs

v0s

as

t

t

t

0

0

0

FIGURE 2.34 Motion graphs 
of a ball rolling on a track of 
unknown shape.

Continued

EXAMPLE 2.16 ■ From graphs to track
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2.7   ADVANCED TOPIC   Instantaneous 
Acceleration

Although the constant-acceleration model is very useful, real moving objects only 
rarely have constant acceleration. For example, FIGURE 2.36a is a realistic velocity- 
versus-time graph for a car leaving a stop sign. The graph is not a straight line, so this 
is not motion with constant acceleration.

We can define an instantaneous acceleration much as we defined the instantaneous 
velocity. The instantaneous velocity at time t is the slope of the position- versus-time 
graph at that time or, mathematically, the derivative of the position with respect to 
time. By analogy: The instantaneous acceleration as is the slope of the line that 
is tangent to the velocity-versus-time curve at time t.  Mathematically, this is

 as =
dvs

dt
= slope of the velocity@versus@time graph at time t (2.27)

FIGURE 2.36b applies this idea by showing the car’s acceleration graph. At each  instant 
of time, the value of the car’s acceleration is the slope of its velocity graph. The 
 initially steep slope indicates a large initial acceleration. The acceleration decreases to 
zero as the car reaches cruising speed.

The reverse problem—to find the velocity vs if we know the acceleration as at all 
instants of time—is also important. Again, with analogy to velocity and position, we 
have

 vfs = vis + 3
tf

ti

as dt (2.28)

The graphical interpretation of Equation 2.28 is

 vfs = vis + area under the acceleration curve as between ti and tf (2.29)

vx

t

The car speeds up from rest until
it reaches a steady cruising speed.

ax

t

The slope of the velocity
graph is the value of the
acceleration.

(a)

(b)

FIGURE 2.36 Velocity and acceleration 
graphs of a car leaving a stop sign.

s- direction. It must roll farther downhill than it had rolled uphill 
 before reaching a horizontal section of track. FIGURE 2.35 shows 
the track and the initial conditions that are responsible for the 
graphs of Figure 2.34.

v0s 7 0

This track has a “switch.”  A ball 
moving to the right goes up the incline, 
but a ball rolling downhill goes
straight through.

FIGURE 2.35 Track responsible for the motion graphs of  
Figure 2.34.

STOP TO THINK 2.5 The ball rolls up the ramp, then back down. Which is the correct acceleration graph?

(a) (b) (c) (d) (e)

as as as as as

t t t t t
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2.7  Advanced Topic: Instantaneous Acceleration 77

FIGURE 2.37 shows the acceleration graph for a particle with an 
 initial velocity of 10 m/s. What is the particle’s velocity at t = 8 s?

MODEL We’re told this is the motion of a particle.

VISUALIZE Figure 2.37 is a graphical representation of the motion.

SOLVE The change in velocity is found as the area under the accel-
eration curve:

vfs = vis + area under the acceleration curve as between ti and  tf

The area under the curve between ti = 0 s and tf = 8 s can be subdi-
vided into a rectangle 10 s … t … 4 s2 and a triangle 14 s …  t … 8 s2. 
These areas are easily computed. Thus

  vs1at t = 8 s2 = 10 m/s + 14 m/s2214 s2
  + 1

2 14 m/s2214 s2
  = 34 m/s

as (m/s2)

t (s)
2 4 6 8 10

∆vs is the area
under the curve.4

2

0

-2

FIGURE 2.37 Acceleration graph for Example 2.17.

EXAMPLE 2.17 ■ Finding velocity from acceleration

Starting from rest, a car takes T seconds to reach its cruising 
speed vmax. A plausible expression for the velocity as a function 
of time is

vx1t2 = c vmax 12t
T

-
t2

T 22 t … T

vmax t Ú T

a. Demonstrate that this is a plausible function by drawing velocity 
and acceleration graphs.

b. Find an expression for the distance traveled at time T in terms  
of T and the maximum acceleration a max.

c. What are the maximum acceleration and the distance traveled 
for a car that reaches a cruising speed of 15 m/s in 8.0 s?

MODEL Model the car as a particle.

VISUALIZE FIGURE 2.38a shows the velocity graph. It’s an inverted 
parabola that reaches vmax at time T and then holds that value. From 
the slope, we see that the acceleration should start at a maximum 
value amax, steadily decrease until T, and be zero for t 7 T.

SOLVE a. We can find an expression for ax by taking the deriv-
ative of vx. Starting with t … T, and using Equation 2.6 for the 
derivatives of polynomials, we find

ax =
dvx

dt
= vmax 12

T
-

2t

T 22 =
2vmax

T
 11 -

t
T2 = amax 11 -

t
T2

where amax = 2vmax/T. For t Ú T, ax = 0. Altogether,

ax1t2 = c amax 11 -
t
T2 t … T

0 t Ú T

This expression for the acceleration is graphed in FIGURE 2.38b. 
The acceleration decreases linearly from amax to 0 as the car accel-
erates from rest to its cruising speed.

b. To find the position as a function of time, we need to integrate 
the velocity (Equation 2.11) using Equation 2.13 for the integrals of 
polynomials. At time T, when cruising speed is reached,

  xT = x0 + 3
T

0
vx  dt = 0 +

2vmax

T 3
T

0
t dt -

vmax

T 2 3
T

0
t2 dt

  =
2vmax 

T
 
t2

2
`
T

0
-

vmax

T 2  
 t3

3
`
T

0

  = vmaxT - 1
3 vmaxT = 2

3 vmaxT

Recalling that amax = 2vmax/T, we can write the distance traveled as

xT = 2
3 vmaxT = 1

3 12vmax

T 2T 2 = 1
3 amaxT

2

If the acceleration stayed constant, the distance would be 1
2 aT 2. 

We have found a similar expression but, because the acceleration is 
steadily decreasing, with a smaller fraction in front.

c. With vmax = 15 m /s and T = 8.0 s, realistic values for city driving,  
we find

  amax =
2vmax

T
=

2115 m/s2
8.0 s

= 3.75  m/s2

  xT = 1
3 amaxT

2 = 1
3 13.75 m /s2218.0 s22 = 80 m

REVIEW 80 m in 8.0 s to reach a cruising speed of 15 m /s ≈ 30 mph  
is very reasonable. This gives us good reason to believe that a car’s 

initial acceleration is ≈ 1
3 g.

EXAMPLE 2.18 ■ A realistic car acceleration

ax

t
T0

vx

0

vmax

0

amax

t
T0

(a)

(b)

FIGURE 2.38 Velocity and acceleration graphs for Example 2.18.
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STOP TO THINK 2.6 Rank in order, from most 
positive to least positive, the accelerations at 
points 1 to 3.

a. a1 7 a2 7 a3 

b. a3 7 a1 7 a2 

c. a3 7 a2 7 a1 

d. a2 7 a1 7 a3 

vs

t0

1

2

3

   CHAPTER 2 CHALLENGE EXAMPLE    Rocketing along

A rocket sled accelerates along a long, horizontal rail. Starting from 
rest, two rockets burn for 10 s, providing a constant acceleration. 
One rocket then burns out, halving the acceleration, but the other 
burns for an additional 5 s to boost the sled’s speed to 625 m/s. How  
far has the sled traveled when the second rocket burns out?

MODEL Model the rocket sled as a particle with constant acceleration.

VISUALIZE FIGURE 2.39 shows the pictorial representation. This is 
a two-part problem with a beginning, an end (the second rocket 
burns out), and a point in between where the motion changes (the 
first rocket burns out).

SOLVE The difficulty with this problem is that there’s not enough 
information to completely analyze either the first or the second  
part of the motion. A successful solution will require combining 
information about both parts of the motion, and that can be done 
only by working algebraically, not worrying about numbers until 
the end of the problem. A well-drawn pictorial representation and 
clearly defined symbols are essential.

The first part of the motion, with both rockets firing, has accel-
eration a0x. The sled’s position and velocity when the first rocket 
burns out are

 x1 = x0 + v0x ∆t + 1
2 a0x1∆t22 = 1

2 a0x  t1 

2

 v1x = v0x + a0x ∆t = a0x  t1

where we simplified as much as possible by knowing that the sled 
started from rest at the origin at t0 = 0 s. We can’t compute numerical  
values, but these are valid algebraic expressions that we can carry 
over to the second part of the motion.

From t1 to t2, the acceleration is a smaller a1x. The velocity when  
the second rocket burns out is

v2x = v1x + a1x ∆t = a0x  t1 + a1x1t2 - t12
where for v1x we used the algebraic result from the first part of the 
motion. Now we have enough information to complete the solution. 
We know that the acceleration is halved when the first rocket burns 
out, so a1x = 1

2 a0x. Thus

v2 x = 625 m/s = a0 x110 s2 + 1
2 a0x15 s2 = 112.5 s2a0x  

Solving, we find a0x = 50 m/s2.
With the acceleration now known, we can calculate the position 

and velocity when the first rocket burns out:

  x1 = 1
2 a0x  t1 

2 = 1
2 150 m/s22110 s22 = 2500 m

  v1x = a0x  t1 = 150 m/s22110 s2 = 500 m/s

Finally, the position when the second rocket burns out is

  x2 = x1 + v1x ∆t + 1
2 a1x1∆t22

  = 2500 m + 1500 m/s215 s2 + 1
2 125 m/s2215 s22 = 5300 m

The sled has traveled 5300 m when it reaches 625 m/s at the burnout  
of the second rocket.

REVIEW 5300 m is 5.3 km, or roughly 3 miles. That’s a long way 
to travel in 15 s! But the sled reaches incredibly high speeds. At the 
final speed of 625 m/s, over 1200 mph, the sled would travel nearly 
10 km in 15 s. So 5.3 km in 15 s for the accelerating sled seems 
reasonable.

FIGURE 2.39 The pictorial representation of the rocket sled.
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Solving Kinematics Problems
MODEL Uniform motion or constant acceleration.

VISUALIZE Draw a pictorial representation.

SOLVE

• Uniform motion sf = si + vs ∆t

• Constant acceleration vfs = vis + as ∆t

sf = si + vis ∆t + 1
2 as1∆t22

vfs 

2 = vis 

2 + 2as ∆s

REVIEW Is the result reasonable?

Kinematics describes motion in terms of position, velocity, and acceleration.

General kinematic relationships are given mathematically by:

Instantaneous velocity  vs = ds/dt = slope of position graph

Instantaneous acceleration  as = dvs/dt = slope of velocity graph

Final position  sf = si + 3
tf

ti

vs dt = si + e area under the velocity
curve from ti to tf

Final velocity vfs = vis + 3
tf

ti

as dt = vis + e area under the acceleration
curve from ti to tf

General Principles

The goal of Chapter 2 has been to learn to solve problems 
about motion along a straight line.

Summary

Position, velocity, and acceleration are  
related graphically.
• The slope of the position-versus-time  

graph is the value on the velocity graph.

• The slope of the velocity graph is the  
value on the acceleration graph.

• s is a maximum or minimum at a turning  
point, and vs = 0.

The sign of vs indicates the direction of motion.
• vs 7 0 is motion to the right or up.

• vs 6 0 is motion to the left or down.
The sign of as indicates which way au points, not whether the  
object is speeding up or slowing down.

• as 7 0 if au points to the right or up.

• as 6 0 if au points to the left or down.

• The direction of au is found with a motion diagram.

An object is speeding up if and only if vs and as have the same sign. 

An object is slowing down if and only if vs and as have opposite signs.

Free fall is constant-acceleration motion with

ay = -g = -9.80 m/s2

Motion on an inclined plane has as = {g sin u.  
The sign depends on the direction of the tilt.

Important Concepts

Applications

s

vs

as

t

t

t

Turning
point

vs

Area

s

t

t

• Displacement is the area under the 
velocity curve.

u

kinematics
uniform motion
average velocity, vavg

speed, v

initial position, si

final position, sf

uniform-motion model
instantaneous velocity, vs

turning point
average acceleration, aavg

constant-acceleration model
free fall

free-fall acceleration, g
instantaneous acceleration, as

Terms and Notation
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CONCEPTUAL QUESTIONS
7. FIGURE Q2.7 shows the position-versus-time graph for a moving 

object. At which numbered point or points:
a. Is the object moving the fastest?
b. Is the object moving to the left?
c. Is the object speeding up?
d. Is the object turning around?

For Questions 1 through 3, interpret the position graph given in each 
figure by writing a very short “story” of what is happening. Be cre-
ative! Have characters and situations! Simply saying that “a car moves 
100 meters to the right” doesn’t qualify as a story. Your stories should 
make specific reference to information you obtain from the graph, 
such as distance moved or time elapsed.

1. 

4. FIGURE Q2.4 shows a position-versus-time graph for the motion 
of objects A and B as they move along the same axis.
a. At the instant t = 1 s, is the speed of A greater than, less than, 

or equal to the speed of B? Explain.
b. Do objects A and B ever have the same speed? If so, at what 

time or times? Explain.

5. FIGURE Q2.5 shows a position-versus-time graph for the motion of  
objects A and B as they move along the same axis.
a. At the instant t = 1 s, is the speed of A greater than, less than, 

or equal to the speed of B? Explain.
b. Do objects A and B ever have the same speed? If so, at what 

time or times? Explain.
6. FIGURE Q2.6 shows the position-versus-time graph for a moving 

object. At which numbered point or points:
a. Is the object moving the slowest?
b. Is the object moving the fastest?
c. Is the object at rest?
d. Is the object moving to the left?

8. FIGURE Q2.8 shows six frames from the motion diagrams of two 
moving cars, A and B.
a. Do the two cars ever have the same position at one instant of 

time? If so, in which frame number (or numbers)?
b. Do the two cars ever have the same velocity at one instant of 

time? If so, between which two frames?

9. You want to pass on a note to your friend who is traveling by a bus 
that does not stop in front of your house. You start jogging toward the 
bus the moment you see it at a distance. As the bus crosses you, do 
you think you can pass the note to your friend’s outstretched hand?

10. When a space shuttle lands on a runway, it immediately deploys 
parachutes to reduce its tremendous speed. At this point, do the 
velocity and acceleration of the shuttle have the same direction? 
Explain.

11. Give an example of a motion 
a. where there is a positive acceleration, yet zero velocity.
b. with zero acceleration but positive velocity.

12. You travel by car at a constant 90 km/h for 90 km. Then, due 
to heavy traffic, you need to reduce your speed to 50 km/h 
for another 100 km. What is your car’s average speed for the  
190-km trip?

13. A rock is thrown (not dropped) straight down from a bridge into the 
river below. At each of the following instants, is the magnitude of the 
rock’s acceleration greater than g, equal to g, less than g, or 0? Explain.
a. Immediately after being released.
b. Just before hitting the water.

14. FIGURE Q2.14 shows the velocity-versus-time graph for a moving 
object. At which numbered point or points:
a. Is the object speeding up?
b. Is the object slowing down?
c. Is the object moving to the left?
d. Is the object moving to the right?

2. 

3. 
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EXERCISES AND PROBLEMS

Exercises

Section 2.1 Uniform Motion

1. || Larry leaves home at 9:05 and runs at constant speed to the lamp-
post seen in FIGURE EX2.1. He reaches the lamppost at 9:07, immedi-
ately turns, and runs to the tree. Larry arrives at the tree at 9:10.
a. What is Larry’s average velocity, in m/min, during each of 

these two intervals?
b. What is Larry’s average velocity for the entire run?

7. | FIGURE EX2.7 shows the velocity graph for a particle having 
initial position x0 = 0 m at t0 = 0 s. At what time or times is the 
particle found at x = 35 m?

2. || Julie drives 120 miles to her grandmother’s house. She covers 
half the distance at 40 mph and the other half at 60 mph. On 
her return trip, she drives half the time at 40 mph and the rest at  
60 mph.
a. What is Julie’s average speed on the way to her grandmother’s 

house?
b. What is her average speed on the return trip?

3. || Alan leaves London at 8:00 a.m. to drive to Leeds, 200 mi 
away. He travels at a steady 50 mph. Beth leaves London at  
8:45 a.m. and drives a steady 60 mph.
a. Who gets to Leeds first?
b. How long does the first to arrive have to wait for the second?

4. || FIGURE EX2.4 is the position-versus-time graph of a bicycle. 
What is the bicycle’s velocity at (a) t = 5 s, (b) t = 15 s, and  
(c) t = 30 s?

Section 2.2 Instantaneous Velocity

Section 2.3 Finding Position from Velocity

5. | FIGURE EX2.5 shows the position graph of a particle.
a. Draw the particle’s velocity graph for the interval 

0 s … t … 4 s.
b. Does this particle have a turning point or points? If so, at 

what time or times?

6. || A particle starts from x0 = 10 m at t0 = 0 s and moves with 
the velocity graph shown in FIGURE EX2.6.
a. Does this particle have a turning point? If so, at what time?
b. What is the object’s position at t = 2 s and 4 s?

8. || FIGURE EX2.8 is a somewhat idealized graph of the veloc-
ity of blood in the ascending aorta during one beat of the heart. 
Approximately how far, in cm, does the blood move during one beat?

10. || FIGURE EX2.10 shows the velocity graph of a particle moving 
along the x-axis. Its initial position is x0 = 2.0 m at t0 = 0 s. At 
t = 2.0 s, what are the particle’s (a) position, (b) velocity, and (c) 
acceleration?

Section 2.4 Motion with Constant Acceleration

9. | FIGURE EX2.9 shows the velocity graph of a particle. Draw 
the particle’s acceleration graph for the interval 0 s … t … 4 s.
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11. || FIGURE EX2.8 showed the velocity graph of blood in the aorta. 
What is the blood’s acceleration during each phase of the mo-
tion, speeding up and slowing down?
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21. || A rock is tossed straight up from ground level with a speed of 
20 m/s. When it returns, it falls into a hole 10 m deep.
a. What is the rock’s speed as it hits the bottom of the hole?
b. How long is the rock in the air, from the instant it is released 

until it hits the bottom of the hole?
22. || A student standing on the ground throws a ball straight up. The 

ball leaves the student’s hand with a speed of 15 m/s when the hand 
is 2.0 m above the ground. How long is the ball in the air before it 
hits the ground? (The student moves her hand out of the way.)

23. || A science project involves dropping a watermelon from the 
Empire State Building to the sidewalk below, from a height of 
350 m. It so happens that Superman is flying by at the instant the 
watermelon is dropped. He is headed straight down at a speed 
of 40 m/s. How fast is the watermelon falling when it passes 
Superman?

24. |||  When jumping, a flea accelerates at an astounding 1000 m/s2, 
but over only the very short distance of 0.50 mm. If a flea jumps 
straight up, and if air resistance is neglected (a rather poor ap-
proximation in this situation), how high does the flea go?

25. ||| A rock is dropped from the top of a tall building. The rock’s 
displacement in the last second before it hits the ground is 45% 
of the entire distance it falls. How tall is the building?

Section 2.6 Motion on an Inclined Plane

26. || A car traveling at 30 m/s runs out of gas while traveling up a 
10° slope. How far up the hill will it coast before starting to roll 
back down?

27. || A skier is gliding along at 3.0 m/s on horizontal, frictionless 
snow. He suddenly starts down a 10° incline. His speed at the 
bottom is 15 m/s.
a. What is the length of the incline?
b. How long does it take him to reach the bottom?

28. || Santa loses his footing and slides down a frictionless, snowy 
roof that is tilted at an angle of 30°. If Santa slides 10 m before 
reaching the edge, what is his speed as he leaves the roof?

29. || A bicycle coasting at 7.0 m/s comes to a 6.0-m-long, 1.0-m-high 
ramp. What is the bicycle’s speed as it leaves the top of the ramp?

30. || A snowboarder glides down a 50-m-long, 15° hill. She then 
glides horizontally for 10 m before reaching a 25° upward slope. 
Assume the snow is frictionless.
a. What is her speed at the bottom of the hill?
b. How far can she travel up the 25° slope?

Section 2.7 Instantaneous Acceleration

31. || FIGURE EX2.31 shows the acceleration-versus-time graph of 
a particle moving along the x-axis. Its initial velocity is v0x =
8.0 m/s at t0 = 0 s. What is the particle’s velocity at t = 4.0 s?

12. | FIGURE EX2.12 shows the velocity-versus-time graph for a 
 particle moving along the x-axis. Its initial position is x0 = 2.0 m 
at t0 = 0 s.
a. What are the particle’s position, velocity, and acceleration at 

t = 1.0 s?
b. What are the particle’s position, velocity, and acceleration at 

t = 3.0 s?

13. || a.  What constant acceleration, in SI units, must a car have to 
go from zero to 60 mph in 4.9 s?

b. How far has the car traveled when it reaches 60 mph? Give 
your answer both in SI units and in feet.

14. || A jet plane is cruising at 280 m/s when suddenly the pilot 
turns the engines to full throttle. After traveling 4.0 km, the jet 
moves with a speed of 380 m/s. What is the jet’s acceleration, 
assuming it to be a constant acceleration?

15. || It has been proposed that a very small probe could be sent to a 
nearby star system by using a powerful laser beam, fired from an 
earth-orbiting satellite, to push on a lightweight “solar sail.” Very 
high speeds could be reached in the vacuum of space by a fairly 
modest acceleration that continues for a long interval of time.
a. Write an expression for the constant acceleration ax an object 

needs to reach velocity vmax in time tpush, starting from rest.
b. Write an expression in terms of vmax and tpush for the distance 

d the object travels during this time.
c. For the mission to be feasible, the probe needs to reach 10% 

of the speed of light after being pushed for 1.0 year. The 
probe would then coast the rest of the way. What constant 
acceleration is needed? Note that the speed of light and much 
other useful data needed to solve problems are given inside 
the front and back covers of the book.

d. What fraction of a light year will the probe have traveled at 
the end of the year? A light year (ly) is the distance traveled 
by light in 1 year.

16. || When you sneeze, the air in your lungs accelerates from rest 
to 150 km/h in approximately 0.50 s. What is the magnitude of 
the acceleration of the air in m/s2?

17. || A speed skater moving to the left across frictionless ice at 7.0 m/s  
hits a 5.0-m-wide patch of rough ice. She slows steadily, then con-
tinues on at 4.0 m/s. What is her acceleration on the rough ice?

18. || A Porsche challenges a Honda to a 400 m race. Because the 
Porsche’s acceleration of 3.5 m/s2 is larger than the Honda’s 
3.0 m/s2, the Honda gets a 1.0 s head start. Who wins? By how 
many seconds?

19. || A Lamborghini Aventador S can go from 0 to 60 mph in 2.7 s. 
Assume the acceleration is constant.
a. What is the magnitude of the acceleration?
b. How far has the car traveled when it reaches 60 mph?

Section 2.5 Free Fall

20. | Ball bearings are made by letting spherical drops of molten 
metal fall inside a tall tower—called a “shot tower”—and solidify 
as they fall.
a. If a bearing needs 5 seconds to solidify enough for impact, 

how high must the tower be?
b. What is the bearing’s impact velocity?

32. || FIGURE EX2.32 shows the acceleration graph for a particle 
that starts from rest at t = 0 s. What is the particle’s velocity at 
t = 6 s?
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41. || A particle’s acceleration is described by the function 
ax = 110 - t2 m/s2, where t is in s. Its initial conditions are 
x0 = 0 m and v0x = 0 m/s at t = 0 s.
a. At what time is the velocity again zero?
b. What is the particle’s position at that time?

42. || A particle’s velocity is given by the function 
vx = 12.0 m/s2 sin1pt2, where t is in s.
a. What is the first time after t = 0 s when the particle reaches 

a turning point?
b. What is the particle’s acceleration at that time?

43. || A ball rolls along the smooth track shown in FIGURE P2.43. 
Each segment of the track is straight, and the ball passes smoothly 
from one segment to the next without changing speed or leaving 
the track. Draw three vertically stacked graphs showing position, 
velocity, and acceleration versus time. Each graph should have 
the same time axis, and the proportions of the graph should be 
qualitatively correct. Assume that the ball has enough speed to 
reach the top.

33. | A particle moving along the x-axis has its position described 
by the function x = 13.00t3 - 3.00t + 5.002 m, where t is time  
(in seconds). At t = 2.00, what is 
a. the position of the particle?
b. its velocity?
c. its acceleration?

34. | A particle moving along the x-axis has its velocity described 
by the function vx = 2t2 m/s, where t is in s. Its initial position is 
x0 = 1 m at t0 = 0 s. At t = 1 s what are the particle’s (a) position,  
(b) velocity, and (c) acceleration?

35. || The vertical position of a particle is given by the function 
y = 1t2 - 4t + 22 m, where t is in s.
a. At what time does the particle have a turning point in its 

motion?
b. What is the particle’s position at that time?

36. || The position of a particle is given by the function 
x = 12t3 - 6t2 + 122 m, where t is in s.
a. At what time does the particle reach its minimum velocity? 

What is 1vx2min?
b. At what time is the acceleration zero?

Problems
37. || Particles A, B, and C move along the x-axis. Particle C has an 

initial velocity of 10 m/s. In FIGURE P2.37, the graph for A is a 
position-versus-time graph; the graph for B is a velocity-versus- 
time graph; the graph for C is an acceleration-versus-time graph. 
Find each particle’s velocity at t = 7.0 s.
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38. | A block is suspended from a spring, pulled down, and released. 
The block’s position-versus-time graph is shown in FIGURE P2.38.
a. At what times is the velocity zero? At what times is the veloc-

ity most positive? Most negative?
b. Draw a reasonable velocity-versus-time graph.

39. || A particle’s velocity is described by the function 
vx = 1t2 - 10t + 212 m/s, where t is in s.
a. At what times does the particle reach its turning points?
b. What is the particle’s acceleration at each of the turning points?

40. |||  A particle’s velocity is described by the function vx = k t2 m/s, 
where k is a constant and t is in s. The particle’s position 
at t0 = 0 s is x0 = - 9.0 m. At t1 = 3.0 s, the particle is at 
x1 = 9.0 m. Determine the value of the constant k. Be sure to 
include the proper units.

44. || Draw position, velocity, and acceleration graphs for the ball 
shown in FIGURE P2.44. See Problem 43 for more information.

45. || FIGURE P2.45 shows a set of kinematic graphs for a ball rolling 
on a track. All segments of the track are straight lines, but some 
may be tilted. Draw a picture of the track and also indicate the 
ball’s initial condition.

46. || FIGURE P2.46 shows a set of kinematic graphs for a ball rolling 
on a track. All segments of the track are straight lines, but some 
may be tilted. Draw a picture of the track and also indicate the 
ball’s initial condition.
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54. || Bob is driving the getaway car after the big bank robbery. 
He’s going 50 m/s when his headlights suddenly reveal a nail 
strip that the cops have placed across the road 150 m in front of 
him. If Bob can stop in time, he can throw the car into reverse 
and escape. But if he crosses the nail strip, all his tires will go 
flat and he will be caught. Bob’s reaction time before he can 
hit the brakes is 0.60 s, and his car’s maximum deceleration is 
10 m/s2. Does Bob stop before or after the nail strip? By what 
distance?

55. ||| A 1000 kg weather rocket is launched straight up. The rocket 
motor provides a constant acceleration for 16 s, then the motor 
stops. The rocket altitude 20 s after launch is 5100 m. You can 
ignore any effects of air resistance. What was the rocket’s accel-
eration during the first 16 s?

56. || A 200 kg weather rocket is loaded with 100 kg of fuel and 
fired straight up. It accelerates upward at 30 m/s2 for 30 s, then 
runs out of fuel. Ignore any air resistance effects.
a. What is the rocket’s maximum altitude?
b. How long is the rocket in the air before hitting the ground?

57. || A lead ball is dropped into a lake from a diving board 5.0 m 
above the water. After entering the water, it sinks to the bottom 
with a constant velocity equal to the velocity with which it hit the 
water. The ball reaches the bottom 3.0 s after it is released. How 
deep is the lake?

58. || A hotel elevator ascends 200 m with a maximum speed of 5.0 m/s. 
Its acceleration and deceleration both have a magnitude of 1.0 m/s2.
a. How far does the elevator move while accelerating to full 

speed from rest?
b. How long does it take to make the complete trip from bottom 

to top?
59. || Your car’s anti-lock brake system is designed to keep the 

wheels from “locking” and starting to skid. The deceleration of 
a skidding car is less than that of a car that has the maximum 
braking without skidding—a topic we’ll explore in Chapter 6. 
In one test, a car equipped with anti-lock brakes was able to de-
celerate at 7.0 m/s2. while the same car without anti-lock brakes 
decelerated at 4.8 m/s2 while skidding. In an emergency stop at a 
highway speed of 30 m/s, how much additional stopping distance 
would be needed by the skidding car compared to the car with 
anti-lock brakes?

60. || You are 9.0 m from the door of your bus, behind the bus, when 
it pulls away with an acceleration of 1.0 m/s2. You instantly start 
running toward the still-open door at 4.5 m/s.
a. How long does it take for you to reach the open door and jump in?
b. What is the maximum time you can wait before starting to 

run and still catch the bus?
61. || Ann and Carol are driving their cars along the same straight 

road. Carol is located at x = 2.4 mi at t = 0 h and drives at a 
steady 36 mph. Ann, who is traveling in the same direction, is 
located at x = 0.0 mi at t = 0.50 h and drives at a steady 50 mph.
a. At what time does Ann overtake Carol?
b. What is their position at this instant?
c. Draw a position-versus-time graph showing the motion of 

both Ann and Carol.
62. || A steel ball rolls across a 30-cm-wide felt pad, starting from 

one edge. The ball’s speed has dropped to half after traveling  
20 cm. Will the ball stop on the felt pad or roll off?

63. || A very slippery block of ice slides down a smooth ramp tilted 
at angle u. The ice is released from rest at vertical height h above 
the bottom of the ramp. Find an expression for the speed of the 
ice at the bottom.

47. || You are driving to the grocery store at 20 m/s. You are 110 m  
from an intersection when the traffic light turns red. Assume 
that your reaction time is 0.50 s and that your car brakes with 
constant acceleration. What magnitude braking acceleration will 
bring you to a stop exactly at the intersection?

48. | The takeoff speed for an Airbus A320 jetliner is 80 m/s. 
Velocity data measured during takeoff are as shown.

t 1s2 vx 1m/s2
 0  0

10 23

20 46

30 69

a. Is the jetliner’s acceleration constant during takeoff? Explain.
b. At what time do the wheels leave the ground?
c. For safety reasons, in case of an aborted takeoff, the runway 

must be three times the takeoff distance. Can an A320 take 
off safely on a 2.5-mi-long runway?

49. || You’re driving down the highway late one night at 20 m/s 
when a deer steps onto the road 35 m in front of you. Your reac-
tion time before stepping on the brakes is 0.50 s, and the maxi-
mum deceleration of your car is 10 m/s2.
a. How much distance is between you and the deer when you 

come to a stop?
b. What is the maximum speed you could have and still not hit 

the deer?
50. || The Smooth Company has proposed transporting people 

 between Paris and Amsterdam, a distance of 430 km, through 
an underground tube from which the air has been removed to 
eliminate air drag. Small pods carrying four passengers would 
accelerate at 2.5 m/s2 until reaching a speed of 180 m/s. Later, 
they would brake at 1.5 m/s2. A launch of one pod per minute  
would transport 240 passengers per hour, roughly equivalent to 
one jet plane per hour.
a. What would be the trip time in minutes from Paris to 

Amsterdam?
b. How far apart would two adjacent pods be on the 

 constant-speed segment of the journey?
51. || A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 

for 6.0 s, coasts for 2.0 s, and then slows down at a rate of 3.0 m/s2  
for the next stop sign. How far apart are the stop signs?

52. || A cheetah spots a Thomson’s gazelle, its preferred prey, and 
leaps into action, quickly accelerating to its top speed of 30 m/s, 
the highest of any land animal. However, a cheetah can maintain 
this extreme speed for only 15 s before having to let up. The 
cheetah is 170 m from the gazelle as it reaches top speed, and 
the gazelle sees the cheetah at just this instant. With negligible 
reaction time, the gazelle heads directly away from the cheetah, 
accelerating at 4.6 m/s2 for 5.0 s, then running at constant speed. 
Does the gazelle escape? If so, by what distance is the gazelle in 
front when the cheetah gives up?

53. || a.  Find an expression for the minimum stopping distance 
dstop of a car traveling at speed v0 if the driver’s reaction 
time is Treact and the magnitude of the acceleration during 
maximum braking is a constant abrake.

b. A car traveling at 30 m/s can stop in a distance of 60 m, 
including the distance traveled during the driver’s reaction 
time of 0.50 s. What is the minimum stopping distance for 
the same car traveling at 40 m/s?
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Height (m) Fall time (s)

0.0 0.00

1.0 0.54

2.0 0.72

3.0 0.91

4.0 1.01

5.0 1.17

Analyze these data to determine the free-fall acceleration on Planet 
X. Your analysis method should involve fitting a straight line to an 
appropriate graph, similar to the analysis in Example 2.14.

72. ||| A ball is launched straight up at speed v0. The second half 
of the total distance to the highest point is traveled during the 
final 1.0 s. How long does it take the ball to reach its maximum 
height?

73. || When a 1984 Alfa Romeo Spider sports car accelerates at 
the maximum possible rate, its motion during the first 20 s is  
extremely well modeled by the simple equation

vx 

2 =
2P
m

 t

where P = 3.6 * 104 watts is the car’s power output, m = 1200 kg 
is its mass, and vx is in m/s. That is, the square of the car’s velocity 
increases linearly with time.
a. Find an algebraic expression in terms of P, m, and t for the 

car’s acceleration at time t.
b. What is the car’s speed at t = 2 s and t = 10 s?
c. Evaluate the acceleration at t = 2 s and t = 10 s.

74. || Masses A and B in FIGURE P2.74 slide on frictionless wires. 
They are connected by a pivoting rigid rod of length L. Prove 
that vBx = -vAy tan u.

64. || FIGURE P2.64 shows a fixed vertical disk of radius R. A thin, 
frictionless rod is attached to the bottom point of the disk and to 
a point on the edge, making angle f (Greek phi) with the verti-
cal. Find an expression for the time it takes a bead to slide from 
the top end of the rod to the bottom.

u

A

B

L

FIGURE P2.74

f

R

FIGURE P2.64

65. || A skateboarder starts up a 3.0-m-long ramp at 4.0 m/s. What 
is the maximum height of the ramp for which the skateboarder 
goes off the end rather than rolling back down?

66. || A motorist is driving at 20 m/s when she sees that a traffic 
light 200 m ahead has just turned red. She knows that this light 
stays red for 15 s, and she wants to reach the light just as it turns 
green again. It takes her 1.0 s to step on the brakes and begin 
slowing. What is her speed as she reaches the light at the instant 
it turns green?

67. || Nicole throws a ball straight up. Chad watches the ball from 
a window 5.0 m above the point where Nicole released it. The 
ball passes Chad on the way up, and it has a speed of 10 m/s as it 
passes him on the way back down. How fast did Nicole throw the 
ball?

68. || David is driving a steady 30 m/s when he passes Tina, who 
is sitting in her car at rest. Tina begins to accelerate at a steady 
2.0 m/s2 at the instant when David passes.
a. How far does Tina drive before passing David?
b. What is her speed as she passes him?

69. ||| If a Tesla Model S P100D in “Ludicrous mode” is pushed to 
its limit, the first 3.0 s of acceleration can be modeled as

ax = e 135 m/s32t 0 s … t … 0.40 s
14.6 m/s2 - 11.5 m/s32t 0.40 s … t … 3.0 s

a. How long does it take to accelerate to 60 mph? Your answer, 
which seems impossibly short, is confirmed by track tests.

b. What acceleration would be needed to achieve the same 
speed in the same time at constant acceleration? Give your 
answer as a multiple of g.

70. ||| I was driving along at 20 m/s, trying to change a CD and not 
watching where I was going. When I looked up, I found myself 
45 m from a railroad crossing. And wouldn’t you know it, a train 
moving at 30 m/s was only 60 m from the crossing. In a split sec-
ond, I realized that the train was going to beat me to the crossing 
and that I didn’t have enough distance to stop. My only hope was 
to accelerate enough to cross the tracks before the train arrived. 
If my reaction time before starting to accelerate was 0.50 s, what 
minimum acceleration did my car need for me to be here today 
writing these words?

71. || As an astronaut visiting Planet X, you’re assigned to measure 
the free-fall acceleration. Getting out your meter stick and stop 
watch, you time the fall of a heavy ball from several heights. 
Your data are as follows:

In Problems 75 through 78, you are given the kinematic equation or 
equations that are used to solve a problem. For each of these, you are to:

a. Write a realistic problem for which this is the correct equation(s). 
Be sure that the answer your problem requests is consistent with 
the equation(s) given.

b. Draw the pictorial representation for your problem.
c. Finish the solution of the problem.

75. 64 m = 0 m + 132 m/s214 s - 0 s2 + 1
2 ax14 s - 0 s22

76. 110 m/s22 = v0y 

2 - 219.8 m/s22110 m - 0 m2
77. 10 m/s22 = 15 m/s22 - 219.8 m/s221sin 10°21x1 - 0 m2
78. v1x = 0 m/s + 120 m/s2215 s - 0 s2

x1 = 0 m + 10 m/s215 s - 0 s2 + 1
2 120 m/s2215 s - 0 s22

x2 = x1 + v1x110 s - 5 s2

Challenge Problems
79. ||| Water drops fall from the edge of a roof at a steady rate. A fifth 

drop starts to fall just as the first drop hits the ground. At this in-
stant, the second and third drops are exactly at the bottom and top 
edges of a 1.00-m-tall window. How high is the edge of the roof?
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86 CHAPTER 2 Kinematics in One Dimension

83. ||| A sprinter can accelerate with constant acceleration for 4.0 s  
before reaching top speed. He can run the 100 meter dash in 10.0 s. 
What is his speed as he crosses the finish line?

84. ||| A rubber ball is shot straight up from the ground with speed 
v0 . Simultaneously, a second rubber ball at height h directly 
above the first ball is dropped from rest.
a. At what height above the ground do the balls collide? Your 

answer will be an algebraic expression in terms of h, v0, 
and g.

b. What is the maximum value of h for which a collision occurs 
before the first ball falls back to the ground?

c. For what value of h does the collision occur at the instant 
when the first ball is at its highest point?

85. ||| The Starship Enterprise returns from warp drive to ordinary 
space with a forward speed of 50 km/s. To the crew’s great sur-
prise, a Klingon ship is 100 km directly ahead, traveling in the 
same direction at a mere 20 km/s. Without evasive action, the 
Enterprise will overtake and collide with the Klingons in just 
slightly over 3.0 s. The Enterprise’s computers react instantly to 
brake the ship. What magnitude acceleration does the  Enterprise 
need to just barely avoid a collision with the Klingon ship? 
Assume the acceleration is constant.
Hint: Draw a position-versus-time graph showing the motions 
of both the Enterprise and the Klingon ship. Let x0 = 0 km be 
the location of the Enterprise as it returns from warp drive. How 
do you show graphically the situation in which the collision is 
“barely avoided”? Once you decide what it looks like graphically, 
express that situation mathematically.

80. ||| A rocket is launched straight up with constant acceleration.  
Four seconds after liftoff, a bolt falls off the side of the rocket. The 
bolt hits the ground 6.0 s later. What was the rocket’s acceleration?

81. ||| A good model for the acceleration of a car trying to reach top 
speed in the least amount of time is ax = a0 - kvx, where a0 is the 
initial acceleration and k is a constant.
a. Find an expression for k in terms of a0 and the car’s top  

speed vmax.
b. Find an expression for the car’s velocity as a function of time.
c. A MINI Cooper S has an initial acceleration of 4.0 m/s2 and 

a top speed of 60 m/s. At maximum acceleration, how long 
does it take the car to reach 95% of its top speed?

82. ||| Careful measurements have been made of Olympic sprinters 
in the 100 meter dash. A quite realistic model is that the sprint-
er’s velocity is given by

vx = a11 - e-bt2
where t is in s, vx is in m/s, and the constants a and b are  
characteristic of the sprinter. Sprinter Carl Lewis’s run at the 
1987 World Championships is modeled with a = 11.81 m/s and 
b = 0.6887 s-1.
a. What was Lewis’s acceleration at t = 0 s, 2.00 s, and 4.00 s?
b. Find an expression for the distance traveled at time t.
c. Your expression from part b is a transcendental equation, 

meaning that you can’t solve it for t. However, it’s not hard to 
use trial and error to find the time needed to travel a specific 
distance. To the nearest 0.01 s, find the time Lewis needed to 
sprint 100.0 m. His official time was 0.01 s more than your 
answer, showing that this model is very good, but not perfect.
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87

Vectors and Coordinate  
Systems

3

Wind has both a speed and a 
direction, hence the motion 
of the wind is described by a 
vector.

What are components?
Components of vectors are the pieces of 
vectors parallel to the coordinate axes— 
in the directions of the unit vectors.  
We write 

E
u

= Ex dn + Ey  en 

Components simplify vector math.

How are components used?
Components let us do vector math with  
algebra, which is easier and more precise 
than adding and subtracting vectors using 
geometry and trigonometry. Multiplying  
a vector by a number simply multiplies  
all of the vector’s components by that 
number.

IN THIS CHAPTER, you will learn how vectors are represented and used.

What is a vector?
A vector is a quantity with both a size—  
its magnitude—and a direction. Vectors 
you’ll meet in the next few chapters include  
position, displacement, velocity, accelera-
tion, force, and momentum.

❮❮ LOOKING BACK Tactics Box 1.1 on  
vector addition

How are vectors added and subtracted?
Vectors are added “tip to tail.” The order  
of addition does not matter. To subtract 
vectors, turn the subtraction into addition 
by writing A

u
- B

u
= A

u
+ 1-B

u2. The vector 
-B

u
 is the same length as B

u
 but points in 

the opposite direction.

What are unit vectors?
Unit vectors define what we mean by  
the ∙x@ and ∙y@directions in space.

■■ A unit vector has magnitude 1.
■■ A unit vector has no units.

Unit vectors simply point.

Magnitude

Name

v = 5 m/s

Direction
v
u

A
u

B
u

A + B
u u

x

y

en

dn

E
u

Ey

Exen

dn
x

y
Components

C
u

= 2A
u

+ 3B
u

means

Cx = 2Ax + 3Bx

Cy = 2Ay + 3By

How will I use vectors?
Vectors appear everywhere in physics and engineering—
from velocities to electric fields and from forces to fluid 
flows. The tools and techniques you learn in this chapter 
will be used throughout your studies and your professional 
career.

e   
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Magnitude
of vector

Name of vector
v = 5 m/s

Direction
of vector

The vector is drawn across
the page, but it represents
the particle’s velocity at
this one point.

v
u

FIGURE 3.1 The velocity vector v 

u has both 
a magnitude and a direction.

B
u

S
u

S
u

B and S have the
same magnitude
and direction, so
B = S. 

u u

u u

Sam’s actual path

(a)

(b)

Bill

Sam

Sam
Displacement is the
straight-line connection
from the initial to
the final position.

20
0 f

t
Sam’s
displacement

N

FIGURE 3.2 Displacement vectors.

3.1 Scalars and Vectors
A quantity that is fully described by a single number (with units) is called a scalar. 
Mass, temperature, volume, and energy are all scalars. We will often use an algebraic 
symbol to represent a scalar quantity. Thus m will represent mass, T temperature, V 
volume, E energy, and so on.

Our universe has three dimensions, so some quantities also need a direction for a 
full description. If you ask someone for directions to the post office, the reply “Go 
three blocks” will not be very helpful. A full description might be, “Go three blocks 
south.” A quantity having both a size and a direction is called a vector.

The mathematical term for the length, or size, of a vector is magnitude, so we can 
also say that a vector is a quantity having a magnitude and a direction.

FIGURE 3.1 shows that the geometric representation of a vector is an arrow, with 
the tail of the arrow (not its tip!) placed at the point where the measurement is made. 
An arrow makes a natural representation of a vector because it inherently has both a 
length and a direction. As you’ve already seen, we label vectors by drawing a small 
arrow over the letter that represents the vector: r u for position, v 

u for velocity, au for 
acceleration.

   NOTE    Although the vector arrow is drawn across the page, from its tail to its tip, 
this does not indicate that the vector “stretches” across this distance. Instead, the 
vector arrow tells us the value of the vector quantity only at the one point where the 
tail of the vector is placed.

The magnitude of a vector can be written using absolute value signs or, more 
frequently, as the letter without the arrow. For example, the magnitude of the velocity  
vector in Figure 3.1 is v = 0 v 

u 0 = 5 m/s. This is the object’s speed. The magnitude of  
the acceleration vector au is written a. The magnitude of a vector is a scalar. Note  
that magnitude of a vector cannot be a negative number; it must be positive or zero, 
with appropriate units.

It is important to get in the habit of using the arrow symbol for vectors. If you omit 
the vector arrow from the velocity vector v 

u and write only v, then you’re referring only 
to the object’s speed, not its velocity. The symbols r u and r, or v 

u and v, do not represent 
the same thing.

3.2 Using Vectors
Suppose Sam starts from his front door, walks across the street, and ends up 200 ft  
to the northeast of where he started. Sam’s displacement, which we will label S

u
, is 

shown in FIGURE 3.2a. The displacement vector is a straight-line connection from his 
initial to his final position, not necessarily his actual path.

To describe a vector we must specify both its magnitude and its direction. We can  
write Sam’s displacement as S

u
= 1200 ft, northeast2. The magnitude of Sam’s displace-

ment is S = 0 Su 0 = 200 ft, the distance between his initial and final points.
Sam’s next-door neighbor Bill also walks 200 ft to the northeast, starting from his  

own front door. Bill’s displacement B
u

= 1200 ft, northeast2 has the same magnitude 
and direction as Sam’s displacement S

u
. Because vectors are defined by their mag-

nitude and direction, two vectors are equal if they have the same magnitude and 
direction. Thus the two displacements in FIGURE 3.2b are equal to each other, and we 
can write B

u
= S

u
.

   NOTE    A vector is unchanged if you move it to a different point on the page as long 
as you don’t change its length or the direction it points.
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Vector Addition
If you earn $50 on Saturday and $60 on Sunday, your net income for the weekend is  
the sum of $50 and $60. With numbers, the word net implies addition. The same is 
true with vectors. For example, FIGURE 3.3 shows the displacement of a hiker who first  
hikes 4 miles to the east, then 3 miles to the north. The first leg of the hike is described by  
the displacement A

u
= 14 mi, east2. The second leg of the hike has displacement 

B
u

= 13 mi, north2. Vector C
u

 is the net displacement because it describes the net result of  
the hiker’s first having displacement A

u
, then displacement B

u
.

The net displacement C
u

 is an initial displacement A
u

 plus a second displacement B
u

, or

   C
u

= A
u

+ B
u
 (3.1)

The sum of two vectors is called the resultant vector. It’s not hard to show that vector ad-
dition is commutative: A

u
+ B

u
= B

u
+ A

u
. That is, you can add vectors in any order you wish.

❮❮■TACTICS BOX 1.1 on page 28 showed the three-step procedure for adding two vectors,  
and it’s highly recommended that you turn back for a quick review. This tip-to-tail 
method for adding vectors, which is used to find C

u
= A

u
+ B

u
 in Figure 3.3, is called 

graphical addition. Any two vectors of the same type—two velocity vectors or two 
force vectors—can be added in exactly the same way.

The graphical method for adding vectors is straightforward, but we need to do a little  
geometry to come up with a complete description of the resultant vector C

u
. Vector C

u
  

of Figure 3.3 is defined by its magnitude C and by its direction. Because the three 
vectors A

u
, B

u
, and C

u
 form a right triangle, the magnitude, or length, of C

u
 is given by 

the Pythagorean theorem:

   C = 2A2 + B2 = 214 mi22 + 13 mi22 = 5 mi (3.2)

Notice that Equation 3.2 uses the magnitudes A and B of the vectors A
u

 and B
u

. The 
angle u, which is used in Figure 3.3 to describe the direction of C

u
, is easily found for 

a right triangle:

   u = tan-11B
A2 = tan-113 mi

4 mi2 = 37° (3.3)

Altogether, the hiker’s net displacement is C
u

= A
u

+ B
u

= (5 mi, 37° north of east).

   NOTE    Vector mathematics makes extensive use of geometry and trigonometry. 
Appendix A, at the end of this book, contains a brief review of these topics.

Start

Net displacement

Individual
displacements

End

4 mi

3 mi

N

u A
u

B
uC

u

FIGURE 3.3 The net displacement C
u

 
resulting from two displacements A

u
  

and B
u

.

A bird flies 100 m due east from a tree, then 50 m northwest (that 
is, 45° north of west). What is the bird’s net displacement?

VISUALIZE FIGURE 3.4 shows the two individual displacements, 
which we’ve called A

u
 and B

u
. The net displacement is the vector 

sum C
u

= A
u

+ B
u
, which is found graphically.

SOLVE The two displacements are A
u

= 1100 m, east2 and B
u

= 
150 m, northwest2. The net displacement C

u
= A

u
+ B

u
 is found  

by drawing a vector from the initial to the final position. But 

describing C
u
 is a bit trickier than the example of the hiker because 

A
u

 and B
u
 are not at right angles. First, we can find the magnitude of 

C
u
 by using the law of cosines from trigonometry:

  C 2 = A2 + B2 - 2AB cos 45°

  = 1100 m22 + 150 m22 - 21100 m2150 m2 cos 45°

  = 5430 m2

Thus C = 25430 m2 = 74 m. Then a second use of the law of 
 cosines can determine angle f (the Greek letter phi):

B2 = A2 + C 2 - 2AC cos f

f = cos-1 c A2 + C 2 - B2

2AC
d = 29°

The bird’s net displacement is

C
u

= 174 m, 29° north of east2

EXAMPLE 3.1 ■ Using graphical addition to find a displacement

The bird’s net
displacement is
C = A + B. A

u
B
uC

u

u uu
f

End

Start 100 m

50 m

45°

N

FIGURE 3.4 The bird’s net displacement is C
u

= A
u

+ B
u
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It is often convenient to draw two vectors with their tails together, as shown in 
FIGURE 3.5a. To evaluate D

u
+ E

u
, you could move vector E

u
 over to where its tail is 

on the tip of D
u

, then use the tip-to-tail rule of graphical addition. That gives vector 
F
u

= D
u

+ E
u

 in FIGURE 3.5b. Alternatively, FIGURE 3.5c shows that the vector sum D
u

+ E
u

 
can be found as the diagonal of the parallelogram defined by D

u
 and E

u
. This method 

for vector addition is called the parallelogram rule of vector addition.

D
u

D
u

D
u

E
u

E
u

E
u

(c)(b)(a)

What is D + E? Parallelogram rule:
Find the diagonal of
the parallelogram
formed by D and E.

Tip-to-tail rule:
Slide the tail of E 
to the tip of D.

F = D
 + E

F = D
 + Eu

u

u
u

u

u

u u

u

u

u u

▶ FIGURE 3.5 Two vectors can be 
added using the tip-to-tail rule or 
the parallelogram rule.

Vector addition is easily extended to more than two vectors. FIGURE 3.6 shows the 
path of a hiker moving from initial position 0 to position 1, then position 2, then 
position 3, and finally arriving at position 4. These four segments are described by 
displacement vectors D

u

1, D
u

2, D
u

3, and D
u

4. The hiker’s net displacement, an arrow from 
position 0 to position 4, is the vector D

u

net. In this case,

  D
u

net = D
u

1 + D
u

2 + D
u

3 + D
u

4 (3.4)

The vector sum is found by using the tip-to-tail method three times in succession.

STOP TO THINK 3.1: Which figure shows A
u

1 + A
u

2 + A
u

3?

(a) (b) (c) (d) (e)

A1

A3 A2

u

u
u

More Vector Mathematics
In addition to adding vectors, we will need to subtract vectors, multiply vectors by 
scalars, and understand how to interpret the negative of a vector. These operations are 
illustrated in FIGURE 3.7.

Start

Net displacement
End

4
2

1

0

3

Dnet

D1

D4

D2

D3

u

u

u

u

u

FIGURE 3.6 The net displacement after 
four individual displacements.

The length of B is “stretched”
by the factor c. That is, B = cA.

B = cA = (cA, u)

A = (A, u)

-A
-2A

Vector -A is 
equal in magnitude
but opposite in
direction to A.

Multiplication by a positive scalar The negative of a vector Multiplication by a negative scalar

A - C

A - C-C

-C
Parallelogram subtraction using -C

u

u

B points in the same direction as A.

Vector subtraction: What is A - C?
Write it as A + (-C ) and add!

u

A
u

A
u

u

u

A
u

A
u

A
u

u

u

u

u

u

u

u

u

C
u

u

u

u

u

Tip-to-tail subtraction using -C

u

u

u

u

u
A + (-A) = 0. The tip of -A
returns to the starting point.

u u uu

The zero vector 0 has zero length
u

u u

FIGURE 3.7 Working with vectors.
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3.3  Coordinate Systems and  
Vector Components

Vectors do not require a coordinate system. We can add and subtract vectors graphically, 
and we will do so frequently to clarify our understanding of a situation. But the graphical 
addition of vectors is not an especially good way to find quantitative results. In this sec-
tion we will introduce a coordinate representation of vectors that will be the basis of an 
easier method for doing vector calculations.

Coordinate Systems
The world does not come with a coordinate system attached to it. A coordinate system 
is an artificially imposed grid that you place on a problem in order to make quantitative  
measurements. You are free to choose:

■■ Where to place the origin, and
■■ How to orient the axes.

Different problem solvers may choose to use different coordinate systems; that is per-
fectly acceptable. However, some coordinate systems will make a problem easier to 

Carolyn drives her car north at 30 km/h for 1 hour, east at 60 km/h 
for 2 hours, then north at 50 km/h for 1 hour. What is Carolyn’s net 
displacement?

SOLVE Chapter 1 defined average velocity as

v 

u =
∆r u

∆t

so the displacement ∆r u during the time interval ∆t is ∆r u = 1∆t2 v 

u.  
This is multiplication of the vector v 

u by the scalar ∆t. Carolyn’s  
velocity during the first hour is v 

u
1 = 130 km/h, north2, so her 

displacement during this interval is

  ∆r u
1 = 11 hour2130 km/h, north2 = 130 km, north2

Similarly,

  ∆r u
2 = 12 hours2160 km/h, east2 = 1120 km, east2

  ∆r u
3 = 11 hour2150 km/h, north2 = 150 km, north2

In this case, multiplication by a scalar changes not only the length 
of the vector but also its units, from km/h to km. The direction, 
however, is unchanged. Carolyn’s net displacement is

∆r u
net = ∆r u

1 + ∆r u
2 + ∆r u

3

This addition of the three vectors is shown in FIGURE 3.8, using the  
tip-to-tail method. ∆r u

net stretches from Carolyn’s initial position 
to her final position. The magnitude of her net displacement is 
found using the Pythagorean theorem:

rnet = 21120 km22 + 180 km22 = 144 km

The direction of ∆r u
net is described by angle u, which is

u = tan-11 80 km
120 km2 = 34°

Thus Carolyn’s net displacement is ∆r u
net = 1144 km, 34° north

of east2.

EXAMPLE 3.2 ■ Velocity and displacement

u

80 km

120 km
Start

EndN

∆rnet ∆r3

∆r2∆r1

u
u

uu

FIGURE 3.8 The net displacement is the vector sum 
∆r u

net = ∆r u
1 + ∆r u

2 + ∆r u
3 .

STOP TO THINK 3.2: Which figure shows 2A
u

- B
u

A
u

B
u

(a) (b) (c) (d) (e)

A GPS uses satellite signals to find your 
position in the earth’s coordinate system 
with amazing accuracy.
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III

IVIII

y

x
90°

FIGURE 3.9 A conventional xy-coordinate 
system and the quadrants of the  
xy-plane.

x

y

The x-component
vector is parallel
to the x-axis.

The y-component
vector is parallel
to the y-axis.

A = Ax + Ay
Ay A

Ax

u u u

u
u

u

FIGURE 3.10 Component vectors A
u

x and A
u

y 
are drawn parallel to the coordinate  
axes such that A

u
= A

u

x + A
u

y.

solve. Part of our goal is to learn how to choose an appropriate coordinate system for 
each problem.

FIGURE 3.9 shows the xy-coordinate system we will use in this book. The place-
ment of the axes is not entirely arbitrary: the positive y-axis is always located 90° 
counterclockwise (ccw) from the positive x-axis. Figure 3.9 also identifies the four 
quadrants of the coordinate system, I through IV.

Coordinate axes have a positive end and a negative end, separated by zero at the 
origin where the two axes cross. When you draw a coordinate system, it is important 
to label the axes. This is done by placing x and y labels at the positive ends of the axes, 
as in Figure 3.9. The purpose of the labels is twofold:

■■ To identify which axis is which, and
■■ To identify the positive ends of the axes.

This will be important when you need to determine whether the quantities in a prob-
lem should be assigned positive or negative values. This textbook will follow the 
convention that the positive direction of the x-axis is to the right and the positive 
direction of the y-axis is up.

Component Vectors
FIGURE 3.10 shows a vector A

u
 and an xy-coordinate system that we’ve chosen. Once the 

directions of the axes are known, we can define two new vectors parallel to the axes  
that we call the component vectors of A

u
. You can see, using the parallelogram  

rule, that A
u

 is the vector sum of the two component vectors:

 A
u

= A
u

x + A
u

y (3.5)

In essence, we have broken vector A
u

 into two perpendicular vectors that are parallel  
to the coordinate axes. This process is called the decomposition of vector A

u
 into its 

component vectors.

   NOTE    It is not necessary for the tail of A
u

 to be at the origin. All we need to know 
is the orientation of the coordinate system so that we can draw A

u

x and A
u

y parallel  
to the axes.

Components
You learned in Chapters 1 and 2 to give the kinematic variable vx a positive sign if  
the velocity vector v 

u points toward the positive end of the x-axis, a negative sign if v 

u 
points in the negative x-direction. We need to extend this idea to vectors in general.

Suppose vector A
u

 has been decomposed into component vectors A
u

x and A
u

y parallel 
to the coordinate axes. We can describe each component vector with a single number 
called the component. The x-component and y-component of vector A

u
, denoted Ax 

and Ay  , are determined as follows:

TACTICS BOX 3.1

Determining the components of a vector
1  The absolute value 0Ax 0  of the x-component Ax is the magnitude of the 

 component vector A
u

x.
2  The sign of A

u

x is positive if A
u

x points in the positive x-direction (right),  negative 
if A

u

x points in the negative x-direction (left).
3  The y-component Ay is determined similarly.

Exercises 10–18 

In other words, the component Ax tells us two things: how big A
u

x is and, with its sign,  
which end of the axis A

u

x points toward. FIGURE 3.11 shows three examples of determining  
the components of a vector.
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3.3 Coordinate Systems and Vector Components  93

   NOTE    Beware of the somewhat confusing terminology. A
u

x and A
u

y are called 
component vectors, whereas Ax and Ay are simply called components. The com-
ponents Ax and Ay are just numbers (with units), so make sure you do not put arrow 
symbols over the components.

We will frequently need to decompose a vector into its components. We will also 
need to “reassemble” a vector from its components. In other words, we need to move 
back and forth between the geometric and the component representations of a vector. 
FIGURE 3.12 shows how this is done.

Ay

Ax

A
uu

u

x (m)

y (m)

1

1

-1-2 2 3 4
-1

-2

2

3

Ax points in the positive
x-direction, so Ax = +3 m.

Ay points in
the positive
y-direction, so 
Ay = +2 m.

u

u

FIGURE 3.11 Determining the components of a vector.
By points in the 
positive y-direction, 
so By = +2 m.

Cx

Cy C
u

u

u

u

x (m)

y (m)

1-1-2 2 3 4
-1

-2

2

3

x (m)

y (m)

1

1

-2 2 3 4
-1

-2

3
By

Bx

Bx points in the negative
x-direction, so Bx = -2 m.

The x-component
of C is Cx = +4 m.The y-compo-

nent of C is 
Cy = -3 m.B

u

u

u

u

u

u

A
u

B
u

x
y

x

y

Ax = A cosu

Ay = A sinu

Bx = B sinf

By = -B cosf

Bfu

A = 2Ax
2 + Ay

2 B = 2Bx
2 + By

2 

A

The components of A are found from the
magnitude and direction.

u = tan-1 1Ay /Ax2 f = tan-1 1Bx / 0By 02

The angle is defined differently. In this
example, the magnitude and direction are

Minus signs must be inserted manually,
depending on the vector’s direction.

The magnitude and direction of A are found
from the components. In this example,

u

u

FIGURE 3.12 Moving between the geometric representation and the 
component representation.

Each decomposition requires that you pay close attention to the direction in which 
the vector points and the angles that are defined.

■■ If a component vector points left (or down), you must manually insert a minus sign 
in front of the component, as was done for By in Figure 3.12.

■■ The role of sines and cosines can be reversed, depending upon which angle is used 
to define the direction. Compare Ax and Bx.

■■ The angle used to define direction is almost always between 0° and 90°, so you must  
take the inverse tangent of a positive number. Use absolute values of the components,  
as was done to find angle f (Greek phi) in Figure 3.12.

Seen from above, a hummingbird’s acceleration is (6.0 m/s2, 30° south 
of west). Find the x- and y-components of the acceleration vector au.

VISUALIZE It’s important to draw vectors. FIGURE 3.13 establishes 
a map-like coordinate system with the x-axis pointing east and the 
y-axis north. Vector au is then decomposed into components parallel 
to the axes. Notice that the axes are “acceleration axes” with units of  
acceleration, not xy-axes, because we’re measuring an acceleration 
vector.

EXAMPLE 3.3 ■ Finding the components of an acceleration vector

ay is negative.

ax is negative.

N

FIGURE 3.13  
Decomposition  
of au.

Continued
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3.4 Unit Vectors and Vector Algebra
The vectors (1, +x-direction) and (1, +y-direction), shown in FIGURE 3.16, have some  
interesting and useful properties. Each has a magnitude of 1, has no units, and is parallel to  
a coordinate axis. A vector with these properties is called a unit vector. These unit  
vectors have the special symbols

 in K 11, positive x@direction2
 jn K 11, positive y@direction2

The notation in (read “i hat”) and jn (read “j hat”) indicates a unit vector with a magni-
tude of 1. Recall that the symbol K means “is defined as.”

Unit vectors establish the directions of the positive axes of the coordinate system. 
Our choice of a coordinate system may be arbitrary, but once we decide to place a 
coordinate system on a problem we need something to tell us “That direction is the 
positive x-direction.” This is what the unit vectors do.

SOLVE The acceleration vector points to the left (negative 
x-direction) and down (negative y-direction), so the components ax 
and ay are both negative:

ax = -a cos 30° = -16.0 m/s22 cos 30° = -5.2 m/s2

ay = -a sin 30° = -16.0 m/s22 sin 30° = -3.0 m/s2

REVIEW The units of ax and ay are the same as the units of vector au. 
Notice that we had to insert the minus signs manually by observing 
that the vector points left and down.

FIGURE 3.14 shows a car’s velocity vector v 

u. Determine the car’s 
speed and direction of motion.

VISUALIZE FIGURE 3.15 shows the components vx and vy and de-
fines an angle u with which we can specify the direction of motion.

SOLVE We can read the components of v 

u directly from the axes: 
vx = -6.0 m/s and vy = 4.0 m/s. Notice that vx is negative. This is 
enough information to find the car’s speed v, which is the magnitude  
of v 

u:

v = 2vx 

2 + vy 

2 = 21-6.0 m/s22 + 14.0 m/s22 = 7.2 m/s

From trigonometry, angle u is

u = tan-11 vy

0 vx 0 2 = tan-114.0 m/s
6.0 m/s2 = 34°

The absolute value signs are necessary because vx is a negative 
number. The velocity vector v 

u can be written in terms of the speed 
and the direction of motion as

v 

u = 17.2 m/s, 34° above the negative x@axis2

EXAMPLE 3.4 ■ Finding the direction of motion

v
u

vx (m/s)

vy (m/s)

-2-4-6

2

4

FIGURE 3.14 The velocity vector v  

u of Example 3.4.

-6
vx (m/s)

vy (m/s)

Direction u = tan-11vy / 0 vx 02
-2-4

2

4

Magnitude

v = 2vx
2 + vy

2

vy = 4.0 m/s

vx = -6.0 m/s

u

FIGURE 3.15 Decomposition of v u.

STOP TO THINK 3.3: What are the x- and y-components Cx and Cy of vector C
u

?

C
u

x (cm)

y (cm)

1

-3-4 -1-2 1
-1

2

x

y

1

1

2

2 The unit vectors have 
magnitude 1, no units, and 
point in the + x-direction 
and + y-direction.

en

dn

FIGURE 3.16 The unit vectors in and jn.
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3.4 Unit Vectors and Vector Algebra 95

The unit vectors provide a useful way to write component vectors. The component 
vector A

u

x is the piece of vector A
u

 that is parallel to the x-axis. Similarly, A
u

y is parallel 
to the y-axis. Because, by definition, the vector in points along the x-axis and jn points 
along the y-axis, we can write

  A
u

x = Ax  in 

  A
u

y = Ay  jn 
(3.6)

Equations 3.6 separate each component vector into a length and a direction. The full  
decomposition of vector A

u
 can then be written

   A
u

= A
u

x + A
u

y = Ax  in + Ay  jn (3.7)

FIGURE 3.17 shows how the unit vectors and the components fit together to form vector A
u

.

   NOTE    In three dimensions, the unit vector along the +z@direction is called kn, and to 
describe vector A

u
 we would include an additional component vector A

u

z = Az  kn.

x

y

Unit vectors
identify the x-
and y-directions.

A = Axd + Aye
Ay = Aye

Ax = Axden

n

dn

n

nn

u

u

u

Vector Ax d has length 
Ax  and points in the 
direction of d.

n

n

FIGURE 3.17 The decomposition of vector 
A
u

 is Ax  in + Ay  jn.

A rabbit, escaping a fox, runs 40.0° north of west at 10.0 m/s. A 
coordinate system is established with the positive x-axis to the east 
and the positive y-axis to the north. Write the rabbit’s velocity in 
terms of components and unit vectors.

VISUALIZE FIGURE 3.18 shows the rabbit’s velocity vector and the 
coordinate axes. We’re showing a velocity vector, so the axes are 
labeled vx and vy rather than x and y.

SOLVE 10.0 m/s is the rabbit’s speed, not its velocity. The velocity, 
which includes directional information, is

v 

u = 110.0 m/s, 40.0° north of west2
Vector v 

u points to the left and up, so the components vx and vy 
are negative and positive, respectively. The components are

 vx = -110.0 m/s2 cos 40.0° = -7.66 m/s

 vy = +110.0 m/s2 sin 40.0° = 6.43 m/s

With vx and vy now known, the rabbit’s velocity vector is

v 

u = vx  in + vy  jn = 1-7.66in + 6.43jn2 m /s

Notice that we’ve pulled the units to the end, rather than writing 
them with each component.

REVIEW Notice that the minus sign for vx was inserted manually. 
Signs don’t occur automatically; you have to set them after 
checking the vector’s direction.

EXAMPLE 3.5 ■ Run rabbit run!

v
u

vy = v sin40.0°

vx

vy

vx = -v cos40.0°

v = 10.0 m/s

40.0°

N

FIGURE 3.18 The velocity vector v  

u is decomposed into 
components vx and vy  .

Vector Math
You learned in Section 3.2 how to add vectors graphically, but it can be a tedious prob-
lem in geometry and trigonometry to find precise values for the magnitude and 
 direction of the resultant. The addition and subtraction of vectors become much easier 
if we use components and unit vectors.

To see this, let’s evaluate the vector sum D
u

= A
u

+ B
u

+ C
u
. To begin, write this sum 

in terms of the components of each vector:

  D
u

= Dx  in + Dy  jn = A
u

+ B
u

+ C
u
 

    = 1Ax  in + Ay  jn2 + 1Bx  in + By  jn2 + 1Cx  in + Cy  jn2  
(3.8)

We can group together all the x-components and all the y-components on the right 
side, in which case Equation 3.8 is

   1Dx2 in + 1Dy2 jn = 1Ax + Bx + Cx2 in + 1Ay + By + Cy2 jn (3.9)

Comparing the x- and y-components on the left and right sides of Equation 3.9, we find:

   Dx = Ax + Bx + Cx 

   Dy = Ay + By + Cy 
(3.10)
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96 CHAPTER 3 Vectors and Coordinate Systems 

Stated in words, Equation 3.10 says that we can perform vector addition by adding the  
x-components of the individual vectors to give the x-component of the resultant and 
by adding the y-components of the individual vectors to give the y-component of the 
resultant. This method of vector addition is called algebraic addition.

Example 3.1 was about a bird that flew 100 m to the east, then 50 m  
to the northwest. Use the algebraic addition of vectors to find the 
bird’s net displacement.

VISUALIZE FIGURE 3.19 shows displacement vectors A
u

= 1100 m, 
east2 and B

u
= (50 m, northwest). We draw vectors tip-to-tail to add 

them graphically, but it’s usually easier to draw them all from the 
origin if we are going to use algebraic addition.

SOLVE To add the vectors algebraically we must know their com-
ponents. From the figure these are seen to be

A
u

= 100 in m

B
u

= 1-50 cos 45° in + 50 sin 45°jn2 m = 1-35.3in + 35.3jn2 m

Notice that vector quantities must include units. Also notice, as you 
would expect from the figure, that C

u
 has a negative x-component. 

Adding A
u

 and B
u
 by components gives

  C
u

= A
u

 + B
u

= 100 in m + 1-35.3in + 35.3jn2 m

  = 1100 m - 35.3 m2in + 135.3 m2jn = 164.7in + 35.3jn2 m

This would be a perfectly acceptable answer for many purposes. 
However, we need to calculate the magnitude and direction of C

u
 if  

we want to compare this result to our earlier answer. The magnitude  
of C

u
 is

C = 2Cx 

2 + Cy 

2 = 2164.7 m22 + 135.3 m22 = 74 m

The angle f, as defined in Figure 3.19, is

f = tan-11Cy

Cx
2 = tan-1135.3 m

64.7 m2 = 29°

Thus C
u

= 174 m, 29° north of east2, in perfect agreement with 
 Example 3.1.

EXAMPLE 3.6 ■ Using algebraic addition to find a displacement

x

y

A
u

B
u C

u

f

100 m

50 m

N

The net displacement C = A + B is drawn
according to the parallelogram rule.

u uu

FIGURE 3.19 The net displacement is C
u

= A
u

+ B
u

.

Vector subtraction and the multiplication of a vector by a scalar, using components, 
are very much like vector addition. To find R

u
= P

u
- Q

u
 we would compute

   Rx = Px - Qx 
   Ry = Py - Qy 

(3.11)

Similarly, T 
u

= cS
u
 would be

   Tx = cSx 
   Ty = cSy 

(3.12)

In other words, a vector equation is interpreted as meaning: Equate the x-components  
on both sides of the equals sign, then equate the y-components, and then the z-components. 
Vector notation allows us to write these three equations in a compact form.

Tilted Axes and Arbitrary Directions
As we’ve noted, the coordinate system is entirely your choice. It is a grid that you impose  
on the problem in a manner that will make the problem easiest to solve. As you saw in 
Chapter 2, it is often convenient to tilt the axes of the coordinate system, such as those 
shown in FIGURE 3.20. The axes are perpendicular, and the y-axis is oriented correctly 
with respect to the x-axis, so this is a legitimate coordinate system. There is no require-
ment that the x-axis has to be horizontal.

Finding components with tilted axes is no harder than what we have done so far. 
Vector C

u
 in Figure 3.20 can be decomposed into C

u
= Cx  in + Cy  jn, where Cx = C cos u 

and Cy = C sin u. Note that the unit vectors in and jn correspond to the axes, not to  
“horizontal” and “vertical,” so they are also tilted.

Tilted axes are useful if you need to determine component vectors “parallel to” and 
“perpendicular to” an arbitrary line or surface. This is illustrated in the following example.

u

x
y

C = Cxd + Cye

Cy Cx

en

n

dn

n

u
u

The components of C are found 
with respect to the tilted axes.

u

u

Unit vectors d and e
define the x- and y-axes.

nn

FIGURE 3.20 A coordinate system with 
tilted axes.
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The deltoid—the rounded muscle across the top of your upper 
arm—allows you to lift your arm away from your side. It does so  
by pulling on an attachment point on the humerus, the upper arm  
bone, at an angle of 15° with respect to the humerus. If you hold 
your arm at an angle 30° below horizontal, the deltoid must pull  
with a force of 720 N to support the weight of your arm, as shown 
in FIGURE 3.21a. (You’ll learn in Chapter 5 that force is a vector 

quantity measured in units of newtons, abbreviated N.) What are 
the components of the muscle force parallel to and perpendicular 
to the bone?

VISUALIZE FIGURE 3.21b shows a tilted coordinate system with  
the x-axis parallel to the humerus. The force F

u
 is shown 15°  

from the x-axis. The component of force parallel to the bone,  
which we can denote F ‘, is equivalent to the x-component:  
F ‘ = Fx. Similarly, the component of force perpendicular to the 
bone is F# = Fy.

SOLVE From the geometry of Figure 3.21b, we see that

 F ‘ = F cos 15° = 1720 N2 cos 15° = 695 N

 F# = F sin 15° = 1720 N2 sin 15° = 186 N

REVIEW The muscle pulls nearly parallel to the bone, so we expect-
ed F ‘ ≈ 720 N and F# V F ‘. Thus our results seem reasonable.

EXAMPLE 3.7 ■ Muscle and bone

(a) (b)

Deltoid muscle

Humerus

720 N

72
0 N

Shoulder
socket

30°

15° 30°

15°

F#

F ‘

y

x

u

u

F
u

FIGURE 3.21 Finding the components of force parallel and 
perpendicular to the humerus.

FIGURE 3.22 shows three forces acting at one point. What is the net 
force F

u

net = F
u

1 + F
u

2 + F
u

3?

VISUALIZE Figure 3.22 shows the forces and a tilted coordinate 
system.

SOLVE The vector equation F
u

net = F
u

1 + F
u

2 + F
u

3 is really two simul-
taneous equations:

 1Fnet2x = F1x + F2x + F3x

 1Fnet2y = F1y + F2y + F3y

The components of the forces are determined with respect to the 
axes. Thus

 F1x = F1 cos 45° = 150 N2 cos 45° = 35 N

 F1y = F1 sin 45° = 150 N2 sin 45° = 35 N

F
u

2 is easier. It is pointing along the y-axis, so F2x = 0 N  
and F2y = 20 N. To find the components of F

u

3, we need to  
recognize—because F

u

3 points straight down—that the angle  
between F

u

3 and the x-axis is 75°. Thus

 F3x = F3 cos 75° = 157 N2 cos 75° = 15 N

 F3y = -F3 sin 75° = -157 N2 sin 75° = -55 N

The minus sign in F3y is critical, and it appears not from some 
formula but because we recognized—from the figure—that the 
y-component of F

u

3 points in the -y-direction. Combining the 
pieces, we have

 1Fnet2x = 35 N + 0 N + 15 N = 50 N

 1Fnet2y = 35 N + 20 N + 1-55 N2 = 0 N

Thus the net force is F
u

net = 50in N. It points along the x-axis of the 
tilted coordinate system.

REVIEW Notice that all work was done with reference to the axes 
of the coordinate system, not with respect to vertical or horizontal.

   CHAPTER 3 CHALLENGE EXAMPLE    Finding the net force

45°

15°

F3

F2
F1

y

x

20 N 50 N

57 N

u u

u

FIGURE 3.22 Three forces.

STOP TO THINK 3.4: Angle f that specifies the direction  
of C

u
 is given by

a. tan-11 0Cx 0 /Cy2 b. tan-11Cx / 0Cy 0 2
C
u

f

x

y

c. tan-11 0Cx 0 / 0Cy 0 2 d. tan-11 0Cy 0 /Cx2
e. tan-11Cy / 0Cx 0 2 f. tan-11 0Cy 0 / 0Cx 0 2
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Summary The goals of Chapter 3 have been to learn how vectors are 
represented and used.

Important Concepts
A vector is a quantity described by both a magnitude and a direction.

A
uThe vector

describes the
situation at
this point.

Direction

The length or magnitude is
denoted A. Magnitude is a scalar.

A

Unit Vectors
Unit vectors have magnitude 1 
and no units. Unit vectors in and jn 
define the directions of the x- and 
y-axes. x

y

en

dn

Using Vectors
Components
The component vectors are parallel to the x- and y-axes:

A
u

= A
u

x + A
u

y = Ax  in + Ay  jn

In the figure at the right, for example:

Ax = A cos u  A = 2Ax 

2 + Ay 

2

Ay = A sin u  u = tan-11Ay /Ax2
▶  Minus signs need to be included if the vector points  

down or left.

u

x

y

x

y

Ax 6 0

Ay 7 0

Ax 7 0

Ay 7 0

Ax 6 0

Ay 6 0

Ax 7 0

Ay 6 0

Ay = Aye

Ax = Axdn

n

A
u

u

u
The components Ax and Ay are 
the magnitudes of the component 
vectors A

u

x and A
u

y and a plus or 
minus sign to show whether the 
component vector points toward 
the positive end or the negative 
end of the axis.

Working Graphically

Addition Negative Subtraction Multiplication

cA
A + B

A
u

A
u

A
u

A
u u

u B
u

u

A + B
u u

B
u

B
u

B
u

A - B

-B
u

-B
u

u u

Working Algebraically

Vector calculations are done component by component: C
u

= 2A
u

y + B
u
 means bCx = 2Ax + Bx

Cy = 2Ay + By

The magnitude of C
u
 is then C = 2Cx 

2 + Cy 

2 and its direction is found using tan-1.

Terms and Notation
scalar
vector
magnitude

resultant vector
graphical addition
zero vector, 0

u

quadrants
component vector
decomposition

component
unit vector, in or jn
algebraic addition
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CONCEPTUAL QUESTIONS

1. Can the magnitude of the displacement vector be more than the 
distance traveled? Less than the distance traveled? Explain.

2. If C
u

= A
u

+ B
u
, can C = A + B? Can C 7 A + B? For each, show 

how or explain why not.
3. If C

u
= A

u
+ B

u
, can C = 0? Can C 6 0? For each, show how or 

explain why not.
4. Is it possible to add a scalar to a vector? If so, demonstrate. If not, 

explain why not.
5. How would you define the zero vector 0

u
?

6. Two vectors have lengths of 4 units each. What is the range of 
possible lengths obtainable for the vector representing the sum 
of the two?

7. Can a vector have zero magnitude if one of its components is 
nonzero? Explain.

8. Two vectors of unequal magnitudes can never add up to a zero 
vector. Does this hold true for three unequal vectors? Explain 
with an example.

9. Are the following statements true or false? Explain your answer.
a. The magnitude of a vector can be different in different coor-

dinate systems.
b. The direction of a vector can be different in different 

coordinate systems.
c. The components of a vector can be different in different 

coordinate systems.

EXERCISES AND PROBLEMS
Exercises

Section 3.1 Scalars and Vectors

Section 3.2 Using Vectors

1. | Trace the vectors in FIGURE EX3.1 onto your paper. Then find 
(a) A

u
+ B

u
, and (b) A

u
- B

u
.

A
u

B
u

FIGURE EX3.1

A
u

B
u

FIGURE EX3.2

2. | Trace the vectors in FIGURE EX3.2 onto your paper. Then find 
(a) A

u
+ B

u
, and (b) A

u
- B

u
.

Section 3.3 Coordinate Systems and Vector Components

3. || a. What are the x- and y-components 
of vector E

u
 shown in FIGURE EX3.3 

in terms of the angle u and the  
magnitude E?

b. For the same vector, what are the 
x- and y-components in terms of the 
angle f and the magnitude E?

4. || A velocity vector 40° below the positive x-axis has a 
y-component of -10 m/s. What is the value of its x-component?

5. | A position vector in the first quadrant has an x-component of  
10 m and a magnitude of 12 m. What is the value of its 
y-component?

6. | Draw each of the following vectors. Then find its x- and y-  
components.
a. au = 13.5 m/s2, negative x@direction2
b. v 

u = 1440 m/s, 30° below the positive x@axis2
c. r u = 112 m, 40° above the positive x@axis2

7. || Draw each of the following vectors. Then find its x- and y-  
components.
a. v 

u = 17.5 m/s, 30° clockwise from the positive y@axis2
b. au = 11.5 m/s2, 30° above the negative x@axis2
c. F

u
= 150.0 N, 36.9° counterclockwise from the positive y@axis2

E
u

u

f
x

y

FIGURE EX3.3

8. || Let C
u

= 13.15 m, 15° above the negative x-axis) and D
u

=  
125.6 m, 30° to the right of the negative y-axis2. Find the x- and 
y-components of each vector.

9. || A runner is training for an upcoming marathon by running 
around a 100-m-diameter circular track at constant speed. Let a 
coordinate system have its origin at the center of the circle with 
the x-axis pointing east and the y-axis north. The runner starts 
at 1x, y2 = 150 m, 0 m2 and runs 2.5 times around the track in a 
clockwise direction. What is his displacement vector? Give your 
answer as a magnitude and direction.

Section 3.4 Unit Vectors and Vector Algebra

10. | Draw each of the following vectors, label an angle that spec-
ifies the vector’s direction, and then find the vector’s magnitude  
and direction.
a. A

u
= 3.0in + 7.0jn

b. au = 1-2.0in + 4.5jn2 m/s2

c. v 

u = 114in - 11jn2 m/s
d. r u = 1-2.2in - 3.3jn2 m

11. | Draw each of the following vectors, label an angle that specifies 
the vector’s direction, then find its magnitude and direction.
a. B

u
= -4.0in + 4.0jn

b. r u = 1-2.0in - 1.0jn2 cm
c. v 

u = 1-10in - 100jn2 m/s
d. au = 120in + 10jn2 m/s2

12. | Let A
u

= 4in - 2jn, B
u

= -3in + 5jn, and C
u

= A
u

+ B
u
.

a. Write vector C
u
 in component form.

b. Draw a coordinate system and on it show vectors A
u

, B
u
, and C

u
.

c. What are the magnitude and direction of vector C
u
?

13. | Let A
u

= 2in + 3jn, B
u

= 2in - 4jn, and C
u

= A
u

+ B
u
.

a. Write vector C
u
 in component form.

b. Draw a coordinate system and on it show vectors A
u

, B
u
, and C

u
.

c. What are the magnitude and direction of vector C
u
?

14. | Let A
u

= 4in - 2jn, B
u

= -3in + 5jn, and E
u

= 2A
u

+ 3B
u
.

a. Write vector E
u

 in component form.
b. Draw a coordinate system and on it show vectors A

u
, B

u
, and E

u
.

c. What are the magnitude and direction of vector E
u

?
15. | Let A

u
= 4in - 2jn, B

u
= -3in + 5jn, and D

u
= A

u
- B

u
.

a. Write vector D
u

 in component form.
b. Draw a coordinate system and on it show vectors A

u
, B

u
, and D

u
.

c. What are the magnitude and direction of vector D
u

?
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FIGURE EX3.20
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FIGURE EX3.19
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u
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u
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FIGURE P3.24

A
u

B
u

x

y
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3.0 m

60°

20°

FIGURE P3.25

A
u

B
u

C
u

x

y

4.0

3.0

FIGURE EX3.18

FIGURE EX3.21

x

x

y y

30°

(a) (b)

16. | Let A
u

= 4in - 2jn, B
u

= -3in + 5jn, and F
u

= A
u

- 4B
u
.

a. Write vector F
u
 in component form.

b. Draw a coordinate system and on it show vectors A
u

, B
u
, and F

u
.

c. What are the magnitude and direction of vector F
u
?

17. | Let E
u

= 4 in + 5jn and F
u

= 2 in - 3jn. Find the magnitude of
a. E

u
 and F

u
b. E

u
+ F

u
c. -E

u
- 2F

u

18. || For the three vectors shown in FIGURE EX3.18, A
u

+ B
u

+ C
u
 =  

1jn. What is vector B
u
.

19. || FIGURE EX3.19 shows vectors A
u

 and B
u
. What is C

u
= A

u
+ B

u
? 

Write your answer in component form using unit vectors.

20. | What are the x- and y-components of the velocity vector 
shown in FIGURE EX3.20?

21. ||| Let B
u

= (5.0 m, 30° counterclockwise from vertically up). 
Find the x- and y-components of B

u
 in each of the two coordinate 

systems shown in FIGURE EX3.21.

25. ||| FIGURE P3.25 shows vectors A
u

 and B
u
. Find vector C

u
 such that 

A
u

+ B
u

+ C
u

= 0
u
. Write your answer in component form.

26. || FIGURE P3.26 shows vectors A
u

 and B
u
. Find D

u
= 2A

u
+ B

u
. 

Write your answer in component form.

A
u

B
u15°

15° 2.0 m

4.0 m

x

y

FIGURE P3.26

27. || Find a vector that points in the same direction as the vector 
1in + jn2 and whose magnitude is 1.

28. || The minute hand on a watch is 2.0 cm in length. What is the 
displacement vector of the tip of the minute hand in each case? 
Use a coordinate system in which the y-axis points toward the 12 
on the watch face.
a. From 8:00 to 8:20 a.m.
b. From 8:00 to 9:00 a.m.

29. || While vacationing in the mountains you do some hiking. In 
the morning, your displacement is S

u

morning = 12000 m, east2 +  
 13000 m, north2 + 1200 m, vertical2. Continuing on after lunch, 
your displacement is S

u

afternoon = (1500 m, west) + (2000 m,  
north) - (300 m, vertical). 
a. At the end of the hike, how much higher or lower are you 

compared to your starting point?
b. What is the magnitude of your net displacement for the day?

30. || Lucia drives with velocity v u
1 = 125 in - 35jn2 mph for 1.0 h, then 

v u
2 = 130 in + 40jn2 mph for 2.0 h. What is Lucia’s displacement? 

Write your answer in component form using unit vectors.
31. || Ruth sets out to visit her friend Ward, who lives 50 mi north and 

100 mi east of her. She starts by driving east, but after 30 mi she 
comes to a detour that takes her 15 mi south before going east again. 
She then drives east for 8 mi and runs out of gas, so Ward flies there 
in his small plane to get her. What is Ward’s displacement vector? 
Give your answer (a) in component form, using a coordinate system in 
which the y-axis points north, and (b) as a magnitude and direction.

32. | A cannon tilted upward at 30° fires a cannonball with a speed 
of 100 m/s. What is the component of the cannonball’s velocity 
parallel to the ground?

33. || A cannonball leaves the barrel with velocity v u =
165in + 75jn2 m/s . At what angle is the barrel tilted above 
horizontal?

34. | You are fixing the roof of your house when the head of your 
hammer breaks loose and slides down. The roof makes an angle 
of 30° with the horizontal, and the head is moving at 3.5 m/s 
when it reaches the edge. What are the horizontal and vertical 
components of the head’s velocity just as it leaves the roof? 

35. | Jack and Jill ran up the hill at 4 m/s. The horizontal compo-
nent of Jill’s velocity vector was 3.5 m/s.
a. What was the angle of the hill?
b. What was the vertical component of Jill’s velocity?

a. Write B
u
 in component form.

b. Write B
u
 as a magnitude and a direction.

Problems

22. || Let A
u

= 13.0 m, 20° south of east2, B
u

= 12.0 m, north2, and 
C
u

= 15.0 m, 70° south of west2.
a. Draw and label A

u
, B

u
, and C

u
 with their tails at the origin. Use a  

coordinate system with the x-axis to the east.
b. Write A

u
, B

u
, and C

u
 in component form, using unit vectors.

c. Find the magnitude and the direction of D
u

= A
u

+ B
u

+ C
u
.

23. ||  The position of a particle as a function of time is given by 
r u = 13.0 in + 8.0jn2t2 m, where t is in seconds.

a. What is the particle’s distance from the origin at t = 0, 2, and 5 s?
b. Find an expression for the particle’s velocity v 

u as a function 
of time.

c. What is the particle’s speed at t = 0, 2, and 5 s?
24. | a. What is the angle f between vectors E

u
 and F

u
 in FIGURE P3.24?

b. Use geometry and trigonometry to determine the magnitude  
and direction of G

u
= E

u
+ F

u
.

c. Use components to determine the magnitude and direction of  
G
u

= E
u

+ F
u
.
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36. | Kami is walking through the airport with her two-wheeled 
suitcase. The suitcase handle is tilted 40° from vertical, and 
Kami pulls parallel to the handle with a force of 120 N. (Force 
is measured in newtons, abbreviated N.) What are the horizontal 
and vertical components of her applied force?

37. | A pine cone falls straight down from a pine tree growing 
on a 20° slope. The pine cone hits the ground with a speed of 
10 m/s. What is the component of the pine cone’s impact velocity 
(a)  parallel to the ground and (b) perpendicular to the ground?

38. | A jet plane taking off from an aircraft carrier has acceleration 
a u = 114 m/s2, 21° above horizontal2. What are the horizontal 
and vertical components of the jet’s acceleration?

39. | Your neighbor Paul has rented a truck with a loading ramp. 
The ramp is tilted upward at 25°, and Paul is pulling a large crate 
up the ramp with a rope that angles 10° above the ramp. If Paul 
pulls with a force of 550 N, what are the horizontal and vertical 
components of his force? (Force is measured in newtons, abbre-
viated N.)

40. || Tom is climbing a 3.0-m-long ladder that leans against a verti-
cal wall, contacting the wall 2.5 m above the ground. His weight 
of 680 N is a vector pointing vertically downward. (Weight is 
measured in newtons, abbreviated N.) What are the components 
of Tom’s weight parallel and perpendicular to the ladder?

41. || The treasure map in FIGURE P3.41 gives the following directions 
to the buried treasure: “Start at the old oak tree, walk due north for 
500 paces, then due east for 100 paces. Dig.” But when you arrive, 
you find an angry dragon just north of the tree. To avoid the dragon, 
you set off along the yellow brick road at an angle 60° east of north. 
After walking 300 paces you see an opening through the woods. 
In which direction should you walk, as an angle west of north, and 
how far, to reach the treasure?

42. ||| The bacterium E. coli is a single-cell organism that lives in 
the gut of healthy animals, including humans. When grown in 
a uniform medium in the laboratory, these bacteria swim along 
zig-zag paths at a constant speed of 20 mm/s. FIGURE P3.42 
shows the trajectory of an E. coli as it moves from point A to 
point E. What are the magnitude and direction of the bacterium’s 
average velocity for the entire trip?

43. || FIGURE P3.43 shows three ropes tied together in a knot. One 
of your friends pulls on a rope with 3.0 units of force and another 
pulls on a second rope with 5.0 units of force. How hard and in what 
 direction must you pull on the third rope to keep the knot from mov-
ing? Give the direction as an angle below the negative x-axis.

44. || A crate, seen from above, is pulled with three ropes that have 
the tensions shown in FIGURE P3.44. Tension is a vector directed 
along the rope, measured in newtons (abbreviated N). Suppose 
the three ropes are replaced with a single rope that has exactly 
the same effect on the crate. What is the tension in this rope? 
Write your answer in component form using unit vectors.

45. || Four forces are exerted on the object shown in FIGURE P3.45. 
(Forces are measured in newtons, abbreviated N.) The net force on 
the object is F

u

net = F
u

1 + F
u

2 + F
u

3 + F
u

4 = 4.0in N. What are (a) F
u

3  
and (b) F

u

4? Give your answers in component form.
46. || FIGURE P3.46 shows four electric charges located at the cor-

ners of a rectangle. Like charges, you will recall, repel each 
other while opposite charges attract. Charge B exerts a repulsive 
force (directly away from B) on charge A of 3.0 N. Charge C ex-
erts an attractive force (directly toward C) on charge A of 6.0 N. 
Finally, charge D exerts an attractive force of 2.0 N on charge A.  
Assuming that forces are vectors, what are the magnitude and 
direction of the net force F

u

net exerted on charge A?
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102

Kinematics in Two  
Dimensions

How do objects accelerate in two dimensions?
An object accelerates when it changes 
velocity. In two dimensions, velocity can 
change by changing magnitude (speed) 
or by changing direction. These are 
represented by acceleration components 
tangent to and perpendicular to an 
object’s trajectory.

❮❮ LOOKING BACK Section 1.5 Finding 
 acceleration vectors on a motion diagram

What is projectile motion?
Projectile motion is two-dimensional 
free-fall motion under the influence of 
only gravity. Projectile motion follows 
a parabolic trajectory. It has uniform 
motion in the horizontal direction and 
ay = -g in the vertical direction.

❮❮ LOOKING BACK  Section 2.5 Free fall

What is relative motion?
Coordinate systems that move relative to  
each other are called reference frames. 
If object C has velocity vuCA relative to a 
reference frame A, and if A moves with 
velocity vuAB relative to another reference 
frame B, then the velocity of C in refer-
ence frame B is vuCB = vuCA + vuAB.

What is circular motion?
An object moving in a circle (or rotating) has 
an angular displacement instead of a linear 
displacement. Circular motion is described 
by angular velocity v (analogous to velocity 
vs) and angular acceleration a (analogous 
to acceleration as). We’ll study both uniform 
and accelerated circular motion.

What is centripetal acceleration?
An object in circular motion is always 
changing direction. The acceleration of 
changing direction—called centripetal 
acceleration—points to the center of the 
circle. All circular motion has a centripetal 
acceleration. An object also has a tangential 
acceleration if it is changing speed.

Where is two-dimensional motion used?
Linear motion allowed us to introduce the concepts of mo-
tion, but most real motion takes place in two or even three 
dimensions. Balls move along curved trajectories, cars turn 
corners, planets orbit the sun, and electrons spiral in the 
earth’s magnetic field. Where is two-dimensional motion 
used? Everywhere!

IN THIS CHAPTER, you will learn how to solve problems about motion in a plane.

4

This motocross bike  follows the 
parabolic trajectory of projectile 
motion.

a
u

v
u

u
a#

x

y Change speed

Change direction

a ‘
u

y Parabola

u

x

v0

A

yy

x

B x

C vAB
u

v
u

v
u

v
u

r

v

v

v

a
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v
u

a
u

v
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u

v
u
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4.1 Motion in Two Dimensions 103

4.1 Motion in Two Dimensions
Motion diagrams are an important tool for visualizing motion, and we’ll continue to 
use them, but we also need to develop a mathematical description of motion in two 
dimensions. For convenience, we’ll say that any two-dimensional motion is in the 
xy-plane regardless of whether the plane of motion is horizontal or vertical.

FIGURE 4.1 shows a particle moving along a curved path—its trajectory—in the 
xy-plane. We can locate the particle in terms of its position vector r u = xin + yjn.

   NOTE    In Chapter 2 we made extensive use of position-versus-time graphs, either x 
versus t or y versus t. Figure 4.1, like many of the graphs we’ll use in this chapter, is 
a graph of y versus x. In other words, it’s an actual picture of the trajectory, not an 
abstract representation of the motion.

FIGURE 4.2a shows the particle moving from position r u
1 at time t1 to position r u

2 at a 
later time t2 . The average velocity—pointing in the direction of the displacement ∆r u—is

 vuavg =
∆r u

∆t
=

∆x
∆t

 in +
∆y

∆t
 jn (4.1)

You learned in Chapter 2 that the instantaneous velocity is the limit of v 

u
avg as ∆t S 0. 

As ∆t decreases, point 2 moves closer to point 1 until, as FIGURE 4.2b shows, the 
displacement vector becomes tangent to the curve. Consequently, the instantaneous 
velocity vector vu is tangent to the trajectory.

Mathematically, the limit of Equation 4.1 gives

 vu = lim
∆tS0

 
∆r u

∆t
=

d r u

dt
=

dx
dt

 in +
dy

dt
 jn (4.2)

We can also write the velocity vector in terms of its x- and y-components as

 v 

u = vx dn + vy en (4.3)

Comparing Equations 4.2 and 4.3, you can see that the velocity vector v 

u has x- and 
y-components

 vx =
dx
dt
  and  vy =

dy

dt
 (4.4)

That is, the x-component vx of the velocity vector is the rate dx/dt at which the particle’s 
x-coordinate is changing. The y-component is similar.

FIGURE 4.2c illustrates another important feature of the velocity vector. If the vector’s 
angle u is measured from the positive x-direction, the velocity vector components are

  vx = v cos u (4.5)
 vy = v sin u

where

 v = 2vx 

2 + vy 

2 (4.6)

is the particle’s speed at that point. Speed is always a positive number (or zero), 
whereas the components are signed quantities (i.e., they can be positive or negative) to 
convey information about the direction of the velocity vector. Conversely, we can use 
the two velocity components to determine the direction of motion:

 u = tan-11vy

vx
2 (4.7)

   NOTE    In Chapter 2, you learned that the value of the velocity is the slope of the 
position-versus-time graph. Now we see that the direction of the velocity vector v 

u is the 
tangent to the y-versus-x graph of the trajectory. FIGURE 4.3, on the next page, reminds 
you that these two graphs use different interpretations of the tangent lines. The tangent 
to the trajectory does not tell us anything about how fast the particle is moving.

r =
 x
d +

 y
e

u

x

y

Position vector

Trajectory

r y
 =

 y

rx = x

The x- and y-components of r are simply x and y.
u

n

n

FIGURE 4.1 A particle moving along a 
trajectory in the xy-plane.

vavg
u

v
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∆y
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(b)
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y

2
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(c)

22
2

1
As ∆t S 0, ∆r becomes
tangent to the curve at 1.

u

u

u

r2
u

The average velocity
points in the direction
of ∆r.

u

The instantaneous velocity v
is tangent to the
curve at 1.

u

x

y

vx = v cosu
Angle u describes the
direction of motion.

v y
 =

 v
 s

in
u

v =
    

 vx
2  + v y

2

u

2

The displacement is ∆r = ∆x d + ∆y eu
nn

∆r
u

FIGURE 4.2 The instantaneous velocity 
vector is tangent to the trajectory.
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Acceleration Graphically
In ❮❮ SECTION 1.5 we defined the average acceleration auavg of a moving object to be

 auavg =
∆v 

u

∆t
 (4.8)

From its definition, we see that au points in the same direction as ∆vu, the change of 
velocity. As an object moves, its velocity vector can change in two possible ways:

1. The magnitude of v 

u can change, indicating a change in speed, or
2. The direction of v 

u can change, indicating that the object has changed direction.

Chapters 1 and 2 considered only the acceleration of changing speed. The accel-
eration of changing direction can be determined by finding the direction of ∆v 

u. If an 
object changes from velocity v 

u
a to velocity v 

u
b, its change of velocity ∆v 

u = v 

u
b - v 

u
a can be 

written as v 

u
b = v 

u
a + ∆v 

u. Thus ∆v 

u is the vector that must be added to v 

u
a to get v 

u
b. Tactics 

Box 4.1 shows how to use graphical vector addition to find the acceleration vector.

v
u

The value of the
velocity is the slope
of the position graph.

The direction of the
velocity is tangent
to the trajectory.

x

y

t

s

TrajectoryPosition-versus-time graph

 FIGURE 4.3 Two different uses of tangent lines.

A sports car’s position on a winding road is given by

r 
u = (6.0t - 0.10t2) in + (8.0t - 0.00095t3)en

where the y-axis points north, t is in s, and r is in m. What are the 
car’s speed and direction at t = 120 s?

MODEL Model the car as a particle.

SOLVE Velocity is the derivative of position, so

 vx =
dx
dt

= 6.0 - 2  10.10t)

 vy =
dy

dt
= 8.0 - 3  10.00095t22

Written as a vector, the velocity is

  v 

u = 16.0 - 0.20t2in + 18.0 - 0.00285t22jn

where t is in s and v is in m/s. At t = 120 s, we can calculate v 

u =  
1-18 in - 33jn2 m/s. The car’s speed at this instant is

v = 2vx 

2 + vy 

2 = 21-18 m/s22 + 1-33 m/s22 = 38 m/s

Both components of the velocity vector are negative, so the 
direction of motion is to the left (west) and down (south). The angle 
below the negative x-axis is

u =  tan-11 ∙ -33 m/s ∙
∙ -18 m/s ∙ 2 = 61°

So, at this instant, the car is headed 61° south of west at a speed 
of 38 m/s.

EXAMPLE 4.1 ■ Finding velocity

STOP TO THINK 4.1 During which time interval or intervals is the particle described 
by these position graphs at rest? More than one may be correct.

a. 0–1 s
b. 1–2 s
c. 2–3 s
d. 3–4 s

10 0
0

32 4
t (s)

x

1 32 4
t (s)

y

0
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A ball rolls down a long hill, through the valley, and back up the 
other side. Draw a complete motion diagram of the ball.

MODEL Model the ball as a particle.

VISUALIZE FIGURE 4.4 is the motion diagram. Where the particle 
moves along a straight line, it speeds up if a 

u and v 

u point in the 
same direction and slows down if a 

u and v 

u point in opposite direc-
tions. This important idea was the basis for the one-dimensional 

kinematics we developed in Chapter 2. When the direction of v 

u 
changes, as it does when the ball goes through the valley, we need 
to use Tactics Box 4.1 to find the direction of ∆v 

u and thus of a 

u. The 
procedure is shown at one point in the motion diagram. Notice that 
a 

u is perpendicular to the trajectory at the bottom point where only 
the direction, not the speed, is changing. We’ll return to this idea 
when we discuss circular motion.

EXAMPLE 4.2 ■ Through the valley

Our everyday use of the word “accelerate” means “speed up.” The mathematical 
definition of acceleration—the rate of change of velocity—also includes slowing 
down, as you learned in Chapter 2, as well as changing direction. All these are  motions 
that change the velocity.

TACTICS BOX 4.1

Finding the acceleration vector

1

3

Draw velocity vectors va and vb

with their tails together.

2 Draw the vector from the tip of va

to the tip of vb. This is ∆v because
vb = va + ∆v.

u

u

u u

uuu

u

a
u

va
u

va
u

vb
u

va
u

vb
u

vb
u

va
u

vb
u

u∆v

u

Return to the original motion 
diagram. Draw a vector at the 
middle dot in the direction of
∆v; label it a. This is the average
acceleration between va and vb. 

u

u

u

To find the acceleration between
velocity va and velocity vb:

u u

Exercises 1–4 

a vav

a
a is parallel to v.
Only speed is changing.

va
vb

va

vb

∆v

Both speed and direction are changing.
a has components parallel and perpendicular to v.

a is perpendicular to v.
Only direction is changing.

FIGURE 4.4 The motion diagram of the ball of Example 4.2.
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106 CHAPTER 4 Kinematics in Two Dimensions 

FIGURE 4.5 shows that an object’s acceleration vector can be decomposed into a 
component parallel to the velocity—that is, parallel to the direction of motion—and 
a component perpendicular to the velocity. au ‘ is the piece of the acceleration that 
causes the object to change speed, speeding up if au ‘ points in the same direction as v 

u, 
slowing down if they point in opposite directions. au# is the piece of the acceleration 
that causes the object to change direction. An object changing direction always has 
a component of acceleration perpendicular to the direction of motion.

Looking back at Example 4.2, we see that au is parallel to v 

u on the straight portions 
of the hill where only speed is changing. At the very bottom, where the ball’s direction 
is changing but not its speed, au is perpendicular to v 

u. The acceleration is angled with 
respect to velocity—having both parallel and perpendicular components—at those 
points where both speed and direction are changing.

v
u

x

y

Instantaneous
acceleration

Instantaneous velocity

(a) The parallel component is associated
with a change of speed.

The perpendicular
component is associated
with a change of direction.

a ‘

a#
a
u

u

u

FIGURE 4.6 The instantaneous 
acceleration au.

a#

a ‘

a
u

u

u

This component of a is changing
the speed of the motion.

u

This component of a is changing
the direction of motion.

u

v
u

FIGURE 4.5 Analyzing the acceleration 
vector.

STOP TO THINK 4.2 This acceleration will cause the 
particle to a

u
v
u

a. Speed up and curve upward. b. Speed up and curve downward. 
c. Slow down and curve upward. d. Slow down and curve downward.
e. Move to the right and down. f. Reverse direction.

Acceleration Mathematically
In Tactics Box 4.1, the average acceleration is found from two velocity vectors separated  
by the time interval ∆t. If we let ∆t get smaller and smaller, the two velocity vectors 
get closer and closer. In the limit ∆t S 0, we have the instantaneous acceleration a 

u at 
the same point on the trajectory (and the same instant of time) as the instantaneous 
velocity v 

u. This is shown in FIGURE 4.6.
By definition, the acceleration vector a 

u is the rate at which the velocity v 

u is changing 
at that instant. To show this, Figure 4.6a decomposes a 

u into components au ‘ and au# that 
are parallel and perpendicular to the trajectory. As we just showed, au ‘ is associated 
with a change of speed, and au# is associated with a change of direction. Both kinds 
of changes are accelerations. Notice that au# always points toward the “inside” of the 
curve because that is the direction in which v 

u is changing.
Although the parallel and perpendicular components of au convey important 

ideas about acceleration, it’s often more practical to write au in terms of the x- and 
y-components shown in Figure 4.6b. Because v 

u = vx in + vy  jn, we find

 au = ax  in + ay  jn =
dv 

u

dt
=

dvx

dt
 in +

dvy

dt
 jn (4.9)

from which we see that

 ax =
dvx

dt
  and  ay =

dvy

dt
 (4.10)

That is, the x-component of a 

u is the rate dvx /dt at which the x-component of velocity 
is changing.

   NOTE    Figures 4.6a and Figure 4.6b show the same acceleration vector; all that 
differs is how we’ve chosen to decompose it. For motion with constant acceleration, 
which includes projectile motion, the decomposition into x- and y-components is 
most convenient. But we’ll find that the parallel and perpendicular components are 
especially suited to an analysis of circular motion.

Constant Acceleration
If the acceleration au = ax in + ay  jn is constant, then the two components ax and ay are 
both constant. In this case, everything you learned about constant-acceleration kine-
matics in ❮❮ SECTION 2.4 carries over to two-dimensional motion.

a
u

v
u

Instantaneous velocity

x

y

Instantaneous
acceleration

The x- and y-components
are mathematically more
convenient.

(b)

ax

ay

u

u
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4.2 Projectile Motion 107

Consider a particle that moves with constant acceleration from an initial position 
r u

i = xi in + yi jn, starting with initial velocity v 

u
i = vix  in + viy  jn. Its position and velocity at 

a final point f are

vfx = vix + ax ∆t vfy = viy + ay ∆t 
(4.11)

 xf = xi + vix ∆t + 1
2 ax  1∆t22 yf = yi + viy ∆t + 1

2 ay  1
 

∆t22

There are many quantities to keep track of in two-dimensional kinematics, making 
the pictorial representation all the more important as a problem-solving tool.

   NOTE    For constant acceleration, the x-component of the motion and the y-component  
of the motion are independent of each other. However, they remain connected 
through the fact that ∆t must be the same for both.

In the distant future, a small spacecraft is drifting “north” through 
the galaxy at 680 m/s when it receives a command to return to the 
starship. The pilot rotates the spacecraft until the nose is pointed 
25° north of east, then engages the ion engine. The spacecraft 
accelerates at 75 m/s2. Plot the spacecraft’s trajectory for the  
first 20 s.

MODEL Model the spacecraft as a particle with constant acceleration.

VISUALIZE FIGURE 4.7 shows a pictorial representation in which 
the y-axis points north and the spacecraft starts at the origin. 
Notice that each point in the motion is labeled with two posi-
tions 1x and y2, two velocity components 1vx and vy2, and the  
time t. This will be our standard labeling scheme for trajectory 
problems.

SOLVE The acceleration vector has both x- and y-components; their 
values have been calculated in the pictorial representation. But it is 
a constant acceleration, so we can write

  x1 = x0 + v0x1t1 - t02 + 1
2 a x1t1 - t022

  = 34.0 t1 

2 m

  y1 = y0 + v0y1t1 - t02 + 1
2 ay1t1 - t022

  = 680t1 + 15.8t1 

2 m

where t1 is in s. Graphing software produces the trajectory shown in 
FIGURE 4.8. The trajectory is a parabola, which is characteristic of 
two-dimensional motion with constant acceleration.

EXAMPLE 4.3 ■ Plotting a spacecraft trajectory

x

y

Known
x0 = y0 = 0 m   v0x = 0 m/s     v0y = 680 m/s

ay = (75 m/s2) sin25° = 31.6 m/s2

ax = (75 m/s2) cos25° = 68.0 m/s2

x1, y1, t1

v1x, v1y 

x0, y0, t0

v0x, v0y

t0 = 0 s  t1 = 0 s to 20 s

Find
x1 and y1

v0
u

25°

a
u

FIGURE 4.7 Pictorial representation of the spacecraft.

x (km)

y (km)

50
0

10 15

5

10

15

20

FIGURE 4.8 The spacecraft trajectory.

4.2 Projectile Motion
Baseballs and tennis balls flying through the air, Olympic divers, and daredevils shot 
from cannons all exhibit what we call projectile motion. A projectile is an object 
that moves in two dimensions under the influence of only gravity. Projectile motion 
is an extension of the free-fall motion we studied in Chapter 2. We will continue to 
neglect the influence of air resistance, leading to results that are a good approximation 
of reality for relatively heavy objects moving relatively slowly over relatively short 
distances. As we’ll see, projectiles in two dimensions follow a parabolic trajectory 
like the one seen in FIGURE 4.9.

The start of a projectile’s motion, be it thrown by hand or shot from a gun, is called 
the launch, and the angle u of the initial velocity v 

u
0 above the horizontal (i.e., above  

The ball’s trajectory
between bounces is
a parabola.

FIGURE 4.9 A parabolic trajectory.
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108 CHAPTER 4 Kinematics in Two Dimensions 

the x-axis) is called the launch angle. FIGURE 4.10 illustrates the relationship be-
tween the initial velocity vector v 

u
0 and the initial values of the components v0x and 

v0y  . You can see that

  v0x = v0 cos u 
(4.12)

 v0y = v0 sin u

where v0 is the initial speed.

   NOTE    A projectile launched at an angle below the horizontal (such as a ball thrown 
downward from the roof of a building) has negative values for u and v0y  . However, 
the speed v0 is always positive.

Gravity acts downward, and we know that objects released from rest fall straight 
down, not sideways. Hence a projectile has no horizontal acceleration, while its verti-
cal acceleration is simply that of free fall. Thus

 ax = 0

u
x

y

Launch angle

Parabolic
trajectory

Initia
l sp

eed
 v 0

v0x = v0 cosu

v 0
y 

=
 v

0 
si

n
u

v0
u

FIGURE 4.10 A projectile launched with 
initial velocity v  

u
0.

a
u v

u

v
u

v
u

v
u

v
u

x

y

19.6

Velocity vectors are
shown every 1 s.
Values are in m/s.

-19.6

9.8

9.8

9.8

ay = -9.8 m/s per s

9.8

9.8

9.8

-9.8

When the particle returns
to its initial height, v  y is
opposite its initial value.

v  y decreases by
9.8 m/s every second.

v  x is constant
throughout the motion.

FIGURE 4.11 The velocity and acceleration 
vectors of a projectile.

(projectile motion) (4.13)
 ay = -g 

In other words, the vertical component of acceleration ay is just the familiar ∙g 
of free fall, while the horizontal component ax is zero. Projectiles are in free fall.

To see how these conditions influence the motion, FIGURE 4.11 shows a projectile 
launched from 1x0, y02 = 10 m, 0 m2 with an initial velocity v 

u
0 = 19.8 in + 19.6jn2 m/s. 

The value of vx never changes because there’s no horizontal acceleration, but 
vy decreases by 9.8 m/s every second. This is what it means to accelerate at 
ay = -9.8 m/s2 =  1-9.8 m/s2 per second.

You can see from Figure 4.11 that projectile motion is made up of two independent 
motions: uniform motion at constant velocity in the horizontal direction and free- 
fall motion in the vertical direction. The kinematic equations that describe these two 
motions are simply Equations 4.11 with ax = 0 and ay = -g.

A stunt man drives a car off a 10.0-m-high cliff at a speed of 
20.0 m/s. How far does the car land from the base of the cliff?

MODEL Model the car as a particle in free fall. Assume that the car 
is moving horizontally as it leaves the cliff.

VISUALIZE The pictorial representation, shown in FIGURE 4.12, is 
very important because the number of quantities to keep track of is 
quite large. We have chosen to put the origin at the base of the cliff. 
The assumption that the car is moving horizontally as it leaves the 
cliff leads to v0x = v0 and v0y = 0 m/s.

SOLVE Each point on the trajectory has x- and y-components of 
position, velocity, and acceleration but only one value of time. The 
time needed to move horizontally to x1 is the same time needed to 
fall vertically through distance y0. Although the horizontal and 
vertical motions are independent, they are connected through 
the time t. This is a critical observation for solving projectile 
motion problems. The kinematics equations with  ax = 0 and  
ay = -g are

  x1 = x0 + v0x  1t1 - t02 = v0 t1

  y1 = 0 = y0 + v0y  1t1 - t02 - 1
2 g1t1 - t022 = y0 - 1

2 gt1 

2

We can use the vertical equation to determine the time t1 needed 
to fall distance y0:

t1 = B 2y0

g
= B 2110.0 m2

9.80 m/s2 = 1.43 s

We then insert this expression for t into the horizontal equation to 
find the distance traveled:

x1 = v0  t1 = 120.0 m/s211.43 s2 = 28.6 m

REVIEW The cliff height is ≈  33 ft and the initial speed is 
v0 ≈ 40 mph. Traveling x1 = 29 m ≈ 95 ft before hitting the ground  
seems reasonable.

EXAMPLE 4.4 ■ Don’t try this at home!

a
u

x0, y0, t0

v0x, v0y

x1, y1, t1

v1x, v1y

0
0

x

y

Known
x0 = 0 m    v0y = 0 m/s    t0 = 0 s
y0 = 10.0 m  v0x = v0 = 20.0 m/s
ax = 0 m/s2  ay = -g  y1 = 0 m

Find
x1

v0
u

FIGURE 4.12 Pictorial representation for the car of Example 4.4.
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4.2 Projectile Motion 109

The x- and y-equations of Example 4.4 are parametric equations. It’s not hard to 
eliminate t and write an expression for y as a function of x. From the x1 equation, 
t1 = x1/v0 . Substituting this into the y1 equation, we find

 y = y0 -
g

2v0 

2 x2 (4.14)

The graph of y = cx2 is a parabola, so Equation 4.14 represents an inverted parabola 
that starts from height y0. This proves, as we asserted previously, that a projectile 
follows a parabolic trajectory.

Reasoning About Projectile Motion
Suppose a heavy ball is launched exactly horizontally at height h above a horizontal 
field. At the exact instant that the ball is launched, a second ball is simply dropped 
from height h. Which ball hits the ground first?

It may seem hard to believe, but—if air resistance is neglected—the balls hit the 
ground simultaneously. They do so because the horizontal and vertical components of 
projectile motion are independent of each other. The initial horizontal velocity of the 
first ball has no influence over its vertical motion. Neither ball has any initial motion 
in the vertical direction, so both fall distance h in the same amount of time. You can 
see this in FIGURE 4.13.

FIGURE 4.14a shows a useful way to think about the trajectory of a projectile. 
Without gravity, a projectile would follow a straight line. Because of gravity, the 
particle at time t has “fallen” a distance 12 gt2 below this line. The separation grows as 
1
2 gt2, giving the trajectory its parabolic shape.

Use this idea to think about the following “classic” problem in physics:

A hungry bow-and-arrow hunter in the jungle wants to shoot down a coconut that is 
hanging from the branch of a tree. He points his arrow directly at the coconut, but as 
luck would have it, the coconut falls from the branch at the exact instant the hunter 
releases the string. Does the arrow hit the coconut?

You might think that the arrow will miss the falling coconut, but it doesn’t. Although 
the arrow travels very fast, it follows a slightly curved parabolic trajectory, not a straight 
line. Had the coconut stayed on the tree, the arrow would have curved under its target 
as gravity caused it to fall a distance 1

2 gt2 below the straight line. But 1
2 gt2 is also the 

distance the coconut falls while the arrow is in flight. Thus, as FIGURE 4.14b shows,  
the arrow and the coconut fall the same distance and meet at the same point!

FIGURE 4.13 A projectile launched 
horizontally falls in the same time as a 
projectile that is released from rest.

1
21

2

1
2

x

y
Trajectory
without
gravity

Actual trajectory

The distance between
the gravity-free trajectory
and the actual trajectory 
grows as the particle
“falls” gt 2.

gt 2

(a) (b)

Actual trajectory
of arrow x

y

Trajectory
without gravity

gt 2
1
2gt 2

FIGURE 4.14 A projectile follows a parabolic trajectory because it “falls” a distance 12 gt2 
below a straight-line trajectory.

The Projectile Motion Model
Projectile motion is an ideal that’s rarely achieved by real objects. Nonetheless, the 
projectile motion model is another important simplification of reality that we can 
add to our growing list of models.
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110 CHAPTER 4 Kinematics in Two Dimensions 

MODEL 4.1

Projectile motion
For motion under the influence of only gravity.

 ■ Model the object as a particle launched 
with speed v0 at angle u:

 ■ Mathematically:
• Uniform motion in the horizontal  

direction with vx = v0 cos u.

• Constant acceleration in the vertical 
direction with ay = -g.

• Same ∆t for both motions.
 ■ Limitations: Model fails if air resistance is significant.

Exercise 9 

A projectile follows a 
parabolic trajectory.

u
x

y

Launch angle

Parabolic
trajectory

Initia
l sp

eed
 v 0

Frogs, with their long, strong legs, are excellent jumpers. And 
thanks to the good folks of Calaveras County, California, who have 
a jumping frog contest every year in honor of a Mark Twain story, 
we have very good data on how far a determined frog can jump.

High-speed cameras show that a good jumper goes into a 
crouch, then rapidly extends his legs by typically 15 cm during 
a 65 ms push off, leaving the ground at a 30° angle. How far does 
this frog leap?

MODEL Model the push off as linear motion with uniform acceler-
ation. A bullfrog is fairly heavy and dense, so ignore air resistance 
and model the leap as projectile motion.

VISUALIZE This is a two-part problem: linear acceleration followed 
by projectile motion. A key observation is that the final velocity 
for pushing off the ground becomes the initial velocity of 
the projectile motion. FIGURE 4.15 shows a separate pictorial 
representation for each part. Notice that we’ve used different 
coordinate systems for the two parts; coordinate systems are our 
choice, and for each part of the motion we’ve chosen the coordinate 
system that makes the problem easiest to solve.

SOLVE While pushing off, the frog travels 15 cm = 0.15 m in 
65 ms = 0.065 s. We could find his speed at the end of pushing off 
if we knew the acceleration. Because the initial velocity is zero,  

EXAMPLE 4.5 ■ Jumping frog contest

PROBLEM-SOLVING STRATEGY 4.1

Projectile motion problems

MODEL Is it reasonable to ignore air resistance? If so, use the projectile motion 
model.

VISUALIZE Establish a coordinate system with the x-axis horizontal and the  
y-axis vertical. Define symbols and identify what the problem is trying to find.  
For a launch at angle u, the initial velocity components are vix = v0 cos u  
and viy = v0 sin u.

SOLVE The acceleration is known: ax = 0 and ay = -g. Thus the problem is one  
of two-dimensional kinematics. The kinematic equations are

Horizontal Vertical

xf = xi + vix ∆t yf = yi + viy ∆t - 1
2 g1∆t22

vfx = vix = constant vfy = viy - g ∆t

∆t is the same for the horizontal and vertical components of the motion. Find ∆t 
from one component, then use that value for the other component.

REVIEW Check that your result has correct units and significant figures, is 
reasonable, and answers the question.
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4.2 Projectile Motion 111

we can find the acceleration from the position-acceleration-time 
kinematic equation:

  x1 = x0 + v0x ∆t + 1
2 ax 1∆t22 = 1

2 ax 1∆t22

  ax =
2x1

1∆t22 =
210.15 m2
10.065 s22 = 71 m/s2

This is a substantial acceleration, but it doesn’t last long. At the end 
of the 65 ms push off, the frog’s velocity is

v1x = v0x + ax ∆t = 171 m/s2210.065 s) = 4.62 m/s

We’ll keep an extra significant figure here to avoid round-off error 
in the second half of the problem.

The end of the push off is the beginning of the projectile 
motion, so the second part of the problem is to find the distance 
of a projectile launched with velocity v 

u
0 = 14.62 m/s, 30°2. The 

initial x- and y-components of the launch velocity are

v0x = v0 cos u    v0y = v0 sin u

The kinematic equations of projectile motion, with ax = 0 and 
ay = -g, are

  x1 = x0 + v0x ∆t

  = 1v0 cos u2∆t

  y1 = y0 + v0y ∆t - 1
2 g1∆t22

    = 1v0 sin u2∆t - 1
2 g1∆t22

We can find the time of flight from the vertical equation by setting 
y1 = 0:

0 = 1v0 sin u2∆t - 1
2 g1∆t2 

2 = 1v0 sin u - 1
2 g ∆t2∆t

and thus

∆t = 0  or  ∆t =
2v0 sin u

g

Both are legitimate solutions. The first corresponds to the instant 
when y = 0 at the launch, the second to when y = 0 as the frog hits 
the ground. Clearly, we want the second solution. Substituting this 
expression for ∆t into the equation for x1 gives

x1 = 1v0 cos u2 
2v0 sin u

g
=

2v0 

2 sin u cos u

g

We can simplify this result with the trigonometric identity 
2 sin u cos u = sin12u2. Thus the distance traveled by the frog is

x1 =
v0 

2 sin12u2
g

Using v0 = 4.62 m/s and u = 30°, we find that the frog leaps a dis-
tance of 1.9 m.

REVIEW 1.9 m is about 6 feet, or about 10 times the frog’s body 
length. That’s pretty amazing, but true. Jumps of 2.2 m have been 
recorded in the lab. And the Calaveras County record holder, Rosie 
the Ribeter, covered 6.5 m—21 feet—in three jumps!

FIGURE 4.15 Pictorial representations of the jumping frog.

The distance a projectile travels is called its range. As Example 4.5 found, a 
projectile that lands at the same elevation from which it was launched has

 range =
v0 

2 sin12u2
g

 (4.15)

The maximum range occurs for u = 45°, where sin12u2 = 1. But there’s more that 
we can learn from this equation. Because sin1180° - x2 = sin x, it follows that 
sin12190° - u22 = sin12u2. Consequently, a projectile launched either at angle u or 
at angle 190° - u2 will travel the same distance over level ground. FIGURE 4.16 shows 
several trajectories of projectiles launched with the same initial speed.

   NOTE    Equation 4.15 is not a general result. It applies only in situations where the 
projectile lands at the same elevation from which it was fired.

x (m)

y (m)

2000

100

0
400 600 800 1000

200

300

400

500 75°

60°

45°
30°
15°

Maximum range
is achieved at 45°.

Launch angles of u and
90° - u give the same range.

v0 = 99 m/s

FIGURE 4.16 Trajectories of a projectile 
launched at different angles with a speed 
of 99 m/s.
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112 CHAPTER 4 Kinematics in Two Dimensions 

STOP TO THINK 4.3 A 50 g marble rolls off a table and hits 2 m from the base of the 
table. A 100 g marble rolls off the same table with the same speed. It lands at distance

a. Less than 1 m. b. 1 m. c. Between 1 m and 2 m.

4.3 Relative Motion
FIGURE 4.17 shows Amy and Bill watching Carlos on his bicycle. According to Amy, 
Carlos’s velocity is vx = 5 m/s. Bill sees the bicycle receding in his rearview mirror, in 
the negative x-direction, getting 10 m farther away from him every second. According 
to Bill, Carlos’s velocity is vx = -10 m/s. Which is Carlos’s true velocity?

Velocity is not a concept that can be true or false. Carlos’s velocity relative to Amy 
is 1vx2CA = 5 m/s, where the subscript notation means “C relative to A.” Similarly, 
Carlos’s velocity relative to Bill is 1vx2CB = -10 m/s. These are both valid descrip-
tions of Carlos’s motion.

It’s not hard to see how to combine the velocities for one-dimensional motion:

(vx)CB = (vx)CA + (vx)AB

The first subscript is the
same on both sides.

The inner subscripts “cancel.”

The last subscript is the
same on both sides.

  (4.16)

We’ll justify this relationship later in this section and then extend it to two-dimensional 
motion.

Equation 4.16 tells us that the velocity of C relative to B is the velocity of C relative 
to A plus the velocity of A relative to B. Note that

 1vx2AB = -1vx2BA (4.17)

because if B is moving to the right relative to A, then A is moving to the left relative 
to B. In Figure 4.17, Bill is moving to the right relative to Amy with 1vx2BA = 15 m/s, 
so 1vx2AB = -15 m/s. Knowing that Carlos’s velocity relative to Amy is 5 m/s, we 
find that Carlos’s velocity relative to Bill is, as expected, 1vx2CB = 1vx2CA + 1vx2AB =  
5 m/s + 1-152 m/s = -10 m/s.

5 m/s
Carlos

Amy

15 m/s

Bill

FIGURE 4.17 Velocities in Amy’s reference 
frame.

d. 2 m. e. Between 2 m and 4 m. f. 4 m.

The police are chasing a bank robber. While driving at 50 m/s, they 
fire a bullet to shoot out a tire of his car. The police gun shoots 
bullets at 300 m/s. What is the bullet’s speed as measured by a TV 
camera crew parked beside the road?

MODEL Assume that all motion is in the positive x-direction. The 
bullet is the object that is observed from both the police car and  
the ground.

SOLVE The bullet B’s velocity relative to the gun G is 1vx2BG =  
300 m/s. The gun, inside the car, is traveling relative to the TV crew 
C at 1vx2GC = 50 m/s. We can combine these values to find that the 
bullet’s velocity relative to the TV crew on the ground is

1vx2BC = 1vx2BG + 1vx2GC = 300 m/s + 50 m/s = 350 m/s

REVIEW It should be no surprise in this simple situation that we 
simply add the velocities.

EXAMPLE 4.6 ■ A speeding bullet

Reference Frames
A coordinate system in which an experimenter (possibly with the assistance of helpers) 
makes position and time measurements of physical events is called a reference 
frame. In Figure 4.17, Amy and Bill each had their own reference frame (where they 
were at rest) in which they measured Carlos’s velocity.

M04_KNIG8221_05_GE_C04.indd   112 02/06/2022   16:30



4.3 Relative Motion 113

A

y

x

B

y

x

Reference frame A

Reference frame B

C

rAB

rCB

rCA

Object C can be
located relative
to A or to B.

u
u

u

FIGURE 4.18 Two reference frames.More generally, FIGURE 4.18 shows two reference frames, A and B, and an object 
C. It is assumed that the reference frames are moving with respect to each other. At 
this instant of time, the position vector of C in reference frame A is r u

CA, meaning “the 
position of C relative to the origin of frame A.” Similarly, r u

CB is the position vector of 
C in reference frame B. Using vector addition, you can see that

 r u
CB = r u

CA + r u
AB (4.18)

where ruAB locates the origin of A relative to the origin of B.
In general, object C is moving relative to both reference frames. To find its velocity 

in each reference frame, take the time derivative of Equation 4.18:

 
d r u

CB

dt
=

d r u
CA

dt
+

d r u
AB

dt
 (4.19)

By definition, d r u/dt is a velocity. The first derivative in Equation 4.19 is v 

u
CB, the ve-

locity of C relative to B. Similarly, the second is the velocity of C relative to A, v 

u
CA. 

The last derivative is slightly different because it doesn’t refer to object C. Instead, 
this is the velocity v 

u
AB of reference frame A relative to reference frame B. As we noted 

in one dimension, v 

u
AB = -v 

u
BA.

Writing Equation 4.19 in terms of velocities, we have

 v 

u
CB = v 

u
CA + v 

u
AB (4.20)

This relationship between velocities in different reference frames was recognized 
by Galileo in his pioneering studies of motion, hence it is known as the  Galilean 
transformation of velocity. If you know an object’s velocity in one reference 
frame, you can transform it into the velocity that would be measured in a different 
reference frame. Just as in one dimension, the velocity of C relative to B is the velocity 
of C relative to A plus the velocity of A relative to B, but you must add the velocities 
as vectors for two-dimensional motion.

As we’ve seen, the Galilean velocity transformation is pretty much common sense 
for one-dimensional motion. The real usefulness appears when an object travels in a 
medium moving with respect to the earth. For example, a boat moves relative to the 
water. What is the boat’s net motion if the water is a flowing river? Airplanes fly 
relative to the air, but the air at high altitudes often flows at high speed. Navigation of 
boats and planes requires knowing both the motion of the vessel in the medium and 
the motion of the medium relative to the earth.

Cleveland is 300 miles east of Chicago. A plane leaves Chicago 
flying due east at 500 mph. The pilot forgot to check the weather 
and doesn’t know that the wind is blowing to the south at 50 mph. 
What is the plane’s ground speed? Where is the plane 0.60 h later, 
when the pilot expects to land in Cleveland?

MODEL Establish a coordinate system with the x-axis pointing east 
and the y-axis north. The plane P flies in the air, so its velocity rel-
ative to the air A is v 

u
PA = 500 in mph. Meanwhile, the air is moving 

relative to the ground G at v 

u
AG = -50 jn mph.

SOLVE The velocity equation v 

u
PG = v 

u
PA + v 

u
AG is a vector-addition 

equation. FIGURE 4.19 shows graphically what happens. Although the 
nose of the plane points east, the wind carries the plane in a direction 
somewhat south of east. The plane’s velocity relative to the ground is

v 

u
PG = v 

u
PA + v 

u
AG = 1500in - 50jn2 mph

The plane’s ground speed is

v = 21vx2PG 

2 + 1vy2PG 

2 = 502 mph

After flying for 0.60 h at this velocity, the plane’s location (relative 
to Chicago) is

 x = 1vx2PG 
 

t = 1500 mph210.60 h2 = 300 mi

 y = 1vy2PG 
 

t = 1-50 mph210.60 h2 = -30 mi

The plane is 30  mi due south of Cleveland! Although the pilot 
thought he was flying to the east, his actual heading has been 
tan-1150 mph/500 mph2 = tan-110.102 = 5.71° south of east.

EXAMPLE 4.7 ■ Flying to Cleveland I

Chicago Cleveland

vAG of air

vPG of plane
relative to ground

vPA of plane relative to air
u

u

u

FIGURE 4.19 The wind causes a plane flying due east in the air to 
move to the southeast relative to the ground.
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114 CHAPTER 4 Kinematics in Two Dimensions 

4.4 Uniform Circular Motion
Projectile motion is one important example of motion in a plane. Another quite differ-
ent type of motion in a plane is circular motion. FIGURE 4.21 shows a particle moving 
around a circle of radius r. The particle might be a satellite in an orbit, a ball on the 
end of a string, or even just a dot painted on the side of a rotating wheel.

To begin the study of circular motion, consider a particle that moves at con-
stant speed around a circle of radius r. This is called uniform circular  motion. 
Regardless of what the particle represents, its velocity vector v 

u is always tangent 
to the circle. The particle’s speed v is constant, so vector v 

u is always the same 
length.

The time interval it takes the particle to go around the circle once, completing 
one revolution (abbreviated rev), is called the period of the motion. Period is rep-
resented by the symbol T. It’s easy to relate the particle’s period T to its speed v. 
For a particle moving with constant speed, speed is simply distance/time. In one 
period, the particle moves once around a circle of radius r and travels the circum-
ference 2pr. Thus

 v =
1 circumference

1 period
=

2pr
T

 (4.21)

A wiser pilot flying from Chicago to Cleveland on the same day 
plots a course that will take her directly to Cleveland. In which 
direction does she fly the plane? How long does it take to reach 
Cleveland?

MODEL Establish a coordinate system with the x-axis pointing east 
and the y-axis north. The air is moving relative to the ground at 
v 

u
AG = -50 jn mph.

SOLVE The objective of navigation is to move between two points 
on the earth’s surface. The wiser pilot, who knows that the wind will 
affect her plane, draws the vector picture of FIGURE 4.20. She sees 
that she’ll need 1vy2PG = 0 in order to fly due east to Cleveland.  
This will require turning the nose of the plane at an angle u north of 
east, making v 

u
PA = 1500 cos u  in +  500 sin u  jn2 mph.

The velocity equation is v 

u
PG = v 

u
PA+v 

u
AG. The desired head-

ing  is found from setting the y-component of this equation to  
zero:

1vy2PG = 1vy2PA + 1vy2AG = 1500 sin u - 502 mph = 0 mph

u = sin-11 50 mph

500 mph2 = 5.74°

The plane’s velocity relative to the ground is then v 

u
PG =  

500 cos 5.74° in mph = 497 in mph. This is slightly slower than the 
speed relative to the air. The time needed to fly to Cleveland at this 
speed is

t =
300 mi

497 mph
= 0.604 h

It takes 0.004 h = 14 s longer to reach Cleveland than it would on 
a day without wind.

REVIEW A boat crossing a river or an ocean current faces the same 
difficulties. These are exactly the kinds of calculations performed 
by pilots of boats and planes as part of navigation.

EXAMPLE 4.8 ■ Flying to Cleveland II

u
Chicago Cleveland

vAG of air

vPG of plane
relative to ground

vPA of plane relative to air
u

u

u

FIGURE 4.20 To travel due east in a south wind, a pilot has to 
point the plane somewhat to the northeast.

STOP TO THINK 4.4 A plane traveling horizontally to the right at 100 m/s flies past 
a helicopter that is going straight up at 20 m/s. From the helicopter’s perspective, the 
plane’s direction and speed are

c. Right and up, more than 100 m/s. d. Right and down, less than 100 m/s.
e. Right and down, 100 m/s. f. Right and down, more than 100 m/s.

a. Right and up, less than 100 m/s. b. Right and up, 100 m/s.

v
u

v
u

v
u

The velocity is tangent to the circle.
The velocity vectors are all the same length.

r

r

r

FIGURE 4.21 A particle in uniform circular 
motion.
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4.4 Uniform Circular Motion 115

Angular Position
Rather than using xy-coordinates, it will be more convenient to describe the position 
of a particle in circular motion by its distance r from the center of the circle and its 
angle u from the positive x-axis. This is shown in FIGURE 4.22. The angle u is the 
angular position of the particle.

We can distinguish a position above the x-axis from a position that is an equal 
angle below the x-axis by defining u to be positive when measured counterclockwise 
(ccw) from the positive x-axis. An angle measured clockwise (cw) from the positive 
x-axis has a negative value. “Clockwise” and “counterclockwise” in circular motion 
are analogous, respectively, to “left of the origin” and “right of the origin” in linear 
motion, which we associated with negative and positive values of x. A particle 30° 
below the positive x-axis is equally well described by either u = -30° or u = +330°. 
We could also describe this particle by u = 11

12 rev, where revolutions are another way 
to measure the angle.

Although degrees and revolutions are widely used measures of angle, mathemati-
cians and scientists usually find it more useful to measure the angle u in Figure 4.22 
by using the arc length s that the particle travels along the edge of a circle of radius 
r. We define the angular unit of radians such that

 u1radians2 K
s
r
 (4.22)

The radian, which is abbreviated rad, is the SI unit of angle. An angle of 1 rad has an 
arc length s exactly equal to the radius r.

The arc length completely around a circle is the circle’s circumference 2pr. Thus 
the angle of a full circle is

ufull circle =
2pr

r
= 2p rad

This relationship is the basis for the well-known conversion factors

1 rev = 360° = 2p rad

As a simple example of converting between radians and degrees, let’s convert an 
angle of 1 rad to degrees:

1 rad = 1 rad *
360°

2p rad
= 57.3°

A 4.0-cm-diameter crankshaft turns at 2400 rpm (revolutions per minute). What is the 
speed of a point on the surface of the crankshaft?

SOLVE We need to determine the time it takes the crankshaft to make 1 rev. First, we 
convert 2400 rpm to revolutions per second:

2400 rev
1 min

*
1 min
60 s

= 40 rev/s

If the crankshaft turns 40 times in 1 s, the time for 1 rev is

T =
1
40

 s = 0.025 s

Thus the speed of a point on the surface, where r = 2.0 cm = 0.020 m, is

v =
2pr

T
=

2p10.020 m2
0.025 s

= 5.0 m/s

EXAMPLE 4.9 ■ A rotating crankshaft

u

r
s

Particle
Arc length

Center of
circular motion

x

y

This is the particle’s
angular position.

FIGURE 4.22 A particle’s position is 
described by distance r and angle u.

Circular motion is one of the most 
common types of motion.
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116 CHAPTER 4 Kinematics in Two Dimensions 

Thus a rough approximation is 1 rad ≈ 60°. We will often specify angles in degrees, 
but keep in mind that the SI unit is the radian.

An important consequence of Equation 4.22 is that the arc length spanning  
angle u is

 s = r  u  1with u in rad2 (4.23)

This is a result that we will use often, but it is valid only if u is measured in radians 
and not in degrees. This very simple relationship between angle and arc length is one 
of the primary motivations for using radians.

   NOTE    Units of angle are often troublesome. Unlike the kilogram or the second, for 
which we have standards, the radian is a defined unit. It’s really just a name to remind 
us that we’re dealing with an angle. Consequently, the radian unit sometimes appears 
or disappears without warning. This seems rather mysterious until you get used to it. 
This textbook will call your attention to such behavior the first few times it occurs. 
With a little practice, you’ll soon learn when the rad unit is needed and when it’s not.

Angular Velocity
FIGURE 4.23 shows a particle moving in a circle from an initial angular position ui at 
time ti to a final angular position uf at a later time tf . The change ∆u = uf - ui is called 
the angular displacement. We can measure the particle’s circular motion in terms 
of the rate of change of u, just as we measured the particle’s linear motion in terms of 
the rate of change of its position s.

In analogy with linear motion, let’s define the average angular velocity to be

 average angular velocity K
∆u

∆t
 (4.24)

As the time interval ∆t becomes very small, ∆t S 0, we arrive at the definition of the 
instantaneous angular velocity:

 v K lim
∆tS0

 
∆u

∆t
=

du
dt
  1angular velocity2 (4.25)

The symbol v is a lowercase Greek omega, not an ordinary w. The SI unit of angular 
velocity is rad/s, but °/s, rev/s, and rev/min are also common units. Revolutions per 
minute is abbreviated rpm.

Angular velocity is the rate at which a particle’s angular position is changing as it 
moves around a circle. A particle that starts from u = 0 rad with an angular velocity 
of 0.5 rad/s will be at angle u = 0.5 rad after 1 s, at u = 1.0 rad after 2 s, at u = 1.5 
rad after 3 s, and so on. Its angular position is increasing at the rate of 0.5 radian per 
second. A particle moves with uniform circular motion if and only if its angular 
velocity V is constant and unchanging.

Angular velocity, like the velocity vs of one-dimensional motion, can be positive or 
negative. The signs shown in FIGURE 4.24 are based on the fact that u was defined to be 
positive for a counterclockwise rotation. Because the definition v = du/dt for circular 
motion parallels the definition vs = ds/dt for linear motion, the graphical relationships 
we found between vs and s in Chapter 2 apply equally well to v and u:

v

r

Position
at time ti

x

y Position at
time tf = ti + ∆t

∆uuf

ui

The particle has
an angular dis-
placement ∆u.

FIGURE 4.23 A particle moves with 
angular velocity v.

v is positive for a
counterclockwise
rotation.

v is negative for a
clockwise rotation.

FIGURE 4.24 Positive and negative 
angular velocities.

 v = slope of the u@versus@t graph at time t

  uf = ui + area under the v@versus@t curve between ti and tf (4.26)

 = ui + v  

∆t 

You will see many more instances where circular motion is analogous to linear motion  
with angular variables replacing linear variables. Thus much of what you learned 
about linear kinematics carries over to circular motion.
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4.4 Uniform Circular Motion 117

   NOTE    In physics, we nearly always want to give results as numerical values. 
 Example 4.9 had a p in the equation, but we used its numerical value to compute 
v = 5.0 m/s. However, angles in radians are an exception to this rule. It’s okay to 
leave a p in the value of u or v, and we have done so in Example 4.10.

Not surprisingly, the angular velocity v is closely related to the period and speed 
of the motion. As a particle goes around a circle one time, its angular displacement  
is ∆u = 2p rad during the interval ∆t = T. Thus, using the definition of angular 
velocity, we find

 0v 0 =
2p rad

T
  or  T =

2p rad

0v 0  (4.27)

The period alone gives only the absolute value of 0v 0 , which is the angular speed. 
You need to know the direction of motion to determine the sign of v.

FIGURE 4.25 shows the angular position of a painted dot on the 
edge of a rotating wheel. Describe the wheel’s motion and draw an 
v@versus@t graph.

SOLVE Although circular motion seems to “start over” every revo-
lution (every 2p rad), the angular position u continues to increase. 
u = 6p rad corresponds to three revolutions. This wheel makes  
3 ccw rev (because u is getting more positive) in 3 s, immediately 
reverses direction and makes 1 cw rev in 2 s, then stops at t = 5 s 

and holds the position u = 4p rad. The angular velocity is found by 
measuring the slope of the graph:

  t = 093 s    slope = ∆u/∆t = 6p rad/3 s = 2p rad/s

  t = 395 s  slope = ∆u/∆t = -2p rad/2 s = -p rad/s

  t 7 5 s  slope = ∆u/∆t = 0 rad/s

These results are shown as an v@versus@t graph in FIGURE 4.26. 
For the first 3 s, the motion is uniform circular motion with v =  
2p rad/s. The wheel then changes to a different uniform circular 
motion with v = -p rad/s for 2 s, then stops.

EXAMPLE 4.10 ■ A graphical representation of circular motion

1 3 6520 4

2p

0

4p

6p

t (s)

u (rad)

FIGURE 4.25 Angular position graph for the wheel of 
Example 4.10.

-p

0

p

2p
v (rad/s)

1 3 652 4
t (s)

The value of v is the 
slope of the angular 
position graph.

FIGURE 4.26 v@versus-t graph for the wheel of Example 4.10.

A small steel roulette ball rolls ccw around the inside of a 30-cm- 
diameter roulette wheel. The ball completes 2.0 rev in 1.20 s.

a. What is the ball’s angular velocity?

b. What is the ball’s position at t = 2.0 s? Assume ui = 0.

MODEL Model the ball as a particle in uniform circular motion.

SOLVE a. The period of the ball’s motion, the time for 1 rev, is 
T = 0.60 s. Angular velocity is positive for ccw motion, so

v =
2p rad

T
=

2p rad
0.60 s

= 10.47 rad/s

b. The ball starts at ui = 0 rad. After ∆t = 2.0 s, its position is

uf = 0 rad + 110.47 rad/s212.0 s2 = 20.94 rad

where we’ve kept an extra significant figure to avoid round-off 
error. Although this is a mathematically acceptable answer, an 
observer would say that the ball is always located somewhere 
between 0° and 360°. Thus it is common practice to subtract an 
integer number of 2p rad, representing the completed revolutions. 
Because 20.94/2p = 3.333, we can write

  uf = 20.94 rad = 3.333 * 2p rad

  = 3 * 2p rad + 0.333 * 2p rad

  = 3 * 2p rad + 2.09 rad

In other words, at t = 2.0 s the ball has completed 3 rev and is 
2.09 rad = 120° into its fourth revolution. An observer would say 
that the ball’s position is uf = 120°.

EXAMPLE 4.11 ■ At the roulette wheel
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118 CHAPTER 4 Kinematics in Two Dimensions 

As Figure 4.21 showed, the velocity vector v 

u is always tangent to the circle. In other 
words, the velocity vector has only a tangential component, which we will designate 
vt. The tangential velocity is positive for ccw motion, negative for cw motion.

Combining v = 2pr/T  for the speed with v = 2p/T  for the angular velocity—but 
keeping the sign of v to indicate the direction of motion—we see that the tangential 
velocity and the angular velocity are related by

 vt = vr  1with v in rad/s2 (4.28)

Because vt is the only nonzero component of v 

u, the particle’s speed is v = 0 vt 0 = 0v 0 r. 
We’ll sometimes write this as v = vr if there’s no ambiguity about the sign of v.

   NOTE    While it may be convenient in some problems to measure v in rev/s or rpm, 
you must convert to SI units of rad/s before using Equation 4.28.

As a simple example, a particle moving cw at 2.0 m/s in a circle of radius 40 cm 
has angular velocity

v =
vt

r
=

-2.0 m/s
0.40 m

= -5.0 rad/s

where vt and v are negative because the motion is clockwise. Notice the units. Velocity 
divided by distance has units of s-1. But because the division, in this case, gives us an 
angular quantity, we’ve inserted the dimensionless unit rad to give v the appropriate 
units of rad/s.

STOP TO THINK 4.5 A particle moves cw around a circle at constant speed for 2.0 s.  
It then reverses direction and moves ccw at half the original speed until it has traveled 
through the same angle. Which is the particle’s angle-versus-time graph?

u u u u

t t t t

(a) (b) (c) (d)

4.5 Centripetal Acceleration
FIGURE 4.27 shows a motion diagram of Maria riding a Ferris wheel at the amusement 
park. Maria has constant speed but not constant velocity because her velocity vector 
is changing direction. She may not be speeding up, but Maria is accelerating because 
her velocity is changing. The inset to Figure 4.27 applies the rules of Tactics Box 4.1 
to find that—at every point—Maria’s acceleration vector points toward the center 
of the circle. This is an acceleration due to changing direction rather than changing 
speed. Because the instantaneous velocity is tangent to the circle, vu and au are perpen-
dicular to each other at all points on the circle.

The acceleration of uniform circular motion is called centripetal acceleration, 
a term from a Greek root meaning “center seeking.” Centripetal acceleration is not 
a new type of acceleration; all we are doing is naming an acceleration that corre-
sponds to a particular type of motion. The magnitude of the centripetal acceleration 
is constant because each successive ∆vu in the motion diagram has the same length.

The motion diagram tells us the direction of au, but it doesn’t give us a value for 
the magnitude a. To complete our description of uniform circular motion, we need to 
find a quantitative relationship between a and the particle’s speed v. FIGURE 4.28 shows 

a
ua

u

a
u

a
u

a
u

va
u

va
u

vb
u

vb
u

All acceleration
vectors point to the
center of the circle.

Maria’s acceleration is an acceleration of
changing direction, not of changing speed.

Velocity 
vectors

u∆v

Whichever dot is 
selected, this method 
will show that ∆v 
points to the center 
of the circle.

u

FIGURE 4.27 Using Tactics Box 4.1 to find 
Maria’s acceleration on the Ferris wheel.
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va
u

vb
u

va
uvb

u

These are the velocities 
at times t and t + dt. 

Same
angle

ds

du

du
r

u
dv is the arc of a circle 
with arc length dv = vdu.

dv
u

FIGURE 4.28 Finding the acceleration of 
circular motion.

the velocity v 

u
a at one instant of motion and the velocity v 

u
b an infinitesimal amount of 

time dt later. During this small interval of time, the particle has moved through the 
infinitesimal angle du and traveled distance ds = r du.

By definition, the acceleration is au = d v 

u/dt. We can see from the inset to Figure 4.28 
that d v 

u points toward the center of the circle—that is, au is a centripetal acceleration. 
To find the magnitude of au, we can see from the isosceles triangle of velocity vectors 
that, if du is in radians,

 dv = 0 d v 

u 0 = vt du (4.29)

For uniform circular motion at constant speed, vt = ds/dt = r du/dt and thus the time 
to rotate through angle du is

 dt =
r du
vt

 (4.30)

Combining Equations 4.29 and 4.30, we see that the acceleration has magnitude

a = 0 au 0 =
0 d v 

u 0
dt

=
v du

r du/vt
=

vt
2

r

In vector notation, we can write

 au = 1vt
2

r
 , toward center of circle2  (centripetal acceleration) (4.31)

Using Equation 4.28, vt = vr, we can also express the magnitude of the centripetal 
acceleration in terms of the angular velocity v as

 a = v2r (4.32)

   NOTE    Centripetal acceleration is not a constant acceleration. The magnitude of the 
centripetal acceleration is constant during uniform circular motion, but the direction 
of au is continuously changing. Thus the constant-acceleration kinematics 
 equations of Chapter 2 do not apply to circular motion.

The Uniform Circular Motion Model
The uniform circular motion model is especially important because it applies not 
only to particles moving in circles but also to the uniform rotation of solid objects.

MODEL 4.2

Uniform circular motion
For motion with constant angular velocity v.

 ■ Applies to a particle moving along a circular 
trajectory at constant speed or to points on  
a solid object rotating at a steady rate.

 ■ Mathematically:
• The tangential velocity is vt = vr.

• The centripetal acceleration is vt
2/r or v2r.

• v and vt are positive for ccw rotation, 
negative for cw rotation.

 ■ Limitations: Model fails if rotation isn’t steady.
Exercise 20 

The velocity is tangent to the circle.
The acceleration points to the center.

a
u

a
u

a
u

r

v
u

v
u

v
u

v
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4.6 Nonuniform Circular Motion
A roller coaster car doing a loop-the-loop slows down as it goes up one side, speeds up 
as it comes back down the other. The ball in a roulette wheel gradually slows until it 
stops. Circular motion with a changing speed is called nonuniform circular motion. 
As you’ll see, nonuniform circular motion is analogous to accelerated linear motion.

FIGURE 4.29 shows a point speeding up as it moves around a circle. This might be a 
car speeding up around a curve or simply a point on a solid object that is rotating faster 
and faster. The key feature of the motion is a changing angular velocity. For linear 
motion, we defined acceleration as ax = dvx /dt. By analogy, let’s define the angular 
acceleration a (Greek alpha) of a rotating object, or a point on the object, to be

 a K
dv
dt
  (angular acceleration) (4.33)

Angular acceleration is the rate at which the angular velocity v changes, just as linear 
acceleration is the rate at which the linear velocity vx changes. The units of angular 
acceleration are rad/s2.

For linear acceleration, you learned that ax and vx have the same sign when an 
object is speeding up, opposite signs when it is slowing down. The same rule applies to 
circular and rotational motion: v and a have the same sign when the rotation is speed-
ing up, opposite signs if it is slowing down. These ideas are illustrated in FIGURE 4.30.

   NOTE    Be careful with the sign of a. You learned in Chapter 2 that positive and 
negative values of the acceleration can’t be interpreted as simply “speeding up” and 
“slowing down.” Similarly, positive and negative values of angular acceleration can’t 
be interpreted as a rotation that is speeding up or slowing down.

A typical carnival Ferris wheel has a radius of 9.0 m and rotates 
2.0 times per minute. What speed and acceleration do the riders 
experience?

MODEL Model the rider as a particle in uniform circular motion.

SOLVE The period is T = 1
2 min = 30 s. From Equation 4.21, a 

rider’s speed is

vt =
2pr

T
=

2p19.0 m2
30 s

= 1.88 m/s

Consequently, the centripetal acceleration has magnitude

a =
vt

2

r
=

11.88 m/s22

9.0 m
= 0.39 m/s2

REVIEW This was not intended to be a profound problem, merely 
to illustrate how centripetal acceleration is computed. The acceler-
ation is enough to be noticed and make the ride interesting, but not 
enough to be scary.

EXAMPLE 4.12 ■ The acceleration of a Ferris wheel

STOP TO THINK 4.6 Rank in order, from largest to smallest, the centripetal acceler-
ations aA to aE of particles A to E.

r

A

v

2r

D

v

2r

E

r

C

vr

B

2v

2v

v

v

The angular velocity is changing.

FIGURE 4.29 Circular motion with a 
changing angular velocity.
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4.6 Nonuniform Circular Motion 121

Angular position, angular velocity, and angular acceleration are defined exactly 
the same as linear position, velocity, and acceleration—simply starting with an an-
gular rather than a linear measurement of position. Consequently, the graphical 
interpretation and the kinematic equations of circular/rotational motion with 
constant angular acceleration are exactly the same as for linear motion with con-
stant acceleration. This is shown in the constant angular acceleration model 
below. All the problem-solving techniques you learned in Chapter 2 for linear motion 
carry over to circular and rotational motion.

v 7 0

a 7 0

Speeding up ccw

v 7 0

a 6 0

Slowing down ccw

v 6 0

a 7 0

Slowing down cw

v 6 0

a 6 0

Speeding up cw

Initial angular velocity

FIGURE 4.30 The signs of angular velocity and acceleration. The rotation is speeding up if  
v and a have the same sign, slowing down if they have opposite signs.

FIGURE 4.31a is a graph of angular velocity versus time for a rotating  
wheel. Describe the motion and draw a graph of angular acceleration  
versus time.

SOLVE This is a wheel that starts from rest, gradually speeds up 
counterclockwise until reaching top speed at t1, maintains a constant 
angular velocity until t2, then gradually slows down until stopping 
at t3. The motion is always ccw because v is always positive. The 
angular acceleration graph of FIGURE 4.31b is based on the fact that 
a is the slope of the v@versus@t graph.

Conversely, the initial linear increase of v can be seen as the 
increasing area under the a@versus@t graph as t increases from 0 to 
t1 . The angular velocity doesn’t change from t1  to t2  when the area 
under the a@versus@t is zero.

EXAMPLE 4.13 ■ A rotating wheel

t
0 t1 t2 t3

Constant positive
slope, so a is positive.

Zero slope,
so a is zero.

Constant negative
slope, so a is negative.

t
0 t1

t2 t3

(a)

(b) a

v

▶ FIGURE 4.31 v-versus-t graph and the corresponding  
a-versus-t graph for a rotating wheel.

MODEL 4.3

Constant angular acceleration
For motion with constant angular acceleration a.

 ■ Applies to particles with  
circular trajectories and  
to rotating solid objects.

 ■ Mathematically: The graphs and equations for this  
circular/rotational motion are analogous to linear  
motion with constant acceleration.

• Analogs: s S u vs S v as S a 

Rotational kinematics Linear kinematics 

vf = vi + a ∆t vfs = vis + as ∆t

uf = ui + vi ∆t + 1
2

 
a1∆t22 sf = si + vis ∆t + 1

2 as1∆t22

vf
2 = vi

2 + 2a ∆u vfs
2 = vis

2 + 2as ∆s

a

u

v

t
v is the
slope of u 

a is the
slope of v

v

t

t
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122 CHAPTER 4 Kinematics in Two Dimensions 

Tangential Acceleration
FIGURE 4.32 shows a particle in nonuniform circular motion. Any circular motion, 
whether uniform or nonuniform, has a centripetal acceleration because the particle is 
changing direction; this was the acceleration component au# of Figure 4.6. As a vector 
component, the centripetal acceleration, which points radially toward the center of the 
circle, is the radial acceleration ar. The expression ar = vt 

2/r = v2r is still valid in 
nonuniform circular motion.

For a particle to speed up or slow down as it moves around a circle, it needs—
in addition to the centripetal acceleration—an acceleration parallel to the trajectory 
or, equivalently, parallel to vu. This is the acceleration component au ‘ associated with 
changing speed. We’ll call this the tangential acceleration at because, like the 
velocity vt 

, it is always tangent to the circle. Because of the tangential acceleration, 
the acceleration vector au of a particle in nonuniform circular motion does not 
point toward the center of the circle. It points “ahead” of center for a particle that 
is speeding up, as in Figure 4.32, but it would point “behind” center for a particle 
slowing down. You can see from Figure 4.32 that the magnitude of the acceleration is

 a = 2ar 

2 + at 

2 (4.34)

If at is constant, then the arc length s traveled by the particle around the circle and the 
tangential velocity vt are found from constant-acceleration kinematics:

  sf = si + vit ∆t + 1
2 at 1∆t22 

(4.35)
 vft = vit + at ∆t

Because tangential acceleration is the rate at which the tangential velocity changes, 
at = dvt /dt, and we already know that the tangential velocity is related to the angular 
velocity by vt = vr, it follows that

 at =
dvt

dt
=

d1vr2
dt

=
dv
dt

 r = ar (4.36)

Thus vt = vr and at = ar are analogous equations for the tangential velocity and 
acceleration. In Example 4.14, where we found the fan to have angular acceleration 
a = -0.25 rad/s2, a blade tip 65 cm from the center would have tangential acceleration

at = ar = 1-0.25 rad/s2210.65 m2 = -0.16 m/s2

a
u

at

ar

The radial or centripetal 
acceleration causes the 
particle to change direction. 

The velocity is always tangent to the circle,
so the radial component vr is always zero.

The tangential acceleration 
causes the particle to 
change speed.

v
u

v

FIGURE 4.32 Acceleration in nonuniform 
circular motion.

A ceiling fan spinning at 60 rpm coasts to a stop 25 s after being 
turned off. How many revolutions does it make while stopping?

MODEL Model the fan as a rotating object with constant angular 
acceleration.

SOLVE We don’t know which direction the fan is rotating, but the 
fact that the rotation is slowing tells us that v and a have opposite 
signs. We’ll assume that v is positive. We need to convert the initial 
angular velocity to SI units:

vi = 60 
rev

 min 
*

1 min
60 s

*
2p rad
1 rev

= 6.28 rad/s

We can use the first rotational kinematics equation in Model 4.3 to 
find the angular acceleration:

a =
vf - vi

∆t
=

0 rad/s - 6.28 rad/s
25 s

= -0.25 rad/s2

Then, from the second rotational kinematic equation, the angular 
displacement during these 25 s is

  ∆u = vi ∆t + 1
2 a1∆t22

  = 16.28 rad/s2125 s2 + 1
2 1-0.25 rad/s22125 s22

  = 78.9 rad *
1 rev

2p rad
= 13 rev

The kinematic equation returns an angle in rad, but the question 
asks for revolutions, so the last step was a unit conversion.

REVIEW Turning through 13 rev in 25 s while stopping seems rea-
sonable. Notice that the problem is solved just like the linear kine-
matics problems you learned to solve in Chapter 2.

EXAMPLE 4.14 ■ A slowing fan
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4.6 Nonuniform Circular Motion 123

You’ve been assigned the task of measuring the start-up character-
istics of a large industrial motor. After several seconds, when the 
motor has reached full speed, you know that the angular acceleration 
will be zero, but you hypothesize that the angular acceleration 
may be constant during the first couple of seconds as the motor 
speed increases. To find out, you attach a shaft encoder to the  
3.0-cm-diameter axle. A shaft encoder is a device that converts the 
angular position of a shaft or axle to a signal that can be read by a 
computer. After setting the computer program to read four values a 
second, you start the motor and acquire the following data:

Time (s) Angle (°) Time (s) Angle (°)

0.00 0 1.00 267

0.25 16 1.25 428

0.50 69 1.50 620

0.75 161

a. Do the data support your hypothesis of a constant angular 
acceleration? If so, what is the angular acceleration? If not, is the 
angular acceleration increasing or decreasing with time?

b. A 76-cm-diameter blade is attached to the motor shaft. At what 
time does the acceleration of the tip of the blade reach 10 m/s2?

MODEL The axle is rotating with nonuniform circular motion. 
Model the tip of the blade as a particle.

VISUALIZE FIGURE 4.33 shows that the blade tip has both a 
tangential and a radial acceleration.

SOLVE a. If the motor starts up with constant angular acceleration, 
with ui = 0 and vi = 0 rad/s, the angle-time equation of rotational 
kinematics is u = 1

2  at2. This can be written as a linear equation 
y = mx + b if we let u = y and t2 = x. That is, constant angular ac-
celeration predicts that a graph of u versus t2 should be a straight 
line with slope m = 1

2  a and y-intercept b = 0. We can test this.
FIGURE 4.34 is the graph of u versus t2, and it confirms 

our hypothesis that the motor starts up with constant angular 
acceleration. The best-fit line, found using a spreadsheet, gives a 

slope of 274.6°/s2. The units come not from the spreadsheet but by 
looking at the units of rise 1°2 over run (s2 because we’re graphing 
t2 on the x-axis). Thus the angular acceleration is

a = 2m = 549.2°/s2 *
p rad
180°

= 9.6 rad/s2

where we used 180° = p rad to convert to SI units of rad/s2.

b. The magnitude of the linear acceleration is

a = 2ar 

2 + at 

2

The tangential acceleration of the blade tip is

at = ar = 19.6 rad/s2210.38 m2 = 3.65 m/s2

We were careful to use the blade’s radius, not its diameter, and we 
kept an extra significant figure to avoid round-off error. The radial 
(centripetal) acceleration increases as the rotation speed increases, 
and the total acceleration reaches 10 m/s2 when

ar = 2a2 - at 

2 = 2110 m/s222 - 13.65 m/s222 = 9.31 m/s2

Radial acceleration is ar = v2r, so the corresponding angular ve-
locity is

v = Aar

r
= B 9.31 m/s2

0.38 m
= 4.95 rad/s

For constant angular acceleration, v = at, so this angular velocity 
is achieved at

t =
v

a
=

4.95 rad/s

9.6 rad/s2 = 0.52 s

Thus it takes 0.52 s for the acceleration of the blade tip to reach 10 m/s2.

REVIEW The acceleration at the tip of a long blade is likely to be 
large. It seems plausible that the acceleration would reach 10 m/s2 
in ≈0.5 s.

EXAMPLE 4.15 ■ Analyzing rotational data

FIGURE 4.33 Pictorial representation of the axle and blade.

t 2 (s2)

u (°)

1.00.50.0
0

1.5 2.0 2.5

200

100

400

300

700

600

500

y = 274.6x + 0.1

Best-fit line

FIGURE 4.34 Graph of u versus t2 for the motor shaft.

STOP TO THINK 4.7 The fan blade is slowing down. What 
are the signs of v and a?

a. v is positive and a is positive.
b. v is positive and a is negative.
c. v is negative and a is positive.
d. v is negative and a is negative.
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124 CHAPTER 4 Kinematics in Two Dimensions 

Amanda is riding on a 20.0-m-diameter Ferris wheel. The bottom 
of the wheel is at ground level. As Amanda goes over the top, she 
throws a 120 g ball forward, parallel to the ground, at a speed of 
7.00 m/s. What angular speed, in rpm, must the Ferris wheel have 
for the ball to hit a target on the ground 20.0 m from the bottom of 
the wheel?

MODEL Model the ball as a particle. It first undergoes uniform 
circular motion with constant angular velocity. We will ignore air 
resistance and model the subsequent motion as projectile motion.

VISUALIZE FIGURE 4.35 is a pictorial representation. We’ve estab-
lished a coordinate system with the origin at the base of the Ferris 
wheel. We don’t know which direction the Ferris wheel rotates, so 
we’ve assumed a clockwise rotation. This is a two-part problem 
in which the tangential velocity of the rotating ball combines with 
Amanda’s throwing speed to give the initial velocity of the projec-
tile motion. Each point in the projectile motion requires two com-
ponents of position, two components of velocity, and the time.

SOLVE Amanda and the ball are initially moving in uniform circu-
lar motion with speed v = ∙v ∙R. We need the absolute value signs 
because v is negative for the clockwise rotation we used in the pic-
torial representation. Velocity vectors are tangent to the circle, so 
Amanda’s velocity at the top point, the instant she throws the ball, 
is v 

u
AG = ∙v ∙R in. The notation v 

u
AG indicates that this is Amanda’s 

velocity relative to the ground. Amanda’s throwing speed allows us 
to infer that the ball’s velocity relative to Amanda is v 

u
BA = vthrowin. 

We can add these velocities, using the Galilean transformation of 
velocity, to find that the ball’s velocity relative to the ground, just 
as Amanda releases it, is

v 

u
BG = v 

u
BA + v 

u
AG = (vthrow + ∙v ∙R) in

Thus the projectile is launched from the top of the Ferris wheel with 
v0x = vthrow + ∙v ∙R and v0y = 0.

The vertical motion, with zero initial velocity, is simply the mo-
tion of an object dropped from height y0 = 2R = 20.0 m. We can 
find the time it takes to fall to the ground from

y1 = 0 m = y0 + v0y ∆t - 1
2 g(∆t)2 = 2R - 1

2 gt1
2

Thus the ball hits the ground at time

t1 = A4R
g

= A 40.0 m

9.80 m/s2 = 2.02 s

During this time, the ball travels horizontally with constant velocity 
v0x to

x1 = x0 + v0x ∆t = (vthrow + ∙v ∙R)t1

Amanda is trying to hit a target at x1 = 20.0 m, and she will suc-
ceed if the Ferris wheel’s angular speed is

∙v ∙ =
x1/t1 - vthrow

R
=

(20.0 m)/(2.02 s) - 7.00 m/s

10.0 m
= 0.290 rad/s

The SI units of angular speed are rad/s, but the question asks for an 
answer in rpm. Thus we need to convert the units:

∙v ∙ = 0.290 
rad
s

*
1 rev

2p rad
*

60 s
1 min

= 2.77 rpm

REVIEW 2.77 revolutions every minute, or a revolution every 22 s,  
seems appropriate for a fairly small carnival-size Ferris wheel. 
Remember that the purpose of a review is not to prove that the 
answer is correct but to rule out answers that are obviously incorrect. 
Notice that we did not need to know the ball’s mass. Real-world 
problems don’t come neatly packaged with exactly the information 
we need and nothing else, so part of becoming a better problem 
solver is learning to judge which information is relevant. Some 
homework problems will help you develop this skill by providing 
details that aren’t necessary.

 CHAPTER 4 CHALLENGE EXAMPLE   Hit the target!

FIGURE 4.35 Pictorial representation of the motion of the ball.
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Relative Motion
If object C moves relative to reference 
frame A with velocity v 

u
CA, then it moves  

relative to a different reference frame B 
with velocity

v 

u
CB = v 

u
CA + v 

u
AB

where v 

u
AB is the velocity of A relative 

to B. This is the Galilean transformation 
of velocity.

Nonuniform Circular Motion
Angular acceleration a = dv/dt.
The radial acceleration

ar =
vt

2

r
= v2r

changes the particle’s direction. The tangential component

at = ar

changes the particle’s speed.

Projectile motion is motion under the 
influence of only gravity.

MODEL Model as a particle launched 
with speed v0 at angle u.

VISUALIZE Use coordinates with the 
x-axis horizontal and the y-axis vertical.

SOLVE The horizontal motion is uniform with vx = v0 cos u. The 
vertical motion is free fall with ay = -g. The x and y kinematic 
equations have the same value for ∆t.

The instantaneous velocity

v 

u = d r u/dt

is a vector tangent to the trajectory.

The instantaneous acceleration is

au = d v 

u/dt

au ‘, the component of au parallel to v 

u, is responsible for change of 
speed. au#, the component of au perpendicular to v 

u, is responsible 
for change of direction.

Uniform Circular Motion
Angular velocity v = du/dt.
vt and v are constant:

vt = vr

The centripetal acceleration points toward the 
center of the circle with magnitude

a = 0 au 0 =
vt

2

r
= v2r

It changes the particle’s direction but not its speed.

Kinematics in two dimensions
If au is constant, then the x- and y-components of motion are 
independent of each other.

 xf = xi + vix ∆t + 1
2 ax  1∆t22

 yf = yi + viy ∆t + 1
2 ay  1∆t22

 vfx = vix + ax ∆t

 vfy = viy + ay ∆t

Circular motion kinematics

Period T =
2pr

v
=

2p
v

Angular position u =
s
r

Constant angular acceleration

vf = vi + a ∆t

uf = ui + vi ∆t + 1
2 a1∆t22

vf 

2 = vi 

2 + 2a ∆u

Circular motion graphs and  
kinematics are analogous to linear 
motion with constant acceleration.

Angle, angular velocity, and angular 
acceleration are related graphically.

• The angular velocity is the slope of 
the angular position graph.

• The angular acceleration is the slope 
of the angular velocity graph.

General Principles

Important Concepts

Applications

The goal of Chapter 4 has been to learn how to solve problems 
about motion in a plane.

Summary

v
u

x

y

a ‘

a#

a
u

u

u

A

y

x

B

y

x

Reference
frame A

Reference frame B

C

Object C moves relative
to both A and B.

a
u

v
u

v
a
u

v
u

v

ar

at

u
x

y

v0
u

The trajectory
is a parabola.

v
u

u

v

sr

a

u

v

t

t

t
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126 CHAPTER 4 Kinematics in Two Dimensions 

projectile
launch angle, u
projectile motion model
reference frame
Galilean transformation  
 of velocity

uniform circular motion
period, T
angular position, u
arc length, s
radians
angular displacement, ∆u

angular velocity, v
centripetal acceleration
uniform circular motion  
 model
nonuniform circular  
 motion

angular acceleration, a
constant angular acceleration  
 model
radial acceleration, ar

tangential acceleration, at

Terms and Notation

CONCEPTUAL QUESTIONS

Which ball was thrown at a faster speed? Or were they thrown 
with the same speed? Explain.

1. a. At this instant, is the particle in FIGURE Q4.1 speeding up, 
slowing down, or traveling at constant speed?

b. Is this particle curving to the right, curving to the left,  
or traveling straight?

a
u

v
u

FIGURE Q4.1

a
u

v
u

FIGURE Q4.2

2. a. At this instant, is the particle in FIGURE Q4.2 speeding up, 
slowing down, or traveling at constant speed?

b. Is this particle curving upward, curving downward, or 
traveling straight?

3. Three cricket balls are thrown from a tall tower—the first one 
is released from rest; the second one is thrown with a horizon-
tal velocity of 7 m/s eastward; and the last one is thrown with a 
 horizontal velocity of 10 m/s westward. Which of the balls will 
be the first to touch the ground?

4. A projectile is launched at an angle of 45°.
a. Is there any point on the trajectory where v 

u and au are parallel 
to each other? If so, where?

b. Is there any point where v 

u and au are perpendicular to one 
other? If so, where?

5. For a projectile, which of the following quantities are constant 
during the flight: x, y, r, vx  , vy  , v, ax  , ay  ? Which of these quantities 
are zero throughout the flight?

6. A cart that is rolling at constant velocity on a level table fires a 
ball straight up.
a. When the ball comes back down, will it land in front of the 

launching tube, behind the launching tube, or directly in the 
tube? Explain.

b. Will your answer change if the cart is accelerating in the 
forward direction? If so, how?

7. A rock is thrown from a bridge at an angle 45° below the hori-
zontal. Is the magnitude of acceleration, immediately after the 
rock is released, greater than, less than, or equal to g? Explain.

8. Anita is running to the right at 5 m/s in FIGURE Q4.8. Balls 1 
and 2 are thrown toward her by friends standing on the ground. 
According to Anita, both balls are approaching her at 10 m/s. 

5 m/s

1 2

FIGURE Q4.8

Zack

13
2

FIGURE Q4.10

Zack

Yvette

13

2

FIGURE Q4.11

9. An electromagnet on the ceiling of an airplane holds a steel ball. 
When a button is pushed, the magnet releases the ball. First, the 
button is pushed while the plane is parked on the ground. The 
point where the ball hits the floor is marked with an X. Next, the 
experiment is repeated while the plane is flying horizontally at 
a steady speed of 620 mph. Does the ball land in front of the X 
(toward the nose of the plane), on the X, or behind the X (toward 
the tail of the plane)? Explain.

10. Zack is driving past his house in FIGURE Q4.10. He wants to toss 
his physics book out the window and have it land in his driveway. 
If he lets go of the book exactly as he passes the end of the drive-
way, should he direct his throw outward and toward the front 
of the car (throw 1), straight outward (throw 2), or outward and 
toward the back of the car (throw 3)? Explain.

11. In FIGURE Q4.11, Yvette and Zack are driving down the freeway  
side by side with their windows down. Zack wants to toss 
his physics book out the window and have it land in Yvette’s 
front seat. Ignoring air resistance, should he direct his throw 
outward and toward the front of the car (throw 1), straight 
outward (throw 2), or outward and toward the back of the car 
(throw 3)? Explain.
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14. FIGURE Q4.14 shows four rotating wheels. For each, determine 
the signs 1+  or -2 of v and a.

12. You tie a cricket ball with a string and hang it from a tall pole. 
The ball is then struck with a cricket bat. Ignoring the mass of 
the string, what should be the direction of the acceleration if it 
attains a constant speed along a circular path centering the pole? 
Which force is responsible for this acceleration?

13. FIGURE Q4.13 shows three points on a 
steadily rotating wheel.
a. Rank in order, from largest to smallest,  

the angular velocities v1, v2, and 
v3 of these points. Explain.

b. Rank in order, from largest to 
smallest, the speeds v1, v2, and v3 of 
these points. Explain.

1 2

3

FIGURE Q4.13

Speeding
up

Slowing
down

Slowing
down

Speeding
up

(a) (b) (c) (d)

FIGURE Q4.14

FIGURE Q4.15

FIGURE EX4.1

v
u Side view of motion in

a vertical plane

FIGURE EX4.2 v
u

Top view of motion in
a horizontal plane

Circular arc

15. FIGURE Q4.15 shows a pendulum at one end 
point of its arc.
a. At this point, is v positive, negative, or 

zero? Explain.
b. At this point, is a positive, negative, or 

zero? Explain.

EXERCISES AND PROBLEMS

Exercises

Section 4.1 Motion in Two Dimensions

Problems 1 and 2 show a partial motion diagram. For each:
a. Complete the motion diagram by adding acceleration vectors.
b. Write a physics problem for which this is the correct motion 

diagram. Be imaginative! Don’t forget to include enough infor-
mation to make the problem complete and to state clearly what 
is to be found.

1. |

5. |  a. At this moment, is the particle in 
FIGURE EX4.5 speeding up, slowing 
down, or moving at constant speed?

b. Is this particle curving upward, curv-
ing downward, or moving in a straight 
line?

6. || A rocket-powered hockey puck moves on a horizontal friction-
less table. FIGURE EX4.6 shows graphs of vx and vy, the x- and 
y-components of the puck’s velocity. The puck starts at the origin.
a. In which direction is the puck moving at t = 2 s? Give your 

answer as an angle from the x-axis.
b. How far from the origin is the puck at t = 5 s?

2. |

Answer Problems 3 and 4 by choosing one 
of the eight labeled acceleration vectors or 
selecting option I: au = 0

u
.

A.

E.

B.

C.G.

D.

H.

F.

I. a = 0
u u

3. || At this instant, the particle has 
steady speed and is curving to the 
right. What is the direction of its 
acceleration?

4. || At this instant, the particle is speed-
ing up and curving upward. What is 
the direction of its acceleration?

FIGURE EX4.3

v
u

FIGURE EX4.4

v
u

FIGURE EX4.5

a
u

v
u

t (s)

vx (cm/s)

10

10

0
2 3 4 5

20

30

40

t (s)

vy (cm/s)

10

10

0
2 3 4 5

20

30

40

FIGURE EX4.6

7. || A rocket-powered hockey puck moves on a horizontal 
frictionless table. FIGURE EX4.7 shows graphs of vx and vy, the 
x- and y-components of the puck’s velocity. The puck starts at 
the origin. What is the magnitude of the puck’s acceleration  
at t = 5 s?

t (s)

vx (m/s)

10

-10

5
0

10

t (s)

vy (m/s)

10

-10

5
0

10

FIGURE EX4.7
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19. | Mary needs to row her boat across a river 100 m wide that 
is flowing to the east at a speed of 2 m/s. Mary can row with a 
speed of 4 m/s.
a. If Mary points her boat due north, how far will she be from her 

intended landing spot when she reaches the opposite shore?
b. What is her speed with respect to the shore?

20. || When the moving sidewalk at the airport is broken, as it often 
seems to be, it takes you 50 s to walk from your gate to baggage 
claim. When it is working and you stand on the moving sidewalk 
the entire way, without walking, it takes 75 s to travel the same 
distance. How long will it take you to travel from the gate to 
baggage claim if you walk while riding on the moving sidewalk?

21. | A kayaker needs to paddle north across an 80-m-wide harbor. 
The tide is going out, creating a current that flows to the east at 
3 m/s. The kayaker can paddle with a speed of 4 m/s.
a. In which direction should he paddle in order to travel straight 

across the harbor?
b. How long will it take him to cross the harbor?

22. || Harmeet, driving west at 54 km/h, and Kenza, driving south 
at 72 km/h, are approaching an intersection. What is Kenza’s 
speed relative to Harmeet’s reference frame?

Section 4.4 Uniform Circular Motion

23. || FIGURE EX4.23 shows the angular-velocity-versus-time graph 
for a particle moving in a circle. How many revolutions does the 
object make during the first 4 s?

8. || A particle moving in the xy-plane has velocity v 

u =   
12tin + (3 - t2)jn2 m/s,  where t is in s. What is the particle’s accel-
eration vector at t = 4 s?

9. || A particle’s trajectory is described by x = 11
6 t3 - t22m and 

y = 11
6 t2 - t2m, where t is in s.

a. What are the particle’s position and speed at t = 0 s and 
t = 6 s?

b. What is the particle’s direction of motion, measured as an 
angle from the x-axis, at t = 0 s and t = 6 s?

10. || You have a remote-controlled car that has been programmed 
to have velocity v 

u = 1-3tin + 2t2jn2 m/s, where t is in s. At t = 0 s, 
the car is at r u

0 = 13.0in + 2.0jn2 m. What are the car’s (a) position 
 vector and (b) acceleration vector at t = 2.0 s?

Section 4.2 Projectile Motion

11. || A ball thrown horizontally at 20 m/s travels a horizontal dis-
tance of 40 m before hitting the ground. From what height was 
the ball thrown?

12. || A supply plane needs to drop a package of food to scientists 
working on a glacier in Greenland. The plane flies 80 m above 
the glacier at a speed of 100 m/s. How far short of the target 
should it drop the package?

13. | A physics student on Planet Exidor throws a ball, and it follows  
the parabolic trajectory shown in FIGURE EX4.13. The ball’s 
 position is shown at 1 s intervals until t = 3 s. At t = 1 s, the 
ball’s velocity is v 

u = 12.0 in + 2.0 jn2 m/s.
a. Determine the ball’s velocity at t = 0 s, 2 s, and 3 s.
b. What is the value of g on Planet Exidor?
c. What was the ball’s launch angle?

x

y

0 s

1 s 3 s

2 s

v = (2.0d + 2.0e ) m/s
u

nn

FIGURE EX4.13

14. || In the Olympic shotput event, an athlete throws the shot with 
an initial speed of 12.0 m/s at a 40.0° angle from the horizontal. 
The shot leaves her hand at a height of 1.80 m above the ground. 
How far does the shot travel?

15. | A rifle is aimed horizontally at a target 40 m away. The bullet 
hits 1 cm below the target.
a. What was the bullet’s flight time?
b. What was the bullet’s speed as it left the barrel?

16. || A friend of yours is a baseball player and wants to determine 
his pitching speed. You have him stand on a ledge and throw the 
ball horizontally from an elevation of 6 m above the ground. The 
ball lands 40 m away. What is his pitching speed?

17. || On the Apollo 14 mission to the moon, astronaut Alan Shepard  
hit a golf ball with a 6 iron. The free-fall acceleration on the 
moon is 1/6 of its value on earth. Suppose he hit the ball with a 
speed of 25 m/s at an angle 30° above the horizontal.
a. How much farther did the ball travel on the moon than it 

would have on earth?
b. For how much more time was the ball in flight?

Section 4.3 Relative Motion

18. || A boat takes 3.0 hours to travel 24 km down a river, then  
4.0 hours to return. How fast is the river flowing?

t (s)
10 2 3 4

v (rad/s)

10

20

0

FIGURE EX4.23
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FIGURE EX4.24
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24. | FIGURE EX4.24 shows the angular-position-versus-time graph 
for a particle moving in a circle. What is the particle’s angular 
velocity at (a) t = 1 s, (b) t = 4 s, and (c) t = 7 s?

25. || FIGURE EX4.25 shows the angular-velocity-versus-time graph 
for a particle moving in a circle, starting from u0 = 0 rad at 
t = 0 s. Draw the angular-position-versus-time graph. Include an 
appropriate scale on both axes.

26. | An old-fashioned single-play vinyl record rotates on a 
 turntable at 72 rpm. What is
a. the angular velocity in rad/s?
b. the period of the motion?

27. || The earth’s radius is about 4000 miles. Kampala, the capital 
of Uganda, and Singapore are both nearly on the equator. The 
distance between them is 5000 miles. The flight from Kampala 
to Singapore takes 9.0 hours. What is the plane’s angular velocity 
with respect to the earth’s surface? Give your answer in °/h.

M04_KNIG8221_05_GE_C04.indd   128 02/06/2022   16:31



Exercises and Problems 129

39. || A wheel initially rotating 
at 60 rpm experiences the an-
gular acceleration shown in 
FIGURE EX4.39. What is the 
wheel’s angular velocity, in 
rpm, at t = 3.0 s?

28. || As the earth rotates, what is the speed of (a) a physics  student 
in Kyoto, Japan, at latitude 35°, and (b) a physics student in 
Copenhagen, Denmark, at latitude 56°? Ignore the revolution of 
the earth around the sun. The radius of the earth is 6400 km.

29. || Mount Chimborazo is located on the equator and is the highest 
point above the center of the earth. The summit of Chimborazo 
is 6263 m above sea level. How much faster does a climber on 
top of the mountain move than a surfer at a nearby beach? The 
earth’s radius is 6400 km.

30. | How fast must a plane fly along the earth’s equator so that 
the sun stands still relative to the passengers? In which direction 
must the plane fly, east to west or west to east? Give your answer 
in both km/h and mph. The earth’s radius is 6400 km.

Section 4.5 Centripetal Acceleration

31. | Peregrine falcons are known for their maneuvering ability. In 
a tight circular turn, a falcon can attain a centripetal acceleration 
1.5 times the free-fall acceleration. What is the radius of the turn 
if the falcon is flying at 25 m/s?

32. | To withstand “g-forces” of up to 10 g’s, caused by suddenly 
pulling out of a steep dive, fighter jet pilots train on a “human cen-
trifuge.” 10 g’s is an acceleration of 98 m/s2. If the length of the  
centrifuge arm is 12 m, at what speed is the rider moving when she  
experiences 10 g’s?

33. | The radius of the earth’s very nearly circular orbit around 
the sun is 1.5 * 1011 m. Find the magnitude of the earth’s  
(a) velocity, (b) angular velocity, and (c) centripetal acceleration 
as it travels around the sun. Assume a year of 365 days.

34. | A speck of dust on a spinning DVD has a centripetal acceler-
ation of 20 m/s2.
a. What is the acceleration of a different speck of dust that is 

twice as far from the center of the disk?
b. What would be the acceleration of the first speck of dust if 

the disk’s angular velocity was doubled?
35. || Your roommate is working on her bicycle and has the bike 

 upside down. She spins the 70-cm-diameter wheel, and you 
 notice that a pebble stuck in the tread goes by four times every 
second. What are the pebble’s speed and acceleration?

Section 4.6 Nonuniform Circular Motion

36. | FIGURE EX4.36 shows the angular velocity graph of the crank-
shaft in a car. What is the crankshaft’s angular acceleration at  
(a) t = 1 s, (b) t = 3 s, and (c) t = 5 s?
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FIGURE EX4.36
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FIGURE EX4.38

37. | A turntable initially rotating at 20 rad/s experiences the angu-
lar acceleration shown in FIGURE EX4.37. What is the turntable’s 
angular velocity at (a) t = 5 s and (b) t = 10 s?

38. || FIGURE EX4.38 shows the an - 
gular-velocity-versus-time graph  
for a particle moving in a circle.  
How many revolutions does the  
object make during the first 4 s?

40. || A 5.0-m-diameter merry-
go-round is initially turning with a 4.0 s period. It slows down 
and stops in 20 s.
a. Before slowing, what is the speed of a child on the rim?
b. How many revolutions does the merry-go-round make as it 

stops?
41. || A bicycle wheel is rotating at 50 rpm when the cyclist begins 

to pedal harder, giving the wheel a constant angular acceleration 
of 0.50 rad/s2.
a. What is the wheel’s angular velocity, in rpm, 10 s later?
b. How many revolutions does the wheel make during this time?

42. || An electric fan goes from rest to 1800 rpm in 4.0 s. What is its 
angular acceleration?

43. || Starting from rest, a DVD steadily accelerates to 500 rpm in  
1.0 s, rotates at this angular speed for 3.0 s, then steadily 
decelerates to a halt in 2.0 s. How many revolutions does it make?

Problems
44. ||| A spaceship maneuvering near Planet Zeta is located at 

r u = 1600in - 400jn + 200kn2 * 103 km, relative to the planet, and 
traveling at v 

u = 9500in m/s. It turns on its thruster engine and 
accelerates with a u = 140in - 20kn2 m/s2 for 35 min. What is the 
spaceship’s position when the engine shuts off? Give your answer 
as a position vector measured in km.

45. ||| A particle moving in the xy-plane has velocity v 

u
0 = v0x in + v0yjn 

at t = 0. It undergoes acceleration au = btin - cvyjn, where b and c 
are constants. Find an expression for the particle’s velocity at a 
later time t.

46. || a. A projectile is launched with speed v0 and angle u. Derive 
an expression for the projectile’s maximum height h.

b. A baseball is hit with a speed of 33.6 m/s. Calculate its 
height and the distance traveled if it is hit at angles of 
30.0°, 45.0°, and 60.0°.

47. || A projectile’s horizontal range over level ground is v0 

2 sin 2u/g.  
At what launch angle or angles will the projectile land at half of 
its maximum possible range?

48. || A projectile is launched from ground level at angle u and 
speed v0 into a headwind that causes a constant horizontal 
acceleration of magnitude a opposite the direction of motion.
a. Find an expression in terms of a and g for the launch angle 

that gives maximum range.
b. What is the angle for maximum range if a is 10% of g?

49. || A gray kangaroo can bound across level ground with each 
jump carrying it 10 m from the takeoff point. Typically the kan- 
garoo leaves the ground at a 20° angle. If this is so:
a. What is its takeoff speed?
b. What is its maximum height above the ground?

50. || A ball is thrown toward a cliff of height h with a speed of 
30 m/s and an angle of 60° above horizontal. It lands on the edge 
of the cliff 4.0 s later.
a. How high is the cliff?
b. What was the maximum height of the ball?
c. What is the ball’s impact speed?
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b. How far has the cannonball traveled horizontally when it 
reaches its maximum height?

c. What is the angle after the cannonball travels 500 m?
60. || Ships A and B leave port together. For the next two hours, 

ship A travels at 20 mph in a direction 30° west of north while 
ship B travels 20° east of north at 25 mph.
a. What is the distance between the two ships two hours after 

they depart?
b. What is the speed of ship A as seen by ship B?

61. || While driving north at 10 m/s during a rainstorm, you notice 
that the rain makes an angle of 41° with the vertical. While 
driving back home moments later at the same speed but in the 
opposite direction, you see that the rain is falling straight down. 
From these observations, determine the speed and angle of the 
raindrops relative to the ground.

62. || You are asked to consult for the city’s research hospital, 
where a group of doctors is investigating the bombardment of 
cancer tumors with high-energy ions. As FIGURE P4.62 shows, 
ions are fired directly toward the center of the tumor at speeds 
of 5.0 * 106 m/s. To cover the entire tumor area, the ions are de-
flected sideways by passing them between two charged metal 
plates that accelerate the ions perpendicular to the direction of 
their initial motion. The acceleration region is 5.0 cm long, and 
the ends of the acceleration plates are 1.5 m from the target. 
What sideways acceleration is required to deflect an ion 2.0 cm 
to one side?

51. || You are target shooting using a toy gun that fires a small ball 
at a speed of 15 m/s. When the gun is fired at an angle of 30° 
above horizontal, the ball hits the bull’s-eye of a target at the 
same height as the gun. Then the target distance is halved. At 
what angle must you aim the gun to hit the bull’s-eye in its new 
position? (Mathematically there are two solutions to this prob-
lem; the physically reasonable answer is the smaller of the two.)

52. || A tennis player hits a ball 2.0 m above the ground. The ball 
leaves his racquet with a speed of 20.0 m/s at an angle 5.0° above 
the horizontal. The horizontal distance to the net is 7.0 m, and 
the net is 1.0 m high. Does the ball clear the net? If so, by how 
much? If not, by how much does it miss?

53. || A snowboarder starts down a frictionless, 8.0-m-tall, 15° 
slope. The slope ends abruptly at the top of a 4.0-m-high wall 
that has level packed snow at its base. How far does the snow-
boarder land from the base of the wall?

54. || You are watching an archery tournament when you start won-
dering how fast an arrow is shot from the bow. Remembering your 
physics, you ask one of the archers to shoot an arrow parallel to the 
ground. You find the arrow stuck in the ground 60 m away, making 
a 3.0° angle with the ground. How fast was the arrow shot?

55. || You’re 6.0 m from one wall of the house seen in FIGURE P4.55. 
You want to toss a ball to your friend who is 6.0 m from the opposite 
wall. The throw and catch each occur 1.0 m above the ground.
a. What minimum speed will allow the ball to clear the roof?
b. At what angle should you toss the ball?

6.0 m

1.0 m
3.0 m

6.0 m 6.0 m

45°

FIGURE P4.55

15°
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FIGURE P4.56 Ion
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56. || Sand moves without slipping at 6.0 m/s down a conveyer that 
is tilted at 15°. The sand enters a pipe 3.0 m below the end of the 
conveyer belt, as shown in FIGURE P4.56. What is the horizontal 
distance d between the conveyer belt and the pipe?

57. || A stunt man drives a 1500 kg car at a speed of 20 m/s off a 
30-m-high cliff. The road leading to the cliff is inclined upward 
at an angle of 20°.
a. How far from the base of the cliff does the car land?
b. What is the car’s impact speed?

58. ||| A javelin thrower standing at rest holds the center of the jav-
elin behind her head, then accelerates it through a distance of 
70 cm as she throws. She releases the 600 g javelin 2.0 m above 
the ground traveling at an angle of 30° above the horizontal. 
Top-rated javelin throwers do throw at about a 30° angle, not the 
45° you might have expected, because the biomechanics of the 
arm allow them to throw the javelin much faster at 30° than they 
would be able to at 45°. In this throw, the javelin hits the ground 
62 m away. What was the acceleration of the javelin during the 
throw? Assume that it has a constant acceleration.

59. || A cannonball is fired at 100 m/s from a barrel tilted upward  
at 25°.
a. Find an expression for the cannonball’s direction of travel, 

measured as an angle from horizontal, after traveling hori-
zontal distance d.

63. || The angular velocity of a spinning gyroscope is measured 
every 0.5 s. The results and the best-fit line from a spreadsheet 
are shown in FIGURE P4.63.
a. What is the gyroscope’s initial angular velocity, at t = 0 s?
b. What is the angular acceleration at t = 2.0 s?
c. How many revolutions does the gyroscope make between t = 

0 s and t = 2.0 s?
64. || A ball rolling on a circular track, starting from rest, has 

angular acceleration a. Find an expression, in terms of a, for the 
time at which the ball’s acceleration vector a 

u is 45° away from a 
radial line toward the center of the circle.

65. || A typical laboratory centrifuge rotates at 4000 rpm. Test tubes  
have to be placed into a centrifuge very carefully because of the 
very large accelerations.
a. What is the acceleration at the end of a test tube that is 10 cm 

from the axis of rotation?
b. For comparison, what is the magnitude of the acceleration  

a test tube would experience if dropped from a height of  
1.0 m and stopped in a 1.0-ms-long encounter with a hard 
floor?
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76. ||| A car starts from rest on a curve with a radius of 120 m and 
accelerates tangentially at 1.0 m/s2. Through what angle will the 
car have traveled when the magnitude of its total acceleration is 
2.0 m/s2?

77. ||| A long string is wrapped around a 6.0-cm-diameter cylinder, 
initially at rest, that is free to rotate on an axle. The string is 
then pulled with a constant acceleration of 1.5 m/s2 until 1.0 m of 
string has been unwound. If the string unwinds without slipping, 
what is the cylinder’s angular speed, in rpm, at this time?

In Problems 78 through 80 you are given the equations that are used 
to solve a problem. For each of these, you are to

a. Write a realistic problem for which these are the correct equa-
tions. Be sure that the answer your problem requests is consis-
tent with the equations given.

b. Finish the solution of the problem, including a pictorial 
representation.

78. 100 m = 0 m + 150 cos u m/s) t1

0 m = 0 m + 150 sin u m/s2t1 - 1
2 19.80 m/s22 t1 

2

79. vx = -16.0 cos 45°2 m/s + 3.0 m/s
vy = 16.0 sin 45°2 m/s + 0 m/s 
100 m = vy  t1, x1 = vx  t1

80. 2.5 rad = 0 rad + vi 110 s2 + 111.5 m/s22/2150 m22110 s22

vf = vi + 111.5 m/s22/150 m22110 s2

Challenge Problems
81. ||| A skateboarder starts up a 1.0-m-high, 30° ramp at a speed of 

7.0 m/s. The skateboard wheels roll without friction. At the top 
she leaves the ramp and sails through the air. How far from the 
end of the ramp does the skateboarder touch down?

82. ||| An archer standing on a 15° slope shoots an arrow 20° above 
the horizontal, as shown in FIGURE CP4.82. How far down the 
slope does the arrow hit if it is shot with a speed of 50 m/s from 
1.75 m above the ground?

66. || Astronauts use a centrifuge to simulate the acceleration of a 
rocket launch. The centrifuge takes 30 s to speed up from rest to 
its top speed of 1 rotation every 1.3 s. The astronaut is strapped 
into a seat 6.0 m from the axis.
a. What is the astronaut’s tangential acceleration during the first 

30 s?
b. How many g’s of acceleration does the astronaut experience 

when the device is rotating at top speed? Each 9.8 m/s2 of 
acceleration is 1 g.

67. || A Ferris wheel of radius R speeds up with angular accelera-
tion a starting from rest. Find expressions for the (a) velocity and 
(b) centripetal acceleration of a rider after the Ferris wheel has 
rotated through angle ∆u.

68. || Communications satellites are placed in a circular orbit where 
they stay directly over a fixed point on the equator as the earth 
rotates. These are called geosynchronous orbits. The radius of 
the earth is 6.37 * 106 m, and the altitude of a  geosynchronous 
orbit is 3.58 * 107 m 1≈22,000 miles2. What are (a) the speed 
and (b) the magnitude of the acceleration of a satellite in a 
 geosynchronous orbit?

69. || A computer hard disk 8.0 cm in diameter is initially at rest. A 
small dot is painted on the edge of the disk. The disk accelerates 
at 600 rad/s2 for 1

2 s, then coasts at a steady angular velocity for 
another 12 s.
a. What is the speed of the dot at t = 1.0 s?
b. Through how many revolutions has the disk turned?

70. || A high-speed drill rotating ccw at 2400 rpm comes to a halt 
in 2.5 s.
a. What is the magnitude of the drill’s angular acceleration?
b. How many revolutions does it make as it stops?

71. || Flywheels—rapidly rotating disks—are widely used in indus-
try for storing energy. They are spun up slowly when extra en-
ergy is available, then decelerate quickly when needed to supply 
a boost of energy. A 20-cm-diameter rotor made of advanced 
materials can spin at 100,000 rpm.
a. What is the speed of a point on the rim of this rotor?
b. Suppose the rotor’s angular velocity decreases by 40% over 

30 s as it supplies energy. What is the magnitude of the rotor’s 
angular acceleration? Assume that the angular acceleration 
is constant.

c. How many revolutions does the rotor make during these  
30 s?

72. || A 25 g steel ball is attached to the top of a 24-cm-diameter 
vertical wheel. Starting from rest, the wheel accelerates at 
470 rad/s2. The ball is released after 34 of a revolution. How high 
does it go above the center of the wheel?

73. || The angular velocity of a process control motor is 
v = 120 - 1

2  t22rad/s, where t is in seconds.
a. At what time does the motor reverse direction?
b. Through what angle does the motor turn between t =  0 s 

and the instant at which it reverses direction?
74. || A 6.0-cm-diameter gear rotates with angular velocity v =  

120 - 1
2  t22rad/s, where t is in seconds. At t =  4.0 s, what are:

a. The gear’s angular acceleration?
b. The tangential acceleration of a tooth on the gear?

75. || A painted tooth on a spinning gear has angular position 
u = 13.0 rad/s42t4. What is the tooth’s angular acceleration at the 
end of 16 revolutions?

15°

20°

FIGURE CP4.82

u
f

d

FIGURE CP4.83

83. ||| The cannon in FIGURE CP4.83 fires a projectile at launch 
angle u with respect to the slope, which is at angle f. Find the 
launch angle that maximizes d.
Hint: Choosing the proper coordinate system is essential. There 
are two options.

84. ||| A cannon on a flat railroad car travels to the east with its bar-
rel tilted 30° above horizontal. It fires a cannonball at 50 m/s. 
At t = 0 s, the car, starting from rest, begins to accelerate to the 
east at 2.0 m/s2. At what time should the cannon be fired to hit 
a target on the tracks that is 400 m to the east of the car’s initial 
position? Assume that the cannonball is fired from ground level.

||| A child in danger of drowning in a river is being carried down-
stream by a current that flows uniformly with a speed of 2.0 m/s. 
The child is 200 m from the shore and 1500 m upstream of the 
boat dock from which the rescue team sets out. If the boat speed is  
8.0 m/s with respect to the water, at what angle from the shore must 
the boat travel in order to reach the child?

Exercises and Problems 131

M04_KNIG8221_05_GE_C04.indd   131 02/06/2022   16:31



132

Force and Motion

What is a force?
The fundamental concept of mechanics 
is force.

 ■ A force is a push or a pull.
 ■ A force acts on an object.
 ■ A force requires an agent.
 ■ A force is a vector.

How do we identify forces?
A force can be a contact force or a 
 long-range force.

 ■ Contact forces occur at points where 
the environment touches the object.

 ■ Contact forces disappear the instant 
contact is lost. Forces have no memory.

 ■ Long-range forces include gravity and 
magnetism.

How do we show forces?
Forces can be displayed on a free-body 
 diagram. You’ll draw all forces—both 
pushes and pulls—as vectors with  
their tails on the particle. A well-drawn  
free-body diagram is an essential step  
in solving  problems, as you’ll see in the  
next chapter.

What do forces do?
A net force causes an object to accelerate 
with an acceleration directly proportional 
to the size of the force. This is Newton’s 
second law, the most important statement 
in mechanics. For a particle of mass m,

au =
1
m

 F
u

net

❮❮ LOOKING BACK Sections 1.4, 2.4, and 3.2  
Acceleration and vector addition

What is Newton’s first law?
Newton’s first law—an object at rest stays at 
rest and an object in motion continues moving at 
constant speed in a straight line if and only if the 
net force on the object is zero—helps us define 
what a force is. It is also the basis for identifying 
the reference frames—called inertial reference 
frames—in which Newton’s laws are valid.

What good are forces?
Kinematics describes how an object moves. For the more 
 important tasks of knowing why an object moves and being 
able to predict its position and orientation at a future time, we 
have to know the forces acting on the object. Relating force to  
motion is the subject of dynamics, and it is one of the most 
important underpinnings of all science and  engineering.

IN THIS CHAPTER, you will learn about the connection between force and motion.

5

The motion of a  
sailboat is a response  
to the forces of wind 
and water.
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5.1 Force 133

5.1 Force
The two major issues that this chapter will examine are:

 ■ What is a force?
 ■ What is the connection between force and motion?

We begin with the first of these questions in the table below.

What is a force?

A force is a push or a pull.

Our commonsense idea of a force is that it is a push or a pull. We will refine this idea as we go along, but it is 
an adequate starting point. Notice our careful choice of words: We refer to “a force,” rather than simply “force.” 
We want to think of a force as a very specific action, so that we can talk about a single force or perhaps about 
two or three individual forces that we can clearly distinguish. Hence the concrete idea of “a force” acting on 
an object.

Object A force acts on an object.

Implicit in our concept of force is that a force acts on an object. In other words, pushes and pulls are applied 
to  something—an object. From the object’s perspective, it has a force exerted on it. Forces do not exist in 
 isolation from the object that experiences them.

Agent

A force requires an agent.

Every force has an agent, something that acts or exerts power. That is, a force has a specific, identifiable cause. 
As you throw a ball, it is your hand, while in contact with the ball, that is the agent or the cause of the force 
exerted on the ball. If a force is being exerted on an object, you must be able to identify a specific cause (i.e., the 
agent) of that force. Conversely, a force is not exerted on an object unless you can identify a specific cause or 
agent. Although this idea may seem to be stating the obvious, you will find it to be a powerful tool for avoiding 
some common misconceptions about what is and is not a force.

A force is a vector.

If you push an object, you can push either gently or very hard. Similarly, you can push either left or right, up 
or down. To quantify a push, we need to specify both a magnitude and a direction. It should thus come as no 
surprise that force is a vector. The general symbol for a force is the vector symbol F

u
. The size or strength of a 

force is its magnitude F.

A force can be either a contact force . . .

There are two basic classes of forces, depending on whether the agent touches the object or not. Contact 
forces are forces that act on an object by touching it at a point of contact. The bat must touch the ball to hit 
it. A string must be tied to an object to pull it. The majority of forces that we will examine are contact forces.

. . . or a long-range force.

Long-range forces are forces that act on an object without physical contact. Magnetism is an example of a 
long-range force. You have undoubtedly held a magnet over a paper clip and seen the paper clip leap up to the 
magnet. A coffee cup released from your hand is pulled to the earth by the long-range force of gravity.

   NOTE    In the particle model, objects cannot exert forces on themselves. A force on an 
object will always have an agent or cause external to the object. Now, there are certainly 
objects that have internal forces (think of all the forces inside the engine of your car!), 
but the particle model is not valid if you need to consider those internal forces. If you 
are going to treat your car as a particle and look only at the overall motion of the car as 
a whole, that motion will be a consequence of external forces acting on the car.
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134 CHAPTER 5 Force and Motion

Force Vectors
We can use a simple diagram to visualize how forces are exerted on objects.

The spring is the agent.The rope is the agent.

Pushing force of spring

Earth is the agent.

Long-range
force of
gravity

Box

Box

Pulling force of rope

Box

FIGURE 5.1 Three examples of forces and their vector representations.

Top view
of box

(a)

FIGURE 5.2 Two forces applied to a box.

TACTICS BOX 5.1

Drawing force vectors

F
u

Model the object as a particle.

Draw the force vector as an arrow pointing in the proper
direction and with a length proportional to the size of the force.

Give the vector an appropriate label.

Place the tail of the force vector on the particle.

1

2

3

4

Step 2 may seem contrary to what a “push” should do, but recall that moving a 
vector does not change it as long as the length and angle do not change. The vector F

u
 

is the same regardless of whether the tail or the tip is placed on the particle. FIGURE 5.1 
shows three examples of force vectors.

Combining Forces
FIGURE 5.2a shows a box being pulled by two ropes, each exerting a force on the box. 
How will the box respond? Experimentally, we find that when several forces F

u

1, F
u

2, 
F
u

3, . . . are exerted on an object, they combine to form a net force given by the vector 
sum of all the forces:

 F
u

net K a
N

i=1
F
u

i = F
u

1 + F
u

2 + g + F
u

N (5.1)

Recall that K is the symbol meaning “is defined as.” Mathematically, this summation 
is called a superposition of forces. FIGURE 5.2b shows the net force on the box.

This is the
net force on
the box.

Pulling forces
of the ropes

Box

(b) F1

Fnet = F1 + F2

F2

u

u u u

u

STOP TO THINK 5.1 Two of the three forces exerted on an object are shown. The net 
force points to the left. Which is the missing third force?

(a)

F1

Two of the three
forces exerted on
an object

F2

F3

u

u

u

    

F3

u

(b)     (c)

F3

u

    (d)

F3

u
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5.2 A Short Catalog of Forces
There are many forces we will deal with over and over. This section will introduce you 
to some of them. Many of these forces have special symbols. As you learn the major 
forces, be sure to learn the symbol for each.

Gravity
Gravity—the only long-range force we will encounter in the next few chapters—keeps 
you in your chair and the planets in their orbits around the sun. We’ll have a thorough 
look at gravity in Chapter 13. For now we’ll concentrate on objects on or near the 
 surface of the earth (or other planet).

The pull of a planet on an object on or near the surface is called the  gravitational 
force. The agent for the gravitational force is the entire planet. Gravity acts on all 
objects, whether moving or at rest. The symbol for gravitational force is F

u

G. The  
gravitational force vector always points vertically downward, as shown in FIGURE 5.3.

   NOTE    We often refer to “the weight” of an object. For an object at rest on the surface 
of a planet, its weight is simply the magnitude FG  of the gravitational force. However, 
weight and gravitational force are not the same thing, nor is weight the same as mass. 
We will briefly examine mass later in the chapter, and we’ll explore the rather subtle 
connections among gravity, weight, and mass in Chapter 6.

Spring Force
Springs exert one of the most common contact forces. A spring can either push 
(when compressed) or pull (when stretched). FIGURE 5.4 shows the spring force, for 
which we use the symbol F

u

Sp. In both cases, pushing and pulling, the tail of the force 
vector is placed on the particle in the force diagram.

Although you may think of a spring as a metal coil that can be stretched or com-
pressed, this is only one type of spring. Hold a ruler, or any other thin piece of wood 
or metal, by the ends and bend it slightly. It flexes. When you let go, it “springs” back 
to its original shape. This is just as much a spring as is a metal coil.

Tension Force
When a string or rope or wire pulls on an object, it exerts a contact force that we call 
the tension force, represented by a capital T 

u
. The direction of the tension force 

is always along the direction of the string or rope, as you can see in FIGURE 5.5. The 
commonplace reference to “the tension” in a string is an informal expression for T,  
the size or magnitude of the tension force.

   NOTE    Tension is represented by the symbol T. This is logical, but there’s a risk of 
confusing the tension T with the identical symbol T for the period of a particle in 
circular motion. The number of symbols used in science and engineering is so large 
that some letters are used several times to represent different quantities. The use of 
T is the first time we’ve run into this problem, but it won’t be the last. You must be 
alert to the context of a symbol’s use to deduce its meaning.

We can obtain a deeper understanding of some forces and interactions with a  
picture of what’s happening at the atomic level. You’ll recall from chemistry that  
matter consists of atoms that are attracted to each other by molecular bonds. 
 Although the details are complex, governed by quantum physics, we can often use 
a simple ball-and-spring model of a solid to get an idea of what’s happening at  
the atomic level.

Ground

The gravitational force
pulls the box down.

FG

u

FIGURE 5.3 Gravity.

FSp

(b) A stretched spring exerts
a pulling force on an object.

u

(a) A compressed spring exerts
a pushing force on an object.

FSp

u

FIGURE 5.4 The spring force.

T
u

The rope exerts a tension
force on the sled.

FIGURE 5.5 Tension.
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136 CHAPTER 5 Force and Motion

In the case of tension, pulling on the ends of a string or rope stretches the spring-
like molecular bonds ever so slightly. What we call “tension” is then the net spring 
force being exerted by trillions and trillions of microscopic springs.

Normal Force
If you sit on a bed, the springs in the mattress compress and, as a consequence of the 
compression, exert an upward force on you. Stiffer springs would show less compression 
but still exert an upward force. The compression of extremely stiff springs might be 
measurable only by sensitive instruments. Nonetheless, the springs would compress ever 
so slightly and exert an upward spring force on you.

FIGURE 5.6 shows an object resting on top of a sturdy table. The table may not visibly  
flex or sag, but—just as you do to the bed—the object compresses the spring-like 
 molecular bonds in the table. The size of the compression is very small, but it is not 
zero. As a consequence, the compressed “molecular springs” push upward on the 
 object. We say that “the table” exerts the upward force, but it is important to under-
stand that the pushing is really done by molecular bonds.

We can extend this idea. Suppose you place your hand on a wall and lean against 
it. Does the wall exert a force on your hand? As you lean, you compress the molecular 
bonds in the wall and, as a consequence, they push outward against your hand. So the 
answer is yes, the wall does exert a force on you.

The force the table surface exerts is vertical; the force the wall exerts is horizontal. In 
all cases, the force exerted on an object that is pressing against a surface is in a direction 
perpendicular to the surface. Mathematicians refer to a line that is perpendicular to a 
surface as being normal to the surface. In keeping with this terminology, we define the 
normal force as the force exerted perpendicular to a surface (the agent) against 
an object that is pressing against the surface. The symbol for the normal force is nu.

We’re not using the word normal to imply that the force is an “ordinary” force or to 
distinguish it from an “abnormal force.” A surface exerts a force perpendicular (i.e., 
normal) to itself as the molecular springs press outward. FIGURE 5.7 shows an object on 
an inclined surface, a common situation.

In essence, the normal force is just a spring force, but one exerted by a vast number 
of microscopic springs acting at once. The normal force is responsible for the “solid-
ness” of solids. It is what prevents you from passing right through the chair you are 
sitting in and what causes the pain and the lump if you bang your head into a door.

Friction
Friction, like the normal force, is a force exerted by a surface. But whereas the 
 normal force is perpendicular to the surface, the friction force is always parallel to 
the surface. It is useful to distinguish between two kinds of friction:

MODEL 5.1

Ball-and-spring model of solids
Solids consist of atoms held together by molecular bonds.

 ■ Represent the solid as an array of balls connected 
by springs.

 ■ Pulling on or pushing on a solid causes the bonds 
to be stretched or compressed. Stretched or 
 compressed bonds exert spring forces.

 ■ There are an immense number of bonds. The force of one 
bond is very tiny, but the combined force of all bonds can 
be very large.

 ■ Limitations: Model fails for liquids and gases.

Ball-like
atoms

Spring-like bonds

For Scientists and Engineers A Strategic Approach

For
Scien

tists
and

Engi
neer

s A
Strat

egic
App

roac
h

The compressed
molecular bonds push
upward on the object.

n
u

FIGURE 5.6 The table exerts an upward 
force on the book.

n
u

The surface pushes outward
against the bottom of the frog.

FIGURE 5.7 The normal force.
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 ■ Kinetic friction, denoted f 
u

k, appears as an object slides across a surface. This is a 
force that “opposes the motion,” meaning that the friction force vector f 

u

k points in 
a direction opposite the velocity vector v 

u
 (i.e., “the motion”).

 ■ Static friction, denoted f 
u

s, is the force that keeps an object “stuck” on a surface 
and  prevents its motion. Finding the direction of f 

u

s is a little trickier than finding  
it for f 

u

k. Static friction points opposite the direction in which the object would move 
if there were no friction. That is, it points in the direction necessary to prevent motion.

FIGURE 5.8 shows examples of kinetic and static friction.

   NOTE    A surface exerts a kinetic friction force when an object moves relative to the  
surface. A package on a conveyor belt is in motion, but it does not experience a kinetic 
friction force because it is not moving relative to the belt. So to be precise, we should say 
that the kinetic friction force points opposite to an object’s motion relative to a surface.

Drag
Friction at a surface is one example of a resistive force, a force that opposes or resists 
motion. Resistive forces are also experienced by objects moving through fluids—gases 
and liquids. The resistive force of a fluid is called drag, with symbol F

u

drag. Drag, like 
kinetic friction, points opposite the direction of motion. FIGURE 5.9 shows an example.

Drag can be a significant force for objects moving at high speeds or in dense  fluids. 
Hold your arm out the window as you ride in a car and feel how the air resistance 
against it increases rapidly as the car’s speed increases. Drop a lightweight object into 
a beaker of water and watch how slowly it settles to the bottom.

For objects that are heavy and compact, that move in air, and whose speed is not 
too great, the drag force of air resistance is fairly small. To keep things as simple as 
possible, you can neglect air resistance in all problems unless a problem explicitly 
asks you to include it.

Thrust
A jet airplane obviously has a force that propels it forward during takeoff. Likewise for the 
rocket being launched in FIGURE 5.10. This force, called thrust, occurs when a jet or rocket 
engine expels gas molecules at high speed. Thrust is a contact force, with the  exhaust 
gas being the agent that pushes on the engine. The process by which thrust is generated 
is rather subtle, and we will postpone a full discussion until we study Newton’s third law 
in Chapter 7. For now, we will treat thrust as a force opposite the direction in which the 
exhaust gas is expelled. There’s no special symbol for thrust, so we will call it F

u

thrust.

Electric and Magnetic Forces
Electricity and magnetism, like gravity, exert long-range forces. We will study electric 
and magnetic forces in detail in Part VI. For now, it is worth noting that the forces hold-
ing molecules together—the molecular bonds—are not actually tiny springs. Atoms and 
molecules are made of charged particles—electrons and protons—and what we call a 
molecular bond is really an electric force between these particles. So when we say that the 
normal force and the tension force are due to “molecular springs,” or that friction is due 
to atoms running into each other, what we’re really saying is that these forces, at the most 
fundamental level, are actually electric forces between the charged particles in the atoms.

5.3 Identifying Forces
A typical physics problem describes an object that is being pushed and pulled in various 
directions. Some forces are given explicitly; others are only implied. In order to proceed, 
it is necessary to determine all the forces that act on the object. The procedure for identi-
fying forces will become part of the pictorial representation of the problem.

v
u

Kinetic friction
opposes the motion.fk

u

FIGURE 5.8 Kinetic and static friction.

Static friction acts in the
direction that prevents slipping.

fs

u

v
u

Fdrag

u

Air resistance points opposite
the direction of motion.

FIGURE 5.9 Air resistance is an example 
of drag.

Thrust force is exerted
on a rocket by exhaust
gases.

Fthrust

u

FIGURE 5.10 Thrust force on a rocket.
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138 CHAPTER 5 Force and Motion

Force Notation

General force F
u

Gravitational force F
u

G

Spring force F
u

Sp

Tension T 
u

Normal force nu

Static friction f 
u

s

Kinetic friction f 
u

k

Drag F
u

drag

Thrust F
u

thrust

TACTICS BOX 5.2

Identifying forces
1  Identify the object of interest. This is the object you wish to study.
2  Draw a picture of the situation. Show the object of interest and all other 

objects—such as ropes, springs, or surfaces—that touch it.
3  Draw a closed curve around the object. Only the object of interest is inside 

the curve; everything else is outside.
4  Locate every point on the boundary of this curve where other objects 

touch the object of interest. These are the points where contact forces are 
exerted on the object.

5  Name and label each contact force acting on the object. There is at least one 
force at each point of contact; there may be more than one. When necessary, 
use subscripts to distinguish forces of the same type.

6  Name and label each long-range force acting on the object. For now, the 
only long-range force is the gravitational force.

Exercises 3–8 

A bungee jumper has leapt off a bridge and is nearing the bottom of her fall. What forces are being exerted on the jumper?

VISUALIZE

EXAMPLE 5.1 ■ Forces on a bungee jumper

Identify the object of interest. Here the object
is the bungee jumper.

Draw a picture of the situation.

Draw a closed curve around the object.

Locate the points where other objects touch the
object of interest. Here the only point of contact
is where the cord attaches to her ankles.

Name and label each contact force. The force
exerted by the cord is a tension force.

Name and label long-range forces. Gravity
is the only one.

1

4

5

6

2

3

Gravity FG

Tension T

u

u
FIGURE 5.11 Forces on a bungee jumper.

A skier is being towed up a snow-covered hill by a tow rope. What forces are being exerted on the skier?

VISUALIZE

EXAMPLE 5.2 ■ Forces on a skier

Normal force n
Kinetic friction fk

Gravity FG u

uu

Identify the object of
interest. Here the object
is the skier.

Draw a picture of
the situation.

Draw a closed curve
around the object.

Locate the points where other objects
touch the object of interest. Here the
rope and the ground touch the skier.

Name and label each contact force. The rope
exerts a tension force and the ground exerts
both a normal and a kinetic friction force.

Name and label long-range forces. Gravity
is the only one.

1

2

3

4

5

6

Tension T
uFIGURE 5.12 Forces on a skier.

   NOTE    You might have expected two friction forces and two normal forces in 
Example 5.2, one on each ski. Keep in mind, however, that we’re working within the 
particle model, which represents the skier by a single point. A particle has only one 
contact with the ground, so there is one normal force and one friction force.
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5.4 What Do Forces Do?
Having learned to identify forces, we ask the next question: How does an object move 
when a force is exerted on it? The only way to answer this question is to do  experiments. 
Let’s conduct a “virtual experiment,” one you can easily visualize. Imagine using your 
fingers to stretch a rubber band to a certain length—say 10  centimeters—that you can 
measure with a ruler, as shown in FIGURE 5.14. You know that a stretched rubber band 
exerts a force—a spring force—because your fingers feel the pull.  Furthermore, this 
is a reproducible force; the rubber band exerts the same force every time you stretch 
it to this length. We’ll call this the standard force F. Not surprisingly, two identical 
rubber bands exert twice the pull of one rubber band, and N side-by-side rubber bands 
exert N times the standard force: Fnet = NF.

Now attach one rubber band to a 1 kg block and stretch it to the standard length. 
The object experiences the same force F as did your finger. The rubber band gives us a  
way of applying a known and reproducible force to an object. Then imagine using the 
rubber band to pull the block across a horizontal, frictionless table. (We can  imagine 
a frictionless table since this is a virtual experiment, but in practice you could nearly 
eliminate friction by supporting the object on a cushion of air.)

If you stretch the rubber band and then release the object, the object moves  toward 
your hand. But as it does so, the rubber band gets shorter and the pulling force 
 decreases. To keep the pulling force constant, you must move your hand at just the 
right speed to keep the length of the rubber band from changing! FIGURE 5.15 shows 
the experiment being carried out. Once the motion is complete, you can use motion 
diagrams and kinematics to analyze the object’s motion.

A rocket is being launched to place a new satellite in  orbit. 
Air resistance is not negligible. What forces are  being 
 exerted on the rocket?

VISUALIZE This drawing is much more like the sketch 
you would make when identifying forces as part of solving 
a problem.

EXAMPLE 5.3 ■ Forces on a rocket FIGURE 5.13 Forces on a  
rocket.

STOP TO THINK 5.2 You’ve just kicked a rock, and it is now sliding across the 
ground 2 m in front of you. Which of these forces act on the rock? List all that apply.

a. Gravity, acting downward. b. The normal force, acting upward.
c. The force of the kick, acting in the direction of motion.
d. Friction, acting opposite the direction of motion.

PullRubber band

Maintain constant stretch.

Frictionless
surface

Motion diagrama
u

v
u

FIGURE 5.15 Measuring the motion of a 1 kg block that is pulled with a constant force.

F
uStandard length 

One rubber band
stretched the standard
length exerts the
standard force F.

FIGURE 5.14 A reproducible force.

Standard length 

Two rubber bands
stretched the standard
length exert twice
the standard force.

2F
u
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140 CHAPTER 5 Force and Motion

The first important finding of this experiment is that an object pulled with a 
 constant force moves with a constant acceleration. That is, the answer to the question  
What does a force do? is: A force causes an object to accelerate, and a  constant force 
produces a constant acceleration.

What happens if you increase the force by using several rubber bands? To find 
out, use two rubber bands, then three rubber bands, then four, and so on. With N 
rubber bands, the force on the block is NF. FIGURE 5.16 shows the results of this 
experiment. You can see that doubling the force causes twice the acceleration, 
 tripling the force  causes three times the acceleration, and so on. The graph reveals 
our second important finding: The acceleration is directly proportional to the 
force. This result can be written as

 a = cF (5.2)

where c, called the proportionality constant, is the slope of the graph.

5a1

4a1

3a1

2a1

1a1

0

A
cc

el
er

at
io

n 

0 1 2 3

Force (number of rubber bands)

4 5

Acceleration is directly
proportional to force. 

FIGURE 5.16 Experiments find that 
an object's acceleration is directly 
proportional to the force acting on it.

MATHEMATICAL ASIDE

Proportionality and proportional reasoning
The concept of proportionality arises frequently in  physics.   
A quantity symbolized by u is proportional to another quantity  
symbolized by v if

u = cv

where c (which might have units) is called the  proportionality 
constant. This relationship between u and v is often written

u ∝ v

where the symbol ∝ means “is proportional to.”
If v is doubled to 2v, then u doubles to c12v2= 21cv2= 2u.  

In general, if v is changed by any factor f, then u changes 
by the same factor. This is the essence of what we mean by 
proportionality.

A graph of u versus v is a straight line passing through 
the origin (i.e., the vertical intercept is zero) with slope = c. 
Notice that proportionality is a much more specific rela-
tionship between u and v than 
mere linearity. The linear equa-
tion u = cv + b has a straight-line 
graph, but it doesn’t pass through 
the origin (unless b happens to 
be zero) and doubling v does not  
double u.

If u ∝ v, then u1 = cv1 and u2 = cv2. Dividing the second 
equation by the first, we find

u2

u1
=

v2

v1

By working with ratios, we can deduce information about 
u without needing to know the value of c. (This would not 
be true if the relationship were merely linear.) This is called 
proportional reasoning.

Proportionality is not limited to being linearly  proportional. 
The graph on the left shows that u is clearly not proportional 
to w. But a graph of u versus 1/w2 is a straight line  passing 
through the origin; thus, in this case, u is proportional to 1/w2,  
or u ∝ 1/w2. We would say that “u is proportional to the 
 inverse square of w.”

1
w2

u
Is not proportional Is proportional

w

u

u is proportional to the inverse square of w.

EXAMPLE u is proportional to the inverse square of w. By 
what factor does u change if w is tripled?

SOLUTION This is an opportunity for proportional reasoning; 
we don’t need to know the proportionality constant. If u is 
proportional to 1/w2, then

u2

u1
=

1/w2 

2

1/w1 

2 =
w1 

2

w2 

2 = 1w1

w2
22

Tripling w, with w2 /w1 = 3, and thus w1 /w2 = 1
3, changes u to

u2 = 1w1

w2
22

u1 = 11

322

u1 =
1

9
 u1

Tripling w causes u to become 19 of its original value.
Many Student Workbook and end-of-chapter homework 

questions will require proportional reasoning. It’s an import-
ant skill to learn.

The graph passes 
through the origin.

u

v

The slope 
is c.

u is proportional to v.
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The final question for our virtual experiment is: How does the acceleration 
 depend on the mass of the object being pulled? To find out, apply the same force—
for  example, the standard force of one rubber band—to a 2 kg block, then a 3 kg 
block, and so on, and for each measure the acceleration. Doing so gives you the results 
shown in FIGURE 5.17. An object with twice the mass of the original block has only half 
the acceleration when both are subjected to the same force.

Mathematically, the graph of Figure 5.17 is one of inverse proportionality. That 
is, the acceleration is inversely proportional to the object’s mass. We can combine 
these results—that the acceleration is directly proportional to the force applied and 
inversely proportional to the object’s mass—into the single statement

 a =
F
m

 (5.3)

if we define the basic unit of force as the force that causes a 1 kg mass to accelerate at 
1 m/s2. That is,

1 basic unit of force K 1 kg * 1 
m

s2 = 1 
kg m

s2

This basic unit of force is called a newton:

One newton is the force that causes a 1 kg mass to accelerate at 1 m/s2. The 
abbreviation for newton is N. Mathematically, 1 N = 1 kg m/s2.

TABLE 5.1 lists some typical forces. As you can see, “typical” forces on “typical”  objects 
are likely to be in the range 0.01–10,000 N.

Mass
We’ve been using the term mass without a clear definition. Our everyday concept is 
that mass is the amount of matter an object contains. Now we see that a more precise 
way of defining an object’s mass is in terms of its acceleration in response to a force. 
Figure 5.17 shows that an object with twice the amount of matter accelerates only half 
as much in response to the same force. The more matter an object has, the more it 
resists accelerating in response to a force. You’re familiar with this idea: Your car is 
much harder to push than your bicycle. The tendency of an object to resist a change in 
its velocity (i.e., to resist acceleration) is called inertia. Consequently, the mass used 
in Equation 5.3, a measure of an object’s resistance to changing its motion, is called 
inertial mass. We’ll meet a different concept of mass, gravitational mass, when we 
study Newton’s law of gravity in Chapter 13.

a1/2

0

a1

a1/4A
cc

el
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0 1 2 3

Number of kilograms

4

The acceleration of
a 1 kg block is a1.

The  acceleration of a
2 kg block is half that
of a 1 kg block.

With 4 kg, the
acceleration is
1/4 as much.

FIGURE 5.17 An object’s acceleration 
in response to a force is inversely 
proportional to its mass.

TABLE 5.1 Approximate magnitude of 
some typical forces

Force

Approximate 
magnitude 
(newtons)

Weight of a U.S. quarter 0.05

Weight of 1/4 cup sugar 0.5

Weight of a 1 pound object 5

Weight of a house cat 50

Weight of a 110 pound 
 person

500

Propulsion force of a car 5,000

Thrust force of a small 
 jet engine

50,000

STOP TO THINK 5.3 Two rubber bands stretched to the standard length cause an 
object to accelerate at 2 m/s2. Suppose another object with twice the mass is pulled 
by four rubber bands stretched to the standard length. The acceleration of this  second 
object is

a. 1 m/s2

b. 2 m/s2

c. 4 m/s2

d. 8 m/s2

e. 16 m/s2

Hint: Use proportional reasoning.
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142 CHAPTER 5 Force and Motion

5.5 Newton’s Second Law
Equation 5.3 is an important finding, but our experiment was limited to looking 
at an object’s response to a single applied force. Realistically, an object is likely to be 
 subjected to several distinct forces F

u

1, F
u

2
, F

u

3
, . . . that may point in  different  directions. 

What happens then? In that case, it is found experimentally that the  acceleration is 
determined by the net force.

Newton was the first to recognize the connection between force and motion. This 
relationship is known today as Newton’s second law.You may have used a force sensor in a 

physics lab to investigate how Newton’s 
laws apply to motion. Similar sensors 
are widely used in industry and robotics 
to monitor tensions and loads. Digital 
scales employ force sensors, as do the 
keys on an electric piano. A common 
miniature force sensor, also called a 
strain gauge, is a thin conducting wire 
deposited in a  back-and-forth grid on 
a flexible backing. A current flowing 
from one end to the other is used to 
measure the wire’s electrical resistance. 
A force in the direction of the “fingers” 
stretches the wire and thereby increases 
its resistance. After calibration, the 
strength of the applied force can be 
deduced from the measured increase in 
resistance.

Newton’s second law An object of mass m subjected to forces F
u

1, F
u

2, F
u

3, . . . 
will undergo an acceleration au given by

 au =
F
u

net

m
 (5.4)

where the net force F
u

net = F
u

1 + F
u

2 + F
u

3 + g is the vector sum of all forces 
acting on the object. The acceleration vector au points in the same direction as 
the net force vector F

u

net.

The significance of Newton’s second law cannot be overstated. There was no  reason 
to suspect that there should be any simple relationship between force and acceleration. 
Yet there it is, a simple but exceedingly powerful equation relating the two. The critical 
idea is that an object accelerates in the direction of the net force vector F

u

net.
We can rewrite Newton’s second law in the form

 F
u

net = mau (5.5)

which is how you’ll see it presented in many textbooks. Equations 5.4 and 5.5 are 
mathematically equivalent, but Equation 5.4 better describes the central idea of 
Newtonian mechanics: A force applied to an object causes the object to accelerate.

It’s also worth noting that the object responds only to the forces acting on it at 
this instant. The object has no memory of forces that may have been exerted at earlier 
times. This idea is sometimes called Newton’s zeroth law.

   NOTE    Be careful not to think that one force “overcomes” the others to determine 
the motion. Forces are not in competition with each other! It is F

u

net, the sum of all 
the forces, that determines the acceleration au.

As an example, FIGURE 5.18a shows a box being pulled by two ropes. The ropes exert 
tension forces T 

u

1 and T 
u

2 on the box. FIGURE 5.18b represents the box as a particle, shows 
the forces acting on the box, and adds them graphically to find the net force F

u

net. The 
box will accelerate in the direction of F

u

net with acceleration

au =
F
u

net 
m

=
T 
u

1 + T 
u

2

m

   NOTE    The acceleration is not 1T1 + T22/m. You must add the forces as vectors, not 
merely add their magnitudes as scalars.

Forces Are Interactions
There’s one more important aspect of forces. If you push against a door (the object) to 
close it, the door pushes back against your hand (the agent). If a tow rope pulls on a car 
(the object), the car pulls back on the rope (the agent). In general, if an agent exerts a 
force on an object, the object exerts a force on the agent. We really need to think of a 
force as an interaction between two objects. This idea is captured in Newton’s third 
law—that for every action there is an equal but opposite reaction.

a
u

Top view
of box

(a) (b)

T2

The acceleration
is in the direction
of Fnet.

Fnet

u

u

u

T1

u

u u

Two ropes exert tension 
forces on a box. The net 
force is the vector sum 
of T1 and T2.

FIGURE 5.18 Acceleration of a pulled box.
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5.6 Newton’s First Law 143

Although the interaction perspective is a more exact way to view forces, it adds 
complications that we would like to avoid for now. Our approach will be to start by 
focusing on how a single object responds to forces exerted on it. Then, in Chapter 7, 
we’ll return to Newton’s third law and the larger issue of how two or more objects 
interact with each other.

STOP TO THINK 5.4 Three forces act on an object. In which direction does the 
object accelerate?

(a) (e)(d)(c)(b)

F1

F2

F3

a
u

a
u

a
u

a
u

a
u

u

u

u

5.6 Newton’s First Law
For 2000 years, scientists and philosophers thought that the “natural state” of an  object 
is to be at rest. An object at rest requires no explanation. A moving object, though, is 
not in its natural state and thus requires an explanation: Why is this object moving?  
What keeps it going?

Galileo, in around 1600, was one of the first scientists to carry out controlled 
experiments. Many careful measurements in which he minimized the influence of 
friction led Galileo to conclude that in the absence of friction or air resistance, a 
moving object would continue to move along a straight line forever with no loss of 
speed. In other words, the natural state of an object—its behavior if free of external 
influences—is not rest but is uniform motion with constant velocity! “At rest” has 
no special significance in Galileo’s view of motion; it is simply uniform motion that 
happens to have v 

u = 0
u
.

It was left to Newton to generalize this result, and today we call it Newton’s first 
law of motion.

Newton’s first law is also known as the law of inertia. If an object is at rest, it has 
a tendency to stay at rest. If it is moving, it has a tendency to continue moving with 
the same velocity.

   NOTE    The first law refers to net force. An object can remain at rest, or can move in 
a straight line with constant velocity, even though forces are exerted on it as long as 
the net force is zero.

Notice the “if and only if” aspect of Newton’s first law. If an object is at rest or 
moves with constant velocity, then we can conclude that there is no net force acting on 
it. Conversely, if no net force is acting on it, we can conclude that the object will have 
constant velocity, not just constant speed. The direction remains constant, too!

An object on which the net force is zero—and thus is either at rest or moving in 
a straight line with constant velocity—is said to be in mechanical equilibrium. As 
FIGURE 5.19 shows, objects in mechanical equilibrium have no acceleration: au = 0

u
.

Newton’s first law An object that is at rest will remain at rest, or an object 
that is moving will continue to move in a straight line with constant velocity, if 
and only if the net force acting on the object is zero.

v
u

An object moving in a straight line at constant
velocity is also in equilibrium: Fnet = 0.

a = 0
u u

u u

a = 0
v = 0

An object at rest is in
equilibrium: Fnet = 0.

u

u
u

u

u u

FIGURE 5.19 Two examples of mechanical 
equilibrium.
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144 CHAPTER 5 Force and Motion

What Good Is Newton’s First Law?
So what causes an object to move? Newton’s first law says no cause is needed for an 
object to move! Uniform motion is the object’s natural state. Nothing at all is required 
for it to remain in that state. The proper question, according to Newton, is: What 
causes an object to change its velocity? Newton, with Galileo’s help, also gave us the 
answer. A force is what causes an object to change its velocity.

The preceding paragraph contains the essence of Newtonian mechanics. This new 
per spective on motion, however, is often contrary to our common experience. We all 
know perfectly well that you must keep pushing an object—exerting a force on it—
to keep it moving. Newton is asking us to change our point of view and to consider 
motion from the object’s perspective rather than from our personal perspective. As far 
as the object is concerned, our push is just one of several forces acting on it. Others 
might include friction, air resistance, or gravity. Only by knowing the net force can we 
determine the object’s motion.

Newton’s first law may seem to be merely a special case of Newton’s second law. 
After all, the equation F

u

net = mau tells us that an object moving with constant velocity 
1au = 0

u2 has F
u

net = 0
u
. The difficulty is that the second law assumes that we already 

know what force is. The purpose of the first law is to identify a force as something 
that disturbs a state of equilibrium. The second law then describes how the object 
responds to this force. Thus from a logical perspective, the first law really is a separate 
statement that must precede the second law. But this is a rather formal distinction. 
From a pedagogical perspective it is better—as we have done—to use a commonsense 
understanding of force and start with Newton’s second law.

Inertial Reference Frames
If a car stops suddenly, you may be “thrown” into the windshield if you’re not wearing your 
seat belt. You have a very real forward acceleration relative to the car, but is there a force 
pushing you forward? A force is a push or a pull caused by an identifiable agent in contact 
with the object. Although you seem to be pushed forward, there’s no agent to do the pushing.

The difficulty—an acceleration without an apparent force—comes from using an in-
appropriate reference frame. Your acceleration measured in a reference frame attached  
to the car is not the same as your acceleration measured in a reference frame attached 
to the ground. Newton’s second law says F

u

net = mau. But which au? Measured in which 
reference frame?

We define an inertial reference frame as a reference frame in which Newton’s first 
law is valid. If au = 0

u
 (an object is at rest or moving with constant velocity) only when 

F
u

net = 0
u
, then the reference frame in which au is measured is an inertial reference frame.

Not all reference frames are inertial reference frames. FIGURE 5.20a shows a physics 
student cruising at constant velocity in an airplane. If the student places a ball on 
the floor, it stays there. There are no horizontal forces, and the ball remains at rest 
relative to the airplane. That is, au = 0

u
 in the airplane’s reference frame when F

u

net = 0
u
. 

Newton’s first law is satisfied, so this airplane is an inertial reference frame.
The physics student in FIGURE 5.20b conducts the same experiment during takeoff. He 

carefully places the ball on the floor just as the airplane starts to accelerate down the 
runway. You can imagine what happens. The ball rolls to the back of the plane as the 
passengers are being pressed back into their seats. Nothing exerts a horizontal contact 
force on the ball, yet the ball accelerates in the plane’s reference frame. This violates 
Newton’s first law, so the plane is not an inertial reference frame during takeoff.

In the first example, the plane is traveling with constant velocity. In the second, 
the plane is accelerating. Accelerating reference frames are not inertial reference 
frames. Consequently, Newton’s laws are not valid in an accelerating reference frame.

The earth is not exactly an inertial reference frame because the earth rotates on its 
axis and orbits the sun. However, the earth’s acceleration is so small that violations 
of Newton’s laws can be measured only in very careful experiments. We will treat 
the earth and laboratories attached to the earth as inertial reference frames, an 
approximation that is exceedingly well justified.

This guy thinks there’s a force hurling 
him into the windshield. What a dummy!

The ball stays in place; the airplane
is an inertial reference frame.

(a) Cruising at constant speed.

FIGURE 5.20 Reference frames.

The ball accelerates toward the back even
though there are no horizontal forces; the
airplane is not an inertial reference frame.

(b) Accelerating during takeoff.
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5.7 Free-Body Diagrams 145

To understand the motion of the passengers in a braking car, you need to measure 
velocities and accelerations relative to the ground. From the perspective of an observer 
on the ground, the body of a passenger in a braking car tries to continue moving 
forward with constant velocity, exactly as we would expect on the basis of Newton’s 
first law, while his immediate surroundings are decelerating. The passenger is not  
“thrown” into the windshield. Instead, the windshield runs into the passenger!

Thinking About Force
It is important to identify correctly all the forces acting on an object. It is equally im-
portant not to include forces that do not really exist. We have established a number of 
criteria for identifying forces; the three critical ones are:

 ■ A force has an agent. Something tangible and identifiable causes the force.
 ■ Forces exist at the point of contact between the agent and the object experiencing 

the force (except for the few special cases of long-range forces).
 ■ Forces exist due to interactions happening now, not due to what happened in the past.

Consider a bowling ball rolling along on a smooth floor. It is very tempting to think 
that a horizontal “force of motion” keeps it moving in the forward direction. But nothing 
contacts the ball except the floor. No agent is giving the ball a forward push. According 
to our definition, then, there is no forward “force of motion” acting on the ball. So what 
keeps it going? Recall our discussion of the first law: No cause is needed to keep an object 
moving at constant velocity. It continues to move forward simply because of its inertia.

A related problem occurs if you throw a ball. A pushing force was indeed required 
to accelerate the ball as it was thrown. But that force disappears the instant the ball 
loses contact with your hand. The force does not stick with the ball as the ball travels 
through the air. Once the ball has acquired a velocity, nothing is needed to keep it 
moving with that velocity.

5.7 Free-Body Diagrams
Having discussed at length what is and is not a force, we are ready to assemble our 
knowledge about force and motion into a single diagram called a free-body diagram. 
You will learn in the next chapter how to write the equations of motion directly from 
the free-body diagram. Solution of the equations is a mathematical exercise—possibly 
a difficult one, but nonetheless an exercise that could be done by a computer. The 
physics of the problem, as distinct from the purely calculational aspects, are the steps 
that lead to the free-body diagram.

A free-body diagram, part of the pictorial representation of a problem, 
represents the object as a particle and shows all of the forces acting on the object.

There’s no “force of motion” or any  
other forward force on this dart. It 
continues to move because of inertia.

TACTICS BOX 5.3

Drawing a free-body diagram
1  Identify all forces acting on the object. This step was described in Tactics 

Box 5.2.
2  Draw a coordinate system. Use axes that match the direction of motion.
3  Represent the object as a dot at the origin of the coordinate axes. This is 

the particle model.
4  Draw vectors representing each of the identified forces. This was described 

in Tactics Box 5.1. Be sure to label each force vector.
5  Draw and label the net force vector F

u

net. Draw this vector beside the diagram, not 
on the particle. Or, if appropriate, write F

u

net = 0
u
. Then check that F

u

net points in 
the same direction as the acceleration vector au on your motion diagram.

Exercises 24–29 
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146 CHAPTER 5 Force and Motion

An elevator, suspended by a cable, speeds up as it moves upward from the ground floor. 
Identify the forces and draw a free-body  diagram of the elevator.

MODEL Model the elevator as a particle.

VISUALIZE

REVIEW The coordinate axes, with a vertical y-axis, are the ones we would use in a picto-
rial representation of the motion. The  elevator is accelerating upward, so F

u

net must point 
upward. For this to be true, the magnitude of T 

u
 must be larger than the magnitude of F

u

G. 
The diagram has been drawn accordingly.

EXAMPLE 5.4 ■ An elevator accelerates upward

Force identification

Identify all
forces acting
on the object.

1

Tension T

Gravity FG

u

u

T
u

Free-body diagram Draw a coordinate
system.

Represent the
object as a dot
at the origin.

y

x

Draw vectors for
the identified forces.

2

3

4
5

FG
Fnet

Draw and label
Fnet beside the
diagram.

u

u

u

FIGURE 5.21 Free-body diagram of an elevator accelerating upward.

Bobby straps a small model rocket to a block of ice and shoots it 
across the smooth surface of a frozen lake. Friction is negligible. 
Draw a pictorial representation of the block of ice.

MODEL Model the block of ice as a particle. The pictorial rep-
resentation consists of a motion diagram to determine au, a 
force- identification picture, and a free-body diagram. The statement 
of the situation  implies that friction is negligible.

EXAMPLE 5.5 ■ An ice block shoots across a frozen lake

Force identificationMotion diagram Free-body diagram

Check that Fnet points in the same direction as a.
uu

FIGURE 5.22 Pictorial representation for a block of ice shooting across a frictionless frozen lake.

VISUALIZE

REVIEW The motion diagram tells us that the acceleration is in the 
positive x-direction. According to the rules of vector addition, this can 
be true only if the upward-pointing nu and the downward-pointing F

u

G 

are equal in magnitude and thus cancel each other. The vectors have 
been drawn accordingly, and this leaves the net force vector pointing 
toward the right, in agreement with au from the motion diagram.
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5.7 Free-Body Diagrams 147

Free-body diagrams will be our major tool for the next several chapters. Careful 
practice with the workbook exercises and homework in this chapter will pay  immediate 
benefits in the next chapter. Indeed, it is not too much to assert that a problem is half 
solved, or even more, when you complete the free-body diagram.

A tow rope pulls a skier up a snow-covered hill at a constant speed. 
Draw a pictorial representation of the skier.

MODEL This is Example 5.2 again with the additional informa-
tion that the skier is moving at constant speed. The skier will be 

modeled as a particle in mechanical equilibrium. If we were doing  
a kinematics problem, the pictorial representation would use a 
tilted coordinate system with the x-axis parallel to the slope, so we 
use these same tilted coordinate axes for the free-body diagram.

EXAMPLE 5.6 ■ A skier is pulled up a hill

VISUALIZE

REVIEW We have shown T 
u

 pulling parallel to the slope and f 
u

k, 
which opposes the direction of motion, pointing down the slope. 
nu is perpendicular to the surface and thus along the y-axis. Finally,  
and this is important, the gravitational force F

u

G is vertically 
downward, not along the negative y-axis. In fact, you should 
convince yourself from the geometry that the angle u between the 

F
u

G vector and the negative y-axis is the same as the angle u of the 
incline above the horizontal. The skier moves in a straight line with 
constant speed, so au = 0

u
 and, from Newton’s second law, F

u

net = 0
u
. 

Thus we have drawn the vectors such that the y-component of F
u

G is 
equal in magnitude to nu. Similarly, T 

u
 must be large enough to match 

the negative x-components of both f 
u

k and F
u

G.

Force identification Free-body diagramMotion diagram

Check that Fnet points in the same direction as a.

Notice that the angle between
FG and the negative y-axis is
the same as the angle of
the incline.

uu

u

FIGURE 5.23 Pictorial representation for a skier being towed at a constant speed.

STOP TO THINK 5.5 An elevator suspended by a cable is moving upward and  slowing  
to a stop. Which free-body diagram is correct?

T
uT

u

T
u

y

x

y

x

y

x

y

x

(a) (b) (c) (d) (e)

Fnet = 0

Felevator

FGFGFGFG

uuuu

u

u
T
u

u
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Newton’s Second Law
An object with mass m has acceleration

au =
1
m

 F
u

net

where F
u

net = F
u

1 + F
u

2 + F
u

3 + g is the vector 
sum of all the individual forces acting on the object.

a
u

v
u

Fnet

u

The second law tells us that a net force causes 
an object to accelerate. This is the connection 
between force and motion.

Newton’s Zeroth Law
An object responds only to forces 
acting on it at this instant.

Newton’s First Law
An object at rest will remain at rest, or an  
object that is moving will continue to move  
in a straight line with constant velocity, if  
and only if the net force on the object is  
zero.

v
u

Fnet = 0

a = 0
u

u

u

u

The first law tells us that no “cause” is needed 
for motion. Uniform motion is the “natural 
state” of an object.

General Principles

Summary The goal of Chapter 5 has been to learn about the connection 
between force and motion.

Newton’s laws are
valid only in inertial
reference frames.

Force is a push or a pull on an object.
• Force is a vector, with a magnitude and a 

direction.

• Force requires an agent.

• Force is either a contact force or a long-  
range force.

Mass is the resistance of an object 
to acceleration. It is an intrinsic 
property of an object.

Mass is the inverse 
of the slope. Larger 
mass, smaller slope.

Force

A
cc

el
er

at
io

n

Acceleration is the link to kinematics.

From F
u

net, find au.

From ax, find vx and x.

au = 0
u
 is the condition for equilibrium.

An object at rest is in equilibrium.

So is an object with constant velocity.

Equilibrium occurs if and only if F
u

net = 0
u
.

Important Concepts

Identifying Forces
Forces are identified by locating the points 
where other objects touch the object of in-
terest. These are points where contact forces 
are exerted. In addition, objects with mass 
feel a long-range gravitational force.

Free-Body Diagrams
A free-body diagram represents the object  
as a particle at the origin of a coordinate 
system. Force vectors are drawn with their  
tails on the particle. The net force vector is 
drawn beside the diagram.

Key Skills
Thrust force Fthrust

Gravity FG Normal force n
u

u

u

n
u

x

y

Fthrust

Fnet

FG

u

u

u

Terms and Notation
mechanics
dynamics
force, F

u

agent
contact force
long-range force
net force, F

u

net

superposition of forces

gravitational force, F
u

G

spring force, F
u

Sp

tension force, T 
u

ball-and-spring model

normal force, nu

friction, f 
u

k or f 
u

s

drag, F
u

drag

thrust, F
u

thrust

proportionality

proportionality constant

proportional reasoning

newton, N

inertia

inertial mass, m

Newton’s second law

Newton’s zeroth law

Newton’s third law

Newton’s first law

mechanical equilibrium

inertial reference frame

free-body diagram
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CONCEPTUAL QUESTIONS
1. An elevator suspended by a cable is descending at constant ve-

locity. How many force vectors would be shown on a free-body 
diagram? Name them.

2. A compressed spring is pushing a block across a rough horizontal 
table. How many force vectors would be shown on a free-body 
diagram? Name them.

3. A brick is falling from the roof of a three-story building. How 
many force vectors would be shown on a free-body diagram? 
Name them.

4. In FIGURE Q5.4, block B is fall-
ing and dragging block A across 
a table. How many force vectors 
would be shown on a free-body 
diagram of block A? Name them.

5. You toss a ball straight up in the 
air. Immediately after you let go 
of it, what force or forces are act-
ing on the ball? For each force you 
name, (a) state whether it is a contact force or a long-range force 
and (b) identify the agent of the force.

6. A constant force applied to object A causes it to accelerate at 
4 m/s2. The same force applied to object B causes an acceleration 
of 8 m/s2. When applied to object C, the rate of acceleration is 
6 m/s2.
a. Which object has the largest mass? Explain.
b. Which object has the smallest mass?
c. What is the ratio of the mass of object A to that of object B?

7. An object experiencing a constant force accelerates at 5 m/s2. 
What will the acceleration of this object be if
a. the force is halved? Explain.
b. the mass is halved?
c. both the force and mass are halved?

8. An object experiencing a constant force accelerates at 5 m/s2. 
What will the acceleration of this object be if
a. the force is doubled? Explain.
b. the mass is doubled?
c. both the force and the mass are doubled?

9. If an object is at rest, can you conclude that there are no forces 
acting on it? Explain.

10. If a force is exerted on an object, is it possible for that object to be  
moving with constant velocity? Explain.

11. Is the statement “An object always moves in the direction of the 
net force acting on it” true or false? Explain.

12. Newton’s second law says F
u

net = mau. So is mau a force? Explain.
13. What is the condition under which the speed of an object remains 

constant, even when the net external force on it is not zero?
14. Suppose you press your physics book against a wall hard enough 

to keep it from moving. Does the friction force on the book point 
(a) into the wall, (b) out of the wall, (c) up, (d) down, or (e) is 
there no friction force? Explain.

15. FIGURE Q5.15 shows a hollow tube forming three-quarters of a 
circle. It is lying flat on a table. A ball is shot through the tube 
at high speed. As the ball emerges from the other end, does it 
follow path A, path B, or path C? Explain.

A

B

FIGURE Q5.4

View from above

A
B

C

FIGURE Q5.15 FIGURE Q5.16

16. Which, if either, of the basketballs in FIGURE Q5.16 are in 
 equilib rium? Explain.

17. Dental braces used to correct the alignment of teeth in young 
adults are made of a steel wire having a tension of about 30 N. 
This force is high enough to break a tooth. In spite of that, braces 
help correct the alignment of teeth over a long period of time. 
How is this made possible? Explain.

EXERCISES AND PROBLEMS

Exercises

Section 5.3 Identifying Forces

1. | A chandelier hangs from a chain in the middle of a dining 
room. Identify the forces on the chandelier.

2. | A car is parked on a steep hill. Identify the forces on the car.
3. | A baseball player is sliding into second base. Identify the forces  

on the baseball player.
4. || An arrow has just been shot from a bow and is now traveling 

horizontally. Air resistance is not negligible. Identify the forces 
on the arrow.

5. || A jet plane is speeding down the runway during takeoff. Air 
resistance is not negligible. Identify the forces on the jet.

Section 5.4 What Do Forces Do?

6. | Two rubber bands pulling on an object cause it to accelerate at 
1.2 m/s2.
a. What will be the object’s acceleration if it is pulled by four 

rubber bands?
b. What will be the acceleration of two of these objects glued 

together if they are pulled by two rubber bands?
7. | Two rubber bands cause an object to accelerate with accelera-

tion a. How many rubber bands are needed to cause an object with  
half the mass to accelerate three times as quickly?
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150 CHAPTER 5 Force and Motion

16. | a. What force is needed to accelerate a 1900 kg car at  
one-fourth of g?

b. What is the acceleration, as a multiple of g, if this force is 
applied to a 90 kg bicyclist? This is the combined mass of 
the cyclist and the bike.

Section 5.6 Newton’s First Law

Exercises 17 through 19 show two of the three forces acting on an 
object in equilibrium. Redraw the diagram, showing all three forces. 
Label the third force F

u

3.

8. || FIGURE EX5.8 shows an acceleration-versus-force graph for three 
objects pulled by rubber bands. The mass of object B is 0.20 kg. 
What are the masses of objects A and C? Explain your reasoning.
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9. || FIGURE EX5.9 shows the accelerations when forces FA and FB 
are applied to a series of different masses constructed by gluing 
identical blocks together. Suppose FA = 8 N. What is FB?

10. || For an object starting from rest and accelerating with con-
stant acceleration, distance traveled is proportional to the square 
of the time. If an object travels 1.0 meter in the first 3.0 s, how far 
will it travel in the first 9.0 s?

11. || You’ll learn in Chapter 13 that the gravitational energy of  
two masses is inversely proportional to the distance between them.  
Suppose the gravitational energy of a sun-planet system is 
-3 * 1033 J, where the joule (J) is the unit of energy. What would 
be the gravitational energy if the planet were half as far from the sun?

Section 5.5 Newton’s Second Law

12. | FIGURE EX5.12 shows an acceleration-versus-force graph for 
a 500 g object. What acceleration values go in the blanks on the 
vertical scale?

13. | FIGURE EX5.13 shows an acceleration-versus-force graph for a 
600 g object. What force values go in the blanks on the horizon-
tal scale?

14. | FIGURE EX5.14 shows an object’s acceleration-versus-force 
graph. What is the object’s mass?

17. | 18. | 19. |

Section 5.7 Free-Body Diagrams

Exercises 20 through 22 show a free-body diagram. For each, write a 
short description of a real object for which this would be the correct 
free-body diagram. Use Examples 5.4, 5.5, and 5.6 as examples of 
what a description should be like.

20. | 21. | 22. |

FIGURE EX5.20
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FIGURE EX5.22

Exercises 23 through 27 describe a situation. For each, identify all 
forces acting on the object and draw a free-body diagram of the object.

23. | A cat is sitting on a window sill.
24. | An ice hockey puck glides across frictionless ice.
25. | Your physics textbook is sliding across the table.
26. | A steel beam, suspended by a single cable, is being lowered 

by a crane at a steadily decreasing speed.
27. | A jet plane is accelerating down the runway during takeoff. 

Friction is negligible, but air resistance is not.

Problems
28. | Redraw the two motion 

diagrams shown in FIGURE 
P5.28, then draw a vector be-
side each one to show the 
direction of the net force act-
ing on the object. Explain your 
reasoning.

FIGURE P5.28

v
u

(a)

v
u

(b)15. || FIGURE EX5.15 shows the acceleration of objects of different mass 
that experience the same force. What is the magnitude of the force?
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35. | 36. |29. | A single force with x-component Fx acts on a 2.0 kg object 
as it moves along the x-axis. The object’s acceleration graph (ax 
versus t) is shown in FIGURE P5.29. Draw a graph of Fx versus t.
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30. | A single force with x-component Fx acts on a 500 g object as 
it moves along the x-axis. The object’s acceleration graph (ax 
versus t) is shown in FIGURE P5.30. Draw a graph of Fx versus t.

31. || A single force with x-component Fx acts on a 500 g object 
as it moves along the x-axis. A graph of Fx versus t is shown in 
FIGURE P5.31. Draw an acceleration graph (ax versus t) for this 
object.

32. | A single force with x-component Fx acts on a 2.0 kg object 
as it moves along the x-axis. A graph of Fx versus t is shown in 
FIGURE P5.32. Draw an acceleration graph (ax versus t) for this 
object.

33. | A constant force is applied to an object, causing the object to 
accelerate at 6.0 m/s2. What will the acceleration be if
a. the force is doubled?
b. the object’s mass is doubled?
c. the force and the object’s mass are both doubled?
d. the force is doubled and the object’s mass is halved?

34. | A constant force is applied to an object, causing it to acceler-
ate at 8 m/s2. What will the acceleration be if
a. the force is halved?
b. the object’s mass is halved?
c. both force and the object’s mass are halved?
d. the force is halved but the object’s mass is doubled?

Problems 35 through 40 show a free-body diagram. For each:
a. Identify the direction of the acceleration vector au and show it as 

a vector next to your diagram. Or, if appropriate, write au = 0
u
.

b. If possible, identify the direction of the velocity vector v 

u
 and 

show it as a labeled vector.
c. Write a short description of a real object for which this is the 

correct free-body diagram. Use Examples 5.4, 5.5, and 5.6 as 
models of what a description should be like.

37. | 38. |

39. || 40. ||

41. || In lab, you propel a cart with four known forces while using 
an ultrasonic motion detector to measure the cart’s acceleration. 
Your data are as follows:

Force (N) Acceleration (m/s2)

0.25 0.5

0.50 0.8

0.75 1.3

1.00 1.8

a. How should you graph these data so as to determine the mass 
of the cart from the slope of the line? That is, what values 
should you graph on the horizontal axis and what on the 
 vertical axis?

b. Is there another data point that would be reasonable to add, 
even though you made no measurements? If so, what is it?

c. What is your best determination of the cart’s mass?

Problems 42 through 52 describe a situation. For each, draw a motion 
diagram, a force-identification diagram, and a free-body diagram.
42. | A Styrofoam ball has just been shot straight up. Air resistance 

is not negligible.
43. | An elevator, suspended by a single cable, has just left the 

tenth floor and is speeding up as it descends toward the ground 
floor.

44. || A rocket is being launched straight up. Air resistance is not 
 negligible.

45. | A lawnmower is pushed at a constant speed.

M05_KNIG8221_05_GE_C05.indd   151 28/06/22   11:24 AM



152 CHAPTER 5 Force and Motion

a. A rubber ball has been dropped and is bouncing off the floor. 
Draw a motion diagram of the ball during the brief time  interval 
that it is in contact with the floor. Show 4 or 5 frames as the ball 
compresses, then another 4 or 5 frames as it  expands. What is 
the direction of au during each of these parts of the motion?

b. Draw a picture of the ball in contact with the floor and 
 identify all forces acting on the ball.

c. Draw a free-body diagram of the ball during its contact with 
the ground. Is there a net force acting on the ball? If so, in 
which direction?

d. Write a paragraph in which you describe what you learned 
from parts a to c and in which you answer the question: How 
does a ball bounce?

57. || If a car stops suddenly, you feel “thrown forward.” We’d like 
to understand what happens to the passengers as a car stops. 
Imagine yourself sitting on a very slippery bench inside a car. 
This bench has no friction, no seat back, and there’s nothing for 
you to hold onto.
a. Draw a picture and identify all of the forces acting on you 

as the car travels at a perfectly steady speed on level ground.
b. Draw your free-body diagram. Is there a net force on you? If 

so, in which direction?
c. Repeat parts a and b with the car slowing down.
d. Describe what happens to you as the car slows down.
e. Use Newton’s laws to explain why you seem to be “thrown 

forward” as the car stops. Is there really a force pushing you 
forward?

f. Suppose now that the bench is not slippery. As the car slows 
down, you stay on the bench and don’t slide off. What force is 
responsible for your deceleration? In which direction does this 
force point? Include a free-body diagram as part of your answer.

46. | You’ve just kicked a rock on the sidewalk and it is now sliding 
along the concrete.

47. || You’ve slammed on the brakes and your car is skidding to a 
stop while going down a 20° hill.

48. | You’ve jumped down from a platform. Your feet are touching 
the ground and your knees are flexing as you stop.

49. || You are bungee jumping from a high bridge. You’re slowing 
down as the bungee cord approaches its maximum stretch.

50. || A spring-loaded gun shoots a plastic ball. The trigger has just 
been pulled and the ball is starting to move down the barrel. The 
barrel is horizontal.

51. || Your friend went for a loop-the-loop ride at the amusement 
park. Her car is upside down at the top of the loop.

52. || A model rocket is fired straight down from the top of a tower.
53. || The leaf hopper, champion jumper of the insect world, can 

jump straight up at 4 m/s2. The jump itself lasts a mere 1 ms 
before the insect is clear of the ground.
a. Draw a free-body diagram of this mighty leaper while the 

jump is taking place.
b. While the jump is taking place, is the force of the ground on 

the leaf hopper greater than, less than, or equal to the force of 
gravity on the leaf hopper? Explain.

54. || What average net force is required to bring a car weighing 
850 kg to rest from a speed of 120 km/h within a distance of 
50 m? What conclusion can you draw from the answer?

55. || Calculate the force that a sportsperson of mass 62 kg must exert 
on the ground during a high jump to produce an upward accelera-
tion 4.5 times the acceleration due to gravity. What is the net force 
with which she leaves the ground?

56. || A rubber ball bounces. We’d like to understand how the ball 
bounces.
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Dynamics I: Motion 
Along a Line

How are Newton’s laws used to solve problems?
Newton’s first and second laws are  
vector equations. To use them,

■■ Draw a free-body diagram.
■■ Read the x- and y-components of the 

forces directly off the free-body diagram.
■■ Use aFx = max and aFy = may.

How are dynamics problems solved?
A net force on an object causes the  
object to accelerate.

■■ Identify the forces and draw a  
free-body diagram.

■■ Use Newton’s second law to find the 
object’s acceleration.

■■ Use kinematics for velocity and position.

❮❮ LOOKING BACK Sections 2.4–2.6 Kinematics

How are equilibrium problems solved?
An object at rest or moving with constant 
velocity is in equilibrium with no net force.

■■ Identify the forces and draw a free-body 
diagram.

■■ Use Newton’s second law with au = 0
u

  
to solve for unknown forces.

❮❮ LOOKING BACK Sections 5.1–5.2 Forces

What are mass and weight?
Mass and weight are not the same.

■■ Mass describes an object’s inertia. Loosely 
speaking, it is the amount of matter in an 
object. It is the same everywhere.

■■ Gravity is a force.
■■ Weight is the result of weighing an object 

on a scale. It depends on mass, gravity, and 
acceleration.

How do we model friction and drag?
Friction and drag are complex forces, but  
we will develop simple models of each.

■■ Static, kinetic, and rolling friction 
depend on the coefficients of friction 
but not on the object’s speed.

■■ Drag depends on an object’s speed and 
on the Reynolds number.

■■ Falling objects reach terminal speed  
when drag and gravity are balanced.

How do we solve problems?
We will develop and use a four-part problem-solving strategy:

■■ Model the problem, using information about objects and forces.
■■ Visualize the situation with a pictorial representation.
■■ Solve the problem with Newton’s laws.
■■ Review the result to see if it is reasonable.

IN THIS CHAPTER, you will learn to solve linear force-and-motion problems.

6 

The powerful thrust of the jet engines 
accelerates this enormous plane to a  
speed of over 150 mph in less than 
a mile.

Fnet

u

y

x

a
u

Friction fs

u
Normal n

u

Gravity FG

u

FG

u

FSp

u

v
u

Kinetic friction
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154 CHAPTER 6  Dynamics I: Motion Along a Line

6.1 The Equilibrium Model
Kinematics is a description of how an object moves. But our goal is deeper: We would 
like an explanation for why an object moves as it does. Galileo and Newton discovered  
that motion is determined by forces. In the absence of a net force, an object is at rest 
or moves with constant velocity. Its acceleration is zero, and this is the basis for our 
first explanatory model: the equilibrium model.

The concept of equilibrium is essential 
for the engineering analysis of stationary 
objects such as bridges.

MODEL 6.1 

Mechanical equilibrium
For objects on which the net force is zero.

■■ Model the object as a particle with no acceleration.

• A particle at rest is in equilibrium.

• A particle moving in a straight line at constant speed is also 
in equilibrium.

■■ Mathematically: au = 0
u

 in equilibrium; thus

• Newton’s second law is F
u

net = a
i

F
u

i = 0
u
.

• The forces are “read” from the free-body diagram,
■■ Limitations: Model fails if the forces aren’t balanced.

F1

u

F2

u

F3

u

a = 0
u u
Fnet = 0
u u

The object is at rest or
moves with constant
velocity.

Newton’s laws are vector equations. The requirement for mechanical equilibrium, 
F
u

net = 0
u

 and thus au = 0
u

, is a shorthand way of writing two simultaneous equations:

 1Fnet2x = a
i
1Fi2x = 0 and 1Fnet2y = a

i
1Fi2y = 0 (6.1)

In other words, the sum of all x-components and the sum of all y-components must 
simultaneously be zero. Although real-world situations often have forces pointing  
in three dimensions, thus requiring a third equation for the z-component of F

u

net, we 
will restrict ourselves for now to problems that can be analyzed in two dimensions.

   NOTE    The equilibrium condition of Equations 6.1 applies only to particles, which 
cannot rotate. Mechanical equilibrium of an extended object, which can rotate, 
requires an additional condition that we will study in Chapter 12.

Equilibrium problems occur frequently. Let’s look at a couple of examples.

Your kneecap (patella) is attached by a tendon to your quadriceps 
 muscle. This tendon pulls at a 10° angle relative to the femur, the bone  
of your upper leg. The patella is also attached to your lower leg (tibia) 
by a tendon that pulls parallel to the leg. To balance these forces, the 

end of your femur pushes outward on the patella. Bending your knee 
increases the tension in the tendons, and both have a tension of 60 N 
when the knee is bent to make a 70° angle between the upper and lower 
leg. What force does the femur exert on the kneecap in this position?

EXAMPLE 6.1  ■ Finding the force on the kneecap

FIGURE 6.1  Pictorial representation of the kneecap in equilibrium.

F
u

y

x

Identify the patella
as the object.

There’s no
net force.

Establish a coordinate
system aligned with
the femur.

Femur

Quadriceps

10°

10°

70°70°

Tendon

Femur push

Patella

Tibia

Three forces act
on the patella.

u

Name and label the
angle of the push.T2

u

T1

u

Fnet = 0
u u

Known

T1 = 60 N
T2 = 60 N

Find

F
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6.1 The Equilibrium Model 155

MODEL Model the kneecap as a particle in mechanical equilibrium.

VISUALIZE FIGURE 6.1 shows how to draw a pictorial representation. 
We’ve chosen to align the x-axis with the femur. The three forces— 
shown on the free-body diagram—are labeled T

u

1 and T
u

2 for the tens-
ions and F

u
 for the femur’s push. Notice that we’ve defined angle u to  

indicate the direction of the femur’s force on the kneecap.

SOLVE This is an equilibrium problem, with three forces on the 
kneecap that must sum to zero. For a

u = 0
u

, Newton’s second law, 
written in component form, is

 1Fnet2x = a
i
1Fi2x = T1x + T2x + Fx = 0

 1Fnet2y = a
i
1Fi2y = T1y + T2y + Fy = 0

   NOTE    You might have been tempted to write -T1x in the 
equation since T

u

1 points to the left. But the net force, by definition, 
is the sum of all the individual forces. The fact that T

u

1 points to the 
left will be taken into account when we evaluate the components.

The components of the force vectors can be evaluated directly 
from the free-body diagram:

 T1x = -T1 cos 10°    T1y = T1 sin 10°

 T2x = -T2 cos 70°    T2y = -T2 sin 70°

 Fx = F cos u        Fy = F sin u

This is where signs enter, with T
u

1, being assigned a negative value 
because T

u

1 points to the left. Similarly, T
u

2 points both to the left 
and down, so both T2x and T2y are negative. With these components,  
Newton’s second law becomes

-T1 cos 10° - T2 cos 70° + F cos u = 0

T1 sin 10° - T2 sin 70° + F sin u = 0

These are two simultaneous equations for the two unknowns F and 

u. We will encounter equations of this form on many occasions, 
so make a note of the method of solution. First, rewrite the two 
equations as

 F cos u = T1 cos 10° + T2 cos 70°
 F sin u = -T1 sin 10° + T2 sin 70°

Next, divide the second equation by the first to eliminate F:

F sin u
F cos u

= tan u =
-T1 sin 10° + T2 sin 70°
T1 cos 10° + T2 cos 70°

Then solve for u:

  u = tan-11 -T1 sin 10° + T2 sin 70°
T1 cos 10° + T2 cos 70° 2

  = tan-11 -160 N2 sin 10° + 160 N2 sin 70°
160 N2 cos 10° + 160 N2 cos 70° 2 = 30°

Finally, use u to find F:

  F =
T1 cos 10° + T2 cos 70°

cos u

  =
160 N2 cos 10° + 160 N2 cos 70°

cos 30°
= 92 N

The question asked What force? and force is a vector, so we must 
specify both the magnitude and the direction. With the knee in this 
position, the femur exerts a force F

u
= (92 N, 30° above the femur) 

on the kneecap.

REVIEW The magnitude of the force would be 0 N if the leg were 
straight, 120 N if the knee could be bent 180° so that the two tendons  
pull in parallel. The knee is closer to fully bent than to straight, so 
we would expect a femur force between 60 N and 120 N. Thus the 
calculated magnitude of 92 N seems reasonable.

A car with a weight of 15,000 N is being towed up a 20° slope at 
constant velocity. Friction is negligible. The tow rope is rated at 
6000 N maximum tension. Will it break?

MODEL Model the car as a particle in mechanical equilibrium.

VISUALIZE Part of our analysis of the problem statement is to deter-
mine which quantity or quantities allow us to answer the yes-or-no 

question. In this case, we need to calculate the tension in the rope. 
FIGURE 6.2 shows the pictorial representation. Note the similarities to 
Examples 5.2 and 5.6 in Chapter 5, which you may want to review.

We noted in Chapter 5 that the weight of an object at rest is 
the magnitude FG of the gravitational force acting on it, and that 
information has been listed as known.

EXAMPLE 6.2  ■ Towing a car up a hill

FIGURE 6.2  Pictorial representation of a car being towed up a hill.

n
u

u

u

y

x

Same
angle

Tension T

Normal force nGravity FG FG

The coordinate system is chosen
with one axis parallel to the motion.

The normal force is
perpendicular to the surface.

Fnet = 0
u u

u
u

T
u

u

u

Known

u = 20°
FG = 15,000 N

T

Find

Continued
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156 CHAPTER 6  Dynamics I: Motion Along a Line

6.2 Using Newton’s Second Law
The essence of Newtonian mechanics, introduced in ❮❮ SECTION 5.4, can be expressed 
in two steps:

■■ The forces acting on an object determine its acceleration au = F
u

net/m.
■■ The object’s trajectory can be determined by using au in the equations of kinematics.

These two ideas are the basis of a problem-solving strategy.

PROBLEM-SOLVING STRATEGY 6.1 

Newtonian mechanics

MODEL Model the object as a particle. Make other simplifications depending on 
what kinds of forces are acting.

VISUALIZE Draw a pictorial representation.
■■ Show important points in the motion with a sketch, establish a coordinate 
 system, define symbols, and identify what the problem is trying to find.

■■ Use a motion diagram to determine the object’s acceleration vector au. The 
 acceleration is zero for an object in equilibrium.

■■ Identify all forces acting on the object at this instant and show them on a  
free-body diagram.

■■ It’s OK to go back and forth between these steps as you visualize the situation.

SOLVE The mathematical representation is based on Newton’s second law:

F
u

net = a
i

F
u

i = mau

The forces are “read” directly from the free-body diagram. Depending on the 
problem, either

■■ Solve for the acceleration, then use kinematics to find velocities and positions; or
■■ Use kinematics to determine the acceleration, then solve for unknown forces.

REVIEW Check that your result has correct units and significant figures, is reasonable, 
and answers the question.

Exercise 23 

SOLVE The free-body diagram shows forces T 
u

 nu, and F
u

G acting on 
the car. Newton’s second law with au = 0

u
 is

 1Fnet2x = aFx = Tx + nx + 1FG2x = 0

 1Fnet2y = aFy = Ty + ny + 1FG2y = 0

From here on, we’ll use gFx and gFy, without the label i, as a simple 
shorthand notation to indicate that we’re adding all the x-components 
and all the y-components of the forces.

We can find the components directly from the free-body diagram:

Tx = T       Ty = 0

nx = 0       ny = n

1FG2x = -FG sin u   1FG2y = -FG cos u

   NOTE    The gravitational force has both x- and y-components  
in this coordinate system, both of which are negative due to  
the direction of the vector F

u

G. You’ll see this situation often, so be 
sure you understand where 1FG2x and 1FG2y come from.

With these components, the second law becomes

 T - FG sin u = 0

 n - FG cos u = 0

The first of these can be rewritten as

 T = FG sin u = 115,000 N2 sin 20° = 5100 N

Because T 6 6000 N, we conclude that the rope will not break. It 
turned out that we did not need the y-component equation in this 
problem.

REVIEW Because there’s no friction, it would not take any tension 
force to keep the car rolling along a horizontal surface 1u = 0°2. At 
the other extreme, u = 90°, the tension force would need to equal 
the car’s weight 1T = 15,000 N2 to lift the car straight up at constant  
velocity. The tension force for a 20° slope should be somewhere in 
between, and 5100 N is a little less than half the weight of the car. 
That our result is reasonable doesn’t prove it’s right, but we have at 
least ruled out careless errors that give unreasonable results.
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6.2 Using Newton’s Second Law 157

Newton’s second law is a vector equation. To apply the step labeled Solve, you must  
write the second law as two simultaneous equations:

  1Fnet2x = aFx = max 

  1Fnet2y = aFy = may 
(6.2)

The primary goal of this chapter is to illustrate the use of this strategy.

If all the forces acting on an object are constant, as in the last example, then the 
object moves with constant acceleration and we can deploy the constant-acceleration 
model of kinetics. Now not all forces are constant—you will later meet forces that vary 
with position or time—but in many situations it is reasonable to model the motion as 
being due to constant forces. The constant-force model will be our most important 
dynamics model for the next several chapters.

A 1500 kg car is pulled by a tow truck. The tension in the tow rope 
is 2500 N, and a 200 N friction force opposes the motion. If the car 
starts from rest, what is its speed after 5.0 seconds?

MODEL Model the car as an accelerating particle. We’ll assume, as 
part of our interpretation of the problem, that the road is horizontal 
and that the direction of motion is to the right.

VISUALIZE FIGURE 6.3 shows the pictorial representation. We’ve 
established a coordinate system and defined symbols to represent 
kinematic quantities. We’ve identified the speed v1, rather than the 
velocity v1x, as what we’re trying to find.

SOLVE We begin with Newton’s second law:

 1Fnet2x = aFx = Tx + fx + nx + 1FG2x = max

 1Fnet2y = aFy = Ty + fy + ny + 1FG2y = may

All four forces acting on the car have been included in the vector 
sum. The equations are perfectly general, with +  signs every-
where, because the four vectors are added to give F

u

net. We can now  
“read” the vector components from the free-body diagram:

 Tx = +T    Ty = 0     nx = 0    ny = +n

 fx = - f    fy = 0    1FG2x = 0    1FG2y = -FG

The signs, which we had to insert by hand, depend on which way 
the vectors point. Substituting these into the second-law equations 
and dividing by m give

  ax =
1
m

 1T - f 2

  =
1

1500 kg
 12500 N - 200 N2 = 1.53 m/s2

  ay =
1
m

 1n - FG2
   NOTE    Newton’s second law has allowed us to determine ax 
exactly but has given only an algebraic expression for ay. However, 
we know from the motion diagram that ay = 0! That is, the motion 
is purely along the x-axis, so there is no acceleration along the  
y-axis. The requirement ay = 0 allows us to conclude that n = FG.

Because ax is a constant 1.53 m/s2, we can finish by using 
 constant-acceleration kinematics to find the velocity:

  v1x = v0x + ax ∆t

  = 0 + 11.53 m/s2215.0 s2 = 7.7 m/s

The problem asked for the speed after 5.0 s, which is v1 =  7.7 m/s.

REVIEW 7.7 m/s ≈ 15 mph, a quite reasonable speed after 5 s of 
acceleration.

EXAMPLE 6.3  ■ Speed of a towed car

  FIGURE 6.3  Pictorial representation of a car being towed.

Sketch Motion diagram and forces

Agrees
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158 CHAPTER 6  Dynamics I: Motion Along a Line

MODEL 6.2 

Constant force
For objects on which the net force is constant.

■■ Model the object as a particle with uniform acceleration.

• The particle accelerates in the direction of the net force.
■■ Mathematically:

• Newton’s second law is F
u

net = a
i

F
u

i = mau.

• Use the kinematics of constant acceleration.
■■ Limitations: Model fails if the forces aren’t constant.

a
u

F1

u

F2

u

a = 
u

m

Fnet

u

The object undergoes
uniform acceleration.

A 500 g model rocket with a weight of 4.90 N is launched straight 
up. The small rocket motor burns for 5.00 s and has a steady thrust 
of 20.0 N. What maximum altitude does the rocket reach?

MODEL We’ll model the rocket as a particle acted on by constant 
forces by neglecting the velocity-dependent air resistance (rockets 
have very aerodynamic shapes) and neglecting the mass loss of the 
burned fuel.

VISUALIZE The pictorial representation of FIGURE 6.4 finds that this 
is a two-part problem. First, the rocket accelerates straight up. Sec-
ond, after exhausting its fuel, the rocket continues going up as it 
slows down, a free-fall situation. The maximum altitude is at the 
end of the second part of the motion.

SOLVE We now know what the problem is asking, have established 
relevant symbols and coordinates, and know what the forces are. 

We begin the mathematical representation by writing Newton’s 
second law, in component form, as the rocket accelerates upward. 
The free-body diagram shows two forces, so

 1Fnet2x = aFx = 1Fthrust2x + 1FG2x = ma0x

 1Fnet2y = aFy = 1Fthrust2y + 1FG2y = ma0y

The fact that vector F
u

G points downward—and which might have 
tempted you to use a minus sign in the y-equation—will be taken 
into account when we evaluate the components. None of the vectors 
in this problem has an x-component, so only the y-component of the 
second law is needed. We can use the free-body diagram to see that

1Fthrust2y = +Fthrust

1FG2y = -FG

EXAMPLE 6.4  ■ Altitude of a rocket

 FIGURE 6.4  Pictorial representation of a rocket launch.

a0y

a1y

y
Max altitude

0

y2, v2y, t2

y1, v1y, t1

y0, v0y, t0

Known

Find

y0 = 0 m
v0y = 0 m/s
t0 = 0 s
t1 = 5.00 s
v2y = 0 (top)

y2

a1y = -9.80 m/s2

m = 500 g = 0.500 kg

FG = 4.90 N

Fthrust = 20.0 N

Gravity FG 

Thrust Fthrust

u

u

a
u

a
u

v
u

y

x

After burnout

y

x

Before burnout

Stop

Fuel out

Start

Agrees

Agrees

Fnet

FG

Fthrust

FG

Fnet

u

u

u

u

u
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6.3 Mass, Weight, and Gravity 159

This is the point at which the directional information about the 
force vectors enters. The y-component of the second law is then

  a0y =
1
m

 1Fthrust - FG2

  =
20.0 N - 4.90 N

0.500 kg
= 30.2 m/s2

Notice that we converted the mass to SI units of kilograms before 
doing any calculations and that, because of the definition of the 
newton, the division of newtons by kilograms automatically gives 
the correct SI units of acceleration.

The acceleration of the rocket is constant until it runs out of 
fuel, so we can use constant-acceleration kinematics to find the 
altitude and velocity at burnout 1∆t = t1 = 5.00 s2:

  y1 = y0 + v0y ∆t + 1
2 a0y 1∆t22

  = 1
2 a0y 1∆t22 = 377 m

  v1y = v0y + a0y ∆t = a0y ∆t = 151 m/s

The only force on the rocket after burnout is gravity, so the second 
part of the motion is free fall. We do not know how long it takes 
to reach the top, but we do know that the final velocity is v2y = 0. 
Constant-acceleration kinematics with a1y = -g gives

v2y 

2 = 0 = v1y 

2 - 2g ∆y = v1y 

2 - 2g1y2 - y12

which we can solve to find

  y2 = y1 +
v1y 

2

2g
= 377 m +

1151 m/s22

219.80 m/s22

  = 1540 m = 1.54 km

REVIEW The maximum altitude reached by this rocket is 1.54 km, 
or just slightly under one mile. While this does not seem unreason-
able for a high-acceleration rocket, the neglect of air resistance was 
probably not a terribly realistic assumption.

STOP TO THINK 6.1 A Martian lander is approaching the surface. It is slowing its 
descent by firing its rocket motor. Which is the correct free-body diagram?

Descending
and slowing

  (a) (b) (c) (d) (e)

6.3 Mass, Weight, and Gravity
Ordinary language does not make a large distinction between mass and weight. 
However, these are separate and distinct concepts in science and engineering. We 
need to understand how they differ, and how they’re related to gravity, if we’re going 
to think clearly about force and motion.

Mass: An Intrinsic Property
Mass, you’ll recall from ❮❮ SECTION 5.4, is a scalar quantity that describes an object’s 
inertia. Loosely speaking, it also describes the amount of matter in an object. Mass is 
an intrinsic property of an object. It tells us something about the object, regardless 
of where the object is, what it’s doing, or whatever forces may be acting on it.

A pan balance, shown in FIGURE 6.5, is a device for measuring mass. Although a 
pan balance requires gravity to function, it does not depend on the strength of gravity. 
Consequently, the pan balance would give the same result on another planet.

FIGURE 6.5  A pan balance measures mass.

Pivot

Both pans are pulled down by the force of gravity.

Known
masses

The pans balance
when the masses
are equal.

Unknown
mass

u
FG

u
FG

If the two masses differ, the
beam will rotate about the pivot.

M06_KNIG8221_05_GE_C06.indd   159 21/06/2022   12:32



160 CHAPTER 6  Dynamics I: Motion Along a Line

Gravity: A Force
The idea of gravity has a long and interesting history intertwined with our evolving  
ideas about the solar system. It was Newton who—along with discovering his three 
laws of motion—first recognized that gravity is an attractive, long-range force  
between any two objects.

FIGURE 6.6 shows two objects with masses m1 and m2 separated by distance r. Each 
object pulls on the other with a force given by Newton’s law of gravity:

 F1 on 2 = F2 on 1 =
Gm1 m2

r2   1Newton>s law of gravity2 (6.3)

where G = 6.67 * 10-11 N m2/kg2, called the gravitational constant, is one of the basic 
constants of nature. Notice that gravity is not a constant force—the force gets weaker  
as the distance between the objects increases.

The gravitational force between two human-sized objects is minuscule, completely 
insignificant in comparison with other forces. That’s why you’re not aware of being 
tugged toward everything around you. Only when one or both objects are planet-sized 
or larger does gravity become an important force. Indeed, Chapter 13 will explore in 
detail the application of Newton’s law of gravity to the orbits of satellites and planets.

For objects moving near the surface of the earth (or other planet), things like balls 
and cars and planes that we’ll be studying in the next few chapters, we can make  
the flat-earth approximation shown in FIGURE 6.7. That is, if the object’s height 
above the surface is very small in comparison with the size of the planet, then the curva-
ture of the surface is not noticeable and there’s virtually no difference between r and 
the planet’s radius R. Consequently, a very good approximation for the gravitational  
force of the planet on mass m is simply

 F
u

G = F
u

planet on m = 1GMm

R2 , straight down2 = 1mg, straight down2 (6.4)

The magnitude or size of the gravitational force is FG = mg, where the quantity g—a 
property of the planet—is defined to be

 g =
GM

R2  (6.5)

Also, the direction of the gravitational force defines what we mean by “straight down.”
But why did we choose to call it g, a symbol we’ve already used for free-fall accel-

eration? To see the connection, recall that free fall is motion under the influence of 
gravity only. FIGURE 6.8 shows the free-body diagram of an object in free fall near the 
surface of a planet. With F

u

net = F
u

G, Newton’s second law predicts the acceleration to be

 aufree fall =
F
u

net

m
=

F
u

G

m
= 1g, straight down2 (6.6)

Because g is a property of the planet, independent of the object, all objects on the same 
planet, regardless of mass, have the same free-fall acceleration. We introduced this 
idea in Chapter 2 as an experimental discovery of Galileo, but now we see that the  
mass independence of aufree fall is a prediction of Newton’s law of gravity.

But does Newton’s law predict the correct value, which we know from experiment to 
be g = 0 afree fall 0 = 9.80 m/s2? We can use the average radius 1Rearth = 6.37 * 106 m2 
and mass 1Mearth = 5.97 * 1024 kg2 of the earth to calculate

gearth =
GMearth

1Rearth2 

2 =
16.67 * 10-11 N m2/kg2215.97 * 1024 kg2

16.37 * 106 m22 = 9.82 N/kg

You should convince yourself that N/kg is equivalent to m/s2, so gearth = 9.82 m/s2.

   NOTE    Astronomical data are provided inside the back cover of the book.

FIGURE 6.6  Newton’s law of gravity.

F1 on 2

F2 on 1

u

u

r

r is the distance
between the
centers.

m1

m2

The forces are equal in
magnitude but opposite
in direction. 

FIGURE 6.7  Gravity near the surface of a 
planet.

m

r

Center of planet of mass M

h V R

FG

R
The surface of the
planet seems to be
flat for objects very
near the surface,
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u

FIGURE 6.8  The free-body diagram of an 
object in free fall.
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y
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Gravity is the only
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6.3 Mass, Weight, and Gravity 161

Newton’s prediction is very close, but it’s not quite right. The free-fall acceleration 
would be 9.82 m/s2 on a stationary earth, but, in reality, the earth is rotating on its 
axis. The “missing” 0.02 m/s2 is due to the earth’s rotation, a claim we’ll justify when 
we study circular motion in Chapter 8. Because we’re on the outside of a rotating 
sphere, rather like being on the outside edge of a merry-go-round, the effect of rotation  
is to “weaken” gravity.

Strictly speaking, Newton’s laws of motion are not valid in an earth-based reference 
frame because it is rotating and thus is not an inertial reference frame. Fortunately, 
we can use Newton’s laws to analyze motion near the earth’s surface, and we can use 
FG = mg for the gravitational force if we use g = 0 afree fall 0 = 9.80 m/s2 rather than 
g = gearth. (This assertion is proved in more advanced classes.) In our rotating refer-
ence frame, F

u

G is the effective gravitational force, the true gravitational force given 
by Newton’s law of gravity plus a small correction due to our rotation. This is the force  
to show on free-body diagrams and use in calculations.

Weight: A Measurement
When you weigh yourself, you stand on a spring scale and compress a spring. The 
reading of a spring scale, such as the one shown in FIGURE 6.9, is FSp, the magnitude of 
the upward force the spring is exerting.

With that in mind, let’s define the weight of an object to be the reading FSp of a 
calibrated spring scale when the scale is the object’s only support and the object is at 
rest relative to the scale. That is, weight is a measurement, the result of “weighing” 
an object. Because FSp is a force, weight is measured in newtons.

If the object and scale in Figure 6.9 are stationary, then the object being weighed is 
in equilibrium. F

u

net = 0
u
 only if the upward spring force exactly balances the downward 

gravitational force of magnitude mg:

 FSp = FG = mg (6.7)

Because we defined weight as the reading FSp of a spring scale, the weight of a sta-
tionary object is

 w = mg  1weight of a stationary object2 (6.8)

Note that the scale does not “know” the weight of the object. All it can do is to 
measure how much its spring is compressed. On earth, a student with a mass of 70 kg 
has weight w = 170 kg219.80 m/s22 = 686 N because he compresses a spring until 
the spring pushes upward with 686 N. On a different planet, with a different value for 
g, the compression of the spring would be different and the student’s weight would 
be different.

   NOTE    Mass and weight are not the same thing. Mass, in kg, is an intrinsic 
property of an object; its value is unique and always the same. Weight, in N, depends 
on the object’s mass, but it also depends on the situation—the strength of gravity 
and, as we will see, whether or not the object is accelerating. Weight is not a property 
of the object, and thus weight does not have a unique value.

Surprisingly, you cannot directly feel or sense gravity. Your sensation—how heavy 
you feel—is due to contact forces pressing against you, forces that touch you and 
 activate nerve endings in your skin. As you read this, your sensation of weight is due 
to the normal force exerted on you by the chair in which you are sitting. When you 
stand, you feel the contact force of the floor pushing against your feet.

But recall the sensations you feel while accelerating. You feel “heavy” when an el-
evator suddenly accelerates upward, but this sensation vanishes as soon as the elevator 
reaches a steady speed. Your stomach seems to rise a little and you feel lighter than 
normal as the upward-moving elevator brakes to a halt or a roller coaster goes over the 
top. Has your weight actually changed?

FIGURE 6.9  A spring scale measures 
weight.

The object is 
compressing 
the spring.FSp

FG

u

u
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162 CHAPTER 6  Dynamics I: Motion Along a Line

To answer this question, FIGURE 6.10 shows a man weighing himself on a spring 
scale in an accelerating elevator. The only forces acting on the man are the upward 
spring force of the scale and the downward gravitational force. This seems to be the 
same situation as Figure 6.9, but there’s one big difference: The man is accelerating, 
hence there must be a net force on the man in the direction of au.

For the net force F
u

net to point upward, the magnitude of the spring force must be 
greater than the magnitude of the gravitational force. That is, FSp 7 mg. Looking at the 
free-body diagram in Figure 6.10, we see that the y-component of Newton’s second law is

 1Fnet2y = 1FSp2y + 1FG2y = FSp - mg = may (6.9)

where m is the man’s mass.
We defined weight as the reading FSp of a calibrated spring scale when the object 

is at rest relative to the scale. That is the case here as the scale and man accelerate 
upward together. Thus the man’s weight as he accelerates vertically is

 w = scale reading FSp = mg + may = mg 11 +
ay

g 2   (6.10)

If an object is either at rest or moving with constant velocity, then ay = 0 and w = mg. 
That is, the weight of a stationary object is the magnitude of the (effective) gravitational 
force acting on it. But its weight differs if it has a vertical acceleration.

You do weigh more when accelerating upward 1ay 7 02 because the reading of a 
scale—a weighing—increases. Similarly, your weight is less when the acceleration 
vector au points downward 1ay 6 02 because the scale reading goes down. Weight, as 
we’ve defined it, corresponds to your sensation of heaviness or lightness.*

We found Equation 6.10 by considering a person in an accelerating elevator, but it 
applies to any object with a vertical acceleration. Further, an object doesn’t really have 
to be on a scale to have a weight; an object’s weight is the magnitude of the contact 
force supporting it. It makes no difference whether this is the spring force of the scale 
or simply the normal force of the floor.

   NOTE    Informally, we sometimes say “This object weighs such and such” or “The 
weight of this object is . . . .” We’ll interpret these expressions as meaning mg, 
the weight of an object of mass m at rest 1ay = 02 on the surface of the earth or 
some other astronomical body.

Weightlessness
Suppose the elevator cable breaks and the elevator, along with the man and his scale, 
plunges straight down in free fall! What will the scale read? When the free-fall accel-
eration ay = -g is used in Equation 6.10, we find w = 0. In other words, the man has 
no weight!

Suppose, as the elevator falls, the man inside releases a ball from his hand. In the 
absence of air resistance, as Galileo discovered, both the man and the ball would fall at 
the same rate. From the man’s perspective, the ball would appear to “float”  beside him. 
Similarly, the scale would float beneath him and not press against his feet. He is what 
we call weightless. Gravity is still pulling down on him—that’s why he’s  falling—but 
he has no sensation of weight as everything floats around him in free fall.

But isn’t this exactly what happens to astronauts orbiting the earth? If an astronaut 
tries to stand on a scale, it does not exert any force against her feet and reads zero. She 
is said to be weightless. But if the criterion to be weightless is to be in free fall, and if 
astronauts orbiting the earth are weightless, does this mean that they are in free fall? 
This is a very interesting question to which we shall return in Chapter 8.

FIGURE 6.10  A man weighing himself in an 
accelerating elevator.

a
u

Spring scale

The man feels heavier
than normal while
accelerating upward.

x

y

u
FSp

u
Fnet

u
FG

Astronauts are weightless as they orbit 
the earth.

* Surprisingly, there is no universally agreed-upon definition of weight. Some textbooks define weight as  
the gravitational force on an object, wu = (mg, down). In that case, the scale reading of an accelerating 
object, and your sensation of weight, is often called apparent weight. This textbook prefers the definition 
of weight as being what a scale reads, the result of a weighing measurement.
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6.4 Friction
Friction is absolutely essential for many things we do. Without friction you could not 
walk, drive, or even sit down (you would slide right off the chair!). It’s sometimes 
useful to think about idealized, frictionless surfaces, but usually we need to analyze 
situations in which friction plays a role. A full description of friction is complex, but 
many aspects of friction can be described with a simple model.

Static Friction
❮❮ SECTION 5.2 defined static friction f 

u

s as the force on an object that keeps it from 
slipping. FIGURE 6.11 shows a rope pulling on a box that, due to static friction, isn’t 
moving. The box is in equilibrium, so the static friction force must exactly balance 
the tension force:

 fs = T  (6.11)

To determine the direction of f 
u

s, decide which way the object would move if there 
were no friction. The static friction force f 

u

s points in the opposite direction to prevent 
the motion.

Unlike the gravitational force, which has the precise and unambiguous magnitude 
FG = mg, the size of the static friction force depends on how hard you push or pull. 
The harder the rope in Figure 6.11 pulls, the harder the floor pulls back. Reduce the 
tension, and the static friction force will automatically be reduced to match. Static 
friction acts in response to an applied force. FIGURE 6.12 illustrates this idea.

But there’s clearly a limit to how big fs can get. If you pull hard enough, the object  
slips and starts to move. In other words, the static friction force has a maximum   
possible size fs max.

■■ An object remains at rest as long as fs 6  fs max.
■■ The object slips when fs = fs max.
■■ A static friction force fs 7 fs max is not physically possible.

Experiments with friction show that fs max is proportional to the magnitude of the 
normal force. That is,

 fs max = ms n (6.12)

where the proportionality constant ms is called the coefficient of static friction. 
The coefficient is a dimensionless number that depends on the materials of which 
the object and the surface are made. TABLE 6.1 on the next page shows some typical 
coefficients of friction. These are only approximate; the exact value of the coefficient 
depends on the roughness, cleanliness, and dryness of the surfaces.

   NOTE    The static friction force is not given by Equation 6.12; this equation is simply 
the maximum possible static friction. The static friction force is not found with an 
equation but by determining how much force is needed to maintain equilibrium.

Kinetic Friction
Once the box starts to slide, as in FIGURE 6.13, the static friction force is replaced by a 
kinetic friction force f 

u

k. Experiments show that kinetic friction, unlike static friction, 
has a nearly constant magnitude. Furthermore, the size of the kinetic friction force  

FIGURE 6.11  Static friction keeps an object 
from slipping.

n
u

T
u

Object is 
at rest.

The direction of static friction is opposite 
to the pull, preventing motion. 

u u
Fnet = 0

u
FG

u
fs

Pulling force

FIGURE 6.12  Static friction acts in 
response to an applied force.
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As T increases, fs growsc

fs

u

fs

u

fs

u

T
u

T
u

T
u

T is balanced by fs and
the box does not move.
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FIGURE 6.13  The kinetic friction force is 
opposite the direction of motion.
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The direction of kinetic friction is 
opposite to the motion.

Pulling force

fk

u

STOP TO THINK 6.2 An elevator that has descended from the 50th floor is coming 
to a halt at the 1st floor. As it does, your weight is

a. More than mg. b. Less than mg. c. Equal to mg. d. Zero.
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164 CHAPTER 6  Dynamics I: Motion Along a Line

is less than the maximum static friction, f
 k 6  fs max, which explains why it is easier 

to keep the box moving than it was to start it moving. The direction of f 
u

k is always 
opposite to the direction in which an object slides across the surface.

The kinetic friction force is also proportional to the magnitude of the normal force:

 fk = m
 k n (6.13)

where m
 k is called the coefficient of kinetic friction. Table 6.1 includes typical 

values of m
 k. You can see that m

 k 6 ms, causing the kinetic friction to be less than the 
maximum static friction.

Rolling Friction
If you slam on the brakes hard enough, your car tires slide against the road surface and 
leave skid marks. This is kinetic friction. A wheel rolling on a surface also experiences 
friction, but not kinetic friction. As FIGURE 6.14 shows, the portion of the wheel that 
 contacts the surface is stationary with respect to the surface, not sliding. The interaction  
of this contact area with the surface causes rolling friction. The force of rolling 
 friction can be calculated in terms of a coefficient of rolling friction m

 r:

 fr = m
 r n (6.14)

Rolling friction acts very much like kinetic friction, but values of m
 r (see Table 6.1) 

are much lower than values of m
 k. This is why it is easier to roll an object on wheels 

than to slide it.

A Model of Friction
The friction equations are not “laws of nature” on a level with Newton’s laws. Instead, 
they provide a reasonably accurate, but not perfect, description of how friction forces 
act. That is, they are a model of friction. And because we characterize friction in terms 
of constant forces, this model of friction meshes nicely with our model of dynamics 
with constant force.

FIGURE 6.14  Rolling friction is also 
opposite the direction of motion

fr

u

The wheel is stationary across 
the area of contact, not sliding.

TABLE 6.1 Coefficients of friction

Materials
Static 
Ms

Kinetic 
Mk

Rolling 
Mr

Rubber on 
 dry concrete 1.00 0.80 0.02

Rubber on 
 wet concrete 0.30 0.25 0.02

Steel on steel 
 (dry) 0.80 0.60 0.002

Steel on steel 
 (lubricated) 0.10 0.05

Wood on wood 0.50 0.20

Wood on snow 0.12 0.06

Ice on ice 0.10 0.03

   NOTE    A surface exerts a force on an object when spring-like molecular bonds in 
the surface are stretched or compressed. What we call the normal force and the 
friction force are really the vector components perpendicular and parallel to the 
surface of a single surface force.

MODEL 6.3 

Friction
The friction force is parallel to the surface.

■■ Static friction: Acts as needed to prevent motion. 
Can have any magnitude up to fs max = ms n.

■■ Kinetic friction: Opposes motion with fk = m
 k n.

■■ Rolling friction: Opposes motion with fr = m
 r n.

■■ Graphically:

f

Push or pull force

Static friction
increases to match
the push or pull.

Kinetic friction is constant
as the object moves.

KineticStatic

The object slips when static
friction reaches fs max.

Rest Moving

fs max = msn

mkn

0

Push or
pull

Friction

Motion is relative
to the surface.
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6.4 Friction 165

STOP TO THINK 6.3 Rank in order, from largest to smallest, the sizes of the friction forces f 
u

A to f 
u

E in these 5 different situations. 
The box and the floor are made of the same materials in all situations. For this question, the force vectors—which all have the same 
length—show only the direction of the force; their lengths do not indicate anything about the size of the force.

Carol pushes a 25 kg wood box across a wood floor at a steady 
speed of 2.0 m/s. How much force does Carol exert on the box?  
If she stops pushing, how far will the box slide before coming  
to rest?

MODEL This situation can be modeled as dynamics with constant 
force—one of the forces being friction. Notice that this is a two-part  
problem: first while Carol is pushing the box, then as it slides after 
she releases it.

VISUALIZE This is a fairly complex situation, one that calls for 
careful visualization. FIGURE 6.15 shows the pictorial representation  
both while Carol pushes, when au = 0

u
, and after she stops. We’ve 

placed x = 0 at the point where she stops pushing because this is the  
point where the kinematics calculation for How far? will begin. No-
tice that each part of the motion needs its own free-body diagram. 
The box is moving until the very instant that the problem ends,  
so only kinetic friction is relevant.

SOLVE We’ll start by finding how hard Carol has to push to keep 
the box moving at a steady speed. The box is in equilibrium 
1constant velocity, au = 0

u2, and Newton’s second law is

  aFx = (Fpush)x + ( fk)x + nx + (FG)x = Fpush - fk = 0

  aFy = (Fpush)y + ( fk)y + ny + (FG)y = n - FG = n - mg = 0

where we’ve noted from the free-body diagram that F
u

push and  
f 
u

k have only x-components, nu and F
u

G have only y-components, and 
we’ve used FG = mg for the gravitational force. The negative sign 
occurs in the first equation because f 

u

k points to the left and thus  
the component is negative: 1 fk2x = - fk. Similarly, 1FG2y = -FG  
because the gravitational force vector—with magnitude mg—
points down. In addition to Newton’s laws, we also have our model 
of kinetic friction:

fk = m
 k n

Altogether we have three simultaneous equations in the three 
unknowns Fpush, fk, and n. Fortunately, these equations are easy 
to solve. The y-component of Newton’s second law tells us that 
n = mg. We can then find the friction force to be

fk = m
 k mg

We substitute this into the x-component of the second law, giving

  Fpush = fk = m
 k mg

  = 10.202125 kg219.80 m/s22 = 49 N

Carol pushes this hard to keep the box moving at a steady speed.
The box is not in equilibrium after Carol stops pushing it. Our 

strategy for the second half of the problem is to use Newton’s second 

EXAMPLE 6.5  ■ How far does a box slide?

FIGURE 6.15  Pictorial representation of a box sliding across a floor.

The coefficient of friction
is found in Table 6.1.

No
push

At rest

fA

u

 

Push

On the verge of slipping

fB

u

 

Push

Speeding up

fC

a
u

u

 

Push

Constant speed

fD

u

 

Push

Slowing down

fE

a
u

u

Continued
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166 CHAPTER 6  Dynamics I: Motion Along a Line

   NOTE    Example 6.5 needed both the horizontal and the vertical components of the 
second law even though the motion was entirely horizontal. This need is typical 
when friction is involved because we must find the normal force before we can 
evaluate the friction force.

A 50 kg steel file cabinet is in the back of a dump truck. The truck’s 
bed, also made of steel, is slowly tilted. What is the size of the static 
friction force on the cabinet when the bed is tilted 20°? At what 
angle will the file cabinet begin to slide?

MODEL Model the file cabinet as a particle in equilibrium. We’ll 
also use the model of static friction. The file cabinet will slip when 
the static friction force reaches its maximum value fs max.

VISUALIZE FIGURE 6.16 shows the pictorial representation when the 
truck bed is tilted at angle u. We can make the analysis easier if we 
tilt the coordinate system to match the bed of the truck.

SOLVE The file cabinet is in equilibrium. Newton’s second law is

 1Fnet2x = aFx = nx + 1FG2x + 1 fs2x = 0

 1Fnet2y = aFy = ny + 1FG2y + 1 fs2y = 0

From the free-body diagram we see that fs has only a negative 
x-component and that n has only a positive y-component. The grav-
itational force vector can be written F

u

G = +FG sin u in - FG cos u jn, 

so F
u

G has both x- and y-components in this coordinate system. 
Thus the second law becomes

 aFx = FG sin u - fs = mg sin u - fs = 0

 aFy = n - FG cos u = n - mg cos u = 0

where we’ve used FG = mg.
You might be tempted to solve the y-component equation for 

n, then to use Equation 6.12 to calculate the static friction force 
as ms n. But Equation 6.12 does not say fs = Ms n. Equation 6.12 
gives only the maximum possible static friction force fs max, the 
point at which the object slips. In nearly all situations, the actual 
static friction force is less than fs max. In this problem, we can use 
the x-component equation—which tells us that static friction has to 
exactly balance the component of the gravitational force along the 
incline—to find the size of the static friction force:

  fs = mg sin u = 150 kg219.80 m/s22 sin 20°

  = 170 N

EXAMPLE 6.6  ■ Dumping a file cabinet

law to find the acceleration, then use constant-acceleration kinemat-
ics to find how far the box moves before stopping. We know from 
the motion diagram that ay = 0. Newton’s second law, applied to the 
second free-body diagram of Figure 6.15, is

 aFx = - fk = max

 aFy = n - mg = may = 0

We also have our model of friction,

fk = m
 k n

We see from the y-component equation that n = mg, and thus 
fk = m

 k mg. Using this in the x-component equation gives

max = - fk = -m
 k mg

This is easily solved to find the box’s acceleration:

ax = -m
 k g = -10.20219.80 m/s22 = -1.96 m/s2

The acceleration component ax is negative because the accel-
eration vector au points to the left, as we see from the motion 
diagram.

Now we are left with a problem of constant-acceleration kine-
matics. We are interested in a distance, rather than a time interval, 
so the easiest way to proceed is

v1x 

2 = 0 = v0x 

2 + 2ax ∆x = v0x 

2 + 2ax  x1

from which the distance that the box slides is

x1 =
-v0x 

2

2ax
=

-12.0 m/s22

21-1.96 m/s22 = 1.0 m

REVIEW Carol was pushing at 2 m/s ≈ 4 mph, which is fairly fast. 
The box slides 1.0 m, which is slightly over 3 feet. That sounds 
reasonable.

FIGURE 6.16  The pictorial representation of a file cabinet in a tilted dump truck.

u

Normal n
Friction fs

u

u

Gravity FG

u

y

x

fs where u = 20°
u where cabinet slips

Known

Find

u
u

ms = 0.80  m = 50 kg
mk = 0.60

FG

fs
The coefficients of
friction are found in
Table 6.1.

To prevent slipping, static
friction must point up the slope.

u

n
u

u
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6.5 Drag 167

Slipping occurs when the static friction reaches its maximum value

fs = fs max = ms n

From the y-component of Newton’s law we see that n = mg cos u. 
Consequently,

fs max = ms mg cos u

Substituting this into the x-component of the first law gives

mg sin u - ms mg cos u = 0

The mg in both terms cancels, and we find

sin u
cos u

= tan u = ms

u = tan-1ms = tan-110.802 = 39°

REVIEW Steel doesn’t slide all that well on unlubricated steel, so a 
fairly large angle is not surprising. The answer seems reasonable.

   NOTE    A common error is to use simply n = mg. Be sure to eval-
uate the normal force within the context of each specific problem. 
In this example, n = mg cos u.

Causes of Friction
It is worth a brief pause to look at the causes of friction. All surfaces, even those  
quite smooth to the touch, are very rough on a microscopic scale. When two objects 
are placed in contact, they do not make a smooth fit. Instead, as FIGURE 6.17 shows, 
the high points on one surface become jammed against the high points on the other 
surface, while the low points are not in contact at all. The amount of contact  depends  
on how hard the surfaces are pushed together, which is why friction forces are 
 proportional to n.

At the points of actual contact, the atoms in the two materials are pressed closely 
together and molecular bonds are established between them. These bonds are the 
“cause” of the static friction force. For an object to slip, you must push it hard enough 
to break these molecular bonds between the surfaces. Once they are broken, and the 
two surfaces are sliding against each other, there are still attractive forces between 
the atoms on the opposing surfaces as the high points of the materials push past each 
other. However, the atoms move past each other so quickly that they do not have time 
to establish the tight bonds of static friction. That is why the kinetic friction force is 
smaller. Friction can be minimized with lubrication, a very thin film of liquid be-
tween the surfaces that allows them to “float” past each other with many fewer points 
in actual contact.

6.5 Drag
Drag is a force that opposes or retards the motion of an object as it moves through a 
fluid—a substance that flows, such as air or water. You experience drag forces due 
to  the air—sometimes called air resistance—whenever you jog, bicycle, or drive  
your car. In biology, drag forces are extremely important for microorganisms mov-
ing in water. The drag force F

u

drag

■■ Is opposite the direction of motion, as shown in FIGURE 6.18.
■■ Increases in magnitude as the object’s speed increases.

   NOTE    Drag is not a constant force because it depends on the object’s speed. The 
constant-force model and constant-acceleration kinematics can not be applied to 
problems involving drag.

Drag is more complex than friction because there are two different physical causes 
of drag. For a relatively large object, such as a ball that has been thrown, most of the 
drag—the force that resists the ball’s motion—occurs because the moving ball has to 
push away the air in front of it. This drag is said to be caused by inertial forces, forces 
that arise because a fluid’s mass makes the fluid difficult to move. In contrast, for a 
small particle, such as dust that is slowly sinking through a liquid, most of the drag is 
due to viscous forces from the fluid molecules sticking to one another and to the particle.

FIGURE 6.17  An atomic-level view of 
friction.

Two surfaces
in contact

Very few points
are actually
in contact.

Molecular bonds form
between the two
materials. These bonds
have to be broken
as the object slides.

FIGURE 6.18  The drag force is opposite 
the direction of motion.

u

Fdrag
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168 CHAPTER 6  Dynamics I: Motion Along a Line

Fortunately, in many situations only one of these causes of drag is significant; that 
is, the drag is almost entirely due to inertial forces or almost entirely due to viscous 
forces. Fairly simply models will allow us to characterize drag in these cases. We 
can tell whether the drag is inertial or viscous by examining a quantity called the 
Reynolds number.

Reynolds Number
For an object moving through a fluid, the Reynolds number is defined as the ratio of 
inertial forces to viscous forces acting on the object. The Reynolds number is high if 
inertial forces dominate, low if viscous forces dominate. Two important properties of 
a fluid are its density r (Greek rho) and its viscosity h (Greek eta). For an object of 
size L moving through a fluid with speed v, the Reynolds number is

 Re =
inertial forces
viscous forces

=
rvL
h

 (6.15)

   NOTE    The symbol for the Reynolds number is Re. It is the only symbol in this text 
that has two letters.

We won’t attempt to justify this expression for the Reynolds number, but it makes 
sense. More force is needed to deflect a denser fluid or to deflect the fluid around an 
object that is larger or moving faster, and these quantities all appear in the numerator. 
Likewise, the size of any viscous forces is related to the fluid’s viscosity, which we see 
in the denominator.

Notice that the Reynolds number, a ratio of forces, is a pure number with no units; 
it is said to be dimensionless. When Re is high, inertial drag is dominant; when Re is 
low, viscous drag is more important.

In SI units, density is measured in kg/m3 and viscosity in Pa s. Pa is the abbre-
viation for pascal, the SI unit of pressure, which is defined as 1 Pa = 1 N/m2. We’ll 
have a lot more to say about pressure in later chapters. TABLE 6.2 lists the values of 
density and viscosity for some typical fluids. Viscosity is very dependent on tem-
perature—think how quickly honey loses viscosity as you heat it—so the values 
shown are not appropriate at temperatures other than those listed.

The object’s size L is a characteristic or typical size of the object, which could be a 
height, width, or diameter. This seems a bit odd; for an object that is rectangular, the value 
of Re depends on whether you select the width or the height for L. How ever, in practice, 
how you define L makes very little difference. As you’ll see, we want to know whether Re 
is “high” or “low,” values that differ by factors of 1000 or more. A difference of a factor 
of 2 or 3 will not affect our judgment about the size of Re. Said another way, our use of 
the Reynolds number needs only approximate values, not precise calculations.

As a simple example, consider a 75-mm-diameter baseball moving through 20°C 
air at a speed of 20 m/s. We can take the ball’s characteristic size L to be its diame-
ter. The Reynolds number for this motion is

Re =
rvL
h

=
11.2 kg/m32120 m/s210.075 m2

1.8 * 10-5 Pa s
= 100,000

As you’ll see, this is a very high Reynolds number.

Drag at High Reynolds Number
A Reynolds number greater than about 1000 is considered high. A high Reynolds 
number means, as we’ve seen, that the drag arises primarily from inertia, with vis-
cosity playing a minor role. In this case, drag occurs because the moving object 
has to push the fluid out of the way. As the example of the baseball suggests, the 
Reynolds number is high for most ordinary objects—balls, cars, planes—moving 
through air at ordinary speeds. Re is also high for fish and larger objects moving 
through water.

TABLE 6.2 Density and viscosity

Fluid R 1kg/m3 2 H  1Pa s 2
Air (20°C at  
 sea level)

1.2 1.8 * 10-5

Water (20°C) 1000 1.0 * 10-3

Water (40°C) 1000 6.5 * 10-4

Ethyl alcohol  
 (20°C)

790 1.3 * 10-3

Olive oil (20°C) 910 8.4 * 10-2

Honey (20°C) 1400 10

Honey (40°C) 1400 1.7

TABLE 6.3 Drag coefficients

Object Cd

Commercial airliner 0.024

Swimming fish 0.15

Toyota Prius 0.24

Pitched baseball 0.35

Racing cyclist 0.88

Running person 1.2
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6.5 Drag 169

For high Reynolds numbers, the drag force for motion through a fluid at speed v is

 F
u

drag = 11
2Cd rAv2, direction opposite the motion2  (6.16)

Here r is again the density of the fluid, A is the cross-section area of the object (in m2) 
as defined below, and the dimensionless drag coefficient Cd depends on the object’s 
shape. More streamlined, aerodynamic shapes have lower values of Cd. TABLE 6.3  
lists the drag coefficients for some common moving objects.

For a high Reynolds number, the magnitude of the drag force is proportional to 
the square of the object’s speed. If the speed doubles, drag increases by a factor of 4. 
This model of drag is often called quadratic drag.

The cross-section area A is the two-dimensional projection that you see when 
an object is coming toward you. If you were to shine a spotlight at the object as it 
approaches you, A is the area of the object’s shadow on a screen behind it. Many 
objects can be modeled as spheres or cylinders, so FIGURE 6.19 shows cross-section 
areas and drag coefficients for a smooth sphere and for two different orientations 
of a cylinder.

FIGURE 6.19 Cross-section areas and drag 
coefficients for a sphere and a cylinder.

vu

A 5 pr2 

A 5 pr2 

A 5 2rl 

Sphere: Cd 5 0.50

Cylinder traveling lengthwise: Cd 5 0.80 

Cylinder traveling sideways: Cd 5 1.1

l

2r
Cross section
is a rectangle. 

Cross section
is a circle. r

r

Cross section
is a circle. 

vu

vu

u
Fdrag

u
Fdrag

u
Fdrag

Terminal Speed
Suppose an object starting from rest is pushed or pulled through a fluid by a constant applied 
force F

u

applied. Initially the speed is low and the drag force is small, as shown in FIGURE 6.21a, 
so the net force causes the object to speed up. But the drag force increases as the speed 
increases, and eventually the object reaches a speed at which the drag force has exactly the 
same magnitude as F

u

applied. Now the net force is zero, as shown in FIGURE 6.21b, so the object 
can no longer accelerate but will maintain this steady speed for as long as the force is ap-
plied. The steady, unchanging speed at which drag exactly counterbalances an applied force 
is called the object’s terminal speed.

Terminal speed while falling, where gravity is the applied force, is just one exam-
ple. An airplane reaches its maximum speed—also a terminal speed—when the drag 
of the air is equal and opposite to the thrust: Fdrag = Fthrust. In the case of an object 
fired at an initial speed greater than the terminal speed, the very large drag force 
slows the object until it is moving at the terminal speed.

FIGURE 6.21 An object reaches its 
terminal speed when the drag force 
exactly balances the applied force.

au
vu

At low speeds, Fdrag 
is small and the 
object accelerates.

(a) Fapplied

u

Fdrag

u

Fdrag

u
Fapplied

u

vterm
u

Eventually, v reaches
a value such that
Fdrag  =  Fapplied. Then 
the net force is zero
and the object moves
at a constant terminal 
speed vterm.

(b)

u u
a  =  0

A 1400 kg Toyota Prius, seen from the front, is 1.7 m wide and 1.5 m 
tall. Its drag coefficient, given in Table 6.3, is 0.24. At what speed does 
the magnitude of the drag equal the magnitude of the rolling friction?

MODEL Use the models of rolling friction and quadratic drag. Note that 
this is not a constant-force situation. Assume an air temperature of 20°C.

VISUALIZE FIGURE 6.20 shows the car and a free-body diagram. A 
full pictorial representation is not needed because we won’t be do-
ing any kinematics calculations.

SOLVE Drag is less than friction at low speeds, where air resistance 
is negligible. But drag increases as v increases, so there will be a 
speed at which the two forces are equal in size. Above this speed, 
drag is more important than rolling friction.

There’s no motion and no acceleration in the vertical direction, 
so we can see from the free-body diagram that n = FG = mg. Thus 
fr = m

 r  

mg. Equating friction and drag, we have

1
2 Cd rAv2 = m

 r  

mg

Solving for v, we find

v = B 2m
 r  

mg

Cd rA
= C 210.02211400 kg219.8 m/s22

10.24211.2 kg/m32 11.5 m * 1.7 m2 = 27 m/s

where the value of m
 r for rubber on concrete was taken from  Table 6.1.

REVIEW 27 m/s is approximately 60 mph, a reasonable result.  
This calculation shows that we can reasonably ignore air resistance 
for car speeds less than 30 or 40 mph. Calculations that neglect drag 
will be increasingly inaccurate as speeds go above about 40 mph.

EXAMPLE 6.7  ■ Air resistance compared to rolling friction

FIGURE 6.20  A car experiences both rolling friction and drag.
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170 CHAPTER 6  Dynamics I: Motion Along a Line

A 75 kg skydiver and his 20 g pet mouse falling after jumping 
from a plane are shown in FIGURE 6.22. Find the terminal speed 
of each.

FIGURE 6.22 A falling skydiver and mouse, and their   
cross-section areas.

1.8 m0.4 m

3 cm

7 cm

MODEL Model the man and the mouse as cylinders falling side-
ways. Gravity is a constant force pulling down on a falling object, 
while drag due to the air is an upward force. The terminal speed 
is reached when the drag on each object is equal to the force of 
gravity.

SOLVE From Figure 6.19 we see that Cd = 1.1 for a cylinder fall-
ing sideways and that a cylinder’s cross-section area as seen from 
the side is A = 2rl. With the dimensions given, we can calculate 
Aman = 0.72 m2 and Amouse = 2.1 * 10-3 m2. We assume that the 

two skydivers are at sufficiently low altitude that we can use the 
sea-level value of the density of air.

The terminal speed is reached when Fdrag = mg, or

1
2Cd rA1vterm22 = mg

from which we can find the terminal velocity as

vterm = B 2mg

Cd rA

Thus our two skydivers have terminal speeds

vman = C 2175 kg219.8 m/s22
11.1211.2 kg/m3210.72 m22 = 39 m/s

vmouse = C 210.020 kg219.8 m/s22
11.1211.2 kg/m3212.1 * 10-3 m22 = 12 m/s

REVIEW 39 m/s is about 90 mph. Reported terminal speeds for sky-
divers falling in the prone position are in the 100–120 mph range, so 
our simple model of the fall gives a result that is close but a bit too 
low. We’ve probably overestimated both r, because skydivers are at 
a high enough altitude that the air density is lower than at sea level, 
and A, because their legs are actually spread apart and allow air to 
flow between them. A more realistic, but also more complex, model 
would give a better prediction. The mouse, though, falls at a much 
more modest 12 m/s ≈ 25 mph. Small animals can usually survive a 
fall from any height because their terminal speed is not terribly fast.

EXAMPLE 6.8  ■ The terminal speeds of a man and a mouse

   NOTE    The drag force is usually much less than the gravitational force for heavier 
objects, such as balls or bicycles, moving at not-too-fast speeds through air. We 
typically neglect drag in our models of these situations because it simplifies the 
analysis while causing only a very small error in the calculations.

Drag at Low Reynolds Number
A 10-mm-diameter dust particle settles to the ground at about 20 mm/s. It’s not hard 
to calculate that the Reynolds number for the falling particle is Re ≈ 0.01. This is an 
example of motion at low Reynolds number, which we define to be Re 6 1. The drag 
force for low Reynolds number is almost entirely a viscous force.

For low Reynolds number, the drag force for motion through a fluid at speed v is

 F
u

drag = 1bv, direction opposite the motion2 (6.17)

where b is a constant that depends on the size and shape of the object and on the 
viscosity of the fluid. For low Reynolds number, the magnitude of the drag force 
is proportional to the object’s speed. If the speed doubles, drag also increases by a 
factor of 2. This model of viscous drag is called linear drag.

   NOTE    Drag is more complex for intermediate values of Reynolds number, 
1 6 Re 6 1000. We don’t consider those situations in this text.

Viscous drag is mostly applicable to very small objects, many of which can be 
reasonably modeled as spheres. That’s fortunate because only for spheres does theory 
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6.5 Drag 171

give us any guidance for the coefficient b. For a spherical object of radius r moving in 
a fluid with viscosity h, it can be shown that b = 6phr. Thus

 1F
u

drag2sphere = 16phrv, direction opposite the motion2 (6.18)

This expression for the viscous drag on a sphere is called Stokes’ law. Notice that 
linear drag at low Reynolds number depends on the fluid’s viscosity, whereas qua-
dratic drag at high Reynolds number depends on the fluid’s density.

As before, an object reaches its terminal speed when the drag force exactly balances 
an applied force. At low Reynolds number, unlike high Re, this happens almost instantly, 
as you’ll see, so motion at low Reynolds number is almost entirely constant-speed motion 
at the terminal speed. The applied force needed to propel a sphere at its terminal speed is

 Fapplied = 6phrvterm (6.19)

You can find the terminal speed of a small sphere falling in air by using Fapplied = mg, 
as we did for high Reynolds number, but this approach doesn’t work for objects falling 
in liquids. The reason is that the upward buoyant force of the liquid—a topic we’ll study 
in Chapter 14—cannot be neglected. We’ll return to this after we introduce buoyancy.

Pollen grains are very light. In one experiment to determine their 
mass, researchers dropped grains inside a clear glass cylinder and 
then watched their motion with a microscope. A 40-mm-diameter 
pollen grain was observed to fall at a rate of 5.3 cm/s. What is the 
mass in nanograms of this grain?

MODEL We will model the grain as a sphere. At terminal speed, 
the force of gravity on the grain is equal to the drag force. This is 
a very small object moving quite slowly, so its Reynolds number 
is very low and the drag force is linear drag. We’ll assume the air 
in the cylinder was at a room temperature of 20°C and use the val-
ue for air viscosity in Table 6.2. In SI units, the terminal speed is 
vterm = 0.053 m/s.

SOLVE We set the force of gravity equal to the linear drag force 
to get

mg = 6phrvterm

We can then solve for the mass as

  m =
6phrvterm

g

  =
6p11.8 * 10-5 Pa s2120 * 10-6 m210.053 m/s2

9.8 m/s2

  = 3.7 * 10-11 kg

Converting this result to nanograms (ng) gives

m = 3.7 * 10-11 kg *
1000 g

kg
*

1 ng

10-9 g
= 37 ng

REVIEW This extremely tiny mass is hard to assess. It’s likely that 
a pollen grain’s density is near that of water, and the mass of a  
40-mm-diameter sphere of water can be calculated—volume times 
density—to be about 30 ng. So our answer seems reasonable.

EXAMPLE 6.9  ■ Measuring the mass of a pollen grain

Motion at Low Reynolds Number
From dust settling in the air to bacteria moving in intercellular fluid (essentially 
water), the world is filled with examples of motion at extremely low Reynolds number. 
For example, a 1-mm-diameter bacterium moving at a typical speed of 30 mm/s has 
Re ≈ 3 * 10-5. Motion at such low Reynolds number is very much at odds with our 
everyday experience.

The motion of your body and other everyday objects is at high Reynolds number, 
where inertia plays a central role. When you apply a force to an object, because of its 
inertia it takes time for it to gain speed. When you remove the force, drag forces don’t 
cause the object to stop immediately; because of its inertia it takes some time for the 
object to coast to a stop. Newton’s second law, which relates force and motion, is key 
to understanding motion at high Reynolds number.

Motion at extremely low Reynolds number couldn’t be more different. After a force 
is applied, the object reaches its terminal speed vterm almost instantaneously and then 
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172 CHAPTER 6  Dynamics I: Motion Along a Line

moves at constant speed. When the force is removed, the object comes to a dead halt 
almost instantaneously. Viscosity is so much more important than inertia that there’s 
no coasting. The only way a tiny organism can move at all is with continuous propul-
sion; that’s what the hair-like beating cilia and rotating flagella of microorganisms do.

We will assume that the object is moving to the right, so the x-components of the 
drag force and the acceleration are negative. From Stokes’ law, the acceleration is

 ax =
1Fdrag2x

m
= -

6phrvx

m
 (6.20)

By definition, the object’s acceleration is ax = dvx/dt. Thus the motion is described 
by the equation

 
dvx

dt
= -

6phrvx

m
 (6.21)

This looks complicated, but we can find the velocity by integration.
First, we rearrange Equation 6.20 to get all the velocity terms on one side:

dvx

vx
= -

6phr
m

 dt

The fraction on the right is a group of constants, so it is constant. Now we integrate 
both sides from an initial speed vterm at time t0 = 0 to a later speed v at time t:

 3
v

vterm

dvx

vx
= -

6phr
m 3

t

0
dt = -

6phr
m

 t = -
t
t

 (6.22)

In Equation 6.22 we took the constants outside the time integration. Now we can 
group them together and define the time constant t (Greek tau) of the motion as

 t =
m

6phr
 (6.23)

It’s not obvious, but by using the units of viscosity (Pa s) we can show that the units of 
t are s, as they should be for a time. We’ll see that the time constant is a characteristic 
time for how long it takes the object to come to a halt.

To finish the integration, recall from calculus that 1dx/x = ln x, where ln x is the 
natural logarithm of x. In this case,

 3
v

vterm

dvx

vx
= ln vx `

v

vterm

= ln v - ln vterm = ln 1 v
vterm

2 (6.24)

Thus

 ln 1 v
vterm

2 = -
t
t

 (6.25)

To solve for v, we also need to recall that the logarithmic function and the expo-
nential function are inverses of each other, which means that ln 1e x2 = x and eln x = x. 
Applying the latter of these to Equation 6.25, we find

 eln 1v/vterm2 =
v

vterm
= e-t/t (6.26)

 ADVANCED TOPIC  Stopping Time and Distance
Suppose a small spherical object of mass m and radius r is moving at its terminal 
speed vterm when the applied force suddenly vanishes, leaving only drag. How long 
does it take the object to stop, and how far does it move while stopping? We cannot 
use constant-acceleration kinematics to answer these questions, so we need to use the 
more general idea of instantaneous acceleration that we introduced in ❮❮■SECTION 2.7.
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6.5 Drag 173

If we multiply through by vterm, we find that the object’s speed decreases exponen-
tially with time:

  v = vterm e
-t/t (6.27)

Equation 6.27 for the object’s speed, which is graphed in FIGURE 6.23, is called an 
exponential decay. It is a behavior that will reappear several times throughout this 
text. The graph starts from v1t = 02 = vterm because e0 = 1. It then asymptotically 
 approaches zero for very large values of t.

When t = t, v = e-1vterm = 0.37vterm. When t = 2t, v = e-2vterm = 0.13vterm. For 
any quantity that decays exponentially, the quantity decays to 37% of its initial 
value after one time constant has elapsed. Exponential decay is a common mathe-
matical model; once you’ve learned the properties of exponential functions, you will 
immediately know how to apply this knowledge to a new situation.

As a practical matter, we could say that the motion has pretty well ceased at t = 2t, 
so we define a stopping time

 ∆tstop = 2t =
m

3phr
 (6.28)

We’ll omit the details, but an integration of vx = dx/dt = vterm exp1- t/t2 would find 
that the total distance the object traveled while stopping is

 ∆xstop = vterm t = 1
2 vterm ∆tstop (6.29)

FIGURE 6.23  Speed of an object coasting 
to a halt at low Reynolds number with 
time constant t.

v starts at A.

v decays to 37% of
its initial value at t = t.

v decays to 13% of its
initial value at t = 2t.

0

e-2vterm

e-1vterm

vterm

t

v

0 t 2t

Paramecia, common unicellular inhabitants of freshwater ponds, 
are about 100 mm in size and swim at about 200 mm/s. If a 
Paramecium in 20°C water suddenly stops swimming, how long 
does it take to come to a stop and how far does it coast while 
stopping?

MODEL A Paramecium’s swimming speed is its terminal speed vterm in 
response to the pushing force generated by beating its cilia.  Although 
Paramecia are somewhat elongated, we’ll simplify the situation by 
modeling the Paramecium as a 100-mm-diameter sphere. The density 
of a Paramecium is essentially that of water, so we can calculate its 
mass from the density of water and the volume of a sphere.

SOLVE The mass is m = 4
3 pr3r, where r is the density of water. If 

we use this expression for the Paramecium’s mass in Equation 6.28, 
then the time it takes to come to a stop is

 ∆tstop =
4
3 pr3r

3phr
=

4r2r

9h
 =

4150 * 10-6 m2211000 kg/m32
911.0 * 10-3 Pa s2

= 1.1 * 10-3 s ≈ 1 ms

The density and viscosity of water are taken from Table 6.2. 
During this time, the Paramecium travels distance

  ∆xstop = 1
2  vterm ∆tstop = 1

2 1200 * 10-6 m/s211.1 * 10-3 s2
  = 1.1 * 10-7 m ≈ 0.1 mm

REVIEW Stopping in 1 ms over a distance of 0.1 mm, which is only 
1

1000 the diameter of the organism, is, for all practical purposes, an 
instantaneous stop. This agrees with our assertion about motion at 
low Reynolds number.

EXAMPLE 6.10  ■ A Paramecium coasts to a stop

STOP TO THINK 6.4 The terminal speed of a Styrofoam ball is 15 m/s. Suppose a Styrofoam ball is shot straight down from a high  
tower with an initial speed of 30 m/s. Which velocity graph is correct?

t0

vy (m/s)

-30

(a)  

t0

-30

vy (m/s)

(b)  

t0

-30

vy (m/s)

(c)  

t0

-30

vy (m/s)

(d)  

t0

-30

vy (m/s)

(e)
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174 CHAPTER 6  Dynamics I: Motion Along a Line

6.6  More Examples of Newton’s  
Second Law

We will finish this chapter with four additional examples in which we use the problem-  
solving strategy in more complex scenarios.

A 1500 kg car is traveling at a speed of 30 m/s when the driver 
slams on the brakes and skids to a halt. Determine the stopping 
distance if the car is traveling up a 10° slope, down a 10° slope, or 
on a level road.

MODEL Model the car’s motion as dynamics with constant force 
and use the model of kinetic friction. We want to solve the problem 
only once, not three separate times, so we’ll leave the slope angle u 
unspecified until the end.

VISUALIZE FIGURE 6.24 shows the pictorial representation. We’ve 
shown the car sliding uphill, but these representations work equally  
well for a level or downhill slide if we let u be zero or negative,  
respectively. We’ve used a tilted coordinate system so that the motion 
is along one of the axes. We’ve assumed that the car is traveling to the 
right, although the problem didn’t state this. You could equally well 
make the opposite assumption, but you would have to be careful with 
negative values of x and vx. The car skids to a halt, so we’ve taken the 
coefficient of kinetic friction for rubber on concrete from Table 6.1.

SOLVE Newton’s second law and the model of kinetic friction are

  aFx = nx + 1FG2x + 1 fk2x

  = -mg sin u - fk = max

  aFy = ny + 1FG2y + 1 fk2y

  = n - mg cos u = may = 0

 fk = m
 k n

We’ve written these equations by “reading” the motion diagram 
and the free-body diagram. Notice that both components of the 
gravitational force vector F

u

G are negative. ay = 0 because the mo-
tion is entirely along the x-axis.

The second equation gives n = mg cos u. Using this in the  
friction model, we find fk = m

 k mg cos u. Inserting this result back  
into the first equation then gives

  max = -mg sin u - m
 k mg cos u

  = -mg1sin u + m
 k cos u2

 ax = -g1sin u + m
 k cos u2

This is a constant acceleration. Constant-acceleration kinematics 
gives

v1x 

2 = 0 = v0x 

2 + 2ax1x1 - x02 = v0x 

2 + 2ax x1

which we can solve for the stopping distance x1:

x1 = -  
v0x 

2

2ax
=

v0x 

2

2g1sin u + m
 k cos u2

Notice how the minus sign in the expression for ax canceled the minus  
sign in the expression for x1. Evaluating our result at the three  
different angles gives the stopping distances:

x1 = c
48 m u = 10° uphill
57 m u = 0° level
75 m u = -10° downhill

The implications are clear about the danger of driving downhill 
too fast!

REVIEW 30 m/s ≈ 60 mph and 57 m ≈ 180 feet on a level surface.  
This is similar to the stopping distances you learned when you got 
your driver’s license, so the results seem reasonable. Additional 
confirmation comes from noting that the expression for ax becomes 
-g sin u if m

 k = 0. This is what you learned in Chapter 2 for the 
acceleration on a frictionless inclined plane.

EXAMPLE 6.11 ■ Stopping distances

FIGURE 6.24  Pictorial representation of a skidding car.

This representation works for a downhill
slide if we let u be negative.
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6.6 More Examples of Newton’s Second Law  175

Your instructor has set up a lecture demonstration in which a 250 g 
cart can roll along a level, 2.00-m-long track while its velocity is 
measured with a motion detector. First, the instructor simply gives 
the cart a push and measures its velocity as it rolls down the track. 
The data below show that the cart slows slightly before reaching the 
end of the track. Then, as FIGURE 6.25 shows, the instructor attaches 
a string to the cart and uses a falling weight to pull the cart. She then 
asks you to determine the tension in the string. For extra credit, find 
the coefficient of rolling friction.

Time (s) Rolled velocity (m/s) Pulled velocity (m/s)

0.00 1.20 0.00

0.25 1.17 0.36

0.50 1.15 0.80

0.75 1.12 1.21

1.00 1.08 1.52

1.25 1.04 1.93

1.50 1.02 2.33

FIGURE 6.25  The experimental arrangement.

Falling weightMotion detector

250 g cart

MODEL Model the cart as a particle acted on by constant forces.

VISUALIZE The cart changes velocity—it accelerates—when both 
pulled and rolled. Consequently, there must be a net force for  
both motions. For rolling, force identification finds that the only 
horizontal force is rolling friction, a force that opposes the motion 
and slows the cart. There is no “force of motion” or “force of the 
hand” because the hand is no longer in contact with the cart. (Recall 
Newton’s “zeroth law”: The cart responds only to forces applied at 
this instant.) Pulling adds a tension force in the direction of motion. 
The two free-body diagrams are shown in FIGURE 6.26.

FIGURE 6.26  Pictorial representations of the cart.

n
u

n
u

T
u

y

Rolling

x
fr

Fnet

FG

y

Pulled

x
fr

Fnet

FG

u u

u

u

u

u

SOLVE The cart’s acceleration when pulled, which we can find from 
the velocity data, will allow us to find the net force. Isolating the 
tension force will require knowing the friction force, but we can 
determine that from the rolling motion. For the rolling motion, New-
ton’s second law can be written by “reading” the free-body diagram 
on the left:

 aFx = 1 fr2x = - fr = max = maroll

 aFy = ny+1FG2y = n - mg = 0

Make sure you understand where the signs come from and how we 
used our knowledge that au has only an x-component, which we called 
aroll. The magnitude of the friction force, which is all we’ll need to 
determine the tension, is found from the x-component equation:

fr = -maroll = -m *  slope of the rolling@velocity graph

But we’ll need to do a bit more analysis to get the coefficient of 
rolling friction. The y-component equation tells us that n = mg.  
Using this in the model of rolling friction, fr = m

 r  

n = m
 r  

mg, we see 
that the coefficient of rolling friction is

m
 r =

fr
mg

The x-component equation of Newton’s second law when the 
cart is pulled is

aFx = T + 1 fr 2x = T - fr = max = mapulled

Thus the tension that we seek is

T = fr + mapulled = fr + m * slope of the pulled@velocity graph

FIGURE 6.27 shows the graphs of the velocity data. The accelerations 
are the slopes of these lines, and from the equations of the best-fit 
lines we find aroll = -0.124 m/s2 and apulled = 1.55 m/s2. Thus the 
friction force is

fr =  -maroll = -10.25 kg21-0.124 m/s22 = 0.031 N

Knowing this, we find that the string tension pulling the cart is

T = fr + mapulled = 0.031 N + 10.25 kg211.55 m/s22 = 0.42 N

and the coefficient of rolling friction is

m
 r =

fr
mg

=
0.031 N

10.25 kg219.80 m/s22 = 0.013

FIGURE 6.27  The velocity graphs of the rolling and pulled motion. 
The slopes of these graphs are the cart’s acceleration.

Best-fit lines

Rolling
y = -0.124x + 1.20

Pulled
y = 1.55x + 0.01

t (s)

v (m/s) 

0.25 0.50 0.75 1.00 1.25 1.500.00
0.0

0.5

1.0

1.5

2.0

2.5

REVIEW The coefficient of rolling friction is very small, but it’s 
similar to the values in Table 6.1 and thus believable. That gives  
us confidence that our value for the tension is also correct. It’s 
 reasonable that the tension needed to accelerate the cart is small 
because the cart is light and there’s very little friction.

EXAMPLE 6.12  ■ Measuring the tension pulling a cart
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176 CHAPTER 6  Dynamics I: Motion Along a Line

A 100 kg box of dimensions 50 cm * 50 cm * 50 cm is in the back 
of a flatbed truck. The coefficients of friction between the box and the 
bed of the truck are ms = 0.40 and m

 k = 0.20. What is the maximum 
acceleration the truck can have without the box slipping?

MODEL This is a somewhat different problem from any we have 
looked at thus far. Let the box, which we’ll model as a particle, be 
the object of interest. It contacts other objects only where it touches 
the truck bed, so only the truck can exert contact forces on the box. 
If the box does not slip, then there is no motion of the box relative 
to the truck and the box must accelerate with the truck: abox = atruck. 
As the box accelerates, it must, according to Newton’s second law, 
have a net force acting on it. But from what?

Imagine, for a moment, that the truck bed is frictionless. The 
box would slide backward (as seen in the truck’s reference frame) 
as the truck accelerates. The force that prevents sliding is static 
friction, so the truck must exert a static friction force on the box 
to “pull” the box along with it and prevent the box from sliding 
relative to the truck.

VISUALIZE This situation is shown in FIGURE 6.28. There is only 
one horizontal force on the box, f 

u

s, and it points in the forward 
direction to accelerate the box. Notice that we’re solving the 
problem with the ground as our reference frame. Newton’s laws 
are not valid in the accelerating truck because it is not an inertial 
reference frame.

SOLVE Newton’s second law, which we can “read” from the free-
body diagram, is

 aFx = fs = max

 aFy = n - FG = n - mg = may = 0

Now, static friction, you will recall, can be any value between 0 
and fs max. If the truck accelerates slowly, so that the box doesn’t 
slip, then fs 6  fs max. However, we’re interested in the acceleration 
amax at which the box begins to slip. This is the acceleration at 
which fs reaches its maximum possible value

fs = fs max = ms n

The y-equation of the second law and the friction model combine 
to  give fs max = ms mg. Substituting this into the x-equation, and 
 noting that ax is now amax, we find

amax =
fs max

m
= ms g = 3.9 m/s2

The truck must keep its acceleration less than 3.9 m/s2 if slipping 
is to be avoided.

REVIEW 3.9 m/s2 is about one-third of g. You may have noticed that 
items in a car or truck are likely to tip over when you start or stop, 
but they slide only if you really floor it and accelerate very quickly. 
So this answer seems reasonable. Notice that neither the dimensions 
of the crate nor m

 k was needed. Real-world situations rarely have 
exactly the information you need, no more and no less. Many prob-
lems in this textbook will require you to assess the information in the 
problem statement in order to learn which is relevant to the solution.

EXAMPLE 6.13  ■ Make sure the cargo doesn’t slide

The mathematical representation of this last example was quite straightforward. 
The challenge was in the analysis that preceded the mathematics—that is, in the 
physics of the problem rather than the mathematics. It is here that our analysis tools—
motion diagrams, force identification, and free-body diagrams—prove their value.

   CHAPTER 6 CHALLENGE EXAMPLE    Acceleration from a variable force

Force Fx = c sin1pt/T2, where c and T are constants, is applied to  
an object of mass m that moves on a horizontal, frictionless surface. 
The object is at rest at the origin at t = 0.

a. Find an expression for the object’s velocity. Graph your result 
for 0 … t … T.

b. What is the maximum velocity of a 500 g object if c = 2.5 N 
and T = 1.0 s?

MODEL Model the object as a particle. But we cannot use the 
 constant-force model or constant-acceleration kinematics.

VISUALIZE The sine function is 0 at t = 0 and again at t = T, when 
the value of the argument is p rad. Over the interval 0 … t … T, the 
force grows from 0 to c and then returns to 0, always pointing in the  
positive x-direction. FIGURE 6.29 shows a graph of the force and a 
pictorial representation.

FIGURE 6.28  Pictorial representation for the box in a flatbed truck.

n
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y
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Fnet

FG

Gravity FG

Normal n
Static friction fs

u

u
u

u

u
u

Known

m = 100 kg
Box dimensions 50 cm * 50 cm * 50 cm
ms = 0.40     mk = 0.20

Acceleration at which box slips

Find
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FIGURE 6.29  Pictorial representation for a variable force.

SOLVE The object’s acceleration increases between 0 and T/2 as the 
force increases. You might expect the object to slow down between 
T/2 and T as the force decreases. However, there’s still a net force 
in the positive x-direction, so there must be an acceleration in the 
positive x-direction. The object continues to speed up, only more 
slowly as the acceleration decreases. Maximum velocity is reached 
at t = T.

a. This is not constant-acceleration motion, so we cannot use the 
familiar equations of constant-acceleration kinematics. Instead, 
we must use the definition of acceleration as the rate of change—
the time derivative—of velocity. With no friction, we need only 
the x-component equation of Newton’s second law:

ax =
dvx

dt
=

Fnet

m
=

c
m

 sin 1pt
T 2

First we rewrite this as

dvx =
c
m

 sin 1pt
T 2  dt

Then we integrate both sides from the initial conditions 1vx =  
v0x = 0 at t = t0 = 02 to the final conditions 1vx at the later time t2:

3
vx

0
 dvx =

c
m3

t

0
 sin 1pt

T 2  dt

The fraction c/m is a constant that we could take outside the integral.  
The integral on the right side is of the form

3sin 1bx2 dx = -  
1
b

 cos 1bx2

Using this, and integrating both sides of the equation, we find

vx `
vx

0
= vx - 0 = -  

cT
pm

 cos 1pt
T 2 ` t

0
= -  

cT
pm

 1cos 1pt
T 2 - 12

Simplifying, we find the object’s velocity at time t is

vx =
cT
pm

 11 - cos 1pt
T 22

This expression is graphed in FIGURE 6.30, where we see that, as 
predicted, maximum velocity is reached at t = T.

b. Maximum velocity, at t = T, is

vmax =
cT
pm

 11-  cos p2 =
2cT
pm

=
212.5 N211.0 s2
p10.50 kg2 = 3.2 m/s

REVIEW A steady 2.5 N force would cause a 0.5 kg object to 
 accelerate at 5 m/s2 and reach a speed of 5 m/s in 1 s. A variable 
force with a maximum of 2.5 N will produce less acceleration, so 
a top speed of 3.2 m/s seems reasonable.

FIGURE 6.30  The object’s velocity as a function of time.
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General Principles

The goal of Chapter 6 has been to learn to solve linear  
force-and-motion problems.

Summary

Specific information about three important descriptive models:

Gravity F
u

G = 1mg, downward2
Friction f 

u

s = 10 to m
 s n, direction as necessary to prevent motion2

   f 
u

k = 1m
 k n, direction opposite the motion2

    f 
u

r = 1m
 r n, direction opposite the motion2

Drag   Drag is directed opposite the motion with magnitude

 Fdrag = e
1
2 Cd rAV 2 high Re

6phrv    sphere at low Re

Newton’s laws are vector  
expressions. You must write 
them out by components:

 1Fnet2x = aFx = max 

 1Fnet2y = aFy = may 

The acceleration is zero in equi-
librium and also along an axis 
perpendicular to the motion.

Important Concepts
y

x

Fnet

u

F1

u

F3

u

F2

u

Mass is an intrinsic property of an object that describes the object’s 
inertia and, loosely speaking, its quantity of matter.

The weight of an object is the reading of a spring scale when the 
object is at rest relative to the scale. Weight is the result of weigh-
ing. An object’s weight depends on its mass, its acceleration, and 
the strength of gravity. An object in free fall is weightless.

An object reaches terminal speed when the drag force exactly 
balances the applied force.

F
u

drag = F
u

applied

Applications

Fapplied

u

Fdrag

u

equilibrium model
constant-force model
flat-earth approximation
weight
coefficient of static friction, ms

Terms and Notation

A Problem-Solving Strategy
MODEL Make simplifying assumptions.

VISUALIZE

• Translate words into symbols.
• Draw a sketch to define the situation.
• Draw a motion diagram.
• Identify forces.

• Draw a free-body diagram.

SOLVE Use Newton’s second law:

F
u

net = a
i

 F
u

i = mau

“Read” the vectors from the free-body diagram. 
Use kinematics to find velocities and positions.

REVIEW Is the result reasonable? Does it have 
correct units and significant figures?

Two Explanatory Models
An object on which there is 
no net force is in mechanical 
equilibrium.
• Objects at rest.

• Objects moving with constant 
velocity.

• Newton’s second law applies 
with au = 0

u
.

An object on which the net force is 
constant undergoes dynamics with 
constant force.

• The object accelerates.

• The kinematic model is that of constant 
acceleration.

• Newton’s second law applies.

Fnet = 0
u u

a
u

Go back and forth
between these
steps as needed.

d

coefficient of kinetic friction, m
 k

rolling friction
coefficient of rolling friction, m

 r

density, r
viscosity, h

Reynolds number, Re
drag coefficient, Cd

quadratic drag
terminal speed, vterm

linear drag

Stokes’ law
time constant, t
exponential decay
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1. Are the objects described here in equilibrium while at rest, in 
equilibrium while in motion, or not in equilibrium at all? Explain.
a. A 200 pound barbell is held over your head.
b. A girder is lifted at constant speed by a crane.
c. A girder is being lowered into place. It is slowing down.
d. A jet plane has reached its cruising speed and altitude.
e. A box in the back of a truck doesn’t slide as the truck stops.

2. A ball tossed straight up has v = 0 at its highest point. Is it in 
equilibrium? Explain.

3. Kat, Matt, and Nat are arguing about why a physics book on a 
table doesn’t fall. According to Kat, “Gravity pulls down on it, 
but the table is in the way so it can’t fall.” “Nonsense,” says Matt. 
“An upward force simply overcomes the downward force to pre-
vent it from falling.” “But what about Newton’s first law?” count-
ers Nat. “It’s not moving, so there can’t be any forces acting on it.” 
None of the statements is exactly correct. Who comes closest, and 
how would you change his or her statement to make it correct?

4. If you know all of the forces acting on a moving object, can you 
tell the direction the object is moving? If yes, explain how. If no, 
give an example.

5. An elevator, hanging from a single cable, moves upward at 
constant speed. Friction and air resistance are negligible. Is 
the tension in the cable greater than, less than, or equal to the 
gravitational force on the elevator? Explain. Include a free-body 
diagram as part of your explanation.

6. An elevator, hanging from a single cable, moves downward and is 
slowing. Friction and air resistance are negligible. Is the tension 
in the cable greater than, less than, or equal to the gravitational 
force on the elevator? Explain. Include a free-body diagram as 
part of your explanation.

7. Which of the following statements is false?
a. Mass and weight are measured using different units.
b. While mass is the fundamental property of an object, weight 

may vary with location.
c. A reduction in mass will always lower the weight of the 

 object and vice versa.
d. Even in an accelerating frame, one can correctly measure the 

mass of an object by using a balance.
8. An astronaut takes his bathroom scale to the moon and then 

stands on it. Is the reading of the scale his weight? Explain.
9. The four balls in FIGURE Q6.9 have been thrown straight up. 

They have the same size, but different masses. Air resistance is 
negligible. Rank in order, from largest to smallest, the magni-
tude of the net force acting on each ball. Some may be equal. 
Give your answer in the form A 7 B 7 C = D and explain your 
ranking. Assume that the Reynolds number is high.

3 m/s

C

4 m/s

B

5 m/s

A

3 m/s

300 g300 g200 g 400 g

D

FIGURE Q6.9 

10. Why is an analytical balance, the kind that is used by jewelers 
and can measure very small masses, stored inside a glass con-
tainer? (Hint: Consider the effect of dust and air currents.)

CONCEPTUAL QUESTIONS
11. An astronaut orbiting the earth is handed two balls that have 

identical outward appearances. However, one is hollow while the 
other is filled with lead. How can the astronaut determine which 
is which? Cutting or altering the balls is not allowed.

12. A hand presses down on the book in FIGURE Q6.12. Is the normal 
force of the table on the book larger than, smaller than, or equal 
to mg?

FIGURE Q6.12  Book of mass m

13. Boxes A and B in FIGURE Q6.13 both remain at rest. Is the friction  
force on A larger than, smaller than, or equal to the friction force 
on B? Explain.

30 N

ms = 0.4

A
20 kg

30 N

ms = 0.5

B
10 kg

FIGURE Q6.13 

14. Suppose you push a hockey puck of mass m across frictionless 
ice for 1 second, starting from rest. The puck’s speed is v, and its 
traveling distance is d. You repeat the experiment with a puck of 
mass m/2 and push it with the same force.
a. How long will you have to push the puck till it reaches speed v?
b. How long will you have to push the puck for it to travel 

 distance d?
15. A block pushed along the floor with a velocity of v0x slides for a 

distance of d after the pushing force is removed.
a. If the mass of the block is halved but its initial velocity 

 remains unchanged, what distance does the block slide before 
stopping?

b. If the initial velocity is tripled to 3v0x, but the mass  remains 
 unchanged, what distance does the block slide before 
stopping?

16. You and your father are trying to skate. Your father weighs 
three times as much as you. If you are both using an identical 
pair of roller skates, will the frictional force on the skates be 
identical too?

17. Five balls are moving through the air with the instantaneous 
 velocities shown in FIGURE Q6.17. All five have the same size and 
shape. Air resistance is not negligible. Rank in order, from largest 
to smallest, the magnitudes of the accelerations aA to aE. Some may 
be equal. Give your answer in the form A 7 B = C 7 D 7 E and 
explain your ranking. Assume that the Reynolds number is high.

A

50 g

Just released
vy = 0

B

100 g

Just released
vy = 0

C

50 g

D

100 g

E

50 g

vy = 20 m/s

vy = -20 m/s vy = -20 m/s

FIGURE Q6.17 
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180 CHAPTER 6  Dynamics I: Motion Along a Line

EXERCISES AND PROBLEMS
Exercises

Section 6.1  The Equilibrium Model

1. | The three ropes in FIGURE  EX6.1 are tied to a small, very light 
ring. Two of these ropes are anchored to walls at right angles 
with the tensions shown in the figure. What are the magnitude 
and direction of the tension T 

u

3 in the third rope?

FIGURE EX6.1

0.60 m

0.80 m

T2 = 80 N

T1 = 50 N

T3

u

2. | The three ropes in FIGURE  EX6.2 are tied to a small, very light 
ring. Two of the ropes are anchored to walls at right angles, and 
the third rope pulls as shown. What are T1 and T2, the magnitudes 
of the tension forces in the first two ropes?

FIGURE EX6.2

30°

Rope 2

Rope 1

100 N

3. || A loudspeaker weighing 10 kg is suspended 2 m below the 
ceiling by two 3-m-long cables that angle outward at equal 
 angles. What is the tension in the cables?

4. | A 750 N parachute instructor floats to earth at a steady  
8.0 m/s while being supported by two identical parachutes. What 
is the magnitude of the drag force each chute provides?

5. || A football coach sits on a sled while two of his players build 
their strength by dragging the sled across the field with ropes. 
The frictional force on the sled is 2000 N; the players have equal 
pulls; and the angle between the two ropes is 20°. How hard must 
each player pull to drag the coach at a steady speed 2 m/s?

6. || In an electricity experiment, a 1.0 g plastic ball is suspended 
on a 60-cm-long string and given an electric charge. A charged 
rod brought near the ball exerts a horizontal electrical force F

u

elec on  
it, causing the ball to swing out to a 20° angle and remain 
there.
a. What is the magnitude of F

u

elec?
b. What is the tension in the string?

7. | A construction worker with a weight of 850 N stands on a roof 
that is sloped at 30°. What is the magnitude of the normal force 
of the roof on the worker?

Section 6.2  Using Newton’s Second Law

8. | The forces in FIGURE  EX6.8 act on a 2.0 kg object. What are 
the values of ax and ay, the x- and y-components of the object’s 
acceleration?

9. | The forces in FIGURE  EX6.9 act on a 2.0 kg object. What are 
the values of ax and ay, the x- and y-components of the object’s 
acceleration?

FIGURE EX6.8

y

x

3.0 N

3.0 N

2.0 N4.0 N

FIGURE EX6.9

y

x

3.0 N

2.82 N

1.0 N5.0 N

20°

10. || FIGURE  EX6.10 shows the force acting on a 2.0 kg object as 
it moves along the x-axis. The object is at rest at the origin at 
t = 0 s. What are its acceleration and velocity at t = 6 s?

FIGURE EX6.10

t (s)0

Fx (N)

-2

2

2 4 6

4

11. | FIGURE  EX6.11 shows the velocity graph of a 2.0 kg object 
as it moves along the x-axis. What is the net force acting on this 
object at t = 1 s? At 3 s? At 7 s?

FIGURE EX6.11

vx (m/s)

t (s)

12

6

0
0 2 4 6 8

12. | A horizontal rope is tied to a 40-kg-box on frictionless ice. 
What is the tension in the rope if
a. the box is at rest?
b. the box moves at a steady speed of 10 m/s?
c. the box has vx = 7 m/s and ax = 7.0 m/s2?

13. | A 20-kg-box hangs from a rope. What is the tension in the 
rope if
a. the box is at rest?
b. the box moves up at a steady speed of 7 m/s?
c. the box has vy = 7 m/s and is speeding up at 7 m/s2?
d. the box has vy = 7 m/s and is slowing down at 7 m/s2?
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26. || A 10 kg crate is placed on a horizontal conveyor belt. The 
materials are such that ms = 0.5 and m

 k = 0.3.
a. Draw a free-body diagram showing all the forces on the crate 

if the conveyer belt runs at constant speed.
b. Draw a free-body diagram showing all the forces on the crate 

if the conveyer belt is speeding up.
c. What is the maximum acceleration the belt can have without 

the crate slipping?
27. || Pierre is pulling a 56 kg wooden chest with a force of 200 N, 

but the wooden chest refuses to move. The coefficient of static 
friction between the wooden chest and the floor is 0.40. What is 
the magnitude of the friction force on the wooden chest?

28. || A 4000 kg truck is parked on a 15° slope. How big is the fric-
tion force on the truck? The coefficient of static friction between 
the tires and the road is 0.90.

29. || A rubber-wheeled cart weighing 40 kg rolls down a 30° con-
crete incline. What is the cart’s acceleration if the rolling friction 
is (a) neglected and (b) included?

30. | A 50,000 kg locomotive is traveling at 10 m/s when its engine 
and brakes both fail. How far will the locomotive roll before it 
comes to a stop? Assume the track is level.

31. | A 1500 kg car skids to a halt on a wet road where m
 k = 0.50. 

How fast was the car traveling if it leaves 65-m-long skid 
marks?

32. ||| You and your friend Peter are putting new shingles on a roof 
pitched at 25°. You’re sitting on the very top of the roof when 
Peter, who is at the edge of the roof, 5.0 m away, asks you for the 
box of nails. Rather than carry the 2.5 kg box of nails down to 
Peter, you decide to give the box a push and have it slide down to 
him. If the coefficient of kinetic friction between the box and the 
roof is 0.55, with what speed should you push the box to have it 
gently come to rest right at the edge of the roof?

Section 6.5  Drag

33. || a. Above what speed does a 3.0-mm-diameter ball bearing in 
20°C water experience quadratic drag?

b. Below what speed does a 3.0-mm-diameter ball bearing in 
20°C air experience linear drag?

34. || A medium-sized jet has a 3.8-m-diameter fuselage and a 
loaded mass of 85,000 kg. The drag on an airplane is primar-
ily due to the cylindrical fuselage, and aerodynamic shaping 
gives it a drag coefficient of 0.37. How much thrust must the jet’s 
 engines provide to cruise at 230 m/s at an altitude where the air 
density is 1.0 kg/m3?

35. || So-called volcanic “ash” is actually finely pulverized rock 
blown high into the atmosphere. A typical ash particle is a 
50@mm@diameter piece of silica with a density of 2400 kg/m3.
a. How long would it take this ash particle to fall from a height 

of 5.0 km in vacuum?
b. How long in hours does it take this ash particle to fall from 

a height of 5.0 km in still air? Use the properties of 20°C air 
at sea level.

36. || A 75 kg skydiver can be modeled as a rectangular “box” 
with dimensions 20 cm * 40 cm * 180 cm. What is his terminal 
speed if he falls feet first? Use 0.8 for the drag coefficient. Use 
the properties of 20°C air at sea level.

37. || An E. coli bacterium can be modeled as a 0.50@mm@diameter 
sphere that has the density of water. Rotating flagella propel 
a bacterium through 40°C water with a force of 65 fN, where 
1 fN =  1 femtonewton = 10-15 N. What is the bacterium’s 
speed in mm/s?

14. || A 65 kg water skier is pulled by a horizontal tow rope. She 
goes from rest to 5.0 m/s in 3.5 s when the rope’s tension is 130 N.  
What is the magnitude of the friction force between her skis and 
the water?

15. || A 8.0 * 104 kg spaceship is at rest in deep space. Its thrusters 
provide a force of 1200 kN. The spaceship fires its thrusters for 
20 s, then coasts for 12 km. How long does it take the spaceship 
to coast this distance?

16. || The position of a 2.0 kg mass is given by x = 12t3 - 3t22 m, 
where t is in seconds. What is the net horizontal force on the 
mass at (a) t = 0 s and (b) t = 1 s?

Section 6.3  Mass, Weight, and Gravity

17. | A man has a mass of 69 kg.
a. What is his weight while standing on Earth?
b. What are his mass and his weight on Mars, where 

g = 3.76 m/s2?
18. | It takes the elevator in a skyscraper 4.0 s to reach its cruising 

speed of 10 m/s. A 60 kg passenger gets aboard on the ground 
floor. What is the passenger’s weight
a. Before the elevator starts moving?
b. While the elevator is speeding up?
c. After the elevator reaches its cruising speed?

19. || FIGURE  EX6.19 shows the velocity graph of a 75 kg passenger 
in an elevator. What is the passenger’s weight at t = 1 s? At 5 s? 
At 9 s?

FIGURE EX6.19

vy (m/s)

t (s)

8

4

0
0 2 4 6 8 10

20. || Zach, whose mass is 80 kg, is in an elevator descending at 
10 m/s. The elevator takes 3.0 s to brake to a stop at the first floor.
a. What is Zach’s weight before the elevator starts braking?
b. What is Zach’s weight while the elevator is braking?

21. || A 20,000 kg rocket has a rocket motor that generates 
3.0 * 105 N of thrust. Assume no air resistance.
a. What is the rocket’s initial upward acceleration?
b. At an altitude of 5000 m the rocket’s acceleration has 

 increased to 6.0 m/s2. What mass of fuel has it burned?
22. || The earth’s radius is 6.37 * 106 m. What is the radius of a 

planet that has the same mass as the earth but on which the free-
fall acceleration is 8.0 m/s2?

23. || The mass of the sun is 2.0 * 1030 kg. A 5.0 * 1014 kg comet 
is 75 million kilometers from the sun. What is the magnitude of 
the comet’s acceleration toward the sun?

Section 6.4  Friction

24. | A stubborn, 120 kg mule sits down and refuses to move. To 
drag the mule to the barn, the exasperated farmer ties a rope 
around the mule and pulls with his maximum force of 800 N. 
The coefficients of friction between the mule and the ground are 
ms = 0.8 and mk = 0.5. Is the farmer able to move the mule?

25. | Brenda and Carlos are sliding a 100 kg filing cabinet across 
the floor of their office. The filing cabinet slides with a constant 
speed if Carlos pushes from behind with 178 N of force while 
Brenda pulls forward on a rope with 165 N of force. What is the 
filing cabinet’s coefficient of kinetic friction on the office floor?
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182 CHAPTER 6  Dynamics I: Motion Along a Line

43. || The piston of a machine exerts a 
constant force on a ball as it moves 
horizontally through a distance of 
15 cm. You use a motion detector to 
measure the speed of five different 
balls as they come off the piston; 
the data are shown in the table. 
Use theory to find two quantities 
that, when graphed, should give a  
straight line. Then use the graph to find the size of the  
piston’s force.

44. || Compressed air is used to fire a 50 g ball vertically upward 
from a 1.0-m-tall tube. The air exerts an upward force of 2.0 N 
on the ball as long as it is in the tube. How high does the ball go 
above the top of the tube? Neglect air resistance.

45. || A rifle with a barrel length of 60 cm fires a 10 g bullet with a 
horizontal speed of 400 m/s. The bullet strikes a block of wood 
and penetrates to a depth of 12 cm.
a. What resistive force (assumed to be constant) does the wood 

exert on the bullet?
b. How long does it take the bullet to come to rest?

46. ||| A truck with a heavy load has a total mass of 7500 kg. It is 
climbing a 15° incline at a steady 15 m/s when, unfortunately, 
the poorly secured load falls off! Immediately after losing the 
load, the truck begins to accelerate at 1.5 m/s2. What was the 
mass of the load? Ignore rolling friction.

47. || a. A rocket of mass m is launched straight up with thrust 
F
u

thrust. Find an expression for the rocket’s speed at height 
h if air resistance is neglected.

b. The motor of a 350 g model rocket generates 9.5 N thrust. 
If air resistance can be neglected, what will be the rock-
et’s speed as it reaches a height of 85 m?

48. || An object of mass m is at rest at the top of a smooth slope of 
height h and length L. The coefficient of kinetic friction between 
the object and the surface, mk, is small enough that the object 
will slide down the slope after being given a very small push 
to get it started. Find an expression for the object’s speed at the 
bottom of the slope.

49. || Sam, whose mass is 75 kg, takes off across level snow on his 
jet-powered skis. The skis have a thrust of 200 N and a coeffi-
cient of kinetic friction on snow of 0.10. Unfortunately, the skis 
run out of fuel after only 10 s.
a. What is Sam’s top speed?
b. How far has Sam traveled when he finally coasts to a stop?

50. || A baggage handler drops your 10 kg suitcase onto a conveyor 
belt running at 2.0 m/s. The materials are such that ms = 0.50 
and mk = 0.30. How far is your suitcase dragged before it is rid-
ing smoothly on the belt?

51. || A 5.0 kg wooden sled is launched up a 25° snow-covered 
slope with an initial speed of 10 m/s.
a. What vertical height does the sled reach above its starting point?
b. What is the sled’s speed when it slides back down to its start-

ing point?
52. || It’s a snowy day and you’re pulling a friend along a level road 

on a sled. You’ve both been taking physics, so she asks what you 
think the coefficient of friction between the sled and the snow 
is. You’ve been walking at a steady 1.5 m/s, and the rope pulls 
up on the sled at a 30° angle. You estimate that the mass of the 
sled, with your friend on it, is 60 kg and that you’re pulling with 
a force of 75 N. What answer will you give?

39. || The 1000 kg steel beam in FIGURE  P6.39 is supported by two 
ropes. What is the tension in each?

FIGURE P6.38

Fx (N)

t (s)

6

3

0
0 4321

FIGURE P6.39

20° 30°Rope 1 Rope 2

40. || An accident victim with a bro-
ken leg is being placed in traction. 
The patient wears a special boot 
with a pulley attached to the sole. 
The foot and boot together have a 
mass of 4.0 kg, and the doctor has 
decided to hang a 6.0 kg mass from 
the rope. The boot is held sus-
pended by the ropes, as shown in 
FIGURE  P6.40, and does not touch 
the bed.
a. Determine the amount of 

tension in the rope by using 
Newton’s laws to analyze the hanging mass.

Hint: If the pulleys are frictionless, which we will assume, the 
tension in the rope is constant from one end to the other.
b. The net traction force needs to pull straight out on the leg. 

What is the proper angle u for the upper rope?
c. What is the net traction force pulling on the leg?

41. || Otis, whose mass is 92 kg, stands on a weighing scale in an 
 elevator. The scale reads 860 N for the first 3.0 s after the ele-
vator starts moving, then 900 N for the next 3.0 s. What is the 
elevator’s velocity 6.0 s after starting?

42. || Seat belts and air bags save lives by reducing the forces ex-
erted on the driver and passengers in an automobile collision. 
Cars are designed with a “crumple zone” in the front of the car. 
In the event of an impact, the passenger compartment deceler-
ates over a distance of about 1 m as the front of the car crumples. 
An occupant restrained by seat belts and air bags decelerates 
with the car. By contrast, an unrestrained occupant keeps mov-
ing forward with no loss of speed (Newton’s first law!) until hit-
ting the dashboard or windshield. These are unyielding surfaces, 
and the unfortunate occupant then decelerates over a distance of 
only about 5 mm.
a. A 60 kg person is in a head-on collision. The car’s speed at 

impact is 15 m/s. Estimate the net force on the person if he or 
she is wearing a seat belt and if the air bag deploys.

b. Estimate the net force that ultimately stops the person if he or 
she is not restrained by a seat belt or air bag.

u

6.0 kg

15°4.0 kg

FIGURE P6.40

Mass (g) Speed (m/s)

200 9.4

400 6.3

600 5.2

800 4.9

1000 4.0

Problems
38. || A 2.0 kg object initially at rest at the origin is subjected to the 

time-varying force shown in FIGURE  P6.38. What is the object’s 
velocity at t = 4 s?
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59. || Astronauts in space “weigh” themselves by oscillating on a 
spring. Suppose the position of an oscillating 75 kg astronaut is 
given by x = 10.30 m2 sin1(p rad/s) * t2, where t is in s. What 
force does the spring exert on the astronaut at (a) t = 1.0 s and  
(b) 1.5 s? Note that the angle of the sine function is in radians.

60. || A particle of mass m moving along the x-axis experiences the 
net force Fx = ct, where c is a constant. The particle has velocity 
v0x at t = 0. Find an algebraic expression for the particle’s veloc-
ity vx at a later time t.

61. || At t = 0, an object of mass m is at rest at x = 0 on a hori-
zontal, frictionless surface. A horizontal force Fx = F011 - t/T2, 
which decreases from F0 at t = 0 to zero at t = T, is exerted on 
the object. Find an expression for the object’s (a) velocity and  
(b) position at time T.

62. || A 500 g ball moves horizontally with velocity 
vx = (15 m) / (t + 1 s) for t 7 0 s . What is the net force on the ball 
at t = 1 s?

63. || A ball is shot from a compressed-air gun at twice its terminal 
speed.
a. What is the ball’s initial acceleration, as a multiple of g, if it 

is shot straight up?
b. What is the ball’s initial acceleration, as a multiple of g, if it 

is shot straight down?
64. || An oceanographic research ship uses a cable to tow a sub-

merged sonar system that maps the ocean floor. The submersible 
travels horizontally because the vertical component of the cable 
tension and an upward buoyant force from the water balance the 
gravitational force. One submersible has a cross-section area of 
1.3 m2 and a drag coefficient of 0.85. The tow cable makes a 
30° angle with the horizontal when pulling the submersible at 
5.1 m/s. What is the magnitude of the tension in the cable? The 
density of seawater is 1020 kg/m3.

65. ||| A 6.5-cm-diameter ball has a terminal speed of 26 m/s. What 
is the ball’s mass? Use the properties of 20°C air at sea level.

66. || What is the magnitude of the acceleration of a skydiver at the 
instant she is falling at one-half her terminal speed?

67. || A 65 kg bicyclist is coasting down a long hill that has a 4.0° 
slope. Her cross-section area is 0.35 m2, her drag coefficient is 
0.89, her bicycle’s coefficient of rolling friction is 0.02, and the 
air temperature is 20°C. What speed does she eventually reach?

68. || Electrostatic precipitation is used to remove small particu-
lates from the emissions of coal-fired power plants. The parti-
cles are given a small electric charge that causes them to move 
toward a large, oppositely charged plate where they stick. A 
typical particulate is a 1.0@mm@diameter sphere with a density 
of 1300 kg/m3. With what speed in mm/s does it drift toward 
the collector plate if the electric force is 1.2 * 10-12 N? Gravity 
can be neglected because the electric force is much larger. The 
viscosity of air in the 200°C exhaust is 2.5 * 10-5 Pa s .

Problems 69 and 70 show a free-body diagram. For each:
a. Write a realistic dynamics problem for which this is the correct 

free-body diagram. Your problem should ask a question that can 
be answered with a value of position or velocity (such as “How 
far?” or “How fast?”), and should give sufficient information to 
allow a solution.

b. Solve your problem!

53. || While driving to work one day, I was holding my coffee mug 
in my left hand while changing the radio station with my right 
hand. Then my cell phone rang, so I placed the mug on the flat 
part of my dashboard. Then, believe it or not, a deer ran out of 
the woods and onto the road right in front of me. Fortunately, my 
reaction time was zero, and I was able to stop from a speed of 
22 m/s in a mere 50 m, just barely avoiding the deer, without the 
coffee mug sliding. What is the minimum possible value of the 
coefficient of static friction between the mug and the dashboard? 
The mug (with coffee) had a mass of 550 g, and the mass of the 
deer was 150 kg.

54. || A large box of mass M is pulled across a horizontal, friction-
less surface by a horizontal rope with tension T. A small box of 
mass m sits on top of the large box. The coefficients of static and 
kinetic friction between the two boxes are ms and m

 k, respectively. 
Find an expression for the maximum tension Tmax for which the 
small box rides on top of the large box without slipping.

55. || A large box of mass M is moving on a horizontal surface at 
speed v0. A small box of mass m sits on top of the large box. The 
coefficients of static and kinetic friction between the two boxes 
are ms and mk, respectively. Find an expression for the shortest 
distance dmin in which the large box can stop without the small 
box slipping.

56. || A person with compromised pinch 
strength in his fingers can exert a force 
of only 6.0 N to either side of a pinch-
held object, such as the book shown in 
FIGURE  P6.56. What is the weight of 
the heaviest book  he can hold verti-
cally before it slips out of his fingers? 
The coefficient of static friction be-
tween his fingers and the book cover is 
0.80.

57. || A 1.0 kg wood block is pressed against a vertical wood wall 
by the 12 N force shown in FIGURE  P6.57. If the block is initially 
at rest, will it move upward, move downward, or stay at rest?

FIGURE P6.57
30°

12 N

1.0 kg

58. || The 2.0 kg wood box in FIGURE  P6.58 slides down a vertical 
wood wall while you push on it at a 45° angle. What magnitude 
of force should you apply to cause the box to slide down at a 
constant speed?

FIGURE P6.58
45°

2.0 kg

Fpush

u

FIGURE P6.56
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FIGURE  CP6.76 shows a rope wrapped through angle f around 
a cylinder of radius R whose coefficient of static friction is ms. 
The minimum tension needed to hold the load occurs when the 
rope is on the verge of slipping. The inset shows a small segment 
of rope spanning angle df. Assume that the tension on the load 
side is infinitesimally larger than on the holding side. The static 
friction force is tangent to the rope and thus perpendicular to n

u
. 

However, the small curvature of this segment means that the two 
tension forces act at angles 12  df to the tangent line.
a. Apply Newton’s second law to this segment of the rope to get 

an equation relating dT, the increase in tension across this 
little segment, to df, then integrate from T = Thold at f = 0 
to T = Tload at angle f. You will need to use the small-angle 
approximations sin u ≈ u and cos u ≈ 1 when u, in radians, 
is very small. Give your result as an equation for Thold, the 
minimum tension force needed to support load Tload. This re-
sult is known as the capstan equation.

b. A rock climber who weighs 670 N is dangling from a rope. 
His partner uses a belaying device in which the rope is 
wrapped around a cylinder with ms = 0.40. What is the mag-
nitude of the tension needed to support the climber if the 
rope is wrapped through an angle of (i) 90°, (ii) 180°, and 
(iii) 360°?

In Problems 71 through 73 you are given the dynamics equations that 
are used to solve a problem. For each of these, you are to

a. Write a realistic problem for which these are the correct equations.
b. Draw the free-body diagram and the pictorial representation for 

your problem.
c. Finish the solution of the problem.

71. -0.80n = 11500 kg2ax

n - 11500 kg219.80 m/s22 = 0

72. T - 0.20n - 120 kg219.80 m/s22 sin 20°
= 120 kg212.0 m/s22

n - 120 kg219.80 m/s22 cos 20° = 0

73. 1100 N2 cos 30° - fk = 120 kg2ax

n + 1100 N2 sin 30° - 120 kg219.80 m/s22 = 0

fk = 0.20n

Challenge Problems
74. ||| A block of mass m is at rest at the origin at t = 0. It is pushed 

with constant force F0 from x = 0 to x = L across a horizontal 
surface whose coefficient of kinetic friction is m

 k = m
 011 - x/L2. 

That is, the coefficient of friction decreases from m
 0 at x = 0 to 

zero at x = L.
a. Use what you’ve learned in calculus to prove that

ax = vx 
dvx

dx

b. Find an expression for the block’s speed as it reaches position L.
75. ||| A spring-loaded toy gun exerts a variable force on a plastic 

ball as the spring expands. Consider a horizontal spring and a 
ball of mass m whose position when barely touching a fully ex-
panded spring is x = 0. The ball is pushed to the left, compress-
ing the spring. You’ll learn in Chapter 9 that the spring force on 
the ball, when the ball is at position x (which is negative), can be 
written as 1FSp2x = -kx, where k is called the spring constant. 
The minus sign is needed to make the x-component of the force 
positive. Suppose the ball is initially pushed to x0 = -L, then 
released and shot to the right.
a. Use what you’ve learned in calculus to prove that

ax = vx 
dvx

dx

b. Find an expression, in terms of m, k, and L, for the speed of 
the ball as it comes off the spring at x = 0.

76. ||| A smaller holding tension Thold can support a larger load ten-
sion Tload if a rope is wrapped partially or completely around 
a cylinder. In old sailing ships, the enormous tension in a rope 
holding a sail could be controlled by only a few sailors when 
the rope was wrapped around a capstan. Similarly, belay-
ing rock climbers can support their weight in case of a fall.  

y
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FIGURE P6.70
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77. ||| a. A spherical particle of mass m is shot horizontally with ini-
tial speed v0 into a viscous fluid. Use Stokes’ law to find an 
expression for vx(t), the horizontal velocity as a function of 
time. Vertical motion due to gravity can be ignored.

b. A 2.0-cm-diameter, 95 g ball is shot horizontally into a 
tank of 20°C honey. How long will it take for the horizon-
tal speed to decrease to 15% of its initial value?

78. ||| a. Use what you’ve learned in calculus to prove that

ax = vx
dvx

dx

b. A spherical particle of mass m is shot horizontally with 
initial speed v0 into a viscous fluid. Use Stokes’ law to 
find an expression for vx(x), the horizontal velocity as 
a function of distance traveled. Vertical motion due to 
gravity can be ignored.

c. A 3.0-cm-diameter, 9.0 g marble is shot horizontally into 
a tank of 40°C honey at 80 cm/s. How far in cm will it 
travel before stopping?

79. ||| An object with cross section A is shot horizontally across fric-
tionless ice. Its initial velocity is v0x at t0 = 0 s. Air resistance is 
not negligible.
a. Show that the velocity at time t is given by the expression

vx =
v0x

1 + Cd rAv0x t/2m

b. A 1.6-m-wide, 1.4-m-high, 1500 kg car with a drag coeffi-
cient of 0.35 hits a very slick patch of ice while going 20 m/s. 
If friction is neglected, how long will it take until the car’s 
speed drops to 10 m/s? To 5 m/s?

69. 70. 
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What is an interaction?
All forces are interactions in which objects 
exert forces on each other. If A pushes on 
B, then B pushes back on A. These two 
forces form an action/reaction pair of 
forces. One can’t exist without the other.

❮❮ LOOKING BACK Section 5.5 Forces, 
interactions, and Newton’s second law

What is an interaction diagram?
We will often analyze a problem by defining  
a system—the objects of interest—and the  
larger environment that acts on the system. 
An interaction diagram is a key visual tool 
for identifying action/reaction forces of 
interaction inside the system and external 
forces from agents in the environment.

How do we model ropes and pulleys?
A common way that two objects interact  
is to be connected via a rope or cable or  
string. Pulleys change the direction of the 
tension forces. We will often model

 ■ Ropes and strings as massless;
 ■ Pulleys as massless and frictionless.

The objects’ accelerations are  constrained  
to have the same magnitude.

What is Newton’s third law?
Newton’s third law governs interactions:

 ■ Every force is a member of an  
action/reaction pair.

 ■ The two members of a pair act on  
different objects.

 ■ The two members of a pair are equal in 
magnitude but opposite in direction.

How is Newton’s third law used?
The dynamics problem-solving strategy  
of Chapter 6 is still our primary tool.

 ■ Draw a free-body diagram for each object.
 ■ Identify and show action/reaction pairs.
 ■ Use Newton’s second law for each object.
 ■ Relate forces with Newton’s third law.

❮❮ LOOKING BACK Section 6.2 Problem- 
Solving Strategy 6.1

Why is Newton’s third law important?
We started our study of dynamics with only the first two of 
Newton’s laws in order to practice identifying and using forces. But  
objects in the real world don’t exist in isolation—they interact with  
each other. Newton’s third law gives us a much more complete view  
of mechanics. The third law is also an essential tool in the practical  
application of physics to problems in engineering and technology.

IN THIS CHAPTER, you will use Newton’s third law to understand how objects interact.

Newton’s Third Law

The hammer and nail are interacting. 
The forces of the hammer on the nail 
and the nail on the hammer are an 
action/reaction pair of forces.

A

Action/reaction pair

B

FB on A
FA on B

uu

System

C

A B

External
forces

Environment

Inter-
actions

B

A

aA
u

aB
u

y

x

y

x

n
u

TC on R

u
TR on C

u
Fhand

u

FG

u
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186 CHAPTER 7 Newton’s Third Law

7.1 Interacting Objects
FIGURE 7.1 shows a hammer hitting a nail. The hammer exerts a force on the nail as it 
drives the nail forward. At the same time, the nail exerts a force on the hammer. If 
you’re not sure that it does, imagine hitting the nail with a glass hammer. It’s the force 
of the nail on the hammer that would cause the glass to shatter.

In fact, any time an object A pushes or pulls on another object B, B pushes or pulls 
back on A. When you pull someone with a rope in a tug-of-war, that person pulls back 
on you. Your chair pushes up on you (the normal force) as you push down on the chair. 
These are examples of an interaction, the mutual influence of two objects on each 
other.

To be more specific, if object A exerts a force F
u

A on B on object B, then object B 
exerts a force F

u

B on A on object A. This pair of forces, shown in FIGURE 7.2, is called 
an action/reaction pair. Two objects interact by exerting an action/reaction pair of 
forces on each other. Notice the very explicit subscripts on the force vectors. The first 
letter is the agent; the second letter is the object on which the force acts. F

u

A on B is a 
force exerted by A on B.

   NOTE    The name “action/reaction pair” is somewhat misleading. The forces occur 
simultaneously, and we cannot say which is the “action” and which the “reaction.” 
An action/reaction pair of forces exists as a pair, or not at all.

The hammer and nail interact through contact forces. Does the same idea hold true 
for long-range forces such as gravity? Newton was the first to realize that it does. His 
evidence was the tides. Astronomers had known since antiquity that the tides depend 
on the phase of the moon, but Newton was the first to understand that tides are the 
ocean’s response to the gravitational pull of the moon on the earth.

Objects, Systems, and the Environment
Chapters 5 and 6 considered forces acting on a single object that we modeled as a 
particle. FIGURE 7.3a shows a diagrammatic representation of single-particle dynamics. 
We can use Newton’s second law, a

u = F
u

net/m, to determine the particle’s acceleration.
We now want to extend the particle model to situations in which two or more  objects, 

each represented as a particle, interact with each other. For example, FIGURE 7.3b shows 
three objects interacting via action/reaction pairs of forces. The forces can be given 
labels such as F

u

A on B and F
u

B on A. How do these particles move?
We will often be interested in the motion of some of the objects, say objects A and 

B, but not of others. For example, objects A and B might be the hammer and the nail, 
while object C is the earth. The earth interacts with both the hammer and the nail via 
gravity, but in a practical sense the earth remains “at rest” while the hammer and nail 
move. Let’s define the system as those objects whose motion we want to analyze and 
the environment as objects external to the system.

FIGURE 7.3c is a new kind of diagram, an interaction diagram, in which we’ve 
 enclosed the objects of the system in a box and represented interactions as lines 

The force of the nail
on the hammer

The force of the
hammer on the nail 

FIGURE 7.1 The hammer and nail are 
interacting with each other.

A

Action/reaction pair

B

FB on A
FA on B

u u

FIGURE 7.2 An action/reaction pair of 
forces.

Each line represents an interaction
via an action/reaction pair of forces.This is a force diagram. This is an interaction diagram.

A

Isolated
object

Objects

(a) Single-particle dynamics (b) Interacting objects (c) System and environment

Forces acting
on the object C

A B

System

C

A B

External
forces

Environment

Internal
interactions

F1

F2

F3

u

u

u

FIGURE 7.3 Single-particle dynamics and a model of interacting objects.
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7.2 Analyzing Interacting Objects 187

The bat and the ball are interacting with 
each other.

connecting objects. This is a rather abstract, schematic diagram, but it captures the es-
sence of the interactions. Notice that interactions with objects in the environment are 
called external forces. For the hammer and nail, the gravitational force on each—
an interaction with the earth—is an external force.

   NOTE    Every force is one member of an action/reaction pair, so there is no such thing 
as a true “external force.” What we call an external force is simply an interaction 
between an object of interest, one we’ve chosen to place inside the system, and an 
object whose motion is not of interest.

7.2 Analyzing Interacting Objects

TACTICS BOX 7.1

Analyzing interacting objects
1  Represent each object as a circle with a name and label. Place each in the 

correct position relative to other objects. The surface of the earth (label S; 
contact forces) and the entire earth (label EE; long-range forces) should be 
considered separate objects.

2  Identify interactions. Draw one connecting line between relevant circles to 
represent each interaction.

 ■ Every interaction line connects two and only two objects.
 ■ A surface can have two interactions: friction (parallel to the surface) and a 

normal force (perpendicular to the surface).
 ■ The entire earth interacts only by the long-range gravitational force.

3  Identify the system. Identify the objects of interest; draw and label a box 
 enclosing them. This completes the interaction diagram.

4  Draw a free-body diagram for each object in the system. Include only the 
forces acting on each object, not forces exerted by the object.

 ■ Every interaction line crossing the system boundary is one external force 
 acting on an object. The usual symbols, such as n

u
 and T 

u
, can be used.

 ■ Every interaction line within the system represents an action/reaction pair 
of forces. There is one force vector on each of the objects, and these forces 
point in opposite directions. Use labels like F

u

A on B and F
u

B on A.
 ■ Connect the two action/reaction forces—which must be on different free-

body diagrams—with a dashed line.

Exercises 1–7 

We’ll illustrate these ideas with two concrete examples. The first example will be 
much longer than usual because we’ll go carefully through all the steps in the reasoning.

FIGURE 7.4 shows a person pushing a large crate across a rough 
surface. Identify all interactions, show them on an interaction di-
agram, then draw free-body diagrams of the person and the crate.

VISUALIZE The interaction diagram of FIGURE 7.5 on the next page 
starts by representing every object as a circle in the correct position 
but separated from all other objects. The person and the crate are 
obvious objects. The earth is also an object that both exerts and 
experiences forces, but it’s necessary to distinguish between the 
surface, which exerts contact forces, and the entire earth, which 
exerts the long-range gravitational force.

Figure 7.5 also identifies the various interactions. Some, like 
the pushing interaction between the person and the crate, are 
fairly obvious. The interactions with the earth are a little trickier. 

EXAMPLE 7.1 ■ Pushing a crate

FIGURE 7.4 A person pushes a crate across a rough floor.

Continued
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188 CHAPTER 7 Newton’s Third Law

Propulsion
The friction force f 

u

P (force of surface on person) is an example of propulsion. It is 
the force that a system with an internal source of energy uses to drive itself forward. 
Propulsion is an important feature not only of walking or running but also of the 
 forward motion of cars, jets, and rockets. Propulsion is somewhat counterintuitive, so 
it is worth a closer look.

If you try to walk across a frictionless floor, your foot slips and slides backward. 
In order for you to walk, the floor needs to have friction so that your foot sticks to the 
floor as you straighten your leg, moving your body forward. The friction that prevents 
slipping is static friction. Static friction, you will recall, acts in the direction that 
prevents slipping. The static friction force f 

u

P has to point in the forward direction to 
prevent your foot from slipping backward. It is this forward-directed static friction 
force that propels you forward! The force of your foot on the floor, the other half of 
the action/reaction pair, is in the opposite direction.

The distinction between you and the crate is that you have an internal source of 
 energy that allows you to straighten your leg by pushing backward against the surface. 

Gravity, a long-range force, is an interaction between each object 
and the earth as a whole. Friction forces and normal forces are 
 contact interactions between each object and the earth’s surface. 
These are two different interactions, so two interaction lines con-
nect the crate to the surface and the person to the surface. Finally, 
we’ve enclosed the person and crate in a box labeled System. These 
are the objects whose motion we wish to analyze.

   NOTE    Interactions are between two different objects. 
None of the interactions are between an object and itself.

We can now draw free-body diagrams for the objects in the 
system, the crate and the person. FIGURE 7.6 correctly locates the 
crate’s free-body diagram to the right of the person’s free-body 
diagram. Each object has three interaction lines that cross the sys-
tem boundary and thus represent external forces. These are the 
 gravitational force from the entire earth, the upward normal force 
from the surface, and a friction force from the surface. We can 
use familiar labels such as n

u
P and f 

u

C, but it’s very important to 
distinguish different forces with subscripts. There’s now more 
than one normal force. If you call both simply n

u
, you’re almost cer-

tain to make mistakes when you start writing out the  second-law 
equations.

The directions of the normal forces and the gravitational forces 
are clear, but we have to be careful with friction. Friction force f 

u

C 
is kinetic friction of the crate sliding across the surface, so it points 

left, opposite the motion. But what about friction between the 
 person and the surface? It is tempting to draw force f 

u

P pointing to 
the left. After all, friction forces are supposed to be in the  direction 
opposite the motion. But if we did so, the person would have two 
forces to the left, F

u

C on P and f 
u

P, and none to the right, causing the 
person to accelerate backward! That is clearly not what happens, 
so what is wrong?

Imagine pushing a crate to the right across loose sand. Each 
time you take a step, you tend to kick the sand to the left, be-
hind you. Thus friction force f 

u

P on S, the force of the person push-
ing against the earth’s surface, is to the left. In reaction, the force 
of the earth’s surface against the person is a friction force to the 
right. It is force f 

u

S on P, which we’ve shortened to f 
u

P, that causes the 
 person to accelerate in the forward direction. Further, as we’ll dis-
cuss more below, this is a static friction force; your foot is planted 
on the ground, not sliding across the surface.

Finally, we have one internal interaction. The crate is pushed 
with force F

u

P on C. If A pushes or pulls on B, then B pushes or 
pulls back on A, so the reaction to force F

u

P on C is F
u

C on P, the crate 
 pushing back against the person’s hands. Force F

u

P on C is a force ex-
erted on the crate, so it’s shown on the crate’s free-body diagram. 
Force F

u

C on P is exerted on the person, so it is drawn on the person’s 
 free-body diagram. The two forces of an action/reaction pair 
never occur on the same free-body diagram. We’ve connected 
forces F

u

P on C and F
u

C on P with a dashed line to show that they are 
an action/reaction pair.

System

Push

FrictionFriction

Normal

Gravity Gravity

S

EE

P P = Person
C = Crate
S = Surface
EE = Entire earth

C
1

2

3

FIGURE 7.5 The interaction diagram.
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u
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Similar forces 
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by subscripts.

Action/reaction pair
between the two objects

CratePerson

u
FC on P

u
(FG)P

u
(FG)C

u
fC

u
fP

4
nC
u

FP on C

u

FIGURE 7.6 Free-body diagrams of the person and the crate.
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7.2 Analyzing Interacting Objects 189

In essence, you walk by pushing the earth away from you. The earth’s  surface  responds 
by pushing you forward. These are static friction forces. In  contrast, all the crate can do 
is slide, so kinetic friction opposes the motion of the crate.

FIGURE 7.7 shows how propulsion works. A car uses its motor to spin the tires, caus-
ing the tires to push backward against the ground. This is why dirt and gravel are 
kicked backward, not forward. The earth’s surface responds by pushing the car for-
ward. These are also static friction forces. The tire is rolling, but the bottom of the 
tire, where it contacts the road, is instantaneously at rest. If it weren’t, you would leave 
one giant skid mark as you drove and would burn off the tread within a few miles.

The person pushes backward
against the earth.
The earth pushes forward
on the person.

The car pushes backward
against the earth.
The earth pushes forward
on the car.

The rocket pushes the hot
gases backward.
The gases push the rocket
forward.

Static friction Static friction Thrust

FIGURE 7.7 Examples of propulsion.

A tow truck uses a rope of negligible mass to pull a car along a 
horizontal road, as shown in FIGURE 7.8. Identify all interactions, 
show them on an interaction diagram, then draw free-body dia-
grams of each object in the system.

VISUALIZE The interaction diagram of FIGURE 7.9 represents the ob-
jects as separate circles, but with the correct relative positions. The rope 
is shown as a separate object, but the description “negligible mass” 
means that we can ignore the gravitational force on the rope. Many of 
the interactions are identical to those in Example  7.1. The system—the 
objects in motion—consists of the truck, the rope, and the car.

The three objects in the system require three free-body 
 diagrams, shown in FIGURE 7.10. Gravity, friction, and normal 

forces at the surface are all interactions that cross the system 
boundary and are shown as external forces. The car is an inert 
object rolling along. It would slow and stop if the rope were cut, 
so the surface must exert a rolling friction force f 

u

C to the left. The 
truck, however, has an internal source of energy. The truck’s drive 
wheels push the ground to the left with force f 

u

T on S. In reaction, 
the ground propels the truck forward, to the right, with force f 

u

T.
We next need to identify the forces between the car, the truck, 

and the rope. The rope pulls on the car with a tension force 
T 
u

R on C. You might be tempted to put the reaction force on the 

EXAMPLE 7.2 ■ Towing a car

FIGURE 7.8 A truck towing a car.

System

FrictionFriction

Normal

Pull Pull

Gravity Gravity

S

EE

C C = Car
R = Rope
T = Truck
S = Surface
EE = Entire earth

TR

FIGURE 7.9 The interaction diagram.
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This is the propulsion force
pushing the truck forward. It
is a static friction force.
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nC

(FG)C

u
fC

u

u

nT
u
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(FG)T

u

TR on T

u
TR on C

u
TT on R

u
TC on R

u

FIGURE 7.10 Free-body diagrams of Example 7.2.

Continued
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190 CHAPTER 7 Newton’s Third Law

7.3 Newton’s Third Law
Newton was the first to recognize how the two members of an action/reaction pair of 
forces are related to each other. Today we know this as Newton’s third law:

truck because we say that “the truck pulls the car,” but the truck 
is not in  contact with the car. The truck pulls on the rope, then the 
rope pulls on the car. Thus the reaction to T 

u

R on C is a force on the  
rope: T 

u

C on R. These are an action/reaction pair. At the other  
end, T 

u

T on R and T 
u

R on T are also an action/reaction pair.

 NOTE   Drawing an interaction diagram helps you avoid mistakes 
because it shows very clearly what is interacting with what.

REVIEW Make sure you avoid the common error of considering  
n
u
 and F

u

G to be an action/reaction pair. These are both forces on 
the same object, whereas the two forces of an action/reaction pair 
are always on two different objects that are interacting with each 
other. The normal and gravitational forces are often equal in mag-
nitude, as they are in this example, but that doesn’t make them an  
action/reaction pair of forces.

STOP TO THINK 7.1 A rope of negligi-
ble mass pulls a crate across the floor. The 
rope and crate are the system; the hand 
pulling the rope is part of the environ-
ment. What, if anything, is wrong with the 
free-body diagrams?

y

xx

RopeCrate
y

FG

FhandTR on C TC on Rfk

u

n
u

u

uu u

Newton’s third law Every force occurs as one member of an action/reaction 
pair of forces.

 ■ The two members of an action/reaction pair act on two different objects.

 ■ The two members of an action/reaction pair are equal in magnitude but opposite 
in direction: F

u

A on B = -F
u

B on A.

We deduced most of the third law in Section 7.2. There we found that the two 
members of an action/reaction pair are always opposite in direction (see Figures 7.6 
and 7.10). According to the third law, this will always be true. But the most significant 
portion of the third law, which is by no means obvious, is that the two members of 
an action/reaction pair have equal magnitudes. That is, FA on B = FB on A. This is the 
quantitative relationship that will allow you to solve problems of interacting objects.

Newton’s third law is frequently stated as “For every action there is an equal but 
opposite reaction.” While this is indeed a catchy phrase, it lacks the preciseness of 
our preferred version. In particular, it fails to capture an essential feature of action/
reaction pairs—that they each act on a different object.

   NOTE    Newton’s third law extends and completes our concept of force. We can 
now recognize force as an interaction between objects rather than as some “thing” 
with an independent existence of its own. The concept of an interaction will become 
 increasingly important as we begin to study the laws of energy and momentum.

Reasoning with Newton’s Third Law
Newton’s third law is easy to state but harder to grasp. For example, consider what 
happens when you release a ball. Not surprisingly, it falls down. But if the ball and 
the earth exert equal and opposite forces on each other, as Newton’s third law alleges, 
why doesn’t the earth “fall up” to meet the ball?
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7.3 Newton’s Third Law 191

The key to understanding this and many similar puzzles is that the forces are 
equal but the accelerations are not. Equal causes can produce very unequal effects. 
FIGURE 7.11 shows equal-magnitude forces on the ball and the earth. The force on ball 
B is simply the gravitational force of Chapter 6:

 F
u

earth on ball = 1F
u

G2B = -mBgjn (7.1)

where mB is the mass of the ball. According to Newton’s second law, this force gives 
the ball an acceleration

 a
u

B =
1F

u

G2B

mB
= -gjn (7.2)

This is just the familiar free-fall acceleration.
According to Newton’s third law, the ball pulls up on the earth with force 

F
u

ball on earth. Because F
u

earth on ball and F
u

ball on earth are an action/reaction pair, F
u

ball on earth 
must be equal in magnitude and opposite in direction to F

u

earth on ball. That is,

 F
u

ball on earth = -F
u

earth on ball = -1F
u

G2B = +mBgjn (7.3)

Using this result in Newton’s second law, we find the upward acceleration of the earth 
as a whole is

 a
u

E =
F
u

ball on earth

mE
=

mBgjn
mE

= 1mB

mE
2  gjn (7.4)

The upward acceleration of the earth is less than the downward acceleration of the 
ball by the factor mB/mE. If we assume a 1 kg ball, we can estimate the  magnitude of a

u
E:

aE =
1 kg

6 * 1024 kg
 g ≈ 2 * 10-24 m/s2

With this incredibly small acceleration, it would take the earth 8 * 1015 years, 
 approximately 500,000 times the age of the universe, to reach a speed of 1 mph! So 
we certainly would not expect to see or feel the earth “fall up” after we drop a ball.

   NOTE    Newton’s third law equates the size of two forces, not two accelerations. The 
acceleration continues to depend on the mass, as Newton’s second law states. In 
an interaction between two objects of very different mass, the lighter mass will 
do essentially all of the accelerating even though the forces exerted on the two 
objects are equal.

The earth pulls
on the ball.

The ball pulls
equally hard
on the earth.

Fearth on ball

Fball on earth

u

u

FIGURE 7.11 The action/reaction forces of a 
ball and the earth are equal in magnitude.

The hand shown in FIGURE 7.12 pushes boxes A and B to the right 
across a frictionless table. The mass of B is larger than the mass of A.

a. Draw free-body diagrams of A, B, and the hand H, showing only 
the horizontal forces. Connect action/reaction pairs with dashed lines.

b. Rank in order, from largest to smallest, the horizontal forces 
shown on your free-body diagrams.

VISUALIZE a. The hand H pushes on box A, and A pushes back on 
H. Thus F

u

H on A and F
u

A on H are an action/reaction pair. Similarly, 
A pushes on B and B pushes back on A. The hand H does not 
touch box B, so there is no interaction between them. There 
is no friction. FIGURE 7.13 on the next page shows five horizon-
tal forces and identifies two action/reaction pairs. Notice that  
each force is shown on the free-body diagram of the object that 
it acts on.

b. According to Newton’s third law, FA on H = FH on A and 
FA on B = FB on A. But the third law is not our only tool. The boxes 
are accelerating to the right, because there’s no friction, so New-
ton’s second law tells us that box A must have a net force to the 
right. Consequently, FH on A 7 FB on A. Similarly, Farm on H 7 FA on H 
is needed to accelerate the hand. Thus

Farm on H 7 FA on H = FH on A 7 FB on A = FA on B

EXAMPLE 7.3 ■ The forces on accelerating boxes

a
u

Frictionless surface

H
A

B

mB 7 mA

FIGURE 7.12 Hand H pushes boxes A and B.

Continued
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192 CHAPTER 7 Newton’s Third Law

Acceleration Constraints
Newton’s third law is one quantitative relationship you can use to solve problems 
of interacting objects. In addition, we frequently have other information about the 
 motion in a problem. For example, if two objects A and B move together, their accel-
erations are constrained to be equal: a

u
A = a

u
B. A well-defined relationship between 

the  accelerations of two or more objects is called an acceleration constraint. It is 
an independent piece of information that can help solve a problem.

In practice, we’ll express acceleration constraints in terms of the x- and y- 
components of a

u
 Consider the car being towed in FIGURE 7.14. This is one-dimensional 

motion, so we can write the acceleration constraint as

aCx = aTx = ax

Because the accelerations of both objects are equal, we can drop the subscripts C and 
T and call both of them ax.

Don’t assume the accelerations of A and B will always have the same sign. 
 Consider blocks A and B in FIGURE 7.15. The blocks are connected by a string, so they 
are  constrained to move together and their accelerations have equal magnitudes. But 
A has a positive acceleration (to the right) in the x-direction while B has a negative 
acceleration (downward) in the y-direction. Thus the acceleration constraint is

aAx = -aBy

This relationship does not say that aAx is a negative number. It is simply a relational 
statement, saying that aAx is 1-12 times whatever aBy happens to be. The acceleration 
aBy in Figure 7.15 is a negative number, so aAx is positive. In some problems, the signs 
of aAx and aBy may not be known until the problem is solved, but the relationship is 
known from the beginning.

REVIEW You might have expected FA on B to be larger than FH on A 
because mB 7 mA. It’s true that the net force on B is larger than 
the net force on A, but we have to reason more closely to judge the 

individual forces. Notice how we used both the second and the third 
laws to answer this question.

x

y

x

y

AH

x

y

B

FA on H FB on A FH on A

Fnet

FA on B

Fnet

u
Farm on H

u u u u

uu
Fnet

u

FIGURE 7.13 The free-body diagrams, showing only the horizontal forces.

STOP TO THINK 7.2 A small car is pushing 
a larger truck that has a dead battery. The mass 
of the truck is larger than the mass of the car. 
Which of the following statements is true?

a. The car exerts a force on the truck, but the truck doesn’t exert a force on the car.
b. The car exerts a larger force on the truck than the truck exerts on the car.
c. The car exerts the same amount of force on the truck as the truck exerts on the car.
d. The truck exerts a larger force on the car than the car exerts on the truck.
e. The truck exerts a force on the car, but the car doesn’t exert a force on the truck.

a
u

The rope is under tension.

aTaC
u u

FIGURE 7.14 The car and the truck have 
the same acceleration.

A

String

B

Pulley

aA

aB

u

u

The accelerations have
the same magnitude.

FIGURE 7.15 The string constrains the two 
objects to accelerate together.
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7.3 Newton’s Third Law 193

You and a friend have just loaded a 200 kg crate filled with priceless 
art objects into the back of a 2000 kg truck. As you press down on  
the accelerator, force F

u

surface on truck propels the truck forward.  
To keep things simple, call this just F

u

T. What is the maximum 
magnitude F

u

T can have without the crate sliding? The static and 
kinetic coefficients of friction between the crate and the bed of the 
truck are 0.80 and 0.30. Rolling friction of the truck is  negligible.

MODEL The crate and the truck are separate objects that form the 
system. We’ll model them as particles. The earth and the road sur-
face are part of the environment.

VISUALIZE The sketch in FIGURE 7.16 on the next page establishes 
a coordinate system, lists the known information, and—new to  

problems of interacting objects—identifies the acceleration 
constraint. As long as the crate doesn’t slip, it must accelerate with 
the truck. Both accelerations are in the positive x-direction, so the 
acceleration constraint in this problem is aCx = aTx = ax.

The interaction diagram of Figure 7.16 shows the crate interact-
ing twice with the truck—a friction force parallel to the surface of 
the truck bed and a normal force perpendicular to this surface. The 
truck interacts similarly with the road surface, but notice that the 
crate does not interact with the ground; there’s no contact between 
them. The two interactions within the system are each an action/
reaction pair, so this is a total of four forces. You can also see four 
external forces crossing the system boundary, so the free-body 
 diagrams should show a total of eight forces.

EXAMPLE 7.4 ■ Keep the crate from sliding

A Strategy for Interacting-Objects Problems
Problems of interacting objects can be solved with a few modifications to the  problem- 
solving strategy we developed in ❮❮ SECTION 6.2.

You might be puzzled that the Solve step calls for the use of the third law to equate 
just the magnitudes of action/reaction forces. What about the “opposite in direction” part 
of the third law? You have already used it! Your free-body diagrams should show the 
two members of an action/reaction pair to be opposite in direction, and that  information 
will have been utilized in writing the second-law equations. Because the directional 
information has already been used, all that is left is the magnitude information.

Continued

PROBLEM-SOLVING STRATEGY 7.1

Interacting-objects problems

MODEL Identify which objects are part of the system and which are part of the en-
vironment. Make simplifying assumptions.

VISUALIZE Draw a pictorial representation.

 ■ Show important points in the motion with a sketch. You may want to give each 
object a separate coordinate system. Define symbols, list acceleration con-
straints, and identify what the problem is trying to find.

 ■ Draw an interaction diagram to identify the forces on each object and all  action/
reaction pairs.

 ■ Draw a separate free-body diagram for each object showing only the  forces 
acting on that object, not forces exerted by the object. Connect the force  vectors 
of action/reaction pairs with dashed lines.

SOLVE Use Newton’s second and third laws.

 ■ Write the equations of Newton’s second law for each object, using the force 
information from the free-body diagrams.

 ■ Equate the magnitudes of action/reaction pairs.

 ■ Include the acceleration constraints, the friction model, and other quantitative 
information relevant to the problem.

 ■ Solve for the acceleration, then use kinematics to find velocities and positions.

REVIEW Check that your result has the correct units and significant figures, is rea-
sonable, and answers the question.
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194 CHAPTER 7 Newton’s Third Law

Finally, the interaction information is transferred to the free-body 
diagrams, where we see friction between the crate and truck as an 
action/reaction pair and the normal forces (the truck pushes up on the 
crate, the crate pushes down on the truck) as another action/reaction 
pair. It’s easy to overlook forces such as f 

u

C on T, but you won’t make 
this mistake if you first identify action/reaction pairs on an interac-
tion diagram. Note that f 

u

C on T and f 
u

T on C are static friction forces 
because they are forces that prevent slipping; force f 

u

T on C must point 
forward to prevent the crate from sliding out the back of the truck.

SOLVE Now we’re ready to write Newton’s second law. For the crate:

 a 1Fon crate2x = fT on C = mC aC x = mC ax

 a 1Fon crate2y = nT on C - 1FG2C = nT on C - mC g = 0

For the truck:

  a 1Fon truck2x = FT - fC on T = mT aTx = mT ax

  a 1Fon truck2y = nT - 1FG2T - nC on T

  = nT - mT g - nC on T = 0

Be sure you agree with all the signs, which are based on the free-
body diagrams. The net force in the y-direction is zero because 
there’s no motion in the y-direction. It may seem like a lot of effort 
to write all the subscripts, but it is very important in problems with 
more than one object.

Notice that we’ve already used the acceleration constraint 
aCx = aTx = ax. Another important piece of information is Newton’s 
third law, which tells us that fC on T = fT on C and nC on T = nT on C. 
Finally, we know that the maximum value of FT will occur when 
the static friction on the crate reaches its maximum value:

fT on C = fs max = ms nT on C

The friction depends on the normal force on the crate, not the 
 normal force on the truck.

Now we can assemble all the pieces. From the y-equation of the 
crate, nT on C = mC g. Thus

fT on C = ms nT on C = ms mC g

Using this in the x-equation of the crate, we find that the acceleration is

ax =
fT on C

mC
= ms g

This is the crate’s maximum acceleration without slipping. Now 
use this acceleration and the fact that fC on T = fT on C = ms mC g in 
the x-equation of the truck to find

FT - fC on T = FT - ms mC g = mT ax = mT ms g

Solving for FT, we find the maximum propulsion without the crate 
sliding is

  1FT2max = ms1mT + mC2g

  = 10.80212200 kg219.80 m/s22 = 17,000 N

REVIEW This is a hard result to assess. Few of us have any intuition 
about the size of forces that propel cars and trucks. Even so, the fact 
that the forward force on the truck is a significant fraction (80%)  
of the combined weight of the truck and the crate seems plausible. 
We might have been suspicious if FT had been only a tiny fraction 
of the weight or much greater than the weight.

As you can see, there are many equations and many pieces of 
information to keep track of when solving a problem of interacting 
objects. These problems are not inherently harder than the problems 
you learned to solve in Chapter 6, but they do require a high level of 
organization. Using the systematic approach of the problem-solving 
strategy will help you solve similar problems successfully.

C

x

y

y

x

Known
mT = 2000 kg
mC = 200 kg
ms = 0.80
mk = 0.30

Acceleration
constraint

Find

(FT)max without
    slipping

aCx = aTx = ax

y

x

Sketch Free-body diagrams

T

Interaction diagram

C

T

S

EE

System

Crate Truck

FrictionNormal

Gravity

aC

aT

FT

nT on C nT

nC on T

fC on T

fT on C

(FG)C

(FG)T

FT

u

u

u

u

u

u u

u

u
u

u

FIGURE 7.16 Pictorial representation of the crate and truck in Example 7.4.

STOP TO THINK 7.3 Boxes A and B are sliding 
to the right across a frictionless table. The hand 
H is slowing them down. The mass of A is larger 
than the mass of B. Rank in order, from largest to 
smallest, the horizontal forces on A, B, and H.

a. FB on H = FH on B = FA on B = FB on A

b. FB on H = FH on B 7 FA on B = FB on A

c. FB on H = FH on B 6 FA on B = FB on A

d. FH on B 7 FB on H = FB on A 7 FA on B

v
u

Frictionless surface

H

B
A

Slowing

mA 7 mB
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7.4 Ropes and Pulleys 195

7.4 Ropes and Pulleys
Many objects are connected by strings, ropes, cables, and so on. In single-particle 
 dynamics, we defined “tension” as the force exerted on an object by a rope or string. 
Now we need to think more carefully about the string itself. Just what do we mean 
when we talk about the tension “in” a string?

Tension Revisited
FIGURE 7.17 shows a heavy safe hanging from a rope, placing the rope under tension. If 
you cut the rope, the safe and the lower portion of the rope will fall. Thus there must 
be a force within the rope by which the upper portion of the rope pulls upward on the 
lower portion to prevent it from falling.

Chapter 5 introduced a ball-and-spring model of solids in which tension is due to 
the stretching of spring-like molecular bonds. Stretched springs exert pulling forces, 
and the combined pulling force of billions of stretched molecular springs in a string 
or rope is what we call tension.

An important aspect of tension is that it pulls equally in both directions. To gain 
a mental picture, imagine holding your arms outstretched and having two friends 
pull on them. You’ll remain at rest—but “in tension”—as long as they pull with 
equal strength in opposite directions. But if one lets go, analogous to the breaking of 
 molecular bonds if a rope breaks or is cut, you’ll fly off in the other direction!

Safe

Stretched
molecular
bonds

Tension forces pull
in both directions.

FIGURE 7.17 Tension forces within the 
rope are due to stretching the spring-like 
molecular bonds.

FIGURE 7.18a shows a student pulling horizontally with a 100 N 
force on a rope that is attached to a wall. In FIGURE 7.18b, two 
 students in a tug-of-war pull on opposite ends of a rope with 100 N 
each. Is the tension in the second rope larger than, smaller than, or 
the same as that in the first rope?

SOLVE Surely pulling on a rope from both ends causes more  tension 
than pulling on one end. Right? Before jumping to conclusions, 
let’s analyze the situation carefully.

FIGURE 7.19a shows the first student, the rope, and the wall as 
separate, interacting objects. Force F

u

S on R is the student pulling 
on the rope, so it has magnitude 100 N. Forces F

u

S on R and F
u

R on S 
are an action/reaction pair and must have equal magnitudes. Sim-
ilarly for forces F

u

W on R and F
u

R on W. Finally, because the rope is in 
equilibrium, force F

u

W on R has to balance force F
u

S on R. Thus

FR on W = FW on R = FS on R = FR on S = 100 N

The first and third equalities are Newton’s third law; the second 
equality follows from Newton’s second law for the rope with aR = 0.

Forces F
u

R on S and F
u

R on W are the pulling forces exerted by the 
rope and are what we mean by “the tension in the rope.” Thus the 
tension in the first rope is 100 N.

FIGURE 7.19b repeats the analysis for the rope pulled by two 
students. Each student pulls with 100 N, so FS1 on R = 100 N and 
FS2 on R = 100 N. Just as before, there are two action/reaction pairs 
and the rope is in equilibrium. Thus

FR on S2 = FS2 on R = FS1 on R = FR on S1 = 100 N

The tension in the rope—the pulling forces F
u

R on S1 and F
u

R on S2—is 
still 100 N!

You may have assumed that the student on the right in Figure 
7.18b is doing something to the rope that the wall in Figure 7.18a 
does not do. But our analysis finds that the wall, just like the 
 student, pulls to the right with 100 N. The rope doesn’t care wheth-
er it’s pulled by a wall or a hand. It experiences the same forces in 
both cases, so the rope’s tension is the same in both.

REVIEW Ropes and strings exert forces at both ends. The force with 
which they pull—and thus the force pulling on them at each end—is 
the tension in the rope. Tension is not the sum of the pulling forces.

EXAMPLE 7.5 ■ Pulling a rope

(a)

T = ?

Rope 1100 N

FIGURE 7.18 Which rope has a larger tension?

(b)

T = ?

Rope 2100 N 100 N

Student

(a)

Wall

100 N pull

The rope is in
equilibrium.

FS on R

u

FR on W

u

FW on R

u

FR on S

u

FIGURE 7.19 Analysis of tension forces.

Student 1

u
FR on S1

Student 2

100 N pull

u
FS1 on R

u
FS2 on R

u
FR on S2

(b) The rope is in
equilibrium.
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196 CHAPTER 7 Newton’s Third Law

The Massless String Approximation
The tension is constant throughout a rope that is in equilibrium, but what happens if 
the rope is accelerating? For example, FIGURE 7.20a shows two connected blocks being 
pulled by force F

u
. Is the string’s tension at the right end, where it pulls back on B, the 

same as the tension at the left end, where it pulls on A?
FIGURE 7.20b shows the horizontal forces acting on the blocks and the string. The 

only horizontal forces acting on the string are T 
u

A on S and T 
u

B on S, so Newton’s second 
law for the string is

 1Fnet2x = TB on S - TA on S = mS ax (7.5)

where mS is the mass of the string. If the string is accelerating, then the tensions at the 
two ends can not be the same. The tension at the “front” of the string must be greater 
than the tension at the “back” in order to accelerate the string!

Often in physics and engineering problems the mass of the string or rope is 
much less than the masses of the objects that it connects. In such cases, we can 
adopt the massless string approximation. In the limit mS S 0, Equation 7.5 
becomes

 TB on S = TA on S  (massless string approximation) (7.6)

In other words, the tension in a massless string is constant. This is nice, but it isn’t 
the primary justification for the massless string approximation.

Look again at Figure 7.20b. If TB on S = TA on S, then

 T 
u

S on A = -T 
u

S on B (7.7)

That is, the force on block A is equal and opposite to the force on block B. Forces 
T 
u

S on A and T 
u

S on B act as if they are an action/reaction pair of forces. Thus we can 
draw the simplified diagram of FIGURE 7.21 in which the string is missing and blocks 
A and B interact directly with each other through forces that we can call T 

u

A on B 
and T 

u

B on A.
In other words, if objects A and B interact with each other through a massless 

string, we can omit the string and treat forces F
u

A on B and F
u

B on A as if they are an 
action/reaction pair. This is not literally true because A and B are not in contact. 
Nonetheless, all a massless string does is transmit a force from A to B without chang-
ing the magnitude of that force. This is the real significance of the massless string 
approximation.

   NOTE    For problems in this book, you can assume that any strings or ropes are 
massless unless the problem explicitly states otherwise. The simplified view of 
Figure 7.21 is appropriate under these conditions. But if the string has a mass, it must 
be treated as a separate object.

STOP TO THINK 7.4 All three 50 kg blocks are at 
rest. Is the tension in rope 2 greater than, less than, or 
equal to the tension in rope 1?

50 kg 50 kg

50 kg

2

2

1

F
u

F
u

A B

(a)

A
String S

B

(b) TS on B
TB on STA on S

TS on A

u

u u

u

FIGURE 7.20 Tension pulls forward on 
block A, backward on block B.

A B

This pair of forces acts as if
it were an action/reaction pair.

We can omit the string if
we assume it is massless.

as if

F
u

TA on B

u
TB on A

u

FIGURE 7.21 The massless string 
approximation allows objects A and B to 
act as if they are directly interacting.
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Pulleys
Strings and ropes often pass over pulleys. The application might be as simple as 
 lifting a heavy weight or as complex as the internal cable-and-pulley arrangement that 
 precisely moves a robot arm.

FIGURE 7.24a shows a simple situation in which block B, as it falls, drags block A 
across a table. As the string moves, static friction between the string and pulley causes 
the pulley to turn. If we assume that

 ■ The string and the pulley are both massless, and
 ■ There is no friction where the pulley turns on its axle,

then no net force is needed to accelerate the string or turn the pulley. Thus the tension in 
a massless string remains constant as it passes over a massless, frictionless pulley.

Because of this, we can draw the simplified free-body diagram of FIGURE 7.24b,  
in which the string and pulley are omitted. Forces T 

u

A on B and T 
u

B on A act as if they are 
an action/reaction pair, even though they are not opposite in direction because the 
tension force gets “turned” by the pulley.

fk

u
nA
u

TA on B

u

TB on A

u

TS on B

u

TS on A

u

(a)

B

A x

y

x

y

A

B

A massless string and a
massless, frictionless
pulley

(b)

as if
(FG)A

u

(FG)B

u

◀ FIGURE 7.24 Blocks A and B are 
connected by a string that passes over 
a pulley.

Blocks A and B in FIGURE 7.22 are connected by massless string  
2 and pulled across a frictionless table by massless string 1. B has 
a larger mass than A. Is the tension in string 2 larger than, smaller 
than, or equal to the tension in string 1?

MODEL The massless string approximation allows us to treat A and 
B as if they interact directly with each other. The blocks are accel-
erating because there’s a force to the right and no friction.

SOLVE B has a larger mass, so it may be tempting to conclude that 
string 2, which pulls B, has a greater tension than string 1, which 
pulls A. The flaw in this reasoning is that Newton’s second law tells 
us only about the net force. The net force on B is larger than the net 
force on A, but the net force on A is not just the tension T 

u

1 in the 
forward direction. The tension in string 2 also pulls backward on A!

FIGURE 7.23 shows the horizontal forces in this frictionless 
 situation. Because the string is massless, forces T 

u

A on B and T 
u

B on A 
act as if they are an action/reaction pair.

From Newton’s third law,

TA on B = TB on A = T2

where T2 is the tension in string 2. From Newton’s second law, the 
net force on A is

1FA net2x = T1 - TB on A = T1 - T2 = mAaAx

The net force on A is the difference in tensions. The blocks are 
 accelerating to the right, making aAx 7 0, so

T1 7 T2

The tension in string 2 is smaller than the tension in string 1.

REVIEW This is not an intuitively obvious result. A careful study of  
the reasoning in this example is worthwhile. An alternative  analysis 
would note that T 

u

1 accelerates both blocks, of combined mass 
1mA + mB2, whereas T 

u

2 accelerates only block B. Thus string 1 
must have the larger tension.

EXAMPLE 7.6 ■ Comparing two tensions

B 2 1
A

mB 7 mA

T1

u

FIGURE 7.22 Blocks A and B are pulled across a frictionless table 
by massless strings.

x

yy

B Aas if

TA on B TB on A T1

u u u

FIGURE 7.23 The horizontal forces on blocks A and B.
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198 CHAPTER 7 Newton’s Third Law

7.5  Examples of Interacting-Objects 
Problems

We will conclude this chapter with three extended examples. Although the mathemat-
ics will be more involved than in any of our work up to this point, we will continue 
to emphasize the reasoning one uses in approaching problems such as these. The 
solutions will be based on Problem-Solving Strategy 7.1. In fact, these problems are 
now reaching such a level of complexity that, for all practical purposes, it becomes 
impossible to work them unless you are following a well-planned strategy. Our earlier 
emphasis on forces and free-body diagrams will now really begin to pay off!

TACTICS BOX 7.2

Working with ropes and pulleys
For massless ropes or strings and massless, frictionless pulleys:

 ■ If a force pulls on one end of a rope, the tension in the rope equals the magnitude 
of the pulling force.

 ■ If two objects are connected by a rope, the tension is the same at both ends.

 ■ If the rope passes over a pulley, the tension in the rope is unaffected.

Exercises 17–22 

STOP TO THINK 7.5 In Figure 7.24, on the previous page, is the tension in the string 
greater than, less than, or equal to the gravitational force acting on block B?

Serious fractures of the leg often need a stretching force to keep 
contracting leg muscles from forcing the broken bones together 
too hard. This is done using traction, an arrangement of a rope, a 
weight, and pulleys as shown in FIGURE 7.25. The rope must make 
the same angle on both sides of the pulley so that the net force on 
the leg is horizontal, but the angle can be adjusted to control the 
amount of traction. The doctor has specified 50 N of traction for 
this patient with a 4.2 kg hanging mass. What is the proper angle?

MODEL Model the leg and the weight as particles. The other point 
where forces are applied is the pulley attached to the patient’s foot, 
which we’ll treat as a separate object. We’ll assume massless ropes 
and a massless, frictionless pulley.

VISUALIZE FIGURE 7.26 shows three free-body diagrams. Forces T 
u

P1 
and T 

u

P2 are the tension forces of the rope as it pulls on the pulley. 
The pulley is in equilibrium, so these forces are balanced by F

u

L on P, 
which forms an action/reaction pair with the 50 N traction force 
F
u

P on L. Our model of the rope and pulley makes the tension force 
constant, TP1 = TP2 = TW, so we’ll call it simply T.

SOLVE The x-component equation of Newton’s second law for the 
pulley is

  a 1Fon P2x = TP1 cos u + TP2 cos u - FL on P

  = 2T cos u - FL on P = 0

EXAMPLE 7.7 ■ Placing a leg in traction

4.2 kg

u

u

FIGURE 7.25 A leg in traction.

x

TP2

TP1

FL on PFP on L

u
u

y

x

(FG)W

TW

y

Pulley

Weight

as if

x
Fbody on leg

yLeg

uu u

u

u

u

u

FIGURE 7.26 The free-body diagrams.
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Thus the correct angle for the ropes is

u =  cos-11FL on P

2T 2
We know, from Newton’s third law, that FL on P = FP on L = 50 N. 
We can determine the tension force by analyzing the weight. It also 
is in equilibrium, so the upward tension force exactly  balances the 
downward gravitational force:

T = 1FG2W = mWg = 14.2 kg219.80 m/s22 = 41 N

Thus the proper angle is

u =  cos-11 50 N

2141 N22 = 52°

REVIEW The traction force would approach 82 N if angle u 
 approached zero because the two ropes would pull in parallel. 
 Conversely, the traction would approach 0 N if u approached 
90°. The desired traction is roughly midway between these two 
 extremes, so an angle near 45° seems reasonable.

A 200 kg set used in a play is stored in the loft above the stage. 
The rope holding the set passes up and over a pulley, then is tied 
 backstage. The director tells a 100 kg stagehand to lower the set. 
When he unties the rope, the set falls and the unfortunate man is 
hoisted into the loft. What is the stagehand’s acceleration?

MODEL The system is the stagehand M and the set S, which we 
will model as particles. Assume a massless rope and a massless, 
frictionless pulley.

VISUALIZE FIGURE 7.27 shows the pictorial representation. The 
man’s acceleration aMy is positive, while the set’s acceleration 
aSy is negative. These two accelerations have the same magnitude 
 because the two objects are connected by a rope, but they have 
 opposite signs. Thus the acceleration constraint is aSy = -aMy. 
Forces T 

u

M on S and T 
u

S on M are not literally an action/reaction pair, 
but they act as if they are because the rope is massless and the pul-
ley is massless and frictionless. Notice that the pulley has “turned” 
the tension force so that T 

u

M on S and T 
u

S on M are parallel to each 
other rather than opposite, as members of a true action/reaction pair 
would have to be.

SOLVE Newton’s second law for the man and the set is

 a 1Fon M2y = TS on M - mM g = mM aMy

 a 1Fon S2y = TM on S - mS g = mS aSy = -mS aMy

Only the y-equations are needed. Notice that we used the accelera-
tion constraint in the last step. Newton’s third law is

TM on S = TS on M = T

where we can drop the subscripts and call the tension simply T. 
With this substitution, the two second-law equations can be written

 T - mM g = mM aMy

 T - mS g = -mS aMy

These are simultaneous equations in the two unknowns T and aMy. 
We can eliminate T by subtracting the second equation from the 
first to give

1mS - mM2g = 1mS + mM2aMy

Finally, we can solve for the hapless stagehand’s acceleration:

aMy =
mS - mM

mS + mM
 g =

100 kg

300 kg
 9.80 m/s2 = 3.27 m/s2

This is also the acceleration with which the set falls. If the rope’s 
tension was needed, we could now find it from T = mM aMy + mM g.

REVIEW If the stagehand weren’t holding on, the set would fall 
with free-fall acceleration g. The stagehand acts as a counterweight 
to reduce the acceleration.

EXAMPLE 7.8 ■ The show must go on!

TS on M

TM on S

(FG)S(FG)M

u
u

u

u

y

Free-body diagramsInteraction diagram

y as if

M S

M R

EE

SPullPull

Gravity Gravity

y

x

M

Sketch

S

Rope R

Known
mM = 100 kg
mS = 200 kg

Acceleration
constraint

Find

aMy

aSy = -aMy

aM

aS

u

u

FIGURE 7.27 Pictorial representation for Example 7.8.
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200 CHAPTER 7 Newton’s Third Law

   CHAPTER 7 CHALLENGE EXAMPLE    A not-so-clever bank robbery

Bank robbers have pushed a 1000 kg safe to a second-story floor-
to-ceiling window. They plan to break the window, then lower the 
safe 3.0 m to their truck. Not being too clever, they stack up 500 kg 
of furniture, tie a rope between the safe and the furniture, and place 
the rope over a pulley. Then they push the safe out the window. 
What is the safe’s speed when it hits the truck? The coefficient of 
kinetic friction between the furniture and the floor is 0.50.

MODEL This is a continuation of the situation that we analyzed  
in Figures 7.15 and 7.24, which are worth reviewing. The system 
is the safe S and the furniture F, which we will model as particles. 
We will assume a massless rope and a massless, frictionless pulley.

VISUALIZE The safe and the furniture are tied together, so their ac-
celerations have the same magnitude. The safe has a y-component 
of acceleration aSy that is negative because the safe accelerates in 
the negative y-direction. The furniture has an x-component aFx that 
is positive. Thus the acceleration constraint is

aFx = -aSy

The free-body diagrams shown in FIGURE 7.28 are modeled after 
Figure 7.24 but now include a kinetic friction force on the furniture. 
Forces T 

u

F on S and T 
u

S on F act as if they are an action/reaction pair,  
so they have been connected with a dashed line.

SOLVE We can write Newton’s second law directly from the free-
body diagrams. For the furniture,

 a 1Fon F2x = TS on F - fk = T - fk = mF aFx = -mF aSy

 a 1Fon F2y = n - mF g = 0

And for the safe,

a 1Fon S2y = T - mS g = mS aSy

Notice how we used the acceleration constraint in the first 
 equation. We also went ahead and made use of Newton’s third law: 

TF on S = TS on F = T. We have one additional piece of information, 
the model of kinetic friction:

fk = mk n = mk mF g

where we used the y-equation of the furniture to deduce that n = mF g. 
Substitute this result for fk into the x-equation of the furniture, then 
rewrite the furniture’s x-equation and the safe’s y-equation:

T - m
 k mF g = -mF aSy

T - mS g = mS aSy

We have succeeded in reducing our knowledge to two simul-
taneous equations in the two unknowns aSy and T. Subtract the 
 second equation from the first to eliminate T:

1mS - mk mF2g = -1mS + mF2aSy

Finally, solve for the safe’s acceleration:

  aSy = - 1mS - mk mF

mS + mF
2g

  = - 11000 kg - 10.5021500 kg2
1000 kg + 500 kg 2 9.80 m/s2 = -4.9 m/s2

Now we need to calculate the kinematics of the falling safe.  Because 
the time of the fall is not known or needed, we can use

 v1y 

2 = v0y 

2 + 2aSy ∆y = 0 + 2aSy1y1 - y02 = -2aSy y0

 v1 = 2-2aSy y0 = 2-21-4.9 m/s2213.0 m2 = 5.4 m/s

REVIEW The value of v1y is negative, but we only needed to find 
the speed so we took the absolute value. This is about 12 mph,  
so it seems unlikely that the truck will survive the impact of the 
1000 kg safe!

Sketch

FIGURE 7.28 Pictorial representation for Chapter 7 Challenge Example.

Free-body diagramsInteraction diagram
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Newton’s Third Law
Every force occurs as one member of an action/reaction pair of 
forces. The two members of an action/reaction pair:
• Act on two different objects.
• Are equal in magnitude but opposite in direction:

F
u

A on B = -F
u

B on A

A

Action/reaction pair

B

FB on A FA on B

u u

Solving Interacting-Objects Problems
MODEL Identify which objects form the system.

VISUALIZE Draw a pictorial representation.

• Define symbols and coordinates.
• Identify acceleration constraints.
• Draw an interaction diagram.
• Draw a separate free-body diagram for each object.
• Connect action/reaction pairs with dashed lines.

SOLVE Write Newton’s second law for each object.

• Use the free-body diagrams.
• Equate the magnitudes of action/reaction pairs.
• Include acceleration constraints and friction.

REVIEW Is the result reasonable?

General Principles

Summary
 

The goal of Chapter 7 has been to use Newton’s third law to 
understand how objects interact.

Objects, Systems, and the Environment

Objects whose motion is of interest are the system.
Objects whose motion is not of interest form the environment.
The objects of interest interact with the environment, but those 
interactions can be considered external forces.

Interaction Diagram

Important Concepts
System

C

A B

External
forces

Environment

Internal
interactions

Acceleration Constraints

Objects that are constrained 
to move together must have 
accelerations of equal mag-
nitude: aA = aB.

This must be expressed in 
terms of components, such 
as aAx = -aBy.

Strings and Pulleys

The tension in a string or rope pulls in both di-
rections. The tension is constant in a string if the 
string is:
• Massless, or
• In equilibrium

Objects connected by massless strings passing 
over massless, frictionless pulleys act as if they 
interact via an action/reaction pair of forces.

Applications

B

A

aA
u

aB
u

A B
TB on STA on STS on A TS on B

u
u u

u

B

A

as if

TB on A

TA on B

u

u

interaction
action/reaction pair
system

environment
interaction diagram
external force

propulsion
Newton’s third law

acceleration constraint
massless string approximation

Terms and Notation
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CONCEPTUAL QUESTIONS

1. You find yourself in the middle of a frozen lake with a surface so 
slippery 1ms = mk = 02 you cannot walk. However, you happen 
to have several rocks in your pocket. The ice is extremely hard. It 
cannot be chipped, and the rocks slip on it just as much as your 
feet do. Can you think of a way to get to shore? Use pictures, 
forces, and Newton’s laws to explain your reasoning.

2. How does a sprinter sprint? What is the forward force on a 
sprinter as she accelerates? Where does that force come from? 
Your  explanation should include an interaction diagram and a 
 free-body diagram.

3. How does a rocket take off? What is the upward force on it? Your 
explanation should include an interaction diagram and free-body 
diagrams of the rocket and of the parcel of gas being exhausted.

4. How do basketball players jump straight up into the air? Your 
 explanation should include an interaction diagram and a 
 free-body diagram.

5. A mosquito collides head-on with a car traveling 60 mph. Is the 
force of the mosquito on the car larger than, smaller than, or 
equal to the force of the car on the mosquito? Explain.

6. A mosquito collides head-on with a car traveling 60 mph. Is the 
magnitude of the mosquito’s acceleration larger than, smaller 
than, or equal to the magnitude of the car’s acceleration? Explain.

7. A small car is pushing a large truck. They are speeding up. Is the 
force of the truck on the car larger than, smaller than, or equal to 
the force of the car on the truck?

8. A young boy is at rest in the middle of a pond on perfectly friction-
less ice. How can he get himself to the shore of the pond? Explain.

9. When a horse pulls a cart, the force exerted by the horse on the 
cart is always equal and opposite to the force exerted by the cart on 
the horse. Is this statement true? If yes, why does the cart move?

Fcg Fgc

Fgh

Fhg

Fch

Fhc

W

Fhg sin u

Fhg cos u

u

10. Will hanging a magnet in front of the iron cart in FIGURE Q7.10 
make it go? Explain.

12. FIGURE Q7.12 shows two masses, of 10 kg each, at rest. The string 
is massless, and the pulleys are frictionless. The spring scale 
reads in kilograms. What is the reading of the scale?

N

S

FIGURE Q7.10

5 kg

5 kg

FIGURE Q7.11

10 kg10 kg

FIGURE Q7.12

Hand

B A

FIGURE Q7.13

11. FIGURE Q7.11 shows two masses at rest. The string is massless and 
the pulley is frictionless. The spring scale reads in kg. What is the 
reading of the scale?

13. The hand in FIGURE Q7.13 is pushing on the back of block A. 
Blocks A and B, with mB 7 mA, are connected by a massless 
string and slide on a frictionless surface. Is the force of the string 
on B larger than, smaller than, or equal to the force of the hand 
on A? Explain.

14. Blocks A and B in FIGURE Q7.14 are connected by a mass-
less string over a massless, frictionless pulley. The blocks have 
just been released from rest. Will the pulley rotate clockwise, 
 counter-clockwise, or not at all? What happen when the mass of 
block A is increased to 5 kg, and the mass of block B remains 
1 kg?

15. In Case a in FIGURE Q7.15, Block A with a mass of 1 kg is 
 accelerated across a frictionless table by a hanging weight of 
5 N (0.51 kg). In Case b, block A with the same mass of 1 kg is 
accelerated across a frictionless table by a steady string tension 
of 4 N. The string is massless, and the pulley is both massless 
and frictionless. Is the acceleration of the block in Case b greater 
than, less than, or equal to its acceleration in Case a? Explain.

FIGURE Q7.15

5 N

A = 1 kg

Case a

A = 1 kg

4 N
tension

Case b

FIGURE Q7.14

1 kgA

B 1 kg
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EXERCISES AND PROBLEMS

A B

FIGURE EX7.4

Exercises

Section 7.2 Analyzing Interacting Objects

For Exercises 1 through 5:
a. Draw an interaction diagram.
b. Identify the “system” on your interaction diagram.
c. Draw a free-body diagram for each object in the system. Use 

dashed lines to connect members of an action/reaction pair.
1. | A tennis racket swung over the server’s head hits a tennis ball 

horizontally.
2. | A weightlifter stands up at constant speed from a squatting 

position while holding a heavy barbell across his shoulders.
3. | A heavy steel cable attached to a motor is lifting a girder. The 

girder is speeding up.
4. || Block A in FIGURE EX7.4 is sliding down the incline. The rope 

is massless, and the massless pulley turns on frictionless bear-
ings, but the surface is not frictionless. The rope and the pulley 
are among the interacting objects, but you’ll have to decide if 
they’re part of the system.

A

B

FIGURE EX7.5

45°

90°
B

20 kg

A

FIGURE EX7.6

1 2100 kg
A

80 kg
B

FIGURE EX7.15

60 kg

100 kg

FIGURE EX7.16

A

Rope 1

Rope 2

B

F
u

FIGURE EX7.17

5. || Block A in FIGURE EX7.5 is heavier than block B and is sliding 
down the incline. All surfaces have friction. The rope is mass-
less, and the massless pulley turns on frictionless bearings. The 
rope and the pulley are among the interacting objects, but you’ll 
have to decide if they’re part of the system.

Section 7.3 Newton’s Third Law

6. | Block B in FIGURE EX7.6 
rests on a surface for which the 
static and kinetic coefficients 
of friction are 0.60 and 0.40, 
 respectively. The ropes are 
massless. What is the  maximum 
mass of block A for which  the 
system remains in equilibrium?

7. | a. How much force does a 60 kg astronaut exert on their chair 
while sitting at rest on the launch pad?

b. How much force does a 60 kg astronaut exert on their chair 
while accelerating upward at 10 m/s2?

8. || A 1000 kg car is pushing an out-of-gear 2000 kg truck that 
has a dead battery. When the driver steps on the accelerator, the 
drive wheels of the car push horizontally against the ground with 
a force of 4500 N. Rolling friction can be neglected.
a. What is the magnitude of the force of the car on the truck?
b. What is the magnitude of the force of the truck on the car?

9. || Blocks with masses of 2 kg, 3 kg, and 5 kg are lined up in a 
row on a frictionless table. All three are pushed forward by a 
force of 10 N applied to the 2 kg block:
a. How much force does the 3 kg block exert on the 5 kg block?
b. How much force does the 3 kg block exert on the 2 kg block?

10. || A 1700 kg meteorite falls toward the earth. What is the mag-
nitude of the earth’s acceleration just before impact? The earth’s 
mass is 5.97 * 1024 kg. Ignore the acceleration of the earth 
around the sun.

11. || A steel cable lying flat on the floor drags a 30 kg block across 
a horizontal, frictionless floor. A 200 N force applied to the 
cable causes the block to reach a speed of 6 m/s in a distance of  
3 m. What is the mass of the cable?

12. | The foot of a 80 kg sprinter is on the ground for 0.50 s while 
his body accelerates from rest to 3.0 m/s.
a. Is the friction between his foot and the ground static friction 

or kinetic friction?
b. What is the magnitude of the friction force?

13. || A 60 kg spacewalking astronaut pushes off a 600 kg  satellite, 
exerting a force of 80 N for the 0.4 seconds it takes him to 
straighten his arm. How far apart are the astronaut and the 
 satellite after 2 minutes?

14. || Two-thirds of the weight of a 1500 kg car rests on the drive 
wheels. What is the maximum acceleration of this car on a con-
crete surface?

15. || The sled dog in FIGURE EX7.15 drags sleds A and B across the 
snow. The coefficient of friction between the sleds and the snow is 
0.10. If the tension in rope 1 is 150 N, what is the tension in rope 2?

Section 7.4 Ropes and Pulleys

16. || What is the tension in the rope of FIGURE EX7.16?

17. || FIGURE EX7.17 shows two 1.0 kg blocks connected by a rope. 
A second rope hangs beneath the lower block. Both ropes have 
a mass of 250 g. The entire assembly is accelerated upward at 
3.0 m/s2 by force F

u
.

a. What is F?
b. What is the tension at the top end of rope 1?
c. What is the tension at the bottom end of rope 1?
d. What is the tension at the top end of rope 2?
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204 CHAPTER 7 Newton’s Third Law

25. ||| Two blocks are attached to opposite ends of a massless rope 
that goes over a massless, frictionless, stationary pulley. One of 
the blocks, with a mass of 7.0 kg, accelerates downward at 2

3 g. 
What is the mass of the other block?

Problems
26. || FIGURE P7.26 shows a 6.0 N force pushing two gliders along 

an air track. The 200 g spring between the gliders is  compressed. 
How much force does the spring exert on (a) glider A and  
(b) glider B? The spring is firmly attached to the gliders, and it 
does not sag.

18. || A 2.0-m-long, 500 g rope pulls a 10 kg block of ice across 
a horizontal, frictionless surface. The block accelerates at 
2.0 m/s2. How much force pulls forward on (a) the ice, (b) the 
rope? Assume that the rope is perfectly horizontal.

19. | A 400 kg air conditioner sits on the flat roof of a building. 
The coefficient of static friction between the roof and the air con-
ditioner is 0.80. A massless rope attached to the air conditioner 
passes over a massless, frictionless pulley at the edge of the roof. 
In an effort to drag the air conditioner to the edge of the roof, four  
75 kg students hang from the free end of the rope, but the air 
conditioner refuses to budge. What is the magnitude of the rope 
tension at the point where it is attached to the air conditioner?

20. || The cable cars in San 
Francisco are pulled along 
their tracks by an underground 
steel cable that moves along at  
9.5 mph. The  cable is driven by 
large motors at a central power 
station and extends, via an in-
tricate pulley arrangement, for 
several miles beneath the city 
streets. The length of a cable 
stretches by up to 100 ft during 
its lifetime. To keep the tension 
constant, the cable passes around 
a 1.5-m-diameter “tensioning pulley” that rolls back and forth on 
rails, as shown in FIGURE EX7.20. A 2000 kg block is attached to 
the tensioning pulley’s cart, via a rope and pulley, and is suspended 
in a deep hole. What is the tension in the cable car’s cable?

21. || A mobile at the art museum 
has a 2.0 kg steel cat and a 4.0 
kg steel dog suspended from a 
lightweight cable, as shown in 
FIGURE EX7.21. It is found that 
u1 = 20° when the center rope 
is adjusted to be perfectly hor-
izontal. What are the tension 
and the angle of rope 3?

22. | A 2.0 kg rope hangs from the ceiling. What is the tension at 
the midpoint of the rope?

23. || The 1.0 kg block in FIGURE EX7.23 is tied to the wall with a 
rope. It sits on top of the 2.0 kg block. The lower block is pulled 
to the right with a tension force of 20 N. The coefficient of ki-
netic friction at both the lower and upper surfaces of the 2.0 kg 
block is mk = 0.40.
a. What is the tension in the rope attached to the wall?
b. What is the acceleration of the 2.0 kg block?

2000 kg

1.5 m

Cable

Rail

FIGURE EX7.20

1 3

4.0 kg
2.0 kg

2u1 u3

FIGURE EX7.21

1.0 kg
20 N

2.0 kg

FIGURE EX7.23

m

100 kg

1.0 m

FIGURE EX7.24

200 gA

600 g
6.0 N

400 g

B

FIGURE P7.26

Lower magnet

Table
Upper magnet

FIGURE P7.27

24. || The 100 kg block in FIGURE EX7.24 takes 6.0 s to reach the 
floor after being released from rest. What is the mass of the 
block on the left? The pulley is massless and frictionless.

27. || FIGURE P7.27 shows two strong magnets on opposite sides of a 
small table. The long-range attractive force between the magnets 
keeps the lower magnet in place.
a. Draw an interaction diagram and draw free-body diagrams 

for both magnets and the table. Use dashed lines to connect 
the members of an action/reaction pair.

b. The lower magnet is being pulled upward against the  bottom 
of the table. Suppose that each magnet’s weight is 2.0 N and 
that the magnetic force of the lower magnet on the  upper 
 magnet is 6.0 N. How hard does the lower magnet push 
against the table?

28. || A rope of length L and mass m is suspended from the ceiling. 
Find an expression for the tension in the rope at position y, mea-
sured upward from the free end of the rope.

29. || A 95 kg acrobat stands on a scale that reads in kg.
a. What does the scale read if the 95 kg acrobat has a 60 kg 

partner standing on his shoulders?
b. What does the scale read if the 95 kg acrobat lifts his 60 kg 

partner upward with an acceleration of 1.7 m/s2?
30. | Your forehead can withstand a force of about 6.0 kN before 

fracturing, while your cheekbone can withstand only about 
1.3 kN. Suppose a 140 g baseball traveling at 30 m/s strikes your 
head and stops in 1.5 ms.
a. What is the magnitude of the force that stops the baseball?
b. What force does the baseball exert on your head? Explain.
c. Are you in danger of a fracture if the ball hits you in the fore-

head? On the cheek?
31. || A Federation starship 12.0 * 106 kg2 uses its tractor beam to 

pull a shuttlecraft 12.0 * 104 kg2 aboard from a distance of 10 km 
away. The tractor beam exerts a constant force of 4.0 * 104 N on 
the shuttlecraft. Both spacecraft are initially at rest. How far does 
the starship move as it pulls the shuttlecraft aboard?

32. || A 75 kg archer on ice skates is standing at rest on very smooth 
ice. He shoots a 450 g arrow horizontally. When released, the 
arrow reaches a speed of 110 m/s in 0.25 s. Assume that the force 
of the bow string on the arrow is constant.
a. What is the force of the arrow on the bow that the archer is 

holding?
b. What is the archer’s recoil speed?
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40. || The 1.0 kg physics book in 
FIGURE P7.40 is connected by a 
string to a 500 g coffee cup. The 
book is given a push up the slope 
and released with a speed of 
3.0 m/s. The coefficients of fric-
tion are ms = 0.50 and mk = 0.20.
a. How far does the book slide?
b. At the highest point, does the 

book stick to the slope, or 
does it slide back down?

41. || A 4.0 kg box is on a frictionless 35° slope and is connected via 
a massless string over a massless, frictionless pulley to a hanging  
2.0 kg weight. The picture for this situation is similar to Figure P7.39.
a. What is the tension in the string if the 4.0 kg box is held in 

place, so that it cannot move?
b. If the box is then released, which way will it move on the slope?
c. What is the tension in the string once the box begins to move?

42. || The static and kinetic fric-
tion coefficients of the surface 
in FIGURE P7.42 are 0.90 and 
0.50, respectively. The hang-
ing mass is increased to the 
point where the two stacked 
masses are on the verge of slid-
ing. If the top mass m is then 
removed, what is the acceler-
ation of mass 2m? The rope 
is massless, and the pulley is 
massless and frictionless.

43. || The century-old ascensores in Valparaiso, Chile, are 
picturesque cable cars built on stilts to keep the passenger com-
partments level as they go up and down the steep hillsides. As 
FIGURE P7.43 shows, one car ascends as the other descends. The 
cars use a two-cable arrangement to compensate for  friction; one 
cable passing around a large pulley connects the cars, the second 
is pulled by a small motor. Suppose the mass of each car (with 
passengers) is 1500 kg, the coefficient of rolling friction is 0.020, 
and the cars move at constant speed. What is the tension in  
(a) the connecting cable and (b) the cable to the motor?

33. ||| Two packages in a fulfillment center start sliding down the 
20° ramp shown in FIGURE P7.33. Package A has a mass of 5.0 kg 
and a coefficient of friction of 0.25. Package B has a mass of 15 
kg and a coefficient of friction of 0.20. How long does it take 
package A to reach the bottom?

20°

2.0 m
A

B

FIGURE P7.33

1.0 kg

2.0 kg

20°

mk = 0.20

mk = 0.10

FIGURE P7.34

F
u

4.0 kg

3.0 kg

FIGURE P7.35

m

Massless, fric-
tionless pulley

Massless string

M

FIGURE P7.36

1.0 kg 3.0 kg

2.0 kg

FIGURE P7.37

F
u

T5

T1

T2

T4

T3

10.2 kg

FIGURE P7.38

2.0 kg

m

20°

FIGURE P7.39

v
u

20°

FIGURE P7.40

34. || The two blocks in FIGURE P7.34 are sliding down the incline. 
What is the tension in the massless string?

35. || The coefficient of static friction is 0.60 between the two 
blocks in FIGURE P7.35. The coefficient of kinetic friction be-
tween the lower block and the floor is 0.20. Force F

u
 causes both 

blocks to cross a distance of 5.0 m, starting from rest. What is 
the least amount of time in which this motion can be completed 
without the top block sliding on the lower block?

36. ||| 

38. || The 10.2 kg block in FIGURE P7.38 is held in place by a force 
applied to a rope passing over two massless, frictionless pulleys. 
Find the tensions T1 to T5 and the magnitude of force F

u
.

39. ||| FIGURE P7.39 shows a block of mass m resting on a 20° slope. 
The block has coefficients of friction m

 s = 0.80 and m
 k = 0.50 

with the surface. It is connected via a massless string over a 
massless, frictionless pulley to a hanging block of mass 2.0 kg.
a. What is the minimum mass m that will stick and not slip?
b. If this minimum mass is nudged ever so slightly, it will start 

being pulled up the incline. What acceleration will it have?

m

2m

FIGURE P7.42

35°

Pulley

Motor

FIGURE P7.43

a. The block of mass M in FIGURE P7.36 slides on a friction-
less surface. Find an expression for the tension in the string.

b. A 2.0 kg block on a horizontal, frictionless surface is 
connected by a massless spring and a massless, fric-
tionless pulley to a hanging mass. For what value of the 
hanging mass does the block accelerate at 1.5 m/s2?

37. || The coefficient of kinetic friction between the 2.0 kg block in 
FIGURE P7.37 and the table is 0.60. What is the acceleration of the 
2.0 kg block?
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50. || A rocket burns fuel at a rate of 5.0 kg/s, expelling the exhaust 
gases at a speed of 4.0 km/s relative to the rocket. We would like 
to find the thrust of the rocket engine.
a. Model the fuel burning as a steady ejection of small pel-

lets, each with the small mass ∆m. Suppose it takes a short 
time ∆ t to accelerate a pellet (at constant acceleration) to the 
 exhaust speed vex. Further, suppose the rocket is clamped 
down so that it can’t recoil. Find an expression for the mag-
nitude of the force that one pellet exerts on the rocket during 
the short time while the pellet is being expelled.

b. If the rocket is moving, vex is no longer the pellet’s speed through 
space but it is still the pellet’s speed relative to the rocket. By 
considering the limiting case of ∆m and ∆ t approaching zero, 
in which case the rocket is now burning fuel continuously, 
 calculate the rocket thrust for the values given above.

Problems 51 and 52 show the free-body diagrams of two interacting 
systems. For each of these, you are to

a. Write a realistic problem for which these are the correct free-
body diagrams. Be sure that the answer your problem requests is 
consistent with the diagrams shown.

b. Finish the solution of the problem.

44. || A 50 g rubber ball A is traveling to the right at 5.0 m/s. It 
collides with a 25 g rubber ball B that is initially at rest. 
FIGURE P7.44 shows how the velocity of A changes during the 
collision until it rebounds with a speed of 4.0 m/s. Consider only 
horizontal motion.
a. What is the magnitude of the force of A on B during the 

collision?
b. What is the speed of ball B after the collision?

FIGURE P7.51
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m1
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FIGURE P7.49

45. || A house painter uses the chair-and-pulley arrangement of 
FIGURE P7.45 to lift himself up the side of a house. The painter’s 
mass is 90 kg, and the chair’s mass is 10 kg. With what force must 
he pull down on the rope in order to accelerate upward at 0.20 m/s2?

46. ||| A long, 1.0 kg rope hangs from a support that breaks, causing 
the rope to fall, if a downward pull on the rope exceeds 35 N. 
A student team has built a 1.8 kg robot “spider” that runs up 
and down the rope. What maximum acceleration can the robot 
have—both magnitude and direction—without the rope falling?

47. ||| FIGURE P7.47 shows a 200 g hamster sitting on an 800 g 
wedge-shaped block. The block, in turn, rests on a spring scale. 
An extra-fine lubricating oil having ms = mk = 0 is sprayed on 
the top surface of the block, causing the hamster to slide down. 
Friction between the block and the scale is large enough that the 
block does not slip on the scale. What does the scale read, in 
grams, as the hamster slides down?

48. || A 2.9 kg cart with a vertical front is pushed from behind 
across a horizontal surface by force F

u
. Rolling friction is negli-

gible. A 100 g button is placed against the front of the cart. What 
minimum magnitude must the pushing force have to prevent 
the button from sliding down? The coefficient of static friction 
 between the button and the cart is 0.70.

49. || Find an expression for the magnitude of the horizontal force  
F
u
 in FIGURE P7.49 for which m1 does not slip either up or down 

along the wedge. All surfaces are frictionless.

51. 52. 

Challenge Problems
53. ||| The lower block in FIGURE 

CP7.53 is pulled on by a rope 
with a tension force of 20 N. The 
coefficient of kinetic friction be-
tween the lower block and the 
surface is 0.30. The coefficient 
of kinetic friction between the lower block and the upper block is 
also 0.30. What is the acceleration of the 2.0 kg block?

54. ||| In FIGURE CP7.54, find an ex-
pression for the acceleration of 
m1. The pulleys are massless and 
frictionless.
Hint: Think carefully about the 
acceleration constraint.

m2

m1

Frictionless

FIGURE CP7.54

1.0 kg

2.0 kg
20 N

FIGURE CP7.53
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Exercises and Problems 207

Hint: You should be able 
to write four second-law 
equations. These, plus the 
acceleration constraint, 
are five equations in five 
unknowns.

c. Suppose: m1 = 2.5 kg, m2 =  
1.5 kg, and m3 = 4.0 kg. 
Find the acceleration of each.

d. The 4.0 kg mass would ap-
pear to be in equilibrium. 
Explain why it accelerates.

59. ||| FIGURE CP7.59 shows a small 
block of mass m sliding with ve-
locity vx across a very long plate 
of mass M. The plate itself is 
sliding across a frictionless surface with velocity Vx. The plate 
has a viscous upper surface, so the retarding force on the block 
is not the usual kinetic friction but, instead, a linear drag force 
(Fdrag)x = -bvrel, where vrel = vx - Vx is the velocity of the block 
relative to the plate. Initially the plate is at rest and the block, 
having just been hit with a hammer, has velocity v0x = v0. Find 
an expression for the time t1/2 at which the relative velocity vrel 
has been reduced to half its initial value.

3.0 kg

1.0 kg

Frictionless

FIGURE CP7.55
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y1
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y3
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m2
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FIGURE CP7.58

M
m

vx
Vx

FIGURE CP7.59

56. ||| The 500 g mass in FIGURE CP7.56 is pushed across the 
2.0-m-long cart by a 3.0 N force, starting at the left side. The co-
efficient of kinetic friction between the mass and the cart is 0.30. 
The cart’s coefficient of rolling friction is 0.010. How far has the 
cart rolled when the mass falls off the right side?

57. ||| A 50-cm-diameter, 400 g beach ball is dropped with a 4.0 mg 
ant riding on the top. The ball experiences air resistance, but the 
ant does not. What is the magnitude of the normal force exerted 
on the ant when the ball’s speed is 2.0 m/s?

58. ||| FIGURE CP7.58 shows three hanging masses connected by 
 massless strings over two massless, frictionless pulleys.
a. Find the acceleration constraint for this system. It is a single 

equation relating a1y, a2y, and a3y.
Hint: yA isn’t constant.

b. Find an expression for the tension in string A.

55. ||| What is the acceleration 
of the 3.0 kg block in FIGURE 
CP7.55 across the frictionless 
table?
Hint: Think carefully about the 
acceleration constraint.

500 g
2.5 kg2.0 m3.0 N

FIGURE CP7.56
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Dynamics II: Motion in a Plane

Are Newton’s laws different in two dimensions?
No. Newton’s laws are vector  equations, 
and they work equally well in two and 
three dimensions. For motion in a plane, 
we’ll focus on how a force  tangent to a 
 particle’s trajectory changes its speed, 
while a force perpendicular to the 
 trajectory changes the particle’s direction.
❮❮ LOOKING BACK Chapter 4 Kinematics of  
projectile and circular motion

How do we analyze projectile-like motion?
For linear motion, one component of the 
acceleration was always zero. Motion in 
a plane generally has acceleration along 
two axes. If the accelerations are inde-
pendent, we can use x- and y-coordinates 
and we will find motions analogous to the 
 projectile motion we studied in Chapter 4.

How do we analyze circular motion?
Circular motion must have a force  component 
toward the center of the circle to create 
the centripetal acceleration. In this case 
the  acceleration components are radial 
and, perhaps, tangential. We’ll use a different 
coordinate system, rtz coordinates, to study 
the dynamics of circular motion.

Does this analysis apply to orbits?
Yes, it does. The circular orbit of a satellite 
or planet is motion in which the force of 
gravity is creating the inward centripetal 
acceleration. You’ll see that an orbiting 
 projectile is in free fall.
❮❮ LOOKING BACK Section 6.3 Gravity and weight

Why doesn’t the water fall out of the bucket?
How can you swing a bucket of water over 
your head without the water falling out? 
Why doesn’t a car going around a loop-the-
loop fall off at the top? Circular motion is 
not always intuitive, but you’ll strengthen 
your ability to use Newtonian reasoning 
by thinking about some of these problems.

Why is planar motion important?
By starting with linear motion, we were able to develop the ideas 
and tools of Newtonian mechanics with minimal distractions. But 
planes and rockets move in a plane. Satellites and electrons orbit 
in a plane. The points on a rotating hard drive move in a plane. 
In fact, much of this chapter is a prelude to Chapter 12, where 
we will study rotational motion. This chapter gives you the tools 
you need to analyze more complex—and more realistic—forms 
of motion.

IN THIS CHAPTER, you will learn to solve problems about motion in two dimensions.

8

An amusement park provides 
many opportunities to 
undergo motion in a plane.

v
u

F
u

Force of changing speed

Force of changing direction

Projectile motion with drag
y

45°

30°
x

a
u

v
u

F
u

u

u u

Planet
FG

FG FG
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8.1 Dynamics in Two Dimensions 209

8.1 Dynamics in Two Dimensions
Newton’s second law, au = F

u

net /m, determines an object’s acceleration; it makes no 
distinction between linear motion and two-dimensional motion in a plane. We began 
with motion along a line, in order to focus on the essential physics, but now we turn 
our attention to the motion of projectiles, satellites, and other objects that move in two 
dimensions. We’ll continue to follow ❮❮ PROBLEM-SOLVING STRATEGY 6.1, which is well 
worth a review, but we’ll find that we need to think carefully about the appropriate 
coordinate system for each problem.

Projectile Motion Revisited
We found in Chapter 6 that the gravitational force on an object near the surface of a 
planet is F

u

G = (mg, down). For a coordinate system with a vertical y-axis,

 F
u

G = -mgjn (8.1)

Consequently, from Newton’s second law, the acceleration is

  ax =
1FG2x

m
= 0 

  ay =
1FG2y

m
= -g 

(8.2)

Equations 8.2 justify the analysis of projectile motion in ❮❮ SECTION 4.2—a downward  
acceleration ay = -g with no horizontal acceleration—where we found that a drag-free  

EXAMPLE 8.1 ■ Rocketing in the wind

A small rocket for gathering weather data has a mass of 30 kg and 
generates 1500 N of thrust. On a windy day, the wind exerts a 20 N 
horizontal force on the rocket. If the rocket is launched straight up, 
what is the shape of its trajectory, and by how much has it been 
deflected sideways when it reaches a height of 1.0 km? Because 
the rocket goes much higher than this, assume there’s no significant 
mass loss during the first 1.0 km of flight.

MODEL Model the rocket as a particle. We need to find the function 
y1x2 describing the curve the rocket follows. Because rockets have 
aerodynamic shapes, we’ll assume no vertical air resistance.

VISUALIZE FIGURE 8.1 shows a pictorial representation. We’ve 
 chosen a coordinate system with a vertical y-axis. Three forces act 
on the rocket: two vertical and one horizontal.

SOLVE In this problem, the vertical and horizontal forces are 
 independent of each other. Newton’s second law is

  ax =
1Fnet2x

m
=

Fwind

m

  ay =
1Fnet2y

m
=

Fthrust - mg

m
The primary difference from the linear-motion problems you’ve 
been solving is that the rocket accelerates along both axes. Howev-
er, both accelerations are constant, so we can use kinematics to find

  x = 1
2 ax 1∆t22 =

Fwind

2m
 1∆t22

  y = 1
2 ay 1∆t22 =

Fthrust - mg

2m
 1∆t22

where we used the fact that all initial positions and velocities are 
zero. From the x-equation, 1∆t22 = 2mx/Fwind. Substituting this into 
the y-equation, we find

y1x2 = 1Fthrust - mg

Fwind
2 x

This is the equation of the rocket’s trajectory. It is a linear equation. 
Somewhat surprisingly, given that the rocket has both vertical and 
horizontal accelerations, its trajectory is a straight line. We can re-
arrange this result to find the deflection at height y:

x = 1 Fwind

Fthrust - mg2 y

From the data provided, we can calculate a deflection of 17 m at a 
height of 1000 m.

REVIEW The solution depended on the fact that the time parameter 
∆t is the same for both components of the motion.

Fwind

u

Fthrust

y

x

FG

0

0
x

y
Known

Deflection

xi = yi = 0 m
vix = viy = 0 m/s
yf = 1000 m 
m = 30 kg
Fthrust = 1500 N
Fwind = 20 N

Find
xf

xf

yf

u

u

FIGURE 8.1 Pictorial representation of the rocket launch.
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210 CHAPTER 8 Dynamics II: Motion in a Plane

projectile follows a parabolic trajectory. The fact that the two components of acceler-
ation are independent of each other allows us to solve for the vertical and horizontal 
motions.

However, the situation is quite different for a low-mass projectile, where the effects 
of drag are too large to ignore. We’ll leave it as a homework problem for you to show 
that the acceleration of a projectile subject to drag, with drag coefficient Cd, is

   ax = -  
rCd A

2m
 vx2vx 

2 + vy 

2 

   ay = -g -
rCd A

2m
 vy2vx 

2 + vy 

2 
(8.3)

Here the components of acceleration are neither constant nor independent of each 
other because ax depends on vy and vice versa. It turns out that these two equations can-
not be solved exactly for the trajectory, but they can be solved numerically. FIGURE 8.2 
shows the numerical solution for the motion of a 5 g plastic ball that’s been hit with an 
initial speed of 25 m/s. It doesn’t travel very far (the maximum distance without drag 
would be more than 60 m), and the maximum range is no longer reached for a launch 
angle of 45°. Notice that the trajectories are not at all parabolic.

x (m)

y (m)

0 2 4 6
0

2

4

6

8

60°

45°

30°

Maximum range
is at 30°.

FIGURE 8.2 A projectile is affected by 
drag. These are trajectories of a plastic 
ball launched at different angles.

STOP TO THINK 8.1 This force will cause the particle to v
u

F
u

a. Speed up and curve upward. b. Speed up and curve downward.
c. Slow down and curve upward. d. Slow down and curve downward.
e. Move to the right and down. f. Reverse direction.

8.2 Uniform Circular Motion
The kinematics of uniform circular motion were introduced in ❮❮ SECTIONS 4.4–4.5, and 
a review is highly recommended. Now we’re ready to study dynamics—how forces 
cause circular motion. FIGURE 8.3 reminds you that the particle’s velocity is tangent to 
the circle, and its acceleration—a centripetal acceleration—points toward the center. 
If the particle has angular velocity v and speed v = vr, its centripetal acceleration is

 au = 1v2

r
 , toward center of circle2 = (v2r, toward center of circle) (8.4)

An xy-coordinate system is not a good choice to analyze circular motion because 
the x- and y-components of the acceleration are not constant. Instead, as Figure 8.3 
shows, we’ll use a coordinate system whose axes are defined as follows:

■■ The origin is at the point where the particle is located.
■■ The r-axis (radial axis) points from the particle toward the center of the circle.
■■ The t-axis (tangential axis) is tangent to the circle, pointing in the counterclockwise 

direction.
■■ The z-axis is perpendicular to the plane of motion.

These three mutually perpendicular axes form the rtz-coordinate system.
You can see that the rtz-components of v 

u and au are

 vr = 0     ar =
v2

r
= v2r 

 vt = vr     at = 0 (8.5)

 vz = 0     az = 0 

where the angular velocity v = du/dt must be in rad/s. For uniform circular motion,  
the velocity vector has only a tangential component and the acceleration vector has only 
a radial component. Now you can begin to see the advantages of the rtz-coordinate system.

a
u

a
u

a
u

v
u

v
u

v
u

v

z-axis is out 
of the page

t-axis is into
the page

r

t

z

r

Velocity has only a tangential component.

Acceleration has only a radial component.

Circle seen edge-on

FIGURE 8.3 Uniform circular motion and 
the rtz-coordinate system.
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8.2 Uniform Circular Motion 211

   NOTE    Recall that v and vt are positive for a counterclockwise (ccw) rotation, 
negative for a clockwise (cw) rotation. The particle’s speed is v = � vt � .

Dynamics of Uniform Circular Motion
A particle in uniform circular motion is clearly not traveling at constant velocity in a 
straight line. Consequently, according to Newton’s first law, the particle must have a net 
force acting on it. We’ve already determined the acceleration of a particle in uniform 
circular motion—the centripetal acceleration of Equation 8.4. Newton’s second law tells 
us exactly how much net force is needed to cause this acceleration:

 F
u

net = mau = 1mv2

r
, toward center of circle2 (8.6)

In other words, a particle of mass m moving at constant speed v around a circle of radius 
r must have a net force of magnitude mv2/r pointing toward the center of the circle. 
Without such a force, the particle would move off in a straight line tangent to the circle.

FIGURE 8.4 shows the net force F
u

net acting on a particle as it undergoes uniform 
 circular motion. You can see that F

u

net, like au, points along the radial axis of the rtz- 
coordinate system, toward the center of the circle. The tangential and perpendicular 
components of F

u

net are zero.

   NOTE    The force described by Equation 8.6 is not a new force. The force itself must 
have an identifiable agent and will be one of our familiar forces, such as tension, 
friction, or the normal force. Equation 8.6 simply tells us how the force needs to 
act—how strongly and in which direction—to cause the particle to move with speed 
v in a circle of radius r.

The usefulness of the rtz-coordinate system becomes apparent when we write 
Newton’s second law, Equation 8.6, in terms of the r-, t-, and z-components:

  1Fnet2r = aFr = mar =
mv2

r
= mv2r 

  1Fnet2t = aFt = mat = 0 (8.7)

  1Fnet2z = aFz = maz = 0 

For uniform circular motion, the sum of the forces along the t-axis and along the 
z-axis must equal zero, and the sum of the forces along the r-axis must equal mar, 
where ar is the centripetal acceleration.

On banked curves, the normal force  
of the road assists in providing the 
centripetal acceleration of the turn.

An energetic father places his 20 kg child on a 5.0 kg cart to which 
a 2.0-m-long rope is attached. He then holds the end of the rope 
and spins the cart and child around in a circle, keeping the rope 
parallel to the ground. If the tension in the rope is 100 N, how many 
revolutions per minute (rpm) does the cart make? Rolling friction 
between the cart’s wheels and the ground is negligible.

MODEL Model the child in the cart as a particle in uniform circular 
motion.

VISUALIZE FIGURE 8.5 on the next page shows the pictorial repre-
sentation. A circular-motion problem usually does not have starting 
and ending points like a projectile problem, so numerical subscripts 
such as x1 or y2 are usually not needed. Here we need to define 
the cart’s speed v and the radius r of the circle. Further, a motion 

 diagram is not needed for uniform circular motion because we 
 already know the acceleration au points to the center of the circle.

The essential part of the pictorial representation is the  free-body 
diagram. For uniform circular motion we’ll draw the free-body 
diagram in the rz-plane, looking at the edge of the circle,  because 
this is the plane of the forces. The contact forces acting on the 
cart are the normal force of the ground and the tension force of the 
rope. The normal force is perpendicular to the plane of the motion 
and thus in the z-direction. The direction of T

u
 is determined by the 

statement that the rope is parallel to the ground. In addition, there 
is the long-range gravitational force F

u

G.

SOLVE We defined the r-axis to point toward the center of the 
circle,  so T

u
 points in the positive r-direction and has r-component 

EXAMPLE 8.2 ■ Spinning in a circle

t

v
u

v
u

v
u

v

Fnet

uFnet

u

Fnet

u

u
With no force, the particle would continue 
moving in the direction of v.

z-axis is out 
of the page

r

FIGURE 8.4 The net force points in the 
radial direction, toward the center of the 
circle.

Continued
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212 CHAPTER 8 Dynamics II: Motion in a Plane

The Central-Force Model
A force that is always directed toward the same point is called a central force. The 
tension in the rope of the last example is a central force, as is the gravitational force 
acting on an orbiting satellite. An object acted on by an attractive central force can 
undergo uniform circular motion around the central point. More complicated trajec-
tories can occur in some situations—such as satellites following elliptical orbits—but 
for now we’ll focus on circular motion, or motion with constant r. This central-force 
model is another important model of motion.

MODEL 8.1

Central force with constant r
For objects on which a net force with constant  
magnitude points  toward a central point.

■■ Model the object as a particle.
■■ The force causes a centripetal acceleration.

• The motion is uniform circular motion.
■■ Mathematically:

• Newton’s second law is

F
u

net = 1mv2

r
  or mv2r, toward center2

• Use the kinematics of uniform circular motion.
■■ Limitations: Model fails if the force has a tangential component or if r changes.

Exercise 10 

v
u

v
u

v
u

F
u

F
u

F
u

v

v

v

The object undergoes 
uniform circular motion.

Let’s look at more examples of the central-force model in action.

Tr = T. Newton’s second law, using the rtz-components of  
Equations 8.7, is

 aFr = T =
mv2

r

 aFz = n - mg = 0

We’ve taken the r- and z-components of the forces directly from 
the free-body diagram, as you learned to do in Chapter 6. Then 
we’ve explicitly equated the sums to ar = v2/r and az = 0. This is 
the basic strategy for all uniform circular-motion problems. From 
the z-equation we can find that n = mg. This would be useful if 
we needed to determine a friction force, but it’s not needed in this 
problem. From the r-equation, the speed of the cart is

v = B rT
m

= B 12.0 m21100 N2
25 kg

= 2.83 m/s

The cart’s angular velocity is then found from Equations 8.5:

v =
v t

r
=

v
r

=
2.83 m/s

2.0 m
= 1.41 rad/s

This is another case where we inserted the radian unit because v is 
specifically an angular velocity. Finally, we need to convert v to rpm:

v =
1.41 rad

1 s
*

1 rev
2p rad

*
60 s

1 min
= 14 rpm

REVIEW 14 rpm corresponds to a period T ≈ 4 s. This result is 
 reasonable.

FIGURE 8.5 Pictorial representation of a cart spinning in a circle.
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8.2 Uniform Circular Motion 213

Because ms depends on road conditions, the maximum safe speed through turns can 
vary dramatically. Wet roads, in particular, lower the value of ms and thus lower the speed 
of turns. Icy conditions are even worse. The corner you turn every day at 45 mph will 
require a speed of no more than 15 mph if the coefficient of static friction drops to 0.1.

What is the maximum speed with which a 1500 kg car can make a 
left turn around a curve of radius 50 m on a level (unbanked) road 
without sliding?

MODEL The car doesn’t complete a full circle, but it is in uniform 
circular motion for a quarter of a circle while turning. We can model  
the car as a particle subject to a central force. Assume that rolling 
friction is negligible.

VISUALIZE Figure 8.6 shows the pictorial representation. The  issue 
we must address is how a car turns a corner. What force or forces 
cause the direction of the velocity vector to change? Imagine driving 
on a completely frictionless road, such as a very icy road. You would 
not be able to turn a corner. Turning the steering wheel would be of 
no use; the car would slide straight ahead, in accordance with both 
Newton’s first law and the experience of anyone who has ever driven 
on ice! So it must be friction that somehow allows the car to turn.

Figure 8.6 shows the top view of a tire as it turns a corner. If the 
road surface were frictionless, the tire would slide straight ahead. The 
force that prevents an object from sliding across a surface is static  
friction. Static friction f 

u

s pushes sideways on the tire, toward the cen-
ter of the circle. How do we know the direction is sideways? If f 

u

s had 
a component either parallel to v 

u or opposite to v 

u, it would cause the 
car to speed up or slow down. Because the car changes direction but 
not speed, static friction must be perpendicular to v 

u. f 
u

s causes the 
centripetal acceleration of circular motion around the curve, and thus 
the free-body diagram, drawn from behind the car, shows the static 
friction force pointing toward the center of the circle.

SOLVE The maximum turning speed is reached when the static fric-
tion force reaches its maximum fs max = msn. If the car enters the 

curve at a speed higher than the maximum, static friction will not 
be large enough to provide the necessary centripetal acceleration 
and the car will slide.

The static friction force points in the positive r-direction, so its 
radial component is simply the magnitude of the vector: 1 fs2r = fs. 
Newton’s second law in the rtz-coordinate system is

 aFr = fs =
mv2

r

 aFz = n - mg = 0

The only difference from Example 8.2 is that the tension force to-
ward the center has been replaced by a static friction force toward 
the center. From the radial equation, the speed is

v = B rfs
m

The speed will be a maximum when fs reaches its maximum value:

fs = fs max = ms n = ms mg

where we used n = mg from the z-equation. At that point,

 vmax = B rfs max

m
= 2ms rg

 = 211.02150 m219.80 m/s22 = 22 m/s

where the coefficient of static friction was taken from Table 6.1.

REVIEW 22 m/s ≈ 45 mph, a reasonable answer for how fast a car 
can take an unbanked curve. Notice that the car’s mass canceled out 
and that the final equation for vmax is quite simple. This is another 
example of why it pays to work algebraically until the very end.

EXAMPLE 8.3 ■ Turning the corner I

Known

Top view
of car

Find

m = 1500 kg
r = 50 m
ms = 1.0

vmax

r

r

z

fs fs

This force prevents
the tire from
slipping sideways.

Rear view
of car

Top view
of tire

fs

FGFnet

u

u u

n
u

v
u

v
u

uu

FIGURE 8.6 Pictorial representation of a car turning a corner.

A highway curve of radius 70 m is banked at a 15° angle. At 
what speed v0 can a car take this curve without assistance from 
friction?

MODEL Model the car as a particle subject to a central force.

VISUALIZE Having just discussed the role of friction in turning cor-
ners, it is perhaps surprising to suggest that the same turn can also 
be accomplished without friction. Example 8.3 considered a level 
roadway, but real highway curves are banked by being tilted up 

EXAMPLE 8.4 ■ Turning the corner II

Continued
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214 CHAPTER 8 Dynamics II: Motion in a Plane

It’s interesting to explore what happens at other speeds on a banked curve. FIGURE 8.8 
shows that the car will need to rely on both the banking and friction if it takes the 
curve at a speed faster or slower than v0.

Speed v 7 v0

r

z

Static friction must point downhill:
A faster speed requires a larger net
force toward the center. The radial
component of static friction adds to
nr to allow the car to make the turn.

Speed v 6 v0

r

z

Static friction must point uphill:
Without a static friction force up the
slope, a slow-moving car would slide
down the incline! 

Road surfaceRoad surface

fs

fs

FG

Fnet Fnet

FG

u
n
u

u

u

u

n
u

u

u

FIGURE 8.8 Free-body diagrams for a car going around a banked curve at speeds slower and faster than the friction-
free speed v0.

A Stone Age hunter places a 1.0 kg rock in a sling and swings it in 
a horizontal circle around his head on a 1.0-m-long vine. If the vine 
breaks at a tension of 200 N, what is the maximum angular speed, 
in rpm, with which he can swing the rock?

MODEL Model the rock as a particle in uniform circular motion.

VISUALIZE This problem appears, at first, to be essentially the same  
as Example 8.2, where the father spun his child around on a rope. 

However, the lack of a normal force from a supporting surface makes 
a big difference. In this case, the only contact force on the rock is the 
tension in the vine. Because the rock moves in a horizontal circle, you 
may be tempted to draw a free-body diagram like FIGURE 8.9a, where 
T
u
 is directed along the r-axis. You will quickly run into trouble, 

however, because this diagram has a net force in the z-direction and 
it is impossible to satisfy gFz = 0. The gravitational force F

u

G cer-
tainly points vertically downward, so the difficulty must be with T

u
.

EXAMPLE 8.5 ■ A rock in a sling

at the outside edge of the curve. The angle is modest on ordinary 
highways, but it can be quite large on high-speed racetracks. The 
purpose of banking becomes clear if you look at the free-body dia-
gram in FIGURE 8.7. The normal force nu is perpendicular to the road, 
so tilting the road causes nu to have a component toward the center 
of the circle. The radial component nr is the central force that 
causes the centripetal acceleration needed to turn the car. Notice 
that we are not using a tilted coordinate system, although this looks 
rather like an inclined-plane problem. The center of the circle is in 
the same horizontal plane as the car, and for circular-motion prob-
lems we need the r-axis to pass through the center. Tilted axes are 
for linear motion along an incline.

SOLVE Without friction, nr = n sin u is the only component of force 
in the radial direction. It is this inward component of the normal 
force on the car that causes it to turn the corner. Newton’s second 
law is

  aFr = n sin u =
mv0 

2

r

  aFz = n cos u - mg = 0

where u is the angle at which the road is banked and we’ve 
 assumed  that the car is traveling at the correct speed v0. From the 
z-equation,

n =
mg

cos u

Substituting this into the r-equation and solving for v0 give

mg

cos u
 sin u = mg tan u =

mv0 

2

r

v0 = 2rg tan u = 14 m/s

REVIEW This is ≈28 mph, a reasonable speed. Only at this very 
specific speed can the turn be negotiated without reliance on fric-
tion forces.

r

r

r

z

Top view Road
surface

Rear view

Known

Find

r = 70 m
u = 15°

v0

u

u

u

FGFnet

The r-axis points
toward the center
of the circle.

n
u

v
u

u u

FIGURE 8.7 Pictorial representation of a car on a banked curve.
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8.3 Circular Orbits 215

8.3 Circular Orbits
Satellites orbit the earth, the earth orbits the sun, and our entire solar system orbits 
the center of the Milky Way galaxy. Not all orbits are circular, but in this section we’ll 
limit our analysis to circular orbits.

How does a satellite orbit the earth? What forces act on it? To answer these import-
ant questions, let’s return, for a moment, to projectile motion. Projectile motion occurs 
when the only force on an object is gravity. Our analysis of projectiles assumed that 

STOP TO THINK 8.2 A block on a string spins in a horizontal circle on a frictionless 
table. Rank in order, from largest to smallest, the tensions TA to TE acting on blocks 
a to e.

A B C D E

r

r = 100 cm
v = 50 rpm r = 25 cm

v = 200 rpm

r
r r

r

r = 100 cm
v = 100 rpm r = 50 cm

v = 100 rpm
r = 50 cm
v = 200 rpm

As an experiment, tie a small weight to a string, swing it 
over your head, and check the angle of the string. You will 
quickly discover that the string is not horizontal but, instead, 
is angled downward. The sketch of FIGURE 8.9b labels the 
angle u. Notice that the rock moves in a horizontal circle, so 
the center of the circle is not at his hand. The r-axis points 
to  the center of the circle, but the tension force is directed 
along the vine. Thus the correct free-body diagram is the one 
in Figure 8.9b.

SOLVE The free-body diagram shows that the downward gravita-
tional force is balanced by an upward component of the tension, 
leaving the radial component of the tension to cause the centripetal 
acceleration. Newton’s second law is

 aFr = T cos u =
mv2

r
 aFz = T sin u - mg = 0

where u is the angle of the vine below horizontal. From the 
z-equation we find

 sin u =
mg

T

 umax = sin-1111.0 kg219.8 m/s22
200 N 2 = 2.81°

where we’ve evaluated the angle at the maximum tension of 200 N. 
The vine’s angle of inclination is small but not zero.

Turning now to the r-equation, we find the rock’s speed is

vmax = B rT cos umax

m

Careful! The radius r of the circle is not the length L of the vine. 
You can see in Figure 8.9b that r = L cos u. Thus

vmax = CLT cos2 umax

m
= C11.0 m21200 N21cos 2.81°22

1.0 kg
= 14.1 m/s

We can now find the maximum angular speed, the value of v that 
brings the tension to the breaking point:

vmax =
vmax

r
=

vmax

L cos umax
=

14.1 rad
1 s

*
1 rev

2p rad
*

60 s
1 min

= 135 rpm

r

z
Wrong
diagram!

(a)

FG

u

T
u

FIGURE 8.9 Pictorial representation of a rock in a sling.

L

r
Center of
circle

(b)

Known

Find

m = 1.0 kg

Tmax = 200 N
L = 1.0 m

vmax

r

z

u

u

FG

u

T
u
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216 CHAPTER 8 Dynamics II: Motion in a Plane

the earth is flat and that the acceleration due to gravity is everywhere straight down. 
This is an acceptable approximation for projectiles of limited range, such as baseballs 
or cannon balls, but there comes a point where we can no longer ignore the curvature 
of the earth.

FIGURE 8.10 shows a perfectly smooth, spherical, airless planet with one tower of 
height h. A projectile is launched from this tower parallel to the ground 1u = 0°2 
with speed v0. If v0 is very small, as in trajectory A, the “flat-earth approximation” is 
valid and the problem is identical to Example 4.4 in which a car drove off a cliff. The 
projectile simply falls to the ground along a parabolic trajectory.

As the initial speed v0 is increased, the projectile begins to notice that the ground 
is curving out from beneath it. It is falling the entire time, always getting closer to 
the ground, but the distance that the projectile travels before finally reaching the 
ground—that is, its range—increases because the projectile must “catch up” with the 
ground that is curving away from it. Trajectories B and C are of this type. The actual 
calculation of these trajectories is beyond the scope of this textbook, but you should 
be able to understand the factors that influence the trajectory.

If the launch speed v0 is sufficiently large, there comes a point where the curve of 
the trajectory and the curve of the earth are parallel. In this case, the projectile “falls” 
but it never gets any closer to the ground! This is the situation for trajectory D. A 
closed trajectory around a planet or star, such as trajectory D, is called an orbit.

The most important point of this qualitative analysis is that an orbiting projectile 
is in free fall. This is, admittedly, a strange idea, but one worth careful thought. An 
orbiting projectile is really no different from a thrown baseball or a car driving off a 
cliff. The only force acting on it is gravity, but its tangential velocity is so large that the 
curvature of its trajectory matches the curvature of the earth. When this happens, the 
projectile “falls” under the influence of gravity but never gets any closer to the surface.

In the flat-earth approximation, shown in FIGURE 8.11a, the gravitational force  acting 
on an object of mass m is

 F
u

G = (mg, vertically downward)  (flat@earth approximation) (8.8)

But since stars and planets are actually spherical (or very close to it), the “real” force 
of gravity acting on an object is directed toward the center of the planet, as shown in 
FIGURE 8.11b. In this case the gravitational force is

 F
u

G = (mg, toward center)  (spherical planet) (8.9)

That is, gravity is a central force causing the centripetal acceleration of uniform 
circular motion. Thus the gravitational force causes the object in Figure 8.11b to have 
acceleration

 au =
F
u

net

m
= (g, toward center) (8.10)

An object moving in a circle of radius r at speed vorbit will have this centripetal 
acceleration if

 ar =
1vorbit22

r
= g (8.11)

That is, if an object moves parallel to the surface with the speed

 vorbit = 1rg (8.12)

then the free-fall acceleration is exactly the centripetal acceleration needed for a circular 
orbit of radius r. An object with any other speed will not follow a circular orbit.

The earth’s radius is r = Re = 6.37 * 106 m. (A table of useful astronomical data is 
inside the back cover of this book.) The orbital speed of a projectile just skimming the 
surface of an airless, bald earth is

vorbit = 2rg = 216.37 * 106 m219.80 m/s22 = 7900 m/s ≈ 16,000 mph

Projectile motion

The ground is
curving away from
the projectile.

This projectile “falls” all
the way around the planet
because the curvature of
its trajectory matches
the planet’s curvature.

A

B

C

D

h

Planet

FIGURE 8.10 Projectiles being launched 
at increasing speeds from height h on a 
smooth, airless planet.

Parabolic
trajectory

(a)

Flat-earth approximation

FG
FG

FG

u

u

u

FIGURE 8.11 The “real” gravitational force 
is always directed toward the center of 
the planet.

Planet

Circular orbit
(b)

Spherical planet

FG

FGFG

u

u u
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8.4 Reasoning About Circular Motion 217

Even if there were no trees and mountains, a real projectile moving at this speed 
would burn up from the friction of air resistance.

Satellites
Suppose, however, that we launched the projectile from a tower of height 
h = 230 mi ≈ 3.8 * 105 m, just above the earth’s atmosphere. This is approximately the 
height of the International Space Station and other low-earth-orbit satellites. Note that 
h V Re, so the radius of the orbit r = Re + h = 6.75 * 106 m is only 5% greater than the 
earth’s radius. Many people have a mental image that satellites orbit far above the earth, 
but in fact many satellites come pretty close to skimming the surface. Our calculation of 
vorbit thus turns out to be quite a good estimate of the speed of a satellite in low earth orbit.

We can use vorbit to calculate the period of a satellite orbit:

 T =
2pr
vorbit

= 2p A r
g

 (8.13)

For a low earth orbit, with r = Re + 230 miles, we find T = 5210 s = 87 min. The 
 period of the International Space Station at an altitude of 230 mi is, indeed, close to 
87 minutes. (The actual period is 93 min. The difference, you’ll learn in Chapter 13, 
arises because g is slightly less at a satellite’s altitude.)

When we discussed weightlessness in Chapter 6, we discovered that it occurs 
during free fall. We asked the question, at the end of ❮❮ SECTION 6.3, whether astronauts 
and their spacecraft were in free fall. We can now give an affirmative answer: They 
are, indeed, in free fall. They are falling continuously around the earth,  under the 
influence of only the gravitational force, but never getting any closer to the ground 
 because the earth’s surface curves beneath them. Weightlessness in space is no dif-
ferent from the weightlessness in a free-falling elevator. It does not occur from an 
 absence of  gravity. Instead, the astronaut, the spacecraft, and everything in it are 
weightless  because they are all falling together.

8.4 Reasoning About Circular Motion
Some aspects of circular motion are puzzling and counterintuitive. Examining a few 
of these will give us a chance to practice Newtonian reasoning.

Centrifugal Force?
If the car turns a corner quickly, you feel “thrown” against the door. But there’s really no 
such force because there is no agent exerting it. FIGURE 8.12 shows a bird’s-eye view of you 
riding in a car as it makes a left turn. You try to continue moving in a straight line, obeying 
Newton’s first law, when—without having been provoked—the door suddenly turns in 
front of you and runs into you! You do, indeed, then feel the force of the door because it is 
now the normal force of the door, pointing inward toward the center of the curve, causing 
you to turn the corner. But you were not “thrown” into the door; the door ran into you.

The “force” that seems to push an object to the outside of a circle is commonly 
known as the centrifugal force. Despite having a name, the centrifugal force is  fictitious. 
It  describes your experience relative to a noninertial reference frame, but there really 
is no such force. You must always use Newton’s laws in an inertial reference frame. 
There are no centrifugal forces in an inertial reference frame.

   NOTE    You might wonder if the rtz-coordinate system is an inertial reference frame. 
It is not! The rtz-coordinate system rotates as it moves with the particle, so it is not an 
inertial reference frame moving with a constant velocity. The important point is that 
we never make measurements in the rtz-system. That is, velocities and accelerations 
are measured in the laboratory reference frame. The particle would always be at 
rest 1v 

u = 0
u2 if we measured velocities in a reference frame attached to the particle. 

We can use the rtz-coordinate system, as we do, to find the directions of vectors as 
long as we do all our calculations in a laboratory reference frame.

The International Space Station is in free 
fall.

n
u

v
u

The door provides the 
central force that makes 
you move in a circle.

You try to keep moving 
straight ahead.

FIGURE 8.12 Bird’s-eye view of a 
passenger as a car turns a corner.
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218 CHAPTER 8 Dynamics II: Motion in a Plane

Gravity on a Rotating Earth
There is one small problem with the admonition that you must use Newton’s laws 
in an inertial reference frame: A reference frame attached to the ground isn’t truly 
 inertial because of the earth’s rotation. Fortunately, we can make a simple correction 
that allows us to continue using Newton’s laws on the earth’s surface.

FIGURE 8.13 shows an object being weighed by a spring scale on the earth’s equator. 
An observer hovering above the north pole sees two forces on the object: the gravi-
tational force F

u

M on m, given by Newton’s law of gravity, and the outward spring force 
F
u

Sp. The object moves in a circle as the earth rotates, so Newton’s second law is

aFr = FM on m - FSp = mv2R

where v is the angular speed of the rotating earth. The spring-scale reading 
FSp = FM on m - mv2R is less than it would be on a nonrotating earth.

The blow-up in Figure 8.13 shows how we see things in a noninertial, flat-earth 
reference frame. For us the object is at rest, in equilibrium, hence the upward 
spring force must be exactly balanced by a downward gravitational force F

u

G. Thus 
FSp = FG.

Now both we and the hovering, inertial observer see the same reading on the scale. 
If FSp is the same for both of us, then

 FG = FM on m - mv2R (8.14)

In other words, force F
u

G, the effective gravitational force of  Chapter 6, is slightly 
less than the true gravitational force F

u

M on m because of the earth’s  rotation. In essence, 
mv2R is the centrifugal force, a fictitious force  trying—from our perspective in a 
noninertial reference frame—to “throw” us off the  rotating platform. There really is 
no such force, but—this is the important point—we can  continue to use Newton’s 
laws in our rotating reference frame if we pretend there is.

Because FG = mg for an object at rest, the effect of the centrifugal term in 
 Equa tion 8.14 is to make g a little smaller than it would be on a nonrotating earth:

 g =
FG

m
=

FM on m - mv2R
m

=
GM

R2 - v2R = gearth - v2R (8.15)

We calculated gearth = 9.82 m/s2 in Chapter 6. Using v = 1 rev/day (which must be 
converted to SI units) and R = 6370 km, we find v2R = 0.033 m/s2 at the equator 
and ≈0.02 m/s2 at midlatitudes where the distance from the rotation axis is smaller. 
Thus the free-fall acceleration—what we actually measure in our rotating reference 
frame—is about 9.80 m/s2, exactly what we measure in the laboratory.

Things are a little more complicated at other latitudes, but the bottom line is that we 
can safely use Newton’s laws in our rotating, noninertial reference frame on the earth’s 
surface if we calculate the gravitational force—as we’ve been doing—as FG = mg with 
g the measured free-fall value, a value that compensates for our rotation, rather than 
the purely gravitational gearth.

Why Does the Water Stay in the Bucket?
If you swing a bucket of water over your head quickly, the water stays in, but you’ll get 
a shower if you swing too slowly. Why? We’ll answer this question by starting with an 
equivalent situation, a roller coaster doing a loop-the-loop.

FIGURE 8.14 shows a roller-coaster car going around a vertical loop-the-loop of  
 radius r. Why doesn’t the car fall off at the top of the circle? Now, motion in a  vertical 
circle is not uniform circular motion; the car slows down as it goes up one side and 
speeds up as it comes back down the other. But at the very top and very bottom 
points, only the car’s direction is changing, not its speed, so at those points the ac-
celeration is purely centripetal. Thus there must be a net force toward the center 
of the circle.

Object on equator

Spring scale

North pole

Earth

R
FM on m

Scale
m

FSp

Fnet = 0

The object is in
equilibrium in our
reference frame on
the rotating earth.

The object is in circular motion on a rotating 
earth, so there is a net force toward the center. 

Fnet

Mass M 

u

u

u

FG

u
u u

FIGURE 8.13 The earth’s rotation affects 
the measured value of g.

r

rThe r-axis 
points toward 
the center. r

vtop

vbot

n
Fnet

FG

nFnet

FG

u

u

u

u

u

u

u

u

FIGURE 8.14 A roller-coaster car going 
around a loop-the-loop.

M08_KNIG8221_05_GE_C08.indd   218 21/06/2022   12:51



8.4 Reasoning About Circular Motion 219

First consider the very bottom of the loop. To have a net force toward the center—
upward at this point—requires n 7 FG. The normal force has to exceed the gravita-
tional force to provide the net force needed to “turn the corner” at the bottom of the 
circle. This is why you “feel heavy” at the bottom of the circle or at the bottom of a 
valley on a roller coaster.

We can analyze the situation quantitatively by writing the r-component of  Newton’s 
second law. At the bottom of the circle, with the r-axis pointing upward, we have

 aFr = nr + 1FG2r = n - mg = mar =
m1vbot22

r
 (8.16)

From Equation 8.16 we find

 n = mg +
m1vbot22

r
 (8.17)

The normal force at the bottom is larger than mg.
Things are a little trickier as the roller-coaster car crosses the top of the loop. 

Whereas the normal force of the track pushes up when the car is at the bottom of the 
circle, it presses down when the car is at the top and the track is above the car. Think 
about the free-body diagram to make sure you agree.

The car is still moving in a circle, so there must be a net force toward the center of 
the circle. The r-axis, which points toward the center of the circle, now points down-
ward. Consequently, both forces have positive components. Newton’s second law at 
the top of the circle is

 aFr = nr + 1FG2r = n + mg =
m1vtop22

r
 (8.18)

Thus at the top the normal force of the track on the car is

 n =
m1vtop22

r
- mg (8.19)

The normal force at the top can exceed mg if vtop is large enough. Our interest, 
 however, is in what happens as the car goes slower and slower. As vtop decreases, there 
comes a point when n reaches zero. “No normal force” means “no contact,” so at that 
speed, the track is not pushing against the car. Instead, the car is able to complete the 
circle because gravity alone provides sufficient centripetal acceleration.

The speed at which n = 0 is called the critical speed vc:

 vc = A rmg
m

= 2rg (8.20)

The critical speed is the slowest speed at which the car can complete the  circle. 
Equation 8.19 would give a negative value for n if v 6 vc, but that is physically 
 impossible. The track can push against the wheels of the car 1n 7 02, but it can’t pull 
on them. If v 6 vc, the car cannot turn the full loop but, instead, comes off the track and 
becomes a projectile! FIGURE 8.15 summarizes our reasoning.

Water stays in a bucket swung over your head for the same reason: Circular 
 motion requires a net force toward the center of the circle. At the top of the  circle—
if you swing the bucket fast enough—the bucket adds to the force of gravity by 
pushing down on the water, just like the downward normal force of the track on 
the roller-coaster car. As long as the bucket is pushing against the water, the bucket 
and the water are in contact and thus the water is “in” the bucket. As you swing 
slower and slower, requiring the water to have less and less centripetal accelera-
tion, the bucket-on-water normal force decreases until it becomes zero at the critical 
speed. At the critical speed, gravity alone provides sufficient centripetal accel-
eration. Below the critical speed, gravity provides too much downward force for 
circular motion, so the water leaves the bucket and becomes a projectile following a 
parabolic trajectory toward your head!

v 7 vc

The normal force adds to gravity
to make a large enough force for
the car to turn the circle.

vc

At vc, gravity alone is enough
force for the car to turn the
circle. n = 0 at the top point.

v 6 vc

The gravitational force is
too large for the car to stay
in the circle!

Parabolic trajectory

Normal force
became zero here.

FG

FG

FG

n
u u

u

u

u u

FIGURE 8.15 A roller-coaster car at the 
top of the loop.
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220 CHAPTER 8 Dynamics II: Motion in a Plane

STOP TO THINK 8.3 An out-of-gas car is 
rolling over the top of a hill at speed v. At 
this instant,

a. n 7 FG

b. n 6 FG

c. n = FG

d. We can’t tell about n without 
 knowing v.

n
u

v
u

FG

u

8.5 Nonuniform Circular Motion
Many interesting examples of circular motion involve objects whose speed changes. 
As we’ve already noted, a roller-coaster car doing a loop-the-loop slows down as it 
goes up one side, speeds up as it comes back down the other side. Circular motion 
with a changing speed is called nonuniform circular motion.

FIGURE 8.16 shows a particle moving in a circle of radius r. In addition to a radial force 
component—required for all circular motion—this particle experiences a tangential 
force component 1Fnet2t and hence a tangential acceleration

 at =
dvt

dt
 (8.21)

Now vt is the particle’s velocity around the circle, with speed v = � vt � , so a tangential 
force component causes the particle to change speed. That is, the particle is undergoing 
nonuniform circular motion. Note that 1Fnet2t, like vt, is positive when ccw, negative 
when cw.

Force and acceleration are still related to each other through Newton’s second law:

  1Fnet2r = aFr = mar =
mvt 

2

r
= mv2r 

   1Fnet2t = aFt = mat (8.22)

  1Fnet2z = aFz = 0 

If the tangential force is constant, you can apply what you know about constant- 
acceleration kinematics to solve for vt at a later time.

   NOTE    Equations 8.22 differ from Equations 8.7 for uniform circular motion only in 
the fact that at is no longer zero.

The radial force
causes the centripetal
acceleration ar.

The tangential
force causes
the tangential
acceleration at.

r-axis
t-axis

(Fnet)r

(Fnet)t

Fnet

u

FIGURE 8.16 Net force F
u

net is applied to a 
particle moving in a circle.

A 1500 kg car drives around a flat, 50-m-diameter track, starting 
from rest. The drive wheels supply a small but steady 525 N force 
in the forward direction. The coefficient of static friction between 
the car tires and the road is 0.90. How many revolutions of the 
track have been made when the car slides out of the curve?

MODEL Model the car as a particle in nonuniform circular motion. 
Assume that rolling friction and air resistance can be neglected.

VISUALIZE FIGURE 8.17 shows a pictorial representation. As in 
 earlier examples, it’s static friction, perpendicular to the tires, 
that causes the centripetal acceleration of circular motion. The 
propulsion force is a tangential force. For the first time, we need a 
free-body diagram showing forces in three dimensions.

EXAMPLE 8.6 ■ Sliding out of the curve

vt
u

r

Known Find
∆ur = 50 m  m = 1500 kg

ms = 0.90  Fwheels = 525 N

n
u

r

z

t

FG

fs

u

u

Fwheels

u

FIGURE 8.17 Pictorial representation of a car speeding up around 
a circle.
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8.5 Nonuniform Circular Motion 221

We’ve come a long way since our first dynamics problems in Chapter 6, but our 
basic strategy has not changed.

SOLVE At slow speeds, static friction in the radial direction keeps 
the car moving in a circle. But there’s an upper limit to the size of 
the static friction force, and the car will begin to slide out of the 
curve when that limit is reached. The r-component of Newton’s 
second law is

aFr = fs =
mvt 

2

r

That is, static friction increases proportional to vt 

2 until the car 
reaches a velocity vmax at which the static friction is fs max.

Recall that the maximum possible static friction is fs max = ms n. 
We can find the normal force from the z-component of Newton’s 
second law:

aFz = n - FG = 0

Thus n = FG = mg and fs max = ms mg. Combining these two equa-
tions, we see that the mass cancels and we have

vmax 

2 = ms rg

How far does the car have to travel to reach this speed? We can 
find the car’s tangential acceleration from the t-component of the 
second law: at = Fwheels/m. This is a constant acceleration, so we 
can use constant-acceleration kinematics. Let s measure the dis-
tance around the circle—the arc length. Thus, because the initial 
velocity is v0 = 0, we have

vt 

2 = v0 

2 + 2as s = 2as s =
2sFwheels

m
You’ll recall that the angular displacement, measured in radi-

ans, is ∆u = s/r. We can see from the above equation that the car 
travels distance s = mvt 

2/2Fwheels to reach velocity vt, and at this 
time it has revolved through an angle

∆u =
s
r

=
mvt 

2

2rFwheels

Using the maximum speed before sliding, we find that the car slides 
out of the curve after revolving through an angle

∆umax =
mvmax 

2

2rFwheels
=

m
2rFwheels

* msrg =
ms mg

2Fwheels

For the car in this problem,

∆umax =
10.90211500 kg219.80 m/s22

21525 N2
= 12.6 rad *

1 rev
2p rad

= 2.0 rev

It completes 2.0 revolutions before it starts to slide.

REVIEW A 525 N force on a 1500 kg car causes a tangential accel-
eration of at ≈ 0.3 m/s2. That’s a quite modest acceleration, so it 
seems reasonable that the car would complete 2 rev before gaining 
enough speed to start sliding.

PROBLEM-SOLVING STRATEGY 8.1

Circular-motion problems

MODEL Model the object as a particle and make other simplifying assumptions.

VISUALIZE Draw a pictorial representation. Use rtz-coordinates.
■■ Establish a coordinate system with the r-axis pointing toward the center of 
the circle.

■■ Show important points in the motion on a sketch. Define symbols and identify 
what the problem is trying to find.

■■ Identify the forces and show them on a free-body diagram.

SOLVE Newton’s second law is

  1Fnet2r = aFr = mar =
mvt 

2

r
= mv2r

  1Fnet2t = aFt = mat

  1Fnet2z = aFz = 0

■■ Determine the force components from the free-body diagram. Be careful with 
signs.

■■ The tangential acceleration for uniform circular motion is at = 0.
■■ Solve for the acceleration, then use kinematics to find velocities and positions.

REVIEW Check that your result has the correct units and significant figures, is 
 reasonable, and answers the question.

Exercise 11 
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222 CHAPTER 8 Dynamics II: Motion in a Plane

a

b

c

d

String
breaks

The 250 g ball shown in FIGURE 8.18 revolves in a horizontal plane 
as the vertical shaft spins. What is the critical angular speed, in 
rpm, that the shaft must exceed to keep both strings taut?

MODEL Model the ball as a particle in uniform circular motion. For 
both strings to be straight, as shown, both must be under tension. If 
the angular speed is slowly decreased, eventually the lower string 
will go slack and the ball will sag. The critical angular speed vc is 
the angular speed at which the tension in the lower string reaches 
zero. We need to find an expression for the tension in the lower 
string, then determine when that tension becomes zero.

VISUALIZE FIGURE 8.19 is the ball’s free-body diagram with the 
r-axis pointing toward the center of the circle. The ball is acted on 
by two tension forces, at equal angles above and below horizontal, 
and by gravity. The free-body diagram is similar to Example 8.5, 
the rock in the sling, but with an additional tension force.

SOLVE This is uniform circular motion, so we need to consider only 
the r- and z-components of Newton’s second law. All the informa-
tion is on the free-body diagram, where we see that gravity has only 
a z-component but the tensions have both r- and z-components. The 
two equations are

aFr = Ttop cos u + Tbot cos u = mv2r

aFz = Ttop sin u - Tbot sin u - mg = 0

Factoring out the cos u and sin u terms, we have two simultaneous 
equations:

Ttop + Tbot =
mv2r
cos u

Ttop - Tbot =
mg

sin u

Subtracting the second equation from the first will eliminate Ttop:

2Tbot =
mv2r
cos u

-
mg

sin u

and thus

Tbot =
m
2

 1 v2r
cos u

-
g

sin u2
You can see that this expression becomes negative—a physically 
impossible situation—if v is too small. The angular speed at which 
the tension reaches zero—the critical angular speed—is found by 
setting the expression in parentheses equal to zero. This gives

vc = A g

r tan u

For our situation,

  r = 211.0 m22 - 10.50 m22 = 0.866 m

  u = sin-1310.50 m2/11.0 m24 = 30°

Thus the critical angular speed is

vc = B 9.80 m/s2

10.866 m2tan 30°
= 4.40 rad/s

Converting to rpm:

vc = 4.40 rad/s *
1 rev

2p rad
*

60 s
1 min

= 42 rpm

REVIEW vc is the minimum angular speed needed to keep both strings 
taut. For a ball attached to meter-long strings, 42 rpm—a bit less than 
1 revolution per second—seems plausible. Your intuition probably 
suggests that the bottom string wouldn’t be taut if the shaft spun at only  
a few rpm, and hundreds of rpm seems much too high. Remember 
that the goal of Review is not to prove that an answer is correct but to 
rule out answers that, with a little thought, are clearly wrong.

   CHAPTER 8 CHALLENGE EXAMPLE    Swinging on two strings

0.50 m
1.0 m

1.0 m
0.50 m

FIGURE 8.18 A ball revolving on two strings.

FIGURE 8.19 Free-body diagram of the ball.

STOP TO THINK 8.4 A ball on a string is swung in 
a vertical circle. The string happens to break when it is 
parallel to the ground and the ball is moving up. Which 
trajectory does the ball follow?
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Expressed in rtz-component form:

 1Fnet2r = aFr = mar =
mvt 

2

r
= mv2r

 1Fnet2t = aFt = b0 uniform circular motion
mat nonuniform circular motion

 1Fnet2z = aFz = 0

Newton’s Second Law
Expressed in x- and y-component form:

 1Fnet2x = aFx = max

 1Fnet2y = aFy = may

General Principles

Summary

Uniform Circular Motion
• Speed is constant.

• F
u

net points toward the center of the  
circle.

• The centripetal acceleration au points 
 toward the center of the circle. It 
changes the particle’s direction but 
not its speed.

The goal of Chapter 8 has been to learn to solve problems 
about motion in two dimensions.

v
uv

u

v
u

Fnet

u

Fnet

u
Fnet

u

v

Nonuniform Circular Motion
• Speed changes.

• F
u

net and au have both radial and tangential 
components.

• The radial component changes the particle’s 
direction.

• The tangential component changes the particle’s 
speed.

v
uv

u

v
u

Fnet

u

Fnet

u

Fnet

u

Important Concepts
rtz-coordinates
• The r-axis points toward the center 

of the circle.

• The t-axis is tangent, pointing 
counterclockwise.

Projectile motion
• With no drag, the x- and y-components 

of acceleration are independent. The 
 trajectory is a parabola.

• With drag, the trajectory is not a pa-
rabola. Maximum range is achieved 
for an angle less than 45°.

v
u

z-axis is out 
of the page

Plane of motion

r

t

Projectile motion with drag
y

45°

30°
x

Applications
Orbits
An object acted on only by gravity has a 
 circular orbit of radius r if its speed is

v = 2rg

The object is in free fall.

Circular motion on surfaces
Circular motion requires 
a net force pointing to the 
 center. n must be 7 0 for  
the object to be in contact  
with a surface.

FG

FG FG

u

uu

n
u

n
u

FnetFG

FG

Fnet

u

u

u

u

Terms and Notation
rtz-coordinate system central force central-force model orbit
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224 CHAPTER 8 Dynamics II: Motion in a Plane

CONCEPTUAL QUESTIONS
1. In uniform circular motion, which of the following are constant: 

speed, velocity, angular velocity, centripetal acceleration, magnitude 
of the net force?

2. A car runs out of gas while driving down a hill. It rolls through the 
valley and starts up the other side. At the very bottom of the valley,  
which of the free-body diagrams in FIGURE Q8.2 is correct? The car  
is moving to the right, and drag and rolling friction are negligible.

5. FIGURE Q8.5 shows two balls of 
equal mass moving in vertical 
circles. Is the tension in string A 
greater than, less than, or equal to 
the tension in string B if the balls 
travel over the top of the circle 
(a) with equal speed and (b) with 
equal angular velocity?

6. Ramon and Sally are observing a toy car speed up as it goes 
around a circular track. Ramon says, “The car’s speeding up, so 
there must be a net force parallel to the track.” “I don’t think 
so,” replies Sally. “It’s moving in a circle, and that requires 
 centripetal acceleration. The net force has to point to the cen-
ter of the circle.” Do you agree with Ramon, Sally, or neither? 
Explain.

7. A jet plane is flying on a level course at constant speed. The 
engines are at full throttle.
a. What is the net force on the plane? Explain.
b. Draw a free-body diagram of the plane as seen from the side 

with the plane flying to the right. Name (don’t just label) any 
and all forces shown on your diagram.

c. Airplanes bank when they turn. Draw a free-body diagram of 
the plane as seen from behind as it makes a right turn.

d. Why do planes bank as they turn? Explain.
8. A soda-water bottle is falling freely. Will the bubbles of the gas 

in the water rise up?
9. A motor cyclist is going in a vertical circle. What is the neces-

sary condition so that he may not fall down?
10. A golfer starts with the club over her head and swings it to 

reach maximum speed as it contacts the ball. Halfway through 
her swing, when the golf club is parallel to the ground, does 
the  acceleration vector of the club head point (a)  straight 
down, (b)  parallel to the ground, approximately toward the 
 golfer’s shoulders, (c) approximately toward the golfer’s feet, or 
(d)  toward a point above the golfer’s head? Explain.

m
2r

r

m

BA

FIGURE Q8.5

v
u

(a) (b) (c) (d) (e) (f)

FIGURE Q8.2

3. FIGURE Q8.3 is a bird’s-eye view of particles on strings mov-
ing along a horizontal circle on a tabletop. All are moving at 
the same speed. Rank in order, from largest to smallest, the ten-
sions, Ta to Td. Give your answer in the form a 7 b = c 7 d, and 
 explain your ranking.

4. Tarzan swings through the jungle on a massless vine. At the low-
est point of his swing, is the tension in the vine greater than, less 
than, or equal to the gravitational force on Tarzan? Explain.

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 8.1 Dynamics in Two Dimensions

1. || As a science fair project, you want to launch a 600 g model 
rocket straight up and hit a horizontally moving target as it 
passes 25 m above the launch point. The rocket engine provides 
a constant thrust of 12 N. The target is approaching at a speed 
of 10 m/s. At what horizontal distance between the target and 
rocket should you launch?

2. || A 450 g model rocket is on a cart that is rolling to the right  
at a speed of 4 m/s. The rocket engine, when it is fired, exerts a 
6 N vertical thrust on the rocket. Your goal is to have the rocket 
pass through a small horizontal loop that is 22 m above the 
ground. At what horizontal distance left of the loop should you 
launch?

3. || A 65 kg astronaut who weighs 210 N on a distant planet is 
pondering whether she can leap over a 4.2-m-wide chasm with-
out falling in. If she leaps at a 20° angle, what initial speed does 
she need to clear the chasm?

FIGURE Q8.3

2.0
 m

2.0
 m4.0

 m

4.0
 m

b ca d

8.0 kg

5 m/s
5 m/s

5 m/s
5 m/s

8.0 kg
4.0 kg

4.0 kg
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Exercises and Problems 225

4. || A 3.5 * 1010 kg asteroid is heading directly toward the center 
of the earth at a steady speed of 18 km/s. To save the planet, 
 astronauts strap a giant rocket that generates 4.0 * 109  N of 
thrust. The rocket is fired when the asteroid is 3 * 106 km away 
from the earth. You can ignore the earth’s gravitational force on 
the asteroid and their rotation about the sun.
a. If the mission fails, how many hours is it until the asteroid 

impacts the earth?
b. The radius of the earth is 6400 km. By what minimum angle 

must the asteroid be deflected to just miss the earth?
c. What is the actual angle of deflection if the rocket fires at full 

thrust for 300 s before running out of fuel?

Section 8.2 Uniform Circular Motion

5. | A 45-cm-diameter potter’s horizontal wheel spins at 90 rpm. 
What are the magnitude and direction of the net force on a 5.0 g 
lump of clay that rides on the wheel 20 cm from the axis?

6. | A 1300 kg car takes an 80-m-radius unbanked curve at 20 m/s.  
What is the size of the friction force on the car?

7. || In the Bohr model of the hydrogen atom, an electron 1mass 
m = 9.1 * 10-31 kg2 orbits a proton at a distance of 5.3 * 10-11 m. 
The proton pulls on the electron with an electric force of 
8.2 * 10-8 N. How many revolutions per second does the electron 
make?

8. || A 150 g block on a 48 cm long string swings in a circle on a 
horizontal, frictionless table at 72 rpm.
a. What is speed of the block?
b. What is tension in the string?

9. | Suppose the moon were held in its orbit not by gravity but by 
a massless cable attached to the center of the earth. What would 
be the tension in the cable? Use the table of astronomical data 
inside the back cover of the book.

10. | A 5.0 g mouse races around a 75-cm-diameter horizontal track. 
What is the minimum coefficient of static friction between the 
track and the mouse’s feet that allows the mouse to run at 1.3 m/s  
without slipping?

11. || A 5.0 g coin is placed 15 cm from the center of a turntable. 
The coin has static and kinetic coefficients of friction with the 
turntable surface of ms = 0.80 and m

 k = 0.50. The turntable very 
slowly speeds up to 60 rpm. Does the coin slide off?

12. || It is proposed that future space stations create an artificial 
gravity by rotating. Suppose a space station is constructed as a 
1000-m-diameter cylinder that rotates about its axis. The inside 
surface is the deck of the space sta-
tion. What rotation period will pro-
vide “normal” gravity?

13. | Mass m1 on the frictionless table 
of FIGURE EX8.13 is connected by a 
string through a hole in the table to 
a hanging mass m2. With what speed 
must m1 rotate in a circle of radius r if 
m2 is to remain hanging at rest?

Section 8.3 Circular Orbits

14. | A satellite orbiting the moon very near the surface has a period 
of 120 min. What is free-fall acceleration on the surface of the 
moon? Astronomical data are inside the back cover of the book.

15. | What is free-fall acceleration toward the sun at the distance of  
the earth’s orbit? Astronomical data are inside the back cover 
of the book.

16. || A 9.6 * 1021 kg moon orbits a distant planet in a circular orbit of 
radius 1.3 * 108 m. It experiences a 1.5 * 1019 N gravitational pull 
from the planet. What is the moon’s orbital period in earth days?

17. || Communications satellites are placed in circular orbits where 
they stay directly over a fixed point on the equator as the earth 
rotates. These are called geosynchronous orbits. The altitude 
of a geosynchronous orbit is 3.58 * 107 m (≈22,000 miles). 
Astronomical data are inside the back cover of the book.
a. What is the period of a satellite in a geosynchronous orbit?
b. Find the value of g at this altitude.
c. What is the weight of a 2000 kg satellite in a geosynchronous 

orbit?

Section 8.4 Reasoning About Circular Motion

18. | A car drives over the top of a hill that has a radius of 64 m. 
What maximum speed can the car have at the top without flying 
off the road?

19. | A roller-coaster car crosses the top of a circular loop-the-loop 
at twice the critical speed. What is the ratio of the normal force 
to the gravitational force?

20. || The weight of passengers on a roller coaster increases by 50% 
as the car goes through a dip with a 30 m radius of curvature. 
What is the car’s speed at the bottom of the dip?

21. | The normal force equals the magnitude of the gravitational 
force as a roller-coaster car crosses the top of a 40-m-diameter 
loop-the-loop. What is the car’s speed at the top?

22. || A student has 65-cm-long arms. What is the minimum angu-
lar velocity (in rpm) for swinging a bucket of water in a vertical 
circle without spilling any? The distance from the handle to the 
bottom of the bucket is 35 cm.

23. | While at the county fair, you decide to ride the Ferris wheel. 
Having eaten too many candy apples and elephant ears, you find 
the motion somewhat unpleasant. To take your mind off your 
stomach, you wonder about the motion of the ride. You estimate 
the radius of the big wheel to be 15 m, and you use your watch to 
find that each loop around takes 25 s. You remember weighing 
yourself earlier in the day to be 780 N.
a. What are your speed and the magnitude of your acceleration?
b. What is your weight at the top of the ride?
c. What is your weight at the bottom of the ride?

24. || A 500 g ball moves in a vertical circle on a 102-cm-long string. 
If the speed at the top is 4.0 m/s, then the speed at the bottom will 
be 7.5 m/s. (You’ll learn how to show this in Chapter 10.)
a. What is the gravitational force acting on the ball?
b. What is the tension in the string when the ball is at the top?
c. What is the tension in the string when the ball is at the 

bottom?
25. || A 600 g ball swings in a vertical circle at the end of a 1.1-m-long 

string. When the ball is at the bottom of the circle, the tension in the 
string is 18 N. What is the speed of the ball at that point?

26. || A heavy ball with a weight of 150 N 1m = 15.3 kg2 is hung 
from the ceiling of a basketball court on a 4.7-m-long rope. The 
ball is pulled to one side and released to swing as a pendulum, 
reaching a speed of 3.5 m/s as it passes through the lowest point. 
What is the tension in the rope at that point?

Section 8.5 Nonuniform Circular Motion

27. || A new car is tested on a 200-m-diameter track. If the car speeds 
up at a steady 1.5 m/s2, how long after starting is the magnitude of 
its centripetal acceleration equal to the tangential acceleration?

m1

m2

r

FIGURE EX8.13
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226 CHAPTER 8 Dynamics II: Motion in a Plane

28. || A toy train rolls around a horizontal 1.0-m-diameter track. The 
coefficient of rolling friction is 0.10. How long does it take the 
train to stop if it’s released with an angular speed of 30 rpm?

29. || You are driving your 1300 kg car at 20 m/s over a circular hill 
that has a radius of 130 m. A deer running across the road causes 
you to hit the brakes hard while right at the summit of the hill, 
and you start to skid. The coefficient of kinetic friction between 
your tires and the road is 0.65. What is the magnitude of your 
acceleration as you begin to slow?

30. || An 85,000 kg stunt plane performs a loop-the-loop, flying in 
a 260-m-diameter vertical circle. At the point where the plane is 
flying straight down, its speed is 55 m/s and it is speeding up at a 
rate of 12 m/s per second.
a. What is the magnitude of the net force on the plane? You can 

neglect air resistance.
b. What angle does the net force make with the horizontal? Let 

an angle above horizontal be positive and an angle below hor-
izontal be negative.

Problems
31. || Derive Equations 8.3 for the acceleration of a projectile sub-

ject to drag.
32. || A 100 g bead slides along a frictionless wire with the para-

bolic shape y = 12 m-12x2.
a. Find an expression for ay, the vertical component of accelera-

tion, in terms of x, vx, and ax.
Hint: Use the basic definitions of velocity and acceleration.

b. Suppose the bead is released at some negative value of x and 
has a speed of 2.3 m/s as it passes through the lowest point of 
the parabola. What is the net force on the bead at this instant? 
Write your answer in component form.

33. || A 250 g ball is launched with a speed of 35 m/s at a 30° angle. 
A strong headwind exerts a constant horizontal drag force on the 
ball. What is the magnitude of the drag force if the wind reduces 
the ball’s travel distance by 20%?

34. || A charged particle in an electric field experiences an  
electric force F

u

E = qE
u
, where q is the charge in coulombs (C) 

and E
u
 is the electric field in N/C. This is analogous to the gravi-

tational force mg on mass m. A small 5.0 mg particle charged to 
3.0 * 10-10 C is fired horizontally at vu0 = 0.75 in m/s into a hori-
zontal electric field E

u
= 1.0 * 105 in N/C from a height of 15 cm. 

How far has the particle traveled horizontally when it hits the 
ground? Assume that the motion takes place in a vacuum. Be 
careful converting mg to the appropriate SI units!

35. || A motorcycle daredevil plans to ride up a 2.0-m-high, 20° ramp, 
sail across a 10-m-wide pool filled with hungry crocodiles, and 
land at ground level on the other side. He has done this stunt many 
times and approaches it with confidence. Unfortunately, the motor-
cycle engine dies just as he starts up the ramp. He is going 11 m/s 
at that instant, and the rolling friction of his rubber tires (coefficient 
0.02) is not negligible. Does he survive, or does he become croco-
dile food? Justify your answer by calculating the distance he travels 
through the air after leaving the end of the ramp.

36. ||| A rocket-powered hockey puck has a thrust of 2.0 N and a 
total mass of 1.0 kg. It is released from rest on a frictionless table, 
4.0 m from the edge of a 2.0 m drop. The front of the rocket is 
pointed directly toward the edge. How far does the puck land 
from the base of the table?

37. | A car can just barely turn a corner on an unbanked road at  
54 km/h on a dry sunny day. What is the car’s maximum corner-
ing speed on a rainy day when the coefficient of static friction 
has been reduced by 40%?

38. || A 2.0 kg projectile with initial velocity v 

u = 8.0 in m/s experi-
ences the variable force F

u
= -2.0t in + 4.0t2 jn N, where t is in s.

a. What is the projectile’s speed at t = 2.0 s?
b. At what instant of time is the projectile moving parallel to 

the y-axis?
39. || A 75 kg man weighs himself at the north pole and at the equa-

tor. Which scale reading is higher? By how much? Assume the 
earth is spherical.

40. ||  a. An object of mass m swings in a horizontal circle on a 
string of length L that tilts downward at angle u. Find an ex-
pression for the angular velocity v.

b. A student ties a 300 g rock to a 1.0-m-long string and swings 
it around her head in a horizontal circle. At what angular 
speed, in rpm, does the string tilt down at a 15° angle?

41. || A concrete highway curve of radius 70 m is banked at a 
15° angle. What is the maximum speed with which a 1500 kg 
 rubber-tired car can take this curve without sliding?

42. ||| You’ve taken your neighbor’s young child to the carnival to 
ride the rides. She wants to ride The Rocket. Eight rocket-shaped 
cars hang by chains from the outside edge of a large steel disk. A 
vertical axle through the center of the ride turns the disk, causing 
the cars to revolve in a circle. You’ve just finished taking phys-
ics, so you decide to figure out the speed of the cars while you 
wait. You estimate that the disk is 5 m in diameter and the chains 
are 6 m long. The ride takes 10 s to reach full speed, then the cars 
swing out until the chains are 20° from vertical. What is the cars’ 
speed?

43. ||| A 4.4-cm-diameter, 24 g plastic ball is attached to a 
1.2-m-long string and swung in a vertical circle. The ball’s speed 
is 6.1 m/s at the point where it is moving straight up. What is 
the magnitude of the net force on the ball? Air resistance is not  
negligible.

44. || A 2.00-m-diameter horizontal turntable rotates on a labo-
ratory table. A 1.00-m-tall vertical post is attached to the rim 
of the turntable. A 75.0-cm-long string with a 50.0 g mass 
at the end is tied to the top of the post. What is the turnta-
ble’s angular velocity in rpm if the string makes a 7.00° angle  
with vertical?
Hint: For angles smaller than 10°, you can use the small-angle 
approximation tan u ≈ sin u.

45. || Two wires are tied to the 2.0 kg sphere shown in FIGURE P8.45. 
The sphere revolves in a horizontal circle at constant speed.
a. For what speed is the tension the same in both wires?
b. What is the tension?

1.0 m

60°

60°

FIGURE P8.45

46. || A 30 kg child is on a swing that has 2.5-m-long massless ropes. 
Each rope’s tension at the bottom of the swing’s arc is 220 N.  
What is the child’s speed at the bottom of the arc?
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47. || A 2.0 kg pendulum bob swings on a 2.0-m-long string. The bob’s 
speed is 1.5 m/s when the string makes a 15° angle with vertical and 
the bob is moving toward the bottom of the arc. At this instant, what 
are the magnitudes of (a) the bob’s tangential acceleration, (b) the 
bob’s radial acceleration, and (c) the tension in the string?

48. || A conical pendulum is formed by 
attaching a ball of mass m to a string of 
length L, then allowing the ball to move 
in a horizontal circle of radius r. FIGURE 
P8.48 shows that the string traces out 
the surface of a cone, hence the name.
a. Find an expression for the tension 

T in the string.
b. Find an expression for the ball’s 

angular speed v.
c. What are the tension and angular 

speed (in rpm) for a 500 g ball 
swinging in a 20-cm-radius circle 
at the end of a 1.0-m-long string?

49. || The ultracentrifuge is an important tool for separating and an-
alyzing proteins. Because of the enormous centripetal accelera-
tions, the centrifuge must be carefully balanced, with each sample 
matched by a sample of identical mass on the opposite side. Any 
difference in the masses of opposing samples creates a net force on 
the shaft of the rotor, potentially leading to a catastrophic failure 
of the apparatus. Suppose a scientist makes a slight error in sample 
preparation and one sample has a mass 10 mg larger than the op-
posing sample. If the samples are 12 cm from the axis of the rotor 
and the ultracentrifuge spins at 70,000 rpm, what is the magnitude 
of the net force on the rotor due to the unbalanced samples?

50. ||| In an old-fashioned amusement park ride, passengers stand in-
side a 5.0-m-diameter hollow steel cylinder with their backs against 
the wall. The cylinder begins to rotate about a vertical axis. Then  
the floor on which the passengers are standing suddenly drops away! 
If all goes well, the passengers will “stick” to the wall and not slide. 
Clothing has a static coefficient of friction against steel in the range 
0.60 to 1.0 and a kinetic coefficient in the range 0.40 to 0.70. A sign 
next to the entrance says “No children under 30 kg allowed.” What is 
the minimum angular speed, in rpm, for which the ride is safe?

51. || In an amusement park ride called The Roundup, passengers 
stand inside a 16-m-diameter rotating ring. After the ring has 
acquired sufficient speed, it tilts into a vertical plane, as shown 
in FIGURE P8.51.
a. Suppose the ring rotates once every 4.5 s. If a rider’s mass is 

55 kg, with how much force does the ring push on her at the 
top of the ride? At the bottom?

b. What is the longest rotation period of the wheel that will pre-
vent the riders from falling off at the top?

Point of
support

L

r
m

FIGURE P8.48

Rotation
axis

FIGURE P8.51

FIGURE P8.53

Pivot

1.0 kg

1.0 kg
1.0 m

1.0 m

FIGURE P8.54

52. || Suppose you swing a ball of mass m in a vertical circle on a 
string of length L. As you probably know from experience, there 
is a minimum angular velocity vmin you must maintain if you 
want the ball to complete the full circle without the string going 
slack at the top.
a. Find an expression for vmin.
b. Evaluate vmin in rpm for a 120 g ball tied to a 1.7-m-long string.

53. ||| A 40 g ball rolls around a 70-cm-diameter L-shaped track, 
shown in FIGURE P8.53, at 45 rpm. What is the magnitude of the 
net force that the track exerts on the ball? Rolling friction can be 
neglected.
Hint: The track exerts more than one force on the ball.

54. || FIGURE P8.54 shows two small 1.0 kg masses connected 
by massless but rigid 1.0-m-long rods. What is the tension 
in the rod that connects to the pivot if the masses rotate at 
30 rpm in a horizontal circle?

55. || The physics of circular motion sets an upper limit to the speed 
of human walking. (If you need to go faster, your gait changes 
from a walk to a run.) If you take a few steps and watch what’s 
happening, you’ll see that your body pivots in circular motion 
over your forward foot as you bring your rear foot forward for 
the next step. As you do so, the normal force of the ground on 
your foot decreases and your body tries to “lift off” from the 
ground.
a. A person’s center of mass is very near the hips, at the top of 

the legs. Model a person as a particle of mass m at the top of a 
leg of length L. Find an expression for the person’s maximum 
walking speed vmax.

b. Evaluate your expression for the maximum walking speed of 
an 85 kg person with a typical leg length of 80 cm. Give your 
answer in both m/s and km/h, then comment, based on your 
experience, as to whether this is a reasonable result. A “nor-
mal” walking speed is about 5 km/h.

56. || An airplane feels a lift force L
u

 perpendicular to its wings. 
In level flight, the lift force points straight up and is equal in 
 magnitude to the gravitational force on the plane. When an 
 airplane turns, it banks by tilting its wings, as seen from  behind, 
by an angle u from horizontal. This causes the lift to have a 
 radial component, similar to a car on a banked curve. If the lift 
had constant magnitude, the vertical component of L

u
 would now 

be smaller than the gravitational force, and the plane would lose 
altitude while turning. However, you can assume that the pilot 
uses small adjustments to the plane’s control surfaces so that the 
vertical component of L

u
 continues to balance the gravitational 

force throughout the turn.
a. Find an expression for the banking angle u needed to turn in a 

circle of radius r while flying at constant speed v.
b. An 80,000 kg commercial jet flies at 850 km/h. The standard 

rate of turning requires 60 s to complete a 90° turn. What is 
the proper banking angle for this turn?
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228 CHAPTER 8 Dynamics II: Motion in a Plane

57. || A 60 g ball is tied to the end of a 50-cm-long string and swung in 
a vertical circle. The center of the circle, as shown in FIGURE  P8.57, 
is 150 cm above the floor. The ball is swung at the  minimum speed 
necessary to make it over the top without the string going slack. If 
the string is released at the instant the ball is at the top of the loop, 
how far to the right does the ball hit the ground?

50 cm

150 cm

FIGURE P8.57

v

v

m

m
k

k

R

FIGURE P8.63

70°

Pivot
Rod

2.0 m
Air

FIGURE P8.64

62. || A 2.0 kg ball swings in a vertical circle on the end of an 
80-cm-long string. The tension in the string is 20 N when its 
angle from the highest point on the circle is u = 30°.
a. What is the ball’s speed when u = 30°?
b. What are the magnitude and direction of the ball’s accelera-

tion when u = 30°?
63. ||| For safety, elevators have a rotational governor, a device 

that is attached to and rotates with one of the elevator’s pulleys. 
The governor, shown in FIGURE P8.63, is a disk with two hollow 
channels holding springs with metal blocks of mass m attached 
to their free ends. The faster the governor spins, the more the 
springs stretch. At a critical angular velocity vc, the metal blocks 
contact the housing, which completes a circuit and activates an 
emergency brake. The spring force on a mass, which we will ex-
plore more thoroughly in Chapter 9, is FSp = k(r - L), where k is 
the spring constant measured in N/m, and L is the relaxed (un-
stretched) length of the spring. Suppose a rotational governor has 
L = 0.75R, and the emergency brake activates when the metal 
blocks reach r = R. What is the critical angular velocity in rpm if 
R = 16 cm, k = 18 N/m, and m = 35 g? Ignore gravity.

64. ||| A 500 g steel block rotates on a steel table while attached to a 
2.0-m-long massless rod. Compressed air fed through the rod is 
ejected from a nozzle on the back of the block, exerting a thrust 
force of 4.2 N. The nozzle is 70° from the radial line, as shown in 
FIGURE P8.64. The block starts from rest.
a. What is the block’s angular velocity after 10 rev?
b. What is the tension in the rod after 10 rev?

In Problems 65 and 66 you are given the equation used to solve a 
problem. For each of these, you are to

a. Write a realistic problem for which this is the correct equation. 
Be sure that the answer your problem requests is consistent with 
the equation given.

b. Finish the solution of the problem.
65. 60 N = 10.30 kg2v210.50 m2
66. 11500 kg219.8 m/s22 - 11,760 N = 11500 kg2 v2/1200 m2

58. || A 100 g ball on a 60-cm-long string is swung in a vertical 
circle about a point 200 cm above the floor. The string suddenly 
breaks when it is parallel to the ground and the ball is moving 
upward. The ball reaches a height 600 cm above the floor. What 
was the tension in the string an instant before it broke?

59. || Elm Street has a pronounced dip at the bottom of a steep hill 
before going back uphill on the other side. Your science teacher 
has asked everyone in the class to measure the radius of  curvature 
of the dip. Some of your classmates are using surveying equip-
ment, but you decide to base your measurement on what you’ve 
learned in physics. To do so, you sit on a spring scale, drive 
through the dip at different speeds, and for each speed record the 
scale’s reading as you pass through the bottom of the dip. Your 
data are as follows:

Speed (m/s) Scale reading (N)

 5 599

10 625

15 674

20 756

25 834

Sitting on the scale while the car is parked gives a reading of 
588 N. Analyze your data, using a graph, to determine the dip’s 
radius of curvature.

60. ||| Scientists design a new particle accelerator in which pro-
tons 1mass 1.7 * 10-27 kg2 follow a circular trajectory given by  
r u = c cos1kt22in + c sin1kt22jn, where c = 5.0 m and k = 8.0 * 
104 rad/s2 are constants and t is the elapsed time.
a. What is the radius of the circle?
b. What is the proton’s speed at t = 3.0 s?
c. What is the force on the proton at t = 3.0 s? Give your answer 

in component form.
61. || A 1500 kg car starts from rest and drives around a flat 

50-m-diameter circular track. The forward force provided by the 
car’s drive wheels is a constant 1000 N.
a. What are the magnitude and direction of the car’s acceleration 

at t = 10 s? Give the direction as an angle from the r-axis.
b. If the car has rubber tires and the track is concrete, at what 

time does the car begin to slide out of the circle?
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Challenge Problems
67. ||| Sam (75 kg) takes off up a 50-m-high, 10° frictionless slope 

on his jet-powered skis. The skis have a thrust of 200 N. He 
keeps his skis tilted at 10° after becoming airborne, as shown in 
FIGURE CP8.67. How far does Sam land from the base of the cliff?

v

u5.0 cm

FIGURE CP8.69

Pivot
Tube

1.2 m

Air

FIGURE CP8.70

h

y

a

FIGURE CP8.71

Surface

Rotation axis

Water

FIGURE CP8.72

10°

10°

50 mStart

FIGURE CP8.67

70. ||| A 500 g steel block rotates on a steel table while attached to a 
1.2-m-long hollow tube as shown in FIGURE CP8.70. Compressed 
air fed through the tube and ejected from a nozzle on the back of 
the block exerts a thrust force of 4.0 N perpendicular to the tube. 
The maximum tension the tube can withstand without breaking 
is 50 N. If the block starts from rest, how many revolutions does 
it make before the tube breaks?

71. ||| A small bead slides around a horizontal circle at height y in-
side the cone shown in FIGURE CP8.71. Find an expression for the 
bead’s speed in terms of a, h, y, and g.

72. ||| If a vertical cylinder of water (or any other liquid) rotates about 
its axis, as shown in FIGURE CP8.72, the surface forms a smooth 
curve. Assuming that the water rotates as a unit (i.e., all the water 
rotates with the same angular velocity), show that the shape of the 
surface is a parabola described by the equation z = 1v2/ 2g2r2. 
Hint: Each particle of water on the surface is subject to only two 
forces: gravity and the normal force due to the water underneath 
it. The normal force, as always, acts perpendicular to the surface.

68. ||| In the absence of air resistance, a projectile that lands at the 
elevation from which it was launched achieves maximum range 
when launched at a 45° angle. Suppose a projectile of mass m is 
launched with speed v0 into a headwind that exerts a constant, 
horizontal retarding force F

u

wind = -Fwind in.
a. Find an expression for the angle at which the range is 

maximum.
b. By what percentage is the maximum range of a 0.50 kg ball 

reduced if Fwind = 0.60 N?
69. ||| The 10 mg bead in FIGURE  CP8.69 is free to slide on a fric-

tionless wire loop. The loop rotates about a vertical axis with 
angular velocity v. If v is less than some critical value vc, the 
bead sits at the bottom of the spinning loop. When v 7 vc, the 
bead moves out to some angle u.
a. What is vc in rpm for the loop shown in the figure?
b. At what value of v, in rpm, is u = 30°?
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Constant force/Uniform acceleration

■■ Model the object as a particle.

■❚ Acceleration is in the direction of  
the net force and is constant.

■■ Mathematically:
■❚ Newton’s second law is

F
u

net = a
i

F
u

i = mau

■❚ Use xy-coordinates.

■❚ Constant-acceleration kinematics:

vfs = vis + as ∆t

sf = si + vis ∆t + 1
2 as1∆t22

vfs 

2 = vis 

2 + 2as ∆s

■■ Special cases:

■❚ Uniform motion: as = 0. The displacement graph is a straight 
line with slope vs.

■❚ Projectile motion: The only force is gravity. Horizontal  motion 
is uniform; vertical motion has constant ay = -g.

Central force/Uniform circular motion

■■ Model the object as a particle.

■❚ The force causes a constant centripetal 
acceleration. The particle moves around a 
circle at constant speed and with constant 
angular velocity.

■■ Mathematically: Newton's second law is
■❚ F

u

net = (mv2/r or mv2r, toward the center)
■❚ Use rtz-coordinates.
■❚ Uniform-circular-motion kinematics:

■❚ The tangential velocity is vt = vr.
■❚ The centripetal acceleration is v2/r or v2r.
■❚ v and vt are positive for a ccw rotation,  
negative for a cw rotation.

■❚ General case: Accelerated circular/rotational motion.  
Angular acceleration is contant.

vf = vi + a ∆t

uf = ui + vi ∆t + 1
2 a 1∆t22

vf 

2 = vi 

2 + 2a ∆u

Models What are the most common models for applying the laws of physics to moving objects?

■■ Forces cause objects to change their motion—that is, 
to accelerate.

■■ Objects interact by exerting equal but opposite forces  
on each other.

■■ The particle model and motion  
diagrams

■■ Vectors

Newton’s Laws

 KNOWLEDGE STRUCTUREPART  

I

Newton’s first law An object will remain at rest or will continue to move with  constant velocity if and only if F
u

net = 0
u
.

The object is in mechanical equilibrium.

Newton’s second law F
u

net = mau      A net force on an object causes the object to accelerate.

Newton’s third law F
u

A on B = -F
u

B on A  For every action, there is an equal but  opposite reaction.

Laws What laws of physics govern motion?

Parabola

si

s

t

Horizontal lineas

0 t
The acceleration is constant.

Straight line

vis

vs

t
The slope is as.

The slope is vs.

a
u

F1

u

F2

u
a
u

r

v
u

F
u

v

These equations are 
 analogous to constant- 
acceleration  kinematics.

Tools What are the most important tools for analyzing the physics of motion?

a
u

v
u

A
u

B
u

A + B
u u

n
u

x

y

Fpush

u

Fnet

u
FG

u

C

A
System

External
forces

Environment

Internal
interactions

B

■■ Kinematics is the description of motion.  
Motion can be described

■❚ Visually

Key Findings What are the overarching findings of Part I?

■❚ Graphically ■❚ Mathematically

■■ Calculus and graphical analysis
vs = ds/dt =  slope of the position graph

as = dvs /dt =  slope of the velocity graph

vfs = vis + 3
tf

ti

as dt = vis +  area under acceleration curve

sf = si + 3
tf

ti

vs dt = si +  area under the velocity curve

■■ Free-body  
diagrams

■■ Interaction  
diagrams
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OVERVIEW

Why Some Things Don’t Change
Part I of this textbook was about change. One particular type of change— 
motion—is governed by Newton’s second law. Although Newton’s second law is 
a very powerful statement, it isn’t the whole story. Part II will now focus on things 
that stay the same as other things around them change.

Consider, for example, an explosive chemical reaction taking place inside a 
closed, sealed box. No matter how violent the explosion, the total mass of the 
products—the final mass Mf —is the same as the initial mass Mi of the reactants. 
In other words, matter cannot be created or destroyed, only rearranged. This is an 
important and powerful statement about nature.

A quantity that stays the same throughout an interaction is said to be conserved. 
The most important such quantity is energy. If a system of interacting objects 
is isolated—an important qualification—then the energy of the system never 
changes no matter how complex the interactions. This description of how nature 
behaves, called the law of conservation of energy, is perhaps the most important 
physical law ever discovered.

But what is energy? How do you determine the energy of a system? These 
are not easy questions. Energy is an abstract idea, not as tangible or easy to pic-
ture as mass or force. Our modern concept of energy wasn’t fully formulated 
until the middle of the 19th century, two hundred years after Newton, when the 
relationship between energy and heat was finally understood. That is a topic we 
will take up in Part V, where the concept of energy will be found to be the basis of 
thermodynamics. But all that in due time. In Part II we will be content to  introduce 
the concept of energy and show how energy can be a useful problem-solving 
tool. We’ll also meet another quantity—momentum—that is conserved under the 
proper circumstances.

Conservation laws give us a new and different perspective on motion. This 
is not insignificant. You’ve seen optical illusions where a figure appears first 
one way, then another, even though the information has not changed. Likewise 
with motion. Some situations are most easily analyzed from the perspective of 
Newton’s laws; others make more sense from a conservation-law perspective. An 
important goal of Part II is to learn which is better for a given problem.

Conservation Laws
PA R T

Energy is the lifeblood of modern society. These photo-
voltaic panels transform solar energy into electric energy 
and, unavoidably, increased thermal energy.

II 
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Work and Kinetic Energy

How should we think about energy?
Chapters 9 and 10 will develop the basic 
energy model, a powerful set of ideas for 
using energy. A key distinction is between 
the system, which has energy, and the 
environment. Energy can be transferred 
between the system and the environment 
or transformed within the system.

❮❮ LOOKING BACK Section 7.1 Interacting objects

What are some important forms of energy?
Three important forms of energy:

 ■ Potential energy is energy associated 
with an object’s position.

 ■ Kinetic energy is energy associated 
with an object’s motion.

 ■ Thermal energy is the energy of the 
random motion of atoms within an object.

Energy is measured in joules.

What is work?
A process that changes the energy of a 
system by mechanical means—pushing or  
pulling on it—is called work.

Work W is done when a force pushes or 
pulls a particle through a displacement, 
thus changing the particle’s kinetic energy.

What laws govern energy?
Working with energy is very much 
like accounting: A system’s energy E 
changes by the amount of work done 
on the system. The mathematical 
 statement of this idea is called the 
 energy principle:

∆Esys = Wext

What is power?
Power is the rate at which energy is  
transferred or transformed. For machines,  
power is the rate at which they do work.  
For electricity, power is the rate at which 
electric energy is transformed into heat, 
sound, or light. Power is measured in  
watts, where 1 watt is a rate of 1 joule 
per second.

Why is energy important?
Energy is one of the most important concepts in science, 
engineering, and society. Some would say it is the most 
 important. All life depends on energy, transformed from solar 
energy to chemical energy to us. Society depends on energy, 
from industry and transportation to heating and cooling our 
buildings. Using energy wisely and efficiently is a key concern 
of the 21st century.

IN THIS CHAPTER, you will begin your study of how energy is transferred and transformed.

9

This athlete does work to lift the 
weights. Surprisingly, she does no 
work when holding the weights 
stationary over her head.

System

Environment

Transfers

Transformations

Energy

Potential energy

Kinetic energy

F
u

F
u

∆r

Force does work on 
the particle

u

Esys

Wext Wext
System

Environment

In Out

100 W
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9.1 Energy Overview 233

9.1 Energy Overview
Energy. It’s a word you hear all the time, and everyone has some sense of what  energy  
means. Moving objects have energy; energy is the ability to make things happen; 
 energy is associated with heat and with electricity; we’re constantly told to conserve 
energy; living organisms need energy; and engineers harness energy to do useful 
things. Some scientists consider the law of conservation of energy to be the most  
important of all the laws of nature. But all that in due time—first we have to start 
with the basic ideas.

Just what is energy? The concept of energy has grown and changed with time, and 
it is not easy to define in a general way just what energy is. Rather than starting with 
a formal definition, we’re going to let the concept of energy expand slowly over the 
course of several chapters. Our goal is to understand the characteristics of energy, 
how energy is used, and how energy is transformed from one form into another. It’s a 
complex story, so we’ll take it step by step until all the pieces are in place.

Some important forms of energy

Kinetic energy K Potential energy U Thermal energy Eth

Kinetic energy is the energy of motion. 
All moving objects have kinetic energy. 
The more massive an object or the faster 
it moves, the larger its kinetic energy.

Potential energy is stored energy as-
sociated with an object’s position. 
Gravitational potential energy depends 
on an object’s height above the ground.

Thermal energy is associated with the 
random motions of the atoms that make 
up the system. A hot object has more 
thermal energy than a cold object.

The Energy Principle
❮❮    SECTION 7.1 introduced interaction diagrams and the very important  distinction 
 between the system, those objects whose motion and interactions we wish to   
analyze, and the environment, objects external to the system but exerting forces 
on the system. The most important step in an energy analysis is to clearly define the 
system. Why? Because energy is not some disembodied, ethereal substance; it’s the 
energy of something. Specifically, it’s the energy of a system.

FIGURE 9.1 illustrates the idea pictorially. The system has energy, the system energy,  
which we’ll designate Esys. There are many kinds or forms of energy: kinetic energy K,  
potential energy U, thermal energy Eth, chemical energy Echem, and so on. We’ll intro-
duce these one by one as we go along. The system energy is simply the sum of these: 
Esys = K + U + Eth + Echem + c.

Within the system, energy can be transformed without loss. For example, chemical 
energy can be transformed into kinetic energy, which is then transformed into thermal 
energy. We can indicate this process symbolically as Echem S K S Eth. As long as the 
system is not interacting with the environment, the total energy of the system is un-
changed. You’ll recognize this idea as an initial statement of the law of conservation 
of energy.

But systems often do interact with their environment. Those interactions change 
the energy of the system, either increasing it (energy added) or decreasing it (energy  
removed). We say that interactions with the environment transfer energy into or 
out of the system. Interestingly, there are only two ways to transfer energy. One is 
by mechanical means, using forces to push and pull on the system. A process that  

System

Environment

EnvironmentHeat Work

Heat

Kinetic Potential

Thermal Chemical

Work
Energy removed

Energy added

Energy can be transformed

The system has energy Esys

FIGURE 9.1 A system-environment 
perspective on energy.
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234 CHAPTER 9 Work and Kinetic Energy

transfers energy to or from a system by mechanical means is called work, with the 
symbol W. We’ll have a lot to say about work in this chapter. The second is by thermal  
means when the environment is hotter or colder than the system. A process that transfers 
energy to or from a system by thermal means is called heat. We’ll defer a discussion of  
heat until Chapter 19, but we wanted to mention it now in order to gain an overview  
of what the energy story is all about.

   NOTE    Work is another example of physics giving a technical meaning to a common 
word in the English language. You might use “work” to mean physical effort 
(“working out”) or what you do to earn a living. But in physics, “work” is the process 
of using forces to transfer energy.

Some energy transfers … … and transformations

Putting a shot

System: The shot

Transfer: W S K

The athlete (the environment)  
does work pushing the shot to  
give it kinetic energy.

A falling diver

System: The diver and the earth

Transformation: U S K

The diver is speeding up as  
gravitational potential energy is  
transformed into kinetic energy.

Pulling a slingshot

System: The slingshot

Transfer: W S U

The boy (the environment) does  
work by stretching the rubber  
band to give it potential energy.

A speeding meteor

System: The meteor and the air

Transformation: K S Eth

The meteor and the air get hot  
enough to glow as the meteor’s  
kinetic energy is transformed into  
thermal energy.

The key ideas are energy transfer between the environment and the system and 
energy transformation within the system. This is much like what happens with 
money. You may have several accounts at the bank—perhaps a checking account and a  
couple of savings accounts. You can move money back and forth between the accounts,  
thus transforming it without changing the total amount of money. Of course, you can 
also transfer money into or out of your accounts by making deposits or withdrawals.  
If we treat a withdrawal as a negative deposit—which is exactly what accountants do— 
simple accounting tells you that

∆1balance2 =  net deposit

That is, the change in your bank balance is simply the sum of all your deposits.
Energy accounting works the same way. Transformations of energy within the  

system move the energy around but don’t change the total energy of the system. 
Change occurs only when there’s a transfer of energy between the system and the 
environment. If we treat incoming energy as a positive transfer and outgoing energy 
as a negative transfer, and with work being the only energy-transfer process that we 
consider for now, we can write

 ∆Esys = Wext (9.1)

where W represents work that is done on the system by the environment. This very 
simple looking statement, which is just a statement of energy accounting, is called 
the energy principle. But don’t let the simplicity fool you; this will turn out to be an 
incredibly powerful tool for analyzing physical situations and solving problems.

The Basic Energy Model
We’ll complete our energy overview—a roadmap of the next two chapters—with the 
basic energy model.
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9.2 Work and Kinetic Energy for a Single Particle 235

We call this model basic because, for now, the only forms of energy we’ll consider 
are kinetic energy, potential energy, and thermal energy, and the only energy-transfer 
process we’ll consider is work. This is an excellent model for a mechanical process, but  
it’s not complete. We’ll expand the model when we get to thermodynamics by adding 
chemical energy, another form of energy, and heat, another energy-transfer process. 
And this model, although basic, still has many complexities, so we’ll be developing it 
piece by piece in this chapter and the next.

9.2  Work and Kinetic Energy 
for a Single Particle

Let’s start our investigation of energy with the simplest possible situation: One particle of 
mass m is acted on by one constant force F

u
 that acts parallel to the direction of motion, 

pushing or pulling on the particle as it undergoes a displacement ∆s. We define the particle  
to be the system—a one-particle system—while the agent of the force is in the environment. 
FIGURE 9.2 shows both an interaction diagram and a new kind of pictorial representation,  
a before-and-after representation, in which we show an object before and after an 
interaction and, as usual, establish a coordinate system and define appropriate symbols.

You know what’s going to happen. If the force is in the direction of motion—the 
situation shown in the figure—the particle will speed up and its “energy of motion” 
will increase. Conversely, if the force opposes the motion, the particle will slow down 
and lose energy. Our goal is to make this idea precise by discovering exactly how the 
changing energy is related to the applied force.

We’ll start by writing Newton’s second law for the particle:

 Fs = mas = m 
dvs

dt
 (9.2)

Newton’s second law tells us how the particle’s velocity changes with time. But suppose  
we want to know how the velocity changes with position. To answer that question, we 
can use the chain rule that you’ve learned in calculus:

 
dvs

dt
=

dvs

ds
 
ds
dt

= vs 
dvs

ds
 (9.3)

where in the last step we used ds/dt = vs. With this, we can write Newton’s second law as

 Fs = mvs 
dvs

ds
 (9.4)

MODEL 9.1

Basic energy model
Energy is a property of the system.

 ■ Energy is transformed within the system 
 without loss.

 ■ Energy is transferred to and from the system  
by forces from the environment.

• The forces do work on the system.

• W 7 0 for energy added.

• W 6 0 for energy removed.
 ■ The energy of an isolated system—one that doesn’t interact with its environment—
does not change. We say it is conserved.

 ■ The energy principle is ∆Esys = Wext.
 ■ Limitations: Model fails if there is energy transfer via thermal processes (heat).

Exercise 1 

Eth

K U

System

Environment

Energy
out

Energy
in

W 6 0W 7 0

Fs

Before

After

Before-and-after representation

Interaction diagram

Fs

vis sf

si

svfs

A before-and-after representation shows
the object’s position and velocity before
and after an interaction.

Environment

System

∆s

FIGURE 9.2 The interaction diagram and 
before-and-after representation for a 
one-particle system.
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236 CHAPTER 9 Work and Kinetic Energy

Now we have an alternative version of Newton’s second law in terms of the rate of 
change of velocity with position.

To use Equation 9.4, we first rewrite it as

 mvs dvs = Fs ds (9.5)

Now we can integrate. This is going to be a definite integral over just the motion 
shown in the before-and-after representation. That is, the right side will be an integral 
over position s from the initial position si to the final position sf. The left side will be 
an integral over velocity vs, and its limits have to match the limits of the right-hand 
integral: from vis at si to vfs at sf. Thus we have

 3
vfs

vis

mvs dvs = 3
sf

si

Fs ds (9.6)

We have two integrals to examine, and we’ll do them one by one. We can start with the 
integral on the left, which is of the form1x dx. Factoring out m, which is a constant, we find

 m 3
vfs

vis

vs dvs = m c1
2 vs 

2 d
vfs

vis

= 1
2 mvfs 

2 - 1
2 mvis 

2 = ∆ 11
2 mv22 = ∆K (9.7)

You’ll notice that we dropped the subscript s in the next-to-last step. vs is a vector 
component, with a sign to indicate direction, but the sign makes no difference after vs 
is squared. All that matters is the particle’s speed v.

The last step in Equation 9.7 introduces a new quantity

 K = 1
2 mv2  (kinetic energy) (9.8)

which is called the kinetic energy of the particle. Kinetic energy is energy of motion. 
It depends on the particle’s mass and speed but not on its position. Furthermore, kinetic 
energy is a property or characteristic of the system. So what we’ve calculated with the 
left-hand integral is ∆K = Kf - Ki, the change in the system’s kinetic energy as the 
force pushes the particle through the displacement ∆s. ∆K is positive if the particle 
speeds up (gain of kinetic energy), negative if it slows down (loss of kinetic energy).

   NOTE    By its definition, kinetic energy can never be negative. Finding a negative value 
for K while solving a problem is an indication that you’ve made a mistake somewhere.

The unit of kinetic energy is mass multiplied by speed squared. In SI units, this is 
kg m2/s2. Because energy is so important, the unit of energy is given its own name, the 
joule. We define

1 joule = 1 J = 1 kg m2/s2

All other forms of energy are also measured in joules.
To give you an idea about the size of a joule, consider a 0.5 kg mass (≈1 lb on 

earth) moving at 4 m/s (≈10 mph). Its kinetic energy is

K = 1
2 mv2 = 1

210.5 kg214 m/s22 = 4 J

This suggests that everyday objects moving at ordinary speeds will have energies 
from a fraction of a joule up to, perhaps, a few thousand joules. A running person has 
K ≈ 1000 J, while a high-speed truck might have K ≈ 106 J.

   NOTE    You must have masses in kilograms and velocities in m/s in order to obtain 
energy in joules.

STOP TO THINK 9.1 A 1000 kg car has a speed of 20 m/s. A 2000 kg truck has a 
speed of 10 m/s. Which has more kinetic energy?

a. The car.   b.   The truck.   c.   Their kinetic energies are the same.
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9.2 Work and Kinetic Energy for a Single Particle 237

Work
Now let’s turn to the integral on the right-hand side of Equation 9.6. This integral is 
telling us by how much the kinetic energy changes due to the force. That is, it is the 
energy transferred to or from the system by the force. Earlier we said that a process 
that transfers energy to or from a system by mechanical means—by forces—is called 
work. So the integral on the right-hand side of Equation 9.6 must be the work W done 
by force F

u
.

Having identified the left side of Equation 9.6 with the changing kinetic energy 
of the system and the right side with the work done on the system, we can rewrite 
Equation 9.6 as

∆K = Kf - Ki = W

(Energy principle for a one-particle system)

Amount of work done
by an external force

Change in the system’s
kinetic energy

Final kinetic energy Initial kinetic energy

 (9.9)

This is our first version of the energy principle. Notice that it’s a cause-and-effect 
statement: The work done on a one-particle system causes the system’s kinetic 
energy to change.

We’ll study work thoroughly in the next section, but for now we’re considering only 
the simplest case of a constant force parallel to the direction of motion (the s-axis). A 
constant force can be factored out of the integral, giving

 
W = 3

sf

si

Fs ds = Fs3
sf

si

ds = Fs s `
sf

si

= Fs1sf - si2
    = Fs   ∆s

 (9.10)

The unit of work, that of force multiplied by distance, is the N m. Recall that 
1 N = 1 kg m/s2. Thus

1 N m = 1 1kg m/s22 m = 1 kg m2/s2 = 1 J

Thus the unit of work is really the unit of energy. This is consistent with the idea that 
work is a transfer of energy. Rather than use N m, we will measure work in joules.

A 5.0 kg cannonball is fired straight up at 35 m/s. What is its speed 
after rising 45 m?

MODEL Let the system consist of only the cannonball, which we 
model as a particle. Assume that air resistance is negligible.

VISUALIZE FIGURE 9.3 is a before-and-after pictorial representation. 
Notice two things: First, for problem solving we use numerical   

sub scripts instead of the generic i and f. Second, the v symbols are  
speeds, not velocities, so there’s no x or y in the subscripts.  
Before-and-after representations are usually simpler than the pictorial 
representation used in dynamics problems, so you can include known 
information right on the diagram instead of making a Known table.

SOLVE Using work and energy is not the only way to solve this 
problem. You could solve it as a free-fall problem. Or you might 
have previously learned to solve problems like this using potential 
energy, a topic we’ll take up in the next chapter. But using work and 
energy emphasizes how these two key ideas are related, and it gives 
us a simple example of the problem-solving process before we get 
to more complex problems. The energy principle is ∆K = W, where 
work is done by the force of gravity. The cannonball is rising, so its 
displacement ∆y = y1 - y0 is positive. But the force vector points 
down, with component Fy = -mg. Thus gravity does work

W = Fy  ∆y = -mg ∆y = -15.0 kg219.80 m/s22145 m2 = -2210 J

as the cannonball rises 45 m. A negative work means that the  
system is losing energy, which is what we expect as the cannonball 
slows.

EXAMPLE 9.1 ■ Firing a cannonball

FG

u

FG

u

v0 = 35 m/s

v1

5.0 kg
Before:
y0 = 0 m

Find: v1

After:
y1 = 45 m

y

Gravity does work
on the cannonball.

FIGURE 9.3 Before-and-after representation of the cannonball.

Continued
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238 CHAPTER 9 Work and Kinetic Energy

Signs of Work
Work can be either positive or negative, but some care is needed to get the sign right  
when calculating work. The key is to remember that work is an energy transfer. If the  
force causes the particle to speed up, then the work done by that force is positive. 
 Simi larly, negative work means that the force is causing the object to slow and lose energy.

The sign of W is not determined by the direction the force vector points. That’s only  
half the issue. The displacement ∆s also has a sign, so you have to consider both the 
force direction and the displacement direction. As FIGURE 9.4 shows, work is positive 
when the force acts in the direction of the displacement (causing the particle to 
speed up). Similarly, work is negative when force and displacement are in opposite 
directions (causing the particle to slow). And there’s no work at all 1W = 02 if the 
particle doesn’t move!

The cannonball’s change of kinetic energy is ∆K = K1 - K0. 
The initial kinetic energy is

K0 = 1
2 mv0

2 = 1
215.0 kg2135 m/s22 = 3060 J

Using the energy principle, we find the final kinetic energy to be 
K1 = K0 + W = 3060 J - 2210 J = 850 J. Then

v1 = B2K1

m
= B21850 J2

5.0 kg
= 18 m/s

REVIEW 35 m/s ≈ 70 mph. A cannonball fired upward at that speed 
is going to go fairly high. To have lost half its speed at a height of 
45 m ≈ 150 ft seems reasonable.

F
u

F
u

F
u

F
u

Speeds up

Slows down

Work is positive when the force acts in
the same direction as the displacement.

Work is negative when the force and
displacement are in opposite directions.

Work is zero if the particle doesn’t
move (no displacement).

∆s ∆s

vi
u

vi
u

vf
u

vf
u

F
u

F
u

F
u

F
u

F
u

∆s ∆s

vi
u

vi
u

vf
u

vf
u

FIGURE 9.4 How to determine the sign 
of W.

STOP TO THINK 9.2 A rock falls to the bottom of a deep canyon. Is the work done on  
the rock by gravity positive, negative, or zero?

Extending the Model
Our initial model has been of a single particle acted on by a constant force parallel to 
the displacement. We can easily make some straightforward extensions of this model 
to slightly more complex—and interesting—situations:

 ■ Force perpendicular to the displacement: A force parallel to a particle’s displace-
ment causes the particle to speed up or slow down, changing its energy. But a force 
perpendicular to the displacement does not change the particle’s speed; it is neither 
speeding up nor slowing down. Its energy is not changing, so no work is being done 
on it. A force perpendicular to the displacement does no work.

 ■ Multiple forces: If multiple forces act on a system, their works add. That is, ∆K =    
Wtot, where the total work done is

 Wtot = W1 + W2 + W3 + g (9.11)

 ■ Multiparticle systems: If a system has multiple independent particles, which don’t 
interact, the system’s energy is the total kinetic energy of all the particles:

 Esys = K tot = K1 + K2 + K3 + g (9.12)

Ktot is truly a system energy, not the energy of any one particle. How does Ktot change 
when work is done? You can see from its definition that ∆Ktot is the sum of all the 
individual kinetic-energy changes, and each of those changes is the work done on that 
particular particle. Thus

 ∆K tot = Wtot (9.13)

where now Wtot is the total work done on all the particles in the system.

   NOTE    You might expect Wtot = 1Fnet2s ∆s, where F
u

net is the net force on the system. 
This is true for a one-particle system (if all the forces are constant), but in general 
it is not true for a multiparticle system because each particle undergoes a different 
displacement. You must find the work done on each particle, then sum those to find 
the total work done on the system.

M09B_KNIG8221_05_GE_C09.indd   238 26/05/2022   12:35



9.3 Calculating the Work Done 239

9.3 Calculating the Work Done
Section 9.2 introduced two key ideas: (1) a system has energy and (2) work is a mechanical  
process that changes the system’s energy. Now we’re ready to look more closely at how 
to calculate the work done in different situations. Although we’ll be focusing on the 
mathematical techniques of calculating work, it’s important to keep in mind that our 
real goal is to learn how the energy of a system changes when forces are applied to it.

“Work” is a common word in the English language, with many meanings. Work 
might refer to physical exertion, to your job or occupation, or even to a work of art. 
But set aside those ideas about work because they are not what work means in physics. 
Work, as we’ll use the word, is a process. Specifically, it is a process that changes a 
system’s energy by mechanical means—pushing or pulling on it with forces. We say 
that work transfers energy between the environment and the system.

Equation 9.6 defined work as

 
W = 3

sf

si

Fs ds

(work done by force F
u
 as a particle is displaced from si to sf )

 
(9.14)

where, recall, Fs is the component of F
u
 in the direction of motion (the s-direction).  

We began by looking at a force that was parallel to the displacement, but such a  
restriction is not required because any force component perpendicular to the motion 
does no work. Equation 9.14 is, in fact, a general definition of work.

We’ll start by learning how to calculate work for constant forces, and we’ll introduce 
a new mathematical idea, the dot product of two vectors, that will allow us to write the 
work in a compact notation. Then we’ll consider the work done by a variable force that 
changes as the particle moves.

Constant Force
FIGURE 9.5 shows a particle moving in a straight line. A constant force F

u
, which makes an 

angle u with respect to the particle’s displacement ∆  r u, acts on the particle throughout  
its motion. We’ve established an s-axis in the direction of motion, and you can see 
that the force component along the direction of motion is Fs = F cos u. According to 
Equation 9.14, the work done on the particle by this force is

 W = 3
sf

si

Fs ds = 3
sf

si

F cos u ds (9.15)

Both F and cos u are constant, so they can be taken outside the integral. Thus

 W = F cos u3
sf

si

ds = F cos u1sf - si2 (9.16)

Now si and sf are specific to this coordinate system, but their difference sf - si is ∆r, 
the magnitude of the particle’s displacement vector. Thus we can write more generally, in-
dependent of any specific coordinate system, that the work done by the constant force F

u
 is

 W = F1∆r2 cos u  (work done by a constant force) (9.17)

where u is the angle between the force and the particle’s displacement ∆r u.

   NOTE    You may have learned in an earlier physics course that work is “force times 
distance.” This is not the definition of work, merely a special case. Work is “force 
times distance” only if the force is constant and parallel to the displacement 1u = 0°2.

STOP TO THINK 9.3 Two equal-mass pucks on fric-
tionless ice are pushed toward each other by two equal 
but opposite forces. Let the system be both pucks. Is the 
total work done on the system positive, negative, or zero?

F
u

F
u

u

u

∆r

Fs

Fs

A constant force acts on
the particle as it moves.

s

si

sf

Fs is the component of F in the 
direction of motion. It causes the 
particle to speed up or slow down.

u

u

FIGURE 9.5 Work being done by a 
constant force.
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240 CHAPTER 9 Work and Kinetic Energy

According to the basic energy model, work can be either positive or negative to 
indicate energy transfer into or out of the system. The quantities F and ∆  r are always 
positive, so the sign of W is determined entirely by the angle U between the force F

u
  

and the displacement �  r u.

A strap inclined upward at a 45° angle pulls a suitcase 100 m 
through the airport. The tension in the strap is 20 N. How much 
work does the tension force do on the suitcase?

MODEL Let the system consist of only the suitcase, which we model  
as a particle.

VISUALIZE FIGURE 9.6 is a before-and-after pictorial representation.

SOLVE The motion is along the x-axis, so in this case ∆r = ∆x. We 
can use Equation 9.17 to find that the tension does work:

W = T 1∆x2 cos u = 120 N21100 m2 cos 45° = 1400 J
REVIEW Because a person pulls the strap, we would say informally 
that the person does 1400 J of work on the suitcase.

EXAMPLE 9.2 ■ Pulling a suitcase

T
u

T
u

x0

x
x1

∆x = 100 m

Before: After:

45° 45°

FIGURE 9.6 Pictorial representation of the suitcase.

TACTICS BOX 9.1

Calculating the work done by a constant force

Force and displacement u Work W Sign of W Energy transfer

F
u

F
u∆r

u

vi vf
u u

0° F1∆r2 +

Energy is transferred into the system.

The particle speeds up. K increases.
u

F
u

F
u

∆r
u

vi
u

vf
u

6 90° F1∆r2 cos u +

u F
u

F
u

∆r
u

vi
u

vf
u

90° 0 0
No energy is transferred.

Speed and K are constant.

u
F
u

F
u

∆r
u

vi
u

vf
u

7 90° F1∆r2 cos u −

Energy is transferred out of the system.

The particle slows down. K  
decreases.u

F
u

F
u

∆r
u

vi
u

vf
u

180° −F1∆r2 −

Exercises 3–7 

   NOTE    The sign of W depends on the angle between the force vector and the displace-
ment vector, not on the coordinate axes. A force to the left does positive work if it 
pushes a particle to the left (the force and the displacement are in the same direction) 
even though the force component Fx is negative. Think about whether the force is trying 
to increase the particle’s speed 1W 7 02 or decrease the particle’s speed 1W 6 02.
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Work as a Dot Product of Two Vectors
There’s something different about the quantity F1∆r2cos u in Equation 9.17. We’ve 
spent many chapters adding vectors, but this is the first time we’ve multiplied two 
vectors. Multiplying vectors is not like multiplying scalars. In fact, there is more than 
one way to multiply vectors. We will introduce one way now, the dot product.

FIGURE 9.8 shows two vectors, A
u

 and B
u
, with angle a between them. We define the 

dot product of A
u

 and B
u

 as

 A
u # B

u
= AB cos a (9.18)

A dot product must have the dot symbol # between the vectors. The notation A
u

B
u
, 

 without the dot, is not the same thing as A
u # B

u
. The dot product is also called the  

scalar product because the value is a scalar. Later, when we need it, we’ll introduce 
a different way to multiply vectors called the cross product.

A 150,000 kg rocket is launched straight up. The rocket motor 
 generates a thrust of 4.0 * 106 N. What is the rocket’s speed at a 
height of 500 m?

MODEL Let the system consist of only the rocket, which we model 
as a particle. Thrust and gravity are constant forces that do work 
on the rocket. We’ll ignore air resistance and any slight mass loss.

VISUALIZE FIGURE 9.7 shows a before-and-after representation and 
a free-body diagram.

SOLVE We can solve this problem with the energy principle, 
∆K = Wtot. Both forces do work on the rocket. The thrust is in the 
direction of motion, with u = 0°, and thus

Wthrust = Fthrust1∆  r2 = 14.0 * 106 N21500 m2 = 2.00 * 109 J

The gravitational force points downward, opposite the  displacement 
∆  r u, so u = 180°. Thus the work done by gravity is

Wgrav = -FG1∆  r2 = -mg1∆  r2
= -11.5 * 105 kg219.8 m/s221500 m2 = -0.74 * 109 J

The work done by the thrust is positive. By itself, the thrust would 
cause the rocket to speed up. The work done by gravity is negative, 
not because F

u

G points down but because F
u

G is opposite the dis-
placement. By itself, gravity would cause the rocket to slow down. 
The energy principle, using Ki = 0, is

∆K = 1
2 mv1 

2 - 0 = Wtot = Wthrust + Wgrav = 1.26 * 109 J

Solving for the speed, we find

v1 = B2Wtot

m
= 130 m/s

REVIEW The total work is positive, meaning that energy is  transferred 
to the rocket. In response, the rocket speeds up.

EXAMPLE 9.3 ■ Launching a rocket

Fthrust

FG

x

y

y

0

After:
y1 = 500 m
v1

Before:
y0 = 0 m
v0 = 0 m/s

Find: v1

u

u

FIGURE 9.7 Before-and-after representation and free-body 
diagram of a rocket launch.

STOP TO THINK 9.4 A crane uses a single cable to lower a steel girder into place. The  
girder moves with constant speed. The cable tension does work WT and gravity does 
work WG. Which statement is true?

a. WT is positive and WG is positive.
b. WT is positive and WG is negative.
c. WT is negative and WG is positive.
d. WT is negative and WG is negative.
e. WT and WG are both zero.

A
u

B
u

a

FIGURE 9.8 Vectors A
u

 and B
u
, with angle a  

between them. Their dot product is 
A
u # B

u
= AB cos a.
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242 CHAPTER 9 Work and Kinetic Energy

The dot product depends on the orientation of the vectors. FIGURE 9.9 shows five 
different situations, including the three “special cases” where a = 0°, 90°, and 180°.

A # B 6 0 A # B = -AB

A
u

A
u

uu

B
u

B
u

uu

a 6 90° a 7 90°a = 90° a = 180°

A # B = AB A # B 7 0

a = 0

A # B = 0

A
u A

u A
u

uuu

B
u

B
u

B
u

uuu

FIGURE 9.9 The dot product A
u # B

u
 as a ranges from 0° to 180°.

en
n

dn

a = 90°, so d # e = 0n

x

y

Magnitude = 1

FIGURE 9.11 The unit vectors in and jn. Like vector addition and subtraction, calculating the dot product of two vectors is  
often performed most easily using vector components. FIGURE 9.11 reminds you of the unit  
vectors in and jn that point in the positive x-direction and positive y-direction. The two  
unit vectors are perpendicular to each other, so their dot product is in # jn = 0. Furthermore,  
because the magnitudes of in and jn are 1, in # in = 1 and jn # jn = 1.

In terms of components, we can write the dot product of vectors A
u

 and B
u

 as

A
u # B

u
= 1Ax in + Ay jn2 # 1Bx in + By jn2

Multiplying this out, and using the results for the dot products of the unit vectors:

   A
u # B

u
= Ax Bx in # in + 1Ax By + Ay Bx2 in # jn + Ay By jn # jn 

  = Ax  

Bx + Ay  

By 
(9.19)

That is, the dot product is the sum of the products of the components.

Compute the dot product of the two vectors in  
FIGURE 9.10.

SOLVE The angle between the vectors is a = 30°, so

A
u # B

u
= AB cos a = 132142cos 30° = 10.4

EXAMPLE 9.4 ■ Calculating a dot product

A
u

B
u30°

3

4

FIGURE 9.10 Vectors A
u

 and 
B
u

 of Example 9.4.

Looking at Equation 9.17, the work done by a constant force, you should recognize 
that it is the dot product of the force vector and the displacement vector:

 W = F
u # ∆r u  (work done by a constant force) (9.20)

This definition of work is valid for a constant force.

Compute the dot product of A
u

= 3in + 3jn and 
B
u

= 4in - jn.

SOLVE FIGURE 9.12 shows vectors A
u

 and B
u
. We 

could calculate the dot product by first doing the 
geometry needed to find the angle between the   
vectors and then using Equation 9.18. But calcu-
lating the dot product from the vector components 
is much easier. It is

A
u # B

u
= Ax Bx + Ay By = 132142 + 1321-12 = 9

EXAMPLE 9.5 ■ Calculating a dot product using components

A
u

B
u1

x

y

1

0
3 4 5

-1

2

3

FIGURE 9.12 Vectors A
u

 and B
u

.

   NOTE    The dot product of a vector with itself is well defined. If B
u

= A
u

 (i.e., B
u

 is a 
copy of A

u
), then a = 0°. Thus A

u # A
u

= A2.
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   NOTE    While in the midst of the mathematics of calculating work, do not lose sight 
of what the energy principle is all about. It is a statement about energy transfer: 
Work causes a particle’s kinetic energy to either increase or decrease.

A 70 kg skier is gliding at 2.0 m/s when he starts down a very slippery  
50-m-long, 10° slope. What is his speed at the bottom?

MODEL Model the skier as a particle and interpret “very slippery” 
to mean frictionless. Use the energy principle to find his final speed.

VISUALIZE FIGURE 9.13 shows a pictorial representation.

SOLVE The only forces on the skier are F
u

G and nu. The normal force 
is perpendicular to the motion and thus does no work. The work 
done by gravity is easily calculated as a dot product:

  W = F
u

G
# ∆r u = mg1∆r2 cos  a

  = 170 kg219.8 m/s22150 m2 cos 80° = 5960 J

Notice that the angle between the vectors is 80°, not 10°. Then, from 
the energy principle, we find

 ∆K = 1
2 mv1 

2 - 1
2 mv0 

2 = W

v1 = Bv0 

2 +
2W
m

= B12.0 m/s22 +
215960 J2

70 kg
= 13 m/s

EXAMPLE 9.6 ■ Calculating work using the dot product

n
u

∆r = 50 m

90°

Before:

x0 = 0 m
v0 = 2.0 m/s
 m = 70 kg

v1
x

10°

After:

Find:

x1 = 50 m
v1FG

a = 80°u

FIGURE 9.13 Pictorial representation of the skier.

STOP TO THINK 9.5 Which force does the most work as a particle undergoes 
 displacement ∆r 

u
?

a. The 10 N force.
b. The 8 N force.
c. The 6 N force.
d. They all do the same amount of work.

60°

10 N

6 N
8 N

∆r
u ∆r

u ∆r
u

Zero-Work Situations
There are three common situations where no work is done. The most obvious is when 
the object doesn’t move 1∆r u = 0

u2. If you were to hold a 200 lb weight over your head, 
you might break out in a sweat and your arms would tire. You might feel that you had 
done a lot of work, but you would have done zero work in the physics sense because 
the weight was not displaced and thus you transferred no energy to it. A force acting 
on a particle does no work unless the particle is displaced.

FIGURE 9.14 shows a particle moving in uniform circular motion. As you learned in 
Chapter 8, uniform circular motion requires a force pointing toward the center of the 
circle. How much work does this force do?

Zero! Tactics Box 9.1 showed that a force perpendicular to the displacement does 
no work. Circular motion extends this idea to motion along a curve. A particle in 
uniform circular motion has a constant speed, so there’s no change in kinetic energy 
and hence no energy is transferred into or out of the system. Thus a force everywhere 
perpendicular to the motion does no work.

Last, consider the roller skater in FIGURE 9.15 who straightens her arms and pushes 
off from a wall. She applies a force to the wall and thus, by Newton’s third law, the 
wall applies a force F

u

W on S to her. How much work does this force do?
Surprisingly, zero. The reason is subtle but worth discussing because it gives us 

insight into how energy is transferred and transformed. The skater differs from suit-
cases and rockets in two important ways. First, the skater, as she extends her arms,  

F
u

F
u

s

The force is everywhere perpendicular to
the displacement, so it does no work.

ds
u

ds
u

FIGURE 9.14 A perpendicular force does 
no work.

How much work does
this force do as she pushes
away from the wall?FS on W

u

FW on S

u

FIGURE 9.15 Does the wall do work on  
the skater?
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244 CHAPTER 9 Work and Kinetic Energy

is a deformable object. We cannot use the particle model for a deformable object. 
Second, the skater has an internal source of energy. Because she’s a living object,  
she has an internal store of chemical energy that is available through metabolic processes.

Although the skater’s center of mass is displaced, the palms of her hands—where the 
force is exerted—are not. The particles on which force FW on S acts have no displacement, 
and we’ve just seen that there’s no work without displacement. The force acts, but the 
force doesn’t push any physical thing through a displacement. Hence no work is done.

But the skater indisputably gains kinetic energy. How? Recall, from the energy 
 overview that started this chapter, that the full energy principle is ∆Esys = Wext. A system  
can gain kinetic energy without any work being done if it can transform some other 
energy into kinetic energy. In this case, the skater transforms chemical energy into 
kinetic energy. The same is true if you jump straight up from the ground. The ground 
applies an upward force to your feet, but that force does no work because the point 
of application—the soles of your feet—has no displacement while you’re jumping. 
Instead, your increased kinetic energy comes via a decrease in your body’s chemical 
energy. A brick cannot jump or push off from a wall because it cannot deform and has 
no usable source of internal energy.

STOP TO THINK 9.6 A car accelerates smoothly away from a stop sign. Is the work 
done on the car positive, negative, or zero?

Variable Force
We’ve learned how to calculate the work done on an object by a constant force, but what 
about a force that changes as the object moves? Equation 9.14, the definition of work,  
is all we need:

 
W = 3

sf

si

Fs ds = area under the force@versus@position graph

 (work done by a variable force)
 

(9.21)

The integral sums up the small amounts of work Fs ds done in each step along the 
trajectory. The only new feature, because Fs now varies with position, is that we   
cannot take Fs outside the integral. We must evaluate the integral either  geometrically 
by finding the area under the curve (which we’ll do in the next example) or by actually  
doing the integration (which we’ll do in the next section).

A 1500 kg car is towed, starting from rest. FIGURE 9.16 shows the 
tension force in the tow rope as the car travels from x = 0  m to 
x = 200  m. What is the car’s speed after being pulled 200 m?

MODEL Let the system consist of only the car, which we model as a 
particle. We’ll neglect rolling friction. Two vertical forces, the normal 
force and gravity, are perpendicular to the motion and thus do no work.

SOLVE We can solve this problem with the energy principle, 
∆K = Kf - Ki = W. Here W is the work done by the tension force, 
but the force is not constant so we have to use the full definition of 
work as an integral. In this case, we can do the integral graphically:

 W = 3
200 m

0 m
Tx  dx

 = area under the force curve from 0 m to 200 m

 = 1
215000 N21200 m2 = 500,000 J

The initial kinetic energy is zero, so the final kinetic energy is simply  
the energy transferred to the system by the work of the tension: 
Kf = W = 500,000 J. Then, from the definition of kinetic energy,

vf = B2Kf

m
= B21500,000 J2

1500 kg
= 26 m/s

REVIEW 26 m/s ≈ 55 mph is a reasonable final speed after being 
towed 200 m.

EXAMPLE 9.7 ■ Using work to find the speed of a car

x (m)

Tx (N)

0
0

100 200

2500

5000

FIGURE 9.16 Force-versus-position graph for a car.
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9.4  Restoring Forces and the Work 
Done by a Spring

If you stretch a rubber band, a force tries to pull the rubber band back to its equilibrium,  
or unstretched, length. A force that restores a system to an equilibrium position is 
called a restoring force. Objects that exert restoring forces are called elastic. The 
most basic examples of elasticity are things like springs and rubber bands, but other 
examples of elasticity and restoring forces abound. For example, the steel beams flex 
slightly as you drive your car over a bridge, but they are restored to equilibrium after 
your car passes by. Nearly everything that stretches, compresses, flexes, bends, or 
twists exhibits a restoring force and can be called elastic.

We didn’t introduce restoring forces in Part I of this textbook because we didn’t 
have the mathematical tools to deal with them. But now—using work and energy—we 
do. We’re going to use a simple spring as our model of elasticity. Suppose you have a  
spring whose equilibrium length is L0. This is the length of the spring when it is 
neither pushing nor pulling. If you stretch (or compress) the spring, how hard does it 
pull (or push) back? Measurements show that

 ■ The force is opposite the displacement. This is what we mean by a restoring force.
 ■ If you don’t stretch or compress the spring too much, the force is proportional to the 

displacement from equilibrium. The farther you push or pull, the larger the force.

FIGURE 9.17 shows a spring along a generic s-axis exerting force F
u

Sp. Notice that seq 
is the position, or coordinate, of the free end of the spring, not the spring’s  equilibrium 
length L0. When the spring is stretched, the spring displacement ∆s = s - seq  
is positive while 1FSp2s, the s-component of the restoring force, is negative. Similarly, 
compressing the spring makes ∆s 6 0 and 1FSp2s 7 0. The graph of force versus  
displacement is a straight line with negative slope, showing that the spring force is 
proportional to but opposite the displacement.

The equation of the straight-line graph passing through the origin is

 1FSp2s = -k  ∆s  (Hooke>s law) (9.22)

The minus sign is the mathematical indication of a restoring force, and the constant 
k—the absolute value of the slope of the line—is called the spring constant of the 
spring. The units of the spring constant are N/m. This relationship between the force 
and displacement of a spring was discovered by Robert Hooke, a contemporary (and 
sometimes bitter rival) of Newton. Hooke’s law is not a true “law of nature,” in the 
sense that Newton’s laws are, but is actually just a model of a restoring force. It works 
well for small displacements from equilibrium, but Hooke’s law will fail for any real 
spring that is compressed or stretched too far. A hypothetical massless spring for 
which Hooke’s law is true at all displacements is called an ideal spring.

   NOTE    The force does not depend on the spring’s physical length L but, instead, on 
the displacement ∆s of the end of the spring.

The spring constant k is a property that characterizes a spring, just as mass m 
characterizes a particle. For a given spring, k is a constant—it does not change as 
the spring is stretched or compressed. If k is large, it takes a large pull to cause a  
significant stretch, and we call the spring a “stiff” spring. A spring with small k can 
be stretched with very little force, and we call it a “soft” spring.

   NOTE    In an earlier physics course, you may have learned Hooke’s law as FSp = -kx 
rather than as -k ∆s. This can be misleading, and it is a common source of errors. 
The restoring force is -kx only if the coordinate system in the problem is chosen 
such that the origin is at the equilibrium position of the free end of the spring. That 
is, x = ∆s only if xeq = 0. This choice of origin is often made, but in some problems 
it will be more convenient to locate the origin of the coordinate system elsewhere.

s
seq

Unstretched

Stretched

Compressed

(FSp)s = 0

(FSp)s 6 0

(FSp)s

(FSp)s 7 0

The sign of (FSp)s is
always opposite the
sign of ∆s.

Slope = -k

∆s

∆s 7 0

∆s 6 0

L 0

FIGURE 9.17 Properties of a spring.
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This example illustrates a class of motion called stick-slip motion. Once the block 
slips, it will shoot forward some distance, then stop and stick again. As the train  
continues, there will be a recurring sequence of stick, slip, stick, slip, stick. . . .

Earthquakes are an important example of stick-slip motion. The large tectonic plates 
making up the earth’s crust are attempting to slide past each other, but friction causes 
the edges of the plates to stick together. You may think of rocks as rigid and  brittle, 
but large masses of rock are somewhat elastic and can be “stretched.” Eventually the  
elastic force of the deformed rocks exceeds the friction force between the plates.  
An earthquake occurs as the plates slip and lurch forward. Once the tension is released, 
the plates stick together again and the process starts all over.

FIGURE 9.18 shows a spring attached to a 2.0 kg block. The other end 
of the spring is pulled by a motorized toy train that moves forward 
at 5.0 cm/s. The spring constant is 50 N/m, and the coefficient of 
static friction between the block and the surface is 0.60. The spring 
is at its equilibrium length at t = 0 s when the train starts to move. 
When does the block slip?

MODEL Model the block as a particle  
and the spring as an ideal spring  
obeying Hooke’s law.

VISUALIZE FIGURE 9.19 is a free-body 
diagram for the block.

SOLVE Recall that the tension in a 
massless string pulls equally at both  
ends of the string. The same is true 

for the spring force: It pulls (or pushes) equally at both ends. This is 
the key to solving the problem. As the right end of the spring moves, 
stretching the spring, the spring pulls backward on the train and 
forward on the block with equal strength. As the spring stretches, 
the static friction force on the block increases in magnitude to keep  
the block at rest. The block is in static equilibrium, so

1Fnet2x = 1FSp2x + 1fs2x = FSp - fs = 0

where FSp is the magnitude of the spring force. The magnitude is 
FSp = k ∆x, where ∆x = vx t is the distance the train has moved. 
Thus

fs = FSp = k ∆x

The block slips when the static friction force reaches its maximum 
value fs max = msn = ms mg. This occurs when the train has moved

  ∆x =
fs max

k
=

msmg

k
=

10.60212.0 kg219.80 m/s22
50 N/m

  = 0.235 m = 23.5 cm

The time at which the block slips is

t =
∆x
vx

=
23.5 cm
5.0 cm/s

= 4.7 s

EXAMPLE 9.8 ■ Pull until it slips

5.0 cm/s

2.0 kg

FIGURE 9.18 A toy train stretches the spring until the block slips.

n
u

y

x

FG
FSp

fs
u

u
u

FIGURE 9.19 The free-body 
diagram.

The slip can range from a few centimeters 
in a relatively small earthquake to sev-
eral meters in a very large earthquake.

STOP TO THINK 9.7 The graph shows the force 
magnitude versus displacement for three springs. 
Rank in order, from largest to smallest, the spring 
constants k1, k2, and k3.

FSp

∆s

3

2

1

Work Done by Springs
The primary goal of this section is to calculate the work done by a spring. FIGURE 9.20 
shows a spring acting on an object as it moves from si to sf. The spring force on the object 
varies as the object moves, but we can calculate the spring’s work by using Equation 9.21 
for a variable force. Hooke’s law for the spring is 1FSp2s = -k ∆s = -k1s - seq2. Thus

 W = 3
sf

si

1FSp2s ds = -k3
sf

si

1s - seq2 ds (9.23)

M09B_KNIG8221_05_GE_C09.indd   246 26/05/2022   12:35
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This is an integration best carried out with a change of variables. Define u = s - seq, 
in which case ds = du. This changes the integrand from 1s - seq2  ds to u  du. When we 
change variables, we also have to change the integration limits. At the lower limit, 
where s = si, the new variable u is si - seq = ∆si. The lower limit becomes the initial 
displacement. Similarly, s = sf makes u = sf - seq = ∆sf at the upper limit. With these 
changes, the integral is

 W = -k3
∆sf

∆si

u du = -1
2 ku2 `

∆sf

∆si

= -1
2 k1∆sf22 + 1

2 k1∆si22 (9.24)

With a small rearrangement of the right side, we see that the work done by a spring is

 W = - 11
2 k1∆sf22 - 1

2 k1∆si222  (work done by a spring) (9.25)

Because the displacements are squared, it makes no difference whether the initial and 
final displacements are stretches or compressions.

The work done by a spring is energy transferred to the object by the force of the 
spring. We can use this—and the energy principle—to solve problems that we were 
unable to solve with a direct application of Newton’s laws.

si

k

k

Equilibrium
position

seq

s

∆si

∆sf

Before:

After:

sf

FSp

u

FIGURE 9.20 The spring does work on 
the object.

The “pincube machine” was an ill-fated predecessor of the pinball 
machine. A 100 g cube is launched by pulling a spring back 12 cm 
and releasing it. The spring’s spring constant is 65 N/m. What is the 
cube’s launch speed as it leaves the spring? Assume that the surface 
is frictionless.

MODEL Let the system consist of only the cube, which we model  
as a particle. Two vertical forces, the normal force and gravity, are 
perpendicular to the cube’s displacement, and we’ve seen that per-
pendicular forces do no work. Only the spring force does work.

VISUALIZE FIGURE 9.21 is a before-and-after pictorial representa-
tion in which, for horizontal motion, we’ve replaced the generic 
s-axis with an x-axis.

SOLVE We can solve this problem with the energy principle, 
∆K = K1 - K0 = W, where W is the work done by the spring. The 
initial displacement from equilibrium is ∆x0 = -0.12 m. The cube 
will separate from the spring when the spring has expanded back 
to its equilibrium length, so the final displacement is ∆x1 = 0 m. 
From Equation 9.25, the spring does work

W = - 11
2 k 1∆x122 - 1

2 k 1∆x0222 =  12165 N/m21-  0.12 m22 - 0

= 0.468 J

The initial kinetic energy is zero, so the final kinetic energy is 
simply the energy transferred to the system by the work of the 
spring: K1 = W = 0.468 J. Then, from the definition of kinetic 
energy,

v1 = B2K1

m
= B210.468 J2

0.10 kg
= 3.1 m/s

REVIEW 3.1 m/s ≈ 6 mph seems a reasonable final speed for a 
small, spring-launched cube.

EXAMPLE 9.9 ■ Using the energy principle for a spring

x

∆x = 12 cmm = 0.10 kg
k = 65 N/m

Before: ∆x0 = -0.12 m
 v0 = 0 m/s

x0

After: ∆x1 = 0 m
Find: v1

v1

Equilibrium 
position

0

FSp

u

FIGURE 9.21 Pictorial representation of the pincube machine.

9.5 Dissipative Forces and Thermal Energy
Suppose you drag a heavy sofa across the floor at a steady speed. You are doing work, 
but the sofa is not gaining kinetic energy. And when you stop pulling, the sofa almost 
instantly stops moving. Where is the energy going that you’re adding to the system? 
And what happens to the sofa’s kinetic energy when you stop pulling?

STOP TO THINK 9.8 A compressed spring 
pushes two equal-mass blocks apart, as shown. 
Is the work done by the spring positive, negative, 
or zero?

Frictionless

M09B_KNIG8221_05_GE_C09.indd   247 26/05/2022   12:35



248 CHAPTER 9 Work and Kinetic Energy

You know that rubbing things together raises their temperature, in extreme cases 
making them hot enough to start a fire. As the sofa slides across the floor, friction causes 
the bottom of the sofa and the floor to get hotter. An increasing temperature is associated 
with increasing thermal energy, so in this situation the work done by pulling is increasing 
the system’s thermal energy instead of its kinetic energy. Our goal in this section is to 
understand what thermal energy is and how it is related to dissipative forces.

Energy at the Microscopic Level
FIGURE 9.22 shows two different perspectives of an object. In Figure 9.22a you see an  
object of mass m moving as a whole with velocity vobj. As a consequence of its  
motion, the object has macroscopic kinetic energy Kmacro = 1

2 mvobj 

2 .

   NOTE    You recognize the prefix micro, meaning “small.” You may not be familiar 
with macro, which means “large.” Everyday objects, which consist of vast numbers 
of particle-like atoms, are macroscopic objects.

As you know, this macroscopic object is made up of atoms. But the atoms are 
not sitting quietly at rest. Instead, as Figure 9.22b shows, each of these atoms is jig-
gling about and has kinetic energy. As the atoms move, they stretch and compress 
the spring-like bonds between them. We’ll study potential energy in Chapter 10, but 
you’ll recall from the energy overview at the beginning of this chapter that potential 
energy is stored energy. Stretched and compressed springs store energy, so the bonds 
have potential energy.

The energy of one atom is exceedingly small, but there are enormous numbers 
of atoms in a macroscopic object. As all these atoms undergo random motion, the 
combined microscopic kinetic and potential energy of the atoms—the energy of 
the jiggling atoms and stretching bonds—is called the thermal energy of the 
system, Eth. This energy is distinct from the macroscopic energy of the object as a 
whole. Thermal energy is hidden from view in our macrophysics perspective, but 
it is quite real. We will discover later, when we reach thermodynamics, that the 
thermal energy is related to the temperature of the system. Raising the temperature 
causes the atoms to move faster and the bonds to stretch more, giving the system 
more thermal energy.

   NOTE    The microscopic energy of atoms is not called “heat.” As was mentioned 
earlier, heat is a process, similar to work, for transferring energy between the 
system and the environment. We’ll have a lot more to say about heat in future 
chapters.

With the inclusion of thermal energy, a system can have both macroscopic  
kinetic energy and thermal energy: Esys = K + Eth. With this, the energy principle 
becomes

 ∆Esys = ∆K + ∆Eth = Wext (9.26)

where Wext is the work due to external forces acting on the object. Work done on the 
system might increase the system’s kinetic energy, its thermal energy, or both. Or, in 
the absence of work, kinetic energy can be transformed into thermal energy as long as 
the total energy change is zero. Recognizing thermal energy greatly expands the range 
of problems we can analyze with the energy principle.

   NOTE    The introduction of thermal energy requires us to move beyond the simple 
particle model. A particle has no internal structure and cannot have thermal energy. 
Macroscopic objects that have thermal energy are extended objects.

m

(a)  The macroscopic motion of
the system as a whole

vobj
u

FIGURE 9.22 Two perspectives of motion 
and energy.

Molecular bonds stretch
and compress; each has
potential energy.

Atoms in motion;
each has kinetic energy.

(b)  The microscopic motion of
the atoms inside
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Dissipative Forces
Forces such as friction and drag cause the macroscopic kinetic energy of a system to be 
dissipated as thermal energy. Hence these are called dissipative forces. FIGURE 9.23  
shows how microscopic interactions are responsible for transforming macroscopic  
kinetic energy into thermal energy when two objects slide against each other. Because 
friction causes both objects to get warmer, with increased thermal energy, we must 
define the system to include both objects whose temperature changes—both the 
sofa and the floor.

For example, FIGURE 9.24 shows a box being pulled at constant speed across a  
horizontal surface with friction. As you can imagine, both the surface and the box are 
getting warmer—increasing thermal energy—but the kinetic energy is not changing. 
If we define the system to be box + surface, then the increasing thermal energy of the 
system is entirely due to the work being done on the system by tension in the rope: 
∆Eth = Wtension.

The work done by tension in pulling the box through distance ∆s is simply 
Wtension = T ∆s; thus ∆Eth = T ∆s. Because the box is moving with constant  velocity, 
and thus no net force, the tension force has to exactly balance the friction force: 
T = fk. Consequently, the increase in thermal energy due to the dissipative force of 
friction is

 ∆Eth = fk ∆s (9.27)

Notice that the increase in thermal energy is directly proportional to the total distance  
of sliding. Dissipative forces always increase the thermal energy; they never   
decrease it.

You might wonder why we didn’t simply calculate the work done by friction.  
The rather subtle reason is that work is defined only for forces acting on a particle. 
There is work being done on individual atoms at the boundary as they are pulled  
this way and that, but we would need a detailed knowledge of atomic-level fric-
tion forces to calculate this work. The friction force f 

u

k is an average force on the 
object as a whole; it is not a force on any particular particle, so we cannot use it to 
calculate work. Furthermore, increasing thermal energy is not an energy transfer—
the  definition of work—from the box to the surface or from the surface to the box; 
both the box and the surface are gaining thermal energy. The techniques used to 
 calculate the work done on a particle cannot be used to calculate the work done 
by dissipative forces.

   NOTE    The considerations that led to Equation 9.27 allow us to calculate the total 
increase in thermal energy of the entire system, but we cannot determine what fraction  
of ∆Eth goes to the box and what fraction goes to the surface.

Motion

The potential energy 
is transformed into 
kinetic energy when 
the bonds break.

The spring-like bonds 
stretch and store 
potential energy.

Atoms at the interface 
push and pull on each 
other.

FIGURE 9.23 Motion with friction leads to 
thermal energy.

T
u∆s

fk

System

u

Work done by tension increases the thermal
energy of the box and the surface.

The system is the box
plus the surface.

FIGURE 9.24 Work done by tension is 
dissipated as thermal energy.

A rope with 30 N of tension pulls a 10 kg crate 3.0 m across a hor-
izontal floor, starting from rest. The coefficient of kinetic friction 
between the crate and the floor is 0.20. What is the increase in 
thermal energy? What is the crate’s final speed?

MODEL Let the system consist of both the crate—modeled as an  
extended object—and the floor. The tension in the rope does work 
on the system, but the vertical normal force and gravitational force 
do not.

SOLVE The energy principle, Equation 9.26, is ∆K + ∆Eth = Wext. 
The friction force on an object moving on a horizontal surface 
is fk = m

 kn = m
 kmg, so the increase in thermal energy, given by 

Equation 9.27, is

 ∆Eth = fk ∆s = m
 kmg ∆s

 = 10.202110 kg219.80 m/s2213.0 m2 = 59 J

The tension force does work Wext = T ∆s = 130 N213.0 m2 = 90 J. 
59 J of this goes to increasing the thermal energy, so ∆K = 31 J is the 
crate’s change of kinetic energy. Because Ki = 0 J, Kf = ∆K = 31 J. 
Using the definition of kinetic energy, we find that the crate’s final 
speed is

vf = B2Kf

m
= B2131 J2

10 kg
= 2.5 m/s

REVIEW The thermal energy of the crate and floor increases by 59 J.  
We cannot determine ∆Eth for the crate (or floor) alone.

EXAMPLE 9.10 ■ Increasing kinetic and thermal energy
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9.6 Power
Work is a transfer of energy between the environment and a system. In many situations 
we would like to know how quickly the energy is transferred. Does the force act quickly 
and transfer the energy very rapidly, or is it a slow and lazy transfer of energy? If you 
need to buy a motor to lift 1000 kg of bricks up 20 m, it makes a big difference whether 
the motor has to do this in 30 s or 30 min!

The question How quickly? implies that we are talking about a rate. For example, 
the velocity of an object—how quickly it is moving—is the rate of change of position. 
So when we raise the issue of how quickly the energy is transferred, we are talking 
about the rate of transfer of energy. The rate at which energy is transferred or trans-
formed is called the power P, and it is defined as

 P =
dEsys

dt
 (9.28)

The unit of power is the watt, which is defined as 1 watt = 1 W = 1 J/s. Common 
prefixes used with power are mW (milliwatts), kW (kilowatts), and MW (megawatts).

For example, the rope in Example 9.10 pulled with a tension of 30 N and, by doing 
work, transferred 90 J of energy to the system. If it took 10 s to drag the crate 3.0 m, 
then energy was being transferred at the rate of 9 J/s. We would say that whatever was 
supplying this energy—whether a human or a motor—has a “power output” of 9 W.

The idea of power as a rate of energy transfer applies no matter what the form of energy. 
FIGURE 9.25 shows three examples of the idea of power. For now, we want to focus primarily 
on work as the source of energy transfer. Within this more limited scope, power is simply 
the rate of doing work: P = dW/dt. If a particle moves through a small displacement d r u 
while acted on by force F

u
, the force does a small amount of work dW given by

dW = F
u # d r u

Dividing both sides by dt, to give a rate of change, yields

dW
dt

= F
u # d r u

dt
But d r 

u
/dt is the velocity v 

u
, so we can write the power as

 P = F
u # v 

u = Fv cos u (9.29)

In other words, the power delivered to a particle by a force acting on it is the dot product of 
the force and the particle’s velocity. These ideas will become clearer with some examples.

The English unit of power is the  
horsepower. The conversion factor 
to watts is

1 horsepower = 1 hp = 746 W

Many common appliances, such as  
motors, are rated in hp.

Lightbulb

Electric energy          light 
and thermal energy at 100 J/s

100 W

FIGURE 9.25 Examples of power.

Athlete

Chemical energy of glucose
and fat          mechanical
energy at ≈350 J/s ≈    hp1

2
1
2 hp

Gas furnace

Chemical energy of gas         
thermal energy at 20,000 J/s20 kW

Suppose you need to lift a 35 kg motor onto a flatbed truck. To do 
so, you use a rope and a pulley attached to the ceiling to lift the 
motor 3.0 m in 8.0 s. What is your power output?

SOLVE The force with which you pull down on the rope and the rope’s 
tension pulling up on you are an action/reaction pair, so the magnitude 
of your pulling force F

u

pull equals the rope tension T. Thus, if we as-
sume a frictionless pulley, the work you do to pull the rope down is 
exactly the same as the work that tension does to pull the motor up. If 
you lift the motor at a steady speed, then the rope tension is simply the 
weight mg of the motor. The work to lift the motor is

W = T∆y = mg∆y = 135 kg219.8 m/s2213.0 m2 = 1030 J

Power is the rate of doing work, so

P =
W
∆t

=
1030 J
8.0 s

= 130 J/s = 130 W

Alternatively, the tension T = mg = 343 N lifts the motor at a speed 
of v = ∆y/ ∆t = 0.375 m/s, so the required power is

P = Tv = 1343 N210.375 m/s2 = 130 W

EXAMPLE 9.11 ■ Lifting a motor
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9.6 Power 251

A 1500 kg car has a front profile that is 1.6 m wide by 1.4 m high. 
The car’s drag coefficient is 0.50, and its coefficient of rolling 
friction is 0.02. What power must a tow-truck engine provide to 
tow this car on a level road at a steady 25 m/s if the drive train 
efficiency—the fraction of the engine’s energy output that reaches 
the wheels—is 90%?

SOLVE The net force on a car being pulled at steady speed is zero, 
so the tension force pulling the car must balance the retarding fric-
tion and drag forces. Tension does work by pulling the car through 
a displacement, and the required power—given by Equation 9.29 
with F = T  and u = 0°—is P = Tv. In this case, the work does not 
increase the car’s kinetic energy but is dissipated as thermal energy 
by friction and drag.

The tension force that balances the two opposing forces is

T = fr + Fdrag

We can use the results of Chapter 6, where both rolling friction 
and drag were introduced, to compute

T = mrmg + 1
2 Cd rAv2 = 294 N + 420 N = 714 N

Here A = (1.6 m) * (1.4 m) is the front cross-section area of the 
car, and we used 1.2 kg/m3 as the density of 20°C air. Thus the 
power required to pull the car at 25 m/s is

P = Tv = (714 N)(25 m/s) = 18,000 W = 24 hp

This is the required pulling power, but the tow-truck engine’s pow-
er output must be larger to compensate for friction losses in the 
drivetrain. For a 90% drivetrain efficiency—a typical value—the 
required engine power is

Pengine =
18,000 W

0.90
= 20,000 W = 27 hp

REVIEW 27 hp is the additional engine power needed to tow the 
car; that is, in addition to the power needed to drive the tow truck at 
a speed of 25 m/s. A truck driving at this speed uses roughly 50 hp, 
so towing increases the engine’s power output by roughly 50%. A 
tow-truck engine might be rated at 400 hp, but most of that power 
is reserved for fast acceleration and climbing hills.

STOP TO THINK 9.9 Four students run up the stairs in the time shown. Rank in order,  
from largest to smallest, their power outputs PA to PD.

10 m

A

∆t = 10 s

80 kg

  B

80 kg

∆t = 8 s

  

64 kg

∆t = 8 s

C   

20 m
80 kg

∆t = 25 s

D

   CHAPTER 9 CHALLENGE EXAMPLE    Stopping a brick

A 25.0-cm-long spring stands vertically on the ground, with its 
lower end secured in a base. A 1.5 kg brick is held 40 cm directly 
above the spring and dropped onto the spring. The spring com-
presses to a length of 17.0 cm before starting to launch the brick 
back upward. What is the spring’s spring constant?

MODEL Let the system consist of only the brick, which is modeled 
as a particle. Assume that the spring is ideal. Both gravity and, after 
contact, the spring do work on the brick.

VISUALIZE FIGURE 9.26 is a before-and-after pictorial representa-
tion. We’ve chosen to place the origin of the y-axis at the equilib-
rium position of the spring’s upper end. The length of the spring 
is not relevant, but the difference between its before and after 
lengths—8.0 cm—is the spring’s maximum compression. The 
point of maximum compression is a turning point for the brick, 
as it reverses direction and starts moving back up, so the brick’s 
instantaneous velocity is zero.

SOLVE At first, this seems like a two-part problem: free fall until 
hitting the spring, then deceleration as the spring compresses. But 

FIGURE 9.26 Pictorial representation of the brick and spring.

Continued

EXAMPLE 9.12 ■ Towing a car
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252 CHAPTER 9 Work and Kinetic Energy

by using the energy principle, ∆Esys = ∆K = Wtot = WG + WSp, 
we can do it in one step. Interestingly, ∆K = 0 because the 
brick is instantaneously at rest at the beginning and again at  
the point of maximum spring compression. Consequently, Wtot = 0. 
That’s not a difficulty because gravity does positive work (the 
downward gravita tional force is in the direction of the brick’s dis-
placement) while the spring does negative work (the upward spring 
force is opposite the displacement).

The work done by gravity is

WG = 1FG2y ∆ybrick = -mg∆ybrick

where ∆ybrick is the brick’s total displacement. The negative 
sign comes from 1FG2y = -mg, but WG is positive because 
∆ybrick = y1 - y0 = -0.48 m is also negative. It may seem strange 
that calculating the work done by gravity is so simple when the 
brick first accelerates, then slows quickly after hitting the spring. 
But work depends on only the displacement, not how fast or slow 
the object is moving.

We have to be careful with the spring because its displacement is not 
the same as the brick’s displacement. The spring begins compressing 

only when contact is made, so ∆ySp 0 = 0 m at the instant the brick is 
released. The work done by the spring then continues until maximum 
compression, when the spring’s displacement is ∆ySp 1 = -0.080 m. 
The work done by the spring, Equation 9.25, is thus

WSp = - 11
2 k 1∆ySp 122 - 1

2 k1∆ySp 0222 = -1
2 k 1∆ySp 122

With this information about the two works, the energy principle is

∆K = 0 = WG + WSp = -mg ∆ybrick - 1
2 k 1∆ySp 122

Solving for the spring constant gives

k = -
2mg∆ybrick

1∆ySp 122 = -
211.5 kg219.80 m/s221-0.48 m2

1-0.080 m22

= 2200 N/m

REVIEW 2200 N/m is a fairly large spring constant, but that’s to be 
expected for a spring that’s going to stop a falling ≈3 pound brick. 
The complexity of this problem was not the math, which was fairly 
simple, but the reasoning. It’s a good illustration of how to apply 
energy reasoning to other problems.
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The Energy Principle
Doing work on a system changes the system energy:

∆Esys = Wext

For a system of particles or of extended objects that interact only 
via friction, Esys = K + Eth. In this case,

∆K + ∆Eth = Wtot

where Wtot is the total work done.

Basic Energy Model
• Energy is a property of the system.

• Energy is transformed within the 
system without loss.

• Energy is transferred to and from 
the system by forces that do work W.

• W 7 0 for energy added.

• W 6 0 for energy removed.

General Principles

The goal of Chapter 9 has been to begin your study of how 
energy is transferred and transformed.

Summary

Eth

K U

System

Environment

Energy
out

Energy
in

W 6 0W 7 0

energy
system
environment
system energy, Esys

work, W
heat
energy transfer

energy transformation
energy principle
basic energy model
before-and-after representation
kinetic energy, K
joule, J
dot product

scalar product
restoring force
elastic
equilibrium length, L0

spring displacement, ∆s
spring constant, k
Hooke’s law

ideal spring
thermal energy, Eth

dissipative force
power, P
watt, W

Terms and Notation

Dissipative forces, such as friction and drag, transform macroscopic 
energy into thermal energy. For friction:

∆Eth = fk ∆s

The work done by a force on a particle as it moves from si to sf is

W = 3
sf

si

Fs  ds = area under the force curve

The work done by a constant force is

W = F
u # ∆r u

The work done by a spring is

W = - 11
2 k1∆sf22 - 1

2 k1∆si222
where ∆s is the displacement of the end of the spring.

Kinetic energy is an energy of motion: K = 1
2  mv2

Potential energy is stored energy.

Thermal energy is the microscopic energy of moving atoms 
and stretched bonds. Only extended objects have thermal energy.

Important Concepts

Power is the rate at which energy is transferred or transformed:

P = dEsys/dt

For a particle with velocity v 

u, the power delivered to the particle 
by force F

u
 is P = F

u # v 

u = Fv cos u.

Dot Product

A
u # B

u
= AB cos u = Ax 

Bx + Ay 

By

Hooke’s Law
The restoring force of an ideal spring is

1FSp2s = -k ∆s

where k is the spring constant and ∆s 
is the displacement of the end of the 
spring from equilibrium.

Applications

∆s

FSp

u

u
A
u

B
u
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254 CHAPTER 9 Work and Kinetic Energy

CONCEPTUAL QUESTIONS

1. If a particle’s speed increases by a factor of 2, by what factor does 
its kinetic energy change?

2. Particle A has one-fourth the mass and four times the kinetic 
energy of particle B. What is the speed ratio, vA/vB?

3. An elevator held by a single cable is ascending but slowing down. 
Is the work done by tension positive, negative, or zero? What about 
the work done by gravity? Explain.

4. The rope in FIGURE Q9.4 pulls the box 
to the left across a rough surface. Is the 
work done by tension positive, negative, 
or zero? Explain.

5. A 0.2 kg plastic cart and a 20 kg lead cart both roll without friction 
on a horizontal surface. Equal forces are used to push both carts 
for a distance of 1 m, starting from rest. After traveling 1 m, is the 
kinetic energy of the plastic cart greater than, less than, or equal to 
the kinetic energy of the lead cart? Explain.

6. A particle moving to the left is slowed by a force pushing to the 
right. Is the work done on the particle positive or negative? Or is 
there not enough information to tell? Explain.

7. A particle moves in a vertical 
plane along the closed path seen 
in FIGURE Q9.7, starting at A 
and eventually returning to its 
starting point. Is the work done 
by gravity positive, negative, or 
zero? Explain.

FIGURE Q9.4

Up

A

FIGURE Q9.7

8. You need to raise a heavy block by pulling it with a massless rope. 
You can either (a) pull the block straight up height h, or (b) pull it 
up a long, frictionless plane inclined at a 15° angle until its height 
has increased by h. Assume you will move the block at constant 
speed either way. Will you do more work in case a or case b? Or is 
the work the same in both cases? Explain.

9. A ball on a string travels once around a circle with a circumference 
of 2 m. The tension in the string is 5 N. How much work is done 
by the tension?

10. A sprinter accelerates from rest. Is the work done on the sprinter 
positive, negative, or zero? Explain.

11. A spring has an unstretched length of 10 cm. It exerts a restoring 
force F when stretched to a length of 11 cm.
a. For what length of the spring is its restoring force 3F?
b. At what compressed length is the restoring force 2F?

12. The left end of a spring is attached to a wall. When Bob pulls on 
the right end with a 200 N force, he stretches the spring by 20 cm. 
The same spring is then used for a tug-of-war between Bob and 
Carlos. Each pulls on his end of the spring with a 200 N force. 
How far does the spring stretch? Explain.

13. The driver of a car traveling at 60 mph slams on the brakes, and 
the car skids to a halt. What happened to the kinetic energy the car 
had just before stopping?

14. The motor of a crane uses power P to lift a steel beam. By what 
factor must the motor’s power increase to lift the beam twice as 
high in half the time?

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 9.2 Work and Kinetic Energy for a Single Particle

1. || At what speed does a compact car of mass 900 kg have the 
same kinetic energy as a truck of mass 12,000 kg moving at a 
speed of 30 km/h?

2. | A car traveling at 20 m/s has 3.0 * 105 J of kinetic energy. At 
what speed will it have 5.0 * 105 J of kinetic energy?

3. | A mother has three times the mass of her young son. Both are 
running with the same kinetic energy. What is the ratio of their 
speeds?

4. | A horizontal rope with 15 N tension drags a 25 kg box 2.0 m 
to the left across a horizontal surface. How much work is done by 
(a) tension and (b) gravity?

5. || A 20 kg box, sliding to the left across a horizontal surface, stops 
after covering a distance of 30 cm. It is brought to a halt by the 
force exerted by a horizontal rope pulling to the right with a tension 
of 10 N. How much work is done by (a) the tension and (b) gravity?

6. | A pitcher accelerates a 150 g baseball from rest to 35 m/s. 
How much work does the pitcher do on the ball?

7. || A 20 g particle is moving to the left at 30 m/s. A force on the 
particle causes it to move to the right at 30 m/s. How much work 
is done by the force?

8. || FIGURE EX9.8 is the kinetic-energy graph for a 2.0 kg object 
moving along the x-axis. Determine the work done on the object 
during each of the four intervals AB, BC, CD, and DE.

BA C D E
t

K (J)

2

0

4

FIGURE EX9.8

9. || The cable of a crane is lifting an 800 kg girder. The girder 
 increases its speed from 0.1 m/s to 1.5 m/s within a distance of 4.5 m.
a. How much work is done by gravity?
b. How much work is done by tension?

10. || You throw a 5.5 g coin straight down at 4.0 m/s from a 
35-m-high bridge.
a. How much work does gravity do as the coin falls to the water 

below?
b. What is the speed of the coin just as it hits the water?

Section 9.3 Calculating the Work Done

11. | Evaluate the dot product A
u # B

u
 if

a. A
u

= 3in + jn and B
u

= in + 3jn.
b. A

u
= -2in - 4jn and B

u
= 2in - jn.
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21. ||| A 500 g particle moving along the x-axis experiences the 
force shown in FIGURE EX9.21. The particle’s velocity is 2.0 m/s 
at x = 0 m. What is its velocity at x = 3 m?

12. | Evaluate the dot product A
u # B

u
 if

a. A
u

= 4jn and B
u

= 2in.
b. A

u
= 3in - 5jn and B

u
= 3in + jn.

13. || What is the angle u between vectors A
u

 and B
u

 in each part of 
Exercise 12?

14. | Evaluate the dot product of the three pairs of vectors in 
FIGURE EX9.14.

v
u

20°660 N

600 N

410 N

30°

T1

T3

T2

u

u

u

FIGURE EX9.18

60° 45°
1295 N1830 N

2500 N

T1
T2

FG

u

u

u

FIGURE EX9.19

x (m)

Fx (N)

0

-4

-2

2

4

1 2 3

FIGURE EX9.20

x (m)

Fx (N)

10

5

2 3
0

10

15

FIGURE EX9.21

x (m)

Fx (N)

0

-2

-3

-4

-1

1

1 2 3 4

FIGURE EX9.22

A
u

B
u5

(a)
3

40°

FIGURE EX9.14

C
u

D
u

2

(b)

3

140°

E
u

F
u

3

4

90°

(c)

15. | Evaluate the dot product of the three pairs of vectors in 
FIGURE EX9.15.

(a)

A
uB

u 3
4

130°

FIGURE EX9.15

C
u

D
u

(b)

5

4

(c)

E
u

F
u

5
4

130°

16. || A 45 g bug is hovering in the air. A gust of wind exerts a force 
F
u

= 14.0in - 6.0jn2 * 10-2 N on the bug.
a. How much work is done by the wind as the bug undergoes 

displacement ∆r u = 12.0in - 2.0jn2 m?
b. What is the bug’s speed at the end of this displacement? Assume 

that the speed is due entirely to the wind.
17. || A 25 kg air compressor is dragged up a rough incline from 

r u
1 = 11.3in + 1.3jn2 m to r u

2 = 18.3in + 2.9jn2 m, where the y-axis 
is vertical. How much work does gravity do on the compressor 
during this displacement?

18. || The three ropes shown in the bird’s-eye view of FIGURE EX9.18  
are used to drag a crate 3.0 m across the floor. How much work is  
done by each of the three forces?

19. || The two ropes seen in FIGURE EX9.19 are used to lower a 255 kg  
piano 5.00 m from a second-story window to the ground. How 
much work is done by each of the three forces?

20. | FIGURE EX9.20 is the force-versus-position graph for a particle 
moving along the x-axis. Determine the work done on the particle 
during each of the three intervals 0–1 m, 1–2 m, and 2–3 m.

22. || A 2.0 kg particle moving along the x-axis experiences the 
force shown in FIGURE EX9.22. The particle’s velocity is 3.0 m/s at  
x = 0 m. At what point on the x-axis does the particle have a 
turning point?

23. || A particle moving on the x-axis experiences a force given by 
Fx = qx2, where q is a constant. How much work is done on the 
particle as it moves from x = 0 to x = d?

24. || A 15 g plastic ball is thrown horizontally at 12 m/s from 
x = 0 m. It experiences an increasing headwind that exerts a 
drag force Fx = -12.0 * 10-3 N/m2 x. How far does the ball 
travel before reversing direction and being blown backward?

Section 9.4 Restoring Forces and the Work Done by a Spring

25. || A 25-cm-long vertical spring has one end fixed on the floor. 
Placing a 3.1 kg dictionary on the spring compresses it to a length 
of 17 cm. What is the spring constant?

26. | A horizontal spring with spring constant 650 N/m is attached 
to a wall. An athlete presses against the free end of the spring, 
compressing it 6.0 cm. How hard is the athlete pushing?

27. || A 10-cm-long spring is attached to the ceiling. When a 2.0 kg 
mass is hung from it, the spring stretches to a length of 15 cm.
a. What is the spring constant?
b. How long is the spring when a 3.0 kg mass is suspended from it?

28. || A 5.0 kg mass hanging from a spring scale is 
slowly lowered onto a vertical spring, as shown 
in FIGURE EX9.28. The scale reads in newtons.
a. What does the spring scale read just before 

the mass touches the lower spring?
b. The scale reads 20 N when the lower 

spring has been compressed by 2.0 cm. 
What is the value of the spring constant for 
the lower spring?

c. At what compression will the scale read 
zero?

29. || A student of mass 70 kg is standing atop a spring in an ele-
vator as it accelerates upward at 4 m/s2. The spring constant is 
3500 N/m. By how much is the spring compressed?

30. || A horizontal spring with spring constant of 80 N/m  extends 
outward from a wall just above floor level.  A 1.8 kg box 
 sliding across a frictionless floor hits the end of the spring and 
 compresses it 9 cm before the spring expands and shoots the 
box back out. How fast was the box moving when it hit the 
spring?

Scale

FIGURE EX9.28
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256 CHAPTER 9 Work and Kinetic Energy

c. A 3-inch-diameter pipe can deliver 500 gpm (gallons per 
minute) of water. The viscosity of water is low and is often ne-
glected in hydraulic calculations. In the United States, pumps 
are usually rated in horsepower (hp). What pump power in hp 
is needed to pump 500 gpm up a height of 3.0 m (≈10 ft)? The 
density of water is 1000 kg/m3. Useful conversion factors are 
1 gal = 3.79 L and 1 m3 = 1000 L.

Problems
43. || A 1000 kg elevator accelerates upward at 1.0 m/s2 for 10 m, 

starting from rest.
a. How much work does gravity do on the elevator?
b. How much work does the tension in the elevator cable do on 

the elevator?
c. What is the elevator’s kinetic energy after traveling 10 m?

44. || a. Starting from rest, a crate of mass m is pushed up a fric-
tionless slope of angle u by a horizontal force of magnitude 
F. Use work and energy to find an expression for the crate’s 
speed v when it is at height h above the bottom of the slope.

b. Doug uses a 25 N horizontal force to push a 5.0 kg crate 
up a 2.0@m@high, 20° frictionless slope. What is the speed 
of the crate at the top of the slope?

45. ||| A 150 g particle at x = 0 is moving at 2.00 m/s in the 
+x-direction. As it moves, it experiences a force given by 
Fx = 10.250 N2 sin 1x/2.00 m2. What is the particle’s speed when  
it reaches x = 3.14 m?

46. ||| Susan’s 10 kg baby brother Paul sits on a mat. Susan pulls the 
mat across the floor using a rope that is angled 30° above the floor. 
The tension is a constant 30 N and the coefficient of friction is 0.20. 
Use work and energy to find Paul’s speed after being pulled 3.0 m.

47. || A pile driver lifts a 250 kg weight and then lets it fall onto the 
end of a steel pipe that needs to be driven into the ground. A fall 
from an initial height of 1.5 m drives the pipe in 35 cm. What is 
the average force that the weight exerts on the pipe?

48. | A ball shot straight up with kinetic energy K0 reaches height  
h. What height will it reach if the initial kinetic energy is doubled?

49. || A 50 kg ice skater is gliding along the ice, heading due north 
at 4.0 m/s. The ice has a small coefficient of static friction, to 
prevent the skater from slipping sideways, but m

 k = 0. Suddenly, 
a wind from the northeast exerts a force of 4.0 N on the skater.
a. Use work and energy to find the skater’s speed after gliding 

100 m in this wind.
b. What is the minimum value of ms that allows her to continue 

moving straight north?
50. || An A350-900 jet airliner has twin engines, each with 370 kN 

thrust. A 260,000 kg jet reaches a takeoff speed of 75 m/s in a 
distance of 1200 m.
a. How much work is done by the jet engines?
b. What is the increase in thermal energy due to rolling friction 

and air drag?
51. ||| Hooke’s law describes an ideal spring. Many real springs are 

better described by the restoring force 1FSp2s = -k ∆s - q  1∆s23, 
where q is a constant. Consider a spring with k = 250 N/m and 
q = 800 N/m3.
a. How much work must you do to compress this spring 15 cm? 

Note that, by Newton’s third law, the work you do on the 
spring is the negative of the work done by the spring.

Hint: Let the spring lie along the s-axis with the equilibrium po-
sition of the end of the spring at s = 0. Then ∆s = s.
b. By what percent has the cubic term increased the work over 

what would be needed to compress an ideal spring?

Section 9.5 Dissipative Forces and Thermal Energy

31. | A 2200 kg car traveling at 25 m/s slams on the brakes and 
skids to a halt.
a. What is the increase in thermal energy of the car tires and 

the road?
b. Can you determine the increase in thermal energy of just the 

car tires? If so, what is it? If not, why not?
32. | A 65 kg runner falls and slides generating 270 J of thermal 

energy in her legs and the ground. How fast was she running?
33. || A baggage handler throws a 15 kg suitcase along the floor of 

an airplane luggage compartment with a speed of 1.2 m/s. The 
suitcase slides 2.0 m before stopping. Use work and energy to 
find the suitcase’s coefficient of kinetic friction on the floor.

34. | Mario, with a mass of 33 kg, is going down a 6.0-m-high 
water slide. He starts at rest, and his speed at the bottom is 
9.5 m/s. How much thermal energy is created by friction during 
his descent?

35. || An 8.0 kg crate is pulled 5.0 m up a 30° incline by a rope angled 
18° above the incline. The tension in the rope is 120 N, and the 
crate’s coefficient of kinetic friction on the incline is 0.25.
a. How much work is done by tension, by gravity, and by the 

normal force?
b. What is the increase in thermal energy of the crate and incline?

Section 9.6 Power

36. | a. How much work must you do to push a 10 kg block of steel 
across a steel table at a steady speed of 1.0 m/s for 3.0 s?

b. What is your power output while doing so?
37. | a. How much work does an elevator motor do to lift a 1000 

kg elevator a height of 100 m?
b. How much power must the motor supply to do this in 50 s 

at constant speed?
38. | How much energy is consumed by (a) a 2.2 kW hair dryer used 

for 5.0 min and (b) a 6.0 W LED bulb left on for 24 h?
39. || A 50 kg sprinter, starting from rest, runs 50 m in 7.0 s at 

 constant acceleration.
a. What is the magnitude of the horizontal force acting on the 

sprinter?
b. What is the sprinter’s power output at 2.0 s, 4.0 s, and 6.0 s?

40. | At midday, solar energy strikes the earth with an intensity 
about 1 kW/m2. What is the area of a solar collector that could 
collect 32 MJ of energy in 1 h? This is roughly the energy content 
of 1 liter of gasoline.

41. || A 70 kg human sprinter can accelerate from rest to 10 m/s in 
3.0 s. During the same time interval, a 30 kg greyhound can go 
from rest to 20 m/s. What is the average power output of each? 
Average power over a time interval ∆t is ∆E /∆t.

42. || The energy used to pump liquids and gases through pipes 
is a significant fraction of the total energy consumption in the 
United States. Consider a small volume V of a liquid that has 
density r. Assume that the fluid is nonviscous so that friction 
with the pipe walls can be neglected.
a. An upward-pushing force from a pump lifts this volume of 

fluid a height h at constant speed. How much work does the 
pump do?

b. The pump’s power is the rate at which it does work. The liq-
uid’s volume flow rate Q is the volume of fluid per second, in 
m3/s, that enters or exits the pipe. Write an expression for the 
pump power Ppump needed to lift Q m3/s of the liquid through 
height h. This is a well-known and often-used equation in 
engineering.
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Exercises and Problems 257

60. | A 95 kg firefighter needs to climb the stairs of a 25-m-tall 
building while carrying a 40 kg backpack filled with gear. How 
much power does he need to reach the top in 75 s?

61. ||| A hydroelectric power plant uses spinning turbines to transform 
the kinetic energy of moving water into electric energy with 80% ef-
ficiency. That is, 80% of the kinetic energy becomes electric energy. 
A small hydroelectric plant at the base of a dam generates 50 MW 
of electric power when the falling water has a speed of 18 m/s. What 
is the water flow rate—kilograms of water per  second—through the 
turbines?

62. || When you ride a bicycle at constant speed, nearly all the en-
ergy you expend goes into the work you do against the drag force 
of the air. Model a cyclist as having cross-section area 0.45 m2 
and, because the human body is not aerodynamically shaped, a 
drag coefficient of 0.90. Use 1.2 kg/m3 as the density of air at 
room temperature.
a. What is the cyclist’s power output while riding at a steady 

7.3 m/s 116 mph2?
b. Metabolic power is the rate at which your body “burns” fuel 

to power your activities. For many activities, your body is 
roughly 25% efficient at converting the chemical energy of 
food into mechanical energy. What is the cyclist’s metabolic 
power while cycling at 7.3 m/s?

c. The food calorie is equivalent to 4190 J. How many calories 
does the cyclist burn if he rides over level ground at 7.3 m/s 
for 1 h?

63. || A Porsche 944 Turbo has a rated engine power of 217 hp. 
30% of the power is lost in the engine and the drive train, and 
70% reaches the wheels. The total mass of the car and driver is 
1480 kg, and two-thirds of the weight is over the drive wheels.
a. What is the maximum acceleration of the Porsche on a  

concrete surface where ms = 1.00?
Hint: What force pushes the car forward?

b. If the Porsche accelerates at amax, what is its speed when it 
reaches maximum power output?

c. How long does it take the Porsche to reach the maximum 
power output?

64. || A farmer uses a tractor to pull a 150 kg bale of hay up a 15° 
incline to the barn at a steady 5.0 km/h. The coefficient of kinetic 
friction between the bale and the ramp is 0.45. What is the trac-
tor’s power output?

65. || Astronomers using a 2.0-m-diameter telescope observe a 
distant supernova—an exploding star. The telescope’s detector 
records 9.1 * 10-11 J of light energy during the first 10 s. It’s 
known that this type of supernova has a visible-light power 
 output of 5.0 * 1037 W for the first 10 s of the explosion. How 
distant is the supernova? Give your answer in light years, where 
one light year is the distance light travels in one year. The speed 
of light is 3.0 * 108 m/s .

66. ||  A paramecium is an elongated unicellular organism approxi-
mately 50 mm in diameter and 150 mm in length. It swims through 
water by whip-like movements of cilia, small hairs on the outside of 
its body. Because it moves “head first” through the water, drag is de-
termined primarily by its diameter and only secondarily by its length, 
so it’s reasonable to model the paramecium as a 70@mm@diameter 
sphere. A paramecium uses 1.5 pW of locomotive power to propel 
itself through 20°C water, where 1 pW = 1 picowatt = 10-12 W. 
What is its swimming speed in mm/s?

52. || The force acting on a particle is Fx = F0e
-x/L. How much work 

does this force do as the particle moves along the x-axis from 
x = 0 to x = L?

53. ||| The gravitational attraction between two objects with masses 
mA and mB, separated by distance x, is F = GmAmB/x2, where G 
is the gravitational constant.
a. How much work is done by gravity when the separation 

changes from x1 to x2? Assume x2 6 x1.
b. If one mass is much greater than the other, the larger mass 

stays essentially at rest while the smaller mass moves toward 
it. Suppose a 1.5 * 1013 kg comet is passing the orbit of Mars, 
heading straight for the sun at a speed of 3.5 * 104 m/s . 
What will its speed be when it crosses the orbit of Mercury? 
Astronomical data are given in the tables at the back of the 
book, and G = 6.67 * 10-11 N m2/kg2.

54. || A blue ball has a mass of 160 g. A constant force pushes 
the blue ball horizontally and launches it at a speed of 6.0 m/s. 
The same force pushes a yellow ball through the same distance, 
launching it at 4.0 m/s. What is the mass of the yellow ball?

55. || A 40 g mass is attached to one end of a 15-cm-long spring. 
The other end of the spring is connected to a frictionless pivot on 
a frictionless, horizontal surface. Spinning the mass around in a 
circle at 75 rpm causes the spring to stretch to a length of 17 cm. 
What is the value of the spring constant?

56. || A 50 g rock is placed in a slingshot and the rubber band is 
stretched. The magnitude of the force of the rubber band on the 
rock is shown by the graph in FIGURE P9.56. The rubber band is 
stretched 30 cm and then released. What is the speed of the rock?

3020100

60

40

20

x (cm)

FSp (N)

FIGURE P9.56

u

m
R

FIGURE P9.57

57. || a. FIGURE P9.57 shows a rope holding a mass m in place at 
angle u on the side of a frictionless circular slope of  radius 
R. What is the tension in the rope?

b. How much work does tension do to pull the mass from 
the bottom of the hill (u = 0) to the top at constant speed? 
To answer this question, write an expression for the work 
done when the mass moves through a very small distance 
ds while it has angle u, replace ds with an equivalent ex-
pression involving R and du, then integrate.

58. || A horizontal spring with spring constant 250 N/m is com-
pressed by 12 cm and then used to launch a 250 g box across the 
floor. The coefficient of kinetic friction between the box and the 
floor is 0.23. What is the box’s launch speed?

59. || A spring of equilibrium length L1 and spring constant k1 hangs  
from the ceiling. Mass m1 is suspended from its lower end. Then a 
second spring, with equilibrium length L2 and spring constant k2, 
is hung from the bottom of m1. Mass m2 is suspended from this  
second spring. How far is m2 below the ceiling?
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258 CHAPTER 9 Work and Kinetic Energy

Challenge Problems
70. ||| A 12 kg weather rocket generates a thrust of 200 N. The 

rocket, pointing upward, is clamped to the top of a vertical spring. 
The bottom of the spring, whose spring constant is 550 N/m, is 
anchored to the ground.
a. Initially, before the engine is ignited, the rocket sits at rest on 

top of the spring. How much is the spring compressed?
b. After the engine is ignited, what is the rocket’s speed when 

the spring has stretched 40 cm?
71. ||| A gardener pushes a 12 kg lawnmower whose handle is tilted 

up 37° above horizontal. The lawnmower’s coefficient of rolling 
friction is 0.15. How much power does the gardener have to supply 
to push the lawnmower at a constant speed of 1.2 m/s? Assume his 
push is parallel to the handle.

72. ||| A uniform solid bar with mass m and length L rotates with 
angular velocity v about an axle at one end of the bar. What is the 
bar’s kinetic energy?

In Problems 67 through 69 you are given the equation(s) used to solve 
a problem. For each of these, you are to

a. Write a realistic problem for which this is the correct equation(s).
b. Draw a pictorial representation.
c. Finish the solution of the problem.

67. 1
2 12.0 kg214.0 m /s22 + 0

+  10.15212.0 kg219.8 m/s2212.0 m2 = 0 + 0 + T12.0 m2
68. Fpush - 10.202130 kg219.8 m/s22 = 0

75 W = Fpush v

69. T - 11500 kg219.8 m/s22 = 11500 kg211.0 m/s22
P = T12.0 m /s2
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259

Interactions and Potential  
Energy

How do interactions affect energy?
We continue our investigation of energy  
by allowing interactions to be part of the  
system, rather than external forces. You 
will learn that interactions can store energy 
within the system. Further, this  interaction 
energy can be transformed—via the 
 interaction forces—into kinetic energy.

What is potential energy?
Interaction energy is usually called  potential 
energy. There are many kinds of potential 
energy, each associated with position.

■■ Gravitational potential energy changes 
with height.

■■ Elastic potential energy changes with 
stretching.

❮❮ LOOKING BACK Section 9.1 Energy overview

When is energy conserved?
■■ If a system is isolated, its total energy is 

conserved.
■■ If a system both is isolated and has no 

dissipative forces, its mechanical energy, 
K + U, is conserved.

Energy bar charts are a tool for visualizing 
energy conservation.

What is an energy diagram?
An energy diagram is a graphical  
representation of how the energy of a  
particle changes as it moves. Turning points 
occur where  the total energy line crosses the 
potential- energy curve. And potential-energy 
minima are points of stable equilibrium.

How is force related to potential energy?
Only certain types of forces, called 
 conservative forces, are associated with  
a potential energy. For these forces,

■■ The work done changes the potential 
energy by ∆U = -W.

■■ Force is the negative of the slope of the 
potential-energy curve.

Where are we now in our study of energy?
Energy is a big topic, not one that can be presented in a single 
chapter. Chapters 9 and 10 are primarily about mechanical energy 
and the mechanical transfer of energy via work. And we’ve touched 
on thermal energy because it’s unavoidable in realistic mechanical 
systems with friction. These are related by the energy principle:

∆Esys = ∆K + ∆U + ∆Eth = Wext

Part V of this book, Thermodynamics, will expand our energy ideas 
to include heat and a deeper understanding of thermal energy. Then 
we’ll add another form of energy—electric energy—in Part VI.

IN THIS CHAPTER, you will develop a better understanding of energy and its conservation.

10

The gravitational potential  
energy of water stored behind  
a dam is transformed into  
electric energy.

Environment

System

The interaction is 
inside the system.

x

y

0

+

Ki Ui Uf=+ +
=+ +

Kf

E

0 x

Total energy

Potential energy

U

s
Fs = -slope
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260 CHAPTER 10 Interactions and Potential Energy 

10.1 Potential Energy
If you press a ball against a spring and release it, the ball shoots forward. It certainly 
seems like the spring had a supply of stored energy that was transferred to the ball. 
Or imagine tossing the ball straight up. Where does its kinetic energy go as it slows? 
And from where does it acquire kinetic energy as it falls? There’s again a sense that 
the energy is stored somewhere as the ball rises, then released as the ball falls. But is 
energy really stored? And if so, where? And how? Answering these questions is key to 
expanding our understanding of the basic energy model.

The key idea of Chapter 9 was that energy is a property of a system and that forces 
from the environment—external forces—can change the system’s energy by doing 
work on the system. Chapter 9 focused on systems with one or more particles in which 
all forces are external forces that originate in the environment. But that’s not the only 
way to define the system. An alternative is to define the system with the forces inside. 
How does that affect the system’s energy?

For example, suppose objects A and B are connected by a compressed spring. If we 
release them, they’ll fly apart and gain kinetic energy. FIGURE 10.1a is a before-and- after 
representation and FIGURE 10.1b is an analysis, based on the discussion of Chapter 9, 
in which we’ve defined system 1 to consist of only the two objects. The spring forces  
F
u

Sp on A and F
u

Sp on B do work WA on A and WB on B. For system 1, the energy principle

 ∆Esys 1 = ∆Ktot = ∆KA + ∆KB = WA + WB (10.1)

tells us that the work done by the spring changes the system’s kinetic energy.
But recall that forces are interactions. With that in mind, we can consider a dif-

ferent choice of system, system 2, in which the spring—the interaction—is inside the 
system. FIGURE 10.1c is an interaction diagram, like those in Chapter 7, showing that A 
and B are interacting with each other via the spring. It’s important to recognize that 
a system is an analysis tool, not a physical thing. We can define the system however 
we want; our choice does not change the behavior of physical objects. Objects A and 
B are oblivious to our choice of system, so ∆Ktot for system 2 is exactly the same as 
for system 1.

But system 2 differs from system 1 in one important way. Unlike system 1, system 2  
has no external forces that transfer energy to or from the environment; hence W = 0. 
Consequently, the energy principle for system 2 is

 ∆Esys 2 = W = 0 (10.2)

But we know that system 2 has a changing kinetic energy, so how can ∆Esys 2 = 0?
Because system 2 has an interaction inside the system that system 1 lacks, let’s 

postulate that system 2 has an additional form of energy associated with the interac-
tion. That is, system 1 has Esys 1 = Ktot, because particles have only kinetic energy, but 
system 2 has Esys 2 = Ktot + U, where U, called potential energy, is the energy of 
the interaction.

If this is true, we can combine ∆Esys 2 = 0, from Equation 10.2, with our  knowledge 
of ∆Ktot from Equation 10.1 to write

 ∆Esys 2 = ∆Ktot + ∆U = 1WA + WB2 + ∆U = 0 (10.3)

That is, system 2 can have ∆Esys = 0 if it has a potential energy that changes by just 
the right amount to offset the change in kinetic energy:

 ∆U = -1WA + WB2 = -Wint (10.4)

where Wint is the total work done inside the system by the interaction forces.
Equation 10.3 tells us that the system’s kinetic energy can increase 1  ∆K 7 02 if its 

potential energy decreases 1  ∆U 6 02 by the same amount. In effect, the interaction 
stores energy inside the system with the potential to be converted to kinetic energy 
(or, in other situations, to thermal energy)—hence the name potential energy. This 

System 1

After:

Before:
A

A B

B

System 2

A B

A B
Spring

(b)

(a)

FSp on B

u
FSp on A

u

KBKA

External forces do work, transferring
kinetic energy to A and B.

(c) The interaction energy (potential energy)
is transformed to kinetic energy.

FIGURE 10.1 Two ways to think about a 
spring pushing objects apart.
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10.2 Gravitational Potential Energy 261

idea will become more concrete as we start looking at specific examples. And, since 
we postulated the existence of an energy associated with interactions, we’ll need to 
investigate the types of interactions for which this is true.

   NOTE    Kinetic energy is the energy of an object. In contrast, potential energy is the 
energy of an interaction. You can say “The ball has kinetic energy” but not “The ball 
has potential energy.” We’ll look at the best way to describe potential energy when 
we get to specific examples.

Systems Matter
When solving a problem, you get to define the system. But your choice has  consequences! 
Esys is the energy of the system, so a different system will have a different energy. 
 Similarly, Wext is the work done on the system by forces originating in the environment, 
and that will depend on the boundary between the system and the environment.

In Figure 10.1, system 1 is a restricted system of just the particles, so system 1 has 
only kinetic energy. All the interaction forces are external forces that do work. Thus 
system 1 obeys

∆Esys = ∆Ktot = WA + WB

System 2 includes the interaction, so system 2 has both kinetic and potential energy. 
But the choice of the system boundary means that no work is done by external forces. 
So for system 2,

∆Esys = ∆Ktot + ∆U = 0

Both mathematical statements are true because they refer to different systems. Notice 
that, for system 2, kinetic energy can be transformed into potential energy, or vice 
versa, but the total energy of the system does not change. This is our first glimpse of 
the idea of conservation of energy.

The point to remember is that any choice of system is acceptable, but you can’t mix 
and match. You can define the system so that you have to calculate work, or you can  define 
the system where you use potential energy, but using both work and potential energy is in-
correct because it double counts the contribution of the interaction. Thus the most critical 
step in an energy analysis is to clearly define the system you’re working with.

10.2 Gravitational Potential Energy
We’ll start our exploration of potential energy with gravitational potential  energy, 
the interaction energy associated with the gravitational interaction between two 
 masses. The symbol for gravitational potential energy is UG. We’ll restrict  ourselves 
to the “flat-earth approximation” F

u

G = -mgjn. The gravitational potential energy of 
 two astronomical bodies will be taken up in Chapter 13.

FIGURE 10.2 shows a ball of mass m moving upward from an initial vertical position yi  
to a final vertical position yf. The earth exerts force F

u

E on B on the ball and, by Newton’s 
third law, the ball exerts an equal-but-opposite force F

u

B on E on the earth.
We could define the system to consist of only the ball, in which case the force of 

gravity is an external force that does work on the ball, changing its kinetic energy. 
We did exactly this in Chapter 9. Now let’s define the system to be ball + earth. This 
brings the interaction inside the system, so (ignoring any gravitational forces from 
distant astronomical bodies) there’s no external work. Instead, we have an energy of 
interaction—the gravitational potential energy—described by Equation 10.4:

 ∆UG = -1WB + WE2 (10.5)

where WB is the work gravity does on the ball and WE is the work gravity does on the 
earth. The latter, practically speaking, is zero. F

u

E on B and F
u

B on E have equal magni-
tudes, by Newton’s third law, but the earth’s displacement is completely insignificant 

Bungee jumping is all about the trans-
formation of energy. The gravitational 
potential energy of the jumper is trans-
formed first into kinetic energy as she 
falls, then into elastic potential energy of 
the stretched bungee cord. Finally, after 
many oscillations, the energy is trans-
formed into an increased thermal energy 
of the air and the bungee cord.

yf

yi

y

m

System

Environment

∆y

FE on B

u

FE on B

u

FB on E

u

After:

Before:

FIGURE 10.2 The ball + earth system has 
a gravitational potential energy.
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262 CHAPTER 10 Interactions and Potential Energy 

compared to the ball’s displacement. Because work is a product of force and displace-
ment, the work done on the earth is essentially zero and we can write

 ∆UG = -WB (10.6)

You learned in Chapter 9 to compute the work of gravity on the ball: WB =  
1FG2y ∆y = -mg ∆y. So if the ball changes its vertical position by ∆y, the  gravitational 
potential energy changes by

 ∆UG = -WB = mg ∆y (10.7)

Notice that increasing the ball’s height 1  ∆y 7 02 increases the gravitational potential 
energy 1  ∆UG 7 02, as we would expect.

Our energy analysis has given us an expression for ∆UG, the change in potential 
energy, but not an expression for UG itself. If we write out what the ∆ in Equation 10.7 
means—final value minus initial value—we have

 UGf - UGi = mgyf - mgyi (10.8)

Consequently, we define the gravitational potential energy to be

 UG = mgy  (gravitational potential energy) (10.9)

Notice that gravitational potential energy is an energy of position. It depends on the 
object’s position but not on its speed. You should convince yourself that the units of 
mass times acceleration times position are joules, the unit of energy.

STOP TO THINK 10.1 Rank in order, from largest to 
smallest, the gravitational potential energies of the ball + 
earth system when the ball is at positions A, B, C, and D.

A

B

C

D

v = 0

Rafael uses a slingshot to shoot a 25 g pebble straight up at 17 m/s. 
How high does the pebble go?

MODEL Let the system consist of both the earth and the pebble, 
which we model as a particle. Assume that air resistance is negli-
gible. There are no external forces to do work, but the system does 
have gravitational potential energy.

VISUALIZE FIGURE 10.3 is a before-and-after pictorial representa-
tion. The before-and-after representation will continue to be our 
primary visualization tool.

SOLVE The energy principle for the pebble + earth system is

∆Esys = ∆K + ∆UG = Wext = 0

That is, the system energy does not change at all. Instead, kinetic 
energy is transformed into potential energy without loss inside the 
system. In principle, the kinetic energy is that of the ball plus the 
kinetic energy of the earth. But as we just noted, the enormous  
mass difference means that the earth is effectively at rest while the 
pebble does all the moving, so the only kinetic energy we need to 
consider is that of the pebble. Thus we have

0 = ∆K + ∆UG = 11
2 mv1 

2 - 1
2 mv0 

22 + 1mgy1 - mgy02

We know that v1 = 0 m/s, and we chose a coordinate system in 
which y0 = 0 m, so we’re left with

y1 =
v0 

2

2g
=

117 m/s22

219.80 m/s22 = 15 m

The answer did not depend on the pebble’s mass, which is not 
surprising after our earlier practice with free-fall problems.

REVIEW A height of 15 m ≈ 45 ft seems reasonable for a slingshot.

EXAMPLE 10.1 ■ Launching a pebble

0

y System

Before:
y0 = 0 m
v0 = 17 m/s
m = 0.025 kg

After:
y1

v1 = 0 m/s

Find: y1

FIGURE 10.3 Pictorial representation of the pebble + earth system.
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10.2 Gravitational Potential Energy 263

The Zero of Potential Energy
Our expression for the gravitational potential energy UG = mgy seems straightfor-
ward. But you might notice, on further reflection, that the value of UG depends on 
where you choose to put the origin of your coordinate system. Consider FIGURE 10.4, 
where Amber and Carlos are attempting to determine the potential energy when a 
1 kg rock is 1 m above the ground. Amber chooses to put the origin of her coordinate 
system on the ground, measures yrock = 1 m, and quickly computes UG = mgy = 9.8 J. 
Carlos, on the other hand, read Chapter 1 very carefully and recalls that it is entirely 
up to him where to locate the origin of his coordinate system. So he places his origin 
next to the rock, measures yrock = 0 m, and declares that UG = mgy = 0 J!

How can the potential energy have two different values? The source of this apparent 
difficulty comes from our interpretation of Equation 10.7. Our energy analysis found 
that the potential energy changes by ∆UG = mg1yf - yi2. Our claim that UG = mgy is 
consistent with this finding, but so also would be a claim that UG = mgy + C, where 
C is any constant.

In other words, potential energy does not have a uniquely defined value. Adding or 
subtracting the same constant from all potential energies in a problem has no physical 
consequences because our analysis uses only ∆UG, the change in the potential energy, 
never the actual value of UG. In practice, we work with potential energies by setting a 
reference point or reference level where UG = 0. This is the zero of potential energy. 
Where you place the reference point is entirely up to you; it makes no difference as long 
as every potential energy in the problem uses the same reference point. For gravitational 
potential energy, we choose the reference level by placing the origin of the y-axis at that 
point. Where y = 0, UG = 0. In Figure 10.4, Amber has placed her zero of potential  energy 
at the ground, whereas Carlos has set a reference level 1 m above the ground. Either is 
perfectly acceptable as long as Amber and Carlos use their reference levels consistently.

But what happens when the rock falls? When it gets to the ground, Amber measures 
y = 0 m and computes UG = 0 J. No problem. But Carlos measures y = -1 m and thus 
computes UG = -9.8 J. A negative potential energy may seem surprising, but it’s not 
wrong; it simply means that the potential energy is less than at the reference point. The 
potential energy with the rock on the ground is certainly less than when the rock was 
1 m above the ground, so for Carlos—with an elevated reference level—the potential 
energy is negative. The important point is that both Amber and Carlos agree that the 
gravitational potential energy changes by ∆UG = -9.8 J as the rock falls.

   NOTE    It may be tempting to refer to the rock’s potential energy, but potential energy 
is not a property of an object. Potential energy is an interaction energy and thus is a 
property of the system.

Energy Bar Charts
If an object of mass m interacts with the earth (or other astronomical body) and there 
are no other forces, the energy principle for the object + earth system, Equation 10.3, is

 ∆K + ∆UG = 1K f - K i2 + 1UGf - UGi2 = 0 (10.10)

We can rewrite this as

 K i + U Gi = K f + UGf (10.11)

The quantity Emech = Ktot + U int, the total macroscopic kinetic and potential energy, is 
called the mechanical energy of the system. Equation 10.11 is telling us that—in this 
 situa tion—the mechanical energy does not change as the object undergoes vertical 
 motion.  Whatever initial mechanical energy the system had before the vertical motion, it has 
 exactly the same mechanical energy after the motion. Kinetic energy may be transformed 
into  potential  energy during the motion, or vice versa, but their sum remains unchanged.

A quantity that is unchanged during an interaction is said to be conserved, and 
Equation 10.11 is our first statement of the law of conservation of energy. We’ll explore 
energy conservation thoroughly later in this chapter, but we’re already beginning to 
see the power of thinking about mechanical systems in terms of energy.

Amber’s coordinate
system

1 kg
rock

1 m

UG = 9.8 J UG = 0 J

0 m

0 m -1 m

Carlos’s coordinate
system

FIGURE 10.4 Amber and Carlos use 
different coordinate systems to  
determine the gravitational potential 
energy.
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264 CHAPTER 10 Interactions and Potential Energy 

Equation 10.11, which is really just energy accounting, can be represented graphi-
cally with an energy bar chart. For example, FIGURE 10.5 is a bar chart showing how 
energy is transformed when a ball is tossed straight up. Kinetic energy is gradually 
transformed into potential energy as the ball rises, then potential energy is  transformed 
into kinetic energy as it falls, but the combined height of the bars does not change.  
That is, the mechanical energy of the ball + earth system is conserved.

UG = 0 UG = 0

K = 0
As it falls, the ball loses
potential energy and gains
kinetic energy.

As it rises, the ball
loses kinetic energy and
gains potential energy.

K UG K UG K UGK UGK UG

The sum K + UG remains constant.

FIGURE 10.5 Energy bar charts for a ball tossed into the air.

   NOTE    Most bar charts have no numbers. Their purpose is to think about the relative 
changes—what’s increasing, what’s decreasing, and what remains constant; there’s 
no significance to how tall a bar is.

A 5.0 kg watermelon is dropped from a third-story balcony, 11 m 
above the street. Unfortunately, the water department forgot to replace 
the cover on a manhole, and the watermelon falls into a 3.0-m-deep 
hole. How fast is the watermelon going when it hits bottom?

MODEL Let the system consist of both the earth and the  watermelon, 
which we model as a particle. Assume that air resistance is 
 negligible. There are no external forces, and the motion is vertical, 
so the  system’s mechanical energy is conserved.

VISUALIZE FIGURE 10.6 shows both a before-and-after pictorial 
 representation and an energy bar chart. Initially the system has 

gravitational potential energy but no kinetic energy. Potential 
energy is transformed into kinetic energy as the watermelon falls. 
Our choice of the y-axis origin has placed the zero of potential 
energy at ground level, so the potential energy is negative when the 
watermelon reaches the bottom of the hole. Even so, the combined 
height of the two bars has not changed.

SOLVE The energy principle for the watermelon + earth system, 
written as a conservation statement, is

Ki + UGi = 0 + mgy0 = Kf + UGf = 1
2 mv1 

2 + mgy1

Solving for the impact speed, we find

  v1 = 22g1y0 - y12
  = 2219.80 m/s22111.0 m - 1-3.0 m22
  = 17 m/s

REVIEW A speed of 17 m/s ≈ 35 mph seems reasonable for the 
 watermelon after falling ≈4 stories. In thinking about this  problem,  
you might be concerned that, once below ground level,  potential 
energy continues being transformed into kinetic energy even though 
the potential energy is “less than none.” Keep in mind that the actual 
value of U is not relevant because we can place the zero of potential 
energy anywhere we wish, so a negative potential  energy is just a 
number with no implication that it’s “less than none.” There’s no 
“storehouse” of potential energy that might run dry. As long as the 
interaction acts, potential energy can continue being transformed 
into kinetic energy.

EXAMPLE 10.2 ■ Dropping a watermelon

0

y0

y1

y System

Before:
y0 = 11 m
v0 = 0 m/s
m = 5.0 kg

After:
y1 = -3.0 m
v1

Find: v1

The combined height of the
two bars is unchanged.

0

+

-
Ki UGi UGf+ = +Kf

+ +=

FIGURE 10.6 Pictorial representation and energy bar chart of the 
watermelon + earth system.
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10.2 Gravitational Potential Energy 265

Digging Deeper into Gravitational Potential Energy
The concept of gravitational potential energy would be of little interest or use if it 
applied only to vertical free fall. Let’s begin to expand the idea. FIGURE 10.7 shows a 
particle of mass m moving at an angle while acted on by gravity. How much work does 
gravity do?

Gravity is a constant force. In Chapter 9 you learned that, in general, the work done 
by a constant force is W = F

u # ∆r u. If we write both F
u

G and ∆r u in terms of compo-
nents, and use the Chapter 9 result for calculating the dot product with components, 
we find that the work done by gravity is

   Wgrav = F
u

G
# ∆r u = 1FG2x1  

∆rx2 + 1FG2y1  

∆ry2 = 0 + 1-mg21  ∆y2 
  = -mg ∆y 

(10.12)

Because F
u

G has no x-component, the work depends only on the vertical displacement ∆y.
Consequently, if we define the system to be object + earth, the change in the 

system’s gravitational potential energy depends only on the object’s vertical 
displacement. This is true not only for motion along a straight line, as in Figure 10.7, 
but also for motion along a curved trajectory because a curve can be represented as 
the limit of a very large number of very short straight-line segments.

For example, FIGURE 10.8 shows an object sliding down a curved, frictionless 
surface. The change in gravitational potential energy of the object + earth system 
 depends only on ∆y, the distance the object descends, not on the shape of the curve. 
But now there’s an additional force—the normal force of the surface. Does this force 
affect the system’s energy? No! The normal force is always perpendicular to the box’s 
instantaneous displacement, and you learned in Chapter 9 that forces perpendicular 
to the displacement do no work. Forces always perpendicular to the motion do not 
affect the system’s energy. They can be ignored during an energy analysis.

f

i

FG

u
u∆r

FG = -mg e
u

n

∆y en
∆x dn

FIGURE 10.7 Gravity does work on a 
particle moving at an angle.

Frictionless

∆y n
u

n
u

FG

u

FG

u

The normal force is always
perpendicular to the motion.
It does no work.

FIGURE 10.8 For motion on any  
frictionless surface, only the vertical 
displacement ∆y affects the energy.

STOP TO THINK 10.2 Two identical projectiles 
are fired with the same speed but at different  angles. 
Neglect air resistance. At the elevation shown as a 
dashed line,

a. The speed of A is greater than the speed of B.
b. The speed of A is the same as the speed of B.
c. The speed of A is less than the speed of B.

x

y

A

B

Christine runs forward with her sled at 2.0 m/s. She hops onto the 
sled at the top of a 5.0-m-high, very slippery slope. What is her 
speed at the bottom?

MODEL Let the system consist of the earth and the sled, which  
we model as a particle. Because the slope is “very slippery,” we’ll 
assume that friction is negligible. The slope exerts a normal force 
on the sled, but it is always perpendicular to the motion and does 
not affect the energy.

VISUALIZE FIGURE 10.9a shows a before-and-after pictorial repre-
sentation. We are not told the angle of the slope, or even if it is a 
straight slope, but the change in potential energy depends only on 
the vertical distance Christine descends and not on the shape of the 
hill. FIGURE 10.9b is an energy bar chart in which we see an initial 

EXAMPLE 10.3 ■ The speed of a sled

(b)(a)

FIGURE 10.9 Pictorial representation and energy bar chart of the 
sled + earth system.

Continued
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266 CHAPTER 10 Interactions and Potential Energy 

Motion with Gravity and Friction
What if there’s friction? You learned in ❮❮ SECTION 9.5 that friction increases the 
 thermal energy of the system—defined to include both objects—by ∆Eth = fk ∆s.  
For an isolated system with both gravitational potential energy and friction, the energy 
 principle becomes

 ∆K + ∆UG + ∆Eth = 0 (10.13)

or, equivalently, the energy conservation statement is

 Ki + UGi = Kf + UGf + ∆Eth (10.14)

Mechanical energy K + UG is not conserved if there is friction. Because ∆Eth 7 0 
(friction always makes surfaces hotter, never cooler), the final mechanical energy is 
less than the initial mechanical energy. That is, some fraction of the initial kinetic and  
potential energy is transformed into thermal energy during the motion. Friction 
causes objects to slow down, and motion ceases when all the mechanical energy has 
been transformed into thermal energy. Mechanical energy is conserved only when 
there are no dissipative forces and thus ∆Eth = 0.

   NOTE    We can write the energy principle in terms of initial and final values of the 
kinetic energy and the potential energy, but not the thermal energy. Objects always 
have thermal energy—the atoms are constantly in motion—but we have no way to 
know how much. All we can calculate is the change in thermal energy.

Although mechanical energy is not conserved, the system’s energy is. Equation  
10.13 tells us that the sum of kinetic, potential, and thermal energy—the energy of the 
system—does not change as the object moves on a surface with friction. The  initial 
mechanical energy does not disappear; it’s merely transformed into an equal amount  
of thermal energy.

kinetic and potential energy being transformed into entirely kinetic 
energy as Christine goes down the slope.

SOLVE The energy analysis is just like in Example 10.2; the fact 
that the object is moving on a curved surface hasn’t changed any-
thing. The energy principle, written as a conservation statement, is

 Ki + UGi = 1
2 mv0 

2 + mgy0

 = Kf + UGf = 1
2 mv1 

2 + 0

Her speed at the bottom is

  v1 = 2v0 

2 + 2gy0

  = 212.0 m/s22 + 219.80 m/s2215.0 m2
  = 10 m/s

REVIEW 10 m/s ≈ 20 mph is fast but believable for a 5 m ≈ 15 ft 
descent.

STOP TO THINK 10.3 A small child 
slides down the four frictionless slides 
A–D. Each has the same height. Rank in 
order, from largest to smallest, her speeds 
vA to vD at the bottom. A B C D

h

During the skateboard finals, Isabella encounters a 6.0-m-long, 15° 
upward ramp. Isabella’s mass, including the skateboard, is 55 kg, 
and the coefficient of rolling friction between her wheels and the 

ramp is 0.025. With what speed must she start up the ramp to reach 
the top at 2.5 m/s? What percentage of her mechanical energy is 
“lost” to friction?

EXAMPLE 10.4 ■ Skateboarding up a ramp
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10.3 Elastic Potential Energy 267

MODEL Let the system consist of the earth (including the ramp) and 
Isabella on the skateboard.

VISUALIZE FIGURE 10.10 shows a before-and-after pictorial repre-
sentation. We’ve used the ramp’s dimensions and trigonometry to 
determine Isabella’s final position y1.

SOLVE Isabella’s kinetic energy is transformed into potential energy  
as she gains height, but some of her kinetic energy is also transformed 
into increased thermal energy of her wheels and the ramp because 
of rolling friction. The energy principle including friction is

K  i + UGi = 1
2 mv0 

2 + 0
= K  f + UGf + ∆Eth = 1

2 mv1 

2 + mgy1 + fr  ∆s

where we’ve used rolling friction fr rather than the kinetic friction of 
sliding. Rolling friction is fr = m

 r n, and recall—from Chapter 6— 
that the normal force of an object on a slope is n = mg cos u. (Draw 
a free-body diagram if you’re not sure.) Thus

1
2 mv0 

2 = 1
2 mv1 

2 + mgy1 + m
 r  

mg  ∆s cos u

The mass cancels. Solving for Isabella’s speed at the bottom of the 
ramp, we find

v0 = 2v1 

2 + 2gy1 + 2mr g  ∆s cos u = 6.3 m/s

Isabella’s initial mechanical energy is entirely kinetic energy: 
K  0 = 1

2 mv0 

2 = 1090 J. The thermal energy of the ramp and her 
wheels increases by ∆Eth = m

 r mg  ∆s cos u = 78 J. Thus the per-
centage of mechanical energy transformed into thermal energy as 
Isabella ascends the ramp is

78 J
1090 J

* 100 = 7.2%

This energy is not truly lost—it’s still in the system—but it’s no 
longer available for motion.

REVIEW The ramp is 1.55 m ≈ 5 ft high. Starting up the ramp at 
6.3 m/s ≈ 12 mph in order to reach the top at 2.5 m/s≈5 mph 
seems reasonable.

Before:
y0 = 0 m
v0

m = 55 kg

Find: v0

After:
y1 = 1.55 m
v1 = 2.5 m/s

∆y = (6.0 m)sin15°
 = 1.55 m

mr = 0.025

15°
∆s = 6.0 m

0

y

v1
u

v0
u

FIGURE 10.10 Pictorial representation of Isabella on the ramp.

STOP TO THINK 10.4 A skier glides down a gentle slope at constant speed. Let the 
system consist of the skier and the earth, including the snowy slope. What energy 
transformation is taking place?

a. UG S K b. UG S K + Eth

c. UG S Eth d. K S Eth

e. No energy transformation is occurring.

10.3 Elastic Potential Energy
Much of what you’ve just learned about gravitational potential energy carries over to 
the elastic potential energy of a spring. FIGURE 10.11 shows a spring exerting a force 
on a block while the block moves on a frictionless, horizontal surface. In Chapter 9, 
we analyzed this problem by defining the system to consist of only the block, and  
we calculated the work of the spring on the block. Now let’s define the system to be 
block + spring + wall. That is, the system is the spring and the objects that are interacting 
with the spring. The surface and the earth exert forces on the block—the normal 
force and gravity—but those forces are always perpendicular to the displacement  
and do not transfer any energy to the system.

Let’s model the spring as being massless, which is reasonable as long as the 
spring’s mass is much less than the mass of the block. With this model, the spring has 
no kinetic energy but instead provides an interaction between the block and the wall. 
Because the interaction is inside the system, it has an interaction energy, the elastic 
potential energy, given by

 ∆USp = -1WB + WW2 (10.15)

where WB is the work the spring does on the block and WW is the work done on the 
wall. But the wall is rigid and has no displacement, so WW = 0 and thus ∆USp = -WB.

We calculated the work done by an ideal spring—one that produces a linear restoring 
force for all displacement—in ❮❮ SECTION 9.4. If the block moves from an initial position 

Frictionless

System

k

The system is the spring and the
objects the spring is attached to.

FIGURE 10.11 The block + spring + wall 
system has an elastic potential energy.
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268 CHAPTER 10 Interactions and Potential Energy 

si, where the spring’s displacement is ∆si = si - seq, to a final position sf with displace-
ment ∆sf = sf - seq, the spring does work

 WB = - 11
2 k 1  ∆sf22 - 1

2 k  1  ∆si222  (10.16)

With the minus sign of Equation 10.15, we have

 ∆USp = Uf - Ui = -WB = 1
2 k  1  ∆sf22 - 1

2 k  1  ∆si22 (10.17)

Thus the elastic potential energy is

 USp = 1
2 k  1  ∆s22  (elastic potential energy) (10.18)

where ∆s is the displacement of the spring from its equilibrium length. Elastic  potential 
energy, like gravitational potential energy, is an energy of position. It  depends on how 
much the spring is stretched or compressed, not on how fast the block is moving. 
Although we derived  Equation 10.18 for a spring, it applies to any linear restoring 
force if k is the appropriate “spring constant” for that force.

The energy principle for a system with elastic potential energy and no external 
interactions is either ∆Esys = ∆K + ∆USp = 0 or, recognizing that mechanical energy 
is again conserved,

 Ki + USp i = K f + USp f (10.19)

   NOTE    Elastic potential energy is an energy of the system, not an energy of the spring.

In a laboratory experiment, your instructor challenges you to figure 
out how fast a 500 g air-track glider is traveling when it collides with 
a horizontal spring attached to the end of the track. He pushes the 
 glider, and you notice that the spring compresses 2.7 cm before the 
glider rebounds. After discussing the situation with your lab partners, 
you decide to hang the spring on a hook and suspend the glider from 
the bottom end of the spring. This stretches the spring by 3.5 cm. 
Based on your measurements, how fast was the glider moving?

MODEL Let the system consist of the track, the spring, and the glider. 
The spring is inside the system, so the elastic interaction will be treat-
ed as a potential energy. Gravity and the normal force of the track 
on the glider are perpendicular to the glider’s displacement, so they 
do no work and do not enter into an energy analysis. An air track is 
essentially frictionless, and there are no other external forces.

VISUALIZE FIGURE 10.12 shows a before-and-after pictorial rep-
resentation of the collision, an energy bar chart, and a free-body 
diagram of the suspended glider.

SOLVE The glider’s kinetic energy is gradually transformed into 
elastic potential energy as it compresses the spring. The point of 
maximum compression—After in Figure 10.12—is a turning point 
in the motion. The velocity is instantaneously zero, the glider’s 
kinetic energy is zero, and thus—as the bar chart shows—all the 
energy has been transformed into potential energy. The spring will 
expand and cause the glider to rebound, but that’s not part of this 
problem. The energy principle with elastic potential energy, in 
 conservation form, is

K  i + USp i = 1
2 mv0 

2 + 0 = K  f + USp f = 0 + 1
2 k  1  ∆x122

where we utilized our knowledge that the initial elastic potential 
energy and the final kinetic energy, at the turning point, are zero. 
Solving for the glider’s initial speed, we find

v0 = A k
m

 ∆x1

EXAMPLE 10.5 ■ An air-track glider compresses a spring

FSp

u

FG

u

∆y = -0.035 m

u
v0

k

k

SystemBefore:

m = 0.50 kg

After:

∆x0 = 0 m

∆x1 = 0.027 m

v1 = 0 m/s

0

+

-
Ki USp i USp f+ = +Kf

+ +=

Find: v0

FIGURE 10.12 Pictorial representation of the experiment.
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Including Gravity
Now that you see how the basic energy model works, it’s easy to extend it to new 
 situations. If a problem has both a spring and a vertical displacement, we define the 
system so that both the gravitational interaction and the elastic interaction are inside 
the system. Then we have both elastic and gravitational potential energy. That is,

 U = UG + USp (10.20)

You have to be careful with the energy accounting because there are more ways that 
energy can be transformed, but nothing fundamental has changed by having two 
 potential energies rather than one.

And we know how to include the increased thermal energy if there’s friction. Thus 
for a system that has gravitational interactions, elastic interactions, and friction, but no 
external forces that do work, the energy principle is

 ∆Esys = ∆K + ∆UG + ∆USp + ∆Eth = 0 (10.21)

or, in conservation form,

 Ki + UGi + USp i = Kf + UGf + USp f + ∆Eth (10.22)

This is looking a bit more complex as we have more and more energies to keep 
track of, but the message of Equations 10.21 and 10.22 is both simple and profound: 
For a system that has no other interactions with its environment, the total energy 
of the system does not change. It can be transformed in many ways by the interac-
tions, but the total does not change.

It was at this point that you and your lab partners realized you 
needed to determine the spring constant k. One way to do so is 
to measure the stretch caused by a suspended mass. The hang-
ing glider is in equilibrium with no net force, and the free-body 
diagram shows that the upward spring force exactly balances the 
downward gravitational force. From Hooke’s law, the magnitude 
of the spring force is FSp = k �   ∆y � . Thus Newton’s first law for the 
suspended glider is

FSp = k �   ∆y � = FG = mg

from which the spring’s spring constant is

k =
mg

�   ∆y �
=

10.50 kg219.80 m/s22
0.035 m

= 140 N/m

Knowing k, you can now find that the glider’s speed was

v0 = A k
m

 ∆x1 = A140 N/m
0.50 kg

 10.027 m2 = 0.45 m/s

REVIEW A speed of ≈0.5 m/s is typical for gliders on an air track.

Your lab assignment for the week is to devise an innovative method 
to determine the spring constant of a spring. You see several small 
blocks of different mass lying around, so you decide to measure 
how high the compressed spring will launch each of the blocks. 
You and your lab partners realize that you need to compress the 
spring the same amount each time, so that only the mass is  varying, 
and you choose to use a compression of 4.0 cm. You decide to 
 measure height from the point on the compressed spring at which 
the block is released. Four launches generate the data in the table:

Mass (g) Height (m)

 50 2.07

100 1.11

150 0.65

200 0.51

What value will you report for the spring constant?

MODEL Let the system consist of the earth, the block, the spring, 
and the floor, so there will be two potential energies. There’s no 
friction and we’ll assume no drag; hence the mechanical energy of 
this system is conserved. Model the spring as ideal.

VISUALIZE FIGURE 10.13 shows a pictorial representation, includ-
ing an energy bar chart. We’ve chosen to place the origin of the 

EXAMPLE 10.6 ■ A spring-launched block

FIGURE 10.13 Pictorial representation of the experiment.

Continued
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10.4 Conservation of Energy
We noticed that the total system energy does not change if no work is done by external 
forces. It’s time to expand on that idea. One of the most powerful statements in physics 
is the law of conservation of energy:

 coordinate system at the point of launch. The projectile reaches 
height y1 = h, at which point v1 = 0 m/s.

SOLVE You might think we would need to find the block’s speed 
as it leaves the spring. That would be true if we were solving this 
 problem with Newton’s laws of motion. But with an energy  analysis, 
we can compare the system’s pre-launch energy to its energy when 
the block reaches its highest point, completely bypassing the launch 
speed. The block certainly has kinetic energy during the motion, 
but the net energy transfer, shown on the energy bar chart, is from 
elastic potential energy to gravitational potential energy.

With both elastic and gravitational potential energy included, 
the energy principle is

  K  i + UGi + USp i = 0 + 0 + 1
2 k  1  ∆y022

  = K  f + UGf + USp f = 0 + mgy1 + 0

The block travels to position y1, but the end of the spring does not! Be  
careful in spring problems not to mistake the position of an  object for 
the position of the end of the spring; sometimes they are the same, 
but not always. Here the final elastic potential energy is that of an 
empty, unstretched spring: zero. Solving for the height, we find

y1 = h =
k 1  ∆y022

2mg
=

k 1  ∆y022

2g
*

1
m

The first expression is correct as an algebraic expression, but here 
we want to use the result to analyze an experiment in which we 

measure h as m is varied. By isolating the mass term, we see that 
plotting h versus 1/m (that is, using 1/m as the x-variable) should 
yield a straight line with slope k 1  ∆y022/2g.

FIGURE 10.14 is a graph of h versus 1/m, with masses first converted 
to kg. The graph is linear and the best-fit line has a y-intercept very 
near zero, confirming our analysis of the situation. The experimen-
tally determined slope is 0.105 m kg, with the units determined by 
rise over run. Thus the experimental value of the spring constant is

k =
2g

1  ∆y022 * slope = 1290 N/m

REVIEW 1290 N/m is a reasonably stiff spring, but that’s to be 
expected if you’re launching blocks a meter or more into the air.

y = 0.105x - 0.005

1/m (kg-1)0.0

h (m)

0

Best-fit line0.5

1.0

1.5

2.0

2.5

5 10 15 20 25

FIGURE 10.14 Graph of the block height versus the inverse of its mass.

STOP TO THINK 10.5 A spring-loaded pop gun shoots a plastic ball with a speed of 
4 m/s. If the spring is compressed twice as far, the ball’s speed will be

a. 2 m/s b. 4 m/s c. 8 m/s d. 16 m/s

Law of conservation of energy The total energy Esys = K + U + Eth of an 
isolated system is a constant. The kinetic, potential, and thermal energy within 
the system can be transformed into each other, but their sum cannot change. 
Further, the mechanical energy Emech = K + U is conserved if the system is 
both isolated and nondissipative.

The key is that energy is conserved for an isolated system, a system that does not 
exchange energy with its environment either because it has no interactions with the 
environment or because those interactions do no work. FIGURE 10.15 shows our basic 
energy model for an isolated system.

The total macroscopic kinetic and potential energy K + U is often called the me-
chanical energy Emech. Mechanical energy is transformed into thermal energy by 
any dissipative forces such as friction or drag. The real world always has dissipative 
forces, but we’ll often find it useful to model processes as being nondissipative, in 
which case the mechanical energy is conserved.

It Depends on the System
As significant as the law of conservation of energy is, it’s critical to notice that the law 
does not say “Energy is always conserved.” The law of conservation of energy refers to 
the energy of a system—hence our emphasis on systems in Chapters 9 and 10. Energy is 

Eth

∆Esys = 0

K U

System

The system’s
total energy Esys

is conserved.

Energy can still
be transformed
within the system.

The system
is isolated
from the
environment.

FIGURE 10.15 The basic energy model for 
an isolated system.
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10.4 Conservation of Energy 271

conserved for some choices of system, but not others. For example, mechanical energy 
is  conserved for a ball sailing through the air (ignoring air resistance) if we define the 
system to be ball + earth but not if we define the system to be only the ball.

In addition, the law of conservation of energy comes with an important qualifi-
cation: Is the system isolated? Energy is certainly not conserved if an external force 
does work on the system. Thus the answer to the question “Is energy conserved?” is 
“It depends on the system.”

A Strategy for Energy Problems
To say that energy is constant or conserved is to say that the final energy, after an 
interaction has occurred, equals the initial energy: (Esys)i = (Esys)f. This idea is the 
basis of a problem-solving strategy for energy problems:

PROBLEM-SOLVING STRATEGY 10.1

Energy-conservation problems

MODEL Define the system so that there are no external forces or so that any external 
forces do no work on the system. If there’s friction, bring both surfaces into the 
system. Model objects as particles and springs as ideal.

VISUALIZE Draw a before-and-after pictorial representation and an energy bar 
chart. A free-body diagram may be needed to visualize forces.

SOLVE If the system is both isolated and nondissipative, then the mechanical 
energy is conserved:

Ki + Ui = Kf + Uf

where K is the total kinetic energy of all moving objects and U is the total potential 
energy of all interactions within the system. If there’s friction, then

Ki + Ui = Kf + Uf + ∆Eth

where the thermal energy increase due to friction is ∆Eth = fk ∆s.

REVIEW Check that your result has correct units and significant figures, is reason-
able, and answers the question.

Exercise 14 

A pendulum is created by attaching one end of a 78-cm-long string 
to the ceiling and tying a 150 g steel ball to the other end. The ball 
is pulled back until the string is 60° from vertical, then released. 
What is the speed of the ball at its lowest point?

MODEL Let the system consist of the earth and the ball. The  tension 
force, like a normal force, is always perpendicular to the motion 
and does no work, so this is an isolated system with no friction. Its 
 mechanical energy is conserved.

VISUALIZE FIGURE 10.16 shows a before-and-after pictorial repre-
sentation, where we’ve placed the zero of potential energy at 
the lowest point of the ball’s swing. Trigonometry is needed to 
 determine the ball’s initial height.

SOLVE Conservation of mechanical energy is

K  i + UGi = 0 + mgy0 = K  f + UGf = 1
2 mv1 

2 + 0

Thus the ball’s speed at the bottom is

v1 = 22gy0 = 2219.80 m/s2210.39 m2 = 2.8 m/s

The speed is exactly the same as if the ball had simply fallen 0.39 m.

REVIEW To solve this problem directly from Newton’s laws of 
 motion requires advanced mathematics because of the complex way  
the net force changes with angle. But we can solve it in one line 
with an energy analysis!

EXAMPLE 10.7 ■ The speed of a pendulum

L = 0.78 m

Before:
y0 = 0.39 m
v0 = 0 m/s
m = 0.15 kg

After:
y1 = 0 m
v1Find: v1

L cos60°

L - L cos60° = 0.39 m

60°

v1
u

T
u

T
u

y0

y1 0

y

m

∆y

FG

u

FG

u

FIGURE 10.16 Pictorial representation of a pendulum.
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Where Is Potential Energy?
Kinetic energy is the energy of a moving object. The basic energy model says that 
kinetic energy can be transformed into potential energy without loss, but where is the 
potential energy? If energy is real, not just an accounting fiction, what is it that has 
potential energy?

Potential energy is stored in fields. We’ve not yet introduced fields in this  textbook, 
although we’ll have a lot to say about electric and magnetic fields in later chapters. Even  
so, you’ve no doubt heard of magnetic fields and gravitational fields. Our  modern under-
standing of the fundamental forces of nature, the long-range forces such as  gravitational 
and electric forces, is that they are mediated by fields. How do two masses exert forces 
on each other through empty space? Or two electric charges? Through their fields!

When two masses move apart, the gravitational field changes to a new configuration 
that can store more energy. Thus the phrase “kinetic energy is transformed into 
gravitational potential energy” really means that the energy of a moving object is 
transformed into the energy of the gravitational field. At a later time, the field’s energy 
can be transformed back into kinetic energy. The same holds true for the energy of 
charges and electric fields, a topic we’ll take up in Part VII.

What about elastic potential energy? Remember that all solids, including springs, 
are held together by molecular bonds. Although quantum physics is needed for a 
 complete understanding of bonds, they are essentially electric forces between neigh-
boring atoms. When a solid is placed under tension, a vast number of molecular bonds 
stretch just a little and more energy is stored in their electric fields. What we call 
elastic potential energy at the macroscopic level is really energy stored in the electric 
fields of a vast number of molecular bonds.

The theory of field energy is an advanced topic in physics. Nonetheless, this brief 
discussion helps complete our picture of what energy is and how it’s associated with 
physical objects.

10.5 Energy Diagrams
Potential energy is an energy of position. The gravitational potential energy depends 
on the height of an object, and the elastic potential energy depends on a spring’s 
 displacement. Other potential energies you will meet in the future will depend in 
some way on position. Functions of position are easy to represent as graphs. A graph 
showing a system’s potential energy and total energy as a function of position is 
called an energy diagram. Energy diagrams allow you to visualize motion based on 
energy considerations.

FIGURE 10.17 is the energy diagram of a particle in free fall. The gravitational 
 potential energy UG = mgy is graphed as a line through the origin with slope mg. The 
potential-energy curve is labeled PE. The line labeled TE is the total energy line, 
E = K + UG. It is horizontal because mechanical energy is conserved, meaning that 
the system’s mechanical energy E has the same value at every position.

Suppose the particle is at position y1. By definition, the distance from the axis to the 
potential-energy curve is the system’s potential energy UG1 at that position. Because  
K1 = E -  UG1, the distance between the potential-energy curve and the total energy 
line is the particle’s kinetic energy.

The four-frame “movie” of FIGURE 10.18 illustrates how an energy diagram is used to 
visualize motion. The first frame shows a particle projected upward from y1 = 0 with 
kinetic energy K1. Initially the energy is entirely kinetic, with UG1 = 0. A pictorial 
representation and an energy bar chart help to illustrate what the energy diagram is 
showing.

In the second frame, the particle has gained height but lost speed. The potential 
 energy UG2 is larger, and the distance K2 between the potential-energy curve and the 
total energy line is less. The particle continues rising and slowing until, in the third 
frame, it reaches the y-value where the total energy line crosses the potential-energy 

y

Energy

Potential energy (PE)

E = K + UG

UG = mgy

y1 y2

K and UG change as the particle moves from 
y1 to y2, but their sum is always E.

UG1

UG2

K1

K2

Total energy (TE)

FIGURE 10.17 The energy diagram of a 
particle in free fall.
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Energy
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K4 UG4
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FIGURE 10.18 A four-frame movie of a particle in free fall.

curve. This point, where K = 0 and the energy is entirely potential, is a turning  
point where the particle reverses direction. Finally, we see the particle speeding up as 
it falls.

A system with this amount of total energy would need negative kinetic energy to be  
to the right of the point, at y3, where the total energy line crosses the potential-energy 
curve. Negative K is not physically possible, so the particle cannot be at positions 
with U 7 E. Now, it’s certainly true that you could make the particle reach a larger 
value of y simply by throwing it harder. But that would increase E and move the total 
energy line higher.

   NOTE    It’s important to realize that the TE line is under your control. If you project 
an object with a different speed, or drop it from a different height, you’re giving the 
system a different total energy. You can give the object different initial conditions and 
use the energy diagram to explore how it will move with that amount of total energy.

FIGURE 10.19 shows the energy diagram of a mass on a horizontal spring, where x 
has been measured from the wall where the spring is attached. The equilibrium length 
of the spring is L0 and the displacement of the end of the spring is ∆x = x - L0, so  
the elastic potential energy is USp = 1

2 k1  ∆x22 = 1
2 k1x - L022. The potential-energy 

curve, a graph of USp versus x, is a parabola centered at the equilibrium position. You 
can’t change the PE curve—it’s determined by the spring constant—but you can set 
the TE to any height you wish simply by stretching the spring to the proper length. 
The figure shows one possible TE line.

If you pull the mass out to position xR and release it, the initial mechanical energy 
is entirely potential. As the restoring force of the spring pulls the mass to the left, the 
kinetic energy increases as the potential energy decreases. The mass has maximum 
speed at x = L0, where USp = 0, and then it slows down as the spring starts to compress.  
You should be able to visualize that xL, where the PE curve crosses the TE line, is a 
turning point. It’s the point of maximum compression where the mass instantaneously 
has K = 0. The mass will reverse direction, speed up until x = L0, then slow down until 
reaching xR, where it started. This is another turning point, so it will reverse direction 
again and start the process over. In other words, the mass will oscillate back and forth 
between the left and right turning points at xL and xR where the TE line crosses the PE 
curve. We’ll study oscillations in Chapter 15, but we can already see from the energy 
diagram that a mass on a spring undergoes oscillatory motion.

The height of the TE line
is determined by how far
you stretch or compress
the spring.

The PE curve is
a parabola 
determined by 
the spring
constant.

Energy

PE

TE

x
xL xRL0

FIGURE 10.19 The energy diagram of a 
mass on a horizontal spring.
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FIGURE 10.20 applies these ideas to a more general energy diagram. We don’t know 
how this potential energy was created, but we can visualize the motion of a particle 
in a system that has this potential energy. Suppose the particle is released from rest at 
position x1. How will it then move?

The initial conditions are K = 0 at x1, hence the TE line must cross the PE curve at 
this point. The particle cannot move to the left, because that would require K 6 0, so it 
begins to move toward the right. We see from the energy diagram that U decreases from 
x1 to x2, so the particle is speeding up as potential energy is transformed into kinetic 
energy. The particle then slows down from x2 to x3 as it goes up the “potential-energy 
hill,” increasing U at the expense of K. The particle doesn’t stop at x3 because it still 
has kinetic energy. It speeds up from x3 to x4 (K increasing as U decreases), reaching 
its maximum speed at x4, then slows down between x4 and x5. Position x5 is a turning 
point, a point where the TE line crosses the PE curve. The particle is instantaneously at 
rest, then reverses direction. The particle will oscillate back and forth between x1 and x5,  
following the pattern of slowing down and speeding up that we’ve outlined.

Equilibrium Positions
Positions x2, x3, and x4 in Figure 10.20, where the potential energy has a local  minimum  
or maximum, are special positions. Consider a system with the total energy E2 shown 
in FIGURE 10.21. The particle can be at rest at x2, with K = 0, but it cannot move away 
from x2. In other words, a system with energy E2 is in equilibrium at x2. If you disturb 
the particle, giving it a small kinetic energy and a total energy just slightly larger than 
E2, the particle will undergo a very small oscillation centered on x2, like a marble 
in the bottom of a bowl. An equilibrium for which small disturbances cause small 
oscillations is called a point of stable equilibrium. You should recognize that any 
minimum in the PE curve is a point of stable equilibrium. Position x4 is also a point of 
stable equilibrium, in this case for a particle with E = 0.

Figure 10.21 also shows a system with energy E3 that is tangent to the PE curve 
at x3. If a particle is placed exactly at x3, it will stay there at rest 1K = 02. But if you 
disturb the particle at x3, giving it an energy only slightly more than E3, it will speed 
up as it moves away from x3. This is like trying to balance a marble on top of a hill. 
The slightest displacement will cause the marble to roll down the hill. A point of 
equilibrium for which a small disturbance causes the particle to move away is called a 
point of unstable equilibrium. Any maximum in the PE curve, such as x3, is a point 
of unstable equilibrium.

We can summarize these lessons as follows:

Energy

PE

TE = E1

Speeds
up

Speeds
up

Slows
down

Slows
down

x
x4x1 x3 x5x2

Point of
maximum
speed Turning

point

Particle starts from rest.

FIGURE 10.20 A more general energy 
diagram.

Energy

PE

x

TE = E3

TE = E2

x4x3x2

Stable Stable

Unstable

FIGURE 10.21 Points of stable and 
unstable equilibrium.

TACTICS BOX 10.1

Interpreting an energy diagram
1  The distance from the axis to the PE curve is the system’s potential energy. 

The distance from the PE curve to the TE line is its kinetic energy. These are 
transformed as the position changes, causing the particle to speed up or slow 
down, but the sum K + U doesn’t change.

2  A point where the TE line crosses the PE curve is a turning point. The parti cle 
reverses direction.

3  The particle cannot be at a point where the PE curve is above the TE line.
4  The PE curve is determined by the properties of the system—mass, spring 

constant, and the like. You cannot change the PE curve. However, you can 
raise or lower the TE line simply by changing the initial conditions to give the 
system more or less total energy.

5  A minimum in the PE curve is a point of stable equilibrium. A maximum in 
the PE curve is a point of unstable equilibrium.

Exercises 15–17 
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A spring of length L0 and spring constant k is standing on one end. 
A block of mass m is placed on the spring, compressing it. What is 
the length of the compressed spring?

MODEL Assume an ideal spring obeying Hooke’s law. The block 
+ earth + spring system has both gravitational potential energy 
UG and elastic potential energy USp. The block sitting on top of 
the spring is at a point of stable equilibrium (small  disturbances 
cause the block to oscillate slightly around the equilibrium  
 position), so we can solve this problem by looking at the energy 
diagram.

VISUALIZE FIGURE 10.22a is a pictorial representation. We’ve used 
a coordinate system with the origin at ground level, so the displace-
ment of the spring is y - L0.

SOLVE FIGURE 10.22b shows the two potential energies separately 
and also shows the total potential energy:

  Utot = UG + USp

  = mgy + 1
2 k 1y - L022

The equilibrium position (the minimum of Utot) has shifted from 
L0 to a smaller value of y, closer to the ground. We can find the 
equilibrium by locating the position of the minimum in the PE 
curve. You know from calculus that the minimum of a function is 

at the point where the derivative (or slope) is zero. The derivative 
of Utot is

dUtot

dy
= mg + k 1y - L02

The derivative is zero at the point yeq, so we can easily find

mg + k 1yeq - L02 = 0

yeq = L0 -  
mg

k

The block compresses the spring by the length mg/k from its 
 original length L0, giving it a new equilibrium length L0 - mg/k.

EXAMPLE 10.8 ■ Balancing a mass on a spring

L0

yeq

0

y

Before After

Compressed

(a)
Energy

y
L0yeq

Utot

UG

USp

Original
equilibrium

New equilibrium of
compressed spring

(b)

FIGURE 10.22 The block + earth + spring system has both 
gravitational and elastic potential energy.

Molecular Bonds
The “springiness” in our atomic models of tension, the normal force, and thermal 
energy comes from molecular bonds. The molecular bond that holds two atoms 
together is an electric interaction between the atoms’ negative electrons and positive 
nuclei. Fortunately, we don’t need to know any details about electric potential energy 
to understand the energy diagram of a molecular bond.

FIGURE 10.23 shows the energy diagram of the oxygen molecule O2. Distance x is the 
atomic separation, the distance between the two atoms. Note the very small distances:  
1 nm = 10-9 m. You can see that the molecule has a stable equilibrium—a minimum 
in the PE curve—when the atoms are separated by 0.13 nm. This is the bond length 
of O2. If the atoms have no kinetic energy—no molecular vibration—they will form a 
molecule with an atomic separation of 0.13 nm.

If you try to push the atoms closer together, the potential energy rises very rapidly. 
Physically, this is an electric repulsion between the electrons orbiting each atom, but 
it’s analogous to the increasingly strong repulsive force you get when you compress 
a spring. There is also an attractive force between two atoms. This can be the force 
between two oppositely charged ions or the force of covalent bonds when electrons 
are shared. The attractive force resists if you try to pull the atoms apart—analogous to 
stretching a spring—and thus potential energy increases to the right.

The repulsive force gets stronger as you push the atoms closer together, but the at-
tractive force gets weaker as you pull them farther apart. If you pull too hard, the bond 
breaks and the atoms come apart. Consequently, the PE curve becomes less steep as 
x increases, eventually leveling out when the atoms are so far apart that they cease in-
teracting with each other. This difference between the attractive and repulsive forces 
explains why the PE curve in Figure 10.23 is asymmetric.

It turns out, for quantum physics reasons, that a molecule cannot have E = 0 and 
thus cannot simply rest at the equilibrium position. By requiring the molecule to have 
some energy, such as E1, we see that the atoms oscillate back and forth between two 

x (nm)

20

15

10

5

0

Energy (* 10-19 J)

The force is repulsive
for x 6 0.13 nm.

The force is attractive
for x 7 0.13 nm.

The bond length is 0.13 nm.

0.0 0.2 0.40.1 0.3

E2

PE

E1

FIGURE 10.23 The energy diagram of 
molecular oxygen O2.
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turning points. This is a molecular vibration, and atoms held together by a molecular 
bond are constantly vibrating. For an O2 molecule with energy E1 = 2 * 10-19 J, as 
illustrated, the bond length oscillates between roughly 0.10 nm and 0.16 nm.

Suppose the molecule’s energy is increased to E2 = 12 * 10-19 J . This could happen, 
for example, if the molecule absorbs some light. You can see from the energy diagram 
that the molecules will keep moving apart. By raising the molecule’s energy to E2, we’ve 
broken the molecular bond. The breaking of molecular bonds by the absorption of light is 
called photodissociation. It is an important process in making integrated circuits.

STOP TO THINK 10.6 A single-particle 
system has the potential energy shown in the 
graph. Suppose the particle has 1 J of kinetic 
energy and is moving to the right at x = 1 m. 
Where is the particle’s turning point?

E (J)

x (m)
0

5

4

3

2

1

0
71 4 62 53

10.6 Force and Potential Energy
As you’ve seen, we can find the energy of an interaction—potential energy—by 
calculating the work the interaction force does inside the system. Can we reverse 
this procedure? That is, if we know a system’s potential energy, can we find the 
interaction force?

We defined the change in a system’s potential energy to be ∆U = -Wint. Suppose 
that only one object in the system moves while other objects—such as the earth or a 
rigid wall—are essentially at rest. The moving object has the only displacement, so Wint 
is the work done on the moving object. We can allow this object to undergo a very small 
displacement ∆s, so small that the interaction force F

u
 is essentially constant. The work 

done by a constant force is W = Fs ∆s, where Fs is the force component parallel to the 
displacement. During this small displacement, the system’s potential energy changes by

 ∆U = -Wint = -Fs ∆s (10.23)

which we can rewrite as

 Fs = -
∆U
∆s

 (10.24)

In the limit ∆s S 0, the force on the object is

 Fs = lim
∆sS01      -

∆U
∆s 2 = -

dU
ds

 (10.25)

That is, the interaction force on an object is the negative of the derivative of the 
 potential energy with respect to position.

Graphically, as FIGURE 10.24 shows, force is the negative of the slope, at position s, 
of the potential-energy curve in an energy diagram:

 Fs = -
dU
ds

=  the negative of the slope of the PE curve at s (10.26)

In practice, of course, we’ll usually use either Fx = -dU/dx or Fy = -dU/dy. Thus

■■ A positive slope corresponds to a negative force: to the left or downward.
■■ A negative slope corresponds to a positive force: to the right or upward.
■■ The steeper the slope, the larger the force.

As an example, consider the elastic potential energy USp = 1
2 kx2 for a horizon-

tal spring with xeq = 0 so that ∆x = x. FIGURE 10.25a shows that the potential-energy 

s

U

Fs is the negative of the
slope of the potential-
energy curve.

FIGURE 10.24 Relating force to the PE 
curve.

(a) (b)

0 The value of the force is the
negative of the slope of the
potential energy curve.

x

U

x

Fx

FIGURE 10.25 Elastic potential energy and 
force graphs.
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curve is a parabola, with changing slope. If an object attached to the spring is at posi-
tion x, the force on the object is

Fx = -
dUSp

dx
= -

d
dx

 11
2 kx22 = -kx

This is just Hooke’s law for an ideal spring, with the minus sign indicating that 
Hooke’s law is a restoring force. FIGURE 10.25b is a graph of force versus x. At each 
position x, the value of the force is equal to the negative of the slope of the PE curve.

We already knew Hooke’s law, of course, so the point of this particular exercise 
was to illustrate the meaning of Equation 10.26. But if we had not known the force, 
we see that it’s possible to find the force from the PE curve. For example, you’ll learn 
in Part VIII that FIGURE 10.26a is a possible potential-energy function for a charged 
particle, one that we could create with suitably shaped electrodes. What force does 
the particle experience in this region of space? We find out by measuring the slope of  
the PE curve. The result is shown in FIGURE 10.26b. On the left side of this region of 
space 1x 6 2 m2, a negative slope, and thus a positive value of Fx, means that the force 
pushes the particle to the right. A negative force on the right side 1x 7 3 m2 tells us 
that Fx pushes the particle to the left. And there’s no force at all in the center. This is a 
restoring force because a particle trying to leave this region is pushed back toward the 
center, but it’s not a linear restoring force like that of a spring.

(a)
Negative
slope

Zero
slope

Positive
slope

U

x (m)
0 1 2 3 4 5

(b) Fx

x (m)0
1 2 3 4 5

FIGURE 10.26 A potential-energy curve 
and the associated force curve.

A system’s potential energy is given by U1x2 = 12x3 - 3x22 J, 
where x is a particle’s position in m. Where are the equilibrium 
positions for this system, and are they stable or unstable equilibria?

SOLVE You learned in Chapter 6 that a particle in equilibrium has 
F
u

net =  0
u
. Then, in the previous section, you learned that the maxima 

and minima of the PE curve are points of equilibrium. These may 
seem to be two different criteria for equilibrium, but actually they are 
identical. The interaction force on the particle is Fx = -dU/dx. The 
force is zero—equilibrium—at positions where the derivative is zero. 
But you’ve learned in calculus that positions where the derivative  
of a function is zero are the  maxima and minima of the function. At 
either a maximum or minimum of the PE curve, the slope is zero 
and hence the force is zero.

For this potential-energy function,

Fx = -
dU
dx

= 1-6x2 + 6x2 N

when x is in m. The force is zero—minima or maxima of U—when 
6 xeq 

2 = 6 xeq. This has two solutions:

xeq = 0 m and xeq = 1 m

These are positions of equilibrium, where a particle at rest will 
remain at rest. But how do we know if these are positions of stable 
equilibrium or unstable equilibrium?

A minimum in the PE curve is a stable equilibrium. Recall, from  
calculus, that a minimum of a function has a first derivative equal 
to zero and a second derivative that’s positive. Similarly, a maxi-
mum of a function has a first derivative equal to zero and a second 
derivative that’s negative. The second derivative of U is

d2U

dx2 =
d
dx

 16x2 - 6x2 = 112x - 62 N/m

The second derivative evaluated at x = 0 m is -6 N/m 6 0, so 
x = 0 m is a maximum of the PE curve. At x = 1 m, the second 
derivative is +6 N/m > 0, hence a minimum in the PE curve. Thus 
this system has an unstable equilibrium if the particle is at x = 0 m 
and a stable equilibrium if it is at x = 1 m. There’s a force on the 
particle at all other positions.

EXAMPLE 10.9 ■ Finding equilibrium positions

10.7  Conservative and Nonconservative 
Forces

A system in which particles interact gravitationally or elastically or, as we’ll discover 
later, electrically has a potential energy. But do all forces have potential energies? 
Is there a “tension potential energy” or a “friction potential energy”? If not, what’s 
special about the gravitational and elastic forces? What conditions must an interaction 
satisfy to have an associated potential energy?

FIGURE 10.27 on the next page shows a particle that can move from point A to point 
B along two  possible paths while a force F

u
 acts on it. Recall that a force does work  

and changes the particle’s kinetic energy. In general, the force experienced along path 1 
is not the same as the force experienced along path 2. Consequently, the work done and 
the particle’s kinetic energy when it arrives at B depend on which path was followed.
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Let’s assume that there is a potential energy U associated with force F
u
 just as 

the gravitational potential energy UG = mgy is associated with the gravitational force 
F
u

G = -mgjn. What restrictions does this assumption place on F
u
? There are three steps 

in the logic:

1. Potential energy is an energy of position. U depends only on where the particle 
is, not on how it got there. The system has one value of potential energy when 
the particle is at A, a different value when the particle is at B. Thus the change in 
potential energy, ∆U = UB - UA, is the same whether the particle moves along 
path 1 or path 2.

2. Potential energy is transformed into kinetic energy, with ∆K = - ∆U. If ∆U 
is independent of the path followed, then ∆K  is also independent of the 
path. The particle has the same kinetic energy at B no matter which path it 
 follows.

3. According to the energy principle, the change in a particle’s kinetic energy is 
equal to the work done on the particle by force F

u
. That is, ∆K = W. Because ∆K  

is independent of the path followed, it must be the case that the work done 
by force F

u
 as the particle moves from A to B is independent of the path 

followed.

In other words, if there is a potential energy, then the work done on the particle has to 
be the same along every path from A to B.

A force for which the work done on a particle as it moves from an initial to a 
final position is independent of the path followed is called a conservative force. 
The importance of conservative forces is that a potential energy can be associated 
with any conservative force. Specifically, the potential-energy difference between an 
initial position i and a final position f is

 ∆U = -Wc1i S f2 (10.27)

where the notation Wc1i S f2 is the work done by a conservative force as the particle 
moves along any path from i to f. Equation 10.27 is a general definition of the potential 
energy associated with a conservative force.

A force for which we can define a potential energy is called conservative because 
the mechanical energy K + U is conserved for a system in which this is the only 
interaction. We’ve already shown that the gravitational force is a conservative force 
by showing that ∆UG depends only on the vertical displacement, not on the path 
 followed; hence mechanical energy is conserved when two masses interact gravita-
tionally. Similarly,  mechanical energy is conserved for a mass on a spring—an elastic 
interaction—if there are no other forces. Conservative forces do not contribute to any 
loss of mechanical energy.

Nonconservative Forces
A characteristic of a conservative force is that an object returning to its starting 
point will return with no loss of kinetic energy because ∆U = 0 if the initial and 
final points are the same. If a ball is tossed into the air, energy is transformed from 
kinetic into potential and back such that the ball’s kinetic energy is unchanged when 
it returns to its initial height. The same is true for a puck sliding up and back down  
a frictionless slope.

But not all forces are conservative forces. If the slope has friction, then the 
puck returns with less kinetic energy. Part of its kinetic energy is transformed into 
gravitational potential energy as it slides up, but part is transformed into some other 
form of energy—thermal energy—that lacks the “potential” to be transformed 
back into kinetic energy. A force for which we cannot define a potential energy is 
called a nonconservative force. Friction and drag, which transform mechanical 
energy into thermal energy, are nonconservative forces, so there is no “friction  
potential energy.”

F
u

F
uPath 1

B

A

Path 2

Potential energy UB

Potential energy UA

The particle can move
along either path from
A to B.

The force does work on the particle
as it moves from A to B, changing
the particle’s kinetic energy.

FIGURE 10.27 A particle can move from A 
to B along either of two paths.
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Similarly, forces like tension and thrust are nonconservative. If you pull an object 
with a rope, the work done by tension is proportional to the distance traveled. More 
work is done along a longer path between two points than along a shorter path, so 
tension fails the “Work is independent of the path followed” test and does not have a 
potential energy.

All in all, most forces are not conservative forces. Gravitational forces, linear 
 restoring forces, and, later, electric forces turn out to be fairly special because they are 
among the few forces for which we can define a potential energy. Fortunately, these 
are some of the most important forces in nature, so the energy principle is powerful 
and useful despite there being only a small number of conservative forces.

10.8 The Energy Principle Revisited
We opened Chapter 9 by introducing the energy principle—basically a statement of 
energy accounting—but noted that we would need to develop many new ideas to make 
sense of energy. We’ve now explored kinetic energy, potential energy, work, conserva-
tive and nonconservative forces, and much more. It’s time to return to the basic energy 
model and start pulling together the many ideas introduced in Chapters 9 and 10.

FIGURE 10.28 shows several objects that are acted on by forces. The objects might be 
particles, but they could also be macroscopic objects that have thermal energy. Their 
kinetic and thermal energy K + Eth changes as the forces do work on the objects. 
Suppose we divide the work W into the work Wc done by conservative forces and the 
work Wnc done by nonconservative forces. With this distinction, the energy principle 
for the change in the kinetic and thermal energy is

 ∆K + ∆Eth = W = Wc + Wnc (10.28)

Let’s define the system so that all the conservative interactions are inside the sys-
tem. This is the system shown in Figure 10.28. As we’ve learned, the work done by 
these conservative forces becomes potential energy: Wc = - ∆U. The remaining 
forces—the nonconservative forces—are now external forces from the environment.

To illustrate what we mean by a nonconservative external force, suppose you pick 
up a book that is at rest on the floor and place it at rest on a table. The book + earth 
system gains gravitational potential energy, but ∆K = 0 and ∆Eth = 0. Where did 
the energy come from? Or consider pulling the book across the table with a string. 
The book gains kinetic and thermal energy, but not by transforming potential energy.  
The force of your hand and the tension in the string are nonconservative forces—
they’re not associated with a potential energy—that “reach in” from the environment to 
change the system. Because these are external forces, the work they do—transferring 
energy to or from the system—could be labeled Wext rather than Wnc. We will define 
Wext = Wnc to be consistent with the notation introduced in Chapter 9. With these  
changes, Equation 10.28 becomes

 ∆K + ∆Eth = - ∆U + Wext (10.29)

Grouping all the energy terms together, we can write Equation 10.29 as

 ∆K + ∆U + ∆Eth = ∆Emech + ∆Eth = ∆Esys = Wext (10.30)

where Esys = K + U + Eth = Emech + Eth is the energy of the system. Equation 10.30, 
the energy principle but with all the terms now defined, is our most general statement 
about how the energy of a mechanical system changes.

In Section 10.4 we defined an isolated system as a system that does not exchange 
energy with its environment. That is, an isolated system is one on which no work 
is done by external forces: Wext = 0. Thus an immediate conclusion from Equation 
10.30 is that the total energy Esys of an isolated system is conserved. If, in addition, 
the system is nondissipative (i.e., no friction forces), then ∆Eth = 0. In that case, the 
 mechanical energy Emech is conserved. You’ll recognize this as the law of conservation 

Nonconservative
external forces
do work Wext.

Interactions can be
dissipative—increasing
thermal energy—or
conservative. Conservative
forces do work Wc that is
associated with a potential-
energy change ∆U.

Environment

SystemFext

Fext

u

u

FIGURE 10.28 A system with both internal 
interactions and external forces.
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of energy from Section 10.4. The law of conservation of energy is one of the most 
powerful statements in physics.

FIGURE 10.29 reproduces the basic energy model of Chapter 9. Now you can see that 
this is a pictorial representation of Equation 10.30. Esys, the total energy of the system, 
changes only if external forces transfer energy into or out of the system by doing work 
on the system. The kinetic, potential, and thermal energies within the system can be 
transformed into each other by forces within the system. And Esys is conserved in the 
absence of interactions with the environment.

Energy Bar Charts Expanded
Energy bar charts can now be expanded to include the thermal energy and the work 
done by external forces. The energy principle, Equation 10.30, can be rewritten as

 Ki + Ui + Wext = Kf + Uf + ∆Eth (10.31)

The initial mechanical energy 1Ki + Ui2 plus any energy added to or removed from 
the system 1Wext2 becomes, without loss, the final mechanical energy 1Kf + Uf2 plus 
any increase in the system’s thermal energy 1  ∆Eth2. Remember that we have no way 
to determine Eth i or Eth f, only the change in thermal energy. ∆Eth is always positive 
when the system contains dissipative forces.

STOP TO THINK 10.7 A weight attached to a rope is released from rest. As the weight 
falls, picking up speed, the rope spins a generator that causes a  lightbulb to glow.  
Define the system to be the weight and the earth. In this situation,

a. U S K + Wext. Emech is not conserved but Esys is.
b. U + Wext S K. Both Emech and Esys are conserved.
c. U S K + Eth. Emech is not conserved but Esys is.
d. U S K + Wext. Neither Emech nor Esys is conserved.
e. Wext S K + U. Emech is not conserved but Esys is.

Eth

∆Esys = Wext

K U

SystemWork done
on system
Wext 7 0

Energy in Energy out

Work done
by system
Wext 6 0

Energy is
transferred
to (and from)
the system.

Energy is
transformed
within the system.

Environment

FIGURE 10.29 The basic energy model.

A mountain climber uses a rope to drag a bag of supplies up a slope 
at constant speed. Show the energy transfers and transformations 
on an energy bar chart.

MODEL Let the system consist of the earth, the bag of supplies,  
and the slope.

SOLVE The tension in the rope is an external force that does work  
on the bag of supplies. This is an energy transfer into the system. The 
bag has kinetic energy, but it moves at a steady speed and so K is not 
changing. Instead, the energy transfer into the system increases both 
gravitational potential energy (the bag is gaining height) and thermal 
energy (the bag and the slope are getting warmer due to friction). The 
overall process is Wext S U + Eth. This is shown in FIGURE 10.30.

EXAMPLE 10.10 ■ Hauling up supplies

0

Ki Ui Wext Uf ∆EthKf

+

-

+ =+ + +

+ =+ + +

FIGURE 10.30 The energy bar chart for Example 10.10.

   CHAPTER 10 CHALLENGE EXAMPLE     A spring workout

An exercise machine at the gym has a 5.0 kg weight attached to one 
end of a horizontal spring with spring constant 80 N/m. The other end 
of the spring is anchored to a wall. When a woman working out on 
the machine pushes her arms forward, a cable stretches the spring by 
dragging the weight along a track with a coefficient of kinetic friction 
of 0.30. What is the woman’s power output at the moment when the 
weight has moved 50 cm if the cable tension is a constant 100 N?

MODEL This is a complex situation, but one that we can analyze. 
First, identify the weight, the spring, the wall, and the track as the 
system. We need to have the track inside the system because friction 
increases the temperature of both the weight and the track. The 
tension in the cable is an external force. The work Wext done by the 
cable’s tension transfers energy into the system, causing K, USp, and  
Eth all to increase.
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10.8 The Energy Principle Revisited 281

VISUALIZE FIGURE 10.31a is a before-and-after pictorial represen-
tation. The energy transfers and transformations are shown in the 
energy bar chart of FIGURE 10.31b.

SOLVE You learned in ❮❮ SECTION 9.6 that power is the rate at which 
work is done and that the power delivered by force F

u
 to an object 

moving with velocity v 

u is P = F
u # v 

u. Here the tension T 
u

 pulls parallel  
to the weight’s velocity, so the power being supplied when the weight 
has velocity v 

u is P = Tv. We know the cable’s tension, so we need 
to use energy considerations to find the weight’s speed v1 after the  
spring has been stretched to ∆  x1 = 50 cm.

The energy principle K  i + U  i + Wext = K  f + Uf + ∆Eth is

1
2 mv0 

2 + 1
2 k1  ∆  x022 + Wext = 1

2 mv1 

2 + 1
2  k1  ∆  x122 + ∆Eth

The initial displacement is ∆  x0 = 0 m and we know that v0 = 0 m/s,  
so the energy principle simplifies to

1
2 mv1 

2 = Wext - 1
2 k1  ∆  x122 - ∆Eth

The external work done by the cable’s tension is

Wext = T ∆  r = 1100 N210.50 m2 =  50.0 J

From Chapter 9, the increase in thermal energy due to friction is

  ∆Eth = fk ∆  r = m
 kmg ∆  r

  = 10.30215.0 kg219.80 m/s2210.50 m2 =  7.4 J

Solving for the speed v1, when the spring’s displacement is ∆  x1 =  
50 cm =  0.50 m, we have

v1 = B21Wext - 1
2 k1  ∆  x122 - ∆Eth2

m
= 3.6 m/s

The power being supplied at this instant to keep stretching the 
spring is

P = Tv1 = 1100 N213.6 m/s2 = 360 W

REVIEW The work done by the cable’s tension is energy transferred 
to the system. Part of the energy increases the speed of the weight, 
part increases the elastic potential energy stored, and part is 
transformed into increased thermal energy, thus increasing the 
temperature. We had to bring all these energy ideas together to 
solve this problem.

FIGURE 10.31 Pictorial representation and energy bar chart for Chapter 10 Challenge Example.

(a) (b)
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General Principles
The Energy Principle Revisited
• Energy is transformed within the system.

• Energy is transferred to and  
from the system by work Wext.

Two variations of the energy principle are

∆Esys = ∆K + ∆U + ∆Eth = Wext

Ki + Ui + Wext = Kf + Uf + ∆Eth

Solving Energy Problems
MODEL Define the system.

VISUALIZE Draw a before-and-after pictorial 
representation and an energy bar chart.

SOLVE Use the energy principle:

Ki + Ui + Wext = Kf + Uf + ∆Eth

REVIEW Is the result reasonable?

Law of Conservation of Energy
• Isolated system: Wext = 0. The total system energy Esys = K + U + Eth is conserved. ∆Esys = 0.

• Isolated, nondissipative system: Wext = 0 and ∆Eth = 0. The  mechan ical energy Emech = K + U is conserved: Ki + Ui = Kf + Uf.

Summary The goal of Chapter 10 has been to develop a better 
understanding of energy and its conservation.

Eth

K U

System

Basic energy model

Environment

Energy
out

Energy
in

Wext 6 0Wext 7 0

Potential energy, or interaction energy, is energy stored inside  
a system via interaction forces. The energy is stored in fields.
• Potential energy is associated only with conservative forces  

for which the work done is independent of the path.

• Work Wint by the interaction forces causes ∆U = -Wint.

• Force Fs = -dU/ds = - (slope of the potential energy curve).

• Potential energy is an energy of the system, not an energy of a 
specific object.

Energy diagrams show the potential-energy curve PE and the 
total mechanical energy line TE.

• From the axis to the curve is U. From the curve to the TE  
line is K.

• Turning points occur where the TE 
line crosses the PE curve.

• Minima and maxima in the PE curve 
are, respectively, positions of stable 
and  unstable equilibrium.

Important Concepts

Energy

x

PE

TE

U

K

Gravitational potential energy is an 
energy of the earth + object system:

UG = mgy

Elastic potential energy is an energy  
of the spring + attached objects system:

USp = 1
2 k1∆s22

Energy bar charts show the energy principle in graphical form.

0

+

+ =

-
Ki Ui

+

Wext Kf Uf

+ +

+ =+ + + ∆Eth

Applications

x

y

potential energy, U
gravitational potential energy, UG

zero of potential energy
mechanical energy, Emech

Terms and Notation
energy bar chart
elastic potential energy, USp

law of conservation of energy

isolated system
energy diagram
stable equilibrium

unstable equilibrium
conservative force
nonconservative force
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CONCEPTUAL QUESTIONS
1. Upon what basic quantity does kinetic energy depend? Upon 

what basic quantity does potential energy depend?
2. Can kinetic energy ever be negative? Can gravitational potential 

energy ever be negative? For each, give a plausible reason for 
your answer without making use of any equations.

3. You and your father are skiing down a mountain. Since your 
 father weighs twice as much as you, you thought you would travel 
at double his speed down the slope. Unfortunately, you both  arrive 
at the base at the same time with the same speed. Why? Is there 
any way you can travel at double his speed? Neglect friction.

4. The three balls in FIGURE Q10.4, which have equal masses, are 
fired with equal speeds from the same height above the ground. 
Rank in order, from largest to smallest, their speeds vA, vB, and vC  
as they hit the ground. Explain.

Ball A

Ball C

Ball B

FIGURE Q10.4

A

k

Compressed d

B

k

Stretched d

C

2k

Stretched d

D

k

Stretched 2d

FIGURE Q10.5

5. Rank in order, from most to least, the elastic potential energy 
1USp2A to 1USp2D stored in the springs of FIGURE Q10.5. Explain.

6. A spring is compressed by 2 cm. How far must you compress 
another spring with four times the spring constant to store the 
same amount of energy?

7. A spring gun shoots out a plastic ball at a speed of v0. The spring 
is then compressed three times the length it was on the first shot. 
By what factor is the ball’s speed increased? Explain.

8. A particle with the potential energy shown in FIGURE Q10.8 is 
moving to the right at x = 5 m with total energy E.
a. At what value or values of x is this particle’s speed a maximum?

b. Does this particle 
have a turning point or 
points in the range of  
x covered by the graph? 
If so, where?

c. If E is changed appro-
priately, could the par-
ticle remain at rest at any point or points in the range of x 
covered by the graph? If so, where?

9. A compressed spring launches a block up an incline. Which 
 objects should be included within the system in order to make an 
energy analysis as easy as possible?

10. A process occurs in which a system’s potential energy  decreases 
while the system does work on the environment. Does the 
 system’s kinetic energy increase, decrease, or stay the same? Or 
is there not enough information to tell? Explain.

11. A process occurs in which a system’s potential energy increases 
while the environment does work on the system. Does the sys-
tem’s kinetic energy increase, decrease, or stay the same? Or is 
there not enough information to tell? Explain.

12. FIGURE Q10.12 is the energy bar chart for a firefighter sliding 
down a fire pole from the second floor to the ground. Let the 
system consist of the firefighter, the pole, and the earth. What are  
the bar heights of Wext and Kf?

E

0
0

x (m)

PE

TE

1 2 3 4 5 6 7 8

FIGURE Q10.8

+ =
Ki UGi

+
Wext

+
UGf

+
+ =+ + + ∆EthKf

0

2

4

E (J)

? ?

FIGURE Q10.12

13. a. If the force on a particle at some point in space is zero, must its  
potential energy also be zero at that point? Explain.

b. If the potential energy of a particle at some point in space is 
zero, must the force on it also be zero at that point? Explain.

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 10.1 Potential Energy

1. || A system of two objects has ∆Ktot = 7 J and ∆U = -5 J.
a. How much work is done by interaction forces?
b. How much work is done by external forces?

2. || A system consists of interacting objects A and B, each exert-
ing a constant 3.0 N pull on the other. What is ∆U for the system 
if A moves 1.0 m toward B while B moves 2.0 m toward A?

Section 10.2 Gravitational Potential Energy

3. | The Sierre-Zinal race in Switzerland, also known as the “Race 
of the Five 4000 m Peaks,” heads along a 31 km mountain trail 
in the heart of the Swiss Alps. What is the change in potential 
energy when an energetic 72 kg runner makes it from Sierre, the 
start of the race (570 m above sea level), to Nava, the highest 
point of the trail (2425 m above sea level)?

4. | The free-fall acceleration on a large asteroid, in the vacuum 
of space, is 0.15 m/s2. A spacecraft hovering 500 m above the 
surface drops a 25 kg payload wrapped in a padded jacket. What 
is the payload’s impact speed?

5. | a. With what minimum speed must you toss a 100 g ball 
straight up to just touch the 10-m-high roof of the 
 gymnasium if you release the ball 1.5 m above the ground? 
Solve this problem using energy.

b. With what speed does the ball hit the ground?
6. | A 55 kg skateboarder wants to just make it to the upper edge 

of a “quarter pipe,” a track that is one-quarter of a circle with a 
radius of 3.0 m. What speed does he need at the bottom?

7. | What height does a frictionless playground slide need so that 
a 32 kg child reaches the bottom at a speed of 5.6 m/s?

8. || What minimum speed does a 100 g puck need to make it to 
the top of a 3.0-m-long, 20° frictionless ramp?

9. || A 30 kg child is on a swing that hangs from 2.5-m-long chains. 
What is her maximum speed if she swings out to a 45° angle?
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10. || A pendulum is made by tying a 450 g ball to an 80 cm long 
string. The pendulum is pulled 30° to one side and then released. 
What is the ball’s speed at the lowest point of its trajectory?

11. | A 1500 kg car traveling at 10 m/s suddenly runs out of gas 
while approaching the valley shown in FIGURE EX10.11. The alert  
driver immediately puts the car in neutral so that it will roll. 
What will be the car’s speed as it coasts into the gas station on 
the other side of the valley? Ignore rolling friction.

15 m

Gas station

10 m

FIGURE EX10.11

12. | The maximum energy a bone can absorb without breaking is 
surprisingly small. Experimental data show that a leg bone of a 
healthy, 60 kg human can absorb about 200 J. From what maxi-
mum height could a 60 kg person jump and land rigidly upright 
on both feet without breaking his legs? Assume that all energy is 
absorbed by the leg bones in a rigid landing.

13. || A cannon tilted up at a 30° angle fires a cannon ball at 70 m/s 
from atop a 15-m-high fortress wall. What is the ball’s impact 
speed on the ground below?

14. || In a hydroelectric dam, water falls 25 m and then spins a tur-
bine to generate electricity.
a. What is ∆UG of 1.0 kg of water?
b. Suppose the dam is 80% efficient at converting the water’s 

potential energy to electrical energy. How many kilograms of 
water must pass through the turbines each second to  generate 
50 MW of electricity? This is a typical value for a small 
 hydroelectric dam.

Section 10.3 Elastic Potential Energy

15. || A spring scale that reads in grams uses a 10.0-cm-long spring. 
Hanging a water bottle from the scale stretches the spring to 
15.0 cm and causes the scale to read 750 g. What is the elastic 
potential energy of the stretched spring?

16. | A student places her 500 g physics book on a frictionless table. 
She pushes the book against a spring, compressing the spring  
by 4.0 cm, then releases the book. What is the book’s speed as it 
slides away? The spring constant is 1250 N/m.

17. | A stretched spring stores 2.0 J of energy. How much energy 
will be stored if the spring is stretched three times as far?

18. || The bumper cars at the state fair have identical 1.0-m-long 
horizontal springs protruding from the front of each car. A 
250 kg car traveling at 1.5 m/s has a head-on collision with a 
150 kg car traveling at 2.5 m/s in the opposite direction. The two 
springs are each compressed by 25 cm when the cars are instan-
taneously at rest, just before they rebound. What is the spring 
constant of the springs?

19. | As a 15,000 kg jet plane lands on an aircraft carrier, its tail 
hook snags a cable to slow it down. The cable is attached to a 
spring with spring constant 60,000 N/m. If the spring stretches 
30 m to stop the plane, what was the plane’s landing speed?

20. | A 10 kg runaway grocery cart runs into a spring with spring 
constant 250 N/m and compresses it by 60 cm. What was the 
speed of the cart just before it hit the spring?

21. || The spring in FIGURE EX10.21a is compressed by 10 cm. It 
launches a block across a frictionless surface at 0.50 m/s. The 

xeq

(a)

25 N/m

10 cm

1.0 kg

FIGURE EX10.21

25 N/m

25 N/m

10 cm

1.0 kg

(b)

xeq

25 N/m

10 cm

1.0 kg

(a)

xeq

FIGURE EX10.22

25 N/m 25 N/m

10 cm

1.0 kg

(b)

2xeq

22. || The spring in FIGURE EX10.22a is compressed by 10 cm. It 
launches a block across a frictionless surface at 0.50 m/s. The 
two springs in FIGURE EX10.22b are identical to the spring of 
Figure EX10.22a. They are compressed by the same 10 cm and 
launch the same block. What is the block’s speed now?

23. || The elastic energy stored in your tendons can contribute up to  
35, of your energy needs when running. Sports scientists 
find that (on average) the knee extensor tendons in sprinters 
stretch 41 mm while those of nonathletes stretch only 33 mm. 
The spring constant of the tendon is the same for both groups, 
33 N/mm. What is the difference in maximum stored energy 
between the sprinters and the nonathletes?

Section 10.4 Conservation of Energy

Section 10.5 Energy Diagrams

24. | FIGURE EX10.24 is the potential-energy diagram for a 500 g 
particle that is released from rest at A. What are the particle’s 
speeds at B, C, and D?

U (J)

5
4
3
2
1
0

A B C D
x

FIGURE EX10.24

6

5

4

3

2

1

0
0 1 2 3 4 5 6 7

x (m)

U (J)

FIGURE EX10.25

25. || FIGURE EX10.25 is the potential-energy diagram for a 20 g 
particle that is released from rest at x = 1.0 m.
a. Will the particle move to the right or to the left?
b. What is the particle’s maximum speed? At what position does 

it have this speed?
c. Where are the turning points of the motion?

two springs in FIGURE EX10.21b are identical to the spring of 
Figure EX10.21a. They are compressed by the same 10 cm and 
launch the same block. What is the block’s speed now?

M10_KNIG8221_05_GE_C10.indd   284 21/06/2022   13:00



Exercises and Problems 285

34. || A particle moving along the x-axis is in a system that has po-
tential energy U = x3 - 3x J, where x is in m.
a. Where are the equilibrium points for this system?
b. For each, is it a point of stable or unstable equilibrium?

Section 10.7 Conservative and Nonconservative Forces

35. || A force does work on a 50 g particle as the particle moves along  
the following straight paths in the xy-plane: 25 J from (0 m, 0 m) 
to (5 m, 0 m); 35 J from (0 m, 0 m) to (0 m, 5 m); –5 J from  
(5 m, 0 m) to (5 m, 5 m); –15 J from (0 m, 5 m) to (5 m, 5 m); and 
20 J from (0 m, 0 m) to (5 m, 5 m).
a. Is this a conservative force?
b. If the zero of potential energy is at the origin, what is the po-

tential energy at (5 m, 5 m)?
36. | A particle moves from A to D in FIGURE EX10.36 while expe-

riencing force F
u

= 16in + 8jn2 N. How much work does the force 
do if the particle follows path (a) ABD and (b) ACD. Is this a 
conservative force? Explain.

26. | a. In FIGURE EX10.26, what minimum speed does a 100 g 
particle need at point A to reach point B?

b. What minimum speed does a 100 g particle need at point 
B to reach point A?

U (J)

5

4

3

2

1

0
A B

x

FIGURE EX10.26

U (J)

5
4
3
2
1
0

0 2 4 6 8
x (mm)

FIGURE EX10.27

16
12
8
4
0

U (J)

x (m)
0 2 4 6 8FIGURE EX10.28

y (m)

U (J)

10 2 3 4 5
0

60

30

FIGURE EX10.30

x (cm)

U (J)

100 20 30 40
0

10

5

FIGURE EX10.31

27. | In FIGURE EX10.27, what is the maximum speed of a 2.0 g 
particle that oscillates between x = 2.0 mm and x = 8.0 mm?

28. || FIGURE EX10.28 shows the potential-energy diagram for a 
500 g particle as it moves along the x-axis. Suppose the particle’s 
mechanical energy is 12 J.
a. Where are the particle’s turning points?
b. What is the particle’s speed when it is at x = 4.0 m?
c. What is the particle’s maximum speed? At what position or 

positions does this occur?

29. || In FIGURE EX10.28, what is the maximum speed a 200 g par-
ticle could have at x = 2.0 m and never reach x = 6.0 m?

Section 10.6 Force and Potential Energy

30. || A system in which only one particle moves has the po tential 
energy shown in FIGURE EX10.30. What is the y-component of  
the force on the particle at y = 0.5 m and 4 m?

31. || A system in which only one particle moves has the potential 
energy shown in FIGURE EX10.31. What is the x-component of 
the force on the particle at x = 5, 15, and 25 cm?

32. || A particle moving along the x-axis is in a system with poten-
tial energy U = x4/8 J, where x is in m. What is the x-component 
of the force on the particle at x = 0 m, 1 m, and 2 m?

33. || A particle moving along the y-axis is in a system with poten-
tial energy U = 24/y3 J, where y is in m. What is the y-component 
of the force on the particle at y = -2 m and y = +2 m?

x (m)

y (m)

10

1

2 3
0

2

3

4

A B

DC

FIGURE EX10.36
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FIGURE EX10.38
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FIGURE EX10.39

Section 10.8 The Energy Principle Revisited

37. | The environment does 400 J of work on a system during a 
process in which the system loses 200 J of kinetic energy and the 
thermal energy increases by 100 J. Show this process on an energy  
bar chart.

38. | What is the final potential energy of the system for the pro-
cess shown in FIGURE EX10.38?

39. | How much work is done by the environment in the process 
shown in FIGURE EX10.39? Is energy transferred from the envi-
ronment to the system or from the system to the environment?

40. || A cable with 20.0 N of tension pulls straight up on a 1.50 kg 
block that is initially at rest. What is the block’s speed after being 
lifted 2.00 m? Solve this problem using work and energy.

Problems
41. | A 30 g mass is attached to a light, rigid, 95-cm-long rod. The 

other end of the rod is pivoted so that the mass can rotate in a 
vertical circle. What speed does the mass need at the bottom of 
the circle to barely make it over the top of the circle?

42. || A 50 g ice cube can slide up and down a frictionless 30° slope. 
At the bottom, a spring with spring constant 25 N/m is com-
pressed 10 cm and used to launch the ice cube up the slope. How 
high does it go above its starting point?
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50. || A 65 kg student dives off a 25-m-high bridge with a 15-m-long 
bungee cord tied to her feet and to the bridge. A bungee cord 
is essentially a flexible spring. What spring constant must the 
 bungee cord have for the student’s lowest point to be 3.0 m above 
the water?

51. || Use work and energy to find an expression for the speed of 
the block in FIGURE P10.51 just before it hits the floor if (a) the 
coefficient of kinetic friction for the block on the table is mk and 
(b) the table is frictionless.

43. || You have been hired to design a spring-launched roller coaster 
that will carry two passengers per car. The car goes up a 10-m-high 
hill, then descends 15 m to the track’s lowest point. You’ve deter-
mined that the spring can be compressed a maximum of 2.0 m and 
that a loaded car will have a maximum mass of 400 kg. For safety 
reasons, the spring constant should be 10% larger than the minimum  
needed for the car to just make it over the top.
a. What spring constant should you specify?
b. What is the maximum speed of a 350 kg car if the spring is 

compressed the full amount?
44. || A block of mass m slides down a frictionless track, then 

around the inside of a circular loop-the-loop of radius R. From 
what minimum height h must the block start to make it around 
without falling off? Give your answer as a multiple of R.

45. || It’s been a great day of new, frictionless snow. Julie starts at 
the top of the 60° slope shown in FIGURE P10.45. At the bottom, a 
circular arc carries her through a 90° turn, and she then launches 
off a 3.0-m-high ramp. How far horizontally is her touchdown 
point from the end of the ramp?

h

M

m
mk

FIGURE P10.51

1.0 m

50-cm-long
sticky spot

FIGURE P10.52

k = 80,000 N/m

m = 100 kg

10 m

30°
FIGURE P10.54

90°

60°

25 m

3.0 m

FIGURE P10.45

46. || A 1400 kg safe is 1.0 m above a heavy-duty spring when the 
rope holding the safe breaks. The safe hits the spring and com-
presses it 40 cm. What is the spring constant of the spring?

47. || You have a ball of unknown mass, a spring with spring con-
stant 950 N/m, and a meter stick. You use various compressions 
of the spring to launch the ball vertically, then use the meter stick 
to measure the ball’s maximum height above the point at which it 
is released. Your data are as follows:

Compression (cm) Height (cm)

2.0  32

3.0  65

4.0 115

5.0 189

Use an appropriate graph of the data to determine the ball’s mass.
48. || A horizontal spring with a spring constant of 120 N/m is com-

pressed 30 cm and used to launch a 2.4 kg box across a frictionless, 
horizontal surface. After the box travels some distance, the surface 
becomes rough. The coefficient of kinetic friction of the box on 
the surface is 0.15. Use the equations for work and energy to find 
how far the box slides across the rough surface before stopping.

49. || Two blocks with masses mA and mB are connected by a mass-
less string over a massless, frictionless pulley. Block B, which is 
more massive than block A, is released from height h and falls.
a. Write an expression for the speed of the blocks just as block 

B reaches the ground.
b. A 1.0 kg block and a 2.0 kg block are connected by a massless 

string over a massless, frictionless pulley. The impact speed 
of the heavier block, after falling, is 1.8 m/s. From how high 
did it fall?

52. || A freight company uses a compressed spring to shoot 
2.0 kg packages up a 1.0-m-high frictionless ramp into a truck, 
as FIGURE P10.52 shows. The spring constant is 500 N/m and the 
spring is compressed 30 cm.
a. What is the speed of the package when it reaches the truck?
b. A careless worker spills his soda on the ramp. This creates a 

50-cm-long sticky spot with a coefficient of kinetic friction 
0.30. Will the next package make it into the truck?

53. || a. A 50 g ice cube can slide without friction up and down a 
30° slope. The ice cube is pressed against a spring at the 
bottom of the slope, compressing the spring 10 cm. The 
spring constant is 25 N/m. When the ice cube is  released, 
what total distance will it travel up the slope before revers-
ing direction?

b. The ice cube is replaced by a 50 g plastic cube whose 
 coefficient of kinetic friction is 0.20. How far will the 
 plastic cube travel up the slope? Use work and energy.

54. || The spring shown in FIGURE P10.54 is compressed 50 cm and 
used to launch a 100 kg physics student. The track is frictionless 
until it starts up the incline. The student’s coefficient of kinetic 
friction on the 30° incline is 0.15.
a. What is the student’s speed just after losing contact with the 

spring?
b. How far up the incline does the student go?

55. || Figure 10.23 showed the potential-energy curve for the O2 
molecule. Consider a molecule with the energy E1 shown in the 
figure.
a. What is the maximum speed of an oxygen atom as it oscillates 

back and forth? Don’t forget that the kinetic energy is the total 
kinetic energy of the system. The mass of an oxygen atom is 
16 u, where 1 u = 1 atomic mass unit = 1.66 * 10-27 kg.

M10_KNIG8221_05_GE_C10.indd   286 21/06/2022   13:01



Exercises and Problems 287

62. || A clever engineer designs a “sprong” that obeys the force law 
Fx = -q1x - xeq23, where xeq is the equilibrium position of the 
end of the sprong and q is the sprong constant. For simplicity, 
we’ll let xeq = 0 m. Then Fx = -qx3.
a. What are the units of q?
b. Find an expression for the potential energy of a stretched or 

compressed sprong.
c. A sprong-loaded toy gun shoots a 20 g plastic ball. What is 

the launch speed if the sprong constant is 40,000, with the 
units you found in part a, and the sprong is compressed 
10 cm? Assume the barrel is frictionless.

63. || The potential energy for a particle that can move along the 
x-axis is U = Ax2 + B sin1px/L2, where A, B, and L are  constants. 
What is the force on the particle at (a) x = 0, (b) x = L/2, and  
(c) x = L?

64. || A particle that can move along the x-axis experiences an 
interaction force Fx = 13x2 - 5x2 N, where x is in m. Find an 
expression for the system’s potential energy.

65. || An object moving in the xy-plane is subjected to the force 
F
u

= 12xy in + x2 jn2 N, where x and y are in m.
a. The particle moves from the origin to the point with coordinates  

1a, b2 by moving first along the x-axis to 1a, 02, then parallel 
to the y-axis. How much work does the force do?

b. The particle moves from the origin to the point with coordinates  
1a, b2 by moving first along the y-axis to 10, b2, then parallel 
to the x-axis. How much work does the force do?

c. Is this a conservative force?
66. Write a realistic problem for which the energy bar chart shown in 

FIGURE P10.66 correctly shows the energy at the beginning and 
end of the problem.

b. The atom’s speed varies as it oscillates, but you can make the 
reasonable assumption that the average speed is half the max-
imum speed. With that assumption, what is the oscillation 
frequency of an oxygen atom in a molecule that has en-
ergy E1? Think carefully about how far each atom travels 
during one cycle. Give your answer in THz, where 1 THz =  
1 terahertz = 1012 Hz, and 1 Hz = 1 hertz = 1 cycle/s is the unit  
of frequency.

56. ||| A sled starts from rest at the top of the frictionless, hemi-
spherical, snow-covered hill shown in FIGURE P10.56.
a. Find an expression for the sled’s speed when it is at angle f.
b. Use Newton’s laws to find the maximum speed the sled can 

have at angle f without leaving the surface.
c. At what angle fmax  does the sled “fly off” the hill?

f R

FIGURE P10.56

57. || A block weighing 2.6 kg is attached to a horizontal rope that 
exerts a variable force Fx = 120 - 5x2 N, where x is in meters. 
The coefficient of kinetic friction between the block and the 
floor is 0.25. Initially, when the block is at rest, x = 0 m. What is 
the block’s speed when it has been pulled to x = 4 m?

58. || A 1.0 kg mass that can move along the x-axis experiences the 
potential energy U = (x2 - x) J, where x is in m. The mass has 
velocity vx = 3.0 m/s at position x = 1.0 m. At what position has 
it slowed to 1.0 m/s?

59. || A system has potential energy

U(x) = (10 J)31 - sin1(3.14 rad/m) x24
as a particle moves over the range 0 m … x … 3 m.
a. Where are the equilibrium positions in this range?
b. For each, is it a point of stable or unstable equilibrium?

60. || A 100 g particle experiences the one-dimensional, conserva-
tive force Fx shown in FIGURE P10.60.
a. Let the zero of potential  energy be at x = 0 m. What is the 

potential energy at x  = 1.0, 2.0, 3.0, and 4.0 m?
Hint: Use the definition of potential energy and the geometric 
interpretation of work.

b. Suppose the particle is shot to the right from x = 1.0 m with a 
speed of 25 m/s. Where is its turning point?

x (m)

Fx (N)

0

-10

-20

1 2 3 4 5

FIGURE P10.60

=

=

40

20
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-20
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+ + + +

+ + + +USp fKf

E (J)

FIGURE P10.66

61. || A particle that can move along the x-axis is part of a system 
with potential energy

U1x2 =
A

x2 -
B
x

where A and B are positive constants.
a. Where are the particle’s equilibrium positions?
b. For each, is it a point of stable or unstable equilibrium?

In Problems 67 through 69 you are given the equation used to solve a 
problem. For each of these, you are to

a. Write a realistic problem for which this is the correct equation.
b. Draw the before-and-after pictorial representation.
c. Finish the solution of the problem.

67. 1
2 11500 kg215.0 m/s22 + 11500 kg219.80 m/s22110 m2

=  12 11500 kg2vi 

2 + 11500 kg219.80 m/s2210 m2
68. 1

2 10.20 kg212.0 m/s22 + 1
2 k10 m22

=  12 10.20 kg210 m/s22 + 1
2 k1-0.15 m22

69. 1
2 10.50 kg2vf 

2 + 10.50 kg219.80 m/s2210 m2
+  12 1400 N/m210 m22 = 1

2 10.50 kg210 m/s22

+  10.50 kg219.80 m/s2211-0.10 m2 sin 30°2
+  12 1400 N/m21-0.10 m22
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74. ||| The spring in FIGURE CP10.74 has a spring constant of 
1000 N/m. It is compressed 15 cm, then launches a 200 g block. 
The horizontal surface is frictionless, but the block’s coefficient 
of kinetic friction on the incline is 0.20. What distance d does the 
block sail through the air?

Challenge Problems
70. ||| A pendulum is formed from 

a small ball of mass m on a string 
of length L. As FIGURE CP10.70 
shows, a peg is height h = L /3 
above the pendulum’s lowest 
point. From what minimum 
angle u must the pendulum be 
released in order for the ball to 
go over the top of the peg with-
out the string going slack?

u

Peg

h = L /3

L

FIGURE CP10.70

200 g
2.0 m

d

45°

FIGURE CP10.74
71. ||| In a physics lab experiment, a compressed spring launches 

a 20 g metal ball at a 30° angle. Compressing the spring 20 cm 
causes the ball to hit the floor 1.5 m below the point at which it 
leaves the spring after traveling 5.0 m horizontally. What is the 
spring constant?

72. ||| It’s your birthday, and to celebrate you’re going to make your 
first bungee jump. You stand on a bridge 100 m above a raging 
river and attach a 30-m-long bungee cord to your harness. A bun-
gee cord, for practical purposes, is just a long spring, and this cord 
has a spring constant of 40 N/m. Assume that your mass is 80 kg. 
After a long hesitation, you dive off the bridge. How far are you 
above the water when the cord reaches its maximum elongation?

73. ||| A 10 kg box slides 4.0 m down the fric-
tionless ramp shown in FIGURE CP10.73, 
then collides with a spring whose spring 
constant is 250 N/m.
a. What is the maximum com-

pression of the spring?
b. At what compression of the 

spring does the box have its 
maximum speed?

75. ||| Protons and neutrons (together called nucleons) are held 
together in the nucleus of an atom by a force called the strong 
force. At very small separations, the strong force between two 
nucleons is larger than the repulsive electrical force between two 
protons—hence its name. But the strong force quickly weakens 
as the distance between the protons increases. A well-established  
model for the potential energy of two nucleons interacting via 
the strong force is

U = U031 - e-x/x04
where x is the distance between the centers of the two nucle-
ons, x0  is a constant having the value x0 = 2.0 * 10-15 m, and 
U0 = 6.0 * 10-11 J.

Quantum effects are essential for a proper understanding of nu-
cleons, but let us innocently consider two neutrons as if they were 
small, hard, electrically neutral spheres of mass 1.67 * 10-27 kg 
and diameter 1.0 * 10-15 m. Suppose you hold two neutrons 
5.0 * 10-15 m apart, measured between their  centers, then release 
them. What is the speed of each neutron as they crash together? 
Keep in mind that both neutrons are moving. 

4.0 m

30°

FIGURE CP10.73
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Impulse and Momentum

What is momentum?
An object’s momentum is the product  
of its mass and velocity. An object can  
have a large momentum by having  
a large mass or a large velocity. 
Momentum is a vector, and it is  
especially important to pay attention to 
the signs of the components of momentum.

What is impulse?
A force of short duration is an impulsive 
force. The impulse Jx that this force 
 delivers to an object is the area under  
the force-versus-time graph. For time- 
dependent forces, impulse and momentum 
are often more useful than Newton’s laws.

How are impulse and momentum related?
Working with momentum is similar to 
working with energy. It’s important to 
clearly define the system. The momentum 
principle says that a system’s momentum 
changes when an impulse is delivered:

∆px = Jx

A momentum bar chart, similar to an  
energy bar chart, shows this principle  
graphically.

❮❮ LOOKING BACK Section 9.1 Energy overview

Is momentum conserved?
The total momentum of an isolated 
system is conserved. The particles of 
an isolated system interact with each 
other but not with the environment. 
Regardless of how intense the  
interactions are, the final momentum 
equals the initial momentum.

❮❮ LOOKING BACK Section 10.4 Energy conservation

How does momentum apply to collisions?
One important application of momentum 
conservation is the study of collisions.

■■ In a totally inelastic collision, the 
objects stick together. Momentum  
is conserved.

■■ In a perfectly elastic collision, the 
objects bounce apart. Both momentum 
and mechanical energy are conserved.

Where else is momentum used?
This chapter looks at two other important  
applications of momentum conservation:

■■ An explosion is a short interaction that 
drives two or more objects apart.

21

■■ In rocket propulsion the object’s mass is 
changing continuously.

IN THIS CHAPTER, you will learn to use the concepts of impulse and momentum.

11

The popular toy known as Newton’s 
Cradle demonstrates conservation of 
energy and conservation of momentum.

Large mass

Large velocity

Same momentum:

Fx

t

Impulse = area

∆t

+ =

+ =pix Jx pfx

0

+

-

System

Interactions

Environment

1 2

1 2

1 2

1 2
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290 CHAPTER 11 Impulse and Momentum

11.1 Momentum and Impulse
A collision is a short-duration interaction between two objects that strike each other. 
The collision between a tennis ball and a racket, or a baseball and a bat, may seem 
instantaneous to your eye, but that is a limitation of your perception. A high-speed 
photograph reveals that the side of the ball is significantly flattened during the colli-
sion. It takes time to compress the ball, and more time for the ball to re-expand as it 
leaves the racket or bat.

The duration of a collision depends on the materials from which the objects are 
made, but 1 to 10 ms (0.001 to 0.010 s) is fairly typical. This is the time during which 
the two objects are in contact with each other. The harder the objects, the shorter the 
contact time. A collision between two steel balls lasts less than 200 microseconds.

FIGURE 11.1 shows an object colliding with a wall. The object approaches with an 
initial velocity v u

i, experiences a force of duration ∆t, and leaves with final velocity v u
f. 

Notice that the object, as in the photo above, deforms during the collision. A particle 
cannot be deformed, so we cannot model colliding objects as particles. Instead, we 
model a colliding object as an elastic object that compresses and then expands, much 
like a spring. Indeed, that’s exactly what happens at the microscopic level during a 
collision: Molecular bonds compress, store elastic potential energy, then transform 
some or all of that potential energy back into the kinetic energy of the rebounding 
object. We’ll examine the energy issues of collisions later in this chapter.

The force of a collision is usually very large in comparison to other forces exerted 
on the object. A large force exerted for a small interval of time is called an impulsive 
force. The graph of Figure 11.1 shows how a typical impulsive force behaves, rapidly 
growing to a maximum at the instant of maximum compression, then decreasing back 
to zero. The force is zero before contact begins and after contact ends. Because an 
impulsive force is a function of time, we will write it as F

u1t2.
We would like to know how a collision changes an object’s velocity, and we can 

use Newton’s second law to do that. Acceleration is a u = d v u
/dt, so the second law is

m a u = m 
d v u

dt
= F

u
(t)

Multiplying both sides by dt gives

 m  d v u = F
u
(t)  dt (11.1)

The force differs from zero only during the interval of time from ti to tf = ti + ∆t, so 
let’s integrate Equation 11.1 over just this interval. The velocity changes from v u

i to v u
f 

during the collision; thus

 m3
vf

vi

d v u = mv u
f - mv u

i = 3
tf

ti

F
u

 1t2 dt (11.2)

We need some new tools to help us make sense of Equation 11.2.

Momentum
The product of an object’s mass and velocity is called the momentum of the object:

 momentum = p u K mv u
 (11.3)

The units of momentum are kg m/s.
Momentum p u  is a vector—specifically, a vector parallel to the velocity vector v 

u. 
FIGURE 11.2 shows that pu, like any vector, can be decomposed into x- and y-components:

px = mvx

py = mvy

   NOTE    One of the most common errors in momentum problems is a failure to use the  
appropriate signs. The momentum component px has the same sign as vx. Momentum  
is negative for an object moving to the left (on the x-axis) or down (on the y-axis).

S

S

vi

vf

Before:

During:

After:

Fx (t)

F(t)

Fmax

0 t

Contact begins Contact endsDuration of
collision ∆t

Instant of maximum 
compression

The object approachesc

ccollides for ∆tc

cand then rebounds.

C
om

pr
es

si
on E

xpansion

u

u

u

FIGURE 11.1 A collision.

v
u

m

Momentum is a vector pointing in the
same direction as the object’s velocity.

py

px

p
u

u

u

FIGURE 11.2 The momentum p 

u
 can be 

decomposed into x- and y-components.

A tennis ball collides with a racket. Notice 
that the right side of the ball is flattened.
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An object can have a large momentum by having either a small mass but a large veloc- 
ity or a small velocity but a large mass. For example, a 5.5 kg (12 lb) bowling ball roll- 
ing at a modest 2 m/s has momentum of magnitude p = 15.5 kg212 m/s2 = 11 kg m/s. 
This is almost exactly the same momentum as a 9 g bullet fired from a high-speed rifle  
at 1200 m/s.

Newton actually formulated his second law in terms of momentum rather than 
acceleration:

 F
u

= ma u = m 
d v u

dt
=

d1mv u2
dt

=
d p u

dt
 (11.4)

This statement of the second law, saying that force is the rate of change of momentum,  
is more general than our earlier version F

u
= mau. It allows for the possibility that the 

mass of the object might change, such as a rocket that is losing mass as it burns fuel.
Returning to Equation 11.2, you can see that mvui and mvuf are pui and puf, the object’s 

momentum before and after the collision. Further, puf - pui is ∆pu, the change in the 
object’s momentum. Thus Equation 11.2 is a statement about the object’s change in 
momentum:

 ∆pu = puf - pui = 3
tf

ti

F
u
(t)  dt (11.5)

Now we need to examine the right-hand side of Equation 11.5.

Impulse
Equation 11.5 tells us that an object’s change in momentum is equal to the time inte-
gral of the force. Let’s define that integral to be a quantity J

u
 called the impulse:

 impulse = J
u

K 3
tf

ti

F
u
(t)  dt (11.6)

Impulse has units of N s, but you should be able to show that N s is equivalent to 
kg m/s, the units of momentum.

Thus Equation 11.2, which we found by integrating Newton’s second law, can be 
rewritten in terms of impulse and momentum as

 ∆pu = J
u
  (momentum principle) (11.7)

This result, called the momentum principle, says that an impulse delivered to an 
object causes the object’s momentum to change. The momentum puf “after” an inter-
action, such as a collision, is equal to the momentum pui “before” the interaction plus 
the impulse that arises from the interaction:

 puf = pui + J
u
 (11.8)

For motion in one dimension—say, along the x-axis—the momentum principle is

 ∆px = pfx - pix = Jx (11.9)

where the x-component of the impulse is

 Jx = 3
tf

ti

Fx(t)  dt = area under the Fx(t) curve between ti and tf (11.10)

The interpretation of the integral in Equation 11.10 as an area under a curve is 
especially important. FIGURE 11.3a portrays the impulse graphically. Because the force 
changes in a complicated way during a collision, it is often useful to describe the 
collision in terms of an average force Favg. As FIGURE 11.3b shows, Favg is the height of 
a rectangle that has the same area, and thus the same impulse, as the real force curve. 
The impulse exerted during the collision is

 Jx = Favg ∆t (11.11)

Fx

Fmax

Object has
momentum pix

Object has
momentum pfx

0 t

(a)

Fx

Favg

Same duration ∆t

The area under the rectangle
of height Favg is the same as
the area in part (a).

0 t

(b)

Impulse Jx is the area
under the force curve.

FIGURE 11.3 Looking at the impulse 
graphically.
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FIGURE 11.4 illustrates the momentum principle for a rubber ball bouncing off a wall. 
Notice the signs; they are very important. The ball is initially traveling toward the 
right, so vix and pix are positive. After the bounce, vfx and pfx are negative. The force 
on the ball is toward the left, so Fx is also negative. The graphs show how the force and  
the momentum change with time.

Although the interaction is very complex, the impulse—the area under the force 
graph—is all we need to know to find the ball’s velocity as it rebounds from the wall. 
The final momentum is

 pfx = pix + Jx = pix + area under the force curve (11.12)

and the final velocity is vfx = pfx /m. In this example, the area has a negative value.

An Analogy with the Energy Principle
You’ve probably noticed that there is a similarity between the momentum principle 
and the energy principle of Chapters 9 and 10. For a system of one object acted on  
by a force:

 

energy principle: ∆K = W = 3
xf

xi

Fx  dx

momentum principle: ∆px = Jx = 3
tf

ti

Fx  dt

 (11.13)

In both cases, a force acting on an object changes the state of the system. If the force 
acts over the spatial interval from xi to xf, it does work that changes the object’s kinetic 
energy. If the force acts over a time interval from ti to tf, it delivers an impulse that 
changes the object’s momentum. FIGURE 11.5 shows that the geometric interpretation of 
work as the area under the F-versus-x graph parallels an interpretation of impulse as 
the area under the F-versus-t graph.

t

t

Jx = area
under curve

Maximum
compression

Contact
begins

Contact ends

vix 7 0

pix

pfx

vfx 6 0

Fx

px

0

Before: After:

0

∆px = Jx

The wall delivers an impulse to the ball.

 The impulse changes the ball’s momentum.

F
u

FIGURE 11.4 The momentum principle 
helps us understand a rubber ball 
bouncing off a wall.

x (m)

Fx (N) Work W is the area under a
force-versus-position graph.

t (s)

Fx (N) Impulse Jx is the area under a
force-versus-time graph.

FIGURE 11.5 Impulse and work are both the area under a force curve, but it’s very important 
to know what the horizontal axis is.

This does not mean that a force either creates an impulse or does work but does 
not do both. Quite the contrary. A force acting on an object both creates an impulse 
and does work, changing both the momentum and the kinetic energy of the object. 
Whether you use the energy principle or the momentum principle depends on the 
question you are trying to answer.

In fact, we can express the kinetic energy in terms of momentum as

 K = 1
2 mv2 =

1mv22

2m
=

p2

2m
 (11.14)

You cannot change an object’s kinetic energy without also changing its momentum.
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11.1 Momentum and Impulse 293

Momentum Bar Charts
The momentum principle tells us that impulse transfers momentum to an object. 
If an object moving along the x-axis has 2 kg m/s of momentum, a 1 kg m/s impulse 
delivered to the object increases its momentum to 3 kg m/s. That is, pfx = pix + Jx.

Just as we did with energy, we can represent this “momentum accounting” with a 
momentum bar chart. For example, the bar chart of FIGURE 11.6 represents the ball 
colliding with a wall in Figure 11.4. Momentum bar charts are a tool for visualizing 
an interaction.

   NOTE    The vertical scale of a momentum bar chart has no numbers; it can be 
adjusted to match any problem. However, be sure that all bars in a given problem use 
a consistent scale.

0

+

+ =

+ =

-
pix Jx pfx

Initially the ball is moving to the right.

Then it’s hit to the left.

It rebounds to the left 
with no loss of speed.

FIGURE 11.6 A momentum bar chart.

STOP TO THINK 11.1 The cart’s change of momentum is

a. -30 kg m/s
b. -20 kg m/s
c. 0 kg m/s
d. 10 kg m/s
e. 20 kg m/s
f. 30 kg m/s

2 m/s

Before: After:
10 kg

1 m/s

A 150 g baseball is thrown 
with a speed of 20 m/s. It is 
hit straight back toward the 
pitcher at a speed of 40 m/s. 
The interaction force be-
tween the ball and the bat is 
shown in FIGURE 11.7. What 
maximum force Fmax does 
the bat exert on the ball? 
What is the average force of 
the bat on the ball?

MODEL Model the baseball as an elastic object and the interaction 
as a collision. Assume the motion is along the x-axis.

VISUALIZE FIGURE 11.8 is a before-and-after pictorial representa-
tion. Because Fx is positive (a force to the right), we know the ball 
was initially moving toward the left and is hit back toward the right. 
Thus we converted the statements about speeds into information 
about velocities, with vix negative.

SOLVE The momentum principle is

∆px = Jx = area under the force curve

We know the velocities before and after the collision, so we can 
calculate the ball’s momenta:

pix = mvix = 10.15 kg21-20 m/s2 = -3.0 kg m/s

pfx = mvfx = 10.15 kg2140 m/s2 = 6.0 kg m/s

EXAMPLE 11.1 ■ Hitting a baseball

Solving Impulse and Momentum Problems
Impulse and momentum problems, like energy problems, relate the situation before 
an interaction to the situation afterward. Consequently, the before-and-after pictorial 
representation remains our primary visualization tool. Let’s look at an example.

Fx

Fmax

0

3.0 ms

t

FIGURE 11.7 The interaction force 
between the baseball and the bat.

FIGURE 11.8 A before-and-after pictorial representation.

vix = -20 m/s

x

vfx = 40 m/s

m = 0.15 kg

0 0

Before: After:

Fmax and FavgFind:

x

Initially the ball is moving to the left.

Then it’s hit to the right.

It rebounds to the right
at a higher speed.

0

+

+ =

+ =

-
pix Jx pfx

Continued
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294 CHAPTER 11 Impulse and Momentum

Other forces often act on an object during a collision or other brief interaction. 
In Example 11.1, for instance, the baseball is also acted on by gravity. Usually these 
other forces are much smaller than the interaction forces. The 1.5 N weight of the ball 
is vastly less than the 3000 N average force of the bat on the ball. We can reasonably 
neglect these small forces during the brief time of the impulsive force; this is called 
the impulse approximation.

When we use the impulse approximation, pix and pfx (and vix and vfx) are the 
 momenta (and velocities) immediately before and immediately after the collision. For 
example, the velocities in Example 11.1 are those of the ball just before and after it 
collides with the bat. We could then do a follow-up problem, including gravity and 
drag, to find the ball’s speed a second later as the second baseman catches it. We’ll 
look at some two-part examples later in the chapter.

STOP TO THINK 11.2 A 10 g rubber ball and a 10 g clay ball are thrown at a wall 
with equal speeds. The rubber ball bounces, the clay ball sticks. Which ball delivers a 
larger impulse to the wall?

a. The clay ball delivers a larger impulse because it sticks.
b. The rubber ball delivers a larger impulse because it bounces.
c. They deliver equal impulses because they have equal momenta.
d. Neither delivers an impulse to the wall because the wall doesn’t move.

Thus the change in momentum is

∆px = pfx - pix = 9.0 kg m/s

The force curve is a triangle with height Fmax and width 3.0 ms. The 
area under the curve is

Jx = area = 1
2 1Fmax210.0030 s2 = 1Fmax210.0015 s2

Using this information in the momentum principle, we have

9.0 kg m /s = 1Fmax210.0015 s2

Thus the maximum force is

Fmax =
9.0 kg m/s

0.0015 s
= 6000 N

The average force, which depends on the collision duration 
∆t = 0.0030 s, has the smaller value:

Favg =
Jx

∆t
=

∆px

∆t
=

9.0 kg m/s

0.0030 s
= 3000 N

REVIEW Fmax is a large force, but quite typical of the impulsive 
forces during collisions. The main thing to focus on is our new per-
spective: An impulse changes the momentum of an object.

11.2 Conservation of Momentum
The momentum principle was derived from Newton’s second law and is really just an 
alternative way of looking at single-particle dynamics. To discover the real power of 
momentum for problem solving, we need also to invoke Newton’s third law, which will 
lead us to one of the most important principles in physics: conservation of momentum.

FIGURE 11.9 shows two objects with initial velocities 1vix21 and 1vix22. The objects 
collide, then bounce apart with final velocities 1vfx21 and 1vfx22. The forces during the 
collision, as the objects are interacting, are the action/reaction pair F

u

1 on 2 and F
u

2 on 1. 
For now, we’ll assume that the motion is one dimensional along the x-axis.

   NOTE    The notation, with all the subscripts, may seem excessive. But there are two 
objects, and each has an initial and a final velocity, so we need to distinguish among 
four different velocities.

Newton’s second law for each object during the collision is

 
d1px21

dt
= 1Fx22 on 1 

 
d1px22

dt
= 1Fx21 on 2 = -1Fx22 on 1 

(11.15)

We made explicit use of Newton’s third law in the second equation.

(vix)1 (vix)2

Before

During

After

The forces
during the
collision are an
action/reaction
pair.

(vfx)2(vfx)1

1

1 2

2

1 2

F2 on 1 F1 on 2

u u

FIGURE 11.9 A collision between two 
objects.
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11.2 Conservation of Momentum 295

Although Equations 11.15 are for two different objects, suppose—just to see what 
happens—we were to add these two equations. If we do, we find that

d1px21

dt
+

d1px22

dt
=

d
dt

 c1px21 + 1px22 d = 1Fx22 on 1 + 1-1Fx22 on 12 = 0 (11.16)

If the time derivative of the quantity 1px21 + 1px22 is zero, it must be the case that

 1px21 + 1px22 = constant (11.17)

Equation 11.17 is a conservation law! If 1px21 + 1px22 is a constant, then the sum of the 
momenta after the collision equals the sum of the momenta before the collision. That is,

 1pfx21 + 1pfx22 = 1pix21 + 1pix22 (11.18)

Furthermore, this equality is independent of the interaction force. We don’t need to 
know anything about F

u

1 on 2 and F
u

2 on 1 to make use of Equation 11.18.
As an example, FIGURE 11.10 is a before-and-after pictorial representation of two 

equal-mass train cars colliding and coupling. Equation 11.18 relates the momenta of 
the cars after the collision to their momenta before the collision:

m1 1vfx21 + m2 1vfx22 = m1 1vix21 + m2 1vix22

Initially, car 1 is moving with velocity 1vix21 = vi while car 2 is at rest. Afterward, they 
roll together with the common final velocity vf. Furthermore, m1 = m2 = m. With this 
information, the momentum equation is

mvf + mvf = mvi + 0

The mass cancels, and we find that the train cars’ final speed is vf = 1
2 vi. That is, we can 

predict that the final speed is exactly half the initial speed of car 1 without knowing 
anything about the complex interaction between the two cars as they collide.

Before:
(vix)1 = vi (vix)2 = 0

m2 = m m mm1 = m

(vfx)1 = (vfx)2 = vf

After:

FIGURE 11.10 Two colliding train cars.

Systems of Particles
Equation 11.18 illustrates the idea of a conservation law for momentum, but it was 
derived for the specific case of two objects colliding in one dimension. Our goal 
is to develop a more general law of conservation of momentum, a law that will be 
valid in three dimensions and that will work for any type of interaction. The next few 
paragraphs are fairly mathematical, so you might want to begin by looking ahead to 
Equations 11.26 and the statement of the law of conservation of momentum to see 
where we’re heading.

Our study of energy in the last two chapters has emphasized the importance of 
having a clearly defined system. The same is true for momentum. Consider a system 
consisting of N particles. FIGURE 11.11 shows a simple case where N = 3, but N could 
be anything. The particles might be large entities (cars, baseballs, etc.), or they might 
be the microscopic atoms in a gas. We can identify each particle by an identification 
number k. Every particle in the system interacts with every other particle via action/
reaction pairs of forces F

u

j on k and F
u

k on j. In addition, every particle is subjected to 
possible external forces F

u

ext on k from agents outside the system.
If particle k has velocity vuk, its momentum is puk = mk vuk. We define the total  

momentum P
u

 of the system as the vector sum

 P
u

= total momentum = pu1 + pu2 + pu3 + g + puN = a
N

k=1
puk

 (11.19)

That is, the total momentum of the system is the vector sum of the individual momenta.

Fext on 2

F1 on 2

F2 on 1

F3 on 1 F1 on 3

F2 on 3

Fext on 3

F3 on 22

1

System

External
force

External
force

3

u
u

u

u

u

u

u

u

FIGURE 11.11 A system of particles.
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296 CHAPTER 11 Impulse and Momentum

The time derivative of P
u

 tells us how the total momentum of the system changes 
with time:

 
dP

u

dt
= a

k
 
d puk

dt
= a

k
F
u

k (11.20)

where we used Newton’s second law for each particle in the form F
u

k = dpuk /dt, which 
was Equation 11.4.

The net force acting on particle k can be divided into external forces, from outside 
the system, and interaction forces due to all the other particles in the system:

 F
u

k = a
j≠k

F
u

j on k + F
u

ext on k (11.21)

The restriction j ≠ k expresses the fact that particle k does not exert a force on itself.  
Using this in Equation 11.20 gives the rate of change of the total momentum P

u
 of the 

system:

 
dP

u

dt
= a

k
a
j≠k

P
u

j on k + a
k

F
u

ext on k (11.22)

The double sum on F
u

j on k adds every interaction force within the system. But the 
interaction forces come in action/reaction pairs, with F

u

k on j = -F
u

j on k, so F
u

k on j +
F
u

j on k =  0
u

. Consequently, the sum of all the interaction forces is zero. As a result, 
Equation 11.22 becomes

 
dP

u

dt
= a

k
F
u

ext on k = F
u

net  (11.23)

where F
u

net is the net force exerted on the system by agents outside the system. But 
this is just Newton’s second law written for the system as a whole! That is, the rate 
of change of the total momentum of the system is equal to the net force applied 
to the system.

Equation 11.23 has two very important implications. First, we can analyze the mo-
tion of the system as a whole without needing to consider interaction forces between 
the particles that make up the system. In fact, we have been using this idea all along 
as an assumption of the particle model. When we treat cars and rocks and baseballs as 
particles, we assume that the internal forces between the atoms—the forces that hold 
the object together—do not affect the motion of the object as a whole. Now we have 
justified that assumption.

Isolated Systems
The second implication of Equation 11.23, and the more important one from the per-
spective of this chapter, applies to an isolated system. In Chapter 10, we defined an 
isolated system as one that is not influenced or altered by external forces from the 
environment. For momentum, that means a system on which the net external force is 
zero: F

u

net =  0
u
. That is, an isolated system is one on which there are no external forces 

or for which the external forces are balanced and add to zero.
For an isolated system, Equation 11.23 is simply

 
dF

u

dt
=  0

u
  (isolated system) (11.24)

In other words, the total momentum of an isolated system does not change. The total  
momentum P

u
 remains constant, regardless of whatever interactions are going on inside  

the system. The importance of this result is sufficient to elevate it to a law of nature, 
alongside Newton’s laws.

The total momentum of the rocket +
gases system is conserved, so the rocket 
accelerates forward as the gases are 
expelled backward.
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11.2 Conservation of Momentum 297

The total momentum after an interaction is equal to the total momentum before the 
interaction. Because Equation 11.25 is a vector equation, the equality is true for each 
of the components of the momentum vector. That is,

 1pfx21 + 1pfx22 + 1pfx23 + g = 1pix21 + 1pix22 + 1pix23 + g 

 1pfy21 + 1pfy22 + 1pfy23 + g = 1piy21 + 1piy22 + 1piy23 + g 
(11.26)

The x-equation is an extension of Equation 11.18 to N interacting objects.

   NOTE    It is worth emphasizing the critical role of Newton’s third law. The law of 
conservation of momentum is a direct consequence of the fact that interactions 
within an isolated system are action/reaction pairs.

Law of conservation of momentum The total momentum P
u
 of an isolated 

system is a constant. Interactions within the system do not change the system’s 
total momentum. Mathematically, the law of conservation of momentum is

 P
u

f = P
u

i (11.25)

A 250 g air-track glider is pushed across a level track toward a 500 g  
glider that is at rest. FIGURE 11.12 shows a position-versus-time 
graph of the 250 g glider as recorded by a motion detector. Best-fit 
lines have been found. What is the speed of the 500 g glider after 
the collision?

MODEL Let the system be the two gliders. The gliders interact with 
each other, but the external forces (normal force and gravity) bal-
ance to make F

u

net =  0
u

. Thus the gliders form an isolated system 
and their total momentum is conserved.

VISUALIZE FIGURE 11.13 is a before-and-after pictorial representa-
tion. The graph of Figure 11.12 tells us that the 250 g glider initially 
moves to the right, collides at t = 1.0 s, then rebounds to the left 
(decreasing x). Note that the best-fit lines are written as a generic 
y = c, which is what you would see in data-analysis software.

SOLVE Conservation of momentum for this one-dimensional prob-
lem requires that the final momentum equal the initial momentum: 
Pfx = Pix. In terms of the individual components, conservation of 
momentum is

1pfx21 + 1pfx22 = 1pix21 + 1pix22

Each momentum is mvx, so conservation of momentum in terms 
of velocities is

m11vfx21 + m21vfx22 = m11vix21 + m21vix22 = m11vix21

where, in the last step, we used 1vix22 = 0 for the 500 g glider. 
Solving for the heavier glider’s final velocity gives

1vfx22 =
m1

m2
 31vix21 - 1vfx214

From Chapter 2 kinematics, the velocities of the 250 g glider before 
and after the collision are the slopes of the position-versus-time 
graph. Referring to Figure 11.12, we see that 1vix21 = 0.75 m/s and 
1vfx21 = -0.21 m/s. The latter is negative because the rebound mo-
tion is to the left. Thus

1vfx22 =
250 g

500 g
 30.75 m/s - 1-0.21 m/s24 = 0.48 m/s

The 500 g glider moves away from the collision at 0.48 m/s.

REVIEW The 500 g glider has twice the mass of the glider that was 
pushed, so a somewhat smaller speed seems reasonable. Paying at-
tention to the signs—which are positive and which negative—was 
very important for reaching a correct answer. We didn’t convert the 
masses to kilograms because only the mass ratio of 0.50 was needed.

EXAMPLE 11.2 ■ A glider collision

y = 0.75x + 0.20 y = -0.21x + 1.06

1.5
t (s)

0.0 0.5 1.0 2.0

0.8

1.0

0.6

0.4

0.2

0.0

Best-fit lines

x (m)

FIGURE 11.12 Position graph of the 250 g glider.

(vix)1
(vix)2 = 0

(vfx)1 (vfx)2

Before:

System

After:

Find:  (vfx)2

m1 = 250 g m 2 = 500 g

x

1

1 2

2

FIGURE 11.13 Before-and-after representation of a collision.
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298 CHAPTER 11 Impulse and Momentum

PROBLEM-SOLVING STRATEGY 11.1

Conservation of momentum

MODEL Clearly define the system.
■■ If possible, choose a system that is isolated 1F

u

net =  0
u2 or within which the in-

teractions are sufficiently short and intense that you can ignore external forces 
for the duration of the interaction (the impulse approximation). Momentum is 
conserved.

■■ If it’s not possible to choose an isolated system, try to divide the problem into 
parts such that momentum is conserved during one segment of the motion. 
Other segments of the motion can be analyzed using Newton’s laws or conser-
vation of energy.

VISUALIZE Draw a before-and-after pictorial representation. Define symbols that 
will be used in the problem, list known values, and identify what you’re trying  
to find.

SOLVE The mathematical representation is based on the law of conservation of 
momentum: P

u

f = P
u

i. In component form, this is

1pfx21 + 1pfx22 + 1pfx23 + g = 1pix21 + 1pix22 + 1pix23 + g
1pfy21 + 1pfy22 + 1pfy23 + g = 1piy21 + 1piy22 + 1piy23 + g

REVIEW Check that your result has correct units and significant figures, is reason-
able, and answers the question.

Exercise 17 

A Strategy for Conservation of Momentum  
Problems

Bob sees a stationary cart 8.0 m in front of him. He decides to run to 
the cart as fast as he can, jump on, and roll down the street. Bob has 
a mass of 75 kg and the cart’s mass is 25 kg. If Bob accelerates at 
a steady 1.0 m/s2, what is the cart’s speed just after Bob jumps on?

MODEL This is a two-part problem. First Bob accelerates across 
the ground. Then Bob lands on and sticks to the cart, a “collision” 
between Bob and the cart. The interaction forces between Bob and 
the cart (i.e., friction) act only over the fraction of a second it takes 
Bob’s feet to become stuck to the cart. Using the impulse approx-
imation allows the system Bob + cart to be treated as an isolated 
system during the brief interval of the “collision,” and thus the to-
tal momentum of Bob + cart is conserved during this interaction. 
But the system Bob + cart is not an isolated system for the entire 
problem because Bob’s initial acceleration has nothing to do with 
the cart.

VISUALIZE Our strategy is to divide the problem into an accelera-
tion part, which we can analyze using kinematics, and a collision 
part, which we can analyze with momentum conservation. The 
pictorial representation of FIGURE 11.14 includes information about 
both parts. Notice that Bob’s velocity 1v1x2B at the end of his run is 
his “before” velocity for the collision.

SOLVE The first part of the mathematical representation is kine- 
matics. We don’t know how long Bob accelerates, but we do know 
his acceleration and the distance. Thus

1v1x2B 

2 = 1v0x2B 

2 + 2ax   ∆x = 2ax  x1

His velocity after accelerating for 8.0 m is

1v1x2B = 22ax  x1 = 4.0 m/s

The second part of the problem, the collision, uses conservation of 
momentum:  P2x = P1x. Equation 11.26 is

mB 1v2x2B + mC 1v2x2C = mB 1v1x2B + mC 1v1x2C = mB 1v1x2B

where we’ve used 1v1x2C = 0 m/s because the cart starts at rest. In 
this problem, Bob and the cart move together at the end with a com-
mon velocity, so we can replace both 1v2x2B and 1v2x2C with simply 
v2x. Solving for v2x, we find

v2x =
mB

mB + mC
 1v1x2B =

75 kg

100 kg
* 4.0 m/s = 3.0 m/s

The cart’s speed is 3.0 m/s immediately after Bob jumps on.

EXAMPLE 11.3 ■ Rolling away
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11.2 Conservation of Momentum 299

Notice how easy this was! No forces, no acceleration constraints, no simultaneous 
equations. Why didn’t we think of this before? Conservation laws are indeed powerful, 
but they can answer only certain questions. Had we wanted to know how far Bob 
slid across the cart before sticking to it, how long the slide took, or what the cart’s 
acceleration was during the collision, we would not have been able to answer such 
questions on the basis of the conservation law. There is a price to pay for finding a 
simple connection between before and after, and that price is the loss of information 
about the details of the interaction. If we are satisfied with knowing only about before 
and after, then conservation laws are a simple and straightforward way to proceed. But 
many problems do require us to understand the interaction, and for these there is no  
avoiding Newton’s laws.

It Depends on the System
The first step in the problem-solving strategy asks you to clearly define the system. 
The goal is to choose a system whose momentum will be conserved. Even then, it is 
the total momentum of the system that is conserved, not the momenta of the individ-
ual objects within the system.

As an example, consider what happens if you drop a rubber ball and let it bounce 
off a hard floor. Is momentum conserved? You might be tempted to answer yes be-
cause the ball’s rebound speed is very nearly equal to its impact speed. But there are 
two errors in this reasoning.

First, momentum depends on velocity, not speed. The ball’s velocity and momentum 
vectors reverse direction during the collision. Even if their magnitudes are equal, the 
ball’s momentum after the collision is not equal to its momentum before the collision.

But more important, we haven’t defined the system. The momentum of what? 
Whether or not momentum is conserved depends on the system. FIGURE 11.15 shows 
two different choices of systems. In Figure 11.15a, where the ball itself is chosen as 
the system, the gravitational force of the earth on the ball is an external force. This 
force causes the ball to accelerate toward the earth, changing the ball’s momentum. 
When the ball hits, the force of the floor on the ball is also an external force. The 
impulse of F

u

floor on ball changes the ball’s momentum from “down” to “up” as the ball 
bounces. The momentum of this system is most definitely not conserved.

Figure 11.15b shows a different choice. Here the system is ball + earth. Now the 
gravitational forces and the impulsive forces of the collision are interactions within 
the system. This is an isolated system, so the total momentum P

u
= puball + puearth is 

conserved.
In fact, the total momentum (in this reference frame) is P

u
=  0

u
 because both the 

ball and the earth are initially at rest. The ball accelerates toward the earth after you 
release it, while the earth—due to Newton’s third law—accelerates toward the ball in 
such a way that their individual momenta are always equal but opposite.

x

x0 = 0 m
(v0x )B = 0 m/s

x1 = 8.0 m
(v1x)B

(v1x )C = 0 m/s (v2x )B = (v2x )C = v2x

Find: v2x 
mC = 25 kg

mB = 75 kg

System System

ax = 1.0 m/s2

Before: After:

0 m 8 m

FIGURE 11.14 Pictorial representation of Bob and the cart.

Interaction forces
within an isolated
system. The
system’s total
momentum
is conserved.

System = ball + earth(b)

FB on E

u

FE on B

u

System = ball(a)

External force.
Impulse changes the
ball’s momentum.

FE on B

FB on E

u

u

FIGURE 11.15 Whether or not momentum 
is conserved as a ball falls to earth 
depends on your choice of the system.
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Why don’t we notice the earth “leaping up” toward us each time we drop some-
thing? Because of the earth’s enormous mass relative to everyday objects—roughly 
1025 times larger. Momentum is the product of mass and velocity, so the earth would 
need an “upward” speed of only about 10-25 m/s to match the momentum of a typical 
falling object. At that speed, it would take 300 million years for the earth to move the 
diameter of an atom! The earth does, indeed, have a momentum equal and opposite to 
that of the ball, but we’ll never notice it.

STOP TO THINK 11.3 Objects A and C are 
made of different materials, with different 
“springiness,” but they have the same mass 
and are initially at rest. When ball B collides 
with object A, the ball ends up at rest. When 
ball B is thrown with the same speed and 
collides with object C, the ball rebounds 
to the left. Compare the speeds of A and C 
after the collisions. Is vA greater than, equal 
to, or less than vC ?

B

Before: After:

mA = mC

vA

vC

v = 0
A

B C C

A

11.3 Collisions
Collisions can have different possible outcomes. A rubber ball dropped on the floor 
bounces, but a ball of clay sticks to the floor without bouncing. A golf club hitting a 
golf ball causes the ball to rebound away from the club, but a bullet striking a block of 
wood embeds itself in the block.

Inelastic Collisions
A collision in which the two objects stick together and move with a common final 
velocity is called a perfectly inelastic collision. The clay hitting the floor and the 
bullet embedding itself in the wood are examples of perfectly inelastic collisions. 
Other examples include railroad cars coupling together upon impact and darts hitting 
a dart board. As FIGURE 11.16 shows, the key to analyzing a perfectly inelastic collision 
is the fact that the two objects have a common final velocity.

A system consisting of the two colliding objects is isolated, so its total momentum 
is conserved. However, mechanical energy is not conserved because some of the ini-
tial kinetic energy is transformed into thermal energy during the collision.

After:

Combined
mass m1 + m2

m1
m2

Common final
velocity

They stick and move together.

Two objects approach and collide.

Before:
(vix)1 (vix)2

vfx

1 2

1 2

FIGURE 11.16 An inelastic collision.

In a laboratory experiment, a 200 g air-track glider and a 400 g  
air-track glider are pushed toward each other from opposite ends 
of the track. The gliders have Velcro tabs on the front and will 
stick together when they collide. The 200 g glider is pushed 
with an initial speed of 3.0 m/s. The collision causes it to reverse 
direction at 0.40 m/s. What was the initial speed of the 400 g 
glider?

MODEL Define the system to be the two gliders. This is an isolated 
system, so its total momentum is conserved in the collision. The 
gliders stick together, so this is a perfectly inelastic collision.

VISUALIZE FIGURE 11.17 shows a pictorial representation. We’ve 
chosen to let the 200 g glider (glider 1) start out moving to the right, 
so 1vix21 is a positive 3.0 m/s. The gliders move to the left after the 
collision, so their common final velocity is vfx = -0.40 m/s.

EXAMPLE 11.4 ■ An inelastic glider collision
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SOLVE The law of conservation of momentum, Pfx = Pix, is

1m1 + m22vfx = m1 1vix21 + m2 1vix22

where we made use of the fact that the combined mass m1 + m2 
moves together after the collision. We can easily solve for the initial 
velocity of the 400 g glider:

 1vix22 =
1m1 + m22vfx - m1 1vix21

m2

 =
10.60 kg21-0.40 m/s2 - 10.20 kg213.0 m/s2

0.40 kg
= -2.1 m/s

The negative sign indicates that the 400 g glider started out moving 
to the left. The initial speed of the glider, which we were asked to 
find, is 2.1 m/s.

(vix)1 = 3.0 m/s

vfx = -0.40 m/s

(vix)2

m1 + m 2

Before:

After:

System

Find:  (vix)2

m1 = 200 g m 2 = 400 g

x

1 2

1 2

FIGURE 11.17 The before-and-after pictorial representation of an 
inelastic collision.

A 10 g bullet is fired into a 1200 g wood block hanging from a 
150-cm-long string. The bullet embeds itself into the block, and the 
block then swings out to an angle of 40°. What was the speed of the 
bullet? (This is called a ballistic pendulum.)

MODEL This is a two-part problem. Part one, the impact of the  
bullet on the block, is an inelastic collision. For this part, we define 
the system to be bullet +  block. Momentum is conserved, but me-
chanical energy is not because some of the energy is transformed 
into thermal energy. For part two, the subsequent swing, mechanical 
energy is conserved for the system bullet +  block +  earth (there’s 
no friction). The total momentum is conserved, including the mo-
mentum of the earth, but that’s not helpful. The momentum of the 
block with the bullet—which is all that we can calculate—is not 
conserved because the block is acted on by the external forces of  
tension and gravity.

VISUALIZE FIGURE 11.18 is a pictorial representation in which 
we’ve identified before-and-after quantities for both the collision 
and the swing.

SOLVE The momentum conservation equation Pf = Pi applied to 
the inelastic collision gives

1mW + mB2v1x = mW 1v0x2W + mB 1v0x2B

The wood block is initially at rest, with 1v0x2W = 0, so the bullet’s 
velocity is

1v0x2B =
mW + mB

mB
 v1x

where v1x is the velocity of the block + bullet immediately after  
the collision, as the pendulum begins to swing. If we can deter-
mine v1x from an analysis of the swing, then we will be able to cal-
culate the speed of the bullet. Turning our attention to the swing, 
the energy conservation equation Kf + UGf = Ki + UGi is

1
2 1mW + mB2v2 

2 + 1mW + mB2gy2 = 1
2 1mW + mB2v1 

2 + 1mW + mB2gy1

We used the total mass 1mW + mB2 of the block and embedded 
bullet, but notice that it cancels out. We also dropped the x-subscript  
on v1 because for energy calculations we need only speed, not 
velocity. The speed is zero at the top of the swing 1v2 = 02, and 
we’ve defined the y-axis such that y1 = 0 m. Thus

v1 = 22gy2

The initial speed is found simply from the maximum height of the 
swing. You can see from the geometry of Figure 11.18 that

y2 = L - L cos u = L11 - cos u2 = 0.351 m

With this, the initial velocity of the pendulum, immediately after 
the collision, is

v1x = v1 = 22gy2 = 2219.80 m/s2210.351 m2 = 2.62 m/s

Having found v1x from an energy analysis of the swing, we can 
now calculate that the speed of the bullet was

1v0x2B =
mW + mB

mB
 v1x =

1.210 kg

0.010 kg
* 2.62 m/s = 320 m/s

REVIEW It would have been very difficult to solve this problem 
using Newton’s laws, but it yielded to a straightforward analysis 
based on the concepts of momentum and energy.

EXAMPLE 11.5 ■ A ballistic pendulum

y2

u = 40°

y1 = 0 m
v2 = 0 m/s

L = 1.50 m L cos u L

mB = 0.010 kg

mW = 1.20 kg
(v0x)W = 0 m/s

(v0x)B

Collision / Momentum

Swing / EnergyFind: (v0x)B

v1
u

FIGURE 11.18 A ballistic pendulum is used to measure the speed 
of a bullet.
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302 CHAPTER 11 Impulse and Momentum

Elastic Collisions
In an inelastic collision, some of the mechanical energy is dissipated inside the ob-
jects as thermal energy and not all of the kinetic energy is recovered. We’re now 
interested in “perfect bounce” collisions in which kinetic energy is stored as elastic 
potential energy in compressed molecular bonds, and then all of the stored energy 
is transformed back into the post-collision kinetic energy of the objects. A collision 
in which mechanical energy is conserved is called a perfectly elastic collision. A 
perfectly elastic collision is an idealization, like a frictionless surface, but collisions 
between two very hard objects, such as two billiard balls or two steel balls, come close 
to being perfectly elastic.

FIGURE 11.19 shows a head-on, perfectly elastic collision of a ball of mass m1, having 
initial velocity 1vix21, with a ball of mass m2 that is initially at rest. The balls’ velocities 
after the collision are 1vfx21 and 1vfx22. These are velocities, not speeds, and have signs. 
Ball 1, in particular, might bounce backward and have a negative value for 1vfx21.

The collision must obey two conservation laws: conservation of momentum (obeyed  
in any collision) and conservation of mechanical energy (because the collision is  
perfectly elastic). Although the energy is transformed into potential energy during 
the collision, the mechanical energy before and after the collision is purely kinetic 
energy. Thus

 momentum conservation:  m1 1vfx21 + m2 1vfx22 = m1 1vix21 (11.27)

energy conservation:  1
2 m1 1vfx21 

2 + 1
2 m2 1vfx22 

2 = 1
2 m1 1vix21 

2 (11.28)

Momentum conservation alone is not sufficient to analyze the collision because there 
are two unknowns: the two final velocities. Energy conservation provides the addi-
tional information that we need. Isolating 1vfx21 in Equation 11.27 gives

 1vfx21 = 1vix21 -
m2

m1
 1vfx22 (11.29)

We substitute this into Equation 11.28:

1
2 m1 c 1vix21 -

m2

m1
 1vfx22 d

2

+ 1
2 m2 1vfx22 

2 = 1
2 m1 1vix21 

2

With a bit of algebra, this can be rearranged to give

 1vfx22 c 11 +
m2

m1
21vfx22 - 21vix21 d = 0 (11.30)

One possible solution to this equation is seen to be 1vfx22 = 0. However, this solu-
tion is of no interest; it is the case where ball 1 misses ball 2. The other solution is

1vfx22 =
2m1

m1 + m2
 1vix21

which, finally, can be substituted back into Equation 11.29 to yield 1vfx21. The com-
plete solution is

STOP TO THINK 11.4 The two balls are both moving to the right. Ball 1 catches up 
with ball 2 and collides with it. The balls stick together and continue on with velocity 
vf. Which of these statements is true?

a. vf is greater than v1.
b. vf = v1

c. vf is greater than v2 but less than v1.
d. vf = v2

e. vf is less than v2.
f. Can’t tell without knowing the masses.

A perfectly elastic collision conserves 
both momentum and mechanical energy.

AfterBefore

v1 v2 vf
21 1 2

1 KiBefore: 2

1During: 2

1After: 2 Kf = Ki

(vix)1

(vfx)1 (vfx)2

Energy is stored in
compressed bonds,
then released as the
bonds re-expand.

FIGURE 11.19 A perfectly elastic collision.
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11.3 Collisions 303

Equations 11.31 allow us to compute the final velocity of each ball. These equations are 
a little difficult to interpret, so let us look at the three special cases shown in FIGURE 11.20.

Case a: m1 = m2. This is the case of one billiard ball striking another of equal mass. 
For this case, Equations 11.31 give

vf1 = 0  vf 2 = vi1

Case b: m1 W m2. This is the case of a bowling ball running into a Ping-Pong ball. 
We do not want an exact solution here, but an approximate solution for the limiting 
case that m1 S ∞. Equations 11.31 in this limit give

vf1 ≈ vi1      vf 2 ≈ 2vi1

Case c: m1 V m2. Now we have the reverse case of a Ping-Pong ball colliding with 
a bowling ball. Here we are interested in the limit m1 S 0, in which case Equations 
11.31 become

vf1 ≈ -  vi1    vf 2 ≈ 0

These cases agree well with our expectations and give us confidence that Equations 
11.31 accurately describe a perfectly elastic collision.

Using Reference Frames
Equations 11.31 assumed that ball 2 was at rest prior to the collision. Suppose, however, 
you need to analyze the perfectly elastic collision that is just about to take place in 
FIGURE 11.21. What are the direction and speed of each ball after the collision? You could 
solve the simultaneous momentum and energy equations, but the mathematics becomes 
quite messy when both balls have an initial velocity. Fortunately, there’s an easier way.

You already know the answer—Equations 11.31—when ball 2 is initially at rest. And 
in Chapter 4 you learned the Galilean transformation of velocity. This transformation 
relates an object’s velocity as measured in one reference frame to its velocity in a dif-
ferent reference frame that moves with respect to the first. The Galilean transformation 
provides an elegant and straightforward way to analyze the collision of Figure 11.21.

 1vfx21 =
m1 - m2

m1 + m2
 1vix21   1vfx22 =

2m1

m1 + m2
 1vix21 (11.31)

(perfectly elastic collision with ball 2 initially at rest) 1

2

2

1

2

2

1

1

2

2

1

1

Case a: m1 = m2

Case b: m1 W m2

Case c: m1 V m2

Ball 1 stops. Ball 2 goes forward with vf2 = vi1.

Ball 1 hardly slows down. Ball 2 is knocked
forward at vf2 ≈ 2vi1.

Ball 1 bounces off ball 2 with almost no loss
of speed. Ball 2 hardly moves.

FIGURE 11.20 Three special elastic 
collisions.

TACTICS BOX 11.1

Analyzing elastic collisions
1  Use the Galilean transformation to transform the initial velocities of balls 1 

and 2 from the “lab frame” to a reference frame in which ball 2 is at rest.
2  Use Equations 11.31 to determine the outcome of the collision in the frame 

where ball 2 is initially at rest.
3  Transform the final velocities back to the “lab frame.”

FIGURE 11.22a on the next page shows the situation, just before the collision, in the 
lab frame L. Ball 1 has initial velocity 1vix21L = 2.0 m/s. Recall from Chapter 4 that 
the subscript notation means “velocity of ball 1 relative to the lab frame L.” Because 
ball 2 is moving to the left, it has 1vix22L = -3.0 m/s. We would like to observe the 
collision from a reference frame in which ball 2 is at rest. That will be true if we 
choose a moving reference frame M that travels alongside ball 2 with the same veloc-
ity: 1vx2ML = -3.0 m/s.

m1 = 200 g

2.0 m/s
1 2

3.0 m/s

m2 = 100 g

FIGURE 11.21 A perfectly elastic collision 
in which both balls have an initial velocity.
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304 CHAPTER 11 Impulse and Momentum

We first need to transform the balls’ velocities from the lab frame to the moving ref-
erence frame. From Chapter 4, the Galilean transformation of velocity for an object O is

 1vx2OM = 1vx2OL + 1vx2LM (11.32)

That is, O’s velocity in reference frame M is its velocity in reference frame L plus the 
velocity of frame L relative to frame M. Because reference frame M is moving to the 
left relative to L with 1vx2ML = -3.0 m/s, reference frame L is moving to the right 
relative to M with 1vx2LM = +3.0 m/s. Applying the transformation to the two initial 
velocities gives

 1vix21M = 1vix21L + 1vx2LM = 2.0 m/s + 3.0 m/s = 5.0 m/s 

 1vix22M = 1vix22L + 1vx2LM = -3.0 m/s + 3.0 m/s = 0 m/s 
(11.33)

1vix22M = 0 m/s, as expected, because we chose a moving reference frame in which 
ball 2 would be at rest.

FIGURE 11.22b now shows a situation—with ball 2 initially at rest—in which we can 
use Equations 11.31 to find the post-collision velocities in frame M:

 1vfx21M =
m1 - m2

m1 + m2
 1vix21M = 1.7 m/s 

 1vfx22M =
2m1

m1 + m2
 1vix21M = 6.7 m/s 

(11.34)

Reference frame M hasn’t changed—it’s still moving to the left in the lab frame at 
3.0 m/s—but the collision has changed both balls’ velocities in frame M.

To finish, we need to transform the post-collision velocities in frame M back to the 
lab frame L. We can do so with another application of the Galilean transformation:

 1vfx21L = 1vfx21M + 1vx2ML = 1.7 m/s +  1-3.0 m/s2 = -1.3 m/s 

 1vfx22L = 1vfx22M + 1vx2ML = 6.7 m/s + 1-3.0 m/s2 = 3.7 m/s 
(11.35)

FIGURE 11.23 shows the outcome of the collision in the lab frame. It’s not hard to confirm  
that these final velocities do, indeed, conserve both momentum and energy.

Two Collision Models
No collision is perfectly elastic, although collisions between two very hard objects 
(metal spheres) or between two springs (such as a collision on an air track) come close. 
Collisions can be perfectly inelastic, although many real-world inelastic collisions ex-
hibit a small residual bounce. Thus perfectly elastic and perfectly inelastic collisions 
are models of collisions in which we simplify reality in order to gain understanding 
without getting bogged down in the messy details of real collisions.

(a)
y

x

1 2

y

x
(vx)ML = -3.0 m/s

The collision seen
in the lab frame L.

Frame M moves
with ball 2.

(vix)1L = 2.0 m/s

(vix)2L = -3.0 m/s

L
M

FIGURE 11.22 The collision seen in two reference frames: the lab frame L and a moving frame 
M in which ball 2 is initially at rest.

(vfx)1L = -1.3 m/s (vfx)2L = 3.7 m/s

1 2

FIGURE 11.23 The post-collision velocities 
in the lab frame.

(b)
y

x

1 2

The collision seen
in moving frame M.

(vix)1M = 5.0 m/s (vix)2M = 0 m/s

Ball 2 is at
rest in M.

M
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11.4 Explosions
An explosion, where the particles of the system move apart from each other after a 
brief, intense interaction, is the opposite of a collision. The explosive forces, which 
could be from an expanding spring or from expanding hot gases, are internal forces. 
If the system is isolated, its total momentum during the explosion will be conserved. 
One of the most well-known consequences of an explosion is that a larger object recoils  
after launching a small but high-speed projectile.

MODEL 11.1

Collisions
For two colliding objects.

■■ Represent the objects as elastic objects moving  
in a straight line.

■■ In a perfectly inelastic collision, the 
objects stick and move together. Kinetic 
energy is transformed into thermal energy.
Mathematically:

1m1 + m22vfx = m1(vix21 + m21vix22

■■ In a perfectly elastic collision, the objects 
bounce apart with no loss of energy. 
Mathematically:

• If object 2 is initially at rest, then

1vfx21 =
m1 - m2

m1 + m2
 1vix21  1vfx22 =

2m1

m1 + m2
1vix21

• If both objects are moving, use the Galilean transformation to transform the 
velocities to a reference frame in which object 2 is at rest.

■■ Limitations: Model fails if the collision is not head-on or cannot reasonably be 
approximated as a “thud” or as a “perfect bounce.”

Exercise 22 

Before:

After: 1 2

1 2

Before:

After:

1 2

1 2

The women’s javelin used in the Olympics has a mass of 600 g. An 
elite athlete can throw a javelin with a speed in excess of 25 m/s. 
Suppose a 55 kg athlete, standing on a 2.0 kg skateboard, throws a 
javelin horizontally at 25 m/s. What is her recoil speed as she rolls 
backward after the throw?

MODEL Define the system to be athlete + skateboard + javelin. The 
throwing force, an action/reaction pair of forces between the athlete 
and the javelin, is an internal force. There’s no net vertical force. 
Rolling friction will eventually stop the skateboard, but—using the 
impulse approximation—it’s reasonable to assume that the friction 
force is much smaller than the throwing force and that it will not 
influence her motion during the fraction of a second it takes to 
throw the javelin. Thus this is an isolated system, and the law of 
conservation of momentum applies.

VISUALIZE FIGURE 11.24 shows a before-and-after pictorial represen-
tation. We’ve chosen to let the javelin travel to the right, which means 
that the athlete and the skateboard will have a negative recoil velocity.

EXAMPLE 11.6 ■ Recoil from a javelin throw

Continued

FIGURE 11.24 Before-and-after pictorial representation of a 
javelin throw.
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We would not know where to begin to solve a problem such as this using Newton’s 
laws. But Example 11.6 is a simple problem when approached from the before-and-after 
perspective of a conservation law. The selection of athlete + skateboard + javelin as 
“the system” was the critical step. For momentum conservation to be a useful principle, 
we had to select a system in which the complicated forces between the athlete’s hand 
and the javelin and between her feet and the skateboard were all internal forces. The 
athlete by herself is not an isolated system, so her momentum is not conserved.

SOLVE The x-component of the total momentum is Px = (px)A+
(px)S + (px)J. Everything is at rest before the throw, so the initial 
total momentum is zero. After the throw, the athlete and the skate-
board move together with a common final velocity (vfx)A. The law 
of conservation of momentum is thus

Pfx = mJ(vfx)J + (mA + mS)(vfx)A = Pix = 0

Solving for the recoil velocity, we find

(vfx)A = -
mJ

mA + mS
 (vfx)J = -

0.60 kg

57 kg
* 25 m/s = -0.26 m/s

The minus sign indicates that the recoil is to the left. The recoil 
speed is 0.26 m/s .

A 238U uranium nucleus is radioactive. It spontaneously disinte-
grates into a small fragment that is ejected with a measured speed 
of 1.50 * 107 m/s and a “daughter nucleus” that recoils with a mea-
sured speed of 2.56 * 105 m/s. What are the atomic masses of the 
ejected fragment and the daughter nucleus?

MODEL The notation 238U indicates the isotope of uranium with an 
atomic mass of 238 u, where u is the abbreviation for the atomic mass 
unit. The nucleus contains 92 protons (uranium is atomic number 
92) and 146 neutrons. The disintegration of a nucleus is, in essence, 
an explosion. Only internal nuclear forces are involved, so the total  
momentum is conserved in the decay.

VISUALIZE FIGURE 11.25 shows the pictorial representation. The 
mass of the daughter nucleus is m1 and that of the ejected fragment 
is m2 . Notice that we converted the speed information to velocity 
information, giving 1vfx21 and 1vfx22 opposite signs.

SOLVE The nucleus was initially at rest, hence the total momentum 
is zero. The momentum after the decay is still zero if the two pieces 
fly apart in opposite directions with momenta equal in magnitude 
but opposite in sign. That is,

Pfx = m1 1vfx21 + m2 1vfx22 = Pix = 0

Although we know both final velocities, this is not enough infor-
mation to find the two unknown masses. However, we also have 
another conservation law, conservation of mass, that requires

m1 + m2 = 238 u

Combining these two conservation laws gives

m1 1vfx21 + 1238 u - m121vfx22 = 0

The mass of the daughter nucleus is

m1 =
1vfx22

1vfx22 - 1vfx21
* 238 u

=
1.50 * 107 m/s

11.50 * 107 - 1-2.56 * 10522 m/s
* 238 u = 234 u

With m1 known, the mass of the ejected fragment is m2 =
238 - m1 = 4 u.

REVIEW All we learn from a momentum analysis is the masses. 
Chemical analysis shows that the daughter nucleus is the element 
thorium, atomic number 90, with two fewer protons than uranium. 
The ejected fragment carried away two protons as part of its mass 
of 4 u, so it must be a particle with two protons and two neutrons. 
This is the nucleus of a helium atom, 4He, which in nuclear physics 
is called an alpha particle a. Thus the radioactive decay of 238U can 
be written as 238U S 234Th + a.

EXAMPLE 11.7 ■ Radioactivity

Before:

After:

Find:

m1

m1 and m2

m2

(vfx)1 = -2.56 * 105 m/s

(vfx)2 = 1.50 * 107 m/s

vix = 0 m/s

m = 238 u
238U

1 2

FIGURE 11.25 Before-and-after pictorial representation of the 
decay of a 238U nucleus.
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Similar reasoning explains how a rocket or jet aircraft accelerates. FIGURE 11.26  
shows a rocket with a parcel of fuel on board. Burning converts the fuel to hot gases 
that are expelled from the rocket motor. If we choose rocket + gases to be the system, 
the burning and expulsion are both internal forces. There are no other forces, so the 
total momentum of the rocket + gases system must be conserved. The rocket gains 
forward velocity and momentum as the exhaust gases are shot out the back, but the  
total momentum of the system remains zero.

Section 11.6 looks at rocket propulsion in more detail, but even without the details 
you should be able to understand that jet and rocket propulsion is a consequence of 
momentum conservation.

Before:

After:

The total momentum is
zero, so the rocket goes
forward as the gases
are ejected backward.

Fuel on
board

Ejected
exhaust
gases

pR 

pG

Pf = pR + pG = 0

Pi = 0

u

u

uu

u

u u

u

FIGURE 11.26 Rocket propulsion is an 
example of conservation of momentum.

Collisions and explosions often involve 
motion in two dimensions.

STOP TO THINK 11.5 An explosion in a rigid pipe shoots out three pieces. A 6 g 
piece comes out the right end. A 4 g piece comes out the left end with twice the speed 
of the 6 g piece. From which end, left or right, does the third piece emerge?

11.5 Momentum in Two Dimensions
The law of conservation of momentum P

u

f = P
u

i is not restricted to motion along a line. 
Many interesting examples of collisions and explosions involve motion in a plane, 
and for these both the magnitude and the direction of the total momentum vector are 
unchanged. The total momentum is the vector sum of the individual momenta, so the 
total momentum is conserved only if each component is conserved:

 1pfx21 + 1pfx22 + 1pfx23 + g = 1pix21 + 1pix22 + 1pix23 + g 

 1pfy21 + 1pfy22 + 1pfy23 + g = 1piy21 + 1piy22 + 1piy23 + g 
(11.36)

Let’s look at some examples of momentum conservation in two dimensions.

Peregrine falcons often grab their prey from above while both 
falcon and prey are in flight. A 0.80 kg falcon, flying at 18 m/s, 
swoops down at a 45° angle from behind a 0.36 kg pigeon flying 
horizontally at 9.0 m/s. What are the speed and direction of the 
falcon (now holding the pigeon) immediately after impact?

MODEL The two birds are the system. This is a perfectly inelastic 
collision because after the collision the falcon and pigeon move 
at a common final velocity. The birds are not a perfectly isolated 
system because of external forces of the air, but during the brief 
collision the external impulse delivered by the air resistance will be 
negligible. Within this approximation, the total momentum of the 
falcon +  pigeon system is conserved during the collision.

VISUALIZE FIGURE 11.27 is a before-and-after pictorial representa-
tion. We’ve used angle f to label the post-collision direction.

SOLVE The initial velocity components of the falcon are 
1vix2F = vF cos u and 1viy2F = -vF sin u. The pigeon’s initial velocity 
is entirely along the x-axis. After the collision, when the falcon 
and pigeon have the common velocity v 

u
f, the components are 

vfx = vf cos f and vfy = -vf sin f. Conservation of momentum in two 

dimensions requires conservation of both the x- and y-components 
of momentum. This gives two conservation equations:

  1mF + mP2vfx = 1mF + mP2vf cos f

  = mF1vix2F + mP1vi x2P = mFvF cos u + mPvP

  1mF + mP2vfy = -1mF + mP2vf sin f

  = mF1viy2F + mP1viy2P = -mFvF sin u

EXAMPLE 11.8 ■ A peregrine falcon strike

Continued

FIGURE 11.27 Pictorial representation of a falcon catching a 
pigeon.
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The unknowns are vf and f. Dividing both equations by the total 
mass gives

vf cos f =
mFvF cos u + mPvP

mF + mP
= 11.6 m/s

vf sin f =
mFvF sin u

mF + mP
= 8.78 m/s

We can eliminate vf by dividing the second equation by the first  
to give

vf sin f

vf cos f
= tan f =

8.78 m/s
11.6 m/s

= 0.757

f =  tan-110.7572 = 37°

Then vf = 111.6 m/s2/cos137°2 = 15 m/s. Immediately after im - 
pact, the falcon, with its meal, is traveling at 15 m/s at an angle 37° 
below the horizontal.

REVIEW It makes sense that the falcon would slow down after grab-
bing the slower-moving pigeon. And Figure 11.27 tells us that the 
total momentum is at an angle between 0° (the pigeon’s momentum) 
and 45° (the falcon’s momentum). Thus our answer seems reasonable.

A 10.0 g projectile is traveling east at 2.0 m/s when it suddenly 
explodes into three pieces. A 3.0 g fragment is shot due west at 
10 m/s while another 3.0 g fragment travels 40° north of east at 
12 m/s. What are the speed and direction of the third fragment?

MODEL Define the system to be the projectile, one piece before the 
explosion and three fragments afterward. Although many complex 
forces are involved in the explosion, they are all internal to the sys-
tem. There are no external forces, so this is an isolated system and 
its total momentum is conserved.

VISUALIZE FIGURE 11.28 shows a before-and-after pictorial repre-
sentation. We’ll use uppercase M and V to distinguish the initial 
object from the three pieces into which it explodes.

SOLVE The system is the initial object and the subsequent three 
pieces. Conservation of momentum requires

m1 1vfx21 + m2 1vfx22 + m3 1vfx23 = MVix

m1 1vfy21 + m2 1vfy22 + m3 1vfy23 = MViy

Conservation of mass implies that

m3 = M - m1 - m2 = 4.0 g

Neither the original object nor m2 has any momentum along the 
y-axis. We can use Figure 11.28 to write out the x- and y-components 
of v 

u
1 and v 

u
3, leading to

m1v1 cos 40° - m2v2 + m3v3 cos u = MV

m1v1 sin 40° - m3v3 sin u = 0

where we used 1vfx22 = -v2 because m2 is moving in the negative 
x-direction. Inserting known values in these equations gives us

-2.42 + 4v3 cos u = 20

23.14 - 4v3 sin u = 0

We can leave the masses in grams in this situation because the con-
version factor to kilograms appears on both sides of the equation 
and thus cancels out. To solve, first use the second equation to write 
v3 = 5.79/sin u. Substitute this result into the first equation, noting 
that cos u/sin u = 1/tan u, to get

-2.42 + 415.79
sin u2 cos u = -2.42 +

23.14
tan u

= 20

Now solve for u:

tan u =
23.14

20 + 2.42
= 1.03

u = tan-111.032 = 45.8°

Finally, use this result in the earlier expression for v3 to find

v3 =
5.79

sin 45.8°
= 8.1 m/s

The third fragment, with a mass of 4.0 g, is shot 46° south of east 
at a speed of 8.1 m/s.

EXAMPLE 11.9 ■ A three-piece explosion

FIGURE 11.28 Before-and-after pictorial representation of the 
three-piece explosion.
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11.6 Advanced Topic: Rocket Propulsion 309

11.6  ADVANCED TOPIC  Rocket Propulsion
Newton’s second law F

u
= mau applies to objects whose mass does not change. That’s 

an excellent assumption for balls and bicycles, but what about something like a rocket 
that loses a significant amount of mass as its fuel is burned? Problems of varying 
mass are solved with momentum rather than acceleration. We’ll look at one important 
example.

FIGURE 11.29 shows a rocket being propelled by the thrust of burning fuel but not 
influenced by gravity or drag. Perhaps it is a rocket in deep space where gravity is very 
weak in comparison to the rocket’s thrust. This may not be highly realistic, but ignoring 
gravity allows us to understand the essentials of rocket propulsion without making the 
mathematics too complicated. Rocket propulsion with gravity is a Challenge Problem  
in the end-of-chapter problems.

The system rocket +  exhaust gases is an isolated system, so its total momentum 
is conserved. The basic idea is simple: As exhaust gases are shot out the back, the 
rocket “recoils” in the opposite direction. Putting this idea on a mathematical footing 
is fairly straightforward—it’s basically the same as analyzing an explosion—but we 
have to be extremely careful with signs.

We’ll use a before-and-after approach, as we do with all momentum problems. The 
Before state is a rocket of mass m (including all onboard fuel) moving with velocity 
vx and having initial momentum Pix = mvx. During a small interval of time dt, the 
rocket burns a small mass of fuel mfuel and expels the resulting gases from the back of 
the rocket at an exhaust speed vex relative to the rocket. That is, a space cadet on the 
rocket sees the gases leaving the rocket at speed vex regardless of how fast the rocket 
is traveling through space.

After this little packet of burned fuel has been ejected, the rocket has new velocity 
vx + dvx and new mass m + dm. Now you’re probably thinking that this can’t be right; 
the rocket loses mass rather than gaining mass. But that’s our understanding of the 
physical situation. The mathematical analysis knows only that the mass changes, not 
whether it increases or decreases. Saying that the mass is m + dm at time t + dt is a 
formal statement that the mass has changed, and that’s how analysis of change is done 
in calculus. The fact that the rocket’s mass is decreasing means that dm has a negative 
value. That is, the minus goes with the value of dm, not with the statement that the 
mass has changed.

After the gas has been ejected, both the rocket and the gas have momentum. 
Conservation of momentum tells us that

 Pfx = mrocket1vx2rocket + mfuel1vx2fuel = Pix = mvx (11.37)

The mass of this little packet of burned fuel is the mass lost by the rocket: mfuel = -dm. 
Mathematically, the minus sign tells us that the mass of the burned fuel (the gases) and 
the rocket mass are changing in opposite directions. Physically, we know that dm 6 0, 
so the exhaust gases have a positive mass.

STOP TO THINK 11.6 An object trav-
eling to the right with pu = 2 in kg m/s 
suddenly explodes into two pieces. Piece 
1 has the momentum pu1 shown in the 
 figure. What is the momentum pu2 of the 
second piece?

a

b

c

e

d
0

2

-2

py (kg m/s)

px (kg m/s)
2

f. p2 = 0
u u

p1
u

0

2

-2

py (kg m/s)

Before:

After:

Relative to rocket

m + dm
vex

mfuel vx + dvx

m
vx

FIGURE 11.29 A before-and-after pictorial 
representation of a rocket burning a small 
amount of fuel.
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310 CHAPTER 11 Impulse and Momentum

The gases are ejected toward the left at speed vex relative to the rocket. If the rock-
et’s velocity is vx, then the gas’s velocity through space is vx - vex. When we assemble 
all these pieces of information, the momentum conservation equation is

 1m + dm21vx + dvx2 + 1-dm21vx - vex2 = mvx (11.38)

Multiplying this out gives

 mvx + vx dm + m   dvx + dm  dvx - vx dm + vex  dm = mvx (11.39)

You can see that several terms cancel, leading to m  dvx + vex  dm + dm   dvx = 0. We can 
drop the third term; it is the product of two infinitesimal terms and thus is negligible 
compared to the first two terms. With one final algebraic rearrangement, we’re left with

 dvx = -vex 
dm
m

 (11.40)

Remember that dm is negative—it’s the mass lost by the rocket when a small 
amount of fuel is burned—and so dvx is positive. Physically, Equation 11.40 is tell-
ing us the amount by which the rocket’s velocity increases when it burns a small 
amount of fuel. Not surprisingly, a lighter rocket (smaller m) gains more velocity than 
a heavier rocket (larger m).

There are a couple of ways to use Equation 11.40. First, divide both sides by the small 
interval of time dt in which the fuel is burned, which will make this a rate equation:

 
dvx

dt
=

-vex dm/dt
m

=
vexR
m

 (11.41)

where R = � dm/dt �  is the rate—in kg/s—at which fuel is burned. The fuel burn rate is 
reasonably constant for most rocket engines.

The left side of Equation 11.41 is the rocket’s acceleration: ax = dvx/dt. Thus from 
Newton’s second law, ax = Fx/m, the numerator on the right side of Equation 11.41 
must be a force. This is the thrust of the rocket engine:

 Fthrust = vexR (11.42)

So Equation 11.41 is just Newton’s second law, a = Fthrust/m, for the instantaneous ac-
celeration, which will change as the rocket’s mass m changes. But now we know how 
the thrust force is related to physical properties of the rocket engine.

Returning to Equation 11.40, we can find out how the rocket’s velocity changes as 
fuel is burned by integrating. Suppose the rocket starts from rest 1vx = 02 with mass 
m0 = mR + mF 0, where mR is the mass of the empty rocket and mF 0 is the initial mass 
of the fuel. At a later time, when the mass has been reduced to m, the velocity is v.

Integrating between this Before and After, we find

 3
v

0
dvx = v = -vex3

m

m0

dm
m

= -vex ln m `
m

m0

 (11.43)

where ln m is the natural logarithm (logarithm with base e) of m. Evaluating this be-
tween the limits, and using the properties of logarithms, gives

 -vex ln m `
m

m0

= -vex1ln m -  ln m02 = -vex ln1 m
m0

2 = vex ln1m0

m 2 (11.44)

Thus the rocket’s velocity when its mass has decreased to m is

 v = vex ln1m0

m 2 (11.45)

Initially, when m = m0, v = 0 because  ln 1 = 0. The maximum speed occurs when 
the fuel is completely gone and m = mR. This is

 vmax = vex ln1mR + mF 0

mR
2 (11.46)

Notice that the rocket speed can exceed vex if the fuel-mass-to-rocket-mass ratio is 
large enough. Also, because vmax is greatly improved by reducing mR, we can see why 
rockets that need enough speed to go into orbit are usually multistage rockets, drop-
ping off the mass of the lower stages when their fuel is depleted.
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11.6 Advanced Topic: Rocket Propulsion 311

Sounding rockets are small rockets used to gather weather data and 
do atmospheric research. One of the most popular sounding rockets 
has been the fairly small (10-in-diameter, 16-ft-long) Black Brant 
III. It is loaded with 210 kg of fuel, has a launch mass of 290 kg, and 
generates 49 kN of thrust for 9.0 s. What would be the maximum 
speed of a Black Brant III if launched from rest in deep space?

MODEL We define the system to be the rocket and its exhaust gases. 
This is an isolated system, its total momentum is conserved, and the 
rocket’s maximum speed is given by Equation 11.46.

SOLVE We’re given mF 0 = 210 kg. Knowing that the launch mass 
is 290 kg, we can deduce that the mass of the empty rocket is 
mR = 80 kg. Because the rocket burns 210 kg of fuel in 9.0 s, the 
fuel burn rate is

R =
210 kg

9.0 s
= 23.3 kg/s

Knowing the burn rate and the thrust, we can use Equation 11.42 
to calculate the exhaust velocity:

vex =
Fthrust

R
=

49,000 N

23.3 kg/s
= 2100 m/s

Thus the rocket’s maximum speed in deep space would be

vmax = vex ln1mR + mF 0

mR
2 = 12100 m/s2ln1290 kg

80 kg 2 = 2700 m/s

REVIEW An actual sounding rocket doesn’t reach this speed be-
cause it’s affected both by gravity and by drag. Even so, the rock-
et’s acceleration is so large that gravity plays a fairly minor role. 
A Black Brant III launched into the earth’s atmosphere achieves a 
maximum speed of 2100 m/s and, because it continues to coast up-
ward long after the fuel is exhausted, reaches a maximum altitude 
of 175 km (105 mi).

EXAMPLE 11.10 ■ Firing a rocket

A 200 g steel ball hangs on a 1.0-m-long string. The ball is pulled 
sideways so that the string is at a 45° angle, then released. At the 
very bottom of its swing the ball strikes a 500 g steel paperweight 
that is resting on a frictionless table. To what angle does the ball 
rebound?

MODEL We can divide this problem into three parts. First the ball 
swings down as a pendulum. Second, the ball and paperweight 
have a collision. Steel balls bounce off each other very well, so we 
will model the collision as perfectly elastic. Third, the ball, after it 
bounces off the paperweight, swings back up as a pendulum. For 

Parts 1 and 3, we define the system as the ball and the earth. This 
is an isolated, nondissipative system, so its mechanical energy is 
conserved. In Part 2, let the system consist of the ball and the pa-
perweight, which have a perfectly elastic collision.

VISUALIZE FIGURE 11.30 shows four distinct moments of time: 
as the ball is released, an instant before the collision, an instant 
after the collision but before the ball and paperweight have had 
time to move, and as the ball reaches its highest point on the re-
bound. Call the ball A and the paperweight B, so mA = 0.20 kg and 
mB = 0.50 kg.

Find: u3

0

L = 1.0 m

mB = 500 g

u0 = 45°

mA = 200 g
A

y

(v0)A = 0 m/s
(y0)A = L(1 - cosu0)

(v3)A = 0 m/s
(y3)A = L(1 - cosu3)

(v1)A = (v1x)A

(y1)A = 0

(v1x)B = 0 m/s

A
(v2x)B(v2x)A

A B
A

BB

Part 1: Conservation of energy

Part 2: Perfectly elastic collision

Part 3: Conservation of energy

u3

FIGURE 11.30 Four moments in the collision of a pendulum with a paperweight.

Continued

   CHAPTER 11 CHALLENGE EXAMPLE     A rebounding pendulum
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312 CHAPTER 11 Impulse and Momentum

SOLVE Part 1: The first part involves the ball only. Its initial height is

1y02A = L - L cos u0 = L11 - cos u02 = 0.293 m

We can use conservation of mechanical energy to find the ball’s 
velocity at the bottom, just before impact on the paperweight:

1
2 mA 1v12A 

2 + mA g1y12A = 1
2 mA 1v02A 

2 + mA g1y02A

We know 1v02A = 0. Solving for the velocity at the bottom, where 
1 y12A = 0, gives

1v12A = 22g1y02A = 2.40 m/s

Part 2: The ball and paperweight undergo a perfectly elastic  
collision in which the paperweight is initially at rest. These are the 
conditions for which Equations 11.31 were derived. The velocities 
immediately after the collision, prior to any further motion, are

 1v2x2A =
mA - mB

mA + mB
 1v1x2A = -1.03 m/s

 1v2x2B =
2mA

mA + mB
 1v1x2A = +1.37 m/s

The ball rebounds toward the left with a speed of 1.03 m/s while 
the paperweight moves to the right at 1.37 m/s. Kinetic energy has 

been conserved (you might want to check this), but it is now shared 
between the ball and the paperweight.

Part 3: Now the ball is a pendulum with an initial speed of 
1.03 m/s. Mechanical energy is again conserved, so we can find its 
maximum height at the point where 1v32A = 0:

1
2 mA 1v32A 

2 + mA g1 y32A = 1
2 mA 1v22A 

2 + mA g1y22A

Solving for the maximum height gives

1 y32A =
1v22A 

2

2g
= 0.0541 m

The height 1y32A is related to angle u3 by 1y32A = L11 - cos u32. 
This can be solved to find the angle of rebound:

u3 = cos-111 -
1y32A

L 2 = 19°

The paperweight speeds away at 1.37 m/s and the ball rebounds to 
an angle of 19°.

REVIEW The ball and the paperweight aren’t hugely different in 
mass, so we expect the ball to transfer a significant fraction of its 
energy to the paperweight when they collide. Thus a rebound to 
roughly half the initial angle seems reasonable.
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Solving Momentum Conservation Problems
MODEL Choose an isolated system or a system that is isolated 
during at least part of the problem.

VISUALIZE Draw a pictorial representation of the system before 
and after the interaction.

SOLVE Write the law of conservation of momentum in terms of 
vector components:

1pfx21 + 1pfx22 + g = 1pix21 + 1pix22 + g
1pfy21 + 1pfy22 + g = 1piy21 + 1piy22 + g

REVIEW Is the result reasonable?

The same ideas apply in two dimen-
sions. Both the x- and y-components 
of P

u
 must be conserved. This gives 

two simultaneous equations to solve.

Rockets
The momentum of the exhaust-gas +  
rocket system is conserved. Thrust is 
the product of the exhaust speed and 
the rate at which fuel is burned.

Momentum bar charts display the 
momentum principle pfx = pix + Jx in 
graphical form.

System A group of interacting particles.

Isolated system A system on which there are no 
external forces or the net external force is zero.

Law of Conservation of Momentum
The total momentum P

u
= pu1 + pu2 + g of an isolated system is a 

constant. Thus

P
u

f = P
u

i

Newton’s Second Law
In terms of momentum, Newton’s second law is

F
u

=
d pu

dt

In a perfectly inelastic collision,  
two objects stick together and move with 
a common final velocity. In a perfectly 
elastic collision, they bounce apart and 
conserve mechanical energy as well as 
momentum.

In an explosion, two or more objects  
fly apart from each other. Their total  
momentum is conserved.

Momentum pu = mvu

Impulse Jx = 3
tf

ti

Fx 1t2 dt = area under force curve

Impulse and momentum are 
related by the momentum 
principle

∆px = Jx

The impulse delivered to an object causes the object’s 
momentum to change. This is an alternative statement 
of Newton’s second law.

General Principles

Applications

Important Concepts

The goals of Chapter 11 have been to learn to use the concepts 
of impulse and momentum.

Summary

v
u

p
um

Fx

t

Impulse = area

∆t

+

+

+

-

=

=pix Jx pfx

0

1 2

1 2

1 2

1 2

1
2

3

1

1

2

2

collision
impulsive force
momentum, pu

impulse, Jx

momentum principle
momentum bar chart

impulse approximation
total momentum, P

u

law of conservation of momentum

perfectly inelastic collision
perfectly elastic collision
explosion

Terms and Notation
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314 CHAPTER 11 Impulse and Momentum

1. Rank in order, from largest to smallest, the momenta 1px2A to 
1px2E of the objects in FIGURE Q11.1.

CONCEPTUAL QUESTIONS

20 g

1 m/s

20 g

2 m/s

10 g

2 m/s

10 g

1 m/s

0.1 m/s

A B

C D

200 g

E

FIGURE Q11.1

2. A 4 kg object is moving to the right with a speed of 2 m/s when it 
experiences an impulse of 8 Ns. What are the object’s speed and 
direction after the impulse?

3. A 2 kg object is moving to the right with a speed of 1 m/s when 
it experiences an impulse of -4 N s. What are the object’s speed 
and direction after the impulse?

4. A 0.1 kg plastic cart and a 10 kg lead cart can both roll without 
friction on a horizontal surface. Equal forces are used to push 
both carts forward for a period of 1 second, starting from rest. 
After the removal of the force at t = 1 s, is the momentum of 
plastic cart greater than, less than, or equal to that of the lead 
cart? Explain.

5. A 0.1 kg plastic cart and a 10 kg lead cart can both roll without 
friction on a horizontal surface. Equal forces are used to push 
both carts forward for a distance of 1 m, starting from rest. After 
travelling this distance, is the momentum of plastic cart greater 
than, less than, or equal to the momentum of lead cart? Explain.

6. Angie, Brad, and Carlos are discussing a physics problem in 
which two identical bullets are fired with equal speeds at equal-
mass wood and steel blocks resting on a frictionless table. One 
bullet bounces off the steel block while the second becomes em-
bedded in the wood block. “All the masses and speeds are the 
same,” says Angie, “so I think the blocks will have equal speeds 
after the collisions.” “But what about momentum?” asks Brad. 
“The bullet hitting the wood block transfers all its momentum 
and energy to the block, so the wood block should end up going 

faster than the steel block.” “I think the bounce is an important 
factor,” replies Carlos. “The steel block will be faster because the 
bullet bounces off it and goes back the other direction.” Which 
of these three do you agree with, and why?

7. It feels better to catch a hard ball while wearing a padded glove 
than to catch it bare handed. Use the ideas of this chapter to 
explain why.

8. Two bodies of differing masses are moving with the same kinetic 
energy of translation. Which one has a greater momentum? Explain.

9. A golf club continues forward after hitting the golf ball. Is mo-
mentum conserved in the collision? Explain, making sure you 
are careful to identify “the system.”

10. Suppose a rubber ball collides head-on with a more massive steel 
ball traveling in the opposite direction with equal speed. Which 
ball, if either, receives the larger impulse? Explain.

11. Two particles collide, one of which was initially moving and the 
other initially at rest.
a. Is it possible for both particles to be at rest after the collision?  

Give an example in which this happens, or explain why it 
can’t happen.

b. Is it possible for one particle to be at rest after the collision? 
Give an example in which this happens, or explain why it 
can’t happen.

12. Two ice skaters, Paula and Ricardo, push off from each other. 
Ricardo weighs more than Paula.
a. Which skater, if either, has the greater momentum after the 

push-off? Explain.
b. Which skater, if either, has the greater speed after the push-

off? Explain.
13. Two balls of clay of known masses hang from the ceiling on 

massless strings of equal length. They barely touch when both 
hang at rest. One ball is pulled back until its string is at 45°, 
then released. It swings down, collides with the second ball, and 
they stick together. To determine the angle to which the balls 
swing on the opposite side, would you invoke (a) conservation of 
momentum, (b) conservation of mechanical energy, (c) both, (d) 
either but not both, or (e) these laws alone are not sufficient to 
find the angle? Explain.

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 11.1 Momentum and Impulse

1. | At what speed do a bicycle and its rider, with a combined mass 
of 120 kg, have the same momentum as a 1200 kg car  travelling 
at 5 m/s?

2. | What are the velocities of (a) a 3000 kg truck with momen-
tum pu = 4.5 * 104 in kg m/s and (b) a 75 kg skydiver falling with 
pu = -4100jn kg m/s?

3. || What impulse does the force shown in FIGURE EX11.3 exert on 
a 250 g particle?

4. || What is the impulse on a 3.0 kg particle that experiences the 
force shown in FIGURE EX11.4?

0
0 2 4 6

t (ms)

1000

Fx (N)

FIGURE EX11.3

10
t (ms)

20 4 6 8 12

2000

1500

1000

500

0

Fx (N)

FIGURE EX11.4
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12. || A 250 g ball collides with a wall. FIGURE EX11.12 shows the 
ball’s velocity and the force exerted on the ball by the wall. What 
is vfx, the ball’s rebound velocity?

5. || In FIGURE EX11.5, what value of Fmax gives an impulse of 
6.0 N s?

Fx

Fmax

0
0

2 4 6 8 10
t (ms)

FIGURE EX11.5

+ =

+ =

6
4
2
0

-2
-4

pix Jx

kg m/s

?

pfx

FIGURE EX11.6

6
4
2
0

-2
-4

+ =

+ =pix Jx

kg m/s

?

pfx

FIGURE EX11.7

Fx (N)

2

0

-2

1.0 s

t (s)

FIGURE EX11.8

Fx (N)

12

0

-12

0.50 s
t (s)

FIGURE EX11.9

6. || FIGURE EX11.6 is an incomplete momentum bar chart for a 
collision that lasts 10 ms. What are the magnitude and direction 
of the average collision force exerted on the object?

7. || FIGURE EX11.7 is an incomplete momentum bar chart for a 
50 g object that experiences an impulse lasting 10 ms. What 
were the speed and direction of the object before the impulse?

8. || A 2.0 kg object is moving to the right with a speed of 1.0 m/s 
when it experiences the force shown in FIGURE EX11.8. What are 
the object’s speed and direction after the force ends?

9. || A 2.0 kg object is moving to the right with a speed of 1.0 m/s 
when it experiences the force shown in FIGURE EX11.9. What are 
the object’s speed and direction after the force ends?

10. | Far in space, where gravity is 
negligible, a 425 kg rocket travel-
ing at 75 m/s in the +x-direction  
fires its engines. FIGURE EX11.10 
shows the thrust force as a func-
tion of time. The mass lost by 
the rocket during these 30 s is 
negligible.
a. What impulse does the engine impart to the rocket?
b. At what time does the rocket reach its maximum speed? 

What is the maximum speed?
11. | A force in the +x-direction increases linearly from 0 N to 

8000 N in 6.0 s, then suddenly ends.
a. What is the average force over this interval of time?
b. What impulse does this force provide?
c. Suppose, this force acts on a 1200 kg car initially at rest. 

What is the car’s change of momentum?
d. What is the car’s speed when the force ends?

Fx (N)

500

0

8.0 ms

t

vx (m/s)

vfx

0

-10

t

FIGURE EX11.12

3

0

-3

vx (m/s)

t (s)

36

0

Fx (N)

t (s)
∆t

FIGURE EX11.13

13. || A 600 g air-track glider collides with a spring at one end of 
the track. FIGURE EX11.13 shows the glider’s velocity and the 
force exerted on the glider by the spring. How long is the glider 
in contact with the spring?

Section 11.2 Conservation of Momentum

14. | A 12,000 kg railroad car is rolling at 3 m/s when a 3000 kg 
load of gravel is suddenly dropped in. What is the car’s speed just 
after the gravel is loaded?

15. || A 350 g ball and a 140 g ball are held at rest with a horizon-
tal compressed spring between them. When released, the heavier 
ball shoots away with a speed of 3.0 m/s. What is the speed of the 
lighter ball?

16. || A 12-m-long glider with a mass of 650 kg (including the pas-
sengers) is gliding horizontally through the air at 20 m/s when 
an 80 kg skydiver drops out by releasing her grip on the glider. 
What is the glider’s velocity just after the skydiver lets go?

17. || Three identical train cars, coupled together, are rolling east at 
speed v0. A fourth car traveling east at 2v0 catches up with the 
three and couples to make a four-car train. A moment later, the 
train cars hit a fifth car that was at rest on the tracks, and it couples 
to make a five-car train. What is the speed of the five-car train?

Section 11.3 Collisions

18. | A 300 g bird flying along at 6.0 m/s sees a 10 g insect heading 
straight toward it at a speed of 30 m/s. The bird opens its mouth 
wide and enjoys a nice lunch. What is the bird’s speed immediately  
after swallowing?

19. | A bullet of mass 10 g is fired with a speed of 1000 m/s from a 
freely hanging gun of mass 2 kg. With what velocity will the gun 
recoil?

20. | A 20 g dart traveling horizontally hits and sticks in the back 
of a 150 g toy car, causing the car to roll forward at 1.3 m/s. What 
was the speed of the dart?
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FIGURE EX11.10
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Section 11.5 Momentum in Two Dimensions

31. || Two objects collide and bounce apart. FIGURE EX11.31 shows 
the initial momenta of both and the final momentum of object 
2. What is the final momentum of object 1? Write your answer 
using unit vectors.

21. || In a game of American football, Fred (mass 70 kg) is running 
with the football at a speed of 5.4 m/s when he is met head-on 
by Brutus (mass 110 kg), who is moving at 4.5 m/s. Brutus grabs 
Fred in a tight grip, and they fall to the ground. Which way 
do they slide, and how far? The coefficient of kinetic friction 
 between football uniforms and Astroturf is 0.30.

22. | A proton is traveling to the right at 2.0 * 107 m/s. It has a head- 
on perfectly elastic collision with a carbon atom. The mass of the 
carbon atom is 12 times the mass of the proton. What are the speed  
and direction of each after the collision?

23. || A marble weighing 100 g is moving at 5 m/s. It strikes an-
other marble weighing 40 g, which is at rest. What is the speed of 
each marble immediately after the collision?

24. || A package of mass m is released from rest at a warehouse 
loading dock and slides down the 3.0-m-high, frictionless chute of 
FIGURE EX11.24 to a waiting truck. Unfortunately, the truck driver 
went on a break without having removed the previous package, of  
mass 2m, from the bottom of the chute.
a. Suppose the packages stick together. What is their common 

speed after the collision?
b. Suppose the collision between the packages is perfectly 

elastic. To what height does the package of mass m rebound?

3.0 m

m

2m

FIGURE EX11.24
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25. || A 50 g ball of clay traveling at speed v0 hits and sticks to a 
1.0 kg brick sitting at rest on a frictionless surface.
a. What is the speed of the brick after the collision?
b. What percentage of the mechanical energy is lost in this 

collision?

Section 11.4 Explosions

26. || A 75.0 kg american football player is gliding across very 
smooth ice at 1.50 m/s. He throws a 0.450 kg football straight for-
ward. What is the player’s speed afterward if the ball is thrown at
a. 12.0 m/s relative to the ground?
b. 12.0 m/s relative to the player?

27. | A 50 kg archer, standing on frictionless ice, shoots a 100 g  
arrow at a speed of 100 m/s. What is the recoil speed of the archer?

28. | Dan is gliding on his skateboard at 4.0 m/s. He suddenly 
jumps backward off the skateboard, kicking the skateboard for-
ward at 8.0 m/s. How fast is Dan going as his feet hit the ground? 
Dan’s mass is 50 kg and the skateboard’s mass is 5.0 kg.

29. || Two ice skaters, with masses of 50 kg and 75 kg, are at the 
center of a 60-m-diameter circular rink. The skaters push off 
against each other and glide to opposite edges of the rink. If the 
heavier skater reaches the edge in 20 s, how long does the lighter 
skater take to reach the edge?

30. | A ball of mass m and another ball of mass 3m are placed inside a  
smooth metal tube with a massless spring compressed between 
them. When the spring is released, the heavier ball flies out of 
one end of the tube with speed v0. With what speed does the 
lighter ball emerge from the other end?

32. || An object at rest explodes into three fragments. FIGURE EX11.32 
shows the momentum vectors of two of the fragments. What is the 
momentum of the third fragment? Write your answer using unit 
vectors.

33. || At the center of a 50-m-diameter circular ice rink, a 75 kg 
skater traveling north at 2.5 m/s collides with and holds on to a 
60 kg skater who had been heading west at 3.5 m/s.
a. How long will it take them to glide to the edge of the rink?
b. Where will they reach it? Give your answer as an angle north 

of west.
34. || A 20 g ball of clay traveling east at 3.0 m/s collides with a 30 g  

ball of clay traveling north at 2.0 m/s. What are the speed and 
the direction of the resulting 50 g ball of clay? Give your answer 
as an angle north of east.

Section 11.6 Rocket Propulsion

35. | A small rocket with 15 kN thrust burns 250 kg of fuel in 30 s. 
What is the exhaust speed of the hot gases?

36. || A rocket in deep space has an empty mass of 150 kg and ex-
hausts the hot gases of burned fuel at 2500 m/s. What mass of 
fuel is needed to reach a top speed of 4000 m/s?

37. ||| A rocket in deep space has an exhaust-gas speed of 2000 m/s. 
When the rocket is fully loaded, the mass of the fuel is five times 
the mass of the empty rocket. What is the rocket’s speed when 
half the fuel has been burned?

Problems
38. || A 550 g cart is released from rest on a frictionless, 30° ramp, 

120 cm from the bottom of the ramp. It rolls down, bounces off 
a rubber block at the bottom, and then rolls 80 cm back up the 
ramp. A high-speed video shows that the cart was in contact with 
the rubber block for 25 ms. What was the average force exerted 
on the cart by the block?
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45. || Most geologists believe that the dinosaurs became extinct 
65 million years ago when a large comet or asteroid struck the 
earth, throwing up so much dust that the sun was blocked out for 
a period of many months. Suppose an asteroid with a diameter of 
2.0 km and a mass of 1.0 * 1013 kg hits the earth 16.0 * 1024 kg2 
with an impact speed of 4.0 * 104 m/s.
a. What is the earth’s recoil speed after such a collision? (Use a 

reference frame in which the earth was initially at rest.)
b. What percentage is this of the earth’s speed around the sun? 

The earth orbits the sun at a distance of 1.5 * 1011 m.
46. | A firecracker in a coconut blows the coconut into three pieces. 

Two pieces of equal mass fly off south and west, perpendicular 
to each other, at speed v0. The third piece has twice the mass 
as the other two. What are the speed and direction of the third 
piece? Give the direction as an angle east of north.

47. || Squids rely on jet propulsion to move around. A 1.50 kg squid 
(including the mass of water inside the squid) drifting at 0.40 m/s  
suddenly ejects 0.100 kg of water to get itself moving at 2.50 m/s.  
If drag is ignored over the small interval of time needed to expel 
the water (the impulse approximation), what is the water’s ejection  
speed relative to the squid?

48. || One billiard ball is shot east at 3.0 m/s. A second, identical 
billiard ball is shot west at 1.0 m/s. The balls have a glancing col-
lision, not a head-on collision, deflecting the second ball by 90° 
and sending it north at 2.5 m/s. What are the speed and direction 
of the first ball after the collision? Give the direction as an angle  
south of east.

49. || a. A bullet of mass m is fired into a block of mass M that is at 
rest. The block, with the bullet embedded, slides distance d 
across a horizontal surface. The coefficient of kinetic fric-
tion is m

 k. Find an expression for the bullet’s speed vbullet.
b. What is the speed of a 10 g bullet that, when fired into 

a 10 kg stationary wood block, causes the block to slide 
5.0 cm across a wood table?

50. || You are part of a search-and- 
rescue mission that has been 
called out to look for a lost ex-
plorer. You’ve found the miss-
ing explorer, but, as FIGURE 
P11.50 shows, you’re separated 
from him by a 200-m-high cliff 
and a 30-m-wide raging river. 
To save his life, you need to 
get a 5.0 kg package of emer-
gency supplies across the river. 
Unfortunately, you can’t throw 
the package hard enough to 
make it across. Fortunately, you 
happen to have a 1.0 kg rocket 
intended for launching flares. Improvising quickly, you attach a 
sharpened stick to the front of the rocket, so that it will impale 
itself into the package of supplies, then fire the rocket at ground 
level toward the supplies. What minimum speed must the rocket 
have just before impact in order to save the explorer’s life?

51. || An object at rest on a flat, horizontal surface explodes into 
two fragments, one eight times as massive as the other. The 
heavier fragment slides 4.7 m before stopping. How far does 
the lighter fragment slide? Assume that both fragments have the 
same coefficient of kinetic friction.

39. || A tennis player swings her 1000 g racket with a speed of 
10 m/s. She hits a 60 g tennis ball that was approaching her at a 
speed of 20 m/s. The ball rebounds at 40 m/s.
a. How fast is her racket moving immediately after the impact? 

You can ignore the interaction of the racket with her hand for 
the brief duration of the collision.

b. If the tennis ball and racket are in contact for 10 ms, what is 
the average force that the racket exerts on the ball? How does 
this compare to the gravitational force on the ball?

40. || A 60 g tennis ball with an initial speed of 32 m/s hits a wall 
and rebounds with the same speed. FIGURE P11.40 shows the 
force of the wall on the ball during the collision. What is the 
value of Fmax, the maximum value of the contact force during  
the collision?

Fx

Fmax

0
0 2 4 6

t (ms)

FIGURE P11.40

Fx

Fmax

0
5.0 ms

t (ms)

FIGURE P11.41

0.75
t (s)

0.0 0.25

y = -0.41x + 0.53
300 g

200 g
y = 0.53x + 0.42

0.50 1.00

0.8

1.0

0.6

0.4

0.2

0.0

Best-fit lines

x (m)

FIGURE P11.44

Package

200 m

30 m

Explorer

FIGURE P11.50

41. || A 200 g ball is dropped from a height of 2.0 m, bounces on 
a hard floor, and rebounds to a height of 1.5 m. FIGURE P11.41 
shows the impulse received from the floor. What maximum 
force does the floor exert on the ball?

42. || The flowers of the bunchberry plant open with astonishing 
force and speed, causing the pollen grains to be ejected out of the 
flower in a mere 0.30 ms at an acceleration of 2.5 * 104 m/s2. If 
the acceleration is constant, what impulse is delivered to a pollen 
grain with a mass of 1.0 * 10-7 g?

43. | A particle of mass m is at rest at t = 0. Its momentum for t 7 0 
is given by px = 8t3 kg m/s, where t is in s. Find an expression for  
Fx  1t2, the force exerted on the particle as a function of time.

44. || Air-track gliders with masses 300 g, 400 g, and 200 g are lined  
up and held in place with lightweight springs compressed be-
tween them. All three are released at once. The 200 g glider flies 
off to the right while the 300 g glider goes left. Their position- 
versus-time graphs, as measured by motion detectors, are shown 
in FIGURE P11.44. What are the direction (right or left) and speed 
of the 400 g glider that was in the middle?
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relative to the second stage. The first stage is three times as mas-
sive as the second stage. What is the speed of the second stage 
after the separation?

64. || A 100 g ball moving to the right at 4.0 m/s collides head-on 
with a 200 g ball that is moving to the left at 3.0 m/s.
a. If the collision is perfectly elastic, what are the speed and 

direction of each ball after the collision?
b. If the collision is perfectly inelastic, what are the speed and 

direction of the combined balls after the collision?
65. || One end of a massless, 30-cm-long spring with spring con-

stant 15 N/m is attached to a 250 g stationary air-track glider; 
the other end is attached to the track. A 500 g glider hits and 
sticks to the 250 g glider, compressing the spring to a minimum 
length of 22 cm. What was the speed of the 500 g glider just 
before impact?

66. ||| Consider a partially elastic collision in which ball A of mass 
m with initial velocity (vix)A collides with stationary ball B, 
also of mass m, and in which 14 of the mechanical energy is dis-
sipated as thermal energy. Find expressions for the final velo-
cities of each ball.
Hint: Mathematically there are two solutions; however, one of 
them is physically impossible.

67. ||| Most collisions are partially elastic, which means that the 
objects bounce apart but with some of the mechanical energy 
dissipated as thermal energy. A partially elastic collision is 
characterized by a coefficient of restitution r. The analysis of a 
partially elastic collision can be divided into four steps:

■■ First, the colliding objects compress, like springs. At the end 
of the compression phase, the two objects are moving with a 
common intermediate velocity vint. If the collision ended here, 
it would be a perfectly inelastic collision. You can calculate 
vint and then the momentum change of each object.

■■ During the compression, each object experiences an impulse 
Jcompress due to the other. You can use the momentum princi-
ple to calculate Jcompress for each object.

■■ Second, the objects expand. During expansion, each experi-
ences an impulse Jexpand = rJcompress, where r is the coeffi-
cient of restitution. It characterizes how well the objects are 
restored after deformation. A perfectly inelastic collision has 
r = 0, while a perfectly elastic collision has r = 1.

■■ Another application of the momentum principle gives the 
post-collision momentum, and thus the final velocity, for each 
object.

A 100 g ball (ball A) traveling to the right at 30 m/s collides 
with a stationary 200 g ball (ball B). The materials are such that 
the coefficient of restitution is 0.25. What is each ball’s final 
velocity?

68. || The nucleus of the polonium isotope 214Po (mass 214 u) is 
radioactive and decays by emitting an alpha particle (a helium 
nucleus with mass 4 u). Laboratory experiments measure the 
speed of the alpha particle to be 1.92 * 107 m/s. Assuming the 
polonium nucleus was initially at rest, what is the recoil speed of 
the nucleus that remains after the decay?

69. || A neutron is an electrically neutral subatomic particle with 
a mass just slightly greater than that of a proton. A free neu-
tron is radioactive and decays after a few minutes into other 
subatomic particles. In one experiment, a neutron at rest was 
observed to decay into a proton 1mass 1.67 * 10-27 kg2 and an 
electron 1mass 9.11 * 10-31 kg2. The proton and electron were 
shot out back-to-back. The proton speed was measured to be 

52. || In a ballistics test, a 25 g bullet traveling horizontally at 
1200 m/s goes through a 30-cm-thick 350 kg stationary target 
and emerges with a speed of 900 m/s. The target is free to slide 
on a smooth horizontal surface. What is the target’s speed just 
after the bullet emerges?

53. || A 1500 kg weather rocket accelerates upward at 10 m/s2. It 
explodes 2.0 s after liftoff and breaks into two fragments, one 
twice as massive as the other. Photos reveal that the lighter 
fragment traveled straight up and reached a maximum height of 
530 m. What were the speed and direction of the heavier frag-
ment just after the explosion?

54. || Two 500 g blocks of wood are 2.0 m apart on a frictionless 
table. A 10 g bullet is fired at 400 m/s toward the blocks. It 
passes all the way through the first block, then embeds itself in 
the second block. The speed of the first block immediately after-
ward is 6.0 m/s. What is the speed of the second block after the 
bullet stops in it?

55. || A 100 g toy car sits at the bottom of a 15° ramp. A 200 g toy 
truck hits the car from behind, causing the car to roll 75 cm up 
the ramp. How fast was the truck going at the moment of impact? 
Assume the collision is perfectly elastic.

56. ||| A spring with spring constant 50 N/m is suspended from 
the ceiling with a 2.0 kg wood block hanging from the bottom. 
When a 10 g bullet is fired vertically upward into the block, 
stopping inside, the block begins to oscillate with its high-
est point 45  cm above its initial level. What was the speed of  
the bullet?

57. || FIGURE P11.57 shows a block of mass m 
sliding along a frictionless surface with speed 
vm. It collides with a block of mass M that is 
hanging as a pendulum on a massless rod of 
length L. The other end of the rod is attached 
to a frictionless pivot. Find an expression for 
the vm that will allow the pendulum to barely go over the top if 
the collision is (a) perfectly inelastic or (b) perfectly elastic.

58. || Ann (mass 60 kg) is standing at the left end of a 10-m-long, 
400 kg cart that has frictionless wheels and rolls on a frictionless 
track. Initially both Ann and the cart are at rest. Suddenly, Ann 
starts running along the cart at a speed of 4.0 m/s relative to the 
cart. How far will Ann have run relative to the ground when she 
reaches the right end of the cart?

59. || The stoplight had just changed and a 2000 kg Cadillac had 
entered the intersection, heading north at 3.0 m/s, when it was 
struck by a 1000 kg eastbound Volkswagen. The cars stuck to-
gether and slid to a halt, leaving skid marks angled 35° north of 
east. How fast was the Volkswagen going just before the impact?

60. || Force Fx = 110 N2 sin12pt/4.0 s2 is exerted on a 250 g parti-
cle during the interval 0 s … t … 2.0 s. If the particle starts from 
rest, what is its speed at t = 2.0 s?

61. || A 900 g particle has velocity vx = -20 m/s at t = -4 s. 
Force Fx = 116 - t22 N, where t is in s, is exerted on the particle 
 between t = -4 s and t = 4 s. This force increases from 0 N at 
t = -4 s to 16 N at t = 0 s and then back to 0 N at t = 4 s. What 
is the particle’s velocity at t = 4 s?

62. || A 30 ton rail car and a 90 ton rail car, initially at rest, are 
connected together with a giant but massless compressed spring 
between them. When released, the 30 ton car is pushed away at 
a speed of 4.0 m/s relative to the 90 ton car. What is the speed of 
the 30 ton car relative to the ground?

63. ||| A two-stage rocket is traveling at 1200 m/s with respect to 
the earth when the first stage runs out of fuel. Explosive bolts re-
lease the first stage and push it backward with a speed of 35 m/s 

m
vm
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L

FIGURE P11.57

M11_KNIG8221_05_GE_C11.indd   318 07/06/2022   16:40



Exercises and Problems 319

In Problems 76 through 79 you are given the equation(s) used to solve 
a problem. For each of these, you are to

a. Write a realistic problem for which this is the correct equation(s).
b. Finish the solution of the problem, including a pictorial 

representation.
76. 10.10 kg2140 m/s2 - 10.10 kg21-30 m/s2 = 1

2 11400 N2 ∆t

77. 1600 g214.0 m/s2 = 1400 g213.0 m/s2 + 1200 g21vix22

78. 13000 kg2vfx = 12000 kg215.0 m/s2 + 11000 kg21-4.0 m/s2
79. 10.10 kg + 0.20 kg2v1x = 10.10 kg213.0 m/s2

1
2 10.30 kg210 m/s22 + 1

2 13.0 N/m21  ∆x222

= 1
2 10.30 kg21v1x22 + 1

2 13.0 N/m210 m22

Challenge Problems
80. ||| A spaceship of mass 2.0 * 106 kg is cruising at a speed of 

5.0 * 106 m/s when the antimatter reactor fails, blowing the ship 
into three pieces. One section, having a mass of 5.0 * 105 kg, is 
blown straight backward with a speed of 2.0 * 106 m/s. A second 
piece, with mass 8.0 * 105 kg, continues forward at 1.0 * 106 m/s. 
What are the direction and speed of the third piece?

81. ||| A 1000 kg cart is rolling to the right at 5.0 m/s. A 70 kg man 
is standing on the right end of the cart. What is the speed of the 
cart if the man suddenly starts running to the left with a speed of 
10 m/s relative to the cart?

82. ||| A 20 kg wood ball hangs from a 2.0-m-long wire. The maxi-
mum tension the wire can withstand without breaking is 400 N. 
A 1.0 kg projectile traveling horizontally hits and embeds itself 
in the wood ball. What is the greatest speed this projectile can 
have without causing the wire to break?

83. ||| A 20 g ball is fired horizontally with speed v0  toward a 100 g 
ball hanging motionless from a 1.0-m-long string. The balls un-
dergo a head-on, perfectly elastic collision, after which the 100 g 
ball swings out to a maximum angle umax = 50°. What was v0 ?

84. ||| The air-track carts in FIGURE 
CP11.84 are sliding to the right at 
1.0 m/s. The spring between them 
has a spring constant of 120 N/m 
and is compressed 4.0 cm. The 
carts slide past a flame that burns 
through the string holding them to-
gether. Afterward, what are the speed and direction of each cart?

85. ||| Section 11.6 found an equation for vmax of a rocket fired in deep 
space. What is vmax for a rocket fired vertically from the surface of 
an airless planet with free-fall acceleration g? Referring to Section 
11.6, you can write an equation for ∆Py, the change of momentum 
in the vertical direction, in terms of dm and dvy. ∆Py is no longer 
zero because now gravity delivers an impulse. Rewrite the mo-
mentum equation by including the impulse due to gravity during 
the time dt during which the mass changes by dm. Pay attention to 
signs! Your equation will have three differentials, but two are re-
lated through the fuel burn rate R. Use this relationship—again pay 
attention to signs; m is decreasing—to write your equation in terms 
of dm and dvy. Then integrate to find a modified expression for  
vmax at the instant all the fuel has been burned.
a. What is vmax for a vertical launch from an airless planet? Your an-

swer will be in terms of mR, the empty rocket mass; mF0, the ini-
tial fuel mass; vex, the exhaust speed; R, the fuel burn rate; and g.

b. A rocket with a total mass of 330,000 kg when fully loaded 
burns all 280,000 kg of fuel in 250 s. The engines generate 
4.1 MN of thrust. What is this rocket’s speed at the instant all 
the fuel has been burned if it is launched in deep space? If it 
is launched vertically from the earth?

1.0 *105 m/s and the electron speed was 3.0 * 107 m/s. No other 
decay products were detected.
a. Did momentum seem to be conserved in the decay of this 

neutron?

   NOTE    Experiments such as this were first performed in the 
1930s and seemed to indicate a failure of the law of conservation 
of momentum. In 1933, Wolfgang Pauli postulated that the 
neutron might have a third decay product that is virtually 
impossible to detect. Even so, it can carry away just enough 
momentum to keep the total momentum conserved. This 
proposed particle was named the neutrino, meaning “little 
neutral one.” Neutrinos were, indeed, discovered nearly 20 years 
later.

b. If a neutrino was emitted in the above neutron decay, in 
which direction did it travel? Explain your reasoning.

c. How much momentum did this neutrino “carry away” with it?
70. || A 45 g projectile explodes into three pieces: a 20 g piece with 

velocity 25  in m/s, a 15 g piece with velocity -10  in + 10 jn m/s, and 
a 10 g piece with velocity -15  in - 20 jn m/s . What was the pro-
jectile’s velocity just before the explosion?

71. || A white ball traveling at 2.0 m/s hits an equal-mass red ball at 
rest. The white ball is deflected by 25° and slowed to 1.5 m/s.
a. What are the final speed and direction of the red ball? Give 

the direction as an angle from the initial direction of the 
white ball.

b. What percentage of the initial mechanical energy is lost in 
the collision?

72. || FIGURE P11.72 shows a collision between three balls of clay. 
The three hit simultaneously and stick together. What are the 
speed and direction of the resulting blob of clay?

45°

40 g

4.0 m/s

3.0 m/s

2.0 m/s
30 g

20 gFIGURE P11.72

String holding carts together

300 g

1.0 m/s

100 g

FIGURE CP11.84

73. || A 2100 kg truck is traveling east through an intersection at 
2.0 m/s when it is hit simultaneously from the side and the rear. 
(Some people have all the luck!) One car is a 1200 kg compact 
traveling north at 5.0 m/s. The other is a 1500 kg midsize trav-
eling east at 10 m/s. The three vehicles become entangled and 
slide as one body. What are their speed and direction just after 
the collision?

74. || A rocket in deep space has an empty mass of 150 kg and 
exhausts the hot gases of burned fuel at 2500 m/s. It is loaded 
with 600 kg of fuel, which it burns in 30 s. What is the rocket’s 
speed 10 s, 20 s, and 30 s after launch?

75. || a. To understand why rockets often have multiple stages, first 
consider a single-stage rocket with an empty mass of 200 kg,  
800 kg of fuel, and a 2000 m/s exhaust speed. If fired in 
deep space, what is the rocket’s maximum speed?

b. Now divide the rocket into two stages, each with an empty 
mass of 100 kg, 400 kg of fuel, and a 2000 m/s exhaust 
speed. The first stage is released after it runs out of fuel. 
What is the top speed of the second stage? You’ll need to 
consider how the equation for vmax should be altered when 
a rocket is not starting from rest.
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■■ Work causes a system’s energy to change. It is a transfer of 
energy to or from the environment.

■■ Energy can be transformed within a system, but the total  energy 
of an isolated system does not change.

■■ An impulse causes a system’s momentum to change.

■■ Momentum can be exchanged within a system, but the total 
momentum of an isolated system does not change.

■■ Kinetic energy:

K = 1
2  mv2

■❚ Kinetic energy is an energy  
of motion.

■■ Gravitational  
potential energy:

UG = mgy
■■ Elastic potential 
energy:

USp = 1
2 k1  ∆s22

■❚ Potential energy is an energy of 
position.

■■ Momentum: pu = mvu.

■■ Force acting through a displacement does 
work.
■❚ Constant force:

W = F
u # ∆r u = F1  ∆r2 cos u

■❚ Variable force:

W = 3
sf

si

Fs  ds

= area under the Fs@versus@s curve
■■ Force acting over time delivers an impulse:

Jx = 3
tf

ti

Fx  dt

= area under the Fx@versus@t curve

■■ Energy diagrams
■❚ Visualize speed 
changes and 
turning points. 
Fx =  negative of 
the slope of the 
curve.

■■ Bar charts
■❚ Momentum 
and energy 
conservation.

■■ Before-and-after  
pictorial representation.
■❚ Important problem-solving tool.

Energy principle ∆Esys = ∆K + ∆U + ∆Eth = Wext or Ki + Ui + Wext = Kf + Uf + ∆Eth

Conservation of energy For an isolated system 1Wext = 02, the total energy Esys = K + U + Eth is conserved. ∆Esys = 0.

For an isolated, nondissipative system, the mechanical energy Emech = K + U is conserved.

Momentum principle ∆pu = J
u

Conservation of momentum For an isolated system 1J
u

= 0
u2, the total momentum is conserved. ∆P

u
=  0

u
.

Key Findings What are the overarching findings of Part II?

Laws What laws of physics govern energy and momentum?

Conservation Laws

 KNOWLEDGE STRUCTUREPART

II

Basic energy model

■■ Energy is a property of the 
system.

■■ Energy is transformed within 
the system without loss.

■■ Energy is transferred to and from 
the system by forces that do work.
■❚ W 7 0 for energy added.
■❚ W 6 0 for energy removed.
■❚ ∆Esys = ∆K + ∆U + ∆Eth = Wext

Collision model

■■ Perfectly inelastic collision: Objects 
stick together and move with a common 
final velocity.
■❚ Momentum is conserved.

■❚ 1m1 + m22vf x = m11vi x21 + m21vi x22

■■ Perfectly elastic collision: Objects 
bounce apart with no loss of energy.

■❚ Momentum and energy are both 
conserved.

Other models and approximations

■■ An isolated system does not interact with its environment.

■❚ For energy, an isolated system has no work done on it.
■❚ For momentum, an isolated system experiences no impulse.

■■ Thermal energy is the microscopic energy of moving atoms 
and stretched bonds.

■■ An ideal spring obeys Hooke’s law 
for all displacements: 1FSp2s = -k ∆s.

■■ The impulse approximation ignores forces that are small 
 compared to impulsive forces during the brief time of a collision 
or explosion.

Models What are the most common models for using conservation laws?

Eth

K U

System

Environment

Energy
out

Energy
in

Wext 6 0Wext 7 0

1 2

1 2

1 2

1 2

FSp

u

∆s

Tools What are the most important tools for using energy and momentum?

v
u

x

y

E

x

PE

TE

U

K

+ =

+ =pix Jx pfx

0

+

-
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OVERVIEW

Power Over Our Environment
Early humans had to endure whatever nature provided. Only within the last 
few  thousand years have agriculture and technology provided some level of 
 control over the environment. And it has been a mere couple of centuries since 
machines, and later electronics, began to do much of our work and provide us with 
“creature comforts.”

It’s no coincidence that machines began to appear about a century after  Galileo, 
Newton, and others ignited what we now call the scientific revolution. The 
 machines and other devices we take for granted today are direct conse quences of 
scientific knowledge and the scientific method.

Parts I and II have established Newton’s theory of motion, the foundation of 
modern science. Most of the applications will be developed in other science and 
engineering courses, but we’re now in a good position to examine a few of the 
more practical aspects of Newtonian mechanics.

Our goal for Part III is to apply our newfound theory to three important topics:

■■ Rotation. Rotation is a very important form of motion, but to understand 
 rotational motion we’ll need to introduce a new model—the rigid-body  model. 
We’ll then be able to study rolling wheels and spinning space  stations. Rotation 
will also lead to the law of conservation of angular momentum.

■■ Gravity. By adding one more law, Newton’s law of gravity, we’ll be able to 
 understand much about the physics of the space station, communication 
 satellites, the solar system, and interplanetary travel.

■■ Fluids. Liquids and gases flow. Surprisingly, it takes no new physics to 
 understand the basic mechanical properties of fluids. By applying our 
 understanding of force, we’ll be able to understand what pressure is, how a 
steel ship can float, and how fluids flow through pipes.

Newton’s laws of motion and the conservation laws, especially conservation of 
energy, will be the tools that allow us to analyze and understand a variety of inter-
esting and practical applications.

Applications of Newtonian 
Mechanics

PA R T

III 

A hurricane is a fluid—the air—moving on a rotating 
sphere—the earth—under the influence of gravity. 
Understanding hurricanes is very much an application  
of Newtonian mechanics.
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What is angular momentum?
Angular momentum is to rotation what  
momentum is to linear motion. Angular  
momentum is an object’s tendency to “keep 
rotating.” Angular momentum L

u
 is a vector 

pointing along the rotation axis. You’ll use 
angular momentum to understand the  
precession of a spinning top or gyroscope.

What is conserved in rotational motion?
The mechanical energy of a rotating object 
includes its rotational kinetic energy 12 Iv2. 
This is analogous to linear kinetic energy.

■■ Mechanical energy is conserved for 
frictionless, rotating systems.

■■ Angular momentum is conserved for isolated systems.

❮❮ LOOKING BACK Section 10.4 Conservation of  
energy; Section 11.2 Conservation of momentum

Why is rigid-body motion important?
The world is full of rotating objects, from windmill turbines to the  
gyroscopes used in navigation. The wheels on your bicycle or car  
roll without slipping. Scientists investigate rotating molecules and  
rotating galaxies. No understanding of motion is complete without 
understanding rotational motion, and this chapter will develop the 
tools you need. We’ll also expand our understanding of equilibrium 
by exploring the conditions under which objects don’t rotate.

What is a rigid body?
An object whose size and shape don’t 
change as it moves is called a rigid body.  
A rigid body is characterized by its  
moment of inertia I, which is the  
rotational equivalent of mass. We’ll  
consider

■■ Rotation about an axle.
■■ Rolling without slipping.

❮❮ LOOKING BACK Section 6.1 Equilibrium

What is torque?
Torque is the tendency or ability of a force 
to rotate an object about a pivot point. 
You’ll learn that torque depends on both  
the force and where the force is applied.  
A longer wrench provides a larger torque.

What does torque do?
Torque is to rotation what force is to linear  
motion. Torque t causes an object to have  
angular acceleration. Newton’s second law  
for rotation is a = t/I. Much of rotational  
dynamics will look familiar because it is  
analogous to linear dynamics.

❮❮ LOOKING BACK Section 6.2 Newton’s  
second law

IN THIS CHAPTER,  you will learn to understand and apply the physics of rotation.

12

Not all motion can be 
described as that of a particle. 
Rotation requires the idea of 
an extended object.

Rotation of a Rigid Body

F
u

a

L
u

vi = 0
vf

M12B_KNIG8221_05_GE_C12.indd   322 28/05/2022   08:54



12.1 Rotational Motion 323

12.1 Rotational Motion
Thus far, our study of motion has focused on the particle model, in which an object is 
represented as a mass at a single point in space. As we expand our study of motion to 
rotation, we need to consider extended objects whose size and shape do matter. Thus 
this chapter will be based on the rigid-body model:

FIGURE 12.1 illustrates the three basic types of motion of a rigid body: translational  
motion, rotational motion, and combination motion.

Translational motion:
The object as a whole
moves along a trajectory
but does not rotate.

Rotational motion:
The object rotates about a
fixed point. Every point on
the object moves in a circle.

Combination motion:
An object rotates as it 
moves along a trajectory.

Parabolic trajectory

FIGURE 12.1 Three basic types of motion of a rigid body.

Brief Review of Rotational Kinematics
Rotation is an extension of circular motion, so we begin with a brief summary of 
Chapter 4. A review of ❮❮ SECTIONS 4.4–4.6 is highly recommended. FIGURE 12.2 shows 
a wheel rotating on an axle. Its angular velocity

 v =
du
dt

 (12.1)

is the rate at which the wheel rotates. The SI units of v are radians per second (rad/s), 
but revolutions per second (rev/s) and revolutions per minute (rpm) are frequently 
used. Notice that all points have equal angular velocities, so we can refer to the angular  
velocity v of the wheel.

If the wheel’s rotation is speeding up or slowing down, its angular acceleration is

 a =
dv
dt

 (12.2)

The units of angular acceleration are rad/s2. Angular acceleration is the rate at which 
the angular velocity v changes, just as the linear acceleration is the rate at which the 

v

Axle

vt

ar

at

Every point on the wheel rotates 
with the same angular velocity v.

All points have a 
tangential velocity and 
a radial (centripetal) 
acceleration. They have a 
tangential acceleration if the 
wheel has angular acceleration. 

FIGURE 12.2 Rotational motion.

MODEL 12.1

Rigid-body model
A rigid body is an extended object whose size and 
shape do not change as it moves.

■■ Particle-like atoms are held together by rigid 
massless rods.

■■ A rigid body cannot be stretched, compressed, or 
deformed. All points on the body have the same 
angular velocity and angular acceleration.

■■ Limitations: Model fails if an object changes 
shape or is deformed.

Exercise 1 

Bonds are rigid,
massless rods.

Atoms are 
particles.
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324 CHAPTER 12 Rotation of a Rigid Body

linear velocity v changes. TABLE 12.1 summarizes the kinematic equations for rotation 
with constant angular acceleration.

FIGURE 12.3 reminds you of the sign conventions for angular velocity and acceleration. 
They will be especially important in the present chapter. Be careful with the sign of a. 
Just as with linear acceleration, positive and negative values of a can’t be interpreted as 
simply “speeding up” and “slowing down.”

TABLE 12.1 Rotational kinematics for 
constant angular acceleration

vf = vi + a ∆t

uf = ui + vi ∆t + 1
2 a1  ∆t22

vf 

2 = vi 

2 + 2a ∆u

v 7 0

a 7 0

Speeding up ccw

v 7 0

a 6 0

Slowing down ccw

v 6 0

a 7 0

Slowing down cw

v 6 0

a 6 0

Speeding up cw

Initial angular velocity

The rotation is speeding up if v and a have the same sign, slowing down if they have opposite signs.

FIGURE 12.3 The signs of angular velocity and angular acceleration.

A point at distance r from the rotation axis has instantaneous velocity and acceler-
ation, shown in Figure 12.2, given by

     vr = 0  ar =
vt 

2

r
= v2r 

  vt = rv   at = ra 
(12.3)

The sign convention for v implies that vt and at are positive if they point in the counter-
clockwise (ccw) direction, negative if they point in the clockwise (cw) direction.

12.2 Rotation About the Center of Mass
Imagine yourself floating in a space capsule deep in space. Suppose you take an 
 object like that shown in FIGURE 12.4a and spin it so that it simply rotates but has no 
 translational motion as it floats beside you. About what point does it rotate? That is 
the question we need to answer.

An unconstrained object (i.e., one not on an axle or a pivot) on which there is no 
net force rotates about a point called the center of mass. The center of mass remains 
 motionless while every other point in the object undergoes circular motion around it. 
You need not go deep into space to demonstrate rotation about the center of mass. If you 
have an air table, a flat object rotating on the air table rotates about its center of mass.

To locate the center of mass, FIGURE 12.4b models the object as a set of particles 
numbered i = 1, 2, 3,c. Particle i has mass mi and is located at  position 1xi, yi2. 
We’ll prove later in this section that the center of mass is located at position

x

Center of mass

Particle i with
mass mi

y

ycm
yi

0
0 xcm xi

(b)

⊗

⊗

The object rotates about
this point, which is the
center of mass.

(a)

FIGURE 12.4 Rotation about the center  
of mass.

 xcm =
1
M

 a
i

mi xi =
m1x1 + m2 x2 + m3 x3 + g

m1 + m2 + m3 + g
 

 ycm =
1
M

 a
i

mi yi =
m1 y1 + m2 y2 + m3 y3 + g

m1 + m2 + m3 + g
 

(12.4)

where M = m1 + m2 + m3 + g is the object’s total mass.
Let’s see if Equations 12.4 make sense. Suppose you have an object consisting of N 

particles, all with the same mass m. That is, m1 = m2 = g = mN = m. We can factor 
the m out of the numerator, and the denominator becomes simply Nm. The m cancels, 
and the x-coordinate of the center of mass is

xcm =
x1 + x2 + g + xN

N
= xaverage
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12.2 Rotation About the Center of Mass 325

In this case, xcm is simply the average x-coordinate of all the particles. Likewise, ycm 
will be the average of all the y-coordinates.

This does make sense! If the particle masses are all the same, the center of mass 
should be at the center of the object. And the “center of the object” is the average 
position of all the particles. To allow for unequal masses, Equations 12.4 are called 
weighted averages. Particles of higher mass count more than particles of lower mass, 
but the basic idea remains the same. The center of mass is the mass-weighted center 
of the object.

EXAMPLE 12.1 ■ The center of mass of a barbell

A barbell consists of a 500 g ball and a 2.0 kg ball connected by a 
massless 50-cm-long rod.

a. Where is the center of mass?

b. What is the speed of each ball if they rotate about the center of 
mass at 40 rpm?

MODEL Model the barbell as a rigid body.

VISUALIZE FIGURE 12.5 shows the two masses. We’ve chosen a 
 coordinate system in which the masses are on the x-axis with the 
2.0 kg mass at the origin.

SOLVE a. We can use Equations 12.4 to calculate that the center 
of mass is

 xcm =
m1x1 + m2x2

m1 + m2

 =
12.0 kg210.0 m2 + 10.50 kg210.50 m2

2.0 kg + 0.50 kg
= 0.10 m

ycm = 0 because both masses are on the x-axis. The center of mass 
is 20% of the way from the 2.0 kg ball to the 0.50 kg ball.

b. Each ball rotates about the center of mass. The radii of the circles 
are r1 = 0.10 m and r2 = 0.40 m. The tangential velocities are 1vi2t  
=  riv, but this equation requires v to be in rad/s. The conversion is

v = 40 
rev

 min
 *

1 min
 60 s

 *
2p rad
 1 rev

= 4.19 rad/s

Consequently,

1v12t = r1v = 10.10 m214.19 rad/s2 = 0.42 m/s

1v22t = r2v = 10.40 m214.19 rad/s2 = 1.68 m/s

REVIEW The center of mass is closer to the heavier ball than to  
the lighter ball. We expected this because xcm is a mass-weighted 
average of the positions. But the lighter mass moves faster because 
it is farther from the rotation axis.

Finding the Center of Mass by Integration
For any realistic object, carrying out the summations of Equations 12.4 over all the 
atoms in the object is not practical. Instead, as FIGURE 12.6 shows, we can divide an 
 extended object into many small cells or boxes, each with the same very small mass 
∆m. We will number the cells 1, 2, 3, …, just as we did the particles. Cell i has 
 coordinates 1xi, yi2 and mass mi = ∆m. The center-of-mass coordinates are then

xcm =
1
M

 a
i

 xi ∆m  and  ycm =
1
M

 a
i

 yi ∆m

Now, as you might expect, we’ll let the cells become smaller and smaller, with the 
total number increasing. As each cell becomes infinitesimally small, we can replace 
∆m with dm and the sum by an integral. Then

 xcm =
1
M

 3x dm  and  ycm =
1
M

 3y dm (12.5)

Equations 12.5 are a formal definition of the center of mass, but they are not  
ready to integrate in this form. First, integrals are carried out over coordinates, not 
over masses. Before we can integrate, we must replace dm by an equivalent expression 
involving a coordinate differential such as dx or dy. Second, no limits of integration 
have been specified. The procedure for using Equations 12.5 is best shown with an 
example.

Divide the extended object into 
many small cells of mass ∆m.

y

yi

xi

x

Cell i

FIGURE 12.6 Calculating the center of 
mass of an extended object.

FIGURE 12.5 Finding the center of mass.
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326 CHAPTER 12 Rotation of a Rigid Body

   NOTE    For any symmetrical object of uniform density, the center of mass is at the 
physical center of the object.

To see where the center-of-mass equations come from, FIGURE 12.8 shows an object 
rotating about its center of mass. Particle i is moving in a circle, so it must have a 
 centripetal acceleration. Acceleration requires a force, and this force is due to tension in 
the molecular bonds that hold the object together. Force T 

u

i on particle i has magnitude

 Ti = mi1ai2r = miriv
2 (12.6)

where we used Equation 12.3 for ar. All points in a rigid rotating object have the same 
angular velocity, so v doesn’t need a subscript.

At every instant of time, the internal tension forces are all paired as action/reaction 
forces, equal in magnitude but opposite in direction, so the sum of all the tension forces 
must be zero. That is, gT 

u

i =  0
u

. The x-component of this sum is

 a
i
1Ti2x = a

i
Ti cos ui = a

i
1miriv

22 cos ui = 0 (12.7)

You can see from Figure 12.8 that cos ui = 1xcm - xi2/ri. Thus

 a
i
1Ti2x = a

i
1miriv

22 
xcm - xi

ri
= 1a

i
mi xcm - a

i
mi xi2v2 = 0 (12.8)

This equation will be true if the term in parentheses is zero. xcm is a constant, so we 
can bring it outside the summation to write

 a
i

mixcm - a
i

mixi = 1a
i

mi2 xcm - a
i

mixi = Mxcm - a
i

mixi = 0 (12.9)

where we used the fact that gmi is simply the object’s total mass M. Solving for xcm, 
we find the x-coordinate of the object’s center of mass to be

 xcm =
1
M

 a
i

mixi =
m1x1 + m2x2 + m3x3 + g

m1 + m2 + m3 + g
 (12.10)

This was Equation 12.4. The y-equation is found similarly.

Find the center of mass of a thin, uniform rod of length L and mass 
M. Use this result to find the tangential acceleration of one tip of  
a 1.60-m-long rod that rotates about its center of mass with an  
angular acceleration of 6.0 rad/s2.

VISUALIZE FIGURE 12.7 shows the rod. We’ve chosen a coordinate 
system such that the rod lies along the x-axis from 0 to L. Because 
the rod is “thin,” we’ll assume that ycm = 0.

SOLVE Our first task is to find xcm, which lies somewhere on the 
x-axis. To do this, we divide the rod into many small cells of mass 
dm. One such cell, at position x, is shown. The cell’s width is dx. 
Because the rod is uniform, the mass of this little cell is the same 
fraction of the total mass M that dx is of the total length L. That is,

dm
M

=
dx
L

Consequently, we can express dm in terms of the coordinate  
differential dx as

dm =
M
L

 dx

   NOTE    The change of variables from dm to the differential of a 
coordinate is the key step in calculating the center of mass.

With this expression for dm, Equation 12.5 for xcm becomes

xcm =
1
M

 1M
L

 3x dx2 =
1
L

 3
L

0
x dx

where in the last step we’ve noted that summing “all the mass in  
the rod” means integrating from x = 0 to x = L. This is a straight-
forward integral to carry out, giving

xcm =
1
L

 c x2

2
d

L

0
=

1
L

 c L2

2
- 0 d = 1

2 L

The center of mass is at the center of the rod, as you probably 
guessed. For a 1.60-m-long rod, each tip of the rod rotates in a 
circle with r = 1

2 L = 0.80 m. The tangential acceleration, the rate 
at which the tip is speeding up, is

at = ra = 10.80 m216.0 rad/s22 = 4.8 m/s2 

EXAMPLE 12.2 ■ The center of mass of a rod

y

x

x
0 Ldx

A small cell of width dx at position 
x has mass dm = (M/L)dx.

FIGURE 12.7 Finding the center of mass of a long, thin rod.

v
x

y

xi

ycm

yi

Particle i

xcm

Ti

mi

ri

Center of mass. 
The object 
rotates around 
this point.

Force causing 
the centripetal 
acceleration of 
particle i

ui

⊗

u

FIGURE 12.8 Finding the center of mass.
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12.3 Rotational Energy
A rotating rigid body—whether it’s rotating freely about its center of mass or con-
strained to rotate on an axle—has kinetic energy because all atoms in the object are 
in motion. The kinetic energy due to rotation is called rotational kinetic energy.

FIGURE 12.9 shows a few of the particles making up a solid object that rotates with 
angular velocity v. Particle i, which rotates in a circle of radius ri, moves with speed 
vi = riv. The object’s rotational kinetic energy is the sum of the kinetic energies of 
each of the particles:

  Krot = 1
2 m1v1 

2 + 1
2 m2v2 

2 +  g 

  = 1
2 m1r1 

2v2 + 1
2 m2 r2 

2v2 +  g = 1
2 1a

i
mi ri 

22v2 
(12.11)

The quantity gmi ri  

2 is called the object’s moment of inertia I: 

 I = m1r1 

2 + m2 r2 

2 + m3 r3 

2 + g = a
i

mi ri 

2 (12.12)

The units of moment of inertia are kg m2. An object’s moment of inertia depends on 
the axis of rotation. Once the axis is specified, allowing the values of ri to be  deter- 
mined, the moment of inertia about that axis can be calculated from Equation 12.12.

Written using the moment of inertia I, the rotational kinetic energy is

 K rot = 1
2 Iv2 (12.13)

   NOTE    Rotational kinetic energy is not a new form of energy. It is the familiar 
 kinetic energy of motion, simply expressed in a form that is convenient for rotational 
motion. Notice the analogy with the familiar 12 mv2.

STOP TO THINK 12.1 A baseball bat is cut into two pieces at its center of mass. 
Which end is heavier?

a. The handle end (left end).
b. The hitting end (right end).
c. The two ends weigh the same.

⊗

v

v2

v1

3

2

Axle
1

r1
r2

m2

m3

m1

r3

Each particle in the object
has kinetic energy as the
object rotates.

v3
u

u

u

FIGURE 12.9 Rotational kinetic energy is 
due to the motion of the particles.

Students participating in an engineering project design the  
triangular widget seen in FIGURE 12.10. The three masses, held 
together by lightweight plastic rods, rotate in the plane of the 
page about an axle passing through the right-angle corner. At 
what angular velocity does the widget have 100 mJ of rotational 
energy?

MODEL Model the widget as a rigid body consisting of three parti-
cles connected by massless rods.

SOLVE Rotational energy is K = 1
2 Iv2. The moment of inertia is 

measured about the rotation axis, thus

  I = a
i

mi 

ri 

2 = 10.25 kg210.080 m22 + 10.15 kg210.060 m22

+  10.30 kg210 m22

  = 2.14 * 10-3 kg m2

The largest mass makes no contribution to I because it is on the 
rotation axis with r = 0. With I known, the angular velocity is

  v = B 2K
I

= B 210.10 J2
2.14 * 10-3 kg m2

  = 9.67 rad/s *
1 rev

2p rad
= 1.54 rev/s = 92 rpm

REVIEW The moment of inertia depends on the distance of each 
mass from the rotation axis. The moment of inertia would be differ-
ent for an axle passing through either of the other two masses, and 
thus the required angular velocity would be different.

EXAMPLE 12.3 ■ A rotating widget

v

250 g 300 g

150 g

Axle

8.0 cm

6.0 cm

FIGURE 12.10 The rotating widget.

M12B_KNIG8221_05_GE_C12.indd   327 28/05/2022   08:55



328 CHAPTER 12 Rotation of a Rigid Body

Before rushing to calculate moments of inertia, let’s get a better understanding 
of the meaning. First, notice that moment of inertia is the rotational equivalent 
of mass. It plays the same role in Equation 12.13 as mass m in the now-familiar 
K = 1

2 mv2. Recall that the quantity we call mass was actually defined as the inertial 
mass. Objects with larger mass have a larger inertia, meaning that they’re harder to 
accelerate. Similarly, an object with a larger moment of inertia is harder to rotate. The 
fact that moment of inertia retains the word “inertia” reminds us of this.

Consider the two wheels shown in FIGURE 12.11. They have the same total mass M 
and the same radius R. As you probably know from experience, it’s much easier to spin 
the wheel whose mass is concentrated at the center than to spin the one whose mass is 
concentrated around the rim. This is because having the mass near the center (smaller 
values of ri) lowers the moment of inertia.

Moments of inertia for many solid objects are tabulated and found online. You 
would need to compute I yourself only for an object of unusual shape. TABLE 12.2 is 
a short list of common moments of inertia. We’ll see in the next section where these 
come from, but do notice how I depends on the rotation axis.

TABLE 12.2 Moments of inertia of objects with uniform density

Object and axis Picture I Object and axis Picture I

Thin rod,  
about center

L

1
12 ML2 Cylinder or disk,  

about center
R

1
2 MR2

Thin rod,  
about end

L

1
3 ML2 Cylindrical hoop,  

about center R
MR2

Plane or slab, 
about center

a

b
1
12 Ma2 Solid sphere, about 

diameter R
2
5 MR2

Plane or slab, 
about edge

a

b
1
3 Ma2 Spherical shell,  

about diameter

R
2
3 MR2

If the rotation axis is not through the center of mass, then rotation may cause 
the center of mass to move up or down. In that case, the object’s gravitational 
potential energy UG = Mgycm will change. If there are no dissipative forces (i.e., 
if the axle is frictionless) and if no work is done by external forces, then the  
mechanical energy

 Emech = K rot + UG = 1
2 Iv2 + Mgycm (12.14)

is a conserved quantity.

Equal
mass

Axis Axis

Smaller moment
of inertia, easier
to spin

Larger moment
of inertia, harder
to spin

Mass concentrated
at the center

Mass concentrated
around the rim

R R

FIGURE 12.11 Moment of inertia depends 
on both the mass and how the mass is 
distributed.
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12.4 Calculating Moment of Inertia
The equation for rotational energy is easy to write, but we can’t make use of it  without 
knowing an object’s moment of inertia. Unlike mass, we can’t measure moment of 
 inertia by putting an object on a scale. And while we can guess that the center of mass of 
a symmetrical object is at the physical center of the object, we can not guess the moment 
of inertia of even a simple object. To find I, we really must carry through the calculation.

Equation 12.12 defines the moment of inertia as a sum over all the particles in the 
system. As we did for the center of mass, we can replace the individual particles with 
cells 1, 2, 3, … of mass ∆m. Then the moment of inertia summation can be converted 
to an integration:

 I = a
i

ri 

2 ∆m ∆mS0
"  3r2 dm (12.15)

where r is the distance from the rotation axis. If we let the rotation axis be the z-axis, 
then we can write the moment of inertia as

 I = 31x2 + y22 dm    (rotation about the z@axis) (12.16)

   NOTE    You must replace dm by an equivalent expression involving a coordinate 
differential such as dx or dy before you can carry out the integration.

A 1.0-m-long, 200 g rod is hinged at one end and connected to a 
wall. It is held out horizontally, then released. What is the speed of 
the tip of the rod as it hits the wall?

MODEL The mechanical energy is conserved if we assume the 
hinge is frictionless. The rod’s gravitational potential energy is 
transformed into rotational kinetic energy as it “falls.”

VISUALIZE FIGURE 12.12 is a familiar before-and-after pictorial rep-
resentation of the rod.

SOLVE Mechanical energy is conserved, so we can equate the rod’s 
final mechanical energy to its initial mechanical energy:

1
2 Iv1 

2 + Mgycm1 = 1
2 Iv0 

2 + Mgycm0

The initial conditions are v0 = 0 and ycm0 = 0. The center of 
mass moves to ycm1 = -1

2 L as the rod hits the wall. From Table 12.2 
we find I = 1

3 ML2 for a rod rotating about one end. Thus

1
2 Iv1 

2 + Mgycm1 = 1
6 ML2v1 

2 - 1
2 MgL = 0

We can solve this for the rod’s angular velocity as it hits the wall:

v1 = B 3g

L

The tip of the rod is moving in a circle with radius r = L. Its final 
speed is

vtip = v1L = 23gL = 5.4 m/s

REVIEW 5.4 m/s = 12 mph, which seems plausible for a meter- 
long rod swinging through 90°.

EXAMPLE 12.4 ■ The speed of a rotating rod

vtip
u

Hinge
x

y

L = 1.0 m

Before: ycm0 = 0 m
 v0 = 0 rad/s
 m = 0.20 kg

After: ycm1 = - L

Find: vtip = v1L

1
2

⊗

⊗

FIGURE 12.12 A before-and-after pictorial representation of the rod.

STOP TO THINK 12.2 A solid cylinder and a cylindrical shell, each with radius 
R and mass M, rotate about their axes with the same angular velocity v. Which has 
more kinetic energy?

a. The solid cylinder.
b. The cylindrical shell.
c. They have the same kinetic energy.
d. Neither has kinetic energy because they 

are only rotating, not moving.

R
R

v v
M M
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You can use any coordinate system to calculate the coordinates xcm and ycm of the 
center of mass. But the moment of inertia is defined for rotation about a particular  
axis, and r is measured from that axis. Thus the coordinate system used for  moment- 
of-inertia calculations must have its origin at the pivot point.

Find the moment of inertia of a thin, uniform rod of length L and 
mass M that rotates about a pivot at one end.

MODEL An object’s moment of inertia depends on the axis of rota-
tion. In this case, the rotation axis is at the end of the rod.

VISUALIZE FIGURE 12.13 defines an x-axis with the origin at the 
 pivot point.

SOLVE Because the rod is thin, we can assume that y ≈ 0 for all 
points on the rod. Thus

I = 3x2 dm

The small amount of mass dm in the small length dx is dm =  
1M/L2 dx, as we found in Example 12.2. The rod extends from 
x = 0 to x = L, so the moment of inertia about one end is

Iend =
M
L

 3
L

0
x2 dx =

M
L

  c x3

3
d

L

0
= 1

3 ML2

REVIEW The moment of inertia involves a product of the total mass 
M with the square of a length, in this case L. All moments of inertia 
have a similar form, although the fraction in front will vary. This is 
the result shown earlier in Table 12.2.

Find the moment of inertia of a circular disk of radius R and mass 
M that rotates on an axis passing through its center.

VISUALIZE FIGURE 12.14 shows the disk and defines distance r from 
the axis.

SOLVE This is a situation of great practical importance. To solve 
this problem, we need to use a two-dimensional integration scheme 
that you learned in calculus. Rather than dividing the disk into little 
boxes, let’s divide it into narrow rings of mass dm. Figure 12.14 
shows one such ring, of radius r and width dr. Let dA represent the 
area of this ring. The mass dm in this ring is the same fraction of the 
total mass M as dA is of the total area A. That is,

dm
M

=
dA
A

Thus the mass in the small area dA is

dm =
M
A

 dA

This is the reasoning we used to find the center of mass of the rod  
in Example 12.2, only now we’re using it in two dimensions.

The total area of the disk is A = pR2, but what is dA? If we 
imagine unrolling the little ring, it would form a long, thin rectan-
gle of length 2pr and height dr. Thus the area of this little ring is 
dA = 2pr dr. With this information we can write

dm =
M

pR2 12pr dr2 =
2M

R2  r dr

Now we have an expression for dm in terms of a coordinate 
differential dr, so we can proceed to carry out the integration for I. 
Using Equation 12.15, we find

Idisk = 3r2 dm = 3r212M

R2  r dr2 =
2M

R2 3
R

0
 r3 dr

where in the last step we have used the fact that the disk extends 
from r = 0 to r = R. Performing the integration gives

Idisk =
2M

 R2  c r4

4
d

R

0
= 1

2 MR2

REVIEW Once again, the moment of inertia involves a product of 
the total mass M with the square of a length, in this case R.

EXAMPLE 12.5 ■ Moment of inertia of a rod about a pivot at one end

EXAMPLE 12.6 ■ Moment of inertia of a circular disk about an axis through the center

x
x

0 L

dx

A small cell of width dx at position 
x has mass dm = (M/L)dx.

Pivot
point

FIGURE 12.13 Setting up the integral to find the moment of 
inertia of a rod.

A narrow ring of width dr has mass
dm = (M/A)dA. Its area is dA = width
* circumference = 2pr dr.

FIGURE 12.14 Setting up the integral to find the moment of 
inertia of a disk.

If a complex object can be divided into simpler pieces 1, 2, 3,  c whose moments 
of inertia I1, I2, I3,  

c are already known, the moment of inertia of the entire object is

 Iobject = I1 + I2 + I3 + g (12.17)
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The Parallel-Axis Theorem
The moment of inertia depends on the rotation axis. Suppose you need to know the 
moment of inertia for rotation about the off-center axis in FIGURE 12.15. You can find 
this quite easily if you know the moment of inertia for rotation around a parallel axis 
through the center of mass.

If the axis of interest is distance d from a parallel axis through the center of mass, 
the moment of inertia is

 I = Icm + Md2 (12.18)

Equation 12.18 is called the parallel-axis theorem. We’ll give a proof for the 
one-dimensional object shown in FIGURE 12.16.

The x-axis has its origin at the rotation axis, and the x′@axis has its origin at the 
 center of mass. You can see that the coordinates of dm along these two axes are related 
by x = x′ + d. By definition, the moment of inertia about the rotation axis is

I = 3x2 dm = 31x′ + d 22 dm = 31x′22 dm + 2d3x′ dm + d23dm (12.19)

The first of the three integrals on the right, by definition, is the moment of inertia Icm 
about the center of mass. The third is simply Md2 because adding up (integrating) all 
the dm gives the total mass M.

If you refer back to Equations 12.5, the definition of the center of mass, you’ll see that 
the middle integral on the right is equal to Mx=

cm. But x=
cm = 0 because we specifically 

chose the x′-axis to have its origin at the center of mass. Thus the second integral is zero 
and we end up with Equation 12.18. The proof in two dimensions is similar.

An o�-center
rotation axis

Axis through the
center of mass

The moment of inertia about
this axis is I = Icm + Md 2.

Mass M
d

⊗

FIGURE 12.15 An off-center axis.

x

x′

x = x′ + d

0

dm
Rotation
axis

0

d x′

Use this axis for calculating I about the pivot.

Use this axis for calculating Icm.

cm⊗

FIGURE 12.16 Proving the parallel-axis 
theorem.

STOP TO THINK 12.3 Four Ts are made from two identical rods of equal mass and 
length. Rank in order, from largest to smallest, the moments of inertia IA  to ID  for 
rotation about the dashed line.

A B C D

12.5 Torque
Consider the common experience of pushing open a door. FIGURE 12.17 is a top view of 
a door hinged on the left. Four pushing forces are shown, all of equal strength. Which 
of these will be most effective at opening the door?

Force F
u

1 will open the door, but force F
u

2, which pushes straight at the hinge,  
will not. Force F

u

3 will open the door, but not as easily as F
u

1. What about F
u

4? It  
is perpendicular to the door, it has the same magnitude as F

u

1, but you know from 

F2

F1F4

Hinge

Top view of door

F3

u

u
u

u

FIGURE 12.17 The four forces have 
different effects on the swinging door.

Find the moment of inertia of a thin rod with mass M and length L 
about an axis one-third of the length from one end.

SOLVE From Table 12.2 we know the moment of inertia about the 
center of mass is 1

12 ML2. The center of mass is at the center of the 

rod. An axis 1
3 L from one end is d = 1

6 L from the center of mass. 
Using the parallel-axis theorem, we have

I = Icm + Md2 = 1
12 ML2 + M11

6 L22 = 1
9 ML2

EXAMPLE 12.7 ■ The moment of inertia of a thin rod
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332 CHAPTER 12 Rotation of a Rigid Body

experience that pushing close to the hinge is not as effective as pushing at the outer 
edge of the door.

The ability of a force to cause a rotation depends on three factors:

1. The magnitude F of the force.
2. The distance r from the point of application to the pivot.
3. The angle at which the force is applied.

We can incorporate these three factors into a single quantity called the torque. 
FIGURE 12.18 shows a force F

u
 trying to rotate the wrench and nut about a pivot point—

the axis about which the nut will rotate. We say that this force exerts a torque t 
(Greek tau), which we define as

 t K rF sin f (12.20)

Torque depends on the three properties we just listed: the magnitude of the force, its 
distance from the pivot, and its angle. Loosely speaking, t measures the  “effectiveness” 
of the force at causing an object to rotate about a pivot. Torque is the rotational  
equivalent of force.

   NOTE    Angle f is measured counterclockwise from the dashed line that extends 
outward along the radial line. This is consistent with our sign convention for the 
angular position u.

The SI units of torque are newton-meters, abbreviated N m. Although we defined 
1 N m = 1 J during our study of energy, torque is not an energy-related quantity and 
so we do not use joules as a measure of torque.

Torque, like force, has a sign. A torque that tries to rotate the object in a ccw  direction 
is positive while a negative torque gives a cw rotation. FIGURE 12.19  summarizes the 
signs. Notice that a force pushing straight toward the pivot or pulling straight out from 
the pivot exerts no torque.

F
u

u

f

r

Pivot
point

Point where
force is applied

Rigid body

y

x

Angle f is measured 
ccw from the radial line.

F exerts a torque 
about the pivot point.

r is measured from the pivot to the
point where the force is applied.

u

FIGURE 12.18 Force F
u
 exerts a torque 

about the pivot point.

Pivot point
Point where 
force is applied

Radial line

Pushing straight at the pivot exerts 
zero torque.

Maximum positive torque for a force 
perpendicular to the radial line

A positive torque tries to rotate the 
object ccw about the pivot.

Pulling straight out from the pivot 
exerts zero torque.

A negative torque tries to rotate
 the object cw about the pivot.

Maximum negative torque for a force 
perpendicular to the radial line

FIGURE 12.19 Signs and strengths of the torque.

   NOTE    Torque differs from force in a very important way. Torque is calculated 
or measured about a pivot point. To say that a torque is 20 N m is meaningless. 
You need to say that the torque is 20 N m about a particular point. Torque can be 
calculated about any pivot point, but its value depends on the point chosen because 
this choice determines r and f.

Returning to the door of Figure 12.17, you can see that F
u

1 is most effective at 
opening the door because F

u

1 exerts the largest torque about the pivot point. F
u

3 has 
equal magnitude, but it is applied at an angle less than 90° and thus exerts less torque. 
F
u

2, pushing straight at the hinge with f = 180°, exerts no torque at all. And F
u

4, with a 
smaller value for r, exerts less torque than F

u

1.
Your foot exerts a torque that rotates  
the crank.
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Interpreting Torque
Torque can be interpreted from two perspectives, as shown in FIGURE 12.20. First, the 
quantity F sin f is the tangential force component Ft. Consequently, the torque is

 t = rFt (12.21)

In other words, torque is the product of r with the force component Ft that is tangent 
to the circular path followed by this point on the wrench. This interpretation makes 
sense because the radial component of F

u
 points straight at the pivot point and cannot 

exert a torque.
A second perspective, widely used in applications, is based on the idea of a  moment  

arm. Figure 12.20 shows the line of action, the line along which the force acts. 
The minimum distance between the pivot point and the line of action—the length 
of a line drawn perpendicular to the line of action—is called the moment arm (or  
the lever arm) d. Because sin1180° - f2 = sin f, it is easy to see that d = r sin f. 
Thus the torque rF sin f can also be written

 0 t 0 = Fd (12.22)

   NOTE    Equation 12.22 gives only 0 t 0 , the magnitude of the torque; the sign has to be  
supplied by observing the direction in which the torque acts.

F
u

f

r

y

x

Ft = F sinf

Moment 
arm d Line of 

action

1. Torque is due to the tangential 
component of force: t = rFt.

2. Torque is the force multiplied 
by the moment arm: 0 t 0  = dF.

FIGURE 12.20 Two useful interpretations 
of the torque.

Luis uses a 20-cm-long wrench to turn a nut. The wrench handle is 
tilted 30° above the horizontal, and Luis pulls straight down on the end 
with a force of 100 N. How much torque does Luis exert on the nut?

VISUALIZE FIGURE 12.21 shows the situation. The angle is a nega-
tive f = -120° because it is clockwise from the radial line.

SOLVE The tangential component of the force is

Ft = F sin f = -86.6 N

According to our sign convention, Ft is negative because it points 
in a cw direction. The torque, from Equation 12.21, is

t = rFt = 10.20 m21-86.6 N2 = -17 N m

Alternatively, Figure 12.21 has drawn the line of action by 
 extending the force vector forward and backward. The moment 
arm, the distance between the pivot point and the line of action, is

d = r cos130°2 = 0.17 m

Inserting the moment arm in Equation 12.22 gives

0 t 0 = Fd = 10.17 m21100 N2 = 17 N m

The torque acts to give a cw rotation, so we insert a minus sign to 
end up with

t = -17 N m

REVIEW The largest possible torque, if Luis pulled perpendicular 
to the 20-cm-long wrench, would have a magnitude of 20 N m. 
Pulling at an angle reduces this, so 17 N m is a reasonable  
answer.

EXAMPLE 12.8 ■ Applying a torque

Ft

r = 20 cm

Moment arm d

30° Luis’s pull (100 N)

Line of action

f = -120°

FIGURE 12.21 A wrench being used to turn a nut.

STOP TO THINK 12.4 Rank in order, from largest to smallest, the five torques tA  to tE. The rods all have  
the same length and are pivoted at the dot.

2 N 2 N
4 N

2 N

4 N
45°

A B C D E
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334 CHAPTER 12 Rotation of a Rigid Body

Net Torque
FIGURE 12.22 shows the forces acting on the crankset of a bicycle. The crankset is free 
to rotate about the axle, but the axle prevents it from having any translational motion 
relative to the bike frame. It does so by exerting force F

u

axle on the crankset to balance 
the other forces and keep F

u

net = 0
u
.

Forces F
u

1, F
u

2, F
u

3,c  exert torques t1, t2, t3,c on the crankset, but F
u

axle does 
not exert a torque because it is applied at the pivot point and has zero moment arm. 
Thus the net torque about the axle is the sum of the torques due to the applied 
forces:

 tnet = t1 + t2 + t3 + g = a
i
ti (12.23)

Gravitational Torque
Gravity exerts a torque on many objects. If the object in FIGURE 12.23 is released, a 
torque due to gravity will cause it to rotate around the axle. To calculate the torque 
about the axle, we start with the fact that gravity acts on every particle in the object, 
exerting a downward force of magnitude Fi = mi g on particle i. The magnitude of the 
gravitational torque on particle i is 0 ti 0 = dimig, where di is the moment arm. But we 
need to be careful with signs.

A moment arm must be a positive number because it’s a distance. If we establish  
a coordinate system with the origin at the axle, then you can see from Figure 12.23a  
that the moment arm di of particle i is 0 xi 0 . A particle to the right of the axle 
( positive xi) experiences a negative torque because gravity tries to rotate this parti-
cle in a clockwise direction. Similarly, a particle to the left of the axle (negative xi)  
has a positive torque. The torque is opposite in sign to xi, so we can get the sign right 
by writing

 ti = -ximig = -1mixi2g (12.24)

The net torque due to gravity is found by summing Equation 12.24 over all particles:

 tgrav = a
i
ti = a

i
1-mixig2 = - 1a

i
mixi2g (12.25)

But according to the definition of center of mass, Equations 12.4, gmixi = Mxcm. Thus 
the torque due to gravity is

 tgrav = -Mgxcm (12.26)

where xcm is the position of the center of mass relative to the axis of rotation.
Equation 12.26 has the simple interpretation shown in Figure 12.23b. Mg is the 

net gravitational force on the entire object, and xcm is the moment arm between the 
rotation axis and the center of mass. The gravitational torque on an extended object of 
mass M is equivalent to the torque of a single force vector F

u

G = -Mg jn acting at the 
object’s center of mass.

In other words, the gravitational torque is found by treating the object as if all 
its mass were concentrated at the center of mass. This is the basis for the well-
known technique of finding an object’s center of mass by balancing it. An object 
will balance on a pivot, as shown in FIGURE 12.24, only if the center of mass is directly 
above the pivot point. If the pivot is not under the center of mass, the gravitational 
torque will cause the object to rotate.

   NOTE    The point at which gravity acts is also called the center of gravity. As long as  
gravity is uniform over the object—always true for earthbound objects—there’s no 
difference between center of mass and center of gravity.

F1

u

Faxle

u

F2

u

F3

u

F4

u

The axle exerts a force on the
crank to keep Fnet = 0. This
force does not exert a torque.

u u

Axle

FIGURE 12.22 The forces exert a net 
torque about the pivot point.

x1 xcm x20
x

xcm0
x

Gravity exerts a
positive torque
on particle 1.

d2d1

Moment arms

Axle

Axle

Moment arm

m1g

m2g

The net torque due to gravity is
found by pretending the object’s
entire mass is at the center of mass.

Mg

(b)

(a) Gravity exerts a
negative torque
on particle 2.

cm

cm

⊗

⊗

FIGURE 12.23 Gravitational torque.

The line of action passes
through the pivot.

Pivot

Mg

⊗

FIGURE 12.24 An object balances on a 
pivot that is directly under the center of 
mass.
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12.6 Rotational Dynamics
What does a torque do? A torque causes an angular acceleration. To see why, 
FIGURE 12.26 shows a rigid body undergoing pure rotational motion about a fixed and 
 unmoving axis. This might be a rotation about the object’s center of mass, such as we 
considered in Section 12.2. Or it might be an object, such as a turbine, rotating on an axle.

The forces F
u

1, F
u

2, F
u

3,c in Figure 12.26 are external forces acting on particles of 
masses m1, m2, m3,c that are part of the rigid body. These forces exert torques t1, t2, 
t3,c about the rotation axis. The net torque on the object is the sum of the torques:

 tnet = a
i
ti (12.27)

Focus on particle i, which is acted on by force F
u

i and undergoes circular motion 
with  radius ri. In Chapter 8, we found that the radial component of F

u

i is responsible 
for the centripetal acceleration of circular motion, while the tangential component 
1Fi2t causes the particle to speed up or slow down with a tangential acceleration 1ai2t. 
Newton’s second law is

 1Fi2t = mi1ai2t = miria (12.28)

where in the last step we used the relationship between tangential and angular 
 acceleration: at = ra. The angular acceleration a does not have a subscript because 
all particles in the object have the same angular acceleration. That is, a is the  
angular acceleration of the entire object.

Multiplying both sides by ri gives

 ri1Fi2t = mi ri 

2a (12.29)

But ri1Fi2t is the torque ti about the axis on particle i; hence Newton’s second law for 
a single particle in the object is

 ti = mi ri 

2a (12.30)

Returning now to Equation 12.27, we see that the net torque on the object is

 tnet = a
i
ti = a

i
mi ri 

2a = 1a
i

mi ri 

22a (12.31)

In the last step, we factored out a by using the key idea that every particle in a rotating 
rigid body has the same angular acceleration.

You’ll recognize the quantity in parentheses as the moment of inertia. Substituting 
I into Equation 12.31 puts the final piece of the puzzle into place. An object that ex-
periences a net torque tnet about the axis of rotation undergoes an angular acceleration

 a =
tnet

I
  (Newton>s second law for rotational motion) (12.32)

where I is the object’s moment of inertia about the rotation axis. This result, Newton’s 
second law for rotation, is the fundamental equation of rigid-body dynamics.

The 4.00-m-long, 500 kg steel beam shown in FIGURE 12.25 is sup-
ported 1.20 m from the right end. What is the gravitational torque 
about the support?

MODEL The center of mass of the beam is at the midpoint. 
xcm = -0.80 m is measured from the pivot point.

SOLVE This is a straightforward application of Equation 12.26. The 
gravitational torque is

tgrav = -Mgxcm = -1500 kg219.80 m/s221-0.80 m2 = 3920 N m

REVIEW The torque is positive because gravity tries to rotate the 
beam ccw. Notice that the beam in Figure 12.25 is not in equilibrium. 
It will fall over unless other forces, not shown, are supporting it.

EXAMPLE 12.9 ■ The gravitational torque on a beam

F3
F1

F2

u
u

u

Rotation
axis

A net torque causes
the object to have an
angular acceleration.

r1

m1

m2

m3r3

r2

FIGURE 12.26 The external forces exert a 
torque about the rotation axis.

⊗

Mg 0.80 m 1.20 m

4.00 m
cm

FIGURE 12.25 A steel beam supported at one point.

To design or even to fly a helicopter 
requires a detailed understanding of 
rotational dynamics. The engine uses 
complex mechanical linkages to apply 
a large torque to the rotor. The rotor’s 
response depends not only on the torque 
from the engine but also on torques due 
to aerodynamic forces. If the helicopter 
had a single rotor, conservation of an-
gular momentum would cause the body 
of the helicopter to rotate in a direction 
opposite the rotor. This is prevented by 
the vertical tail rotor, which supplies an 
opposing torque about a vertical axis.
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In practice we often write tnet = Ia, but Equation 12.32 better conveys the idea that 
torque is the cause of angular acceleration. In the absence of a net torque 1tnet = 02, 
the  object either does not rotate 1v = 02 or rotates with constant angular velocity 
1v = constant2.

TABLE 12.3 summarizes the analogies between linear and rotational dynamics.

Far out in space, a 100,000 kg rocket and a 200,000 kg rocket are 
docked at opposite ends of a motionless 90-m-long connecting 
tunnel. The tunnel is rigid and its mass is much less than that of 
either rocket. The rockets start their engines simultaneously, each 
generating 50,000 N of thrust in opposite directions. What is the 
structure’s angular velocity after 30 s?

MODEL The entire structure can be modeled as two masses at the ends 
of a massless, rigid rod. There’s no net force, so the structure does 
not undergo translational motion, but the thrusts do create torques  
that will give the structure angular acceleration and cause it to rotate. 
We’ll assume the thrust forces are perpendicular to the connecting 
tunnel. This is an unconstrained rotation, so the structure will rotate 
about its center of mass.

VISUALIZE FIGURE 12.27 shows the rockets and defines distances r1 
and r2 from the center of mass.

SOLVE Our strategy will be to use Newton’s second law to find the 
angular acceleration, followed by rotational kinematics to find v. 
We’ll need to determine the moment of inertia, and that requires 
knowing the distances of the two rockets from the rotation axis. As 
we did in Example 12.1, we choose a coordinate system in which the  
masses are on the x-axis and in which m1 is at the origin. Then

  xcm =
m1x1 + m2x2

m1 + m2

  =
1100,000 kg210 m2 + 1200,000 kg2190 m2

100,000 kg + 200,000 kg
= 60 m

The structure’s center of mass is r1 = 60 m from the 100,000 kg 
rocket and r2 = 30 m from the 200,000 kg rocket. The moment of 
inertia about the center of mass is

I = m1r1 

2 + m2r2 

2 = 540,000,000 kg m2

The two rocket thrusts exert net torque

  tnet = r1 F1 + r2 F2 = 160 m2150,000 N2 + 130 m2150,000 N2
  = 4,500,000 N m

With I and tnet now known, we can use Newton’s second law to 
find the angular acceleration:

a =
t

I
=

4,500,000 N m

540,000,000 kg m2 
= 0.00833 rad/s2

After 30 seconds, the structure’s angular velocity is

v = a ∆t = 0.25 rad/s

EXAMPLE 12.10 ■ Rotating rockets

⊗

xcm

x2 = 90 m

x

x1 = 0

F2 = 50,000 N
m2 = 200,000 kg

F1 = 50,000 N
m1 = 100,000 kg

r2

r1

F2

90 m

tunnel
cm

F1

u

u

FIGURE 12.27 The thrusts exert a torque on the structure.

TABLE 12.3 Rotational and linear dynamics

Rotational dynamics Linear dynamics

torque (N m) tnet force (N) F
u

net

moment of inertia (kg m2) I mass (kg) m

angular acceleration (rad/s2) a acceleration (m/s2) au

second law a = tnet/I second law au = F
u

net/m

STOP TO THINK 12.5 Rank in order, from largest to smallest, the angular accelerations aA to aD.

2 m

A

2 kg

2 kg

1 N

1 N

4 m
2 kg

D

2 kg
1 N

1 N

2 m

B

2 kg

2 N

2 N

2 kg
2 m

C

4 kg
1 N

1 N
4 kg
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12.7 Rotation About a Fixed Axis 337

12.7 Rotation About a Fixed Axis
In this section we’ll look at rigid bodies that rotate about a fixed axis. The problem- 
solving strategy for rotational dynamics is very similar to that for linear dynamics.

The engine in a small airplane is specified to have a torque of 
60 N m. This engine drives a 2.0-m-long, 40 kg propeller. On 
start-up, how long does it take the propeller to reach 200 rpm?

MODEL The propeller can be modeled as a rigid rod that rotates 
about its center. The engine exerts a torque on the propeller.

VISUALIZE FIGURE 12.28 shows the propeller and the rotation axis.

SOLVE The moment of inertia of a rod rotating about its center is 
found from Table 12.2:

I = 1
12 ML2 = 1

12 140 kg212.0 m22 = 13.33 kg m2

The 60 N m torque of the engine causes an angular acceleration

a =
t

I
=

60 N m

13.33 kg m2 
= 4.50 rad/s2

The time needed to reach vf = 200 rpm = 3.33 rev/s =  20.9 rad/s is

∆t =
∆v

a
=

vf - vi

a
=

20.9 rad/s - 0 rad/s

4.5 rad/s2 = 4.6 s

REVIEW We’ve assumed a constant angular acceleration, which 
is reasonable for the first few seconds while the propeller is still 
turning slowly. Eventually, air resistance and friction will cause  
opposing torques and the angular acceleration will decrease. At full 
speed, the negative torque due to air resistance and friction cancels 
the torque of the engine. Then tnet = 0 and the propeller turns at 
constant angular velocity with no angular acceleration.

EXAMPLE 12.11 ■ Starting an airplane engine

PROBLEM-SOLVING STRATEGY 12.1

Rotational dynamics problems

MODEL Model the object as a rigid body.

VISUALIZE Draw a pictorial representation to clarify the situation, define coordi-
nates and symbols, and list known information.

■■ Identify the axis about which the object rotates.
■■ Identify forces and determine their distances from the axis. For most problems 
it will be useful to draw a free-body diagram.

■■ Identify any torques caused by the forces and the signs of the torques.

SOLVE The mathematical representation is based on Newton’s second law for  
rotational motion:

tnet = Ia  or  a =
tnet 

I
■■ Find the moment of inertia in Table 12.2 or, if needed, calculate it as an integral 
or by using the parallel-axis theorem.

■■ Use rotational kinematics to find angles and angular velocities.

REVIEW Check that your result has correct units and significant figures, is reason-
able, and answers the question.

Exercise 28 

Axis

L = 2.0 m

M = 40 kgThe torque from
the engine rotates
the propeller.

FIGURE 12.28 A rotating airplane propeller.
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338 CHAPTER 12 Rotation of a Rigid Body

Constraints Due to Ropes and Pulleys
Many important applications of rotational dynamics involve objects, such as pulleys, 
that are connected via ropes or belts to other objects. FIGURE 12.29 shows a rope passing 
over a pulley and connected to an object in linear motion. If the rope does not slip as the 
pulley rotates, then the rope’s speed vrope must exactly match the speed of the rim of the 
pulley, which is vrim = 0v 0R. If the pulley has an angular acceleration, the rope’s accel-
eration arope must match the tangential acceleration of the rim of the pulley, at = 0a 0R.

The object attached to the other end of the rope has the same speed and accelera-
tion as the rope. Consequently, an object connected to a pulley of radius R by a rope 
that does not slip must obey the constraints

aobj = 0a 0R
 (motion constraints for a nonslipping rope) (12.33)

vobj = 0v 0R
These constraints are very similar to the acceleration constraints introduced in Chapter 7 
for two objects connected by a string or rope.

   NOTE    The constraints are given as magnitudes. Specific problems will need to  introduce 
signs that depend on the direction of motion and on the choice of  coordinate system.

The Constant-Torque Model
If all the torques exerted on an object are constant, the object rotates with constant 
angular acceleration. Even if the torques aren’t perfectly constant, there are many 
situations where it’s reasonable to model them as if they were. The constant-torque 
model, analogous to the constant-force model of Section 6.2, is the most important 
model of rotational dynamics.

vobj = 0v 0R

R

The motion of the
object must match
the motion of the
rim.

aobj = 0a 0R  

Nonslipping rope

v

FIGURE 12.29 The rope’s motion must 
match the motion of the rim of the pulley.

MODEL 12.2

Constant torque
For objects on which the net torque is constant.

■■ Model the object as a rigid body with constant angular 
acceleration.

■■ Take into account constraints due to ropes and pulleys.
■■ Mathematically:

• Newton’s second law is tnet = Ia.

• Use the kinematics of constant angular acceleration.
■■ Limitations: Model fails if the torque isn’t constant.

F1

u

F2

u

a

tnet

I
a = 

The object has constant 
angular acceleration.

A 2.0 kg bucket is attached to a massless string that is wrapped around 
a 1.0 kg, 4.0-cm-diameter cylinder, as shown in FIGURE 12.30a. The 
 cylinder rotates on an axle through the center. The bucket is  released 
from rest 1.0 m above the floor. How long does it take to reach the floor?

MODEL Assume the string does not slip.

VISUALIZE FIGURE 12.30b shows the free-body diagram for the 
 cylinder and the bucket. The string tension exerts an upward force on 
the bucket and a downward force on the outer edge of the cylinder. 
The string is massless, so these two tension forces act as if they are 
an action/reaction pair: Tb = Tc = T.

SOLVE Newton’s second law applied to the linear motion of the 
bucket is

may = T - mg

where, as usual, the y-axis points upward. What about the cylinder? 
The only torque comes from the string tension. The moment arm 
for the tension is d = R, and the torque is positive because the string 
turns the cylinder ccw. Thus tstring = TR and Newton’s second law 
for the rotational motion is

a =
tnet 

I
=

TR
1
2 MR2

=
2T
MR

EXAMPLE 12.12 ■ Lowering a bucket
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12.8 Static Equilibrium
An extended object that is completely stationary is in static equilibrium. It has no lin-
ear acceleration 1au =  0

u2 and no angular acceleration 1a = 02. Thus, from Newton’s 
laws, the conditions for static equilibrium are no net force and no net torque. These 
two rules are the basis for a branch of engineering, called statics, that analyzes build-
ings, dams, bridges, and other structures in static equilibrium.

Section 6.1 introduced the model of mechanical equilibrium for objects that can be 
represented as particles. For extended objects, we have the static equilibrium model.

The moment of inertia of a cylinder rotating about a center axis 
was taken from Table 12.2.

The last piece of information we need is the constraint due to 
the fact that the string doesn’t slip. Equation 12.33 relates only the 
absolute values, but in this problem a is positive (ccw acceleration) 
while ay is negative (downward acceleration). Hence

ay = -aR

Using a from the cylinder’s equation in the constraint, we find

ay = -aR = -
2T
MR

 R = -
2T
M

Thus the tension is T = -  12 May. If we use this value of the tension 
in the bucket’s equation, we can solve for the acceleration:

may = -1
2 May - mg

ay = -
g

11 + M/2m2 = -7.84 m/s2

The time to fall through ∆y = -1.0 m is found from kinematics:

∆y = 1
2 ay  1∆t22

∆t = B 2 ∆y

ay
= B 21-1.0 m2

-7.84 m/s2 = 0.50 s

REVIEW The expression for the acceleration gives ay = -g if 
M = 0. This makes sense because the bucket would be in free fall 
if there were no cylinder. When the cylinder has mass, the down-
ward force of gravity on the bucket has to accelerate the bucket and 
spin the cylinder. Consequently, the acceleration is reduced and the 
bucket takes longer to fall.

(a) (b)

FIGURE 12.30 The falling bucket turns the cylinder.

For any point you choose, an object that is not rotating is not rotating about that point. 
This seems to be a trivial statement, but it has an important implication: For a rigid body 
in static equilibrium, the net torque is zero about any point. You can use any point you 
wish as the pivot point for calculating torque. Even so, some choices are better than 
 others for problem solving. As the examples will show, it’s often best to choose a point at 
which several forces act because the torques exerted by those forces will be zero.

Structures such as bridges are analyzed 
in engineering statics.

MODEL 12.3

Static equilibrium
For extended objects at rest.

■■ Model the object as a rigid body with no  
acceleration.

■■ Mathematically:

• No net force: F
u

net = aF
u

i =    0
u

, and

• No net torque: tnet = a ti = 0
■■ The torque is zero about every point, so use any point  
that is convenient for the pivot point.

■■ Limitations: Model fails if either the forces or the torques aren’t balanced.

au = 0
u
 a = 0

The object is at rest.
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340 CHAPTER 12 Rotation of a Rigid Body

Weightlifting can exert extremely large forces on the body’s 
joints and tendons. In the strict curl event, a standing athlete uses 
both arms to lift a barbell by moving only his forearms, which 
pivot at the elbows. The record weight lifted in the strict curl is 
nearly 250 pounds (about 1100 N). FIGURE 12.31 shows the arm 
bones and the biceps, the main lifting muscle when the forearm 
is horizontal. What is the tension in the tendon connecting the 
biceps muscle to the bone while a 900 N barbell is held stationary 
in this position?

MODEL Model the arm as two rigid rods connected by a hinge. 
We’ll ignore the arm’s weight because it is so much less than that 
of the barbell. Although the tendon pulls at a slight angle, it is close 
enough to vertical that we’ll treat it as such.

VISUALIZE FIGURE 12.32 shows the forces acting on our simplified 
model of the forearm. The biceps pulls the forearm up against the 
upper arm at the elbow, so the force F

u

elbow on the forearm at the 
elbow—a force due to the upper arm—is a downward force.

SOLVE Static equilibrium requires both the net force and the net 
torque on the forearm to be zero. Only the y-component of force is 
relevant, and setting it to zero gives a first equation:

aFy = Ftendon - Felbow - Fbarbell = 0

Because each arm supports half the weight of the barbell, Fbarbell =  
450 N. We don’t know either Ftendon or Felbow, nor does the force 
equation give us enough information to find them. But the fact that 
the net torque also must be zero gives us that extra information. The 
torque is zero about every point, so we can choose any point we 
wish to calculate the torque. The elbow joint is a convenient point 
because force F

u

elbow exerts no torque about this point; its moment 
arm is zero. Thus the torque equation is

tnet = dtendonFtendon - darmFbarbell = 0

The tension in the tendon tries to rotate the arm ccw, so it produces 
a positive torque. Similarly, the torque due to the barbell is negative.  
We can solve the torque equation for Ftendon to find

Ftendon = Fbarbell 
darm

dtendon
= 1450 N2 

35 cm
4.0 cm

= 3900 N

REVIEW The short distance dtendon from the tendon to the elbow 
joint means that the force supplied by the biceps has to be very 
large to counter the torque generated by a force applied at the 
 opposite end of the forearm. Although we ended up not needing the 
force equation in this problem, we could now use it to calculate that 
the force exerted at the elbow is Felbow = 3450 N. These large forces 
can easily damage the tendon or the elbow.

EXAMPLE 12.13 ■ Lifting weights

Lifting muscle
(biceps)

4.0 cm

35 cm

FIGURE 12.31 An arm holding a barbell. Fbarbell
These forces cause
torques about the elbow.

darm

dtendon

Known
dtendon = 4.0 cm
darm = 35 cm
Fbarbell = 450 N

Find
Ftendon

Ftendon

Felbow

u

u
u

FIGURE 12.32 A pictorial representation of the forces involved.

Adrienne (50 kg) and Bo (90 kg) are playing on a 100 kg rigid plank 
resting on the supports seen in FIGURE 12.33. If Adrienne stands on the 
left end, can Bo walk all the way to the right end without the plank 
tipping over? If not, how far can he get past the support on the right?

MODEL Model the plank as a uniform rigid body with its center of 
mass at the center.

VISUALIZE FIGURE 12.34 shows the forces acting on the plank. Both 
supports exert upward forces. nuA and nuB are the normal forces of 
Adrienne’s and Bo’s feet pushing down on the board.

SOLVE Because the plank is resting on the supports, not held down, 
forces nu1 and nu2 must point upward. (The supports could pull down 
if the plank were nailed to them, but that’s not the case here.) Force 
nu1 will decrease as Bo moves to the right, and the tipping point 
occurs when n1 = 0. The plank remains in static equilibrium right 
up to the tipping point, so both the net force and the net torque on it 
are zero. The force equation is

  aFy = n1 + n2 - nA - nB - Mg

  = n1 + n2 - mAg - mBg - Mg = 0

Adrienne is at rest, with zero net force, so her downward force on 
the board, an action/reaction pair with the upward normal force 
of the board on her, equals her weight: nA = mAg. Bo’s center of 

EXAMPLE 12.14 ■ Walking the plank

2.0 m 3.0 m 4.0 m

FIGURE 12.33 Adrienne and Bo on the plank.
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12.8 Static Equilibrium 341

mass oscillates up and down as he walks, so he’s not in equilibrium 
and, strictly speaking, nB ≠ mBg. But we’ll assume that he edges 
out onto the board slowly, with minimal bouncing, in which case 
nB = mBg is a reasonable approximation.

We can again choose any point we wish for calculating torque. 
Let’s use the support on the left. Adrienne and the support on the 
right exert positive torques about this point; the other forces exert 
negative torques. Force nu1 exerts no torque because it acts at the 
pivot point. Thus the torque equation is

tnet = dAmAg - dBmBg - dMMg + d2n2 = 0

At the tipping point, where n1 = 0, the force equation gives n2 =  
1mA + mB + M2g. Substituting this into the torque equation and 
then solving for Bo’s position give

dB =
dAmA - dMM + d21mA + mB + M2

mB 
= 6.3 m

Bo doesn’t quite make it to the end. The plank tips when he’s 6.3 m 
past the left support, our pivot point, and thus 3.3 m past the support 
on the right.

REVIEW We could have solved this problem somewhat more simply 
had we chosen the support on the right for calculating the torques. 
However, you might not recognize the “best” point for calculating 
the torques in a problem. The point of this example is that it doesn’t 
matter which point you choose.

Calculate torques
about this point.

FIGURE 12.34 A pictorial representation of the forces on the plank.

A 3.0-m-long ladder leans against a frictionless wall at an angle 
of 60°. What is the minimum value of ms , the coefficient of static 
friction with the ground, that prevents the ladder from slipping?

MODEL The ladder is a rigid rod of length L. To not slip, it must 
be in both translational equilibrium 1F

u

net = 0
u2 and rotational  equi - 

librium 1tnet = 02.

VISUALIZE FIGURE 12.35 shows the ladder and the forces acting on it.

SOLVE The x- and y-components of F
u

net = 0
u
 are

 aFx = n2 - fs = 0

 aFy = n1 - Mg = 0

The net torque is zero about any point, so which should we choose? 
The bottom corner of the ladder is a good choice because two  
forces pass through this point and have no torque about it. The 
torque about the bottom corner is

tnet = d1FG - d2n2 = 1
2 1L cos 60°2Mg - 1L sin 60°2n2 = 0

The signs are based on the observation that F
u

G would cause the 
ladder to rotate ccw while nu2 would cause it to rotate cw. All  
together, we have three equations in the three unknowns n1, n2, and 
fs. If we solve the third for n2,

n2 =
1
2 1L cos 60°2Mg

L sin 60°
=

Mg

2 tan 60°

we can then substitute this into the first to find

fs =
Mg

2 tan 60°

Our model of friction is fs … fs max = msn1. We can find n1 from the 
second equation: n1 = Mg. Using this, the model of static friction 
tells us that

fs … msMg

Comparing these two expressions for fs, we see that ms must obey

ms Ú
1

2 tan 60°
= 0.29

Thus the minimum value of the coefficient of static friction is 0.29.

REVIEW You know from experience that you can lean a ladder or 
other object against a wall if the ground is “rough,” but it slips if the 
surface is too smooth. 0.29 is a “medium” value for the coefficient 
of static friction, which is reasonable.

EXAMPLE 12.15 ■ Will the ladder slip?

⊗Center
of mass

Static friction
prevents slipping.

Gravity acts at
the center of mass.

fs

n1

n2

d2

FG

d1

L = 3.0 m

60° tnet = 0 about
this point.

u

u

u
u

FIGURE 12.35 A ladder in total equilibrium.
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Balance and Stability
If you tilt a box up on one edge by a small amount and let go, it falls back down. If you 
tilt it too much, it falls over. And if you tilt “just right,” you can get the box to balance 
on its edge. What determines these three possible outcomes?

FIGURE 12.36 illustrates the idea with a car, but the results are general and apply 
in many situations. As long as the object’s center of mass remains over the base of 
support, torque due to gravity will rotate the object back to its equilibrium position.

The torque due to gravity
will bring the car back down
as long as the center of mass
is above the base of support.

The vehicle is at the critical
angle uc when its center of
mass is exactly over the pivot.

Base of
support

Base of
support

h

t/2

(a) (b) (c)

uc

ucPivot

Now the center of mass is
outside the base of support.
Torque due to gravity will
cause the car to roll over.

⊗
⊗ ⊗

FIGURE 12.36 Stability depends on the position of the center of mass.

A critical angle uc is reached when the center of mass is directly over the  pivot 
point. This is the point of balance, with no net torque. For vehicles, the distance 
 between the tires is called the track width t. If the height of the center of mass is h, you 
can see from Figure 12.36b that the critical angle is

uc = tan-11 t
2h2

For passenger cars with h ≈ 0.33t, the critical angle is uc ≈  57°. But for a sport 
utility vehicle (SUV) with h ≈ 0.47t, a higher center of mass, the critical angle is 
only uc ≈ 47°. Various automobile safety groups have determined that a vehicle with 
uc 7 50° is unlikely to roll over in an accident. A rollover becomes increasingly likely 
when uc is reduced below 50°. The general rule is that a wider base of support and/or  
a lower center of mass improve stability.

STOP TO THINK 12.6 What does the scale read?

a. 500 N
b. 1000 N
c. 2000 N
d. 4000 N 1000 N

Massless rod

Scale

12.9 Rolling Motion
Rolling is a combination motion in which an object rotates about an axis that is moving 
along a straight-line trajectory. For example, FIGURE 12.37 is a time-exposure photo of a 
rolling wheel with one lightbulb on the axis and a second lightbulb at the edge. The axis 
light moves straight ahead, but the edge light moves along a curve. Let’s see if we can 
understand this interesting motion. We’ll consider only objects that roll without slipping.

FIGURE 12.38 shows a round object—a wheel or a sphere—that rolls forward exactly 
one revolution. The point that had been on the bottom follows the curve you saw in 
Figure 12.37 to the top and back to the bottom. Because the object doesn’t slip, the 
center of mass moves forward exactly one circumference: ∆xcm = 2pR.

We can also write the distance traveled in terms of the velocity of the center  
of mass: ∆xcm = vcm ∆t. But ∆t, the time it takes the object to make one complete 
revolution, is nothing other than the rotation period T. In other words, ∆xcm = vcmT.

Path of wheel rim

Path of center of wheel

FIGURE 12.37 The trajectories of the 
center of a wheel and of a point on  
the rim are seen in a time-exposure 
photograph.

This dancer balances en pointe by having 
her center of mass directly over her toes, 
her base of support.
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12.9 Rolling Motion 343

These two expressions for ∆xcm come from two perspectives on the motion: one 
looking at the rotation and the other looking at the translation of the center of mass. 
But it’s the same distance no matter how you look at it, so these two expressions must 
be equal. Consequently,

 ∆xcm = 2pR = vcmT  (12.34)

If we divide by T, we can write the center-of-mass velocity as

 vcm =
2p
T

 R (12.35)

But 2p/T  is the angular velocity v, as you learned in Chapter 4, leading to

 vcm = Rv (12.36)

Equation 12.36 is the rolling constraint, the basic link between translation and 
 rotation for objects that roll without slipping.

Let’s look carefully at a particle in the rolling object. As FIGURE 12.39a shows,  
the position vector ru i for particle i is the vector sum rui = rucm + rui, rel. Taking the time 
derivative of this equation, we can write the velocity of particle i as

 vui = vucm + vui, rel (12.37)

In other words, the velocity of particle i can be divided into two parts: the velocity vucm  
of the object as a whole plus the velocity vui, rel of particle i relative to the center of mass  
(i.e., the velocity that particle i would have if the object were only rotating and had no 
translational motion).

FIGURE 12.39b applies this idea to point P at the very bottom of the rolling object, the 
point of contact between the object and the surface. This point is moving around the 
center of the object at angular velocity v, so vi, rel = -Rv. The negative sign indicates 
that the motion is cw. At the same time, the center-of-mass velocity, Equation 12.36, is 
vcm = Rv. Adding these, we find that the velocity of point P, the lowest point, is vi = 0. 
In other words, the point on the bottom of a rolling object is instantaneously at rest.

Although this seems surprising, it is really what we mean by “rolling without  
slipping.” If the bottom point had a velocity, it would be moving horizontally relative 
to the surface. In other words, it would be slipping or sliding across the surface. To 
roll without slipping, the bottom point, the point touching the surface, must be at rest.

FIGURE 12.40 shows how the velocity vectors at the top, center, and bottom of a 
rotating wheel are found by adding the rotational velocity vectors to the center-of-
mass velocity. You can see that vbottom = 0 and that vtop = 2Rv = 2vcm.

R R

Path followed by
the point on the rim

Object rolls one revolution
without slipping.

∆xcm = vcm ∆t = 2pR

vcm vcm vcm
u u u

◀ FIGURE 12.38 An object rolling through 
one revolution.

⊗

R

Point P

(b)

Translational velocity
of point P

Rotational velocity
of point P

The sum of the two
velocities is zero. Point P
is instantaneously at rest.

vcm = Rv

vi,rel = -Rv

v

x

y

⊗ri

rcm

ri,rel

Particle i

(a)

cm

Position of particle
i relative to the
center of mass

Center-of-mass position

u

u

u

x

y

FIGURE 12.39 The motion of a particle in 
the rolling object.

⊗ ⊗ ⊗

Translation Rotation+ =

+ =

Rolling

vcm

vcm

vcm -Rv

0
v = vcm = Rv

v = 2vcm = 2Rv

v = 0

Rv

FIGURE 12.40 Rolling without slipping is a combination of translation and rotation.
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Kinetic Energy of a Rolling Object
We found earlier that the rotational kinetic energy of a rigid body in pure rotational 
motion is Krot = 1

2 Iv2. Now we would like to find the kinetic energy of an object that 
rolls without slipping, a combination of rotational and translation motion.

We begin with the observation that the bottom point in FIGURE 12.41 is instanta-
neously at rest. Consequently, we can think of an axis through P as an instantaneous 
axis of rotation. The idea of an instantaneous axis of rotation seems a little far-fetched, 
but it is confirmed by looking at the instantaneous velocities of the center point and 
the top point. We found these in Figure 12.40 and they are shown again in Figure 
12.41. They are exactly what you would expect as the tangential velocity vt = rv for 
rotation about P at distances R and 2R.

From this perspective, the object’s motion is pure rotation about point P. Thus the 
kinetic energy is that of pure rotation:

 K = Krotation about P = 1
2 IP v2 (12.38)

IP is the moment of inertia for rotation about point P. We can use the parallel-axis 
theorem to write IP in terms of the moment of inertia Icm about the center of mass. 
Point P is displaced by distance d = R; thus

IP = Icm + MR2

Using this expression in Equation 12.38 gives us the kinetic energy:

 K = 1
2 Icmv

2 + 1
2 M1Rv22 (12.39)

We know from the rolling constraint that Rv is the center-of-mass velocity vcm. 
Thus the kinetic energy of a rolling object is

 Krolling = 1
2 Icmv

2 + 1
2 Mvcm 

2 = Krot + Kcm (12.40)

In other words, the rolling motion of a rigid body can be described as a translation 
of the center of mass (with kinetic energy Kcm) plus a rotation about the center of 
mass (with kinetic energy Krot).

The Great Downhill Race
FIGURE 12.42 shows a contest in which a sphere, a cylinder, and a circular hoop, all of 
mass M and radius R, are placed at height h on a slope of angle u. All three are released  
from rest at the same instant of time and roll down the ramp without slipping. To make  
things more interesting, they are joined by a particle of mass M that slides down the 
ramp without friction. Which one will win the race to the bottom of the hill? Does 
rotation affect the outcome?

An object’s initial gravitational potential energy is transformed into kinetic energy 
as it rolls (or slides, in the case of the particle). The kinetic energy, as we just discov-
ered, is a combination of translational and rotational kinetic energy. If we choose 
the bottom of the ramp as the zero point of potential energy, the statement of energy 
conservation Kf = Ui can be written

 1
2 Icmv

2 + 1
2 Mvcm 

2 = Mgh (12.41)

The translational and rotational velocities are related by v = vcm/R. In addition, notice 
from Table 12.2 that the moments of inertia of all the objects can be written in the form

 Icm = cMR2 (12.42)

where c is a constant that depends on the object’s geometry. For example, c = 2
5 for a 

sphere but c = 1 for a circular hoop. Even the particle can be represented by c = 0, 
which eliminates the rotational kinetic energy.

With this information, Equation 12.41 becomes

1
2 1cMR221vcm

R 22

+ 1
2 Mvcm 

2 = 1
2 M11 + c2vcm 

2 = Mgh

⊗

v

Instantaneous rotation
about point P

v = Rv

v = 2Rv

P

Point P, which is instantaneously at rest,
is the pivot point for the entire object.

FIGURE 12.41 Rolling motion is an 
instantaneous rotation about point P.

u

Particle

Sphere

Cylinder

All mass M

Radius R

h

Hoop

FIGURE 12.42 Which will win the downhill 
race?
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12.10 The Vector Description of Rotational Motion 345

Thus the finishing speed of an object with I = cMR2 is

 vcm = B 2gh

1 + c
 (12.43)

The final speed is independent of both M and R, but it does depend on the shape 
of the rolling object. The particle, with the smallest value of c, will finish with the 
highest speed, while the circular hoop, with the largest c, will be the slowest. In other 
words, the rolling aspect of the motion does matter!

We can use Equation 12.43 to find the acceleration acm of the center of mass. The 
objects move through distance ∆x = h/sin u, so we can use constant-acceleration 
 kinematics to find

  vcm 

2 = 2acm ∆x 

  acm =
vcm 

2

2∆x
=

2gh/11 + c2
2h/sin u

=
g sin u

1 + c
 

(12.44)

Recall, from Chapter 2, that aparticle = g sin u is the acceleration of a particle  sliding 
down a frictionless incline. We can thus write Equation 12.44 in an  interesting form:

 acm =
aparticle

1 + c
 (12.45)

This analysis leads us to the conclusion that the acceleration of a rolling object  
is less—in some cases significantly less—than the acceleration of a particle. The 
reason is that the energy has to be shared between translational kinetic energy and 
 rotational kinetic energy. A particle, by contrast, can put all its energy into translational  
kinetic energy.

FIGURE 12.43 shows the results of the race. The simple particle wins by a fairly 
wide margin. Of the solid objects, the sphere has the largest acceleration. Even so, its 
 acceleration is only 71% the acceleration of a particle. The acceleration of the circular 
hoop, which comes in last, is a mere 50% that of a particle.

   NOTE    The objects having the largest acceleration are those whose mass is most 
concentrated near the center. Placing the mass far from the center, as in the hoop, 
increases the moment of inertia. Thus it requires a larger effort to get a hoop rolling 
than to get a sphere of equal mass rolling.

Particle

Solid sphere

c = 

acm = aparticle

 = 0.71aparticle

c = 

acm = aparticle

= 0.67aparticle

c = 1

acm = aparticle

= 0.50aparticle

c = 0

a = aparticle

1

2

Solid cylinder

Circular hoop

3

4

2
5

5
7

1
2

1
2

2
3

FIGURE 12.43 And the winner is …

STOP TO THINK 12.7 A wheel rolls to the right without slipping. Which is the 
velocity vector at the point on the rim of the wheel indicated by the dot?

(a) (b) (c) (d) (e)

vcm
u

12.10  The Vector Description 
of Rotational Motion

Rotation about a fixed axis, such as an axle, can be described in terms of a scalar angular 
velocity v and a scalar torque t, using a plus or minus sign to indicate the direction of 
rotation. This is very much analogous to the one-dimensional kinematics of Chapter 2. 
For more general rotational motion, angular velocity, torque, and other quantities must 
be treated as vectors. We won’t go into much detail because the subject rapidly gets very 
complicated, but we will sketch some important basic ideas.
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346 CHAPTER 12 Rotation of a Rigid Body

The Angular Velocity Vector
FIGURE 12.44 shows a rotating rigid body. We can define an angular velocity vector vu  
as follows:

■■ The magnitude of vu  is the object’s angular speed �v�.
■■ v

u  points along the axis of rotation in the direction given by the right-hand rule 
illustrated in Figure 12.44.

If the object rotates in the xy-plane, the vector vu  points along the z-axis. The scalar 
angular velocity v = vt /r that we’ve been using is now seen to be vz, the z-component 
of the vector vu . You should convince yourself that the sign convention for v (positive 
for ccw rotation, negative for cw rotation) is equivalent to having the vector vu  pointing 
in the positive z-direction or the negative z-direction.

The Cross Product of Two Vectors
We defined the torque exerted by force F

u
 to be t = rF sin f. The quantity F is the mag-

nitude of the force vector F
u
, and the distance r is really the magnitude of the position 

vector r u. Hence torque looks very much like a product of vectors r u and F
u
. Previously, in 

conjunction with the definition of work, we introduced the dot product of two vectors: 
A
u # B

u
= AB cos a, where a is the angle between the vectors. t =  rF sin f is a different 

way of multiplying vectors that depends on the sine of the angle between them.
FIGURE 12.45 shows two vectors, A

u
 and B

u
, with angle a between them. We define the 

cross product of A
u

 and B
u

 as the vector

 A
u

* B
u

K (AB sin a, in the direction given by the right@hand rule) (12.46)

The symbol *  between the vectors is required to indicate a cross product. The cross 
product is also called the vector product because the result is a vector.

The right-hand rule, which specifies the direction of A
u

* B
u
, can be stated in 

three different but equivalent ways:

v
u

Rotation axis

1. Using your right hand,
    curl your fingers in the
    direction of rotation
    with your thumb along
    the rotation axis. 

2. Your thumb is
    then pointing in
    the direction of v.

u

FIGURE 12.44 The angular velocity vector 
v
u  is found using the right-hand rule.

a

The cross product is
perpendicular to the plane.

A * B

Plane of A and BA
u u

u

B
u

u

u

FIGURE 12.45 The cross product A
u

* B
u

 
is a vector perpendicular to the plane of 
vectors A

u
 and B

u
.

Using the right-hand rule

Spread your right thumb and index finger 
apart by angle a. Bend your middle finger 
so that it is perpendicular to your thumb 
and index finger. Orient your hand so that 
your thumb points in the direction of A

u
  

and your index finger in the direction of B
u
.  

Your middle finger now points in the direc-
tion of A

u
* B

u
.

Make a loose fist with your right hand with 
your thumb extended outward. Orient your 
hand so that your thumb is perpendicular  
to the plane of A

u
 and B

u
 and your fingers  

are curling from the line of vector A
u

 toward 
the line of vector B

u
. Your thumb now points 

in the direction of A
u

* B
u
.

Imagine using a screwdriver to turn the slot  
in the head of a screw from the direction of  
A
u

 to the direction of B
u
. The screw will move 

either “in” or “out.” The direction in which  
the screw moves is the direction of A

u
* B

u
.

These methods are easier to demonstrate than to describe in words! Your instructor 
will show you how they work. Some individuals find one method of thinking about 
the direction of the cross product easier than the others, but they all work, and you’ll 
soon find the method that works best for you.

A
u

B
uA * B

u u

A * B
A
u

u

B
u

u

A
u B

u

A * B
u u
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Referring back to Figure 12.45, you should use the right-hand rule to convince 
yourself that the cross product A

u
* B

u
 is a vector that points upward, perpendicu-

lar to the plane of A
u

 and B
u
. FIGURE 12.46 shows that the cross product, like the dot 

product, depends on the angle between the two vectors. Notice the two special cases: 
A
u

* B
u

= 0
u

 when a = 0° (parallel vectors) and A
u

* B
u

 has its maximum magnitude AB 
when a = 90° (perpendicular vectors).

A
u

A
u

B
u

The cross product is 
maximum when A and 
B are perpendicular.

u

u

A
u

B
u

B
u

1
2

The cross product is
always perpendicular
to the plane of A and B.

a = 0°
a = 90°

Length = AB

Length =    AB

a = 30°

A * B
u u

A * B
u u

A * B = 0
u u u

u u

As a increases from 
0° to 90°, the length 
of A * B increases.

u u

The cross product is 
zero when A and B 
are parallel.

u u

◀ FIGURE 12.46 The magnitude of the 
cross-product vector increases from 0  
to AB as a increases from 0° to 90°.

FIGURE 12.47 shows vectors C
u

 
and D

u
 in the plane of the page. 

What is the cross product 
E
u

= C
u

* D
u

?

SOLVE The angle between the 
two vectors is a = 110°. Con-
sequently, the magnitude of 
the cross product is

E = CD sin a = 12 m211 m2 sin1110°2 = 1.88 m2

The direction of E
u
 is given by the right-hand rule. To curl your 

right fingers from C
u

 to D
u
, you have to point your thumb into the 

page. Alternatively, if you turned a screwdriver from C
u

 to D
u

 you 
would be driving a screw into the page. Thus

E
u

= (1.88 m2, into page)

REVIEW Notice that E
u
 has units of m2.

EXAMPLE 12.16 ■ Calculating a cross product

C
u

D
u

20°
2 m

1 m

FIGURE 12.47 Vectors C
u

 and D
u

.

The cross product has three important properties:

1. The product A
u

* B
u
 is not equal to the product B

u
* A

u
. That is, the cross product 

does not obey the commutative rule ab = ba that you know from arithmetic.  
In fact, you can see from the right-hand rule that the product B

u
* A

u
 points in 

exactly the opposite direction from A
u

* B
u
. Thus, as FIGURE 12.48a shows,

B
u

* A
u

= -A
u

* B
u

2. In a right-handed coordinate system, which is the standard coordinate system  
of science and engineering, the z-axis is oriented relative to the xy-plane such  
that the unit vectors obey in * jn = kn. This is shown in FIGURE 12.48b. You can  
also see from this figure that jn * kn = in and kn * in = jn.

3. The derivative of a cross product is

 
d
dt

 1A
u

* B
u2 =

dA
u

dt
* B

u
+ A

u
*

dB
u

dt
 (12.47)

Torque
Now let’s return to torque. As a concrete example, FIGURE 12.49 on the next page shows 
a long wrench being used to loosen the nuts holding a car wheel on. We’ve established 
a right-handed coordinate system with its origin at the nut, so force F

u
 exerts a torque 

about the origin. Let’s define a torque vector

 t
u K r u * F

u
 (12.48)

(b)

y

x

z

d * e = k
e * k = d
k * d = e

n

n

n
en

n

n

n

dn
n

n

n

kn

A
u

B
u

u u
A * B

B * A = -A * B
u uuu

B * A
uu

(a)

FIGURE 12.48 Properties of the cross 
product.
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348 CHAPTER 12 Rotation of a Rigid Body

If we place the vector tails together in order to use the right-hand rule, we see that the 
torque vector is perpendicular to the plane of r u  and F

u
. The angle between the vectors 

is f, so the magnitude of the torque is t = rF 0 sin f 0 .
You can see that the scalar torque t = rF sin f we’ve been using is really the 

component along the rotation axis—in this case tx—of the vector tu. This is the basis 
for our earlier sign convention for t. In Figure 12.49, where the force causes a ccw 
rotation, the torque vector points in the positive x-direction, and thus tx is positive.

t = r * F

The force vector is redrawn
with its tail on the tail of r.

Force F exerts
a torque.

This is a right-handed
coordinate system.

The torque vector is perpendicular
to the plane of r and F.

x

z

y

r
u

uu
F
uu

F
u

f

f

u

u u

u

FIGURE 12.49 The torque vector.

12.11 Angular Momentum
FIGURE 12.51 shows a particle that, at this instant, is located at position r u and is moving 
with momentum pu = mvu. Together, ru and pu define the plane of motion. We define the 
particle’s angular momentum L

u
 relative to the origin to be the vector

 L
u

K ru * pu = (mrv sin b, direction of right@hand rule) (12.49)

Because of the cross product, the angular momentum vector is perpendicular to the 
plane of motion. The units of angular momentum are kg m2/s.

 NOTE   Angular momentum is the rotational equivalent of linear momentum in much 
the same way that torque is the rotational equivalent of force. Notice that the vector 
definitions are parallel: tu K ru * F

u
 and L

u
K ru * pu.

Example 12.8 found the torque that Luis exerts on a nut by pulling 
on the end of a wrench. What is the torque vector?

VISUALIZE FIGURE 12.50 shows the position vector r u, drawn from 
the pivot point to the point where the force is applied. The figure 

also redraws the force vector F
u
 at the pivot point, not because force 

is applied there but because it’s easiest to use the right-hand rule if 
the vectors are drawn with their tails together.

SOLVE We already know the magnitude of the torque, 17 N m, 
from Example 12.8. Now we need to apply the right-hand rule. If 
you place your right thumb along ru and your index finger along F

u
, 

which is somewhat awkward, you’ll see that your middle finger 
points into the page. Alternatively, make a loose fist of your right 
hand, then orient your fist so that your fingers curl from ru toward F

u
. 

Doing so requires your thumb to point into the page. Using  either 
method, we conclude that

t
u = (17 N m, into page)

EXAMPLE 12.17 ■ Wrench torque revisited

r
u

F
u

F
u

f

The torque vector
points into the page.

The force vector is redrawn
at the pivot point in order
to use the right-hand rule.

FIGURE 12.50 Calculating the torque vector.
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r
u

Vectors r and p define
the plane of motion.

u u

u
p = mv
u

b

y

Particle of mass m
x

z

The momentum at this
instant makes angle b with r.

u

FIGURE 12.51 The angular momentum vector L
u

.

Angular momentum, like torque, is about the point from which ru is measured. A 
different origin would yield a different angular momentum. Angular momentum is 
especially simple for a particle in circular motion. As FIGURE 12.52 shows, the angle b  
between pu (or vu) and ru is always 90° if we make the obvious choice of measuring ru  
from the center of the circle. For motion in the xy-plane, the angular momentum vector  
L
u
—which must be perpendicular to the plane of motion—is entirely along the z-axis:

 Lz = mrvt = mr2v   (particle in circular motion) (12.50)

where vt is the tangential component of velocity. Our sign convention makes Lz, like 
v, positive for a ccw rotation, negative for a cw rotation.

In Chapter 11, we found that Newton’s second law for a particle can be written 
F
u

net = d pu/dt. There’s a similar connection between torque and angular momentum. To 
show this, we take the time derivative of L

u
:

    
dL

u

dt
=

d
dt

 1r u * p u2 =
dr u

dt
* p u + r u *

dp u

dt
 

   = v u * p u + r u * F
u

net 
(12.51)

where we used Equation 12.47 for the derivative of a cross product. We also used the 
definitions v 

u = dr u /dt and F
u

net = dpu/dt.
Vectors v 

u and pu are parallel, and the cross product of two parallel vectors is 0
u
. 

Thus the first term in Equation 12.51 vanishes. The second term r u * F
u

net is the net 
torque, tunet = t

u
1 + t

u
2 + g, so we arrive at

 
dL

u

dt
= t

u
net (12.52)

Equation 12.52, which says a net torque causes the particle’s angular momentum 
to change, is the rotational equivalent of dpu/dt = F

u

net.

Angular Momentum of a Rigid Body
Equation 12.49 is the angular momentum of a single particle. The angular momentum  
of a rigid body composed of particles with individual angular momenta L

u

1, L
u

2, L
u

3,c  
is the vector sum

 L
u

= L
u

1 + L
u

2 + L
u

3 + g = a
i

 L
u

i (12.53)

We can combine Equations 12.52 and 12.53 to find the rate of change of the system’s  
angular momentum:

 
dL

u

dt
= a

i
 
dL

u

i

dt
= a

i
 tui = t

u
net (12.54)

Because any internal forces are action/reaction pairs of forces, acting with the same 
strength in opposite directions, the net torque due to internal forces is zero. Thus the 

r
u

v
u

x

y

Vector L points
out of the page.

u

b = 90°

FIGURE 12.52 Angular momentum of 
circular motion.

Plane of motion

The vector tails
are placed together
to determine the
cross product.

The angular momentum
vector is perpendicular
to the plane of motion.

y

x

z

r
u

p
u

b

L = r * p
u uu
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350 CHAPTER 12 Rotation of a Rigid Body

only forces that contribute to the net torque are external forces exerted on the system 
by the environment.

For a system of particles, the rate of change of the system’s angular momentum 
is the net torque on the system. Equation 12.54 is analogous to the Chapter 11 result  
dP

u
/dt = F

u

net, which says that the rate of change of a system’s total linear momentum 
is the net force on the system.

Conservation of Angular Momentum
A net torque on a rigid body causes its angular momentum to change. Conversely, 
the angular momentum does not change—it is conserved—for a system with no net 
torque. This is the basis of the law of conservation of angular momentum.

Law of conservation of angular momentum The angular momentum of an  
isolated system 1tunet = 0

u2 is conserved. The final angular momentum L
u

f is equal 
to the initial angular momentum L

u

i. Both the magnitude and the direction of L
u
  

are unchanged.

Two equal masses are at the ends of a massless 50-cm-long rod. 
The rod spins at 2.0 rev/s about an axis through its midpoint. 
Suddenly, a compressed gas expands the rod out to a length of  
160 cm. What is the rotation frequency after the expansion?

MODEL The forces push outward from the pivot and exert no 
torques. Thus the system’s angular momentum is conserved.

VISUALIZE FIGURE 12.53 is a before-and-after pictorial representa-
tion. The angular momentum vectors L

u

i and L
u

f are perpendicular  
to the plane of motion.

SOLVE The particles are moving in circles, so each has angular 
momentum L = mrvt = mr2v = 1

4 ml2v, where we used r = 1
2 l. 

Thus the initial angular momentum of the system is

L i = 1
4 mli 

2vi + 1
4 mli 

2vi = 1
2 mli 

2vi

Similarly, the angular momentum after the expansion is Lf =  
1
2 ml f 

2vf. Angular momentum is conserved as the rod expands, thus

1
2 mlf 

2vf = 1
2 mli 

2vi

Solving for vf, we find

vf = 1 li

lf
22

 vi = 1 50 cm
160 cm22

 12.0 rev/s2 = 0.20 rev/s

REVIEW The values of the masses weren’t needed. All that matters 
is the ratio of the lengths.

EXAMPLE 12.18 ■ An expanding rod

Lf

u

Li = L1i + L2i

p2i

p2f

1

2

vi = 2 rev/s vf

li = 50 cm

Before:

2

1

lf = 160 cm

After:

Rotation axis

p1i

p1f
u

uu u u

u

u

FIGURE 12.53 The system before and after the rod expands.

Angular Momentum and Angular Velocity
The analogy between linear and rotational motion has been so consistent that you might ex-
pect one more. The Chapter 11 result P

u
= Mv 

u, which we can now write as Mv 

u
cm because  

it is translational motion of the object as a whole, might give us reason to anticipate 
that angular momentum and angular velocity are related by L

u
= Ivu. Unfortunately, the  
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12.11 Angular Momentum 351

analogy breaks down here. For an arbitrarily shaped object, the angular momentum vector 
and the angular velocity vector don’t necessarily point in the same direction. The general 
relationship between L

u
 and vu  is beyond the scope of this text.

The good news is that the analogy does continue to hold for the important situation 
of rotation about a fixed axle. In this case,

 L
u

= Ivu  (rotation about a fixed axle) (12.55)

This relationship is shown for a spinning disk in FIGURE 12.54. Equation 12.55 is partic-
ularly important for applying the law of conservation of angular momentum.

If an object’s angular momentum is conserved, its angular speed is inversely pro-
portional to its moment of inertia. The rotation of the rod in Example 12.18 slowed 
dramatically as it expanded because its moment of inertia increased. Similarly, the ice 
skater in FIGURE 12.55 uses her moment of inertia to control her spin. She spins faster if 
she pulls in her arms, decreasing her moment of inertia. Similarly, extending her arms 
increases her moment of inertia, and her angular velocity drops until she can skate out 
of the spin. It’s all a matter of conserving angular momentum.

TABLE 12.4 summarizes the analogies between linear and angular quantities.

TABLE 12.4 Angular and linear momentum and energy

Angular motion Linear motion

Krot = 1
2 Iv2 Kcm = 1

2 Mvcm 

2

L
u

= Ivu * P
u

= M v 

u
cm

dL
u

  /dt = t
u

net dP
u
/dt = F

u

net

The angular momentum of a system is  
conserved if there is no net torque.

The linear momentum of a system is  
conserved if there is no net force.

*Rotation about a fixed axle.

L = Iv

v
u

u

Axle

Angular velocity and angular 
momentum vectors point along 
the rotation axis in the direction 
determined by the right-hand rule.

u

FIGURE 12.54 The angular momentum 
vector for rotation on a fixed axle.

Large moment of
inertia; slow spin 

Small moment of
inertia; fast spin 

FIGURE 12.55 An ice skater’s rotation 
speed depends on her moment of inertia.

A 20-cm-diameter, 2.0 kg solid disk is rotating at 200 rpm. A 
20-cm-diameter, 1.0 kg circular loop is dropped straight down onto 
the rotating disk. Friction causes the loop to accelerate until it is 
“riding” on the disk. What is the final angular velocity of the com-
bined system?

MODEL The friction between the two objects creates torques that 
speed up the loop and slow down the disk. But these torques are 
internal to the combined disk +  loop system, so tnet = 0 and the 
total angular momentum of the disk +  loop system is conserved.

VISUALIZE FIGURE 12.56 is a before-and-after pictorial representa-
tion. Initially only the disk is rotating, at angular velocity vu i. The 
rotation is about a fixed axle, so the angular momentum L

u
= Ivu  is 

parallel to vu . At the end of the problem, vu disk = v
u

loop = v
u

f.

SOLVE Both angular momentum vectors point along the rotation 
axis. Conservation of angular momentum tells us that the magni-
tude of L

u
 is unchanged. Thus

Lf = Idiskvf + Iloopvf = L i = Idiskvi

Solving for vf gives

vf =
Idisk

Idisk + Iloop
 vi

The moments of inertia for a disk and a loop can be found in  
Table 12.2, leading to

vf =
1
2 MdiskR2

1
2 MdiskR2 + MloopR2

 vi = 100 rpm

REVIEW The angular velocity has been reduced to half its initial 
value, which seems reasonable.

EXAMPLE 12.19 ■ Two interacting disks

After:

vf

Lf

Li

Mloop = 1.0 kg

Mdisk = 2.0 kg

Axle

Before:

vi = 200 rpm

20 cm

FIGURE 12.56 The circular loop drops onto the rotating disk.
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352 CHAPTER 12 Rotation of a Rigid Body

12.12   ADVANCED TOPIC   Precession of  
a Gyroscope

Rotating objects can exhibit surprising and unexpected behaviors. For example, a common 
lecture demonstration makes use of a bicycle wheel with two handles along the axis. The 
wheel is spun, then handed to an unsuspecting student who is asked to turn the spinning 
wheel 90°. Surprisingly, this is very hard to do. The reason is that the angular momentum 
is a vector, so the wheel’s rotation axis—the direction of L

u
—is highly resistant to change. 

If the wheel is spinning fast, a large torque is required to turn the wheel’s axis.
We’ll look at a related example: the precession of a gyroscope. A gyroscope—

whether it’s a toy or a precision instrument used for navigation—is a rapidly spin-
ning wheel or disk whose axis of rotation can assume any orientation. As it spins, it 
has  angular momentum L

u
= Ivu  along the rotation axis. A navigation gyroscope is 

mounted in gimbals that allow it to spin with virtually no torque from the environ-
ment. Once its axis is pointed north, conservation of angular momentum will ensure 
that the axis continues to point north no matter how the ship or plane moves.

We want to consider a horizontal gyroscope, with the disk spinning in a vertical plane, 
that is supported at only one end of its axle, as shown in FIGURE 12.57. You would expect 
it to simply fall over—but it doesn’t. Instead, the axle remains horizontal, parallel to the 
ground, while the entire gyroscope slowly rotates in a horizontal plane. This steady change 
in the orientation of the rotation axis is called precession, and we say that the  gyroscope 
precesses about its point of support. The precession frequency Ω (capital Greek  omega) 
is much less than the disk’s rotation frequency v. Note that Ω, like v, is in rad/s.

You might object that angular momentum is not conserved during precession. This 
is true. The magnitude of L

u
 is constant, but its direction is changing. However,  angular 

momentum is conserved only for an isolated system, one on which there is no net 
torque. The spinning gyroscope is not an isolated system because gravity is exerting 
a torque on it. Indeed, understanding the relationship between the gravitational torque 
and the angular momentum is the key to understanding why the gyroscope precesses.

FIGURE 12.58a shows a gyroscope that is not spinning. When released, it most definitely 
falls over by rotating about the point of support until the disk hits the table. Because the 
motion is rotation, rather than the translational motion of a gyroscope that is simply 
dropped, we can analyze it using the concepts of torque and angular momentum.

There are two forces acting on the gyroscope: gravity pulling downward at the 
disk’s center of mass (we’ll assume that the axle is massless) and the normal force of 
the support pushing upward. The normal force exerts no torque about the pivot point 
because it acts at the pivot point, so the net torque on the gyroscope is entirely a 
gravitational torque:

 t
u = r u * F

u

G = Mgd in (12.56)

STOP TO THINK 12.8 Two buckets spin around 
in a horizontal circle on frictionless bearings. Sud-
denly, it starts to rain. As a result,

a. The buckets continue to rotate at constant 
angular velocity because the rain is falling 
vertically while the buckets move in a horizontal plane.

b. The buckets continue to rotate at constant angular velocity because the total 
mechanical energy of the bucket + rain system is conserved.

c. The buckets speed up because the potential energy of the rain is transformed 
into kinetic energy.

d. The buckets slow down because the angular momentum of the bucket + rain 
system is conserved.

e. Both a and b.

The gyroscope precesses around a 
horizontal circle at frequency Ω.

The gyroscope spins with angular velocity v.

Ω

v

vL
u

L
u

L
u

FIGURE 12.57 A spinning gyroscope 
precesses in a horizontal plane.

f. None of the above.
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12.12  Advanced Topic: Precession of a Gyroscope  353

where d =   � r u �  is the distance from the pivot to the center of the disk. To evaluate the 
cross product, we redrew F

u

G at the pivot and established a coordinate system with  
the z-axis along the axle. Vectors r u and F

u

G are perpendicular 1sin a = 12, and by using 
the right-hand rule we see that tu points along the x-axis.

We found in the previous section that a torque causes the angular momentum to 
change. In particular,

 
dL

u

dt
= t

u (12.57)

So in a small interval of time dt, the torque causes the gyroscope’s angular momentum 
about the point of support to change by dL

u
= t

u dt.
FIGURE 12.58b shows graphically what happens. Initially, when the gyroscope is first 

released, L
u

= 0
u
. After a small interval of time, the gyroscope acquires a small amount 

of angular momentum dL
u
 in the direction of tu, the in direction. An angular momentum  

along the x-axis means that the gyroscope is rotating in the yz-plane—which is exactly  
what it does as it starts to fall. During the next interval of time, L

u
 increases a bit more 

in the dn direction, and then a bit more. This is what we expect as the falling gyroscope 
picks up speed, increasing its angular momentum.

Now the magnitude of tu does not remain constant—the angle between r u and F
u

G 
changes as the gyroscope falls, changing the cross product—so integrating Equation 
12.57 symbolically is difficult. Nonetheless, the direction of tu is always the dn  direction, 
so we can see that the angular momentum keeps increasing in the dn  direction as the 
gyroscope falls.

What’s different about a spinning gyroscope that causes it to precess rather than 
fall? In FIGURE 12.59a we’ve again just released the gyroscope, its axle is again along 
the z-axis, but now it’s spinning with angular velocity vu = v kn. Consequently, the gy-
roscope has initial angular momentum L

u
= Ivu = Iv kn along the z-axis. The torque is 

exactly as we calculated above, and that torque again causes the angular momentum 
to change by dL

u
= t

u dt. The only difference is that the gyroscope starts with initial 
angular momentum—but that makes all the difference.

FIGURE 12.59b, looking down from above, shows the initial angular momentum L
u
. A 

very small time interval dt after we release the gyroscope, its angular momentum will 
have changed to L

u
+ dL

u
. The small change in angular momentum, dL

u
, is parallel to 

the torque and thus perpendicular to the spinning gyroscope’s angular momentum L
u
. 

Because we’re adding vectors, not scalars, the “new” angular momentum has rotated to a 
new position but not increased in magnitude. So during dt, the angular momentum—and 
thus the entire gyroscope—rotates through a small angle df in the horizontal plane.

The torque vector is always perpendicular to the axle, and thus dL
u

 is always 
 perpendicular to L

u
. With each subsequent time interval dt, the gyroscope rotates 

through another small angle df while the magnitude of the angular momentum (and 
hence the disk’s angular velocity v) is unchanged. The gyroscope is precessing in the 
horizontal plane!

You’ve encountered a similar situation previously. If a ball is initially at rest, pull-
ing on it with a string causes the ball to accelerate (increasing v 

u ) in the direction of 
the pull. That is, v 

u increases in magnitude but doesn’t change direction. But if a ball 
on a string is in uniform circular motion, a force directed to the center—the string 
tension—has a very different effect. d vu points toward the center, because that’s the 
 direction of the centripetal acceleration, but now d vu is perpendicular to v 

u. Adding 
them as vectors to get v 

u + d v 

u changes the direction of the velocity vector but not 
its magnitude. Then, as now, having an initial vector (v 

u or L
u

) leads to very different 
 behavior than not having an initial vector.

The small horizontal rotation df is a small piece of the precession. Because it 
 occurs during the small time interval dt, the rate of horizontal rotation—the precession  
frequency—is

 Ω =
df

dt
 (12.58)

View
from 
above

L
u

L
u

L
u

(a)

(b)

n
u

t
u

r
u

FG

u

The angular momentum
changes direction but
not magnitude.

The gyroscope precesses.

dL
u

dL
u

df

dL
u

dL
u

x

y

The torque hasn’t
changed.

v

d

dL is always
perpendicular to L.

u

u

FIGURE 12.59 For a spinning gyroscope, 
the gravitational torque changes the 
direction but not the magnitude of the 
angular momentum.

(b)

(a)

n
u

t
u

r
u

FG

u

FG

u

L
u

L
u

L
u

L
u

L
u

0
u

The angular momentum increases
in the direction of the torque.

The initial angular 
momentum is zero.

The gyroscope falls.

dL
u

dL
u

dL
u

dL
u

dL
u

d

x
z

y

The torque is
perpendicular to r.

u

FIGURE 12.58 The gravitational torque on 
a nonspinning gyroscope causes it to fall 
over.
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354 CHAPTER 12 Rotation of a Rigid Body

In Figure 12.59b the small length dL is the arc length spanned by df, hence df = dL/L 
and the precession frequency is

 Ω =
dL/L

dt
=

dL/dt
L

 (12.59)

From Equations 12.56 and 12.57, dL/dt = t = Mgd. Further, the gyroscope’s 
 angular momentum has magnitude L = Iv, where I is the moment of inertia of the disk 
rotating about the axle. Thus the precession frequency of the gyroscope—in rad/s—is

 Ω =
Mgd

Iv
 (12.60)

Because the spin angular velocity v is in the denominator, a very rapidly spinning 
gyroscope precesses very slowly. As the gyroscope runs down, due to any little bit of 
friction, it begins to precess faster and faster.

We have made one tacit assumption. As the gyroscope precesses, the precessional 
motion has its own angular momentum along the vertical axis. The gyroscope’s 
angular momentum L

u
 is not simply the angular momentum of the spinning disk, as we  

assumed, but the vector sum L
u

spin + L
u

precess. As long as the gyroscope precesses slowly,  
with Ω V  v, the precessional angular momentum is very small compared to the spin 
angular momentum and our assumption is well justified. But toward the end of the 
gyroscope’s motion, as v decreases and Ω increases, our model of precession breaks 
down and the gyroscope’s motion becomes more complex.

A gyroscope used in a lecture demonstration consists of a 120 g,  
7.0-cm-diameter solid disk that rotates on a lightweight axle.  
From the center of the disk to the end of the axle is 5.0 cm. When 
spun, placed on a stand, and released, the gyroscope is observed 
to precess with a period of 1.0 s. How fast, in rpm, is it spinning?

SOLVE The precession frequency is given by Equation 12.60. The 
moment of inertia of a disk of mass M and radius R about an axis 
through its center is I = 1

2 MR2. Inserting this into Equation 12.60, 
we see that the precession frequency

Ω =
Mgd

Iv
=

Mgd
1
2 MR2v

=
2gd

vR2

is actually independent of the gyroscope’s mass. Solving for v 
gives

v =
2gd

Ω  R2

A precession period of 1.0 s corresponds to the precession  fre - 
quency

Ω =
2p rad
1.0 s

= 6.28 rad/s

Thus the gyroscope’s spin angular velocity is

v =
219.80 m/s2210.050 m2
16.28 rad/s210.035 m22 = 127 rad/s

Converting to rpm gives

v = 127 rad/s *
1 rev

2p rad
*

60 s
1 min

= 1200 rpm

REVIEW 1200 rpm is 20 rev/s. That seems reasonable for a  spinning 
top or gyroscope. And Ω V v, so our precession model of the 
gyroscope is valid.

EXAMPLE 12.20 ■ A precessing gyroscope

   CHAPTER 12 CHALLENGE EXAMPLE     The ballistic pendulum revisited

A 2.0 kg block hangs from the end of a 1.5 kg, 1.0@m@long rod, 
together forming a pendulum that swings from a frictionless pivot 
at the top end of the rod. A 10 g bullet is fired horizontally into the 
block, where it sticks, causing the pendulum to swing out to a 30° 
angle. What was the speed of the bullet?

MODEL Model the rod as a uniform rod that can rotate around  
one end, and assume the block is small enough to model as a  
particle. There are no external torques on the bullet +  block +  rod  
system, so angular momentum is conserved in the inelastic  

collision.  Further, the mechanical energy of the system is conserved 
after (but not during) the collision as the pendulum swings outward.

VISUALIZE FIGURE 12.60 is a pictorial representation. This is a two-
part problem, so we’ve separated the collision’s before-and-after from 
the pendulum swing’s before-and-after. The end of the collision is the 
beginning of the swing.

SOLVE This is a ballistic pendulum. ❮❮■EXAMPLE 11.5 considered a 
simpler ballistic pendulum with a mass on a string, rather than on  
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12.12  Advanced Topic: Precession of a Gyroscope  355

a rod, and a review of that example is highly recommended. The 
key to both is that a different conservation law applies to each part 
of the problem.

Angular momentum is conserved in the collision, thus L1 = L0. 
Before the collision, the angular momentum—which we’ll measure 
about the pendulum’s pivot point—is entirely that of the bullet. The 
angular momentum of a particle is L = mr  v sin b. An instant before 
the collision, just as the bullet reaches the block, r = d and, because 
v 

u is perpendicular to r u at that instant, b = 90°. Thus L0 = mb dv0b. 
(This is the magnitude of the angular momentum; from the right-
hand rule, the angular momentum vector points out of the page.)

An instant after the collision, but before the pendulum has had 
time to move, the rod has angular velocity v1 and the block, with the 
embedded bullet, is moving in a circle with speed v1 = v1r = v1d. 
The angular momentum of the block +  bullet system is that of a par-
ticle, still with b = 90°, while that of the rod—an object rotating on 
a fixed axle—is Irodv1. Thus the post-collision angular momentum is

L1 = 1mB +  mb2v1r +  Irod v1 = 1mB +  mb2 d
2v1 +  13 mRd2v1

The moment of inertia of the rod was taken from Table 12.2.
Equating the before-and-after angular momenta, then solving 

for v0b, gives

mb 

dv0b = 1mB + mb2d2v1 + 1
3 mRd2v1

v0b =
mB + mb + 1

3 mR

mb
 dv1 = 251dv1

Once we know v1, which we’ll find from energy conservation in 
the swing, we’ll be able to compute the bullet’s speed.

Mechanical energy is conserved during the swing, but you must 
be careful to include all the energies. The kinetic energy has two 
components: the translational kinetic energy of the block +  bullet 
system and the rotational kinetic energy of the rod. The gravita-
tional potential energy also has two components: the potential en-
ergy of the block +  bullet system and the potential energy of the 
rod. The latter changes because the center of mass moves upward 
as the rod swings. Thus the energy-conservation statement is

1
2 1mB +  mb2v2 

2 +  12 Irodv2 

2 +  1mB +  mb2gy2 +  mR gycm2 =
1
2 1mB +  mb2v1 

2 +  12 Irod v1 

2 + 1mB + mb2gy1 + mR gycm1

Although this looks very complicated, you should convince your-
self that we’ve done nothing more than add up two kinetic energies 
and two potential energies before and after the swing.

We know that v2 = 0 and v2 = 0 at the end of the swing, and 
that v1 = dv1 at the beginning. We also know the moment of in-
ertia of a rod pivoted at one end. Combining the potential energy 
terms and using ∆y = yf - yi, we thus have

1
2 1mB + mb + 1

3 mR2d2v1 

2 = 1mB + mb2g ∆y + mR g ∆ycm

We see from Figure 12.60 that the block, at its highest point, is dis-
tance d cos u below the pivot. It started distance d below the pivot, 
so the bullet +  block system gained height ∆y = d -  d cos u =  
d11 - cos u2. The rod’s center of mass started distance d/2 
below the pivot and rises only half as much as the block, so 
∆ycm = 1

2 d11 - cos u2. With these, the energy equation becomes

1
2 1mB + mb + 1

3 mR2d2v1 

2 = 1mB + mb + 1
2 mR2gd11 - cos u2

We can now solve for v1:

v1 = CmB + mb + 1
2 mR

mB + mb + 1
3 mR

  
2g11 -  cos u2

d
= 1.70 rad/s

and with that

v0b = 251dv1 = 430 m/s

REVIEW 430 m/s seems a reasonable speed for a bullet. This was a 
challenging problem, but one that you can solve if you focus on the 
problem-solving strategies—drawing a careful pictorial represen-
tation, defining the system, and thinking about which conservation 
laws apply—rather than hunting for the “right” equation.

⊗
⊗

y2

v2 = 0 rad/s
v2 = 0 m/s

u = 30°

∆y

∆ycm

y1

d = 1.0 m
mR = 1.5 kg

v1 = dv1

v1

d cosu

mb = 0.010 kg
v0b

mB = 2.0 kg
v0B = 0 m/s

Collision: Angular momentum

Swing: Mechanical energy

Find: v0b

FIGURE 12.60 Pictorial representation of the bullet hitting the 
pendulum.
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Rigid-Body Model
• Size and shape do not 

change as the object moves.

• The object is modeled  
as particle-like atoms 
connected by massless, 
rigid rods.

Rigid-Body Equilibrium
An object is in static 
equilibrium only if 
both F

u

net = 0
u
 and 

t
u

net = 0
u
.

Rolling Motion
For an object that rolls 
without slipping

vcm = Rv
K = K  rot + K  cm

Solving Rotational Dynamics Problems
MODEL Model the object as a rigid body.

VISUALIZE Draw a pictorial representation.

SOLVE Use Newton’s second law for rotational motion:

a =
tnet

I
Use rotational kinematics to find angles and angular velocities.

REVIEW Is the result reasonable?

Torque is the rotational 
equivalent of force:

t = rF sin f = rFt = dF

The vector description 
of torque is

t
u = r 

u * F
u

A system of particles on which there is no net force undergoes 
unconstrained rotation about the center of mass:

xcm =
1
M3x dm   ycm =

1
M3y dm

The gravitational torque on a body can be found by treating the 
body as a particle with all the mass M concentrated at the center 
of mass.

Conservation Laws
Energy is conserved for an isolated system.

• Pure rotation Emech = Krot + UG = 1
2 Iv2 + Mgycm

• Rolling Emech = Krot + Kcm + UG = 1
2 Iv2 + 1

2 Mvcm 

2 + Mgycm

Angular momentum is conserved if t
u

net =  0
u
.

• Particle L
u

= r 
u * p

u

• Rotation about a fixed axle L
u

= Iv 
u

Vector Description of Rotation
Angular velocity vu  points along the rotation 
axis in the direction of the right-hand rule.

For a rigid body rotating about a fixed axle,  
the angular momentum is L

u
= I  v

u .

Newton’s second law is 
dL

u

dt
= t

u
net.

The moment of inertia

I = a
i

mi ri 

2 = 3r2 dm

is the rotational equivalent of mass. The moment of inertia depends 
on how the mass is distributed around the axis. If Icm is known, I 
about a parallel axis distance d away is given by the parallel-axis 
theorem: I = Icm + Md2.

General Principles

Applications

Important Concepts

Summary The goal of Chapter 12 has been to understand and apply the 
physics of rotation.

F
u

f

x

Line of
action

Moment arm

r

d

y

r
u

t
u

F
u

u L
u

v

Axle

No rotational
or translational
motion

v

vcm

R

u

rigid-body model
rigid body
translational motion
rotational motion
combination motion
center of mass

rotational kinetic energy, Krot

moment of inertia, I
parallel-axis theorem
torque, t
line of action
moment arm, d

constant-torque model
static equilibrium model
rolling constraint
cross product
vector product
right-hand rule

angular momentum, L
u

law  of conservation of angular 
momentum

gyroscope 
precession
precession frequency

Terms and Notation
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CONCEPTUAL QUESTIONS
1. Is the center of mass of the dumbbell in FIGURE Q12.1 at point 1, 

2, or 3? The solid spheres are made of the same material. Explain.

1 2 3

FIGURE Q12.1

v

v

R

m2

m1

FIGURE Q12.2

1
2

1
3

v

r

r
2r

2v

A B C

v

FIGURE Q12.3

F
u

1 2 3 4

Hinge

FIGURE Q12.8

F
u

F
u

2M

r

B

2r

C

M

2r

D

2M
M

r

A

2F 2F
u u

FIGURE Q12.10

FIGURE Q12.11

2. If the angular velocity v is held constant, by what factor must R 
change to double the rotational kinetic energy of the dumbbell in 
FIGURE Q12.2?

3. FIGURE Q12.3 shows three rotating disks, all of equal mass. Rank 
in order, from largest to smallest, their rotational kinetic energies  
KA to KC.

4. When calculating the rotational inertia of an object, can its mass 
be assumed to be concentrated at its center?

5. The moment of inertia of a uniform rod about an axis through its 
center is 1

12 mL2. The moment of inertia about an axis at one end 
is 1

3 mL2. Explain why the moment of inertia is larger about the 
end than about the center.

6. You have two solid steel spheres. Sphere 2 has three times the 
radius of sphere 1. By what factor does the moment of inertia I2 
of sphere 2 exceed the moment of inertia I1 of sphere 1?

7. Two lenses have the same mass and radius. One is convex, while 
the other is concave. Can you determine which is concave and 
which is convex without focusing them?

8. FIGURE Q12.8 shows force F
u
 being applied at the center of a rod. 

At which numbered point should a downward force 2F
u
 be ap-

plied so that the net torque about the hinge is zero?

9. A student gives a quick push 
to a ball at the end of a mass-
less, rigid rod, as shown in 
FIGURE Q12.9, causing the 
ball to rotate clockwise in a 
horizontal circle. The rod’s 
pivot is frictionless. As the 
student is pushing, does the 
torque vector point (a) toward 
the ball, (b) away from the 
ball, (c) in the direction of the 
push, (d) out of the page, or 
(e) into the page?

10. Rank in order, from largest to smallest, the angular accelerations 
aA to aD of the disks in FIGURE Q12.10. Explain.

Pivot

Push

Top view

FIGURE Q12.9

11. The solid cylinder and cylindrical 
shell in FIGURE Q12.11 have the 
same mass, same radius, and turn 
on frictionless, horizontal axles. 
(The cylindrical shell has light-
weight spokes connecting the shell 
to the axle.) A rope is wrapped  
around each cylinder and tied to a 
block. The blocks have the same mass and are held the same height 
above the ground. Both blocks are released simultaneously. Which 
hits the ground first? Or is it a tie? Explain.

12. A ballet dancer stretches out their hands and legs during a per-
formance. Why?

13. Is the angular momentum of disk A in FIGURE Q12.13 larger 
than, smaller than, or equal to the angular momentum of disk 
B? Explain.

1
2

vA

vB =   vA

rA

m m

rB = 2rA

BAFIGURE Q12.13

Conceptual Questions 357
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358 CHAPTER 12 Rotation of a Rigid Body

EXERCISES AND PROBLEMS

x

 y

10 cm
8 cm

10 cm
A

C

B 100 g

300 g

200 g

FIGURE EX12.7

x

 y

10 cm

12 cm

300 g

C
A

B

100 g200 g

FIGURE EX12.8

Problems labeled  integrate material from earlier chapters.

Exercises

Section 12.1 Rotational Motion

1. || A high-speed drill reaches 2400 rpm in 0.75 s.
a. What is the drill’s angular acceleration?
b. Through how many revolutions does it turn during the first 

0.75 s?
2. || An 8.0-cm-diameter hard disk spinning at 7200 rpm can stop 

in 12 revolutions.
a. What is the magnitude of the angular acceleration?
b. How long does it take the disk to come to a halt?

3. || A ceiling fan with blades 60 cm in diameter is turning at  
80 rpm. Suppose the fan coasts to a stop 30 s after being turned off.
a. What is the speed of the tip of a blade 18 s after the fan is 

turned off?
b. Through how many revolutions does the fan turn while 

stopping?
4. || An 18-cm-long bicycle crank arm, with a pedal at one end, is 

attached to a 20-cm-diameter sprocket, the toothed disk around 
which the chain moves. A cyclist riding this bike increases her 
pedaling rate from 60 rpm to 90 rpm in 10 s. What is the tangen-
tial acceleration of a tooth on the sprocket?

Section 12.2 Rotation About the Center of Mass

5. | Two balls are connected by a 200-cm-long massless rod. The 
center of mass is 55 cm from a 95 g ball on one end. What is the 
mass attached to the other end?

6. || A 150 g ball and a 250 g ball are connected by a 20-cm-long, 
massless rigid rod. The balls rotate about their centers of mass at 
60 rpm. What is the speed of the 150 g ball?

7. || The three masses shown in FIGURE EX12.7 are connected by 
massless, rigid rods. What are the coordinates of the center of mass?

8. || The three masses shown in FIGURE EX12.8 are connected by 
massless, rigid rods. What are the coordinates of the center of mass?

Section 12.3 Rotational Energy

9. || What is the rotational kinetic energy of the earth? Assume the 
earth is a uniform sphere. Data for the earth can be found inside 
the back cover of the book.

10. || A thin disk weighing 200 g with a diameter of 6 cm rotates 
about an axis through its center with 0.20 J of kinetic energy. 
What is the speed of a point on the rim?

11. || The three 200 g masses in FIGURE 
EX12.11 are connected by massless, 
rigid rods.
a. What is the triangle’s moment of 

inertia about the axis through the 
center?

b. What is the triangle’s kinetic 
 energy if it rotates about the axis 
at 5.0 rev/s?

12. || A 50-cm-long, 30 g rod rotates about an axle at one end of the 
rod. At what angular velocity, in rpm, does the rod have 45 mJ of 
rotational kinetic energy?

Section 12.4 Calculating Moment of Inertia

13. || The four masses shown in 
FIGURE EX12.13 are connected by 
massless, rigid rods.
a. Find the coordinates of the 

center of mass.
b. Find the moment of inertia  

about an axis that passes 
through mass A and is per-
pendicular to the page.

14. || The four masses shown in FIGURE EX12.13 are connected by 
massless, rigid rods.
a. Find the coordinates of the center of mass.
b. Find the moment of inertia about a diagonal axis that passes 

through masses B and D.
15. | The three masses shown in 

FIGURE EX12.15 are connected 
by massless, rigid rods.
a. Find the coordinates of the 

center of mass.
b. Find the moment of inertia 

about an axis that passes 
through mass A and is per-
pendicular to the page.

c. Find the moment of inertia 
about an axis that passes through masses B and C.

16. || A 20 kg solid door is 210 cm tall and 84 cm wide. What is the 
door’s moment of inertia for (a) rotation on its hinges and (b)  rotation 
about a vertical axis inside the door, 12 cm from one edge?

17. || A 12-cm-diameter Blu-ray disc has a mass of 16 g. What 
is the Blu-ray disc’s moment of inertia for rotation about a 
 perpendicular axis (a) through its center and (b) through the edge 
of the disk?

Section 12.5 Torque

18. || In FIGURE EX12.18, what  
is the net torque about the  
axle?

40 cm

Axis

40 cm

40 cm

60° 60°

FIGURE EX12.11

x

 y

8 cm

10 cm

A
D

100 g

300 g

200 g
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CB

FIGURE EX12.13

30 N
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20 NFIGURE EX12.18

x

 y
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B C

100 g

200 g

100 g

A

12 cm

FIGURE EX12.15
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28. || A 4.0 kg, 36-cm-diameter metal disk, initially at rest, can 
 rotate on an axle along its axis. A steady 5.0 N tangential force 
is applied to the edge of the disk. What is the disk’s angular 
 velocity, in rpm, 4.0 s later?

Section 12.8 Static Equilibrium

29. | The object shown in FIGURE EX12.29 is in equilibrium. What 
are the magnitudes of F

u

1 and F
u

2?

19. || In FIGURE EX12.19, for what 
value of xaxle will the two forces 
provide 1.8 N m of torque about 
the axle?

xaxle

10 cm

10 cm

10 N

20 NFIGURE EX12.19

15 kg

5.0 kg

30 cm

10 kg

FIGURE EX12.20
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d
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FIGURE EX12.30

20. ||| The axle in FIGURE EX12.20 is half the distance from the cen-
ter to the rim. What is the magnitude of the torque that the axle 
must apply to prevent the disk from rotating?

21. ||| The 20-cm-diameter disk in FIGURE EX12.21 can rotate on an 
axle through its center. What is the net torque about the axle?

22. || A steel beam is 5 m long with a mass of 400 kg. It extends 
horizontally from the point where it has been bolted to the 
framework of a new building under construction. A construction 
worker of mass 80 kg stands at the far end of the beam. What is 
the magnitude of the torque about the bolt due to the worker and 
the weight of the beam?

23. || An athlete at the gym holds a 3.0 kg steel ball in his hand. 
His arm is 70 cm long and has a mass of 3.8 kg, with the center 
of mass at 40% of the arm length. What is the magnitude of the 
torque about his shoulder due to the ball and the weight of his 
arm if he holds his arm
a. Straight out to his side, parallel to the floor?
b. Straight, but 45° below horizontal?

Section 12.6 Rotational Dynamics

Section 12.7 Rotation About a Fixed Axis

24. | An object’s moment of inertia is 3.0 kg m2. Its angular veloc-
ity is increasing at the rate of 5.0 rad/s per second. What is the net 
torque on the object?

25. || An object whose moment of in-
ertia is 4.0 kg m2 is rotating with 
angular velocity 0.25 rad/s . It then 
experiences the torque shown in 
FIGURE EX12.25. What is the object’s 
angular velocity at t = 3.0 s?

26. ||| A 1.0 kg ball and a 2.0 kg ball are connected by a 1.0-m-long 
rigid, massless rod. The rod is rotating cw about its center of mass 
at 20 rpm. What net torque will bring the balls to a halt in 5.0 s?

27. || A 12-cm-diameter, 600 g cylinder, initially at rest, rotates on 
an axle along its axis. A steady 0.50 N force applied tangent to 
the edge of the cylinder causes the cylinder to reach an angular 
velocity of 500 rpm in 2.0 s. What is the magnitude of the fric-
tional torque between the cylinder and the axle?

30. | The two objects in FIGURE EX12.30 are balanced on the pivot. 
What is distance d?

31. || The 3.0-m-long, 100 kg rigid beam of FIGURE EX12.31 is 
 supported at each end. An 80 kg student stands 2.0 m from support 
1. How much upward force does each support exert on the beam?

Support 1

3.0 m

2.0 m

Support 2FIGURE EX12.31

2.0 m

d

2.0 m

FIGURE EX12.32

32. || A 5.0 kg cat and a 2.0 kg bowl of tuna fish are at opposite ends 
of the 4.0-m-long seesaw of FIGURE EX12.32. How far to the left 
of the pivot must a 4.0 kg cat stand to keep the seesaw balanced?

Section 12.9 Rolling Motion

33. | A car tire is 90 cm in diameter. The car is traveling at a speed 
of 25 m/s.
a. What is the tire’s angular velocity, in rpm?
b. What is the speed of a point at the top edge of the tire?
c. What is the speed of a point at the bottom edge of the tire?

34. || An 8.0-cm-diameter, 400 g solid sphere is released from rest 
at the top of a 2.1-m-long, 25° incline. It rolls, without slipping, to 
the bottom.
a. What is the sphere’s angular velocity at the bottom of the 

incline?
b. What fraction of its kinetic energy is rotational?

35. || A 400 g, 7.0-cm-diameter can is filled with uniform, dense 
food. It rolls across the floor at 1.2 m/s. What is the can’s kinetic 
energy?

36. || A solid sphere of radius R is placed at a height of 30 cm on a 
15° slope. It is released and rolls, without slipping, to the bottom. 
From what height should a circular hoop of radius R be released on 
the same slope in order to equal the sphere’s speed at the bottom?

Exercises and Problems 359
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360 CHAPTER 12 Rotation of a Rigid Body

Section 12.12 Precession of a Gyroscope

47. || A 90 g, 4.0-cm-diameter solid spherical top is spun at 1800 
rpm on an axle that extends 1.0 cm past the edge of the sphere. 
The tip of the axle is placed on a support. What is the top’s pre-
cession frequency in rpm?

48. || A toy gyroscope has a ring of mass M and radius R attached 
to the axle by lightweight spokes. The end of the axle is distance 
R from the center of the ring. The gyroscope is spun at angular 
velocity v, then the end of the axle is placed on a support that 
allows the gyroscope to precess.
a. Find an expression for the precession frequency Ω in terms 

of M, R, v, and g.
b. A 120 g, 8.0-cm-diameter gyroscope is spun at 1000 rpm and 

allowed to precess. What is the precession period?

Problems
49. || A small 300 g ball and a small 600 g ball are connected by a 

40-cm-long, 200 g rigid rod.
a. How far is the center of mass from the 600 g ball?
b. What is the rotational kinetic energy if the structure rotates 

about its center of mass at 100 rpm?
50. || a. A solid sphere of mass M and radius R rolls at speed v. Find 

an expression for its kinetic energy in terms of M and v.
b. A 1.3-cm-diameter marble is shot up a 10° ramp at 1.7 m/s. 

How far up the ramp does it travel?
51. || An 800 g steel plate has the shape of the isosceles triangle 

shown in FIGURE P12.51. What are the x- and y-coordinates of 
the center of mass?
Hint: Divide the triangle into vertical strips of width dx, then re-
late the mass dm of a strip at position x to the values of x and dx.

Section 12.10 The Vector Description of Rotational Motion

37. | Evaluate the cross products A
u

* B
u
 and C

u
* D

u
.

FIGURE EX12.38
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FIGURE EX12.37

38. | Evaluate the cross products A
u

* B
u
 and C

u
* D

u
.

39. | Vector A
u

= 3 in + jn and vector B
u

= 3 in - 2 jn + 2 kn. What is 
the cross product A

u
* B

u
?

40. || Force F
u

= -10 jn N is exerted on a particle at r u = 15 in + 5 jn2 m.  
What is the torque on the particle about the origin?

41. || A 70 g mass rotates in a vertical plane—call it the xy-plane with 
the y-axis pointing up—at the end of a 85-cm-long, massless, rigid 
rod. The other end of the rod is attached to a frictionless pivot at the 
origin. What is the gravitational torque about the pivot when the 
mass is 25° above the +x-axis? Give your answer using unit vectors.

Section 12.11 Angular Momentum

42. || What is the angular momentum 
relative to the origin of the 200 g 
particle in FIGURE EX12.42? Give 
your answer using unit vectors.

43. || What is the angular momentum vector of the 2.0 kg, 4.0-cm- 
diameter rotating disk in FIGURE EX12.43? Give your answer 
using unit vectors.

44. || What is the angular momentum vector of the 500 g rotating 
bar in FIGURE EX12.44? Give your answer using unit vectors.

45. || A 2.0 kg, 20-cm-diameter turntable rotates at 90 rpm on fric-
tionless bearings. Two 100 g blocks fall from above, hit the turnta-
ble simultaneously at opposite ends of a diameter, and stick. What 
is the turntable’s angular velocity, in rpm, just after this event?

46. || How fast, in rpm, would a 5.0 kg, 22-cm-diameter bowling 
ball have to spin to have an angular momentum of 0.23 kg m2/s?

x

y

20 cm

30 cm

FIGURE P12.51

m1
m2

Rod of
mass M

Rotation axis

L L L1
2

1
4

1
4

FIGURE P12.52

L
L

Rotation axis

FIGURE P12.55

52. || Determine the moment of inertia about the axis of the object 
shown in FIGURE P12.52.

53. || Calculate by direct integration the moment of inertia for a 
thin rod of mass M and length L about an axis located distance d 
from one end. Confirm that your answer agrees with Table 12.2 
when d = 0 and when d = L /2.

54. || What is the moment of inertia of a 2.0 kg, 20-cm- diameter 
disk for rotation about an axis (a) through the center, and (b) 
through the edge of the disk?

55. || Calculate the moment of 
inertia of the rectangular 
plate in  FIGURE P12.55 for 
rotation about a perpendic-
ular axis through the center.

56. || a. A disk of mass M and radius R has a hole of radius r centered 
on the axis. Calculate the moment of inertia of the disk.

b. Confirm that your answer agrees with Table 12.2 when 
r = 0 and when r = R.

c. A 4.0-cm-diameter disk with a 3.0-cm-diameter hole rolls 
down a 50-cm-long, 20° ramp. What is its speed at the bot-
tom? What percent is this of the speed of a particle sliding 
down a frictionless ramp?
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63. || FIGURE P12.63 shows a 15 kg 
cylinder held at rest on a 20° slope.
a. What is the tension in the 

cable?
b. What is the magnitude of the 

static friction force?

57. || A 3.0-m-long ladder, as shown in Figure 12.35, leans against 
a frictionless wall. The coefficient of static friction between the 
ladder and the floor is 0.40. What is the minimum angle the lad-
der can make with the floor without slipping?

58. || A person’s center of mass is easily found by having the per-
son lie on a reaction board. A horizontal, 2.3-m-long, 6.0 kg 
reaction board is supported only at the ends, with one end rest-
ing on a scale and the other on a pivot. A 64 kg woman lies on 
the reaction board with her feet over the pivot. The scale reads 
25 kg. What is the distance from the woman’s feet to her center 
of mass?

59. || In FIGURE P12.59, an 80 kg 
construction worker sits down 
2.0 m from the end of a 1450 kg  
steel beam to eat his lunch. 
What is the tension in the cable?

6.0 m

30°

Cable

FIGURE P12.59

d

L

FIGURE P12.60

3.0 m

FIGURE P12.61

80 cm

200 cm

250 cm

Cable

FIGURE P12.62

20°

25 cm

FIGURE P12.63

m2

m1

FIGURE P12.64
60. || Your task in a science contest is to stack four identical uni-

form bricks, each of length L, so that the top brick is as far to the 
right as possible without the stack falling over. Is it possible, as 
FIGURE P12.60 shows, to stack the bricks such that no part of the 
top brick is over the table? Answer this question by determining 
the maximum possible value of d.

61. || A 40 kg, 5.0-m-long beam is supported by, but not attached 
to, the two posts in FIGURE P12.61. A 20 kg boy starts walking 
along the beam. How close can he get to the right end of the 
beam without it falling over?

62. || A 120-cm-wide sign hangs from a 
5.0  kg, 200-cm-long pole. A cable of 
negligible mass supports the end of the 
rod as shown in FIGURE P12.62. What 
is the maximum mass of the sign if the 
maximum tension in the cable without 
breaking is 300 N?

v

Brake

FIGURE P12.65

64. || Blocks of mass m1 and m2 are connected by a massless string 
that passes over the pulley in FIGURE P12.64. The pulley turns on 
frictionless bearings. Mass m1 slides on a horizontal, frictionless 
surface. Mass m2 is released while the blocks are at rest.
a. Assume the pulley is massless. Find the acceleration of m1 and 

the tension in the string. This is a Chapter 7 review problem.
b. Suppose the pulley has mass mp and radius R. Find the accel-

eration of m1 and the tensions in the upper and lower portions 
of the string. Verify that your answers agree with part a if you 
set mp = 0.

65. || The 1.5 kg, 50-cm-diameter disk in FIGURE P12.65 is spin-
ning at 360 rpm. How much friction force must the brake apply 
to the rim to bring the disk to a halt in 5.0 s?

66. ||| Flywheels are large, massive wheels used to store energy. 
They can be spun up slowly, then the wheel’s energy can be 
 released quickly to accomplish a task that demands high power. 
An industrial flywheel has a 1.5 m diameter and a mass of 250 kg.  
Its maximum angular velocity is 1200 rpm.
a. A motor spins up the flywheel with a constant torque of 50 N m.  

How long does it take the flywheel to reach top speed?
b. How much energy is stored in the flywheel?
c. The flywheel is disconnected from the motor and connected 

to a machine to which it will deliver energy. Half the  energy 
stored in the flywheel is delivered in 2.0 s. What is the 
 average power delivered to the machine?

d. How much torque does the flywheel exert on the machine?
67. ||| A 30-cm-diameter, 1.2 kg solid turntable rotates on a 

1.2-cm-diameter, 450 g shaft at a constant 33 rpm. When you hit 
the stop switch, a brake pad presses against the shaft and brings 
the turntable to a halt in 15 seconds. How much friction force 
does the brake pad apply to the shaft?

68. || Your engineering team has been assigned the task of measur-
ing the properties of a new jet-engine turbine. You’ve previously 
determined that the turbine’s moment of inertia is 2.6 kg m2. The 
next job is to measure the frictional torque of the bearings. Your 
plan is to run the turbine up to a 
predetermined rotation speed, 
cut the power, and time how long 
it takes the turbine to reduce its 
rotation speed by 50%. Your data 
are given in the table. Draw an 
appropriate graph of the data and, 
from the slope of the best-fit line, 
determine the frictional torque.

Rotation (rpm) Time (s)

1500 19

1800 22

2100 25

2400 30

2700 34
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78. || A 20 g bullet traveling at 300 m/s strikes a 15 kg, 0.8-m-wide 
door at the edge opposite the hinge. The bullet embeds itself in 
the door, causing the door to swing open. What is the angular 
velocity of the door just after impact?

79. || A 300 g, 40-cm-diameter turntable rotates on frictionless bear-
ings at 80 rpm. A 50 g block sits at the center of the turntable. A com-
pressed spring shoots the block radially outward along a frictionless 
groove in the surface of the turntable. What is the turntable’s rotation 
angular velocity when the block reaches the outer edge?

80. || Sanjay and Ting, each with a mass of 25 kg, are riding op-
posite each other on the edge of a 150 kg, 3.0-m-diameter play-
ground merry-go-round that’s rotating at 15 rpm. Each walks 
straight inward and stops 35 cm from the center. What is the new 
angular velocity, in rpm?

81. || A merry-go-round is a common piece of playground equip-
ment. A 3.0-m-diameter merry-go-round with a mass of 250 kg 
is spinning at 20 rpm. John runs tangent to the merry-go-round 
at 5.0 m/s, in the same direction that it is turning, and jumps 
onto the outer edge. John’s mass is 30 kg. What is the merry-go-
round’s angular velocity, in rpm, after John jumps on?

82. ||| FIGURE P12.82 shows a cube 
of mass m sliding without fric-
tion at speed v0. It undergoes a 
perfectly elastic collision with 
the bottom tip of a rod of length 
d and mass M = 2m. The rod is 
pivoted about a frictionless axle 
through its center, and initially 
it hangs straight down and is at 
rest. What is the cube’s velocity—both speed and direction—
after the collision?

83. ||| During most of its lifetime, a star maintains an equilibrium 
size in which the inward force of gravity on each atom is bal-
anced by an outward pressure force due to the heat of the nuclear 
reactions in the core. But after all the hydrogen “fuel” is con-
sumed by nuclear fusion, the pressure force drops and the star 
undergoes a gravitational collapse until it becomes a neutron 
star. In a neutron star, the electrons and protons of the atoms 
are squeezed together by gravity until they fuse into neutrons. 
Neutron stars spin very rapidly and emit intense pulses of radio 
and light waves, one pulse per rotation. These “pulsing stars” 
were discovered in the 1960s and are called pulsars.
a. A star with the mass 1M = 2.0 * 1030 kg2 and size 1R =  

7.0 * 108 m2 of our sun rotates once every 30 days. After 
 undergoing gravitational collapse, the star forms a pulsar that 
is observed by astronomers to emit radio pulses every 0.10 s.  
By treating the neutron star as a solid sphere, deduce its radius.

b. What is the speed of a point on the equator of the neutron star?
Your answers will be somewhat too large because a star cannot be 
accurately modeled as a solid sphere. Even so, you will be able to 
show that a star, whose mass is 106 larger than the earth’s, can be 
compressed by gravitational forces to a size smaller than a typical 
state in the United States!

69. || A 750 g disk and a 760 g ring, both 15 cm in diameter, are 
rolling along a horizontal surface at 1.5 m/s when they encounter 
a 15° slope. How far up the slope does each travel before rolling 
back down?

70. || A hollow sphere is rolling along a horizontal floor at 5.0 m/s 
when it comes to a 30° incline. How far up the incline does it roll 
before reversing direction?

71. || The 5.0 kg, 60-cm-diameter disk in 
FIGURE P12.71 rotates on an axle passing 
through one edge. The axle is parallel to 
the floor. The cylinder is held with the 
center of mass at the same height as the 
axle, then released.
a. What is the cylinder’s initial angular 

acceleration?
b. What is the cylinder’s angular velocity when it is directly 

below the axle?
72. ||| A solid spherical marble shot up a frictionless 15° slope rolls 

2.50 m to its highest point. If the marble is shot with the same 
speed up a slightly rough 15° slope, it rolls only 2.30 m. What is 
the coefficient of rolling friction on the second slope?

73. || A long, thin rod of mass M and length L is standing straight 
up on a table. Its lower end rotates on a frictionless pivot. A very 
slight push causes the rod to fall over. As it hits the table, what 
are (a) the angular velocity and (b) the speed of the tip of the rod?

74. || The marble rolls down the track shown in FIGURE P12.74 and 
around a loop-the-loop of radius R. The marble has mass m and 
radius r. What minimum height h must the track have for the 
marble to make it around the loop-the-loop without falling off?
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FIGURE P12.77

75. || The sphere of mass M and radius R in FIGURE P12.75 is rigidly 
attached to a thin rod of radius r that passes through the sphere 
at distance 12 R from the center. A string wrapped around the rod 
pulls with tension T. Find an expression for the sphere’s angular 
acceleration. The rod’s moment of inertia is negligible.

76. || A puck attached to a 60-cm-long string rotates in a horizontal 
circle on a frictionless table at 30 rpm. The length of the string is 
gradually reduced to 20 cm as it is slowly pulled through a hole 
in the table. What is the puck’s angular velocity, in rpm, on the 
shorter string?

77. || A satellite follows the elliptical orbit shown in FIGURE P12.77. 
The only force on the satellite is the gravitational attraction of 
the planet. The satellite’s speed at point 1 is 8000 m/s.
a. Does the satellite experience any torque about the center of 

the planet? Explain.
b. What is the satellite’s speed at point 2?
c. What is the satellite’s speed at point 3?

um

M

d

v0

FIGURE P12.82
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88. ||| A rod of length L and mass M has a nonuniform mass distribu-
tion. The linear mass density (mass per length) is l = cx2, where 
x is measured from the center of the rod and c is a constant.
a. What are the units of c?
b. Find an expression for c in terms of L and M.
c. Find an expression in terms of L and M for the moment of 

inertia of the rod for rotation about an axis through the center.
89. ||| In FIGURE CP12.89, a 200 g 

toy car is placed on a narrow 
60-cm-diameter track with 
wheel grooves that keep the 
car going in a circle. The 1.0 kg  
track is free to turn on a fric-
tionless, vertical axis. The 
spokes have negligible mass. After the car’s switch is turned on, 
it soon reaches a steady speed of 0.75 m/s relative to the track. 
What then is the track’s angular velocity, in rpm?

90. ||| A 75 g, 30-cm-long rod hangs vertically on a frictionless, hor-
izontal axle passing through its center. A 10 g ball of clay trav-
eling horizontally at 2.5 m/s hits and sticks to the very bottom 
tip of the rod. To what maximum angle, measured from vertical, 
does the rod (with the attached ball of clay) rotate?

91. ||| The bunchberry flower has the fastest-moving parts ever ob-
served in a plant. Initially, the stamens are held by the petals 
in a bent position, storing elastic energy like a coiled spring. 
When the petals release, the tips of the stamen act like medieval 
catapults, flipping through a 60° angle in just 0.30 ms to launch 
pollen from anther sacs at their ends. The human eye just sees 
a burst of pollen; only high-speed photography reveals the de-
tails. As FIGURE CP12.91 shows, we can model the stamen tip as 
a 1.0@mm@long, 10 mg rigid rod with a 10 mg anther sac at the 
end. Although oversimplifying, we’ll assume a constant angular 
acceleration.
a. How large is the “straightening torque”?
b. What is the speed of the anther sac as it releases its pollen?

84. || The earth’s rotation axis, which is tilted 23.5° from the plane 
of the earth’s orbit, today points to Polaris, the north star. But 
Polaris has not always been the north star because the earth, like a 
spinning gyroscope, precesses. That is, a line extending along the 
earth’s rotation axis traces out a 23.5° cone as the earth precesses 
with a period of 26,000 years. This occurs because the earth is not 
a perfect sphere. It has an equatorial bulge, which allows both the 
moon and the sun to exert a gravitational torque on the earth. Our 
expression for the precession frequency of a gyroscope can be writ-
ten Ω = t/Iv. Although we derived this equation for a specific 
situation, it’s a valid result, differing by at most a constant close 
to 1, for the precession of any rotating object. What is the average 
gravitational torque on the earth due to the moon and the sun?

1.0 m

4.0 kg

2.0 kg

FIGURE CP12.86

FIGURE CP12.89

1.0 mm

Stamen

Initial configuration Final configuration

Anther sac

Pollen Pollen

60°

FIGURE CP12.91

Challenge Problems
85. ||| Objects that rotate in air or water experience a torque due to 

drag. With quadratic drag, a drag torque that’s negligible at low 
rpm quickly becomes significant as the rpm increases. Consider 
a square bar with cross section a * a and length L. It is rotating 
on an axle through its center at angular velocity v in a fluid of 
density r. Assume that the drag coefficient Cd is constant along 
the length of the bar. Find an expression for the magnitude of the 
drag torque on the bar.
Hint: Begin by considering the drag force on a small piece of the 
bar of length dr at distance r from the axle.

86. ||| The two blocks in FIGURE CP12.86 
are connected by a massless rope that 
passes over a pulley. The pulley is 
12 cm in diameter and has a mass of 
2.0 kg. As the pulley turns, friction at 
the axle exerts a torque of magnitude 
0.50 N m. If the blocks are released 
from rest, how long does it take the 
4.0 kg block to reach the floor?

87. ||| A 45 kg figure skater is spinning 
on the toes of her skates at 1.0 rev/s. 
Her arms are outstretched as far as 
they will go. In this orientation, the 
skater can be modeled as a cylindrical torso (40 kg, 20 cm aver-
age diameter, 160 cm tall) plus two rod-like arms (2.5 kg each, 
66 cm long) attached to the outside of the torso. The skater then 
raises her arms straight above her head, where she appears to be 
a 45 kg, 20-cm-diameter, 200-cm-tall cylinder. What is her new 
angular velocity, in rev/s?
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Newton’s Theory of Gravity

What are Kepler’s laws?
Before Galileo and the telescope, Kepler 
used naked-eye measurements to make 
three major discoveries:

■■ The planets move in elliptical orbits.
■■ Planets “sweep out” equal areas in 

equal times.
■■ For circular orbits, the square of a planet’s 

period is proportional to the cube of the 
orbit’s radius.

Kepler’s discoveries were the first solid 
proof of Copernicus’s assertion that earth 
and the other planets orbit the sun.

What is Newton’s theory?
Newton proposed that any two masses  
M and m are attracted toward each other 
by a gravitational force of magnitude

FM on m = Fm on M =
GMm

r2

where r is the distance between the masses 
and G is the gravitational constant.

■■ Newton’s law is an inverse-square law.
■■ Newton’s law predicts the value of g.

In addition to a specific force law for gravity, 
Newton’s three laws of motion apply to all 
objects in the universe.

What is gravitational energy?
The gravitational potential energy of two masses is

UG = -  
GMm

r

Gravitational potential energy is negative, with a zero point at 
infinity. The UG = mgy that you learned in Chapter 10 is a special 
case for objects very near the surface of a planet. Gravitationally 
interacting stars, planets, and satellites are always isolated systems, 
so mechanical energy is conserved.

❮❮ LOOKING BACK Chapter 10 Potential energy and energy conservation

What does the theory say about orbits?
Kepler’s laws can be derived from Newton’s 
theory of gravity:

■■ Orbits can be circular or elliptical.
■■ Orbits conserve energy and angular 

momentum.
■■ Geosynchronous orbits have the same 

period as the rotating planet.

❮❮ LOOKING BACK Sections 8.2–8.3 Circular motion

Why is the theory of gravity important?
Satellites, space stations, the GPS system, and future missions to 
planets all depend on Newton’s theory of gravity. Our modern 
understanding of the cosmos—from stars and galaxies to the Big  
Bang—is based on understanding gravity. Newton’s theories of 
motion and gravity were the beginnings of modern science.

IN THIS CHAPTER, you will understand the motion of satellites and planets.

13

The rings of Saturn are made of billions of small pieces of 
ice and rock that orbit the planet in response to the force 
of gravity. 

m

M

r Fm on M

u

FM on m

u
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13.1 A Little History 365

13.1 A Little History
The study of the structure of the universe is called cosmology. The ancient Greeks 
developed a cosmological model with the earth at the center of the universe while the 
moon, the sun, the planets, and the stars were points of light turning about the earth  
on large “celestial spheres.” This viewpoint was further expanded by the second-century  
Egyptian astronomer Ptolemy (the P is silent). He developed an elaborate mathematical  
model of the solar system that quite accurately predicted the complex planetary 
motions.

Then, in 1543, the medieval world was turned on its head with the publication of 
Nicholas Copernicus’s De Revolutionibus. Copernicus argued that it is not the earth at 
rest in the center of the universe—it is the sun! Furthermore, Copernicus asserted that 
all of the planets revolve about the sun (hence his title) in circular orbits.

Tycho and Kepler
The greatest astronomer of the early Renaissance was Tycho Brahe. For 30 years, from 
1570 to 1600, Tycho compiled the most accurate astronomical observations the world had 
known. The invention of the telescope was still to come, but Tycho developed ingenious 
mechanical sighting devices that allowed him to determine the positions of stars and 
planets in the sky with unprecedented accuracy.

Tycho had a young mathematical assistant named Johannes Kepler. Kepler had 
become one of the first outspoken defenders of Copernicus, and his goal was to 
find evidence for circular planetary orbits in Tycho’s records. To appreciate the 
 difficulty of this task, keep in mind that Kepler was working before the development  
of graphs or of calculus—and certainly before calculators! His mathematical tools 
were  algebra, geometry, and trigonometry, and he was faced with thousands upon 
thousands of individual observations of planetary positions measured as  angles 
above the horizon.

Many years of work led Kepler to discover that the orbits are not circles, as 
Copernicus claimed, but ellipses. Furthermore, the speed of a planet is not constant 
but varies as it moves around the ellipse.

Kepler’s laws, as we call them today, state that

1. Planets move in elliptical orbits, with the sun at one focus of the ellipse.
2. A line drawn between the sun and a planet sweeps out equal areas during equal 

intervals of time.
3. The square of a planet’s orbital period is proportional to the cube of the 

 semimajor-axis length.

FIGURE 13.1a shows that an ellipse has two foci (plural of focus), and the sun occupies  
one of these. The long axis of the ellipse is the major axis, and half the length of this 
axis is called the semimajor-axis length. As the planet moves, a line drawn from the 
sun to the planet “sweeps out” an area. FIGURE 13.1b shows two such areas. Kepler’s 
discovery that the areas are equal for equal ∆t implies that the planet moves faster 
when near the sun, slower when farther away.

All the planets except Mercury have elliptical orbits that are only very slightly 
distorted circles. As FIGURE 13.2 shows, a circle is an ellipse in which the two foci move 
to the center, effectively making one focus, and the semimajor-axis length becomes 
the radius. Because the mathematics of ellipses is difficult, this chapter will focus on 
circular orbits.

Kepler published the first two of his laws in 1609, the same year in which Galileo 
first turned a telescope to the heavens. Through his telescope Galileo could see 
moons orbiting Jupiter, just as Copernicus had suggested the planets orbit the sun. 
He could see that Venus has phases, like the moon, which implied its orbital  motion 
about the sun. By the time of Galileo’s death in 1642, the Copernican revolution 
was complete.

The line between the sun
and the planet sweeps out
equal areas during equal
intervals of time.

Slower

Faster

(b)

Minor axis

Semimajor-axis length

Semiminor-
axis
length

Sun

Foci
Major axis

The planet moves in an
elliptical orbit with the
sun at one focus.

Planet

(a)

FIGURE 13.1 The elliptical orbit of a planet 
about the sun.

Kepler’s second law:
Equal areas in equal times
imply the speed is constant.
The motion is uniform
circular motion.

Kepler’s third law: The
square of the period is
proportional to r3.

Kepler’s first law:
The sun is at
the center.

Sun

Circular orbit

r

FIGURE 13.2 A circular orbit is a special 
case of an elliptical orbit.
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13.2 Isaac Newton
A popular image has Newton thinking of the idea of gravity after an apple fell on his 
head. This amusing story is at least close to the truth. Newton himself said that the “notion  
of gravitation” came to him as he “sat in a contemplative mood” and “was occasioned  
by the fall of an apple.” It occurred to him that, perhaps, the apple was attracted to the 
center of the earth but was prevented from getting there by the earth’s surface. And if 
the apple was so attracted, why not the moon? In other words, perhaps gravitation is 
a universal force between all objects in the universe! This is not shocking today, but no 
one before Newton had ever thought that the mundane motion of objects on earth had  
any connection at all with the stately motion of the planets through the heavens.

Suppose the moon’s circular motion around the earth is due to the pull of the earth’s 
gravity. Then, as you learned in Chapter 8 and is shown in FIGURE 13.3, the moon must 
be in free fall with the free-fall acceleration gat moon.

   NOTE    The symbol gmoon is the free-fall acceleration caused by the moon’s gravity—
that is, the acceleration of a falling object on the moon. Here we’re interested in the 
acceleration of the moon by the earth’s gravity, which we’ll call gat moon .

The centripetal acceleration of an object in uniform circular motion is

 ar = gat moon =
vm 

2

rm
 (13.1)

The moon’s speed is related to the radius rm and period Tm of its orbit by vm =  
circumference/period = 2prm /Tm . Combining these, Newton found

gat moon =
4p2rm

Tm 

2 =
4p213.84 * 108 m2
12.36 * 106 s22 = 0.00272 m/s2

Astronomical measurements had established a reasonably good value for rm by the 
time of Newton, and the period Tm = 27.3 days 12.36 * 106 s2 was quite well known.

The moon’s centripetal acceleration is significantly less than the free-fall accelera-
tion on the earth’s surface. In fact,

gat moon

gon earth
=

0.00272 m/s2

9.80 m/s2 =
1

3600

This is an interesting result, but it was Newton’s next step that was critical. He compared  
the radius of the moon’s orbit to the radius of the earth:

rm

Re
=

3.84 * 108 m

6.37 * 106 m
= 60.2

   NOTE    We’ll use a lowercase r, as in rm, to indicate the radius of an orbit. We’ll use 
an uppercase R, as in Re , to indicate the radius of a star or planet.

Newton recognized that 160.222 is almost exactly 3600. Thus, he reasoned:

■■ If g has the value 9.80 at the earth’s surface, and
■■ If the force of gravity and g decrease in size depending inversely on the square of the  

distance from the center of the earth,
■■ Then g will have exactly the value it needs at the distance of the moon to cause the 

moon to orbit the earth with a period of 27.3 days.

His two ratios were not identical, but he found them to “answer pretty nearly” and 
knew that he had to be on the right track.

v
u

am = (gat moon, toward earth)Moon

Centripetal
acceleration

Earth

u

FIGURE 13.3 The moon is in free fall 
around the earth.

Isaac Newton, 1642–1727.

I deduced that the forces which keep 
the planets in their orbs must be 
reciprocally as the squares of their 
distances from the centers about which 
they revolve; and thereby compared 
the force requisite to keep the Moon in 
her orb with the force of gravity at the 
surface of the Earth; and found them 
answer pretty nearly.

Isaac Newton

STOP TO THINK 13.1 A satellite orbits the earth with constant speed at a height above 
the surface equal to the earth’s radius. The magnitude of the satellite’s acceleration is

d. 1
2 gon earth e. 1

4 gon earth f. 0

a. 4gon earth b. 2gon earth c. gon earth
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13.3 Newton’s Law of Gravity
Newton proposed that every object in the universe attracts every other object with a 
force that is

1. Inversely proportional to the square of the distance between the objects.
2. Directly proportional to the product of the masses of the two objects.

To make these ideas more specific, FIGURE 13.4 shows masses m1 and m2 separated 
by distance r. Each mass exerts an attractive force on the other, a force that we call the 
gravitational force. These two forces form an action/reaction pair, so F

u

1 on 2 is equal 
and opposite to F

u

2 on 1. The magnitude of the forces is given by Newton’s law of gravity.

Newton’s law of gravity If two objects with masses m1 and m2 are a distance r 
apart, the objects exert attractive forces on each other of magnitude

 F1 on 2 = F2 on 1 =
Gm1 m2

r2  (13.2)

The forces are directed along the straight line joining the two objects.

The constant G, called the gravitational constant, is a proportionality constant  
necessary to relate the masses, measured in kilograms, to the force, measured in  newtons.  
In the SI system of units, G has the value

G = 6.67 * 10-11 N m2/kg2

FIGURE 13.5 is a graph of the gravitational force as a function of the distance between 
the two masses. As you can see, an inverse-square force decreases rapidly.

Strictly speaking, Equation 13.2 is valid only for particles. However, Newton was 
able to show that this equation also applies to spherical objects, such as planets, if r 
is the distance between their centers. Our intuition and common sense suggest this to 
us, as they did to Newton. The rather difficult proof is not essential, so we will omit it.

Gravitational Force and Weight
Knowing G, we can calculate the size of the gravitational force. Consider two 1.0 kg 
masses that are 1.0 m apart. According to Newton’s law of gravity, these two masses 
exert an attractive gravitational force on each other of magnitude

F1 on 2 = F2 on 1 =
Gm1 m2

r2

=
16.67 * 10-11 N m2/kg2211.0 kg211.0 kg2

11.0 m22 = 6.67 * 10-11 N

This is an exceptionally tiny force, especially when compared to the gravitational 
force of the entire earth on each mass: FG = mg = 9.8 N.

The fact that the gravitational force between two ordinary-size objects is so small is 
the reason we are not aware of it. You are being attracted to every object around you, 
but the forces are so tiny in comparison to the normal forces and friction forces acting 
on you that they are completely undetectable. Only when one (or both) of the masses is  
exceptionally large—planet-size—does the force of gravity become important.

We find a more respectable result if we calculate the force of the earth on a 1.0 kg 
mass at the earth’s surface:

 Fearth on 1 kg =
GMe m1 kg

Re 

2

 =
16.67 * 10-11 N m2/kg2215.97 * 1024 kg211.0 kg2

16.37 * 106 m22 = 9.8 N

where the distance between the mass and the center of the earth is the earth’s radius.

r

r is the distance
between the
centers.

The forces are an
action/reaction pair.

m1

m2

F1 on 2

F2 on 1

u

u

FIGURE 13.4 The gravitational forces on 
masses m1 and m2.

1r

F

F/4

F/9

Gravitational
force

Separation
of masses2r 3r

Doubling the distance 
between the masses 
causes the force to 
decrease by a factor of 4.

FIGURE 13.5 The gravitational force is an 
inverse-square force.
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368 CHAPTER 13 Newton’s Theory of Gravity

The earth’s mass Me and radius Re were taken from Table 13.2 in Section 13.6. This 
table, which is also printed inside the back cover of the book, contains astronomical 
data that will be used for examples and homework.

The force Fearth on 1 kg = 9.8 N is exactly the weight of a stationary 1.0 kg mass: 
FG = mg = 9.8 N. Is this a coincidence? Of course not. Weight—the upward force of 
a spring scale—exactly balances the downward gravitational force, so numerically 
they must be equal.

Although weak, gravity is a long-range force. No matter how far apart two objects  
may be, there is a gravitational attraction between them given by Equation 13.2.  
Consequently, gravity is the most ubiquitous force in the universe. It not only keeps your 
feet on the ground, it also keeps the earth orbiting the sun, the solar system orbiting the 
center of the Milky Way galaxy, and the entire Milky Way galaxy performing an intricate 
orbital dance with other galaxies making up what is called the “local cluster” of galaxies.

The Principle of Equivalence
Newton’s law of gravity depends on a rather curious assumption. The concept of mass 
was introduced in Chapter 5 by considering the relationship between force and accel-
eration. The inertial mass of an object, which is the mass that appears in Newton’s 
second law, is found by measuring the object’s acceleration a in response to force F:

 minert = inertial mass =
F
a

 (13.3)

Gravity plays no role in this definition of mass.
The quantities m1 and m2 in Newton’s law of gravity are being used in a very different 

way. Masses m1 and m2 govern the strength of the gravitational attraction between two 
objects. The mass used in Newton’s law of gravity is called the gravitational mass. 
The gravitational mass of an object can be determined by measuring the attractive force 
exerted on it by another mass M a distance r away:

 mgrav = gravitational mass =
r2FM on m

GM
 (13.4)

Acceleration does not enter into the definition of the gravitational mass.
These are two very different concepts of mass. Yet Newton, in his theory of  gravity,  

asserts that the inertial mass in his second law is the very same mass that governs 
the strength of the gravitational attraction between two objects. The assertion that 
mgrav = minert is called the principle of equivalence. It says that inertial mass is 
equivalent to gravitational mass.

As a hypothesis about nature, the principle of equivalence is subject to experimental 
verification or disproof. Many exceptionally clever experiments have looked for any 
difference between the gravitational mass and the inertial mass, and they have shown 
that any difference, if it exists at all, is less than 10 parts in a trillion! As far as we know 
today, the gravitational mass and the inertial mass are exactly the same thing.

But why should a quantity associated with the dynamics of motion, relating force 
to acceleration, have anything at all to do with the gravitational attraction? This is a 
question that intrigued Einstein and eventually led to his general theory of relativity, the 
theory about curved spacetime and black holes. General relativity is beyond the scope 
of this textbook, but it explains the principle of equivalence as a property of space itself.

Newton’s Theory of Gravity
Newton’s theory of gravity is more than just Equation 13.2. The theory of gravity 
consists of:

1. A specific force law for gravity, given by Equation 13.2, and
2. The principle of equivalence, and
3. An assertion that Newton’s three laws of motion are universally applicable. These 

laws are as valid for heavenly bodies, the planets and stars, as for earthly objects.

The dynamics of stellar motions, spanning
many thousands of light years, are governed 
by Newton’s law of gravity.

A galaxy of ≈  1011 stars spanning a  
distance greater than 100,000 light years.
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Consequently, everything we have learned about forces, motion, and energy is relevant  
to the dynamics of satellites, planets, and galaxies.

STOP TO THINK 13.2 The figure shows a binary 
star system. The mass of star 2 is twice the mass 
of star 1. Compared to F

u

1 on 2, the magnitude of the 
force F

u

2 on 1 is

a. Four times as big.
b. Twice as big.
c. The same size.
d. Half as big.
e. One-quarter as big. m 2

m1

F2 on 1

u

13.4 Little g and Big G
The familiar equation FG = mg works well when an object is on the surface of a planet, 
but mg will not help us find the force exerted on the same object if it is in orbit around 
the planet. Neither can we use mg to find the force of attraction between the earth  
and the moon. Newton’s law of gravity provides a more fundamental starting point 
because it describes a universal force that exists between all objects.

To illustrate the connection between Newton’s law of gravity and the familiar 
FG = mg, FIGURE 13.6 shows an object of mass m on the surface of Planet X. Planet X 
inhabitant Mr. Xhzt, standing on the surface, finds that the downward gravitational 
force is FG = mgX, where gX is the free-fall acceleration on Planet X.

We, taking a more cosmic perspective, reply, “Yes, that is the force because of a 
universal force of attraction between your planet and the object. The size of the force 
is determined by Newton’s law of gravity.”

We and Mr. Xhzt are both correct. Whether you think locally or globally, we and 
Mr. Xhzt must arrive at the same numerical value for the magnitude of the force. 
Suppose an object of mass m is on the surface of a planet of mass M and radius R. The 
local gravitational force is

 FG = mgsurface (13.5)

where gsurface is the free-fall acceleration at the planet’s surface. The force of gravi-
tational attraction for an object on the surface 1r = R2, as given by Newton’s law of 
gravity, is

 FM on m =
GMm

R2  (13.6)

Because these are two names and two expressions for the same force, we can equate  
the right-hand sides to find that

 gsurface =
GM

R2  (13.7)

We have used Newton’s law of gravity to predict the value of g at the surface of a 
planet. The value depends on the mass and radius of the planet as well as on the value 
of G, which establishes the overall strength of the gravitational force.

The expression for gsurface in Equation 13.7 is valid for any planet or star. Using the 
mass and radius of Mars, we can predict the Martian value of g:

gMars =
GMMars

RMars 

2 =
16.67 * 10-11 N m2/kg2216.42 * 1023 kg2

13.39 * 106 m22 = 3.8 m/s2

   NOTE    We noted in Chapters 6 and 8 that measured values of g are very slightly smaller 
on a rotating planet. We’ll ignore rotation in this chapter.

RX

Planet X

MX

Universal perspective:
GMXm

RX
2

m

F = 

RX

Planet X

MX

m

Planetary perspective:
F = mgX

FIGURE 13.6 Weighing an object of mass 
m on Planet X.
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Decrease of g with Distance
Equation 13.7 gives gsurface at the surface of a planet. More generally, imagine an object 
of mass m at distance r 7 R from the center of a planet. Further, suppose that gravity 
from the planet is the only force acting on the object. Then its acceleration, the free-fall 
acceleration, is given by Newton’s second law:

 g =
FM on m

m
=

GM

r2  (13.8)

This more general result agrees with Equation 13.7 if r = R, but it allows us to determine 
the “local” free-fall acceleration at distances r 7 R. Equation 13.8 expresses Newton’s dis-
covery, with regard to the moon, that g decreases inversely with the square of the distance.

FIGURE 13.7 shows a satellite orbiting at height h above the earth’s surface. Its distance  
from the center of the earth is r = Re + h. Most people have a mental image that sat-
ellites orbit “far” from the earth, but in reality h is typically 200 miles≈  3 * 105 m, 
while Re = 6.37 * 106 m. Thus the satellite is barely “skimming” the earth at a height 
only about 5% of the earth’s radius!

The value of g at height h above the earth (i.e., above sea level) is

 g =
GMe

1Re + h22 =
GMe

Re 

211 + h /Re22 =
gearth

11 + h/Re22 (13.9)

where gearth = 9.83 m/s2 is the value calculated from Equation 13.7 for h = 0 on a 
nonrotating earth. TABLE 13.1 shows the value of g evaluated at several values of h.

Earth

Satellite

Re

r
h

Me

h is typically very
small compared
with Re. 

FIGURE 13.7 A satellite orbits the earth at 
height h.

TABLE 13.1 Variation of g with height above the ground

Height h Example g (m/s2)

0 m ground 9.83

4500 m Mt. Whitney 9.82

10,000 m jet airplane 9.80

300,000 m space station 8.97

35,900,000 m communications satellite 0.22

   NOTE    The free-fall acceleration of a satellite such as the space station is only slightly 
less than the ground-level value. An object in orbit is not “weightless” because there 
is no gravity in space but because it is in free fall, as you learned in Chapter 8.

Weighing the Earth
We can predict g if we know the earth’s mass. But how do we know the value of Me ? We 
cannot place the earth on a giant pan balance, so how is its mass known? Furthermore, 
how do we know the value of G?

Newton did not know the value of G. He could say that the gravitational force is 
proportional to the product m1 m2 and inversely proportional to r2, but he had no means 
of knowing the value of the proportionality constant.

Determining G requires a direct measurement of the gravitational force between 
two known masses at a known separation. The small size of the gravitational force 
between ordinary-size objects makes this quite a feat. Yet the English scientist Henry 
Cavendish came up with an ingenious way of doing so with a device called a torsion 
balance. Two fairly small masses m, typically about 10 g, are placed on the ends of 
a lightweight rod. The rod is hung from a thin fiber, as shown in FIGURE 13.8a, and 
allowed to reach equilibrium.

If the rod is then rotated slightly and released, a restoring force will return it to 
equilibrium. This is analogous to displacing a spring from equilibrium, and in fact 
the restoring force and the angle of displacement obey a version of Hooke’s law: 

The force needed to rotate
the rod by ∆u is k ∆u.

The gravitational
force causes the
fiber to twist.

Fiber

Rod with small masses

(a)

(b)

Lead sphere
Gravitational
forces

r m

mM
M

∆u

FIGURE 13.8 Cavendish’s experiment to 
measure G.
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Frestore = k ∆u. The “torsion constant” k can be determined by timing the period of  
oscillations. Once k is known, a force that twists the rod slightly away from equilibrium 
can be measured by the product k ∆u. It is possible to measure very small angular 
deflections, so this device can be used to determine very small forces.

Two larger masses M (typically lead spheres with M ≈ 10 kg) are then brought 
close to the torsion balance, as shown in FIGURE 13.8b. The gravitational attraction that 
they exert on the smaller hanging masses causes a very small but measurable twisting of  
the balance, enough to measure FM on m. Because m, M, and r are all known, Cavendish 
was able to determine G from

 G =
FM on m r2

Mm
 (13.10)

His first results were not highly accurate, but improvements over the years in this and 
similar experiments have produced the value of G accepted today.

With an independently determined value of G, we can return to Equation 13.7 to find

 Me =
gearthRe 

2

G
 (13.11)

We have weighed the earth! The value of gearth at the earth’s surface is known with great 
accuracy from kinematics experiments. The earth’s radius Re is determined by surveying  
techniques. Combining our knowledge from these very different measurements has  
given us a way to determine the mass of the earth.

The gravitational constant G is what we call a universal constant. Its value  
establishes the strength of one of the fundamental forces of nature. As far as we 
know, the gravitational force between two masses would be the same anywhere in the  
universe. Universal constants tell us something about the most basic and fundamental  
properties of nature. You will soon meet other universal constants.

The free-fall acceleration varies slightly 
due to mountains and to variation in the 
density of the earth’s crust. This map 
shows the gravitational anomaly, with  
red regions of slightly stronger grav-
ity and blue regions of slightly weaker 
gravity. The variation is tiny, less than 
0.001 m/s2.

STOP TO THINK 13.3 A planet has four times the mass of the earth, but the acceler-
ation due to gravity on the planet’s surface is the same as on the earth’s surface. The 
planet’s radius is

a. 4Re b. 2Re c. Re d. 1
2 Re e. 1

4 Re

13.5 Gravitational Potential Energy
Gravitational problems are ideal for the conservation-law tools we developed in 
Chapters 9 through 11. Because gravity is the only force, and it is a conservative force, 
both the momentum and the mechanical energy of the system m1 + m2 are conserved. 
To employ conservation of energy, however, we need to determine an appropriate form  
for the gravitational potential energy for two interacting masses.

The definition of potential energy that we developed in Chapter 11 is

 ∆U = Uf - Ui = -Wc 1i S f2 (13.12)

where Wc 1i S f2 is the work done by a conservative force as a particle moves from  
position i to position f. For a flat earth, we used F = -mg and the choice that U = 0 at  
the surface 1y = 02 to arrive at the now-familiar UG = mgy. This result for UG is valid  
only for y V Re, when the earth’s curvature and size are not apparent. We now need to find 
an expression for the gravitational potential energy of masses that interact over large distances.

FIGURE 13.9 shows two particles of mass m1 and m2. Let’s calculate the work done on mass 
m2 by the conservative force F

u

1 on 2 as m2 moves from an initial position at distance r to a  
final position very far away. The force, which points to the left, is opposite the displacement; 
hence this force does negative work. Consequently, due to the minus sign in Equation 13.12, 
∆U is positive. A pair of masses gains potential energy as the masses move farther apart, just 
as a particle near the earth’s surface gains potential energy as it moves to a higher altitude.

∆r

u

u

Work is done on m 2 as
it moves away from m1.

x

m1 m 2

xf = ∞xi = r0

Before: After:
F1 on 2

F1 on 2 is opposite ∆r, so
the work is negative.

u

u

FIGURE 13.9 Calculating the work done by 
the gravitational force as mass m2 moves 
from r to ∞.
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372 CHAPTER 13 Newton’s Theory of Gravity

We can establish a coordinate system with m1 at the origin and m2 moving along the 
x-axis. The gravitational force is a variable force, so we need the full definition of work:

 W1i S f 2 = 3
xf 

xi

Fx dx (13.13)

F
u

1 on 2 points toward the left, so its x-component is 1F1 on 22x = -Gm1 m2 /x
2. As mass m2  

moves from xi = r to xf = ∞, the potential energy changes by

 ∆U = Uat ∞ - Uat r = - 3
∞

r
1F1 on 22x dx = - 3

∞

r
 1 -Gm1 m2

x2 2dx 

                               = +Gm1 m2 3
∞

r
 

dx

x2 = -  
Gm1 m2

x
 `

∞

r
=

Gm1 m2

r
 

(13.14)

   NOTE    We chose to integrate along the x-axis, but the fact that gravity is a conservative 
force means that ∆U will have this value if m2 moves from r to ∞ along any path.

To proceed further, we need to choose the point where U = 0. We would like our choice 
to be valid for any star or planet, regardless of its mass and radius. This will be the case if 
we set U = 0 at the point where the interaction between the masses vanishes. According 
to Newton’s law of gravity, the strength of the interaction is zero only when r = ∞. Two 
masses infinitely far apart will have no tendency, or potential, to move together, so we 
will choose to place the zero point of potential energy at r = ∞. That is, Uat ∞ = 0.

This choice gives us the gravitational potential energy of masses m1 and m2:

 UG = -
Gm1 m2

r
 (13.15)

This is the potential energy of masses m1 and m2 when their centers are separated by 
distance r. FIGURE 13.10 is a graph of UG as a function of the distance r between the 
masses. Notice that it asymptotically approaches 0 as r S ∞.

   NOTE    Although Equation 13.15 looks rather similar to Newton’s law of gravity, it 
depends only on 1/r, not on 1/r2.

It may seem disturbing that the potential energy is negative, but we encountered sim-
ilar situations in Chapter 10. All a negative potential energy means is that the potential 
energy of the two masses at separation r is less than their potential energy at infinite 
separation. Only the change in U has physical significance, and the change will be the 
same no matter where we place the zero of potential energy.

To illustrate, suppose two masses a distance r1 apart are released from rest. How will 
they move? From a force perspective, you would note that each mass experiences an 
 attractive force and accelerates toward the other. The energy perspective of FIGURE 13.11 
tells the same thing. By moving toward smaller r (that is, r1 S r2), the system loses 
 potential energy and gains kinetic energy while conserving Emech . The system is “falling 
downhill,” although in a more general sense than we think about on a flat earth.

U approaches -∞ as r S 0,
but this is not physically
significant because two
objects can’t occupy the
same point.

r

U approaches 0
as r S ∞.

0

UG

FIGURE 13.10 The gravitational potential- 
energy curve.

The kinetic energy K is
the distance from the
potential-energy curve
to the total energy line. 

The system loses potential energy
and gains kinetic energy.

r0

PE

TE

Energy

Before

After

K

r2 r1

FIGURE 13.11 Two masses gain kinetic 
energy as their separation decreases.

Suppose the earth suddenly came to a halt and ceased revolving 
around the sun. The gravitational force would then pull it directly 
into the sun. What would be the earth’s speed as it crashed?

MODEL Model the earth and the sun as spherical masses. This is an 
isolated system, so its mechanical energy is conserved.

VISUALIZE FIGURE 13.12 is a before-and-after pictorial representa-
tion for this gruesome cosmic event. The “crash” occurs as the earth 
touches the sun, at which point the distance between their centers 
is r2 = Rs + Re . The initial separation r1 is the radius of the earth’s 
orbit about the sun, not the radius of the earth.

EXAMPLE 13.1 ■ Crashing into the sun

v1 = 0 m/s
v2

RsRe

r1 = 1.50 * 1011 m

r2 = Rs + Re = 7.02 * 108 m

Before: After:

Earth Sun

FIGURE 13.12 Before-and-after pictorial representation of the 
earth crashing into the sun (not to scale).
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13.5 Gravitational Potential Energy 373

The Flat-Earth Approximation
How does Equation 13.15 for the gravitational potential energy relate to our previous 
use of UG = mgy on a flat earth? FIGURE 13.14 shows an object of mass m located at 
height y above the surface of the earth. The object’s distance from the earth’s center is 
r = Re + y and its gravitational potential energy is

 UG = -  
GMe m

r
= -  

GMe m

Re + y
= -  

GMe m

Re 11 + y /Re2 (13.16)

where, in the last step, we factored Re out of the denominator.
Suppose the object is very close to the earth’s surface 1y V Re2. In that case, the 

ratio y /Re V 1. There is an approximation you will learn about in calculus, called 
the binomial approximation, that says

 11 + x2n ≈ 1 + nx  if x V 1 (13.17)

As an illustration, you can easily use your calculator to find that 1/1.01 = 0.9901, to 
four significant figures. But suppose you wrote 1.01 = 1 + 0.01. You could then use 
the binomial approximation to calculate

1
1.01

=
1

1 + 0.01
= 11 + 0.012-1 ≈ 1 + 1-1210.012 = 0.9900

You can see that the approximate answer is off by only 0.01%.

SOLVE Strictly speaking, the kinetic energy is the sum 
K = Kearth + Ksun . However, the sun is so much more massive than the  
earth that the lightweight earth does almost all of the moving. It is a 
reasonable approximation to consider the sun as remaining at rest. 
In that case, the energy conservation equation K2 + U2 = K1 + U1 is

1
2 Me v2 

2 -
GMs Me

Rs + Re
= 0 -

GMs Me

r1

This is easily solved for the earth’s speed at impact. Using data 
from Table 13.2, we find

v2 = B2GMs 1 1
Rs + Re

-
1
r1
2 = 6.13 * 105 m/s

REVIEW The earth would be really flying along at over 1 million  
miles per hour as it crashed into the sun! It is worth noting that 
we do not have the mathematical tools to solve this  problem 
 using Newton’s second law because the acceleration is not 
 constant. But the solution is straightforward when we use energy 
conservation.

EXAMPLE 13.2 ■ Escape speed

A 1000 kg rocket is fired straight away from the surface of the earth. 
What speed does the rocket need to “escape” from the gravitational 
pull of the earth and never return? Assume a nonrotating earth.

MODEL In a simple universe, consisting of only the earth and the 
rocket, an insufficient launch speed will cause the rocket eventually 
to fall back to earth. Once the rocket finally slows to a halt, gravity 
will ever so slowly pull it back. The only way the rocket can escape 
is to never stop 1v = 02 and thus never have a turning point! That 
is, the rocket must continue moving away from the earth forever. 
The minimum launch speed for escape, which is called the escape 
speed, will cause the rocket to stop 1v = 02 only as it reaches 
r = ∞. Now ∞, of course, is not a “place,” so a statement like this 
means that we want the rocket’s speed to approach v = 0 asymp-
totically as r S ∞.

VISUALIZE FIGURE 13.13 is a before-and-after pictorial represen- 
 tation.

SOLVE Energy conservation K2 + U2 = K1 + U1 is

0 + 0 = 1
2 mv1 

2 -
GMe m

Re

where we used the fact that both the kinetic and potential energy 
are zero at r = ∞. Thus the escape speed is

vescape = v1 = B 2GMe

Re
= 11,200 m/s ≈ 25,000 mph

REVIEW It is difficult to assess the answer to a problem with which 
we have no direct experience, although we certainly expected 
the escape speed to be very large. Notice that the problem was 
 mathematically easy; the difficulty was deciding how to interpret 
it. That is why—as you have now seen many times—the “physics” 
of a problem consists of thinking, interpreting, and modeling. We 
will see variations on this problem in the future, with both gravity 
and electricity, so you might want to review the reasoning involved.

FIGURE 13.13 Pictorial representation of a rocket launched with 
sufficient speed to escape the earth’s gravity.

Re

UG = mgy

y

m

y V Re

r = Re + y

Earth

For a spherical earth: We can treat the earth
as flat if y V Re:

m

UG = -
GMem

Re + y

FIGURE 13.14 Gravity on a flat earth.
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374 CHAPTER 13 Newton’s Theory of Gravity

If we call y /Re = x in Equation 13.16 and use the binomial approximation, with 
n = -1, we find

 UG 1if y V Re2 ≈ -
GMe m

Re
 11 -

y

Re
2 = -

GMe m

Re
+ m1GMe

Re 

2 2y (13.18)

Now the first term is just the gravitational potential energy U0 when the object is at 
ground level 1y = 02. In the second term, you can recognize GMe /Re 

2 = gearth from the 
definition of g in Equation 13.7. Thus we can write Equation 13.18 as

 UG 1if y V Re2 = U0 + mgearth y (13.19)

Although we chose UG to be zero when r = ∞   , we are always free to change our 
minds. If we change the zero point of potential energy to be U0 = 0 at the surface, 
which is the choice we made in Chapter 10, then Equation 13.19 becomes

 UG 1if y V Re2 = mgearth y (13.20)

We can sleep easier knowing that Equation 13.15 for the gravitational potential energy 
is consistent with our earlier “flat-earth” expression for the potential energy.

EXAMPLE 13.3 ■ The speed of a satellite

A less-than-successful inventor wants to launch small satellites into 
orbit by launching them straight up from the surface of the earth at 
very high speed.

a. With what speed should he launch the satellite if it is to have 
a speed of 500 m/s at a height of 400 km? Ignore air resistance.

b. By what percentage would your answer be in error if you used a 
flat-earth approximation?

MODEL Mechanical energy is conserved if we ignore drag.

VISUALIZE FIGURE 13.15 shows a pictorial representation.

SOLVE a. Although the height is exaggerated in the figure, 
400 km = 400,000 m is high enough that we cannot ignore 
the earth’s spherical shape. The energy conservation equation 
K2 + U2 = K1 + U1 is

1
2 mv2 

2 -
GMe m

Re + y2
= 1

2 mv1 

2 -
GMe m

Re + y1

where we’ve written the distance between the satellite and the 
earth’s center as r = Re + y. The initial height is y1 = 0. Notice 
that the satellite mass m cancels and is not needed. Solving for the 
launch speed, we have

v1 = Bv2 

2 + 2GMe1 1
Re

-
1

Re + y2
2 = 2770 m/s

This is about 6000 mph, much less than the escape speed.

b. The calculation is the same in the flat-earth approximation 
 except that we use UG = mgy. Thus

1
2 mv2 

2 + mgy2 = 1
2 mv1 

2 + mgy1

v1 = 2v2 

2 + 2gy2 = 2840 m/s

The flat-earth value of 2840 m/s is 70 m/s too big. The error, as a 
percentage of the correct 2770 m/s, is

error =
70

2770
* 100 = 2.5%

REVIEW The true speed is less than the flat-earth approximation 
because the force of gravity decreases with height. Launching a 
rocket against a decreasing force takes less effort than it would with 
the flat-earth force of mg at all heights.

Re

y2 = 400 km
v2 = 500 m/s

y1 = 0 km
v1

r2 = Re + y2

r1 = Re

Earth

Before:

After:

y

0

FIGURE 13.15 Pictorial representation of a satellite launched 
straight up.

STOP TO THINK 13.4 Rank in order, from largest to  
smallest, the absolute values of the gravitational potential 
energies of these pairs of masses. The numbers give the 
relative masses and distances.

m1 = 4 m2 = 4

r = 4

r = 1

r = 2

r = 4

r = 8E

m1 = 1 m2 = 4D

m1 = 1 m2 = 1C

m1 = 1 m2 = 1B

m1 = 2 m2 = 2A
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13.6 Satellite Orbits and Energies
Solving Newton’s second law to find the trajectory of a mass moving under the influ-
ence of gravity is mathematically beyond this textbook. It turns out that the solution is 
a set of elliptical orbits, which is Kepler’s first law. Kepler had no reason why orbits 
should be ellipses rather than some other shape. Newton was able to show that ellipses 
are a consequence of his theory of gravity.

The mathematics of ellipses is rather difficult, so we will restrict most of our analysis 
to the limiting case in which an ellipse becomes a circle. Most planetary orbits differ 
only very slightly from being circular. The earth’s orbit, for example has a (semiminor 
axis/semimajor axis) ratio of 0.99986—very close to a true circle!

FIGURE 13.16 shows a massive body M, such as the earth or the sun, with a lighter 
body m orbiting it. The lighter body is called a satellite, even though it may be a 
planet orbiting the sun. For circular motion, where the gravitational force provides the 
centripetal acceleration v2/r, Newton’s second law for the satellite is

 FM on m =
GMm

r2 = mar =
mv2

r
 (13.21)

Thus the speed of a satellite in a circular orbit is

 v = BGM
r

 (13.22)

A satellite must have this specific speed in order to have a circular orbit of radius r 
about the larger mass M. If the velocity differs from this value, the orbit will become 
elliptical rather than circular. Notice that the orbital speed does not depend on the 
satellite’s mass m. This is consistent with our previous discovery, for motion on a flat 
earth, that motion due to gravity is independent of the mass.

The International Space Station appears 
to be floating, but it’s actually traveling 
at nearly 8000 m/s as it orbits the earth.

A small supply satellite needs to dock with the International Space 
Station. The ISS is in a near-circular orbit at a height of 420 km. 
What are the speeds of the ISS and the supply satellite in this orbit?

SOLVE Despite their different masses, the satellite and the ISS travel  
side by side with the same speed. They are simply in free fall 
 together. Using r = Re + h with h = 420 km = 4.20 * 105 m, we 
find the speed

v = B  

16.67 * 10-11 N m2/kg2215.97 * 1024 kg2 

6.79 * 106 m

= 7660 m/s ≈ 17,000 mph

REVIEW The answer depends on the mass of the earth but not on 
the mass of the satellite.

EXAMPLE 13.4 ■ The speed of the space station

Kepler’s Third Law
An important parameter of circular motion is the period. Recall that the period T is 
the time to complete one full orbit. The relationship among speed, radius, and period is

 v =
circumference

period
=

2pr
T

 (13.23)

We can find a relationship between a satellite’s period and the radius of its orbit by 
using Equation 13.22 for v:

 v =
2pr

T
= BGM

r
 (13.24)

Squaring both sides and solving for T give

 T2 = 14p2

GM2r3 (13.25)

The satellite must have
speed 1GM/r to maintain
a circular orbit of radius r.

v
u

Radius r

M

m

FM on m

u

FIGURE 13.16 The orbital motion of a 
satellite due to the force of gravity.
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In other words, the square of the period is proportional to the cube of the radius. This 
is Kepler’s third law. You can see that Kepler’s third law is a direct consequence of 
Newton’s law of gravity.

TABLE 13.2 contains astronomical information about the solar system. We can use 
these data to check the validity of Equation 13.25. FIGURE 13.17 is a graph of log T 
versus log r for all the planets in Table 13.2 except Mercury. Notice that the scales 
on each axis are increasing logarithmically—by factors of 10—rather than linearly. 
(Also, the vertical axis has converted T to the SI units of s.) As you can see, the graph 
is a straight line with a best-fit equation

log T = 1.500 log r - 9.264

Taking the logarithm of both sides of Equation 13.25, and using the logarithm properties  
log an = n log a and log1ab2 = log a +  log b, we have

log T = 3
2 log r + 1

2 log14p2

GM2
In other words, theory predicts that the slope of a log T@versus@log r graph should be 
exactly 3

2. As Figure 13.17 shows, the solar-system data agree to an impressive four 
significant figures. A homework problem will let you use the y-intercept of the graph 
to determine the mass of the sun.

TABLE 13.2 Useful astronomical data

Planetary  
body

Mean distance  
from sun (m)

Period  
(years)

Mass  
(kg)

Mean radius  
(m)

Sun — — 1.99 * 1030 6.96 * 108

Moon 3.84 * 108* 27.3 days 7.34 * 1022 1.74 * 106

Mercury 5.79 * 1010 0.241 3.30 * 1023 2.44 * 106

Venus 1.08 * 1011 0.615 4.87 * 1024 6.05 * 106

Earth 1.50 * 1011 1.00 5.97 * 1024 6.37 * 106

Mars 2.28 * 1011 1.88 6.42 * 1023 3.39 * 106

Jupiter 7.78 * 1011 11.9 1.90 * 1027 7.15 * 107

Saturn 1.43 * 1012 29.5 5.68 * 1026 6.02 * 107

Uranus 2.87 * 1012 84.0 8.68 * 1025 2.54 * 107

Neptune 4.50 * 1012 165 1.03 * 1026 2.46 * 107

*Distance from earth.

A particularly interesting application of Equation 13.25 is to communications 
 satellites that are in geosynchronous orbits above the earth. These satellites have a 
period of 24 h = 86,400 s, making their orbital motion synchronous with the earth’s 
rotation. As a result, a satellite in such an orbit appears to remain stationary over one 
point on the earth’s equator. Equation 13.25 allows us to compute the radius of an orbit  
with this period:

  rgeo = Re + hgeo = c 1GM

4p22T2 d
1/3

  = c 116.67 * 10-11 N m2/kg2215.97 * 1024 kg2
4p2 2186,400 s22 d

1/3

  = 4.22 * 107 m

The height of the orbit is

hgeo = rgeo - Re = 3.59 * 107 m = 36,000 km ≈ 22,000 mi

 NOTE   When you use Equation 13.25, the period must be in SI units of s.

Neptune

The best-fit straight line is
log T = 1.500 log r - 9.264.

Uranus

Saturn

Mars

Jupiter

Earth
Venus

Distance from sun r (m)

Period T (s)

1011
107

1012 1013

108

109

1010

FIGURE 13.17 The graph of log T  versus 
log r for the planetary data of Table 13.2.
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Geosynchronous orbits are much higher than the low earth orbits used by the space 
station and remote-sensing satellites, where h ≈ 300 km. Communications satellites 
in geosynchronous orbits were first proposed in 1945 by science fiction writer Arthur 
C. Clarke, more than 10 years before the first artificial satellite of any type!

In recent years, astronomers have discovered thousands of planets 
orbiting nearby stars. These are called extrasolar planets. Suppose a 
planet is observed to have a 1200 day period as it orbits a star at the 
same distance that Jupiter is from the sun. What is the mass of the star 
in solar masses? (1 solar mass is defined to be the mass of the sun.)

SOLVE Here “day” means earth days, as used by astronomers 
to measure the period. Thus the planet’s period in SI units is 
T = 1200 days = 1.037 * 108 s. The orbital radius is that of Jupiter,  

which we can find in Table 13.2 to be r = 7.78 * 1011 m. Solving 
Equation 13.25 for the mass of the star gives

  M =
4p2r3

GT 2 = 2.59 * 1031 kg *
1 solar mass

1.99 * 1030 kg
 

  = 13 solar masses

REVIEW This is a large, but not extraordinary, star.

EXAMPLE 13.5 ■ Extrasolar planets

STOP TO THINK 13.5 Two planets orbit a star. Planet 1 has orbital radius r1 and 
planet 2 has r2 = 4r1. Planet 1 orbits with period T1. Planet 2 orbits with period

d. T2 = 1
2 T1 e. T2 = 1

4 T1 f. T2 = 1
8 T1

a. T2 = 8T1 b. T2 = 4T1 c. T2 = 2T1

Kepler’s Second Law
FIGURE 13.18a shows a planet moving in an elliptical orbit. In Chapter 12 we defined a 
particle’s angular momentum to be

 L = mrv sin b (13.26)

where b is the angle between r u and vu. For a circular orbit, where b is always 90°, this 
reduces to simply L = mrv.

The only force on the satellite, the gravitational force, points directly toward the 
star or planet that the satellite is orbiting and exerts no torque; thus the satellite’s 
 angular momentum is conserved as it orbits.

The satellite moves forward a small distance ∆s = v ∆t during the small interval of 
time ∆t. This motion defines the triangle of area ∆A shown in FIGURE 13.18b. ∆A is the 
area “swept out” by the satellite during ∆t. You can see that the height of the triangle is 
h = ∆s sin b, so the triangle’s area is

 ∆A = 1
2 * base * height = 1

2 * r * ∆s sin b = 1
2 rv sin b ∆t (13.27)

The rate at which the area is swept out by the satellite as it moves is

 
∆A
∆t

= 1
2 rv sin b =

mrv sin b

2m
=

L
2m

 (13.28)

The angular momentum L is conserved, so it has the same value at every point in the 
orbit. Consequently, the rate at which the area is swept out by the satellite is constant. 
This is Kepler’s second law, which says that a line drawn between the sun and a planet 
sweeps out equal areas during equal intervals of time. We see that Kepler’s second law  
is a consequence of the conservation of angular momentum.

Another consequence of angular momentum is that the orbital speed is constant 
only for a circular orbit. Consider the “ends” of an elliptical orbit, where r is a mini-
mum or maximum. At these points, b = 90° and thus L = mrv. Because L is constant, 
the satellite’s speed at the farthest point must be less than its speed at the nearest point. 
In general, a satellite slows as r increases, then speeds up as r decreases, to keep its 
angular momentum (and its energy) constant.

h = ∆s sinb

∆s = v∆t

r

Area ∆A is swept
out during ∆t.

(b)

Sun

b

b

Sun

(a)

The gravitational force points straight 
at the sun and exerts no torque.

v
u

F
u

FIGURE 13.18 Angular momentum is 
conserved for a planet in an elliptical 
orbit.
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Kepler’s laws summarize observational data about the motions of the planets. They 
were an outstanding achievement, but they did not form a theory. Newton put forward 
a theory, a specific set of relationships between force and motion that allows any 
motion to be understood and calculated. Newton’s theory of gravity has allowed us 
to deduce Kepler’s laws and, thus, to understand them at a more fundamental level.

Orbital Energetics
Let us conclude this chapter by thinking about the energetics of orbital motion. We 
found, with Equation 13.24, that a satellite in a circular orbit must have v2 = GM/r. 
A satellite’s speed is determined entirely by the size of its orbit. The satellite’s kinetic 
energy is thus

 K = 1
2 mv2 =

GMm
2r

 (13.29)

But -GMm/r is the potential energy, UG, so

 K = -1
2 UG (13.30)

This is an interesting result. In all our earlier examples, the kinetic and potential 
energy were two independent parameters. In contrast, a satellite can move in a circular 
orbit only if there is a very specific relationship between K and U. It is not that K and U 
have to have this relationship, but if they do not, the trajectory will be elliptical rather 
than circular.

Equation 13.30 gives us the mechanical energy of a satellite in a circular orbit:

 Emech = K + UG = 1
2 UG (13.31)

The gravitational potential energy is negative, hence the total mechanical energy is 
also negative. Negative total energy is characteristic of a bound system, a system in 
which the satellite is bound to the central mass by the gravitational force and cannot 
get away. The total energy of an unbound system must be Ú  0 because the satellite 
can reach infinity, where U = 0, while still having kinetic energy. A negative value of 
Emech tells us that the satellite is unable to escape the central mass.

FIGURE 13.19 shows the energies of a satellite in a circular orbit as a function of the 
orbit’s radius. Notice how Emech = 1

2 UG . This figure can help us understand the ener-
getics of transferring a satellite from one orbit to another. Suppose a satellite is in an 
orbit of radius r1 and we’d like it to be in a larger orbit of radius r2. The kinetic energy 
at r2 is less than at r1 (the satellite moves more slowly in the larger orbit), but you can 
see that the total energy increases as r increases. Consequently, transferring a satellite 
to a larger orbit requires a net energy increase ∆E 7 0. Where does this increase of 
energy come from?

Artificial satellites are raised to higher orbits by firing their rocket motors to create 
a forward thrust. This force does work on the satellite, and the energy principle of 
Chapter 10 tells us that this work increases the satellite’s energy by ∆Emech = Wext . 
Thus the energy to “lift” a satellite into a higher orbit comes from the chemical energy 
stored in the rocket fuel.

How much work must be done to boost a 1000 kg communications satellite from a low 
earth orbit with h = 300 km to a geosynchronous orbit?

SOLVE The required work is Wext = ∆Emech , and from Equation 13.31 we see that 
∆Emech = 1

2 ∆UG . The initial orbit has radius rlow = Re + h = 6.67 * 106 m. We earlier 
found the radius of a geosynchronous orbit to be 4.22 * 107 m. Thus

Wext = ∆Emech = 1
2 ∆UG = 1

2 1-GMe m21 1
rgeo

-
1

rlow
2 = 2.52 * 1010 J

REVIEW It takes a lot of energy to boost satellites to high orbits!

EXAMPLE 13.6 ■ Raising a satellite

1
2

∆E

Potential energy UG

Kinetic energy K

Total energy
E = K + UG =   UG

r0

Energy

r1 r2

Energy ∆E must be added to move 
a satellite from an orbit with radius 
r1 to radius r2.

FIGURE 13.19 The kinetic, potential, and 
total energy of a satellite in a circular 
orbit.

M13_KNIG8221_05_GE_C13.indd   378 07/06/2022   16:48



13.6 Satellite Orbits and Energies 379

You might think that the way to get a satellite into a larger orbit would be to point the 
thrusters toward the earth and blast outward. That would work fine if the satellite were 
initially at rest and moved straight out along a linear trajectory. But an orbiting satellite 
is already moving and has significant inertia. A force directed straight outward would 
change the satellite’s velocity vector in that direction but would not cause it to move 
along that line. (Remember all those earlier motion diagrams for motion along curved 
trajectories.) In addition, a force directed outward would be almost at right angles to 
the motion and would do essentially zero work. Navigating in space is not as easy as it 
appears in Star Wars!

To move the satellite in FIGURE 13.20 from the orbit with radius r1 to the larger circular  
orbit of radius r2, the thrusters are turned on at point 1 to apply a brief forward thrust 
force in the direction of motion, tangent to the circle. This force does a significant 
amount of work because the force is parallel to the displacement, so the satellite quickly 
gains kinetic energy 1∆K 7 02. But ∆UG = 0 because the satellite does not have time 
to change its distance from the earth during a thrust of short duration. With the kinetic 
energy increased, but not the potential energy, the satellite no longer meets the require-
ment K = -1

2 UG for a circular orbit. Instead, it goes into an elliptical orbit.
In the elliptical orbit, the satellite moves “uphill” toward point 2 by transforming 

kinetic energy into potential energy. At point 2, the satellite has arrived at the desired 
distance from earth and has the “right” value of the potential energy, but its kinetic 
energy is now less than needed for a circular orbit. (The analysis is more complex than 
we want to pursue here. It will be left for a homework Challenge Problem.) If no ac-
tion is taken, the satellite will continue on its elliptical orbit and “fall” back to point 1.  
But another forward thrust at point 2 increases its kinetic energy, without changing 
UG , until the kinetic energy reaches the value K = -1

2 UG required for a circular orbit. 
Presto! The second burn kicks the satellite into the desired circular orbit of radius 
r2. The work Wext = ∆Emech is the total work done in both burns. It takes a more 
extended analysis to see how the work has to be divided between the two burns, but 
even without those details you now have enough knowledge about orbits and energy to 
understand the ideas that are involved.

Elliptical
transfer
orbit

Desired orbit

Initial orbit

2

1

r1

r2

Kinetic energy is
transformed into
potential energy
as the rocket
moves “uphill.”

Firing the rocket tangentially
to the circle here moves the
satellite into the elliptical orbit.

A second firing here transfers
it to the larger circular orbit.

Fthrust

Fthrust

u

u

FIGURE 13.20 Transferring a satellite to a 
larger circular orbit.

   CHAPTER 13 CHALLENGE EXAMPLE     A binary star system

Astronomers discover a binary star system with a period of 90 days. 
Both stars have a mass twice that of the sun. How far apart are the 
two stars?

MODEL Model the stars as spherical masses exerting gravitational 
forces on each other.

VISUALIZE An isolated system rotates around its center of mass. 
FIGURE 13.21 shows the orbits and the forces. If r is the distance 
of each star to the center of mass—the radius of that star’s orbit—
then the distance between the stars is d = 2r.

SOLVE Star 2 has only one force acting on it, F
u

1 on 2 , and that force 
has to provide the centripetal acceleration v2/r of circular motion. 
Newton’s second law for star 2 is

F1 on 2 =
GM1 M2

d2 =
GM2

4r2 = Mar =
Mv2

r

where we used M1 = M2 = M. The equation for star 1 is identical. 
The star’s speed is related to the period and the circumference of its 
orbit by v = 2pr/T. With this, the force equation becomes

GM2

4r2 =
4p2Mr

T 2

Solving for r gives

 r = cGMT 2

16p2  d
1/3

 = c16.67 * 10-11 N m2/kg2212 * 1.99 * 1030 kg217.78 * 106 s22

16p2 d
1/3

  = 4.67*1010 m

The distance between the stars is d = 2r = 9.3 * 1010 m.

REVIEW The result is in the range of solar-system distances and 
thus is reasonable.The distance between the stars is 2r.

Both stars revolve around
the center of mass in an
orbit with radius r.

FIGURE 13.21 The binary star system.
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Newton’s Theory of Gravity
1. Two objects with masses M and m a distance r apart exert attractive 

gravitational forces on each other of magnitude

FM on m = Fm on M =
GMm

r2

where the gravitational constant is G = 6.67 * 10-11 N m2/kg2.
Gravity is an inverse-square force.

2. Gravitational mass and inertial mass are equivalent.

3. Newton’s three laws of motion apply to all objects in the universe.

Summary The goal of Chapter 13 has been to understand the motion 
of satellites and planets.

General Principles

m

M

r

Fm on M

FM on m The forces are an
action/reaction pair.

u

u

Orbital motion of a planet (or satellite) is described by Kepler’s laws:

1. Orbits are ellipses with the sun 
(or planet) at one focus.

2. A line between the sun and the 
planet sweeps out equal areas 
during equal intervals of time.

3. The square of the planet’s period 
T is proportional to the cube of 
the orbit’s semimajor axis.

Circular orbits are a special case of an ellipse. For a circular orbit 
around a mass M,

v = BGM
r

   and  T2 = 14p2

GM2r3

Conservation of Angular Momentum
The angular momentum L = mrv sin b remains constant 
throughout the orbit. Kepler’s second law is a consequence 
of this law.

Orbital Energetics
A satellite’s mechanical energy Emech = K + UG is conserved, 
where the gravitational potential energy is

UG = -
GMm

r

For circular orbits, K = -  12 UG and Emech = 1
2 UG. Negative 

total energy is characteristic of a bound system.

Important Concepts

v
ub

r

M

mSwept-out
area

Semimajor axis

To move a satellite to a 
larger orbit:

• Forward thrust to move 
to an elliptical transfer 
orbit

• A second forward thrust 
to move to the new cir-
cular orbit

For a planet of mass M and radius R:

• Free-fall acceleration on the surface is gsurface =
GM

R2

• Escape speed is vescape = B 2GM
R

• Radius of a geosynchronous orbit is rgeo = 1GM

4p2 T221/3

where T is the planet’s rotation period.

Applications

v
u R

M

rgeo

cosmology
Kepler’s laws
gravitational force

Newton’s law of gravity
gravitational constant, G
gravitational mass

principle of equivalence
Newton’s theory of gravity
escape speed

satellite
geosynchronous orbit
bound system

Terms and Notation
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CONCEPTUAL QUESTIONS
1. Is the earth’s gravitational force on the sun larger than, smaller 

than, or equal to the sun’s gravitational force on the earth? Explain.
2. The gravitational force of a star on orbiting planet 1 is F1. Planet 2,  

which is twice as massive as planet 1 and orbits at twice the dis-
tance from the star, experiences gravitational force F2. What is 
the ratio F1/F2?

3. A 1000 kg satellite and a 2000 kg satellite follow exactly the same  
orbit around the earth.
a. What is the ratio F1/F2 of the gravitational force on the first 

satellite to that on the second satellite?
b. What is the ratio a1/a2 of the acceleration of the first satellite 

to that of the second satellite?
4. The acceleration due to gravity (g) on an astronaut becomes neg-

ligible as he feels “weightless” while in an orbiting space station. 
Is this true? Explain.

5. Do the orbital speeds of two remote sensing satellites differ be-
cause one is much heavier than the other? Will these satellites 
always have a higher speed than communication satellites placed 
in geosynchronous orbit?

6. The free-fall acceleration at the surface of Planet 1 is 16 m/s2. 
The radius of Planet 2 is four times that of Planet 1, while its 
mass is half of that of Planet 1. What is the acceleration due to 
gravity (g) on Planet 2?

7. Why is the gravitational potential energy of two masses negative?  
Note that saying “because that’s what the equation gives” is not 
an explanation.

8. The escape speed from Planet X is 10,000 m/s. Planet Y has the 
same radius as Planet X but is twice as dense. What is the escape 
speed from Planet Y?

9. The mass of Jupiter is 300 times the mass of the earth. 
Jupiter orbits the sun with TJupiter = 11.9 years in an orbit with 
rJupiter = 5.2rearth. Suppose the earth could be moved to the dis-
tance of Jupiter and placed in a circular orbit around the sun. 
Which of the following describes the earth’s new period? 
Explain.
a. 1 year
b. Between 1 year and 11.9 years
c. 11.9 years
d. More than 11.9 years
e. It would depend on the earth’s speed.
f. It’s impossible for a planet of earth’s mass to orbit at the 

 distance of Jupiter.
10. Satellites in near-earth orbit experience a very slight drag due to 

the extremely thin upper atmosphere. These satellites slowly but 
surely spiral inward, where they finally burn up as they reach the 
thicker lower levels of the atmosphere. The radius decreases so 
slowly that you can consider the satellite to have a circular orbit 
at all times. As a satellite spirals inward, does it speed up, slow 
down, or maintain the same speed? Explain.

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 13.3 Newton’s Law of Gravity

1. || What is the ratio of the sun’s gravitational force on the moon 
to the earth’s gravitational force on the moon?

2. | What is the ratio of the sun’s gravitational force on you to the 
earth’s gravitational force on you?

3. || The centers of two lead balls weighing 20 kg and 150 g are  
5 cm apart.
a. What gravitational force does each exert on the other?
b. What is the ratio of this gravitational force to the earth’s 

 gravitational force on the 150 g ball?
4. || The International Space Station orbits 410 km above the 

surface of the earth. What is the gravitational force on a 10 kg 
sphere inside the International Space Station?

5. | What is the force of attraction between a 60 kg woman and a 
90 kg man sitting 1.0 m apart?

6. || Two 65 kg astronauts leave earth in a spacecraft, sitting 1.0 m  
apart. How far are they from the center of the earth when the 
gravitational force between them is as strong as the gravitational 
force of the earth on one of the astronauts?

7. || A 30 kg sphere is at the origin, and a 10 kg sphere is at x = 30 cm.  
At what position on the x-axis could you place a small mass such 
that the net gravitational force on it due to the spheres is zero?

Section 13.4 Little g and Big G

8. | What is the free-fall acceleration at the surface of (a) the moon 
and (b) Jupiter?

9. | a. What is the free-fall acceleration at the surface of the sun?
b. What is the free-fall acceleration toward the sun at the dis-

tance of the earth?
10. || A sensitive gravimeter at a mountain observatory finds that 

the free-fall acceleration is 0.0065 m/s2 less than that at sea level. 
What is the observatory’s altitude?

11. | A recently discovered extrasolar planet appears to be rockier 
and denser than earth. It is 16 times as massive as earth, but its 
diameter is only twice that of earth. What is the free-fall acceler-
ation on the surface of this planet?

12. | Asteroid 253 Mathilde is one of several that have been vis-
ited by space probes. This asteroid is roughly spherical with a 
diameter of 53 km. The free-fall acceleration at the surface is 
9.9 * 10-3 m/s2. What is the asteroid’s mass?

13. || Planet Z is 10,000 km in diameter. The free-fall acceleration 
on Planet Z is 8.0 m/s2.
a. What is the mass of Planet Z?
b. What is the free-fall acceleration 10,000 km above Planet Z’s 

north pole?
14. | Suppose we could shrink the earth without changing its mass. 

At what fraction of its current radius would the free-fall acceler-
ation at the surface be three times its present value?

Section 13.5 Gravitational Potential Energy

15. || What is the escape speed from Jupiter?
16. | An astronaut on earth can throw a ball straight up to a height 

of 15 m. How high can he throw the ball on Mars?
17. || A rocket is launched straight up from the earth’s surface at a 

speed of 15,000 m/s. What is its speed when it is very far away 
from the earth?
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382 CHAPTER 13 Newton’s Theory of Gravity

27. || A satellite orbits the sun with a period of 1.0 day. What is the 
radius of its orbit?

28. || A new planet is discovered orbiting the star Vega in a circu-
lar orbit. The planet takes 55 earth years to complete one orbit 
around the star. Vega’s mass is 2.1 times the sun’s mass. What is 
the radius of the planet’s orbit? Give your answer as a multiple of 
the radius of the earth’s orbit.

29. || An earth satellite moves in a circular orbit at a speed of 
6000 m/s. What is its orbital period?

30. || A small moon travels around its planet in a circular orbit at 
a speed of 10 km/s. It takes 50 hours to complete one full orbit. 
What is the mass of the planet?

31. || The Parker Solar Probe, launched in 2018, was the first space-
craft to explore the solar corona, the hot gases and flares that 
extend outward from the solar surface. The probe is in a highly 
elliptical orbit that, using the gravity of Venus, will be nudged 
ever closer to the sun until, in 2025, it reaches a closest approach 
of 6.9 million kilometers from the center of the sun. Its maxi-
mum speed as it whips through the corona will be 192 km/s.
a. What is the probe’s closest approach as a multiple of Rs, the 

sun’s radius?
b. The probe’s highly elliptical orbit carries it out to a maximum 

distance of 160Rs with a period of 88 days. What is its slowest 
speed, in km/s?

32. || a. At what height above the earth is the free-fall acceleration 
15% of its value at the surface?

b. What is the speed of a satellite orbiting at that height?
33. | NASA would like to place a satellite in orbit around the moon 

such that the satellite always remains in the same position over 
the lunar surface. What is the satellite’s altitude?

34. || Pluto moves in a fairly elliptical orbit around the sun. Pluto’s 
speed at its closest approach of 4.43 * 109 km is 6.12 km/s. What 
is Pluto’s speed at the most distant point in its orbit, where it is 
7.30 * 109 km from the sun?

Problems
35. || FIGURE P13.35 shows three masses. What are the magnitude 

and the direction of the net gravitational force on the 20.0 kg 
mass? Give the direction as an angle cw from the y-axis.

18. | A space station orbits the sun at the same distance as the earth 
but on the opposite side of the sun. A small probe is fired away 
from the station. What minimum speed does the probe need to 
escape the solar system?

19. || Two stars, one twice as massive as the other, are 1.0 light year 
(ly) apart. One light year is the distance light travels in one year 
at the speed of light, 3.00 * 108 m/s . The gravitational potential 
energy of this double-star system is -8.0 * 1034 J . What is the 
mass of the lighter star?

20. || You have been visiting a distant planet. Your measurements 
have determined that the planet’s mass is twice that of earth but 
the free-fall acceleration at the surface is only one-fourth as large.
a. What is the planet’s radius?
b. To get back to earth, you need to escape the planet. What 

minimum speed does your rocket need?
21. || Nothing can escape the event horizon of a black hole, not even 

light. You can think of the event horizon as being the distance 
from a black hole at which the escape speed is the speed of light, 
3.00 * 108 m/s, making all escape impossible. What is the radius 
of the event horizon for a black hole with a mass 5.0 times the 
mass of the sun? This distance is called the Schwarzschild radius.

22. || A binary star system has two stars, each with the same mass 
as our sun, separated by 1.0 * 1012 m. A comet is very far away 
and essentially at rest. Slowly but surely, gravity pulls the comet 
toward the stars. Suppose the comet travels along a trajectory 
that passes through the midpoint between the two stars. What is 
the comet’s speed at the midpoint?

23. || Two meteoroids are heading for earth. Their speeds as they 
cross the moon’s orbit are 2.0 km/s.
a. The first meteoroid is heading straight for earth. What is its 

speed of impact?
b. The second misses the earth by 5000 km. What is its speed 

at its closest point?

Section 13.6 Satellite Orbits and Energies

24. || Three satellites orbit a planet of radius R, as shown in FIG
URE EX13.24. Satellites S1 and S3 have mass m. Satellite S2 has mass 
2m. Satellite S1 orbits in 250 minutes and the force on S1 is 10,000 N.
a. What are the periods of S2 and S3 ?
b. What are the forces on S2 and S3 ?
c. What is the kinetic-energy ratio K1/K3 for S1 and S3 ?

R 2R
3R

S1

m

S3
m

S2

2m

FIGURE EX13.24

x

y

5.0 kg

20 cm

20.0 kg

10.0 kg

10 cm

FIGURE P13.35

x

y
10.0 kg10.0 kg

20.0 cm

20.0 kg

5.0 cm5.0 cm

FIGURE P13.36

25. || You are the science officer on a visit to a distant solar sys-
tem. Prior to landing on a planet you measure its diameter to be 
1.8 * 107 m and its rotation period to be 22.3 hours. You have 
previously determined that the planet orbits 2.2 * 1011 m from 
its star with a period of 402 earth days. Once on the surface you 
find that the free-fall acceleration is 12.2 m/s2. What is the mass 
of (a) the planet and (b) the star?

26. || The asteroid belt circles the sun between the orbits of Mars 
and Jupiter. One asteroid has a period of 4.5 earth years. What 
are the asteroid’s orbital radius and speed?

36. || What is the net gravitational force on the 20.0 kg mass in 
FIGURE P13.36? Give your answer using unit vectors.

37. || What is the total gravitational potential energy of the three 
masses in FIGURE P13.35?

38. || What is the total gravitational potential energy of the three 
masses in FIGURE P13.36?

39. || Two spherical objects have a combined mass of 250 kg. The 
gravitational attraction between them is 9.00 * 10-6 N when 
their centers are 30 cm apart. What is the mass of each?
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53. || Two stationary 5.0 * 1018 kg asteroids are 500 km apart, 
measured between their centers. A Federation spaceship tries to 
fly between the asteroids when, as luck would have it, the anti-
matter reactor blows, releasing 1.5 * 1023 J of energy. 2.0% of 
that energy goes to the asteroids, with each receiving an equal 
share, driving them apart. How far apart do they get before grav-
ity pulls them back together?

54. || In 2014, the European Space Agency placed a satellite in orbit 
around comet 67P/Churyumov-Gerasimenko and then landed a 
probe on the surface. The actual orbit was elliptical, but we’ll 
approximate it as a 50-km-diameter circular orbit with a period 
of 11 days.
a. What was the satellite’s orbital speed around the comet? 

(Both the comet and the satellite are orbiting the sun at a 
much higher speed.)

b. What is the mass of the comet?
c. The lander was pushed from the satellite, toward the comet, at 

a speed of 70 cm/s, and it then fell—taking about 7 hours—to 
the surface. What was its landing speed? The comet’s shape 
is irregular, but on average it has a diameter of 3.6 km.

55. || Most galaxies, including our own Milky Way, have supermas-
sive black holes at their centers. Recently, astronomers were able 
to track one star, named S2, as it orbited the black hole at the 
center of our galaxy. The star’s actual orbit is elliptical, but we’ll 
model it as a circular orbit. S2 has a period of 15 years and a ra-
dius of 1000 au, where 1 au = 1 astronomical unit is the distance 
of the earth from the sun.
a. What is the speed of S2? Give your answer as a fraction of c, 

where c = the speed of light = 3.0 * 108 m/s .
b. What is the mass of the black hole? Give your answer as a 

multiple of Ms, where Ms = 1 solar mass = 2.0 * 1030 kg.
56. || Figure 13.17 showed a graph of log T versus log r for the plan-

etary data given in Table 13.2. Such a graph is called a log-log 
graph. The scales in Figure 13.17 are logarithmic, not linear, 
meaning that each division along the axis corresponds to a factor 
of 10 increase in the value. Strictly speaking, the “correct” labels 
on the y-axis should be 7, 8, 9, and 10 because these are the log-
arithms of 107,c,1010.
a. Consider two quantities u and v that are related by the expres-

sion vp = Cuq, where C is a constant. The exponents p and q 
are not necessarily integers. Define x = log u and y = log v. 
Find an expression for y in terms of x.

b. What shape will a graph of y versus x have? Explain.
c. What slope will a graph of y versus x have? Explain.
d. Use the experimentally determined “best-fit” line in Figure 

13.17 to find the mass of the sun.
57. ||| FIGURE P13.57 shows two planets of mass 

m orbiting a star of mass M. The planets are 
in the same orbit, with radius r, but are al-
ways at opposite ends of a diameter. Find an 
exact expression for the orbital period T.
Hint: Each planet feels two forces.

58. || Large stars can explode as they finish  
burning their nuclear fuel, causing a 
 supernova. The explosion blows away the outer layers of the 
star. According to Newton’s third law, the forces that push the 
outer layers away have reaction forces that are inwardly directed 
on the core of the star. These forces compress the core and can 
cause the core to undergo a gravitational collapse. The gravi-
tational forces keep pulling all the matter together tighter and 
tighter, crushing atoms out of existence. Under these extreme 

40. || Today, optical techniques can be used to measure displace-
ments of nm. Suppose a 120 kg lead sphere is suspended from 
a 55.0-cm-long spring, stretching the spring by 15.0 cm. This 
sphere is then observed to move an additional 1.60 nm when a 
second 120 kg sphere is slowly raised from below to where the 
distance between their centers is 28.0 cm. What value of G is 
determined from this experiment?

41. || An object of mass m is dropped from height h above a planet 
of mass M and radius R. Find an expression for the object’s speed 
as it hits the ground.

42. ||| A projectile is shot straight up from the earth’s surface at a 
speed of 10,000 km/h. How high does it go?

43. || The unexplored planet Alpha Centauri III has a radius of 
7.0 * 106 m. A visiting astronaut drops a rock, from rest, into a 
100-m-deep crevasse. She records that it takes 6.0 s for the rock 
to reach the bottom. What is the mass of Alpha Centauri III?

44. || Two spherical objects have a combined mass of 400 kg. The 
gravitational attraction between them is 6.00 * 10-7 N and their 
gravitational potential energy is -1.20 * 10-6 J . What is the 
mass of each?

45. || Suppose that on earth you can jump straight up a distance 
of 45 cm. Asteroids are made of material with mass density 
2800 kg/m3. What is the maximum diameter of a spherical aster-
oid from which you could escape by jumping?

46. || A rogue band of colonists on the moon declares war and 
prepares to use a catapult to launch large boulders at the earth. 
Assume that the boulders are launched from the point on the 
moon nearest the earth. For this problem you can ignore the rota-
tion of the two bodies and the orbiting of the moon.
a. What is the minimum speed with which a boulder must be 

launched to reach the earth?
Hint: The minimum speed is not the escape speed. You need 
to analyze a three-body system.

b. Ignoring air resistance, what is the impact speed on earth of a 
boulder launched at this minimum speed?

47. ||| Two spherical asteroids have the same radius R. Asteroid 1 
has mass M and asteroid 2 has mass 2M. The two asteroids are 
released from rest with distance 10R between their centers. What 
is the speed of each asteroid just before they collide?
Hint: You will need to use two conservation laws.

48. ||| The two stars in a binary star system have masses 2.0 * 1030 kg 
and 6.0 * 1030 kg. They are separated by 2.0 * 1012 m. What are
a. The system’s rotation period, in years?
b. The speed of each star?

49. || A starship is circling a distant planet of radius R. The astro-
nauts find that the free-fall acceleration at their altitude is a third 
of the value at the planet’s surface. How far above the surface are 
they orbiting? Your answer will be a multiple of R.

50. ||| A 6000 kg lunar lander is in orbit 40 km above the surface of 
the moon. It needs to move out to a 250-km-high orbit in order to 
link up with the mother ship that will take the astronauts home. 
How much work must the thrusters do?

51. ||| The 75,000 kg space shuttle used to fly in a 250-km-high 
circular orbit. It needed to reach a 610-km-high circular orbit 
to service the Hubble Space Telescope. How much energy was 
required to boost it to the new orbit?

52. || In 2000, NASA placed a satellite in orbit around an asteroid. 
Consider a spherical asteroid with a mass of 1.0 * 1016 kg and a 
radius of 8.8 km.
a. What is the speed of a satellite orbiting 5.0 km above the surface?
b. What is the escape speed from the asteroid?

r

m

m

r

M

FIGURE P13.57
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63. 
16.67 * 10-11 N m2/kg2215.68 * 1026 kg2

r2

=
16.67 * 10-11 N m2/kg2215.97 * 1024 kg2

16.37 * 106 m22

64. 
16.67 * 10-11 N m2/kg2215.97 * 1024 kg211000 kg2

r2

=
11000 kg211997 m/s22

r

65. 1
2 1100 kg2v2 

2

-
16.67 * 10-11 N m2/kg2217.34 * 1022 kg21100 kg2

1.74 * 106 m

= 0 -
16.67 * 10-11 N m2/kg2217.34 * 1022 kg21100 kg2

3.48 * 106 m

Challenge Problems
66. ||| A rogue black hole with a mass 18 times the mass of the sun 

drifts into the solar system on a collision course with Earth. How 
far is the black hole from the center of the earth when objects on 
the earth’s surface begin to lift into the air and “fall” up into the 
black hole? Give your answer as a multiple of the earth’s radius.

67. ||| Two Jupiter-size planets are released from rest 1.0 * 1011 m 
apart. What are their speeds as they crash together?

68. ||| A satellite in a circular orbit of radius r has period T. A satel-
lite in a nearby orbit with radius r + ∆r, where ∆r V r, has the 
very slightly different period T + ∆T.
a. Show that

∆T
T

=
3
2

 
∆r
r

b. Two earth satellites are in parallel orbits with radii 6700 km 
and 6701 km. One day they pass each other, 1 km apart, along 
a line radially outward from the earth. How long will it be 
until they are again 1 km apart?

69. ||| While visiting Planet Physics, you toss a rock straight up at 
11 m/s and catch it 2.5 s later. While you visit the surface, your 
cruise ship orbits at an altitude equal to the planet’s radius every 
230 min. What are the (a) mass and (b) radius of Planet Physics?

70. ||| Let’s look in more detail at 
how a satellite is moved from 
one circular orbit to another. 
FIGURE CP13.70 shows two 
circular orbits, of radii r1 and 
r2, and an elliptical orbit that 
connects them. Points 1 and 2 
are at the ends of the semima-
jor axis of the ellipse.
a. A satellite moving along 

the elliptical orbit has to 
satisfy two conservation 
laws. Use these two laws to prove that the velocities at points 
1 and 2 are

v =
1 = B 2GM1r2 /r12

r1 + r2
   and  v =

2 = B 2GM1r1/r22
r1 + r2

The prime indicates that these are the velocities on the ellipti-
cal orbit. Both reduce to Equation 13.22 if r1 = r2 = r.

b. Consider a 1000 kg communications satellite that needs to be 
boosted from an orbit 300 km above the earth to a geosyn-
chronous orbit 35,900 km above the earth. Find the velocity v1  

conditions, a proton and an electron can be squeezed together 
to form a neutron. If the collapse is halted when the neutrons all 
come into contact with each other, the result is an object called 
a neutron star, an entire star consisting of solid nuclear matter. 
Many neutron stars rotate about their axis with a period of ≈1 s 
and, as they do so, send out a pulse of electromagnetic waves 
once a second. These stars were discovered in the 1960s and are 
called pulsars.
a. Consider a neutron star with a mass equal to the sun, a radius 

of 10 km, and a rotation period of 1.0 s. What is the speed of 
a point on the equator of the star?

b. What is g at the surface of this neutron star?
c. A stationary 1.0 kg mass has a weight on earth of 9.8 N. What 

would be its weight on the star?
d. How many revolutions per minute are made by a satellite or-

biting 1.0 km above the surface?
e. What is the radius of a geosynchronous orbit?

59. || The solar system is 25,000 light years from the center of our 
Milky Way galaxy. One light year is the distance light travels in 
one year at a speed of 3.0 * 108 m/s. Astronomers have deter-
mined that the solar system is orbiting the center of the galaxy at 
a speed of 230 km/s.
a. Assuming the orbit is circular, what is the period of the solar 

system’s orbit? Give your answer in years.
b. Our solar system was formed roughly 5 billion years ago. 

How many orbits has it completed?
c. The gravitational force on the solar system is the net force 

due to all the matter inside our orbit. Most of that matter is 
concentrated near the center of the galaxy. Assume that the 
matter has a spherical distribution, like a giant star. What is 
the approximate mass of the galactic center?

d. Assume that the sun is a typical star with a typical mass. If 
galactic matter is made up of stars, approximately how many 
stars are in the center of the galaxy?

Astronomers have spent many years trying to determine how 
many stars there are in the Milky Way. The number of stars seems 
to be only about 10% of what you found in part d. In other words, 
about 90% of the mass of the galaxy appears to be in some form 
other than stars. This is called the dark matter of the universe. No 
one knows what the dark matter is. This is one of the outstanding 
scientific questions of our day.

60. || Three stars, each with the mass of our sun, form an equilat-
eral triangle with sides 1.0 * 1012 m long. (This triangle would 
just about fit within the orbit of Jupiter.) The triangle has to ro-
tate, because otherwise the stars would crash together in the cen-
ter. What is the period of rotation?

61. || Comets move around the sun in very elliptical orbits. At its 
closet approach, in 1986, Comet Halley was 8.79 * 107 km from 
the sun and moving with a speed of 54.6 km/s. What was the 
comet’s speed when it crossed Neptune’s orbit in 2006?

62. || A 55,000 kg space capsule is in a 28,000-km-diameter circu-
lar orbit around the moon. A brief but intense firing of its engine 
in the forward direction suddenly decreases its speed by 50%. 
This causes the space capsule to go into an elliptical orbit. What 
are the space capsule’s (a) maximum and (b) minimum distances 
from the center of the moon in its new orbit?
Hint: You will need to use two conservation laws.

In Problems 63 through 65 you are given the equation(s) used to 
solve a problem. For each of these, you are to

a. Write a realistic problem for which this is the correct equation(s).
b. Draw a pictorial representation.
c. Finish the solution of the problem.

r2

r1

21

Transfer
ellipse

Outer
orbit

Inner
orbit

FIGURE CP13.70
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d. Two black holes collide and merge when their Schwarzchild 
radii overlap; that is, they merge when their separation, 
which we’ve defined as 2r, equals 2RSch. Find an expres-
sion for ∆E = Ef - Ei, where Ei ≈ 0 because initially the 
black holes are far apart and Ef is their total energy at the 
instant they merge. This is the energy radiated away as grav-
itational waves. Your answer will be a fraction of Mc2, and 
you probably recognize that this is related to Einstein’s fa-
mous E = mc2. The quantity Mc2 is the amount of energy that 
would be released if an entire star of mass M were suddenly 
converted entirely to energy.

e. We still need to determine M, and that’s where the experi-
mental data enter. First, combine your expression for v2 with 
your expression for RSch to find an equation for the angular 
velocity vmerge of two revolving black holes at the instant of 
merger. Then solve this to get an expression for the mass M in 
terms of G, c, and vmerge.

f. FIGURE CP13.72 shows the experimental data from LIGO, 
the Laser Interferometer Gravitational-Wave Observatory in 
Hanford, Washington. The graph shows the strain, which is 
the fractional change in length of a 4-km-long laser beam. 
Even at the peak, the strain is an astoundingly small 1 part 
in 1021. The blue curve is the measured strain, while the red 
curve is the theoretical prediction from general relativity—
an almost perfect match. The oscillations correspond to the 
last few orbits of the two black holes that revolve around 
their center of mass at angular velocity v, which is speed-
ing up as they spiral in. Careful measurements of the final 
revolution before they merge—the peak of the graph—give 
vmerge ≈ 9000 rpm. Using that value, calculate the black 
hole mass M, giving your answer as a multiple of Ms, where 
Ms = 1 solar mass = 2.0 * 1030 kg.

on the inner circular orbit and the velocity v =
1 at the low point 

on the elliptical orbit that spans the two circular orbits.
c. How much work must the rocket motor do to transfer the sat-

ellite from the circular orbit to the elliptical orbit?
d. Now find the velocity v =

2 at the high point of the elliptical 
orbit and the velocity v2 of the outer circular orbit.

e. How much work must the rocket motor do to transfer the sat-
ellite from the elliptical orbit to the outer circular orbit?

f. Compute the total work done and compare your answer to the 
result of Example 13.6.

71. ||| FIGURE CP13.71 shows a particle of mass m at distance x from 
the center of a very thin cylinder of mass M and length L. The 
particle is outside the cylinder, so x 7 L/2.
a. Calculate the gravitational potential energy of these two masses.
b. Use what you know about the relationship between force and 

potential energy to find the magnitude of the gravitational 
force on m when it is at position x.

x

x
M

L

y

m

FIGURE CP13.71
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72. ||| September 2015 saw the historic discovery of gravitational 
waves, almost exactly 100 years after Einstein predicted their 
existence as a consequence of his theory of general relativity. 
Gravitational waves are a literal stretching and compressing of the 
fabric of space. Even the most sensitive instruments—capable of 
sensing that the path of a 4-km-long laser beam has lengthened by 
one-thousandth the diameter of a proton—can detect waves created 
by only the most extreme cosmic events. The first detection was 
due to the collision of two black holes more than 750 million light 
years from earth. Although a full description of gravitational waves 
requires knowledge of Einstein’s general relativity, a surprising 
amount can be understood with the physics you’ve already learned.
a. Consider two equal masses M that interact gravitationally 

and revolve at angular velocity v about their center of mass. 
Let the distance between them be 2r, so that each is distance 
r from the center of mass. Apply Newton’s second law for 
circular motion to one of the masses to find an expression for 
v2 (not v) in terms of G, M, and r.

b. The total energy E of the system is the kinetic energy of the 
two masses, which can be written in terms of v2, plus their 
gravitational potential energy. Find an expression for E in 
terms of G, M, and r. This is a bound system, so the total 
energy should be negative.

We’re going to consider two black holes that spiral in until they 
collide and merge. Because your expression for E is negative, it 
will become even more negative as r S 0. That is, the system los-
es energy, and that energy is radiated away as gravitational waves. 
The details are complex, but we’re interested in only Ei, which we 
can take to be ≈ 0 because initially the black holes are far apart, 
and Ef at the instant they merge.
c. A black hole is a mass so dense that nothing, not even light, can 

escape from it. In other words, the escape speed exceeds the 
speed of light, designated c. We define the Schwarzchild radius 
RSch to be the distance from the center of a black hole to a point 
where vescape = c. Find an expression for the Schwarzchild ra-
dius of a black hole of mass M. To do this, consider a particle 
of mass m that is distance R from a much larger mass M. What 
is the minimum speed the particle needs to escape to infinity? 
Equate this escape speed to c and solve for RSch, the distance 
from the center of the mass at which the escape speed is c.

g. With M known, calculate RSch (in km) and the speed v (as a 
fraction of c) of the black holes as they merged. You should 
find that there are many solar masses moving at a significant 
fraction of the speed of light within an area about the size of a 
major U.S. city. That is certainly an epic cosmic event.

h. How much energy Egrav wave was radiated away as gravita-
tional waves? Give your answer as a multiple of Msc

2. You 
should find that several solar masses were converted to en-
ergy and radiated away as gravitational waves during the 
≈0.2 s duration of this merger.

A full analysis of the situation, using general relativity, found that 
the gravitational waves were created by the merger of two some-
what unequal black holes, one 29Ms and one 36Ms, and that the 
radiated gravitational-wave energy was 3Msc

2. It’s gratifying to 
see how much of this we can understand from a careful applica-
tion of introductory physics.
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Fluids and Elasticity

What is a fluid?
A fluid is a substance that flows. Both gases  
and liquids are fluids.

■■ A gas is compressible. The molecules move 
freely with few interactions.

■■ A liquid is incompressible. The molecules 
are weakly bound to one another.

What is pressure?
Fluids exert forces on the walls of their  
containers. Pressure is the force-to-area 
ratio F/A.

■■ Pressure in liquids, called hydrostatic 
pressure, is due to gravity. Pressure 
increases with depth.

■■ Pressure in gases is primarily thermal. 
Pressure is constant in a container.

What is buoyancy?
Buoyancy is the upward force a fluid exerts 
on an object.

■■ Archimedes’ principle says that the 
buoyant force equals the weight of the 
displaced fluid.

■■ An object floats if the buoyant force is 
sufficient to balance the object’s weight.

❮❮ LOOKING BACK Section 6.1 Equilibrium

How does a fluid flow?
An ideal fluid—an incompressible,  
nonviscous fluid flowing smoothly—flows 
along streamlines. Bernoulli’s equation, a 
statement of energy conservation, relates 
the pressures, speeds, and heights at two 
points on a streamline. Flow of a viscous 
fluid requires a pressure gradient and is 
described by Poiseuille’s equation.

What is elasticity?
Elasticity describes how objects deform 
under stress. An object’s

■■ Young’s modulus characterizes how it 
stretches when pulled.

■■ Bulk modulus tells us how much it is 
compressed by pressure.

❮❮ LOOKING BACK Section 9.4 Restoring forces

Why are fluids important?
Gases and liquids are two of the three  
common states of matter. Scientists study  
atmospheres and oceans, while engineers  
use the controlled flow of fluids in a vast  
number of applications. This chapter will let  
you see how Newton’s laws can be applied  
to systems that can flow or deform.

IN THIS CHAPTER, you will learn about systems that flow or deform.

A defining characteristic of 
any fluid is that—like this 
waterfall—it flows.

Gas

Liquid

mg

FB

u

v2
u

v1
u
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14.1 Fluids 387

14.1 Fluids
Quite simply, a fluid is a substance that flows. Because they flow, fluids take the 
shape of their container rather than retaining a shape of their own. You may think that  
gases and liquids are quite different, but both are fluids, and their similarities are often 
more important than their differences.

The detailed behavior of gases and, especially, liquids can be complex. Fortunately,  
the essential characteristics of gases and liquids are captured in simple molecular models 
that are related to the ball-and-spring model of solids that we presented in ❮❮  SECTION 5.2.

Subdivide the 1 m * 1 m * 1 m cube into 
little cubes 1 cm on a side. You will get 
100 subdivisions along each edge.

1 m

1 m

1 m

100 cm down

100 cm deep

100 cm across

1 cm3

There are 100 * 100 * 100 = 106 little 
1 cm3 cubes in the big 1 m3 cube.

1 m3

FIGURE 14.1 There are 106 cm3 in 1 m3.

MODEL 14.1

Molecular model of gases and liquids
Gases and liquids are fluids—they flow and exert pressure.

■■ Gases

• Molecules move freely through space.

• Molecules do not interact except for occasional  
collisions with each other or the walls.

• Molecules are far apart, so a gas is compressible.

■■ Liquids

• Molecules are weakly bound and stay close together.

• A liquid is incompressible because the molecules 
can’t get any closer.

• Weak bonds allow the molecules to move around.

A gas fills the container.

A liquid has a surface.

Volume and Density
One important parameter that characterizes a macroscopic system is its volume V, the 
amount of space the system occupies. The SI unit of volume is m3. Nonetheless, both 
cm3 and, to some extent, liters (L) are widely used metric units of volume. In most 
cases, you must convert these to m3 before doing calculations.

While it is true that 1 m = 100 cm, it is not true that 1 m3 = 100 cm3. FIGURE 14.1 
shows that the volume conversion factor is 1 m3 = 106 cm3. A liter is 1000 cm3, so 
1 m3 = 103 L. A milliliter (1 mL) is the same as 1 cm3.

A system is also characterized by its density. Suppose you have several blocks 
of copper, each of different size. Each block has a different mass m and a different 
volume V. Nonetheless, all the blocks are copper, so there should be some quantity 
that has the same value for all the blocks, telling us, “This is copper, not some other 
material.” The most important such parameter is the ratio of mass to volume, which 
we call the mass density r (lowercase Greek rho):

 r =
m
V
 (mass density) (14.1)

Conversely, an object of density r has mass m = rV.
The SI units of mass density are kg/m3. Nonetheless, units of g/cm3 are widely used. 

You need to convert these to SI units before doing most calculations. You must convert 
both the grams to kilograms and the cubic centimeters to cubic meters. The net result  
is the conversion factor

1 g/cm3 = 1000 kg/m3

The mass density is usually called simply “the density” if there is no danger of con-
fusion. However, we will meet other types of density as we go along, such as charge 
density and current density, and sometimes it is important to be explicit about which 

M14_KNIG8221_05_GE_C14.indd   387 28/05/2022   08:40



388 CHAPTER 14 Fluids and Elasticity

density you are using. TABLE 14.1 provides a short list of mass densities of various  
fluids. Notice the enormous difference between the densities of gases and liquids. Gases 
have lower densities because the molecules in gases are farther apart than in liquids.

What does it mean to say that the density of gasoline is 680 kg/m3 or, equivalently, 
0.68 g/cm3? Density is a mass-to-volume ratio. It is often described as the “mass per 
unit volume,” but for this to make sense you have to know what is meant by “unit 
volume.” Regardless of which system of length units you use, a unit volume is one 
of those units cubed. For example, if you measure lengths in meters, a unit volume is 
1 m3. But 1 cm3 is a unit volume if you measure lengths in centimeters, and 1 mi3 is a 
unit volume if you measure lengths in miles.

Density is the mass of one unit of volume, whatever the units happen to be. To say that the 
density of gasoline is 680 kg/m3 is to say that the mass of 1 m3 of gasoline is 680 kg. The 
mass of 1 cm3 of gasoline is 0.68 g, so the density of gasoline in those units is 0.68 g/cm3.

The mass density is independent of the object’s size. Mass and volume are param-
eters that characterize a specific piece of some substance—say copper—whereas the 
mass density characterizes the substance itself. All pieces of copper have the same 
mass density, which differs from the mass density of any other substance.

TABLE 14.1 Densities of fluids at standard 
temperature (0°C) and pressure (1 atm)

Substance r (kg/m3)

Helium gas 0.18

Air 1.29

Gasoline 680

Ethyl alcohol 790

Benzene 880

Oil (typical) 900

Water 1000

Seawater 1030

Glycerin 1260

Mercury 13,600

What is the mass of air in a living room with dimensions 
4.0 m * 6.0 m * 2.5 m?

MODEL Table 14.1 gives air density at a temperature of 0°C. The air 
density doesn’t vary significantly over a small range of temperatures 
(we’ll study this issue in a later chapter), so we’ll use this value even 
though most people keep their living room warmer than 0°C.

SOLVE The room’s volume is

V = 14.0 m2 * 16.0 m2 * 12.5 m2 = 60 m3

The mass of the air is

m = rV = 11.29 kg/m32160 m32 = 77 kg

REVIEW This is perhaps more mass than you might have expected 
from a substance that hardly seems to be there. For comparison, a 
swimming pool this size would contain 60,000 kg of water.

EXAMPLE 14.1 ■ Weighing the air

STOP TO THINK 14.1 A piece of glass is broken into 
two pieces of different size. Rank in order, from largest to 
smallest, the mass densities of pieces A, B, and C.

A

B

C

14.2 Pressure
“Pressure” is a word we all know and use. You probably have a commonsense idea of 
what pressure is. For example, you feel the effects of varying pressure against your ear-
drums when you swim underwater or take off in an airplane. Cans of whipped cream 
are “pressurized” to make the contents squirt out when you press the nozzle. It’s hard to  
open a “vacuum sealed” jar of jelly the first time, but easy after the seal is broken.

You’ve probably seen water squirting out of a hole in the side of a container, as in 
FIGURE 14.2. Notice that the water emerges at greater speed from a hole at greater depth. 
And you’ve probably felt the air squirting out of a hole in a bicycle tire or inflatable air 
mattress. These observations suggest that

■■ “Something” pushes the water or air sideways, out of the hole.
■■ In a liquid, the “something” is larger at greater depths. In a gas, the “something” 

appears to be the same everywhere.

Our goal is to turn these everyday observations into a precise definition of pressure.

FIGURE 14.2 Water pressure pushes the 
water sideways, out of the holes.
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14.2 Pressure 389

FIGURE 14.3 shows a fluid—either a liquid or a gas—pressing against a small area 
A with force F

u
. This is the force that pushes the fluid out of a hole. In the absence of 

a hole, F
u
 pushes against the wall of the container. Let’s define the pressure at this 

point in the fluid to be the ratio of the force to the area on which the force is exerted:

 p =
F
A

 (14.2)

Notice that pressure is a scalar, not a vector. You can see, from Equation 14.2, that a 
fluid exerts a force of magnitude

 F = pA (14.3)

on a surface of area A. The force is perpendicular to the surface.

   NOTE    Pressure itself is not a force, even though we sometimes talk informally 
about “the force exerted by the pressure.” The correct statement is that the fluid 
exerts a force on a surface.

From its definition, pressure has units of N/m2. The SI unit of pressure is the  pascal,  
defined as

1 pascal = 1 Pa K 1 N/m2

This unit is named for the 17th-century French scientist Blaise Pascal, who was one 
of the first to study fluids. Large pressures are often given in kilopascals, where 
1 kPa = 1000 Pa.

Equation 14.2 is the basis for the simple pressure-measuring device shown in  
FIGURE 14.4a. Because the spring constant k and the area A are known, we can  determine  
the pressure by measuring the compression of the spring. Once we’ve built such a 
 device, we can place it in various liquids and gases to learn about pressure. FIGURE 14.4b  
shows what we can learn from a series of simple experiments.

F
u F

u

A
A

The fluid pushes with 
force F against area A.

u

FIGURE 14.3 The fluid presses against 
area A with force F

u

.

1.

2.

3.

There is pressure everywhere in a fluid, not 
just at the bottom or at the walls of the container.

The pressure at one point in the fluid is the 
same whether you point the pressure-measuring 
device up, down, or sideways. The fluid pushes 
up, down, and sideways with equal strength.

In a liquid, the pressure increases with depth 
below the surface. In a gas, the pressure is nearly 
the same at all points (at least in laboratory-size 
containers).

(b) Pressure-measuring device in fluid(a) Piston attached to spring

Vacuum; no fluid 
force is exerted on 
the piston from 
this side.

1.

2.

3.

The fluid exerts force F on a 
piston with surface area A.

The force compresses the spring. 
Because the spring constant k is 
known, we can use the spring’s 
compression to find F.

Because A is known, we can 
find the pressure from p = F/A.

u

FIGURE 14.4 Learning about pressure.

The first statement in Figure 14.4b is especially important. Pressure exists at all points 
within a fluid, not just at the walls of the container. You may recall that tension exists 
at all points in a string, not only at its ends where it is tied to an object. We  understood 
tension as the different parts of the string pulling against each other. Pressure is an 
analogous idea, except that the different parts of a fluid are pushing against each other.

Causes of Pressure
Gases and liquids are both fluids, but they have some important differences. Liquids 
are nearly incompressible; gases are highly compressible. The molecules in a liquid 
attract each other via molecular bonds; the molecules in a gas do not interact other 
than through occasional collisions. These differences affect how we think about  
pressure in gases and liquids.
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390 CHAPTER 14 Fluids and Elasticity

Imagine that you have two sealed jars, each containing a small amount of mercury 
and nothing else. All the air has been removed from the jars. Suppose you take the two 
jars into orbit on the space station, where they are weightless. One jar you keep cool, 
so that the mercury is a liquid. The other you heat until the mercury becomes a gas.  
What can we say about the pressure in these two jars?

As FIGURE 14.5 shows, molecular bonds hold the liquid mercury together. It might 
quiver like Jello, but it remains a cohesive drop floating in the center of the jar. The 
liquid drop exerts no forces on the walls, so there’s no pressure in the jar containing 
the liquid. (If we actually did this experiment, a very small fraction of the mercury 
would be in the vapor phase and create what is called vapor pressure.)

The gas is different. The gas molecules collide with the wall of the container, and 
each bounce exerts a force on the wall. The force from any one collision is incredibly 
small, but there are an extraordinarily large number of collisions every second. These 
collisions cause the gas to have a pressure. We will do the calculation in Chapter 20.

FIGURE 14.6 shows the jars back on earth. Because of gravity, the liquid now fills 
the bottom of the jar and exerts a force on the bottom and the sides. Liquid mercury 
is incompressible, so the volume of liquid in Figure 14.6 is the same as in Figure 14.5. 
There is still no pressure on the top of the jar (other than the very small vapor pressure).

At first glance, the situation in the gas-filled jar seems unchanged from Figure 14.5.  
However, the earth’s gravitational pull causes the gas density to be slightly more 
at the bottom of the jar than at the top. Because the pressure due to collisions is 
 proportional to the density, the pressure is slightly larger at the bottom of the jar 
than at the top.

Thus there appear to be two contributions to the pressure in a container of fluid:

1. A gravitational contribution that arises from gravity pulling down on the fluid. 
Because a fluid can flow, forces are exerted on both the bottom and sides of the 
container. The gravitational contribution depends on the strength of the gravita-
tional force.

2. A thermal contribution due to the collisions of freely moving gas molecules 
with the walls. The thermal contribution depends on the absolute temperature of  
the gas.

A detailed analysis finds that these two contributions are not entirely independent of 
each other, but the distinction is useful for a basic understanding of pressure. Let’s see 
how these two contributions apply to different situations.

Pressure in Gases
The pressure in a laboratory-size container of gas is due almost entirely to the ther-
mal contribution. A container would have to be ≈100 m tall for gravity to cause the 
pressure at the top to be even 1% less than the pressure at the bottom. Laboratory-size 
containers are much less than 100 m tall, so we can quite reasonably assume that p has 
the same value at all points in a laboratory-size container of gas.

Decreasing the number of molecules in a container decreases the gas pressure 
 simply because there are fewer collisions with the walls. If a container is completely 
empty, with no atoms or molecules, then the pressure is p = 0 Pa. This is a perfect 
vacuum. No perfect vacuum exists in nature, not even in the most remote depths of 
outer space, because it is impossible to completely remove every atom from a region 
of space. In practice, a vacuum is an enclosed space in which p V 1 atm. Using 
p = 0 Pa is then a very good approximation.

Atmospheric Pressure
The earth’s atmosphere is not a laboratory-size container. The height of the atmo-
sphere is such that the gravitational contribution to pressure is important. As FIGURE 14.7  
shows, the density of air slowly decreases with increasing height until approaching 

Nothing is touching
the wall. There is no
pressure.

Molecules collide with 
the wall and exert forces.
There is pressure.

Liquid Gas

FIGURE 14.5 A liquid and a gas in a 
weightless environment.

Gravity has little 
effect on the pressure 
of the gas.

Liquid Gas

As gravity pulls down,
the liquid exerts a force
on the bottom and 
sides of its container.

Slightly less density
and pressure at the top

FIGURE 14.6 Gravity affects the pressure 
of the fluids.

Walls of an
imaginary
container

Air

Space

The density and
pressure approach
zero in outer space.

Because of gravity,
the density and 
pressure decrease 
with increasing height.

The air’s density and
pressure are greatest
at the earth’s surface.

3.

2.

1.

Earth

FIGURE 14.7 The pressure and density 
decrease with increasing height in the 
atmosphere.
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14.2 Pressure 391

zero in the vacuum of space. Consequently, the pressure of the air, what we call the 
atmospheric pressure patmos , decreases with height. The air pressure is less in Denver 
than in Miami.

The atmospheric pressure at sea level varies slightly with the weather, but the 
 global average sea-level pressure is 101,300 Pa. Consequently, we define the  standard 
 atmosphere as

1 standard atmosphere = 1 atm K 101,300 Pa = 101.3 kPa

The standard atmosphere, usually referred to simply as “atmospheres,” is a commonly 
used unit of pressure. But it is not an SI unit, so you must convert atmospheres to pas-
cals before doing most calculations with pressure.

   NOTE    Unless you happen to live right at sea level, the atmospheric pressure around 
you is somewhat less than 1 atm. Pressure experiments use a barometer to determine 
the actual atmospheric pressure. For simplicity, this textbook will always assume 
that the pressure of the air is patmos = 1 atm unless stated otherwise.

Given that the pressure of the air at sea level is 101.3 kPa, you might wonder why 
the weight of the air doesn’t crush your forearm when you rest it on a table. Your 
forearm has a surface area of ≈200 cm2 = 0.02 m2, so the force of the air pressing 
against it is ≈2000 N (≈450 pounds). How can you even lift your arm?

The reason, as FIGURE 14.8 shows, is that a fluid exerts pressure forces in all  
directions. There is a downward force of ≈2000 N on your forearm, but the air 
 underneath your arm exerts an upward force of the same magnitude. The net force 
is very close to zero. (To be accurate, there is a net upward force called the buoyant 
force. We’ll study buoyancy in Section 14.4. The buoyant force of the air is usually 
too small to notice.)

But, you say, there isn’t any air under my arm if I rest it on a table. Actually, there 
is. There would be a vacuum under your arm if there were no air. Imagine placing 
your arm on the top of a large vacuum cleaner suction tube. What happens? You feel 
a downward force as the vacuum cleaner “tries to suck your arm in.” However, the 
downward force you feel is not a pulling force from the vacuum cleaner. It is the 
 pushing force of the air above your arm when the air beneath your arm is removed 
and cannot push back. Air molecules do not have hooks! They have no ability to 
“pull” on your arm. The air can only push.

Vacuum cleaners, suction cups, and other similar devices are powerful examples 
of how strong atmospheric pressure forces can be if the air is removed from one side 
of an object so as to produce an unbalanced force. The fact that we are surrounded by 
the fluid allows us to move around in the air, just as we swim underwater, oblivious 
of these strong forces.

The forces of a fluid
push in all directions.

FIGURE 14.8 Pressure forces in a fluid 
push with equal strength in all directions.

EXAMPLE 14.2 ■ A suction cup

A 10.0-cm-diameter suction cup is pushed against a smooth ceil-
ing. What is the maximum mass of an object that can be suspended 
from the suction cup without pulling it off the ceiling? The mass of 
the suction cup is negligible.

MODEL Pushing the suction cup against the ceiling pushes the air 
out. We’ll assume that the volume enclosed between the suction 
cup and the ceiling is a perfect vacuum with p = 0 Pa. We’ll also 
assume that the pressure in the room is 1 atm.

VISUALIZE FIGURE 14.9 shows a free-body diagram of the suction 
cup stuck to the ceiling. The downward normal force of the ceiling 
is distributed around the rim of the suction cup, but in the particle 
model we can show this as a single force vector.

n
u

x

y

Object Normal
force of
ceiling

Gravitational
force

Fair

u

FG

u

Fnet = 0
u u

FIGURE 14.9 A suction cup is held to the ceiling by air pressure 
pushing upward on the bottom.

Continued
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392 CHAPTER 14 Fluids and Elasticity

Pressure in Liquids
Gravity causes a liquid to fill the bottom of a container. Thus it’s not surprising that 
the pressure in a liquid is due almost entirely to the gravitational contribution. We’d 
like to determine the pressure at depth d below the surface of the liquid. We will  
assume that the liquid is at rest; flowing liquids will be considered later in this chapter.

The shaded cylinder of liquid in FIGURE 14.10 extends from the surface to depth d.  
This cylinder, like the rest of the liquid, is in equilibrium with F

u

net = 0
u

. Three  
forces act on this cylinder: the gravitational force mg on the liquid in the cylinder, a 
downward force p0A due to the pressure p0 at the surface of the liquid, and an upward 
force pA due to the liquid beneath the cylinder pushing up on the bottom of the cylin-
der. This third force is a consequence of our earlier observation that different parts of 
a fluid push against each other. Pressure p, which is what we’re trying to find, is the 
pressure at the bottom of the cylinder.

The upward force balances the two downward forces, so

 pA = p0A + mg (14.4)

The liquid is a cylinder of cross-section area A and height d. Its volume is V = Ad and 
its mass is m = rV = rAd. Substituting this expression for the mass of the liquid into 
Equation 14.4, we find that the area A cancels from all terms. The pressure at depth d 
in a liquid is

 p = p0 + rgd  (hydrostatic pressure at depth d  ) (14.5)

where r is the liquid’s density. Because the fluid is at rest, the pressure given by 
Equation  14.5 is called the hydrostatic pressure. The fact that g appears in 
Equation 14.5 reminds us that this is a gravitational contribution to the pressure.

As expected, p = p0 at the surface, where d = 0. Pressure p0 is often due to the air 
or other gas above the liquid. p0 = 1 atm = 101.3 kPa for a liquid that is open to the 
air. However, p0 can also be the pressure due to a piston or a closed surface pushing 
down on the top of the liquid.

   NOTE    Equation 14.5 assumes that the liquid is incompressible; that is, its density 
r doesn’t increase with depth. This is an excellent assumption for liquids, but not a 
good one for a gas, which is compressible.

d

p0A
Pressure p0 
at the surface

pA

Whatever is above the liquid pushes 
down on the top of the cylinder.

The liquid beneath the
cylinder pushes up. 
Pressure at depth d is p.

This cylinder 
of liquid 
(depth d, 
cross-section 
area A, mass
m) is in equi-
librium.

Liquid of
density r

x

y

mg
p0A

pAFree-body diagram 
of the column
of liquid Fnet = 0

u u

FIGURE 14.10 Measuring the pressure at 
depth d in a liquid.

SOLVE The suction cup remains stuck to the ceiling, in equi-
librium,  as long as Fair = n + FG. The magnitude of the upward 
force exerted by the air is

Fair = pA = ppr2 = 1101,300 Pa2p10.050 m22 = 796 N

There is no downward force from the air in this case because there 
is no air inside the cup. Increasing the hanging mass decreases the 
normal force n by an equal amount. The maximum weight has 
been reached when n is reduced to zero. Thus

1FG2max = mg = Fair = 796 N

m =
796 N

g
= 81 kg

REVIEW The suction cup can support a mass of up to 81 kg if all 
the air is pushed out, leaving a perfect vacuum inside. A real suc-
tion cup won’t achieve a perfect vacuum, but suction cups can hold 
substantial weight.

A submarine cruises at a depth of 300 m. What is the pressure at 
this depth? Give the answer in both pascals and atmospheres.

SOLVE The density of seawater, from Table 14.1, is r =  1030 kg/m3. 
The pressure at depth d = 300 m is found from Equation 14.5 to be

 p = p0 + rgd = 1.013 * 105 Pa

 + 11030 kg/m3219.80 m/s221300 m2 = 3.13 * 106 Pa

Converting the answer to atmospheres gives

p = 3.13 * 106 Pa *
1 atm

1.013 * 105 Pa
= 30.9 atm

REVIEW The pressure deep in the ocean is very large. Windows 
on submersibles must be very thick to withstand the large forces.

EXAMPLE 14.3 ■ The pressure on a submarine
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d1
d2

Is this possible?

(a)

Is p1 7 p2?

(b)

p1 p2

1 2

FIGURE 14.11 Some properties of a liquid 
in hydrostatic equilibrium are not what 
you might expect.

The hydrostatic pressure in a liquid depends only on the depth and the pressure at  
the  surface. This observation has some important implications. FIGURE 14.11a shows two 
 connected tubes. It’s certainly true that the larger volume of liquid in the wide tube weighs 
more than the liquid in the narrow tube. You might think that this extra weight would push 
the liquid in the narrow tube higher than in the wide tube. But it doesn’t. If d1 were larger 
than d2, then, according to the hydrostatic pressure equation, the pressure at the bottom of 
the narrow tube would be higher than the pressure at the bottom of the wide tube. This pres-
sure difference would cause the liquid to flow from right to left until the heights were equal.

Thus a first conclusion: A connected liquid in hydrostatic equilibrium rises to 
the same height in all open regions of the container.

FIGURE 14.11b shows two connected tubes of different shape. The conical tube holds 
more liquid above the dotted line, so you might think that p1 7 p2. But it isn’t. Both 
points are at the same depth, thus p1 = p2. If p1 were larger than p2, the pressure at 
the bottom of the left tube would be larger than the pressure at the bottom of the right 
tube. This would cause the liquid to flow until the pressures were equal.

Thus a second conclusion: The pressure is the same at all points on a horizontal 
line through a connected liquid in hydrostatic equilibrium.

   NOTE    Both of these conclusions are restricted to liquids in hydrostatic equi librium. 
The situation is different for flowing fluids, as we’ll see later in the chapter.

Water fills the tube shown 
in FIGURE 14.12. What is 
the pressure at the top of 
the closed tube?

MODEL This is a liquid 
in hydrostatic equilib-
rium. The closed tube 
is not an open region 
of the container, so the 
water cannot rise to an 
equal height. Neverthe-
less, the pressure is still the same at all points on a horizontal line. 
In particular, the pressure at the top of the closed tube equals the 

pressure in the open tube at the height of the dashed line. Assume 
p0 = 1.00 atm.

SOLVE A point 40 cm above the bottom of the open tube is at a 
depth of 60 cm. The pressure at this depth is

  p = p0 + rgd

  = 1.013 * 105 Pa + 11000 kg/m3219.80 m/s2210.60 m2
  = 1.072 * 105 Pa = 1.06 atm

This is the pressure at the top of the closed tube.

REVIEW The water in the open tube pushes the water in the closed 
tube up against the top of the tube, which is why the pressure is 
greater than 1 atm.

EXAMPLE 14.4 ■ Pressure in a closed tube

Closed

40 cm

100 cm

FIGURE 14.12 A water-filled tube.

We can draw one more conclusion from the hydrostatic pressure equation p = p0 + rgd. 
If we change the pressure p0 at the surface to p1, the pressure at depth d becomes 
p′ = p1 + rgd. The change in pressure ∆p = p1 - p0 is the same at all points in the fluid, 
independent of the size or shape of the container. This idea, that a change in the pressure 
at one point in an incompressible fluid appears undiminished at all points in the fluid,  
was first recognized by Blaise Pascal and is called Pascal’s principle.

For example, if we compressed the air above the open tube in Example 14.4 to a 
pressure of 1.5 atm, an increase of 0.5 atm, the pressure at the top of the closed tube 
would increase to 1.56 atm. Pascal’s principle is the basis for hydraulic systems, as 
we’ll see in the next section.

STOP TO THINK 14.2 Water is slowly poured into the container until the water level 
has risen into tubes A, B, and C. The water doesn’t overflow from any of the tubes. 
How do the water depths in the three columns compare to each other?

Water

A B C
a. dA 7 dB 7 dC b. dA 6 dB 6 dC

c. dA = dB = dC d. dA = dC 7 dB

e. dA = dC 6 dB
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394 CHAPTER 14 Fluids and Elasticity

14.3 Measuring and Using Pressure
The pressure in a fluid is measured with a pressure gauge. The fluid pushes against 
some sort of spring, and the spring’s displacement is registered by a pointer on a dial.

Many pressure gauges, such as tire gauges and the gauges on air tanks, measure 
not the actual or absolute pressure p but what is called gauge pressure. The gauge 
pressure, denoted pg, is the pressure in excess of 1 atm. That is,

 pg = p - 1 atm (14.6)

You must add 1 atm = 101.3 kPa to the reading of a pressure gauge to find the  absolute 
pressure p that you need for doing most science or engineering calculations: p = pg + 1 atm.

An underwater pressure gauge reads 60 kPa. What is its depth?

MODEL The gauge reads gauge pressure, not absolute pressure.

SOLVE The hydrostatic pressure at depth d, with p0 = 1 atm, is 
p = 1 atm + rgd. Thus the gauge pressure is

pg = p - 1 atm = 11 atm + rgd 2 - 1 atm = rgd

The term rgd is the pressure in excess of atmospheric pressure and 
thus is the gauge pressure. Solving for d, we find

d =
60,000 Pa

11000 kg/m3219.80 m/s22 = 6.1 m

EXAMPLE 14.5 ■ An underwater pressure gauge

A tire-pressure gauge reads the gauge 
pressure pg , not the absolute pressure p.

Solving Hydrostatic Problems
We now have enough information to formulate a set of rules for thinking about hydro-
static problems.

TACTICS BOX 14.1

Hydrostatics
1  Draw a picture. Show open surfaces, pistons, boundaries, and other features 

that affect pressure. Include height and area measurements and fluid densities.  
Identify the points at which you need to find the pressure.

2  Determine the pressure at surfaces.
■■ Surface open to the air: p0 = patmos, usually 1 atm.
■■ Surface covered by a gas: p0 = pgas.
■■ Closed surface: p = F/A, where F is the force the surface, such as a piston, 

exerts on the fluid.
3  Use horizontal lines. Pressure in a connected fluid is the same at any point 

along a horizontal line.
4  Allow for gauge pressure. Pressure gauges read pg = p - 1 atm.
5  Use the hydrostatic pressure equation. p = p0 + rgd.

Exercises 4–13 

Manometers and Barometers
Gas pressure is sometimes measured with a device called a manometer. A manometer,  
shown in FIGURE 14.13, is a U-shaped tube connected to the gas at one end and open to 
the air at the other end. The tube is filled with a liquid—usually mercury—of density 
r. The liquid is in equilibrium. A scale allows the user to measure the height h of  
the right side above the left side.

Steps 1–3 from Tactics Box 14.1 lead to the conclusion that the pressures p1 and 
p2 must be equal. Pressure p1, at the surface on the left, is simply the gas pressure: 
p1 = pgas . Pressure p2 is the hydrostatic pressure at depth d = h in the liquid on the 
right: p2 = 1 atm + rgh. Equating these two pressures gives

 pgas = 1 atm + rgh (14.7)
3

21

1 2

p1 p2

h

Draw a 
picture.

This is an open surface,
so p0 = 1 atm.

This is a surface
covered by a gas,
so p1 = pgas.

Points 1 and 2 are on a
horizontal line, so p1 = p2.

Gas at
pressure 
pgas

Liquid,
density r

FIGURE 14.13 A manometer is used to 
measure gas pressure.
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14.3 Measuring and Using Pressure 395

Figure 14.13 assumed pgas 7 1 atm, so the right side of the liquid is higher than the 
left. Equation 14.7 is also valid for pgas 6 1 atm if the distance of the right side below 
the left side is considered to be a negative value of h.

The pressure of a gas cell is measured with a mercury manometer. The mercury is 36.2 cm  
higher in the outside arm than in the arm connected to the gas cell.

a. What is the gas pressure?

b. What is the reading of a pressure gauge attached to the gas cell?

SOLVE a. From Table 14.1, the density of mercury is r =  13,600 kg/m3. Equation 14.7 
with h = 0.362 m gives

pgas = 1 atm + rgh = 150 kPa

We had to change 1 atm to 101,300 Pa before adding. Converting the result to atmospheres, 
we have pgas = 1.48 atm.

b. The pressure gauge reads gauge pressure: pg = p - 1 atm =  0.48 atm or 49 kPa.

EXAMPLE 14.6 ■ Using a manometer

Another important pressure-measuring instrument is the barometer, which is used 
to measure the atmospheric pressure patmos. FIGURE 14.14a shows a glass tube, sealed at 
the bottom, that has been completely filled with a liquid. If we temporarily seal the 
top end, we can invert the tube and place it in a beaker of the same liquid. When the 
temporary seal is removed, some, but not all, of the liquid runs out, leaving a liquid 
column in the tube that is a height h above the surface of the liquid in the beaker. This 
device, shown in FIGURE 14.14b, is a barometer. What does it measure? And why doesn’t 
all the liquid in the tube run out?

We can analyze the barometer much as we did the manometer. Points 1 and 2 in 
Figure 14.14b are on a horizontal line drawn even with the surface of the liquid. The 
liquid is in hydrostatic equilibrium, so the pressure at these two points must be equal. 
Liquid runs out of the tube only until a balance is reached between the pressure at the 
base of the tube and the pressure of the air.

You can think of a barometer as rather like a seesaw. If the pressure of the 
 atmosphere increases, it presses down on the liquid in the beaker. This forces liquid 
up the tube until the pressures at points 1 and 2 are equal. If the atmospheric pressure 
falls, liquid has to flow out of the tube to keep the pressures equal at these two points.

The pressure at point 2 is the pressure due to the weight of the liquid in the tube 
plus the pressure of the gas above the liquid. But in this case there is no gas above the 
liquid! Because the tube had been completely full of liquid when it was inverted, the 
space left behind when the liquid ran out is a vacuum (ignoring a very slight vapor 
pressure of the liquid, negligible except in extremely precise measurements). Thus 
pressure p2 is simply p2 = rgh.

Equating p1 and p2 gives

 patmos = rgh (14.8)

Thus we can measure the atmosphere’s pressure by measuring the height of the liquid 
column in a barometer.

The average air pressure at sea level causes a column of mercury in a mercury barometer 
to stand 760 mm above the surface. Knowing that the density of mercury is 13,600 kg/m3 
(at 0°C), we can use Equation 14.8 to find that the average atmospheric pressure is

  patmos = rHg gh = 113,600 kg/m3219.80 m/s2210.760 m2
  = 1.013 * 105 Pa = 101.3 kPa

This is the value given earlier as “one standard atmosphere.”
The barometric pressure varies slightly from day to day as the weather changes. 

Weather systems are called high-pressure systems or low-pressure systems, depending 
on whether the local sea-level pressure is higher or lower than one standard atmosphere. 
Higher pressure is usually associated with fair weather, while lower pressure portends rain.

(a) Seal and invert tube.

(b)

1

Vacuum
(zero pressure)

2

h

Liquid, density r

p2 = rgh

p1 = patmos

FIGURE 14.14 A barometer.
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Pressure Units
In practice, pressure is measured in several different units. This plethora of units and 
abbreviations has arisen historically as scientists and engineers working on different 
subjects (liquids, high-pressure gases, low-pressure gases, weather, etc.) developed 
what seemed to them the most convenient units. These units continue in use through 
tradition, so it is necessary to become familiar with converting back and forth between 
them. TABLE 14.2 gives the basic conversions.

TABLE 14.2 Pressure units

Unit Abbreviation Conversion to 1 atm Uses

pascal Pa 101.3 kPa SI unit: 1 Pa = 1 N/m2

atmosphere atm 1 atm general

millimeters  
of mercury

mm of Hg 760 mm of Hg gases and barometric  
pressure

inches of  
mercury

in 29.92 in barometric pressure in  
U.S. weather forecasting

pounds per  
square inch

psi 14.7 psi engineering and industry

Blood Pressure
The last time you had a medical checkup, the doctor may have told you something like 
“Your blood pressure is 120 over 80.” What does that mean?

About every 0.8 s, assuming a pulse rate of 75 beats per minute, your heart “beats.” 
The heart muscles contract and push blood out into your aorta. This contraction, like 
squeezing a balloon, raises the pressure in your heart. The pressure increase, in accor-
dance with Pascal’s principle, is transmitted through all your arteries.

FIGURE 14.15 is a pressure graph showing how blood pressure changes during one 
cycle of the heartbeat. The medical condition of high blood pressure usually means 
that your resting pressure is higher than necessary for blood circulation. The high 
pressure causes undue stress and strain on your entire circulatory system, often 
leading to serious medical problems. Low blood pressure can cause you to get 
dizzy if you stand up quickly because the pressure isn’t adequate to pump the blood  
up to your brain.

Blood pressure is measured with a cuff that goes around your arm at the height of 
your heart. Initially, the cuff is pressurized until it squeezes the artery shut and cuts 
off the blood flow. Then the pressure is slowly reduced. When the cuff pressure drops 
below the systolic pressure, the pressure pulse during each beat of your heart forces 
the artery open briefly and a squirt of blood goes through. A doctor or nurse listening 
through a stethoscope, or a pressure sensor in more modern instruments, records the 
pressure when the blood first starts to flow. This is your systolic pressure.

This pulsing of the blood through your artery lasts until the cuff pressure reaches 
the diastolic pressure. Then the artery remains open continuously and the blood flows 
smoothly. This transition is easily heard in the stethoscope, or sensed by a pressure 
sensor, and your diastolic pressure is recorded.

Blood pressure is measured in millimeters of mercury. And it is a gauge pressure, 
the pressure in excess of 1 atm. A fairly typical blood pressure of a healthy young 
adult is 120/80, meaning that the systolic pressure is pg = 120 mm of Hg (absolute 
pressure p = 880 mm of Hg) and the diastolic pressure is 80 mm of Hg.

The Hydraulic Lift
The use of pressurized liquids to do useful work is a technology known as hydraulics. 
Pascal’s principle is the fundamental idea underlying hydraulic devices. If you increase 
the pressure at one point in a liquid by pushing a piston in, that pressure increase is 

t (s)

Blood pressure
(mm of Hg)

0.20

40

0
0.4 0.6 0.8

80

120

Heart is
contracting.

The peak pressure is 
called systolic pressure. 
It is the first number in 
blood-pressure readings.

The base pressure is
called diastolic pressure.
It is the second number
in blood-pressure readings.

FIGURE 14.15 Blood pressure during one 
cycle of a heartbeat.
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transmitted to all points in the liquid. A second piston at some other point in the fluid 
can then push outward and do useful work.

The brake system in your car is a hydraulic system. Stepping on the brake  pushes 
a piston into the master brake cylinder and increases the pressure in the brake  fluid. 
The fluid itself hardly moves, but the pressure increase is transmitted to the four 
wheels where it pushes the brake pads against the spinning brake disk. You’ve used a 
pressurized liquid to achieve the useful goal of stopping your car.

One advantage of hydraulic systems over simple mechanical linkages is the possi-
bility of force multiplication. To see how this works, we’ll analyze a hydraulic lift, 
such as the one that lifts your car at the repair shop. FIGURE 14.16a shows force F

u

2, due 
to the weight of the car, pressing down on a liquid via a piston of area A2. A much 
smaller force F

u

1 presses down on a piston of area A1. Can this system possibly be in 
equilibrium?

As you now know, the hydrostatic pressure is the same at all points along a 
 horizontal line through a fluid. Consider the line passing through the liquid/piston 
interface on the left in Figure 14.16a. Pressures p1 and p2 must be equal, thus

 p0 +
F1

A1
= p0 +

F2

A2
+ rgh (14.9)

The atmosphere presses equally on both sides, so p0 cancels. The system is in equi-
librium if

 F2 =
A2

A1
 F1 - rghA2 (14.10)

 NOTE   Force F
u

2 is the force of the heavy object pushing down on the liquid. 
 According to Newton’s third law, the liquid pushes up on the object with a force of 
equal magnitude. Thus F2 in Equation 14.10 is the “lifting force.”

Suppose we need to lift the car higher. If piston 1 is pushed down distance d1, 
as in FIGURE 14.16b, it displaces volume V1 = A1 d1 of liquid. Because the liquid is 
 incompressible, V1 must equal the volume V2 = A2 d2 added beneath piston 2 as it rises 
distance d2. That is,

 d2 =
d1

A2/A1
 (14.11)

The distance is divided by the same factor as that by which force is multiplied. A small 
force may be able to support a heavy weight, but you have to push the small piston a 
large distance to raise the heavy weight by a small amount.

This conclusion is really just a statement of energy conservation. Work is done 
on the liquid by a small force pushing the liquid through a large displacement. Work 
is done by the liquid when it lifts the heavy weight through a small distance. A full 
 analysis must consider the fact that the gravitational potential energy of the liquid is 
also changing, so we can’t simply equate the output work to the input work, but you 
can see that energy considerations require piston 1 to move farther than piston 2.

F1

u

F2

u

h

1 2

Density r

Area A1

(a)

Area A2

Pressure p1 is due to
atmospheric pressure
p0 plus pressure F1/A1,
due to F1.

Pressure p2 is p0 plus
F2/A2 plus rgh from
the liquid column of
height h.

u

FIGURE 14.16 A hydraulic lift.

Down d1

Up d2

Volume
V1 = A1d1

Volume
V2 = A2d2

Because the fluid 
is incompressible,
A1d1 = A2d2.

(b)

The hydraulic lift at a car repair shop is filled with oil. The car rests on a 25-cm- diameter 
piston. To lift the car, compressed air is used to push down on a 6.0-cm- diameter  piston. 
What does the pressure gauge read when a 1300 kg car is 2.0 m above the compressed-air 
piston?

MODEL Assume that the oil is incompressible. Its density, from Table 14.1, is 900 kg/m3.

SOLVE F2 is the weight of the car pressing down on the piston: F2 = mg = 12,700 N. The 
piston areas are A1 = p10.030 m22 = 0.00283 m2 and A2 = p10.125 m22 = 0.0491 m2. 

EXAMPLE 14.7 ■ Lifting a car

Continued
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14.4 Buoyancy
A rock, as you know, sinks like a rock. Wood floats on the surface of a lake. A penny 
with a mass of a few grams sinks, but a massive steel aircraft carrier floats. How can 
we understand these diverse phenomena?

An air mattress floats effortlessly on the surface of a swimming pool. But if you’ve ever 
tried to push an air mattress underwater, you know it is nearly impossible. As you push 
down, the water pushes up. This net upward force of a fluid is called the buoyant force.

The basic reason for the buoyant force is easy to understand. FIGURE 14.17 shows a 
cylinder submerged in a liquid. The pressure in the liquid increases with depth, so the 
pressure at the bottom of the cylinder is larger than at the top. Both cylinder ends have 
equal area, so force F

u

up  is larger than force F
u

down . (Remember that  pressure forces 
push in all directions.) Consequently, the pressure in the liquid exerts a net upward 
force on the cylinder of magnitude Fnet = Fup - Fdown . This is the buoyant force.

The submerged cylinder illustrates the idea in a simple way, but the result is not 
limited to cylinders or to liquids. Suppose we isolate a parcel of fluid of arbitrary shape 
and volume by drawing an imaginary boundary around it, as shown in FIGURE 14.18a. 
This parcel is in hydrostatic equilibrium; consequently, the gravitational force  pulling 
down on the parcel must be balanced by an upward force. The upward force, which is 
exerted on this parcel of fluid by the surrounding fluid, is the buoyant force F

u

B . The 
buoyant force matches the weight of the fluid: FB = mg.

Imagine that we could somehow remove this parcel of fluid and instantaneously 
replace it with an object of exactly the same shape and size, as shown in FIGURE 14.18b. 
Because the buoyant force is exerted by the surrounding fluid, and the surrounding 

The force required to hold the car at height h = 2.0 m is found by solving Equation 14.9 
for F1:

  F1 =
A1

A2
 F2 + rghA1

  =
0.00283 m2

0.0491 m2 * 12,700 N + 1900 kg/m3219.8 m/s2212.0 m210.00283 m22

  = 782 N

The pressure applied to the fluid by the compressed-air piston is

F1

A1
=

782 N

0.00283 m2 = 2.76 * 105  Pa = 2.7 atm

This is the pressure in excess of atmospheric pressure, which is what a pressure gauge 
measures, so the gauge reads, depending on its units, 276 kPa or 2.7 atm.

REVIEW 782 N is roughly the weight of an average adult man. The multiplication factor 
A2/A1 = 17 makes it quite easy for this much force to lift the car.

STOP TO THINK 14.3 A mercury barometer is covered 
with a tightly sealed bell jar. Initially the mercury column 
is 760 mm high. Then all the air is pumped out of the bell 
jar. Afterward, the mercury column

a. Has a height of 0 mm.
b. Has a height somewhere between 0 and 760 mm.
c. Has a height of 760 mm.
d. Has a height somewhere between 760 mm and the 

top of the tube.
e. Fills the tube to the top.

Bell jar

Fup

Fnet = FB

Increasing
pressure

Fup 7 Fdown because the pressure
increases with depth. Hence the
fluid exerts a net upward force.

The net force of the fluid on the
cylinder is the buoyant force FB. 

Fdown

u

u u

u

u

FIGURE 14.17 The buoyant force arises 
because the fluid pressure at the bottom 
of the cylinder is larger than at the top.
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14.4 Buoyancy 399

Archimedes’ principle A fluid exerts an upward buoyant force F
u

B on an object 
immersed in or floating on the fluid. The magnitude of the buoyant force equals 
the weight of the fluid displaced by the object.

fluid hasn’t changed, the buoyant force on this new object is exactly the same as the 
buoyant force on the parcel of fluid that we removed.

When an object (or a portion of an object) is immersed in a fluid, it displaces fluid 
that would otherwise fill that region of space. This fluid is called the displaced fluid. 
The displaced fluid’s volume is exactly the volume of the portion of the object that 
is immersed in the fluid. Figure 14.18 leads us to conclude that the magnitude of the  
upward buoyant force matches the weight of this displaced fluid.

This idea was first recognized by the ancient Greek mathematician and  scientist 
Archimedes, perhaps the greatest scientist of antiquity, and today we know it as 
 Archimedes’ principle.

These are equal
because the parcel
is in equilibrium.

Imaginary boundary
around a parcel of fluid

(a) 

FB

u

FG

u

FIGURE 14.18 The buoyant force.

FB

u

Real object with same size and
shape as the parcel of fluid

(b)

The buoyant force on the object is the
same as on the parcel of fluid because
the surrounding fluid has not changed.

Suppose the fluid has density rf  and the object displaces volume Vf  of fluid. The mass 
of the displaced fluid is mf = rf Vf  and so its weight is mf g = rf Vf g. Thus Archimedes’ 
principle in equation form is

 FB = rf Vf g (14.12)

   NOTE    It is important to distinguish the density and volume of the displaced fluid 
from the density and volume of the object. To do so, we’ll use subscript f for the fluid 
and o for the object.

A 10 cm * 10 cm * 10 cm block of wood with density 700 kg/m3 
is held underwater by a string tied to the bottom of the container. 
What is the tension in the string?

MODEL The buoyant force is given by Archimedes’ principle.

VISUALIZE FIGURE 14.19 shows the forces acting on the wood.

SOLVE The block is in equilibrium, so

aFy = FB - T - mo g = 0

Thus the tension is T = FB - mo g. The mass of the block is 
mo = roVo , and the buoyant force, given by Equation 14.12, is 
FB = rf Vf g. Thus

T = rf Vf g - roVo g = 1rf - ro2Vo g

where we’ve used the fact that Vf = Vo for a completely submerged 
object. The volume is Vo = 1000 cm3 = 1.0 * 10-3 m3, and hence 
the tension in the string is

 T = 111000 kg/m32 - 1700 kg/m322
 * 11.0 * 10-3 m3219.8 m/s22 = 2.9 N

REVIEW The tension depends on the difference in densities. The ten-
sion would vanish if the wood density matched the water density.

EXAMPLE 14.8 ■ Holding a block of wood underwater

FB

u

FG

u

T
u

Block
of wood

String

The buoyant
force pushes up
on the block.

FIGURE 14.19 The forces acting on the submerged wood.

Float or Sink?
If you hold an object underwater and then release it, it floats to the surface, sinks, or 
remains “hanging” in the water. How can we predict which it will do? The net force 
on the object an instant after you release it is F

u

net = 1FB - mo g, upward2. Whether it 
heads for the surface or the bottom depends on whether the buoyant force FB is larger 
or smaller than the object’s weight mo g.

The magnitude of the buoyant force is rf Vf g. The weight of a uniform object, such 
as a block of steel, is simply roVo g. But a compound object, such as a scuba diver, may 
have pieces of varying density. If we define the average density to be ravg = mo/Vo , 
the weight of a compound object is ravg Vo g.
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400 CHAPTER 14 Fluids and Elasticity

Comparing rf Vf g to ravg Vo g, and noting that Vf = Vo  for an object that is fully 
 submerged, we see that an object floats or sinks depending on whether the fluid den-
sity rf  is larger or smaller than the object’s average density ravg . If the densities are  
equal, the object is in equilibrium and hangs motionless. This is called neutral 
buoyancy. These conditions are summarized in Tactics Box 14.2.

TACTICS BOX 14.2

Finding whether an object floats or sinks

1

FB

u

Object sinks

mo g

ravg 7 rf

2

FB

u

Object floats

mo g

ravg 6 rf

FB

u

Neutral buoyancy

mog

3

ravg = rf

An object sinks if it weighs more than the 
fluid it displaces—that is, if its average 
density is greater than the density of the 
fluid.

An object floats on the surface if it 
weighs less than the fluid it displaces—
that is, if its average density is less than 
the density of the fluid.

An object hangs motionless if it 
weighs exactly the same as the fluid it  
displaces—that is, if its average den-
sity equals the density of the fluid.

Exercises 14–18 

As an example, steel is denser than water, so a chunk of steel sinks. Oil is less 
dense than water, so oil floats on water. Fish use swim bladders filled with air and 
scuba divers use weighted belts to adjust their average density to match the density of 
water. Both are examples of neutral buoyancy.

If you release a block of wood underwater, the net upward force causes the block to 
shoot to the surface. Then what? Let’s begin with a uniform object such as the block 
shown in FIGURE 14.20. This object contains nothing tricky, like indentations or voids. 
Because it’s floating, it must be the case that ro 6 rf.

Now that the object is floating, it’s in equilibrium. The upward buoyant force, 
given by Archimedes’ principle, exactly balances the downward weight of the object. 
That is,

 FB = rfVf  g = mo  g = roVo  g (14.13)

In this case, the volume of the displaced fluid is not the same as the volume of the 
object. In fact, we can see from Equation 14.13 that the volume of fluid displaced by 
a floating object of uniform density is

 Vf =
ro

rf
 Vo 6 Vo (14.14)

You’ve often heard it said that “90% of an iceberg is underwater.” Equation 14.14 is 
the basis for that statement. Most icebergs break off glaciers and are fresh-water ice 
with a density of 917 kg/m3. The density of seawater is 1030 kg/m3. Thus

Vf =
917 kg/m3

1030 kg/m3 Vo = 0.89Vo

Vf , the displaced water, is the volume of the iceberg that is underwater. You can see 
that, indeed, 89% of the volume of an iceberg is underwater.

   NOTE    Equation 14.14 applies only to uniform objects. It does not apply to boats, 
hollow spheres, or other objects of nonuniform composition.

FB

u

An object of density ro and volume Vo 
is floating on a fluid of density rf.

The submerged volume of the object is 
equal to the volume Vf of displaced fluid.

Fluid
density rf

mog

FIGURE 14.20 A floating object is in 
equilibrium.

About 90% of an iceberg is underwater.
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FB

u

FG

u

Fdrag

u

At terminal speed, the drag force and buoyant
force balance the gravitational force.

u
v

FIGURE 14.22 The forces on an object 
sinking in a liquid.

Terminal Speed in a Liquid
In ❮❮  SECTION 6.5, where we looked at the drag force on objects moving through fluids, 
we calculated the terminal speed of an object falling in air but not that of an object 
sinking in a liquid. The reason is that the buoyant force of air can usually be ne-
glected, but the buoyant force of a liquid cannot.

FIGURE 14.22 shows an object sinking in a liquid. There are two upward forces: the 
drag force F

u

drag and a buoyant force F
u

B. When the object has reached terminal speed 
and is no longer accelerating, these forces must balance the gravitational force. Thus

 Fdrag at term speed = FG - FB = ro Vo g - rfVf g = (ro - rf)Vo g (14.15)

where, in the last step, we used Vf = Vo for an object that is submerged. There’s often 
little difference between ro and rf for objects falling in liquids, so the terminal speed 
is often much lower than in air.

Recall that the drag force depends on the Reynolds number Re. At high Reynolds 
number, Re 7 1000, the drag is quadratic in v: Fdrag = 1

2 Cd rf  Av2. At low Reynolds 
number, Re 6 1, the drag on a sphere of radius r is linear in v: Fdrag = 6phf rv, where 
hf is the viscosity of the fluid. Exact values depend on density and viscosity, but as a 
rough rule objects smaller than 100 mm fall in water with linear drag while objects 
larger than a few mm experience quadratic drag. There’s no simple expression for 
drag for in-between cases. Equation 14.15 can be solved for vterm after we have identi-
fied the correct model for Fdrag.

Boats
We’ll conclude by designing a boat. FIGURE 14.23 is a physicist’s idea of a boat. Four 
massless but rigid walls are attached to a solid steel plate of mass mo and area A. As 
the steel plate settles down into the water, the sides allow the boat to displace a  volume 
of water much larger than that displaced by the steel alone. The boat will float if the  
weight of the displaced water equals the weight of the boat.

You need to determine the density of an unknown liquid. You no-
tice that a block floats in this liquid with 4.6 cm of the side of the 
block submerged. When the block is placed in water, it also floats 
but with 5.8 cm submerged. What is the density of the unknown 
liquid?

MODEL The block is an object of uniform composition.

VISUALIZE FIGURE 14.21 shows the block and defines the cross- 
section area A and submerged lengths hu in the unknown liquid 
and hw in water.

SOLVE The block is floating, so Equation 14.14 applies. The block 
displaces volume Vu = Ahu of the unknown liquid. Thus

Vu = Ahu =
ro

ru
 Vo

Similarly, the block displaces volume Vw = Ahw  of the water, lead-
ing to

Vw = Ahw =
ro

rw
 Vo

Because there are two fluids, we’ve used subscripts w for water and 
u for the unknown in place of the fluid subscript f. The product roVo 
appears in both equations; hence

ru  Ahu = rw  Ahw

The area A cancels, and the density of the unknown liquid is

ru =
hw

hu
 rw =

5.8 cm
4.6 cm

* 1000 kg/m3 = 1260 kg/m3

REVIEW Comparison with Table 14.1 shows that the unknown 
 liquid is likely to be glycerin.

EXAMPLE 14.9 ■ Measuring the density of an unknown liquid

FIGURE 14.21 More of the block is submerged in water than in an 
unknown liquid.

Solid bottom of
mass mo and area A

Sides of
height h

Massless, rigid walls

FIGURE 14.23 A physicist’s boat.
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402 CHAPTER 14 Fluids and Elasticity

MODEL 14.2

Ideal fluid
Applies to liquids and gases. A fluid can be considered ideal if

■■ The fluid is incompressible.
■■ The fluid is nonviscous.

• Viscosity, a fluid’s resistance to flow, is analogous to kinetic friction.

• Nonviscous flow is analogous to friction-free motion.
■■ The flow is laminar.

• Laminar flow occurs when the fluid velocity at each point in the fluid is 
constant. The flow is smooth; it doesn’t change or fluctuate.

■■ Limitations: The model fails if

• the fluid has significant viscosity.

• the flow is turbulent rather than laminar.
Exercise 19 

14.5 Fluid Dynamics
The wind blowing through your hair, a white-water river, and oil gushing from an oil 
well are examples of fluids in motion. We’ve focused thus far on fluid statics, but it’s 
time to turn our attention to fluid dynamics.

Fluid flow is a complex subject. Many aspects, especially turbulence and the 
formation of eddies, are still not well understood and are areas of current science 
and engineering research. We will avoid these difficulties by using a simplified 
model. The ideal-fluid model provides a good, though not perfect, description of 
fluid flow in many situations. It captures the essence of fluid flow while eliminating 
unnecessary details.

In terms of density, the boat will float if ravg 6 rf . If the sides of the boat are height 
h, the boat’s volume is Vo = Ah and its average density is ravg = mo/Vo = mo/Ah. The 
boat will float if

 ravg =
mo

Ah
6 rf (14.16)

Thus the minimum height of the sides, a height that would allow the boat to float 
(in perfectly still water!) with water right up to the rails, is

 hmin =
mo

rf A
 (14.17)

As a quick example, a 5 m * 10 m steel “barge” with a 2-cm-thick floor has an area of 
50 m2 and a mass of 7900 kg. The minimum height of the massless walls, as given by 
Equation 14.17, is 16 cm.

Real ships and boats are more complicated, but the same idea holds true. Whether 
it’s made of concrete, steel, or lead, a boat will float if its geometry allows it to 
 displace enough water to equal the weight of the boat.

STOP TO THINK 14.4 An ice cube is floating in a glass of water that is filled  entirely 
to the brim. When the ice cube melts, the water level will

a. Fall.
b. Stay the same, right at the brim.
c. Rise, causing the water to spill.
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14.5 Fluid Dynamics 403

The rising smoke in the photograph of FIGURE 14.24 begins as laminar flow, recog-
nizable by the smooth contours, but at some point undergoes a transition to turbulent 
flow. A laminar-to-turbulent transition is not uncommon in fluid flow. The ideal-fluid 
model can be applied to the laminar flow, but not to the turbulent flow.

Turbulent flow

Laminar flow

FIGURE 14.24 Rising smoke changes from 
laminar flow to turbulent flow.

v
u

1. Streamlines never cross.

2. Fluid particle velocity is
 tangent to the streamline.

3. The speed is higher where the
 streamlines are closer together.

(b)Streamline(a)

FIGURE 14.25 Particles in an ideal fluid move along streamlines.

A key observation is that the flow speed changes as the streamlines get closer 
together or farther apart. In FIGURE 14.26, where an ideal fluid flows through a tube, 
the streamlines get closer together as the tube gets narrower, so the flow speed must 
increase. To understand quantitatively how the speed changes, focus on the shaded 
volume of fluid as it moves through the tube.

An ideal fluid is incompressible, so this shaded portion of the fluid moves forward 
without changing volume. If the flow speed on the left side of the tube is v1, then 
during a time interval ∆t the shaded fluid moves forward distance ∆x1 = v1 ∆t and 
“vacates” volume ∆V1 = A1 ∆x1 = A1v1 ∆t. (New fluid moves in to fill this volume, but  
we’re focusing on the shaded portion of the fluid.) On the right side of the tube, where 
the flow speed is v2, the shaded fluid moves forward distance ∆x2 = v2 ∆t and occu-
pies a new volume ∆V2 = A2 ∆x2 = A2v2 ∆t. These two volumes must be equal, leading  
to the conclusion that

 v1 A1 = v2 A2 (14.18)

Equation 14.18 is called the equation of continuity, and it is one of two 
 important equations for the flow of an ideal fluid. The equation of continuity says 
that flow is faster in narrower parts of a tube, slower in wider parts. You’re 
 familiar with this conclusion from many everyday observations. For example, 
water is shot from the narrow nozzle in FIGURE 14.27 much faster than it’s flowing 
through the wider hose.

The quantity

 Q =
∆V
∆t

= vA (14.19)

Before:

After:

Cross-section
area A1

Cross-section
area A2

v1
u

v2
u

Streamlines are converging,
so the speed is increasing.

The fluid is incompressible,
so the two shaded volumes 
are the same.

The new volume ∆V2 occupied on
the right must match the volume
∆V1 vacated on the left.

∆V1

∆x1 ∆x2 ∆V2

FIGURE 14.26 The flow speed changes as 
a tube’s cross-section area changes.

FIGURE 14.27 Narrowing the cross section 
increases the water’s speed.

The Equation of Continuity
FIGURE 14.25a shows smoke being used to help engineers visualize the airflow around a 
car in a wind tunnel. The smoothness of the flow tells us this is laminar flow. But no-
tice also how the individual smoke trails retain their identity. They don’t cross or get 
mixed together. Each smoke trail represents a streamline in the fluid. FIGURE 14.25b 
illustrates three important properties of streamlines.

M14_KNIG8221_05_GE_C14.indd   403 28/05/2022   08:41
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A 20-m-wide, 4.0-m-deep river with a triangular cross section 
flows at a lazy 1.0 m/s. As it makes its way to the sea, the river 
enters a gorge where rocky walls confine it to a width of 4.0 m and 
a depth of 6.0 m, again with a triangular cross section. What is the 
river’s volume flow rate? And what is its speed through the gorge?

MODEL Model the flowing river as an ideal fluid.

SOLVE A triangular river cross section of width w and depth d has 
cross-section area A = 1

2 wd. In the first part of the river,

A1 = 1
2 120 m214.0 m2 = 40 m2

and thus the river’s flow rate is

Q = v1 A1 = 11.0 m/s2140 m22 = 40 m3/s

The volume flow rate is the same at all points along the river, 
 including the gorge. The gorge has cross-section area

A2 = 1
2 14.0 m216.0 m2 = 12 m2

Thus the river’s speed through the gorge is

v2 =
Q

A2
=

40 m3/s

12 m2 = 3.3 m/s

REVIEW A river speed of 3.3 m/s, or about 7 mph, is typical of 
a Class III whitewater-rafting river. For a 6-m-deep river, some 
whitewater and waves on the surface don’t greatly affect our 
assumption of smooth flow through a perfectly triangular cross 
section.

EXAMPLE 14.10 ■ River rafting

F1

u

F1

u

F2

u

F2

u

Before:

After:

Area A1

Area A2v2
u

v1
u

Follow the shaded
mass of fluid as it
moves.

K and UG don’t change.

K and UG 
decrease.

K and UG 
increase.∆x1

∆x2

Volume ∆V

y2

y1

y

FIGURE 14.28 Energy analysis of fluid flow 
through a tube.

Bernoulli’s Equation
The equation of continuity is one of two important relationships for ideal fluids. The 
other is a statement of energy conservation. The general statement of the energy prin-
ciple that you learned in Chapter 10 is

 ∆K + ∆U = Wext  (14.20)

where Wext  is the work done by any external forces.
Let’s see how this applies to the fluid flowing through the tube of FIGURE 14.28. This 

is the situation we considered in Figure 14.26, but now the tube changes height. The 
more darkly shaded volume of fluid is the system to which we will apply Equation 
14.20. Work is done on this system by pressure forces from the surrounding fluid in the 
tube. The unseen fluid to the left of our system exerts force F

u

1 = 1p1 A1, to the right2, 
where p1 is the fluid pressure at this point in the tube and A1 is the cross-section area. 
During a small time interval ∆t, this force pushes the fluid through displacement 
∆r u

1 = 1∆x1, to the right2 and does work

 W1 = F
u

1
# ∆r 

u
1 = F1 ∆x1 = 1p1 A12∆x1 = p11A1 ∆x12 = p1∆V  (14.21)

is called the volume flow rate. The SI units of Q are m3/s, although in practice  
Q may be measured in cm3/s, liters per minute, or, in the United States, gallons per 
minute. Another way to express the meaning of the equation of continuity is to say that 
the volume flow rate is constant at all points in a tube.

STOP TO THINK 14.5 The figure shows  
volume flow rates (in cm3/s) for all but one 
tube. What is the volume flow rate through  
the unmarked tube? Is the flow direction  
in or out?

?

110

2

Flows in cm3/s

8

4
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14.5 Fluid Dynamics 405

The A1 and ∆x1 enter the equation from different terms, but they conveniently com-
bine to give ∆V = A1 ∆x1, the volume “vacated” by the shaded fluid as it’s pushed 
forward.

The situation is much the same on the right edge of the system, where the sur-
rounding fluid exerts a pressure force F

u

2 = 1p2 A2, to the left2. However, force F
u

2 is 
opposite the displacement ∆r u

2, which introduces a minus sign into the dot product for 
the work, giving

 W2 = F
u

2
# ∆r 

u
2 = -F2 ∆x2 = -1p2 A22∆x2 = -p21A2 ∆x22 = -p2 ∆V  (14.22)

Because the fluid is incompressible, the volume ∆V = A2 ∆x2 “gained” on the right 
side is exactly the same as that lost on the left. Altogether, the work done on the sys-
tem by the surrounding fluid is

 Wext = W1 + W2 = 1p1 - p22∆V  (14.23)

The work depends on the pressure difference p1 - p2.
Now let’s see what happens to the system’s potential and kinetic energy. Most of the 

system does not change during time interval ∆t; it’s fluid at the same height moving at 
the same speed. All we need to consider are the volumes ∆V  at the two ends. On the 
right, the system gains kinetic and gravitational potential energy as the fluid moves 
into volume ∆V . Simultaneously, the system loses kinetic and gravitational potential  
energy on the left as fluid vacates volume ∆V .

The mass of fluid in volume ∆V  is m = r ∆V, where r is the fluid density. Thus the 
net change in the system’s gravitational potential energy during ∆t is

 ∆UG = mgy2 - mgy1 = r∆Vgy2 - r∆Vgy1 (14.24)

Similarly, the system’s change in kinetic energy is

 ∆K = 1
2 mv2 

2 - 1
2 mv1 

2 = 1
2 r∆V v2 

2 - 1
2 r∆V v1 

2 (14.25)

Combining Equations 14.23, 14.24, and 14.25 gives us the energy equation for the 
fluid in the flow tube:

 1
2 r∆Vv2 

2 - 1
2 r∆Vv1 

2 + r∆Vgy2 - r∆Vgy1 = p1∆V - p2∆V  (14.26)

The volume ∆V  cancels out of all the terms. Regrouping terms, we have

 p1 + 1
2 rv1 

2 + rgy1 = p2 + 1
2 rv2 

2 + rgy2 (14.27)

Equation 14.27 is called Bernoulli’s equation. It is named for the 18th- century  
Swiss scientist Daniel Bernoulli, who made some of the earliest studies of fluid 
dynamics.

Bernoulli’s equation is really nothing more than a statement about work and 
 energy. It is sometimes useful to express Bernoulli’s equation in the alternative form

 p + 1
2 rv2 + rgy = constant (14.28)

This version of Bernoulli’s equation tells us that the quantity p + 1
2 rv2 + rgy remains 

constant along a streamline.

Much of modern industry is based on 
transporting fluids, both liquids and 
gases, from one point to another. The 
industrial sector of the economy con-
sumes about one-third of all the energy 
produced in the United States, and a large 
fraction of that is used by pumps. Proper 
design—pipe sizes, lengths, and turns—is 
essential for the efficient use of energy.
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Water flows through the pipes shown in FIGURE 14.29. The water’s 
speed through the lower pipe is 5.0 m/s and a pressure gauge reads 
75 kPa. What is the reading of the pressure gauge on the upper 
pipe?

MODEL Treat the water as an ideal fluid obeying Bernoulli’s equa-
tion. Consider a streamline connecting point 1 in the lower pipe 
with point 2 in the upper pipe.

SOLVE Bernoulli’s equation, Equation 14.27, relates the pressure, 
fluid speed, and heights at points 1 and 2. It is easily solved for the 
pressure p2 at point 2:

  p2 = p1 + 1
2 rv1 

2 - 1
2 rv2 

2 + rgy1 - rgy2

  = p1 + 1
2 r1v1 

2 - v2 

22 + rg1y1 - y22
All quantities on the right are known except v2, and that is where 
the equation of continuity will be useful. The cross-section areas 
and water speeds at points 1 and 2 are related by

v1 A1 = v2 A2

from which we find

v2 =
A1

A2
 v1 =

r1 

2

r2 

2 v1 =
10.030 m22

10.020 m22 15.0 m/s2 = 11.25 m/s

The pressure at point 1 is p1 = 75 kPa + 1 atm = 176,300 Pa. 
We can now use the above expression for p2 to calculate 
p2 = 105,900 Pa. This is the absolute pressure; the pressure gauge 
on the upper pipe will read

p2 = 105,900 Pa - 1 atm = 4.6 kPa

REVIEW Reducing the pipe size decreases the pressure because it 
makes v2 7 v1. Gaining elevation also reduces the pressure.

EXAMPLE 14.11 ■ An irrigation system

v2

75 kPa

1

2

2.0 m
4.0 cm

5.0 m/s

6.0 cm

?

FIGURE 14.29 The water pipes of an irrigation system.

Small hydroelectric plants in the mountains sometimes bring the 
water from a reservoir down to the power plant through enclosed 
tubes. In one such plant, the 100-cm-diameter intake tube in the 
base of the dam is 50 m below the reservoir surface. The water 
drops 200 m through the tube before flowing into the turbine 
through a 50-cm-diameter nozzle.

a. What is the water speed into the turbine?

b. By how much does the inlet pressure differ from the hydrostatic 
pressure at that depth?

MODEL Treat the water as an ideal fluid obeying Bernoulli’s equa-
tion. Consider a streamline that begins at the surface of the reser-
voir and ends at the exit of the nozzle. The pressure at the surface is  
p1 = patmos  and v1 ≈ 0 m/s. The water discharges into air, so 
p3 = patmos  at the exit.

VISUALIZE FIGURE 14.30 is a pictorial representation of the situation.

EXAMPLE 14.12 ■ Hydroelectric power

3

1

200

0

50 cm

250

y (m)
Dam

100 cm

Streamline

Turbine

2

FIGURE 14.30 Pictorial representation of the water flow to a 
hydroelectric plant.

 

   NOTE    Using Bernoulli’s equation is very much like using the law of conservation 
of energy. Rather than identifying a “before” and “after,” you want to identify two 
points on a streamline. As the following examples show, Bernoulli’s equation is often  
used in conjunction with the equation of continuity.
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14.5 Fluid Dynamics 407

   NOTE    Real gases are compressible. Real liquids have viscosity. It might seem that 
Bernoulli’s equation, which assumes a nonviscous, incompressible fluid, would 
be a poor description of the real world, but it turns out that gases undergo little 
compression during most flows. And the viscosity of a “thin” liquid, such as water, 
is not a major issue unless a tube is very narrow. All in all, Bernoulli’s equation is a 
reasonably good description of many real fluids.

Two Applications
The speed of a flowing gas is often measured with a device called a Venturi tube. 
Venturi tubes measure gas speeds in environments as different as chemistry laborato-
ries, wind tunnels, and jet engines.

FIGURE 14.31 shows gas flowing through a tube that changes from cross-section area 
A1 to area A2. A U-shaped glass tube containing liquid of density r liq connects the 
two segments of the flow tube. When gas flows through the horizontal tube, the liquid 
stands height h higher in the side of the U tube connected to the narrow segment of the  
flow tube.

Figure 14.31 shows how a Venturi tube works. We can make this analysis quantitative 
and determine the gas-flow speed from the liquid height h. Two pieces of information  
we have to work with are Bernoulli’s equation

 p1 + 1
2 rv1 

2 + rgy1 = p2 + 1
2 rv2 

2 + rgy2 (14.29)

and the equation of continuity

 v2 A2 = v1 A1 (14.30)

In addition, the hydrostatic equation for the liquid tells us that the pressure p2 above 
the right tube differs from the pressure p1 above the left tube by r liq gh. That is,

 p2 = p1 - r
 liq gh (14.31)

First we use Equations 14.30 and 14.31 to eliminate v2 and p2 in Bernoulli’s equation:

 p1 + 1
2 rv1 

2 = 1p1 - r
 liq gh2 + 1

2 r1A1

A2
22

 v1 

2 (14.32)

SOLVE a. Bernoulli’s equation, with v1 = 0 m/s and y3 = 0 m, is

patmos + rgy1 = patmos + 1
2 rv3 

2

The power plant is in the mountains, where patmos 6 1 atm, but 
patmos  occurs on both sides of Bernoulli’s equation and cancels. 
Solving for v3 gives

v3 = 22gy1 = 2219.80 m/s221250 m2 = 70 m/s

 b. You might expect the pressure p2 at the intake to be the hydro-
static pressure patmos + rgd at depth d. But the water is flowing into 
the  intake tube, so it’s not in hydrostatic equilibrium. We can find 
the intake speed v2 from the equation of continuity:

v2 =
A3

A2
 v3 =

r3 

2

r2 

2 22gy1

The intake is along the streamline between points 1 and 3, so we 
can apply Bernoulli’s equation to points 1 and 2:

patmos + rgy1 = p2 + 1
2 rv2 

2 + rgy2

Solving this equation for p2, and noting that y1 - y2 = d, we find

  p2 = patmos + rg1y1 - y22 - 1
2 rv2 

2

  = patmos + rgd - 1
2 r1r3

r2
24

 12gy12

  =  phydrostatic - rgy1 1r3

r2
24

The intake pressure is less than hydrostatic pressure by the amount

rgy1 1r3

r2
24

= 153,000 Pa = 1.5 atm

REVIEW The water’s exit speed from the nozzle is the same as if  
it fell 250 m from the surface of the reservoir. This isn’t surpris-
ing because we’ve assumed a nonviscous (i.e., frictionless) liquid. 
“Real” water would have less speed but still flow very fast.

h

Gas of density r

Liquid of
density rliq

Pressure p2

Area A2

Pressure p1

Area A1

2. The U tube acts like a manometer.
 The liquid level is higher on the side
 where the pressure is lower. 

1. As the gas flows into a smaller
 cross section, it speeds up
 (equation of continuity). As it
 speeds up, the pressure decreases
 (Bernoulli’s equation).

v2
u

v1
u

FIGURE 14.31 A Venturi tube measures 
gas-flow speeds.
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408 CHAPTER 14 Fluids and Elasticity

The potential energy terms have disappeared because y1 = y2 for a horizontal tube. 
Equation 14.32 can now be solved for v1, then v2 is obtained from Equation 14.30. 
We’ll skip a few algebraic steps and go right to the result:

  v1 = A2 B 2r liq gh

r1A1 

2 - A2 

22 

  v2 = A1 B 2r liq gh

r1A1 

2 - A2 

22 

(14.33)

Equations 14.33 are reasonably accurate as long as the flow speeds are much less than 
the speed of sound, about 340 m/s. The Venturi tube is an example of the power of 
Bernoulli’s equation.

As a final example, we can use Bernoulli’s equation to understand, at least  
qualitatively, how airplane wings generate lift. FIGURE 14.32 shows the cross section of 
an airplane wing. This shape is called an airfoil.

Although you usually think of an airplane moving through the air, in the airplane’s 
reference frame it is the air that flows across a stationary wing. As it does, the stream-
lines must separate. The bottom of the wing does not significantly alter the streamlines 
going under the wing. But the streamlines going over the top of the wing get bunched 
together. As we’ve seen, with the equation of continuity, the flow speed has to increase 
when streamlines get closer together. Consequently, the air speed increases as it flows  
across the top of the wing.

If the air speed increases, then, from Bernoulli’s equation, the air pressure must 
decrease. And if the air pressure above the wing is less than the air pressure below, the 
air will exert a net upward force on the wing. The upward force of the air due to the 
pressure difference across the wing is called lift. A full understanding of lift in aero-
dynamics involves other, more complicated factors, such as the creation of vortices 
on the trailing edge of the wing, but our introduction to fluid dynamics has given you 
enough tools to at least begin to understand how airplanes stay aloft.

p ≈ patmos beneath wing

1. The streamlines in the flow
 tube are compressed,
 indicating that the air speeds
 up as it flows over the top of
 the wing. This lowers the
 pressure to p 6 patmos. 2. The pressure

 difference exerts
 an upward force
 on the wing.

Flift

u

FIGURE 14.32 Airflow over a wing 
generates lift by creating unequal 
pressures above and below.

STOP TO THINK 14.6 Rank in order, from highest to lowest, the liquid heights h1 to  
h4. The airflow is from left to right.

Direction of airflow

Air pump

h1 h2 h3 h4

14.6 Motion of a Viscous Fluid
Bernoulli’s equation, a statement about the energy of flowing fluids, is equivalent to 
our earlier discovery that mechanical energy is conserved for a system that has no 
dissipative forces. But nearly all real-world systems do have dissipative forces that 
generate thermal energy. Flowing fluids dissipate energy due to their viscosity.

Viscosity h, a fluid’s resistance to flow, was introduced in ❮❮  SECTION 6.5 when we 
looked at the drag force on an object moving through a stationary fluid. Now we want 
to analyze a moving fluid in a stationary tube. We’ll restrict our analysis to tubes that 
have circular cross sections. TABLE 14.3 gives values of h for some common fluids. 
Note that viscosity decreases very rapidly with an increase in temperature.

TABLE 14.3 Viscosities of fluids

Fluid h (Pa  s)

Ethyl alcohol (20°C) 1.3 * 10-3

Water (20°C) 1.0 * 10-3

Water (40°C) 6.5 * 10-4

Milk (20°C) 3.0 * 10-3

Whole blood (37°C) 3.5 * 10-3

Olive oil (20°C) 8.4 * 10-2

Motor oil (20°C) 2.4 * 10-1

Motor oil (100°C) 8.0 * 10-3
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14.6 Motion of a Viscous Fluid 409

Viscosity has a profound effect on how a fluid moves through a tube. FIGURE 14.33a 
shows that in an ideal fluid, which has no viscosity, all the fluid particles move with the 
same speed v, the speed that appears in Bernoulli’s equation. For a viscous fluid, seen 
in FIGURE 14.33b, the fluid moves fastest in the center of the tube. The speed decreases 
away from the center until it reaches zero on the walls of the tube; that is, the fluid in 
contact with the walls of the tube does not move at all. Whether it is water moving 
through pipes or blood through arteries, the fact that the fluid at the outer edges “lin-
gers” and barely moves allows deposits to build up on the inside walls of a tube.

We can’t characterize the flow of a viscous fluid by a single speed v, but we can 
define an average flow speed vavg. The volume flow rate Q = ∆V/ ∆t is still a well- 
defined quantity, so, corresponding to Q = vA for an ideal fluid, we define the average 
flow speed of a viscous fluid through a tube with cross-section area A by

 vavg =
Q

A
 (14.34)

FIGURE 14.34 shows fluid flowing smoothly (i.e., laminar flow) with average speed 
vavg through a horizontal tube that has constant radius r. There’s no change of height 
(y2 = y1) and no change of speed along a streamline between points 1 and 2 (v2 = v1). 
If this is an ideal fluid, then we learn from Bernoulli’s equation that ∆p = p1 - p2 = 0. 
That is, there’s no net force on this segment of fluid; it simply “coasts” through the 
tube at constant speed with no change in pressure. It’s equivalent to a puck gliding at 
constant speed across a frictionless surface with no applied force.

If there’s friction, however, something has to apply a steady force—equal and 
opposite the friction force—to keep the puck moving at a steady speed. Likewise, 
something has to apply a steady force—equal and opposite the viscous drag—to push 
a viscous fluid through a tube at a steady speed. That “something” is the pressure 
difference ∆p between the ends of the tube. A pressure difference is needed to keep a 
viscous fluid flowing, whereas no pressure difference is needed for an ideal fluid. The 
net force on the segment of fluid in the tube of Figure 14.34 is Fnet = A ∆p.

We can use the energy principle to determine how large the pressure difference 
must be. Our starting point for finding Bernoulli’s equation was Wext = ∆K + ∆U, 
which is valid for a system that has no dissipative forces. Dissipative forces transform 
mechanical energy into thermal energy, which leads to Wext = ∆K + ∆U + ∆Eth. In 
❮❮  SECTION 9.5, we found that ∆Eth = fk ∆x when friction is the dissipative force. This is 
easily generalized: If Fdrag is the “friction” due to a fluid’s viscosity, then pushing the 
fluid a distance ∆x against the viscous drag generates thermal energy ∆Eth = Fdrag ∆x.

We will limit our analysis to the horizontal tube of Figure 14.34, in which case 
∆UG = 0 and also ∆K = 0 because vavg doesn’t change in a tube of constant diameter. 
We’ve already calculated the net work done by a pressure difference: Equation 14.23 
found Wext = ∆p V = ∆p  A∆x for the work done to push the fluid through ∆x. Thus 
the energy principle for a viscous fluid flowing through this horizontal tube is

 Wext = ∆p A∆x = ∆Eth = Fdrag ∆x (14.35)

The work done by the pressure difference does not increase the fluid’s kinetic  
energy or potential energy, only the thermal energy of the fluid and the tube.

In Section 6.5 we found that the drag on a sphere of radius r moving through a 
fluid with viscosity h is Fdrag = 6phvr. We see that drag depends linearly on the vis-
cosity, the speed, and the distance over which viscous forces act. Thus it would seem 
likely that the viscous drag on a segment of fluid flowing through a tube of length L is 
Fdrag = chvavgL, where c is an unknown constant. Delving deeper into the fundamen-
tals of fluid mechanics, it can be shown that c = 8p and thus Fdrag = 8phvavgL. Then, 
using this in Equation 14.35, we find that the pressure difference needed to push a 
viscous fluid through a tube with average speed vavg is

 ∆p =
8hvavgL

r2  (14.36)

where A = pr2 is used as the cross-section area. A larger pressure difference is needed 
for a more viscous fluid, a longer tube, or a narrower tube.

(a) Ideal fluid

v 

The speed is the same
at all points in the tube.

(b) Viscous fluid The speed is maximum
at the center of the tube.
It decreases away from
the center.

The speed is zero on
the walls of the tube.

FIGURE 14.33 Viscosity alters the speed 
profile of a fluid flowing through a tube.

Flow of a viscous fluid requires
pressure difference ∆p = p1 - p2
between the ends of the tube.

L

r

Laminar flow

p1 p2

vavg

FIGURE 14.34 Laminar flow of a viscous 
fluid requires a pressure difference.
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410 CHAPTER 14 Fluids and Elasticity

Solving for vavg, we find that a pressure difference ∆p across a tube of length L 
causes a fluid to flow with average speed

 vavg =
r2

8h
 
∆p

L
 (14.37)

Not surprisingly, a more viscous fluid flows more slowly.
The more practical quantity, because it’s easily measured, is the volume flow rate 

Q. Because Q = vavg A = pr2vavg, the flow rate is

 Q =
pr4

8h
 
∆p

L
 (14.38)

This is called Poiseuille’s equation for viscous flow, named for a 19th-century 
French scientist who studied fluids and was especially interested in blood flow.

The quantity ∆p/L is called the pressure gradient. It is the pressure change per 
unit length or, equivalently, the slope of a pressure-versus-distance graph. A large 
pressure change over a small distance is a large pressure gradient. We can interpret 
Poiseuille’s equation as saying that a pressure gradient drives a fluid flow. This is our 
first introduction to the idea that gradients drive flows, but it won’t be our last.

One surprising consequence of Poiseuille’s equation is the very strong dependence 
of the flow on the tube’s radius: The flow rate is proportional to the fourth power of r. 
Fairly small changes in the radius have a large effect on the flow rate.

Atherosclerosis is a condition 
in which an artery is narrowed 
by the buildup of fatty plaques 
on its inner wall (as shown in 
the photo). The process restricts 
blood flow to organs, including 
the heart, and can lead to serious 
health issues. Suppose the diam-
eter of an artery is reduced by 25%, a not untypical value. By what 
percent is the blood flow reduced if the pressure difference stays 
constant? By what factor would the pressure difference established 
by the heart have to increase to keep the blood flow rate constant?

MODEL Model the blood flow through the artery as viscous flow 
through a tube of constant diameter.

SOLVE Suppose the flow rate is Q1 through an unclogged artery 
of radius r1 and Q2 through a clogged artery with a smaller radius 
r2 = 0.75r1. From Poiseuille’s equation, Equation 14.38, we find

Q2

Q1
=

r 4
2

r 4
1

= (0.75)4 = 0.32

A 25% reduction in diameter leads to a huge 68% reduction in flow 
if the pressure difference is unchanged. Conversely, for a constant 
flow rate, the pressure difference ∆p is inversely proportional to 
r4. Thus

∆p2

∆p1
=

(1/r2)
4

(1/r1)
4 = 1 1

0.7524

= 3.2

Blood pressure would have to increase by a factor of 3.2 to main-
tain a constant flow rate.

REVIEW The fourth-power dependence on r has profound conse-
quences for the flow of a viscous fluid. Physiologically, the heart 
is not able to substantially increase the pressure, so atherosclerosis 
causes a significant reduction of blood flow. It is the leading cause 
of death in the United States.

EXAMPLE 14.13 ■ Blood flow through a clogged artery

A liquid with density 1200 kg/m3 flows through the horizontal tube 
shown in FIGURE 14.35. The flow rate is measured to be 7.5 L/min. 
What is the liquid’s viscosity?

MODEL Treat the flow as the flow of a viscous fluid.

VISUALIZE The 8.1 cm difference in liquid heights in the vertical 
tubes shows that there’s a pressure difference and thus a pressure 
gradient between points L = 75 cm = 0.75 m apart. The tube’s  
radius is r = 0.50 cm = 5.0 * 10-3 m.

EXAMPLE 14.14 ■ Measuring viscosity

75 cm

8.1 cm

1.00 cm

7.5 L/min

FIGURE 14.35 Fluid flowing through a constant-diameter tube.
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14.6 Motion of a Viscous Fluid 411

Turbulence
Our analysis of both ideal and viscous fluids assumed that the flow was laminar, or 
smooth, with fluid particles moving along parallel streamlines. With laminar flow, 
pressure and velocity change gradually in predictable ways. The layers in a fluid— 
“laminar” means “arranged in layers”—remain distinct and do not mix.

Not all fluid flow is laminar, however. Many flowing fluids exhibit turbulence, 
which is pretty much the opposite of laminar flow. Turbulent flow is characterized 
by chaotic and erratic changes in pressure and velocity. Whirlpool-like eddies and 
vortices are common, and the fluid is well mixed. Figure 14.24 shows the dramatic 
difference when a flow transitions from laminar to turbulent.

What determines whether a fluid has nicely behaved laminar flow or irregular and 
unpredictable turbulent flow? The Reynolds number! In Chapter 6 we introduced the 
Reynolds number Re = rvL/h as the ratio of inertial forces to viscous forces. Here 
L is a characteristic size or dimension. L is the diameter D = 2r both for a liquid 
flowing through a circular tube, the subject of this section, and for a sphere moving 
through a fluid, the situation we considered in Chapter 6.

Viscous fluids, like honey, tend to flow very smoothly, so we expect laminar flow 
for low values of the Reynolds number. Flow at high values of the Reynolds number, 
where inertia dominates, is like a stampede of thousands of closely packed cattle: fine 
as long as every cow maintains absolutely the same velocity, but the slightest stumble 
or irregularity causes the flow to break up into a chaotic mess. So, as the Reynolds 
number increases, there comes a point where the slightest irregularity—even just mo-
lecular diffusion—causes a flow to become turbulent.

There is no satisfactory theory of turbulence—it remains an unsolved problem of 
classical physics—and thus no way to predict the range of Reynolds numbers that 
characterize laminar or turbulent flow. Nonetheless, experimental measurements have 
established the relevant Reynolds numbers for many situations of practical impor-
tance. FIGURE 14.36 illustrates laminar and turbulent flows for a fluid flowing through 
a circular tube and for a sphere moving through a fluid.

SOLVE Poiseuille’s equation can be solved for the viscosity once 
all the other terms are known. We don’t need to know the absolute 
pressures, just the pressure difference. The liquid in the vertical 
tubes is stationary, so we can use the hydrostatic pressure to find

∆p = rg∆h = (1200 kg/m3)(9.80 m/s2)(0.081 m) = 953 Pa

Thus the pressure gradient is ∆p/L = 1270 Pa/m. The volume 
flow rate is a measured quantity that must be converted to SI 
units:

Q = 7.5 
L

min
*

1 m3

1000 L
*

1 min
60 s

= 1.25 * 10-4 m3/s

With this information, we find

h =
pr4∆p

8LQ
=

p(5.0 * 10-3 m)4(953 Pa)

8(0.75 m)(1.25 * 10-4 m3/s)
= 2.5 * 10-3 Pa s

REVIEW The result is reasonable because it is similar to the viscos-
ities given in Table 14.3.

Flow through a tube:

Flow around a sphere: Wake

Laminar flow for Re 6 2000

Laminar flow for Re 6 1 Fully turbulent wake for Re 7 1000

Fully turbulent flow for Re 7 4000

FIGURE 14.36 Laminar and turbulent fluid flows.
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412 CHAPTER 14 Fluids and Elasticity

We see that Poiseuille’s equation for flow through a circular tube, which assumes 
laminar flow, is valid only when Re 6 2000. The flow is fully turbulent for Re 7 4000, 
and in between is a complicated transition region where flows exhibit both laminar 
and turbulent characteristics.

Recall from Chapter 6 that an object moving through a fluid experiences linear 
drag when Re 6 1 and quadratic drag when Re 7 1000. Now we can see why. For low 
Reynolds number, the fluid flow around a sphere is laminar; the streamlines part and 
then come back together, leaving no trace of the sphere’s passage. In contrast, the sphere 
leaves a fully turbulent wake behind it at high Reynolds number. You’re familiar with 
this from boats; water moves smoothly around a boat that is gliding slowly through the 
water, but a fast boat leaves a turbulent wake behind. Quadratic drag, which is common 
for objects moving through the air, occurs only when the object creates a turbulent wake.

   NOTE    A nonviscous fluid would have an infinitely large Reynolds number, so you 
would expect any flow to be turbulent. Yet Bernoulli’s equation for nonviscous fluids 
describes laminar flow. The reason is that Bernoulli’s equation assumes an ideal 
fluid that can maintain laminar flow for any value of Re. No real fluid can do this, 
so using Bernoulli’s equation—which does have many important applications—
requires establishing that the flow really is laminar.

14.7 Elasticity
The final subject to explore in this chapter is elasticity. Although elasticity applies 
primarily to solids rather than fluids, you will see that similar ideas come into play.

Tensile Stress and Young’s Modulus
Suppose you clamp one end of a solid rod while using a strong machine to pull on 
the other with force F

u
. FIGURE 14.37a shows the experimental arrangement. We usually 

think of solids as being, well, solid. But any material, be it plastic, concrete, or steel, 
will stretch as the spring-like molecular bonds expand.

FIGURE 14.37b shows graphically the amount of force needed to stretch the rod by the 
amount ∆L. This graph contains several regions of interest. First is the elastic region, 
ending at the elastic limit. As long as ∆L is less than the elastic limit, the rod will 
return to its initial length L when the force is removed. Just such a reversible stretch is 
what we mean when we say a material is elastic. A stretch beyond the elastic limit will 
permanently deform the object; it will not return to its initial length when the force is  
removed. And, not surprisingly, there comes a point when the rod breaks.

For most materials, the graph begins with a linear region, which is where we will focus  
our attention. If ∆L is within the linear region, the force needed to stretch the rod is

 F = k ∆L (14.39)

∆L

Elastic
limit

Breaking
point

Linear region

Elastic region

F is directly proportional
to ∆L in this region.

Slope = k

F

(b)

F
u

L

Area A

∆L

Clamp

Solid rod

The pulling force
stretches the 
spring-like 
molecular bonds.

The rod
stretches
this far.

(a)

FIGURE 14.37 Stretching a solid rod.
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14.7 Elasticity 413

where k is the slope of the graph. You’ll recognize Equation 14.39 as none other than 
Hooke’s law.

The difficulty with Equation 14.39 is that the proportionality constant k depends 
both on the composition of the rod—whether it is, say, steel or aluminum—and on 
the rod’s length and cross-section area. It would be useful to characterize the elastic 
properties of steel in general, or aluminum in general, without needing to know the 
dimensions of a specific rod.

We can meet this goal by thinking about Hooke’s law at the atomic scale. The 
elasticity of a material is directly related to the spring constant of the molecular bonds 
between neighboring atoms. As FIGURE 14.38 shows, the force pulling each bond is 
proportional to the quantity F/A. This force causes each bond to stretch by an amount 
proportional to ∆L/L. We don’t know what the proportionality constants are, but we 
don’t need to. Hooke’s law applied to a molecular bond tells us that the force pulling 
on a bond is proportional to the amount that the bond stretches. Thus F/A must be 
proportional to ∆L/L. We can write their proportionality as

 
F
A

= Y 
∆L
L

 (14.40)

The proportionality constant Y is called Young’s modulus. It is directly related to 
the spring constant of the molecular bonds, so it depends on the material from which 
the object is made but not on the object’s geometry.

A comparison of Equations 14.39 and 14.40 shows that Young’s modulus can be 
written as Y = k L/A. This is not a definition of Young’s modulus but simply an expres-
sion for making an experimental determination of the value of Young’s modulus. This 
k is the spring constant of the rod seen in Figure 14.37. It is a quantity easily measured 
in the laboratory.

The quantity F/A, where A is the cross-section area, is called tensile stress. 
Notice that it is essentially the same definition as pressure. Even so, tensile stress 
differs in that the stress is applied in a particular direction whereas pressure forces 
are exerted in all directions. Another difference is that stress is measured in N/m2 
rather than pascals. The quantity ∆L/L, the fractional increase in the length, is  
called strain. Strain is dimensionless. The numerical values of strain are always  
very small because solids cannot be stretched very much before reaching the  
breaking point.

With these definitions, Equation 14.40 can be written

 stress = Y * strain (14.41)

Because strain is dimensionless, Young’s modulus Y has the same dimensions as 
stress, namely N/m2. TABLE 14.4 gives values of Young’s modulus for several common 
materials. Large values of Y characterize materials that are stiff and rigid. “Softer” 
materials, at least relatively speaking, have smaller values of Y. You can see that steel 
has a larger Young’s modulus than aluminum.

Length L

Area A

The number of bonds is proportional
to area A. If the rod is pulled with
force F, the force pulling on each bond
is proportional to F/A.

The number of bonds along the rod 
is proportional to length L. If the 
rod stretches by ∆L, the stretch of 
each bond is proportional to ∆L /L.

FIGURE 14.38 A material’s elasticity is 
directly related to the spring constant of 
the molecular bonds.

TABLE 14.4 Elastic properties of various materials

Substance
Young’s modulus  

(N/m2)
Bulk modulus  

(Pa)

Steel 2.0 * 1011 1.6 * 1011

Copper 1.1 * 1011 1.4 * 1011

Aluminum 7.0 * 1010 7.6 * 1010

Concrete (typical) 3.0 * 1010 –

Wood (Douglas fir) 1.0 * 1010 –

Plastic (polystyrene) 3.5 * 109 –

Mercury – 2.9 * 1010

Water – 2.2 * 109

Concrete is a widely used building mate-
rial because it is relatively inexpensive 
and, with its large Young’s modulus, it 
has tremendous compressional strength.
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414 CHAPTER 14 Fluids and Elasticity

We introduced Young’s modulus by considering how materials stretch. But Equation 
14.41 and Young’s modulus also apply to the compression of materials. Compression is 
particularly important in engineering applications, where beams, columns, and support 
foundations are compressed by the load they bear. Concrete is often compressed, as in  
columns that support highway overpasses, but rarely stretched.

   NOTE    Whether the rod is stretched or compressed, Equation 14.41 is valid only in 
the linear region of the graph in Figure 14.37b. The breaking point is usually well 
outside the linear region, so you can’t use Young’s modulus to compute the  maximum 
possible stretch or compression.

A 2.0-m-long, 1.0-mm-diameter wire is suspended from the ceiling. 
Hanging a 4.5 kg mass from the wire stretches the wire’s length by 
1.0 mm. What is Young’s modulus for this wire? Can you identify  
the material?

MODEL The hanging mass creates tensile stress in the wire.

SOLVE The force pulling on the wire, which is simply the weight  
of the hanging mass, produces tensile stress

F
A

=
mg

pr2 =
14.5 kg219.80 m/s22
p15.0 * 10-4 m22 = 5.6 * 107 N/m2

The resulting stretch of 1.0 mm is a strain of ∆L/L =  
11.0 mm2/12000 mm2 = 5.0 * 10-4. Thus Young’s modulus for the  
wire is

Y =
F/A

∆L/L
= 11 * 1010 N/m2

Referring to Table 14.4, we see that the wire is made of copper.

EXAMPLE 14.15 ■ Stretching a wire

Volume Stress and the Bulk Modulus
Young’s modulus characterizes the response of an object to being pulled in one  
direction. FIGURE 14.39 shows an object being squeezed in all directions. For example, 
objects under water are squeezed from all sides by the water pressure. The force per  
unit area F/A applied to all surfaces of an object is called the volume stress. Because 
the force pushes equally on all sides, the volume stress (unlike the tensile stress) really is  
the same as pressure p.

No material is perfectly rigid. A volume stress applied to an object compresses 
its volume slightly. The volume strain is defined as ∆V/V. The volume strain is a 
negative number because the volume stress decreases the volume.

Volume stress, or pressure, is linearly proportional to the volume strain, much as 
the tensile stress is linearly proportional to the strain in a rod. That is,

 
F
A

= p = -B 
∆V
V

 (14.42)

where B is called the bulk modulus. The negative sign in Equation 14.42 ensures 
that the pressure is a positive number. Table 14.4 gives values of the bulk modulus 
for several materials. Smaller values of B correspond to materials that are more easily 
compressed. Both solids and liquids can be compressed and thus have a bulk modulus, 
whereas Young’s modulus applies only to solids.

F
u

F
u

F
u

F
u

F
u

F
u

Cube with
cross-section
area A 

FIGURE 14.39 An object is compressed 
by pressure forces pushing equally on all 
sides.

A 1.00-m-diameter solid steel sphere is lowered to a 10,000 m depth 
in a deep ocean trench. By how much does its diameter shrink?

MODEL The water pressure applies a volume stress to the sphere.

SOLVE The water pressure at d = 10,000 m is

p = p0 + rgd = 1.01 * 108 Pa

where we used the density of seawater. The bulk modulus of 
steel, taken from Table 14.4, is 16 * 1010 N/m2. Thus the volume 
strain is

∆V
V

= -  
p

B
= -  

1.01 * 108 Pa

1.6 * 1011 Pa
= -6.3 * 10-4

EXAMPLE 14.16 ■ Compressing a sphere
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14.7 Elasticity 415

The volume of a sphere is V = 4
3 pr3. If the radius changes by the 

infinitesimal amount dr, we can use calculus to find that the volume 
changes by

dV = 4
3 pd 1r32 = 4

3 p * 3r2
 dr = 4 pr2

 dr

Thus ∆V = 4pr2 ∆r is a quite good approximation for very small 
changes in the sphere’s radius and volume. Using this, the volume 
strain is

∆V
V

=
4pr2 ∆r

4
3 pr3

=
3 ∆r

r
= -  6.3 * 10-4

Solving for ∆r gives ∆r = -1.05 * 10-4 m = -0.105 mm. The 
diameter changes by twice this, decreasing 0.21 mm.

REVIEW The immense pressure of the deep ocean causes only  
a tiny change in the sphere’s diameter. You can see that treating 
solids and liquids as incompressible is an excellent approximation 
under nearly all circumstances.

   CHAPTER 14 CHALLENGE EXAMPLE    Draining a cone

A conical tank of radius R and height H, pointed end down, is full of 
water. A small hole of radius r is opened at the bottom of the tank, 
with r V R so that the tank drains slowly. Find an expression for  
the time T it takes to drain the tank completely.

MODEL Model the water as an ideal fluid. We can use Bernoulli’s 
equation to relate the flow speed from the hole to the height of the 
water in the cone.

VISUALIZE FIGURE 14.40 is a pictorial representation. At this in-
stant, the water height is y and the top surface has radius r1. Points 
1 and 2 are on a streamline from the surface to the exit hole. Be-
cause the tank drains slowly, we’ve assumed that the water velocity 
at the surface is always very close to zero: v1 =  0. The pressure at 
the surface is p1 = patmos. The water discharges into air, so we also 
have p2 = patmos at the exit.

SOLVE As the tank drains, the water height y decreases from H  
to 0. If we can find an expression for dy/dt, the rate at which the 
water height changes, we’ll be able to find T by integrating from 
“full tank” at t = 0 to “empty tank” at t = T. Our starting point is 
the rate at which water flows out of the hole at the bottom—the 
volume flow rate Q = v2 A2 = pr2v2, where v2 is the exit speed.

We can relate v2 to the water height y by using Bernoulli’s equa-
tion to connect the conditions at the surface (point 1) to conditions 
at the exit (point 2):

p1 + 1
2 rv1 

2 + rgy1 = p2 + 1
2 rv2 

2 + rgy2

With  p1 = p2, v1 = 0, y1 = y, and y2 = 0 at the bottom, Bernoulli’s 
equation simplifies to rgy = 1

2 rv2 

2. Thus the exit speed of the water is

v2 = 12gy

The exit speed decreases as the water height drops. With this 
 result, the flow rate for water of height y is

Q = pr222gy

The volume of water inside the tank is changing at the same 
rate as the volume flowing out, except with the opposite sign be-
cause the water volume is decreasing with time; that is,

dVwater

dt
= -Q = -pr222gy

We need to relate Vwater  to the height y of the water surface. The 
volume of a cone is V = 1

3 * base * height, so the cone of water has 
volume Vwater = 1

3 pr1 

2 y. Based on the similar triangles in Figure 
14.40, r1/R = y/H. Thus r1 = 1R/H2y and

Vwater =
pR2

3H 2  y3

Taking the time derivative, we find

dVwater 

dt
=

d
dt
cpR2

3H 2 y3 d =
pR2

H 2   y2 
dy

dt

This relates the rate at which the volume changes to the rate at 
which the height changes.

With this information, our equation for the rate at which the 
volume is changing becomes

dVwater 

dt
=

pR2

H 2   y2 
dy

dt
= -pr2 22gy

In preparation for integration, we need to get all the y’s on one side 
of the equation and dt on the other. Rearranging gives

dt = -
R2

r2H 2 22g
  y3/2 dy

We need to integrate this from the beginning, with y = H at t = 0, 
to the moment the tank is empty, with y = 0 at t = T:

3
T

0
dt = T = -

R2

r2H 2 22g
 3

0

H
y3/2 dy =

R2

r2H 2 22g
 3

H

0
y3/2 dy

The minus sign was eliminated by reversing the integration limits. 
Performing the integration gives us the desired result for the time 
to drain the tank:

  T =
R2

r2H 2 22g
 3

H

0
y3/2 dy =

R2

r2H 2 22g
 c 2

5
  y5/2 d

H

0

  =
2
5

 
R2

r2  B H
2g

REVIEW Making the tank larger by increasing R or H increases 
the time needed to drain. Making the hole at the bottom larger—a 
larger value of r—decreases the time. These are as we would have 
expected, giving us confidence in our result.

FIGURE 14.40 Pictorial representation of water draining from a tank.
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Summary

Fluid Statics
Gases

• Freely moving particles

• Compressible

• Pressure primarily thermal

• Pressure is constant in a 
 laboratory-size container

Liquids

• Loosely bound particles

• Incompressible

• Pressure primarily gravitational

• Hydrostatic pressure at depth d 
is p = p0 + rgd

Density r = m/V, where m is mass and V is volume.
Pressure p = F/A, where F is the magnitude of the fluid force and 
A is the area on which the force acts.

• Pressure exists at all points in a fluid.

• Pressure pushes equally in all directions.

• Pressure is constant along a horizontal line.

• Gauge pressure is pg = p - 1 atm.

Fluid Dynamics
Ideal-fluid model

• Incompressible

• Nonviscous

• Smooth, laminar flow

Equation of continuity

v1 A1 = v2 A2

Bernoulli’s equation

p1 + 1
2 rv1 

2 + rgy1 = p2 + 1
2 rv2 

2 + rgy2

Bernoulli’s equation is a statement of energy conservation.

Poiseuille’s equation

Q =
pr4

8h
 
∆p

L

Poiseuille’s equation describes the flow of a viscous fluid.

General Principles

The goal of Chapter 14 has been to learn about systems that 
flow or deform.

Density
r

A1

p1

p2

A2

v2
u

v1
u

The fluid moves
along streamlines.

y2

y1

y

Important Concepts

Buoyancy is the upward force of a fluid on an 
object. The buoyant force is

FB = rfVf g

Archimedes’ principle

The magnitude of the buoyant force equals the 
weight of the fluid displaced by the object.

Sink ravg 7 rf FB 6 mo g

Rise to surface ravg 6 rf FB 7 mo g

Neutrally buoyant ravg = rf FB = mo g

Elasticity describes the deformation of  
solids and liquids under stress.

F
u

L

A

∆L

Linear stretch and
compression

(F/A) = Y (∆L/L) 

Tensile stress Young’s modulus
Strain

p = -B (∆V/V ) 

Bulk modulus Volume strain

Volume compression

Applications

mog

rf

FB

u

fluid
gas
liquid
mass density, r
unit volume
pressure, p
pascal, Pa
vacuum
standard atmosphere, atm

hydrostatic pressure
Pascal’s principle
gauge pressure, pg 
hydraulics
buoyant force
displaced fluid
Archimedes’ principle
average density, ravg 
neutral buoyancy

ideal-fluid model
viscosity
laminar flow
streamline
equation of continuity
volume flow rate, Q
Bernoulli’s equation
Venturi tube
lift

Poiseuille’s equation
pressure gradient
turbulence
Young’s modulus, Y
tensile stress
strain
volume stress
volume strain
bulk modulus, B

Terms and Notation
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CONCEPTUAL QUESTIONS
1. An object has density r.

a.  (a) Suppose each of the object’s three dimensions is increased 
by a factor of 3 without changing the material the object 
is made of. Will the density change? If so, by what factor? 
Explain.

b. (b) Suppose each of the object’s three dimensions is increased 
by a factor of 3 without changing the object’s mass. Will the 
density change? If so, by what factor? Explain.

2. Rank in order, from largest to  
smallest, the pressures at points 1, 2, 
and 3 in FIGURE Q14.2. Explain.

1

4

2

5

3

6

FIGURE Q14.2

A Sides B

FIGURE Q14.4

1 2

FIGURE Q14.5

A B C

FIGURE Q14.6

A
50 g

B
40 g

C
50 g

FIGURE Q14.7

A B

FIGURE Q14.9

Liquid

1 2 3

FIGURE Q14.10

Wind

FIGURE Q14.11

3. Rank in order, from largest to smallest, the pressures at points 4, 
5, and 6 in FIGURE Q14.2. Explain.

4. FIGURE Q14.4 shows two rect-
angular tanks, A and B, full of 
water. They have equal depths and 
equal thicknesses (the dimension 
into the page) but different widths.
a. Compare the forces the water 

exerts on the bottoms of the 
tanks. Is FA larger than, smaller than, or equal to FB? Explain.

b. Compare the forces the water exerts on the sides of the tanks. 
Is FA larger than, smaller than, or equal to FB? Explain.

5. In FIGURE Q14.5, is p1 larger than, smaller than, or equal to p2?  
Explain.

6. Rank in order, from largest to smallest, the densities of blocks A, 
B, and C in FIGURE Q14.6. Explain.

7. Blocks A, B, and C in FIGURE 
Q14.7 have the same volume. 
Rank in order, from largest to 
smallest, the sizes of the buoyant 
forces FA , FB , and FC  on A, B, 
and C. Explain.

8. Blocks A, B, and C in FIGURE Q14.7 have the same density. Rank 
in order, from largest to smallest, the sizes of the buoyant forces 
FA , FB , and FC on A, B, and C. Explain.

9. The two identical beakers in FIGURE Q14.9 are filled to the same 
height with water. Beaker B has a plastic sphere floating in it. 
Which beaker, with all its contents, weighs more? Or are they 
equal? Explain.

10. Gas flows through the pipe of FIGURE Q14.10. You can’t see into 
the pipe to know how the inner diameter changes. Rank in order, 
from largest to smallest, the gas speeds v1 , v2 , and v3 at points 1, 
2, and 3. Explain.

11. Wind blows over the house in FIGURE 
Q14.11. A window on the ground floor 
is open. Is there an airflow through the 
house? If so, does the air flow in the win-
dow and out the chimney, or in the chim-
ney and out the window? Explain.

12. A force of 200 N stretches a wire by 1 mm. A second wire of the 
same material is three times as long and has twice the diameter. 
How much force is needed to stretch it by 1 mm? Explain.

13. A wire is stretched to its breaking point by a force of 5000 N. A 
longer wire, made of the same material, has twice the diameter 
of the first. Is the force that will break the longer wire larger 
than, smaller than, or equal to 5000 N? Explain.

EXERCISES AND PROBLEMS

Problems labeled  integrate material from earlier chapters.

Exercises

Section 14.1 Fluids

1. | What is the volume (in ml) of 50 g of a liquid with density 
1000 kg/m3? 

2. || Cylinders A and B have equal heights. Cylinder A is filled  
with benzene. The diameter of cylinder B is half that of cylinder A,  

and cylinder B is filled with glycerin. What is the ratio of the 
fluid mass in cylinder B to that in cylinder A?

3. || A swimming pool measuring 4 m * 8 m slopes linearly from 
a depth of 1 m at one end to a 3 m depth at the other. What is the 
mass of the water in the pool?

4. || a. 50 g of gasoline are mixed with 50 g of water. What is the 
average density of the mixture?

b. 50 cm3 of gasoline are mixed with 50 cm3 of water. What 
is the average density of the mixture?
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418 CHAPTER 14 Fluids and Elasticity

20. || A 10-cm-diameter, 20-cm-tall steel cylinder (rsteel =  
7900 kg/m3) floats in mercury. The axis of the cylinder is  
perpendicular to the surface. What length of steel is above the 
surface?

21. | You need to determine the density of a ceramic statue. If you 
suspend it from a spring scale, the scale reads 28.4 N. If you 
then lower the statue into a tub of water, so that it is completely 
 submerged, the scale reads 17.0 N. What is the statue’s density?

22. || You and your friends are playing in the swimming pool with 
a 50-cm-diameter beach ball. How much force would be needed 
to push the ball completely under water?

23. || Styrofoam has a density of 150 kg/m3. What is the maximum 
mass that can hang without sinking from a 50-cm-diameter 
 Styrofoam sphere in water? Assume the volume of the mass is 
negligible compared to that of the sphere.

Section 14.5 Fluid Dynamics

24. || Water flows through a 2.5-cm-diameter hose at 3.0 m/s. How 
long, in minutes, will it take to fill a 600 L child’s wading pool?

25. || A 1.0-cm-diameter pipe widens to 2.0 cm, then narrows to 
5.0 mm. Liquid flows through the first segment at a speed of 
4.0 m/s.
a. What is the speed in the second and third segments?
b. What is the volume flow rate through the pipe?

26. || A long horizontal tube has a square cross section with sides of 
width L. A fluid moves through the tube with speed v0. The tube 
then changes to a circular cross section with diameter L. What is 
the fluid’s speed in the circular part of the tube?

27. | A bucket is filled with water to a height of 23 cm, then a plug 
is removed from a 4.0-mm-diameter hole in the bottom of the 
bucket. As the water begins to pour out of the hole, how fast is it 
moving?

28. || What does the top pressure gauge read in FIGURE EX14.28?

Section 14.2 Pressure

5. | The deepest point in the ocean is 10 km below sea level, 
greater than the height of Mount Everest. What is the atmospheric 
pressure at this depth?

6. || A vat of liquid has diameter and depth of 1 m each. The pressure at 
the bottom of the vat is 1.5 atm. What is the mass of the liquid in the vat?

7. || a. What volume of water has the same mass as 1.5 m3 of 
gasoline?

b. If this volume of water fills a tank shaped as a cube, what 
is the pressure at the bottom?

8. || A 50-cm-thick layer of oil floats on a 120-cm-thick layer of 
water. What is the pressure at the bottom of the water layer?

9. || An ocean-going research submarine has a 30-cm-diameter 
window 8.0 cm thick. The manufacturer says the window can 
withstand forces up to 5.0 * 105 N. What is the submarine’s 
maximum safe depth? The pressure inside the submarine is 
maintained at 1.0 atm.

10. || A circular cover, 20 cm in diameter, is placed over a hole of 
diameter 10 cm, which leads into a sealed, evacuated chamber. 
The pressure in the chamber is 10 kPa. How much force is re-
quired to pull the cover off?

11. | The container shown in FIGURE 
EX14.11 is filled with oil. It is open 
to the atmosphere on the left.
a. What is the pressure at point 1?
b. What is the pressure differ-

ence between points 1 and 2? 
Between points 1 and 3?

100

75

50

25

0

y (cm)

3 2

1

FIGURE EX14.11

100 cm3 of
aluminum, density
rAl = 2700 kg/m3

Ethyl alcohol
FIGURE EX14.19

Section 14.3 Measuring and Using Pressure

12. | What is the height of a water barometer at atmospheric pressure?
13. | How far must a 2.0-cm-diameter piston be pushed down into 

one cylinder of a hydraulic lift to raise a 6.0-cm-diameter piston 
by 40 cm?

14. || What is the minimum hose diameter of an ideal vacuum 
cleaner that could lift a 10 kg (22 lb) dog off the floor?

Section 14.4 Buoyancy

15. | A 6.00-cm-diameter sphere with a mass of 89.3 g is neutrally 
buoyant in a liquid. Identify the liquid.

16. | A 2.0 cm * 2.0 cm * 6.0 cm block floats in water with its 
long axis vertical. The length of the block above water is 2.0 cm. 
What is the block’s mass density?

17. || A sphere completely submerged in water is tethered to the 
bottom with a string. The tension in the string is one-third the 
weight of the sphere. What is the density of the sphere?

18. | A 5.0 kg rock whose density is 4800 kg/m3 is suspended by a 
string such that half of the rock’s volume is under water. What is 
the tension in the string?

19. || What is the tension of the string in FIGURE EX14.19?

2.0 m/s

200 kPa 3.0 m/s

10 m
Oil

?

FIGURE EX14.28

29. ||| A 2.0 mL syringe has an inner diameter of 6.0 mm, a needle 
inner diameter of 0.25 mm, and a plunger pad diameter (where 
you place your finger) of 1.2 cm. A nurse uses the syringe to 
inject medicine into a patient whose blood pressure is 140/100.
a. What is the minimum force the nurse needs to apply to the 

syringe?
b. The nurse empties the syringe in 2.0 s. What is the flow speed 

of the medicine through the needle?

Section 14.6 Motion of a Viscous Fluid

30. | What are the average speeds through a 4.0-mm-diameter tube 
of (a) 20°C motor oil and (b) 100°C motor oil if the pressure gra-
dient is 1500 Pa/m? Give your answers in mm/s.

31. || The piping system in a dairy must deliver 1.5 L/min of 20°C 
milk through a 12-m-long, 1.0-cm-diameter pipe. What is the 
pressure difference in kPa between the ends of the pipe?

32. || An unknown liquid flows smoothly through a 6.0-mm-di-
ameter horizontal tube where the pressure gradient is 600 Pa/m. 
Then the tube diameter gradually shrinks to 3.0 mm. What is the 
pressure gradient in this narrower portion of the tube?
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when you stand up if this automatic response failed? Assume 
your brain is 40 cm from your heart and the density of blood is 
1060 kg/m3.

42. || A friend asks you how much pressure is in your car tires. 
You know that the tire manufacturer recommends 30 psi, but it’s 
been a while since you’ve checked. You can’t find a tire gauge 
in the car, but you just finished taking physics and so you tell 
your friend, “I don’t know, but I can figure it out.” From the 
 owner’s manual you find that the car’s mass is 1500 kg. It seems 
reasonable to assume that each tire supports one-fourth of the 
weight. Using a ruler, you find that the tires are 15 cm wide and 
the  flattened bottom segment of the tire is 13 cm long. Your 
 observation of the tire tread pattern suggests that two-thirds of 
this segment is in actual contact with the road. What answer—in 
psi—will you give your friend?

43. || a. The 70 kg student in FIGURE P14.43 balances a 1200 kg 
 elephant on a hydraulic lift. What is the diameter of the 
piston the student is standing on?

b. When a second student joins the first, the piston sinks 
35 cm. What is the second student’s mass?

33. || FIGURE EX14.33 shows a syringe filled with 20°C olive oil. 
What is the gauge pressure at point P where the needle meets the 
wider body of the syringe? Give your answer in atm.

Radius  =  1.0 cm Radius  =  1.0 mm

2.0 m/s

4.0 cm

P

FIGURE EX14.33

A

20 cm

60 cm

100 cm

4.0 cm

B

Oil

10 kg floating piston

FIGURE P14.40

70 kg

Oil

1200 kg

2.0 m

FIGURE P14.43

41. | Postural hypotension is the occurrence of low systolic blood 
pressure when a person stands up too quickly from a reclining 
position. A brain blood pressure lower than 90 mm of Hg can 
cause fainting or lightheadedness. In a healthy adult, the auto-
matic constriction and expansion of blood vessels keep the brain 
blood pressure constant while posture is changing, but disease 
or aging can weaken this response. If the blood pressure in 
your brain is 118 mm of Hg while lying down, what would it be 

Section 14.7 Elasticity

34. | An 80-cm-long, 1.0-mm-diameter steel guitar string must be 
tightened to a tension of 2000 N by turning the tuning screws. By 
how much is the string stretched?

35. | A 70 kg mountain climber dangling in a crevasse stretches 
a 50-m-long, 1.0-cm-diameter rope by 8.0 cm. What is Young’s 
modulus for the rope?

36. || A 3.0-m-tall, 50-cm-diameter concrete column supports a 
200,000 kg load. By how much is the column compressed?

37. || a. What is the pressure at a depth of 5000 m in the ocean?
b. What is the fractional volume change ∆V/V  of seawater at 

this pressure?
c. What is the density of seawater at this pressure?

38. || A large 10,000 L aquarium is supported by four wood 
posts (Douglas fir) at the corners. Each post has a square 
4.0 cm * 4.0 cm cross section and is 80 cm tall. By how much is 
each post compressed by the weight of the aquarium?

39. ||| A 5.0-m-diameter solid aluminum sphere is launched into 
space. By how much does its diameter increase? Give your 
 answer in mm.

Problems
40. | a. In FIGURE P14.40, how much force does the fluid exert on 

the end of the cylinder at A?
b. How much force does the fluid exert on the end of the 

 cylinder at B?

44. ||| In a circus act, a 65 kg acrobat uses an oil-filled hydraulic lift 
to hold four 105 kg clowns at a height of 1.0 m. If her piston is  
24 cm in diameter, what is the diameter of the clowns’ piston?

45. || A U-shaped tube, open to the air on both ends, contains 
 mercury. Water is poured into the left arm until the water column 
is 10.0 cm deep. How far upward from its initial position does the 
mercury in the right arm rise?

46. || Glycerin is poured into an open U-shaped tube until the 
height in both sides is 20 cm. Ethyl alcohol is then poured into 
one arm until the height of the alcohol column is 20 cm. The two 
liquids do not mix. What is the difference in height between the 
top surface of the glycerin and the top surface of the alcohol?

47. || An aquarium of length L, width (front to back) W, and depth 
D is filled to the top with liquid of density r.
a. Find an expression for the force of the liquid on the bottom 

of the aquarium.
b. Find an expression for the force of the liquid on the front 

 window of the aquarium.
c. Evaluate the forces for a 100-cm-long, 35-cm-wide, 40-cm-

deep aquarium filled with water.
48. || It’s possible to use the ideal-gas law to show that the density 

of the earth’s atmosphere decreases exponentially with height. 
That is, r = r0 exp(-z/z0), where z is the height above sea level, 
r0 is the density at sea level (you can use the Table 14.1 value), 
and z0 is called the scale height of the atmosphere.
a. Determine the value of z0.
Hint: What is the weight of a column of air?
b. What is the density of the air in La Paz, Bolivia, at an ele-

vation of 3600 m? What percent of sea-level density is this?
c. What is the density of the air in Kampala, Uganda, at an el-

evation of 1200 m? What percent of sea-level density is this?
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57. || a. A nonviscous liquid of density r flows at speed v0 through 
a horizontal pipe that expands smoothly from diameter d0 
to a larger diameter d1. The pressure in the narrower sec-
tion is p0. Find an expression for the pressure p1 in the 
wider section.

b. A pressure gauge reads 60 kPa as water flows at 10.0 m/s 
through a 15-cm-diameter horizontal pipe. What is the 
reading of a pressure gauge after the pipe has expanded to 
20 cm in diameter?

58. ||| A tree loses water to the air by the process of transpiration 
at the rate of 110 g/h. This water is replaced by the upward flow 
of sap through vessels in the trunk. If the trunk contains 2000 
 vessels, each 100 mm in diameter, what is the upward speed 
in mm/s of the sap in each vessel? The density of tree sap is 
1040 kg/m3.

59. || Water flows from the pipe shown in FIGURE P14.59 with a 
speed of 4.0 m/s.
a. What is the water pressure as it exits into the air?
b. What is the height h of the standing column of water?

49. || The average density of the body of a fish is 1080 kg/m3. To 
keep from sinking, a fish increases its volume by inflating an 
internal air bladder, known as a swim bladder, with air. By what 
percent must the fish increase its volume to be neutrally buoyant 
in fresh water? The density of air at 20°C is 1.19 kg/m3.

50. || A cylinder with cross-section area A floats with its long axis 
vertical in a liquid of density r.
a. Pressing down on the cylinder pushes it deeper into the liquid. 

Find an expression for the force needed to push the cylinder 
distance x deeper into the liquid and hold it there.

b. A 9.0-cm-diameter cylinder floats in water. How much work 
must be done to push the cylinder 15 cm deeper into the 
water?

51. || A 30-cm-tall, 4.0-cm-diameter plastic tube has a sealed bot-
tom. 250 g of lead pellets are poured into the bottom of the tube, 
whose mass is 30 g, then the tube is lowered into a liquid. The 
tube floats with 5.0 cm extending above the surface. What is the 
density of the liquid?

52. || One day when you come into physics lab, you find several 
plastic hemispheres floating like boats in a tank of fresh water. 
Each lab group is challenged to determine the heaviest rock that 
can be placed in the bottom of a plastic boat without sinking it. 
You get one try. Sinking the boat gets you no points, and the 
maximum number of points goes to the group that can place the 
heaviest rock without sinking. You begin by measuring one of 
the hemispheres, finding that it has a mass of 11 g and a diameter 
of 9.0 cm. What is the mass of the heaviest rock that, in perfectly 
still water, won’t sink the plastic boat?

53. || A spring with spring constant 35 N/m is attached to the ceil-
ing, and a 5.0-cm-diameter, 1.0 kg metal cylinder is attached to 
its lower end. The cylinder is held so that the spring is neither 
stretched nor compressed, then a tank of water is placed under-
neath with the surface of the water just touching the bottom of 
the cylinder. When released, the cylinder will oscillate a few 
times but, damped by the water, quickly reach an equilibrium 
position. When in equilibrium, what length of the cylinder is 
submerged?

54. || A plastic “boat” with a 25 cm2 square cross section floats in 
a liquid. One by one, you place 50 g masses inside the boat and 
measure how far the boat extends below the surface. Your data 
are as follows:

Mass added (g) Depth (cm)

 50 2.9

100 5.0

150 6.6

200 8.6

Draw an appropriate graph of the data and, from the slope and 
intercept of the best-fit line, determine the mass of the boat and 
the density of the liquid.

55. || A 355 mL soda can is 6.2 cm in diameter and has a mass of 20 g.
Such a soda can half full of water is floating upright in water. 
What length of the can is above the water level?

56. || A nuclear power plant draws 3.0 * 106 L/min of cooling 
water from the ocean. If the water is drawn in through two 
parallel, 3.0-m-diameter pipes, what is the water speed in each 
pipe?

4.0 m/s

4.0 m

5.0 cm2

Open

h

10 cm2FIGURE P14.59

2.0 cm

h
Hg

1200 cm3/s

4.0 mm

FIGURE P14.62

1.0 cm

Hg

1

10 cm

Air 2

2.0 mm

FIGURE P14.63

60. ||| Water from a vertical pipe emerges as a 10-cm-diameter cyl-
inder and falls straight down 2.5 m into a bucket. The water exits 
the pipe with a speed of 1.8 m/s. What is the diameter of the 
column of water as it hits the bucket?

61. | A hurricane wind blows across a 6.0 m * 15.0 m flat roof at a 
speed of 130 km/h.
a. Is the air pressure above the roof higher or lower than the 

pressure inside the house? Explain.
b. What is the pressure difference?
c. How much force is exerted on the roof? If the roof cannot 

withstand this much force, will it “blow in” or “blow out”?
62. ||| Air flows through the tube shown in FIGURE P14.62 at a rate 

of 1200 cm3/s. Assume that air is an ideal fluid. What is the 
height h of mercury in the right side of the U-tube?

63. || Air flows through the tube shown in FIGURE P14.63. Assume 
that air is an ideal fluid.
a. What are the air speeds v1 and v2 at points 1 and 2?
b. What is the volume flow rate?
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Challenge Problems
71. ||| The 1.0-m-tall cylinder shown 

in FIGURE CP14.71 contains air at a 
pressure of 1 atm. A very thin, fric-
tionless piston of negligible mass 
is placed at the top of the cylinder, 
to prevent any air from escaping, 
then mercury is slowly poured into 
the cylinder until no more can be 
added without the cylinder over-
flowing. What is the height h of the 
column of compressed air?
Hint: Boyle’s law, which you learned in chemistry, says 
p1V1 = p2V2 for a gas compressed at constant temperature, which 
we will assume to be the case.

72. ||| The bottom of a steel “boat” is a 5.0 m * 10 m * 2.0 cm piece 
of steel (rsteel = 7900 kg/m3). The sides are made of 0.50-cm-
thick steel. What minimum height must the sides have for this 
boat to float in perfectly calm water?

73. ||| The tank shown in FIGURE CP14.73 is completely filled with a 
liquid of density r. The right face is not permanently attached to 
the tank but, instead, is held against a rubber seal by the tension 
in a spring. To prevent leakage, the spring must both pull with 
sufficient strength and prevent a torque from pushing the bottom 
of the right face out.
a. What minimum spring tension is needed?
b. If the spring has the minimum tension, at what height d from 

the bottom must it be attached?

64. || A water tank of height h has a small hole at height y. The 
water is replenished to keep h from changing. The water squirt-
ing from the hole has range x. The range approaches zero as 
y S 0 because the water squirts right onto the ground. The range 
also approaches zero as y S h because the horizontal velocity 
 becomes zero. Thus there must be some height y between 0 and h 
for which the range is a maximum.
a. Find an algebraic expression for the flow speed v with which 

the water exits the hole at height y.
b. Find an algebraic expression for the range of a particle shot 

horizontally from height y with speed v.
c. Combine your expressions from parts a and b. Then find the 

maximum range xmax  and the height y of the hole. “Real” 
 water won’t achieve quite this range because of viscosity, but 
it will be close.

65. ||| a. A cylindrical tank of radius R, filled to the top with a 
 liquid, has a small hole in the side, of radius r, at distance 
d below the surface. Find an expression for the volume 
flow rate through the hole.

b. A 4.0-mm-diameter hole is 1.0 m below the surface of a 
2.0-m-diameter tank of water. What is the rate, in mm/
min, at which the water level will initially drop if the 
water is not replenished?

66. || 20°C water flows through a 2.0-m-long, 6.0-mm-diameter 
pipe. What is the maximum flow rate in L/min for which the 
flow is laminar?

67. || 20°C water flows at 1.5 m/s through a 10-m-long, 1.0-mm- 
diameter horizontal tube and then exits into the air. What is the 
gauge pressure in kPa at the point where the water enters the tube?

68. || The 30-cm-long left coronary artery is 4.6 mm in diameter. 
Blood pressure drops by 3.0 mm of mercury over this distance. 
What are the (a) average blood speed and (b) volume flow rate in 
L/min through this artery?

69. ||| FIGURE P14.69 shows a tank of 20°C water with a nozzle 25 cm 
below the surface. Bernoulli’s equation applies to the flow between 
points 1 and 2 on the streamline, but not to the flow between points 
2 and 3. What is the volume flow rate through the nozzle in L/min? 
Assume that the water level in the tank is held constant.

4.0 cm

25 cm

1

2

3

1.0 mm
FIGURE P14.69

1.0 m

hAir
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Thin piston of
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FIGURE CP14.71

Rubber seal

d

w h

FIGURE CP14.73

hl

FIGURE CP14.74

Oil Oil

Brake pad

Piston

Rotating
disk

FIGURE CP14.75

70. || There is a disk of cartilage between each pair of vertebrae 
in your spine. Young’s modulus for cartilage is 1.0 * 106 N/m2. 
Suppose a relaxed disk is 4.0 cm in diameter and 5.0 mm thick. 
If a disk in the lower spine supports half the weight of a 66 kg 
person, by how many mm does the disk compress?

74. ||| In FIGURE CP14.74, a cone of density ro and total height l floats 
in a liquid of density rf . The height of the cone above the liquid is 
h. What is the ratio h/l of the exposed height to the total height?

75. ||| Disk brakes, such as those in your car, operate by using pres-
surized oil to push outward on a piston. The piston, in turn, 
presses brake pads against a spinning rotor or wheel, as seen 
in FIGURE CP14.75. Consider a 15 kg  industrial grinding wheel,  
26 cm in diameter, spinning at 900 rpm. The brake pads are ac-
tuated by 2.0-cm- diameter pistons, and they contact the wheel 
an average distance 12 cm from the axis. If the coefficient of ki-
netic friction between the brake pad and the wheel is 0.60, what 
oil pressure is needed to stop the wheel in 5.0 s?
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Rotation

■■ Rotational/linear analogs:
Moment of inertia I Mass m
Torque t Force F
Angular acceleration a Acceleration a
Angular momentum L

u
Momentum pu

■■ Rotational kinetic energy: K = 1
2 Iv2

■■ Torque: t = rF sin f = rF‘ = dF
■❚ d is the moment arm or lever arm.
■❚ Vector torque is t

u = r 
u * F

u
.

■■ Angular momentum: L
u

= Ivu

■■ Rolling motion:
■❚ Rolling without slipping: vcm = Rv
■❚ K = Kcm + Krot

Gravity

■■ Newton’s theory of gravity predicts 
Kepler’s three observational laws. We 
can summarize them as:
■❚ Planets and satellites move in elliptical 
orbits.

■❚ Angular momentum is conserved.
■❚ For circular orbits, the square of the 
period is proportional to the cube of 
the orbit’s radius.

■■ Gravitational potential energy:

UG = -
GMm

r
■❚ The potential energy is negative with a 
zero at infinity

■❚ Escape speed is the minimum speed 
needed to reach infinity.

Fluids
■■ Pressure p = F/A exists at all points in 
a fluid.
■❚ Gas pressure is primarily thermal.
■❚ Liquid pressure is primarily 
gravitational.

■❚ Hydrostatic pressure at depth d:
p = p0 + rgd

■■ Archimedes’ principle says that the  
upward buoyant force equals the weight 
of the displaced liquid.
■❚ An object floats if its average density is 
less than the fluid density.

■■ Equation of continuity: v1 A1 = v2 A2

■❚ Relates two points on a streamline.
■❚ v is the flow speed.
■❚ A is the cross-section area. 

Key Findings What are the overarching findings of Part III?

Laws What laws of physics govern these applications?

Newton’s second law for rotation A net torque causes an extended object to have angular acceleration: tnet = Ia.

Conservation of angular momentum For an isolated system 1tnet = 02, the total angular momentum is conserved: ∆  L
u

=  0
u
.

Newton’s law of gravity The attractive force between two objects separated by r is Fm on M = FM on m = GMm/r2.

Bernoulli’s equation For two points along a streamline of a flowing fluid, p1 + 1
2 rv1 

2 + rgy1 = p2 + 1
2 rv2 

2 + rgy2.

■■ Newton’s laws of motion together with the conservation laws 
for energy and momentum form what is called Newtonian  
mechanics. Part III has introduced relatively little new physics 
and instead has focused on applying Newtonian mechanics to 
new situations.

■■ Rotational motion is analogous to linear motion.
■■ With Newton’s law of gravity, we can use Newtonian mechanics 
to understand the motions of satellites and planets.

■■ Liquids and gases cannot be modeled as particles. Even so, fluids 
still obey Newtonian laws of statics and motion.

Tools What are the most important tools introduced in Part III?

Models What are the most important models of Part III?

Rotation models

■■ A rigid body is an extended object 
whose size and shape do not change.
■❚ Particle-like atoms held together by 
bonds that are massless, rigid rods.

■■ A rigid body that experiences a constant 
torque undergoes constant angular 
acceleration.
■❚ Obeys Newton’s second law  
for rotation.

■■ An extended object is in equilibrium if 
and only if there are no net force and no 
net torque.

Fluid models

■■ A gas fills its container.
■❚ Molecules move freely.
■❚ Molecules are far apart.
■❚ A gas is compressible.

■■ A liquid has a well-defined surface.
■❚ Molecules are loosely bound.
■❚ Molecules are close together.
■❚ A liquid is incompressible.

■■ An ideal fluid obeys Bernoulli’s equation.
■❚ Incompressible
■❚ Nonviscous
■❚ Smooth, laminar flow

a

Applications of Newtonian Mechanics

 KNOWLEDGE STRUCTUREPART 

III
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423

OVERVIEW

The Wave Model
Parts I–III of this text have been primarily about the physics of particles. You’ve 
seen that systems ranging from balls and rockets to planets can be thought of as 
particles or as systems of particles. A particle is one of the two fundamental mod-
els of classical physics. The other, to which we now turn our attention, is a wave.

Waves are ubiquitous in nature. Familiar examples include

■■ Undulating ripples on a pond.
■■ The swaying ground of an earthquake.
■■ A vibrating guitar string.
■■ The sweet sound of a flute.
■■ The colors of the rainbow.

The physics of oscillations and waves is the subject of Part IV. The most basic 
oscillation, called simple harmonic motion, is still the motion of a particle. But os-
cillators are the sources of waves, and the mathematical description of oscillation 
will carry over to the mathematical description of waves.

A wave, in contrast with a particle, is diffuse, spread out, not to be found at a 
single point in space. We will start with waves traveling outward through some 
medium, like the spreading ripples after a pebble hits a pool of water. These are 
called traveling waves. An investigation of what happens when waves travel 
through each other will lead us to standing waves, which are essential for under-
standing phenomena ranging from those as common as musical instruments to 
as complex as lasers and the electrons in atoms. We’ll also study one of the most 
important defining characteristics of waves—their ability to exhibit interference.

Our exploration of wave phenomena will call upon sound waves, light waves, 
and vibrating strings for examples, but our goal will be to emphasize the unity 
and coherence that are common to all types of waves. Later, in Part VII, we will 
devote three chapters to light and optics, perhaps the most important application 
of waves. Although light is an electromagnetic wave, your understanding of those 
chapters will depend on nothing more than the “waviness” of light. If you wish, 
you can proceed to those chapters immediately after finishing Part IV. The elec-
tromagnetic aspects of light waves will be taken up in Chapter  31.

Oscillations and Waves
PA R T

IV

The song of a humpback whale can travel  
hundreds of kilometers underwater. This graph  
uses a procedure called wavelet analysis to  
study the frequency structure of a humpback 
whale song.
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Oscillations

What are oscillations?
Oscillatory motion is a repetitive motion 
back and forth around an equilibrium 
position. We’ll describe oscillations in 
terms of their amplitude, period, and 
frequency. The most important  
oscillation is simple harmonic motion  
(SHM), where the position and velocity 
graphs are sinusoidal.

What things undergo SHM?
The prototype of SHM is a mass oscillating 
on a spring. Lessons learned from this  
system apply to all SHM.

 ■ A pendulum is a classic example of SHM.
 ■ Any system with a linear restoring force 

undergoes SHM.

❮❮ LOOKING BACK Section 9.4 Restoring forces

How is SHM related to circular motion?
The projection of uniform circular motion 
onto a line oscillates back and forth in SHM.

 ■ This link to circular motion will help us 
develop the mathematics of SHM.

 ■ A phase constant, based on the angle on 
a circle, will describe the initial conditions.

❮❮ LOOKING BACK Section 4.4 Circular motion

Is energy conserved in SHM?
If there is no friction or other dissipative  
force, the mechanical energy of an  oscillating 
system is conserved. Energy is  transformed 
back and forth between kinetic and 
 potential energy. Energy conservation is  
an important problem-solving strategy.

❮❮ LOOKING BACK Sections 10.3–10.5 Elastic 
potential energy and energy diagrams

What if there’s friction?
If there’s dissipation, the system “runs 
down.” This is called a damped oscillation.  
The oscillation amplitude undergoes  
exponential decay. But the amplitude can 
grow very large when an oscillatory system 
is driven at its natural frequency. This is 
called resonance.

Why is SHM important?
Simple harmonic motion is one of the most common and 
 important motions in science and engineering.

 ■ Oscillations and vibrations occur in mechanical, electrical, 
chemical, and atomic systems. Understanding how a system 
might oscillate is an important part of engineering design.

 ■ More complex oscillations can be understood in terms of SHM.
 ■ Oscillations are the sources of waves, which we’ll study in the 

next two chapters.

IN THIS CHAPTER, you will learn about systems that oscillate in simple harmonic motion.

15

t0

x T
A

-A

0 A
x

-A

0-A A

x
-A A0

Energy

E = K + U

K

U

t

x

0

-A

A

A pendulum swinging  
back and forth is one of the most  
common examples of simple harmonic motion.
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15.1 Simple Harmonic Motion 425

15.1 Simple Harmonic Motion
One of the most common and important types of motion is oscillatory motion—  
a repetitive motion back and forth around an equilibrium position. Swinging  
chandeliers, vibrating guitar strings, the electrons in cell phone circuits, and even 
atoms in solids are all undergoing oscillatory motion. In addition, oscillations are the 
sources of waves, our subject in the following two chapters. Oscillations play a major 
role in all fields of science and engineering.

FIGURE 15.1 shows position-versus-time graphs for two different oscillating systems. 
The shape of the graph depends on the details of the oscillator, but all oscillators have 
two things in common:

1. The oscillations take place around an equilibrium position.
2. The motion is periodic, repeating at regular intervals of time.

The time to complete one full cycle, or one oscillation, is called the period of the 
oscillation. Period is represented by the symbol T.

A system can oscillate in many ways, but the most fundamental oscillation is the 
smooth sinusoidal oscillation (i.e., like a sine or cosine) of Figure 15.1. This sinusoidal  
oscillation is called simple harmonic motion, abbreviated SHM. You’ll learn in 
more advanced courses that any oscillation can be represented as a sum of sinusoidal 
oscillations, so SHM is the basis for understanding all oscillatory motion.

The prototype of simple harmonic motion is a mass oscillating on a spring. FIGURE 15.2  
shows an air-track glider attached to a spring. If the glider is pulled out a few centi-
meters and released, it oscillates back and forth. The graph shows an actual air-track 
measurement in which the glider’s position was recorded 20 times per second. This 
is a position-versus-time graph that has been rotated 90° from its usual orientation to 
match the motion of the glider. You can see that it’s a sinusoidal oscillation—simple 
harmonic motion.

As Figures 15.1 and 15.2 show, an oscillator moves back and forth between x = -A 
and x = +A, where A, the amplitude of the motion, is the maximum displacement 
from equilibrium. Notice that the amplitude is the distance from the axis to a maximum  
or minimum, not the distance from the minimum to the maximum.

Period and amplitude are two important characteristics of oscillatory motion. A 
third is the frequency, f, which is the number of cycles or oscillations completed 
per second. If one cycle takes T seconds, the oscillator can complete 1/T  cycles each 
second. That is, period and frequency are inverses of each other:

 f =
1
T
 or T =

1
f

 (15.1)

The units of frequency are hertz, abbreviated Hz, named in honor of the German 
physicist Heinrich Hertz, who produced the first artificially generated radio waves in 
1887. By definition,

1 Hz K 1 cycle per second = 1 s-1

We will often deal with very rapid oscillations and make use of the units shown in 
TABLE 15.1. For example, electrons oscillating back and forth at 101 MHz in an FM 
radio circuit have period T = 1/1101 * 106 Hz2 = 9.9 * 10-9 s =  9.9 ns.

   NOTE    Uppercase and lowercase letters are important. 1 MHz is 1 megahertz =
106 Hz, but 1 mHz is 1 millihertz = 10-3 Hz!

Kinematics of Simple Harmonic Motion
We’ll start by describing simple harmonic motion mathematically—that is, with  
kinematics. Then in Section 15.4 we’ll take up the dynamics of how forces cause 
simple harmonic motion.

t

Position
T This oscillation

is sinusoidal.

-A

0

A

t

Position
Period T

The oscillation takes
place around an 
equilibrium position.

-A

0

A

FIGURE 15.1 Examples of oscillatory 
motion.

Air track

Oscillation

x

t

0-A A

AA

x is measured from 
the equilibrium
position.

Turning
point

The motion is 
sinusoidal.

Maximum distance from equilibrium is A.

The point on the
object that is
measured

FIGURE 15.2 A prototype simple-
harmonic-motion experiment.

TABLE 15.1 Units of frequency

Frequency Period

103 Hz = 1 kilohertz = 1 kHz 1 ms

106 Hz = 1 megahertz = 1 MHz 1 ms

109 Hz = 1 gigahertz = 1 GHz 1 ns
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426 CHAPTER 15 Oscillations

FIGURE 15.3 shows a SHM position graph—such as the one generated by the air-track 
glider—in its “normal” position. For the moment we’ll assume that the oscillator starts 
at maximum displacement 1x = +A2 at t = 0. Also shown is the oscillator’s velocity-  
versus-time graph, which we can deduce from the slope of the position graph.

■■ The instantaneous velocity is zero at the instants when x = {A because the slope 
of the position graph is zero. These are the turning points in the motion.

■■ The position graph has maximum slope when x = 0, so these are points of maximum  
speed. When x = 0 with a positive slope—maximum speed to the right—the 
 instantaneous velocity is vx = +vmax, where vmax is the amplitude of the velocity 
curve. Similarly, vx = -vmax when x = 0 with a negative slope—maximum speed 
to the left.

Although these are empirical observations (we don’t yet have any “theory” of 
 oscillation), we can see that the position graph, with a maximum at t = 0, is a cosine 
function with amplitude A and period T. We can write this as

 x1t2 = A cos12pt
T 2 (15.2)

where the notation x1t2 indicates that x is a function of time t.

   NOTE    We have been using the trigonometry of right triangles to find the components 
of vectors. In this chapter, we begin to use the more general idea that sine and cosine 
are oscillatory functions of the angle. Appendix A reminds you what graphs of sin 
and cos look like. Don’t forget that the arguments of sine and cosine functions are in 
radians; this will be true throughout our study of oscillations and waves. Be sure to 
set your calculator to radian mode before doing calculations.

Because cos10 rad2 = cos12p rad2 = 1, we can see that x = A at t = 0 and again at 
t = T. In other words, this is a cosine function with amplitude A and period T. Notice 
that x passes through zero at t = 1

4 T  and t = 3
4 T  because cos11

2 p  2 = cos13
2 p2 = 0.

We can write Equation 15.2 in two alternative forms. First, because the oscillation 
frequency is f = 1/T, we can write

 x1t2 = A cos12pft2 (15.3)

Second, recall from Chapter 4 that a particle in circular motion has angular velocity 
v that is related to the period by v = 2p/T, where v is in rad/s. For oscillations and 
waves, v is called the angular frequency. We can write the position in terms of v as

 x1t2 = A cos1vt2 (15.4)

Most of our work with oscillations and waves will be in terms of the angular frequency.
Now that we’ve defined f = 1/T, we see that v, f, and T are related by

 v 1in rad /s2 =
2p
T

= 2pf 1in Hz2 (15.5)

Be careful! Both f and v are frequencies, but they’re not the same and they’re not 
 interchangeable. Frequency f is the true frequency, in cycles per second, and it’s  always 
measured in Hz. Angular frequency v is useful because it’s related to the angle of the 
cosine function and, as you’ll learn in the next section, to a circular- motion analog of 
SHM, but it’s always in rad/s.

Just as the position graph is a cosine function, you can see that the velocity graph 
in Figure 15.3 is an “upside-down” sine function with the same period. We can write 
the velocity function as

 vx1t2 = -vmax sin12pt
T 2 (15.6)

where the minus sign inverts the graph. This function is zero at t = 0 and again  
at t = T.

t

Velocity vx

0
T 2T

-vmax

vmax

t

Position x

0
T 2T

-A

A

T

vx(t) = -vmax sinvt

T

x(t) = A cosvt

The speed is zero
when x = {A.

The speed is max-
imum when x = 0.

FIGURE 15.3 Position and velocity graphs 
for simple harmonic motion.

This 3-mm-long quartz tuning fork is the 
timing element of a digital watch. It is cut 
from a perfect quartz crystal to give it a 
very well-defined oscillation frequency. 
Quartz is a piezoelectric material, which 
means that a stress or deformation cre-
ates an electric field in the crystal. The 
crystal tuning fork is part of a circuit that 
responds to the oscillating electric field 
as the tuning fork vibrates, generating  
a signal at that frequency, and at the 
same time feeds the oscillating voltage 
back to the crystal to keep the vibration 
going. The quartz crystal in a watch is  
designed to oscillate at 32,768 Hz = 215 Hz 
because digital circuits can easily divide 
by powers of 2 to generate a timing pulse 
exactly once a second.
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15.1 Simple Harmonic Motion 427

   NOTE    vmax is the maximum speed and thus is a positive number.

We deduced Equation 15.6 from the experimental results, but we could equally 
well find it from the position function of Equation 15.2. After all, velocity is the time 
derivative of position. TABLE 15.2 reminds you of the derivatives of the sine and cosine 
functions. Using the derivative of the position function, we find

 vx1t2 =
dx
dt

= -  
2pA

T
 sin12pt

T 2 = -2pfA sin12pft2 = -vA sin vt (15.7)

Comparing Equation 15.7, the mathematical definition of velocity, to Equation 15.6, 
the empirical description, we see that the maximum speed of an oscillation is

 vmax =
2pA

T
= 2pfA = vA (15.8)

Not surprisingly, the object has a greater maximum speed if you stretch the spring 
farther and give the oscillation a larger amplitude.

An air-track glider is attached to a spring, pulled 20.0 cm to the 
right, and released at t = 0 s. It makes 15 oscillations in 10.0 s.

a. What is the period of oscillation?
b. What is the object’s maximum speed?
c. What are the position and velocity at t = 0.800 s?

MODEL An object oscillating on a spring is in SHM.

SOLVE a. The oscillation frequency is

f =
15 oscillations

10.0 s
= 1.50 oscillations/s = 1.50 Hz

Thus the period is T = 1/f = 0.667 s.

b. The oscillation amplitude is A = 0.200 m. Thus

vmax =
2pA

T
=

2p10.200 m2
0.667 s

= 1.88 m/s

c. The object is at x = +A at t = 0 s. This is exactly the oscillation  
described by Equations 15.2 and 15.6. The position at t = 0.800 s is

x = A cos12pt
T 2 = 10.200 m2 cos12p10.800 s2

0.667 s 2
= 10.200 m2 cos17.54 rad2 = 0.0625 m = 6.25 cm

The velocity at this instant of time is

vx = -vmax sin12pt
T 2 = -11.88 m/s2 sin12p10.800 s2

0.667 s 2
= -11.88 m/s2 sin17.54 rad2 = -1.79 m/s = -179 cm/s

At t = 0.800 s, which is slightly more than one period, the object 
is 6.25 cm to the right of equilibrium and moving to the left at 
179 cm/s. Notice the use of radians in the calculations.

EXAMPLE 15.1 ■ A system in simple harmonic motion

A mass oscillating in simple harmonic motion starts at x = A and 
has period T. At what time, as a fraction of T, does the object first 
pass through x = 1

2 A?

SOLVE Figure 15.3 showed that the object passes through the  
equilibrium position x = 0 at t = 1

4 T. This is one-quarter of the  
total distance in one-quarter of a period. You might expect it to 
take 1

8 T to reach 1
2 A, but this is not the case because the SHM 

graph is not linear between x = A and x = 0. We need to use 
x1t2 = A cos12pt /T2. First, we write the equation with x = 1

2 A:

x =
A
2

= A cos12pt
T 2

Then we solve for the time at which this position is reached:

t =
T

2p
 cos-1 11

22 =
T

2p
 
p

3
= 1

6 T

REVIEW The motion is slow at the beginning and then speeds up, 
so  it takes longer to move from x = A to x = 1

2 A than it does to 
move from x = 1

2 A to x = 0. Notice that the answer is independent 
of the amplitude A.

EXAMPLE 15.2 ■ Finding the time

TABLE 15.2 Derivatives of sine and 
cosine functions

d
dt
1a sin1bt + c22 = +ab cos1bt + c2

d
dt
1a cos1bt + c22 = -ab sin1bt + c2

STOP TO THINK 15.1 An object moves with simple harmonic motion. If the ampli-
tude and the period are both doubled, the object’s maximum speed is

a. Quadrupled. b. Doubled. c. Unchanged.
d. Halved. e. Quartered.
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428 CHAPTER 15 Oscillations

15.2 SHM and Circular Motion
The graphs of Figure 15.3 and the position function x1t2 = A cos vt are for an oscil-
lation in which the object just happened to be at x0 = A at t = 0. But you will recall 
that t = 0 is an arbitrary choice, the instant of time when you or someone else starts a 
stopwatch. What if you had started the stopwatch when the object was at x0 = -A, or 
when the object was somewhere in the middle of an oscillation? In other words, what 
if the oscillator had different initial conditions? The position graph would still show 
an oscillation, but neither Figure 15.3 nor x1t2 = A cos vt would describe the motion 
correctly.

To learn how to describe the oscillation for other initial conditions it will help to 
turn to a topic you studied in Chapter 4—circular motion. There’s a very close con-
nection between simple harmonic motion and circular motion.

Imagine you have a turntable with a small ball glued to the edge. FIGURE 15.4a shows 
how to make a “shadow movie” of the ball by projecting a light past the ball and onto 
a screen. The ball’s shadow oscillates back and forth as the turntable rotates. This 
is certainly periodic motion, with the same period as the turntable, but is it simple 
harmonic motion?

To find out, you could place a real object on a real spring directly below the shadow, 
as shown in FIGURE 15.4b. If you did so, and if you adjusted the turntable to have the 
same period as the spring, you would find that the shadow’s motion exactly matches 
the simple harmonic motion of the object on the spring. Uniform circular motion 
projected onto one dimension is simple harmonic motion.

To understand this, consider the particle in FIGURE 15.5. It is in uniform circular 
motion, moving counterclockwise in a circle with radius A. As in Chapter 4, we can 
locate the particle by the angle f measured counterclockwise (ccw) from the x-axis. 
Projecting the ball’s shadow onto a screen in Figure 15.4 is equivalent to observing 
just the x-component of the particle’s motion. Figure 15.5 shows that the x-component, 
when the particle is at angle f, is

 x = A cos f (15.9)

Recall that the particle’s angular velocity, in rad /s, is

 v =
df

dt
 (15.10)

This is the rate at which the angle f is increasing. If the particle starts from f0 = 0 at 
t = 0, its angle at a later time t is simply

 f = vt (15.11)

As f increases, the particle’s x-component is

 x1t2 = A cos vt (15.12)

This is identical to Equation 15.4 for the position of a mass on a spring! Thus the 
x-component of a particle in uniform circular motion is simple harmonic motion.

   NOTE    When used to describe oscillatory motion, v is called the angular frequency 
rather than the angular velocity. The angular frequency of an oscillator has the same 
numerical value, in rad/s, as the angular velocity of the corresponding particle in 
circular motion.

The names and units can be a bit confusing until you get used to them. It may help 
to notice that cycle and oscillation are not true units. Unlike the “standard meter” or the 
“standard kilogram,” to which you could compare a length or a mass, there is no “stan-
dard cycle” to which you can compare an oscillation. Cycles and oscillations are simply 
counted events. Thus the frequency f  has units of hertz, where 1 Hz = 1 s-1. We may 
say “cycles per second” just to be clear, but the actual units are only “per second.”

(a) Light from projector

Screen
Shadow

Oscillation of ball’s shadow

Ball

Circular
motion
of ball

Turntable

Simple harmonic motion of block

(b)

FIGURE 15.4 A projection of the circular 
motion of a rotating ball matches the 
simple harmonic motion of an object on  
a spring.

x

y

-A A

A

v

v

The x-component of
the particle’s position
describes the position
of the ball’s shadow.

A cosf

A cosf

Particle in uniform
circular motion

f

x
0-A A

FIGURE 15.5 A particle in uniform circular 
motion with radius A and angular velocity v.
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15.2 SHM and Circular Motion 429

The radian is the SI unit of angle. However, the radian is a defined unit. Further, its 
definition as a ratio of two lengths 1u = s/r2 makes it a pure number without dimensions.  
As we noted in Chapter 4, the unit of angle, be it radians or degrees, is really just a 
name to remind us that we’re dealing with an angle. The 2p in the equation v = 2pf  
(and in similar situations), which is stated without units, means 2p rad/cycle. When 
multiplied by the frequency f  in cycles/s, it gives the frequency in rad/s. That is why,  
in this context, v is called the angular frequency.

   NOTE    Hertz is specifically “cycles per second” or “oscillations per second.” It is 
used for f  but not for v. We’ll always be careful to use rad/s for v, but you should be 
aware that many books give the units of v as simply s-1.

Initial Conditions: The Phase Constant
Now we’re ready to consider the possibility of other initial conditions. The particle in  
Figure 15.5 started at f0 = 0. This was equivalent to an oscillator starting at the far 
right edge, x0 = A. FIGURE 15.6 shows a more general situation in which the initial 
angle f0 can have any value. The angle at a later time t is then

 f = vt + f0 (15.13)

In this case, the particle’s projection onto the x-axis at time t is

 x1t2 = A cos1vt + f02 (15.14)

If Equation 15.14 describes the particle’s projection, then it must also be the position  
of an oscillator in simple harmonic motion. The oscillator’s velocity vx is found by 
taking the derivative dx/dt. The resulting equations,

x1t2 = A cos1vt + f02 

 vx1t2 = -vA sin1vt + f02 = -vmax sin1vt + f02 
(15.15)

are the two primary kinematic equations of simple harmonic motion.
The quantity f = vt + f0, which steadily increases with time, is called the phase 

of the oscillation. The phase is simply the angle of the circular-motion particle whose 
shadow matches the oscillator. The constant f0 is called the phase constant. It is 
determined by the initial conditions of the oscillator.

To see what the phase constant means, set t = 0 in Equations 15.15:

 x0 = A cos f0 

 v0x = -vA sin f0 
(15.16)

The position x0 and velocity v0x at t = 0 are the initial conditions. Different values of 
the phase constant correspond to different starting points on the circle and thus 
to different initial conditions.

The cosine function of Figure 15.3 and the equation x1t2 = A cos vt are for an oscilla-
tion with f0 = 0 rad. You can see from Equations 15.16 that f0 = 0 rad implies x0 = A 
and v0 = 0. That is, the particle starts from rest at the point of maximum displacement.

FIGURE 15.7, on the next page, illustrates these ideas by looking at three values of the 
phase constant: f0 = p/3 rad 160°2, -p/3 rad 1-60°2, and p rad 1180°2. Notice that 
f0 = p/3 rad and f0 = -p/3 rad have the same starting position, x0 = 1

2 A. This is a prop-
erty of the cosine function in Equations 15.16. But these are not the same initial conditions. 
In one case the oscillator starts at 12 A while moving to the left, in the other case it starts at 12 A 
while moving to the right. You can distinguish between the two by visualizing the motion.

All values of the phase constant f0 between 0 and p rad correspond to a particle in 
the upper half of the circle and moving to the left. Thus v0x is negative. All values of 
the phase constant f0 between p and 2p rad (or, as they are usually stated, between 
-p and 0 rad) have the particle in the lower half of the circle and moving to the right. 
Thus v0x is positive. If you’re told that the oscillator is at x = 1

2 A and moving to the 
right at t = 0, then the phase constant must be f0 = -p/3 rad, not +p/3 rad.

x

y

-A A

A

v

v

A cosf
x0 = A cosf0

Initial position of 
particle at t = 0

The initial x-component of the 
particle’s position can be anywhere 
between -A and A, depending on f0.

Angle at time t is
f = vt + f0.

f0
f

FIGURE 15.6 A particle in uniform circular 
motion with initial angle f0.
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430 CHAPTER 15 Oscillations

   NOTE    The inverse-cosine function cos-1 is a two-valued function. Your calculator 
returns a single value, an angle between 0 rad and p rad. But the negative of this 
angle is also a solution. As Example 15.3 demonstrates, you must use additional 
information to choose between them.

x

y

x

y

x

y

t = 0

A

t

x

A

0
T

-A

t

vx

vmax

0
T

-vmax

x
A-A 0

t = 0

t

x

A

0
T

-A

t

vx

vmax

0
T

-vmax

x
A-A 0

t = 0 f0 = pf0 = 

f0 = p/3 rad f0 = -p/3 rad f0 = p rad

t

x

A

0
T

-A

t

 vx

vmax

0
T

-vmax

x
A-A 0

-AA

A A

A A

Initial conditions Amplitude unchanged

Period unchanged

Different initial conditions

1
2

1
2

1
2

p
3

f0 = -p
3

1
2

FIGURE 15.7 Different initial conditions are described by different values of the phase constant.

An object on a spring oscillates with a period of 0.80 s and an  
amplitude of 10 cm. At t = 0 s, it is 5.0 cm to the left of equilibrium 
and moving to the left. What are its position and direction of motion 
at t = 2.0 s?

MODEL An object oscillating on a spring is in simple harmonic 
 motion.

SOLVE We can find the phase constant f0 from the initial condition 
x0 = -5.0 cm = A cos f0. This condition gives

f0 = cos-11x0

A 2 = cos-11-  
1
22 = {2

3 p rad = {120°

Because the oscillator is moving to the left at t = 0, it is in the 
upper half of the circular-motion diagram and must have a phase 
constant between 0 and p rad. Thus f0 is 2

3 p rad. The angular  
frequency is

v =
2p
T

=
2p

0.80 s
= 7.85 rad/s

Thus the object’s position at time t = 2.0 s is

  x1t2 = A cos1vt + f02
  = 110 cm2 cos 117.85 rad /s212.0 s2 + 2

3 p2
  = 110 cm2 cos117.8 rad2 = 5.0 cm

The object is now 5.0 cm to the right of equilibrium. But which 
way is it moving? There are two ways to find out. The direct way 
is to calculate the velocity at t = 2.0 s:

vx = -vA sin1vt + f02 = +68 cm/s

The velocity is positive, so the motion is to the right. Alterna tively,  
we could note that the phase at t = 2.0 s is f = 17.8 rad. Dividing 
by p, you can see that

f = 17.8 rad = 5.67p rad = 14p + 1.67p2 rad

The 4p rad represents two complete revolutions. The “extra”  
phase of 1.67p rad falls between p and 2p rad, so the particle in 
the circular-motion diagram is in the lower half of the circle and 
moving to the right.

EXAMPLE 15.3 ■ Using the initial conditions
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15.3 Energy in SHM 431

15.3 Energy in SHM
We’ve begun to develop the mathematical language of simple harmonic motion, but 
thus far we haven’t included any physics. We’ve made no mention of the mass of the 
object or the spring constant of the spring. An energy analysis, using the tools of 
Chapter 10, is a good starting place.

FIGURE 15.8 shows an object oscillating on a spring, our prototype of simple harmonic 
motion. Now we’ll specify that the object has mass m, the spring has spring constant 
k, and the motion takes place on a frictionless surface. You learned in Chapter 10 that 
the elastic potential energy when the object is at position x is USp = 1

2 k1  ∆x22, where 
∆x = x - xeq is the displacement from the equilibrium position xeq. In this chapter 
we’ll always use a coordinate system in which xeq = 0, making ∆  x = x. There’s no 
chance for confusion with gravitational potential energy, so we can omit the subscript 
Sp and write the elastic potential energy as

 U = 1
2 kx2 (15.17)

Thus the mechanical energy of an object oscillating on a spring is

 E = K + U = 1
2 mv2 + 1

2 kx2 (15.18)

The lower portion of Figure 15.8 is an energy diagram, showing the parabolic  
potential-energy curve U = 1

2 kx2 and the kinetic energy K = E - U. Recall that a  
particle oscillates between the turning points where the total energy line E crosses the  
potential-energy curve. The left turning point is at x = -A, and the right turning point 
is at x = +A. To go beyond these points would require a negative kinetic energy, 
which is physically impossible.

You can see that the particle has purely potential energy at x = tA and purely 
kinetic energy as it passes through the equilibrium point at x = 0. At maximum 
displacement, with x = {A and v = 0, the energy is

 E1at x = {A2 = U = 1
2 k A2 (15.19)

At x = 0, where v = {vmax, the energy is

 E1at x = 02 = K = 1
2 m1vmax22 (15.20)

The system’s mechanical energy is conserved because the surface is frictionless 
and there are no external forces, so the energy at maximum displacement and the en-
ergy at maximum speed, Equations 15.19 and 15.20, must be equal. That is

 1
2 m1vmax22 = 1

2 k A2 (15.21)

STOP TO THINK 15.2 The figure  
shows four oscillators at t = 0.  
Which one has the phase constant 
f0 =  p/4 rad?

(a)

(b)

(c)

(d)

x (mm)
-100 -71 100710

-A A

v
u

x
-A Ax0

x
-A A0

Energy

Potential 
energy U

Kinetic 
energy K

Turning
point

Total 
energy

E

m
k

Energy is transformed between
kinetic and potential, but the total
mechanical energy E doesn’t change.

Energy here is
purely kinetic.

Energy here is purely potential.

FIGURE 15.8 Energy transformations 
during SHM.
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432 CHAPTER 15 Oscillations

Thus the maximum speed is related to the amplitude by

 vmax = A k
m

 A (15.22)

This is a relationship based on the physics of the situation.
Earlier, using kinematics, we found that

 vmax =
2pA

T
= 2pfA = vA (15.23)

Comparing Equations 15.22 and 15.23, we see that frequency and period of an  oscillating  
spring are determined by the spring constant k and the object’s mass m:

 v = A k
m
  f =

1
2p

 A k
m
  T = 2p Am

k
 (15.24)

These three expressions are really only one equation. They say the same thing, but 
each expresses it in slightly different terms.

Equations 15.24 tell us that the period and frequency are related to the object’s mass 
m and the spring constant k. It is perhaps surprising, but the period and frequency 
do not depend on the amplitude A. A small oscillation and a large oscillation have  
the same period.

Conservation of Energy
Because energy is conserved, we can combine Equations 15.18, 15.19, and 15.20 to write

 E = 1
2 mv2 + 1

2 kx2 = 1
2 kA2 = 1

2 m1vmax22 (conservation of energy) (15.25)

Any pair of these expressions may be useful, depending on the known information. 
For example, you can use the amplitude A to find the speed at any point x by combin-
ing the first and second expressions for E. The speed v at position x is

 v = B k
m

 1A2 - x22 = v 2A2 - x2 (15.26)

FIGURE 15.9 shows graphically how the kinetic and potential energy change with 
time. They both oscillate but remain positive because x and v are squared. Energy is 
continuously being transformed back and forth between the kinetic energy of the mov-
ing block and the stored potential energy of the spring, but their sum remains constant. 
Notice that K and U both oscillate twice each period; make sure you understand why.

A 500 g block on a spring is pulled a distance of 20 cm and released. 
The subsequent oscillations are measured to have a period of 0.80 s.

a. At what position or positions is the block’s speed 1.0 m/s?

b. What is the spring constant?

MODEL The motion is SHM. Energy is conserved.

SOLVE a. The block starts from the point of maximum displace-
ment, where E = U = 1

2 kA2. At a later time, when the position is x 
and the speed is v, energy conservation requires

1
2 mv2 + 1

2 kx2 = 1
2 kA2

Solving for x, we find

x = BA2 -
mv2

k
= BA2 - 1 v

v22

where we used k/m = v2 from Equations 15.24. The angular fre-
quency is easily found from the period: v = 2p/T = 7.85 rad/s. 
Thus

x = B10.20 m22 - 1 1.0 m/s
7.85 rad/s22

= {0.15 m = {15 cm

There are two positions because the block has this speed on either 
side of equilibrium.

b. Although part a did not require that we know the spring constant,  
it is straightforward to find from Equations 15.24:

 T = 2pAm
k

 k =
4p2m

T 2 =
4p210.50 kg2
10.80 s22 = 31 N/m

EXAMPLE 15.4 ■ Using conservation of energy

The total mechanical
energy E is constant.

Kinetic energy

Potential energy

t

Energy

T

t

Position

0

0

FIGURE 15.9 Kinetic energy, potential 
energy, and the total mechanical energy 
for simple harmonic motion.
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15.4 The Dynamics of SHM
Our analysis thus far has been based on the experimental observation that the oscillation 
of a spring “looks” sinusoidal. It’s time to look at force and acceleration and to see that 
Newton’s second law predicts sinusoidal motion.

A motion diagram will help us visualize the object’s acceleration. FIGURE 15.10  
shows one cycle of the motion, separating motion to the left and motion to the right 
to make the diagram clear. As you can see, the object’s velocity is large as it passes 
through the equilibrium point at x = 0, but v 

u is not changing at that point. Acceleration 
measures the change of the velocity; hence au = 0

u
 at x = 0.

STOP TO THINK 15.3 The four springs 
shown here have been compressed from 
their equilibrium position at x = 0 cm. 
When released, the attached mass will 
start to oscillate. Rank in order, from 
highest to lowest, the maximum speeds 
1vmax2A to 1vmax2D  of the masses.

1
2

A

B

C

D

x (cm)
-20 -15 -10 -5 0
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k

k

k

k

a
u

a
u

a
u

a
u

a
u

a
u

v
u

v
u

v
u

v
u

x
0-A A

To the right

Same
point

Same
pointEquilibrium

To the left

a = 0
u u

a = 0
u u

FIGURE 15.10 Motion diagram of simple harmonic motion. The left and right motions are 
separated vertically for clarity but really occur along the same line.

In contrast, the velocity is changing rapidly at the turning points. At the right turn-
ing point, v 

u changes from a right-pointing vector to a left-pointing vector. Thus the 
acceleration au at the right turning point is large and to the left. In one-dimensional 
motion, the acceleration component ax has a large negative value at the right turning 
point. Similarly, the acceleration au at the left turning point is large and to the right. 
Consequently, ax has a large positive value at the left turning point.

Our motion-diagram analysis suggests that the acceleration ax is most positive 
when the displacement is most negative, most negative when the displacement is a 
maximum, and zero when x = 0. This is confirmed by taking the derivative of the 
velocity:

 ax =
dvx

dt
=

d
dt

 1-vA sin vt2 = -v2A cos vt (15.27)

then graphing it.
FIGURE 15.11 shows the position graph that we started with in Figure 15.3 and the  

corresponding acceleration graph. Comparing the two, you can see that the acceleration  

t

Acceleration ax

0
T 2T

-amax

amax

t

Position x

0
T 2T

-A

A

amin = -v2A when x = +A

amax = v2A when x = -A

T

FIGURE 15.11 Position and acceleration 
graphs for an oscillating spring. We’ve 
chosen f0 = 0.
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434 CHAPTER 15 Oscillations

graph looks like an upside-down position graph. In fact, because x = A cos vt, 
Equation 15.27 for the acceleration can be written

 ax = -v2x (15.28)

That is, the acceleration is proportional to the negative of the displacement. The 
acceleration is, indeed, most positive when the displacement is most negative and is 
most negative when the displacement is most positive.

Recall that the acceleration is related to the net force by Newton’s second law. 
Consider again our prototype mass on a spring, shown in FIGURE 15.12. This is the sim-
plest possible oscillation, with no distractions due to friction or gravitational forces. We  
will assume the spring itself to be massless.

You learned in Chapter 9 that the spring force is given by Hooke’s law:

 1FSp2x = -k ∆x (15.29)

The minus sign indicates that the spring force is a restoring force, a force that always  
points back toward the equilibrium position. If we place the origin of the coordinate  
system at the equilibrium position, as we’ve done throughout this chapter, then ∆x = x 
and Hooke’s law is simply 1FSp2x = -kx.

The x-component of Newton’s second law for the object attached to the spring is

 1Fnet2x = 1FSp2x = -kx = max (15.30)

Equation 15.30 is easily rearranged to read

 ax = -  
k
m

 x (15.31)

You can see that Equation 15.31 is identical to Equation 15.28 if the system oscillates  
with angular frequency v = 1k/m. We previously found this expression for v from  
an energy analysis. Our experimental observation that the acceleration is proportional 
to the negative of the displacement is exactly what Hooke’s law would lead us to  
expect. That’s the good news.

The bad news is that ax is not a constant. As the object’s position changes, so does 
the acceleration. Nearly all of our kinematic tools have been based on constant ac - 
celeration. We can’t use those tools to analyze oscillations, so we must go back to the 
very definition of acceleration:

ax =
dvx

dt
=

d2x

dt2

Acceleration is the second derivative of position with respect to time. If we use this 
definition in Equation 15.31, it becomes

 
d2x

dt2 = -  
k
m

 x (equation of motion for a mass on a spring) (15.32)

Equation 15.32, which is called the equation of motion, is a second-order differential 
equation. Unlike other equations we’ve dealt with, Equation 15.32 cannot be solved by 
direct integration. We’ll need to take a different approach.

Solving the Equation of Motion
The solution to an algebraic equation such as x2 = 4 is a number. The solution to a 
differential equation is a function. The x in Equation 15.32 is really x1t2, the position 
as a function of time. The solution to this equation is a function x1t2 whose second 
derivative is the function itself multiplied by 1-k/m2.

One important property of differential equations that you will learn about in math 
is that the solutions are unique. That is, there is only one solution to Equation 15.32 
that satisfies the initial conditions. If we were able to guess a solution, the uniqueness 
property would tell us that we had found the only solution. That might seem a rather 

Spring
constant k

Oscillation

m

x
0 x-A A

FSp

u

FIGURE 15.12 The prototype of simple 
harmonic motion: a mass oscillating on a 
horizontal spring without friction.
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strange way to solve equations, but in fact differential equations are frequently solved 
by using your knowledge of what the solution needs to look like to guess an appropriate  
function. Let us give it a try!

We know from experimental evidence that the oscillatory motion of a spring ap-
pears to be sinusoidal. Let us guess that the solution to Equation 15.32 should have the 
functional form

 x1t2 = A cos1vt + f02 (15.33)

where A, v, and f0 are unspecified constants that we can adjust to any values that 
might be necessary to satisfy the differential equation.

If you were to guess that a solution to the algebraic equation x2 = 4 is x = 2, you 
would verify your guess by substituting it into the original equation to see if it works. 
We need to do the same thing here: Substitute our guess for x1t2 into Equation 15.32 
to see if, for an appropriate choice of the three constants, it works. To do so, we need 
the second derivative of x1t2. That is straightforward:

x1t2 = A cos1vt + f02
dx
dt

= -vA sin1vt + f02

 
d2x

dt2 = -v2A cos1vt + f02 

(15.34)

If we now substitute the first and third of Equations 15.34 into Equation 15.32, we find

 -v2A cos1vt + f02 = -  
k
m

 A cos1vt + f02 (15.35)

Equation 15.35 will be true at all instants of time if and only if v2 = k/m. There do 
not seem to be any restrictions on the two constants A and f0—they are determined 
by the initial conditions.

So we have found—by guessing!—that the solution to the equation of motion for a 
mass oscillating on a spring is

 x1t2 = A cos1vt + f02 (15.36)

where the angular frequency

 v = 2pf = B k
m

 (15.37)

is determined by the mass and the spring constant.

   NOTE    Once again we see that the oscillation frequency is independent of the 
amplitude A.

Equations 15.34 and 15.37 seem somewhat anticlimactic because we’ve been using 
these results for the last several pages. But keep in mind that we had been assuming  
x = A cos vt simply because the experimental observations “looked” like a cosine 
function. We’ve now justified that assumption by showing that Equation 15.36 really is  
the solution to Newton’s second law for a mass on a spring. The theory of oscillation, 
based on Hooke’s law for a spring and Newton’s second law, is in good agreement 
with the experimental observations.

1.0
0.5
0.0

-0.5
-1.0

Strain (10-21)

LIGO Hanford Data

Predicted

0.30 0.35
Time (sec)

0.40 0.45

The first observation of a gravitational 
wave in 2015 shows that space itself can 
oscillate.

At t = 0 s, a 500 g block oscillating on a spring is observed moving 
to the right at x = 15 cm. It reaches a maximum displacement of  
25 cm at t = 0.30 s.

a. Draw a position-versus-time graph for one cycle of the motion.

b. What is the maximum force on the block, and what is the first 
time at which this occurs?

EXAMPLE 15.5 ■ Analyzing an oscillator

Continued
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436 CHAPTER 15 Oscillations

15.5 Vertical Oscillations
We have focused our analysis on a horizontally oscillating spring. But the typical 
demonstration you’ll see in class is a mass bobbing up and down on a spring hung 
vertically from a support. Is it safe to assume that a vertical oscillation has the same 
mathematical description as a horizontal oscillation? Or does the additional force of 
gravity change the motion? Let us look at this more carefully.

FIGURE 15.14 shows a block of mass m hanging from a spring of spring constant k. 
An important fact to notice is that the equilibrium position of the block is not where 
the spring is at its unstretched length. At the equilibrium position of the block, where 
it hangs motionless, the spring has stretched by ∆L.

Finding ∆L is an equilibrium problem in which the upward spring force balances 
the downward gravitational force on the block. The y-component of the spring force 
is given by Hooke’s law:

 1FSp2y = -k ∆y = +k ∆L (15.38)

MODEL The motion is simple harmonic motion.

SOLVE a. The position equation of the block is x1t2 = A cos1vt +  
f02. We know that the amplitude is A = 0.25 m and that 
x0 = 0.15 m. From these two pieces of information we obtain the 
phase constant:

f0 = cos-11x0

A 2 = cos-110.602 = {0.927 rad

The object is initially moving to the right, which tells us that 
the phase constant must be between -p and 0 rad. Thus f0 =
-0.927 rad. The block reaches its maximum displacement xmax = A 
at time t = 0.30 s. At that instant of time

xmax = A = A cos1vt + f02
This equation can be true only if cos1vt + f02 = 1, which requires 
vt + f0 = 0. Thus

v =
-f0

t
=

-1-0.927 rad2
0.30 s

= 3.09 rad/s

Now that we know v, it is straightforward to compute the period:

T =
2p
v

= 2.0 s

FIGURE 15.13 graphs x1t2 = 125 cm2 cos13.09 t - 0.9272, where t is 
in s, from t = 0 s to t = 2.0 s.

b. We found the acceleration of SHM to be ax = -v2x, so the  
force on the block at position x is Fx = -mv2x. The force will be a  
maximum, Fmax = mv2A, when x reaches its minimum displacement 
x = -A. For the block,

Fmax = 10.50 kg213.09 rad/s2210.25 m2 = 1.2 N

This occurs exactly half a period (1.0 s) after the block reaches its 
maximum displacement, thus at t = 1.3 s.

REVIEW A 2 s period is a modest oscillation, so we don’t expect  
the block’s acceleration to be extreme. A maximum force of 1.2 N  
on a 0.5 kg block causes a maximum acceleration of 2.4 m/s2, 
which seems reasonable.

x (cm)

0.50.3 1.0 1.5 2.0

20

10

0

-10

-20

T = 2.0 s

t (s)

FIGURE 15.13 Position-versus-time graph for the oscillator of 
Example 15.5.

STOP TO THINK 15.4 This is the position graph of a mass on a spring. What can you  
say about the velocity and the force at the instant indicated by the dashed line?

a. Velocity positive; force to the right.
b. Velocity negative; force to the right.
c. Velocity zero; force to the right.
d. Velocity positive; force to the left.
e. Velocity negative; force to the left.
f. Velocity zero; force to the left.
g. Velocity and force both zero.

t

x

0

-A

A

Unstretched
spring

∆L

k

m

The block hanging
at rest has stretched
the spring by ∆L.

FSp

u

FG

u

FIGURE 15.14 Gravity stretches the spring.
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15.5 Vertical Oscillations 437

Equation 15.38 makes a distinction between ∆L, which is simply a distance and is 
a positive number, and the displacement ∆y. The block is displaced downward, so 
∆y = - ∆L. Newton’s first law for the block in equilibrium is

 1Fnet2y = 1FSp2y + 1FG2y = k ∆L - mg = 0 (15.39)

from which we can find

 ∆L =
mg

k
 (15.40)

This is the distance the spring stretches when the block is attached to it.
Let the block oscillate around this equilibrium position, as shown in FIGURE 15.15. 

We’ve now placed the origin of the y-axis at the block’s equilibrium position in order to 
be consistent with our analyses of oscillations throughout this chapter. If the block moves 
upward, as the figure shows, the spring gets shorter compared to its equilibrium length, 
but the spring is still stretched compared to its unstretched length in Figure 15.14. When 
the block is at position y, the spring is stretched by an amount ∆L - y and hence exerts  
an upward spring force FSp = k1  ∆L - y2. The net force on the block at this point is

 1Fnet2y = 1FSp2y + 1FG2y = k1  ∆L - y2 - mg = 1k ∆L - mg2 - ky (15.41)

But k ∆L - mg is zero, from Equation 15.40, so the net force on the block is simply

 1Fnet2y = -ky (15.42)

Equation 15.42 for vertical oscillations is exactly the same as Equation 15.30 for 
horizontal oscillations, where we found 1Fnet2x = -kx. That is, the restoring force for 
vertical oscillations is identical to the restoring force for horizontal oscillations. The 
role of gravity is to determine where the equilibrium position is, but it doesn’t affect 
the oscillatory motion around the equilibrium position.

Because the net force is the same, Newton’s second law has exactly the same  
oscillatory solution:

 y1t2 = A cos1vt + f02 (15.43)

with, again, v = 1k/m. The vertical oscillations of a mass on a spring are the 
same simple harmonic motion as those of a block on a horizontal spring. This is 
an important finding because it was not obvious that the motion would still be simple 
harmonic motion when gravity was included.

Block’s
equilibrium
position

0

y

-A

A

m

m

Spring
stretched
by ∆L - y

Spring
stretched
by ∆L

Oscillation around the 
equilibrium position 
is symmetrical.

FSp

u

Fnet

u

FG

u

FIGURE 15.15 The block oscillates around 
the equilibrium position.

An 83 kg student hangs from a bungee cord with spring constant 
270 N/m. The student is pulled down to a point where the cord is 
5.0 m longer than its unstretched length, then released. Where is 
the student, and what is his velocity 2.0 s later?

MODEL A bungee cord can be modeled as a spring. Vertical oscilla-
tions on the bungee cord are SHM.

VISUALIZE FIGURE 15.16 shows the situation.

SOLVE Although the cord is stretched by 5.0 m when the student  
is released, this is not the amplitude of the oscillation. Oscillations 
occur around the equilibrium position, so we have to begin by  
finding the equilibrium point where the student hangs motionless. 
The cord stretch at equilibrium is given by Equation 15.40:

∆L =
mg

k
= 3.0 m

Stretching the cord 5.0 m pulls the student 2.0 m below the equi-
librium point, so A = 2.0 m. That is, the student oscillates with 
 amplitude A = 2.0 m about a point 3.0 m beneath the bungee cord’s  

original end point. The student’s position as a function of time, as 
measured from the equilibrium position, is

y1t2 = 12.0 m2 cos1vt + f02
where v = 1k/m = 1.80 rad/s.

EXAMPLE 15.6 ■ Bungee oscillations

The bungee cord is 
modeled as a spring.

FIGURE 15.16 A student on a bungee cord oscillates about the 
equilibrium position.

Continued
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438 CHAPTER 15 Oscillations

15.6 The Pendulum
Now let’s look at another very common oscillator: a pendulum. FIGURE 15.17a shows a 
mass m attached to a string of length L and free to swing back and forth. The pendu-
lum’s position can be described by the arc of length s, which is zero when the pendulum  
hangs straight down. Because angles are measured ccw, s and u are positive when the 
pendulum is to the right of center, negative when it is to the left.

Two forces are acting on the mass: the string tension T 
u

 and gravity F
u

G. As we did 
with circular motion, it will be useful to divide the forces into tangential components, 
parallel to the motion, and radial components parallel to the string. These are shown 
on the free-body diagram of FIGURE 15.17b.

Newton’s second law for the tangential component, parallel to the motion, is

 1Fnet2t = aFt = 1FG2t = -mg sin u = mat (15.44)

Using at = d2s/dt2 for acceleration “around” the circle, and noting that the mass cancels,  
we can write Equation 15.44 as

 
d2s

dt2 = -g sin u (15.45)

This is the equation of motion for an oscillating pendulum. The sine function makes 
this equation more complicated than the equation of motion for an oscillating spring.

The Small-Angle Approximation
Suppose we restrict the pendulum’s oscillations to small angles of less than about 10°.  
This restriction allows us to make use of an interesting and important piece of geometry.

FIGURE 15.18 shows an angle u and a circular arc of length s = r  u. A right triangle 
has been constructed by dropping a perpendicular from the top of the arc to the axis. 
The height of the triangle is h = r sin u. Suppose that the angle u is “small,” which, in 
practice, means u V 1 rad. In that case there is very little difference between h and s. 
If h ≈ s, then r sin u ≈ r u. It follows that

sin u ≈ u if u V 1 rad

The result that sin u ≈ u for small angles is called the small-angle approximation. 
We can similarly note that l ≈ r for small angles. Because l = r cos u, it follows that

cos u ≈ 1 if u V 1 rad

Finally, we can take the ratio of sine and cosine to find tan u ≈ sin u ≈ u. We will 
have other occasions to use the small-angle approximation throughout the remainder 
of this text.

   NOTE    The small-angle approximation is valid only if angle u is in radians!

How small does u have to be to justify using the small-angle approximation? It’s 
easy to use your calculator to find that the small-angle approximation is good to three 
significant figures, an error of …  0.1%, up to angles of ≈0.10 rad 1≈5°2. In practice, 
we will use the approximation up to about 10°, but for angles any larger it rapidly 
loses validity and produces unacceptable results.

0

u and s are
negative on
the left.

u and s are
positive on
the right.

Arc length

L

s
m

(a)

u

FIGURE 15.17 Pendulum motion

s = ruh = r sinu

l = rcosu

r

u

FIGURE 15.18 The geometrical basis of the 
small-angle approximation.

The initial condition

y0 = A cos f0 = -A

requires the phase constant to be f0 = p rad. At t = 2.0 s the student’s 
position and velocity are

y = 12.0 m2 cos1     11.80 rad/s212.0 s2 + p rad2 = 1.8 m

 vy = -vA sin1vt + f02 = -1.6 m/s

The student is 1.8 m above the equilibrium position, or 1.2 m below the 
original end of the cord. Because his velocity is negative, he’s passed 
through the highest point and is heading down.

Center 
of circle

Tangential
axis

t

The tension has
only a radial
component.

The gravitational force
has a tangential 
component -mg sinu.

(b)

u

u

(FG)t

(FG)r
FG

u

T
u
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15.6 The Pendulum 439

If we restrict the pendulum swing to angles u 6 10°, we can use sin u ≈ u. In that 
case, Equa tion 15.44 for the net force on the mass is

1Fnet2 t = -mg sin u ≈ -mg u = -  
mg

L
 s

where, in the last step, we used the fact that angle u is related to the arc length by 
u = s/L. Then the equation of motion becomes

 
d2s

dt2 =
1Fnet2t

m
= -  

g

L
 s (15.46)

This is exactly the same as Equation 15.32 for a mass oscillating on a spring. The 
names are different, with x replaced by s and k/m by g/L, but that does not make it a 
different equation.

Because we know the solution to the spring problem, we can immediately write the 
solution to the pendulum problem just by changing variables and constants:

 s1t2 = A cos1vt + f02  or  u1t2 = umax cos1vt + f02 (15.47)

The angular frequency

 v = 2pf = A g

L
 (15.48)

is determined by the length of the string. The pendulum is interesting in that the 
frequency, and hence the period, is independent of the mass. It depends only on the 
length of the pendulum. The amplitude A and the phase constant f0 are determined 
by the initial conditions, just as they were for an oscillating spring.

The small-angle approximation

sin u ≈ u
tan u ≈ u
cos u ≈ 1
Angle u must be in radians.
Valid when u 6 0.2 rad (≈10°)

A 300 g mass on a 30-cm-long string oscillates as a pendulum. It 
has a speed of 0.25 m/s as it passes through the lowest point. What 
maximum angle does the pendulum reach?

MODEL Assume that the angle remains small, in which case the 
motion is simple harmonic motion.

SOLVE The angular frequency of the pendulum is

v = B g

L
= B 9.8 m/s2

0.30 m
 = 5.72 rad/s

The speed at the lowest point is vmax = vA, so the amplitude is

A = smax =
vmax

v
=

0.25 m/s
5.72 rad/s

= 0.0437 m

The maximum angle, at the maximum arc length smax, is

umax =
smax 

L
=

0.0437 m
0.30 m

= 0.146 rad = 8.3°

REVIEW Because the maximum angle is less than 10°, our analysis 
based on the small-angle approximation is reasonable.

EXAMPLE 15.7 ■ The maximum angle of a pendulum

Deposits of minerals and ore can alter the local value of the free-
fall acceleration because they tend to be denser than surrounding 
rocks. Geologists use a gravimeter—an instrument that accu-
rately measures the local free-fall acceleration—to search for ore  
deposits. One of the simplest gravimeters is a pendulum. To achieve 
the highest accuracy, a stopwatch is used to time 100 oscillations 
of a pendulum of different lengths. At one location in the field, a 
geologist makes the following measurements:

Length (m) Time (s)

0.500 141.7

1.000 200.6

1.500 245.8

2.000 283.5

What is the local value of g?

MODEL Assume the oscillation angle is small, in which case the 
motion is simple harmonic motion with a period independent of 
the mass of the pendulum. Because the data are known to four  
significant figures ({1 mm on the length and {0.1 s on the timing, 
both of which are easily achievable), we expect to determine g to  
four significant figures.

SOLVE From Equation 15.48, using f = 1/T, we find

T 2 = 12pAL
g 22

=
4p2

g
 L

That is, the square of a pendulum’s period is proportional to its 
length. Consequently, a graph of T 2 versus L should be a straight 
line passing through the origin with slope 4p2/g. We can use the 

EXAMPLE 15.8 ■ The gravimeter

Continued
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440 CHAPTER 15 Oscillations

The Simple-Harmonic-Motion Model
You can begin to see how, in a sense, we have solved all simple-harmonic-motion 
problems once we have solved the problem of the horizontal spring. The restoring 
force of a spring, FSp = -kx, is directly proportional to the displacement x from equi-
librium. The pendulum’s restoring force, in the small-angle approximation, is directly 
proportional to the displacement s. A restoring force that is directly proportional to 
the displacement from equilibrium is called a linear restoring force. For any linear 
restoring force, the equation of motion is identical to the spring equation (other than 
perhaps using different symbols). Consequently, any system with a linear restoring 
force will undergo simple harmonic motion around the equilibrium position.

This is why an oscillating spring is the prototype of SHM. Everything that we 
learn about an oscillating spring can be applied to the oscillations of any other linear 
restoring force, ranging from the vibration of airplane wings to the motion of elec-
trons in electric circuits.

experimentally measured slope to determine g. FIGURE 15.19 is a 
graph of the data, with the period found by dividing the measured 
time by 100.

As expected, the graph is a straight line passing through the 
origin. The slope of the best-fit line is 4.021 s2/m. Consequently,

g =
4p2

slope
=

4p2

4.021 s2/m
= 9.818 m/s2

REVIEW The fact that the graph is linear and passes through the 
origin confirms our model of the situation. Had this not been  
the case, we would have had to conclude either that our model of 
the pendulum as a simple, small-angle pendulum was not valid  
or that our measurements were bad. This is an important reason  
for having multiple data points rather than using only one length.

Best-fit line

y = 4.021x + 0.001

2

0

4

6

8

T 2 (s2)

L (m)
0.50.0 1.0 1.5 2.0

FIGURE 15.19 Graph of the square of the pendulum’s period 
versus its length.

MODEL 15.1

Simple harmonic motion
For any system with a restoring force that’s  
linear or can be well approximated as linear.

■■ Motion is SHM around the equilibrium position.
■■ Frequency and period are independent of the 
amplitude.

■■ Mathematically:

• For an appropriate position variable u, the  
equation of motion can be written

d2u/dt2 = -Cu

where C is a collection of constants.
• The angular frequency is v = 1C.
• The position and velocity are

u = A cos1vt + f02 vu = -vmax sin1vt + f02
where A and f0 are determined by the initial conditions.

• Mechanical energy is conserved.
■■ Limitations: Model fails if the restoring force deviates significantly from linear.

Exercise 22 

0 A
x

-A

t0

u T
A

-A
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15.6 The Pendulum 441

The Physical Pendulum
A mass on a string is often called a simple pendulum. But you can also make a pendulum  
from any solid object that swings back and forth on a pivot under the influence of 
gravity. This is called a physical pendulum.

FIGURE 15.20 shows a physical pendulum of mass M for which the distance between 
the pivot and the center of mass is l. The moment arm of the gravitational force acting 
at the center of mass is d = l sin u, so the gravitational torque is

t = -Mgd = -Mgl sin u

The torque is negative because, for positive u, it’s causing a clockwise rotation. If  
we restrict the angle to being small 1u 6 10°2, as we did for the simple pendulum, we 
can use the small-angle approximation to write

 t = -Mgl u (15.49)

Gravity exerts a linear restoring torque on the pendulum—that is, the torque is directly  
proportional to the angular displacement u—so we expect the physical pendulum to 
undergo SHM.

From Chapter 12, Newton’s second law for rotational motion is

a =
d2u

dt2 =
t

I

where I is the object’s moment of inertia about the pivot point. Using Equation 15.49 
for the torque, we find

 
d2u

dt2 =
-Mgl

I
 u (15.50)

The equation of motion is of the form d2u/dt2 = -C u, so the model for simple har-
monic motion tells us that the motion is SHM with angular frequency

 v = 2pf = BMgl

I
 (15.51)

It appears that the frequency depends on the mass of the pendulum, but recall that 
the moment of inertia is directly proportional to M. Thus M cancels and the frequency 
of a physical pendulum, like that of a simple pendulum, is independent of mass.

A student in a biomechanics lab measures the length of his leg, 
from hip to heel, to be 0.90 m. What is the frequency of the pendu-
lum motion of the student’s leg? What is the period?

MODEL We can model a human leg reasonably well as a rod of  
uniform cross section, pivoted at one end (the hip) to form a physical 
pendulum. For small-angle oscillations it will undergo SHM. The 
center of mass of a uniform leg is at the midpoint, so l = L /2.

SOLVE The moment of inertia of a rod pivoted about one end is 
I = 1

3 ML2, so the pendulum frequency is

f =
1

2p
 BMgl

I
=

1
2p

 BMg1L/22
ML2/3

=
1

2p
 B 3g

2L
= 0.64 Hz

The corresponding period is T = 1/f = 1.6 s. Notice that we didn’t 
need to know the mass.

REVIEW As you walk, your legs do swing as physical pendulums 
as you bring them forward. The frequency is fixed by the length 
of your legs and their distribution of mass; it doesn’t depend on 
amplitude. Consequently, you don’t increase your walking speed 
by taking more rapid steps—changing the frequency is difficult. 
You simply take longer strides, changing the amplitude but not the 
frequency.

EXAMPLE 15.9 ■ A swinging leg as a pendulum

STOP TO THINK 15.5 One person swings on a swing and finds that the period is 3.0 s.  
A second person of equal mass joins him. With two people swinging, the period is

a. 6.0 s b. 73.0 s but not necessarily 6.0 s
c. 3.0 s d. 63.0 s but not necessarily 1.5 s
e. 1.5 s f. Can’t tell without knowing the length

Mg

d

l

u
⊗

Distance from
pivot to center of
mass

Moment arm of
gravitational torque

FIGURE 15.20 A physical pendulum.
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442 CHAPTER 15 Oscillations

15.7 Damped Oscillations
A pendulum left to itself gradually slows down and stops. The sound of a ringing bell 
gradually dies away. All real oscillators do run down—some very slowly but others 
quite quickly—as friction or other dissipative forces transform their mechanical energy 
into the thermal energy of the oscillator and its environment. An oscillation that runs  
down and stops is called a damped oscillation.

There are many possible reasons for the dissipation of energy, such as air resistance, 
friction, and internal forces within a metal spring as it flexes. The forces involved 
in dissipation are complex, but a simple linear drag model gives a reasonably accu-
rate description of most damped oscillations. That is, we’ll assume a drag force that  
depends linearly on the velocity as

 F
u

drag = -bv 

u (model of the drag force) (15.52)

where the minus sign is the mathematical statement that the force is always opposite 
in direction to the velocity in order to slow the object.

The damping constant b depends in a complicated way on the shape of the ob-
ject and on the viscosity of the medium in which the particle moves. The units of b 
need to be such that they will give units of force when multiplied by units of velocity. 
As you can confirm, these units are kg/s. A value b = 0 kg/s corresponds to the limit-
ing case of no resistance, in which case the mechanical energy is conserved.

FIGURE 15.21 shows a mass oscillating on a spring in the presence of a drag force. 
With the drag included, Newton’s second law is

 1Fnet2x = 1FSp2x + 1Fdrag2x = -kx - bvx = max (15.53)

Using vx = dx/dt and ax = d2x/dt2, we can write Equation 15.53 as

 
d2x

dt2 = -
k
m

 x -
b
m

 
dx
dt

 (15.54)

Equation 15.54 is the equation of motion of a damped oscillator. If you compare it to 
Equation 15.32, the equation of motion for a block on a frictionless surface, you’ll see 
that it differs by the inclusion of the term involving dx/dt.

Equation 15.54 is another second-order differential equation. We will simply assert 
(and, as a homework problem, you can confirm) that the solution is

 x1t2 = Ae-bt/2m cos1vt + f02  (damped oscillator) (15.55)

where the angular frequency is given by

 v = B k
m

-
b2

4m2 = Bv0 

2 -
b2

4m2 (15.56)

Here v0 = 1k/m is the angular frequency of an undamped oscillator 1b = 02. The 
constant e is the base of natural logarithms, so e-bt/2m is an exponential function. 
Because e0 = 1, Equation 15.55 reduces to our previous x1t2 = A cos1vt +f02 when 
b = 0. This makes sense and gives us confidence in Equation 15.55.

Lightly Damped Oscillators
A lightly damped oscillator, which oscillates many times before stopping, is one 
for which b/2m V v0. In that case, v ≈ v0 is a good approximation. That is, light 
damping does not affect the oscillation frequency.

FIGURE 15.22 is a graph of the position x1t2 for a lightly damped oscillator, as given 
by Equation 15.55. To keep things simple, we’ve assumed that the phase constant is 

The shock absorbers in cars and trucks 
are heavily damped springs. The vehicle’s 
vertical motion, after hitting a rock or a 
pothole, is a damped oscillation.

v
u

Spring
constant k

m

FSp

u

Fdrag

u

FIGURE 15.21 An oscillating mass in the 
presence of a drag force.

t

x

0

-A

A

A is the initial amplitude.

The envelope of the
amplitude decays
exponentially:
xmax = Ae-bt/2m

FIGURE 15.22 Position-versus-time graph 
for a lightly damped oscillator.
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zero. Notice that the term Ae-bt/2m, which is shown by the dashed line, acts as a slowly 
varying amplitude:

 xmax1t2 = Ae-bt/2m (15.57)

where A is the initial amplitude, at t = 0. The oscillation keeps bumping up against 
this line, slowly dying out with time.

A slowly changing line that provides a border to a rapid oscillation is called the 
envelope of the oscillations. In this case, the oscillations have an exponentially  
decaying envelope. Make sure you study Figure 15.22 long enough to see how both 
the oscillations and the decaying amplitude are related to Equation 15.55.

Changing the amount of damping, by changing the value of b, affects how quickly 
the oscillations decay. FIGURE 15.23 shows just the envelope xmax1t2 for several oscillators 
that are identical except for the value of the damping constant b. (You need to imagine 
a rapid oscillation within each envelope, as in Figure 15.22.) Increasing b causes the 
oscillations to damp more quickly, while decreasing b makes them last longer.

MATHEMATICAL ASIDE

Exponential decay
Exponential decay occurs in a vast number of physical 
systems of importance in science and engineering. Mechan-
ical vibrations, electric circuits, and nuclear radioactivity all 
exhibit exponential decay.

The mathematical analysis of physical systems frequently 
leads to solutions of the form

u = Ae-v/v0 = A exp1-v/v02
where exp is the exponential function. The number 
e = 2.71828c is the base of natural logarithms in the same 
way that 10 is the base of ordinary logarithms.

u starts at A.

u decays to 37% of
its initial value at v = v0.

u decays to 13% of its
initial value at v = 2v0.

0

e-2A

e-1A

A

v

u

0 v0 2v0

A graph of u illustrates what we mean by exponential  
decay. It starts with u = A at v = 0 (because e0 = 1) and 
then steadily decays, asymptotically approaching zero. 
The quantity v0 is called the decay constant. When v = v0, 
u = e-1A = 0.37A. When v = 2v0, u = e-2A = 0.13A.

The decay constant v0 must have the same units as v.  
If v represents position, then v0 is a length; if v represents 
time, then v0 is a time interval. In a specific situation, v0 
is often called the decay length or the decay time. It is the 
length or time in which the quantity decays to 37% of its 
initial value.

No matter what the process is or what u represents, a 
 quantity that decays exponentially decays to 37% of its 
initial value when one decay constant has passed. Thus 
exponential decay is a universal behavior. The decay curve  
always looks exactly like the figure shown here. Once you’ve 
learned the properties of exponential decay, you’ll immediately  
know how to apply this knowledge to a new situation.

The mechanical energy of a damped oscillator is not conserved because of the drag 
force. We previously found the energy of an undamped oscillator to be E = 1

2 k A2. 
This is still valid for a lightly damped oscillator if we replace A with the slowly decay-
ing amplitude xmax. Thus

 E1t2 = 1
2  k1xmax22 = 1

2 k1Ae-bt/2m22 = 1
2 k A2e-bt/m (15.58)

Here A is the initial amplitude, so 1
2 k A2 is the initial energy, which we call E0. Let’s 

define the time constant t (also called the decay constant or the decay time) to be

 t =
m
b

 (15.59)

t (s)

Amplitude

0

A

0 20 40 60

Envelope from 
Figure 15.22

Energy is conserved.b = 0 kg/s

b = 0.03 kg/s

b = 0.1 kg/s

b = 0.3 kg/s

Larger b, more damping.

Smaller b, 
less damping.

FIGURE 15.23 Oscillation envelopes for a 
mass of 1.0 kg with several values of b.
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444 CHAPTER 15 Oscillations

Because b has units of kg/s, t has units of seconds. With this, we can write the energy 
decay as

 E1t2 = E0 e-t/t (15.60)

In other words, a lightly damped oscillator’s mechanical energy decays exponentially 
with time constant t.

As FIGURE 15.24 shows, the time constant is the amount of time needed for the  
energy to decay to e-1, or 37%, of its initial value. We say that the time constant  
t measures the “characteristic time” during which the energy of the oscillation is  
dissipated. Roughly two-thirds of the initial energy is gone after one time constant has  
elapsed, and nearly 90% has dissipated after two time constants have gone by.

For practical purposes, we can speak of the time constant as the lifetime of the 
oscillation—about how long it lasts. Mathematically, there is never a time when the 
oscillation is “over.” The decay approaches zero asymptotically, but it never gets  
there in any finite time. The best we can do is define a characteristic time when the 
motion is “almost over,” and that is what the time constant t does.

t

Energy

t = t

0.13E0

0
0

0.37E0

E0

t = 2t

The energy has decreased to 
37% of its initial value at t = t.

FIGURE 15.24 Energy decay of a lightly 
damped oscillator.

A 500 g mass swings on a 60-cm-long string as a pendulum. The amp-
litude is observed to decay to half its initial value after 35 oscillations.

a. What is the time constant for this oscillator?

b. At what time will the energy have decayed to half its initial value?

MODEL The motion is a lightly damped oscillation.

SOLVE a. The initial amplitude at t = 0 is xmax = A. After 35 
 oscillations the amplitude is xmax = 1

2 A. The period of the pendulum is

T = 2pAL
g

= 2pA 0.60 m

9.8 m/s2 = 1.55 s

so 35 oscillations have occurred at t = 54.2 s.
The amplitude of oscillation at time t is given by Equation 15.57:  

xmax1t2 = Ae-bt/2m = Ae-t/2t. In this case,
1
2 A = Ae-154.2 s2/2t

Notice that we do not need to know A itself because it cancels out. 
To solve for t, we take the natural logarithm of both sides of the 
equation:

ln11
22 = - ln 2 = ln e-154.2 s2/2t = -  

54.2 s
2t

 

This is easily rearranged to give

t =
54.2 s
2 ln 2

= 39 s

If desired, we could now determine the damping constant to be 
b = m/t = 0.013 kg/s.

b. The energy at time t is given by

E1t2 = E0e-t/t

The time at which an exponential decay is reduced to 1
2 E0, half  

its initial value, has a special name. It is called the half-life and 
given the symbol t1/2. The concept of the half-life is widely used 
in applications such as radioactive decay. To relate t1/2 to t, we 
first write

E1at t = t1/22 = 1
2 E0 = E0e-t1/2 /t

The E0 cancels, giving

1
2 = e-t1/2/t

Again, we take the natural logarithm of both sides:

ln11
22 = - ln 2 = ln e-t1/2/t = - t1/2/t

Finally, we solve for t1/2:

t1/2 = t ln 2 = 0.693t

This result that t1/2 is 69% of t is valid for any exponential decay. 
In this particular problem, half the energy has been dissipated at

t1/2 = 10.6932139 s2 = 27 s

REVIEW The oscillator loses energy faster than it loses amplitude. 
This is what we should expect because the energy depends on the 
square of the amplitude.

EXAMPLE 15.10 ■ A damped pendulum

STOP TO THINK 15.6 Rank in order, from largest to smallest, the time constants tA 
to tD of the decays shown in the figure. All the graphs have the same scale.

t

E

t

E

t

E

t

E

A B C D
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15.8 Driven Oscillations and Resonance 445

15.8 Driven Oscillations and Resonance
Thus far we have focused on the free oscillations of an isolated system. Some initial 
disturbance displaces the system from equilibrium, and it then oscillates freely until 
its energy is dissipated. These are very important situations, but they do not exhaust 
the possibilities. Another important situation is an oscillator that is subjected to a pe-
riodic external force. Its motion is called a driven oscillation.

A simple example of a driven oscillation is pushing a child on a swing, where your 
push is a periodic external force applied to the swing. A more complex example is a car 
driving over a series of equally spaced bumps. Each bump causes a periodic upward  
force on the car’s shock absorbers, which are big, heavily damped springs. The elec-
tromagnetic coil on the back of a loudspeaker cone provides a periodic magnetic force 
to drive the cone back and forth, causing it to send out sound waves. Air turbulence 
moving across the wings of an aircraft can exert periodic forces on the wings and  
other aerodynamic surfaces, causing them to vibrate if they are not properly designed.

As these examples suggest, driven oscillations have many important applications. 
However, driven oscillations are a mathematically complex subject. We will simply 
hint at some of the results, saving the details for more advanced classes.

Consider an oscillating system that, when left to itself, oscillates at a frequency f0. 
We will call this the natural frequency of the oscillator. The natural frequency for 
a mass on a spring is 1k /m /2p, but it might be given by some other expression for 
another type of oscillator. Regardless of the expression, f0 is simply the frequency of 
the system if it is displaced from equilibrium and released.

Suppose that this system is subjected to a periodic external force of frequency fext. 
This frequency, which is called the driving frequency, is completely independent 
of the oscillator’s natural frequency f0. Somebody or something in the environment 
selects the frequency fext of the external force, causing the force to push on the system 
fext times every second.

Although it is possible to solve Newton’s second law with an external driving 
force, we will be content to look at a graphical representation of the solution. The 
most important result is that the oscillation amplitude depends very sensitively on the 
frequency fext of the driving force. The response to the driving frequency is shown 
in FIGURE 15.25 for a system with m = 1.0 kg, a natural frequency f0 = 2.0 Hz, and a 
damping constant b = 0.20 kg/s. This graph of amplitude versus driving frequency, 
called the response curve, occurs in many different applications.

When the driving frequency is substantially different from the oscillator’s natural 
frequency, at the right and left edges of Figure 15.25, the system oscillates but the am-
plitude is very small. The system simply does not respond well to a driving frequency 
that differs much from f0. As the driving frequency gets closer and closer to the nat-
ural frequency, the amplitude of the oscillation rises dramatically. After all, f0 is the 
frequency at which the system “wants” to oscillate, so it is quite happy to respond to a 
driving frequency near f0. Hence the amplitude reaches a maximum when the driving 
frequency exactly matches the system’s natural frequency: fext = f0.

The amplitude can become exceedingly large when the frequencies match, 
 especially if the damping constant is very small. FIGURE 15.26 shows the same oscillator 
with three different values of the damping constant. There’s very little response if the 
damping constant is increased to 0.80 kg/s, but the amplitude for fext = f0 becomes 
very large when the damping constant is reduced to 0.08 kg/s. This large-amplitude  
response to a driving force whose frequency matches the natural frequency of the 
 system is a phenomenon called resonance. The condition for resonance is

 fext = f0 (resonance condition) (15.61)

Within the context of driven oscillations, the natural frequency f0 is often called the 
resonance frequency.

An important feature of Figure 15.26 is how the amplitude and width of the  
resonance depend on the damping constant. A heavily damped system responds fairly 

fext (Hz)

Amplitude

1 2 3

Maximum amplitude 
when fext = f0. 

Amplitude is small 
when fext differs 
substantially from f0.

Natural frequency f0

FIGURE 15.25 The response curve of a 
driven oscillator at frequencies near its 
natural frequency of 2.0 Hz.

fext (Hz)

Amplitude

1 2 3

b = 0.08 kg/s

b = 0.20 kg/s

b = 0.80 kg/s

f0 = 2.0 Hz A lightly damped system
has a very tall and very
narrow response curve.

A heavily damped 
system has little 
response.

FIGURE 15.26 The resonance amplitude 
becomes higher and narrower as the 
damping constant decreases.
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446 CHAPTER 15 Oscillations

little, even at resonance, but it responds to a wide range of driving frequencies. Very 
lightly damped systems can reach exceptionally high amplitudes, but notice that the 
range of frequencies to which the system responds becomes narrower and narrower  
as b decreases.

This allows us to understand why a few singers can break crystal goblets but not 
inexpensive, everyday glasses. An inexpensive glass gives a “thud” when tapped, but a 
fine crystal goblet “rings” for several seconds. In physics terms, the goblet has a much 
longer time constant than the glass. That, in turn, implies that the goblet is very lightly 
damped while the ordinary glass is heavily damped (because the internal forces within  
the glass are not those of a high-quality crystal structure).

The singer causes a sound wave to impinge on the goblet, exerting a small driving 
force at the frequency of the note she is singing. If the singer’s frequency matches the 
natural frequency of the goblet—resonance! Only the lightly damped goblet, like the 
top curve in Figure 15.26, can reach amplitudes large enough to shatter. The restric-
tion, though, is that its natural frequency has to be matched very precisely. And in 
practice, the sound also has to be extremely loud.

15.9   ADVANCED TOPIC  Coupled Oscillations  
and Normal Modes

Two or more oscillators that interact are called coupled oscillators. In general, the 
motions of a system of coupled oscillators are very complex. However, coupled oscil-
lators can also exhibit simple patterns in which individual oscillators move “in sync” 
with each other at the same frequency. These simple oscillatory patterns are called the 
normal modes of the system.

Normal modes play an important role in science and engineering—from the vibra-
tions of molecules and motors to the generation of microwaves and laser pulses. The 
theory of normal modes is the subject of advanced courses, but we can illustrate the 
basic ideas in a simple situation with two coupled oscillators.

FIGURE 15.27 shows two oscillators, each a mass m on a spring with spring constant 
k, that are connected by a third spring with a different spring constant l. It’s this third 
spring that provides the coupling between the oscillators; without it they would oscil-
late independently of each other at angular frequency v = 1k /m. We assume that the 
springs are massless and that no spring is stretched or compressed when the masses 
are at rest.

Writing Newton’s second law for each mass is straightforward, although care must 
be taken with the signs. Suppose mass 1 is at x1 and mass 2 at x2, each measured from 
its equilibrium position. The left spring is stretched by x1 while the middle spring is 
stretched by x2 - x1. According to Hooke’s law, the x-component of the net force on 
mass 1 is

 F1x = -kx1 + l(x2 - x1) (15.62)

The minus sign with the first term indicates a pulling force to the left from the  
left spring if x1 7 0 and a pushing force to the right if x1 6 0. The plus sign with the 
second term shows that the middle spring pulls to the right if it is stretched (x2 7 x1) 
but pushes to the left if compressed (x1 6 x2). Similar considerations find that the net 
force on mass 2 is

 F2x = -kx2 - l(x2 - x1) (15.63)

For each mass, Newton’s second law is Fx = max = m d2x/dt2. Dividing both sides 
of Equations 15.62 and 15.63 by m gives the equations of motion:

d2x1

dt2 = -
k
m

 x1 +
l
m

 (x2 - x1)

 
d2x2

dt2 = -
k
m

 x2 -
l
m

 (x2 - x1) 

(15.64)

A singer or musical instrument can 
shatter a crystal goblet by matching the 
goblet’s natural oscillation frequency. 
Note that this image is an artist’s impres-
sion, not an actual photo.

x1 x2 

k kl
1
m

2
m

FIGURE 15.27 Two coupled oscillators.
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15.9  Advanced Topic: Coupled Oscillations and Normal Modes 447

These are coupled differential equations because x1 and x2 appear in both. Keep in 
mind that x1 and x2 are not numbers but are functions of time—x1(t) and x2(t)—that 
describe the motions of the two masses.

Sometimes coupled differential equations can be solved by a suitable change of 
variables. For example, let’s define u = x1 + x2 and v = x1 - x2. Thus u and v are also 
functions of time, not numbers. If we add Equations 15.64, the (x2 - x1) term cancels 
and we find

 
d2x1

dt2 +
d2x2

dt2 =
d2(x1 + x2)

dt2 = -
k
m

 x1 + -
k
m

 x2 = -
k
m

 (x1 + x2) (15.65)

This is now a differential equation for u = x1 + x2. Similarly, subtracting the  
second equation from the first in Equations 15.64 gives a differential equation for 
v = x1 - x2. The change of variables has changed the equations to

d2u

dt2 = -
k
m

 u

 
d2v

dt2 = -
k + 2l

m
 v 

(15.66)

Not only are these now uncoupled differential equations, each independent of the 
other, but also they are differential equations that we know how to solve! They are 
none other than Equation 15.32 for the SHM of a single mass on a spring, so we can 
immediately write the solutions:

u(t) = 2A cos (vt + fa)

 v(t) = 2B cos (Ωt + fb) 
(15.67)

where the angular frequencies are

v = A k
m

 Ω = Ak + 2l
m

7 v 

(15.68)

The four constants A, B, fa, and fb, which include two phase constants, must be 
 determined by the four initial conditions: the initial position and initial velocity of 
each mass. The factors of 2 in the amplitudes are not essential but will lead to a sim-
pler result at the next step of our analysis.

Symmetric and Antisymmetric Modes
We could now use x1 = (u + v)/2 and x2 = (u - v)/2 to write general expressions for 
the motions of the two masses, but the result is not very illuminating. We would find 
that each mass follows a complex motion that’s the sum of two oscillations at the two 
different frequencies v and Ω.

It’s more useful to see what happens if we choose the initial conditions carefully. 
Suppose we choose initial conditions such that B = 0 and fa = fb = 0. This makes 
u = 2A cos vt and v = 0. Then, using x1 = (u + v)/2 and x2 = (u - v)/2, we find

x1(t) = A cos vt

   x2(t) = A cos vt 
(15.69)

This is a solution, shown in FIGURE 15.28, in which two masses have exactly the same 
motion, both in SHM at angular frequency v. This simple pattern, where the masses 
oscillate together at the same frequency, is a normal mode of the system. It’s called 
the symmetric normal mode because the two masses are doing the same thing at the 
same time. You can see that it’s not hard to create the initial conditions in which three 
of the four constants are zero: Simply pull both masses the same distance A to the 
right and let go.

1 2

1 2

1 2

The middle spring is never
stretched or compressed. 

Oscillation at frequency v

FIGURE 15.28 The symmetric normal 
mode.
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It’s interesting that the oscillation angular frequency v = 1k /m is exactly the 
same as for independent, uncoupled oscillations. A careful look at Figure 15.28 shows 
why: If both masses have exactly the same motion, then the middle spring is never 
stretched or compressed. It never exerts a force on either mass and has no effect on 
their motion. For all intents and purposes, the middle spring simply isn’t there for the 
symmetric normal mode.

Now consider the slightly different initial conditions with A = 0 and fa = fb = 0. 
In this case u = 0 and v = 2B cos Ωt. Another use of x1 = (u + v)/2 and x2 = (u - v)/2 
finds

x1(t) = B cosΩt

 x2(t) = -B cosΩt 
(15.70)

This motion is shown in Figure 15.29. Both masses are again undergoing SHM at the 
same angular frequency Ω, but this time 180° out of phase with each other. This is 
called the antisymmetric normal mode. You could create this normal mode by dis-
placing the masses equal distances in opposite directions and then releasing them.

We noted in Equation 15.68 that Ω 7 v, so the antisymmetric mode frequency 
Ω is higher than the symmetric mode frequency v. This is not surprising because 
now the middle spring is very much involved, increasing the restoring forces on the 
masses.

1 2

1 2

1 2

Oscillation at frequency Ω 7 v

FIGURE 15.29 The antisymmetric normal 
mode.

Two 500 g air-track gliders are each connected by identical springs to the ends of the air 
track and by a third spring to each other. The frequency of the symmetric normal mode is 
measured to be 1.00 Hz, that of the antisymmetric normal mode to be 1.20 Hz. What are 
the spring constants of the three springs?

MODEL We can model the system as coupled oscillators with massless springs, as in 
Figure 15.27. The outer springs are identical and have spring constant k. The coupling 
spring has spring constant l.

SOLVE The angular frequencies are v = 2p * 1.00 Hz = 6.28 rad/s for the symmetric 
mode and Ω = 2p * 1.20 Hz = 7.54 rad/s for the antisymmetric mode. From Equations 
15.68 for v and Ω, we see that

k = mv2 = (0.500 kg)(6.28 rad/s)2 = 19.7 N/m

and then

l = 1
2 (mΩ2 - k) = 1

2 1(0.500 kg)(7.54 rad/s)2 - 19.7 N/m2 = 4.36 N/m

REVIEW The frequencies of the two normal modes are not very different, which suggests that 
the coupling spring does not have a large effect. This is confirmed by the finding that l V k.

EXAMPLE 15.11 ■ Coupled air-track gliders

Weak Coupling
Suppose the middle spring is very weak compared to the outer two, l V k. This con-
dition, called weak coupling, affects Ω but not v. We can write

 Ω = Ak + 2l
m

= A k
m A1 +

2l
k

= vA1 +
2l
k

 (15.71)

We see that Ω is only very slightly larger than v if l V k.
Let’s define the average frequency v0 and the difference frequency P as

 v0 =
Ω + v

2
≈ v  P =

Ω - v

2
V v0 (15.72)
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The weak-coupling condition, for which Ω is only slightly larger than v, means that 
v0 is almost exactly the same as v while P is close to zero. If we invert these defini-
tions, the two frequencies that characterize the solutions u and v are

 v = v0 - P  Ω = v0 + P (15.73)

Suppose we establish initial conditions with A = B = C/2 and fa = fb = 0. If we 
use the trigonometric identity cos (a { b) = cos a cos b | sin a sin b, we can write 
Equations 15.67 as

   u(t) = C cos vt = C cos (v0t - P t) = C cos v0t cos P t + C sin v0t sin P t 

 v(t) = C cos Ωt = C cos (v0t + P t) = C cos v0t cos P t - C sin v0t sin P t 
(15.74)

It looks like we’ve made things more complicated, but if we now solve for x1 and  
x2, as before, we find

x1(t) = (C cos P t) cos v0t

 x2(t) = (C sin P t) sin v0t 
(15.75)

The factors of 2 we included in the amplitudes of Equations 15.67 have allowed us to 
avoid needing factors of 1

2 in Equations 15.75. This solution has a simple interpreta-
tion, seen most easily in the graphs of FIGURE 15.30.

Because v0 ≈ v, the cos v0t and sin v0t terms indicate a fast oscillation at essen-
tially the uncoupled angular frequency v = 1k /m. In contrast, the terms cos P t and 
sin P t oscillate very slowly because, for weak coupling, P ≈ 0. We’ve grouped these 
terms with the amplitude C because, together, they describe a slowly oscillating am-
plitude. The terms in parentheses in Equations 15.75 are a slowly varying envelope of 
the rapid oscillations in exactly the same way that an exponentially decaying ampli-
tude is the envelope of a damped oscillation, as you saw in Figure 15.22.

The initial conditions corresponding to Equations 15.75 are that mass 1 is displaced 
by distance C and then released, while mass 2 is at rest at its equilibrium position. For 
a while, the motion is almost entirely an oscillation of mass 1. But over time, due 
to the weak coupling of the middle spring, mass 2 begins to oscillate—at the same 
frequency—and the amplitude of mass 1 decreases. Eventually, when P t = p/2 rad, 
mass 1 has temporarily stopped while mass 2 oscillates with amplitude C. Then the 
process reverses, with the oscillations returning to mass 1.

What we see is an energy transfer back and forth between the two masses and their 
attached springs. The kinetic energy of the system is passed back and forth between 
the masses as first one, then the other, has all or nearly all of the oscillatory motion. 
This system of two weakly coupled oscillators is an excellent model of more complex 
systems that exhibit the same pattern of energy transferred back and forth between 
different parts of the system. And, as you’ll learn in Chapter 17, this fast oscillation  
with a slowly oscillating amplitude is closely related to the phenomena of beats  
between two waves that have slightly different frequencies.

Initially only mass 1 is oscillating. 

Later only mass 2 is oscillating. 

C Ccos Pt

C sin Pt

t0

-C

C

t0

-C

x1 (t)

x2 (t)

FIGURE 15.30 Weakly coupled oscillators 
transfer energy back and forth between 
the two masses.

A pendulum consists of a massless, rigid rod with a mass at one 
end. The other end is pivoted on a frictionless pivot so that the rod 
can rotate in a complete circle. The pendulum is inverted, with the 
mass directly above the pivot point, then released. The speed of the 
mass as it passes through the lowest point is 5.0 m/s. If the pendu-
lum later undergoes small-amplitude oscillations at the bottom of 
the arc, what will its frequency be?

MODEL This is a simple pendulum because the rod is massless. 
However, our analysis of a pendulum used the small-angle approx-
imation. It applies only to the small-amplitude oscillations at the 
end, not to the pendulum swinging down from the inverted position.  
Fortunately, energy is conserved throughout, so we can analyze the 
big swing using conservation of mechanical energy.

   CHAPTER 15 CHALLENGE EXAMPLE     A swinging pendulum

Continued

15.9  Advanced Topic: Coupled Oscillations and Normal Modes 449
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450 CHAPTER 15 Oscillations

VISUALIZE FIGURE 15.31 is a pictorial representation of the pen- 
dulum swinging down from the inverted position. The pendulum 
length is L, so the initial height is 2L.

SOLVE The frequency of a simple pendulum is f = 1g/L /2p. 
We’re not given L, but we can find it by analyzing the pendulum’s 

swing down from an inverted position. Mechanical energy is con-
served, and the only potential energy is gravitational potential 
energy. Conservation of mechanical energy K1 + UG1 = K0 + UG0, 
with UG = mgy, is

1
2 mv1 

2 + mgy1 = 1
2 mv0 

2 + mgy0

The mass cancels, which is good since we don’t know it, and two 
terms are zero. Thus

1
2 v1 

2 = g12L2 = 2gL

Solving for L, we find

L =
v1 

2

4g
=

15.0 m/s22

419.80 m/s22 = 0.638 m

Now we can calculate the frequency:

f =
1

2p
 B g

L
=

1
2p

 B 9.80 m/s2

0.638 m
= 0.62 Hz

REVIEW The frequency corresponds to a period of about 1.5 s, 
which seems reasonable.

FIGURE 15.31 Before-and-after pictorial representation of the 
pendulum swinging down from an inverted position.
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Energy
If there is no friction  
or dissipation, kinetic  
and potential energy are  
alternately transformed 
into each other, but the 
total mechanical energy 
E = K + U is conserved.

  E = 1
2 mv2 + 1

2 kx2

  = 1
2 m1vmax22

  = 1
2 kA2

The energy of a lightly  
damped oscillator decays 
exponentially

E = E0e
-t/t

where t is the time constant.

Dynamics
SHM occurs when a linear restoring force acts to return a system 
to an equilibrium position.

Horizontal spring

1Fnet2x = -kx

Vertical spring
The origin is at the equilibrium position ∆L = mg/k.

1Fnet2y = -ky

Both: v = B k
m
  T = 2pBm

k

Simple pendulum

v = A g

L

T = 2pAL
g

Physical pendulum

v = BMgl

I

T = 2pA I
Mgl

General Principles

The goal of Chapter 15 has been to learn about systems that 
oscillate in simple harmonic motion.

Summary

k
m

0 x

y

k

0 m

0

L

s

l

u
⊗

0

All potential

All kinetic

A
x

-A

t

E

0
0

0.37E0

E0

t

SHM is the projection  
onto the x-axis of uniform  
circular motion.

f = vt + f0  

is the phase

The position at time t is

  x1t2 = A cos f

  = A cos1vt + f02
The phase constant f0 is  
determined by the initial  
conditions:

x0 = A cos f0  v0x = -vA sin f0

Simple harmonic motion (SHM) is a sinusoidal oscillation with 
period T and amplitude A.

Frequency f =
1
T

Angular frequency

v = 2pf =
2p
T

Position x1t2 = A cos1vt + f02

= A cos12pt
T

+ f02
Velocity vx1t2 = -vmax sin1vt + f02 with maximum speed vmax = vA

Acceleration ax1t2 = -v2x1t2 = -v2A cos1vt + f02

Important Concepts

t0

x T
A

-A

x

y

A

x = Acosf
x0 = Acosf0

f0

f

Damping 

If there is a drag force  
F
u

drag = -bv 

u, where b is the  
damping constant, then (for  
lightly damped systems)

x1t2 = Ae-bt/2m cos1vt + f02
The time constant for energy  
loss is t = m/b.

Resonance 

When a system is driven by a  
periodic external force, it responds  
with a large-amplitude oscillation  
if fext ≈ f0, where f0 is the system’s  
natural oscillation frequency, or 
resonant frequency.

Applications

Amplitude

fext
f0

t

x

0

-A

A
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452 CHAPTER 15 Oscillations

1. A block oscillating on a spring has period T = 2 s. What is the 
period if:
a. The block’s mass is doubled? Explain. Note that you do not 

know the value of either m or k, so do not assume any partic-
ular values for them. The required analysis involves thinking 
about ratios.

b. The value of the spring constant is quadrupled?
c. The oscillation amplitude is doubled while m and k are 

unchanged?
2. A pendulum on Planet X, where the value of g is unknown, 

 oscillates with T1 = 1 s. What is the period of this pendulum if:
a. its mass (m) is tripled?
b. its length (l) is tripled?
c. its oscillation amplitude is tripled?

3. FIGURE Q15.3 shows a position-versus-time graph for a par-
ticle in SHM. What are (a) the 
amplitude A, (b) the angular 
frequency v, and (c) the phase 
constant f0?

oscillatory motion
period, T
simple harmonic motion, 
 SHM
amplitude, A
frequency, f
hertz, Hz

angular frequency, v
phase, f
phase constant, f0

restoring force
equation of motion
small-angle approximation
linear restoring force

damped oscillation
damping constant, b
envelope
exponential decay
time constant, t
half-life, t1/2

driven oscillation

natural frequency, f0
driving frequency, fext

response curve
resonance
resonance frequency, f0
coupled oscillators
normal modes

Terms and Notation

CONCEPTUAL QUESTIONS
8. The solid disk and circular hoop in FIGURE Q15.8 have the same 

radius and the same mass. Each can swing back and forth as a 
pendulum from a pivot at the top edge. Which, if either, has the 
larger period of oscillation?

10

0

-10

2 4
t (s)

x (cm)

FIGURE Q15.3

x

t0

A

-A
1 3

2

FIGURE Q15.4

FIGURE Q15.8

TE

PE

x (cm)
12 16 20 24 28

Energy (J)

20

15

10

5

0

FIGURE Q15.9

4. FIGURE Q15.4 shows a position-versus-time graph for a particle 
in SHM.
a. What is the phase constant f0? Explain.
b. What is the phase of the particle at each of the three numbered  

points on the graph?

5. Equation 15.25 states that 1
2 kA2 = 1

2 m1vmax)
2. What does this 

mean? Write a couple of sentences explaining how to interpret 
this equation.

6. A block oscillating on a spring has an amplitude of 10 cm. What 
will the amplitude be if the total energy is quadrupled? Explain.

7. A block oscillating on a spring has a maximum speed of 10 cm/s. 
What will the maximum speed of the block be if total energy is 
quadrupled? Explain.

9. FIGURE Q15.9 shows the potential-energy diagram and the total 
energy line of a particle oscillating on a spring. The left end of 
the spring is fixed at x = 0 cm.
a. What is the spring’s equilibrium length?
b. Where are the turning points of the motion? Explain.
c. What is the particle’s maximum kinetic energy?
d. What will be the turning points if the particle’s total energy 

is doubled?

10. Suppose the damping constant b of an oscillator increases.
a. Is the medium more resistive or less resistive?
b. Do the oscillations damp out more quickly or less quickly?
c. Is the time constant t increased or decreased?

11. a. Describe the difference between t and T. Don’t just name 
them; say what is different about the physical concepts they 
represent.

b. Describe the difference between t and t1/2.
12. You have a light spring, a meter scale, and a known mass. How 

will you find the time period of oscillation of the mass without 
the use of a clock?
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EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 15.1 Simple Harmonic Motion

1. || An air-track glider is attached to a spring. The glider is pulled 
to the right and released from rest at t = 0. It then oscillates with 
a period of 1.0 s and maximum speed of 20 cm/s.
a. What is the amplitude of the oscillator?
b. What is the glider’s position at t = 0.5 s?

2. | An air-track glider attached to a spring oscillates between the 
20-cm-mark and the 70-cm-mark on the track. The glider com-
pletes 15 oscillations in 30 seconds. What is the (a) period, (b) 
frequency, (c) angular frequency, (d) amplitude, and (e) maxi-
mum speed of the glider?

3. || An object in simple harmonic motion oscillates with a period 
of 2 s and amplitude of 20 cm. How long does the object take to 
move from x = 0 cm to x = 4 cm?

4. | When a guitar string plays the note “A,” the string vibrates at 
220 Hz. What is the period of vibration?

Section 15.2 SHM and Circular Motion

5. || What are the (a) amplitude, (b) frequency, and (c) phase 
constant of the oscillation shown in FIGURE EX15.5?

10. || An object in simple harmonic motion has an amplitude  
of 8.0 cm, n angular frequency of 0.25 rad/s, and a phase constant  
of p rad. Draw a velocity graph showing two cycles of  
the motion.

11. | An object in simple harmonic motion has an amplitude of 4 cm 
and frequency of 1 Hz. At t = 0 s, it is in its most negative position. 
Write the function for x1t2 that describes the object’s position.

12. | An object in simple harmonic motion has an amplitude of  
2 cm and frequency of 2 Hz. At t = 0 s, it passes through the 
equilibrium point, moving to the right. Write the function for x(t) 
that describes the object’s position.

13. || An air-track glider attached to a spring oscillates with a period  
of 1.5 s. At t = 0 s the glider is 5.00 cm left of the equilibrium 
position and moving to the right at 36.3 cm/s.
a. What is the phase constant?
b. What is the phase at t = 0 s, 0.5 s, 1.0 s, and 1.5 s?

Section 15.3 Energy in SHM

Section 15.4 The Dynamics of SHM

14. || A 200 g air-track glider is attached to a spring. The glider is 
pushed in 10 cm and released. A student with a stopwatch finds 
that 10 oscillations take 12.0 s. What is the spring constant?

15. | A block attached to a spring with unknown spring constant 
oscillates with a period of 2.0 s. What is the period if
a. The mass is doubled?
b. The mass is halved?
c. The amplitude is doubled?
d. The spring constant is doubled?
Parts a to d are independent questions, each referring to the ini-
tial situation.

16. || A 200 g mass attached to a horizontal spring oscillates at a 
frequency of 2.0 Hz. At t = 0 s, the mass is at x = 5.0 cm and has 
vx = -30 cm/s. Determine:

t (s)0

x (cm)

5

10

-10

-5
1 2 3 4

FIGURE EX15.5

t (s)0

x (cm)

10

20

-20

-10
2 4 6 8

FIGURE EX15.6

t (s)0

x (cm)

5

10

-10

-5
1 2 3 4

FIGURE EX15.7

t (s)0

vx (cm/s)

30

60

-60

-30
3 6 9 12

FIGURE EX15.8

6. || What are the (a) amplitude, (b) frequency, and (c) phase con-
stant of the oscillation shown in FIGURE EX15.6?

7. || FIGURE EX15.7 is the position-versus-time graph of a particle 
in simple harmonic motion.
a. What is the phase constant?
b. What is the velocity at t = 0 s?
c. What is vmax?

8. || FIGURE EX15.8 is the velocity-versus-time graph of a particle 
in simple harmonic motion.
a. What is the amplitude of the oscillation?
b. What is the phase constant?
c. What is the position at t = 0 s?

9. | An object in simple harmonic motion has an amplitude of  
4.0 cm, a frequency of 2.0 Hz, and a phase constant of 2p/3 rad. 
Draw a position graph showing two cycles of the motion.

a. The period. b. The angular frequency.

a. The amplitude. b. The period.

c. The amplitude. d. The phase constant.

c. The spring constant. d. The phase constant.

e. The maximum speed. f. The maximum acceleration.

e. The initial conditions. f. The maximum speed.

g. The total energy. h. The position at t = 0.40 s.

g. The total energy. h. The velocity at t = 0.40 s.

17. || The position of a 50 g oscillating mass is given by x1t2 =  
12.0 cm2 cos110 t - p/42, where t is in s. Determine:

18. || A 2 kg block is attached to a spring with a spring constant of 
20 N/m. While the block is sitting at rest, a student hits it with 
a hammer and it almost instantaneously speeds up to 60 cm/s. 
What is
a. the amplitude of subsequent oscillations?
b. the speed of the block at the point where x = 1

2 A.
19. || A 500 g air-track glider moving at 0.50 m/s collides with a 

horizontal spring whose opposite end is anchored to the end of 
the track. Measurements show that the glider is in contact with 
the spring for 1.5 s before it rebounds.
a. What is the value of the spring constant?
b. What is the maximum compression of the spring?

20. || A ball oscillating on a spring with spring constant 45 N/m has 
a maximum displacement of 18 cm. The ball’s speed is 3.3 m/s 
when its displacement is 12 cm. What is the ball’s mass in g?
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454 CHAPTER 15 Oscillations

35. | Vision is blurred if the head is vibrated at 29 Hz because the 
vibrations are resonant with the natural frequency of the eyeball  
in its socket. If the mass of the eyeball is 7.5 g, a typical value, 
what is the effective spring constant of the musculature that holds  
the eyeball in the socket?

36. ||| A 350 g mass on a 45-cm-long string is released at an angle of 
4.5° from vertical. It has a damping constant of 0.010 kg/s. After 
25 s, (a) how many oscillations has it completed and (b) what 
fraction of the initial energy has been lost?

Section 15.9 Coupled Oscillations and Normal Modes

37. || Two identical masses attached to identical springs with spring 
constant 15 N/m are coupled by a spring with spring constant l. 
The antisymmetric and symmetric normal modes have frequen-
cies 15 Hz and 12 Hz. What is l?

38. || Two 500 g air-track gliders are each connected by identical 
springs with spring constant 25 N/m to the ends of the air track. 
The gliders are connected to each other by a spring with spring 
constant 2.0 N/m. One glider is pulled 8.0 cm to the side and 
released while the other is at rest at its equilibrium position. How 
long will it take until the glider that was initially at rest has all 
the motion while the first glider is at rest?

39. || In a system of two weakly coupled oscillators, each oscillates 
at 15.0 Hz. The energy transfer, from when only one mass is 
oscillating until only the other mass is oscillating, takes 2.0 s. 
What is the ratio l/k of the coupling spring constant to the pri-
mary spring constant?

Problems
40. || For a particle in simple harmonic motion, show that vmax =  

1p/22vavg, where vavg is the average speed during one cycle of the 
motion.

41. || a. When the displacement of a mass on a spring is 1
2 A, what 

fraction of the energy is kinetic energy and what fraction 
is potential energy?

b. At what displacement, as a fraction of A, is the energy half 
kinetic and half potential?

42. || The motion of a particle is given by x1t2 = 125 cm2cos110 t2, 
where t is in s. What is the first time at which the kinetic energy 
is twice the potential energy?

43. || A 100 g block attached to a spring with spring constant 
2.5 N/m oscillates horizontally on a frictionless table. Its veloc-
ity is 20 cm/s when x = -5.0 cm.
a. What is the amplitude of oscillation?
b. What is the block’s maximum acceleration?
c. What is the block’s position when the acceleration is 

maximum?
d. What is the speed of the block when x = 3.0 cm?

44. || A 500 g mass on a horizontal spring oscillates with a period 
of 2.0 s and an amplitude of 75 cm. During one oscillation, at 
the instant the spring is at maximum extension, the mass ex-
plodes into two pieces. One piece is shot forward, away from the 
spring, at 2.0 m/s. The second piece, which remains attached to 
the spring, recoils at 3.0 m/s. After the explosion, what are the  
(a) period and (b) amplitude of the oscillation?

45. || An ultrasonic transducer, of the type used in medical ultra-
sound imaging, is a very thin disk (m = 0.10 g) driven back and 
forth in SHM at 1.0 MHz by an electromagnetic coil.
a. The maximum restoring force that can be applied to the disk 

without breaking it is 40,000 N. What is the maximum oscil-
lation amplitude that won’t rupture the disk?

b. What is the disk’s maximum speed at this amplitude?

Section 15.5 Vertical Oscillations

21. | A spring is hanging from the ceiling. Attaching a 500 g  
physics book to the spring causes it to stretch 20 cm in order to 
come to equilibrium.
a. What is the spring constant?
b. From equilibrium, the book is pulled down 10 cm and re-

leased. What is the period of oscillation?
c. What is the book’s maximum speed?

22. | A spring is hung from the ceiling. When a block is attached 
to its end, it stretches 2.0 cm before reaching its new equilib-
rium length. The block is then pulled down slightly and released. 
What is the frequency of oscillation?

23. || A spring with a spring constant of 12 N/m hangs from the ceil-
ing. A ball is attached to the spring and allowed to come to rest. It 
is then pulled down 4 cm and released. If the ball makes 15 oscil-
lations in 10 s, what are its (a) mass and (b) maximum speed?

Section 15.6 The Pendulum

24. || A 200 g ball is tied to a string. It is pulled to an angle of 8.0° 
and released to swing as a pendulum. A student with a stopwatch 
finds that 10 oscillations take 12 s. How long is the string?

25. || A pendulum is made by tying a 75 g ball to a 130-cm-long 
string. The ball is pulled 5.0° to the side and released. How many 
times does the ball pass through the lowest point of its arc in 7.5 s?

26. | What is the length of a pendulum whose period on the moon 
matches the period of a 2.0-m-long pendulum on the earth?

27. | A mass on a string of unknown length oscillates as a pendu-
lum with a period of 4.0 s. What is the period if
a. The mass is doubled?
b. The string length is doubled?
c. The string length is halved?
d. The amplitude is doubled?
Parts a to d are independent questions, each referring to the initial  
situation.

28. || A pendulum on a 75-cm-long string has a maximum speed of 
0.25 m/s. What is the pendulum’s maximum angle in degrees?

29. || A 100 g mass on a 1.0-m-long string is pulled 8.0° to one side 
and released. How long does it take for the pendulum to reach 
4.0° on the opposite side?

30. | Astronauts on the first trip to Mars take along a pendulum 
that has a period on earth of 1.50 s. The period on Mars turns out 
to be 2.45 s. What is the free-fall acceleration on Mars?

31. || A uniform steel bar swings from a pivot at one end with a period  
of 1.2 s. How long is the bar?

Section 15.7 Damped Oscillations

Section 15.8 Driven Oscillations and Resonance

32. || A 2.0 g spider is dangling at the end of a silk thread. You can 
make the spider bounce up and down on the thread by tapping lightly 
on his feet with a pencil. You soon discover that you can give the spi-
der the largest amplitude on his little bungee cord if you tap exactly 
once every second. What is the spring constant of the silk thread?

33. || In a science museum, a 110 kg brass pendulum bob swings 
at the end of a 15.0-m-long wire. The pendulum is started at ex-
actly 8:00 a.m. every morning by pulling it 1.5 m to the side and 
releasing it. Because of its compact shape and smooth surface, 
the pendulum’s damping constant is only 0.010 kg/s. At exactly 
12:00 noon, how many oscillations will the pendulum have com-
pleted and what is its amplitude?

34. || The amplitude of an oscillator decreases to 36.8% of its initial 
value in 10.0 s. What is the value of the time constant?
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54. || A compact car has a mass of 1200 kg. Assume that the car has 
one spring on each wheel, that the springs are identical, and that 
the mass is equally distributed over the four springs.
a. What is the spring constant of each spring if the empty car 

bounces up and down 2.0 times each second?
b. What will be the car’s oscillation frequency while carrying 

four 70 kg passengers?
55. || The two blocks in FIGURE P15.55 oscillate on a frictionless 

surface with a period of 1.5 s. The upper block just begins to slip 
when the amplitude is increased to 40 cm. What is the coefficient  
of static friction between the two blocks?

46. || Astronauts in space cannot weigh themselves by standing on a 
bathroom scale. Instead, they determine their mass by oscillating  
on a large spring. Suppose an astronaut attaches one end of a large 
spring to her belt and the other end to a hook on the wall of the 
space capsule. A fellow astronaut then pulls her away from the 
wall and releases her. The spring’s length as a function of time is  
shown in FIGURE P15.46.
a. What is her mass if the spring constant is 240 N/m?
b. What is her speed when the spring’s length is 1.2 m?

FIGURE P15.55

4000 nm

400 nm

Thickness = 100 nm

FIGURE P15.58

t (s)0.0
30 6

L (m)

0.2
0.4
0.6
0.8
1.0
1.2
1.4

FIGURE P15.46

47. || Your lab instructor has asked you to measure a spring constant 
using a dynamic method—letting it oscillate—rather than a static 
method of stretching it. You and your lab partner suspend the 
spring from a hook, hang different masses on the lower end, and 
start them oscillating. One of you uses a meter stick to measure 
the amplitude, the other uses a stopwatch to time 10 oscillations.  
Your data are as follows:

Mass (g) Amplitude (cm) Time (s)

100 6.5 7.8

150 5.5 9.8

200 6.0 10.9

250 3.5 12.4

Use the best-fit line of an appropriate graph to determine the 
spring constant.

48. || A 5.0 kg block hangs from a spring with spring constant 
2000 N/m. The block is pulled down 5.0 cm from the equilibrium  
position and given an initial velocity of 1.0 m/s back toward equili-
brium. What are the (a) frequency, (b) amplitude, and (c) total 
mechanical energy of the motion?

49. ||| A 200 g block hangs from a spring with spring constant 
10 N/m. At t = 0 s the block is 20 cm below the equilibrium point 
and moving upward with a speed of 100 cm/s. What are the block’s
a. Oscillation frequency?
b. Distance from equilibrium when the speed is 50 cm/s?
c. Distance from equilibrium at t = 1.0 s?

50. || A block hangs in equilibrium from a vertical spring. When a 
second identical block is added, the equilibrium position sags by 
5.0 cm. What is the oscillation frequency of the two-block system?

51. || A 500 g wood block on a frictionless table is attached to a 
horizontal spring. A 50 g dart is shot into the face of the block 
opposite the spring, where it sticks. Afterward, the spring oscil-
lates with a period of 1.5 s and an amplitude of 20 cm. How fast 
was the dart moving when it hit the block?

52. || Scientists are measuring the properties of a newly discovered 
elastic material. They create a 1.5-m-long, 1.6-mm-diameter cord,  
attach an 850 g mass to the lower end, then pull the mass down 
2.5 mm and release it. Their high-speed video camera records 36 
oscillations in 2.0 s. What is Young’s modulus of the material?

53. ||| A mass hanging from a spring oscillates with a period of 0.35 s.  
Suppose the mass and spring are swung in a horizontal circle, 
with the free end of the spring at the pivot. What rotation fre-
quency, in rpm, will cause the spring’s length to stretch by 15%?

56. || A 1.00 kg block is attached to a horizontal spring with spring 
constant 2500 N/m. The block is at rest on a frictionless surface. 
A 10 g bullet is fired into the block, in the face opposite the 
spring, and sticks. What was the bullet’s speed if the subsequent 
oscillations have an amplitude of 10.0 cm?

57. | Interestingly, there have been several studies using cadavers 
to determine the moments of inertia of human body parts, infor-
mation that is important in biomechanics. In one study, the cen-
ter of mass of a 5.0 kg lower leg was found to be 18 cm from the 
knee. When the leg was allowed to pivot at the knee and swing 
freely as a pendulum, the oscillation frequency was 1.6 Hz. What 
was the moment of inertia of the lower leg about the knee joint?

58. ||| It has recently become possible to “weigh” DNA molecules 
by measuring the influence of their mass on a nano-oscillator. 
FIGURE P15.58 shows a thin rectangular cantilever etched out of 
silicon (density 2300 kg/m3) with a small gold dot (not visible) at 
the end. If pulled down and released, the end of the cantilever vi-
brates with SHM, moving up and down like a diving board after 
a jump. When bathed with DNA molecules whose ends have 
been modified to bind with gold, one or more molecules may 
attach to the gold dot. The addition of their mass causes a very 
slight—but measurable—decrease in the oscillation frequency.

A vibrating cantilever of mass M can be modeled as a block of 
mass 13 M attached to a spring. (The factor of 13 arises from the mo-
ment of inertia of a bar pivoted at one end.) Neither the mass nor 
the spring constant can be determined very accurately— perhaps 
to only two significant figures—but the oscillation frequency can 
be measured with very high precision simply by counting the os-
cillations. In one experiment, the cantilever was initially vibrating 
at exactly 12 MHz. Attachment of a DNA molecule caused the 
frequency to decrease by 50 Hz. What was the mass of the DNA?

59. || Orangutans can move by brachiation, swinging like a pen-
dulum beneath successive handholds. If an orangutan has arms 
that are 0.90 m long and repeatedly swings to a 20° angle, taking 
one swing after another, estimate its speed of forward motion in 
m/s. While this is somewhat beyond the range of validity of the 
small-angle approximation, the standard results for a pendulum 
are adequate for making an estimate.
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a. At what point in the cycle does the penny first lose contact 
with the piston?

b. What is the maximum frequency for which the penny just 
barely remains in place for the full cycle?

68. || On your first trip to Planet X you happen to take along a 200 g  
mass, a 40-cm-long spring, a meter stick, and a stopwatch.  
You’re curious about the free-fall acceleration on Planet X, 
where ordinary tasks seem easier than on earth, but you can’t 
find this information in your Visitor’s Guide. One night you sus-
pend the spring from the ceiling in your room and hang the mass 
from it. You find that the mass stretches the spring by 31.2 cm. 
You then pull the mass down 10.0 cm and release it. With the 
stopwatch you find that 10 oscillations take 14.5 s. Based on this 
information, what is g?

69. ||| A 15@cm@long, 200 g rod is pivoted at one end. A 20 g ball of 
clay is stuck on the other end. What is the period if the rod and 
clay swing as a pendulum?

70. || The 15 g head of a bobble-head doll oscillates in SHM at a 
frequency of 4.0 Hz.
a. What is the spring constant of the spring on which the head 

is mounted?
b. The amplitude of the head’s oscillations decreases to 0.5 cm 

in 4.0 s. What is the head’s damping constant?
71. || An oscillator with a mass of 500 g and a period of 0.50 s 

has an amplitude that decreases by 2.0% during each complete 
oscillation. If the initial amplitude is 10 cm, what will be the 
amplitude after 25 oscillations?

72. ||| A spring with spring constant 15.0 N/m hangs from the ceil-
ing. A 500 g ball is attached to the spring and allowed to come to 
rest. It is then pulled down 6.0 cm and released. What is the time 
constant if the ball’s amplitude has decreased to 3.0 cm after  
30 oscillations?

73. || A 200 g oscillator in a vacuum chamber has a frequency of 
2.0 Hz. When air is admitted, the oscillation decreases to 60% 
of its initial amplitude in 50 s. How many oscillations will have 
been completed when the amplitude is 30% of its initial value?

74. || Prove that the expression for x1t2 in Equation 15.55 is a solu-
tion to the equation of motion for a damped oscillator, Equation 
15.54, if and only if the angular frequency v is given by the ex-
pression in Equation 15.56.

75. || A block on a frictionless table is connected as shown in 
FIGURE P15.75 to two springs having spring constants k1 and k2.  
Find an expression for the block’s oscillation frequency f  in 
terms of the frequencies f1 and f2 at which it would oscillate if 
attached to spring 1 or spring 2 alone.

60. || It is said that Galileo discovered a basic principle of the pen-
dulum—that the period is independent of the amplitude—by using 
his pulse to time the period of swinging lamps in the cathedral  
as they swayed in the breeze. Suppose that one oscillation of a  
swinging lamp takes 5.5 s.
a. How long is the lamp chain?
b. What maximum speed does the lamp have if its maximum 

angle from vertical is 3.0°?
61. || The pendulum shown in FIGURE P15.61 

is pulled to a 10° angle on the left side and 
released.
a. What is the period of this pendulum?
b. What is the pendulum’s maximum angle 

on the right side?
12 cm

12 cm

Peg

FIGURE P15.61

62. || A uniform rod of mass M and length L swings as a pendulum 
on a pivot at distance L /4 from one end of the rod. Find an ex-
pression for the frequency f  of small-angle oscillations.

63. || A 500 g air-track glider attached to a spring with spring con-
stant 10 N/m is sitting at rest on a frictionless air track. A 250 g 
glider is pushed toward it from the far end of the track at a speed 
of 120 cm/s. It collides with and sticks to the 500 g glider. What 
are the amplitude and period of the subsequent oscillations?

64. || A 25-cm-long massless spring is suspended from a pivot. A 
ball attached to the spring’s lower end is initially at rest. The 
ball is gently pushed slightly to one side and then swings as a 
pendulum at the end of the spring with a period of 1.8 s. The ball 
is stopped, then pulled down slightly and allowed to oscillate 
vertically. What is the period of oscillation?

65. || FIGURE P15.65 is a top view of an object of mass m connected 
between two stretched rubber bands of length L. The object rests 
on a frictionless surface. At equilibrium, the tension in each rub-  
ber band is T. Find an expression for the frequency of oscilla- 
tions perpendicular to the rubber bands. Assume the amplitude is  
sufficiently small that the magnitude of the tension in the rubber 
bands is essentially unchanged as the mass oscillates.

Rubber bands

LL

FIGURE P15.65

0.08 0.10 0.12 0.14 0.16
Bond length (nm)

Potential energy (J)

4 * 10-19

3 * 10-19

2 * 10-19

1 * 10-19

FIGURE P15.66

k1 k2

m

FIGURE P15.75

66. || A molecular bond can be modeled as a spring between two 
atoms that vibrate with simple harmonic motion. FIGURE P15.66 
shows an SHM approximation for the potential energy of an HCl 
molecule. Because the chlorine atom is so much more massive 
than the hydrogen atom, it is reasonable to assume that the hydro-
gen atom 1m = 1.67 * 10-27 kg2 vibrates back and forth while  
the chlorine atom remains at rest. Use the graph to estimate the 
vibrational frequency of the HCl molecule.

67. || A penny rides on top of a piston as it undergoes vertical sim-
ple harmonic motion with an amplitude of 4.0 cm. If the fre-
quency is low, the penny rides up and down without difficulty. If 
the frequency is steadily increased, there comes a point at which 
the penny leaves the surface.

Challenge Problems
76. ||| Suppose a large spherical object, such as a planet, with radius 

R and mass M has a narrow tunnel passing diametrically through 
it. A particle of mass m is inside the tunnel at a distance x … R 
from the center. It can be shown that the net gravitational force on 
the particle is due entirely to the sphere of mass with radius r … x; 
there is no net gravitational force from the mass in the spherical 
shell with r 7 x.
a. Find an expression for the gravitational force on the parti-

cle, assuming the object has uniform density. Your expression 
will be in terms of x, R, m, M, and any necessary constants.
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FIGURE CP15.82

b. You should have found that the gravitational force is a lin-
ear restoring force. Consequently, in the absence of air re-
sistance, objects in the tunnel will oscillate with SHM. 
Suppose an intrepid astronaut exploring a 150-km-diameter, 
3.5 * 1018 kg asteroid discovers a tunnel through the center. 
If she jumps into the hole, how long will it take her to fall all 
the way through the asteroid and emerge on the other side?

77. ||| A solid sphere of mass M and radius R 
is suspended from a thin rod, as shown in 
FIGURE CP15.77. The sphere can swing back 
and forth at the bottom of the rod. Find an ex-
pression for the frequency f  of small- angle 
oscillations.

78. ||| A uniform rod of length L oscillates as a pendulum about a 
pivot that is a distance x from the center.
a. For what value of x, in terms of L, is the oscillation period a 

minimum?
b. What is the minimum oscillation period of a 15 kg, 1.0-m-long 

steel bar?
79. ||| A spring is standing upright on a table with its bottom end 

fastened to the table. A block is dropped from a height 3.0 cm 
above the top of the spring. The block sticks to the top end of the 
spring and then oscillates with an amplitude of 10 cm. What is 
the oscillation frequency?

80. ||| The Timoshenko oscillator is 
an ingenious device to measure 
coefficients of kinetic friction. 
FIGURE CP15.80 shows a plate of 
mass m supported by two rollers 
a distance L apart. The rollers 
spin at a high speed in opposite directions, as shown, so that they 
are slipping against the bottom of the plate with coefficient of kinetic 
friction mk. Let x measure the position of the plate’s center of mass 
relative to the midpoint between the rollers. Newton’s second law for 
the plate leads to a SHM equation for x and predicts the oscillation 
frequency in terms of m, L, and mk. Suppose a 250 g plate oscillates 
with a 1.5 s period on two spinning rollers 12 cm apart. What is the 
coefficient of kinetic friction between the plate and the rollers?

⊗

L

x

m

Slips

cm

FIGURE CP15.80

81. ||| FIGURE CP15.81 shows a 200 g 
uniform rod pivoted at one end.  
The other end is attached to a hori-
zontal spring. The spring is neither 
stretched nor compressed when the rod 
hangs straight down. What is the rod’s 
oscillation period? You can assume 
that the rod’s angle from vertical is al-
ways small.

82. ||| The greenhouse-gas carbon dioxide molecule CO2 strongly 
absorbs infrared radiation when its vibrational normal modes are 
excited by light at the normal-mode frequencies. CO2 is a linear 
triatomic molecule, as shown in FIGURE CP15.82, with oxygen 
atoms of mass mO bonded to a central carbon atom of mass mC. 
You know from chemistry that the atomic masses of carbon and 
oxygen are, respectively, 12 and 16. Assume that the bond is an 
ideal spring with spring constant k. There are two normal modes 

Axle

k = 3.0 N/m

20 cm

FIGURE CP15.81

Pivot

R

FIGURE CP15.77

of this system for which oscillations take place along the axis. 
(You can ignore additional bending modes.) In this problem, you 
will find the normal modes and then use experimental data to 
determine the bond spring constant.
a. Let x1, x2, and x3 be the atoms’ positions measured from their 

equilibrium positions. First, use Hooke’s law to write the net 
force on each atom. Pay close attention to signs! For each ox-
ygen, the net force equals mO d

2x/dt2. Carbon has a different 
mass, so its net force is mC d

2x/dt2. Define a2 = k/mO and 
b2 = k/mC, then write three equations for the second deriva-
tives of the three coordinates.

The main task is to find three new variables whose differen-
tial equation is the SHM equation, meaning that they oscil-
late at a single frequency that you can identify. The first is 
w = x1 + (mC/mO) x2 + x3. Notice that the ratio mC/mO = a2/b2. 
If you calculate d2w/dt2, you’ll find that it equals zero. (Check 
this to verify that your work is correct to this point.) This seems 
odd, but notice that multiplying w by mO gives an expression for 
the center of mass. So what you’ve learned is that the center of 
mass doesn’t accelerate. It could be drifting through space, but for 
this problem you can let the center of mass be at rest at the origin. 
So the solution to d2w/dt2 = 0 is w = 0.
b. A second new variable (call it u) can be formed from only 

x1 and x3, the oxygen coordinates. You’re looking for a com-
bination such that d2u/dt2 = -constant * u. Determine u 
and find an expression for its angular frequency (call it v) in 
terms of k and the masses. The solution to the equation for u 
is u = 2A cos (vt + fa).

c. The third variable (call it v) is v = x1 - cx2 + x3, where c is a 
constant you need to determine so that the equation for v is 
the SHM equation. Determine v and find an expression for 
its angular frequency (call it Ω) in terms of k and the masses. 
The solution to the equation for v is v = 2B cos (Ωt +fb).

d. Use the definitions of u, v, and w to solve for x1, x2, and x3 in 
terms of u, v, and w. Using M = 2mO + mC as the total mass of 
the molecule will keep the expressions simple. This is a gen-
eral solution for the positions of the three masses.

e. Let B = 0 and fa = fb = 0. This gives a solution that oscil-
lates at frequency v. Find expressions for x1, x2, and x3. You 
should find that this normal mode at frequency v consists 
of the carbon atom sitting at rest while the oxygen atoms os-
cillate in and out in opposite directions. This is called the 
symmetric stretch mode.

f. Now let A = 0 and fa = fb = 0. This gives a solution that 
oscillates at frequency Ω. Find expressions for x1, x2, and x3.  
This normal mode at frequency Ω consists of the carbon 
atom moving in one direction while the two oxygen atoms 
move in the opposite direction with a different amplitude. 
This is called the antisymmetric stretch mode. Notice that 
the center of mass remains stationary.

g. The symmetric stretch frequency is known to be 
4.00 * 1013 Hz. What is the spring constant of the C9O 
bond? Use 1 u = 1 atomic mass unit = 1.66 * 10-27 kg to find 
the atomic masses in SI units. Interestingly, the spring con-
stant is similar to that of springs you might use in the lab.

h. Use the frequency of the symmetric stretch to predict the 
frequency of the antisymmetric stretch. The measured fre-
quency is 7.05 * 1013 Hz, so your prediction is close but not 
perfect. The reason is that the bonds are not ideal springs but 
have a slight amount of anharmonicity. Nonetheless, you’ve 
learned a great deal about the CO2 molecule from a simple 
model of oscillating masses.
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Traveling Waves

What is a wave?
A wave is a disturbance traveling 
through a medium. In a transverse wave, 
the displacement is perpendicular to 
the direction of travel. In a longitudinal 
wave, the displacement is parallel to the 
direction of travel.

What are some wave properties?
A wave is characterized by:

■■ Wave speed: How fast it travels 
through the medium.

■■ Wavelength: The distance between  
two neighboring crests.

■■ Frequency: The number of oscillations 
per second.

■■ Amplitude: The maximum displacement.

❮❮ LOOKING BACK Sections 15.1–15.2 Properties of  
simple harmonic motion

Are sound and light waves?
Yes! Very important waves.

■■ Sound waves are longitudinal waves.
■■ Light waves are transverse waves.

The colors of visible light correspond to 
different wavelengths.

Do waves carry energy?
They do. The rate at which a wave delivers 
energy to a surface is the intensity of  
the wave. For sound waves, we’ll use a  
logarithmic decibel scale to characterize 
the loudness of a sound.

What is the Doppler effect?
The frequency and wavelength of a  
wave are shifted if there is relative 
motion between the source and the 
observer of the waves. This is called the 
Doppler effect. It explains why the pitch 
of an ambulance siren drops as it races 
past you.

How will I use waves?
Waves are literally everywhere. Communications systems 
from radios to cell phones to fiber optics use waves. Sonar and 
radar and medical ultrasound use waves. Music and musical  
instruments are all about waves. Waves are present in the oceans,  
the atmosphere, and the earth. This chapter and the next will  
allow you to understand and work with a wide variety of waves  
that you may meet in your career.

IN THIS CHAPTER, you will learn the basic properties of traveling waves.

16

A water wave breaks—creating 
sound waves—if its amplitude 
becomes too large.

v

v

Transverse wave
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v
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16.1 An Introduction to Waves
From sound and light to ocean waves and seismic waves, we’re surrounded by waves. 
Understanding musical instruments, cell phones, or lasers requires a knowledge of 
waves. With this chapter we shift our focus from the particle model to a new wave 
model that emphasizes those aspects of wave behavior common to all waves.

The wave model is built around the idea of a traveling wave, which is an orga-
nized disturbance traveling with a well-defined wave speed. We’ll begin our study of 
traveling waves by looking at two distinct wave motions.

Two types of traveling waves

A transverse wave

Motion of wave at speed vUp/down

Displacement

A transverse wave is a wave in which the displacement is  
perpendicular to the direction in which the wave travels. For example, a 
wave travels along a string in a horizontal direction while the particles  
that make up the string oscillate vertically. Electromagnetic waves 
are also transverse waves because the electromagnetic fields oscillate  
perpendicular to the direction in which the wave travels.

A longitudinal wave 

Motion of wave at speed vPush/pull

Displacement

In a longitudinal wave, the particles in the medium are displaced  
parallel to the direction in which the wave travels. Here we see a chain 
of masses connected by springs. If you give the first mass in the chain 
a sharp push, a disturbance travels down the chain by compressing and  
expanding the springs. Sound waves in gases and liquids are the most well 
known examples of longitudinal waves.

We can also classify waves on the basis of what is “waving”:

1. Mechanical waves travel only within a material medium, such as air or water. 
Two familiar mechanical waves are sound waves and water waves.

2. Electromagnetic waves, from radio waves to visible light to x rays, are a 
self-sustaining oscillation of the electromagnetic field. Electromagnetic waves 
require no material medium and can travel through a vacuum.

The medium of a mechanical wave is the substance through or along which the 
wave moves. For example, the medium of a water wave is the water, the medium of 
a sound wave is the air, and the medium of a wave on a stretched string is the string. 
A medium must be elastic. That is, a restoring force of some sort brings the medium 
back to equilibrium after it has been displaced or disturbed. The tension in a stretched 
string pulls the string back straight after you pluck it. Gravity restores the level  surface 
of a lake after the wave generated by a boat has passed by.

As a wave passes through a medium, the atoms of the medium—we’ll simply 
call them the particles of the medium—are displaced from equilibrium. This is a 
 disturbance of the medium. The water ripples of FIGURE 16.1 are a disturbance of the 
water’s surface. A pulse traveling down a string is a disturbance, as are the wake of a 
boat and the sonic boom created by a jet traveling faster than the speed of sound. The 
 disturbance of a wave is an organized motion of the particles in the medium, in 
contrast to the random molecular motions of thermal energy.

Wave Speed
A wave disturbance is created by a source. The source of a wave might be a rock 
thrown into water, your hand plucking a stretched string, or an oscillating loudspeaker 
cone pushing on the air. Once created, the disturbance travels outward through the 
medium at the wave speed v. This is the speed with which a ripple moves across the 
water or a pulse travels down a string.

The disturbance is the rippling
of the water’s surface.

The water is the medium.

FIGURE 16.1 Ripples on a pond are a 
traveling wave.

M16_KNIG8221_05_GE_C16.indd   459 07/06/2022   16:54



460 CHAPTER 16 Traveling Waves

   NOTE    The disturbance propagates through the medium, but the medium as a whole 
does not move! The ripples on the pond (the disturbance) move outward from the 
splash of the rock, but there is no outward flow of water from the splash. A wave 
transfers energy, but it does not transfer any material or substance outward 
from the source.

As an example, we’ll prove in Section 16.4 that the wave speed on a string stretched 
with tension Ts is

 vstring = BTs

m
  (wave speed on a stretched string) (16.1)

where m is the string’s linear density, its mass-to-length ratio:

 m =
m
L

 (16.2)

The SI unit of linear density is kg/m. A fat string has a larger value of m than a  skinny 
string made of the same material. Similarly, a steel wire has a larger value of m than a 
plastic string of the same diameter. We’ll assume that strings are uniform, meaning the 
linear density is the same everywhere along the length of the string.

   NOTE    The subscript s on the symbol Ts for the string’s tension distinguishes it from 
the symbol T for the period of oscillation.

Equation 16.1 is the wave speed, not the wave velocity, so vstring always has a positive 
value. Every point on a wave travels with this speed. You can increase the wave speed 
either by increasing the string’s tension (make it tighter) or by decreasing the string’s 
linear density (make it skinnier).

This sequence of photographs shows a 
wave pulse traveling along a spring.

A 2.00-m-long metal wire is attached to a motion sensor, stretched 
horizontally to a pulley 1.50 m away, then connected to a 2.00 kg 
hanging mass that provides tension. A mechanical pick plucks a 
horizontal segment of wire right at the pulley, creating a small 
wave pulse that travels along the wire. The plucking motion starts 
a timer that is stopped by the motion sensor when the pulse reaches 
the end of the wire. What is the wire’s linear density if the pulse 
takes 18.0 ms to travel the length of the wire?

MODEL Model the pulse as a traveling wave and the pulley as 
 frictionless. The wave speed depends on the wire’s linear density.

VISUALIZE FIGURE 16.2 is a pictorial representation. The free-body 
diagram is for the hanging mass.

SOLVE The wave speed on a wire is determined by the wire’s linear 
 density m and tension Ts. The hanging mass is in equilibrium, with no net 
force, so we see from the free-body diagram that the tension throughout 
the wire (because the pulley is frictionless) is Ts = FG = mg = 19.6 N. 
Because the wave pulse travels 1.50 m in 18.0 ms, its speed is

v =
1.50 m

0.0180 s
= 83.3 m/s

Thus, from Equation 16.1, the wire’s linear density is

m =
Ts

v2 =
19.6 N

183.3 m/s22 = 2.82 * 10-3 kg/m = 2.82 g/m

Linear densities of strings are often stated in g/m, although these 
are not SI units. You must use kg/m in any calculations.

REVIEW A meter of thin wire is likely to have a mass of a few 
grams, so a linear density of a few g/m is reasonable. Note that the 
total length of the wire was not relevant.

EXAMPLE 16.1 ■ Measuring the linear density

FIGURE 16.2 A wave pulse on a wire.

The wave speed on a string is a property of the string—its tension and linear 
 density. In general, the wave speed is a property of the medium. The wave speed 
 depends on the restoring forces within the medium but not at all on the shape or size 
of the pulse, how the pulse was generated, or how far it has traveled.
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16.2 One-Dimensional Waves
To understand waves we must deal with functions of two variables. Until now, we 
have been concerned with quantities that depend only on time, such as x1t2 or v1t2. 
Functions of the one variable t are appropriate for a particle because a particle is only 
in one place at a time, but a wave is not localized. It is spread out through space at each  
instant of time. To describe a wave mathematically requires a function that specifies 
not only an instant of time (when) but also a point in space (where).

Rather than leaping into mathematics, we will start by thinking about waves graphi-
cally. Consider the wave pulse shown moving along a stretched string in FIGURE  16.3.  
(We will consider somewhat artificial triangular and square-shaped pulses in this   
section to make clear where the edges of the pulse are.) The graph shows the  
string’s  displacement ∆y at a particular instant of time t1 as a function of position  
x along the string. This is a “snapshot” of the wave, much like what you might  
make with a  camera whose shutter is opened briefly at t1. A graph that shows the  
wave’s  displacement as a function of position at a single instant of time is called a  
snapshot graph. For a wave on a string, a snapshot graph is literally a picture of  
the wave at this instant.

FIGURE 16.4 shows a sequence of snapshot graphs as the wave of Figure 16.3 
 continues to move. These are like successive frames from a video. Notice that the 
wave pulse moves forward distance ∆x = v ∆t during the time interval ∆t. That is, the  
wave moves with constant speed.

A snapshot graph tells only half the story. It tells us where the wave is and 
how it varies with position, but only at one instant of time. It gives us no informa-
tion about how the wave changes with time. As a different way of portraying the 
wave, suppose we follow the dot marked on the string in Figure 16.4 and produce 
a graph showing how the displacement of this dot changes with time. The result, 
shown in FIGURE 16.5, is a displacement-versus-time graph at a single position in 
space. A graph that shows the wave’s displacement as a function of time at a single 
position in space is called a history graph. It tells the history of that particular 
point in the medium.

STOP TO THINK 16.1 Which of the following actions would make a pulse travel 
faster along a stretched string? More than one answer may be correct. If so, give all 
that are correct.

a. Move your hand up and down more quickly as you generate the pulse.
b. Move your hand up and down a larger distance as you generate the pulse.
c. Use a heavier string of the same length, under the same tension.
d. Use a lighter string of the same length, under the same tension.
e. Stretch the string tighter to increase the tension.
f. Loosen the string to decrease the tension.
g. Put more force into the wave.

∆y
This is a graph of the string’s
displacement as a function of
position at time t1.

x

This is a wave pulse traveling
along a string. Wave speed v

Trailing edge Leading edge

FIGURE 16.3 A snapshot graph of a wave 
pulse on a string.

Wave at
time t1

The wave moves horizontally,
but a string particle moves
only vertically.

The wave moves
∆x = v∆t during
time ∆t.

The wave moves
forward without
changing shape.t2

t1

x1

x

x

x

x1

x1

t3

∆y

∆y

∆y

∆x = v∆t

∆x = v∆t

FIGURE 16.4 A sequence of snapshot 
graphs shows the wave in motion.

∆y The string’s displacement as a
function of time at position x1

t

Later timesEarlier times

Trailing edgeLeading edge

FIGURE 16.5 A history graph for the dot 
on the string in Figure 16.4.

x

t

Wave
travel

Greater
distances

Later
times (0, 0)

FIGURE 16.6 An alternative look at a 
traveling wave.
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You might think we have made a mistake; the graph of Figure 16.5 is reversed 
 compared to Figure 16.4. It is not a mistake, but it requires careful thought to see why. 
As the wave moves toward the dot, the steep leading edge causes the dot to rise 
quickly. On the displacement-versus-time graph, earlier times (smaller values of t) are 
to the left and later times (larger t) to the right. Thus the leading edge of the wave is 
on the left side of the Figure 16.5 history graph. As you move to the right on Figure 
16.5 you see the slowly falling trailing edge of the wave as it moves past the dot at 
later times.

The snapshot graph of Figure 16.3 and the history graph of Figure 16.5 portray 
 complementary information. The snapshot graph tells us how things look throughout 
all of space, but at only one instant of time. The history graph tells us how things 
look at all times, but at only one position in space. We need them both to have the full 
story of the wave. An alternative representation of the wave is the series of graphs in 
FIGURE 16.6, where we can get a clearer sense of the wave moving forward. But graphs 
like these are essentially impossible to draw by hand, so it is necessary to move back 
and forth between snapshot graphs and history graphs.

FIGURE 16.7 is a snapshot graph at t = 0 s of a wave moving to the 
right at a speed of 2.0 m/s. Draw a history graph for the position 
x = 8.0 m.

MODEL This is a wave traveling at constant speed. The pulse moves 
2.0 m to the right every second.

VISUALIZE The snapshot graph of Figure 16.7 shows the wave at all 
points on the x-axis at t = 0 s. You can see that nothing is happening at 
x = 8.0 m at this instant of time because the wave has not yet reached 
x = 8.0 m. In fact, at t = 0 s the leading edge of the wave is still 4.0 m 
away from x = 8.0 m. Because the wave is traveling at 2.0 m/s, it will 

take 2.0 s for the leading edge to reach x = 8.0 m. Thus the history 
graph for x = 8.0 m will be zero until t = 2.0 s. The first part of the 
wave causes a downward displacement of the medium, so immedi-
ately after t = 2.0 s the displacement at x = 8.0 m will be negative. 
The negative portion of the wave pulse is 2.0 m wide and takes 1.0 s 
to pass x = 8.0 m, so the midpoint of the pulse reaches x = 8.0 m at 
t = 3.0 s. The positive portion takes another 1.0 s to go past, so the 
trailing edge of the pulse arrives at t = 4.0 s. You could also note that 
the trailing edge was initially 8.0 m away from x = 8.0 m and needed 
4.0 s to travel that distance at 2.0 m/s. The displacement at x = 8.0 m 
returns to zero at t = 4.0 s and remains zero for all later times. This 
information is all portrayed on the history graph of FIGURE 16.8.

EXAMPLE 16.2 ■ Finding a history graph from a snapshot graph

∆y (mm)

2

-2

-2 2 4 6 8 10

2.0 m/s

Snapshot graph at t = 0 s

x (m)

FIGURE 16.7 A snapshot graph at t = 0 s.

∆y (mm)

2

-2

-1 1 2 3 4 5

History graph at x = 8.0 m

t (s)

FIGURE 16.8 The corresponding history graph at x = 8.0 m.

STOP TO THINK 16.2 The graph at the right is the history graph at x = 4.0 m of a 
wave traveling to the right at a speed of 2.0 m/s. Which is the history graph of this  
wave at x = 0 m?
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0 02 6 1040 8 12

∆y (cm)

t (s)

1

(a)

2 6 10

The wave at x = 4.0 m

40 8 12
t (s)

∆y (cm)
1
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16.2 One-Dimensional Waves 463

Longitudinal Waves
For a wave on a string, a transverse wave, the snapshot graph is literally a picture of the 
wave. Not so for a longitudinal wave, where the particles in the medium are displaced 
parallel to the direction in which the wave is traveling. Thus the displacement is ∆x 
rather than ∆y, and a snapshot graph is a graph of ∆x versus x.

FIGURE 16.9a is a snapshot graph of a longitudinal wave, such as a sound wave. It’s  
purposefully drawn to have the same shape as the string wave in Example 16.2. Without 
practice, it’s not clear what this graph tells us about the particles in the medium. 

1. Draw a series of equally spaced vertical lines to represent
 the equilibrium positions of particles before the wave arrives.

2. Use information from the graph to displace the particles
 in the medium to the right or left.

3. The wave propagates to the right at 1.0 cm/s.

t1 = 0 s

t2 = 1 s

Equilibrium

t3 = 2 s

(b)

-1

1

2 4 6 8 10
x (cm)

∆x (cm)
Snapshot graph of a longitudinal wave at t1 = 0 s

1.0 cm/s

(a)

FIGURE 16.9 Visualizing a longitudinal wave.

To help you find out, FIGURE 16.9b provides a tool for visualizing longitudinal waves. 
In the second row, we’ve used information from the graph to displace the particles in 
the medium to the right or to the left of their equilibrium positions. For example, the 
particle at x = 1.0 cm has been displaced 0.5 cm to the right because the snapshot 
graph shows ∆x = 0.5 cm at x = 1.0 cm. We now have a picture of the longitudinal 
wave pulse at t1 = 0 s. You can see that the medium is compressed to higher density 
at the center of the pulse and, to compensate, expanded to lower density at the leading 
and trailing edges. Two more lines show the medium at t2 = 1 s and t3 = 2 s so that 
you can see the wave propagating through the medium at 1.0 cm/s.

The Displacement
A traveling wave causes the particles of the medium to be displaced from their 
equilibrium positions. Because one of our goals is to develop a mathematical 
 representation to describe all types of waves, we’ll use the generic symbol D to 
stand for the displacement of a wave of any type. But what do we mean by a 
“ particle” in the medium? And what about electromagnetic waves, for which there 
is no medium?

For a string, where the atoms stay fixed relative to each other, you can think 
of either the atoms themselves or very small segments of the string as being the 
particles of the medium. D is then the perpendicular displacement ∆y of a point 
on the string. For a sound wave, D is the longitudinal displacement ∆x of a small 
 volume of fluid. For any other mechanical wave, D is the appropriate displacement.  
Even electromagnetic waves can be described within the same mathematical 
 representation if D is interpreted as a yet-undefined electromagnetic field strength, 
a “displacement” in a more abstract sense as an electromagnetic wave passes  
through a region of space.

You’ve probably seen or participated  
in “the wave” at a sporting event. The  
wave moves around the stadium, but 
the people (the medium) simply undergo 
small displacements from their equilibrium 
positions.
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464 CHAPTER 16 Traveling Waves

Because the displacement of a particle in the medium depends both on where the 
particle is (position x) and on when you observe it (time t), D must be a function of the 
two variables x and t. That is,

D1x, t2 = the displacement at time t of a particle at position x

The values of both variables—where and when—must be specified before you can 
evaluate the displacement D.

16.3 Sinusoidal Waves
A wave source that oscillates with simple harmonic motion (SHM) generates a 
 sinusoidal wave. For example, a loudspeaker cone that oscillates in SHM radiates a 
sinusoidal sound wave. The sinusoidal electromagnetic waves broadcast by cell towers  
and FM radio stations are generated by electrons oscillating back and forth in the 
antenna wire with SHM. The frequency f  of the wave is the frequency of the 
 oscillating source.

FIGURE 16.10 shows a sinusoidal wave moving through a medium. To understand 
how this wave propagates, let’s look at history and snapshot graphs. FIGURE 16.11a is a 
history graph, showing the displacement of the medium at one point in space. Each 
particle in the medium undergoes simple harmonic motion with frequency f, so this 
graph of SHM is identical to the graphs you learned to work with in Chapter 15. 
The period of the wave, shown on the graph, is the time interval for one cycle of the 
motion. The period is related to the wave frequency f by

 T =
1
f

 (16.3)

exactly as in simple harmonic motion. The amplitude A of the wave is the maximum 
value of the displacement. The crests of the wave have displacement Dcrest = A and the 
troughs have displacement Dtrough = -A.

x

t

(0, 0)

Wave
travel

Greater
distances

Later
times

The wave crests move with
steady speed toward larger
values of x at later times t.

FIGURE 16.10 A sinusoidal wave moving 
along the x-axis.

(a) A history graph at one point in space
shows displacement versus time.

(b) A snapshot graph at one instant of time
shows displacement versus position.

D D

A

-A

A

-A

Period T
Amplitude Wavelength l Crest Wave

speed v

Trough

t x

FIGURE 16.11 History and snapshot graphs for a sinusoidal wave.

Displacement versus time is only half the story. FIGURE 16.11b shows a snapshot 
graph for the same wave at one instant in time. Here we see the wave stretched out in 
space, moving to the right with speed v. An important characteristic of a sinusoidal 
wave is that it is periodic in space as well as in time. As you move from left to right 
along the “frozen” wave in the snapshot graph, the disturbance repeats itself over and 
over. The distance spanned by one cycle of the motion is called the wavelength of 
the wave. Wavelength is symbolized by l (lowercase Greek lambda) and, because it is 
a length, it is measured in units of meters. The wavelength is shown in Figure 16.11b 
as the distance between two crests, but it could equally well be the distance between 
two troughs.

   NOTE    Wavelength is the spatial analog of period. The period T is the time in which 
the disturbance at a single point in space repeats itself. The wavelength l is the 
distance in which the disturbance at one instant of time repeats itself.
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16.3 Sinusoidal Waves 465

The Fundamental Relationship for Sinusoidal Waves
There is an important relationship between the wavelength and the period of a wave. 
FIGURE 16.12 shows this relationship through five snapshot graphs of a sinusoidal 
wave at time increments of one-quarter of the period T. One full period has elapsed 
between the first graph and the last, which you can see by observing the motion at 
a fixed point on the x-axis. Each point in the medium has undergone exactly one 
complete oscillation.

The critical observation is that the wave crest marked by an arrow has moved one 
full wavelength between the first graph and the last. That is, each crest of a sinusoi-
dal wave travels forward a distance of exactly one wavelength L during a time 
interval of exactly one period T. Because speed is distance divided by time, the wave 
speed must be

 v =
distance

time
=

l

T
 (16.4)

Because f = 1/T, it is customary to write Equation 16.4 in the form

 v = lf  (16.5)

Although Equation 16.5 has no special name, it is the fundamental relationship for 
periodic waves. When using it, keep in mind the physical meaning that a wave moves 
forward a distance of one wavelength during a time interval of one period.

   NOTE    Wavelength and period are defined only for periodic waves, so Equations 
16.4 and 16.5 apply only to periodic waves. A wave pulse has a wave speed, but it 
doesn’t have a wavelength or a period. Hence Equations 16.4 and 16.5 cannot be 
applied to wave pulses.

Because the wave speed is a property of the medium while the wave frequency is a 
property of the oscillating source, it is often useful to write Equation 16.5 as

 l =
v
f

=
property of the medium

property of the source
 (16.6)

The wavelength is a consequence of a wave of frequency f  traveling through a 
medium in which the wave speed is v.

x (m)

x (m)

x (m)

x (m)

x (m)

t = 0

t = T

A
D

This crest is moving to the right.
v

0

-A

A

0

-A

A

0

-A

A

0

-A

A

0

-A

l 2l

l 2l

l

l

2l

l 2l

l 2l

During a time interval of exactly
one period, the crest has moved
forward exactly one wavelength.

1
4Tt = 

1
2Tt = 

3
4Tt = 

FIGURE 16.12 A series of snapshot graphs 
at time increments of one-quarter of the 
period T.

STOP TO THINK 16.3 What is the frequency of this traveling wave?

A

D

x (m)

-A

10 20

Travels left
at 50 m/sa. 0.1 Hz

b. 0.2 Hz
c. 2 Hz
d. 5 Hz
e. 10 Hz
f. 500 Hz

The Mathematics of Sinusoidal Waves
FIGURE 16.13 on the next page shows a snapshot graph at t = 0 of a sinusoidal wave. The 
sinusoidal function that describes the displacement of this wave is

 D1x, t = 02 = A sin12p 
x
l

+ f02 (16.7)
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466 CHAPTER 16 Traveling Waves

where the notation D1x, t = 02 means that we’ve frozen the time at t = 0 to make the 
displacement a function of only x. The term f0 is a phase constant that characterizes 
the initial conditions. (We’ll return to the phase constant momentarily.)

The function of Equation 16.7 is periodic with period l. We can see this by writing

  D1x + l2 = A sin12p 
1x + l2

l
+ f02 = A sin12p 

x
l

+ f0 + 2p rad2
  = A sin12p 

x
l

+ f02 = D1x2

where we used the fact that sin1a + 2p rad2 = sin a. In other words, the disturbance 
created by the wave at x + l is exactly the same as the disturbance at x.

The next step is to set the wave in motion. We can do this by replacing x in Equation 
16.7 with x - vt. To see why this works, recall that the wave moves distance vt during 
time t. In other words, whatever displacement the wave has at position x at time t, the 
wave must have had that same displacement at position x - vt at the earlier time t = 0. 
Mathematically, this idea can be captured by writing

 D1x, t2 = D1x - vt, t = 02 (16.8)

Make sure you understand how this statement describes a wave moving in the positive 
x-direction at speed v.

This is what we were looking for. D1x, t2 is the general function describing the 
traveling wave. It’s found by taking the function that describes the wave at t = 0— 
the function of Equation 16.7—and replacing x with x - vt. Thus the displacement 
 equation of a sinusoidal wave traveling in the positive x-direction at speed v is

 D1x, t2 = A sin12p 
x - vt
l

+ f02 = A sin12p1 x
l

-
t
T2 + f02 (16.9)

In the last step we used v = lf = l/T  to write v/l = 1/T. The function of Equation 16.9  
is not only periodic in space with period l, it is also periodic in time with period T. 
That is, D1x, t + T  2 = D1x, t2.

It will be useful to introduce two new quantities. First, recall from simple harmonic 
motion the angular frequency

 v = 2pf =
2p
T

 (16.10)

The units of v are rad/s, although many textbooks use simply s-1.
You can see that v is 2p times the reciprocal of the period in time. This suggests 

that we define an analogous quantity, called the wave number k, that is 2p times the 
reciprocal of the period in space:

 k =
2p
l

 (16.11)

The units of k are rad/m, although many textbooks use simply m-1.

   NOTE    The wave number k is not a spring constant, even though it uses the same 
symbol. This is a most unfortunate use of symbols, but every major textbook and 
professional tradition uses the same symbol k for these two very different meanings, 
so we have little choice but to follow along.

We can use the fundamental relationship v = lf  to find an analogous relationship 
between v and k:

 v = lf =
2p
k

 
v

2p
=

v

k
 (16.12)

x

l

D

A

-A

x
x x + l x + 2l

D (x, t = 0) = A sin 12p   + f02

Snapshot graph at t = 0

f0 is the phase
constant.

The wave is “frozen”
at t = 0.

FIGURE 16.13 A sinusoidal wave.
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16.3 Sinusoidal Waves 467

which is usually written

 v = vk (16.13)

Equation 16.13 contains no new information. It is a variation of Equation 16.5, but one 
that is convenient when working with k and v.

If we use the definitions of Equations 16.10 and 16.11, Equation 16.9 for the dis-
placement can be written

 D1x, t2 = A sin1kx - vt + f02 

 (sinusoidal wave traveling in the positive x@direction) 
(16.14)

A sinusoidal wave traveling in the negative x-direction is A sin1kx + vt + f02. 
Equation 16.14 is graphed versus x and t in FIGURE 16.14.

You learned in ❮❮  SECTION 15.2 that the initial conditions of an oscillator can be 
characterized by a phase constant. The same is true for a sinusoidal wave. At 
1x, t2 = 10 m, 0 s2 Equation 16.14 becomes

 D10 m, 0 s2 = A sin f0 (16.15)

Different values of f0 describe different initial conditions for the wave.

D

D

A

-A

A

-A

T

l

t

x

If x is fixed, D (x1, t) = A sin (kx1 - vt + f0)
gives a sinusoidal history graph at one
point in space, x1. It repeats every T s.

If t is fixed, D (x, t1) = A sin (kx - vt1 + f0)
gives a sinusoidal snapshot graph at one
instant of time, t1. It repeats every l m.

History graph at x1

Snapshot graph at t1

FIGURE 16.14 Interpreting the equation of 
a sinusoidal traveling wave.

A sinusoidal wave with an amplitude of 1.00 cm and a frequency  
of 100 Hz travels at 200 m/s in the positive x-direction. At t = 0 s, 
the point x = 1.00 m is on a crest of the wave.

a. Determine the values of A, v, l, k, f, v, T, and f0 for this wave.

b. Write the equation for the wave’s displacement as it travels.

c. Draw a snapshot graph of the wave at t = 0 s.

VISUALIZE The snapshot graph will be sinusoidal, but we must do 
some numerical analysis before we know how to draw it.

SOLVE a. There are several numerical values associated with a 
sinusoidal traveling wave, but they are not all independent. From 
the problem statement itself we learn that

A = 1.00 cm  v = 200 m/s  f = 100 Hz

We can then find:

  l = v/f = 2.00 m

  k = 2p/l = p rad/m or 3.14 rad/m

  v = 2pf = 628 rad/s

  T = 1/f = 0.0100 s = 10.0 ms

The phase constant f0 is determined by the initial conditions. 
We know that a wave crest, with displacement D = A, is passing 
x0 = 1.00 m at t0 = 0 s. Equation 16.14 at x0 and t0 is

D1x0, t02 = A = A sin3k11.00 m2 + f04
This equation is true only if sin3k11.00 m2 + f04 = 1, which 
 requires

k 11.00 m2 + f0 =
p

2
 rad

Solving for the phase constant gives

f0 =
p

2
 rad - 1p rad/m211.00 m2 = -

p

2
 rad

b. With the information gleaned from part a, the wave’s  
displacement is

  D1x, t2 = 1.00 cm *
  sin313.14 rad/m2x - 1628 rad/s2t - p/2 rad4

Notice that we included units with A, k, v, and f0.

c. We know that x = 1.00 m is a wave crest at t = 0 s and that 
the wavelength is l = 2.00 m. Because the origin is l/2 away 
from the crest at x = 1.00 m, we expect to find a wave trough 
at x = 0. This is confirmed by calculating D10 m, 0 s2 =  
11.00 cm2 sin1-p/2 rad2 = -1.00 cm. FIGURE 16.15 is a snapshot 
graph that portrays this information.

EXAMPLE 16.3 ■ Analyzing a sinusoidal wave

1

0

-1

1 2 3 4 5
x (m)

D (cm) At t = 0 s v = 200 m/s

l = 2.00 m

FIGURE 16.15 A snapshot graph at t = 0 s of the sinusoidal wave 
of Example 16.3.

The Velocity of a Particle in the Medium
As a sinusoidal wave travels along the x-axis with speed v, the particles of the medium 
oscillate back and forth in SHM. For a transverse wave, such as a wave on a string, the 
oscillation is in the y-direction. For a longitudinal sound wave, the particles oscillate 
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468 CHAPTER 16 Traveling Waves

in the x-direction, parallel to the propagation. We can use the displacement equation, 
Equation 16.14, to find the velocity of a particle in the medium.

At time t, the displacement of a particle in the medium at position x is

 D1x, t2 = A sin1kx - vt + f02 (16.16)

The velocity of the particle—which is not the same as the velocity of the wave 
along the string—is the time derivative of Equation 16.16:

 vparticle =
dD
dt

= -vA cos1kx - vt + f02 (16.17)

Thus the maximum speed of particles in the medium is vmax = vA. This is the 
same result we found for simple harmonic motion because the motion of the  medium 
is  simple harmonic motion. FIGURE 16.16 shows velocity vectors of the particles at 
 different points along a string as a sinusoidal wave moves from left to right.

   NOTE    Creating a wave of larger amplitude increases the speed of particles in the 
medium, but it does not change the speed of the wave through the medium.

16.4   ADVANCED TOPIC    The Wave Equation on  
a String

Why do waves propagate along a string? We’ve described wave motion—the 
 kinematics of waves—but not explained why it occurs. The motion of a string, like 
that of a baseball, is governed by Newton’s second law. But a baseball can be modeled 
as a moving particle. To explain waves, we need to see how Newton’s laws apply to a 
continuous object that is spread out in space.

This section will be significantly more mathematical than any analysis that we’ve 
done so far, so it will be good to get an overview of where we’re going. We have two 
primary goals:

■■ To use Newton’s second law to find an equation of motion for displacements  
on a string. This is called the wave equation. We’ll see that Equation 16.14, the 
displacement of a sinusoidal wave, is a solution to the wave equation.

■■ To predict the wave speed on a string.

Although we’ll derive the wave equation for a string, the equation itself occurs in 
many other contexts in science and engineering. Wherever this equation arises, the 
solutions are traveling waves.

FIGURE 16.17 shows a small piece of string that is displaced from its equilibrium 
 position. This piece is at position x and has a small horizontal width ∆x. We’re going 
to apply Newton’s second law, the familiar Fnet = ma, to this little piece of string. 
Notice that it’s curved, so the tension forces at the ends are not opposite each other. 
This is essential in order for there to be a net force.

We’ll begin by making the realistic assumption that the wave amplitude A is much 
smaller than the wavelength l. On average, the string “rises” distance A over a “run” 
of l/4. If A V l, then the slope of the string is always very small. That is, the string 
itself and the tension vectors are always very close to being horizontal. (Our drawings 
greatly exaggerate the amplitude for clarity.)

This assumption has two immediate implications. First, a small-amplitude wave doesn’t 
noticeably increase the length of the string. With no additional stretching, the string tension  
Ts is not altered by the wave. Second, because the string is always very close to being 
horizontal, there’s virtually no difference between the actual length of the piece of string 
in Figure 16.17 and its horizontal width ∆x. Thus the mass of this little piece of string is 
m = m ∆x, where, you’ll recall, m is the string’s linear density (mass per unit length).

Because we know the mass, let’s start with the ma side of Newton’s second law. For 
a transverse wave, this little piece of string oscillates perpendicular to the direction  

The velocity of a
particle on the string

At a turning point,
the particle has
zero velocity.

A particle’s velocity
is maximum at zero
displacement.

x

The velocity of the wave

FIGURE 16.16 A snapshot graph of a wave 
on a string with vectors showing the 
velocity of the string at various points.

Apply Newton’s
second law to this
small piece of string.

x
x

m = m∆x

x + ∆x

a
u

Ts(x)
u

Ts(x + ∆x)
u

FIGURE 16.17 Apply Newton’s second law 
to this small piece of string.
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16.4  Advanced Topic: The Wave Equation on a String  469

of wave propagation. For wave motion along the x-axis, the string accelerates in the 
y-direction. If we had only this little piece of string, not an entire string, we would model 
it as a particle and write its acceleration as ay = dvy/dt = d2y/dt2. The acceleration of a  
particle, as you’ve learned, is the second derivative of its position with respect to time.

But the string isn’t a particle. At any instant of time, different pieces of the string 
have different accelerations. To find the acceleration at a specific point on the string, 
we want to know how the displacement varies with t at that specific value of x. Or, 
because the displacement D1x, t2 is a function of two variables, we want to know the 
rate at which D1x, t2 changes with respect to t at a specific value of x. In multivariable 
calculus, the rate of change of a function with respect to one variable while all other 
variables are held fixed is called a partial derivative. Partial, because by holding 
other variables constant we’re only partially examining the many ways in which the 
function could change.

Partial derivatives have a special notation, using a “curly d.” The velocity of our 
little piece of string is written

 vy =
0 D
0 t

 (16.18)

and its acceleration is

 ay =
0 

2D

0 t2  (16.19)

Don’t panic if you’ve not reached partial derivatives in calculus. They are evaluated 
exactly like regular derivatives, but the partial-derivative notation means “treat all the 
other variables as if they were constants.” Using the partial derivative, we find the first 
half of Newton’s second law for our little piece of string is

 may = m ∆x 
02D

0 t2  (16.20)

Now we can turn our attention to finding the net force on this little piece of string. 
The type of analysis we’re going to do may be new to you, but it is widely used in more 
advanced science and engineering courses. FIGURE 16.18 shows our little piece of the 
string, this time with the tension forces—one at each end of the string—resolved into 
x- and y-components.

Strictly speaking, the tension force Ts is tangent to the string. However, our small- 
amplitude assumption, requiring this piece of string to be almost horizontal, means  
there is virtually no distinction between Ts and its horizontal component. (This is the 
small- angle approximation cos u ≈ 1 if u V 1 rad.) Thus we’ve identified the two  
horizontal components as Ts. Because they are equal but opposite, the net horizontal 
force is zero. This has to be true because each piece of this transverse wave accelerates 
only in the y-direction.

The net force on this little piece of string in the transverse direction (the y-direction) is

 Fnet y = Ty1x + ∆x2 + Ty1x2 (16.21)

The notation Ty1x2 means “the y-component of the string tension at position x on the 
string.” And we’re adding, not subtracting, because this is a formal statement that the 
net force is the sum of all forces.

You can see, from the force triangle in Figure 16.18, that the ratio Ty1x + ∆x2/Ts—  
rise over run—is the slope of the string at position x + ∆x. This is a key part of  
the analysis, so make sure you understand it. The slope is the derivative of the  
string’s  displacement with respect to x at this specific instant of time. We’re holding  
t constant while looking at the spatial variation of the string, so this is another  
partial derivative:

 string slope =
0 D
0 x

 (16.22)

Slope = rise/run

x
x

Ty(x)

Ty(x + ∆x)

x + ∆x

Ts

Ts

FIGURE 16.18 Finding the net force on the 
string.
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470 CHAPTER 16 Traveling Waves

At the right end of this little piece of string, at position x + ∆x, the y-component 
of the tension is

 Ty1x + ∆x2 = 1slope at x + ∆x2 * Ts = Ts 
0 D
0 x

`
x+∆x

 (16.23)

where the subscript on the partial derivative means to evaluate the slope at x + ∆x. The 
same analysis holds at the left end, position x, with one change: Because Ts points toward 
the left, a “negative run,” the ratio Ty1x2/Ts is the negative of the string slope. Thus

 Ty1x2 = -1slope at x2 * Ts = -Ts 
0 D
0 x

`
x
 (16.24)

Combining Equations 16.23 and 16.24, we find that the net force on this little piece 
of string is

 Fnet y = Ty1x + ∆x2 + Ty1x2 = Ts c  0 D
0 x

`
x+∆x

-  
0 D
0 x

`
x
d  (16.25)

If this little piece of string were straight, the two slopes would be the same and there 
would be no net force. As we noted above, the string has to have a curvature to have 
a net force.

We’re almost done. We know the net force on this little piece of string (Equation 
16.25) and we know its mass and acceleration (Equation 16.20). Because Fnet y = may, 
we can equate these two results:

 Ts c 0 D
0 x

`
x+∆  x

-  
0 D
0 x

`
x
d = m ∆x 

0 

2D

0 t2  (16.26)

Dividing by m ∆x, we have

 
0 

2D

0 t2 =
Ts

m
*

0 D
0 x

`
x+∆x

-  
0 D
0 x

`
x

∆x
 (16.27)

Recall, from calculus, that the derivative of the function f 1x2 is defined as

df

dx
= lim

∆xS0
c f 1x + ∆x2 - f 1x2

∆x
d

This is exactly what we have on the right side of Equation 16.27 if we let the width of 
our little piece of string approach zero: ∆x S 0. The function for which we’re eval-
uating the difference between x + ∆x and x is the partial derivative 0 D/0 x, and the 
derivative of a derivative is a second derivative.

Thus in the limit ∆x S 0, Equation 16.27 becomes

 
0 

2D

0 t2 =
Ts

m
 
0 

2D

0 x2 (wave equation for a string) (16.28)

Equation 16.28 is the wave equation for a string. It’s really Newton’s second law in 
disguise, but written for a continuous object where the displacement is a function of 
both position and time. Just like Newton’s second law for a particle, it governs the 
dynamics of motion on a string.

Traveling Wave Solutions
The equation of motion for a simple harmonic oscillator turned out to be a second- 
order differential equation. Although there are systematic ways to solve differential 
equations, we noted that—because solutions are unique—we can sometimes use what 
we know about a situation to guess the solution. The same is true for Equation 16.28, 
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16.4  Advanced Topic: The Wave Equation on a String  471

which is a partial differential equation. We have reason to think that sinusoidal waves 
can travel on stretched strings, so let’s guess that a solution to Equation 16.28 is

 D1x, t2 = A sin1kx - vt + f02 (16.29)

where the minus sign gives a wave traveling in the +x-direction and—from Equation 
16.13—the wave speed is v = v/k.

To evaluate this possible solution we need its second partial derivatives. With respect 
to position we have

  
0 D
0 x

= k A cos1kx - vt + f02 

   
0 

2D

0 x2 =
0 
0 x10 D

0 x 2 = -k2A sin1kx - vt + f02 

(16.30)

and with respect to time we have

     
0 D
0 t

= -vA cos1kx - vt + f02 

   
0 

2D

0 t2 =
0 
0 t10 D

0 t 2 = -v2A sin1kx - vt + f02 

(16.31)

Substituting the second partial derivatives into the wave equation, Equation 16.28, gives

 -v2A sin1kx - vt + f02 =
Ts

m
 1-k2A sin1kx - vt + f022 (16.32)

This will be true only if

 v2 =
Ts

m
 k2 (16.33)

But v/k is the wave speed v, so what we’ve found is that the sinusoidal wave of Equa-
tion 16.1 is a solution to the wave equation, but only if the wave travels with speed

 v =
v

k
= BTs

m
 (16.34)

You should be able to convince yourself that we would have arrived at the same result  
if we had started with D1x, t2 = A sin1kx + vt + f02 for a wave traveling in the 
–x-direction.

Let’s summarize. We used Newton’s second law for a small piece of the string to 
come up with an equation for the dynamics of motion on a string. We then showed 
that a solution to this equation is a sinusoidal traveling wave, and we made a specific 
prediction for the wave speed in terms of two properties or characteristics of the string: 
its tension and its mass density. Thus the answer to the question with which we started 
this section—why do waves propagate along a string—is that wave motion is simply a 
consequence of Newton’s second law, the relationship between force and acceleration, 
when applied to a continuous object.

With Equation 16.34 in hand, we can write Equation 16.28 as

 
0 

2D

0 t2 = v2 
0 

2D

0 x2 (the general wave equation) (16.35)

We derived Equation 16.28 specifically for a string, but any physical system that obeys 
Equation 16.35 for some type of displacement D will have sinusoidal waves traveling 
with speed v. Equation 16.35 is called the wave equation, and it occurs over and 
over in science and engineering. We will see it again in this chapter in our analysis of  
sound waves. And much later, in Chapter 31, we’ll discover that electromagnetic fields 
also obey this equation. Thus electromagnetic waves exist, and we’ll be able to predict 
that all electromagnetic waves, regardless of wavelength, travel through vacuum with 
the same speed—the speed of light.
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472 CHAPTER 16 Traveling Waves

16.5 Sound and Light
Although there are many kinds of waves in nature, two are especially significant for 
us as humans. These are sound waves and light waves, the basis of hearing and seeing.

Sound Waves
We usually think of sound waves traveling in air, but sound can travel through any 
gas, through liquids, and even through solids. FIGURE 16.19 shows a loudspeaker cone 
vibrating back and forth in a fluid such as air or water. Each time the cone moves 
forward, it collides with the molecules and pushes them closer together. A half cycle 
later, as the cone moves backward, the fluid has room to expand and the density  
decreases a little. These regions of higher and lower density (and thus higher and 
lower pressure) are called compressions and rarefactions.

This periodic sequence of compressions and rarefactions travels outward from  
the loudspeaker as a longitudinal sound wave. When the wave reaches your ear, the 
oscillating pressure causes your eardrum to vibrate. These vibrations are transferred 
into your inner ear and perceived as sound.

The speed of sound waves depends on the compressibility of the medium. As TABLE 16.1  
shows, the speed is faster in liquids and solids (relatively incompressible) than in gases 
(highly compressible). For sound waves in air, the speed at temperature T (in °C) is

 vsound in air = 331 m/s * BT1°C2 + 273

273
 (16.36)

We’ll derive this result in Section 16.6, but recall from chemistry that adding 273 to 
a Celsius temperature converts it to an absolute temperature in kelvins. The speed of 
sound increases with increasing temperature but, interestingly, does not depend on the 
air pressure. For air at room temperature (20°C),

vsound in air = 343  m/s  1sound speed in air at 20°C2

A very long string with m = 2.0 g/m is stretched along the x-axis 
with a tension of 5.0 N. At x = 0 m it is tied to a 100 Hz simple 
harmonic oscillator that vibrates perpendicular to the string with 
an amplitude of 2.0 mm. The oscillator is at its maximum positive 
 displacement at t = 0 s.

a. Write the displacement equation for the traveling wave on the string.

b. At t = 5.0 ms, what is the string’s displacement at a point 2.7 m 
from the oscillator?

MODEL The oscillator generates a sinusoidal traveling wave on a 
string. The displacement of the wave has to match the displacement 
of the oscillator at x = 0 m.

SOLVE a. The equation for the displacement is

D1x, t2 = A sin1kx - v t + f02
with A, k, v, and f0 to be determined. The wave amplitude is the 
same as the amplitude of the oscillator that generates the wave, 
so A = 2.0 mm. The oscillator has its maximum displacement 
yosc = A = 2.0 mm at t = 0 s, thus

D10 m, 0 s2 = A sin1f02 = A

This requires the phase constant to be f0 = p/2 rad. The wave’s 
frequency is f = 100 Hz, the frequency of the source; therefore 

the angular frequency is v = 2pf = 200p rad/s. We still need 
k = 2p/l, but we do not know the wavelength. However, we have 
enough information to determine the wave speed, and we can then 
use either l = v/f  or k = v/v. The speed is

v = BTs

m
= A 5.0 N

0.0020 kg/m
= 50 m/s

Using v, we find l = 0.50 m and k = 2p/l = 4p rad/m. Thus the 
wave’s displacement equation is

  D1x, t2 = 12.0 mm2 *

  sin32p112.0 m-12x - 1100 s-12t2 + p/2 rad4
Notice that we have separated out the 2p. This step is not essential, 
but for some problems it makes subsequent steps easier.

b. The wave’s displacement at t = 5.0 ms = 0.0050 s is

  D1x, t = 5.0 ms2 = 12.0 mm2 sin14px - p rad + p/2 rad2
  = 12.0 mm2 sin14px - p/2 rad2
At x = 2.7 m (calculator set to radians!), the displacement is

D12.7 m, 5.0 ms2 = 1.6 mm

EXAMPLE 16.4 ■ Generating a sinusoidal wave

Loudspeaker

Rarefaction Compression

Molecules

Individual molecules oscillate back and forth. 
As they do so, the compressions propagate 
forward at speed vsound. Compressions are 
regions of higher pressure, so a sound wave 
is a pressure wave.

l

vsound

FIGURE 16.19 A sound wave is a sequence 
of compressions and rarefactions.

TABLE 16.1 The speed of sound

Medium Speed (m/s)

Air (0°C) 331

Air (20°C) 343

Helium (0°C) 970

Ethyl alcohol 1170

Water (20°C) 1480

Granite 6000

Aluminum 6420
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16.5 Sound and Light 473

This is the value you should use when solving problems unless you’re given tem-
perature information.

A speed of 343 m/s is high, but not extraordinarily so. A distance as small as 100 m  
is enough to notice a slight delay between when you see something, such as a person 
hammering a nail, and when you hear it. The time required for sound to travel 1 km 
is t = 11000 m2/1343 m/s2 ≈ 3 s. You may have learned to estimate the distance to a 
bolt of lightning by timing the number of seconds between when you see the flash and 
when you hear the thunder. Because sound takes 3 s to travel 1 km, the time divided 
by 3 gives the distance in kilometers. Or, in English units, the time divided by 5 gives 
the distance in miles.

Your ears are able to detect sound waves with frequencies between roughly 20 Hz  
and 20,000 Hz, or 20 kHz. You can use the fundamental relationship vsound = lf  to  
calculate that a 20 Hz sound wave has a 17-m-long wavelength, while the wavelength  
of a 20 kHz note is a mere 17 mm. Low frequencies are perceived as “low-pitch” 
bass notes, while high frequencies are heard as “high-pitch” treble notes. Your high- 
frequency range of hearing can deteriorate with age (10 kHz is the average upper limit 
at age 65) or as a result of exposure to very loud sounds.

Sound waves exist at frequencies well above 20 kHz, even though humans can’t hear  
them. These are called ultrasonic frequencies. Oscillators vibrating at frequencies 
of many MHz generate the ultrasonic waves used in ultrasound medical imaging.  
A 3 MHz wave traveling through water (which is basically what your body is) at a sound  
speed of 1480 m/s has a wavelength of about 0.5 mm. It is this very small wavelength 
that allows ultrasound to image very small objects. We’ll see why when we study 
diffraction in Chapter 33.

Electromagnetic Waves
A light wave is an electromagnetic wave, a self-sustaining oscillation of the 
electromagnetic field. Other electromagnetic waves, such as radio waves, microwaves, 
and ultraviolet light, have the same physical characteristics as light waves even though we 
cannot sense them with our eyes. It is easy to demonstrate that light will pass unaffected 
through a container from which all the air has been removed, and light reaches us from 
distant stars through the vacuum of interstellar space. Such observations raise interesting 
but difficult questions. If light can travel through a region in which there is no matter, 
then what is the medium of a light wave? What is it that is waving?

It took scientists over 50 years, most of the 19th century, to answer this question. We 
will examine the answers in more detail in Chapter 31 after we introduce the ideas of 
electric and magnetic fields. For now we can say that light waves are a “self-sustaining  
oscillation of the electromagnetic field.” That is, the displacement D is an electric or 
magnetic field. Being self-sustaining means that electromagnetic waves require no 
 material medium in order to travel; hence electromagnetic waves are not mechanical 
waves. Fortunately, we can learn about the wave properties of light without having to 
understand electromagnetic fields.

It was predicted theoretically in the late 19th century, and has been subsequently 
confirmed, that all electromagnetic waves travel through vacuum with the same 
speed, called the speed of light. The value of the speed of light is

vlight = c = 299,792,458 m/s  1electromagnetic wave speed in vacuum2
where the special symbol c is used to designate the speed of light. (This is the c in 
Einstein’s famous formula E = mc2.) Now this is really moving—about one million 
times faster than the speed of sound in air!

   NOTE    c = 3.00 * 108 m/s is the appropriate value to use in calculations.

The wavelengths of light are extremely small. You will learn in Chapter 33 
how these wavelengths are determined, but for now we will note that visible light 

This ultrasound image is an example of 
using high-frequency sound waves to 
“see” within the human body.
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474 CHAPTER 16 Traveling Waves

is an electromagnetic wave with a wavelength (in air) in the range of roughly 
400 nm 1400 * 10-9 m2 to 700 nm 1700 * 10-9 m2. Each wavelength is perceived 
as a different color, with the longer wavelengths seen as orange or red light and the 
shorter wavelengths seen as blue or violet light. A prism is able to spread the different 
wavelengths apart, from which we learn that “white light” is all the colors, or wave-
lengths, combined. The spread of colors seen with a prism, or seen in a rainbow, is 
called the visible spectrum.

If the wavelengths of light are unbelievably small, the oscillation frequencies are 
unbelievably large. The frequency for a 600 nm wavelength of light (orange) is

f =
v
l

=
3.00 * 108 m/s

600 * 10-9 m
= 5.00 * 1014 Hz

The frequencies of light waves are roughly a factor of a trillion 110122 higher than 
sound frequencies.

Electromagnetic waves exist at many frequencies other than the rather limited  
range that our eyes detect. One of the major technological advances of the 20th cen-
tury was learning to generate and detect electromagnetic waves at many frequencies,  
ranging from low-frequency radio waves to the extraordinarily high frequencies of  
x rays. FIGURE 16.20 shows that the visible spectrum is a small slice of the much broader 
electromagnetic spectrum.

106

AM radio FM radio/TV Microwaves Infrared Ultraviolet

Visible light

X rays

108 1010 1012 1014

700 nm 600 nm 500 nm 400 nm

1016 1018

300 3 0.03 3 * 10-4 3 * 10-6 3 * 10-8 3 * 10-10

Increasing frequency (Hz)

Increasing wavelength (m)

FIGURE 16.20 The electromagnetic spectrum from 106 Hz to 1018 Hz.

White light passing through a prism is 
spread out into a band of colors called 
the visible spectrum.

A satellite exploring Jupiter transmits data to the earth as a radio 
wave with a frequency of 200 MHz. What is the wavelength of the 
electromagnetic wave, and how long does it take the signal to travel 
800 million kilometers from Jupiter to the earth?

SOLVE Radio waves are sinusoidal electromagnetic waves traveling 
with speed c. Thus

l =
c
f

=
3.00 * 108 m/s

2.00 * 108 Hz
= 1.5 m

The time needed to travel 800 * 106 km = 8.0 * 1011 m is

∆t =
∆x
c

=
8.0 * 1011 m

3.00 * 108 m/s
= 2700 s = 45 min

EXAMPLE 16.5 ■ Traveling at the speed of light

The Index of Refraction
Light waves travel with speed c in a vacuum, but they slow down as they pass through 
transparent materials such as water or glass or even, to a very slight extent, air. The 
slowdown is a consequence of interactions between the electromagnetic field of the 
wave and the electrons in the material. The speed of light in a material is character-
ized by the material’s index of refraction n, defined as

 n =
speed of light in a vacuum

speed of light in the material
=

c
v
 (16.37)

The index of refraction of a material is always greater than 1 because v 6 c. A vacuum 
has n = 1 exactly. TABLE 16.2 shows the index of refraction for several materials. You 
can see that liquids and solids have larger indices of refraction than gases.

TABLE 16.2 Typical indices of refraction

Material Index of refraction

Vacuum 1 exactly

Air 1.0003

Water 1.33

Glass 1.50

Diamond 2.42
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   NOTE    An accurate value for the index of refraction of air is relevant only in very 
precise measurements. We will assume nair = 1.00 in this text.

If the speed of a light wave changes as it enters into a transparent material, such as 
glass, what happens to the light’s frequency and wavelength? Because v = lf, either l 
or f or both have to change when v changes.

As an analogy, think of a sound wave in the air as it impinges on the surface of 
a pool of water. As the air oscillates back and forth, it periodically pushes on the 
surface of the water. These pushes generate the compressions of the sound wave that 
continues on into the water. Because each push of the air causes one compression of 
the water, the frequency of the sound wave in the water must be exactly the same as 
the frequency of the sound wave in the air. In other words, the frequency of a wave 
is the frequency of the source. It does not change as the wave moves from one 
medium to another.

The same is true for electromagnetic waves; the frequency does not change as the 
wave moves from one material to another.

FIGURE 16.21 shows a light wave passing through a transparent material with index of 
refraction n. As the wave travels through vacuum it has wavelength lvac and frequency 
fvac such that lvac fvac = c. In the material, lmat fmat = v = c/n. The frequency does not 
change as the wave enters 1 fmat = fvac2, so the wavelength must. The wavelength in the 
material is

 lmat =
v

fmat
=

c
nfmat

=
c

nfvac
=

lvac

n
 (16.38)

The wavelength in the transparent material is less than the wavelength in vacuum. 
This makes sense. Suppose a marching band is marching at one step per  second  
at a speed of 1 m/s. Suddenly they slow their speed to 12  m/s but maintain their march  
at one step per second. The only way to go slower while marching at the same  
pace is to take smaller steps. When a light wave enters a material, the only way it  
can go slower while oscillating at the same frequency is to have a smaller  
wavelength.

Orange light with a wavelength of 600 nm is incident upon a 
1.00-mm-thick glass microscope slide.

a. What is the light speed in the glass?

b. How many wavelengths of the light are inside the slide?

SOLVE a. From Table 16.2 we see that the index of refraction of 
glass is nglass = 1.50. Thus the speed of light in glass is

vglass =
c

nglass
=

3.00 * 108 m/s
1.50

= 2.00 * 108 m/s

b. The wavelength inside the glass is

lglass =
lvac

nglass
=

600 nm
1.50

= 400 nm = 4.00 * 10-7 m

N wavelengths span a distance d = Nl, so the number of wave-
lengths in d = 1.00 mm is

N =
d
l

=
1.00 * 10-3 m

4.00 * 10-7 m
= 2500

REVIEW The fact that 2500 wavelengths fit within 1 mm shows 
how small the wavelengths of light are.

EXAMPLE 16.6 ■ Light traveling through glass

A transparent material in which
light travels slower, at speed v = c/n

Vacuum n = 1 Index n n = 1

l = lvac/nlvac

The wavelength inside the
material decreases, but the
frequency doesn’t change.

FIGURE 16.21 Light passing through 
a transparent material with index of 
refraction n.

STOP TO THINK 16.4 A light wave 
travels from left to right through 
three transparent materials of equal 
thickness. Rank in order, from 
 largest to smallest, the indices of re-
fraction nA, nB, and nC. nA nB nC
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The Wave Model
We introduced the concept of a wave model at the beginning of this chapter. Now 
we’re in a position to articulate what this means.

MODEL 16.1

The wave model
A wave is an organized disturbance that travels.

■■ Two classes of waves:

• Mechanical waves travel through a medium.

• Electromagnetic waves travel through vacuum.
■■ Two types of waves:

• Transverse waves are displaced perpendicular to 
the direction in which the wave travels.

• Longitudinal waves are displaced parallel to the 
 direction in which the wave travels.

■■ The wave speed is a property of the medium.
■■ Sinusoidal waves are periodic in both time (period) 
and space (wavelength).

• The wave frequency is the oscillation frequency 
of the source.

• The fundamental relationship for periodic waves 
is  v = lf. This says that the wave moves forward 
one wavelength during one period.

Transverse wave

Longitudinal wave

A

-A

0

T

t

History graph

A

-A

0

l

x

Snapshot graph

16.6    ADVANCED TOPIC    The Wave Equation in  
a Fluid

In Section 16.4 we used Newton’s second law to show that traveling waves can propagate 
on a stretched string and to predict the wave speed in terms of properties of the string. Now 
we wish to do the same for sound waves—longitudinal waves propagating through a fluid.

A sound wave is a sequence of compressions and rarefactions in which the fluid is 
alternately compressed and expanded. A substance’s compressibility is characterized 
by its bulk modulus B, which you met in ❮❮ SECTION 14.7 when we looked at the elastic 
properties of materials. If excess pressure p is applied to an object of volume V, then 
the fractional change in volume—the fraction by which it’s compressed—is

 
∆V
V

= -
p

B
 (16.39)

The minus sign indicates that the volume decreases when pressure is applied. Gases 
are much more compressible than liquids, so gases have much smaller values of B than 
liquids.

Let’s apply this to a fluid—either a liquid or a gas. FIGURE 16.22 shows a small 
cylindrical piece of fluid with equilibrium pressure p0 located between positions x 
and x + ∆  x. The initial length and volume of this little piece of fluid are L i = ∆  x 
and Vi = aL i = a ∆  x. Notice that we use a for area in this chapter so that there is no 
conflict with A for amplitude. Suppose the pressure changes to p0 + p. The volume 
of this little piece of fluid will either decrease (compression) or increase (expansion), 
depending on whether p is positive or negative.

The volume changes only if the ends of the cylinder undergo different displace-
ments. (Equal displacements would shift the cylinder but not change its volume.) In 

Before:

After:

x x + ∆x

x x + ∆x

Area a

Li

p0

p0 + p

Lf

D(x) D(x + ∆x)

FIGURE 16.22 An element of fluid changes 
volume as the pressure changes.
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the bottom half of Figure 16.22 we see that the left end of the cylinder has undergone 
displacement D1x, t2 while the displacement at the right end is D1x + ∆x, t2. Now the 
cylinder has length

 Lf = L i + 1D1x + ∆x, t2 - D1x, t22 (16.40)

and consequently its volume has changed by

 ∆  V = a 1Lf - L i2 = a1D1x + ∆x, t2 - D1x, t22 (16.41)

Substituting both the initial volume and the volume change into Equation 16.39, we have

 
∆  V
V

=
a1D1x + ∆x, t2 - D1x, t22

a ∆x
= -  

p

B
 (16.42)

After canceling the a, you can see that, just as in Section 16.4, we’re left—in the limit 
∆x S 0—with the definition of the derivative of D with respect to x. It is again a 
partial derivative because we’re holding the variable t constant. Thus we find that the 
fluid pressure (or, to be exact, the pressure deviation from p0) at position x is related 
to the displacement of the medium by

 p1x, t2 = -B  
0 D
0 x

 (16.43)

The pressure depends on how rapidly the fluid’s displacement changes with position.
We anticipate that we’ll discover sinusoidal sound waves later in this section, so a 

displacement wave of amplitude A,

 D1x, t2 = A sin1kx - vt + f02 (16.44)

is associated with a pressure wave

 
p1x, t2 = -B  

0 D
0 x

= -k BA cos1kx - vt + f02
= -pmax cos1kx - vt + f02 (16.45)

The pressure amplitude, or maximum pressure, is

 pmax = k BA =
2pf BA
vsound

 (16.46)

where we used v = 2pf = vk (Equation 16.13) in the last step to write the result in terms 
of the wave’s speed and frequency. In other words, a sound wave is not just a traveling 
wave of molecular displacement. A sound wave is also a traveling pressure wave.

As an example, a quite loud 100 decibel, 500 Hz sound wave in air has a pressure 
amplitude of 2 Pa. That is, the pressure varies around atmospheric pressure by {2 Pa. 
You can use Equation 16.46 and Bair = 1.42 * 105 Pa to find that the amplitude of the 
oscillating air molecules is a microscopic 1.5 mm.

FIGURE 16.23 uses Equations 16.44 and 16.45 to draw snapshot graphs of displacement 
and pressure for a sound wave propagating to the right. Positive displacement pushes 
molecules to the right while negative displacement pushes them to the left, so molecules 
pile up (a compression) at points where the displacement is changing from positive to 
negative. These are the points where the displacement has the most negative slope and 
thus, from Equation 16.43, the greatest pressure.

In general, the pressure wave has a maximum or minimum at points where the 
displacement wave is zero, and vice versa. This observation will help us understand 
standing sound waves in Chapter 17.

Predicting the Speed of Sound
Let’s return to our small, cylindrical piece of fluid and this time, in FIGURE 16.24 on the 
next page, apply Newton’s second law to it. The fluid pressure at position x is p1x, t2, 

x

p

0

-pmax

pmax

x

v

v

v

D

0

Compression

Rarefaction

-A

A
l

Pressure maxima and minima
occur at displacement zeros.

FIGURE 16.23 Snapshot graphs of the 
sound displacement and pressure.
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478 CHAPTER 16 Traveling Waves

and this pressure pushes the cylinder to the right with force ap1x, t2. At the same time, 
the fluid at position x + ∆x has pressure p1x + ∆x, t2, and it pushes the cylinder to the 
left with force ap1x + ∆x, t2. The net force is

 Fnet x = ap1x, t2 - ap1x + ∆x, t2 = -a1p1x + ∆x, t2 - p1x, t22 (16.47)

The minus sign arises because the pressure forces push in opposite directions.
Newton’s second law is Fnet x = max. The cylinder’s mass is m = rV = ra ∆x, where 

r is the fluid density. (Don’t confuse area a with acceleration ax!) The acceleration, 
just as in our analysis of a string, is the second partial derivative of displacement with 
respect to time. Thus the second law for our little cylinder of fluid is

 Fnet x = -a1p1x + ∆x, t2 - p1x, t22 = max = ra ∆x 
0 

2D

0 t2  (16.48)

The area a cancels, and a slight rearrangement gives

 
0 

2D

0 t2 = -  

1
r

 
p1x + ∆x, t2 - p1x, t2

∆x
 S -

1
r

 
0 p

0 x
 (16.49)

where, once again, we have a derivative in the limit ∆x S 0.
Fortunately, we already found, in Equation 16.43, that p = -B 0 D/0 x. Substituting 

this for p in Equation 16.49 gives

 
0 

2D

0 t2 =
B
r

 
0 

2D

0 x2  (16.50)

Equation 16.50 is a wave equation! Just as in our analysis of a string, applying 
Newton’s second law to a small piece of the medium has led to a wave equation. We’ve  
already shown that a sinusoidal traveling wave, Equation 16.44, is a solution, so we 
don’t need to prove it again. Further, by comparing Equation 16.50 to the general 
wave equation, Equation 16.35, we can predict the speed of sound in a fluid:

 vsound = AB
r

 (16.51)

TABLE 16.3 gives values of the bulk modulus for several common fluids.

x x + ∆x

Area a
V = A∆x

p(x) p(x + ∆x)

FIGURE 16.24 Fluid pressure exerts a net 
force on the cylinder.

TABLE 16.3 Bulk moduli of common fluids

Medium B (Pa)

Mercury 2.9 * 1010

Water 2.2 * 109

Ethyl alcohol 1.1 * 109

Helium (1 atm) 1.69 * 105

Air (1 atm) 1.42 * 105

Predict the speed of sound in water.

SOLVE From Table 16.3, the bulk modulus of water is 2.2 * 109 Pa. 
The density of water is 1000 kg/m3. Thus we predict

vsound = B2.2 * 109 Pa

1000 kg/m3 = 1500 m/s

This matches the value given earlier in Table 16.1 to two signi-
ficant figures, which is all we can compute with the data provided.

EXAMPLE 16.7 ■ The speed of sound in water

For gases, both B and r are proportional to the pressure, so their ratio is indepen-
dent of pressure. At 0°C and 1 atm, the density of air is r0 = 1.29 kg/m3. Thus the 
speed of sound in air at 0°C is

 vsound in air = BB0

r0
= B1.42 * 105 Pa

1.29 kg/m3 = 331 m/s  1at 0°C2 (16.52)

exactly as shown in Table 16.1.
You can use the ideal-gas law to show that the density (at constant pressure) of a gas 

is inversely proportional to its absolute temperature T in kelvins. If the density at 0°C  
and 1 atm is r0, then the density at temperature T is

 rT = r0 
273

T1K2 = r0 
273

T1°C2 + 273
 (16.53)
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where we used 0°C = 273 K to convert kelvin to °C. Thus a general expression for the 
speed of sound in air is

vsound in air = BB
r

= BB0

r0
 
T1°C2 + 273

273
= 331 m/s *  BT1°C2 + 273

273
 (16.54)

This was the expression given without proof in Section 16.5. Now we see that it comes 
from the wave equation for sound with a little help from the ideal-gas law.

16.7 Waves in Two and Three Dimensions
Suppose you were to take a photograph of ripples spreading on a pond. If you mark 
the location of the crests on the photo, your picture would look like FIGURE 16.25a. 
The lines that locate the crests are called wave fronts, and they are spaced precisely  
one wavelength apart. The diagram shows only a single instant of time, but you can 
imagine a movie in which you would see the wave fronts moving outward from the 
source at speed v. A wave like this is called a circular wave. It is a two-dimensional 
wave that spreads across a surface.

Although the wave fronts are circles, you would hardly notice the curvature if you 
observed a small section of the wave front very, very far away from the source. The wave 
fronts would appear to be parallel lines, still spaced one wavelength apart and traveling at 
speed v. A good example is an ocean wave reaching a beach. Ocean waves are generated 
by storms and wind far out at sea, hundreds or thousands of miles away. By the time they 
reach the beach where you are working on your tan, the crests appear to be straight lines. 
An aerial view of the ocean would show a wave diagram like FIGURE 16.25b.

Many waves of interest, such as sound waves or light waves, move in three 
 dimensions. For example, loudspeakers and lightbulbs emit spherical waves. That 
is, the crests of the wave form a series of concentric spherical shells separated by 
the wavelength l. In essence, the waves are three-dimensional ripples. It will still be   
useful to draw wave-front diagrams such as Figure 16.25, but now the circles are slices  
through the spherical shells locating the wave crests.

If you observe a spherical wave very, very far from its source, the small piece of 
the wave front that you can see is a little patch on the surface of a very large sphere. 
If the radius of the sphere is sufficiently large, you will not notice the curvature and 
this little patch of the wave front appears to be a plane. FIGURE 16.26 illustrates the idea 
of a plane wave.

To visualize a plane wave, imagine standing on the x-axis facing a sound wave as 
it comes toward you from a very distant loudspeaker. Sound is a longitudinal wave, so 
the particles of medium oscillate toward you and away from you. If you were to locate 
all of the particles that, at one instant of time, were at their maximum displacement 
toward you, they would all be located in a plane perpendicular to the travel direction. 
This is one of the wave fronts in Figure 16.26, and all the particles in this plane are 
doing exactly the same thing at that instant of time. This plane is moving toward you at 
speed v. There is another plane one wavelength behind it where the molecules are also 
at maximum displacement, yet another two wavelengths behind the first, and so on.

Because a plane wave’s displacement depends on x but not on y or z, the displacement 
function D1x, t2 describes a plane wave just as readily as it does a one-dimensional 
wave. Once you specify a value for x, the displacement is the same at every point in the 
yz-plane that slices the x-axis at that value (i.e., one of the planes shown in Figure 16.26).

   NOTE    There are no perfect plane waves in nature, but many waves of practical 
interest can be modeled as plane waves.

We can describe a circular wave or a spherical wave by changing the mathematical 
description from D1x, t2 to D1r, t2, where r is the radial distance measured outward 
from the source. Then the displacement of the medium will be the same at every point 

Source

Wave fronts are the crests of the wave.
They are spaced one wavelength apart.

The circular wave fronts move
outward from the source at speed v.

v v

v v

l l l

(a)

Very far away from
the source, small
sections of the wave
fronts appear to be
straight lines.

v

v
lll

(b)

FIGURE 16.25 The wave fronts of a circular 
or spherical wave.

D v

x

Very far from the source, small segments of
spherical wave fronts appear to be planes. The
wave is cresting at every point in these planes.

l l

FIGURE 16.26 A plane wave.
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480 CHAPTER 16 Traveling Waves

on a spherical surface. In particular, a sinusoidal spherical wave with wave number k 
and angular frequency v is written

 D1r, t2 = A1r2 sin1kr - vt + f02 (16.55)

Other than the change of x to r, the only difference is that the amplitude is now a func-
tion of r. A one-dimensional wave propagates with no change in the wave amplitude. 
But circular and spherical waves spread out to fill larger and larger volumes of space. 
To conserve energy, an issue we’ll look at later in the chapter, the wave’s amplitude 
has to decrease with increasing distance r. This is why sound and light decrease in 
intensity as you get farther from the source. We don’t need to specify exactly how the 
amplitude decreases with distance, but you should be aware that it does.

Phase and Phase Difference
❮❮  SECTION 15.2 introduced the concept of phase for an oscillator in simple harmonic 
motion. Phase is also important for waves. The phase of a sinusoidal wave, denoted 
f, is the quantity 1kx - vt + f02. Phase will be an important concept in Chapter 17, 
where we will explore the consequences of adding various waves together. For now, we 
can note that the wave fronts seen in Figures 16.25 and 16.26 are “surfaces of constant 
phase.” To see this, write the displacement as simply D1x, t2 = A sin f. Because each 
point on a wave front has the same displacement, the phase must be the same at every 
point.

It will be useful to know the phase difference ∆f between two different points on 
a sinusoidal wave. FIGURE 16.27 shows two points on a sinusoidal wave at time t. The 
phase difference between these points is

  ∆f = f2 - f1 = 1kx2 - vt + f02 - 1kx1 - vt + f02 

  = k1x2 - x12 = k ∆x = 2p 
∆x
l

 
(16.56)

That is, the phase difference between two points on a wave depends on only the 
ratio of their separation �x to the wavelength L. For example, two points on a wave 
separated by ∆x = 1

2 l have a phase difference ∆f = p rad.
An important consequence of Equation 16.56 is that the phase difference  between 

two adjacent wave fronts is �F = 2P rad. This follows from the fact that two 
 adjacent wave fronts are separated by ∆x = l. This is an important idea. Moving from 
one crest of the wave to the next corresponds to changing the distance by l and chang-
ing the phase by 2p rad.

A 100 Hz sound wave travels with a wave speed of 343 m/s.

a. What is the phase difference between two points 60.0 cm apart 
along the direction the wave is traveling?

b. How far apart are two points whose phase differs by 90°?

MODEL Treat the wave as a plane wave traveling in the positive 
x-direction.

SOLVE a. The phase difference between two points is

∆f = 2p 
∆x
l

In this case, ∆x = 60.0 cm = 0.600 m. The wavelength is

l =
v
f

=
343 m/s
100 Hz

= 3.43 m

and thus

∆f = 2p 
0.600 m
3.43 m

= 0.350p rad = 63.0°

b. A phase difference ∆f = 90° is p/2 rad. This will be the phase 
difference between two points when ∆x/l = 1

4, or when ∆x = l/4. 
Here, with l = 3.43 m, ∆x = 85.8 cm.

REVIEW The phase difference increases as ∆x increases, so we 
expect the answer to part b to be larger than 60 cm.

EXAMPLE 16.8 ■ The phase difference between two points on a sound wave

∆f = 2p      .
∆x

l

D

The phase of the
wave at this point is
f1 = kx1 - vt + f0.

The phase of the
wave at this point is
f2 = kx2 - vt + f0.

x1 x2

x

The phase difference
between these points is

l

∆x

FIGURE 16.27 The phase difference 
between two points on a wave.
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16.8 Power, Intensity, and Decibels
A traveling wave transfers energy from one point to another. The sound wave from a 
loudspeaker sets your eardrum into motion. Light waves from the sun warm the earth. 
The power of a wave is the rate, in joules per second, at which the wave transfers energy. 
As you learned in Chapter 9, power is measured in watts. A loudspeaker might emit 
2 W of power, meaning that energy in the form of sound waves is radiated at the rate of 
2 joules per second.

A focused light, like that of a projector, is more intense than the diffuse light that 
goes in all directions. Similarly, a loudspeaker that beams its sound forward into a small 
area produces a louder sound in that area than a speaker of equal power that radiates the 
sound in all directions. Quantities such as brightness and loudness depend not only on 
the rate of energy transfer, or power, but also on the area that receives that power.

FIGURE 16.28 shows a wave impinging on a surface of area a. The surface is perpen-
dicular to the direction in which the wave is traveling. This might be a real, physical 
surface, such as your eardrum or a photovoltaic cell, but it could equally well be a 
mathematical surface in space that the wave passes right through. If the wave has 
power P, we define the intensity I of the wave to be

 I =
P
a

= power@to@area ratio (16.57)

The SI units of intensity are W/m2. Because intensity is a power-to-area ratio, a wave 
focused into a small area will have a larger intensity than a wave of equal power that 
is spread out over a large area.

A typical red laser pointer emits 1.0 mW of light power into a 
1.0-mm-diameter laser beam. What is the intensity of the laser beam?

MODEL The laser beam is a light wave.

SOLVE The light waves of the laser beam pass through a mathe-
matical surface that is a circle of diameter 1.0 mm. The intensity of 
the laser beam is

I =
P
a

=
P

pr2 =
0.0010 W

p10.00050 m22 = 1300 W/m2

REVIEW This is roughly the intensity of sunlight at noon on a sum-
mer day. The difference between the sun and a small laser is not  
their intensities, which are about the same, but their powers. The  
laser has a small power of 1 mW. It can produce a very intense wave 
only because the area through which the wave passes is very small. 
The sun, by contrast, radiates a total power Psun ≈ 4 * 1026 W. This 
immense power is spread through all of space, producing an inten-
sity of 1400 W/m2 at a distance of 1.5 * 1011 m, the radius of the  
earth’s orbit.

EXAMPLE 16.9 ■ The intensity of a laser beam

STOP TO THINK 16.5 What is the phase difference between the crest of a wave and 
the adjacent trough?

a. -2p rad b. 0 rad c. p/4 rad
d. p/2 rad e. p rad f. 3p rad

If a source of spherical waves radiates uniformly in all directions, then, as FIGURE 16.29 
on the next page shows, the power at distance r is spread uniformly over the surface of a 
sphere of radius r. The surface area of a sphere is a = 4pr2, so the intensity of a uniform 
spherical wave is

 I =
Psource

4pr2   1intensity of a uniform spherical wave2 (16.58)

The inverse-square dependence of r is really just a statement of energy conservation. 
The source emits energy at the rate P joules per second. The energy is spread over a 

v

Area a l

The wave intensity at
this surface is I = P/a.

Plane waves
of power P

FIGURE 16.28 Plane waves of power P 
impinge on area a with intensity I = P/a.
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482 CHAPTER 16 Traveling Waves

larger and larger area as the wave moves outward. Consequently, the energy per unit 
area must decrease in proportion to the surface area of a sphere.

If the intensity at distance r1 is I1 = Psource /4pr1 

2 and the intensity at r2 is 
I2 = Psource /4pr2 

2, then you can see that the intensity ratio is

 
I1

I2
 =  

r2 

2

r1 

2 (16.59)

You can use Equation 16.59 to compare the intensities at two distances from a source 
without needing to know the power of the source.

   NOTE    Wave intensities are strongly affected by reflections and absorption. 
Equations 16.58 and 16.59 apply to situations such as the light from a star or the 
sound from a firework exploding high in the air. Indoor sound does not obey a simple  
inverse-square law because of the many reflecting surfaces.

For a sinusoidal wave, each particle in the medium oscillates back and forth in 
simple harmonic motion. You learned in Chapter 15 that a particle in SHM with 
amplitude A has energy E = 1

2 kA2, where k is the spring constant of the medium,  
not the wave number. It is this oscillatory energy of the medium that is transferred, 
particle to particle, as the wave moves through the medium.

Because a wave’s intensity is proportional to the rate at which energy is transferred 
through the medium, and because the oscillatory energy in the medium is propor-
tional to the square of the amplitude, we can infer that

 I ∝ A2 (16.60)

That is, the intensity of a wave is proportional to the square of its amplitude. If 
you double the amplitude of a wave, you increase its intensity by a factor of 4.

Sound Intensity Level
Human hearing spans an extremely wide range of intensities, from the threshold of 
hearing at ≈1 * 10-12 W/m2 (at midrange frequencies) to the threshold of pain at 
≈10 W/m2. If we want to make a scale of loudness, it’s convenient and logical to 
place the zero of our scale at the threshold of hearing. To do so, we define the sound 
intensity level, expressed in decibels (dB), as

 b = 110 dB2 log101 I
I0
2 (16.61)

where I0 = 1.0 * 10-12 W/m2. The symbol b is the Greek letter beta. Notice that b is 
computed as a base-10 logarithm, not a natural logarithm.

The decibel is named after Alexander Graham Bell, inventor of the telephone. 
Sound intensity level is actually dimensionless because it’s formed from the ratio of 
two intensities, so decibels are just a name to remind us that we’re dealing with an 
intensity level rather than a true intensity.

Right at the threshold of hearing, where I = I0, the sound intensity level is

b = 110 dB2 log101I0

I0
2 = 110 dB2 log10112 = 0 dB

Note that 0 dB doesn’t mean no sound; it means that, for most people, no sound is 
heard. Dogs have more sensitive hearing than humans, and most dogs can easily 
 perceive a 0 dB sound. The sound intensity level at the pain threshold is

b = 110 dB2 log101 10 W/m2

10-12 W/m22 = 110 dB2 log10110132 = 130 dB

The major point to notice is that the sound intensity level increases by 10 dB 
each time the actual intensity increases by a factor of 10. For example, the sound 

Source with
power Psource

Intensity I1 at
distance r1

Intensity I2 at
distance r2

The energy from the source
is spread uniformly over a
spherical surface of area 4pr2.

r1

r2

FIGURE 16.29 A source emitting uniform 
spherical waves.
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intensity level increases from 70 dB to 80 dB when the sound intensity increases 
from 10-5 W/m2 to 10-4 W/m2. Perception experiments find that sound is perceived 
as “twice as loud” when the intensity increases by a factor of 10. In terms of decibels, 
we can say that the perceived loudness of a sound doubles with each increase in the 
sound intensity level by 10 dB.

TABLE 16.4 gives the sound intensity levels for a number of sounds. Although 130 dB  
is the threshold of pain, quieter sounds can damage your hearing. A fairly short 
exposure to 120 dB can cause damage to the hair cells in the ear, but lengthy exposure 
to sound intensity levels of over 85 dB can produce damage as well.

TABLE 16.4 Sound intensity levels of 
common sounds

Sound B (dB)

Threshold of hearing 0

Person breathing, at 3 m 10

A whisper, at 1 m 20

Quiet room 30

Outdoors, no traffic 40

Quiet restaurant 50

Normal conversation, at 1 m 60

Busy traffic 70

Vacuum cleaner, for user 80

Niagara Falls, at viewpoint 90

Snowblower, at 2 m 100

Stereo, at maximum volume 110

Rock concert 120

Threshold of pain 130

The blender making a smoothie produces a sound intensity level of 83 dB. What is the 
intensity of the sound? What will the sound intensity level be if a second blender is 
turned on?

SOLVE We can solve Equation 16.61 for the sound intensity, finding I = I0 * 10 b/10 dB. 
Here we used the fact that 10 raised to a power is an “antilogarithm.” In this case,

I = 11.0 * 10-12 W/m22 * 108.3 = 2.0 * 10-4 W/m2

A second blender doubles the sound power and thus raises the intensity to 
I = 4.0 * 10-4 W/m2. The new sound intensity level is

b = 110 dB2 log101 4.0 * 10-4 W/m2

1.0 * 10-12 W/m22 = 86 dB

REVIEW In general, doubling the actual sound intensity increases the decibel level by 3 dB.

EXAMPLE 16.10 ■ Blender noise

STOP TO THINK 16.6 Four trumpet players are playing the same note. If three of 
them suddenly stop, the sound intensity level decreases by

a. 40 dB b. 12 dB c. 6 dB d. 4 dB

16.9 The Doppler Effect
Our final topic for this chapter is an interesting effect that occurs when you are in 
motion relative to a wave source. It is called the Doppler effect. You’ve likely noticed 
that the pitch of an ambulance’s siren drops as it goes past you. Why?

FIGURE 16.30a on the next page shows a source of sound waves moving away from 
Pablo and toward Nancy at a steady speed vs. The subscript s indicates that this is the 
speed of the source, not the speed of the waves. The source is emitting sound waves of 
frequency f0 as it travels. The figure is a motion diagram showing the position of the 
source at times t = 0, T, 2T, and 3T, where T = 1/f0 is the period of the waves.

Nancy measures the frequency of the wave emitted by the approaching source to 
be f+. At the same time, Pablo measures the frequency of the wave emitted by the 
receding source to be f-. Our task is to relate f+ and f- to the source frequency f0 and 
speed vs.

After a wave crest leaves the source, its motion is governed by the properties of 
the medium. That is, the motion of the source cannot affect a wave that has already 
been emitted. Thus each circular wave front in FIGURE 16.30b is centered on the point 
from which it was emitted. The wave crest from point 3 was emitted just as this figure 
was made, but it hasn’t yet had time to travel any distance.

M16_KNIG8221_05_GE_C16.indd   483 07/06/2022   16:54



484 CHAPTER 16 Traveling Waves

The wave crests are bunched up in the direction the source is moving, stretched 
out behind it. The distance between one crest and the next is one wavelength, so the 
wavelength l+ Nancy measures is less than the wavelength l0 = v/f0 that would be 
emitted if the source were at rest. Similarly, l- behind the source is larger than l0.

These crests move through the medium at the wave speed v. Consequently, the fre-
quency f+ = v/l+ detected by the observer whom the source is approaching is higher 
than the frequency f0 emitted by the source. Similarly, f- = v/l- detected behind the 
source is lower than frequency f0. This change of frequency when a source moves 
relative to an observer is called the Doppler effect.

The distance labeled d in Figure 16.30b is the difference between how far the wave 
has moved and how far the source has moved at time t = 3T. These distances are

 ∆xwave = vt = 3vT  

 ∆xsource = vst = 3vsT  
(16.62)

The distance d spans three wavelengths; thus the wavelength of the wave emitted by 
an approaching source is

 l+ =
d
3

=
∆xwave - ∆xsource

3
=

3vT - 3vsT

3
= 1v - vs2T  (16.63)

You can see that our arbitrary choice of three periods was not relevant because the  
3 cancels. The frequency detected in Nancy’s direction is

 f+ =
v
l+

=
v

1v - vs2T
=

v
1v - vs2 f0 (16.64)

where f0 = 1/T  is the frequency of the source and is the frequency you would detect 
if the source were at rest. We’ll find it convenient to write the detected frequency as

Distance d

vs

Pablo sees the source
receding at speed vs.

Nancy sees the source
approaching at speed vs.

Nancy

The dots are the positions of the
source at t = 0, T, 2T, and 3T.
The source emits frequency f0.

Pablo

(a) Motion of the source

0 1 2 3

Pablo detects
frequency f-.

(b) Snapshot at time 3T

Nancy detects
frequency f+.

Crest 2 was emitted at t = 2T. 
The wave front is a circle
centered on point 2.

Crest 1 was emitted at t = T. 
The wave front is a circle
centered on point 1.

Crest 0 was emitted at t = 0. 
The wave front is a circle
centered on point 0.

0 1 2 3

3l0

2l0

l0

Behind the source,
the wavelength is
expanded to l-.

In front of the source,
the wavelength is
compressed to l+.

l-
l+

FIGURE 16.30 A motion diagram showing the wave fronts emitted by a source as it moves to the right at speed vs.

 f+ =
f0

1 - vs/v
   (Doppler effect for an approaching source)

 f- =
f0

1 + vs/v
   (Doppler effect for a receding source) 

(16.65)

Proof of the second version, for the frequency f- of a receding source, is similar. You 
can see that f+ 7 f0 in front of the source, because the denominator is less than 1, and 
f- 6 f0 behind the source.

Doppler weather radar uses the Doppler 
shift of reflected radar signals to mea-
sure wind speeds and thus better gauge 
the severity of a storm.
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A Stationary Source and a Moving Observer
Suppose the police car in Example 16.11 is at rest while you drive toward it at 34.3 m/s. 
You might think that this is equivalent to having the police car move toward you at 
34.3 m/s, but it isn’t. Mechanical waves move through a medium, and the Doppler 
effect depends not just on how the source and the observer move with respect to each 
other but also on how they move with respect to the medium. We’ll omit the proof, 
but it’s not hard to show that the frequencies heard by an observer moving at speed vo 
relative to a stationary source emitting frequency f0 are

  f+ = 11 + vo/v2 f0  (observer approaching a source) 

  f- = 11 - vo/v2 f0  (observer receding from a source) 
(16.66)

A quick calculation shows that the frequency of the police siren as you approach it at 
34.3 m/s is 545 Hz, not the 550 Hz you heard as it approached you at 34.3 m/s.

The Doppler Effect for Light Waves
The Doppler effect is observed for all types of waves, not just sound waves. If a source 
of light waves is receding from you, the wavelength l- that you detect is longer than 
the wavelength l0 emitted by the source.

Although the reason for the Doppler shift for light is the same as for sound waves, 
there is one fundamental difference. We derived Equations 16.65 for the Doppler-
shifted frequencies by measuring the wave speed v relative to the medium. For 
 electromagnetic waves in empty space, there is no medium. Consequently, we need to 
turn to Einstein’s theory of relativity to determine the frequency of light waves from a 
moving source. The result, which we state without proof, is

 l- = B 1 + vs/c

1 - vs/c
 l0 (receding source) 

 l+ = B 1 - vs/c

1 + vs/c
 l0 (approaching source) 

(16.67)

Here vs is the speed of the source relative to the observer.
The light waves from a receding source are shifted to longer wavelengths 1l- 7 l02. 

Because the longest visible wavelengths are perceived as the color red, the light from a  
receding source is red shifted. That is not to say that the light is red, simply that its 
wavelength is shifted toward the red end of the spectrum. If l0 = 470 nm (blue) light 
emitted by a rapidly receding source is detected at l- = 520 nm (green), we would 
say that the light has been red shifted. Similarly, light from an approaching source 
is blue shifted, meaning that the detected wavelengths are shorter than the emitted 
wavelengths 1l+ 6 l02 and thus are shifted toward the blue end of the spectrum.

A police siren has a frequency of 550 Hz as the police car 
 approaches you, 450 Hz after it has passed you and is receding. 
How fast are the police traveling? The temperature is 20°C.

MODEL The siren’s frequency is altered by the Doppler effect. The 
frequency is f+ as the car approaches and f- as it moves away.

SOLVE To find vs, we rewrite Equations 16.65 as

 f0 = 11 + vs/v2 f-

 f0 = 11 - vs/v2 f+

We subtract the second equation from the first, giving

0 = f- - f+ +
vs

v
 1 f- + f+2

This is easily solved to give

vs =
f+ - f-

f+ + f-
 v =

100 Hz
1000 Hz

* 343 m/s = 34.3 m/s

REVIEW If you now solve for the siren frequency when at rest, 
you will find f0 = 495 Hz. Surprisingly, the at-rest frequency is not 
halfway between f- and f+.

EXAMPLE 16.11 ■ How fast are the police traveling?
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In the 1920s, an analysis of the red shifts of many galaxies led the astronomer Edwin 
Hubble to the conclusion that the galaxies of the universe are all moving apart from each 
other. Extrapolating backward in time must bring us to a point when all the matter of the 
universe—and even space itself, according to the theory of relativity—began rushing out 
of a primordial fireball. Many observations and measurements since have given support to  
the idea that the universe began in a Big Bang about 14 billion years ago.

As an example, FIGURE 16.31 is a Hubble Space Telescope picture of a quasar, short 
for quasistellar object. Quasars are extraordinarily powerful sources of light and radio 
waves. The light reaching us from quasars is highly red shifted, corresponding in some 
cases to objects that are moving away from us at greater than 90% of the speed of light. 
Astronomers have determined that some quasars are 10 to 12 billion light years away from 
the earth, hence the light we see was emitted when the universe was only about 25% of its 
present age. Today, the red shifts of distant quasars and supernovae (exploding stars) are 
being used to refine our understanding of the structure and evolution of the universe.

FIGURE 16.31 A Hubble Space Telescope 
picture of a quasar.

Hydrogen atoms in the laboratory emit red light with wavelength  
656 nm. In the light from a distant galaxy, this “spectral line” is ob-
served at 691 nm. What is the speed of this galaxy relative to the earth?

MODEL The observed wavelength is longer than the wavelength 
emitted by atoms at rest with respect to the observer (i.e., red shifted), so  
we are looking at light emitted from a galaxy that is receding from us.

SOLVE Squaring the expression for l- in Equations 16.67 and 
 solving for vs give

  vs =
1l- /l022 - 1

1l- /l022 + 1
 c

  =
1691 nm/656 nm22 - 1

1691 nm/656 nm22 + 1
 c

  = 0.052c = 1.56 * 107 m/s

REVIEW The galaxy is moving away from the earth at about 5% of 
the speed of light!

EXAMPLE 16.12 ■ Measuring the velocity of a galaxy

STOP TO THINK 16.7 Amy and Zack are both listening to the source of sound waves 
that is moving to the right. Compare the frequencies each hears.

a. fAmy 7 fZack

b. fAmy = fZack

c. fAmy 6 fZack

Amy Zack

10 m/s 10 m/s10 m/s

f0

   CHAPTER 16 CHALLENGE EXAMPLE     Decreasing the sound

The loudspeaker on a homecoming float—mounted on a pole—is 
stuck playing an annoying 210 Hz tone. When the speaker is 10 m 
away, you measure the sound to be a loud 95 dB at 208 Hz. How long 
will it take for the sound intensity level to drop to a tolerable 55 dB?

MODEL The source is on a pole, so model the sound waves as uni-
form spherical waves. Assume a temperature of 20°C.

SOLVE The 208 Hz frequency you measure is less than the 210 Hz 
frequency that was emitted, so the float must be moving away from 
you. The Doppler effect for a receding source is

f- =
f0

1 + vs/v

We can solve this to find the speed of the float:

vs = 1 f0
f-

- 12v = 1210 Hz
208 Hz

- 12 * 343 m/s = 3.3 m/s

The sound intensity of a spherical wave decreases with the 
inverse square of the distance from the source. A sound inten-
sity level b corresponds to an intensity I = I0 * 10 b/10 dB, where 
I0 = 1.0 * 10-12 W/m2. At the initial 95 dB, the intensity is

I1 = I0 * 109.5 = 3.2 * 10-3 W/m2

At the desired 55 dB, the intensity will have dropped to

I2 = I0 * 105.5 = 3.2 * 10-7 W/m2

The intensity ratio is related to the distances by
I1

I2
=

r2 

2

r1 

2

Thus the sound will have dropped to 55 dB when the distance to  
the speaker is

r2 = B I1

I2
 r1 = 2104 * 10 m =  1000 m

The float has to travel ∆x = 990 m, which will take

∆t =
∆x
vs

=
990 m
3.3 m/s

= 300 s =  5.0 min

REVIEW To drop the sound intensity level by 40 dB requires 
 decreasing the intensity by a factor of 104. And with the intensity  
depending on the inverse square of the distance, that requires 
 increasing the distance by a factor of 100. Floats don’t move very 
fast—3.3 m/s is about 7 mph—so needing several minutes to travel 
the ≈1000 m seems reasonable.
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Two basic classes of waves:

• Mechanical waves travel through a material 
medium such as water or air.

• Electromagnetic waves require no material 
medium and can travel through a vacuum.

For mechanical waves, such as sound waves 
and waves on strings, the speed of the wave  
is a property of the medium. Speed does not 
depend on the size or shape of the wave.

The Wave Model
This model is based on the idea of a traveling wave, which is an organized disturbance  
traveling at a well-defined wave speed v.
• In transverse waves the displacement is perpen-

dicular to the direction in which the wave travels.

• In longitudinal waves the particles of the 
 medium are displaced parallel to the direction 
in which the wave travels.

A wave transfers energy, but no material or substance is transferred outward from 
the source.

General Principles

The goal of Chapter 16 has been to learn the basic properties  
of traveling waves.

Summary

v

v

Sinusoidal waves are periodic in both time (period T) and space 
(wavelength l2:

  D1x, t2 = A sin32p1x/l - t/T2 + f04
  = A sin1kx - vt + f02

where A is the amplitude, k = 2p/l is the wave number, 
v = 2pf = 2p/T is the angular frequency, and f0 is the 
phase constant that describes initial conditions.

A

-A

0

l

x

One-dimensional waves
   

l l

Wave fronts

Two- and three-dimensional waves

The fundamental relationship for any sinusoidal wave is v = lf.

The Doppler effect occurs when a wave source and detector are 
moving with respect to each other: the frequency detected differs 
from the frequency f0 emitted.

Approaching source Observer approaching a source

f+ =
f0

1 - vs /v
f+ = 11 + vo /v2f0

Receding source Observer receding from a source

f- =
f0

1 + vs /v
f- = 11 - vo /v2f0

The Doppler effect for light uses a result derived from the theory 
of relativity.

Important Concepts

Applications

The displacement D of a wave is a function of both position 
(where) and time (when).

• A snapshot graph shows the  
wave’s displacement as a  
function of position at a single  
instant of time.

• A history graph shows the  
wave’s displacement as a  
function of time at a single  
point in space.

For a transverse wave on a string, the snapshot graph is a picture of 
the wave. The displacement of a longitudinal wave is parallel to the 
motion; thus the snapshot graph of a longitudinal sound wave is not 
a picture of the wave.

• String (transverse): v = 1Ts /m

• Sound (longitudinal): v = 1B/ r = 343 m/s in 20°C air

• Light (transverse): v = c/n, where c = 3.00 * 108 m/s is the  
speed of light in a vacuum and n is the material’s index of 
refraction

The wave intensity is the power-to-area ratio: I = P/a

For a circular or spherical wave: I = Psource /4pr2

The sound intensity level is

b = 110 dB2 log10 1I/1.0 * 10-12 W/m22

v

D

x

D

t
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488 CHAPTER 16 Traveling Waves

CONCEPTUAL QUESTIONS
vA

vB

vC

FIGURE Q16.1

D (mm)

2

1

0.00 0.04 0.08
t (s)

FIGURE Q16.3

x (cm)

Snapshot at t = 0.01 s

-6 -2

D

-4

History at x = 2 cm

t (s)

D

0.02 0.060.04

FIGURE Q16.4

wave model
traveling wave
transverse wave
longitudinal wave
mechanical wave
electromagnetic wave
medium
disturbance
wave speed, v

linear density, m
snapshot graph
history graph
leading edge
trailing edge
sinusoidal wave
amplitude, A
wavelength, l
wave number, k

partial derivative
wave equation
compression
rarefaction
electromagnetic spectrum
index of refraction, n
wave front
circular wave
spherical wave

plane wave
phase, f
intensity, I
sound intensity level, b
decibels
Doppler effect
red shifted
blue shifted

Terms and Notation

1. The three wave pulses in FIGURE Q16.1 
travel along the same stretched string. 
Rank in order, from largest to smallest, 
their wave speeds vA, vB, and vC. Explain.

2. A wave pulse travels along a stretched string at a speed of 
100 m/s. What will its speed be if
a. the string’s tension is quadrupled (but its mass and length are 

unchanged)?
b. the string’s mass is doubled (but its length is unchanged)?
c. the string’s length is doubled (but its mass is unchanged)?
Note: that each part is independent and refers to the changes 
made to the original string.

3. FIGURE Q16.3 is a history graph  
showing the displacement 
as a function of time at one 
point on a string. Did the 
displacement at this point  
reach its maximum of 2 mm  
before or after the interval of 
time when the displacement 
was a constant 1 mm?

4. FIGURE Q16.4 shows a snapshot graph and a history graph for a 
wave pulse on a stretched string. They describe the same wave 
from two perspectives.
a. In which direction is the wave traveling? Explain.
b. What is the speed of this wave?

5. Rank in order, from largest to smallest, the wavelengths la, 
lb, and lc for sound waves with frequencies  fa = 2000 Hz, 
fb = 1000 Hz, and fc = 20,000 Hz.

6. A sound wave with wavelength l0 and frequency f0 moves into  
a new medium in which the speed of sound v1 = 4v0. What are 
the new wavelength l1, and frequency f1?

7. What are the amplitude, wavelength, frequency, and phase con-
stant of the traveling wave in FIGURE Q16.7?

x (m)

D (cm)

-4
-2

4
2

4 8 12 16 20

Snapshot graph at t = 0 s

24 m/s

FIGURE Q16.7

x (m)

D

0
1 2 3 4

1 m/s

Snapshot graph at t = 1.0 s

FIGURE Q16.8

4

6 2

3

1
5

FIGURE Q16.9

t (s)

f

f0

0 1 2 3 4

FIGURE Q16.12

8. FIGURE Q16.8 is a snapshot graph of a sinusoidal wave at 
t = 1.0 s. What is the phase constant of this wave?

9. FIGURE Q16.9 shows the wave 
fronts of a circular wave. What 
is the phase difference between 
(a) points 1 and 2, (b) points 3 
and 4, and (c) points 5 and 6?

10. A sound wave A delivers 5 J of energy in 5 s. Another wave B 
delivers 20 J of energy in 10 s. Sound wave C delivers 9 mJ of en-
ergy in 3 ms. Rank in order, from largest to smallest, the sound 
powers, PA, PB, and PC of these sound waves.

11. One physics professor talking produces a sound intensity level 
of 52 dB. It’s a frightening idea, but what would be the sound 
intensity level of 100 physics professors talking simultaneously?

12. You are standing at x = 0 m, 
listening to a sound that is emit-
ted at frequency f0. The graph 
of FIGURE Q16.12 shows the 
frequency you hear during a 
4-second interval. Which of the 
following describes the sound 
source? Explain your choice.
A. It moves from left to right 

and passes you at t = 2 s.
B. It moves from right to left and passes you at t = 2 s.
C. It moves toward you but doesn’t reach you. It then reverses 

direction at t = 2 s.
D. It moves away from you until t = 2 s. It then reverses direction  

and moves toward you but doesn’t reach you.
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EXERCISES AND PROBLEMS

x (m)

D (cm)

1

1

2 3 5 6 7-1

-1 1.0 m/s

Snapshot graph of a wave at t = 2 s

4

FIGURE EX16.4

x (m)

D (cm)

1

1

2 3 4 5 6 7-1

-1

1.0 m/s

Snapshot graph of a wave at t = 0 s

FIGURE EX16.5

t (s)

D (cm)

1

1

2 3 4 5 6-1-2
-1

History graph of a wave at x = 2 m
Wave moving to the right at 1.0 m/s

FIGURE EX16.6

Problems labeled  integrate material from earlier chapters.

Exercises

Section 16.1 An Introduction to Waves

1. | The wave speed on a string is 150 m/s when the tension is 75 N.  
What tension will give a speed of 180 m/s?

2. | The wave speed on a string under tension is 200 m/s. What is 
the speed if the tension is halved?

3. || A 25 g string is under 20 N of tension. A pulse travels the 
length of the string in 50 ms. How long is the string?

Section 16.2 One-Dimensional Waves

4. || Draw the history graph D1x = 4.0 m, t2 at x = 4.0 m for the 
wave shown in FIGURE EX16.4.

11. | A wave travels with a speed of 314 m/s. Its wave number is 2 
rad/m. What are its (a) wavelength and (b) frequency?

12. | The displacement of a wave traveling in the negative y- direction 
is D(y, t) = (8.0 cm) sin(15y + 75t + p), where y is in m and t  
is in s. What are the (a) frequency, (b) wavelength, (c) speed, and  
(d) phase constant of this wave?

13. | The displacement of a wave traveling in the positive  
x- direction is D1x, t2 = 12 cm2sin11.8x - 66t2, where x is in  
meters and t is in seconds. What are the (a) frequency, (b) 
 wavelength, and (c) speed of the wave?

14. | What are the amplitude, frequency, and wavelength of the 
wave in FIGURE EX16.14?

5. || Draw the history graph D1x = 0 m, t2 at x = 0 m for the wave 
shown in FIGURE EX16.5.

6. || Draw the snapshot graph D1x, t = 0 s2 at t = 0 s for the wave 
shown in FIGURE EX16.6.

t (s)

D (cm)

1

1

2 3 4 6-1-2
-1

History graph of a wave at x = 0 m
Wave moving to the left at 1.0 m/s

5

FIGURE EX16.7

x (cm)
0 2 4 6 8 10FIGURE EX16.8

x (cm)

∆x (cm)

20

0.5

4 6 8 10
0

FIGURE EX16.9

t (s)

D (cm)

-6
-3

6
3

0.2 0.4 0.6 0.8 1.0

History graph at x = 0 m
Wave traveling left at 2.0 m/sFIGURE EX16.14

7. || Draw the snapshot graph D1x, t = 1.0 s2 at t = 1.0 s for the 
wave shown in FIGURE EX16.7.

8. || FIGURE EX16.8 is a picture at t = 0 s of the particles in a me-
dium as a longitudinal wave is passing through. The equilibrium 
spacing between the particles is 1.0 cm. Draw the snapshot graph 
D1x, t = 0 s2 of this wave at t = 0 s.

9. || FIGURE EX16.9 is the snapshot graph at t = 0 s of a longitudinal  
wave. Draw the corresponding picture of the particle positions, as  
was done in Figure 16.9b. Let the equilibrium spacing between 
the particles be 1.0 cm.

Section 16.3 Sinusoidal Waves

10. || A wave has an angular frequency of 22 rad/s and wavelength 
of 7 m. What are its (a) wave number and (b) wave speed?

Section 16.4 The Wave Equation on a String

15. || Show that the displacement D1x, t2 = cx2 + dt2, where c and 
d are constants, is a solution to the wave equation. Then find an 
expression in terms of c and d for the wave speed.

16. || Show that the displacement D1x, t2 = ln1ax + bt2, where a 
and b are constants, is a solution to the wave equation. Then find 
an expression in terms of a and b for the wave speed.

Section 16.5 Sound and Light

17. || What is the frequency of an electromagnetic wave that has the 
same wavelength as a 2.5 kHz sound wave in water?

18. || a. What is the wavelength of a 4 MHz ultrasound wave trav-
eling through aluminum?

b. What frequency of an electromagnetic wave would have 
the same wavelength as that of the ultrasound wave men-
tioned in part (a)?

19. | a. An FM radio station broadcasts at a frequency of 101.3 
MHz. What is the wavelength?

b. What is the frequency of a sound source that produces the 
same wavelength in 20°C air?

20. | a. What is the frequency of a green light with a wavelength 
of 500 nm?

b. What is the frequency of a violet light with a wavelength 
of 400 nm?

c. What is the index of refraction of a material in which the 
wavelength of the violet light 300 nm?

21. | a. Telephone signals are often transmitted over long distances  
by microwaves. What is the frequency of microwave 
radiation with a wavelength of 3.0 cm?

b. Microwave signals are beamed between two mountaintops 
50 km apart. How long does it take a signal to travel from 
one mountaintop to the other?

22. || A hammer taps on the end of a 6 m long metal bar at room 
temperature. A microphone at the other end of the bar picks up 
two pulses of sound, one that travels through the metal and one 
that travels through the air. The pulses are separated in time by 
10 ms. What is the speed of sound in this metal?

Exercises and Problems 489
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490 CHAPTER 16 Traveling Waves

38. | What are the sound intensity levels for sound waves of 
 intensity (a) 3.0 * 10-6 W/m2 and (b) 3.0 * 10-2 W/m2?

39. | The sound intensity level 5.0 m from a power saw is 100 dB. 
At what distance will the sound be a more tolerable 80 dB?

40. || A loudspeaker on a tall pole broadcasts sound waves equally 
in all directions. What is the speaker’s power output if the sound 
intensity level is 90 dB at a distance of 20 m?

Section 16.9 The Doppler Effect

41. | An opera singer in a convertible sings a note at 600 Hz while 
cruising down the highway at 90 km/h. What is the frequency 
heard by
a. A person standing beside the road in front of the car?
b. A person on the ground behind the car?

42. | A friend of yours is loudly singing a single note at 400 Hz 
while racing toward you at 25.0 m/s on a day when the speed of 
sound is 340 m/s.
a. What frequency do you hear?
b. What frequency does your friend hear if you suddenly start 

singing at 400 Hz?
43. | A mother hawk screeches as she dives at you. You recall from 

biology that female hawks screech at 800 Hz, but you hear the 
screech at 900 Hz. How fast is the hawk approaching?

44. | A bat locates insects by emitting ultrasonic “chirps” and then lis-
tening for echoes from the bugs. Suppose a bat chirp has a frequency 
of 25 kHz. How fast would the bat have to fly, and in what direction, 
for you to just barely be able to hear the chirp at 20 kHz?

Problems
45. || FIGURE P16.45 is a snapshot graph at t = 0 s of a 5.0 Hz wave 

traveling to the left.
a. What is the wave speed?
b. What is the phase constant of the wave?
c. Write the displacement equation for this wave.

23. || A 15-cm-long aluminum tank is filled with ethyl alcohol. A 
high-frequency ultrasound wave travels horizontally through 
one wall of the tank and then through the alcohol. There are 275 
times more cycles of the wave in the alcohol than in the alumi-
num wall. How thick is the wall of the tank?

24. | A light wave has a 670 nm wavelength in air. Its wavelength 
in a transparent solid is 420 nm.
a. What is the speed of light in this solid?
b. What is the light’s frequency in the solid?

25. | a. How long does it take light to travel through a 3.0-mm-
thick piece of window glass?

b. Through what thickness of water could light travel in the 
same amount of time?

26. | A 500 Hz sound wave in air at room temperature is propagated 
into the water of a swimming pool. What are the wave’s (a) fre-
quency and (b) wavelength in water?

Section 16.6 The Wave Equation in a Fluid

27. | What is the speed of sound in air (a) on a cold winter day 
in Minnesota when the temperature is –25°F, and (b) on a hot 
 summer day in Death Valley when the temperature is 125°F?

28. | The density of mercury is 13,600 kg/m3. What is the speed of 
sound in mercury?

Section 16.7 Waves in Two and Three Dimensions

29. | A circular wave travels outward from the origin. At one in-
stant of time, the phase at r1 = 20 cm is 0 rad and the phase at 
r2 = 80 cm is 3p rad. What is the wavelength of the wave?

30. || A spherical wave with a wavelength of 2.0 m is emitted from 
the origin. At one instant of time, the phase at r = 4.0 m is p rad. 
At that instant, what is the phase at r = 3.5 m and at r = 4.5 m?

31. || A sound source is located somewhere along the x-axis. 
Experiments show that the same wave front simultaneously 
reaches listeners at x = -7.0 m and x = +3.0 m.
a. What is the x-coordinate of the source?
b. A third listener is positioned along the positive y-axis. What 

is her y-coordinate if the same wave front reaches her at the 
same instant it does the first two listeners?

32. | A loudspeaker at the origin emits a 120 Hz tone on a  
day when the speed of sound is 340 m/s. The phase difference 
between two points on the x-axis is 5.5 rad. What is the distance 
between these two points?

Section 16.8 Power, Intensity, and Decibels

33. || The intensity of electromagnetic waves from the sun is 
1.4 kW/m2 just above the earth’s atmosphere. Eighty percent of this 
reaches the surface at noon on a clear summer day. Suppose you 
think of your back as a 30 cm * 50 cm rectangle. How many joules 
of solar energy fall on your back as you work on your tan for 1.0 h?

34. || A sound wave with intensity 2.0 * 10-3 W/m2 is perceived to 
be modestly loud. Your eardrum is 6.0 mm in diameter. How 
much energy will be transferred to your eardrum while listening 
to this sound for 1.0 min?

35. || During takeoff, the sound intensity level of a jet engine is  
140 dB at a distance of 30 m. What is the sound intensity level at 
a distance of 1.0 km?

36. || A concert loudspeaker suspended high above the ground 
emits 35 W of sound power. A small microphone with a 1.0 cm2 
area is 50 m from the speaker.
a. What is the sound intensity at the position of the microphone?
b. How much sound energy reaches the microphone each second?

37. | The sun emits electromagnetic waves with a power of 4.0 *  
1026 W. Determine the intensity of electromagnetic waves from 
the sun just outside the atmospheres of Venus, the earth, and Mars.
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History graph at x = 0 m
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FIGURE P16.46

46. || FIGURE P16.46 is a history graph at x = 0 m of a wave traveling  
in the positive x-direction at 4.0 m/s.
a. What is the wavelength?
b. What is the phase constant of the wave?
c. Write the displacement equation for this wave.

47. | String 1 in FIGURE P16.47 
has linear density 2.0 g/m and 
string 2 has linear density 
4.0 g/m. A student sends pulses 
in both directions by quickly 
pulling up on the knot, then 
releasing it. What should the string lengths L1 and L2 be if the 
pulses are to reach the ends of the strings simultaneously?

48. || Oil explorers set off explosives to make loud sounds, then listen  
for the echoes from underground oil deposits. Geologists suspect 
that there is oil under 500-m-deep Lake Physics. It’s known that 
Lake Physics is carved out of a granite basin. Explorers detect a 
weak echo 0.94 s after exploding dynamite at the lake surface. If it’s  
really oil, how deep will they have to drill into the granite to reach it?

String 1

4.0 m

String 2

Knot

L1 L2

FIGURE P16.47
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59. | The string in FIGURE P16.59 has 
linear density m. Find an  expression in 
terms of M, m, and u for the speed of 
waves on the string.

49. | A helium-neon laser beam has a wavelength in air of 633 nm. It 
takes 1.38 ns for the light to travel through 30 cm of an unknown 
liquid. What is the wavelength of the laser beam in the liquid?

50. | Earthquakes are essentially sound waves—called seismic 
waves—traveling through the earth. Because the earth is solid, 
it can support both longitudinal and transverse seismic waves. 
The speed of longitudinal waves, called P waves, is 8000 m/s. 
Transverse waves, called S waves, travel at a slower 4500 m/s. 
A seismograph records the two waves from a distant earthquake. 
If the S wave arrives 2.0 min after the P wave, how far away was 
the earthquake? You can assume that the waves travel in straight 
lines, although actual seismic waves follow more complex routes.

51. || One cue your hearing system uses to localize a sound (i.e., 
to tell where a sound is coming from) is the slight difference in 
the arrival times of the sound at your ears. Your ears are spaced 
approximately 20 cm apart. Consider a sound source 5.0 m from 
the center of your head along a line 45° to your right. What is the 
difference in arrival times? Give your answer in microseconds.
Hint: You are looking for the difference between two numbers that 
are nearly the same. What does this near equality imply about the 
necessary precision during intermediate stages of the calculation?

52. || A 10 cm *  10 cm *  10 cm cube contains 970 g of liquid. A 
transducer on one wall of the cube emits a short ultrasound pulse 
that is detected 80 ms later by a receiver on the opposite wall. 
What is the liquid’s bulk modulus?

53. ||| A 20.0-cm-long, 10.0-cm-diameter cylinder with a piston at 
one end contains 1.34 kg of an unknown liquid. Using the piston 
to compress the length of the liquid by 1.00 mm increases the 
pressure by 41.0 atm. What is the speed of sound in the liquid?

54. | A sound wave is described by D1y, t2 = 10.0200 mm2 *  
sin318.96 rad/m2y + 13140 rad/s2t + p/4 rad4 , where y is in m 
and t is in s.
a. In what direction is this wave traveling?
b. Along which axis is the air oscillating?
c. What are the wavelength, the wave speed, and the period of 

oscillation?
55. || A wave on a string is described by D1x, t2 = 13.0 cm2 *  

sin32p1x/12.4 m2 + t/10.20 s2 + 124 , where x is in m and t is in s.
a. In what direction is this wave traveling?
b. What are the wave speed, the frequency, and the wave number?
c. At t = 0.50 s, what is the displacement of the string at 

x = 0.20 m?
56. | A wave on a string is described by D1x, t2 = 12.00 cm2 *  

sin3112.57 rad/m2x - 1638 rad/s2t4 , where x is in m and t in s. 
The linear density of the string is 5.00 g/m. What are
a. The string tension?
b. The maximum displacement of a point on the string?
c. The maximum speed of a point on the string?

57. | FIGURE P16.57 shows a snapshot graph of a wave traveling 
to the right along a string at 45 m/s. At this instant, what is the 
velocity of points 1, 2, and 3 on the string?
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58. || FIGURE P16.58 shows two masses hanging from a steel wire. 
The mass of the wire is 60.0 g. A wave pulse travels along the 
wire from point 1 to point 2 in 24.0 ms. What is mass m?

60. || A wire is made by welding 
together two metals having dif-
ferent densities. FIGURE P16.60 
shows a 2.00-m-long section of 
wire centered on the junction, 
but the wire extends much farther in both directions. The wire is 
placed under 2250 N tension, then a 1500 Hz wave with an amplitude 
of 3.00 mm is sent down the wire. How many wavelengths (complete 
cycles) of the wave are in this 2.00-m-long section of the wire?

61. || One way to monitor global warming is to measure the average 
temperature of the ocean. Researchers are doing this by measur-
ing the time it takes sound pulses to travel underwater over large 
distances. At a depth of 1000 m, where ocean temperatures hold 
steady near 4°C, the average sound speed is 1480 m/s. It’s known 
from laboratory measurements that the sound speed increases 
4.0 m/s for every 1.0°C increase in temperature. In one experi-
ment, where sounds generated near California are detected in the 
South Pacific, the sound waves travel 8000 km. If the smallest 
time change that can be reliably detected is 1.0 s, what is the 
smallest change in average temperature that can be measured?

62. || A string that is under 50.0 N of tension has linear density 
5.0 g/m. A sinusoidal wave with amplitude 3.0 cm and wave-
length 2.0 m travels along the string. What is the maximum 
speed of a particle on the string?

63. || The G string on a guitar is a 0.46-mm-diameter steel string 
with a linear density of 1.3 g/m. When the string is properly 
tuned to 196 Hz, the wave speed on the string is 250 m/s. Tuning 
is done by  turning the tuning screw, which slowly tightens—and 
stretches—the string. By how many mm does a 75-cm-long G 
string stretch when it’s first tuned?

64. | A sinusoidal wave travels along a stretched string. A particle on 
the string has a maximum speed of 2.0 m/s and a maximum accelera-
tion of 200 m/s2. What are the frequency and amplitude of the wave?

65. ||| A 1000 Hz sound wave traveling through 20°C air causes the 
pressure to oscillate around atmospheric pressure by {0.050%. 
What is the maximum speed of an oscillating air molecule? Give 
your answer in mm/s.

66. || A long, vertical, 2.0-mm-diameter metal wire is pulled down 
by a 15 kg weight. A 1500 Hz horizontal vibration of the top of 
the wire sends waves with a wavelength of 5.0 cm down the wire. 
What is the density of the metal?

67. || An AM radio station broadcasts with a power of 25 kW at a 
frequency of 920 kHz. Estimate the intensity of the radio wave at 
a point 10 km from the broadcast antenna.

68. || LASIK eye surgery uses pulses of laser light to shave off tis-
sue from the cornea, reshaping it. A typical LASIK laser emits a 
1.0-mm-diameter laser beam with a wavelength of 193 nm. Each 
laser pulse lasts 15 ns and contains 1.0 mJ of light energy.
a. What is the power of one laser pulse?
b. During the very brief time of the pulse, what is the intensity 

of the light wave?
69. || The sound intensity 50 m from a wailing tornado siren is 

0.10 W/m2.
a. What is the intensity at 1000 m?
b. The weakest intensity likely to be heard over background 

noise is ≈1 mW/m2. Estimate the maximum distance at 
which the siren can be heard.

1.00 m
2250 N

m1 = 9.00 g/m m2 = 25.0 g/m

2250 N
1.00 m

FIGURE P16.60
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492 CHAPTER 16 Traveling Waves

77. || Show that the Doppler frequency f- of a receding source is 
f- = f0 /11 + vs /v2.

78. | A starship approaches its home planet at a speed of 0.10c. 
When it is 54 * 106 km away, it uses its green laser beam 
1l = 540 nm2 to signal its approach.
a. How long does the signal take to travel to the home planet?
b. At what wavelength is the signal detected on the home planet?

79. || Wavelengths of light from a distant galaxy are found to be 
0.50% longer than the corresponding wavelengths measured in 
a terrestrial laboratory. Is the galaxy approaching or receding 
from the earth? At what speed?

80. | You have just been pulled over for running a red light, and the 
police officer has informed you that the fine will be $250. In des-
peration, you suddenly recall an idea that your physics professor 
recently discussed in class. In your calmest voice, you tell the 
officer that the laws of physics prevented you from knowing that 
the light was red. In fact, as you drove toward it, the light was 
Doppler shifted to where it appeared green to you. “OK,” says 
the officer, “Then I’ll ticket you for speeding. The fine is $1 for 
every 1 km/h over the posted speed limit of 50 km/h.< How big is 
your fine? Use 650 nm as the wavelength of red light and 540 nm 
as the wavelength of green light.

Challenge Problems
81. ||| An avant-garde composer wants to use the Doppler effect in his 

new opera. As the soprano sings, he wants a large bat to fly  toward 
her from the back of the stage. The bat will be outfitted with a 
microphone to pick up the singer’s voice and a loudspeaker to re-
broadcast the sound toward the audience. The composer wants the 
sound the audience hears from the bat to be, in musical terms, one 
half-step higher in frequency than the note they are hearing from 
the singer. Two notes a half-step apart have a  frequency ratio of 
21/12 = 1.059. With what speed must the bat fly toward the singer?

82. ||| A loudspeaker, mounted on a tall pole, is engineered to emit 
75% of its sound energy into the forward hemisphere, 25% to-
ward the back. You measure an 85 dB sound intensity level when 
standing 3.5 m in front of and 2.5 m below the speaker. What is 
the speaker’s power output?

83. ||| A rope of mass m and length L hangs from a ceiling.
a. Show that the wave speed on the rope a distance y above the 

lower end is v = 1gy.
b. Show that the time for a pulse to travel the length of the string 

is ∆t = 22L/g.
84. ||| A communications truck with a 44-cm-diameter dish receiver 

on the roof starts out 10 km from its base station. It drives di-
rectly away from the base station at 50 km/h for 1.0 h, keeping 
the receiver pointed at the base station. The base station antenna 
broadcasts continuously with 2.5 kW of power, radiated uni-
formly in all directions. How much electromagnetic energy does 
the truck’s dish receive during that 1.0 h?

85. ||| A water wave is a shallow-water wave if the water depth d is 
less than ≈l/10. It is shown in hydrodynamics that the speed of 
a shallow-water wave is v = 1gd, so waves slow down as they 
move into shallower water. Ocean waves, with wavelengths of 
typically 100 m, are shallow-water waves when the water depth 
is less than ≈10 m. Consider a beach where the depth increases 
linearly with distance from the shore until reaching a depth of 
5.0 m at a distance of 100 m. How long does it take a wave to 
move the last 100 m to the shore? Assume that the waves are so 
small that they don’t break before reaching the shore.

70. || A battery-powered siren is attached to the rim of a 
20.0-cm-diameter rotating disk. As the disk spins, you hear the 
sound varying between 724 Hz and 778 Hz. What are (a) the 
siren’s frequency and (b) the disk’s angular velocity in rpm? The 
air temperature is 20°C.

71. || A battery-powered siren emits 0.50 W of sound power at  
1000 Hz. It is dropped from 100 m directly over your head on 
a 20°C day. 4.0 s after it is released, what are (a) the frequency  
and (b) the sound intensity level you hear?

72. || Some modern optical de-
vices are made with glass 
whose index of refraction 
changes with distance from 
the front surface. FIGURE 
P16.72 shows the index of re-
fraction as a function of the 
distance into a slab of glass 
of thickness L. The index of 
refraction increases linearly 
from n1 at the front surface to 
n2 at the rear surface.
a. Find an expression for the time light takes to travel through 

this piece of glass.
b. Evaluate your expression for a 1.0-cm-thick piece of glass for 

which n1 = 1.50 and n2 = 1.60.
73. || A 20.0 m *  20.0 m square is marked off around a loud-

speaker that is in the center of the square. Carla stands at the 
center of one side of the square to listen to the sound, and Diego 
stands at one of the corners. Measurements find that the sound 
waves they hear have a phase difference of 180° when the tem-
perature is 20°C. What is the sound frequency?

74. ||| The intensity of a sound source is described by an 
 inverse-square law only if the source is very small (a point source) 
and only if the waves can travel unimpeded in all directions. For 
an extended source or in a situation where obstacles absorb or 
reflect the waves, the intensity at distance r can often be ex-
pressed as I = cPsource /r x, where c is a constant and the  exponent 
x—which would be 2 
for an ideal spherical 
wave— depends on the 
situation. In one such 
 situation, you use a 
sound meter to mea-
sure the sound intensity 
level at different dis-
tances from a source, 
acquiring the data in the table. Use the best-fit line of an appro-
priate graph to determine the  exponent x that characterizes this 
sound source.

75. || A physics professor demonstrates the Doppler effect by  tying 
a 600 Hz sound generator to a 1.0-m-long rope and  whirling 
it around her head in a horizontal circle at 100 rpm. What are 
the highest and lowest frequencies heard by a student in the 
 classroom?

76. || A loudspeaker on a pole is radiating 100 W of sound energy 
in all directions. You are walking directly toward the speaker at 
0.80 m/s. When you are 20 m away, what are (a) the sound inten-
sity level and (b) the rate (dB/s) at which the sound intensity level 
is increasing?
Hint: Use the chain rule and the relationship log10  x = ln x/ln 10.

Distance

Index of
refraction n

L0

1

0

n1

n2

FIGURE P16.72

Distance (m) Intensity level (dB)

 1 100

 3  93

 10  85

 30  78

100  70
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493

Superposition

What is superposition?
Waves can pass through each other.  
When they do, their displacements add 
together at each point. This is called the 
principle of superposition. It is a property 
of waves but not of particles.

❮❮ LOOKING BACK Sections 16.1–16.4  
Properties of traveling waves

What is a standing wave?
A standing wave is created when two 
waves travel in opposite directions  
between two boundaries.

■■ Standing waves have well-defined 
patterns called modes.

■■ Some points on the wave, called  
nodes, do not oscillate at all.

How are standing waves related to music?
The notes played by musical instruments 
are standing waves.

■■ Guitars have string standing waves.
■■ Flutes have pressure standing waves.

Changing the length of a standing  
wave changes its frequency and the  
note played.
❮❮ LOOKING BACK Section 16.5 Sound waves

Mode 2

Mode 1

Displacement

Pressure

What is interference?
When two sources emit waves with the 
same wavelength, the overlapped waves 
create an interference pattern.

■■ Constructive interference (red) occurs 
where waves add to produce a wave  
with a larger amplitude.

■■ Destructive interference (black) occurs 
where waves cancel.

What are beats?
The superposition of two waves with 
slightly different frequencies produces  
a loud-soft-loud-soft modulation of  
the intensity called beats. Beats have 
important applications in music,  
ultrasonics, and telecommunications.

Why is superposition 
important?
Superposition and standing waves occur often in the world 
around us, especially when there are reflections. Musical  
instruments, microwave systems, and lasers all depend on 
standing waves. Standing waves are also important for large 
structures such as buildings and bridges. Superposition of light 
waves causes interference, which is used in electro-optic devices 
and precision measuring techniques.

D

Loud Loud

Soft Soft

0 t

IN THIS CHAPTER, you will understand and use the idea of superposition.

17

This swirl of colors is due to a very  
thin layer of oil. Oil is clear. The colors 
arise from the interference of reflected 
light waves.
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494 CHAPTER 17 Superposition

17.1 The Principle of Superposition
FIGURE 17.1a shows two baseball players, Alan and Bill, at batting practice. Unfortunately, 
someone has turned the pitching machines so that pitching machine A throws baseballs 
toward Bill while machine B throws toward Alan. If two baseballs are launched at the 
same time, and with the same speed, they collide at the crossing point. Two particles  
cannot occupy the same point of space at the same time.

Pitching machines

Alan Bill
The balls collide 
and bounce apart.

(a)

A B

Alan Bill
The waves pass 
through each other.

Loudspeakers(b)
A B

FIGURE 17.1 Unlike particles, two waves can pass directly through each other.

Principle of superposition When two or more waves are simultaneously present 
at a single point in space, the displacement of the medium at that point is the sum  
of the displacements due to each individual wave.

x (m)
0 2 4 6 8

x (m)
0 2 4 6 8

x (m)
0 2 4 6 8

x (m)
0 2 4 6 8

x (m)
0 2 4 6 8

The waves emerge unchanged.

Constructive
interference

Destructive
interference

Two waves approach

1 m/s 1 m/s

1 m/s1 m/s

t = 0 s

1 s

2 s

3 s

4 s

FIGURE 17.2 The superposition of two 
waves as they pass through each other.

But waves, unlike particles, can pass directly through each other. In FIGURE 17.1b 
Alan and Bill are listening to the stereo system in the locker room after practice. 
Because both hear the music quite well, the sound wave that travels from loudspeaker 
A toward Bill must pass through the wave traveling from loudspeaker B toward Alan.

What happens to the medium at a point where two waves are present simultane-
ously? If wave 1 displaces a particle in the medium by D1 and wave 2 simultaneously 
displaces it by D2, the net displacement of the particle is simply D1 + D2. This is a very 
important idea because it tells us how to combine waves. It is known as the principle  
of superposition.

Mathematically, the net displacement of a particle in the medium is

 Dnet = D1 + D2 + g = a
i

Di (17.1)

where Di is the displacement that would be caused by wave i alone. We will make the 
simplifying assumption that the displacements of the individual waves are along the 
same line so that we can add displacements as scalars rather than vectors.

To use the principle of superposition you must know the displacement caused by each 
wave if traveling alone. Then you go through the medium point by point and add the 
displacements due to each wave at that point to find the net displacement at that point.

To illustrate, FIGURE 17.2 shows snapshot graphs taken 1 s apart of two waves traveling 
at the same speed (1 m/s) in opposite directions. The principle of superposition comes 
into play wherever the waves overlap. The solid line is the sum at each point of the two 
displacements at that point. This is the displacement that you would actually observe  
as the two waves pass through each other.

Notice how two overlapping positive displacements at t = 2 s add to give a 
displacement twice that of the individual waves. This is called constructive inter-
ference. Similarly, destructive interference is occurring at t = 3 s when positive and 
negative displacements add to give a superposition with zero displacement. We will 
defer the main discussion until later in this chapter, but you can already see that 
interference is a consequence of superposition.
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17.2 Standing Waves 495

17.2 Standing Waves
FIGURE 17.3 is a time-lapse photograph of a standing wave on a vibrating string. It’s 
not obvious from the photograph, but this is actually a superposition of two waves. To 
understand this, consider two sinusoidal waves with the same frequency, wavelength, 
and amplitude traveling in opposite directions. For example, FIGURE 17.4a shows two 
waves on a string, and FIGURE 17.4b shows nine snapshot graphs, at intervals of 18 T. The  
dots identify two of the crests to help you visualize the wave movement.

At each point, the net displacement—the superposition—is found by adding the 
red displacement and the green displacement. FIGURE 17.4c shows the result. It is the 
wave you would actually observe. The blue dot shows that the blue wave is moving 
neither right nor left. The wave of Figure 17.4c is called a standing wave because the 
crests and troughs “stand in place” as the wave oscillates.

STOP TO THINK 17.1 Two pulses on a string approach each other at 
speeds of 1 m/s. What is the shape of the string at t = 6 s?

x (m)
86 10 12 14

(a)

x (m)
86 10 12 14

(b)

x (m)
86 10 12 14

(c)

x (m)
86 10 12 14

(d)

x (m)
20 4 6 8 10 12 14 16 18 20

1 m/s 1 m/s

Approaching waves at t = 0 s

1
8

1
8

2
8

3
8

4
8

5
8

6
8

7
8

2
8

3
8

4
8

5
8

6
8

7
8t = T

t = T

t = T

t = T

t = T

t = T

t = T

t = T

t = 0

The blue wave is the
superposition of the
red and green waves.

At this time the waves exactly
overlap and the superposition
has a maximum amplitude.

At this time a crest of the red
wave meets a trough of the
green wave. The waves cancel.

The superposition again reaches
a maximum amplitude.

The waves again overlap
and cancel.

At this time the superposition
has the form it had at t = 0.

(b)

t = T

t = T

t = T

t = T

t = T

t = T

t = T

t = T

t = 0

The superposition is a standing wave with
the same wavelength as the original waves.

(c)

l

A string is carrying two waves moving in opposite directions.(a)

Antinode Node

The red wave is
traveling to the right.

The green wave is
traveling to the left.

FIGURE 17.4 The superposition of two sinusoidal waves traveling in opposite directions.

FIGURE 17.3 A vibrating string is an 
example of a standing wave.
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496 CHAPTER 17 Superposition

Nodes and Antinodes
FIGURE 17.5a has collapsed the nine graphs of Figure 17.4c into a single graphical 
representation of a standing wave. Compare this to the Figure 17.3 photograph of 
a vibrating string. A striking feature of a standing-wave pattern is the existence of 
nodes, points that never move! The nodes are spaced L/2 apart. Halfway between 
the nodes are the points where the particles in the medium oscillate with maximum 
displacement. These points of maximum amplitude are called antinodes, and you  
can see that they are also spaced l/2 apart.

It seems surprising and counterintuitive that some particles in the medium have no 
motion at all. To understand this, look closely at the two traveling waves in Figure 17.4a. 
You will see that the nodes occur at points where at every instant of time the displace-
ments of the two traveling waves have equal magnitudes but opposite signs. That is,  
nodes are points of destructive interference where the net displacement is always zero. In 
contrast, antinodes are points of constructive interference where two displacements of the  
same sign always add to give a net displacement larger than that of the individual waves.

In Chapter 16 you learned that the intensity of a wave is proportional to the square 
of the amplitude: I ∝ A2. You can see in FIGURE 17.5b that maximum intensity occurs 
at the antinodes and that the intensity is zero at the nodes. If this is a sound wave, 
the loudness is maximum at the antinodes and zero at the nodes. A standing light 
wave is bright at the antinodes, dark at the nodes. The key idea is that the intensity is 
maximum at points of constructive interference and zero at points of destructive 
interference.

The Mathematics of Standing Waves
A sinusoidal wave traveling to the right along the x-axis with angular frequency 
v = 2pf, wave number k = 2p/l, and amplitude a is

 DR = a sin1kx - vt2 (17.2)

An equivalent wave traveling to the left is

 DL = a sin1kx + vt2 (17.3)

We previously used the symbol A for the wave amplitude, but here we will use a 
lowercase a to represent the amplitude of each individual wave and reserve A for the 
amplitude of the net wave. For now, we’ll assume that the phase constants are zero.

According to the principle of superposition, the net displacement of the medium 
when both waves are present is the sum of DR and DL :

 D1x, t2 = DR + DL = a sin1kx - vt2 + a sin1kx + vt2 (17.4)

We can simplify Equation 17.4 by using the trigonometric identity

sin1a { b2 = sin a cos b { cos a sin b

Doing so gives

D1x, t2 = a1sin kx cos vt - cos kx sin vt2 + a1sin kx cos vt + cos kx sin vt2 

 = 12a sin kx2 cos vt (17.5)

It is useful to write Equation 17.5 as

 D1x, t2 = A1x2 cos vt (17.6)

where the amplitude function A1x2 is defined as

 A1x2 = 2a sin kx (17.7)

The amplitude reaches a maximum value Amax = 2a at points where sin kx = 1.
The displacement D1x, t2 given by Equation 17.6 is neither a function of x - vt 

nor a function of x + vt; hence it is not a traveling wave. Instead, the cos vt term in 

1
2

3
2

Nodes

Antinodes

x

I

2l

l/2

0
The intensity is zero at the nodes.

The intensity is maximum
at the antinodes.

Nodes are spaced l/2 apart.

l ll

Imax

x

D

0

0

A

-A

(a)

(b)

FIGURE 17.5 The intensity of a standing 
wave is maximum at the antinodes, zero 
at the nodes.

This photograph shows the Tacoma 
Narrows suspension bridge on the day in 
1940 when it experienced a wind-induced 
standing-wave oscillation that led to its 
collapse. The red line shows the original 
line of the deck of the bridge. You can 
clearly see the large amplitude of the 
oscillation and the node at the center  
of the span.

M17_KNIG8221_05_GE_C17.indd   496 27/05/2022   18:08
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D

0

The oscillation amplitude
changes with position.

When t = 0, cos vt = 1.
Thus the outer curve is the
amplitude function A(x).

2a

-2a

x

FIGURE 17.6 The net displacement 
resulting from two counter-propagating 
sinusoidal waves.

(a) Discontinuity where the
wave speed increases

Before:

After:

String with faster
wave speed

String with slower
wave speed

FIGURE 17.7 A wave reflects when it encounters a discontinuity or a boundary.

Equation 17.6 describes a medium in which each point oscillates in simple harmonic 
motion with frequency f = v/2p. The function A1x2 = 2a sin kx gives the amplitude 
of the oscillation for a particle at position x.

FIGURE 17.6 graphs Equation 17.6 at several different instants of time. Notice that 
the graphs are identical to those of Figure 17.5a, showing us that Equation 17.6 is the 
mathematical description of a standing wave.

The nodes of the standing wave are the points at which the amplitude is zero. They 
are located at positions x for which

 A1x2 = 2a sin kx = 0 (17.8)

The sine function is zero if the angle is an integer multiple of p rad, so Equation 17.8 
is satisfied if

 kxm =
2pxm

l
= mp  m = 0, 1, 2, 3,c (17.9)

Thus the position xm of the mth node is

 xm = m 
l

2
  m = 0, 1, 2, 3,c (17.10)

You can see that the spacing between two adjacent nodes is l  /2, in agreement with 
Figure 17.5b. The nodes are not spaced by l, as you might have expected.

A very long string has a linear density of 5.0 g/m and is stretched 
with a tension of 8.0 N. 100 Hz waves with amplitudes of 2.0 mm 
are generated at the ends of the string.

a. What is the node spacing along the resulting standing wave?

b. What is the maximum displacement of the string?

MODEL Two counter-propagating waves of equal frequency create 
a standing wave.

VISUALIZE The standing wave looks like Figure 17.5a.

SOLVE a. The speed of the waves on the string is

v = BTs

m
= B 8.0 N

0.0050 kg/m
= 40 m/s

and the wavelength is

l =
v
f

=
40 m/s
100 Hz

= 0.40 m = 40 cm

Thus the spacing between adjacent nodes is l /2 = 20 cm.

b. The maximum displacement is Amax = 2a = 4.0 mm.

EXAMPLE 17.1 ■ Node spacing on a string

17.3 Standing Waves on a String
Wiggling both ends of a very long string is not a practical way to generate standing 
waves. Instead, as in the photograph in Figure 17.3, standing waves are usually seen on a 
string that is fixed at both ends. To understand why this condition causes standing waves, 
we need to examine what happens when a traveling wave encounters a discontinuity.

FIGURE 17.7a shows a discontinuity between a string with a larger linear density and 
one with a smaller linear density. The tension is the same in both strings, so the wave 
speed is slower on the left, faster on the right. Whenever a wave encounters a disconti-
nuity, some of the wave’s energy is transmitted forward and some is reflected.

(b) Discontinuity where the
wave speed decreases

The reflected pulse is inverted.

Before:

 After:

(c)

The reflected pulse is inverted
and its amplitude is unchanged.

Boundary

Before:

After:
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498 CHAPTER 17 Superposition

Light waves exhibit an analogous behavior when they encounter a piece of glass. 
Most of the light wave’s energy is transmitted through the glass, which is why glass 
is transparent, but a small amount of energy is reflected. That is how you see your 
reflection dimly in a storefront window.

In FIGURE 17.7b, an incident wave encounters a discontinuity at which the wave 
speed decreases. In this case, the reflected pulse is inverted. A positive displacement 
of the incident wave becomes a negative displacement of the reflected wave. Because 
sin1f + p2 = -sin f, we say that the reflected wave has a phase change of p rad 
upon reflection. This aspect of reflection will be important later in the chapter when 
we look at the interference of light waves.

The wave in FIGURE 17.7c reflects from a boundary. This is like Figure 17.7b in the 
limit that the string on the right becomes infinitely massive. Thus the reflection in 
Figure 17.7c looks like that of Figure 17.7b with one exception: Because there is no 
transmitted wave, all the wave’s energy is reflected. Hence the amplitude of a wave 
reflected from a boundary is unchanged.

Creating Standing Waves
FIGURE 17.8 shows a string of length L tied at x = 0 and x = L. If you wiggle the string 
in the middle, sinusoidal waves travel outward in both directions and soon reach the 
boundaries. Because the speed of a reflected wave does not change, the wavelength and  
frequency of a reflected sinusoidal wave are unchanged. Consequently, reflections 
at the ends of the string cause two waves of equal amplitude and wavelength to travel 
in opposite directions along the string. As we’ve just seen, these are the conditions that  
cause a standing wave!

To connect the mathematical analysis of standing waves in Section 17.2 with 
the physical reality of a string tied down at the ends, we need to impose boundary 
conditions. A boundary condition is a mathematical statement of any constraint 
that must be obeyed at the boundary or edge of a medium. Because the string is tied 
down at the ends, the displacements at x = 0 and x = L must be zero at all times. Thus 
the standing-wave boundary conditions are D1x = 0, t2 = 0 and D1x = L, t2 = 0. 
Stated another way, we require nodes at both ends of the string.

We found that the displacement of a standing wave is D1x, t2 = 12a sin kx2 cos vt. 
This equation already satisfies the boundary condition D1x = 0, t2 = 0. That is, the 
origin has already been located at a node. The second boundary condition, at x = L, 
requires D1x = L, t2 = 0. This condition will be met at all times if

 2a sin kL = 0  (boundary condition at x = L) (17.11)

Equation 17.11 will be true if sin kL = 0, which in turn requires

 kL =
2pL
l

= mp  m = 1, 2, 3, 4,c (17.12)

kL must be an integer multiple of p, but m = 0 is excluded because L can’t be zero.
For a string of fixed length L, the only quantity in Equation 17.12 that can vary is 

l. That is, the boundary condition is satisfied only if the wavelength has one of the 
values

 lm =
2L
m
  m = 1, 2, 3, 4,c (17.13)

A standing wave can exist on the string only if its wavelength is one of the values 
given by Equation 17.13. The mth possible wavelength lm = 2L /m is just the right size  
so that its mth node is located at the end of the string (at x = L).

 NOTE   Other wavelengths, which would be perfectly acceptable wavelengths for a 
traveling wave, cannot exist as a standing wave of length L because they cannot meet  
the boundary conditions requiring a node at each end of the string.

The reflected waves travel
through each other. This 
creates a standing wave.

Wiggle the string in the middle.

x = 0 x = L

FIGURE 17.8 Reflections at the two 
boundaries cause a standing wave on  
the string.
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17.3 Standing Waves on a String 499

If standing waves are possible only for certain wavelengths, then only a few specific 
oscillation frequencies are allowed. Because l  f = v for a sinusoidal wave, the oscillation  
frequency corresponding to wavelength lm is

 fm =
v
lm

=
v

2L/m
= m 

v
2L

   m = 1, 2, 3, 4,c (17.14)

The lowest allowed frequency

 f1 =
v

2L
   (fundamental frequency) (17.15)

which corresponds to wavelength l1 = 2L, is called the fundamental frequency 
of the string. The allowed frequencies can be written in terms of the fundamental 
frequency as

 fm = mf1   m = 1, 2, 3, 4,c (17.16)

The allowed standing-wave frequencies are all integer multiples of the  fundamental 
frequency. The higher-frequency standing waves are called harmonics, with the 
m = 2 wave at frequency f2 called the second harmonic, the m = 3 wave called the 
third harmonic, and so on.

FIGURE 17.9 graphs the first four possible standing waves on a string of fixed length 
L. These possible standing waves are called the modes of the string, or sometimes 
the normal modes. Each mode, numbered by the integer m, has a unique wavelength 
and frequency. Keep in mind that these drawings simply show the envelope, or outer 
edge, of the oscillations. The string is continuously oscillating at all positions between 
these edges, as we showed in more detail in Figure 17.5a.

There are three things to note about the modes of a string.

1. m is the number of antinodes on the standing wave, not the number of nodes. 
You can tell a string’s mode of oscillation by counting the number of antinodes.

2. The fundamental mode, with m = 1, has l1 = 2L, not l1 = L. Only half of a 
wavelength is contained between the boundaries, a direct consequence of the 
fact that the spacing between nodes is l/2.

3. The frequencies of the normal modes form a series: f1, 2 f1, 3f1, 4f1,c. The 
fundamental frequency f1 can be found as the difference between the frequencies  
of any two adjacent modes. That is, f1 = ∆f = fm+1 - fm.

Standing-wave frequencies can 
be measured very accurately. 
Consequently, standing waves are  
often used in experiments to make  
accurate measurements of other 
quantities. One such experiment,  
shown in FIGURE 17.10, uses  stand-
ing waves to measure the free-fall  
acceleration g. A heavy mass is  
suspended from a 1.65-m-long,  
5.85 g steel wire; then an oscillat-
ing magnetic field (because steel  
is magnetic) is used to excite the 
m = 3 standing wave on the wire.  
Measuring the frequency for 
different masses yields the data 
given in the table. Analyze these 
data to determine the local value 
of g.

MODEL The hanging mass creates tension in the wire. This 
 establishes the wave speed along the wire and thus the frequencies 
of standing waves. Masses of a few kg might stretch the wire a mm 
or so, but that doesn’t change the length L until the third decimal 
place. The mass of the wire itself is insignificant in comparison 
to that of the hanging mass. We’ll be justified in determining g to 
three significant figures.

SOLVE The frequency of the third harmonic is

f3 =
3
2

 
v
L

The wave speed on the wire is

v = BTs

m
= B Mg

m/L
= BMgL

m

where Mg is the weight of the hanging mass, and thus the tension 
in the wire, while m is the mass of the wire. Combining these two 
equations, we have

EXAMPLE 17.2 ■ Measuring g

Mass (kg) f3 (Hz)

2.00 68

4.00 97

6.00 117

8.00 135

10.00 152

Electro-
magnet

M

L

FIGURE 17.10 An experiment 
to measure g.

Continued

m = 4

m = 3

m = 2

m = 1

2L

1

v

2L
l1 = f1 =

2L

2

v

2L
l2 = f2 = 2

2L

3

v

2L
f3 = 3l3 =

2L

4

v

2L
f4 = 4l4 =

L

FIGURE 17.9 The first four modes for 
standing waves on a string of length L.
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500 CHAPTER 17 Superposition

Standing Electromagnetic Waves
Because electromagnetic waves are transverse waves, a standing electromagnetic 
wave is very much like a standing wave on a string. Standing electromagnetic waves 
can be established between two parallel mirrors that reflect light back and forth. The 
mirrors are boundaries, analogous to the boundaries at the ends of a string. In fact, 
this is exactly how a laser operates. The two facing mirrors in FIGURE 17.12 form what 
is called a laser cavity.

Because the mirrors act like the points to which a string is tied, the light wave must 
have a node at the surface of each mirror. One of the mirrors is only partially reflec-
tive, to allow some light to escape and form the laser beam, but this doesn’t affect the 
boundary condition.

Because the boundary conditions are the same, Equations 17.13 and 17.14 for lm 
and fm apply to a laser just as they do to a vibrating string. The primary difference is 
the size of the wavelength. A typical laser cavity has a length L ≈ 30 cm, and visible 
light has a wavelength l ≈ 600 nm. The standing light wave in a laser cavity has a 
mode number m that is approximately

m =
2L
l

≈
2 * 0.30 m

6.00 * 10-7 m
= 1,000,000

In other words, the standing light wave inside a laser cavity has approximately one 
million antinodes! This is a consequence of the very short wavelength of light.

Full reflector

Standing light wave

Laser cavity

Laser
beam

Partial reflector

FIGURE 17.12 A laser contains a standing 
light wave between two parallel mirrors.

f3 =
3
2

 BMg

mL
=

3
2

 A g

mL
 2M

Squaring both sides gives

f3 

2 =
9g

4mL
 M

A graph of the square of the standing-wave frequency versus mass 
M should be a straight line passing through the origin with slope 
9g/4mL. We can use the experimental slope to determine g.

FIGURE 17.11 is a graph of f3 

2 versus M. The slope of the best-fit 
line is 2289 kg-1 s-2, from which we find

  g = slope *
4mL

9
 

  = 2289 kg-1 s-2 *
410.00585 kg211.65 m2

9
= 9.82 m/s2

REVIEW The fact that the graph is linear and passes through the 
origin confirms our model. This is an important reason for having 
multiple data points rather than using only one mass.

Best-fit line

y = 2289x + 77

f3
2 (s-2)

M (kg)
2 4 6 8 100

10,000

15,000

20,000

25,000

0

5,000

FIGURE 17.11 Graph of the data.

STOP TO THINK 17.2 A standing wave on a string vibrates as shown at 
the right. Suppose the string tension is quadrupled while the frequency 
and the length of the string are held constant. Which standing-wave 
 pattern is produced?

(a) (b) (c) (d)

Original standing wave
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17.4 Standing Sound Waves and Musical Acoustics 501

Microwaves, with a wavelength of a few centimeters, can also set up standing  
waves. This is not always good. If the microwaves in a microwave oven form a standing 
wave, there are nodes where the electromagnetic field intensity is always zero. These 
nodes cause cold spots where the food does not heat. Although designers of microwave 
ovens try to prevent standing waves, ovens usually do have cold spots spaced l/2 apart 
at nodes in the microwave field. A turntable in a microwave oven keeps the food moving  
so that no part of your dinner remains at a node.

17.4  Standing Sound Waves 
and Musical Acoustics

A long, narrow column of air, such as the air in a tube or pipe, can support a longi-
tudinal standing sound wave. Longitudinal waves are somewhat trickier than string 
waves because a graph—showing displacement parallel to the tube—is not a picture 
of the wave.

To illustrate the ideas, FIGURE 17.13 is a series of three graphs and pictures that show 
the m = 2 standing wave inside a column of air closed at both ends. We call this a 
closed-closed tube. The air at the closed ends cannot oscillate because the air mole-
cules are pressed up against the wall, unable to move; hence a closed end of a column 
of air must be a displacement node. Thus the boundary conditions—nodes at the 
ends—are the same as for a standing wave on a string.

Positive ∆x is to
the right.

Negative ∆x is
to the left.

∆x

t = 0

000

These molecules never moved.
They’re at nodes.

x
L

Uniform pressure

No displacement

∆x

t = T/4 t = T/2

x
L

Compression

∆x

Rarefaction

x
L

Compression Rarefaction

FIGURE 17.13 The m = 2 standing sound wave in a closed-closed tube of air.

Helium-neon lasers emit the red laser light commonly used in 
classroom demonstrations and supermarket checkout scanners. A 
helium-neon laser operates at a wavelength of precisely 632.9924 nm  
when the spacing between the mirrors is 310.372 mm.

a. In which mode does this laser operate?

b. What is the next longest wavelength that could form a standing 
wave in this laser cavity?

MODEL The light wave forms a standing wave between the two 
mirrors.

VISUALIZE The standing wave looks like Figure 17.12.

SOLVE a. We can use lm = 2L/m to find that m (the mode) is

m =
2L
lm

=
210.310372 m2

6.329924 * 10-7 m
= 980,650

There are 980,650 antinodes in the standing light wave.
b. The next longest wavelength that can fit in this laser cavity 
will have one fewer node. It will be the m = 980,649 mode and its 
wavelength will be

l =
2L
m

=
210.310372 m2

980,649
= 632.9930 nm

REVIEW The wavelength increases by a mere 0.0006 nm when the 
mode number is decreased by 1.

EXAMPLE 17.3 ■ The standing light wave inside a laser

M17_KNIG8221_05_GE_C17.indd   501 27/05/2022   18:08



502 CHAPTER 17 Superposition

Although the graph looks familiar, it is now a graph of longitudinal displacement. 
At t = 0, positive displacements in the left half and negative displacements in the right 
half cause all the air molecules to converge at the center of the tube. The density and 
pressure rise at the center and fall at the ends—a compression and rarefaction in the 
terminology of Chapter 16. A half cycle later, the molecules have rushed to the ends 
of the tube. Now the pressure is maximum at the ends, minimum in the center. Try to 
visualize the air molecules sloshing back and forth this way.

FIGURE 17.14 combines these illustrations into a single picture showing where the 
molecules are oscillating (antinodes) and where they’re not (nodes). A graph of the 
 displacement ∆ x looks just like the m = 2 graph of a standing wave on a string. Because 
the boundary conditions are the same, the possible wavelengths and frequencies of 
standing waves in a closed-closed tube are the same as for a string of the same length.

It is often useful to think of sound as a pressure wave rather than a displacement wave, 
and the bottom graph in Figure 17.14 shows the m = 2 pressure standing wave in a closed-
closed tube. Notice that the pressure is oscillating around patmos, its equilibrium value.

We showed in ❮❮  SECTION 16.6 that the pressure in a sound wave is minimum or maxi-
mum at points where the displacement is zero, and vice versa. Consequently, the nodes 
and antinodes of the pressure wave are interchanged with those of the displacement 
wave. You can see in Figure 17.13 that the gas molecules are alternately pushed up against 
the ends of the tube, then pulled away, causing the pressure at the closed ends to oscillate 
with maximum amplitude—an antinode—at a point where the displacement is a node.

L

The closed end is a displacement
node and a pressure antinode.

Air molecules undergo longitudinal
oscillations. This is a displacement
antinode and a pressure node.

x

∆x

L

N A N A N

A N A N A

x

p

0

L

The displacement and pressure nodes
and antinodes are interchanged.

The pressure is oscillating around
atmospheric pressure patmos.

FIGURE 17.14 The m = 2 longitudinal 
standing wave can be represented as a 
displacement wave or as a pressure wave.

A shower stall is 2.45 m (8 ft) tall. For what frequencies less than 500 Hz are there standing 
sound waves in the shower stall?

MODEL The shower stall, to a first approximation, is a column of air 2.45 m long. It is 
closed at the ends by the ceiling and floor. Assume a 20°C speed of sound.

VISUALIZE A standing sound wave will have nodes at the ceiling and the floor. The m = 2 
mode will look like Figure 17.14 rotated 90°.

SOLVE The fundamental frequency for a standing sound wave in this air column is

f1 =
v

2L
=

343 m/s
212.45 m2 = 70 Hz

The possible standing-wave frequencies are integer multiples of the fundamental fre - 
quency. These are 70 Hz, 140 Hz, 210 Hz, 280 Hz, 350 Hz, 420 Hz, and 490 Hz.

REVIEW The many possible standing waves in a shower cause the sound to resonate, which 
helps explain why some people like to sing in the shower. Our approximation of the shower 
stall as a one-dimensional tube is actually a bit too simplistic. A three-dimensional analysis 
would find additional modes, making the “sound spectrum” even richer.

EXAMPLE 17.4 ■ Singing in the shower

Tubes with Openings
Air columns closed at both ends are of limited interest unless, as in Example 17.4, you 
are inside the column. Columns of air that emit sound are open at one or both ends. 
Many musical instruments fit this description. For example, a flute is a tube of air 
open at both ends. The flutist blows across one end to create a standing wave inside the  
tube, and a note of that frequency is emitted from both ends of the flute. (The blown 
end of a flute is open on the side, rather than across the tube. That is necessary for 
practical reasons of how flutes are played, but from a physics perspective this is the 
“end” of the tube because it opens the tube to the atmosphere.) A trumpet, however, is 
open at the bell end but is closed by the player’s lips at the other end.

You saw earlier that a wave is partially transmitted and partially reflected at a  
discontinuity. When a sound wave traveling through a tube of air reaches an open end, 
some of the wave’s energy is transmitted out of the tube to become the sound that you 
hear and some portion of the wave is reflected back into the tube. These reflections, 
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17.4 Standing Sound Waves and Musical Acoustics 503

analogous to the reflection of a string wave from a boundary, allow standing sound 
waves to exist in a tube of air that is open at one or both ends.

Not surprisingly, the boundary condition at the open end of a column of air is not 
the same as the boundary condition at a closed end. The air pressure at the open end of  
a tube is constrained to match the atmospheric pressure of the surrounding air. Conse-
quently, the open end of a tube must be a pressure node. Because pressure nodes and 
antinodes are interchanged with those of the displacement wave, an open end of an 
air column is required to be a displacement antinode. (A careful analysis shows that 
the antinode is actually just outside the open end, but for our purposes we’ll assume  
the antinode is exactly at the open end.)

L

m = 1

m = 2

m = 3

(a) Closed-closed

Displacement

Pressure

FIGURE 17.15 The first three standing sound wave modes in columns of air with different 
boundary conditions.

m = 1

m = 2

m = 3

L

(b) Open-open

Displacement

Pressure

(c) Open-closed

Displacement

Pressure

m = 1

m = 3

m = 5

L

FIGURE 17.15 shows displacement and pressure graphs of the first three standing-wave 
modes of a tube closed at both ends (a closed-closed tube), a tube open at both ends (an 
open-open tube), and a tube open at one end but closed at the other (an open-closed tube), 
all with the same length L. Notice the pressure and displacement boundary conditions. 
The standing wave in the open-open tube looks like the closed-closed tube except that  
the positions of the nodes and antinodes are interchanged. In both cases there are m 
half-wavelength segments between the ends; thus the wavelengths and frequencies of an 
open-open tube and a closed-closed tube are the same as those of a string tied at both ends:

 
lm =

2L
m

 

fm  = m 
v

2L
= mf1

  
m = 1, 2, 3, 4,c
(open@open or closed@closed tube) 

  (17.17)

 
lm =

4L
m

 

fm  = m 
v

4L
= mf1 

   
m = 1, 3, 5, 7,c
(open@closed tube)

  (17.18)

The open-closed tube is different. The fundamental mode has only one-quarter  
of a wavelength in a tube of length L; hence the m = 1 wavelength is l1 = 4L. This  
is twice the l1 wavelength of an open-open or a closed-closed tube. Consequently, the  
fundamental frequency of an open-closed tube is half that of an open-open or a 
closed-closed tube of the same length. It will be left as a homework problem for you to 
show that the possible wavelengths and frequencies of an open-closed tube of length L are

Notice that m in Equations 17.18 takes on only odd values.
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504 CHAPTER 17 Superposition

Musical Instruments
An important application of standing waves is to musical instruments. Instruments such 
as the guitar, the piano, and the violin have strings fixed at the ends and tightened to 
create tension. A disturbance generated on the string by plucking, striking, or bowing  
it creates a standing wave on the string.

The fundamental frequency of a vibrating string is

f1 =
v

2L
=

1
2L

 BTs

m

where Ts is the tension in the string and m is its linear density. The fundamental  
frequency is the musical note you hear when the string is sounded. Increasing the  
tension in the string raises the fundamental frequency, which is how stringed  
instruments are tuned.

 NOTE   v is the wave speed on the string, not the speed of sound in air.

For the guitar or the violin, the strings are all the same length and under approxi-
mately the same tension. Were that not the case, the neck of the instrument would 
tend to twist toward the side of higher tension. The strings have different frequencies  
because they differ in linear density: The lower-pitched strings are “fat” while the 
higher-pitched strings are “skinny.” This difference changes the frequency by chang-
ing the wave speed. Small adjustments are then made in the tension to bring each string 
to the exact desired frequency. Once the instrument is tuned, you play it by using your 
fingertips to alter the effective length of the string. As you shorten the string’s length,  
the frequency and pitch go up.

A piano covers a much wider range of frequencies than a guitar or violin. This 
range cannot be produced by changing only the linear densities of the strings. The 
high end would have strings too thin to use without breaking, and the low end would 
have solid rods rather than flexible wires! So a piano is tuned through a combination 
of changing the linear density and the length of the strings. The bass note strings are 
not only fatter, they are also longer.

The eardrum, which transmits sound vibrations to the sensory or-
gans of the inner ear, lies at the end of the ear canal. For adults, 
the ear canal is about 2.5 cm in length. What frequency stand-
ing waves can occur in the ear canal that are within the range of 
human hearing? The speed of sound in the warm air of the ear 
canal is 350 m/s.

MODEL The ear canal is open to the air at one end, closed by the 
eardrum at the other. We can model it as an open-closed tube. The 
standing waves will be those of Figure 17.15c.

SOLVE The lowest standing-wave frequency is the fundamental 
 frequency for a 2.5-cm-long open-closed tube:

f1 =
v

4L
=

350 m/s
410.025 m2 = 3500 Hz

Standing waves also occur at the harmonics, but an open-closed 
tube has only odd harmonics. These are

 f3 = 3f1 = 10,500 Hz

 f5 = 5f1 = 17,500  Hz

Higher harmonics are beyond the range of human hearing, as 
discussed in Section 16.5.

REVIEW The ear canal is short, so we expected the standing-wave 
frequencies to be relatively high. The air in your ear canal responds 
readily to sounds at these frequencies—what we call a resonance 
of  the ear canal—and transmits these sounds to the eardrum. 
 Consequently, your ear actually is slightly more sensitive to sounds 
with frequencies around 3500 Hz and 10,500 Hz than to sounds 
at nearby frequencies.

EXAMPLE 17.5 ■ Resonances of the ear canal

STOP TO THINK 17.3 An open-open tube of air supports standing waves at fre-
quencies of 300 Hz and 400 Hz and at no frequencies between these two. The second 
harmonic of this tube has frequency

a. 100 Hz b. 200 Hz c. 400 Hz d. 600 Hz e. 800 Hz

The strings on a harp vibrate as standing 
waves. Their frequencies determine the 
notes that you hear.

M17_KNIG8221_05_GE_C17.indd   504 27/05/2022   18:08



17.5 Interference in One Dimension 505

With a wind instrument, blowing into the mouthpiece creates a standing sound 
wave inside a tube of air. The player changes the notes by using her fingers to cover 
holes or open valves, changing the length of the tube and thus its frequency. The fact 
that the holes are on the side makes very little difference; the first open hole becomes 
an antinode because the air is free to oscillate in and out of the opening.

A wind instrument’s frequency depends on the speed of sound inside the instru-
ment. But the speed of sound depends on the temperature of the air. When a wind 
player first blows into the instrument, the air inside starts to rise in temperature. This 
increases the sound speed, which in turn raises the instrument’s frequency for each 
note until the air temperature reaches a steady state. Consequently, wind players must 
“warm up” before tuning their instrument.

Many wind instruments have a “buzzer” at one end of the tube, such as a vibrating 
reed on a saxophone or vibrating lips on a trombone. Buzzers generate a continuous 
range of frequencies rather than single notes, which is why they sound like a “squawk” 
if you play on just the mouthpiece without the rest of the instrument. When a buzzer is 
connected to the body of the instrument, most of those frequencies cause no response 
of the air molecules. But the frequency from the buzzer that matches the fundamental 
frequency of the instrument causes the buildup of a large-amplitude response at just 
that frequency—a standing-wave resonance. This is the energy input that generates 
and sustains the musical note.

A clarinet is 66.0 cm long. A flute is nearly the same length, with 
63.6 cm between the hole the player blows across and the end of 
the flute. What are the frequencies of the lowest note and the next 
higher harmonic on a flute and on a clarinet? The speed of sound in  
warm air is 350 m/s.

MODEL The flute is an open-open tube, open at the end as well as 
at the hole the player blows across. A clarinet is an open-closed 
tube because the player’s lips and the reed seal the tube at the 
upper end.

SOLVE The lowest frequency is the fundamental frequency. For 
the flute, an open-open tube, this is

f1 =
v

2L
=

350 m/s
210.636 m2 = 275 Hz

The clarinet, an open-closed tube, has

f1 =
v

4L
=

350 m/s
410.660 m2 = 133 Hz

The next higher harmonic on the flute’s open-open tube is m = 2 
with frequency f2 = 2 f1 = 550 Hz. An open-closed tube has only 
odd harmonics, so the next higher harmonic of the clarinet is 
f3 = 3 f1 = 399 Hz.

REVIEW The clarinet plays a much lower note than the flute— 
musically, about an octave lower—because it is an open-closed 
tube. It’s worth noting that neither of our fundamental frequencies 
is exactly correct because our open-open and open-closed tube 
models are a bit too simplified to adequately describe a real instru-
ment. However, both calculated frequencies are close because our 
models do capture the essence of the physics.

EXAMPLE 17.6 ■ Flutes and clarinets

A vibrating string plays the musical note corresponding to the fundamental fre-
quency f1, so stringed instruments must use several strings to obtain a reasonable range 
of notes. In contrast, wind instruments can sound at the second or third harmonic of 
the tube of air 1 f2 or f32. These higher frequencies are sounded by overblowing (flutes, 
brass instruments) or with keys that open small holes to encourage the formation of 
an antinode at that point (clarinets, saxophones). The controlled use of these higher  
harmonics gives wind instruments a wide range of notes.

17.5 Interference in One Dimension
One of the most basic characteristics of waves is the ability of two waves to combine 
into a single wave whose displacement is given by the principle of superposition. The 
pattern resulting from the superposition of two waves is often called interference.  
A standing wave is the interference pattern produced when two waves of equal fre-
quency travel in opposite directions. In this section we will look at the interference  
of two waves traveling in the same direction.
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FIGURE 17.16a shows two light waves impinging on a partially silvered mirror. Such 
a mirror partially transmits and partially reflects each wave, causing two overlapped 
light waves to travel along the x-axis to the right of the mirror. Or consider the two 
loudspeakers in FIGURE 17.16b. The sound wave from loudspeaker 2 passes just to the 
side of loudspeaker 1; hence two overlapped sound waves travel to the right along  
the x-axis. We want to find out what happens when two overlapped waves travel in the 
same direction along the same axis.

Figure 17.16b shows a point on the x-axis where the overlapped waves are detected, 
either by your ear or by a microphone. This point is distance x1 from loudspeaker 1 
and distance x2 from loudspeaker 2. (We will use loudspeakers and sound waves for 
most of our examples, but our analysis is valid for any wave.) What is the amplitude of  
the combined waves at this point?

Throughout this section, we will assume that the waves are sinusoidal, have the 
same frequency and amplitude, and travel to the right along the x-axis. Thus we 
can write the displacements of the two waves as

  D1 1x1, t2 = a sin1kx1 - vt + f102 = a sin f1 

  D2 1x2, t2 = a sin1kx2 - vt + f202 = a sin f2 
(17.19)

where f1 and f2 are the phases of the waves. Both waves have the same wave number 
k = 2p/l and the same angular frequency v = 2pf.

The phase constants f10 and f20 are characteristics of the sources, not the medium. 
FIGURE 17.17 shows snapshot graphs at t = 0 of waves emitted by three sources with 
phase constants f0 = 0 rad, f0 = p/2 rad, and f0 = p rad. You can see that the phase  
constant tells us what the source is doing at t = 0. For example, a loudspeaker at 
its center position and moving backward at t = 0 has f0 = 0 rad. Looking back at 
Figure 17.16b, you can see that loudspeaker 1 has phase constant f10 = 0 rad and 
loudspeaker 2 has f20 = p rad.

 NOTE   We will often consider identical sources, by which we mean that f20 = f10.
That is, the sources oscillate in phase.

Let’s examine overlapped waves graphically before diving into the mathematics. 
FIGURE 17.18 shows two important situations. In part a, the crests of the two waves are 
aligned as they travel along the x-axis. In part b, the crests of one wave align with the 
troughs of the other wave. The graphs are slightly displaced from each other so that 
you can see what each wave is doing, but the physical situation is one in which the 
waves are traveling on top of each other.

The two waves of Figure 17.18a have the same displacement at every point: 
D1 1x2 = D2 1x2. Two waves that are aligned crest to crest and trough to trough are 
said to be in phase. Waves that are in phase march along “in step” with each other.

When we combine two in-phase waves, using the principle of superposition, the 
net displacement at each point is twice the displacement of each individual wave. The 
superposition of two waves to create a traveling wave with an amplitude larger than 
either individual wave is called constructive interference. When the waves are 
exactly in phase, giving A = 2a, we have maximum constructive interference.

x

D

l

a
0

2l-a

(a) Snapshot graph at t = 0 for f0 = 0 rad

When this crest was emitted,
a quarter-cycle ago, the speaker
cone was all the way forward.

Now this speaker cone, at x = 0, 
is centered and moving backward.

v

FIGURE 17.17 Waves from three sources 
having phase constants f0 = 0 rad, 
f0 = p/2 rad, and f0 = p rad.

Laser

Laser

Partially 
silvered
mirror

(a) Two overlapped light waves

FIGURE 17.16 Two overlapped waves travel along the x-axis.

Speaker 2

(b) Two overlapped sound waves

Speaker 1 Point of detection

x2

x1

Noise-canceling headphones are a con-
sumer application of destructive interfer-
ence. A small microphone on the outside 
of each earpiece detects the ambient 
sound; then an electric circuit generates 
a voltage signal that’s inverted with re-
spect to the incoming sound waves. That 
signal drives a small loudspeaker inside 
the earpiece so that the sound reaching 
your ear is a superposition of the ambi-
ent sound and—from the  loudspeaker—
its inverse. These sound waves undergo 
destructive interference, which ideally 
would leave the wearer in total silence. 
Many practical issues prevent the total 
cancellation of sound, but a 20 dB reduc-
tion of ambient noise is typical and very 
welcome.

x

D

l

a
0

2l-a

This speaker cone is
all the way forward.

v

(b) Snapshot graph at t = 0 for f0 = p/2 rad

x

D

l

a
0

2l-a

This speaker cone is centered
and moving forward.

When this trough was emitted,
a quarter-cycle ago, the speaker
cone was all the way back.

v

(c) Snapshot graph at t = 0 for f0 = p rad
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17.5 Interference in One Dimension 507

In Figure 17.18b, where the crests of one wave align with the troughs of the other, 
the waves march along “out of step” with D1 1x2 = -D2 1x2 at every point. Two waves 
that are aligned crest to trough are said to be 180° out of phase or, more generally, 
just out of phase. A superposition of two waves to create a wave with an amplitude 
smaller than either individual wave is called destructive interference. In this  
case, because D1 = -D2, the net displacement is zero at every point along the axis. 
The combination of two waves that cancel each other to give no wave is called perfect 
destructive interference.

   NOTE    Perfect destructive interference occurs only if the two waves have exactly equal 
amplitudes, as we’re assuming. A 180° phase difference always produces maximum 
destructive interference, but the cancellation won’t be perfect if there is any difference  
in the amplitudes.

The Phase Difference
To understand interference, we need to focus on the phases of the two waves, which are

  f1 = kx1 - vt + f10 

  f2 = kx2 - vt + f20 
(17.20)

The difference between the two phases f1 and f2, called the phase difference ∆f, is

  ∆f = f2 - f1 = 1kx2 - vt + f20 2 - 1kx1 - vt + f102
  = k1x2 - x12 + 1f20 - f102

  = 2p 
∆x
l

+ ∆f0 

(17.21)

You can see that there are two contributions to the phase difference. ∆x = x2 - x1, 
the distance between the two sources, is called path-length difference. It is the 
extra distance traveled by wave 2 on the way to the point where the two waves are 
combined. ∆f0 = f20 - f10 is the inherent phase difference between the sources.

The condition of being in phase, where crests are aligned with crests and troughs 
with troughs, is ∆f = 0, 2p, 4p, or any integer multiple of 2p rad. Thus the condition 
for maximum constructive interference is

 Maximum constructive interference:

  ∆f = 2p 
∆x
l

+ ∆f0 = m # 2p rad  m = 0, 1, 2, 3,c (17.22)

For identical sources, which have ∆f0 = 0 rad, maximum constructive interference 
occurs when ∆x = ml. That is, two identical sources produce maximum constructive 
interference when the path-length difference is an integer number of wavelengths.

FIGURE 17.19 shows two identical sources (i.e., the two loudspeakers are doing the 
same thing at the same time), so ∆f0 = 0 rad. The path-length difference ∆x is the extra 
distance traveled by the wave from loudspeaker 2 before it combines with loudspeaker 
1. In this case, ∆x = l. Because a wave moves forward exactly one wavelength during 
one period, loudspeaker 1 emits a crest exactly as a crest of wave 2 passes by. The two 
waves are “in step,” with ∆f = 2p rad, so the two waves interfere constructively to  
produce a wave of amplitude 2a.

Maximum destructive interference, where the crests of one wave are aligned 
with the troughs of the other, occurs when two waves are out of phase, meaning that 
∆f = p, 3p, 5p, or any odd multiple of p rad. Thus the condition for maximum 
 destructive interference is

 Maximum destructive interference:

  ∆f = 2p 
∆x
l

+ ∆f0 = 1m + 1
22 # 2p rad  m = 0, 1, 2, 3,c (17.23)

(a) Maximum constructive interference

Wave 1
2 1

Wave 2

These two waves are in phase.
Their crests are aligned.

Their superposition produces a
traveling wave with amplitude 2a.

l

x

D

+2a

0

-2a

v

v

v

FIGURE 17.18 Interference of two waves 
traveling along the x-axis.

(b) Perfect destructive interference

Wave 1
2 1

Wave 2

These two waves are out of phase.
The crests of one wave are aligned
with the troughs of the other.

Their superposition produces a
wave with zero amplitude.

x

D

+2a

0

-2a

l

Speaker 2

Identical sources
∆f0 = 0

∆x = l
Path-length
difference

Speaker 1
v

v

This crest is emitted as a crest
from speaker 2 passes by.

The two waves are in
phase (∆f = 2p rad) and
interfere constructively.

FIGURE 17.19 Two identical sources one 
wavelength apart.
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508 CHAPTER 17 Superposition

For identical sources, which have ∆f0 = 0 rad, maximum destructive interference 
occurs when ∆x = 1m + 1

22l. That is, two identical sources produce maximum 
destructive interference when the path-length difference is a half-integer number 
of wavelengths.

Two waves can be out of phase because the sources are located at different positions,  
because the sources themselves are out of phase, or because of a combination of these 
two. FIGURE 17.20 illustrates these ideas by showing three different ways in which two 
waves interfere destructively. Each of these three arrangements creates waves with  
∆f = p rad.

(a) The sources are out of phase.

2

∆f0 = p rad

1

∆x = 0

FIGURE 17.20 Destructive interference three ways.

1
2

(b) Identical sources are separated by half a 
 wavelength.

2

∆f0 = 0 rad

1

∆x =   l 1
4

(c) The sources are both separated and
 partially out of phase.

2

1

∆x =   l

p
2∆f0 =  rad

 NOTE   Don’t confuse the phase difference of the waves 1∆f2 with the phase differ-
ence of the sources 1∆f02. It is ∆f, the phase difference of the waves, that governs 
interference.

You are standing in front of two side-by-side loudspeakers playing 
sounds of the same frequency. Initially there is almost no sound at 
all. Then one of the speakers is moved slowly away from you. The 
sound intensity increases as the separation between the speakers 
increases, reaching a maximum when the speakers are 0.75 m 
apart. Then, as the speaker continues to move, the intensity starts 
to decrease. What is the distance between the speakers when the 
sound intensity is again a minimum?

MODEL The changing sound intensity is due to the interference of 
two overlapped sound waves.

VISUALIZE Moving one speaker relative to the other changes the 
phase difference between the waves.

SOLVE A minimum sound intensity implies that the two sound 
waves are interfering destructively. Initially the loudspeakers are 
side by side, so the situation is as shown in Figure 17.20a with 
∆x = 0 and ∆f0 = p rad. That is, the speakers themselves are out 
of phase. Moving one of the speakers does not change ∆f0, but it 
does change the path-length difference ∆x and thus increases the 
overall phase difference ∆f. Constructive interference, causing 
maximum intensity, is reached when

∆f = 2p 
∆x
l

+ ∆f0 = 2p 
∆x
l

+ p = 2p rad

where we used m = 1 because this is the first separation giving 
constructive interference. The speaker separation at which this 
 occurs is ∆x = l/2. This is the situation shown in FIGURE 17.21.

Because ∆x = 0.75 m is l/2, the sound’s wavelength is 
l = 1.50 m. The next point of destructive interference, with m = 1, 
occurs when

∆f = 2p 
∆x
l

+ ∆f0 = 2p 
∆x
l

+ p = 3p rad

Thus the distance between the speakers when the sound intensity 
is again a minimum is

∆x = l = 1.50 m

REVIEW A separation of l gives constructive interference for two 
identical speakers 1∆f0 = 02. Here the phase difference of p rad 
between the speakers (one is pushing forward as the other pulls 
back) gives destructive interference at this separation.

EXAMPLE 17.7 ■ Interference between two sound waves

1
2

The sources are out of phase, ∆f0 = p rad.

The sources are separated
by half a wavelength. 

As a result, the
waves are in phase.

2

1

∆x = l

FIGURE 17.21 Two out-of-phase sources generate waves that are 
in phase if the sources are one half-wavelength apart.
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17.6 The Mathematics of Interference
Let’s look more closely at the superposition of two waves. As two waves of equal 
amplitude and frequency travel together along the x-axis, the net displacement of the 
medium is

  D = D1 + D2 = a sin1kx1 - vt + f102 + a sin1kx2 - vt + f202 

  = a sin f1 + a sin f2 
(17.24)

where the phases f1 and f2 were defined in Equations 17.20.
A useful trigonometric identity is

 sin a + sin b = 2 cos31
21a - b24sin31

21a + b24  (17.25)

This identity is certainly not obvious, although it is easily proven by working back-
ward from the right side. We can use this identity to write the net displacement of 
Equation 17.24 as

 D = c 2a cos 1∆f

2 2 d  sin 1kxavg - vt + 1f02avg2 (17.26)

where ∆f = f2 - f1 is the phase difference between the two waves, exactly as in 
Equation 17.21. xavg = 1x1 + x22/2 is the average distance to the two sources and 
1f02avg = 1f10 + f202/2 is the average phase constant of the sources.

The sine term shows that the superposition of the two waves is still a traveling 
wave. An observer would see a sinusoidal wave moving along the x-axis with the same  
wavelength and frequency as the original waves.

But how big is this wave compared to the two original waves? They each had 
 amplitude a, but the amplitude of their superposition is

 A = ` 2a cos1∆f

2 2 `  (17.27)

where we have used an absolute value sign because amplitudes must be positive. 
Depending upon the phase difference of the two waves, the amplitude of their 
 superposition can be anywhere from zero (perfect destructive interference) to 2a 
(maximum constructive interference).

The amplitude has its maximum value A = 2a if cos1  ∆f/22 = {1. This occurs 
when

 ∆f = m # 2p  (maximum amplitude A = 2a) (17.28)

where m is an integer. Similarly, the amplitude is zero if cos1  ∆f/22 = 0, which occurs 
when

 ∆f = 1m + 1
22 # 2p  (minimum amplitude A = 0) (17.29)

Equations 17.28 and 17.29 are identical to the conditions of Equations 17.22 and 17.23 
for constructive and destructive interference. We initially found these conditions by 

STOP TO THINK 17.4 Two loudspeakers emit waves with l = 2.0 m. Speaker 2 is  
1.0 m in front of speaker 1. What, if anything, can be done to cause constructive 
 interference between the two waves?

a. Move speaker 1 forward (to the right) 1.0 m.
b. Move speaker 1 forward (to the right) 0.5 m.
c. Move speaker 1 backward (to the left) 0.5 m.
d. Move speaker 1 backward (to the left) 1.0 m.
e. Nothing. The situation shown already causes constructive interference.
f. Constructive interference is not possible for any placement of the speakers.

1.0 m l = 2.0 m 

l = 2.0 m 

1

2

x

a

0
-a

For ∆f = 40°, the interference is constructive
but not maximum constructive.

For ∆f = 160°, the interference is destructive
but not perfect destructive.

x

x

a

0
-a

a

0
-a

∆f = 90°

∆f = 40°

A = 1.41a

A = 1.88a

∆f = 160° A = 0.35a

FIGURE 17.22 The interference of two 
waves for three different values of the 
phase difference.
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510 CHAPTER 17 Superposition

considering the alignment of the crests and troughs. Now we have confirmed them 
with an algebraic addition of the waves.

It is entirely possible, of course, that the two waves are neither exactly in phase 
nor exactly out of phase. Equation 17.27 allows us to calculate the amplitude of the 
superposition for any value of the phase difference. As an example, FIGURE 17.22 on  
the previous page shows the calculated interference of two waves that differ in phase 
by 40°, by 90°, and by 160°.

Two loudspeakers emit 500 Hz sound waves with an amplitude  
of 0.10 mm. Speaker 2 is 1.00 m behind speaker 1, and the phase 
difference between the speakers is 90°. What is the amplitude of  
the sound wave at a point 2.00 m in front of speaker 1?

MODEL The amplitude is determined by the interference of the two 
waves. Assume that the speed of sound has a room-temperature 
120°C2 value of 343 m/s.

SOLVE The amplitude of the sound wave is

A = 0 2a cos1  ∆f/22 0
where a = 0.10 mm and the phase difference between the waves is

∆f = f2 - f1 = 2p 
∆x
l

+ ∆f0

The sound’s wavelength is

l =
v
f

=
343 m/s
500 Hz

= 0.686 m

Distances x1 = 2.00 m and x2 = 3.00 m are measured from the 
speakers, so the path-length difference is ∆x = 1.00 m. We’re 
given that the inherent phase difference between the speakers is 
∆f0 = p/2 rad. Thus the phase difference at the observation point is

∆f = 2p 
∆x
l

+ ∆f0 = 2p 
1.00 m
0.686 m

+
p

2
 rad = 10.73 rad

and the amplitude of the wave at this point is

A = ` 2a cos1  

∆f

2 2 ` = ` 10.200 mm2 cos 110.73
2 2 ` = 0.121 mm

REVIEW The interference is constructive because A 7 a, but less 
than maximum constructive interference.

EXAMPLE 17.8 ■ More interference of sound waves

Application: Thin-Film Optical Coatings
The shimmering colors of soap bubbles and oil slicks, as seen in the photo at the 
 beginning of the chapter, are due to the interference of light waves. In fact, the idea 
of light-wave interference in one dimension has an important application in the optics 
industry, namely the use of thin-film optical coatings. These films, less than 1 mm 
110-6 m2 thick, are placed on glass surfaces, such as lenses, to control reflections from 
the glass. Antireflection coatings on the lenses in cameras, microscopes, and other  
optical equipment are examples of thin-film coatings.

FIGURE 17.23 shows a light wave of wavelength l approaching a piece of glass that 
has been coated with a transparent film of thickness d whose index of refraction is n. 
The air-film boundary is a discontinuity at which the wave speed suddenly decreases, 
and you saw earlier, in Figure 17.7, that a discontinuity causes a reflection. Most of the 
light is transmitted into the film, but a little bit is reflected.

Furthermore, you saw in Figure 17.7 that the wave reflected from a discontinuity at 
which the speed decreases is inverted with respect to the incident wave. For a sinusoidal 
wave, which we’re now assuming, the inversion is represented mathematically as a phase 
shift of p rad. The speed of a light wave decreases when it enters a material with a  
larger index of refraction. Thus a light wave that reflects from a boundary at which 
the index of refraction increases has a phase shift of P rad. There is no phase shift  
for the reflection from a boundary at which the index of refraction decreases. The 
 reflection in Figure 17.23 is from a boundary between air 1nair = 1.002 and a transparent 
film with nfilm 7 nair, so the reflected wave is inverted due to the phase shift of p rad.

When the transmitted wave reaches the glass, most of it continues on into the glass 
but a portion is reflected back to the left. We’ll assume that the index of refraction of 
the glass is larger than that of the film, nglass 7 nfilm, so this reflection also has a phase 
shift of p rad. This second reflection, after traveling back through the film, passes  
back into the air. There are now two equal-frequency reflected waves traveling to the 
left, and these waves will interfere. If the two reflected waves are in phase, they will 
interfere constructively to cause a strong reflection. If the two reflected waves are out of 

1. Incident wave
 approaches
    the first surface.

4. The two reflected
 waves are overlapped
 and interfere.

GlassThin film
Index n

d

lf

l

Air

2. Part of the wave reflects back
 with a phase shift of p rad, part
 continues on into the film. 

3. Part of the transmitted wave
 reflects at the second surface,
 part continues on into the glass.

FIGURE 17.23 The two reflections, one 
from the coating and one from the glass, 
interfere.
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17.6 The Mathematics of Interference 511

phase, they will interfere destructively to cause a weak reflection or, if their amplitudes 
are equal, no reflection at all.

This suggests practical uses for thin-film optical coatings. The reflections from 
glass surfaces, even if weak, are often undesirable. For example, reflections degrade 
the performance of optical equipment. These reflections can be eliminated by coating 
the glass with a film whose thickness is chosen to cause destructive interference of the  
two reflected waves. This is an antireflection coating.

The amplitude of the reflected light depends on the phase difference between the 
two reflected waves. This phase difference is

  ∆f = f2 - f1 = 1kx2 + f20 + p rad2 - 1kx1 + f10 + p rad2 

  = 2p 
∆x
lf 

+ ∆f0 
(17.30)

where we explicitly included the reflection phase shift of each wave. In this case, 
because both waves had a phase shift of p rad, the reflection phase shifts cancel.

The wavelength lf is the wavelength in the film because that’s where the path-length 
difference ∆x occurs. You learned in Chapter 16 that the wavelength in a transparent 
material with index of refraction n is lf = l/n, where the unsubscripted l is the wave-
length in vacuum or air. That is, l is the wavelength that we measure on “our” side of  
the air-film boundary.

The path-length difference between the two waves is ∆x = 2d because wave 2 travels 
through the film twice before rejoining wave 1. The two waves have a common origin—
the initial division of the incident wave at the front surface of the film—so the inherent 
phase difference is ∆f0 = 0. Thus the phase difference of the two reflected waves is

 ∆f = 2p 
2d
l/n

= 2p 
2nd
l

 (17.31)

The interference is constructive, causing a strong reflection, when ∆f = m # 2p rad. 
So when both reflected waves have a phase shift of p rad, constructive interference 
occurs for wavelengths

 lC =
2nd
m

   m = 1, 2, 3,c  (constructive interference) (17.32)

You will notice that m starts with 1, rather than 0, in order to give meaningful results. 
Destructive interference, with minimum reflection, requires ∆f = 1m - 1

22 # 2p rad. 
This—again, when both waves have a phase shift of p rad—occurs for wavelengths

 lD =
2nd

m - 1
2 

   m = 1, 2, 3,c  (destructive interference) (17.33)

We’ve used m - 1
2, rather than m + 1

2, so that m can start with 1 to match the condition 
for constructive interference.

 NOTE   The exact condition for constructive or destructive interference is satisfied  
for only a few discrete wavelengths l. Nonetheless, reflections are strongly enhanced 
(nearly constructive interference) for a range of wavelengths near lC. Likewise, there 
is a range of wavelengths near lD for which the reflection is nearly canceled.

Magnesium fluoride (MgF2) is used as an antireflection coating 
on lenses. The index of refraction of MgF2 is 1.39. What is the 
thinnest film of MgF2 that works as an antireflection coating at 
l = 510 nm, near the center of the visible spectrum?

MODEL Reflection is minimized if the two reflected waves inter-
fere destructively.

SOLVE The film thicknesses that cause destructive interference at 
wavelength l are

d = 1m -
1
22 

l

2n

The thinnest film has m = 1. Its thickness is

d =
l

4n
=

510 nm
411.392 = 92 nm

The film thickness is significantly less than the wavelength of 
visible light!

EXAMPLE 17.9 ■ Designing an antireflection coating

Antireflection coatings use the 
interference of light waves to nearly 
eliminate reflections from glass surfaces.

Continued
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512 CHAPTER 17 Superposition

17.7  Interference in Two and 
Three Dimensions

Ripples on a lake move in two dimensions. The glow from a lightbulb spreads outward  
as a spherical wave. A circular or spherical wave, illustrated in FIGURE 17.24, can be written

 D1r, t2 = a sin1kr - vt + f02 (17.34)

where r is the distance measured outward from the source. Equation 17.34 is our 
familiar wave equation with the one-dimensional coordinate x replaced by a more 
general radial coordinate r. Recall that the wave fronts represent the crests of the wave 
and are spaced by the wavelength l.

What happens when two circular or spherical waves overlap? For example,  imagine 
two paddles oscillating up and down on the surface of a pond. We will assume that 
the two paddles oscillate with the same frequency and amplitude and that they are in 
phase. FIGURE 17.25 shows the wave fronts of the two waves. The ripples overlap as they 
travel, and, as was the case in one dimension, this causes interference. An important 
difference, though, is that amplitude decreases with distance as waves spread out  
in two or three dimensions—a consequence of energy conservation—so the two 
overlapped waves generally do not have equal amplitudes. Consequently, destructive 
interference rarely produces perfect cancellation.

Maximum constructive interference occurs where two crests align or two troughs 
align. Several locations of constructive interference are marked in Figure 17.25. 
Intersecting wave fronts are points where two crests are aligned. It’s a bit harder to 
visualize, but two troughs are aligned when a midpoint between two wave fronts is 
overlapped with another midpoint between two wave fronts. Maximum, but usually 
not perfect, destructive interference occurs where the crest of one wave aligns with a 
trough of the other wave. Several points of destructive interference are also indicated 
in Figure 17.25.

A picture on a page is static, but the wave fronts are in motion. Try to imagine the 
wave fronts of Figure 17.25 expanding outward as new circular rings are born at the 
sources. The waves will move forward half a wavelength during half a period, causing 
the crests in Figure 17.25 to be replaced by troughs while the troughs become crests.

The important point to recognize is that the motion of the waves does not affect 
the points of constructive and destructive interference. Points in the figure where 
two crests overlap will become points where two troughs overlap, but this overlap is 
still constructive interference. Similarly, points in the figure where a crest and a trough 
overlap will become a point where a trough and a crest overlap—still destructive  
interference.

The mathematical description of interference in two or three dimensions is very 
similar to that of one-dimensional interference. The net displacement of a particle in 
the medium is

 D = D1 + D2 = a1 sin1kr1 - vt + f102 + a2 sin1kr2 - vt + f202 (17.35)

The only differences between Equation 17.35 and the earlier one-dimensional 
Equation 17.24 are that the linear coordinates have been changed to radial coordinates 

REVIEW The reflected light is completely eliminated (perfect  
destructive interference) only if the two reflected waves have equal 
amplitudes. In practice, they don’t. Nonetheless, the reflection is 
reduced from ≈  4% of the incident intensity for “bare glass” to 
well under 1%. Furthermore, the intensity of reflected light is much 
reduced across most of the visible spectrum (400–700 nm), even 
though the phase difference deviates more and more from p rad 

as the wavelength moves away from 510 nm. It is the increasing  
reflection at the ends of the visible spectrum (l ≈ 400 nm and 
l ≈ 700 nm), where ∆f deviates significantly from p rad, that 
gives a reddish-purple tinge to the lenses on cameras and binoc-
ulars. Homework problems will let you explore situations where 
only one of the two reflections has a reflection phase shift of  
p rad.

The wave fronts are
crests, separated by l.

Troughs are halfway
between wave fronts.

Source

r

v

This graph shows the
displacement of the 
medium.

l

FIGURE 17.24 A circular or spherical wave.

Two in-phase sources emit
circular or spherical waves.

Constructive
interference occurs
where two crests or
two troughs overlap.

Destructive
interference occurs
where a crest
overlaps a trough.

l

l

FIGURE 17.25 The overlapping ripple 
patterns of two identical sources. Several 
points of constructive and destructive 
interference are noted.
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17.7 Interference in Two and Three Dimensions 513

and we’ve allowed the amplitudes to differ. These changes do not affect the phase 
difference, which, with x replaced by r, is now

 ∆f = 2p 
∆r
l

+ ∆f0 (17.36)

The term 2p1∆r/l2 is the phase difference that arises when the waves travel different 
distances from the sources to the point at which they combine. ∆r itself is the path-length 
difference. As before, ∆f0 is any inherent phase difference of the sources themselves.

Maximum constructive interference occurs, just as in one dimension, at those points 
where cos1  ∆f/22 = {1. Similarly, maximum destructive interference occurs at points 
where cos1  ∆f/22 = 0. The conditions for constructive and destructive interference are

Two overlapping water waves create an 
interference pattern.

Maximum constructive interference:

∆f = 2p 
∆r
l

+ ∆f0 = m # 2p

Maximum destructive interference:

∆f = 2p 
∆r
l

+ ∆f0 = 1m + 1
22 # 2p

m = 0, 1, 2,c (17.37)

Identical Sources
For two identical sources (i.e., sources that oscillate in phase with ∆f0 = 0), the 
 conditions for constructive and destructive interference are simple:

 Constructive:   ∆r = ml

 Destructive:   ∆r = 1m +
1
22l  

The waves from two identical sources interfere constructively at points where 
the path-length difference is an integer number of wavelengths because, for these 
values of ∆r, crests are aligned with crests and troughs with troughs. The waves 
interfere destructively at points where the path-length difference is a half-integer  
number of wavelengths because, for these values of ∆r, crests are aligned with 
troughs. These two statements are the essence of interference.

 NOTE   Equations 17.38 apply only if the sources are in phase. If the sources are 
not in phase, you must use the more general Equations 17.37 to locate the points of 
constructive and destructive interference.

Wave fronts are spaced exactly one wavelength apart; hence we can measure the dis-
tances r1 and r2 simply by counting the rings in the wave-front pattern. In FIGURE 17.26, 
which is based on Figure 17.25, point A is distance r1 = 3l from the first source and 
r2 = 2l from the second. The path-length difference is ∆rA = 1l, the condition for the 
maximum constructive interference of identical sources. Point B has ∆rB = 1

2 l, so it is  
a point of maximum destructive interference.

 NOTE   Interference is determined by ∆r, the path-length difference, rather than by 
r1 or r2.

(identical sources) (17.38)

1
2

At A, ∆rA = l, so this is a point
of constructive interference.

C

A 2l
2.5l

3l3l

B

At B, ∆rB =   l, so this is a point
of destructive interference.

FIGURE 17.26 For identical sources, the 
path-length difference ∆r determines 
whether the interference at a particular 
point is constructive or destructive.

STOP TO THINK 17.5 The interference at point C in Figure 17.26 is

a. Maximum constructive. b. Constructive, but less than maximum.
c. Maximum destructive. d. Destructive, but less than maximum.
e. There is no interference at point C.

M17_KNIG8221_05_GE_C17.indd   513 27/05/2022   18:08



514 CHAPTER 17 Superposition

We can now locate the points of maximum constructive interference by drawing a 
line through all the points at which ∆r = 0, another line through all the points at which 
∆r = l, and so on. These lines, shown in red in FIGURE 17.27, are called antinodal 
lines. They are analogous to the antinodes of a standing wave, hence the name. An  
antinode is a point of maximum constructive interference; for circular waves, oscillation 
at maximum amplitude occurs along a continuous line. Similarly, destructive inter-
ference occurs along lines called nodal lines. The amplitude is a minimum along a 
nodal line, usually close to zero, just as it is at a node in a standing-wave pattern.

3
2

3
2

1
2

1
2

Antinodal lines, constructive
interference, oscillation with
maximum amplitude. Intensity
is at its maximum value.

∆r = l

∆r = l

∆r = l

∆r = 2l

∆r = 2l

∆r = 0

∆r = l

∆r = l

∆r = l

Nodal lines, destructive
interference, oscillation with
minimum amplitude. Intensity
is close to zero.

FIGURE 17.27 The points of constructive and destructive interference fall along antinodal and 
nodal lines.

A Problem-Solving Strategy for Interference Problems
The information in this section is the basis of a strategy for solving interference 
 problems. This strategy applies equally well to interference in one dimension if you 
use ∆x instead of ∆r.

PROBLEM-SOLVING STRATEGY 17.1

Interference of two waves

MODEL Model the waves as linear, circular, or spherical.

VISUALIZE Draw a picture showing the sources of the waves and the point  
where the waves interfere. Give relevant dimensions. Identify the distances r1  
and r2 from the sources to the point. Note any phase difference ∆f0 between the 
two sources.

SOLVE The interference depends on the path-length difference ∆r = r2 - r1 and 
the source phase difference ∆f0.

Constructive: ∆f = 2p 
∆r
l

+ ∆f0 = m # 2p

Destructive: ∆f = 2p 
∆r
l

+ ∆f0 = 1m + 1
22 # 2p

   m = 0, 1, 2,c

For identical sources 1∆f0 = 02, the interference is maximum constructive if 
∆r = ml, maximum destructive if ∆r = 1m + 1

22l.

REVIEW Check that your result has correct units and significant figures, is reasonable, 
and answers the question.

Exercise 18 
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17.8 Beats 515

17.8 Beats
Thus far we have looked at the superposition of waves that have the same wavelength and 
frequency. We can also use the principle of superposition to investigate a phenomenon  
that is easily demonstrated with two sources of slightly different frequency.

If you listen to two sounds with very different frequencies, such as a high note and 
a low note, you hear two distinct tones. But if the frequency difference is very small, 
just one or two hertz, then you hear a single tone whose intensity is modulated once or 
twice every second. That is, the sound goes up and down in volume, loud, soft, loud, 
soft, …, making a distinctive sound pattern called beats.

Consider two sinusoidal waves traveling along the x-axis with angular frequencies 
v1 = 2pf1 and v2 = 2pf2. The two waves are

  D1 = a sin1k1x - v1t + f102 

  D2 = a sin1k2x - v2 t + f202 
(17.39)

Two loudspeakers in a plane are 2.0 m apart and in phase with each 
other. Both emit 700 Hz sound waves into a room where the speed 
of sound is 341 m/s. A listener stands 5.0 m in front of the loud-
speakers and 2.0 m to one side of the center. Is the interference 
at this point maximum constructive, maximum destructive, or in 
between? How will the situation differ if the loudspeakers are out 
of phase?

MODEL The two speakers are sources of in-phase, spherical waves. 
The overlap of these waves causes interference.

VISUALIZE FIGURE 17.28 shows the loudspeakers and defines the 
distances r1 and r2 to the point of observation. The figure includes 
dimensions and notes that ∆f0 = 0 rad.

SOLVE It’s not r1 and r2 that matter, but the difference ∆r between 
them. From the geometry of the figure we can calculate that

 r1 = 215.0 m22 + 11.0 m22 = 5.10 m

 r2 = 215.0 m22 + 13.0 m22 = 5.83 m

Thus the path-length difference is ∆r = r2 - r1 = 0.73 m. The 
wavelength  of the sound waves is

l =
v
f

=
341 m/s
700 Hz

= 0.487 m

In terms of wavelengths, the path-length difference is 
∆r/l = 1.50, or

∆r = 3
2 l

Because the sources are in phase 1  ∆f0 = 02, this is the 
 condition for destructive interference. If the sources were out of 
phase 1  ∆f0 = p rad2, then the phase difference of the waves at the 
listener would be

∆f = 2p 
∆r
l

+ ∆f0 = 2p13
22 + p rad = 4p rad

This is an integer multiple of 2p rad, so in this case the interference 
would be constructive.

REVIEW Both the path-length difference and any inherent phase 
difference of the sources must be considered when evaluating 
 interference.

EXAMPLE 17.10 ■ Two-dimensional interference between two loudspeakers

FIGURE 17.28 Pictorial representation of the interference 
between two loudspeakers.

STOP TO THINK 17.6 These two loud-
speakers are in phase. They emit equal-  
amplitude sound waves with a wavelength  
of 1.0 m. At the point indicated, is the  
interference maximum constructive,  
maximum destructive, or something in 
between?

8.5 m

9.5 m

l = 1.0 m

l = 1.0 m
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516 CHAPTER 17 Superposition

where the subscripts 1 and 2 indicate that the frequencies, wave numbers, and phase 
constants of the two waves may be different.

To simplify the analysis, let’s make several assumptions:

1. The two waves have the same amplitude a,
2. A detector, such as your ear, is located at the origin 1x = 02,
3. The two sources are in phase 1f10 = f202, and
4. The source phases happen to be f10 = f20 = p rad.

None of these assumptions is essential to the outcome. All could be otherwise and we 
would still come to basically the same conclusion, but the mathematics would be far 
messier. Making these assumptions allows us to emphasize the physics with the least 
amount of mathematics.

With these assumptions, the two waves as they reach the detector at x = 0 are

  D1 = a sin1-v1t + p2 = a sin v1t 

  D2 = a sin1-v2 t + p2 = a sin v2 t 
(17.40)

where we’ve used the trigonometric identity sin1p - u2 = sin u. The principle of 
superposition tells us that the net displacement of the medium at the detector is the 
sum of the displacements of the individual waves. Thus

 D = D1 + D2 = a1sin v1t + sin v2 t2 (17.41)

Earlier, for interference, we used the trigonometric identity

sin a + sin b = 2 cos31
21a - b24sin31

21a + b24
We can use this identity again to write Equation 17.41 as

 D = 2a cos31
21v1 - v22t4sin31

21v1 + v22t4
  = 3   2a cos1vmodt24sin1vavgt2 

(17.42)

where vavg = 1
21v1 + v22 is the average angular frequency and vmod = 1

2 �v1 - v2 �  is 
called the modulation frequency. We’ve used the absolute value because the modulation  
depends only on the frequency difference between the sources, not on which has the  
larger frequency.

We are interested in the situation when the two frequencies are very nearly equal: 
v1 ≈ v2. In that case, vavg hardly differs from either v1 or v2 while vmod is very near 
to—but not exactly—zero. When vmod is very small, the term cos(vmod t) oscillates 
very slowly. We have grouped it with the 2a term because, together, they provide a 
slowly changing “amplitude” for the rapid oscillation at frequency vavg.

FIGURE 17.29 is a history graph of the wave at the detector 1x = 02. It shows the 
 oscillation of the air against your eardrum at frequency favg = vavg/2p = 1

21 f1 + f22. 
This oscillation determines the note you hear; it differs little from the two notes at 
 frequencies f1 and f2. We are especially interested in the time-dependent amplitude, 
shown as a dashed line, that is given by the term 2a cos1vmodt2. This periodically varying  
amplitude is called a modulation of the wave, which is where vmod gets its name.

As the amplitude rises and falls, the sound alternates as loud, soft, loud, soft, and 
so on. But that is exactly what you hear when you listen to beats! The alternating loud 
and soft sounds arise from the two waves being alternately in phase and out of phase, 
causing constructive and then destructive interference.

Imagine two people walking side by side at just slightly different paces. Initially 
both of their right feet hit the ground together, but after a while they get out of step. 
A little bit later they are back in step and the process alternates. The sound waves are 
doing the same. Initially the crests of each wave, of amplitude a, arrive together at 
your ear and the net displacement is doubled to 2a. But after a while the two waves, 
being of slightly different frequency, get out of step and a crest of one arrives with a 

2a

-2a

D

LoudLoud Soft LoudSoft LoudSoft

0

The medium oscillates
rapidly at frequency favg.

The amplitude is slowly
modulated as 2a cos (vmod t).

t

FIGURE 17.29 Beats are caused by the 
superposition of two waves of nearly 
identical frequency.
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17.8 Beats 517

trough of the other. When this happens, the two waves cancel each other to give a net 
displacement of zero. This process alternates over and over, loud and soft.

Notice, in Figure 17.29, that the sound intensity rises and falls twice during one cycle 
of the modulation envelope. Each “loud-soft-loud” is one beat, so the beat frequency 
fbeat, which is the number of beats per second, is twice the modulation frequency  
fmod = vmod/2p. From the above definition of vmod, the beat frequency is

 fbeat = 2fmod = 2 
vmod 

2p
= 2 # 1

2
 1v1 

2p
-

v2

2p2 = � f1 - f2 �  (17.43)

The beat frequency is simply the difference between the two individual frequencies.

27 lines per inch

25 lines per inch

The visual beat frequency 
is fbeat = 2 per inch.

FIGURE 17.31 A graphical example of 
beats.

The little brown bat is a common species in North America. It 
emits echolocation pulses at a frequency of 40 kHz, well above the 
range of human hearing. To allow researchers to “hear” these bats, 
the bat detector shown in FIGURE 17.30 combines the bat’s sound 
wave at frequency f1 with a wave of frequency f2 from a tunable 
oscillator. The resulting beat frequency is then amplified and sent 
to a loudspeaker. To what frequency should the tunable oscillator 
be set to produce an audible beat frequency of 3 kHz?

SOLVE Combining two waves with different frequencies gives a 
beat frequency

fbeat = � f1 - f2 �

A beat frequency will be generated at 3 kHz if the oscillator 
frequency and the bat frequency differ by 3 kHz. An oscillator 
frequency of either 37 kHz or 43 kHz will work nicely.

REVIEW The electronic circuitry of radios, televisions, and cell 
phones makes extensive use of mixers to generate difference 
 frequencies.

EXAMPLE 17.11 ■ Detecting bats with beats

0 f1 - f2 0

f2

The mixer combines the signal from 
the bat with a sinusoidal wave from an 
oscillator. The result is a modulated wave.

The filter extracts the 
beat frequency, which 
is sent to the speaker.

Mixer Filter

Tunable
oscillator Speaker

f1

Microphone

FIGURE 17.30 The operation of a bat detector.

Beats aren’t limited to sound waves. FIGURE 17.31 shows a graphical example of 
beats. Two “fences” of slightly different frequencies are superimposed on each other. 
The difference in the two frequencies is two lines per inch. You can confirm, with a 
ruler, that the figure has two “beats” per inch, in agreement with Equation 17.43.

Beats are important in many other situations. For example, you have probably seen 
movies where rotating wheels seem to turn slowly backward. Why is this? Suppose the 
movie camera is shooting at 30 frames per second but the wheel is rotating 32 times  
per second. The combination of the two produces a “beat” of 2 Hz, meaning that the 
wheel appears to rotate only twice per second. The same is true if the wheel is rotating 
28 times per second, but in this case, where the wheel frequency slightly lags the camera  
frequency, it appears to rotate backward twice per second!

STOP TO THINK 17.7 You hear three beats per second when two sound tones are 
generated. The frequency of one tone is 610 Hz. The frequency of the other is

a. 604 Hz b. 607 Hz c. 613 Hz
d. 616 Hz e. Either a or d. f. Either b or c.
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518 CHAPTER 17 Superposition

   CHAPTER 17 CHALLENGE EXAMPLE     An airplane landing system

Your firm has been hired to design a system that allows airplane 
pilots to make instrument landings in rain or fog. You’ve decided 
to place two radio transmitters 50 m apart on either side of the  
runway. These two transmitters will broadcast the same frequency, 
but out of phase with each other. This will cause a nodal line to  
extend straight off the end of the runway. As long as the airplane’s  
receiver is silent, the pilot knows she’s directly in line with the run-
way. If she drifts to one side or the other, the radio will pick up a 
signal and sound a warning beep. To have sufficient accuracy, the 
first intensity maxima need to be 60 m on either side of the nodal 
line at a distance of 3.0 km. What frequency should you specify for 
the transmitters?

MODEL The two transmitters are sources of out-of-phase, circular 
waves. The overlap of these waves produces an interference pattern.

VISUALIZE For out-of-phase sources, the center line—with zero 
path-length difference—is a nodal line of maximum destructive 
interference because the two signals always arrive out of phase. 
 FIGURE 17.32 shows the nodal line, extending straight off the runway, 
and the first antinodal line—the points of maximum constructive  

interference—on either side. Comparing this to Figure 17.27, 
where the two sources were in phase, you can see that the nodal and  
antinodal lines have been reversed.

SOLVE Point P, 60 m to the side at a distance of 3000 m, needs to 
be a point of maximum constructive interference. The distances are

r1 = 213000 m22 + 160 m - 25 m22 = 3000.204 m 

r2 = 213000 m22 + 160 m + 25 m22 = 3001.204 m 

We needed to keep several extra significant figures because we’re 
looking for the difference between two numbers that are almost the  
same. The path-length difference at P is

∆r = r2 - r1 = 1.000 m

We know, for out-of-phase transmitters, that the phase difference 
of the sources is ∆f0 = p rad. The first maximum will occur 
where the phase difference between the waves is ∆f = 1 # 2p rad. 
Thus the condition that we must satisfy at P is

∆f = 2p rad = 2p 
∆r
l

+ p rad

Solving for l, we find

l = 2 ∆r = 2.00 m

Consequently, the required frequency is

f =
c
l

=
3.00 * 108 m/s

2.00 m
= 1.50 * 108  Hz = 150 MHz

REVIEW 150 MHz is slightly higher than the frequencies of FM 
radio 1≈100 MHz2 but is well within the radio frequency range. 
Notice that the condition to be satisfied at P is that the path-length 
difference must be 12 l. This makes sense. A path-length difference 
of 1

2 l contributes p rad to the phase difference. When combined 
with the p rad from the out-of-phase sources, the total phase differ-
ence of 2p rad creates constructive interference.

FIGURE 17.32 Pictorial representation of the landing system.
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Principle of Superposition
The displacement of a medium when more than one wave is present is the sum at each 
point of the displacements due to each individual wave.

General Principles

Important Concepts

The goal of Chapter 17 has been to understand and use the 
idea of superposition.

Summary

Applications
Boundary Conditions 
Strings, electromagnetic waves, and sound displacement waves in 
closed-closed tubes must have nodes at both ends:

lm =
2L
m
  fm = m 

v
2L

= mf1  m = 1, 2, 3,c

The frequencies and wavelengths are the same for a sound wave  
in an open-open tube, which has antinodes at both ends.

A sound displacement wave in an open-closed tube must have a 
node at the closed end but an antinode at the open end. This leads to

lm =
4L
m

   fm = m 
v

4L
= mf1  m = 1, 3, 5, 7,c

Beats (loud-soft-loud-soft modulations of intensity) occur when 
two waves of slightly different frequency are superimposed.

D

LoudSoft

0

LoudSoft Soft

t

The beat frequency between waves of frequencies f1 and f2 is

fbeat = � f1 - f2 �

Standing Waves
Standing waves are due to the superposition of two 
traveling waves moving in opposite directions.

1
2Node spacing is l.

Antinodes

Nodes

The amplitude at position x is

A1x2 = 2a sin kx

where a is the ampli- 
tude of each wave.

The boundary  
conditions determine 
which standing-wave 
frequencies and  
wavelengths are  
allowed. The allowed 
standing waves are 
modes of the system.

Solving Interference Problems
Maximum constructive interference  
occurs where crests are aligned with  
crests and troughs with troughs. The  
waves are in phase.

Maximum destructive interference  
occurs where crests are aligned with  
troughs. The waves are out of phase.

MODEL Model the wave as linear,  
circular, or spherical.

VISUALIZE Find distances to the sources.

SOLVE Interference depends on the  
phase difference ∆f between the waves:

Constructive: ∆f = 2p 
∆r
l

+ ∆f0 = m # 2p

Destructive:   ∆f = 2p 
∆r
l

+ ∆f0 = 1m + 1
22 # 2p

∆r is the path-length difference of the two waves, and ∆f0 is any phase  
difference between the sources. For identical (in-phase) sources:

Constructive: ∆r = ml  Destructive: ∆r = 1m + 1
22l

REVIEW Is the result reasonable?

m = 3

Standing waves on a string

m = 2

m = 1

Antinodal lines, maximum 
constructive interference

Nodal lines, maximum 
destructive interference
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CONCEPTUAL QUESTIONS

FIGURE Q17.1

1 2

3

Wave A

Wave B

FIGURE Q17.8

1

2

3

FIGURE Q17.9

x (m)

1

0

-1 1.0 m/s

1.0 m/s

2 104 86

D (cm) at t = 0 s

FIGURE EX17.2

principle of superposition
standing wave
node
antinode
amplitude function, A(x)
boundary condition

fundamental frequency, f1
harmonic
mode
interference
in phase
constructive interference

out of phase
destructive interference
phase difference, ∆f

path-length difference, ∆x  
 or ∆r
thin-film optical coating

antinodal line
nodal line
beats
modulation
beat frequency, fbeat

Terms and Notation

1. FIGURE Q17.1 shows a standing 
wave oscillating on a string at 
frequency f0.
a. What mode (m-value) is this?
b. How many antinodes will there be if the frequency is doubled 

to 2 f
 0?

2. If you take snapshots of a standing wave on a string, there are 
certain instants when the string is totally flat. What has hap-
pened to the energy of the wave at those instants?

3. FIGURE Q17.3 shows the displace-
ment of a standing sound wave in 
a 32-cm-long horizontal tube of 
air open at both ends.
a. What mode (m-value) is this?
b. Are the air molecules moving 

horizontally or vertically? Explain.
c. At what distances from the left end of the tube do the mole-

cules oscillate with maximum amplitude?
d. At what distances from the left end of the tube does the air 

pressure oscillate with maximum amplitude?
4. An organ pipe is tuned to exactly 1 kHz when the room tempera-

ture is 25°C. If the room temperature later increases to 27°C, 
does the pipe’s frequency increase, decrease, or stay the same? 
Explain.

5. Why does the pitch of the sound increase gradually as a vessel is 
filled under a tap? What difference would you expect if it were 
filled with a heavy liquid like mercury, instead of water?

6. A wooden organ pipe produces slightly different musical notes in 
summer (when the temperature is over 40°C) and in winter (when 
the temperature is below 10°C). Is this true or false? Explain.

x (cm)

D

32
0

FIGURE Q17.3

7. In music, two notes are said to be an octave apart when one note 
is exactly twice the frequency of the other. Suppose you have a 
guitar string playing frequency f

 0. To increase the frequency by 
an octave, to 2 f

 0, by what factor would you have to (a) increase 
the tension or (b) decrease the length?

8. FIGURE Q17.8 is a snapshot graph of two plane waves passing 
through a region of space. Each wave has a 2.0 mm amplitude 
and the same wavelength. What is the net displacement of the 
medium at points 1, 2, and 3?

9. FIGURE Q17.9 shows the circular waves emitted by two in-phase 
sources. Are 1, 2, and 3 points of maximum constructive inter-
ference, maximum destructive interference, or in between?

10. A trumpet player hears 5 beats per second when she plays a note 
and simultaneously sounds a 440 Hz tuning fork. After pulling 
her tuning valve out to slightly increase the length of her trum-
pet, she hears 3 beats per second against the tuning fork. Was her 
initial frequency 435 Hz or 445 Hz? Explain.

EXERCISES AND PROBLEMS

Problems labeled  integrate material from earlier chapters.

Exercises

Section 17.1 The Principle of Superposition

1. | FIGURE EX17.1 is a snapshot  
graph at t = 0 s of two waves 
approaching each other at 
1.0 m/s. Draw six snapshot 
graphs, stacked vertically, 
showing the string at 1 s inter-
vals from t = 1 s to t = 6 s.

x (m)

1

0

-1

1.0 m/s1.0 m/s

2 104 86

D (cm) at t = 0 s

FIGURE EX17.1

2. | FIGURE EX17.2 is a snapshot graph at t = 0 s of two waves 
approaching each other at 1.0 m/s. Draw six snapshot graphs, 
stacked vertically, showing the string at 1 s intervals from t = 1 s 
to t = 6 s.
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11. | A heavy piece of hanging sculpture is suspended by a 90-cm-
long, 5.0 g steel wire. When the wind blows hard, the wire hums 
at its fundamental frequency of 80 Hz. What is the mass of the 
sculpture?

12. | The frequency of microwaves in a microwave oven is 2450 
MHz. What is the mode number for electromagnetic standing 
waves in a 42.9-cm-wide microwave oven?

13. | A carbon-dioxide laser is an infrared laser. It has a cavity 
length of 50 cm and oscillates in the m = 100,000 mode. What 
are the wavelength and frequency of the laser beam?

Section 17.4 Standing Sound Waves and Musical Acoustics

14. | FIGURE EX17.14 shows a standing sound wave in an 80-cm-long  
tube. The tube is filled with an unknown gas. What is the speed 
of sound in this gas?

3. || FIGURE EX17.3a is a snapshot graph at t = 0 s of two waves 
approaching each other at 1.0 m/s. At what time was the snapshot 
graph in FIGURE EX17.3b taken?

x (m)

1

0
2

(a) (b)

104 86

D (cm)

x (m)

1

-1-1

0

1.0 m/s

1.0 m/s

20 104 86

D (cm) at t = 0 s

0

FIGURE EX17.3

1

2

3

0

-1

-2

1.0 m/s

2 4

D (cm) at t = 0 s

1.0 m/s

831 765
x (m)

FIGURE EX17.4

FIGURE EX17.5
60 cm

FIGURE EX17.6

f = 500 Hz
Molecule

80 cmFIGURE EX17.14

Section 17.2 Standing Waves

Section 17.3 Standing Waves on a String

4. || FIGURE EX17.4 is a snapshot graph at t = 0 s of two waves 
moving to the right at 1.0 m/s. The string is fixed at x = 8.0 m. 
Draw four snapshot graphs, stacked vertically, showing the string 
at t = 2, 4, 6, and 8 s.

5. || FIGURE EX17.5 shows a standing wave on a 2.0-m-long string 
that has been fixed at both ends and tightened until the wave 
speed is 40 m/s. What is the frequency? 

6. || FIGURE EX17.6 shows a standing wave oscillating at 100 Hz on 
a string. What is the wave speed?

7. | FIGURE EX17.7 shows a stand-
ing wave on a string that is 
oscillating at 100 Hz.
a. How many antinodes will 

there be if the frequency is increased to 200 Hz?
b. If the tension is increased by a factor of 4, at what frequency 

will the string continue to oscillate as a standing wave that 
looks like the one in the figure?

8. | a. What are the three longest wavelengths for standing waves 
on a 60 cm long string that is fixed at both ends?

b. If the frequency of the second longest wavelength is 20 
Hz, what is the frequency of the third-longest wavelength?

9. || Standing waves on a 1.0-m-long string that is fixed at both 
ends are seen at successive frequencies of 36 Hz and 48 Hz.
a. What are the fundamental frequency and the wave speed?
b. Draw the standing-wave pattern when the string oscillates at 

48 Hz.
10. || The two highest-pitch strings on a violin are tuned to 440 Hz 

(the A string) and 659 Hz (the E string). What is the ratio of the 
mass of the A string to that of the E string? Violin strings are all 
the same length and under essentially the same tension.

FIGURE EX17.7

15. | What are the three longest wavelengths for standing sound 
waves in a 121-cm-long tube that is (a) open at both ends and  
(b) open at one end, closed at the other?

16. | The fundamental frequency of an open-open tube is 1500 Hz 
when the tube is filled with 0°C helium. What is its frequency 
when filled with 0°C air?

17. | The lowest note on a grand piano has a frequency of 40 Hz. 
The entire string is 1 m long and has a mass of 200 g. The vi-
brating section of the string is 80 cm long. What is the tension 
needed to tune this string properly?

18. | We can make a simple model of the human vocal tract as an 
open-closed tube extending from the opening of the mouth to the 
diaphragm. What is the length of this tube if its fundamental fre-
quency equals a typical speech frequency of 250 Hz? The speed 
of sound in the warm air is 350 m/s.

19. || A bass clarinet can be modeled as a 100-cm-long open–
closed tube. A bass clarinet player starts playing in a room with 
a temperature of 23°C, but soon the air inside the clarinet warms 
such that the speed of sound is 360 m/s. Does the fundamental 
frequency increase or decrease, and by how much?

20. || A violin string is 40 cm long. It sounds a musical note, A#, of 
460 Hz, when played without fingering. How far from the end of the 
string should you place your finger to play the note C# (550 Hz)?

21. || A 170-cm-long open-closed tube has a standing sound wave 
at 250 Hz on a day when the speed of sound is 340 m/s. How 
many pressure antinodes are there, and how far is each from the 
open end of the tube?

Section 17.5 Interference in One Dimension

Section 17.6 The Mathematics of Interference

22. | Two loudspeakers emit sound waves along the x-axis. The 
sound has maximum intensity when the speakers are 20 cm 
apart. The sound intensity decreases as the distance between the 
speakers is increased, reaching zero at a separation of 60 cm.
a. What is the wavelength of the sound?
b. If the distance between the speakers continues to increase, 

at what separation will the sound intensity again be a 
maximum?
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30. || Two side-by-side loudspeakers at the origin emit 684 Hz 
sound waves on a day when the speed of sound is 342 m/s. A 
microphone 2.00 m away on the x-axis detects a maximum in the 
sound intensity. Then one of the speakers is moved slowly along 
the y-axis. How far does it move before the microphone first de-
tects a minimum in the sound intensity?

31. || Two out-of-phase radio antennas at x = {300 m on the  
x-axis are emitting 3.0 MHz radio waves. Is the point 1x, y2 =
1300 m, 800 m2 a point of maximum constructive interference, 
maximum destructive interference, or something in between?

Section 17.8 Beats

32. | Two microwave signals of nearly equal wavelengths can  
generate a beat frequency if both are directed onto the same micro-
wave detector. In an experiment, the beat frequency is 100 MHz.  
One microwave generator is set to emit microwaves with a wave-
length of 1.250 cm. If the second generator emits the longer 
wavelength, what is that wavelength?

33. | Two strings are adjusted to vibrate at exactly 200 Hz. Then 
the tension in one string is increased slightly. Afterward, three 
beats per second are heard when the strings vibrate at the same 
time. What is the new frequency of the string that was tightened?

34. | A flute player hears four beats per second when she compares 
her note to a 523 Hz tuning fork (the note C). She can match the 
frequency of the tuning fork by pulling out the “tuning joint” to 
lengthen her flute slightly. What was her initial frequency?

35. || Traditional Indonesian music uses an ensemble called a 
gamelan that is based on tuned percussion instruments some-
what like gongs. In Bali, the gongs are often grouped in pairs that 
are slightly out of tune with each other. When both are played at 
once, the beat frequency lends a distinctive vibrating quality to 
the music. Suppose a pair of gongs are tuned to produce notes at 
151 Hz and 155 Hz. How many beats are heard if the gongs are 
struck together and both ring for 2.5 s?

Problems
36. || A string vibrates at its third-harmonic frequency. The amplitude  

at a point 30 cm from one end is half the maximum amplitude.  
How long is the string?

37. | A 2.0-m-long string vibrates at its second-harmonic frequency 
with a maximum amplitude of 2.0 cm. One end of the string is 
at x = 0 cm. Find the oscillation amplitude at x = 10, 20, 30, 40,  
and 50 cm.

38. || Tendons are, essentially, elastic cords stretched between two 
fixed ends. As such, they can support standing waves. A woman 
has a 20-cm-long Achilles tendon—connecting the heel to a mus-
cle in the calf—with a cross-section area of 90 mm2. The density 
of tendon tissue is 1100 kg/m3. For a reasonable tension of 500 N, 
what will be the fundamental frequency of her Achilles tendon?

39. |||  Biologists think that some spiders “tune” strands of their 
web to give enhanced response at frequencies corresponding to 
those at which desirable prey might struggle. Orb spider web silk 
has a typical diameter of 20 mm, and spider silk has a density of 
1300 kg/m3. To have a fundamental frequency at 100 Hz, to what 
tension must a spider adjust a 12-cm-long strand of silk?

40. || A violinist places her finger so that the vibrating section of 
a 1.0 g/m string has a length of 30 cm, then she draws her bow 
across it. A listener nearby in a 20°C room hears a note with a 
wavelength of 40 cm. What is the tension in the string?

23. || Two loudspeakers in a 20°C room emit 686 Hz sound waves 
along the x-axis.
a. If the speakers are in phase, what is the smallest distance be-

tween the speakers for which the interference of the sound 
waves is maximum destructive?

b. If the speakers are out of phase, what is the smallest distance 
between the speakers for which the interference of the sound 
waves is maximum constructive?

24. | What is the thinnest film of MgF2 1n = 1.422 on glass that 
produces a strong reflection for a yellow light with a wavelength 
of 589 nm?

25. || Noise-cancelling headphones are an application of destruc-
tive interference. Each side of the headphones uses a microphone 
to pick up noise, delays it slightly, then rebroadcasts it again to 
your ear where it can interfere with the incoming sound wave of 
the noise. Suppose you are sitting 1.5 m from an annoying 120 
Hz buzzing sound. What is the minimum headphone delay, in 
ms, that will cancel this noise?

26. | A very thin oil film 1n = 1.252 floats on water 1n = 1.332. 
What is the thinnest film that produces a strong reflection for 
green light with a wavelength of 500 nm?

Section 17.7 Interference in Two and Three Dimensions

27. || FIGURE EX17.27 shows the circular wave fronts emitted by two 
wave sources.
a. Are these sources in phase or out of phase? Explain.
b. Make a table with rows labeled P, Q, and R and columns 

labeled r1, r2, ∆r, and C/D. Fill in the table for points P, Q,  
and R, giving the distances as multiples of l and indicating,  
with a C or a D, whether the interference at that point is  
constructive or destructive.

P

Q

R
1

2

FIGURE EX17.27

P

Q

R
1

2

FIGURE EX17.28

28. || FIGURE EX17.28 shows the circular wave fronts emitted by 
two wave sources.
a. Are these sources in phase or out of phase? Explain.
b. Make a table with rows labeled P, Q, and R and columns 

labeled r1, r2, ∆r, and C/D. Fill in the table for points P, Q, 
and R, giving the distances as multiples of l and indicating, 
with a C or a D, whether the interference at that point is 
constructive or destructive.

29. | Two in-phase speakers 2.0 m apart in a plane are emitting 
1800 Hz sound waves into a room where the speed of sound 
is 340 m/s. Is the point 4.0 m in front of one of the speakers, 
perpendicular to the plane of the speakers, a point of maximum 
constructive interference, maximum destructive interference, or 
something in between?
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41. || A particularly beautiful note reaching your ear from a rare 
Stradivarius violin has a wavelength of 39.1 cm. The room is 
slightly warm, so the speed of sound is 344 m/s. If the string’s 
linear density is 0.600 g/m and the tension is 150 N, how long is 
the vibrating section of the violin string?

42. || One end of a 75-cm-long, 2.5 g guitar string is attached to a 
spring. The other end is pulled, which stretches the spring. The gui-
tar string’s second harmonic occurs at 550 Hz when the spring has 
been stretched by 5.0 cm. What is the value of the spring constant?

43. ||| Astronauts visiting Planet X have a 250-cm-long string whose 
mass is 5.00 g. They tie the string to a support, stretch it horizon-
tally over a pulley 2.00 m away, and hang a 4.00 kg mass on the 
free end. Then the astronauts begin to excite standing waves on 
the horizontal portion of the string. Their data are as follows:

m Frequency (Hz)

1  31

2  66

3  95

4 130

5 162

Use the best-fit line of an appropriate graph to determine the 
value of g, the free-fall acceleration on Planet X.

44. ||| A 75 g bungee cord has an equilibrium length of 1.20 m. The 
cord is stretched to a length of 1.80 m, then vibrated at 20 Hz. 
This produces a standing wave with two antinodes. What is the 
spring constant of the bungee cord?

45. || In a laboratory experiment, one end of a horizontal string is 
tied to a support while the other end passes over a frictionless 
pulley and is tied to a 1.5 kg sphere. Students determine the 
frequencies of standing waves on the horizontal segment of the 
string, then they raise a beaker of water until the hanging 1.5 kg 
sphere is completely submerged. The frequency of the fifth har-
monic with the sphere submerged exactly matches the frequency 
of the third harmonic before the sphere was submerged. What is 
the diameter of the sphere?

46. | A string under tension has a fundamental frequency of 220 Hz.  
What is the fundamental frequency if the tension is doubled?

47. ||| A 750 g mass hung from a 5.0 g elastic cord stretches the 
cord to twice its unstretched length. If the mass is pulled down 
slightly and released, it oscillates vertically at a frequency of 
2.0 Hz. If the stretched cord is plucked while the mass is hanging 
from it, what is the cord’s fundamental frequency?

48. || The two strings in FIGURE P17.48 are of equal length and are 
being driven at equal frequencies. The linear density of the left 
string is 5.0 g/m. What is the linear density of the right string?

Stretched springFIGURE P17.48

50. | An open-open organ pipe is 78.0 cm long. An open-closed 
pipe has a fundamental frequency equal to the third harmonic of 
the open-open pipe. How long is the open-closed pipe?

51. || Western music uses a musical scale with equal tempera-
ment tuning, which means that any two adjacent notes have the 
same frequency ratio r. That is, notes n and n + 1 are related by 
fn+1 = r  fn for all n. In this system, the frequency doubles every 
12 notes—an interval called an octave.
a. What is the value of r?
b. Orchestras tune to the note A, which has a frequency of  

440 Hz. What is the frequency of the next note of the scale 
(called A-sharp)?

52. || Deep-sea divers often breathe a mixture of helium and oxy-
gen to avoid getting the “bends” from breathing high-pressure 
nitrogen. The helium has the side effect of making the divers’ 
voices sound odd. Although your vocal tract can be roughly de-
scribed as an open-closed tube, the way you hold your mouth 
and position your lips greatly affects the standing-wave frequen-
cies of the vocal tract. This is what allows different vowels to 
sound different. The “ee” sound is made by shaping your vocal 
tract to have standing-wave frequencies at, normally, 270 Hz and 
2300 Hz. What will these frequencies be for a helium-oxygen 
mixture in which the speed of sound at body temperature 
is 750 m/s? The speed of sound in air at body temperature  
is 350 m/s.

53. || In 1866, the German 
scientist Adolph Kundt 
developed a technique 
for accurately measur-
ing the speed of sound 
in various gases. A 
long glass tube, known 
today as a Kundt’s tube, has a vibrating piston at one end and 
is closed at the other. Very finely ground particles of cork are 
sprinkled in the bottom of the tube before the piston is inserted. 
As the vibrating piston is slowly moved forward, there are a 
few positions that cause the cork particles to collect in small, 
regularly spaced piles along the bottom. FIGURE P17.53 shows 
an experiment in which the tube is filled with pure oxygen 
and the piston is driven at 400 Hz. What is the speed of sound  
in oxygen?

54. || The 40-cm-long tube of FIGURE 
P17.54 has a 40-cm-long insert that 
can be pulled in and out. A vibrat-
ing tuning fork is held next to the 
tube. As the insert is slowly pulled 
out, the sound from the tuning fork 
creates standing waves in the tube when the total length L is 
42.5 cm, 56.7 cm, and 70.9 cm. What is the frequency of the 
tuning fork? Assume vsound = 343 m/s.

55. ||| A 280 Hz sound wave is 
directed into one end of the 
trombone slide seen in FIGURE 
P17.55. A microphone is placed 
at the other end to record the 
intensity of sound waves that 
are transmitted through the 
tube. The straight sides of the slide are 80 cm in length and 10 cm  
apart with a semicircular bend at the end. For what slide ex-
tensions s will the microphone detect a maximum of sound 
intensity?

400 Hz

Glass
tube

Piles of cork
particles

123 cm

Piston

FIGURE P17.53

8.0 kg2.0 m

4.0 kg bar

75 g steel wire

45°

FIGURE P17.49

49. || What is the fundamental frequency 
of the steel wire in FIGURE P17.49?

40 cm

L

40 cm

FIGURE P17.54

80 cm

80 cm10 cm

s

FIGURE P17.55
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65. || Engineers are testing a new thin-film coating whose index 
of refraction is less than that of glass. They deposit a 560-nm-
thick layer on glass, then shine lasers on it. A red laser with a 
wavelength of 640 nm has no reflection at all, but a violet laser 
with a wavelength of 400 nm has a maximum reflection. How 
the coating behaves at other wavelengths is unknown. What is 
the coating’s index of refraction?

66. || A soap bubble is essentially a very thin film of water 1n =
1.332 surrounded by air. The colors that you see in soap bubbles 
are produced by interference.
a. Derive an expression for the wavelengths lC for which con-

structive interference causes a strong reflection from a soap 
bubble of thickness d.

Hint: Think about the reflection phase shifts at both boundaries.
b. What visible wavelengths of light are strongly reflected from 

a 390-nm-thick soap bubble? What color would such a soap 
bubble appear to be?

67. ||| Scientists are testing a transparent material whose index 
of refraction for visible light varies with wavelength as 
n = 30.0 nm1/2/l1/2, where l is in nm. If a 295-nm-thick coating 
is placed on glass 1n = 1.502 for what visible wavelengths will 
the reflected light have maximum constructive interference?

68. || Two loudspeakers in a plane, 5.0 m apart, are playing the same 
frequency. If you stand 12.0 m in front of the plane of the speak-
ers, centered between them, you hear a sound of maximum in-
tensity. As you walk parallel to the plane of the speakers, staying 
12.0 m in front of them, you first hear a minimum of sound inten-
sity when you are directly in front of one of the speakers. What is 
the frequency of the sound? Assume a sound speed of 340 m/s.

69. || You are standing 2.5 m di-
rectly in front of one of the two 
loudspeakers shown in FIGURE 
P17.69. They are 3.0 m apart 
and both are playing a 686 Hz 
tone in phase. As you begin 
to walk directly away from 
the speaker, at what distances 
from the speaker do you hear a 
minimum sound intensity? The 
room temperature is 20°C.

70. || Two identical loudspeakers separated by distance ∆x each 
emit sound waves of wavelength l and amplitude a along the  
x-axis. What is the minimum value of the ratio ∆x/l for which 
the amplitude of their superposition is also a?

71. || The three identical loudspeakers 
in FIGURE P17.71 play a 170 Hz tone 
in a room where the speed of sound 
is 340 m/s. You are standing 4.0 m 
in front of the middle speaker. At 
this point, the amplitude of the wave 
from each speaker is a.
a. What is the amplitude at this 

point?
b. How far must speaker 2 be moved 

to the left to produce a maximum 
amplitude at the point where you 
are standing?

c. When the amplitude is maximum, 
by what factor is the sound intensity greater than the sound 
intensity from a single speaker?

56. ||| A 1.0-m-tall vertical tube is filled with 20°C water. A tuning 
fork vibrating at 580 Hz is held just over the top of the tube as the 
water is slowly drained from the bottom. At what water heights, 
measured from the bottom of the tube, will there be a standing 
wave in the tube above the water?

57. || A 25-cm-long wire with a linear density of 20 g/m passes 
across the open end of an 85-cm-long open-closed tube of air. If 
the wire, which is fixed at both ends, vibrates at its fundamental 
frequency, the sound wave it generates excites the second vibra-
tional mode of the tube of air. What is the tension in the wire? 
Assume vsound = 340 m/s.

58. || An old mining tunnel disappears into a hillside. You would like 
to know how long the tunnel is, but it’s too dangerous to go inside. 
Recalling your recent physics class, you decide to try setting up 
standing-wave resonances inside the tunnel. Using your subsonic 
amplifier and loudspeaker, you find resonances at 4.5 Hz and 6.3 
Hz, and at no frequencies between these. It’s rather chilly inside 
the tunnel, so you estimate the sound speed to be 335 m/s. Based 
on your measurements, how far is it to the end of the tunnel?

59. || A long tube that is open at one end has the other end sealed by 
a movable piston that can change the length of the open-closed 
tube. There is a 100 Hz standing wave in the tube when the length 
is 255 cm and when it is 425 cm but at no lengths in between. For 
what tube length is 100 Hz the fundamental frequency?

60. || Two in-phase loudspeakers emit identical 1000 Hz sound 
waves along the x-axis. What distance should one speaker be 
placed behind the other for the sound to have an amplitude 1.5 
times that of each speaker alone?

61. || Two loudspeakers emit sound waves of the same frequency 
along the x-axis. The amplitude of each wave is a. The sound 
intensity is minimum when speaker 2 is 10 cm behind speaker 1. 
The intensity increases as speaker 2 is moved forward and first 
reaches maximum, with amplitude 2a, when it is 30 cm in front 
of speaker 1. What is
a. The wavelength of the sound?
b. The phase difference between the two loudspeakers?
c. The amplitude of the sound (as a multiple of a) if the speakers 

are placed side by side?
62. || Two loudspeakers emit sound waves along the x-axis. A lis-

tener in front of both speakers hears a maximum sound intensity 
when speaker 2 is at the origin and speaker 1 is at x = 0.50 m. If 
speaker 1 is slowly moved forward, the sound intensity decreases 
and then increases, reaching another maximum when speaker 1 
is at x = 0.90 m.
a. What is the frequency of the sound? Assume vsound = 340 m/s.
b. What is the phase difference between the speakers?

63. | A sheet of glass is coated with a 500-nm-thick layer of oil 
1n = 1.422.
a. For what visible wavelengths of light do the reflected waves 

interfere constructively?
b. For what visible wavelengths of light do the reflected waves 

interfere destructively?
c. What is the color of reflected light? What is the color of 

transmitted light?
64. || Microwaves with a frequency of 10.5 GHz are aimed down-

ward into a flat-bottomed beaker that contains sunflower oil. A 
microwave detector above the beaker finds that there are strong 
reflections when the oil depth is 2.76 cm and 3.68 cm but at no 
depths in between. What is the index of refraction of sunflower 
oil at microwave frequencies?

3.0 m

4.0 m

3.0 m

1

2

3

FIGURE P17.71

Walk

3.0 m

2.5 m

FIGURE P17.69
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79. ||| When mass M is tied to the bottom end of a long, thin 
wire suspended from the ceiling, the wire’s second-harmonic 
frequency is 200 Hz. Adding an additional 1.0 kg to the hanging 
mass increases the second-harmonic frequency to 245 Hz.  
What is M?

80. ||| A water wave is called a deep-water wave if the water’s depth 
is more than one-quarter of the wavelength. Unlike the waves 
we’ve considered in this chapter, the speed of a deep-water wave 
depends on its wavelength:

v = B gl

2p
 

Longer wavelengths travel faster. Let’s apply this to standing 
waves. Consider a diving pool that is 5.0 m deep and 10.0 m 
wide. Standing water waves can set up across the width of the 
pool. Because water sloshes up and down at the sides of the pool, 
the boundary conditions require antinodes at x = 0 and x = L. 
Thus a standing water wave resembles a standing sound wave in 
an open-open tube.
a. What are the wavelengths of the first three standing-wave 

modes for water in the pool? Do they satisfy the condition for 
being deep-water waves?

b. What are the wave speeds for each of these waves?
c. Derive a general expression for the frequencies fm of the pos-

sible standing waves. Your expression should be in terms of 
m, g, and L.

d. What are the oscillation periods of the first three standing 
wave modes?

81. ||| Ultrasound has many medical applications, one of which is 
to monitor fetal heartbeats by reflecting ultrasound off a fetus in 
the womb.
a. Consider an object moving at speed vo toward an at-rest 

source that is emitting sound waves of frequency f0. Show 
that the reflected wave (i.e., the echo) that returns to the 
source has a Doppler-shifted frequency

fecho = 1v + vo 

v - vo
2 f0

where v is the speed of sound in the medium.
b. Suppose the object’s speed is much less than the wave speed: 

vo V v. Then fecho ≈ f0, and a microphone that is sensitive to 
these frequencies will detect a beat frequency if it listens to 
f0 and fecho simultaneously. Use the binomial approximation 
and other appropriate approximations to show that the beat 
frequency is fbeat ≈ 12vo/v2 f0.

c. The reflection of 2.40 MHz ultrasound waves from the sur-
face of a fetus’s beating heart is combined with the 2.40 MHz 
wave to produce a beat frequency that reaches a maximum 
of 65 Hz. What is the maximum speed of the surface of 
the heart? The speed of ultrasound waves within the body  
is 1540 m/s.

d. Suppose the surface of the heart moves in simple harmonic 
motion at 90 beats/min. What is the amplitude in mm of the 
heartbeat?

72. | Piano tuners tune pianos by listening to the beats between 
the harmonics of two different strings. When properly tuned, the 
note A should have a frequency of 440 Hz and the note E should 
be at 659 Hz.
a. What is the frequency difference between the third harmonic 

of the A and the second harmonic of the E?
b. A tuner first tunes the A string very precisely by matching it to a 

440 Hz tuning fork. She then strikes the A and E strings simul-
taneously and listens for beats between the harmonics. What 
beat frequency indicates that the E string is properly tuned?

c. The tuner starts with the tension in the E string a little low, 
then tightens it. What is the frequency of the E string when 
she hears four beats per second?

73. || A flutist assembles her flute in a room where the speed of 
sound is 342 m/s. When she plays the note A, it is in perfect tune 
with a 440 Hz tuning fork. After a few minutes, the air inside her 
flute has warmed to where the speed of sound is 346 m/s.
a. How many beats per second will she hear if she now plays the 

note A as the tuning fork is sounded?
b. How far does she need to extend the “tuning joint” of her 

flute to be in tune with the tuning fork?
74. || A 2000 Hz sound generator is attached to the end of a large 

spring that oscillates with an amplitude of 45 cm toward and 
away from you. A second 2000 Hz sound generator is at rest next 
to the spring. As you listen, the beat frequency between the two 
sounds ranges between zero and 2.0 beats per second. What is 
the period of the oscillator?

75. || Two loudspeakers emit 400 Hz notes. One speaker sits on the 
ground. The other speaker is in the back of a pickup truck. You 
hear eight beats per second as the truck drives away from you. 
What is the truck’s speed?

Challenge Problems
76. ||| Two radio antennas are separated by 2.0 m. Both broadcast 

identical 750 MHz waves. If you walk around the antennas in a 
circle of radius 10 m, how many maxima will you detect?

77. ||| You have two small, identical boxes that generate 440 Hz 
notes. While holding one, you drop the other from a 20-m-high 
balcony. How many beats will you hear before the falling box 
hits the ground? You can ignore air resistance.

78. ||| As the captain of the scientific team sent to Planet Physics, one 
of your tasks is to measure g. You have a long, thin wire labeled 
1.00 g/m and a 1.25 kg weight. You have your accurate space 
cadet chronometer but, unfortunately, you seem to have forgotten 
a meter stick. Undeterred, you first find the midpoint of the wire 
by folding it in half. You then attach one end of the wire to the 
wall of your laboratory, stretch it horizontally to pass over a pul-
ley at the midpoint of the wire, then tie the 1.25 kg weight to the 
end hanging over the pulley. By vibrating the wire, and measur-
ing time with your chronometer, you find that the wire’s second-  
harmonic frequency is 100 Hz. Next, with the 1.25 kg weight still 
tied to one end of the wire, you attach the other end to the ceiling 
to make a pendulum. You find that the pendulum requires 314 s to 
complete 100 oscillations. Pulling out your trusty calculator, you 
get to work. What value of g will you report back to headquarters?
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Simple harmonic motion

■■ Any object with a linear re
storing force can undergo SHM. 
This is sinusoidal motion with

x = A cos 1v t + f02
v = -v max  sin 1v t + f02

■■ Mechanical energy is conserved if 
there’s no friction.

■■ With friction, the oscillations 
are damped. A simple model of 
damping predicts oscillations 
that decay exponentially with 
time.

■■ Resonance is a large-amplitude 
response when an oscillator is 
driven at its natural frequency.

Waves

■■ A wave is a disturbance that  
travels.
■❚ Mechanical waves travel through 
a medium.

■❚ Electromagnetic waves travel 
through a vacuum.

■❚ Waves can be transverse or 
longitudinal.

■■ Wave speed is a property of the 
medium.

■■ Sinusoidal waves are periodic  
in both time (period) and space 
(wavelength). They obey v = l f .

■■ Waves obey the principle of 
superposition.

Models What are the most important models of Part IV?
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Oscillations and Waves

   KNOWLEDGE STRUCTUREPART

IV

■■ Particles are
■❚ Localized
■❚ Discrete
■❚ Two particles cannot occupy the same point in space.

■■ Waves are
■❚ Diffuse
■❚ Spread out
■❚ Two waves can pass through each other.

Key Findings What are the overarching findings of Part IV?

Oscillation period
■❚ Frequency f = 1/T
■❚ Angular frequency v = 2pf = 2p/T
■❚ Spring T = 2p1m/k
■❚ Pendulum T = 2p1L/g
■❚ Wave f = v/l

Sinusoidal wave
■❚ Displacement is a function of x and t:

D1x, t2 = A sin 1kx | vt + f02
■❚ -v t for motion to the right
■❚ +v t for motion to the left
■❚ The wave number is k = 2p/l

Sound intensity level
b = 110 dB2 log101I/10-12 W/m22

Wave speed
■❚ String v = 1Ts/m
■❚ Sound v = 1B/r

Phase

■❚ The quantity v t + f0 is called  
the phase f of SHM.

■❚ The quantity kx - v t + f0 is  
the phase f of a sinusoidal wave.

■❚ The phase constant f0 is given  
by the initial conditions.

Doppler effect
A frequency shift when the source  
moves relative to an observer:

f = f0/11 | vs/v2
for an approaching/receding source.

Standing waves
Two waves traveling in 
opposite directions.

■❚ Strings, open-open  
tubes, and closed-
closed tubes:
fm = m  f1
f1 = v/2L = fundamental frequency

■❚ Standing waves have points that  
never move called nodes.

Interference
■❚ Constructive interference if in phase

∆f = m # 2p rad
■❚ Destructive interference if out of phase

∆f = 1m + 1
22 # 2p rad

■❚ Beats fbeat = � f1 - f2 � if frequencies differ.

Tools What are the most important tools introduced in Part IV?

m = 1

m = 2

Newton’s second law SHM: d2x/dt2 = -v2x       Wave equation: 0 2 D/0 t2 = v2  0 2 D/0 x2

Conservation of energy For SHM: E = 1
2 mv2 + 1

2 k x2 = 1
2 m1vmax22 = 1

2 k A2

Fundamental relationship for sinusoidal waves v = l f = v/k

Principle of superposition The net displacement is the sum of the displacements due to each wave.

Laws What laws of physics govern oscillations and waves?
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OVERVIEW

It’s All About Energy
Thermodynamics—the science of energy in its broadest context—arose hand 
in hand with the industrial revolution as the systematic study of converting heat 
energy into mechanical motion and work. Hence the name thermo + dynamics. 
Indeed, the analysis of engines and generators of various kinds remains the focus 
of engineering thermodynamics. But thermodynamics, as a science, now extends 
to all forms of energy conversions, including those involving living organisms. 
For example:

■■ Engines convert the energy of a fuel into the mechanical energy of moving 
pistons, gears, and wheels.

■■ Fuel cells convert chemical energy into electric energy.
■■ Photovoltaic cells convert the electromagnetic energy of light into electric 
energy.

■■ Lasers convert electric energy into the electromagnetic energy of light.
■■ Organisms convert the chemical energy of food into a variety of other forms 
of energy, including kinetic energy, sound energy, and thermal energy.

The major goals of Part V are to understand both how energy transformations 
such as these take place and how efficient they are. We’ll discover that the laws 
of thermodynamics place limits on the efficiency of energy transformations, and 
understanding these limits is essential for analyzing the very real energy needs of 
society in the 21st century.

Our ultimate destination in Part V is an understanding of the thermodynamics 
of heat engines. A heat engine is a device, such as a power plant or an internal 
combustion engine, that transforms heat energy into useful work. These are the 
devices that power our modern society.

Understanding how to transform heat into work will be a significant achievement, 
but we first have many steps to take along the way. We need to understand the con-
cepts of temperature and pressure. We need to learn about the properties of solids, 
liquids, and gases. Most important, we need to expand our view of energy to include 
heat, the energy that is transferred between two systems at different temperatures.

At a deeper level, we need to see how these concepts are connected to the 
underlying microphysics of randomly moving molecules. We will find that the fa-
miliar concepts of thermodynamics, such as temperature and pressure, have their 
roots in atomic-level motion and collisions. This micro/macro connection will 
lead to the second law of thermodynamics, one of the most subtle but also one of 
the most profound and far-reaching statements in physics.

Only after all these steps have been taken will we be able to analyze a real heat 
engine. It is an ambitious goal, but one we can achieve.

Thermodynamics
PA R T

V 

Smoke particles allow us to visualize convection, one of the ways in  
which heat is transferred from one place to another.
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A Macroscopic Description 
of Matter

What are the phases of matter?
Most materials can exist as a solid, a liquid, or a gas. These are  
the most common phases of matter.

Solid Liquid Gas

Starting with this chapter and continuing through Part V you will 
come to understand that the macroscopic properties of matter, 
such as volume, density, pressure, and temperature, can often be 
understood in terms of the microscopic motions of their atoms 
and molecules. This micro/macro connection is an important part 
of our modern understanding of matter.

❮❮ LOOKING BACK Sections 14.1–14.3 Fluids and pressure

What is temperature?
You’re familiar with temperature, but what 
does it actually measure? We’ll start with 
the simple idea that temperature measures 
“hotness” and “coldness,” but we’ll come 
to recognize that temperature measures a 
system’s thermal energy. We’ll study the 
well-known fact that objects expand or 
contract when the temperature changes.

What is an ideal gas?
We’ll model a gas as consisting of tiny, 
hard spheres that occasionally collide but 
otherwise do not interact with each other. 
This ideal gas obeys a law relating four 
state variables—the ideal-gas law:

pV = nRT

You will use the ideal-gas law to analyze 
what happens when a gas changes state.

What is an ideal-gas process?
Heating or compressing a gas is a process 
that changes the state of the gas. An 
 ideal-gas process can be shown as a  
trajectory through a pV diagram. We’ll 
study three basic processes:

■■ Constant-volume process
■■ Constant-pressure process
■■ Constant-temperature process

Why are macroscopic properties important?
Physicists, chemists, biologists, and engineers all work with 
 matter at the macroscopic level. Everything from basic science  
to engineering design depends on knowing how materials  respond  
when they are heated, compressed, melted, or otherwise changed 
by factors in their environment. Changing states of matter underlie  
devices ranging from car engines to power plants to spacecraft.

IN THIS CHAPTER, you will learn some of the characteristics of macroscopic systems.

18

The phrase “solid as a rock” is 
cast in doubt when rocks melt, 
as they do in this flowing lava.

Before After

p

n, V, T

p

V

1

2
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18.1 Solids, Liquids, and Gases 529

18.1 Solids, Liquids, and Gases
In Part V we will study the properties of matter itself, as opposed to the motion of 
matter. We will focus on a macroscopic description of large quantities of matter. Even 
so, part of our modern understanding of matter is that macroscopic properties, such 
as pressure and temperature, have their basis in the microscopic motions of atoms and 
molecules, and we’ll spend some time exploring this micro/macro connection.

As you know, each of the elements and most compounds can exist as a solid, liquid, 
or gas—the three most common phases of matter. The change between liquid and 
solid (freezing or melting) or between liquid and gas (boiling or condensing) is called 
a phase change. Water is the only substance for which all three phases—ice, liquid,  
and steam—are everyday occurrences.

   NOTE    This use of the word “phase” has no relationship at all to the phase or phase 
constant of simple harmonic motion and waves.

MODEL 18.1

Solids, liquids, and gases

Atoms vibrate around
equilibrium positions.

Atoms are held close together
by weak molecular bonds, but
they can slide around each other.

Atoms are far apart and travel
freely through space except for
occasional collisions.

Freeze

Melt

Condense

BoilLiquidSolid Gas

A solid is a rigid macroscopic system 
consisting of particle-like atoms connect-
ed by spring-like molecular bonds. Solids 
are nearly incompressible, which tells us 
that the atoms in a solid are just about as 
close together as they can get.

The solid shown here is a crystal, 
meaning that the atoms are arranged 
in a periodic array. Elements and many 
compounds have a crystal structure in 
their solid phase.

A liquid is a system in which the mole-
cules are loosely held together by weak 
molecular bonds. The bonds are strong 
enough that the molecules never get far 
apart but not strong enough to prevent the 
molecules from sliding around each other.

A liquid is more complicated than  
either a solid or a gas. Like a solid, a 
liquid is nearly incompressible. Like a 
gas, a liquid flows and deforms to fit the 
shape of its container.

A gas is a fairly simple system in 
which each molecule moves through 
space as a free, noninteracting parti-
cle until, on occasion, it collides with 
another molecule or with the wall of 
the container. A gas is a fluid. A gas is 
also highly compressible, which tells 
us that there is lots of space between 
the molecules.

Note that a gas completely fills its 
container.

State Variables
The parameters used to characterize or describe a macroscopic system are known as 
state variables because, taken all together, they describe the state of the macroscopic 
system. You met some state variables in earlier chapters: volume, pressure, mass, mass 
density, and thermal energy. We’ll soon introduce several new state variables.

One important state variable, the mass density, is defined as the ratio of two other 
state variables:

 r =
M
V
  (mass density) (18.1)

In this chapter we’ll use an uppercase M for the system mass and a lowercase m for the 
mass of an atom. TABLE 18.1 is a short list of mass densities.

A system is said to be in thermal equilibrium if its state variables are constant 
and not changing. As an example, a gas is in thermal equilibrium if it has been left 
undisturbed long enough for p, V, and T to reach steady values.

TABLE 18.1 Densities of materials

Substance R (kg/m3)

Air at STP* 1.29

Ethyl alcohol 790

Water (solid) 920

Water (liquid) 1000

Aluminum 2700

Copper 8920

Gold 19,300

Iron 7870

Lead 11,300

Mercury 13,600

Silicon 2330

*T = 0°C, p = 1 atm
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530 CHAPTER 18  A Macroscopic Description of Matter

18.2 Atoms and Moles
The mass of a macroscopic system is directly related to the total number of atoms or 
molecules in the system, denoted N. Because N is determined simply by counting,  
it is a number with no units. A typical macroscopic system has N ∼ 1025 atoms,  
an incredibly large number.

The symbol ∼ , if you are not familiar with it, stands for “has the order of mag-
nitude.” It means that the number is known only to within a factor of 10 or so. The 
statement N ∼ 1025, which is read “N is of order 1025,” implies that N is somewhere in 
the range 1024 to 1026. It is far less precise than the “approximately equal” symbol ≈ . 
Saying N ∼ 1025 gives us a rough idea of how large N is and allows us to know that it 
differs significantly from 105 or even 1015.

It is often useful to know the number of atoms or molecules per cubic meter in a 
system. We call this quantity the number density. It characterizes how densely the 
atoms are packed together within the system. In an N-atom system that fills volume V, 
the number density is

 
N
V
  (number density) (18.2)

The SI units of number density are m-3. The number density of atoms in a solid is 
(N/V)solid ∼ 1029 m-3. The number density of a gas depends on the pressure, but is 
usually less than 1027 m-3. As FIGURE 18.1 shows, the value of N/V in a uniform 
 system is independent of the volume V. That is, the number density is the same 
whether you look at the whole system or just a portion of it.

   NOTE    While we might say “There are 100 tennis balls per cubic meter,” or “There 
are 1029 atoms per cubic meter,” tennis balls and atoms are not units. The units of 
N/V are simply m-3.

Atomic Mass and Atomic Mass Number
You will recall from chemistry that atoms of different elements have different masses. 
The mass of an atom is determined primarily by its most massive constituents, the 
protons and neutrons in its nucleus. The sum of the number of protons and neutrons is 
called the atomic mass number A:

A = number of protons + number of neutrons

A, which by definition is an integer, is written as a leading superscript on the atomic 
symbol. For example, the common isotope of hydrogen, with one proton and no 
 neutrons, is 1H. The “heavy hydrogen” isotope called deuterium, which includes  

A project on which you are working uses a cylindrical lead pipe 
with outer and inner diameters of 4.0 cm and 3.5 cm, respectively, 
and a length of 50 cm. What is its mass?

SOLVE The mass density of lead is rlead = 11,300 kg/m3. The vol-
ume of a circular cylinder of length l is V = pr2l. In this case we 
need to find the volume of the outer cylinder, of radius r2, minus 

the volume of air in the inner cylinder, of radius r1. The volume of 
the pipe is

V = pr2 

2l - pr1 

2l = p1r2 

2 - r1 

22l = 1.47 * 10-4 m3

Hence the pipe’s mass is

M = rleadV = 1.7 kg

EXAMPLE 18.1 ■ The mass of a lead pipe

STOP TO THINK 18.1 The pressure in a system is measured to be 60 kPa. At a later 
time the pressure is 40 kPa. The value of ∆p is

a. 60 kPa b. 40 kPa c. 20 kPa d. -20 kPa

In half the room, we find 
5000 balls in 50 m3: 
N/V = 5000/50 m3 = 100 m-3

In one-tenth of the room, we 
find 1000 balls in 10 m3:
N/V = 1000/10 m3 = 100 m-3

A 100 m3 room contains 10,000 tennis balls. 
The number density of balls in the room is 
       N/V = 10,000/100 m3 = 100 m-3

FIGURE 18.1 The number density of a 
uniform system is independent of the 
volume.
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one neutron, is 2H. The primary isotope of carbon, with six protons (which makes it 
carbon) and six neutrons, is 12C. The radioactive isotope 14C, used for carbon dating of 
archeological finds, contains six protons and eight neutrons.

The atomic mass scale is established by defining the mass of 12C to be exactly 
12 u, where u is the symbol for the atomic mass unit. That is, m112C2 = 12 u. 
The atomic mass of any other atom is its mass relative to 12C. For example, careful 
experiments with hydrogen find that the mass ratio m11H2/m112C2 is 1.0078/12. Thus 
the atomic mass of hydrogen is m11H2 = 1.0078 u.

The numerical value of the atomic mass of 1H is close to, but not exactly, its 
atomic mass number A = 1. For our purposes, it will be sufficient to overlook the 
slight difference and use the integer atomic mass numbers as the values of the 
atomic mass. That is, we’ll use m11H2 = 1 u, m14He2 = 4 u, and m116O2 =16 u. 
For molecules, the molecular mass is the sum of the atomic masses of the atoms 
forming the molecule. Thus the molecular mass of O2, the constituent of oxygen gas, 
is m1O22 = 32 u.

   NOTE    An element’s atomic mass number is not the same as its atomic number. The 
atomic number, the element’s position in the periodic table, is the number of protons 
in the nucleus.

TABLE 18.2 shows the atomic mass numbers of some of the elements that we’ll use 
for examples and homework problems. A complete periodic table of the elements, 
including atomic masses, is found in Appendix B.

Very careful laboratory measurements have established that the mass of a 12C atom 
in SI units is m112C2 = 1.993 * 10-26 kg. Thus the conversion factor between atomic 
mass units and kilograms is

1 u =
m112C2

12
= 1.66 * 10-27 kg

This conversion factor allows us to calculate the mass in kg of any atom or mol-
ecule. For example, a 20Ne atom has atomic mass m120Ne2 = 20 u. Multiplying by 
1.66 * 10-27 kg/u gives m120Ne2 = 3.32 * 10-26 kg. If the atomic or molecular mass 
is specified in kilograms, the number of atoms or molecules in a system of mass M is

 N =
M
m

 (18.3)

   NOTE    Chemists usually use daltons (Da) rather than atomic mass units (u) as the 
unit of the atomic mass scale. They are the same thing (1 Da = 1 u), simply different 
names. Your chemistry book may say that the atomic mass of 12C is 12 Da.

Moles and Molar Mass
We often need to know the amount of substance in a macroscopic system: basically, 
how much “stuff” is present. The most familiar way of doing that is to specify the 
system’s mass M. Another way is to measure the amount of substance in moles. By 
definition, 1 mole of matter—be it solid, liquid, or gas—is the amount of a substance 
that contains 6.02 * 1023 basic particles.

The basic particle depends on the substance. Helium is a monatomic gas, meaning 
that the basic particle is the helium atom. Thus 6.02 * 1023 helium atoms are 1 mol of 
helium. But oxygen gas is a diatomic gas because the basic particle is the two- atom 
diatomic molecule O2. 1 mol of oxygen gas contains 6.02 * 1023 molecules of O2 and 
thus 2 * 6.02 * 1023 oxygen atoms. TABLE 18.3 lists the monatomic and diatomic gases  
that we will use for examples and homework problems.

The number of basic particles per mole of substance is called Avogadro’s number,  
NA. The value of Avogadro’s number is

NA = 6.02 * 1023 mol-1

One mole of helium, sulfur, copper, and 
mercury.

TABLE 18.2 Some atomic mass numbers

Element A

1H Hydrogen 1
4He Helium 4
12C Carbon 12
14N Nitrogen 14
16O Oxygen 16
20Ne Neon 20
27Al Aluminum 27
40Ar Argon 40
207Pb Lead 207

TABLE 18.3 Monatomic and diatomic gases

Monatomic Diatomic

He Helium H2 Hydrogen

Ne Neon N2 Nitrogen

Ar Argon O2 Oxygen
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532 CHAPTER 18  A Macroscopic Description of Matter

Despite its name, Avogadro’s number is not simply “a number”; it has units. Because there 
are NA particles per mole, the number of moles in a substance containing N basic particles is

 n =
N

NA
  (moles of substance) (18.4)

Notice that we use uppercase N for the number of atoms or molecules, lowercase n for 
the number of moles.

The molar mass of a substance is the mass of 1 mol of substance. The molar 
mass, which we’ll designate Mmol, has units kg/mol. The definition of the mole is 
such that a substance with atomic or molecular mass A u has a molar mass of almost 
exactly A g/mol. (This is due to an older definition of the mole that was based on the 
mass of 12C.) Thus the molar mass of 4He, with A = 4, is 4.0 g/mol. Chemists usually 
work with g/mol, but in physics we need molar masses to be in SI units of kg/mol. 
Thus our rule is that the molar mass is the atomic or molecular mass in u divided by 
1000. For example, the molar mass of He, with m = 4 u, is Mmol1He2 = 0.004 kg/mol 
and the molar mass of diatomic O2 is Mmol1O22 = 0.032 kg/mol.

Equation 18.3 uses the atomic mass to find the number of atoms in a system. 
Similarly, you can use the molar mass to determine the number of moles. For a system 
of mass M consisting of atoms or molecules with molar mass Mmol,

 n =
M

Mmol
 (18.5)

100 g of oxygen gas is how many moles of oxygen?

SOLVE We can do the calculation two ways. First, let’s determine 
the number of molecules in 100 g of oxygen. The diatomic oxygen 
molecule O2 has molecular mass m = 32 u. Converting this to kg, 
we get the mass of one molecule:

m = 32 u *
1.66 * 10-27 kg

1 u
= 5.31 * 10-26 kg

Thus the number of molecules in 100 g = 0.100 kg is

N =
M
m

=
0.100 kg

5.31 * 10-26 kg
= 1.88 * 1024

Knowing the number of molecules gives us the number of moles:

n =
N

NA
= 3.13 mol

Alternatively, we can use Equation 18.5 to find

n =
M

Mmol
=

0.100 kg

0.032 kg/mol
= 3.13 mol

EXAMPLE 18.2 ■ Moles of oxygen

18.3 Temperature
We are all familiar with the idea of temperature. Mass is a measure of the amount 
of substance in a system. Velocity is a measure of how fast a system moves. What 
physical property of the system have you determined if you measure its temperature?

We will begin with the commonsense idea that temperature is a measure of how  
“hot” or “cold” a system is. As we develop these ideas, we’ll find that temperature 
T is related to a system’s thermal energy. We defined thermal energy in Chapter 9 as 
the kinetic and potential energy of the atoms and molecules in a system as they vibrate  
(a solid) or move around (a gas). A system has more thermal energy when it is “hot” 
than when it is “cold.” In Chapter 20, we’ll replace these vague notions of hot and cold  
with a precise relationship between temperature and thermal energy.

To start, we need a means to measure the temperature of a system. This is what a  
thermometer does. A thermometer can be any small macroscopic system that undergoes 

Thermal expansion of the liquid in the 
thermometer tube pushes it higher in the 
hot water than in the ice water.

STOP TO THINK 18.2 Which system contains more atoms: 5 mol of helium 1A = 42 
or 1 mol of neon 1A = 202?

a. Helium.   b. Neon.   c. They have the same number of atoms.
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a measurable change as it exchanges thermal energy with its surroundings. It is placed in 
contact with a larger system whose temperature it will measure. In a common glass-tube 
thermometer, for example, a small volume of mercury or alcohol expands or contracts 
when placed in contact with a “hot” or “cold” object. The object’s temperature is deter-
mined by the length of the column of liquid.

A thermometer needs a temperature scale to be a useful measuring device. In 1742, 
the Swedish astronomer Anders Celsius sealed mercury into a small capillary tube 
and observed how it moved up and down the tube as the temperature changed. He se-
lected two temperatures that anyone could reproduce, the freezing and boiling points 
of pure water, and labeled them 0 and 100. He then marked off the glass tube into one 
hundred equal intervals between these two reference points. By doing so, he invented 
the temperature scale that we today call the Celsius scale. The units of the Celsius 
temperature scale are “degrees Celsius,” which we abbreviate °C. Note that the degree 
symbol ° is part of the unit, not part of the number.

The Fahrenheit scale, still widely used in the United States, is related to the Celsius 
scale by

 TF = 9
5 TC + 32° (18.6)

FIGURE 18.2 shows several temperatures measured on the Celsius and Fahrenheit scales 
and also on the Kelvin scale.

Absolute Zero and Absolute Temperature
Any physical property that changes with temperature can be used as a thermome-
ter. In practice, the most useful thermometers have a physical property that changes 
linearly with temperature. One of the most important scientific thermometers is the 
constant-volume gas thermometer shown in FIGURE 18.3a. This thermometer 
 depends on the fact that the absolute pressure (not the gauge pressure) of a gas in a 
sealed container increases linearly as the temperature increases.

A gas thermometer is first calibrated by recording the pressure at two reference tem-
peratures, such as the boiling and freezing points of water. These two points are plotted on 
a pressure-versus-temperature graph and a straight line is drawn through them. The gas 
bulb is then brought into contact with the system whose temperature is to be measured. 
The pressure is measured, then the corresponding temperature is read off the graph.

FIGURE 18.3b shows the pressure-temperature relationship for three different gases. 
Notice two important things about this graph.

1. There is a linear relationship between temperature and pressure.
2. All gases extrapolate to zero pressure at the same temperature: T0 = -273.15°C. 

No gas actually gets that cold without condensing, although helium comes very 
close, but it is surprising that you get the same zero-pressure temperature for 
any gas and any starting pressure.

The pressure in a gas is due to collisions of the molecules with each other and the 
walls of the container. A pressure of zero would mean that all motion, and thus all colli-
sions, had ceased. If there were no atomic motion, the system’s thermal energy would be 
zero. The temperature at which all motion would cease, and at which Eth = 0, is called 
absolute zero. Because temperature is related to thermal energy, absolute zero is the 
lowest temperature that has physical meaning. We see from the gas-thermometer data 
that T0 = -273.15°C. In practice, this can almost always be rounded to T0 = -273°C.

It is useful to have a temperature scale with the zero point at absolute zero. 
Such a temperature scale is called an absolute temperature scale. Any system  
whose temperature is measured on an absolute scale will have T 7 0. The absolute 
temperature scale having the same unit size as the Celsius scale is called the Kelvin 
scale. It is the SI scale of temperature. The units of the Kelvin scale are kelvins,  
abbreviated as K. The conversion between the Celsius scale and the Kelvin scale is

 TK = TC + 273 (18.7)

Water boils

18
0°

F

°F

Room temperature
Water freezes

Nitrogen boils

Absolute zero

CO2 sublimates

Normal body temp

212

68
32

-321

-460
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99

10
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C

°C

100

20
0

-196

-273

-78

37

10
0 
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293
273

77

0

195
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FIGURE 18.2 Temperatures measured with 
different scales.

Pressure gauge reading
absolute pressure

Rigid 
gas-filled 
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T
System whose
temperature is
to be measured
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Condensation
points
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Gas 3

Gas 2

Gas 1

p

100-100-200-300

T0 = -273°C
0

Each gas thermometer
is calibrated at 0°C 
and 100°C.

FIGURE 18.3 The pressure in a constant-
volume gas thermometer extrapolates to 
zero at T0 = -273°C.
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On the Kelvin scale, absolute zero is 0 K, the freezing point of water is 273 K, and the 
boiling point of water is 373 K.

   NOTE    The units are simply “kelvins,” not “degrees Kelvin.”

Before: Temperature T

After: Temperature T + ∆T

L ∆L

FIGURE 18.4 An object’s length changes 
when the temperature changes.

STOP TO THINK 18.3 The temperature of a glass of water increases from 20°C to 
30°C. What is ∆T ?

a. 10 K b. 283 K c. 293 K d. 303 K

18.4 Thermal Expansion
Objects expand when heated. This thermal expansion is why the liquid rises in a 
thermometer and why pipes, highways, and bridges have expansion joints. FIGURE 18.4 
shows an object of length L that changes by ∆L when the temperature is changed from 
T to T + ∆T. For most solids, the fractional change in length, ∆L/L, is proportional 
to the temperature change ∆T  with a proportionality coefficient that depends on the 
material. That is,

 
∆L
L

= a ∆T  (18.8)

where a (Greek alpha) is the material’s coefficient of linear expansion. Equation 
18.8 characterizes both expansion (∆L 7 0 if the temperature increases) and con-
traction (∆L 6 0 if the temperature falls).

TABLE 18.4 gives the coefficients of linear expansion for a few common materials and  
also for a metal alloy called invar that is specifically designed to have extremely low 
 thermal  expansion. Because the fractional change in length is dimensionless, a has units of 
°C-1, read as “per degree Celsius.” The units may also be written K-1, because a tempera-
ture change ∆T is the same in °C and K, but practical measurements are made in °C, not K.

TABLE 18.4 Coefficients of linear  
and volume expansion

Material A (°C-1)

Aluminum 2.3 * 10-5

Brass 1.9 * 10-5

Concrete 1.2 * 10-5

Steel 1.1 * 10-5

Invar 0.09 * 10-5

Material B (°C-1)

Gasoline 9.6 * 10-4

Mercury 1.8 * 10-4

Ethyl alcohol 1.1 * 10-3

A 55-m-long steel pipe runs from one side of a refinery to the other. By how much does 
the pipe expand on a 5°C winter day when 155°C oil is pumped through it?

SOLVE The expansion is given by Equation 18.8, with the coefficient of linear expansion  
for steel taken from Table 18.4:

  ∆L = aL ∆T = 11.1 * 10-5 °C-12155 m21150°C2
  = 0.091 m = 9.1 cm

REVIEW 9.1 cm is a very small fraction of 55 m, so the pipe as a whole has expanded very 
little. Nevertheless, 9.1 cm ≈ 3.5 in is a huge expansion in terms of the engineering of 
the pipe. Pipes like this have to be designed with flexible expansion joints that allow for 
thermal expansion and contraction.

EXAMPLE 18.3 ■ An expanding pipe

Volume expansion is treated the same way. If an object’s volume changes by ∆  V 
during a temperature change ∆T, the fractional change in volume is

 
∆  V
V

= b  ∆T  (18.9)

where b (Greek beta) is the material’s coefficient of volume expansion.
Liquids are constrained by the shape of their container, so liquids are characterized 

by a volume-expansion coefficient but not by a linear-expansion coefficient. A few 
values are given in Table 18.4, where you can see that b, like a, has units of °C-1.
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Solids expand linearly in all three directions, as given by Equation 18.8, and in 
the process a solid changes its volume. Imagine a cube of edge length L and volume 
V = L3. If the edge length changes by a very small amount dL, the volume changes by

 dV = 3L2 dL (18.10)

If we divide both sides by V = L3, we see that

 
dV
V

= 3 
dL
L

 (18.11)

That is, the fractional change in volume is three times the fractional change in the 
length of the sides. Consequently, a solid’s coefficient of volume expansion is

 bsolid = 3a (18.12)

You may have noticed that Table 18.4 does not include water. Water is a very common  
substance, but—due to its molecular structure—water has some unusual properties 
that set it apart from other liquids. If you lower the temperature of water, its volume 
contracts as expected. But only until the temperature reaches 4°C. If you continue  
cooling water, from 4°C down to the freezing point at 0°C, the volume expands! 
Water has maximum density at 4°C, with slightly less density—due to the expanded 
volume—at both higher and lower temperatures. Consequently, the thermal expansion  
of water cannot be characterized by a single coefficient of thermal expansion.

Any structure subject to temperature 
changes has to be able to respond to 
thermal expansion. Highways, bridges, 
and railroads have thermal expansion 
joints. These joints are also needed in 
pipes and ducts. The flexible bellows 
seen in this photo can handle large 
temperature changes. Molded rubber 
segments can deal with less extreme 
temperature swings.

STOP TO THINK 18.4 A steel plate has a 2.000-cm-diameter hole through it. If the 
plate is heated, does the diameter of the hole increase or decrease?

18.5 Phase Changes
The temperature inside the freezer compartment of a refrigerator is typically about 
-20°C. Suppose you were to remove a few ice cubes from the freezer, place them in 
a sealed container with a thermometer, then heat them, as FIGURE 18.5a shows. We’ll 
assume that the heating is done so slowly that the inside of the container always has a 
single, well-defined temperature.

FIGURE 18.5b shows the temperature as a function of time. After steadily rising from 
the initial -20°C, the temperature remains fixed at 0°C for an extended period of 
time. This is the interval of time during which the ice melts. As it’s melting, the ice 
temperature is 0°C and the liquid water temperature is 0°C. Even though the system 
is being heated, the liquid water temperature doesn’t begin to rise until all the ice 
has melted. If you were to turn off the flame at any point, the system would remain a 
mixture of ice and liquid water at 0°C.

   NOTE    In everyday language, the three phases of water are called ice, water, and 
steam. That is, the term “water” implies the liquid phase. Scientifically, these are the 
solid, liquid, and gas phases of the compound called water. To be clear, we’ll use the 
term “water” in the scientific sense of a collection of H2O molecules. We’ll say either  
“liquid” or “liquid water” to denote the liquid phase.

The thermal energy of a solid is the kinetic energy of the vibrating atoms plus the 
potential energy of the stretched and compressed molecular bonds. Melting occurs 
when the thermal energy gets so large that molecular bonds begin to break, allowing 
the atoms to move around. The temperature at which a solid becomes a liquid or, if 
the thermal energy is reduced, a liquid becomes a solid is called the melting point  
or the freezing point. Melting and freezing are phase changes.

A system at the melting point is in phase equilibrium, meaning that any amount 
of solid can coexist with any amount of liquid. Raise the temperature ever so slightly 

Ice

Water

Time

Ice is
warming.

Liquid water
is warming.

T (°C)

150

100

50

0

-50

Temperature is constant as 
the system changes from 
100% solid to 100% liquid.

Temperature is constant as 
the system changes from 
100% liquid to 100% gas.

Steam is
warming.

(b)

(a)

FIGURE 18.5 Water is transformed from 
solid to liquid to gas.
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and the entire system becomes liquid. Lower it slightly and it all becomes solid. But 
exactly at the melting point the system has no tendency to move one way or the other. 
That is why the temperature remains constant at the melting point until the phase 
change is complete.

You can see the same thing happening in Figure 18.5b at 100°C, the boiling point. 
This is a phase equilibrium between the liquid phase and the gas phase, and any 
amount of liquid can coexist with any amount of gas at this temperature. Above this 
 temperature, the thermal energy is too large for bonds to be established between 
 molecules, so the system is a gas. If the thermal energy is reduced, the molecules 
 begin to bond with each other and stick together. In other words, the gas condenses 
into a liquid. The temperature at which a gas becomes a liquid or, if the thermal 
 energy is increased, a liquid becomes a gas is called the condensation point or the 
boiling point.

   NOTE    Liquid water becomes solid ice at 0°C, but that doesn’t mean the  temperature 
of ice is always 0°C. Ice reaches the temperature of its surroundings. If the air 
temperature in a freezer is -20°C, then the ice temperature is -20°C. Likewise, 
steam can be heated to temperatures above 100°C. That doesn’t happen when you 
boil water on the stove because the steam escapes, but steam can be heated far above 
100°C in a sealed container.

Phase Diagrams
A phase diagram is used to show how the phases and phase changes of a substance 
vary with both temperature and pressure. FIGURE 18.6 shows the phase diagrams for 
water and carbon dioxide. You can see that each diagram is divided into three regions 
corresponding to the solid, liquid, and gas phases. The boundary lines separating 
the  regions indicate the phase transitions. The system is in phase equilibrium at a 
pressure-temperature point that falls on one of these lines.

T (°C)

p (atm)

1

-78
Carbon dioxide

-56 31

5

73

T (°C)

p (atm)

SOLID LIQUID Critical
point

Critical
point

GAS

SOLID LIQUID

GAS

0.006

0
Water

0.01 100 374

1

218

Boil

Triple
point

Condense

Sublimate

Melt

Freeze

Triple
point

Solid and
liquid are
in phase
equilibrium.

Liquid and gas
are in phase
equilibrium.

FIGURE 18.6 Phase diagrams (not to scale) for water and carbon dioxide.

Phase diagrams contain a great deal of information. Notice on the water phase 
diagram that the dashed line at p = 1 atm crosses the solid-liquid boundary at 0°C 
and the liquid-gas boundary at 100°C. These well-known melting and boiling point 
temperatures of water apply only at standard atmospheric pressure. You can see that 
in Denver, where patmos 6 1 atm, water melts at slightly above 0°C and boils at a 
 temperature below 100°C. A pressure cooker works by allowing the pressure inside 
to exceed 1 atm. This raises the boiling point, so foods that are in boiling water are at  
a temperature above 100°C and cook faster.

Crossing the solid-liquid boundary corresponds to melting or freezing while 
crossing the liquid-gas boundary corresponds to boiling or condensing. But there’s 
another possibility—crossing the solid-gas boundary. The phase change in which a  
solid becomes a gas is called sublimation. It is not an everyday experience with 
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water, but you probably are familiar with the sublimation of dry ice. Dry ice is solid 
carbon dioxide. You can see on the carbon dioxide phase diagram that the dashed line 
at p = 1 atm crosses the solid-gas boundary, rather than the solid-liquid boundary,  
at T = -78°C. This is the sublimation temperature of dry ice.

Liquid carbon dioxide does exist, but only at pressures greater than 5 atm and 
temperatures greater than -56°C. A CO2 fire extinguisher contains liquid carbon 
dioxide under high pressure. (You can hear the liquid slosh if you shake a CO2 fire 
extinguisher.)

One important difference between the water and carbon dioxide phase diagrams is the 
slope of the solid-liquid boundary. For most substances, the solid phase is denser than the 
liquid phase and the liquid is denser than the gas. Pressurizing the substance compresses 
it and increases the density. If you start compressing CO2 gas at room temperature, thus 
moving upward through the phase diagram along a vertical line, you’ll first condense it to 
a liquid and eventually, if you keep compressing, change it into a solid.

Water is a very unusual substance in that the density of ice is less than the density 
of liquid water. That is why ice floats. If you compress ice, making it denser, you 
eventually cause a phase transition in which the ice turns to liquid water! Consequently, 
the solid-liquid boundary for water slopes to the left.

The liquid-gas boundary ends at a point called the critical point. Below the 
critical point, liquid and gas are clearly distinct and there is a phase change if you 
go from one to the other. But there is no clear distinction between liquid and gas at 
pressures or temperatures above the critical point. The system is a fluid, but it can be 
varied continuously between high density and low density without a phase change.

The final point of interest on the phase diagram is the triple point where the 
phase boundaries meet. Two phases are in phase equilibrium along the boundaries. 
The triple point is the one value of temperature and pressure for which all three phases 
can coexist in phase equilibrium. That is, any amounts of solid, liquid, and gas can 
happily coexist at the triple point. For water, the triple point occurs at T3 = 0.01°C and  
p3 = 0.006 atm.

Food takes longer to cook at high  
altitudes because the boiling point of 
water is lower than 100°C.

STOP TO THINK 18.5 For which is there a sublimation temperature that is higher 
than a melting temperature?

a. Water b. Carbon dioxide c. Both d. Neither

18.6 Ideal Gases
We noted earlier in the chapter that solids and liquids are nearly incompressible, an 
observation suggesting that atoms are fairly hard and cannot be pressed together once 
they come into contact with each other. Based on this observation, suppose we were 
to model atoms as “hard spheres” that do not interact except for occasional elastic col-
lisions when two atoms come into contact and bounce apart. FIGURE 18.7 reminds you 
that such a gas completely and uniformly fills its container.

This is a model of an atom—what we might call the ideal atom—because it ignores 
the weak attractive interactions that hold liquids and solids together. A gas of these 
noninteracting atoms is called an ideal gas. It is a gas of small, hard, randomly moving 
atoms that bounce off each other and the walls of their container but otherwise do not 
interact. The ideal gas is a somewhat simplified description of a real gas, but experiments 
show that the ideal-gas model is quite good for real gases if two conditions are met:

1. The density is low (i.e., the atoms occupy a volume much smaller than that of 
the container), and

2. The temperature is well above the condensation point.

If the density gets too high, or the temperature too low, then the attractive forces 
between the atoms begin to play an important role and our model, which ignores  

FIGURE 18.7 A gas completely and uni-
formly fills its container at all tempera-
tures. Changing the temperature changes 
the speeds of the molecules but not their 
ability to fill the container.
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those attractive forces, fails. These are the forces that are responsible, under the right 
conditions, for the gas condensing into a liquid.

We’ve been using the term “atoms,” but many gases, as you know, consist of  
molecules rather than atoms. Only helium, neon, argon, and the other inert elements  
in the far-right column of the periodic table of the elements form monatomic  
gases. Hydrogen (H2), nitrogen (N2), and oxygen (O2) are diatomic gases. As far as 
translational motion is concerned, the ideal-gas model does not distinguish between a 
monatomic gas and a diatomic gas; both are considered as simply small, hard spheres. 
Hence the terms “atoms” and “molecules” can be used interchangeably to mean the 
basic constituents of the gas.

The Ideal-Gas Law
Section 18.1 introduced the idea of state variables, those parameters that describe the 
state of a macroscopic system. The state variables for an ideal gas are the volume V of 
its container, the number of moles n of the gas present in the container, the temperature 
T of the gas and its container, and the pressure p that the gas exerts on the walls of the 
container. These four state parameters are not independent of each other. If you change 
the value of one—by, say, raising the temperature—then one or more of the others will 
change as well. Each change of the parameters is a change of state of the system.

Experiments during the 17th and 18th centuries found a very specific relationship 
between the four state variables. Suppose you change the state of a gas, by heating it 
or compressing it or doing something else to it, and measure p, V, n, and T. Repeat this 
many times, changing the state of the gas each time, until you have a large table of p, 
V, n, and T values.

Then make a graph on which you plot pV, the product of the pressure and volume, 
on the vertical axis and nT, the product of the number of moles and temperature (in 
kelvins), on the horizontal axis. The very surprising result is that for any gas, whether 
it is hydrogen or helium or oxygen or methane, you get exactly the same graph, the 
linear graph shown in FIGURE 18.8. In other words, nothing about the graph indicates 
what gas was used because all gases give the same result.

   NOTE    No real gas could extend to nT = 0 because it would condense. But an ideal 
gas never condenses because the only interactions among the molecules are hard-
sphere collisions.

As you can see, there is a very clear proportionality between the quantity pV and 
the quantity nT. If we designate the slope of the line in this graph as R, then we can 
write the relationship as

pV = R * 1nT2
It is customary to write this relationship in a slightly different form, namely

 pV = nRT  (ideal@gas law) (18.13)

Equation 18.13 is the ideal-gas law. The ideal-gas law is a relationship among 
the four state variables—p, V, n, and T—that characterize a gas in thermal 
equilibrium.

The constant R, which is determined experimentally as the slope of the graph in 
Figure 18.8, is called the universal gas constant. Its value, in SI units, is

R = 8.31 J/mol K

The units of R seem puzzling. The denominator mol K is clear because R multiplies 
nT. But what about the joules? The left side of the ideal-gas law, pV, has units

Pa m3 =
N

m2 m3 = N m = joules

The product pV has units of joules, as shown on the vertical axis in Figure 18.8.

nT (mol K)

pV (J)

10

8.31

0
2

16.62

The graph of pV versus nT
is a straight line with slope
R = 8.31 J/mol K.

FIGURE 18.8 A graph of pV versus nT for 
an ideal gas.
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   NOTE    You perhaps learned in chemistry to work gas problems using units of 
atmospheres and liters. To do so, you had a different numerical value of R expressed 
in those units. In physics, however, we always work gas problems in SI units. 
Pressures must be in Pa, volumes in m3, and temperatures in K.

The surprising fact, and one worth commenting upon, is that all gases have the 
same graph and the same value of R. There is no obvious reason a very simple atomic 
gas such as helium should have the same slope as a more complex gas such as methane  
1CH42. Nonetheless, both turn out to have the same value for R. The ideal-gas law, 
within its limits of validity, describes all gases with a single value of the constant R.

100 g of oxygen gas is distilled into an evacuated 600 cm3 container.  
What is the gas pressure at a temperature of 150°C?

MODEL The gas can be treated as an ideal gas. Oxygen is a diatomic 
gas of O2 molecules.

SOLVE From the ideal-gas law, the pressure is p = nRT/V. In Example 
18.2 we calculated the number of moles in 100 g of O2 and found 
n = 3.13 mol. Gas problems typically involve several conversions to 
get quantities into the proper units, and this example is no exception. 
The SI units of V and T are m3 and K, respectively, thus

  V = 1600 cm321 1 m
100 cm23

= 6.00 * 10-4 m3

  T = 1150 + 2732 K = 423 K

With this information, the pressure is

  p =
nRT

V
=

13.13 mol218.31 J/mol K21423 K2
6.00 * 10-4 m3

  = 1.83 * 107 Pa = 181 atm

EXAMPLE 18.4 ■ Calculating a gas pressure

A cylinder of gas is at 0°C. A piston compresses the gas to half its 
original volume and three times its original pressure. What is the 
final gas temperature?

MODEL Treat the gas as an ideal gas in a sealed container.

SOLVE The before-and-after relationship of Equation 18.15 can be 
written

T2 = T1 
p2

p1
 
V2

V1

In this problem, the compression of the gas results in V2 /V1 = 1
2 

and p2 /p1 = 3. The initial temperature is T1 = 0°C = 273 K. With 
this information,

T2 = 273 K * 3 * 1
2 = 409 K = 136°C

REVIEW We did not need to know actual values of the pressure and 
volume, just the ratios by which they change.

EXAMPLE 18.5 ■ Calculating a gas temperature

In this text we will consider only gases in sealed containers. The number of moles 
(and number of molecules) will not change during a problem. In that case,

 
pV

T
= nR = constant (18.14)

If the gas is initially in state i, characterized by the state variables pi, Vi, and Ti, and at 
some later time in a final state f, the state variables for these two states are related by

 
pfVf

Tf
=

piVi

Ti
  (ideal gas in a sealed container) (18.15)

This before-and-after relationship between the two states, reminiscent of a conserva-
tion law, will be valuable for many problems.

We will often want to refer to the number of molecules N in a gas rather than the 
number of moles n. This is an easy change to make. Because n = N/NA, the ideal-gas 
law in terms of N is

 pV = nRT =
N

NA
 RT = N 

R
NA

 T  (18.16)
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R/NA, the ratio of two known constants, is known as Boltzmann’s constant kB:

kB =
R

NA
= 1.38 * 10-23 J/K

The subscript B distinguishes Boltzmann’s constant from a spring constant or other 
uses of the symbol k.

Ludwig Boltzmann was an Austrian physicist who did some of the pioneering work 
in statistical physics during the mid-19th century. Boltzmann’s constant kB can be 
thought of as the “gas constant per molecule,” whereas R is the “gas constant per 
mole.” With this definition, the ideal-gas law in terms of N is

 pV = NkBT  (ideal@gas law) (18.17)

Equations 18.13 and 18.17 are both the ideal-gas law, just expressed in terms of 
 different state variables.

Recall that the number density (molecules per m3) was defined as N/V. A re- 
arrangement of Equation 18.17 gives the number density as

 
N
V

=
p

kBT
 (18.18)

This is a useful consequence of the ideal-gas law, but keep in mind that the pressure 
must be in SI units of pascals and the temperature must be in SI units of kelvins.

“Standard temperature and pressure,” abbreviated STP, are  
T = 0°C and p = 1 atm. Estimate the average distance between gas 
molecules at STP.

MODEL Consider the gas to be an ideal gas.

SOLVE Suppose a container of volume V holds N molecules at STP. 
How do we estimate the distance between them? Imagine placing 
an imaginary sphere around each molecule, separating it from its 
neighbors. This divides the total volume V into N little spheres  
of volume vi, where i = 1 to N. The spheres of two neighboring 
molecules touch each other, like a crate full of Ping-Pong balls  
of somewhat different sizes all touching their neighbors, so the 
 distance between two molecules is the sum of the radii of their 
two  spheres. Each of these spheres is somewhat different, but a 
reasonable estimate of the distance between molecules would be 
twice the average radius of a sphere.

The average volume of one of these little spheres is

vavg =
V
N

=
1

N/V

That is, the average volume per molecule (m3 per molecule)  
is the inverse of the number density, the number of molecules  
per m3. This is not the volume of the molecule itself but the average 
volume of space that each molecule can claim as its own. We can 
use Equation 18.18 to calculate the number density:

  
N
V

=
p

kB T
=

1.01 * 105 Pa

11.38 * 10-23 J/K21273 K2 = 2.69 * 1025 m-3

where we used the definition of STP in SI units. Thus the average 
volume per molecule is

vavg =
1

N/V
= 3.72 * 10-26 m3

The volume of a sphere is 43 pr3, so the average radius of a sphere is

ravg = 1 3
4p

 vavg21/3

= 2.1 * 10-9 m = 2.1 nm

The average distance between two molecules, with their spheres 
touching, is twice ravg. Thus

average distance = 2ravg ≈ 4 nm

This is a simple estimate, so we’ve given the answer with only one 
significant figure.

REVIEW One of the assumptions of the ideal-gas model is that at-
oms or molecules are “far apart” in comparison to the sizes of atoms 
and molecules. Chemistry experiments find that small molecules, 
such as N2 and O2, are roughly 0.3 nm in diameter. For a gas at STP, 
we see that the average distance between molecules is more than 10 
times the size of a molecule. Thus the ideal-gas model works very  
well for a gas at STP.

EXAMPLE 18.6 ■ The distance between molecules

   NOTE    Don’t confuse STP with the standard state of 1 atm, 25°C used in chemistry.

STOP TO THINK 18.6 You have two containers of equal volume. One is full of helium 
gas. The other holds an equal mass of nitrogen gas. Both gases have the same pressure. 
How does the temperature of the helium compare to the temperature of the nitrogen?

a. Thelium 7 Tnitrogen b. Thelium = Tnitrogen c. Thelium 6 Tnitrogen
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18.7 Ideal-Gas Processes
The ideal-gas law is the connection between the state variables pressure, temperature, 
and volume. If the state variables change, as they would from heating or compressing 
the gas, the state of the gas changes. An ideal-gas process is the means by which the 
gas changes from one state to another.

   NOTE    Even in a sealed container, the ideal-gas law is a relationship among three 
variables. In general, all three change during an ideal-gas process. As a result, thinking 
about cause and effect can be rather tricky. Don’t make the mistake of thinking that  
one variable is constant unless you’re sure, beyond a doubt, that it is.

The pV Diagram
It will be very useful to represent ideal-gas processes on a graph called a pV diagram. 
This is nothing more than a graph of pressure versus volume. The important idea behind 
the pV diagram is that each point on the graph represents a single, unique state of the 
gas. That seems surprising at first, because a point on the graph only directly specifies 
the values of p and V. But knowing p and V, and assuming that n is known for a sealed 
container, we can find the temperature by using the ideal-gas law. Thus each point  
actually represents a triplet of values 1p, V, T 2 specifying the state of the gas.

For example, FIGURE 18.9 is a pV diagram showing three states of a system consisting 
of 1 mol of gas. The values of p and V can be read from the axes for each point, then  
the temperature at that point determined from the ideal-gas law.

An ideal-gas process is a “trajectory” in the pV diagram showing all the intermediate  
states through which the gas passes. Figure 18.9 shows two different processes by 
which the gas can be changed from state 1 to state 3.

There are infinitely many ways to change the gas from state 1 to state 3. Although  
the initial and final states are the same for each of them, the particular process by which 
the gas changes—that is, the particular trajectory—will turn out to have very real  
consequences. The pV diagram is an important graphical representation of the process.

Quasi-Static Processes
Strictly speaking, the ideal-gas law applies only to gases in thermal equilibrium, 
meaning that the state variables are constant and not changing. But, by definition,  
an ideal-gas process causes some of the state variables to change. The gas is not in 
thermal equilibrium while the process of changing from state 1 to state 2 is under way.

To use the ideal-gas law throughout, we will assume that the process occurs so slowly 
that the system is never far from equilibrium. In other words, the values of p, V, and T at 
any point in the process are essentially the same as the equilibrium values they would 
assume if we stopped the process at that point. A process that is essentially in thermal 
equilibrium at all times is called a quasi-static process. It is an idealization, like a 
frictionless surface, but one that is a very good approximation in many real situations.

An important characteristic of a quasi-static process is that the trajectory through 
the pV diagram can be reversed. If you quasi-statically expand a gas by slowly pulling 
a piston out, as shown in FIGURE 18.10a, you can reverse the process by slowly push-
ing the piston in. The gas retraces its pV trajectory until it has returned to its initial  
state. Contrast this with what happens when the membrane bursts in FIGURE 18.10b. 
That is a sudden process, not at all quasi-static. The expanding gas is not in thermal 
equilibrium until some later time when it has completely filled the larger container, so  
the irreversible process of Figure 18.10b cannot be represented on a pV diagram.

The critical question is: How slow must a process be to qualify as quasi-static? That is 
a difficult question to answer. This textbook will always assume that processes are quasi- 
static. It turns out to be a reasonable assumption for the types of examples and homework 
problems we will look at. Irreversible processes will be left to more advanced courses.

V (m3)

p (kPa)

10

5

0
2 3

10

1

3

2

900 K

n = 1 mol

600 K

3600 K

Two different processes that change
the gas from state 1 to state 3

FIGURE 18.9 The state of the gas and 
ideal-gas processes can be shown on a pV 
diagram.

(a)

(b)

Quasi-static process

Membrane suddenly bursts.

Piston moves very slowly.

Sudden process

FIGURE 18.10 The slow motion of the 
piston is a quasi-static process. The 
bursting of the membrane is not.
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Constant-Volume Process
Because a gas completely fills its container, the volume of the gas is the volume of the 
container. Many important gas processes take place in a container of constant, unchang-
ing volume often referred to as a rigid container. A constant-volume process is called an 
isochoric process, where iso is a prefix meaning “constant” or “equal” while choric is 
from a Greek root meaning “volume.” An isochoric process is one for which

 Vf = Vi (18.19)

For example, suppose that you have a gas in the closed, rigid container shown in 
FIGURE 18.11a. Warming the gas with a Bunsen burner will raise its pressure without 
changing its volume. This process is shown as the vertical line 1 S 2 on the pV dia-
gram of FIGURE 18.11b. A constant-volume cooling, by placing the container on a block of  
ice, would lower the pressure and be represented as the vertical line from 2 to 1. Any  
isochoric process appears on a pV diagram as a vertical line.

(a) p1

V1

Before

Constant-
volume
container

p2

After

V2 = V1

FIGURE 18.11 A constant-volume (isochoric) process.

(b)

V

p

p1

V

p2

1

2
An isochoric
process appears
on a pV diagram
as a vertical line.

0
0

A constant-volume gas thermometer is placed in contact with a 
reference cell containing water at the triple point. After reach-
ing equilibrium, the gas pressure is recorded as 55.78 kPa. The 
thermometer is then placed in contact with a sample of unknown 
temperature. After the thermometer reaches a new equilibrium, 
the gas pressure is 65.12 kPa. What is the temperature of this 
sample?

MODEL The thermometer’s volume doesn’t change, so this is an 
isochoric process.

SOLVE The temperature at the triple point of water is 
T1 = 0.01°C = 273.16 K. The ideal-gas law for a closed system 

is p2V2 /T2 = p1V1/T1. The volume doesn’t change, so V2/V1 = 1. 
Thus

  T2 = T1 
V2

V1
 
p2

p1
= T1 

p2

p1
= 1273.16 K2 

65.12 kPa
55.78 kPa

  = 318.90 K = 45.75°C

The temperature must be in kelvins to do this calculation, although 
it is common to convert the final answer to °C. The fact that the 
pressures were given to four significant figures justified using 
TK = TC + 273.15 rather than the usual TC + 273.

REVIEW T2 7 T1, which we expected from the increase in pressure.

EXAMPLE 18.7 ■ A constant-volume gas thermometer

Constant-Pressure Process
Other gas processes take place at a constant, unchanging pressure. A constant- 
pressure process is called an isobaric process, where baric is from the same root as 
“barometer” and means “pressure.” An isobaric process is one for which

 pf = pi (18.20)

FIGURE 18.12a shows one method of changing the state of a gas while keeping the 
pressure constant. A cylinder of gas has a tight-fitting piston of mass M that can slide 
up and down but seals the container so that no atoms enter or escape. As the free-
body diagram of FIGURE 18.12b shows, the piston and the air press down with force 
patmosA + Mg while the gas inside pushes up with force pgasA. In equilibrium, the gas 
pressure inside the cylinder is

 pgas = patmos +
Mg

A
 (18.21)
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18.7 Ideal-Gas Processes 543

In other words, the gas pressure is determined by the requirement that the gas must 
support both the mass of the piston and the air pressing inward. This pressure is 
independent of the temperature of the gas or the height of the piston, so it stays 
constant as long as M is unchanged.

If the cylinder is warmed, the gas will expand and push the piston up. But the 
pressure, determined by mass M, will not change. This process is shown on the  
pV diagram of FIGURE 18.12c as the horizontal line 1 S 2. We call this an isobaric 
expansion. An isobaric compression occurs if the gas is cooled, lowering the piston. 
Any isobaric process appears on a pV diagram as a horizontal line.

The two cylinders in FIGURE 18.13 contain ideal gases at 20°C.  
Each cylinder is sealed by a frictionless piston of mass M.

a. How does the pressure of gas 2 compare to that of gas 1? Is it 
larger, smaller, or the same?

b. Suppose gas 2 is warmed to 80°C. Describe what happens to the 
pressure and volume.

MODEL Treat the gases as ideal gases.

SOLVE a. The pressure in the gas is determined by the requirement 
that the piston be in mechanical equilibrium. The pressure of the 
gas inside pushes up on the piston; the air pressure and the weight 
of the piston press down. The gas pressure p = patmos + Mg/A  
depends on the mass of the piston, but not at all on how high the 
piston is or what type of gas is inside the cylinder. Thus both pres-
sures are the same.

b. Neither does the pressure depend on temperature. Warming 
the gas increases the temperature, but the pressure—determined 
by the mass and area of the piston—is unchanged. Because  
pV/T = constant, and p is constant, it must be true that 
V/T = constant. As T increases, the volume V also must increase to 
keep V/T unchanged. In other words, increasing the gas temperature  
causes the volume to expand—the piston goes up—but with no 
change in pressure. This is an isobaric process.

EXAMPLE 18.8 ■ Comparing pressure

Your lab assistant distilled 50 g of a gas  
into a cylinder, but he left without writing 
down what kind of gas it is. The cylinder has  
a pressure regulator that adjusts a piston to keep 
the pressure at a constant 2.00 atm. To identify 
the gas, you measure the cylinder volume at sev-
eral different temperatures, acquiring the data 
shown at the right. What is the gas?

MODEL The pressure doesn’t change, so heating 
the gas is an isobaric process.

SOLVE The ideal-gas law is pV = nRT. Writing this as

V =
nR
p

 T

we see that a graph of V versus T should be a straight line passing 
through the origin. Further, we can use the slope of the graph, 
nR/p, to measure the number of moles of gas, and from that we can 
identify the gas by determining its molar mass.

FIGURE 18.14 on the next page is a graph of the data, with  
the volumes and temperatures converted to SI units of m3 
(1 m3 = 1000 L) and kelvins. The y-intercept of the graph is  

EXAMPLE 18.9 ■ Identifying a gas

(a)

Before After

The piston’s mass maintains a
constant pressure in the cylinder.

V1
V2

M

M

Area A

FIGURE 18.12 A constant-pressure (isobaric) process.

(b) pgasA

patmosA Mg

Piston

(c)

V

p

p

V1 V2

1 2

An isobaric process appears on 
a pV diagram as a horizontal line.

0
0

M

M

Gas 1
20°C Gas 2

20°C

FIGURE 18.13 Compare the pressures of the two gases.

T (°C) V (L)

-50 11.6
  0 14.0
 50 16.2
100 19.4
150 21.8

Continued
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544 CHAPTER 18  A Macroscopic Description of Matter

Constant-Temperature Process
The last process we wish to look at for now is one that takes place at a constant 
 temperature. A constant-temperature process is called an isothermal process. An 
isothermal process is one for which Tf = Ti. Because pV = nRT, a constant-temperature 
process in a closed system (constant n) is one for which the product pV doesn’t change.  
Thus

 pfVf = piVi (18.22)

in an isothermal process.
One possible isothermal process is illustrated in FIGURE 18.15a, where a piston is 

being pushed down to compress a gas. If the piston is pushed slowly, then heat energy 
transfer through the walls of the cylinder keeps the gas at the same temperature as the 
surrounding liquid. This is an isothermal compression. The reverse process, with the 
piston slowly pulled out, would be an isothermal expansion.

Representing an isothermal process on the pV diagram is a little more complicated 
than the two previous processes because both p and V change. As long as T remains 
fixed, we have the relationship

 p =
nRT

V
=

constant
V

 (18.23)

The inverse relationship between p and V causes the graph of an isothermal  
process to be a hyperbola. As one state variable goes up, the other goes down.

The process shown as 1 S 2 in FIGURE 18.15b represents the isothermal compression  
shown in Figure 18.15a. An isothermal expansion would move in the opposite direction  
along the hyperbola.

essentially zero, confirming the behavior of the gas as ideal, and 
the slope of the best-fit line is 5.16 * 10-5 m3/K. The number of 
moles of gas is

n =
p

R
* slope =

2 * 101,300 Pa

8.31 J/mol K
* 5.16 * 10-5 m3/K = 1.26 mol

From this, the molar mass is

M =
0.050 kg

1.26 mol
= 0.040 kg/mol

Thus the atomic mass is 40 u, identifying the gas as argon.

REVIEW The atomic mass is that of a well-known gas, which gives 
us confidence in the result.

y = 5.16 * 10-5x - 6.68 * 10-5

T (K)

Best-fit line

0

V (m3)

0.005

0.010

0.015

0.020

0.025

0
100 200 300 400 500

FIGURE 18.14 A graph of the gas volume versus its 
temperature.

STOP TO THINK 18.7 Two cylinders of equal diameter contain the same number of 
moles of the same ideal gas. Each cylinder is sealed by a frictionless piston. To have 
the same pressure in both cylinders, which piston would you use in cylinder 2?

80°C

M

20°C

Cylinder 2

Piston a
Ma 6 M

Piston b
Mb = M

Piston c
Mc 7 M

Cylinder 1

Piston not
shown

(a) Push

Constant TConstant T

V1

Before
V2

After

FIGURE 18.15 A constant-temperature 
(isothermal) process.

(b)

V

p

p1

V2 V1

p2

1

2 An isothermal process 
appears on a pV diagram
as a hyperbola.

0
0

Increasing
temperature

Isotherms

(c)

V

p
T1 T2 T3 T4
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The location of the hyperbola depends on the value of T. A lower-temperature 
process is represented by a hyperbola closer to the origin than a higher-temperature 
process. FIGURE 18.15c shows four hyperbolas representing the temperatures T1 to  
T4, where T4 7 T3 7 T2 7 T1. These are called isotherms. A gas undergoing an  
isothermal process moves along the isotherm of the appropriate temperature.

An ocean snorkeler takes a deep breath at the surface, fill-
ing his  lungs with 4.0 L of air. He then descends to a depth of 
5.0 m. At this depth, what is the volume of air in the snorkeler’s 
lungs?

MODEL At the surface, the pressure in the lungs is 1.00 atm.  
Because the body cannot sustain large pressure differences between 
inside and outside, the air pressure in the lungs rises—and the  
volume decreases—to match the surrounding water pressure as he 
descends.

SOLVE The ideal-gas law for a sealed container is

V2 =
p1

p2
 
T2

T1
 V1

Air is quickly warmed to body temperature as it enters through the 
nose and mouth, and it remains at body temperature as the snor-
keler dives, so T2 /T1 = 1. We know p1 = 1.00 atm = 101,300 Pa at 
the surface. We can find p2 from the hydrostatic pressure equation, 
using the density of seawater:

  p2 = p1 + rgd = 101,300 Pa + 11030 kg/m3219.80 m/s2215.0 m2
  = 151,800 Pa

With this, the volume of the lungs at a depth of 5.0 m is

V2 =
101,300 Pa

151,800 Pa
 * 1 * 4.0 L = 2.7 L

REVIEW The air inside your lungs does compress—significantly— 
as you dive below the surface.

EXAMPLE 18.10 ■ Compressing air in the lungs

A gas at 2.0 atm pressure and a temperature of 200°C is first 
expanded isothermally until its volume has doubled. It then 
undergoes an isobaric compression until it returns to its original 
volume. First show this process on a pV diagram. Then find the 
final temperature (in °C) and pressure.

MODEL The final state of the isothermal expansion is the initial 
state for an isobaric compression.

VISUALIZE FIGURE 18.16 shows the process. As the gas expands  
isothermally, it moves downward along an isotherm until it reaches 
volume V2 = 2V1. The gas is then compressed at constant pressure 
p2 until its final volume V3 equals its original volume V1. State 3  
is on an isotherm closer to the origin, so we expect to find T3 6 T1.

SOLVE T2/T1 = 1 during the isothermal expansion and V2 = 2V1,  
so the pressure at point 2 is

p2 = p1 
T2

T1
 
V1

V2
= p1 

V1

2V1
= 1

2 p1 = 1.0 atm

We have p3 /p2 = 1 during the isobaric compression and 
V3 = V1 = 1

2 V2, so

T3 = T2 
p3

p2
 
V3

V2
= T2 

1
2 V2

V2
= 1

2 T2 = 236.5 K = -36.5°C

where we converted T2 to 473 K before doing calcula-
tions and then converted T3 back to °C. The final state, with 
T3 = -36.5°C and p3 = 1.0 atm, is one in which both the pres-
sure and the absolute temperature are half their original values.

EXAMPLE 18.11 ■ A multistep process

V

p (atm)

V1 = V3

T3 T1

0

1

0
V2 = 2V1

2

23

1

Isotherms

The gas expands isothermally
from 1 to 2c

cthen is compressed
isobarically from 2 to 3.

FIGURE 18.16 A pV diagram for the process of Example 18.11.

STOP TO THINK 18.8 What is the ratio T2 /T1 for this process?

a. 1
4

b. 1
2

c. 1 (no change)
d. 2
e. 4
f. There’s not enough information to tell.

V

p

10

2

0
2

4

1

3

1

2
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546 CHAPTER 18  A Macroscopic Description of Matter

   CHAPTER 18 CHALLENGE EXAMPLE     Depressing a piston

A large, 50.0-cm-diameter metal cylinder filled with air supports 
a 20.0 kg piston that can slide up and down without friction.  
The piston is 100.0 cm above the bottom when the temperature is 
20°C. An 80.0 kg student then stands on the piston. After several 
minutes have elapsed, by how much has the piston been depressed?

MODEL The metal walls of the cylinder are a good thermal  
conductor, so after several minutes the gas temperature—even if it  
initially changed—will return to room temperature. The final  
temperature matches the initial temperature. Assume that the  
atmospheric pressure is 1 atm.

VISUALIZE FIGURE 18.17 shows the cylinder before and after the  
student stands on it. The volume of the cylinder is V = Ah, and  
only h changes.

SOLVE The ideal-gas law for a sealed container is

p2 Ah2

T2
=

p1Ah1

T1

Because T2 = T1, the final height of the piston is

h2 =
p1

p2
 h1

The pressure of the gas is determined by the mass of the piston 
(and anything on the piston) and the pressure of the air above. In 
equilibrium,

p = patmos +
Mg

A
= e1.023 * 105 Pa   piston only

1.063 * 105 Pa   piston and student

where we used patmos = 1 atm = 1.013 * 105 Pa and A = pr2 =  
0.196 m2. The final height of the piston is

h2 =
1.023 * 105 Pa

1.063 * 105 Pa
 * 100.0 cm = 96.2 cm

The question, however, was by how much the piston is depressed. 
This is h1 - h2 = 3.8 cm.

REVIEW Neither the piston nor the student increases the gas pres-
sure to much above 1 atm, so it’s not surprising that the added 
weight of the student doesn’t push the piston down very far.

FIGURE 18.17 The student compresses the gas.
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The different phases exist  
for different conditions of  
temperature T and pressure p.
The boundaries separating the 
regions of a phase diagram 
are lines of phase equilibrium. 
Any amounts of the two phases 
can coexist in equilibrium. The 
triple point is the one value 
of temperature and pressure at 
which all three phases can co-
exist in equilibrium.

Three Common Phases of Matter

Solid Rigid, definite shape.  
Nearly incompressible.

Liquid Molecules loosely held  
together by molecular bonds, 
but able to move around. 
Nearly incompressible.

Gas Molecules moving freely 
through space.  
Compressible.

Temperature Scales  
The Kelvin scale has absolute zero at T0 = 0 K.

TK = TC + 273

Thermal Expansion  
For a temperature change ∆T,

∆L/L = a  ∆T  ∆V/V = b ∆T

For a solid, b = 3a.

Three Basic Gas Processes  
Ideal-gas processes are shown as  
trajectories through the pV diagram.

1. Isochoric, or constant volume

2. Isobaric, or constant pressure

3. Isothermal, or constant temperature

General Principles

Applications

The goal of Chapter 18 has been to learn some of the 
characteristics of macroscopic systems.

Summary

T

p

SOLID LIQUID

GAS

Triple point

Boiling/
condensation
point

Melting/
freezing
point

Ideal-Gas Model
• Atoms and molecules are small, hard 

spheres that travel freely through space 
except for occasional collisions with 
each other or the walls.

• The model is valid when the density is 
low and the temperature well above the 
condensation point.

Ideal-Gas Law
The state variables of an ideal gas are related by the ideal-gas law

pV = nRT or pV = NkBT

where R = 8.31 J/mol K is the universal gas constant and 
kB = 1.38 * 10-23 J/K is Boltzmann’s constant. p, V, and T must  
be in SI units of Pa, m3, and K.

For a gas in a sealed container, with constant n:

p2V2

T2
 =  

p1V1

T1

Counting Atoms and Moles
A macroscopic sample of matter consists of N atoms (or  
molecules), each of mass m (the atomic or molecular mass):

N =
M
m

Alternatively, we can state that the sample  
consists of n moles:

n =
N

NA
 or 

M
Mmol

where NA = 6.02 * 1023 mol-1 is Avogadro’s number.
The molar mass Mmol, in kg/mol, is the numerical value of the 
atomic or molecular mass in u divided by 1000. The atomic  
or molecular mass, in atomic mass units u, is well approximated 
by the atomic mass number A. The atomic mass unit is

1 u = 1.66 * 10-27 kg

The number density of the sample is 
N
V

.

Important Concepts

A gas fills its container. 

Volume V

Mass M

 

1

2

3

p

V
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548 CHAPTER 18  A Macroscopic Description of Matter

CONCEPTUAL QUESTIONS

micro/macro connection
phase
phase change
solid
crystal
liquid
gas
state variable
thermal equilibrium
number density, N/V
atomic mass number, A
atomic mass

atomic mass unit, u
molecular mass
mole, n
monatomic gas
diatomic gas
Avogadro’s number, NA 
molar mass, Mmol

temperature, T
constant-volume gas 
 thermometer
absolute zero, T0

absolute temperature scale

thermal expansion
coefficient of linear expansion, a
coefficient of volume expansion, b
melting point
freezing point
phase equilibrium
condensation point
boiling point
phase diagram
sublimation
critical point
triple point

ideal gas
ideal-gas law
universal gas constant, R
Boltzmann’s constant, kB 
STP
ideal-gas process
pV diagram
quasi-static process
isochoric process
isobaric process
isothermal process
isotherm

Terms and Notation

1. Rank in order, from highest to lowest, the temperatures 
T1 = 0 K, T2 = 0°C, and T3 = 0°F.

2. The sample in an experiment is initially at 10°C. If the sample’s 
temperature is doubled, what is the new temperature in °C?

3. a. Is there a highest temperature at which ice can exist? If so, 
what is it? If not, why not?

b. Is there a lowest temperature at which water vapor can exist? 
If so, what is it? If not, why not?

4. The cylinder in FIGURE Q18.4 is divided into two compartments 
by a frictionless piston that can slide back and forth. If the piston 
is in equilibrium, is the pressure on the left side greater than, less 
than, or equal to the pressure on the right? Explain.

PSE, 5e Knight
Pearson Education
9780136956297
Fig Q 18.04
9562918041
Troutt Visual Services
8p11 × 4p7
tb    09/29/20

80°C 20°C

Piston

FIGURE Q18.4

PSE, 5e Knight
Pearson Education
9780136956297
Fig Q 18.10
9562918042
Troutt Visual Services
8p2 × 7p4
tb    09/29/20

V

p

0
0

FIGURE Q18.10

PSE, 5e Knight
Pearson Education
9780136956297
Fig Q 18.11
9562918043
Troutt Visual Services
8p4 × 7p4
tb    09/29/20

V

p (atm)

0

2

0

FIGURE Q18.11

5. A gas is in a sealed container. By what factor does the gas tem-
perature change if:
a. The volume is doubled and the pressure is tripled?
b. The volume is halved and the pressure is tripled?

6. A gas is in a sealed container. The gas pressure is tripled and the 
temperature is doubled.
a. Does the number of moles of gas in the container increase, 

decrease, or stay the same?
b. By what factor does the number density of the gas increase?

7. An aquanaut lives in an underwater apartment 100 m beneath the 
surface of the ocean. Compare the freezing and boiling points of 
water in the aquanaut’s apartment to their values at the surface. 
Are they higher, lower, or the same? Explain.

8. a. A sample of water vapor in an enclosed cylinder has an initial 
pressure of 500 Pa at an initial temperature of -0.01°C. A 
piston squeezes the sample smaller and smaller, without limit. 
Describe what happens to the water as the squeezing progresses.

b. Repeat part a if the initial temperature is 0.03°C warmer.

9. A gas is in a sealed container. By what factor does the gas pres-
sure change if:
a. The volume is doubled and the temperature is tripled?
b. The volume is halved and the temperature is tripled?

10. A gas undergoes the process shown in FIGURE Q18.10. By what 
factor does the temperature change?

11. The temperature increases from 300 K to 1200 K as a gas un-
dergoes the process shown in FIGURE Q18.11. What is the final 
pressure?

12. A student is asked to sketch a pV diagram for a gas that goes 
through a cycle consisting of (a) an isobaric expansion, (b) a 
constant-volume reduction in temperature, and (c) an isother-
mal process that returns the gas to its initial state. The student 
draws the diagram shown in FIGURE Q18.12. What, if anything, 
is wrong with the student’s diagram?

V

a

bc

p

0
0

FIGURE Q18.12
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EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 18.1 Solids, Liquids, and Gases

1. | What volume of water has the same mass as 8 cm3 of gold?
2. || What is the diameter of a copper sphere that has the same 

mass as a 2 cm * 2 cm * 2 cm cube of aluminum?
3. || A hollow aluminum sphere with an outer diameter of 8 cm 

has a mass of 600 g. What is the sphere’s inner diameter?
4. | The nucleus of a uranium atom has a diameter of 1.5 * 10-14 m 

and a mass of 4.0 * 10-25 kg. What is the density of the nucleus?

Section 18.2 Atoms and Moles

5. | How many atoms are in a 2.0 cm * 2.0 cm * 2.0 cm cube of 
aluminum?

6. | How many moles does a 3 cm * 3 cm * 3 cm cube of copper 
contain?

7. | An element in its solid phase has mass density 1750 kg/m3 
and number density 4.39 * 1028 atoms/m3. What is the element’s 
atomic mass number?

8. | What is the volume in cm3 of 1.0 mol of ice?
9. || A cube of lead contains 1.1 * 1023 atoms. What is the length 

in cm of one side of the cube?
10. || What volume of aluminum has the same number of atoms as 

10 cm3 of mercury?

Section 18.3 Temperature

11. | At what temperature does the numerical value in °F match the 
numerical value in °C?

12. | The normal temperature of a human body is 94.8°F, and the 
maximum temperature up to which a human being can normally 
survive is 108°F. What are the values of these temperatures if 
measured in degree Celsius and Kelvin?

13. || A demented scientist creates a new temperature scale, the “Z 
scale.” He decides to call the boiling point of nitrogen 0°Z and 
the melting point of iron 1000°Z.
a. What is the boiling point of water on the Z scale?
b. Convert 500°Z to degrees Celsius and to kelvins.

Section 18.4 Thermal Expansion

Section 18.5 Phase Changes

14. | At room temperature (20°C), a 5.0-cm-long brass rod is 20 mm 
too long to fit into a slot. To what temperature should you cool 
the rod so that it just barely fits?

15. || Two students each build a piece of scientific equipment that 
uses a 655-mm-long metal rod. One student uses a brass rod, the 
other an invar rod. If the temperature increases by 5.0°C, how 
much more does the brass rod expand than the invar rod?

16. || A concrete bridge is built of concrete slabs 300 cm long. 
The slabs are connected with expansion joints. The slabs barely 
touch on an 110°F day, the hottest day, for which the bridge is 
designed. What is the gap between the slabs when the tempera-
ture is 10°F?

17. || A surveyor has a steel measuring tape that is calibrated to be 
100.000 m long (i.e., accurate to {     1 mm) at 20°C. If she mea-
sures the distance between two stakes to be 65.175 m on a 3°C 

day, does she need to add or subtract a correction factor to get the 
true distance? How large, in mm, is the correction factor?

18. || Common outdoor thermometers are filled with red-colored 
ethyl alcohol. One thermometer has a 0.40-mm-diameter cap-
illary tube attached to a 9.0-mm-diameter spherical bulb. On a 
0°C morning, the column of alcohol stands 30 mm above the 
bulb. What is the temperature in °C when the column of alcohol 
stands 130 mm above the bulb? The expansion of the glass is 
much less than that of the alcohol and can be ignored.

Section 18.6 Ideal Gases

19. || 3.0 mol of gas at a temperature of -120°C fills a 2.0 L 
 container. What is the gas pressure?

20. | A cylinder contains nitrogen gas. A piston compresses the gas 
to half its initial volume. Afterward,
a. Has the mass density of the gas changed? If so, by what 

factor? If not, why not?
b. Has the number of moles of gas changed? If so, by what 

factor? If not, why not?
21. | A gas at 100°C fills volume V0. If the pressure is held con-

stant, what is the volume if (a) the Celsius temperature is doubled 
and (b) the Kelvin temperature is doubled?

22. | A rigid container holds 2.0 mol of gas at a pressure of 1.0 atm 
and a temperature of 30°C.
a. What is the container’s volume?
b. What is the pressure if the temperature is raised to 130°C?

23. || The total lung capacity of a typical adult is 5.0 L. 
Approximately 20% of the air is oxygen. At sea level and at a 
body temperature of 37°C, how many oxygen molecules do the 
lungs contain at the end of a strong inhalation?

24. || The solar corona is a very hot atmosphere surrounding the 
visible surface of the sun. X-ray emissions from the corona show 
that its temperature is about 2 * 106 K. The gas pressure in the 
corona is about 0.03 Pa. Estimate the number density of particles 
in the solar corona.

25. || A 20-cm-diameter cylinder that is 40 cm long contains 50 g 
of oxygen gas at 20°C.
a. How many moles of oxygen are in the cylinder?
b. How many oxygen molecules are in the cylinder?
c. What is the number density of the oxygen?
d. What is the reading of a pressure gauge attached to the tank?

26. || At the summit of Mt. Everest, the pressure is 34 kPa and the 
temperature during the climbing season is typically –20°C. What 
is the number density of oxygen molecules at the summit as a 
fraction of its value at 1 atm pressure, 20°C?

Section 18.7 Ideal-Gas Processes

27. | A gas with initial state variables p1, V1, and T1 is cooled in an 
isochoric process until p2 =  

1
3 p1. What are (a) V2 and (b) T2?

28. | A gas with initial state variables p1, V1, and T1 expands iso-
thermally until V2 = 2V1. What are (a) T2 and (b) p2?

29. | A rigid container holds hydrogen gas at a pressure of 3.0 atm 
and a temperature of 20°C. What will the pressure be if the tem-
perature is lowered to -20°C?

30. || A rigid, hollow sphere is submerged in boiling water in a 
room where the air pressure is 1.0 atm. The sphere has an open 
valve with its inlet just above the water level. After a long period 
of time has elapsed, the valve is closed. What will be the pressure 
inside the sphere if it is then placed in a mixture of ice and water?
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550 CHAPTER 18  A Macroscopic Description of Matter

38. || 0.020 mol of gas undergoes the process shown in FIGURE 
EX18.38.
a. What type of process is this?
b. What is the final temperature in °C?
c. What is the final volume V2?

31. || A 24-cm-diameter vertical cylinder is sealed at the top by a 
frictionless 20 kg piston. The piston is 84 cm above the bottom 
when the gas temperature is 303°C. The air above the piston is at 
1.00 atm pressure.
a. What is the gas pressure inside the cylinder?
b. What will the height of the piston be if the temperature is 

lowered to 15°C?
32. || 0.10 mol of argon gas is admitted to an evacuated 50 cm3  

container at 20°C. The gas then undergoes an isochoric heating to  
a temperature of 300°C.
a. What is the final pressure of the gas?
b. Show the process on a pV diagram. Include a proper scale on 

both axes.
33. || 0.10 mol of argon gas is admitted to an evacuated 50 cm3 

container at 20°C. The gas then undergoes an isothermal 
expansion to a volume of 200 cm3.
a. What is the final pressure of the gas?
b. Show the process on a pV diagram. Include a proper scale on 

both axes.
34. || 0.10 mol of argon gas is admitted to an evacuated 50 cm3 

container at 20°C. The gas then undergoes an isobaric heating to 
a temperature of 300°C.
a. What is the final volume of the gas?
b. Show the process on a pV diagram. Include a proper scale on 

both axes.
35. || A gas with an initial temperature of 900°C undergoes the pro-

cess shown in FIGURE EX18.35.
a. What type of process is this?
b. What is the final temperature in °C?
c. How many moles of gas are there?
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36. | 0.0040 mol of gas undergoes the process shown in FIGURE 
EX18.36.
a. What type of process is this?
b. What are the initial and final temperatures in °C?

37. || 0.0050 mol of gas undergoes the process 1 S 2 S 3 shown 
in FIGURE EX18.37. What are (a) temperature T1, (b) pressure p2, 
and (c) volume V3?

39. || An ideal gas starts with pressure p1 and volume V1. Draw a 
pV diagram showing the process in which the gas undergoes an 
isothermal process during which the volume is halved, then an 
isochoric process during which the pressure is halved, followed 
by an isobaric process during which the volume is doubled. 
Label each of the three processes.

40. || A sealed container holds 3.2 g of oxygen at 1 atm pressure 
and 20°C. The gas first undergoes an isobaric process that dou-
bles the absolute temperature, then an isothermal process that 
halves the pressure. What is the final volume of the gas in L?

Problems
41. || The molecular mass of water (H2O) is 18 u. How many pro-

tons are there in 1.0 L of liquid water?
42. | The 828-m-tall Burj Khalifa in Dubai is the world’s tallest 

building. It’s essentially a steel building wrapped in exterior 
paneling and glass. During construction, when the beams were 
exposed to the elements, the building was 36 cm taller on the 
hottest afternoon of the year than on the coldest morning. By 
how much did the temperature vary throughout the year?

43. ||| A brass ring with inner diameter 2.00 cm and outer diameter 
3.00 cm needs to fit over a 2.00-cm-diameter steel rod, but at 
20°C the hole through the brass ring is 50 mm too small in diam-
eter. To what temperature, in °C, must the rod and ring be heated 
so that the ring just barely slips over the rod?

44. || The semiconductor industry manufactures integrated circuits 
in large vacuum chambers where the pressure is 1.0 * 10-10 mm 
of Hg.
a. What fraction is this of atmospheric pressure?
b. At T = 20°C, how many molecules are in a cylindrical cham-

ber 40 cm in diameter and 30 cm tall?
45. || A 6.0-cm-diameter, 10-cm-long cylinder contains 100 mg of 

oxygen (O2) at a pressure less than 1 atm. The cap on one end of 
the cylinder is held in place only by the pressure of the air. One 
day when the atmospheric pressure is 100 kPa, it takes a 184 N 
force to pull the cap off. What is the temperature of the gas?

46. || A cylinder with a moveable piston contains 150 cm3 of car-
bon dioxide gas at the CO2 triple-point temperature and pressure  
of -56°C and 5.2 atm. The gas undergoes a process described by  
a vertical line on the CO2 phase diagram until the pressure is  
1.0 atm. What is the final volume?

47. || On average, each person in the industrialized world is re-
sponsible for the emission of 10,000 kg of carbon dioxide 
(CO2) every year. This includes CO2 that you generate directly, 
by burning fossil fuels to operate your car or your furnace, as 
well as CO2 generated on your behalf by electric generating 
stations and manufacturing plants. CO2 is a greenhouse gas 
that contributes to global warming. If you were to store your 
yearly CO2 emissions in a cube at STP, how long would each 
edge of the cube be?

M18_KNIG8221_05_GE_C18.indd   550 21/06/2022   13:23



Exercises and Problems 551

56. || The U-shaped tube in FIGURE P18.56 has a total length of 
1.0 m. It is open at one end, closed at the other, and is initially 
filled with air at 20°C and 1.0 atm pressure. Mercury is poured 
slowly into the open end without letting any air escape, thus 
compressing the air. This is continued until the open side of the 
tube is completely filled with mercury. What is the length L of 
the column of mercury?

48. || To determine the mass of neon contained in a rigid, 2.0 L 
cylinder, you vary the cylinder’s temperature while recording the 
reading of a pressure gauge. Your data are as follows:

Temperature (°C) Pressure (atm)

100 6.52

150 7.80

200 8.83

250 9.59

Use the best-fit line of an appropriate graph to determine the 
mass of the neon.

49. || The 3.0-m-long pipe in FIGURE P18.49 is closed at the top end. 
It is slowly pushed straight down into the water until the top end 
of the pipe is level with the water’s surface. What is the length L 
of the trapped volume of air?

Before3.0 m

After
L

FIGURE P18.49

L

AirHg

Open Closed

FIGURE P18.56

50 kg

1 atm

30°C

10 cm

h

FIGURE P18.57

50. || A diving bell is a 3.0-m-tall cylinder closed at the upper end 
but open at the lower end. The temperature of the air in the bell is 
20°C. The bell is lowered into the ocean until its lower end is 100 m  
deep. The temperature at that depth is 10°C.
a. How high does the water rise in the bell after enough time has 

passed for the air inside to reach thermal equilibrium?
b. A compressed-air hose from the surface is used to expel 

all the water from the bell. What minimum air pressure is 
needed to do this?

51. || An electric generating plant boils water to produce high- 
pressure steam. The steam spins a turbine that is connected to 
the generator.
a. How many liters of water must be boiled to fill a 5.0 m3 boiler 

with 50 atm of steam at 400°C?
b. The steam has dropped to 2.0 atm pressure at 150°C as it exits 

the turbine. How much volume does it now occupy?
52. || On a cool morning, when the temperature is 15°C, you 

measure the pressure in your car tires to be 30 psi. After driving 
20 mi on the freeway, the temperature of your tires is 45°C. What 
pressure will your tire gauge now show?

53. || A 10-cm-diameter, 40-cm-tall gas cylinder, sealed at the top 
by a frictionless 50 kg piston, is surrounded by a bath of 20°C 
water. Then 50 kg of sand is slowly poured onto the top of the 
piston, where it stays. Afterward, what is the height of the piston?

54. || 10,000 cm3 of 200°C steam at a pressure of 20 atm is cooled 
until it condenses. What is the volume of the liquid water? Give 
your answer in cm3.

55. || The interior of a Boeing 737-800 can be modeled as a 32-m-long, 
3.7-m-diameter cylinder. The air inside, at cruising altitude, is 20°C 
at a pressure of 82 kPa. What volume of outside air, at -40°C and 
a pressure of 23 kPa, must be drawn in, heated, and compressed to 
fill the plane?
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57. || The 50 kg circular piston shown in FIGURE P18.57 floats on 
0.12 mol of compressed air.
a. What is the piston height h if the temperature is 30°C?
b. How far does the piston move if the temperature is increased 

by 100°C?
58. ||| Containers A and B in 

FIGURE P18.58 hold the same 
gas. The volume of B is four 
times the volume of A. The 
two containers are connected 
by a thin tube (negligible vol-
ume) and a valve that is closed. 
The gas in A is at 300 K and pressure of 1.0 * 105 Pa. The gas in 
B is at 400 K and pressure of 5.0 * 105 Pa. Heaters will maintain 
the temperatures of A and B even after the valve is opened. After 
the valve is opened, gas will flow one way or the other until A 
and B have equal pressure. What is this final pressure?

59. || A diver 50 m deep in 10°C fresh water exhales a 1.0-cm- 
diameter bubble. What is the bubble’s diameter just as it reaches 
the surface of the lake, where the water temperature is 20°C?
Hint: Assume that the air bubble is always in thermal equilibrium 
with the surrounding water.

60. | 8.0 g of helium gas follows the process 1 S 2 S 3 shown in 
FIGURE P18.60. Find the values of V1, V3, p2, and T3.

A
300 K

Valve

B
400 K

FIGURE P18.58

61. || FIGURE P18.61 shows two different processes by which 1.0 g 
of nitrogen gas moves from state 1 to state 2. The temperature of 
state 1 is 25°C. What are (a) pressure p1 and (b) temperatures (in 
°C) T2, T3, and T4?

M18_KNIG8221_05_GE_C18.indd   551 21/06/2022   13:23



552 CHAPTER 18  A Macroscopic Description of Matter

68. 1T2 + 2732 K =
200 kPa
500 kPa

 * 1 * 1400 + 2732 K

69. V2 =
1400 + 2732 K

150 + 2732 K
* 1 * 200 cm3

70. 12.0 * 101,300 Pa21100 * 10-6 m32 = n18.31 J/mol K2T1

n =
0.12 g

20 g/mol

T2 =
200 cm3

100 cm3 * 1 * T1

Challenge Problems
71. ||| A 15°C, 2.0-cm-diameter aluminum bar just barely slips be-

tween two rigid steel walls 10.0 cm apart. If the bar is warmed to 
25°C, how much force does it exert on each wall?

72. ||| An inflated bicycle inner tube is 2.2 cm in diameter and 200 cm  
in circumference. A small leak causes the gauge pressure to de-
crease from 110 psi to 80 psi on a day when the temperature is 
20°C. What mass of air is lost? Assume the air is pure nitrogen.

73. ||| The cylinder in FIGURE CP18.73 has a moveable piston at-
tached to a spring. The cylinder’s cross-section area is 10 cm2, it 
contains 0.0040 mol of gas, and the spring constant is 1500 N/m. 
At 20°C the spring is neither compressed nor stretched. How 
far is the spring compressed if the gas temperature is raised to 
100°C?

62. || FIGURE P18.62 shows two different processes by which 80 mol 
of gas move from state 1 to state 2. The dashed line is an isotherm.
a. What is the temperature of the isothermal process?
b. What maximum temperature is reached along the straight-

line process?
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FIGURE P18.63

63. || 4.0 g of oxygen gas, starting at 820°C, follow the process 
1 S 2 shown in FIGURE P18.63. What is temperature T2 (in °C)?

64. || 10 g of dry ice (solid CO2) is placed in a 10,000 cm3 con-
tainer, then all the air is quickly pumped out and the container 
sealed. The container is warmed to 0°C, a temperature at which 
CO2 is a gas.
a. What is the gas pressure? Give your answer in atm.
The gas then undergoes an isothermal compression until the pres-
sure is 3.0 atm, immediately followed by an isobaric compression 
until the volume is 1000 cm3.
b. What is the final temperature of the gas (in °C)?
c. Show the process on a pV diagram.

65. || A container of gas at 2.0 atm pressure and 127°C is com-
pressed at constant temperature until the volume is halved. It is 
then further compressed at constant pressure until the volume is 
halved again.
a. What are the final pressure and temperature of the gas?
b. Show this process on a pV diagram.

66. || Five grams of nitrogen gas at an initial pressure of 3.0 atm 
and at 20°C undergo an isobaric expansion until the volume has 
tripled.
a. What is the gas volume after the expansion?
b. What is the gas temperature after the expansion (in °C)?
The gas pressure is then decreased at constant volume until the 
original temperature is reached.
c. What is the gas pressure after the decrease?
Finally, the gas is isothermally compressed until it returns to its 
initial volume.
d. What is the final gas pressure?
e. Show the full three-step process on a pV diagram. Use appro-

priate scales on both axes.

In Problems 67 through 70 you are given the equation(s) used to solve 
a problem. For each of these, you are to

a. Write a realistic problem for which this is the correct equation(s).
b. Draw a pV diagram.
c. Finish the solution of the problem.

67. p2 =
300 cm3

100 cm3 * 1 * 2 atm

1500 N/m
A = 10 cm2

FIGURE CP18.73

Mass M
Area A

Compressed ∆L

p0

p = 0

kL0

FIGURE CP18.74

74. ||| The closed cylinder of FIGURE CP18.74 has a tight-fitting but 
frictionless piston of mass M. The piston is in equilibrium when 
the left chamber has pressure p0 and length L0 while the spring 
on the right is compressed by ∆L.
a. What is ∆L in terms of p0, L0, A, M, and k?
b. Suppose the piston is moved a small distance x to the right. 

Find an expression for the net force (Fx)net on the piston. 
Assume all motions are slow enough for the gas to remain at 
the same temperature as its surroundings.

c. If released, the piston will oscillate around the equilibrium 
position. Assuming x V  L0 find an expression for the os-
cillation period T.
Hint: Use the binomial approximation.

M18_KNIG8221_05_GE_C18.indd   552 21/06/2022   13:23



553

Work, Heat, and the First 
Law of Thermodynamics

What is the first law of thermodynamics?
The first law of thermodynamics is a very 
general statement about energy and its 
conservation. A system’s thermal energy 
changes if energy is transferred into or out 
of the system as work or as heat. That is,

∆Eth = W + Q

❮❮ LOOKING BACK Sections 10.4 and 10.8  
Conservation of energy

How is work done on a gas?
Work W is the transfer of energy in a  
mechanical interaction when forces push 
or pull. Work is done on a gas by changing 
its volume.

■■ W 7 0 (energy added) in a compression.
■■ W 6 0 (energy extracted) in an expansion.

❮❮ LOOKING BACK Sections 9.2–9.3 Work

What is heat?
Heat Q is the transfer of energy in a 
 thermal interaction when the system 
and its environment are at different 
temperatures.

■■ Q 7 0 (energy added) when the 
environment is hotter than the system.

■■ Q 6 0 (energy extracted) when the 
system is hotter than the environment.

How is heat transferred?
Heat energy can be transferred between 
a system and its environment by

■■ Conduction
■■ Convection
■■ Radiation
■■ Evaporation

What are some thermal  
properties of matter?
Heat can cause either a temperature 
change or a phase change. A material’s 
response to heat is governed by its  
specific heat, its heat of fusion, its heat of 
vaporization, and its thermal conductivity. 
These are thermal properties of matter.  
An important application is calorimetry— 
determining the final temperature when  
two or more systems interact thermally.

Why is the first law important?
The first law of thermodynamics is a very general statement that 
energy cannot be created or destroyed—merely moved from 
one place to another. Much of the machinery of modern society, 
from automobile engines to electric power plants to spacecraft, 
depends on and is an application of the first law. We’ll look at 
some of these applications in more detail in Chapter 21.

IN THIS CHAPTER, you will learn and apply the first law of thermodynamics.

19

This geothermal power plant is 
transforming heat from the earth’s 
interior into electric energy.

Eth

W 7 0

Q 7 0

W 6 0

Q 6 0

System

Environment

In Out

Fext

u

T

Hot

Heat
conduction

Q

Cold

Q

T1 T2
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554 CHAPTER 19 Work, Heat, and the First Law of Thermodynamics

19.1 It’s All About Energy
Recall that energy is about systems and their interactions. In ❮❮  SECTION 10.8 we wrote 
the energy principle as

 ∆K + ∆U + ∆Eth = Wext (19.1)

This equation tells us that the energy of a system is changed when external forces 
do work by pushing or pulling the particles of the system through a distance. Recall 
that we defined the system’s mechanical energy to be Emech = K + U. FIGURE 19.1 re-
minds you that the mechanical energy is the macroscopic energy of the system as a 
whole, while the thermal energy Eth is the microscopic energy of the atoms and mol-
ecules within the system. The mechanical and thermal energy together are the system 
energy, so we concluded Chapter 10 with the statement

 ∆Esys = ∆Emech + ∆Eth = Wext (19.2)

Thus the total energy of an isolated system, for which Wext = 0, is constant.
The emphasis in Chapters 9 and 10 was on isolated systems. There we were interested  

in learning how kinetic and potential energy were transformed into each other and, 
where there is friction, into thermal energy. Now we want to focus on how energy is 
transferred between the system and its environment when Wext is not zero.

   NOTE    Strictly speaking, Equation 19.2 should use the internal energy Eint rather 
than the thermal energy Eth, where Eint = Eth + Echem + Enuc + g includes all the 
various kinds of energies that can be stored inside a system. This textbook will focus 
on simple thermodynamic systems in which the internal energy is entirely thermal: 
Eint = Eth. We’ll leave other forms of internal energy to more advanced courses.

Energy Transfer
Doing work on a system can have very different consequences. FIGURE 19.2a shows an 
object being lifted at steady speed by a rope. The rope’s tension is an external force 
doing work Wext on the system. In this case, the energy transferred into the system 
goes entirely to increasing the system’s macroscopic potential energy Ugrav, part of the 
mechanical energy. The energy-transfer process Wext S Emech is shown graphically in 
the energy bar chart of Figure 19.2a.

Contrast this with FIGURE 19.2b, where the same rope with the same tension now 
drags the object at steady speed across a rough surface. The tension does the same 
amount of work, but the mechanical energy does not change. Instead, friction increases  
the thermal energy of the object + surface system. The energy-transfer process  
Wext S Eth is shown in the energy bar chart of Figure 19.2b.

v
u

Esys = Emech + Eth

The microscopic energy
of the atoms and molecules
is the system’s thermal
energy Eth. 

The macroscopic energy of
the system as a whole is its
mechanical energy Emech.

FIGURE 19.1 The total energy of a system.

v
u

T
u

0 + =

Ki Ui

+

Wext

+

Uf

+

+ =+ + +Kf ∆Eth

The tension does 
work on the system.

Energy transferred to the system goes
entirely to mechanical energy.

Lift at steady speed(a)

FIGURE 19.2 The work done by tension can have very different consequences.

v
u

T
u

0 + =

Ki Ui

+

Wext

+

Uf

+

+ =+ + +Kf ∆Eth

Energy transferred to the system goes 
entirely to thermal energy.

The tension does 
work on the system.

Drag at steady speed(b)
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19.2 Work in Ideal-Gas Processes 555

The point of this example is that the energy transferred to a system can go entirely 
to the system’s mechanical energy, entirely to its thermal energy, or (imagine dragging 
the object up an incline) some combination of the two. The energy isn’t lost, but where  
it ends up depends on the circumstances.

The Missing Piece: Heat
You can transfer energy into a system by the mechanical process of doing work on the 
system. But that can’t be all there is to energy transfer. What happens when you place 
a pan of water on the stove and light the burner? The water temperature increases, 
so ∆Eth 7 0. But no work is done 1  Wext = 02 and there is no change in the water’s 
mechanical energy 1  ∆Emech = 02. This process clearly violates the energy equation 
∆Emech + ∆Eth = Wext. What’s wrong?

Nothing is wrong. The energy equation is correct as far as it goes, but it is incomplete. 
Work is energy transferred in a mechanical interaction, but that is not the only way a 
system can interact with its environment. Energy can also be transferred between the 
system and the environment if they have a thermal interaction. The energy transferred  
in a thermal interaction is called heat.

The symbol for heat is Q. When heat is included, the energy equation becomes

 ∆Esys = ∆Emech + ∆Eth = W + Q (19.3)

Heat and work are both energy transferred between the system and the environment.

   NOTE    We’ve dropped the subscript “ext” from W. The work that we consider in 
thermodynamics is always the work done by the environment on the system.

We’ll return to Equation 19.3 in Section 19.4 after we look at how work is calculated 
for ideal-gas processes and at what heat is.

The pistons in a car engine do work on  
the air-fuel mixture by compressing it.

STOP TO THINK 19.1 A gas cylinder and piston  
are covered with heavy insulation. The piston is 
pushed into the cylinder, compressing the gas. In  
this process the gas temperature

a. Increases.
b. Decreases.
c. Doesn’t change.
d. There’s not sufficient information to tell.

F
u

∆x

Insulation

19.2 Work in Ideal-Gas Processes
We introduced the idea of work in Chapter 9. Work is the energy transferred between 
a system and the environment when a net force acts on the system over a distance. The 
process itself is a mechanical interaction, meaning that the system and the envi-
ronment interact via macroscopic pushes and pulls. Loosely speaking, we say that the 
environment (or a particular force from the environment) “does work” on the system. 
A system is in mechanical equilibrium if there is no net force on the system.

FIGURE 19.3 on the next page reminds you that work can be either positive or negative.  
The sign of the work is not just an arbitrary convention, nor does it have anything 
to do with the choice of coordinate system. The sign of the work tells us which way 
energy is being transferred.

In contrast to the mechanical energy or the thermal energy, work is not a state 
variable. That is, work is not a number characterizing the system. Instead, work is 
the amount of energy that moves between the system and the environment during  
a mechanical interaction. We can measure the change in a state variable, such as a 
temperature change ∆T = Tf - Ti, but it would make no sense to talk about a “change 
of work.” Consequently, work always appears as W, never as ∆W.
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556 CHAPTER 19 Work, Heat, and the First Law of Thermodynamics

You learned in ❮❮  SECTION 9.3 how to calculate work. The small amount of work dW 
done by force F

u
 as a system moves through the small displacement dsu is dW = F

u # dsu. 
If we restrict ourselves to situations where F

u
 is either parallel or opposite to dsu, then 

the total work done on the system as it moves from si to sf is

 W = 3
sf

si

 Fs ds (19.4)

Let’s apply this definition to calculate the work done when the volume of a gas 
changes. FIGURE 19.4a shows a gas of pressure p whose volume can be changed by  
a moving piston. The system is the gas in the cylinder, which exerts a force F

u

gas of  
magnitude pA on the left side of the piston. To prevent the pressure from blowing the 
piston out of the cylinder, there must be an equal but opposite external force F

u

ext pushing  
on the right side of the piston. In practice, this would likely be the force exerted by a 
piston rod. Using the coordinate system of Figure 19.4a, we have

 1Fext2x = -1Fgas2x = -pA (19.5)

Suppose the piston moves a small distance dx, as shown in FIGURE 19.4b. As it does 
so, the external force (i.e., the environment) does work

 dW = 1Fext2x  dx = -pA dx (19.6)

If dx is positive (expanding gas), then dW is negative. This is to be expected because 
the force is opposite the displacement. dW is positive if the gas is slightly compressed 
1dx 6 02.

If the piston moves dx, the gas volume changes by dV = A dx. Thus the work is

 dW = -p  dV (19.7)

If we allow the gas to change in a slow, quasi-static process from an initial volume Vi 
to a final volume Vf, the total work done by the environment is found by integrating 
Equation 19.7:

 W = - 3
Vf

Vi

p  dV (work done on a gas) (19.8)

Equation 19.8 is a key result of thermodynamics. Although we used a cylinder to derive 
it, it turns out to be true for a container of any shape.

   NOTE    The pressure of a gas usually changes as the gas expands or contracts. 
Consequently, p is not a constant that can be brought outside the integral. You need to 
know how the pressure changes with volume before you can carry out the integration.

What is this work done on? Not, as you might think, the piston. Work is an energy 
transfer, but the piston’s energy is not changing. It is in equilibrium, with equal forces 
exerted on both faces. Further, the motion of the piston is very slow—it’s a quasi-static 
process—so the piston has negligible kinetic energy. The piston is merely a movable  
boundary of the gas, so the work is done by the environment on the gas.

v
u

v
u

F
u

F
u

Before After Before After

Work is positive when the force
is in the direction of motion.
    The force causes the object to speed up.
    Energy is transferred from the
    environment to the system.

Work is negative when the force
is opposite to the motion.
    The force causes the object to slow down.
    Energy is transferred from the system to
    the environment.

FIGURE 19.3 The sign of work.

dx

(b) As the piston moves dx, the
external force does work (Fext)x dx
on the gas.

The volume changes by dV = Adx
as the piston moves dx.

Fext

u

Pressure p

(a)

Piston area A

x
0

Fext

u
Fgas

u

The gas pushes
with force Fgas.

u
To keep the piston in place,
an external force must be
equal and opposite to Fgas.

u

FIGURE 19.4 The external force does work 
on the gas as the piston moves.
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19.2 Work in Ideal-Gas Processes 557

■■ When a gas is compressed, ∆V 6 0, W 7 0, and energy is transferred from the en-
vironment to the gas (the system).

■■ When a gas expands, ∆V 7 0, W 6 0, and energy is transferred from the gas to the 
environment.

When a gas expands—for example, when the burning fuel in a cylinder of your car’s 
engine expands and, through a series of mechanical linkages, transfers energy to the 
wheels—it’s often said that “the gas does work on the environment.” But be careful!  
In any volume change, both the environment and the gas do work; it’s not one or the 
other. In fact, because F

u

gas = - F
u

env, the work done by the gas is simply the negative 
of the work done by the environment: Wgas = -Wext. In an expansion, where energy is 
transferred from the gas to the environment, Wext 6 0 means that Wgas 7 0. It thus makes 
sense to say “the gas does work.” The important point is that the work W that appears 
in the energy principle, and now in the laws of thermodynamics, is—by definition— 
the work done by the environment, not the work done by the system. To say that “the 
gas does work” in an expansion simply means that we need to use a negative value of 
W in the energy equations to show that energy is being transferred out of the system.

We can give the work done on a gas a nice geometric interpretation. You learned in 
Chapter 18 how to represent an ideal-gas process as a curve in the pV diagram. FIGURE 19.5  
shows that the work done on a gas is the negative of the area under the pV curve as the  
volume changes from Vi to Vf. That is,

W = the negative of the area under the pV curve between Vi and Vf

Figure 19.5a shows a process in which a gas expands from Vi to a larger volume Vf. 
The area under the curve is positive, so the environment does a negative amount of work 
on an expanding gas. Figure 19.5b shows a process in which a gas is compressed to a 
smaller volume. This one is a little trickier because we have to integrate “backward” 
along the V@axis. You learned in calculus that integrating from a larger limit to a smaller 
limit gives a negative result, so the area in Figure 19.5b is a negative area. Consequently, 
as the minus sign in Equation 19.8 indicates, the environment does positive work on  
a gas to compress it.

Compressed gas (Vf 6 Vi):
Integration direction to left; 
Area under pV curve negative;
Environment does positive work.

(b)

p

V

Integration direction

f

i

W = -area

ViVf

How much work is done in the ideal-gas process of FIGURE 19.6?

MODEL The work done on a gas is the negative of the area under the pV curve. The gas 
is expanding, so we expect the work to be negative.

SOLVE As Figure 19.6 shows, the area under the curve can be divided into two rectangles 
and a triangle. Volumes must be converted to SI units of m3. The total area under the curve 
is 250 J, so the work done on the gas as it expands is

W = - (area under the pV curve) = -250 J

REVIEW We noted previously that the product Pa m3 is equivalent to joules. The work  
is negative, as expected, because the external force pushing on the piston is opposite the 
direction of the piston’s displacement.

EXAMPLE 19.1 ■ The work done on an expanding gas

Expanding gas (Vf 7 Vi):
Integration direction to right;
Area under pV curve positive;
Environment does negative work.

(a)

p

V

Integration direction

i

f

W = -area

VfVi

FIGURE 19.5 The work done on a gas is the 
negative of the area under the curve.

1
2

V (cm3)

p (kPa)

150010005000
0

100

200

300

(500 * 10-6 m3)(300,000 Pa) = 150 J

(500 * 10-6 m3)(100,000 Pa) = 50 J

f

i

(500 * 10-6 m3)(200,000 Pa) = 50 J

FIGURE 19.6 The ideal-gas process of Example 19.1.
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558 CHAPTER 19 Work, Heat, and the First Law of Thermodynamics

Equation 19.8 is the basis for a problem-solving strategy.

PROBLEM-SOLVING STRATEGY 19.1

Work in ideal-gas processes

MODEL Model the gas as ideal and the process as quasi-static.

VISUALIZE Show the process on a pV diagram. Note whether it happens to be one 
of the basic gas processes: isochoric, isobaric, or isothermal.

SOLVE Calculate the work as the area under the pV curve either geometrically or by 
carrying out the integration:

Work done on the gas W = - 3
Vf

Vi

p dV = -(area under pV curve)

REVIEW Check your signs.
■■ W 7 0 when the gas is compressed. Energy is transferred from the environment 
to the gas.

■■ W 6 0 when the gas expands. Energy is transferred from the gas to the environment.
■■ No work is done if the volume doesn’t change. W = 0.

Exercise 4 

Isochoric Process
The isochoric process in FIGURE 19.7a is one in which the volume does not change. 
Consequently,

 W = 0  (isochoric process) (19.9)

An isochoric process is the only ideal-gas process in which no work is done.

Isobaric Process
FIGURE 19.7b shows an isobaric process in which the volume changes from Vi to Vf. The 
rectangular area under the curve is p ∆V, so the work done during this process is

 W = -p ∆V  (isobaric process) (19.10)

where ∆V = Vf - Vi. ∆V  is positive if the gas expands 1Vf 7 Vi2, so W is negative.  
∆V  is negative if the gas is compressed 1Vf 6 Vi2, making W positive.

Isothermal Process
FIGURE 19.8 shows an isothermal process. Here we need to know the pressure as a function 
of volume before we can integrate Equation 19.8. From the ideal-gas law, p = nRT/V. 
Thus the work on the gas as the volume changes from Vi to Vf is

 W = - 3
Vf

Vi

  p dV = - 3
Vf

Vi

 
nRT

V
 dV = -nRT3

Vf

Vi

 
dV
V

 (19.11)

where we could take the T outside the integral because temperature is constant during 
an isothermal process. This is a straightforward integration, giving

 W = -nRT3
Vf

Vi

 
dV
V

= -nRT ln V `
Vf

Vi

 

     = -nRT1ln Vf - ln Vi2 = -nRT ln1Vf

Vi
2 (19.12)

For an isochoric process,
the area under the pV
curve is zero. No work
is done.

(a)

(b)

p

V

f

i

Vi = Vf

For an isobaric process,
the area is p∆V. The work
done on the gas is -p∆V. 

p

p

V

i f

∆V

pi

pf

VfVi

FIGURE 19.7 Calculating the work done 
during ideal-gas processes.

Isotherm for
temperature T

For an isothermal process,
the work done on the gas is
the negative of the area
under the hyperbola.

p

V

i

f

VfVi

pi

pf

FIGURE 19.8 An isothermal process.
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19.3 Heat 559

Because nRT = piVi = pfVf during an isothermal process, the work is:

 
W = -nRT ln1Vf

Vi
2 = -piVi ln1Vf

Vi
2 = -pfVf ln1Vf

Vi
2

1isothermal process2  
(19.13)

Which version of Equation 19.13 is easiest to use will depend on the information 
you’re given. The pressure, volume, and temperature must be in SI units.

A cylinder contains 7.0 g of nitrogen gas. How much work must be 
done to compress the gas at a constant temperature of 80°C until the  
volume is halved?

MODEL This is an isothermal ideal-gas process.

SOLVE Nitrogen gas is N2, with molar mass Mmol =  0.028 kg/mol =  
28 g/mol, so 7.0 g is 0.25 mol of gas. The temperature is T = 353 K. 
Although we don’t know the actual volume, we do know that 
Vf = 1

2 Vi. The volume ratio is all we need to calculate the work:

  W = -nRT ln1Vf

Vi
2

  = -10.25 mol218.31 J/mol K21353 K2ln11/22 = 508 J

REVIEW The work is positive because a force from the environment 
pushes the piston inward to compress the gas.

EXAMPLE 19.2 ■ The work of an isothermal compression

Work Depends on the Path
FIGURE 19.9 shows two different processes that take a gas from an initial state i to a final 
state f. Although the initial and final states are the same, the work done during these 
two processes is not the same. The work done during an ideal-gas process depends  
on the path followed through the pV diagram.

You may recall that “work is independent of the path,” but that referred to a different  
situation. In Chapter 10, we found that the work done by a conservative force is  
independent of the physical path of the object through space. For an ideal-gas process, 
the “path” is a sequence of thermodynamic states on a pV diagram. It is a figurative 
path because we can draw a picture of it on a pV diagram, but it is not a literal path.

The path dependence of work has an important implication for multistep processes. 
For a process 1 S 2 S 3, the work has to be calculated separately for each step in the 
process, giving Wtot = W1 to 2 + W2 to 3. In most cases, calculating the work for a process  
that goes directly from 1 to 3 will given an incorrect answer. The initial and final 
states are the same, but the work is not the same because work depends on the path 
followed through the pV diagram.

STOP TO THINK 19.2 Two processes take an ideal gas 
from state 1 to state 3. Compare the work done during 
process A to the work done during process B.

a. WA = WB = 0
b. WA = WB but neither is zero
c. WA 7 WB

d. WA 6 WB

Process A Process B

1

3

2

V

p

19.3 Heat
Heat is a more elusive concept than work. We use the word “heat” very loosely in  
the English language, often as synonymous with hot. We might say on a very hot  
day, “This heat is oppressive.” If your apartment is cold, you may say, “Turn up the 
heat.” These expressions date to a time long ago when it was thought that heat was a 
substance with fluid-like properties.

V

p

f
Process A

Process Bi

The area under the process A
curve is larger than the area
under the process B curve.
Thus 0WA 0  7 0WB 0 .

FIGURE 19.9 The work done during an 
ideal-gas process depends on the path.
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560 CHAPTER 19 Work, Heat, and the First Law of Thermodynamics

TABLE 19.1 Understanding work and heat

Work Heat

Interaction: Mechanical Thermal

Requires: Force and displacement Temperature difference

Process: Macroscopic pushes and pulls Microscopic collisions

Positive value: W 7 0 when a system is  
compressed. Energy is  
transferred in.

Q 7 0 when the environment is  
at a higher temperature than the 
system. Energy is transferred in.

Negative value: W 6 0 when a system expands.  
Energy is transferred out.

Q 6 0 when the system is at  
a higher temperature than  
the environment. Energy is  
transferred out.

Equilibrium: A system is in mechanical  
equilibrium when there is  
no net force or torque on it.

A system is in thermal  
equilibrium when it is at  
the same temperature as the 
environment.

Our concept of heat changed with the work of British physicist James Joule in the  
1840s. Joule was the first to carry out careful experiments to learn how it is that  
systems change their temperature. Using experiments like those shown in FIGURE 19.10, 
Joule found that you can raise the temperature of a beaker of water by two entirely 
different means:

1. Heating it with a flame, or
2. Doing work on it with a rapidly spinning paddle wheel.

The final state of the water is exactly the same in both cases. This implies that heat 
and work are essentially equivalent. In other words, heat is not a substance. Instead, 
heat is energy. Heat and work, which previously had been regarded as two completely 
different phenomena, were now seen to be simply two different ways of transferring  
energy to or from a system.

Thermal Interactions
To be specific, heat is the energy transferred between a system and the environment as a 
consequence of a temperature difference between them. Unlike a mechanical interaction  
in which work is done, heat requires no macroscopic motion of the system. Instead 
(we’ll look at the details in Chapter 20), energy is transferred when the faster molecules 
in the hotter object collide with the slower molecules in the cooler object. On average, 
these collisions cause the faster molecules to lose energy and the slower molecules to 
gain energy. The net result is that energy is transferred from the hotter object to the 
colder object. The process itself, whereby energy is transferred between the system and 
the environment via atomic-level collisions, is called a thermal interaction.

When you place a pan of water on the stove, heat is the energy transferred from the 
hotter flame to the cooler water. If you place the water in a freezer, heat is the energy 
transferred from the warmer water to the colder air in the freezer. A system is in thermal  
equilibrium with the environment, or two systems are in thermal equilibrium with  
each other, if there is no temperature difference.

Like work, heat is not a state variable. That is, heat is not a property of the system. 
Instead, heat is the amount of energy that moves between the system and the environment  
during a thermal interaction. It would not be meaningful to talk about a “change of  
heat.” Thus heat appears in the energy equation simply as a value Q, never as ∆Q. 
FIGURE 19.11 shows how to interpret the sign of Q.

   NOTE    For both heat and work, a positive value indicates energy being transferred 
from the environment to the system. TABLE 19.1 summarizes the similarities and 
differences between work and heat.

Water

The flame heats the 
water. The temperature 
increases.

The paddle does work 
on the water. The 
temperature increases.

FIGURE 19.10 Joule’s experiments to show 
the equivalence of heat and work.

Q 7 0
Tenv 7 Tsys

System

Q 6 0
Tsys 7 Tenv

System

Q = 0
Tsys = Tenv

System

(a) Positive heat

(b) Negative heat

(c) Thermal equilibrium

FIGURE 19.11 The sign of heat.
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19.3 Heat 561

Units of Heat
Heat is energy transferred between the system and the environment. Consequently, 
the SI unit of heat is the joule. Historically, before the connection between heat and 
work had been recognized, a unit for measuring heat, the calorie, had been defined as

1 calorie = 1 cal = the quantity of heat needed to change the
temperature of 1 g of water by 1°C

Once Joule established that heat is energy, it was apparent that the calorie is really a 
unit of energy. In today’s SI units, the conversion is

1 cal = 4.186 J

The calorie you know in relation to food is not the same as the heat calorie. The 
food calorie, abbreviated Cal with a capital C, is

1 food calorie = 1 Cal = 1000 cal = 1 kcal = 4186 J

We will not use calories in this textbook, but there are some fields of science and 
engineering where calories are still widely used. All the calculations you learn to do 
with joules can equally well be done with calories.

Heat, Temperature, and Thermal Energy
It is important to distinguish among heat, temperature, and thermal energy. These 
three ideas are related, but the distinctions among them are crucial. In brief,

■■ Thermal energy is an energy of the system due to the motion of its atoms and mole-
cules and the stretching/compressing of spring-like molecular bonds. It is a form of 
energy. Thermal energy is a state variable, and it makes sense to talk about how Eth 
changes during a process. The system’s thermal energy continues to exist even if 
the system is isolated and not interacting thermally with its environment.

■■ Heat is energy transferred between the system and the environment as they interact. 
Heat is not a particular form of energy, nor is it a state variable. It makes no sense 
to talk about how heat changes. Q = 0 if a system does not interact thermally with 
its environment. Heat may cause the system’s thermal energy to change, but that 
doesn’t make heat and thermal energy the same.

■■ Temperature is a state variable that quantifies the “hotness” or “coldness” of a system.  
We haven’t yet given a precise definition of temperature, but it is related to the 
thermal energy per molecule. A temperature difference is a requirement for a ther-
mal interaction in which heat energy is transferred between the system and the 
environment.

It is especially important not to associate an observed temperature increase with 
heat. Heating a system is one way to change its temperature, but, as Joule showed, 
not the only way. You can also change the system’s temperature by doing work on the 
system or, as is the case with friction, transforming mechanical energy into thermal 
energy. Observing the system tells us nothing about the process by which energy 
enters or leaves the system.

Heat is the energy transferred in a  
thermal interaction.

STOP TO THINK 19.3 Which one or more of the following processes involves heat?

a. The brakes in your car get hot when you stop.
b. A steel block is held over a candle.
c. You push a rigid cylinder of gas across a frictionless surface.
d. You push a piston into a cylinder of gas, increasing the temperature of the gas.
e. You place a cylinder of gas in hot water. The gas expands, causing a piston to 

rise and lift a weight. The temperature of the gas does not change.
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562 CHAPTER 19 Work, Heat, and the First Law of Thermodynamics

19.4 The First Law of Thermodynamics
Heat was the missing piece that we needed to arrive at a completely general statement 
of the law of conservation of energy. Restating Equation 19.3, we have

∆Esys = ∆Emech + ∆Eth = W + Q

Work and heat, two ways of transferring energy between a system and the environment, 
cause the system’s energy to change.

At this point in the text we are not interested in systems that have a macroscopic 
motion of the system as a whole. Moving macroscopic systems were important to us 
for many chapters, but now, as we investigate the thermal properties of a system, we 
would like the system as a whole to rest peacefully on the laboratory bench while we 
study it. So we will assume, throughout the remainder of Part V, that ∆Emech = 0.

With this assumption clearly stated, the law of conservation of energy becomes

 ∆Eth = W + Q  (first law of thermodynamics) (19.14)

The energy equation, in this form, is called the first law of thermodynamics or 
simply “the first law.” The first law is a very general statement about energy.

Chapters 9 and 10 introduced the basic energy model—basic because it included 
work but not heat. The first law of thermodynamics is the basis for a more general 
energy model, the thermodynamic energy model, in which work and heat are on 
an equal footing.

MODEL 19.1

Thermodynamic energy model
Thermal energy is a property of the system.

■■ Work and heat are energies transferred 
 between the system and the environment.

• Work is energy transferred in a mechani-
cal interaction.

• Heat is energy transferred in a thermal 
interaction.

■■ The first law of thermodynamics says that transferring energy to the system 
changes the system’s thermal energy.

• ∆Eth = W + Q

• W and Q are positive when energy is added.

• W and Q are negative when energy is removed.
■■ Limitations: Model fails if the system’s mechanical energy also changes.

Eth

W 7 0

Q 7 0

W 6 0

Q 6 0

System

Environment

In Out

Work

Heat

Keep in mind that thermal energy isn’t the only thing that changes. Work or heat 
that changes the system’s thermal energy also changes other state variables, such as 
pressure, volume, or temperature. The first law tells us only about ∆Eth. Other laws 
and relationships, such as the ideal-gas law, are needed to learn how the other state 
variables change.

Three Special Ideal-Gas Processes
The ideal-gas law relates the state variables p, V, and T, but it tells us nothing about 
how these variables change if we do something to the gas. The first law of thermo-
dynamics is an additional law that gases must obey, one focused specifically on the 
process by which a gas is changed. In general, you need to consider both laws to solve 
thermodynamics problems about gases.
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19.4 The First Law of Thermodynamics 563

There are three ideal-gas processes in which one of the three terms in the first law— 
∆Eth, W, or Q—is zero:

■■ Isothermal process (   ∆Eth = 0): If the temperature of a gas doesn’t change, neither  
does its thermal energy. In this case, the first law is W + Q = 0. For example, a 
gas can be compressed 1W 7 02 without a temperature increase if all the energy 
is returned to the environment as heat (Q 6 0 for heat energy leaving the system). 
An isothermal process exchanges work and heat (one entering the system, the other 
leaving) without changing the gas temperature. But pressure and volume do change. 
Equation 19.13 for the work done in an isothermal process, together with the ideal- 
gas law, will allow you to calculate what happens to p and V. FIGURE 19.12a shows an 
energy bar chart for an isothermal process.

■■ Isochoric process (W = 0): We saw in Section 19.2 that work is done on a gas 
when its volume changes. An isochoric process has ∆V = 0; thus no work is done 
and the first law can be written ∆Eth = Q. This is a process in which the system is 
mechanically isolated from its environment. Heating (or cooling) the gas increases 
(or decreases) its thermal energy, so the temperature goes up (or down). You’ll learn 
later in this chapter how to calculate the temperature change ∆T. After using the first 
law to find ∆T, then you can use the ideal-gas law to calculate the pressure change. 
FIGURE 19.12b is an energy bar chart for a cooling process that lowers the temperature.

■■ Adiabatic process (Q = 0): A process in which no heat is transferred—perhaps the 
system is extremely well insulated—is called an adiabatic process. The system  
is thermally isolated from its environment. With Q = 0, the first law is ∆Eth = W. 
But just because there’s no heat does not mean that the temperature remains constant. 
Compressing an insulated gas—a mechanical interaction with W 7 0—raises its 
temperature! Similarly, an adiabatic expansion (one with no heat exchanged) lowers  
the gas temperature. Q = 0 does not mean ∆T = 0. We’ll examine adiabatic  
processes and their pV curves later in the chapter, but notice that all three state  
variables p, V, and T change during an adiabatic process. FIGURE 19.12c is an energy 
bar chart for an adiabatic process with an increasing temperature.

(a) Isothermal process: ∆Eth = 0

0

+

-

+ =+

Eth f=QW+ +Eth i

Energy that enters the system
as heat leaves as work. The
thermal energy is unchanged.

FIGURE 19.12 First-law bar charts for three special ideal-gas processes.

(b) Isochoric process: W = 0

0

+

-

+ =+

Eth f=QW+ +Eth i

Thermal energy has decreased
by the amount of energy that
left the system as heat.

(c) Adiabatic process: Q = 0

0

+

-

+ =+

Eth f=QW+ +Eth i

Energy that enters the system as
work increases the thermal energy
—and thus the temperature.

STOP TO THINK 19.4 Which first-law bar chart describes the process shown in the pV diagram?

(a)

0

+

-

+ =+

Eth f=QW+ +Eth i

(b)

0

+

-

+ =+

Eth f=QW+ +Eth i

(c)

0

+

-

+ =+

Eth f=QW+ +Eth i

(d)

0

+

-

+ =+

Eth f=QW+ +Eth i

p

i f

V
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564 CHAPTER 19 Work, Heat, and the First Law of Thermodynamics

19.5 Thermal Properties of Matter
Heat and work are equivalent in the sense that the change of the system is exactly the 
same whether you transfer heat energy to it or do an equal amount of work on it. Adding  
energy to the system, or removing it, changes the system’s thermal energy.

What happens to a system when you change its thermal energy? In this section 
we’ll consider two distinct possibilities:

■■ The temperature of the system changes.
■■ The system undergoes a phase change, such as melting or freezing.

Temperature Change and Specific Heat
Suppose you do an experiment in which you add energy to water, either by doing work 
on it or by transferring heat to it. Either way, you will find that adding 4190 J of energy 
raises the temperature of 1 kg of water by 1 K. If you were fortunate enough to have 1 kg  
of gold, you would need to add only 129 J of energy to raise its temperature by 1 K.

The amount of energy that raises the temperature of 1 kg of a substance by 1 K is 
called the specific heat of that substance. The symbol for specific heat is c. Water 
has specific heat cwater = 4190 J/kg K. The specific heat of gold is cgold = 129 J/kg K. 
Specific heat depends only on the material from which an object is made. TABLE 19.2 
provides some specific heats for common liquids and solids.

   NOTE    The term “specific heat” does not use the word “heat” in the way that we have 
defined it. Specific heat is an old idea, dating back to the days of the caloric theory when 
heat was thought to be a substance contained in the object. The term has continued  
in use even though our understanding of heat has changed.

If energy c is required to raise the temperature of 1 kg of a substance by 1 K, then 
energy Mc is needed to raise the temperature of mass M by 1 K and (Mc)∆T  is needed 
to raise the temperature of mass M by ∆T. In other words, the thermal energy of the 
system changes by

 ∆Eth = Mc ∆T  (temperature change) (19.15)

when its temperature changes by ∆T. ∆Eth can be either positive (thermal energy  
increases as the temperature goes up) or negative (thermal energy decreases as the 
temperature goes down). Recall that uppercase M is used for the mass of an entire 
system while lowercase m is reserved for the mass of an atom or molecule.

   NOTE    In practice, ∆T is usually measured in °C. But the Kelvin and the Celsius 
temperature scales have the same step size, so ∆T in K has exactly the same numerical 
value as ∆T in °C. Thus

■■ You do not need to convert temperatures from °C to K if you need only a temp-
erature change ∆T.

■■ You do need to convert anytime you need the actual temperature T.

The first law of thermodynamics, ∆Eth = W + Q, allows us to write Equation 19.15 
as Mc ∆T = W + Q. In other words, we can change the system’s temperature either 
by heating it or by doing an equivalent amount of work on it. In working with solids  
and liquids, we almost always change the temperature by heating. If W = 0, which we 
will assume for the rest of this section, then the heat energy needed to bring about a 
temperature change ∆T  is

 Q = Mc ∆T  (temperature change) (19.16)

Because ∆T = ∆Eth/Mc, it takes more energy to change the temperature of a substance  
with a large specific heat than to change the temperature of a substance with a small  

TABLE 19.2 Specific heats and molar 
specific heats of solids and liquids

Substance c (J/kg K) C (J/mol K)

Solids

Aluminum 900 24.3

Copper 385 24.4

Iron 449 25.1

Gold 129 25.4

Lead 128 26.5

Ice 2090 37.6

Liquids

Ethyl alcohol 2400 110.4

Mercury 140 28.1

Water 4190 75.4
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19.5 Thermal Properties of Matter 565

specific heat. You can think of specific heat as measuring the thermal inertia of a  
substance. Metals, with small specific heats, warm up and cool down quickly. A piece 
of aluminum foil can be safely held within seconds of removing it from a hot oven.  
Water, with a very large specific heat, is slow to warm up and slow to cool down. This  
is fortunate for us. The large thermal inertia of water is essential for the biological  
processes of life. We wouldn’t be here studying physics if water had a small specific heat!

A 70 kg student catches the flu, and his body temperature increases 
from 37.0°C 198.6°F2 to 39.0°C 1102.2°F2. How much energy 
is required to raise his body’s temperature? The specific heat of 
a mammalian body is 3400 J/kg K, nearly that of water because 
mammals are mostly water.

MODEL Energy is supplied by the chemical reactions of the body’s 
metabolism. These exothermic reactions transfer heat to the body. 
Normal metabolism provides enough heat energy to offset energy 
losses (radiation, evaporation, etc.) while maintaining a normal body 

temperature of 37°C. We need to calculate the additional energy  
needed to raise the body’s temperature by 2.0°C, or 2.0 K.

SOLVE The necessary heat energy is

Q = Mc ∆T = 170 kg213400 J/kg K212.0 K2 = 4.8 * 105 J

REVIEW This appears to be a lot of energy, but a joule is actually a 
very small amount of energy. It is only 110 Cal, approximately the 
energy gained by eating an apple.

EXAMPLE 19.3 ■ Running a fever

The molar specific heat is the amount of energy that raises the temperature of  
1 mol of a substance by 1 K. We’ll use an uppercase C for the molar specific heat. The 
heat energy needed to bring about a temperature change ∆T  of n moles of substance is

 Q = nC ∆T  (19.17)

Molar specific heats are listed in Table 19.2. Look at the five elemental solids 
(excluding ice). All have C very near 25 J/mol K. If we were to expand the table, 
we would find that most elemental solids have C ≈ 25 J/mol K. This can’t be a  
coincidence, but what is it telling us? This is a puzzle we will address in Chapter 20, 
where we will explore thermal energy at the atomic level.

Phase Change and Heat of Transformation
Suppose you start with a system in its solid phase and heat it at a steady rate. FIGURE 19.13, 
which you saw in Chapter 18, shows how the system’s temperature changes. At first, the 
temperature increases linearly. This is not hard to understand because Equation 19.16 
can be written

 slope of the T@versus@Q graph =
∆T
Q

=
1

Mc
 (19.18)

The slope of the graph depends inversely on the system’s specific heat. A constant 
specific heat implies a constant slope and thus a linear graph. In fact, you can measure 
c from such a graph.

   NOTE    The different slopes indicate that the solid, liquid, and gas phases of a 
substance have different specific heats.

But there are times, shown as horizontal line segments, during which heat is being 
transferred to the system but the temperature isn’t changing. These are phase changes. 
The thermal energy continues to increase during a phase change, but the additional 
energy goes into breaking molecular bonds rather than speeding up the molecules.  
A phase change is characterized by a change in thermal energy without a change 
in temperature.

The amount of heat energy that causes 1 kg of a substance to undergo a phase 
change is called the heat of transformation of that substance. For example, labo-
ratory experiments show that 333,000 J of heat are needed to melt 1 kg of ice at 0°C. 

T

Cumulative heat added

Solid

Tb

Tm

Liquid

Boiling
Gas

Melting

Slope =

The system’s thermal energy is
increasing as heat energy is added,
but it’s causing a phase change
rather than a temperature change.

∆T

Q

FIGURE 19.13 The temperature of a 
system that is heated at a steady rate.
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566 CHAPTER 19 Work, Heat, and the First Law of Thermodynamics

The symbol for heat of transformation is L. The heat required for the entire system of 
mass M to undergo a phase change is

 Q = ML  (phase change) (19.19)

Heat of transformation is a generic term that refers to any phase change. Two specific  
heats of transformation are the heat of fusion Lf, the heat of transformation between 
a solid and a liquid, and the heat of vaporization Lv, the heat of transformation  
between a liquid and a gas. The heat needed for these phase changes is

 Q = b{MLf  melt/freeze
{MLv boil/condense

 (19.20)

where the {  indicates that heat must be added to the system during melting or boiling  
but removed from the system during freezing or condensing. You must explicitly include 
the minus sign when it is needed.

TABLE 19.3 gives the heats of transformation of a few substances. Notice that the  
heat of vaporization is always much larger than the heat of fusion. We can understand 
this. Melting breaks just enough molecular bonds to allow the system to lose rigidity 
and flow. Even so, the molecules in a liquid remain close together and loosely bonded. 
Vaporization breaks all bonds completely and sends the molecules flying apart. This 
process requires a larger increase in the thermal energy and thus a larger quantity of heat.

Lava—molten rock—undergoes a phase 
change when it contacts the much colder 
water. This is one way in which new  
islands are formed.

TABLE 19.3 Melting/boiling temperatures and heats of transformation

Substance Tm (°C) Lf (J/kg) Tb (°C) Lv (J/kg)

Nitrogen (N2) -210 0.26 * 105 -196 1.99 * 105

Ethyl alcohol -114 1.09 * 105 78 8.79 * 105

Mercury -39 0.11 * 105 357 2.96 * 105

Water 0 3.33 * 105 100 22.6 * 105

Lead 328 0.25 * 105 1750 8.58 * 105

An insulated jar containing 200 g of solid candle wax is placed on a 
hot plate that supplies heat energy to the wax at the rate of 220 J/s. The 
wax temperature is measured every 30 s, yielding the following data:

Time (s) Temperature (°C) Time (s) Temperature (°C)

  0 20.0 180 70.5

 30 31.7 210 70.5

 60 42.2 240 70.6

 90 55.0 270 70.5

120 64.7 300 70.4

150 70.4 330 74.5

What are the specific heat of the solid wax, the melting point, and 
the wax’s heat of fusion?

MODEL The wax is in an insulated jar, so assume that heat loss to 
the environment is negligible.

VISUALIZE Heat energy is being supplied at the rate of 220 J/s, 
so the total heat energy that has been transferred into the wax at 
time t is Q = 220t J. FIGURE 19.14 shows the temperature graphed 

against the cumulative heat Q, although notice that the horizontal 
axis is in kJ, not J. The initial linear slope corresponds to raising 
the wax’s temperature to the melting point. Temperature remains 
constant during a phase change, even though the sample is still 
being heated, so the horizontal section of the graph is when the 
wax is melting. The temperature increase at the end shows that the 
temperature of the liquid wax is beginning to rise after melting is 
complete.

EXAMPLE 19.4 ■ Melting wax

T (°C)

Q (kJ)

Solid

60

40

20

0

80

6040200 80

Liquid

Best-fit line
y = 1.708x + 20.2

Melting

FIGURE 19.14 The heating curve of the wax.
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19.6 Calorimetry
At one time or another you’ve probably put an ice cube into a hot drink to cool it quickly. 
You were engaged, in a somewhat trial-and-error way, in a practical aspect of heat  
transfer known as calorimetry.

FIGURE 19.15 shows two systems thermally interacting with each other but isolated 
from everything else. Suppose they start at different temperatures T1 and T2. As you 
know from experience, heat energy will be transferred from the hotter to the colder 
system until they reach a common final temperature Tf. The systems will then be in 
thermal equilibrium and the temperature will not change further.

The insulation prevents any heat energy from being transferred to or from the  
environment, so energy conservation tells us that any energy leaving the hotter system 
must enter the colder system. That is, the systems exchange energy with no net loss or 
gain. The concept is straightforward, but to state the idea mathematically we need to 
be careful with signs.

Let Q1 be the energy transferred to system 1 as heat. Similarly, Q2 is the energy 
transferred to system 2. The fact that the systems are merely exchanging energy can be 
written 0Q1 0 = 0Q2 0 . The energy lost by the hotter system is the energy gained by the 
colder system, so Q1 and Q2 have opposite signs: Q1 = -Q2. No energy is exchanged  
with the environment, hence it makes more sense to write this relationship as

 Qnet = Q1 + Q2 = 0 (19.21)

This idea is not limited to the interaction of only two systems. If three or more  
systems are combined in isolation from the rest of their environment, each at a different  
initial temperature, they will all come to a common final temperature that can be 
found from the relationship

 Qnet = Q1 + Q2 + Q3 + g = 0 (19.22)

   NOTE    The signs are very important in calorimetry problems. ∆T  is always Tf - Ti, 
so ∆T  and Q are negative for any system whose temperature decreases. The proper 
sign of Q for any phase change must be supplied by you, depending on the direction 
of the phase change.

SOLVE From Q = Mc ∆T, the slope of the T@versus@Q graph 
is ∆T/Q = 1/Mc. The experimental slope of the best-fit line is 
1.708°C/kJ = 0.001708 K/J. Thus the specific heat of the solid wax is

c =
1

M * slope
=

1
10.200 kg210.001708 K/J2 = 2930 J/kg K

From the table, we see that the melting temperature—which remains 
constant during the phase change—is 70.5°C. The heat required for 
the phase change is Q = MLf, so the heat of fusion is Lf = Q/M. 
With data recorded only every 30 s, it’s not exactly clear when 
the melting began and when it ended. The extension of the initial  

slope shows that the temperature reached the melting point about 
halfway between 120 s and 150 s, so the melting started at about 
135 s. We’ll assume it was complete about halfway between 300 s 
and 330 s, or at about 315 s. Thus the melting took 180 s, during 
which, at 220 J/s, 39,600 J of heat energy was transferred from the 
hot plate to the wax. With this value of Q, the heat of fusion is

Lf =
Q

M
=

39,600 J

0.200 kg
= 2.0 * 105 J/kg

REVIEW Both the specific heat and the heat of fusion are similar to val-
ues in Tables 19.2 and 19.3, which gives us confidence in our results.

STOP TO THINK 19.5 Objects A and B are brought into 
close thermal contact with each other, but they are well 
isolated from their surroundings. Initially TA = 0°C and 
TB = 100°C. The specific heat of A is less than the specific 
heat of B. The two objects will soon reach a common final  
temperature Tf. The final temperature is

a. Tf 7 50°C  b. Tf = 50°C  c. Tf 6 50°C

A
1.0 kg
0°C

B
1.0 kg
100°C

System 1

T1

Q1

Q2 System 2

T2

Heat energy is transferred 
from system 1 to system 2.

Energy conservation requires

0Q1 0  = 0Q2 0

FIGURE 19.15 Two systems interact 
thermally.
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568 CHAPTER 19 Work, Heat, and the First Law of Thermodynamics

   NOTE    You may have learned to solve calorimetry problems in other courses by 
writing Qgained = Qlost. That is, by balancing heat gained with heat lost. That 
approach works in simple problems, but it has two drawbacks. First, you often have 
to “fudge” the signs to make them work. Second, and more serious, you can’t extend 
this approach to a problem with three or more interacting systems. Using Qnet = 0 is 
much preferred.

PROBLEM-SOLVING STRATEGY 19.2

Calorimetry problems

MODEL Model the systems as interacting with each other but isolated from the 
larger environment.

VISUALIZE List known information and identify what you need to find. Convert  
all quantities to SI units.

SOLVE The mathematical representation, a statement of energy conservation, is

Qnet = Q1 + Q2 + g = 0

■■ For systems that undergo a temperature change, Q = Mc1Tf - Ti2. Be sure to 
have the temperatures Ti and Tf in the correct order.

■■ For systems that undergo a phase change, Q = {ML. Supply the correct sign 
by observing whether energy enters or leaves the system.

■■ Some systems may undergo a temperature change and a phase change. Treat 
the changes separately. The heat energy is Q = Q∆T + Qphase.

REVIEW Is the final temperature in the middle? Tf that is higher or lower than all 
initial temperatures is an indication that something is wrong, usually a sign error.

Exercise 15 

Your 500 mL soda is at 20°C, room temperature, so you add 100 g 
of ice from the -20°C freezer. Does all the ice melt? If so, what is 
the final temperature? If not, what fraction of the ice melts? Assume  
that you have a well-insulated cup.

MODEL We have a thermal interaction between the soda, which  
is essentially water, and the ice. We need to distinguish between 
three possible outcomes. If all the ice melts, then Tf 7 0°C. It’s also 
possible that the soda will cool to 0°C before all the ice has melted, 
leaving the ice and liquid in equilibrium at 0°C. A third possibility is 
that the soda will freeze solid before the ice warms up to 0°C. That 
seems unlikely here, but there are situations, such as the pouring of 
molten metal out of furnaces, when all the liquid does solidify. We 
need to distinguish between these before knowing how to proceed.

VISUALIZE All the initial temperatures, masses, and specific  
heats are known. The final temperature of the combined soda + ice 
system is unknown.

SOLVE Let’s first calculate the heat needed to melt all the ice and 
leave it as liquid water at 0°C. To do so, we must warm the ice 
to 0°C, then change it to water. The heat input for this two-stage 
process is

Qmelt = Mici120 K2 + MiLf = 37,500 J

where Lf is the heat of fusion of water. It is used as a positive 
quantity because we must add heat to melt the ice. Next, let’s cal-
culate how much heat energy will leave the soda if it cools all 

the way to 0°C. The volume is V = 500 mL = 5.00 * 10-4 m3 and  
thus the mass is Ms = rV = 0.500 kg. The heat loss is

Qcool = Mscw1-20 K2 = -41,900 J

where ∆T = -20 K because the temperature decreases. Because 
0Qcool 0 7 Qmelt, the soda has sufficient energy to melt all the ice. Hence 
the final state will be all liquid at Tf 7 0. (Had we found 0Qcool 0 6 Qmelt, 
then the final state would have been an ice-liquid mixture at 0°C.)

Energy conservation requires Qice + Qsoda = 0. The heat Qice 
consists of three terms: warming the ice to 0°C, melting the ice to 
water at 0°C, then warming the 0°C water to Tf. The mass will still 
be Mi in the last of these steps because it is the “ice system,” but we 
need to use the specific heat of liquid water. Thus

Qice + Qsoda = 3Mici120 K2 + MiLf + Micw1Tf - 0°C24
+  Mscw1Tf - 20°C2 = 0

We’ve already done part of the calculation, allowing us to write

37,500 J + Micw1Tf - 0°C2 + Mscw1Tf - 20°C2 = 0

Solving for Tf gives

Tf =
20Mscw - 37,500 J

Micw + Mscw
= 1.7°C

REVIEW As expected, the soda has been cooled to nearly the 
 freezing point.

EXAMPLE 19.5 ■ Calorimetry with a phase change
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19.7 The Specific Heats of Gases
Specific heats are given in Table 19.2 for solids and liquids. Gases are harder to  
characterize because the heat required to cause a specified temperature change  
depends on the process by which the gas changes state.

FIGURE 19.16 shows two isotherms on the pV diagram for a gas. Processes A and B, 
which start on the Ti isotherm and end on the Tf isotherm, have the same temperature 
change ∆T = Tf - Ti. But process A, which takes place at constant volume, requires a 
different amount of heat than does process B, which occurs at constant pressure. The 
reason is that work is done in process B but not in process A. This is a situation that 
we are now equipped to analyze.

It is useful to define two different versions of the specific heat of gases, one for 
constant-volume (isochoric) processes and one for constant-pressure (isobaric)  
processes. We will define these as molar specific heats because we usually do gas 
calculations using moles instead of mass. The quantity of heat needed to change the 
temperature of n moles of gas by ∆T  is

 Q = nCV ∆T  (temperature change at constant volume) 

    Q = nCP ∆T   (temperature change at constant pressure) 
(19.23)

where CV is the molar specific heat at constant volume and CP is the molar 
specific heat at constant pressure. TABLE 19.4 gives the values of CV and CP for a  
few common monatomic and diatomic gases. The units are J/mol K. Molar specific heats 
do vary somewhat with temperature—we’ll look at an example in the next chapter—but  
the values in the table are adequate for temperatures from 200 K to 800 K.

   NOTE    Equations 19.23 apply to two specific ideal-gas processes. In a general gas 
process, for which neither p nor V is constant, we have no direct way to relate Q to ∆T. 
In that case, the heat must be found indirectly from the first law as Q = ∆Eth - W.

A 200 g piece of iron at 120°C and a 150 g piece of copper at -50°C 
are dropped into an insulated beaker containing 300 g of ethyl  
alcohol at 20°C. What is the final temperature?

MODEL Here you can’t use a simple Qgained = Qlost approach because 
you don’t know whether the alcohol is going to warm up or cool 
down. In principle, the alcohol could freeze or boil, but the masses 
and temperatures of the metals suggest that the temperature will not 
change greatly. We will assume that the alcohol remains a liquid.

VISUALIZE All the initial temperatures, masses, and specific heats 
are known. We need to find the final temperature.

SOLVE Energy conservation requires

Qi + Qc + Qe = Mi 

ci1Tf - 120°C2 + Mccc 1Tf - 1-50°C22
+  Mece1Tf - 20°C2 = 0

Solving for Tf gives

Tf =
120Mici - 50Mccc + 20Mece

Mici + Mccc + Mece
= 26°C

REVIEW The temperature is between the initial iron and copper 
temperatures, as expected, and well below the boiling temperature 
of the alcohol, validating our assumption of no phase change. It 
turns out that the alcohol warms up 1Qe 7 02, but we had no way to 
know this without doing the calculation.

EXAMPLE 19.6 ■ Three interacting systems

Three moles of O2 gas are at 20.0°C. 600 J of heat energy are trans-
ferred to the gas at constant pressure, then 600 J are removed at 
constant volume. What is the final temperature? Show the process 
on a pV diagram.

MODEL O2 is a diatomic ideal gas. The gas is heated as an isobaric 
process, then cooled as an isochoric process.

SOLVE The heat transferred during the constant-pressure process 
causes a temperature rise

∆T = T2 - T1 =
Q

nCP
=

600 J
13.0 mol2129.2 J/mol K2 = 6.8°C

EXAMPLE 19.7 ■ Heating and cooling a gas

Continued

p

V

Ti isotherm Tf isotherm

i

A

B

Constant-volume
process

Constant-pressure
process

f

f

FIGURE 19.16 Processes A and B have the 
same ∆T  and the same ∆Eth, but they 
require different amounts of heat.

TABLE 19.4 Molar specific heats of gases 
(J/mol K) at T = 0°C

Gas CP CV CP – CV

Monatomic Gases

He 20.8 12.5 8.3

Ne 20.8 12.5 8.3

Ar 20.8 12.5 8.3

Diatomic Gases

H2 28.7 20.4 8.3

N2 29.1 20.8 8.3

O2 29.2 20.9 8.3
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CP and CV
You may have noticed two curious features in Table 19.4. First, the molar specific 
heats of monatomic gases are all alike. And the molar specific heats of diatomic gases, 
while different from monatomic gases, are again very nearly alike. We saw a similar  
feature in Table 19.2 for the molar specific heats of solids. Second, the difference 
CP - CV = 8.3 J/mol K is the same in every case. And, most puzzling of all, the value 
of CP - CV appears to be equal to the universal gas constant R! Why should this be?

The relationship between CV and CP hinges on one crucial idea: ∆Eth, the change 
in the thermal energy of a gas, is the same for any two processes that have the  
same ∆T. The thermal energy of a gas is associated with temperature, so any process 
that changes the gas temperature from Ti to Tf has the same ∆Eth as any other process 
that goes from Ti to Tf. Furthermore, the first law ∆Eth = Q + W tells us that a gas 
cannot distinguish between heat and work. The system’s thermal energy changes in 
response to energy added to or removed from the system, but the response of the gas is 
the same whether you heat the system, do work on the system, or do some combination 
of both. Thus any two processes that change the thermal energy of the gas by ∆Eth  
will cause the same temperature change ∆T.

where CP for oxygen was taken from Table 19.4. Heating leaves the 
gas at temperature T2 = T1 + ∆T = 26.8°C. The temperature then 
falls as heat is removed during the constant-volume process:

∆T = T3 - T2 =
Q

nCV
=

-600 J
13.0 mol2120.9 J/mol K2 = -9.5°C

We used a negative value for Q because heat energy is transferred 
from the gas to the environment. The final temperature of the gas 
is T3 = T2 + ∆T = 17.3°C. FIGURE 19.17 shows the process on a pV 
diagram. The gas expands (moves horizontally on the diagram) as 
heat is added, then cools at constant volume (moves vertically on 
the diagram) as heat is removed.

REVIEW The final temperature is lower than the initial temperature 
because CP 7 CV.

p

V

1 2

3

17.3°C
20.0°C

26.8°C

FIGURE 19.17 The pV diagram for Example 19.7.

The interior volume of a 200 g hollow aluminum box is 800 cm3. 
The box contains nitrogen gas at STP. A 20 cm3 block of copper 
at a temperature of 300°C is placed inside the box, then the box is 
sealed. What is the final temperature?

MODEL This example has three interacting systems: the aluminum 
box, the nitrogen gas, and the copper block. They must all come to 
a common final temperature Tf.

VISUALIZE The box and gas have the same initial temperature: 
TAl = TN2 = 0°C. The box doesn’t change size, so this is a constant- 
volume process. The final temperature is unknown.

SOLVE Although one of the systems is now a gas, the calorimetry 
equation Qnet = QAl + QN2 + QCu = 0 is still appropriate. In this 
case,

Qnet = mAlcAl1Tf - TAl2 + nN2CV1Tf - TN22
+  mCucCu1Tf - TCu 2 = 0

Notice that we used masses and specific heats for the solids but 
moles and the molar specific heat for the gas. We used CV because 
this is a constant-volume process. Solving for Tf gives

Tf =
mAlcAlTAl + nN2CVTN2 + mCucCuTCu

mAlcAl + nN2CV + mCucCu

The specific heat values are found in Tables 19.2 and 19.4. The mass 
of the copper is

mCu = rCuVCu = 18920 kg/cm32120 * 10-6 m32 = 0.178 kg

The number of moles of the gas is found from the ideal-gas  
law, using the initial conditions. Notice that inserting the copper  
block displaces 20 cm3 of gas; hence the gas volume is only 
V = 780 cm3 = 7.80 * 10-4 m3. Thus

nN2 =
pV

RT
= 0.0348 mol

Computing the final temperature gives Tf = 83°C.

EXAMPLE 19.8 ■ Calorimetry with a gas and a solid
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With that in mind, look back at Figure 19.16. Both gas processes have the same ∆T, 
so both have the same value of ∆Eth. Process A is an isochoric process in which no 
work is done (the piston doesn’t move), so the first law for this process is

 1∆Eth2A = W + Q = 0 + Qconst vol = nCV ∆T  (19.24)

Process B is an isobaric process. You learned earlier that the work done on the gas 
during an isobaric process is W = -p ∆V. Thus

 1∆Eth2B = W + Q = -p ∆V + Qconst press = -p ∆V + nCP ∆T  (19.25)

1∆Eth2B = 1∆Eth2A because both have the same ∆T, so we can equate the right sides of  
Equations 19.24 and 19.25:

 -p ∆V + nCP ∆T = nCV ∆T  (19.26)

For the final step, we can use the ideal-gas law pV = nRT  to relate ∆V  and ∆T  
during process B. For any gas process,

 ∆1pV2 = ∆1nRT2 (19.27)

For a constant-pressure process, where p is constant, Equation 19.27 becomes

 p ∆V = nR ∆T  (19.28)

Substituting this expression for p ∆V  into Equation 19.26 gives

 -nR ∆T + nCP ∆T = nCV ∆T  (19.29)

The n ∆T  cancels, and we are left with

 CP = CV + R (19.30)

This result, which applies to all ideal gases, is exactly what we see in the data of 
Table 19.4.

But that’s not the only conclusion we can draw. Equation 19.24 found that 
∆Eth = nCV ∆T  for a constant-volume process. But we had just noted that ∆Eth is the 
same for all gas processes that have the same ∆T. Consequently, this expression for 
∆Eth is equally true for any other process. That is

 ∆Eth = nCV ∆T  (any ideal@gas process) (19.31)

Compare this result to Equations 19.23. We first made a distinction between constant-  
volume and constant-pressure processes, but now we’re saying that Equation 19.31 is 
true for any process. Are we contradicting ourselves? No, the difference lies in what 
you need to calculate.

■■ The change in thermal energy when the temperature changes by ∆T  is the same for 
any process. That’s Equation 19.31.

■■ The heat required to bring about the temperature change depends on what the 
 process is. That’s Equations 19.23. An isobaric process requires more heat than an 
isochoric process that produces the same ∆T.

The reason for the difference is seen by writing the first law as Q = ∆Eth - W. In 
an isochoric process, where W = 0, all the heat input is used to increase the gas 
 temperature. But in an isobaric process, some of the energy that enters the system as 
heat then leaves the system as work 1W 6 02 done by the expanding gas. Thus more 
heat is needed to produce the same ∆T.

Heat Depends on the Path
Consider the two ideal-gas processes shown in FIGURE 19.18. Even though the initial  
and final states are the same, the heat added during these two processes is not the same.  
We can use the first law ∆Eth = W + Q to see why.

Designing a jet engine requires a thor-
ough understanding of thermodynamics. 
The compressor of a jet engine does work 
to adiabatically compress the incoming 
air, which substantially increases its pres-
sure and temperature. Fuel is sprayed 
into this hot air and ignited, further in-
creasing the temperature. The expanding 
hot gas is exhausted from the engine 
and, by Newton’s third law, generates 
thrust to push the plane forward. Part 
of the exhaust gas spins a turbine that 
runs the compressor at the front end 
and also generates the electric power 
needed onboard. The overall efficiency of 
a jet engine—the ratio of the work done 
by thrust to the chemical energy of the 
fuel—is about 35%.

p

V

f

Process A

Process B

i

Vi

pi

Vf

pf

FIGURE 19.18 Is the heat input along these 
two paths the same or different?
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An isothermal
process has ∆Eth = 0,
so W = -Q.

∆Eth = W + Q

An isochoric
process has W = 0,
so ∆Eth = Q.

An adiabatic process
has Q = 0, so ∆Eth = W.

FIGURE 19.19 The relationship of three 
important processes to the first law of 
thermodynamics.

The thermal energy is a state variable. That is, its value depends on the state of the 
gas, not the process by which the gas arrived at that state. Thus ∆Eth = Eth f - Eth i 
is the same for both processes. If ∆Eth is the same for processes A and B, then 
WA + QA = WB + QB.

You learned in Section 19.2 that the work done during an ideal-gas process depends  
on the path in the pV diagram. There’s more area under the process B curve, so 
0WB 0 7 0WA 0 . Both values of W are negative because the gas expands, so WB is more 
negative than WA. Consequently, WA + QA can equal WB + QB only if QB 7 QA. The 
heat added or removed during an ideal-gas process depends on the path followed 
through the pV diagram.

Adiabatic Processes
Section 19.4 introduced the idea of an adiabatic process, a process in which no heat 
energy is transferred 1Q = 02. FIGURE 19.19 compares an adiabatic process with iso-
thermal and isochoric processes. We’re now prepared to look at adiabatic processes 
in more detail.

In practice, there are two ways that an adiabatic process can come about. First, a 
gas cylinder can be completely surrounded by thermal insulation, such as thick pieces 
of Styrofoam. The environment can interact mechanically with the gas by pushing or 
pulling on the insulated piston, but there is no thermal interaction.

Second, the gas can be expanded or compressed very rapidly in what we call an 
adiabatic expansion or an adiabatic compression. In a rapid process there is essen-
tially no time for heat to be transferred between the gas and the environment. We’ve 
already alluded to the idea that heat is transferred via atomic-level collisions. These 
collisions take time. If you stick one end of a copper rod into a flame, the other end 
will eventually get too hot to hold—but not instantly. Some amount of time is required 
for heat to be transferred from one end to the other. A process that takes place faster 
than the heat can be transferred is adiabatic.

   NOTE    You may recall reading in Chapter 18 that we are going to study only quasi-  
static processes, processes that proceed slowly enough to remain essentially in 
equilibrium at all times. Now we’re proposing to study processes that take place 
very rapidly. Isn’t this a contradiction? Yes, to some extent it is. What we need to 
establish are the appropriate time scales. How slow must a process go to be quasi-
static? How fast must it go to be adiabatic? These types of calculations must be 
deferred to a more advanced course. It turns out—fortunately!—that many practical 
applications, such as the compression strokes in gasoline and diesel engines, are fast 
enough to be adiabatic yet slow enough to still be considered quasi-static.

For an adiabatic process, with Q = 0, the first law of thermodynamics is ∆Eth = W. 
Compressing a gas adiabatically 1W 7 02 increases the thermal energy. Thus an  
adiabatic compression raises the temperature of a gas. A gas that expands adiabati-
cally 1W 6 02 gets colder as its thermal energy decreases. Thus an adiabatic expansion  
lowers the temperature of a gas. You can use an adiabatic process to change the gas 
temperature without using heat!

The work done in an adiabatic process goes entirely to changing the thermal en-
ergy of the gas. But we just found that ∆Eth = nCV ∆T  for any process. Thus

 W = nCV ∆T  (adiabatic process) (19.32)

Equation 19.32 joins with the equations we derived earlier for the work done in iso-
choric, isobaric, and isothermal processes.

Gas processes can be represented as trajectories in the pV diagram. For example,  
a gas moves along a hyperbola during an isothermal process. How does an adiabatic 
process appear in a pV diagram? The result is more important than the derivation, 
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which is a bit tedious, so we’ll begin with the answer and then, at the end of this section,  
show where it comes from.

First, we define the specific heat ratio g (lowercase Greek gamma) to be

 g =
CP

CV
= b1.67 monatomic gas

1.40 diatomic gas
 (19.33)

The specific heat ratio has many uses in thermodynamics. Notice that g is dimensionless.
An adiabatic process is one in which

 pV g = constant  or  pfVf 

g = piVi 

g (19.34)

This is similar to the isothermal pV = constant, but somewhat more complex due to 
the exponent g.

The curves found by graphing p = constant/V g are called adiabats. In FIGURE 19.20 
you see that the two adiabats are steeper than the hyperbolic isotherms. An adiabatic 
process moves along an adiabat in the same way that an isothermal process moves 
along an isotherm. You can see that the temperature falls during an adiabatic expansion  
and rises during an adiabatic compression.

If we use the ideal-gas-law expression p = nRT/V in the adiabatic equation pV g =
constant, we see that TV g-1 is also constant during an adiabatic process. Thus another 
useful equation for adiabatic processes is

 TfVf 

 g-1 = TiVi 

 g-1 (19.35)

p

V

T2

T1

Adiabats

Temperature rises
during an adiabatic
compression.

Temperature falls
during an adiabatic
expansion.

Isotherms

FIGURE 19.20 An adiabatic process moves 
along pV curves called adiabats.

Air containing gasoline vapor is admitted into the cylinder of an 
internal combustion engine at 1.00 atm pressure and 30°C. The 
piston rapidly compresses the gas from 500 cm3 to 50 cm3, a com - 
pression ratio of 10.

a. What are the final temperature and pressure of the gas?

b. Show the compression process on a pV diagram.

c. How much work is done to compress the gas?

MODEL The compression is rapid, with insufficient time for heat to 
be transferred from the gas to the environment, so we will model it as 
an adiabatic compression. We’ll treat the gas as if it were 100% air.

SOLVE a. We know the initial pressure and volume, and we know 
the volume after the compression. For an adiabatic process, where 
pV g remains constant, the final pressure is

pf = pi1Vi

Vf
2g = 11.00 atm211021.40 = 25.1 atm

Air is a mixture of N2 and O2, diatomic gases, so we used g =1.40. 
We can now find the temperature by using the ideal-gas law:

Tf = Ti  
pf

pi
 
Vf

Vi
= 1303 K2125.121 1

102 = 761 K = 488°C

Temperature must be in kelvins for doing gas calculations such as 
these.

b. FIGURE 19.21 shows the pV diagram. The 30°C and 488°C  
isotherms are included to show how the temperature changes during 
the process.

c. The work done is W = nCV ∆T, with ∆T = 458 K. The number 
of moles is found from the ideal-gas law and the initial conditions:

n =
piVi

RTi
= 0.0201 mol

Thus the work done to compress the gas is

W = nCV ∆T = 10.0201 mol2120.8 J/mol K21458 K2 = 192 J

REVIEW The temperature rises dramatically during the compres-
sion stroke of an engine. But the higher temperature has nothing to 
do with heat! The temperature and thermal energy of the gas are 
increased not by heating the gas but by doing work on it. This is 
an important idea to understand.

EXAMPLE 19.9 ■ An adiabatic compression

p (atm)

V (cm3)

488°C

30°C
500

i

f

50

1

25

FIGURE 19.21 The adiabatic compression of the gas in an internal 
combustion engine.
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Proof of Equation 19.34
Now let’s see where Equation 19.34 comes from. Consider an adiabatic process in 
which an infinitesimal amount of work dW done on a gas causes an infinitesimal 
change in the thermal energy. For an adiabatic process, with dQ = 0, the first law of 
thermodynamics is

 dEth = dW (19.36)

We can use Equation 19.31, which is valid for any gas process, to write dEth =
 nCV dT. Earlier in the chapter we found that the work done during a small volume 
change is dW = -p dV. With these substitutions, Equation 19.36 becomes

 nCV dT = -p dV (19.37)

The ideal-gas law can now be used to write p = nRT/V. The n cancels, and the CV can 
be moved to the other side of the equation to give

 
dT
T

= -  
R

CV
 
dV
V

 (19.38)

We’re going to integrate Equation 19.38, but anticipating the need for g = CP/CV 
we can first use the fact that CP = CV + R to write

 
R

CV
=

CP - CV

CV
=

CP

CV
- 1 = g - 1 (19.39)

Now we integrate Equation 19.38 from the initial state i to the final state f:

 3
Tf

Ti

 
dT
T

= -1g - 123
Vf

Vi

 
dV
V

 (19.40)

Carrying out the integration gives

 ln1Tf

Ti
2 = ln1Vi

Vf
2g-1

 (19.41)

where we used the logarithm properties log a - log b = log1a/b2 and c log a =  log1ac2.
Taking the exponential of both sides now gives

 1Tf

Ti
2 = 1Vi

Vf
2g-1

 

 TfVf 

g-1 = TiVi 

g-1 
(19.42)

This was Equation 19.35. Writing T = pV/nR and canceling 1/nR from both sides of 
the equation give Equation 19.34:

 pfVf 

g = piVi 

g (19.43)

This was a lengthy derivation, but it is good practice at seeing how the ideal-gas 
law and the first law of thermodynamics can work together to yield results of great 
importance.

STOP TO THINK 19.6 For the two processes 
shown, which of the following is true:

a. QA 7 QB

b. QA = QB

c. QA 6 QB

p

V

i f

B

A
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19.8 Heat-Transfer Mechanisms
You feel warmer when the sun is shining on you, colder when sitting on a metal bench 
or when the wind is blowing, especially if your skin is wet. This is due to the transfer  
of heat. Although we’ve talked about heat a lot in this chapter, we haven’t said much 
about how heat is transferred from a hotter object to a colder object. There are four basic 
mechanisms by which objects exchange heat with their surroundings. Evaporation was 
treated in Section 19.5; in this section, we will consider the other mechanisms.

Heat-transfer mechanisms

When two objects are in direct  
contact, such as the soldering  
iron and the circuit board, heat  
is transferred by conduction.

Air currents near a lighted  
candle rise, taking thermal  
energy with them in a process  
known as convection.

The lamp at the top shines on  
the lambs huddled below,  
warming them. The energy is  
transferred by radiation.

Blowing on a hot cup of tea or 
coffee cools it by evaporation.

Conduction
FIGURE 19.22 shows an object sandwiched between a higher temperature TH and a lower 
temperature TC. The temperature difference causes heat energy to be transferred from 
the hot side to the cold side in a process known as conduction.

It is not surprising that more heat is transferred if the temperature difference ∆T  
is larger. A material with a larger cross section A (a fatter pipe) transfers more heat, 
while a thicker material, increasing the distance L between the hot and cold sources, 
decreases the rate of heat transfer.

These observations about heat conduction can be summarized in a single formula. 
If a small amount of heat dQ is transferred in a small time interval dt, the rate of 
heat transfer is dQ/dt. For a material of cross-section area A and length L, spanning a 
 temperature difference ∆T = TH - TC, the rate of heat transfer is

 
dQ

dt
= kA 

∆T
L

  (19.44)

The quantity k, which characterizes whether the material is a good conductor 
of heat or a poor conductor, is called the thermal conductivity of the material. 
Because the heat-transfer rate J/s is a power, measured in watts, the units of k are 
W/m K. Values of k for common materials are given in TABLE 19.5; a material with a 
larger value of k is a better conductor of heat.

   NOTE    Heat conductivity is yet another use of the symbol k. Whenever you see a k, 
be very alert to the context in which it is used.

The quantity ∆T/L is called the temperature gradient. A large temperature 
change over a small distance is a large temperature gradient. The heat-conduction 
equation tells us that a temperature gradient drives an energy flow. We met the idea 
that gradients drive flows in our discussion of fluid flows; it’s an important concept 
that we’ll see several more times.

This material is conducting heat across 
the temperature difference.

TH

Hot
Q

Q

TC

L

Cold

Area A

FIGURE 19.22 Conduction of heat through 
a solid.

TABLE 19.5 Thermal conductivities

Material k (W/m K)

Diamond 2000

Silver 430

Copper 400

Aluminum 240

Iron 80

Stainless steel 14

Ice    1.7

Concrete   0.8

Glass    0.8

Styrofoam 0.035

Air (20°C, 1 atm) 0.023
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576 CHAPTER 19 Work, Heat, and the First Law of Thermodynamics

Most good heat conductors are metals, which are also good conductors of electricity.  
One exception is diamond, in which the strong bonds that make diamond such a hard 
material lead to a rapid transfer of thermal energy. Air and other gases are poor con-
ductors of heat because there are no bonds between adjacent molecules.

Some of our perceptions of hot and cold have more to do with thermal conductivity 
than with temperature. For example, a metal chair feels colder to your bare skin than a 
wooden chair not because it has a lower temperature—both are at room temperature—
but because it has a much larger thermal conductivity that conducts heat away from  
your body at a much higher rate.

A 1.8-m-wide by 1.0-m-tall by 0.65-m-deep home freezer is 
 insulated with 5.0-cm-thick Styrofoam insulation. At what rate must 
the compressor remove heat from the freezer to keep the inside at  
-20°C in a room where the air temperature is 25°C?

MODEL Heat is transferred through each of the six sides by 
 conduction. The compressor must remove heat at the same rate it 
enters to maintain a steady temperature inside. The heat conduction 
is determined primarily by the thick insulation, so we’ll neglect the 
thin inner and outer panels.

SOLVE Each of the six sides is a slab of Styrofoam with cross-section 
area Ai and thickness L = 5.0 cm. The total rate of heat transfer is

dQ

dt
= a

6

i=1
 kAi 

∆T
L

 =
k ∆T

L
 a

6

i=1
 Ai =

k ∆T
L

 Atotal

The total surface area is

Atotal = 2 * 11.8 m * 1.0 m + 1.8 m * 0.65 m

+ 1.0 m * 0.65 m2 = 7.24 m2

Using k = 0.035 W/m K from Table 19.5, we find

dQ

dt
=

k ∆T
L

 Atotal =
10.035 W/m K2145 K217.24 m22

0.050 m
= 230 W

Heat enters the freezer through the walls at the rate 230 J/s; thus the 
compressor must remove 230 J of heat energy every second to keep 
the temperature at -20°C.

REVIEW We’ll learn in Chapter 20 how the compressor does this and 
how much work it must do. A typical freezer uses electric energy  
at a rate of about 150 W, so our result seems reasonable.

EXAMPLE 19.10 ■ Keeping a freezer cold

Convection
Air is a poor conductor of heat, but thermal energy is easily transferred through air, 
water, and other fluids because the air and water can flow. A pan of water on the stove 
is heated at the bottom. This heated water expands, becomes less dense than the water 
above it, and thus rises to the surface, while cooler, denser water sinks to take its place. 
The same thing happens to air. This transfer of thermal energy by the motion of a  
fluid—the well-known idea that “heat rises”—is called convection.

Convection is usually the main mechanism for heat transfer in fluid systems. On  
a small scale, convection mixes the pan of water that you heat on the stove; on a  
large scale, convection is responsible for making the wind blow and ocean currents 
circulate. Air is a very poor thermal conductor, but it is very effective at transferring 
energy by convection. To use air for thermal insulation, it is necessary to trap the air in 
small pockets to limit convection. And that’s exactly what feathers, fur, double-paned 
windows, and fiberglass insulation do. Convection is much more rapid in water than 
in air, which is why people can die of hypothermia in 68°F (20°C) water but can live  
quite happily in 68°F air.

Because convection involves the often-turbulent motion of fluids, there is no simple 
equation for energy transfer by convection. Our description must remain qualitative.

Radiation
The sun radiates energy to earth through the vacuum of space. Similarly, you feel the 
warmth from the glowing red coals in a fireplace.

All objects emit energy in the form of radiation, electromagnetic waves generated 
by oscillating electric charges in the atoms that form the object. These waves transfer 

Warm water (colored) moves 
by convection.
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 energy from the object that emits the radiation to the object that absorbs it. Electro-
magnetic waves carry energy from the sun; this energy is absorbed when sunlight falls 
on your skin, warming you by increasing your thermal energy. Your skin also emits 
electromagnetic radiation, helping to keep your body cool by decreasing your thermal 
energy. Radiation is a significant part of the energy balance that keeps your body at the 
proper temperature.

   NOTE    The word “radiation” comes from “radiate,” meaning “to beam.” Radiation 
can refer to x rays or to the radioactive decay of nuclei, but it also can refer simply to 
light and other forms of electromagnetic waves that “beam” from an object. Here we 
are using this second meaning of the term.

You are familiar with radiation from objects hot enough to glow “red hot” or, at a 
high enough temperature, “white hot.” The sun is simply a very hot ball of glowing 
gas, and the white light from an incandescent lightbulb is radiation emitted by a thin 
wire filament heated to a very high temperature by an electric current. Objects at lower 
temperatures also radiate, but at infrared wavelengths. You can’t see this radiation 
(although you can sometimes feel it), but infrared-sensitive detectors can measure it  
and are used to make thermal images.

The energy radiated by an object depends strongly on temperature. If a small 
amount of heat energy dQ is radiated during a small time interval dt by an object with 
surface area A and absolute temperature T, the rate of heat transfer is found to be

 
dQ

dt
= esAT 4 (19.45)

Because the rate of energy transfer is power 11 J/s = 1 W2, dQ/dt is often called the 
radiated power. Notice the very strong fourth-power dependence on temperature. 
Doubling the absolute temperature of an object increases the radiated power by a 
 factor of 16!

The parameter e in Equation 19.45 is the emissivity of the surface, a measure of 
how effectively it radiates. The value of e ranges from 0 to 1. s is a constant, known 
as the Stefan-Boltzmann constant, with the value

s = 5.67 * 10-8 W/m2 K4

   NOTE    Just as in the ideal-gas law, the temperature in Equation 19.45 must be in 
kelvins.

Objects not only emit radiation, they also absorb radiation emitted by their 
 surroundings. Suppose an object at temperature T is surrounded by an environment at 
temperature T0. The net rate at which the object radiates heat energy—that is, radiation 
emitted minus radiation absorbed—is

 
dQnet

dt
= esA1T 4 - T0 

42 (19.46)

This makes sense. An object should have no net radiation if it’s in thermal equilibrium 
1T = T02 with its surroundings.

Notice that the emissivity e appears for absorption as well as emission; good emit-
ters are also good absorbers. A perfect absorber 1e = 12, one absorbing all light and 
radiation impinging on it but reflecting none, would appear completely black. Thus a 
perfect absorber is sometimes called a black body. But a perfect absorber would also 
be a perfect emitter, so thermal radiation from an ideal emitter is called black-body 
radiation. It seems strange that black objects are perfect emitters, but think of black 
charcoal glowing bright red in a fire. At room temperature, it “glows” equally bright 
with infrared.

This satellite image shows radiation 
emitted by the ocean waters off the 
east coast of the United States. You can 
clearly see the warm waters of the Gulf 
Stream, a large-scale convection that 
transfers heat to northern latitudes.
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Thermal radiation plays a prominent role in climate and global warming. The earth 
as a whole is in thermal equilibrium. Consequently, it must radiate back into space  
exactly as much energy as it receives from the sun. The incoming radiation from the 
hot sun is mostly visible light. The earth’s atmosphere is transparent to visible light, so 
this radiation reaches the surface and is absorbed. The cooler earth radiates infrared 
radiation, but the atmosphere is not completely transparent to infrared. Some compo-
nents of the atmosphere, notably water vapor and carbon dioxide, are strong absorbers 
of infrared radiation. They hinder the emission of radiation and, rather like a blanket, 
keep the earth’s surface warmer than it would be without these gases in the atmosphere.

The greenhouse effect, as it’s called, is a natural part of the earth’s climate. The 
earth would be much colder and mostly frozen were it not for naturally occurring carbon 
dioxide in the atmosphere. But carbon dioxide also results from the burning of fossil 
fuels, and human activities since the beginning of the industrial revolution have increased 
the atmospheric concentration of carbon dioxide by over 50%. This human contribution  
has amplified the greenhouse effect and is the primary cause of global warming.

The radius of the sun is 6.96 * 108 m. At the distance of the earth, 
1.50 * 1011 m, the intensity of solar radiation (measured by  
satellites above the atmosphere) is 1370 W/m2. What is the tem - 
perature of the sun’s surface?

MODEL Assume the sun to be an ideal radiator with e = 1.

SOLVE The total power radiated by the sun is the power per m2 
multiplied by the surface area of a sphere extending to the earth:

P =
1370 W

1 m2  * 4p11.50 * 1011 m22 = 3.87 * 1026 W

That is, the sun radiates energy at the rate dQ/dt = 3.87 * 1026 J/s. 
That’s a lot of power! This energy is radiated from the surface of a 

sphere of radius RS. Using this information in Equation 19.45, we 
find that the sun’s surface temperature is

T = c dQ/dt

es14pRS 

22 d
1/4

= c 3.87 * 1026 W

11215.67 * 10-8 W/m2 K424p16.96 * 108 m22 d
1/4

= 5790 K

REVIEW This temperature is confirmed by measurements of the 
 solar spectrum, a topic we’ll explore in Part VIII.

EXAMPLE 19.11 ■ Taking the sun’s temperature

STOP TO THINK 19.7 Suppose you are an astronaut in space, hard at work in your 
sealed spacesuit. The only way that you can transfer excess heat to the environment is by

a. Conduction. b. Convection. c. Radiation. d. Evaporation.

   CHAPTER 19 CHALLENGE EXAMPLE     Boiling water

400 mL of water is poured into a covered 8.0@cm@diameter, 150 g 
glass beaker with a 2.0@mm@thick bottom; then the beaker is placed 
on a 400°C hot plate. Once the water reaches the boiling point, how 
long will it take to boil away all the water?

MODEL The bottom of the beaker is a heat-conducting material 
transferring heat energy from the 400°C hot plate to the 100°C 
boiling water. The temperature of both the water and the beaker 
remains constant until the water has boiled away. We’ll assume that 
heat losses due to convection and radiation are negligible, in which 
case the heat energy entering the system is used entirely for the 
phase change of the water. The beaker’s mass isn’t relevant because 
its temperature isn’t changing.

SOLVE The heat energy required to boil mass M of water is

Q = MLv

where Lv = 2.26 * 106 J/kg is the heat of vaporization. The heat 
energy transferred through the bottom of the beaker during a time 
interval ∆t is

Q = kA 
∆T
L

  ∆t

where k = 0.80 W/m K is the thermal conductivity of glass. Because  
the heat transferred by conduction is used entirely for boiling the 
water, we can combine these two expressions:

kA 
∆T
L

  ∆t = MLv

and then solve for ∆t:

  ∆t =
ML Lv

k A ∆T
=

10.40 kg210.0020 m212.26 * 106 J/kg2
10.80 W/m K210.0050 m221300 K2

  = 1500 s = 25 min

We used the density of water to find that M = 400 g = 0.40 kg and 
calculated A = pr2 = 0.0050 m2 as the area through which heat 
conduction occurs.

REVIEW 400 mL is roughly 2 cups, a small hot plate can bring 
2 cups of water to a boil in 5 min or so, and boiling the water away 
takes quite a bit longer than bringing it to a boil. 25 min is a slight 
underestimate since we neglected energy losses due to convection 
and radiation, but it seems reasonable. A stove could boil the water 
away much faster because the burner temperature (gas flame or 
red-hot heating coil) is much higher.
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Energy
Thermal energy Eth Microscopic energy of moving molecules 
and stretched molecular bonds. ∆Eth depends on the initial/final 
states but is independent of the process.

Work W Energy transferred to the system by forces in a  
mechanical interaction.

Heat Q Energy transferred to the system via atomic-level  
collisions in a thermal interaction.

The heat of transformation L is the energy needed to cause 1 kg 
of substance to undergo a phase change

Q = {ML

The specific heat c of a substance is the energy needed to raise 
the temperature of 1 kg by 1 K:

Q = Mc ∆T

The molar specific heat C is the energy needed to raise the 
temperature of 1 mol by 1 K:

Q = nC ∆T

The molar specific heat of gases depends on the process by which 
the temperature is changed:

CV =  molar specific heat at constant volume

CP = CV + R =  molar specific heat at constant pressure

First Law of Thermodynamics
∆Eth = W + Q

The first law is a general statement  
of energy conservation.

Work W and heat Q depend on the 
process by which the system is 
changed.

Solving Problems of Work on an Ideal Gas
The work done on a gas is

  W = - 3
Vf

Vi

 p dV

  = - (area under the pV curve)

Process Definition Stays constant Work Heat

Isochoric ∆V = 0 V and p/T W = 0 Q = nCV ∆T

Isobaric ∆p = 0 p and V/T W = -p ∆V Q = nCP ∆T

Isothermal ∆T = 0 T and pV W = -nRT ln 1Vf /Vi2 ∆Eth = 0

Adiabatic Q = 0 pV g W = ∆Eth Q = 0

All gas processes First law ∆Eth = W + Q = nCV ∆T Ideal-gas law pV = nRT

Solving Calorimetry Problems
When two or more systems interact thermally, they come to a  
common final temperature determined by

Qnet = Q1 + Q2 + g = 0

An adiabatic process has Q = 0. 
Gases move along an adiabat for which 
pV g =  constant, where g = CP/CV is 
the specific heat ratio. An adiabatic 
process changes the temperature of the 
gas without heating it.

Heat is transferred by conduction, convection, radiation, and 
evaporation.

Conduction: dQ/dt = kA(∆T/L)

Radiation:    dQ/dt = esAT 4

General Principles

Important Concepts

Summary of Basic Gas Processes

The goal of Chapter 19 has been to learn and apply the 
first law of thermodynamics.

Summary

Eth

W 7 0

Q 7 0

W 6 0

Q 6 0

System

Environment

Energy in Energy out

Work

Heat

V

p
i

f

V

p

Adiabat

Isotherms
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CONCEPTUAL QUESTIONS

work, W
mechanical interaction
mechanical equilibrium
heat, Q
thermal interaction
thermal equilibrium
first law of thermodynamics
thermodynamic energy model

adiabatic process
specific heat, c
molar specific heat, C
heat of transformation, L
heat of fusion, Lf

heat of vaporization, Lv

calorimetry

molar specific heat at constant 
 volume, CV

molar specific heat at constant 
 pressure, CP

specific heat ratio, g
adiabat
conduction
thermal conductivity, k

temperature gradient
convection
radiation
emissivity, e
black body
black-body radiation
greenhouse effect

Terms and Notation

1. When a space capsule returns to earth, its surfaces get very hot 
as it passes through the atmosphere at high speed. Has the space 
capsule been heated? If so, what was the source of the heat? If 
not, why is it hot?

2. Do (a) temperature, (b) heat, and (c) thermal energy describe a 
property of a system, an interaction of the system with its envi-
ronment, or both? Explain.

3. Two containers hold equal masses of nitrogen gas at equal tem-
peratures. You supply 15 J of heat to container A, while not al-
lowing its volume to change. You also supply 15 J of heat to con-
tainer B, while not allowing its pressure to change. Afterwards, 
is the temperature TA greater than, less than, or equal to TB? 
Explain.

4. You need to raise the temperature of a gas by 20°C. To use the 
least amount of heat energy, should you heat the gas at constant 
pressure or at constant volume? Explain.

5. Of what physical significance is the difference between molar 
specific heats of a gas at constant volume and constant pressure?

6. FIGURE Q19.6 shows an adiabatic process.
a. Is the final temperature higher than, lower than, or equal to 

the initial temperature?
b. Is any heat energy added to or removed from the system in 

this process? Explain.
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7. FIGURE Q19.7 shows two different processes taking an ideal gas 
from state i to state f. Is the work done on the gas in process A 
greater than, less than, or equal to the work done in process B? 
Explain.

8. FIGURE Q19.8 shows two different processes taking an ideal gas 
from state i to state f.
a. Is the temperature change ∆T during process A larger than, 

smaller than, or equal to the change during process B? Explain.
b. Is the heat energy added during process A greater than, less 

than, or equal to the heat added during process B? Explain.

9. The gas cylinder in FIGURE Q19.9 is a rigid container that is well 
insulated except for the bottom surface, which is in contact with 
a block of ice. The initial gas temperature is 7 0°C.
a. During the process that occurs until the gas reaches a new 

equilibrium, are (i) ∆T, (ii) W, and (iii) Q greater than, less 
than, or equal to zero? Explain.

b. Draw a pV diagram showing the process.
10. The gas cylinder in FIGURE Q19.10 is 

well insulated except for the bottom sur-
face, which is in contact with a block of 
ice. The piston can slide without friction. 
The initial gas temperature is 7 0°C.
a. During the process that occurs until 

the gas reaches a new equilibrium, are 
(i) ∆T, (ii) W, and (iii) Q greater than, 
less than, or equal to zero? Explain.

b. Draw a pV diagram showing the process.
11. The gas cylinder in FIGURE Q19.11 is well insulated on all sides. 

The piston can slide without friction. Many small masses on 
top of the piston are removed one by one until the total mass is 
reduced by 50%.
a. During this process, are (i) ∆T, (ii) W, and (iii) Q greater 

than, less than, or equal to zero? Explain.
b. Draw a pV diagram showing the process.

Ice

Gas

FIGURE Q19.9
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EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 19.1 It’s All About Energy

Section 19.2 Work in Ideal-Gas Processes

1. || How much work is done on the gas in the process shown in 
FIGURE EX19.1?
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2. || –60 J of work are done on the gas in the process shown in 
FIGURE EX19.2. What is p1 in kPa?

3. || 80 J of work are done on the gas in the process shown in 
FIGURE EX19.3. What is V1 in cm3?

4. || 500 J of work must be done to compress a gas to half its initial 
volume at constant temperature. How much work must be done 
to compress the gas by a factor of 10, starting from its initial 
volume?

5. || A 2000 cm3 container holds 0.10 mol of helium gas at 300°C. 
How much work must be done to compress the gas to 1000 cm3 
at (a) constant pressure and (b) constant temperature?

Section 19.3 Heat

Section 19.4 The First Law of Thermodynamics

6. | Draw a first-law bar chart (see Figure 19.12) for the gas process  
in FIGURE EX19.6.

7. | Draw a first-law bar chart (see Figure 19.12) for the gas process  
in FIGURE EX19.7.

8. | Draw a first-law bar chart (see Figure 19.12) for the gas pro-
cess in FIGURE EX19.8.

9. | Draw a first-law bar chart (see Figure 19.12) for the gas pro-
cess in FIGURE EX19.9.

10. | A gas is compressed from 600 cm3 to 200 cm3 at a constant 
pressure of 400 kPa. At the same time, 400 J of heat energy is 
transferred out of the gas. What is the change in thermal energy 
of the gas during this process?

11. | 500 J of heat energy are transferred to a gas during a process 
in which the gas expands at constant pressure from 400 cm3 to 
800 cm3. The gas’s thermal energy increases by 300 J during this 
process. What is the gas pressure?

Section 19.5 Thermal Properties of Matter

12. || A rapidly spinning paddle wheel raises the temperature of  
100 mL of water from 20°C to 30°C. How much (a) heat is trans-
ferred and (b) work is done in this process?

13. || How much heat energy must be added to a copper sphere of 
diameter 8 cm in order to raise its temperature from -20°C to 
180°C?

14. | a. Heat energy of 120 J is transferred to 15 g of mercury. By 
how much does the temperature of mercury increase?

b. How much heat do you need to increase the temperature of 
24 g of water by the same amount?

15. || How much heat do you need to change 16 g of mercury at 
22°C into mercury vapor at boiling point?

16. || What is the maximum mass of ethyl alcohol you could boil 
with 1000 J of heat, starting from 20°C?

17. | One way you keep from overheating is by perspiring. 
Evaporation—a phase change—requires heat, and the heat energy  
is removed from your body. Evaporation is much like boil-
ing, only water’s heat of vaporization at 35°C is a somewhat  
larger 24 * 105 J/kg because at lower temperatures more en-
ergy is required to break the molecular bonds. Very strenuous 
activity can cause an adult human to produce 30 g of perspira-
tion per minute. If all the perspiration evaporates, rather than 
dripping off, at what rate (in J/s) is it possible to exhaust heat by 
perspiring?

18. || The specific heat of rubber is 2000 J/kg K. Suppose that a 
rubber ball dropped from a height of 5.0 m bounces back to a 
height of 2.5 m. What is the temperature increase of the ball? 
Assume that no energy is transferred to the air or the ground.

19. || Two cars collide head-on while each is traveling at 80 km/h. 
Suppose all their kinetic energy is transformed into the thermal 
energy of the wrecks. What is the temperature increase of each 
car? You can assume that each car’s specific heat is that of iron.
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30. || A gas cylinder holds 0.10 mol of O2 at 150°C and a pressure 
of 3.0 atm. The gas expands adiabatically until the pressure is 
halved. What are the final (a) volume and (b) temperature?

31. | The volume of a gas is halved during an adiabatic compres-
sion that increases the pressure by a factor of 2.5.
a. What is the specific heat ratio g?
b. By what factor does the temperature increase?

32. || A gas cylinder holds 0.10 mol of O2 at 150°C and a pressure 
of 3.0 atm. The gas expands adiabatically until the volume is 
doubled. What are the final (a) pressure and (b) temperature?

Section 19.8 Heat-Transfer Mechanisms

33. || A 10 m * 14 m house is built on a 12-cm-thick concrete slab. 
What is the heat-loss rate through the slab if the ground tempera-
ture is 5°C while the interior of the house is 22°C?

34. | The ends of a 20-cm-long, 2.0-cm-diameter rod are main-
tained at 0°C and 100°C by immersion in an ice-water bath and 
boiling water. Heat is conducted through the rod at 4.5 * 104  J 
per hour. Of what material is the rod made?

35. || You are boiling pasta and absentmindedly grab a copper stir-
ring spoon rather than your wooden spoon. The copper spoon has 
a 20 mm * 1.5 mm rectangular cross section, and the distance 
from the boiling water to your 35°C hand is 18 cm. How long 
does it take the spoon to transfer 25 J of energy to your hand?

36. || What maximum power can be radiated by a 10-cm-diameter 
solid lead sphere? Assume an emissivity of 1.

37. ||| Radiation from the head is a major source of heat loss from 
the human body. Model a head as a 20-cm-diameter, 20-cm-
tall cylinder with a flat top. If the body’s surface temperature 
is 35°C, what is the net rate of heat loss on a chilly 5°C day? 
All skin, regardless of color, is effectively black in the infrared 
where the radiation occurs, so use an emissivity of 0.95.

Problems
38. || A 5.0-m-diameter garden pond is 30 cm deep. Solar energy is inci-

dent on the pond at an average rate of 400 W/m2. If the water absorbs 
all the solar energy and does not exchange energy with its surround-
ings, how many hours will it take to warm from 15°C to 25°C?

39. || An ice cube at -25°C  is in a rigid, sealed container from 
which all the air has been evacuated. How much heat is re-
quired to change this ice cube into steam at 250°C? Steam has 
cV = 1500 J/kg K and cP = 1960 J/kg K.

40. || The burner on an electric stove has a power output of 2.0 kW. A 
750 g stainless steel teakettle is filled with 20°C water and placed 
on the already hot burner. If it takes 3.0 min for the water to reach a 
boil, what volume of water, in cm3, was in the kettle? Stainless steel 
is mostly iron, so you can assume its specific heat is that of iron.

41. || When air is inhaled, it quickly becomes saturated with water 
vapor as it passes through the moist airways. Consequently, an 
adult human exhales about 25 mg of evaporated water with each 
breath. Evaporation—a phase change—requires heat, and the 
heat energy is removed from your body. Evaporation is much like  
boiling, only water’s heat of vaporization at 35°C is a somewhat 
larger 24 * 105 J/kg because at lower temperatures more energy 
is required to break the molecular bonds. At 12 breaths/min, on a  
dry day when the inhaled air has almost no water content, what is  
the body’s rate of energy loss (in J/s) due to exhaled water? (For 
comparison, the energy loss from radiation, usually the largest 
loss on a cool day, is about 100 J/s.)

42. || A 150 L 1≈40 gal2 electric hot-water tank has a 5.0 kW 
heater. How many minutes will it take to raise the water tem-
perature from 65°F to 140°F?

20. || An experiment measures the temperature of a 500 g sub-
stance while steadily supplying heat to it. FIGURE EX19.20 shows 
the results of the experiment. What are the (a) specific heat of the 
solid phase, (b) specific heat of the liquid phase, (c) melting and 
boiling temperatures, and (d) heats of fusion and vaporization?
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Section 19.6 Calorimetry

21. | A 750 g aluminum pan is removed from the stove and plunged 
into a sink filled with 10.0 L of water at 20.0°C. The water tem-
perature quickly rises to 24.0°C. What was the initial temperature 
of the pan in °C and in °F?

22. || 30 g of copper pellets are removed from a 300°C oven and im-
mediately dropped into 100 mL of water at 20°C in an insulated 
cup. What will the new water temperature be?

23. || A 40 g thermometer is used to measure the temperature of 
150 mL of water. The specific heat of the thermometer, which is 
mostly glass, is 750 J/kg K, and its reads 22°C while lying on the 
table. After being completely immersed in water, the thermome-
ter’s reading stabilizes at 70.5°C. What was the actual tempera-
ture of water before it was measured?

24. || A block of iron of volume 55 cm3 is removed from an 850°C 
furnace and immediately dropped into 240 ml of water, whose 
temperature is 25°C. What fraction of the water boils away?

25. || 10 g of steam at the boiling point are combined with 50 g of ice 
at the freezing point. What is the final temperature of the system?

Section 19.7 The Specific Heats of Gases

26. | A monatomic gas follows the process 1 S 2 S 3 shown in 
FIGURE EX19.26. How much heat is needed for (a) process 1 S 2 
and (b) process 2 S 3?

27. | 0.10 mol of nitrogen gas follow the two processes shown in 
FIGURE EX19.27. How much heat is required for each?

28. || A container holds 1.0 g of oxygen at a pressure of 8.0 atm.
a. How much heat is required to increase the temperature by 

100°C at constant pressure?
b. How much will the temperature increase if this amount of 

heat energy is transferred to the gas at constant volume?
29. | A container holds 1.0 g of argon at a pressure of 8.0 atm.

a. How much heat is required to increase the temperature by 
100°C at constant volume?

b. How much will the temperature increase if this amount of 
heat energy is transferred to the gas at constant pressure?
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51. || 0.25 mol of a gas are compressed at a constant pressure of 
250 kPa from 6000 cm3 to 2000 cm3, then expanded at a constant 
temperature back to 6000 cm3. What is the net work done on the 
gas?

52. || An ideal-gas process is described by p = cV 1/2, where c is a 
constant.
a. Find an expression for the work done on the gas in this pro-

cess as the volume changes from V1 to V2.
b. 0.033 mol of gas at an initial temperature of 150°C is com-

pressed, using this process, from 300 cm3 to 200 cm3. How 
much work is done on the gas?

c. What is the final temperature of the gas in °C?
53. || A 10-cm-diameter cylinder contains argon gas at 10 atm pres-

sure and a temperature of 50°C. A piston can slide in and out 
of the cylinder. The cylinder’s initial length is 20 cm. 2500 J 
of heat are transferred to the gas, causing the gas to expand at 
constant pressure. What are (a) the final temperature and (b) the 
final length of the cylinder?

54. || An 8.0-cm-diameter, well-insulated vertical cylinder contain-
ing nitrogen gas is sealed at the top by a 5.1 kg frictionless pis-
ton. The air pressure above the piston is 100 kPa.
a. What is the gas pressure inside the cylinder?
b. Initially, the piston height above the bottom of the cylinder is 

26 cm. What will be the piston height if an additional 3.5 kg 
are placed on top of the piston?

55. ||| A cube 20 cm on each side contains 3.0 g of helium at 20°C. 
1000 J of heat energy are transferred to this gas. What are (a) 
the final pressure if the process is at constant volume and (b) the 
final volume if the process is at constant pressure? (c) Show and 
label both processes on a single pV diagram.

56. || n moles of an ideal gas at temperature T1 and volume V1 ex-
pand isothermally until the volume has doubled. In terms of n, 
T1, and V1, what are (a) the final temperature, (b) the work done 
on the gas, and (c) the heat energy transferred to the gas?

57. || 5.0 g of nitrogen gas at 20°C and an initial pressure of 3.0 atm 
undergo an isobaric expansion until the volume has tripled.
a. What are the gas volume and temperature after the expansion?
b. How much heat energy is transferred to the gas to cause this 

expansion?
The gas pressure is then decreased at constant volume until the 
original temperature is reached.
c. What is the gas pressure after the decrease?
d. What amount of heat energy is transferred from the gas as its 

pressure decreases?
e. Show the total process on a pV diagram. Provide an appropri-

ate scale on both axes.
58. || 0.10 mol of nitrogen gas follow the two processes shown in 

FIGURE P19.58. How much heat is required for each?

43. || 512 g of an unknown metal at a temperature of 15°C is 
dropped into a 100 g aluminum container holding 325 g of water 
at 98°C. A short time later, the container of water and metal sta-
bilizes at a new temperature of 78°C. Identify the metal.

44. ||| The specific heat of most solids is nearly constant over a wide 
temperature range. Not so for diamond. Between 200 K and 600 K,  
the specific heat of diamond is reasonably well described by 
c = 2.8T - 350 J/kg K, where T is in K. For gemstone diamonds, 
1 carat = 200 mg. How much heat energy is needed to raise the 
temperature of a 3.5 carat diamond from -50°C to 250°C?

45. ||| The beaker in FIGURE P19.45, with a thin metal bottom, is 
filled with 20 g of water at 20°C. It is brought into good thermal 
contact with a 4000 cm3 container holding 0.40 mol of a mona-
tomic gas at 10 atm pressure. Both containers are well insulated 
from their surroundings. What is the gas pressure after a long 
time has elapsed? You can assume that the containers themselves 
are nearly massless and do not affect the outcome.

FIGURE P19.45

Gas

WaterInsulation Thin metal

46. || Your 300 mL cup of coffee is too hot to drink when served 
at 90°C. What is the mass of an ice cube, taken from a -20°C 
freezer, that will cool your coffee to a pleasant 60°C?

47. || Suppose you take and hold a deep breath on a chilly day, in-
haling 3.0 L of air at 0°C and 1 atm.
a. How much heat must your body supply to warm the air to 

your internal body temperature of 37°C?
b. By how much does the air’s volume increase as it warms?

48. | A typical nuclear reactor generates 1000 MW (1000 MJ/s) 
of electric energy. In doing so, it produces 2000 MW of “waste 
heat” that must be removed from the reactor to keep it from melt-
ing down. Many reactors are sited next to large bodies of water 
so that they can use the water for cooling. Consider a reactor 
where the intake water is at 18°C. State regulations limit the tem-
perature of the output water to 30°C so as not to harm aquatic 
organisms. How many liters of cooling water have to be pumped 
through the reactor each minute?

49. || A 6.0-cm-diameter cylinder of nitrogen 
gas has a 4.0-cm-thick movable copper pis-
ton. The cylinder is oriented vertically, as 
shown in FIGURE P19.49, and the air above 
the piston is evacuated. When the gas tem-
perature is 20°C, the piston floats 20 cm 
above the bottom of the cylinder.
a. What is the gas pressure?
b. How many gas molecules are in the 

cylinder?
Then 2.0 J of heat energy are transferred to 
the gas.
c. What is the new equilibrium tempera-

ture of the gas?
d. What is the final height of the piston?
e. How much work is done on the gas as the piston rises?

50. || 2.0 mol of gas are at 30°C and a pressure of 1.5 atm. How 
much work must be done on the gas to compress it to one third 
of its initial volume at (a) constant temperature and (b) constant 
pressure? (c) Show both processes on a single pV diagram.
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59. || A 1.0-cm-diameter, 50-cm-long aluminum rod is heated to 
2505C and then dropped into a tray that contains 250 mL of 
305C water. By how much does the length of the rod shrink?
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66. || When strong winds rapidly carry air down from mountains 
to a lower elevation, the air has no time to exchange heat with its 
surroundings. The air is compressed as the pressure rises, and its 
temperature can increase dramatically. These warm winds are 
called Chinook winds in the Rocky Mountains and Santa Ana 
winds in California. Suppose the air temperature high in the 
mountains behind Los Angeles is 0°C at an elevation where the 
air pressure is 60 kPa. What will the air temperature be, in °C 
and °F, when the Santa Ana winds have carried this air down to 
an elevation near sea level where the air pressure is 100 kPa?

67. || Liquid helium, with a boil-
ing point of 4.2 K, is used in 
ultralow-temperature experi-
ments and also for cooling the 
superconducting magnets used 
in MRI imaging in medicine. 
Storing liquid helium so far 
below room temperature is a 
challenge because even a small 
“heat leak” will boil the helium 
away. A standard helium dewar, 
shown in FIGURE P19.67, has an 
inner stainless-steel cylinder 
filled with liquid helium sur-
rounded by an outer cylindrical 
shell filled with liquid nitrogen 
at –196°C. The space between is a vacuum. The small structural 
supports have very low thermal conductivity, so you can assume 
that radiation is the only heat transfer between the helium and its 
surroundings. Suppose the helium cylinder is 16 cm in diameter 
and 30 cm tall and that all walls have an emissivity of 0.25. The 
density of liquid helium is 125 kg/m3 and its heat of vaporization 
is 2.1 * 104 J/kg.
a. What is the mass of helium in the filled cylinder?
b. In how many hours will half the helium boil away?

68. || You would like to put a solar hot water system on your roof, 
but you’re not sure it’s feasible. A reference book on solar en-
ergy shows that the ground-level solar intensity in your city is 
800 W/m2 for at least 5 hours a day throughout most of the year. 
Assuming that a completely black collector plate loses energy 
only by radiation, and that the air temperature is 20°C, what is 
the equilibrium temperature of a collector plate directly facing 
the sun? Note that while a plate has two sides, only the side fac-
ing the sun will radiate because the opposite side will be well 
insulated.

69. || Some gases in the earth’s atmosphere—notably carbon diox-
ide and water vapor—keep the earth warmer than it would be oth-
erwise by absorbing some of the infrared radiation that the earth 
is trying to radiate into space. This is the greenhouse effect, and 
it’s a natural feature of the earth’s climate. You can make a good 
estimate of the size of the greenhouse effect. Model the earth as 
a sphere of uniform temperature T and emissivity e = 1 radiating 
energy into outer space at Tspace ≈ 0 K. The earth’s temperature 
is not really uniform, but the uniform-temperature assumption 
will allow you to find the earth’s average temperature. Assume 
that nothing absorbs or interferes with this radiation. At the same 
time, the earth is constantly absorbing energy from the sun. The 
solar intensity I just above the earth’s atmosphere is 1360 W/m2. 
Seen from the sun, the absorbing area of the earth is a circular 
disk. Measurements show that 70% of the solar energy striking 

60. ||| Your laboratory assignment for the week is to measure the 
specific heat ratio g of carbon dioxide. The gas is contained in 
a cylinder with a movable piston and a thermometer. When the 
piston is withdrawn as far as possible, the cylinder’s length is 
20 cm. You decide to push the piston in very rapidly by various 
amounts and, for each push, to measure the temperature of the 
carbon dioxide. Before each push, you withdraw the piston all 
the way and wait several minutes for the gas to come to the room 
temperature of 21°C. Your data are as follows:
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FIGURE P19.62

63. | Two containers of a diatomic gas have the same initial 
conditions. One container, heated at constant pressure, has a 
 temperature increase of 20°C. The other container receives the 
same quantity of heat energy, but at constant volume. What is its 
temperature increase?

64. || 14 g of nitrogen gas at STP are adiabatically compressed to 
a pressure of 20 atm. What are (a) the final temperature, (b) the 
work done on the gas, (c) the heat transfer to the gas, and (d) the 
compression ratio Vmax/Vmin? (e) Show the process on a pV dia-
gram, using proper scales on both axes.

65. || 14 g of nitrogen gas at STP are pressurized in an isochoric 
process to a pressure of 20 atm. What are (a) the final tempera-
ture, (b) the work done on the gas, (c) the heat transfer to the gas, 
and (d) the pressure ratio pmax/pmin? (e) Show the process on a pV 
diagram, using proper scales on both axes.

Liquid nitrogen -196°C

Vacuum

Vacuum

Liquid
helium
4.2 K

FIGURE P19.67

Push (cm) Temperature (°C)

5 35

10 68

13 110

15 150

Use the best-fit line of an appropriate graph to determine g for 
carbon dioxide.

61. || Two cylinders each contain 0.10 mol of a diatomic gas at 300 K  
and a pressure of 3.0 atm. Cylinder A expands isothermally  
and cylinder B expands adiabatically until the pressure of each 
is 1.0 atm.
a. What are the final temperature and volume of each?
b. Show both processes on a single pV diagram. Use an appro-

priate scale on both axes.
62. || FIGURE P19.62 shows a thermodynamic process followed by 

120 mg of helium.
a. Determine the pressure (in atm), temperature (in °C), and vol-

ume (in cm3) of the gas at points 1, 2, and 3. Put your results 
in a table for easy reading.

b. How much work is done on the gas during each of the three 
segments?

c. How much heat energy is transferred to or from the gas 
during each of the three segments?
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80. ||| FIGURE CP19.80 shows a thermodynamic process followed by 
0.015 mol of hydrogen. How much heat energy is transferred to 
the gas?

the earth is absorbed, 30% is reflected back into space. Averaged 
over many days, as the earth rotates, the energy absorbed from 
the sun balances the energy radiated into space. Now calculate 
Tearth, what the earth’s average temperature in 5C would be in the 
complete absence of infrared-absorbing greenhouse gases. The 
actual average temperature is a much more pleasant 155C, which 
shows that the greenhouse effect is essential to life on earth.

70. || A cubical box 20 cm on a side is constructed from 1.2-cm-
thick concrete panels. A 100 W lightbulb is sealed inside the 
box. What is the air temperature inside the box when the light is 
on if the surrounding air temperature is 20°C?

71. || A cylindrical copper rod and an iron rod with exactly the 
same dimensions are welded together end to end. The outside 
end of the copper rod is held at 100°C, and the outside end of the 
iron rod is held at 0°C. What is the temperature at the midpoint 
where the rods are joined together?

72. || Most stars are main-sequence stars, a group of stars for  
which size, mass, surface temperature, and radiated power  
are closely related. The sun, for instance, is a yellow main- 
sequence star with a surface temperature of 5800 K. For a 
main-sequence star whose mass M is more than twice that of 
the sun, the total radiated power, relative to the sun, is approxi-
mately P/Psun = 1.51M/Msun23.5. The star Regulus A is a bluish 
main-sequence star with mass 3.8Msun and radius 3.1Rsun. What 
is the surface temperature of Regulus A?

73. || One cylinder in the diesel engine of a truck has an initial 
volume of 600 cm3. Air is admitted to the cylinder at 30°C and 
a pressure of 1.0 atm. The piston rod then does 400 J of work 
to rapidly compress the air. What are its final temperature and 
volume?

74. || A flow-through electric water heater has a 20 kW electric 
heater inside an insulated 2.0-cm-diameter pipe so that water 
flowing through the pipe will have good thermal contact with 
the heater. Assume that all the heat energy is transferred to the 
water. Suppose the inlet water temperature is 125C and the flow 
rate is 8.0 L/min (about that of a standard shower head). What is 
the outlet temperature?

In Problems 75 through 77 you are given the equation used to solve a 
problem. For each of these, you are to

a. Write a realistic problem for which this is the correct equation.
b. Finish the solution of the problem.

75. 50 J = -n18.31 J/mol K21350 K2ln11
32

76. 1200 * 10-6 m32113,600 kg/m32
* 1140 J/kg K2190°C - 15°C2
+ 10.50 kg21449 J/kg K2190°C - Ti2 = 0

77. 110 atm2V2 

1.40 = 11.0 atm2V1 

1.40

Challenge Problems
78. ||| 10 g of aluminum at 200°C and 20 g of copper are dropped 

into 50 cm3 of ethyl alcohol at 15°C. The temperature quickly 
comes to 25°C. What was the initial temperature of the copper?

79. ||| A lava flow is threatening to engulf a small town. A 
400-m-wide, 35-cm-thick tongue of 1200°C lava is advancing at 
the rate of 1.0 m per minute. The mayor devises a plan to stop 
the lava in its tracks by flying in large quantities of 20°C water 
and dousing it. The lava has density 2500 kg/m3, specific heat 
1100 J/kg K, melting temperature 800°C, and heat of fusion 
4.0 * 105 J/kg. How many liters of water per minute, at a mini-
mum, will be needed to save the town?

p (atm)

V (cm3)
200100 300

4

2

0
0

i

f

FIGURE CP19.80

8.0 cm2 Vacuum

2000 N/mL

FIGURE CP19.83

81. ||| A satellite to reflect radar is a 2.0-m-diameter, 2.0-mm-thick 
spherical copper shell. While orbiting the earth, the satellite ab-
sorbs sunlight and is warmed to 50°C. When it passes into the 
earth’s shadow, the satellite radiates energy to deep space. The tem-
perature of deep space is actually 3 K, as a result of the Big Bang 
14 billion years ago, but it is so much colder than the satellite that 
you can assume a deep-space temperature of 0 K. If the satellite’s 
emissivity is 0.75, to what temperature, in °C, will it drop during 
the 45 minutes it takes to move through the earth’s shadow?

82. ||| 0.020 mol of a diatomic gas, with initial temperature 20°C, 
are compressed from 1500 cm3 to 500 cm3 in a process in which 
pV 2 = constant. How much heat energy is added during this 
process?

83. ||| A monatomic gas fills the left end of the cylinder in FIGURE 
CP19.83. At 300 K, the gas cylinder length is 10.0 cm and the 
spring is compressed by 2.0 cm. How much heat energy must be 
added to the gas to expand the cylinder length to 16.0 cm?

84. ||| For an object that cools by convection, the temperature T 
often can be described by the equation

dT
dt

= -b(T - Tenv)

where Tenv is the temperature of the surrounding environment and 
b is an experimentally determined constant. The left side, dT/dt, 
is the rate at which the temperature changes. The equation says 
that the rate of change is proportional to how much the object’s 
temperature differs from its environment: a rapid change when 
the temperature difference is large, slowing to a much smaller 
change when the temperature difference is small. This agrees 
with our everyday experience. The minus sign indicates that the 
object’s temperature falls, a negative rate of change, when it is 
hotter than its environment. This model of convection is often 
called Newton’s law of cooling.

To solve the equation, change the variable to U = T - Tenv, for 
which dU = dT. Then integrate from Ui = T0 - Tenv at ti = 0 to 
Uf = T - Tenv at a later time tf = t, where T0 is the object’s initial 
temperature at t = 0. The result is an expression for the temperature  
difference T - Tenv as a function of time. Suppose a mug of hot 
coffee in a 205C room cools from 805C to 605C in 5.0 min. How 
long will it take to cool an additional 205C, from 605C to 405C?
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586

The Micro/Macro Connection

What is the micro/macro connection?
We’ve discovered several puzzles in the last two chapters:

■■ Why does the ideal-gas law work for every gas?
■■ Why is the molar specific heat the same for every monatomic 

gas? And for every diatomic gas? And for every elemental solid?
■■ Just what does temperature actually measure?

We can resolve these puzzles and understand many properties of 
macroscopic systems by studying the microscopic behavior of the 
system’s atoms and molecules. This is the micro/macro connection.

Macro
Gas

p, T, V

N, P, Eth

Micro
Molecules

❮❮ LOOKING BACK Sections 19.3–19.5 Heat, the first law, and 
specific heats

Why do gases have pressure?
Gases have pressure due to the collisions of the 
molecules with the walls of the container. We’ll 
find that we can calculate an average molecular 
speed, the root-mean-square speed, by relating 
the ideal-gas law to a microscopic calculation of 
the gas pressure.

What is temperature?
At a microscopic level, temperature  
measures the average translational kinetic 
energy of moving atoms and molecules.  
We will use this discovery to explain why  
all monatomic (and diatomic) gases have  
exactly the same molar specific heat.

❮❮ LOOKING BACK Section 19.7 The specific  
heats of gases

IN THIS CHAPTER, you will see how macroscopic properties depend on the motion of atoms.

20

Heating the air in a hot-air 
balloon increases the thermal 
energy of the molecules. This 
causes the gas to expand, 
lowering its density and 
allowing it to float in the 
cooler surrounding air.

How do interacting systems reach equilibrium?
Two thermally interacting systems reach 
a common final temperature because they 
exchange energy via collisions. On average,  
more-energetic atoms transfer energy to 
less-energetic atoms until both systems have  
the same average translational kinetic energy.

Q

Hotter Colder

What is entropy?
Entropy measures the extent to which a macroscopic system  
spreads its thermal energy among all the atoms and molecules 
that make up the system. This is a subtle but powerful idea. The 
second law of thermodynamics says that a system’s entropy always 
increases, never decreases, until it reaches a maximum when  
the system is in thermal equilibrium. Entropy and the second law  
will help us understand why heat energy flows spontaneously  
from hot to cold but never from cold to hot.
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20.2 Molecular Speeds and Collisions 587

20.1  Connecting the Microscopic and the 
Macroscopic

Chapters 18 and 19 were about physics at the macroscopic level—the behavior of 
objects we can measure and manipulate in the laboratory. Macroscopic objects are 
characterized by state variables, such as pressure, temperature, and specific heat. 
We’ve noted how some macroscopic properties, such as an object’s compressibility, 
are related to the spacing between atoms, but the microscopic motions of atoms and 
molecules haven’t really entered our discussion of thermodynamics.

What are all those atoms and molecules doing, and how do their motions and 
interactions influence the macroscopic physics? This is a big topic, so we will limit our-
selves to seeing how the micro/macro connection answers three important questions:

■■ How are macroscopic state variables related to and predicted by the motions of an 
object’s atoms and molecules?

■■ How is heat energy transferred from one object to another in a thermal interaction?
■■ Why are most macroscopic processes irreversible—that is, go in one direction but 

not the other (e.g., heat energy “flows” from hot to cold but not from cold to hot)?

A key idea underlying the micro/macro connection, which we’ll see throughout this 
chapter, is that atomic-level collisions and interactions continuously redistribute  
a system’s thermal energy among all the atoms and molecules.

20.2 Molecular Speeds and Collisions
Let’s begin by looking at a gas. Do all the molecules in the gas move with the same 
speed? Or is there a range of speeds? This important question can be answered 
experimentally.

FIGURE 20.1 shows an experiment to measure the speeds of molecules in a gas. The 
two rotating disks form a velocity selector. Once every revolution, the slot in the first 
disk allows a small pulse of molecules to pass through. By the time these molecules 
reach the second disk, the slots have rotated. The molecules can pass through the 
second slot and be detected only if they have exactly the right speed v = L /∆t to 
travel between the two disks during time interval ∆t it takes the axle to complete 
one revolution. Molecules having any other speed are blocked by the second disk. 
By changing the rotation speed of the axle, this apparatus can measure how many 
molecules have each of many possible speeds.

FIGURE 20.2 shows the results for nitrogen gas (N2) at T = 20°C. The data are 
presented in the form of a histogram, a bar chart in which the height of each bar  
tells how many (or, in this case, what percentage) of the molecules have a speed in the 
range of speeds shown below the bar. For example, 16% of the molecules have speeds 
in the range from 600 m/s to 700 m/s. All the bars sum to 100%, showing that this 
histogram describes all of the molecules leaving the source.

It turns out that the molecules have what is called a distribution of speeds, ranging 
from as low as ≈100 m/s to as high as ≈1200 m/s. But not all speeds are equally 
likely; there is a most likely speed of ≈550 m/s. This is really fast, ≈1200 mph! 
Changing the temperature or changing to a different gas changes the most likely speed, 
as we’ll learn later in the chapter, but it does not change the shape of the distribution.

If you were to repeat the experiment, you would again find the most likely speed 
to be ≈550 m/s and that 16% of the molecules have speeds between 600 m/s and 
700 m/s. This is an important lesson. Although a gas consists of a vast number of mol-
ecules, each moving randomly, averages, such as the average number of molecules in 
the speed range 600 to 700 m/s, have precise, predictable values. The micro/macro 
connection is built on the idea that the macroscopic properties of a system, such 
as temperature or pressure, are related to the average behavior of the atoms and 
molecules.

Source of
molecules

Molecular beam Velocity
selector

Detector

Axle
L

Only molecules with speed L /∆t reach the detector.

A vacuum inside prevents
molecules from colliding.

The axle rotates
once every ∆t s.

FIGURE 20.1 An experiment to measure 
the speeds of molecules in a gas.

N2 molecules
at 20°C

16% of the molecules
have speeds between 
600 m/s and 700 m/s.
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FIGURE 20.2 The distribution of molecular 
speeds in a sample of nitrogen gas.
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588 CHAPTER 20 The Micro/Macro Connection

Mean Free Path
A molecule in a gas does not travel in a straight line because it is constantly colliding 
with other molecules. Instead, as FIGURE 20.3 shows, a molecule follows a zig-zag path 
in which short linear segments are connected by “kinks” where collisions change the 
molecule’s speed and direction.

A question we could ask is: What is the average distance between collisions? If 
a molecule has Ncoll collisions as it travels distance L, the average distance between 
collisions, which is called the mean free path l (lowercase Greek lambda), is

 l =
L

Ncoll
 (20.1)

FIGURE 20.4a shows two molecules approaching each other. We will assume that the 
molecules are spherical and of radius r. In that case, the molecules will collide if the 
distance between their centers is less than 2r. They will miss if the distance is greater 
than 2r.

In FIGURE 20.4b we’ve drawn a cylinder of radius 2r centered on the trajectory of a 
“sample” molecule. The sample molecule collides with any “target” molecule whose 
center is located within the cylinder, causing the cylinder to bend at that point. Hence 
the number of collisions Ncoll is equal to the number of molecules in a cylindrical 
volume of length L.

The volume of a cylinder is Vcyl = AL = p12r22L. If the number density of the gas 
is N/V particles per m3, then the number of collisions along a trajectory of length L is

 Ncoll =
N
V

 Vcyl =
N
V

 p12r22 L = 4p 
N
V

 r2L (20.2)

Thus the mean free path between collisions is

l =
L

Ncoll
=

1

4p1N/V2r2

We made a tacit assumption in this derivation that the target molecules are at rest. 
While the general idea behind our analysis is correct, a more detailed calculation with 
all the molecules moving introduces an extra factor of 12, giving

 l =
1

412 p1N/V2r2  (mean free path) (20.3)

Laboratory measurements are necessary to determine atomic and molecular radii, 
but a reasonable rule of thumb is to assume that atoms in a monatomic gas have 
r ≈ 0.5 * 10-10 m and diatomic molecules have r ≈ 1.0 * 10-10 m.

Initial
position

Later
position

The molecule changes 
direction and speed 
with each collision.

It moves freely
between collisions.

FIGURE 20.3 A single molecule follows a 
zig-zag path through a gas.

2r
Molecules
of radius r

(a)

2r

Two molecules will collide if
the distance between their
centers is less than 2r.

FIGURE 20.4 A “sample” molecule collides 
with “target” molecules.

Sample
molecule

(b) “Bent cylinder”
  of radius 2r

Target molecules with centers
within the cylinder will be hit.

What is the mean free path of a nitrogen molecule at 1.0 atm pres-
sure and room temperature 120°C2?

SOLVE Nitrogen is a diatomic molecule, so r ≈ 1.0 * 10-10 m. We 
can use the ideal-gas law in the form pV = NkBT to determine the 
number density:

N
V

=
p

kBT
=

101,300 Pa

11.38 * 10-23 J/K21293 K2 = 2.5 * 1025 m-3

Thus the mean free path is

  l =
1

412 p1N/V2r2

  =
1

412 p12.5 * 1025 m-3211.0 * 10-10 m22 

  = 2.3 * 10-7 m = 230 nm

REVIEW You learned in Example 18.6 that the average separation 
between gas molecules at STP is ≈4 nm. It seems that any given 
molecule can slip between its neighbors, which are spread out  
in three dimensions, and travel—on average—about 60 times the 
average spacing before it collides with another molecule.

EXAMPLE 20.1 ■ The mean free path at room temperature
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20.3 Pressure in a Gas 589

20.3 Pressure in a Gas
The molecules of a gas collide not only with each other but also with the walls of 
the container. In Chapter 14, where pressure was introduced, we suggested that the 
pressure in a gas is due to these collisions with the walls. The force due to one such 
collision may be unmeasurably tiny, but the steady rain of a vast number of molecules 
striking a wall each second exerts a measurable macroscopic force. The gas pressure 
is the force per unit area 1p = F/A2 resulting from these molecular collisions.

Our task in this section is to calculate the pressure by doing the appropriate averaging 
over molecular motions and collisions. This task can be divided into three main pieces:

1. Calculate the momentum change of a single molecule during a collision.
2. Find the force due to all collisions.
3. Introduce an appropriate average speed.

Force Due to Collisions
FIGURE 20.5 shows a molecule with an x-component of velocity vx having a perfectly 
elastic collision with a wall and rebounding with its velocity changed to -vx. This one 
molecule has a momentum change

 ∆px = m1-vx2 - mvx = -2mvx (20.4)

Suppose there are Ncoll collisions with the wall during a small interval of time ∆t. 
Further, suppose that all the molecules have the same speed. (This latter assumption 
isn’t really necessary, and we’ll soon remove this constraint, but it helps us focus on 
the physics without getting lost in the math.) Then the total momentum change of the 
gas during ∆t is

 ∆Px = Ncoll ∆px = -2Ncoll mvx (20.5)

You learned in Section 11.1 that the momentum principle can be written as

 ∆Px = 1Favg2x ∆t (20.6)

Thus the average force of the wall on the gas is

 1Fon gas2x =
∆Px

∆t
= -

2Ncoll mvx

∆t
 (20.7)

Equation 20.7 has a negative sign because, as we’ve set it up, the collision force of the 
wall on the gas molecules is to the left. But Newton’s third law is 1Fon gas2x = -1Fon wall2x, 
so the force on the wall due to these collisions is

 1Fon wall2x =
2Ncoll mvx

∆t
 (20.8)

We need to determine how many collisions occur during ∆t. Assume that ∆t is 
smaller than the mean time between collisions, so no collisions alter the molecu-
lar speeds during this interval. FIGURE 20.6 has shaded a volume of the gas of length 
∆x = vx  ∆t. Every one of the molecules in this shaded region that is moving to the 
right will reach and collide with the wall during ∆t. Molecules outside this region will 
not reach the wall and will not collide.

STOP TO THINK 20.1 The table shows the 
properties of four gases, each having the same 
number of molecules. Rank in order, from 
largest to smallest, the mean free paths lA to 
lD of molecules in these gases.

Gas A B C D

Volume V 2V V V

Atomic mass m m 2m m

Atomic radius r r r 2r

x

y

-vx

vx

Wall of
area ABefore:

After:

Collision

FIGURE 20.5 A molecule colliding with the 
wall exerts an impulse on it.

∆x = vx∆t

Area A

Only molecules moving to the right in the 
shaded region will hit the wall during ∆t.

FIGURE 20.6 Determining the rate of 
collisions.
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590 CHAPTER 20 The Micro/Macro Connection

The shaded region has volume A ∆x, where A is the area of the wall. If the 
gas has number density N/V, the number of molecules in the shaded region is 
1N/V2A ∆  x = 1N/V2Avx ∆t. But only half these molecules are moving to the right, so 
the number of collisions during ∆t is

 Ncoll =
1
2

 
N
V

  Avx  ∆t (20.9)

Substituting Equation 20.9 into Equation 20.8, we see that ∆t cancels and that the 
force of the molecules on the wall is

 Fon wall =
N
V

 mvx 

2A (20.10)

Notice that this expression for Fon wall does not depend on any details of the collisions.
A key aspect of the micro/macro connection is recognizing that state variables, 

such as pressure, are related to appropriate averages of molecular properties. We can 
relax the assumption that all molecules have the same speed by replacing the squared 
velocity vx 

2 in Equation 20.10 with its average value. That is,

 Fon wall =
N
V

 m1vx 

22avg A (20.11)

where 1vx 

22avg is the quantity vx 

2 averaged over all the molecules in the container.

The Root-Mean-Square Speed
We need to be careful when averaging velocities. The velocity component vx has a 
sign. At any instant of time, half the molecules in a container move to the right and 
have positive vx while the other half move to the left and have negative vx. Thus the 
average velocity is 1vx2avg = 0. If this weren’t true, the entire container of gas would 
move away!

The speed of a molecule is v = 1vx 

2 + vy 

2 + vz 

221/2. Thus the average of the speed 
squared is

 1v22avg = 1vx 

2 + vy 

2 + vz 

22avg = 1vx 

22avg + 1vy 

22avg + 1vz 

22avg (20.12)

The square root of 1v22avg is called the root-mean-square speed vrms:

 vrms = 21v22avg  (root@mean@square speed) (20.13)

This is usually called the rms speed. You can remember its definition by noting that 
its name is the opposite of the sequence of operations: First you square all the speeds, 
then you average the squares (find the mean), then you take the square root. Because 
the square root “undoes” the square, vrms must, in some sense, give an average speed.

 NOTE   We could compute a true average speed vavg, but that calculation is difficult. 
More important, the root-mean-square speed tends to arise naturally in many 
scientific and engineering calculations. It turns out that vrms differs from vavg by less 
than 10%, so for practical purposes we can interpret vrms as being essentially the 
average speed of a molecule in a gas.

There’s nothing special about the x-axis. The coordinate system is something that 
we impose on the problem, so on average it must be the case that

 1vx 

22avg = 1vy 

22avg = 1vz 

22avg (20.14)

Hence we can use Equation 20.12 and the definition of vrms to write

 vrms 

2 = 1vx 

22avg + 1vy 

22avg + 1vz 

22avg = 31vx 

22avg (20.15)
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20.4 Temperature 591

Consequently, 1vx 

22avg is

 1vx 

22avg = 1
3 vrms 

2 (20.16)

Using this result in Equation 20.11 gives us the net force on the wall of the container:

 Fon wall =
1
3

 
N
V

 mvrms 

2A (20.17)

Thus the pressure on the wall of the container due to all the molecular collisions is

 p =
Fon wall

A
=

1
3

 
N
V

 mvrms 

2 (20.18)

We have met our goal. Equation 20.18 expresses the macroscopic pressure in terms of 
the microscopic physics. The pressure depends on the number density of molecules in 
the container and on how fast, on average, the molecules are moving.

The mass of a helium atom is m = 4 u = 6.64 * 10-27 kg. Thus

vr ms = B 3p

1N/V2m
= 1440 m/s

REVIEW We found in Chapter 16 that the speed of sound in helium 
is roughly 1000 m/s. Individual atoms probably move somewhat 
faster than a wave front, so 1440 m/s seems quite reasonable.

A container holds helium at a pressure of 200 kPa and a temperature 
of 60°C. What is the rms speed of the helium atoms?

SOLVE The rms speed can be found from the pressure and the 
number density. Using the ideal-gas law gives us the number density:

N
V

=
p

kBT
=

200,000 Pa

11.38 * 10-23 J/K21333 K2 = 4.35 * 1025 m-3

EXAMPLE 20.2 ■ The rms speed of helium atoms

STOP TO THINK 20.2 The speed of every molecule in a gas is suddenly increased 
by a factor of 4. As a result, vrms increases by a factor of

a. 2. b. 64 but not necessarily 2.
c. 4. d. 74 but not necessarily 16.
e. 16. f. vrms doesn’t change.

20.4 Temperature
An individual molecule of mass m and velocity v has translational kinetic energy

 P = 1
2 mv2 (20.19)

We’ll use P (lowercase Greek epsilon) to distinguish the energy of a molecule from the 
system energy E. The average translational kinetic energy of all the molecules in a gas is

 Pavg = average translational kinetic energy of a molecule

               = 1
2 m1v22avg = 1

2 mvrms 

2 (20.20)

We’ve included the word “translational” to distinguish P from rotational kinetic en-
ergy, which we will consider later in this chapter. Notice how the rms speed arises 
naturally in this average.

We can write the gas pressure, Equation 20.18, in terms of the average translational 
kinetic energy as

 p =
2
3

 
N
V

 11
2 mvrms 

22 =
2
3

 
N
V

 Pavg (20.21)

The pressure is directly proportional to the average molecular translational kinetic 
energy. This makes sense. More-energetic molecules will hit the walls harder as they 
bounce and thus exert more force on the walls.
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592 CHAPTER 20 The Micro/Macro Connection

It’s instructive to write Equation 20.21 as

 pV = 2
3 NPavg (20.22)

We know, from the ideal-gas law, that

 pV = NkBT  (20.23)

Comparing these two equations, we reach the significant conclusion that the average 
translational kinetic energy per molecule is

            Pavg = 3
2 kBT  (average translational kinetic energy) (20.24)

where the temperature T is in kelvins. For example, the average translational kinetic 
energy of a molecule at room temperature 120°C2 is

Pavg = 3
2 11.38 * 10-23 J/K21293 K2 = 6.1 * 10-21 J

  NOTE   A molecule’s average translational kinetic energy depends only on the 
temperature, not on the molecule’s mass. If two gases have the same temperature, 
their molecules have the same average translational kinetic energy.

Equation 20.24 is especially satisfying because it finally gives real meaning to the 
concept of temperature. Writing it as

 T =
2

3kB
 Pavg (20.25)

we can see that, for a gas, this thing we call temperature measures the average trans-
lational kinetic energy. A higher temperature corresponds to a larger value of Pavg 
and thus to higher molecular speeds. This concept of temperature also gives meaning 
to absolute zero as the temperature at which Pavg = 0 and all molecular motion ceases. 
(Quantum effects at very low temperatures prevent the motions from actually stopping, 
but our classical theory predicts that they would.) FIGURE 20.7 summarizes what we’ve  
learned thus far about the micro/macro connection.

We can now justify our assumption that molecular collisions are perfectly elastic. 
Suppose they were not. If kinetic energy was lost in collisions, the average translational 
kinetic energy Pavg of the gas would decrease and we would see a steadily decreasing 
temperature. But that doesn’t happen. The temperature of an isolated system remains 
constant, indicating that Pavg is not changing with time. Consequently, the collisions  
must be perfectly elastic.

Macro

A container of
an ideal gas

Micro

N molecules of gas with 
number density N/V

The average translational
kinetic energy of a 
molecule is
Pavg =   mvrms

2 =   kBT.

Pressure, p = Pavg

Temperature, T = Pavg

2
3

N
V

1
2

3
2

2
3kB

p, V, T

N, P, Eth

FIGURE 20.7 The micro/macro connection 
for pressure and temperature.

What is the total translational kinetic energy of the molecules in 
1.0 mol of gas at STP?

SOLVE The average translational kinetic energy of each  
molecule is

  Pavg = 3
2 kBT = 3

2 11.38 * 10-23 J/K21273 K2
  = 5.65 * 10-21 J

1.0 mol of gas contains NA molecules; hence the total kinetic 
 energy is

Kmicro = NAPavg = 3400 J

REVIEW The energy of any one molecule is incredibly small. 
Nonetheless, a macroscopic system has substantial thermal energy 
because it consists of an incredibly large number of molecules.

EXAMPLE 20.3 ■ Total microscopic kinetic energy

By definition, Pavg = 1
2 mvrms 

2. Using the ideal-gas law, we found Pavg = 3
2 kBT. By 

equating these expressions we find that the rms speed of molecules in a gas is

 vrms = B 3kBT
m

 (20.26)
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20.5 Thermal Energy and Specific Heat 593

The rms speed depends on the square root of the temperature and inversely on the 
square root of the molecular mass. For example, room-temperature nitrogen (molecular 
mass 28 u) has rms speed

vrms = B311.38 * 10-23 J/K21293 K2
2811.66 * 10-27 kg2 = 509 m/s

This is in excellent agreement with the experimental results of Figure 20.2.

 NOTE   Recall that a gas always fills its container. A lower temperature causes the 
molecules to move more slowly, but they continue to fill the container and to interact 
only via collisions. Only at the condensation temperature do molecules begin to 
attract each other and stick together.

Estimate the mean time between collisions for a nitrogen molecule 
at 1.0 atm pressure and room temperature 120°C2.

MODEL Because vrms is essentially the average molecular speed, the 
mean time between collisions is simply the time needed to travel 
distance l, the mean free path, at speed vrms.

SOLVE We found l = 2.3 * 10-7 m in Example 20.1 and vrms =
509 m/s above. Thus the mean time between collisions is

1 ∆t2avg =
l

vrms 
=

2.3 * 10-7 m
509 m/s

= 4.5 * 10-10 s

REVIEW The air molecules around us move very fast, they collide 
with their neighbors about two billion times every second, and 
they manage to move, on average, only about 230 nm between  
collisions.

EXAMPLE 20.4 ■ Mean time between collisions

STOP TO THINK 20.3 The speed of every molecule in a gas is suddenly increased by 
a factor of 4. As a result, the temperature T increases by a factor of

a. 2. b. 64 but not necessarily 2.
c. 4. d. 74 but not necessarily 16.
e. 16. f. T  doesn’t change.

20.5 Thermal Energy and Specific Heat
We defined the thermal energy of a system to be Eth = Kmicro + Umicro, where Kmicro  
is the microscopic kinetic energy of the moving molecules and Umicro is the potential 
energy of the stretched and compressed molecular bonds. A microscopic look at ther-
mal energy will allow us to predict the molar specific heat, a macroscopic state variable.

Monatomic Gases
FIGURE 20.8 shows a monatomic gas such as helium or neon. The atoms in an ideal gas 
have no molecular bonds with their neighbors; hence Umicro = 0. Furthermore, the 
kinetic energy of a monatomic gas particle is entirely translational kinetic energy P. 
Thus the thermal energy of a monatomic gas of N atoms is

 Eth = Kmicro = P1 + P2 + P3 + g+ PN = NPavg (20.27)

where Pi is the translational kinetic energy of atom i. We found that Pavg = 3
2 kBT; hence 

the thermal energy is

    Eth = 3
2 NkBT = 3

2 nRT  (thermal energy of a monatomic gas) (20.28)

where we used N = nNA and the definition of Boltzmann’s constant, kB = R/NA.
We’ve noted for the last two chapters that thermal energy is associated with 

temperature. Now we have an explicit result for a monatomic gas: Eth is directly 
proportional to the temperature. Notice that Eth is independent of the atomic mass. 
Any two monatomic gases will have the same thermal energy if they have the same 
temperature and the same number of atoms (or moles).

N atoms in a gas
at temperature T

Atom i has translational kinetic
energy Pi but no potential energy
or rotational kinetic energy.

The thermal energy of the gas is
Eth = P1 + P2 + P3 + g = NPavg.

FIGURE 20.8 The atoms in a monatomic 
gas have only translational kinetic energy.
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594 CHAPTER 20 The Micro/Macro Connection

If the temperature of a monatomic gas changes by ∆T, its thermal energy changes by

 ∆Eth = 3
2 nR ∆T  (20.29)

In Chapter 19 we found that the change in thermal energy for any ideal-gas process is 
related to the molar specific heat at constant volume by

 ∆Eth = nCV ∆T  (20.30)

Equation 20.29 is a microscopic result that we obtained by relating the temperature to 
the average translational kinetic energy of the atoms. Equation 20.30 is a macroscopic 
result that we arrived at from the first law of thermodynamics. We can make a micro/
macro connection by combining these two equations. Doing so gives us a prediction 
for the molar specific heat:

Equipartition theorem The thermal energy of a system of particles is equally 
divided among all the possible degrees of freedom. For a system of N particles  
at temperature T, the energy stored in each mode (each degree of freedom) is 
1
2 NkBT  or, in terms of moles, 12 nRT.

A monatomic gas has three degrees of freedom and thus, as we found above, 
Eth = 3

2 NkBT.

This was exactly the value of CV for all three monatomic gases in Table 19.4. The 
perfect agreement of theory and experiment is strong evidence that gases really do 
consist of moving, colliding molecules.

The Equipartition Theorem
The particles of a monatomic gas are atoms. Their energy consists exclusively of their 
translational kinetic energy. A particle’s translational kinetic energy can be written

 P = 1
2 mv2 = 1

2 mvx 

2 + 1
2 mvy 

2 + 1
2 mvz 

2 = Px + Py + Pz (20.32)

where we have written separately the energy associated with translational motion 
along the three axes. Because each axis in space is independent, we can think of Px, Py,  
and Pz as independent modes of storing energy within the system.

Other systems have additional modes of energy storage. For example,

■■ Two atoms joined by a spring-like molecular bond can vibrate back and forth. Both 
kinetic and potential energy are associated with this vibration.

■■ A diatomic molecule, in addition to translational kinetic energy, has rotational 
kinetic energy if it rotates end-over-end like a dumbbell.

We define the number of degrees of freedom as the number of distinct and inde-
pendent modes of energy storage. A monatomic gas has three degrees of freedom. 
Systems that can vibrate or rotate have more degrees of freedom.

Collisions between molecules constantly move energy between one degree of 
freedom and another. For example, a collision could cause a diatomic molecule to 
rotate faster, which increases its rotational kinetic energy by decreasing its transla-
tional kinetic energy. The proof is beyond what we can do in this textbook, but it’s 
possible to show that the net result of the vast number of collisions is to cause the 
thermal energy to, on average, be shared equally among all the degrees of freedom. 
This conclusion is known as the equipartition theorem, meaning that the energy is 
equally divided.

 CV = 3
2 R = 12.5 J/mol K  (monatomic gas) (20.31)
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20.5 Thermal Energy and Specific Heat 595

Solids
FIGURE 20.9 reminds you of our “bedspring model” of a solid with particle-like atoms 
connected by a lattice of spring-like molecular bonds. How many degrees of freedom 
does a solid have? Three degrees of freedom are associated with the kinetic energy, 
just as in a monatomic gas. In addition, the molecular bonds can be compressed or 
stretched independently along the x-, y-, and z-axes. Three additional degrees of 
freedom are associated with these three modes of potential energy. Altogether, a solid 
has six degrees of freedom.

The energy stored in each of these six degrees of freedom is 1
2 NkBT. The thermal 

energy of a solid is the total energy stored in all six modes, or

            Eth = 3NkBT = 3nRT  (thermal energy of a solid) (20.33)

We can use this result to predict the molar specific heat of a solid. If the temperature 
changes by ∆T, then the thermal energy changes by

 ∆Eth = 3nR ∆T  (20.34)

In Chapter 19 we defined the molar specific heat of a solid such that

 ∆Eth = nC ∆T  (20.35)

By comparing Equations 20.34 and 20.35 we can predict that the molar specific heat 
of a solid is

 C = 3R = 25.0 J/mol K (solid) (20.36)

Not bad. The five elemental solids in Table 19.2 had molar specific heats clustered 
right around 25 J/mol K. They ranged from 24.3 J/mol K for aluminum to 26.5 J/mol K 
for lead. There are two reasons the agreement between theory and experiment isn’t 
quite as perfect as it was for monatomic gases. First, our simple bedspring model of 
a solid isn’t quite as accurate as our model of a monatomic gas. Second, quantum ef-
fects are beginning to make their appearance. More on this shortly. Nonetheless, our 
ability to predict C to within a few percent from a simple model of a solid is further 
evidence for the atomic structure of matter.

Diatomic Molecules
Diatomic molecules are a bigger challenge. How many degrees of freedom does a 
diatomic molecule have? FIGURE 20.10 shows a diatomic molecule, such as molecular 
nitrogen N2, oriented along the x-axis. Three degrees of freedom are associated with 
the molecule’s translational kinetic energy. The molecule can have a dumbbell-like 
end-over-end rotation about either the y-axis or the z-axis. It can also rotate about 
its own axis. These are three rotational degrees of freedom. The two atoms can also  
vibrate back and forth, stretching and compressing the molecular bond. This vibrational 
motion has both kinetic and potential energy—thus two more degrees of freedom.

Altogether, then, a diatomic molecule has eight degrees of freedom, and we  
would expect the thermal energy of a gas of diatomic molecules to be Eth = 4NkBT. 
The analysis we followed for a monatomic gas would then lead to the prediction 
CV = 4R =  33.2 J/mol K. As compelling as this reasoning seems to be, this is not the 
experimental value of CV that was reported for diatomic gases in Table 19.4. Instead, 
we found CV = 20.8 J/mol K.

Why should a theory that works so well for monatomic gases and solids fail so 
miserably for diatomic molecules? To see what’s going on, notice that 20.8 J/mol K =  
5
2 R. A monatomic gas, with three degrees of freedom, has CV = 3

2 R. A solid, with six 
degrees of freedom, has C = 3R. A diatomic gas would have CV = 5

2 R if it had five 
degrees of freedom, not eight.

x

z

y

Each atom has microscopic translational 
kinetic energy and microscopic potential 
energy along all three axes.

FIGURE 20.9 A simple model of a solid.

x

z

y
Rotation about the z-axis

FIGURE 20.10 A diatomic molecule can 
rotate or vibrate.

z

x

y
Rotation about the y-axis

z

x

y
Rotation about the x-axis

z

x

y

Vibration along the x-axis
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596 CHAPTER 20 The Micro/Macro Connection

This discrepancy was a major conundrum as statistical physics developed in  
the late 19th century. Although it was not recognized as such at the time, we are 
here seeing our first evidence for the breakdown of classical Newtonian physics. 
Classically, a diatomic molecule has eight degrees of freedom. The equipartition the-
orem doesn’t distinguish between them; all eight should have the same energy. But 
atoms and molecules are not classical particles. It took the development of quantum 
theory in the 1920s to accurately characterize the behavior of atoms and molecules. 
We don’t yet have the tools needed to see why, but quantum effects prevent three 
of the modes—the two vibrational modes and the rotation of the molecule about its  
own axis—from being active at room temperature.

FIGURE 20.11 shows CV as a function of temperature for hydrogen gas. CV is right at 
5
2 R for temperatures from ≈200 K up to ≈800 K. But at very low temperatures CV 
drops to the monatomic-gas value 32 R. The two rotational modes become “frozen out” 
and the nonrotating molecule has only translational kinetic energy. Quantum physics 
can explain this, but not Newtonian physics. You can also see that the two vibrational 
modes do become active at very high temperatures, where CV rises to 7

2 R. Thus the 
real answer to What’s wrong? is that Newtonian physics is not the right physics for 
describing atoms and molecules. We are somewhat fortunate that Newtonian physics 
is adequate to understand monatomic gases and solids, at least at room temperature.

Accepting the quantum result that a diatomic gas has only five degrees of freedom 
at commonly used temperatures (the translational degrees of freedom and the two 
end-over-end rotations), we find

CV (J/mol K)

T (K)

Translation

Vibration

Rotation

10 100 1000 10,000
0

10

20

30 7
2

5
2

3
2

R

R

R

The temperature
scale is logarithmic.

FIGURE 20.11 Hydrogen molar specific 
heat at constant volume as a function of 
temperature.

TABLE 20.1 Kinetic theory predictions for the thermal energy and the molar specific heat

System Degrees of freedom Eth CV

Monatomic gas 3 3
2 NkBT = 3

2 nRT 3
2 R = 12.5 J/mol K

Diatomic gas 5 5
2 NkBT = 5

2 nRT 5
2 R = 20.8 J/mol K

Elemental solid 6 3NkBT = 3nRT 3R = 25.0 J/mol K

 Eth = 5
2 NkBT = 5

2 nRT

 CV = 5
2 R = 20.8 J/mol K

                  (diatomic gases) (20.37)

A diatomic gas has more thermal energy than a monatomic gas at the same tempera-
ture because the molecules have rotational as well as translational kinetic energy.

While the micro/macro connection firmly establishes the atomic structure of 
matter, it also heralds the need for a new theory of matter at the atomic level. That 
is a task we will take up in Part VIII. For now, TABLE 20.1 summarizes what we have 
learned from kinetic theory about thermal energy and molar specific heats.

The nitrogen molecule N2 has a bond length of 0.12 nm. Estimate 
the rotational frequency of N2 at 20°C.

MODEL The molecule can be modeled as a rigid dumbbell of length 
L = 0.12 nm rotating about its center.

SOLVE The rotational kinetic energy of the molecule is Prot = 1
2 Iv2, 

where I is the moment of inertia about the center. Because we have 
two point masses each moving in a circle of radius r = L/2, the 
moment of inertia is

I = mr2 + mr2 = 2m1L
2 22

=
mL2

2

Thus the rotational kinetic energy is

Prot =
1
2

 
mL2

2
 v2 =

mL2v2

4
= p2mL2f 2

where we used v = 2pf  to relate the rotational frequency f  to  
the angular frequency v. From the equipartition theorem, the  
energy associated with this mode is 12 NkBT, so the average rotational 
kinetic energy per molecule is

1Prot2avg = 1
2 kBT

EXAMPLE 20.5 ■ The rotational frequency of a molecule
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20.6 Heat Transfer and Thermal Equilibrium 597

20.6  Heat Transfer and Thermal 
Equilibrium

What happens when two systems at different temperatures interact with each other? 
In Chapter 19 we said that “heat is transferred,” but what does that mean? What is the 
mechanism by which energy is transferred from a hotter object to a colder object? An 
atomic-level view will improve our understanding of heat and thermal equilibrium.

FIGURE 20.12 shows a rigid, insulated container divided into two sections by a very 
thin membrane. The left side, which we’ll call system 1, has N1 atoms at an initial 
temperature T1i. System 2 on the right has N2 atoms at an initial temperature T2i. The 
membrane is so thin that atoms can collide at the boundary as if the membrane were 
not there, yet it is a barrier that prevents atoms from moving from one side to the 
other. The situation is analogous, on an atomic scale, to basketballs colliding through 
a shower curtain.

Suppose that system 1 is initially at a higher temperature: T1i 7 T2i. This is not an 
equilibrium situation. The temperatures will change with time until the systems even-
tually reach a common final temperature Tf. If you watch the gases as one warms and 
the other cools, you see nothing happening. This interaction is quite different from a 
mechanical interaction in which, for example, you might see a piston move from one 
side toward the other. The only way in which the gases can interact is via molecular 
collisions at the boundary. This is a thermal interaction, and our goal is to understand 
how thermal interactions bring the systems to thermal equilibrium.

System 1 and system 2 begin with thermal energies

 E1i = 3
2 N1kBT1i = 3

2 n1RT1i

  E2i = 3
2 N2kBT2i = 3

2 n2RT2i 
(20.38)

We’ve written the energies for monatomic gases; you could do the same calculation if 
one or both of the gases is diatomic by replacing the 32 with 52. Notice that we’ve omit-
ted the subscript “th” to keep the notation manageable.

The total energy of the combined systems is Etot = E1i + E2i. As systems 1 and 
2 interact, their individual thermal energies E1 and E2 can change but their sum 
Etot remains constant. The system will have reached thermal equilibrium when the 
individual thermal energies reach final values E1f and E2f that no longer change.

The Systems Exchange Energy
FIGURE 20.13 shows a fast atom and a slow atom approaching the barrier from opposite 
sides. They undergo a perfectly elastic collision at the barrier. Although no net energy 
is lost in a perfectly elastic collision, in most such collisions the more-energetic atom 

Equating these two expressions for Prot gives us

p2mL2f 2 = 1
2 kBT

Thus the rotational frequency is

f = B kBT

2p2mL2 = 7.8 * 1011 rev/s

We evaluated f  at T = 293 K, using m = 14 u = 2.34 * 10-26 kg 
for each atom.

REVIEW This is a very high frequency, but these values are typical 
of molecular rotations.

STOP TO THINK 20.4 How many degrees of freedom 
does a bead on a rigid rod have?

a. 1  b. 2  c. 3  d. 4  e.  5  f. 6

Insulation prevents heat from
entering or leaving the container.

System 1

N1

T1

System 2

N2

T2

A thin barrier prevents atoms from 
moving from system 1 to 2 but still 
allows them to collide. The barrier is 
clamped in place and cannot move.

FIGURE 20.12 Two gases can interact 
thermally through a very thin barrier.

Fast Slow

Elastic collision

Gains energyLoses energy

Thin barrier

Energy transfer

FIGURE 20.13 On average, collisions 
transfer energy from more-energetic 
atoms to less-energetic atoms.
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598 CHAPTER 20 The Micro/Macro Connection

loses energy while the less-energetic atom gains energy. In other words, there’s an 
energy transfer from the more-energetic atom’s side to the less-energetic atom’s side.

The average translational kinetic energy per atom is directly proportional to the 
temperature: Pavg = 3

2 kBT. Because T1i 7 T2i, the atoms in system 1 are, on average, 
more energetic than the atoms in system 2. Thus on average the collisions transfer 
energy from system 1 to system 2. Not in every collision: sometimes a fast atom in 
system 2 collides with a slow atom in system 1, transferring energy from 2 to 1. But 
the net energy transfer, from all collisions, is from the warmer system 1 to the cooler 
system 2. In other words, heat is the energy transferred via collisions between the 
more-energetic (warmer) atoms on one side and the less-energetic (cooler) atoms 
on the other.

How do the systems “know” when they’ve reached thermal equilibrium? Energy 
transfer continues until the atoms on both sides of the barrier have the same average 
translational kinetic energy. Once the average translational kinetic energies are the 
same, there is no tendency for energy to flow in either direction. This is the state of 
thermal equilibrium, so the condition for thermal equilibrium is

 1P12avg = 1P22avg  (thermal equilibrium) (20.39)

where, as before, P is the translational kinetic energy of an atom.
Because the average energies are directly proportional to the final temperatures, 

Pavg = 3
2 kBTf, thermal equilibrium is characterized by the macroscopic condition

 T1f = T2f = Tf  (thermal equilibrium) (20.40)

In other words, two thermally interacting systems reach a common final tem-
perature because they exchange energy via collisions until the atoms on each side 
have, on average, equal translational kinetic energies. This is a very important idea.

Equation 20.40 can be used to determine the equilibrium thermal energies. Because 
these are monatomic gases, Eth = NPavg. Thus the equilibrium condition 1P12avg =  
1P22avg = 1Ptot2avg implies

 
E1f

N1
=

E2f 

N2
=

Etot

N1 + N2
 (20.41)

from which we can conclude

 E1f =
N1

N1 + N2
 Etot =

n1

n1 + n2
 Etot

  E2f =
N2

N1 + N2
 Etot =

n2

n1 + n2
 Etot 

(20.42)

where in the last step we used moles rather than molecules.
Notice that E1f + E2f = Etot, verifying that energy has been conserved even while 

being redistributed between the systems.
No work is done on either system because the barrier has no macroscopic displace-

ment, so the first law of thermodynamics is

Q1 = ∆E1 = E1f - E1i

 Q2 = ∆E2 = E2f - E2i 
(20.43)

As a homework problem you can show that Q1 = -Q2, as required by energy conserva-
tion. That is, the heat lost by one system is gained by the other. 0Q1 0  is the quantity of heat 
that is transferred from the warmer gas to the cooler gas during the thermal interaction.

 NOTE   In general, the equilibrium thermal energies of the system are not equal. That 
is, E1f ∙ E2f. They will be equal only if N1 = N2. Equilibrium is reached when the 
average translational kinetic energies in the two systems are equal—that is, when 
1P12avg = 1P22avg, not when E1f = E2f. The distinction is important. FIGURE 20.14 
summarizes these ideas.

Thermal equilibrium occurs when
the systems have the same average
translational kinetic energy and thus
the same temperature.

In general, the thermal
energies E1f and E2f are
not equal.

T1i

E1i

(P1)avg

T2i

E2i

(P2)avg

Tf

E1f

Pavg

Tf

E2f

Pavg

Collisions transfer energy from the 
warmer system to the cooler system 
as more-energetic atoms lose energy 
to less-energetic atoms.

FIGURE 20.14 Equilibrium is reached when 
the atoms on each side have, on average, 
equal energies.
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20.7 Irreversible Processes and the Second Law of Thermodynamics 599

The main idea of this section is that two systems reach a common final tempera-
ture not by magic or by a prearranged agreement but simply from the energy exchange 
of vast numbers of molecular collisions. Real interacting systems, of course, are sepa-
rated by walls rather than our unrealistic thin membrane. As the systems interact, the 
energy is first transferred via collisions from system 1 into the wall and subsequently, 
as the cooler molecules collide with a warm wall, into system 2. That is, the energy 
transfer is E1 S Ewall S E2. This is still heat because the energy transfer is occurring 
via molecular collisions rather than mechanical motion.

A sealed, insulated container has 2.0 g of helium at an initial 
temperature of 300 K on one side of a barrier and 10.0 g of argon at 
an initial temperature of 600 K on the other side.

a. How much heat energy is transferred, and in which direction?

b. What is the final temperature?

MODEL The systems start with different temperatures, so they are 
not in thermal equilibrium. Energy will be transferred via collisions 
from the argon to the helium until both systems have the same 
average molecular energy.

SOLVE a. Let the helium be system 1. Helium has molar mass 
Mmol = 0.004 kg/mol, so n1 = M/Mmol = 0.50 mol. Similarly, argon  
has Mmol = 0.040 kg/mol, so n2 = 0.25 mol. The initial thermal  
energies of the two monatomic gases are

E1i = 3
2 n1RT1i = 225R = 1870 J

E2i = 3
2 n2RT2i = 225R = 1870 J

The systems start with equal thermal energies, but they are 
not in thermal equilibrium. The total energy is Etot = 3740 J.  
In equilibrium, this energy is distributed between the two  
systems as

 E1f =
n1

n1 + n2
 Etot =

0.50
0.75

 * 3740 J = 2493 J

 E2f =
n2

n1 + n2
 Etot =

0.25
0.75

 * 3740 J = 1247 J

The heat entering or leaving each system is

 Q1 = QHe = E1f - E1i = 623 J

 Q2 = QAr = E2f - E2i = -623 J

The helium and the argon interact thermally via collisions at the 
boundary, causing 623 J of heat to be transferred from the warmer 
argon to the cooler helium.

b. These are constant-volume processes, thus Q = nCV ∆T. 
CV = 3

2 R for monatomic gases, so the temperature changes are

 ∆THe =
QHe
3
2 nR

=
623 J

1.510.50 mol218.31 J/mol K2 = 100 K

 ∆TAr =
QAr
3
2 nR

=
-623 J

1.510.25 mol218.31 J/mol K2 = -200 K

Both gases reach the common final temperature Tf = 400 K.

REVIEW E1f = 2E2f because there are twice as many atoms in  
system 1.

EXAMPLE 20.6 ■ A thermal interaction

STOP TO THINK 20.5 Systems A and B 
are interacting thermally. At this instant 
of time,

a. TA 7 TB

b. TA = TB

c. TA 6 TB

N = 1000

A

Eth = 1.0 * 10-17 J

Pavg = 1.0 * 10-20 J 

N = 2000

B

Eth = 1.0 * 10-17 J

Pavg = 0.5 * 10-20 J 

20.7  Irreversible Processes and the Second 
Law of Thermodynamics

If you ignite a piece of paper—mostly cellulose—it burns to produce carbon dioxide, 
water vapor, and ash; a mixture of carbon dioxide, water vapor, and ash never produces 
cellulose. An ice cube left on the counter turns into a puddle of water, but a puddle of water 
on the counter never turns into an ice cube. Cream mixes with your coffee; they never sep-
arate. Gas expands into a vacuum, but all the molecules of a gas never spontaneously move 
to one side of their container to leave a vacuum on the other side. Why not?

We are so accustomed to the fact that most processes are irreversible—that they 
have a one-way direction—that it seems almost silly to ask Why? Nonetheless, we’ll 
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600 CHAPTER 20 The Micro/Macro Connection

focus on that question now. It turns out to be a profound question with many implica-
tions ranging from how efficient an engine can be to the very existence of life.

If you think about it, the processes just mentioned wouldn’t violate any of the laws 
of physics we have studied so far if they ran backward. Energy is conserved as heat 
flows from a warm counter to a melting ice cube, and energy could be conserved just 
as well by heat flowing from a puddle of water to the counter, lowering the water’s 
temperature until it freezes. Yet that doesn’t happen. There must be another law of 
physics at work that prevents some energy-conserving processes from occurring.

This new law—the second law of thermodynamics—is subtle, so we’ll start with a 
qualitative overview before we dive into a quantitative analysis.

Thermal Energy Disperses
The main point of this chapter is that macroscopic phenomena such as pressure and 
heat transfer are caused by collisions of molecules. FIGURE 20.15a shows two frames 
from a simple “movie” of a collision between two gas molecules. FIGURE 20.15b is the 
same movie played in reverse; this is also a possible molecular collision. Nothing 
in either movie looks wrong, and no measurements we might make would reveal 
that either of these two collisions violates any laws of physics. We can’t label one of 
these movies as “real” and the other “impossible.” In other words, interactions at the 
molecular level are reversible.

Now contrast this with movies of any of the processes we described earlier. A 
movie in which a puddle of water turns into an ice cube while a nearby thermometer 
shows a reading of 25°C is clearly running backward. It shows an impossible process. 
But what has been violated in the backward movie?

Processes such as phase changes and heat transfer are molecular processes. If 
molecular interactions are reversible, why are macroscopic processes—which 
consist of molecular interactions—irreversible? If reversible collisions transfer 
thermal energy from hot to cold, why don’t they ever transfer thermal energy from 
cold to hot? This is a more exact framing of the question we need to answer.

As we begin to consider this question, you may recall that the thermal energy of 
a macroscopic object is the total energy of all the moving atoms and molecules that 
make up the object. However, knowing the thermal energy tells us nothing about how 
the energy is distributed among the molecules. FIGURE 20.16a shows a container of gas 
in which one molecule is moving while all the others are at rest. The thermal energy 
of the gas is simply the kinetic energy of the one moving molecule. This is one pos-
sible way that the energy could be distributed, but this is not a stable, equilibrium 
situation. The moving molecule will collide with other molecules, giving them kinetic 
energy while the original fast molecule loses energy. Eventually, we expect that every 
atom in the gas will be moving, something like the situation shown in FIGURE 20.16b. 
The thermal energy is the same in both cases; it’s just distributed differently.

Let’s think about what happened here. Initially, the system’s thermal energy was 
concentrated in a single molecule. As time went on, collisions and interactions caused 
the system’s energy to spread out, or disperse, until it was shared among all the con-
stituents. And this spreading will not spontaneously reverse. Ordinary molecular col-
lisions cause a concentrated energy to spread out, but we never see a system spon-
taneously concentrating dispersed energy into a single constituent. The individual 
collisions may be reversible, but the dispersal of energy is an irreversible process.

All thermal interactions involve the spreading of energy. Suppose a hot object 
and a cold object are brought into thermal contact, as in FIGURE 20.17. The thermal 
energy is initially concentrated in the hot object; it is not shared equally. As we’ve 
seen, collisions at the boundary transfer energy from the more-energetic molecules 
on the warmer side to the less-energetic molecules on the cooler side until the ther-
mal energy is shared equally among the constituents of the combined system. After 
some time, thermal equilibrium is reached, which means that no additional sharing or 
spreading is possible.

Before: After:

(a) Forward movie

FIGURE 20.15 Two movies showing that 
molecular collisions are reversible.

Before: After:

(b) The backward movie is equally plausible.

(a)

(b)

Both gases have the
same thermal energy.

FIGURE 20.16 Two different distributions 
of the thermal energy of a gas.

Hot Cold

Warm Warm

FIGURE 20.17 A thermal interaction 
causes energy to spread until it is shared 
equally among all the molecules.
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20.7 Irreversible Processes and the Second Law of Thermodynamics 601

The spreading of thermal energy happens spontaneously—it’s simply what hap-
pens when macroscopic systems interact. You can imagine the heat-transfer arrows  
of Figure 20.17 being reversed, making the cold side colder and the hot side hotter. But 
that would concentrate the thermal energy rather than disperse it. The concentration 
of thermal energy does not happen spontaneously, and thus heat is never transferred  
spontaneously from a colder object to a hotter object.

Introducing Entropy
Scientists use the term entropy to quantify the spread or dispersal of thermal energy. 
A system in which energy is concentrated—not spread out—has low entropy. The 
initial situations in Figures 20.16 and 20.17 are states of low entropy. In each case, the 
system spontaneously evolves to a state in which the energy is more spread out. These 
are states of higher entropy; the entropy increases as thermal energy becomes more 
dispersed. Because equilibrium is a state in which thermal energy is maximally dis-
persed, or shared among all the constituents, the entropy of a system is maximum 
when the system is in equilibrium.

This observation about how thermal energy spreads and how macroscopic systems 
evolve irreversibly toward equilibrium is a new law of physics, the second law of 
thermodynamics, that is usually stated in terms of entropy:

Second law, informal statement #1 When two systems at different temperatures 
interact, heat energy is transferred spontaneously from the hotter to the colder 
system, never from the colder to the hotter.

This version of the second law will be used in Chapter 21 to understand the thermo-
dynamics of engines.

Thermodynamics is a science of energy, and we need two laws of energy to un-
derstand how macroscopic systems behave. We can restate the two laws of energy as 
follows:

■■ First law of thermodynamics: Energy is conserved. It can be transferred or trans-
formed, but the total amount does not change.

■■ Second law of thermodynamics: Energy spreads out. An isolated system evolves 
until the thermal energy is maximally dispersed among all the system’s constituents.

It is the second law that creates the “arrow of time” that we observe in irreversible 
processes. Stirring blends your coffee and cream; it never unmixes them. Systems 
evolve over time only in ways that continue to spread out thermal energy, thus in-
creasing entropy, not in ways that concentrate thermal energy, which would decrease 
entropy.

Second law of thermodynamics The entropy of an isolated system never 
decreases. The entropy either increases until the system reaches equilibrium or, if 
the system began in equilibrium, stays the same. Entropy is maximum when the 
system is in equilibrium.

 NOTE   The qualifier “isolated” is crucial. We could reduce a system’s entropy by 
reaching in from the outside, perhaps using tiny tweezers to give most of the thermal 
energy to a few fast molecules while freezing the others in place. Similarly, we can 
transfer heat from cold to hot by using a refrigerator. The second law is about what 
a system can or cannot do spontaneously, on its own, without outside intervention.

The second law of thermodynamics is often stated in several equivalent but more 
informal versions. One of these, and the one most relevant to our discussion, is
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Thus another statement of the second law is

Second law, informal statement #2 The time direction in which the entropy of 
an isolated macroscopic system increases is “the future.”

Establishing the arrow of time is one of the most profound implications of the second 
law of thermodynamics.

Reasoning with Entropy
Heating a system increases its thermal energy. By increasing the thermal energy, we 
also increase the ability of the system to disperse thermal energy, so we increase the 
entropy. Similarly, removing heat energy from a system reduces its ability to disperse 
thermal energy, so the entropy is reduced.

The entropy can also change when there is no change in thermal energy. FIGURE 20.18 
shows an insulated container of a gas with the molecules kept on one side by a thin 
membrane. The container is an isolated system; no heat is transferred to or from the en-
vironment. If the membrane breaks, the gas expands to fill the container—what we call 
a free expansion. The volume has changed and the pressure will change. But if we think 
about energy, we can see that this expansion does not change the gas temperature. No 
work is done because the expanding gas isn’t pushing against anything, and no heat is 
transferred from the environment, so the first law of thermodynamics tells us there’s no 
change in thermal energy and hence no change in temperature. But the system’s entropy 
has increased! The thermal energy may not have changed in value, but it’s more spatially 
dispersed because each molecule has more room to move around. And a larger dispersal 
of energy corresponds to greater entropy. The fact that entropy increases makes the free 
expansion an irreversible process; the reverse process of all the gas molecules moving 
into the left half of the container never occurs spontaneously.

Something else that changes is the ability of the gas to do work. Instead of breaking 
the membrane, we could have allowed the compressed gas to do work by pushing on a 
piston. This would have transferred some of the thermal energy to the environment by 
doing mechanical work. After expanding freely, the gas has the same thermal energy 
but less ability to do work. In general, our ability to extract useful work from thermal 
energy depends not only on the quantity of thermal energy but also on the system’s en-
tropy. Increased entropy, with the energy more dispersed, means less ability to do work.

The thermal energy hasn’t
changed, but the entropy has.

Thin membrane

FIGURE 20.18 The free expansion of a gas 
increases its entropy.

A phase change, such as melting or freezing, occurs at a fixed 
temperature. What happens to the entropy of the water if a block of 
frozen water at 0°C becomes liquid water at 0°C?

SOLVE The entropy can change, even at the same temperature, if 
one of the phases of matter—solid or liquid in this case—is able to 
spread out the energy more. Ice is a solid, so water molecules are 
frozen into a lattice. Molecules jiggle around—that’s what thermal 

energy is—but their energy is confined to small volumes around 
the lattice positions. In contrast, the molecules in liquid water can 
move freely throughout the volume of the liquid. This allows the 
thermal energy to be more spatially dispersed, just as it was for the 
free expansion of a gas. Thus the entropy increases as ice melts.

REVIEW This result makes sense. You know that you need to heat 
ice to melt it, so you expect this change to increase the entropy.

EXAMPLE 20.7 ■ Does entropy change when ice melts?

Is Entropy Disorder?
You may have learned elsewhere that entropy is a measure of disorder, or chaos, and 
that increasing entropy shows a tendency of an ordered system to become disordered. 
But consider the following:

■■ A beaker of water and cracked-ice pieces of various sizes appears disordered. After 
all the ice has melted, the beaker of water looks more orderly. But the beaker of 
water has a higher entropy, not a lower entropy.
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■■ A container of oil and water that has been vigorously shaken looks quite disor-
dered. But the oil and water soon separate to what appears to be a more orderly 
state. However, the separated oil and water actually have a higher entropy, not a 
lower entropy.

■■ The free expansion of a gas into a vacuum starts with completely random moving 
molecules and ends with completely random moving molecules at the same aver-
age speed. There doesn’t seem to be any difference in how ordered or disordered 
these two states are, but the expanded gas has a higher entropy.

The difficulty is that “disorder” is not a technical term; it has no scientific defini-
tion. What seems disordered to one person may not to another. And are we talking 
about macroscopic disorder, such as the pieces of cracked ice in a beaker of water, or 
microscopic disorder?

Disorder is a metaphor for entropy, and we don’t want to imply that it’s never use-
ful. But, all in all, it’s much more productive to think of entropy as a measure of the 
spread or dispersal of energy.

STOP TO THINK 20.6 Which of the following processes does not involve a change 
in entropy?

a. An electric heater raises the temperature of a cup of water by 20°C.
b. A ball rolls up a ramp, decreasing in speed as it rolls higher.
c. A basketball is dropped from 2 m and bounces until it comes to rest.
d. The sun shines on a black surface and warms it.

20.8 Microstates, Multiplicity, and Entropy
The idea behind the second law of thermodynamics is that thermal energy spreads or 
disperses until, in equilibrium, the energy is maximally dispersed. How can this idea 
be quantified? We’ll start with an analogy.

Suppose you toss four coins simultaneously. TABLE 20.2 shows that there are 16 
possible outcomes of heads and tails. Any one of these outcomes—say, HTHH—is 
called a microstate, so there are a total of 16 microstates.

Perhaps you care only about the number of heads, not about the details of how 
each coin lands. The number of heads ranges from 0 to 4, and each possibility is a 
macrostate. By examining Table 20.2 you can see that there is only one way (TTTT) 
the macrostate H = 0 can occur but six ways to have H = 2, with an equal number of 
heads and tails. The number of microstates associated with a particular macrostate is 
called the multiplicity of that macrostate, denoted by Ω (uppercase Greek omega). 
TABLE 20.3 shows the multiplicity of each of the five macrostates when four coins are 
tossed.

If you assume that each coin is fair, with a 50% probability of giving a head or a 
tail, then each of the 16 microstates is equally likely to occur. That is, the chances of 
seeing TTTT are exactly the same—1 in 16—as seeing HTHT. But the probabilities 
of the macrostates are not equal. There’s only one way to achieve the H = 0 macro-
state, so its probability is 1/16. There are six ways to have H = 2, so its probability is 
6/16. If you toss these four coins over and over, you will see the H = 2 macrostate six 
times as often as you see H = 0. Some macrostates are more probable than others, 
and that is the key to understanding entropy and the second law.

If you toss N coins, there are 2N possible outcomes and thus 2N microstates. There’s 
always only one way to achieve the H = 0 macrostate—a toss that gives all tails—so 
the probability of macrostate H = 0 is 1/2N. You wouldn’t be terribly surprised to see 
H = 0 when you toss only four coins because, on average, this macrostate occurs once 
in every 16 tosses. But if you toss 1000 coins, the odds of H = 0 (that is, the odds that 
all 1000 coins are tails) are reduced to 1/21000 ≈ 10-300, or once in every 10300 tosses. 
The age of the universe is only ≈1017 s, so it would be remotely unlikely to see H = 0 

TABLE 20.2 The 16 possible microstates 
when four coins are tossed

TTTT HTTH

TTTH HTHT

TTHT HHTT

THTT HHHT

HTTT HHTH

TTHH HTHH

THTH THHH

THHT HHHH

TABLE 20.3 Multiplicities of the five 
possible macrostates when four coins 
are tossed

Macrostate Multiplicity (Ω)

H = 0 1

H = 1 4

H = 2 6

H = 3 4

H = 4 1
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even if you had tossed 1000 coins once a second since the Big Bang about 14 billion 
years ago. With 1000 coins, it’s safe to say that the macrostate H = 0 never occurs.

FIGURE 20.19 shows the macrostate probability graphically. The heights of the his-
togram bars for N = 4 in Figure 20.19a are taken from Table 20.3. If N is very large, 
Figure 20.19b shows that the only macrostates that have any likelihood of occurring 
are clustered very near H = N/2, with equal numbers of heads and tails. It’s not that 
only H = N/2 occurs, but the macrostates that do occur are clustered so close to 
H = N/2 as to be indistinguishable. That’s not yet entirely true for N = 1000, but 
think of the situation with N = 1022, roughly the number of molecules in a liter of gas 
at atmospheric pressure. For very large N, the only macrostates that will ever be seen 
are indistinguishable from H = N/2; a macrostate that differs from N/2 enough to be 
experimentally noticed, even with the best equipment, will never be seen.

Coin flipping may seem to have nothing to do with thermodynamics, but consider 
a macroscopic system with pressure p, temperature T, thermal energy Eth, and so on. 
The values of the state variables p, T, Eth, and so on define a state of the system—in 
particular, a macrostate. Just as knowing that H = 2 tells us nothing about how each 
coin lands, knowing the state variables of a macroscopic system tells us nothing about 
what individual molecules are doing.

At the atomic level, each possible arrangement of the atoms or molecules in a system—
their positions, their velocities, their rotations and vibrations—is a microstate. The number 
of microstates that give rise to a particular macrostate is the multiplicity Ω of that macro-
state. There are an enormous number of ways the positions and velocities of the molecules 
can be shuffled around without changing the observable state variables, so the multiplicity 
is an unimaginably large number—on the order of 101023

 for any real-world macrostate.
Once we recognize that a vast number of microstates (different atomic-level arrange-

ments) correspond to each macrostate, we can reach important conclusions using four  
steps of logic:

1. Random collisions and atomic-level interactions, like coin flips, constantly 
change the microstate. Every macrostate has a vast number of microstates, each 
of which is equally likely to occur.

2. One macrostate is overwhelmingly more probable than the others, which means 
that its multiplicity Ω is vastly larger than the multiplicities of other possible 
macrostates. This idea is illustrated in Figure 20.19b: For large N, almost all the  
microstates correspond to macrostates that are extremely close to H = N/2.

3. The most probable macrostate is the system’s equilibrium state. Once an iso-
lated system is in equilibrium, atomic-level interactions never cause it to change 
because the probability of being in any other macrostate is essentially zero.

4. If an isolated system is not in equilibrium, atomic-level interactions cause it to 
evolve from a less-probable macrostate to the most-probable macrostate. That is, 
a nonequilibrium system evolves toward equilibrium—not because it “knows” 
where equilibrium is or has any “desire” to be in equilibrium but simply because 
equilibrium is overwhelmingly the most probable macrostate to be in.

The importance of these key ideas cannot be overstated. They rely on the fact that 
any macroscopic system has an enormous number of atoms or molecules. We will 
sometimes use examples that have relatively small numbers of particles to develop a 
feel for how the statistics work, but it is essential to keep the reality of large N in mind.

   NOTE    These conclusions apply to only an isolated system whose behavior is 
determined entirely by atomic-level collisions.

Multiplicity of a Physical System
We began this section looking for a way to quantify the dispersal of energy. The mul-
tiplicity Ω does this; each microstate provides a different way to spread the energy, 
and maximal dispersion—that is, equilibrium—occurs for the macrostate that has the 

6

4

2

0

(a) N = 4 coins

Number of
microstates

(b) N large

Number of
microstates

H

H

0 1 2
Number of heads

Number of heads

Probability of
H = N is 1/2N

H = N/2 is vastly
more probable than
any other macrostate.

3 4

0
0 N/2 N

FIGURE 20.19 The number of microstates 
that show H heads when four coins are 
tossed and when a very large number of 
coins are tossed.

An unlikely event Tossing all heads, 
though not impossible, is extremely 
unlikely, and the probability of doing so 
rapidly decreases as the number of coins 
increases.
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largest value of Ω. We need to find a way to compute the multiplicity Ω for a physical 
system such as a gas or a liquid.

To begin, consider a container divided into 1000 small bins that can each “store” a 
molecule; that is, there are 1000 distinct spatial locations for each molecule. Suppose 
the container holds one molecule. No macroscopic measurements can reveal which of 
the 1000 bins the molecule is in, so each of the 1000 possible locations is a microstate 
corresponding to the same one-molecule macrostate. The multiplicity of this macro-
state is Ω = 1000.

If there are two molecules, each placed randomly into a bin, then the number of 
possible arrangements—each a microstate—is 1000 * 1000 = 10002. For three mol-
ecules it is 1000 * 1000 * 1000 = 10003, and for N molecules 1000N. We might insist 
on physical grounds that there can be no more than one molecule per bin—two mol-
ecules can’t occupy the same point in space—but as long as N is much less than the 
number of available bins (a dilute system), then this constraint has little effect on the 
calculation and the multiplicity of a macrostate with N molecules is Ω = 1000N.

Now suppose we allow the container volume V to vary without changing the bin 
size. For example, doubling the volume would result in 2000 bins, and then the mul-
tiplicity would be Ω = 2000N. Because the number of bins is proportional to V, the 
multiplicity of a system that consists of N molecules in volume V must be

 Ω = cV N (20.44)

where c is an unknown proportionality constant. (Don’t confuse this use of c with  
the system’s specific heat or concentration.) It might depend on the temperature or 
other state variables, but c does not depend on the system’s volume; the dependence of 
Ω on V is now fully specified.

   NOTE    This analysis in terms of artificial bins is intended to be a plausibility argu-
ment, not a rigorous derivation. However, the complete analysis, which is beyond the 
scope of this textbook, reaches the same conclusion.

STOP TO THINK 20.7 If the volume of a gas doubles at a constant temperature, the 
multiplicity increases by a factor of

a. 2 b. 2N c. V N d. (2V)N

It’s not immediately obvious how Equation 20.44 is useful, so let’s consider a spe-
cific example. FIGURE 20.20 shows a container of gas with initial volume Vi that is 
undergoing a slow isothermal expansion (no change in temperature). Recall that a 
process that happens so slowly that it’s always essentially in internal equilibrium is 
called a quasi-static process. You learned in Chapter 19 that an isothermal expansion 
requires a heat input, so we’ll let the environment supply an infinitesimal amount of 
heat dQ to cause an infinitesimal volume expansion to Vf = Vi + dV.

For infinitesimal changes, the first law, ∆Eth = W + Q, becomes dEth = dW + dQ, 
where dW and dQ are infinitesimal amounts of energy transferred to or from the 
system in mechanical and thermal interactions. The thermal energy of a gas does 
not change in an isothermal process, so dEth = 0. We found in Chapter 19 that the 
expansion work done on an ideal gas is dW = -p  dV. Thus the isothermal expansion 
is characterized by

 dQ = dEth - dW = 0 - 1-p  dV2 =
NkBT

V
  dV  (20.45)

where, in the last step, we used the ideal-gas law for p. We can rearrange Equation 
20.45 to show that the fractional change in volume during the isothermal heating is 
directly proportional to the heat dQ:

 
dV
V

=
dQ

NkBT
 (20.46)

T

dQ

Large bath at temperature T

The gas expands from
Vi to Vf = Vi + dV.

FIGURE 20.20 The multiplicity of a 
gas increases as it undergoes a slow 
isothermal expansion.
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As the gas expands, its multiplicity—the number of microstates—increases from 
Ωi = cV N

i  to Ωf = cV N
f = c(Vi + dV)N. We don’t know the proportionality constant c, 

but we don’t need it if we form a ratio in which c cancels:

 
Ωf

Ωi
=

(Vi + dV)N

Vi
N = 11 +

dV
V 2N

 (20.47)

We dropped the subscript on V at the end because, with the volume changing only 
infinitesimally, there’s essentially no difference between Vi and Vf.

The exponent N is extremely large. One way to deal with large exponents is to use 
logarithms. Suppose we take the natural logarithm of Equation 20.47 and use the log-
arithm properties ln(a/b) = ln a - ln b and ln an = nln a to write

 ln 1Ωf

Ωi
2 = ln Ωf - ln Ωi = N ln 11 +

dV
V 2 (20.48)

Now dV/V V 1 because it’s an infinitesimal expansion, and a very useful approxi-
mation is ln (1 + a) ≈ a when a V 1. You can use your calculator to check that, for 
example, ln (1.001) = 0.0009995 ≈ 0.001. (This approximation is the first term in 
the Taylor-series expansion of ln (1 + x), which you may have studied in calculus.) 
We can use this approximation and Equation 20.46 to write Equation 20.48 as

 ln Ωf - ln Ωi = ∆(ln Ω) = N 
dV
V

=
dQ

kBT
 (20.49)

Equation 20.49 is an important micro/macro connection because the measurable  
macroscopic quantities dQ and T allow us to calculate ∆(ln Ω) = ln Ωf - ln Ωi, the 
change in the logarithm of the multiplicity.

Defining Entropy
We’ve seen that state variables, such as p and T, undergo changes that we denote as ∆p 
and ∆T. Thus the quantity ln Ω, which changes by ∆(ln Ω) during the infinitesimal 
isothermal expansion, appears to be a state variable. Specifically, ln Ω seems to be a 
state variable that measures the dispersal of energy in a system—exactly what we are 
looking for.

With that in mind, we define the entropy S of a macrostate that has multiplicity Ω as

     S K kB ln Ω    (entropy of a macrostate with multiplicity Ω) (20.50)

That is, entropy is a state variable that measures the number of ways a macrostate 
can differ microscopically. The Boltzmann constant is included in the definition for 
historical reasons. As a result, the units of entropy are the same as the units of the 
Boltzmann constant: J/K.

Equation 20.50 defines entropy in terms of the multiplicity of the macrostate, but 
in practice we rarely know the multiplicity Ω. On the other hand, we can easily mea-
sure heat transfer. For an infinitesimal heating, such as we’ve been considering, the 
quantity ∆(ln Ω) = ∆S/kB on the left-hand side of Equation 20.49 is better written in 
terms of an infinitesimal change in entropy as dS/kB. Thus Equation 20.49 is

 dS =
dQ

T
  (quasi@static process) (20.51)

Equation 20.51 is equivalent to Equation 20.50 but will turn out to be much more 
useful because it directly relates entropy to heat. Although we used the slow heating 
of a gas to arrive at Equation 20.51, the equation turns out to be true in general for any 
slow quasi-static process.
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The Second Law Revisited
The second law of thermodynamics says that the entropy of an isolated system never 
decreases. It either increases until the system reaches thermal equilibrium or, if the 
system is already in equilibrium, remains constant. We had not yet defined entropy 
when we gave our initial statement of the second law. We’ve now defined the entropy 
S in terms of the multiplicity of microstates, and we’ve seen that a system’s evolution 
toward equilibrium occurs because atomic-level interactions move the system from 
less-probable (lower multiplicity) to more-probable (higher multiplicity) macrostates. 
With this in mind, a more precise statement of the second law is

 ∆Sisolated system Ú 0 (20.52)

where the equality holds only for a system in thermal equilibrium.

Earlier we suggested that the multiplicity of a real-world macrostate is on the order of 
101023

. What is the entropy of such a state?

MODEL Entropy is defined in Equation 20.50.

SOLVE We can use the property ln ab = b ln a to write

S = kB ln Ω = kB ln 101023
= 1023kB ln 10 = 3.2 J/K

REVIEW Despite the unimaginable size of the multiplicity, the entropy of this state is an 
ordinary-size number. That’s because the Boltzmann constant is so small.

EXAMPLE 20.8 ■ Calculating entropy

STOP TO THINK 20.8 Two boxes are identical, and each contains 1,000,000 mol-
ecules. In box A, 600,000 molecules happen to be in the left half of the box while 
400,000 are in the right half. In box B, 499,900 molecules are in the left half while 
500,100 are in the right half. At this instant,

a. The entropy of box A is greater than the entropy of box B.
b. The entropy of box A is equal to the entropy of box B.
c. The entropy of box A is less than the entropy of box B.
d. There’s not enough information to compare the entropies of A and B.

20.9 Using Entropy
Entropy is a powerful concept but a subtle one. In this section we’ll look at some 
examples of how entropy is calculated and used.

Isothermal Processes
An isothermal process has a constant T, so we can immediately integrate Equation 
20.51 to find that the entropy change in a slow isothermal process is

 ∆Sisothermal =
Q

T
 (20.53)

where Q is the heat absorbed or released by the process. Equation 20.53 is especially 
important for phase changes, which occur at a constant temperature.

What is the entropy change of water when 100 g of 0°C ice slowly 
melt to 0°C liquid water?

MODEL This phase change is a slow isothermal process.

SOLVE The heat needed for the phase change is

Q = MLf = (0.100 kg)(3.33 * 105 J/kg) = 3.33 * 104 J

EXAMPLE 20.9 ■ The entropy change of melting ice

Continued
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By what factor does the multiplicity increase when 100 g of 0°C ice 
melt to 0°C liquid water?

MODEL Example 20.9 found that the entropy increase is 
∆S = 122 J/K. Equation 20.50 defines entropy in terms of the mul-
tiplicity. We can reverse this and use the increase in entropy to find 
the increase in multiplicity.

SOLVE The definition of entropy is S = kB ln Ω. Thus the change 
in entropy is

∆S = Sf - Si = kB ln Ωf - kB ln Ωi = kB ln 1Ωf

Ωi
2

We can use the identity eln a = a to solve for Ωf / Ωi. First we divide 
by kB, then we make both sides of the equation a power of e:

eln(Ωf/Ωi) =
Ωf

Ωi
= e∆S/kB = e(122 J/K)/(1.38*10-23 J/K) = e8.8*1024

This is hard to comprehend, but it might make a bit more sense as a 
power of 10. Because log(e) = 0.434, using base-10 logarithms, we 

can write e = 100.434. You will recall that (10a)b = 10ab. With this, 
we find that melting the ice increases the water’s multiplicity by a 
factor of

Ωf

Ωi
= e8.8*1024

= (100.434)8.8*1024
= 103.8*1024

REVIEW It’s almost impossible to understand how staggeringly 
large this number is—a consequence of the extremely large num-
ber of molecules in 100 g of water. 100 = 102 is a 1 followed by 2  
zeros. 1024, roughly the number of molecules in the 100 g of water,  
is a 1 followed by 24 zeros. Thus 103.8*1024

 is a 1 followed by 
3.8 * 1024 zeros. In print books, the zeros in a number are about  
2 mm apart. Our answer, if printed, would stretch for nearly 800,000 
light years, or about 8 times the diameter of our Milky Way galaxy. 
When we say that one macrostate is more probable than another 
because it has a higher multiplicity, we don’t mean 10 times more 
probable or even a million times more probable but something like 
101024

 times more probable. It is truly the case that the less probable 
macrostate will never occur.

EXAMPLE 20.10 ■ The multiplicity increase of melting ice

In Example 20.9 we found that the entropy of 100 g of water 
increases by 122 J/K in changing from 0°C ice to 0°C liquid water. 
To what temperature does the water need to be heated to increase 
its entropy by an additional 122 J/K?

MODEL Assume that the heating is carried out slowly.

SOLVE We can solve Equation 20.54 for Tf by first dividing through 
by Mc, then using eln a = a:

Tf = Tie
∆S/Mc = (273 K)e(122 J/K)/(0.100 kg)(4190 J/kg K) = 365 K = 92°C

REVIEW A substantial temperature increase is needed to match the 
entropy increase of melting. The water’s entropy increases with 
temperature because faster molecules have more ways to disperse 
the kinetic energy.

EXAMPLE 20.11 ■ Heating water

Entropy of Heating
Equation 20.51, dS = dQ/T, is for an infinitesimal heating at temperature T. We can 
find the entropy change for a finite heat transfer, for which T changes, by integrating.

You learned in Chapter 19 that the heat required to change the temperature of a solid 
or liquid of mass M with specific heat c is Q = Mc ∆T. For an infinitesimal heating, 
dQ = Mc  dT and thus dS = Mc dT/T. We can integrate from the initial entropy Si at ini-
tial temperature Ti to the final values Sf at Tf. If we assume that the specific heat remains 
constant—usually a good assumption if the temperature change is modest—then

 ∆Sheat = 3
Sf

Si

dS = Mc3
Tf

Ti

dT
T

= Mc(lnTf - lnTi) = Mc ln1Tf

Ti
2 (20.54)

Increasing entropy The volume of a gas 
is much larger than the volume of its 
liquid, so boiling increases the number 
of microstates—the number of ways that 
the molecules can be arranged to share 
the energy. A liquid-to-gas phase change 
is always accompanied by a large increase  
in entropy.

where the heat of fusion of ice is taken from Table 19.3. Thus the 
increase in entropy of the water is

∆S =
Q

T
=

3.33 * 104 J
273 K

= 122 J/K

REVIEW Liquid water has a higher entropy than ice even at the 
same temperature because molecules in the liquid have more spa-
tial mobility than do molecules in the solid and thus more ways to 
disperse the thermal energy.
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20.9 Using Entropy 609

In Chapter 19 an adiabatic process was defined as one in which no heat is trans-
ferred: Q = 0. We can see from Equation 20.51, dS = dQ/T, that there is no entropy 
change in an adiabatic process; ∆Sadiabatic = 0. An adiabatic process is an isentropic 
process, one with constant entropy.

The Entropy of an Ideal Gas
We can use the first law of thermodynamics to help us calculate how the entropy of an 
ideal gas changes. For infinitesimal changes, the first law is dEth = dW + dQ. Using 
dQ in dS = dQ/T  gives

 dS =
dQ

T
=

dEth

T
-

dW
T

 (20.55)

Chapter 19 found explicit expressions for the thermal energy of and work done 
on an ideal gas. In differential form, the expressions are dEth = nCV dT  and 
dW = -p dV = -(nRT/V) dV. With these substitutions, Equation 20.55 becomes

 dS = nCV 
dT
T

+ nR 
dV
V

 (20.56)

We can integrate from entropy Si at initial temperature Ti and volume Vi to Sf at Tf 
and Vf. The integration is like the one we did above for the entropy associated with a 
temperature change, which leads to

2 mol of nitrogen gas are heated at constant pressure until the vol-
ume has doubled. What is the entropy change of the gas?

MODEL A constant-pressure process has Tf /Ti = Vf /Vi. If the 
volume doubles, so does the absolute temperature; that is, 
Tf /Ti = Vf /Vi = 2.

SOLVE The entropy change for a doubling of the volume and tem-
perature at constant pressure is

∆S = nCP  ln 1Tf

Ti
2 = nCP  ln 2

The specific heat at constant pressure for nitrogen is given in Table 
19.4 as 29.1 J/mol K. Thus

∆S = nCP ln 2 = (2.0 mol)(29.1 J/mol K) ln 2 = 40 J/K

REVIEW Interestingly, the change in entropy does not depend on 
the initial temperature of the gas.

EXAMPLE 20.12 ■ Heating a gas

STOP TO THINK 20.9 In Chapter 19 an adiabatic process was defined as one with  
Q = 0. It follows that an adiabatic process has no change of entropy: ∆S = 0. Suppose 
an ideal gas undergoes an adiabatic expansion to a larger volume. In this process,

a. The gas temperature decreases.
b. The gas temperature does not change.
c. The gas temperature increases.
d. There’s not enough information to tell how the temperature changes.

 ∆Sgas = nCV ln1Tf

Ti
2 + nR ln1Vf

Vi
2  (ideal gas) (20.57)

   NOTE    An integration to find S itself (the absolute entropy) would have an unknown 
integration constant. We can’t determine an absolute entropy, but we don’t need to 
because changes in S are all we need to know.

You learned in Chapter 19 that heating a gas at constant pressure requires more 
heat, for the same temperature change, than heating the gas at constant volume. 
The second term in Equation 20.57 vanishes for a constant-volume process because 
ln(1) = 0. A constant-pressure process has Vf /Vi = Tf /Ti, so the two logarithms are 
the same. Using this along with CP = CV + R, which we proved in Chapter 19, leads to

 ∆Sgas = enCV ln1Tf /Ti2 constant@volume gas process
nCP ln1Tf /Ti2 constant@pressure gas process

 (20.58)
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610 CHAPTER 20 The Micro/Macro Connection

Interactions
You’ve seen that we can calculate ∆S for various processes. In addition, entropy and 
the second law explain why interactions proceed in one direction but not the other. 
FIGURE 20.21 shows a system that consists of object C, at a colder temperature TC, and 
object H, at the hotter temperature TH. These objects can interact with each other, but 
they form an isolated system that does not interact with the rest of the universe. Note 
that this system is not in thermal equilibrium.

The system is the combination of objects C and H. What are the multiplicity and 
the entropy of this system? For each microstate in C there are ΩH microstates in 
H, so the total number of microstates, the multiplicity of the system, is the prod-
uct Ωtot = ΩC ΩH. For example, if C has 4 microstates while H has 6, each of the 
4 microstates of C can be paired with any one of the 6 microstates of H to give 
Ωtot = 6 + 6 + 6 + 6 = 4 * 6 = 24. Thus, using the definition of entropy, we find

 Ssys = kBlnΩsys = kBln(ΩC ΩH) = kBlnΩC + kBlnΩH = SC + SH (20.59)

We see that the entropy of a combined system is the sum of the entropies of  
each part. That is, entropy is additive—a useful property for a state variable.

Suppose a small amount of heat dQ is transferred from object H to object C. The 
heat leaves H and enters C, so dQH = -dQ and dQC = +dQ. This small energy 
exchange causes the entropy of the total system to change by

 dSsys = dSC + dSH =
dQC

TC
+

dQH

TH
= 1 1

TC
-

1
TH

2dQ (20.60)

Notice that the expression in parentheses is positive because TC 6 TH.
If dQ 7 0, which describes an energy transfer from hot to cold, then dSsys 7 0. The 

system’s entropy increases, and it will continue to increase with every little energy 
transfer until TC = TH, at which time dSsys = 0. This is the second law of thermody-
namics! The total system is an isolated system, and initially it is not in equilibrium 
because the temperatures of C and H differ. The system’s entropy increases as C and 
H interact—the ability to disperse energy is increasing—until TC = TH. At that point, 
the entropy is maximized and the system is in thermal equilibrium.

Notice that the entropy of object H decreases as heat is withdrawn from it. The 
second law does not say that entropy can never decrease, only that the entropy of an 
isolated system cannot decrease. H is not isolated, but its entropy decrease is more 
than made up for by the entropy increase of C, so the entropy of the combined system, 
which is isolated, increases.

What would happen if, instead, heat was transferred from cold to hot, making C 
colder and H hotter? A cold-to-hot heat transfer would have dQ 6 0. From Equation 
20.60, you can see that the associated change in the system’s entropy would be 
dSsys 6 0, which takes the system to a macrostate with a lower multiplicity and a 
lower entropy. An energy transfer from cold to hot would not violate the first law 
of thermodynamics—energy would be conserved—but it would violate the second 
law of thermodynamics by requiring a decrease in the entropy of an isolated system. 
That’s why a heat transfer from cold to hot never happens.

The key idea here is that a system initially not in thermal equilibrium evolves to-
ward thermal equilibrium because objects within the system interact with each other 
by exchanging energy. The exchanges conserve energy but increase entropy. As a 
result, a system evolves toward thermal equilibrium by moving through a series of 
macrostates of ever-increasing entropy.

We can make this idea more general. FIGURE 20.22 shows a small system interacting 
both thermally (heat is exchanged) and mechanically (work is done by a moving pis-
ton) with a much larger environment. This system is not isolated, so we can’t apply the 
second law of thermodynamics to the system alone. In principle there’s no limit to the 
size of the environment, so we can think of the system and its environment as forming 
the entire universe—that is, universe = system + environment. In most cases only the 

Object H

TH

Object C

TC

dQ

Objects H and C together
form an isolated system.

FIGURE 20.21 An interaction of two objects 
at different temperatures.

The system and its environment
make up the entire universe. 

The system can exchange
energy with its environment. 

System

Environment

Temperature T
Pressure p

FIGURE 20.22 A system interacting with 
its environment increases the entropy of 
the universe.
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nearby environment is affected by the system, so “universe” is more figurative than 
literal, but there are situations where a system radiates heat into deep space and truly 
interacts with the entire universe.

A system may not be isolated, but the universe as a whole is the ultimate iso-
lated system. Thus the second law of thermodynamics applied to the universe is 
∆Suniverse Ú 0; that is, nothing can cause the entropy of the universe to decrease. 
Entropy is additive, so Suniverse = Ssys + Senv and we can write the second law for the 
universe as

 ∆Suniverse = ∆Ssys + ∆Senv Ú 0  with e  =   for a reversible process
7  for an irreversible process

 (20.61)

Only idealized reversible processes have ∆Suniverse = 0. Any realistic interaction 
 between a system and its environment has ∆Suniverse 7 0 and is irreversible because re-
versing the process, which would require ∆Suniverse 6 0, would violate the second law.

For an isolated system, one that has no interactions with its environment, ∆Ssys Ú 0 
because the system is the only part of the universe that is changing. The entropy is 
unchanging only if the system is in equilibrium. Otherwise, the entropy increases as 
the system evolves toward equilibrium. If the system is not isolated—and most are 
not—then the second law tells us that any interactions of the system with its environ-
ment must increase the entropy of the universe. It’s possible for the system’s entropy to 
decrease, but only if the environment’s entropy increases by a larger amount.

   NOTE    Entropy, unlike energy, is not a conserved quantity. Just because the entropy 
of a system decreases doesn’t mean that its entropy “went somewhere.” It simply 
means that the system moved to a macrostate that has a lower multiplicity. Similarly, 
an increasing entropy doesn’t mean that entropy was added from somewhere; it 
means only that the system changed to a macrostate that has a higher probability of 
occurrence.

Analyzing an Irreversible Process
Our primary result for how the entropy changes, dS = dQ/T, is for a slow quasi-static 
process in which the system is always essentially in equilibrium. But most real-world 
processes don’t meet these criteria. For example, in Section 20.7 we looked at the free 
expansion of a gas; FIGURE 20.23 reminds you of the situation. This irreversible process 
is fast, not quasi-static, and the gas is not in equilibrium during the expansion. We 
argued that the entropy of the gas must increase even though its thermal energy and 
temperature do not. Can we calculate the value of ∆Sfree expansion?

We can, but not by using Equation 20.51, dS = dQ/T, because it applies to 
only a slow quasi-static process. If we tried, we would erroneously conclude that 
∆Sfree expansion = 0 because no heat is transferred during a free expansion.

However, we know that entropy is a state variable. We also know that an irre-
versible process, such a free expansion, starts from an equilibrium state (before 
the membrane is broken) and ends in an equilibrium state (after the gas fills the 
larger container). The value of a state variable depends on only the state of the 
system, not the process by which that state was reached. As a result, the entropy 
change of an irreversible process is exactly the same as the entropy change of 
any slow quasi-static process that connects the initial and final states. This 
is important because it allows us to find the entropy change of an irreversible 
process by calculating the entropy change due to a reversible process between the 
same two states.

For example, instead of breaking the membrane, we could let the gas fill the con-
tainer in a quasi-static isothermal process in which a piston slowly moves outward 
while the addition of heat keeps the temperature from changing. This is a reversible 
process because we could always slowly push the piston back in, while removing heat, 

Neither the temperature nor the thermal energy
of the gas changes, but its entropy increases
because this is an irreversible process.

Thin membrane

FIGURE 20.23 The free expansion of a gas.
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612 CHAPTER 20 The Micro/Macro Connection

to restore the initial state. We can use Equation 20.57 for the entropy change of an 
ideal gas to write

 ∆Sslow expansion = nR ln1Vf

Vi
2   (20.62)

The first term in Equation 20.57 is zero because ln1Tf /Ti2 = ln(1) = 0 for an isother-
mal expansion.

Because the initial and final states are the same, ∆Sfree expansion for the irreversible 
free expansion is exactly the same as ∆Sslow expansion; that is,

 ∆Sfree expansion = ∆Sslow expansion = nR ln1Vf

Vi
2   (20.63)

Thus a free expansion that doubles the volume of a gas increases its entropy by 
∆Ssys = nR ln 2.

If ∆Sfree expansion = ∆Sslow expansion, then what’s the difference? Why is one a revers-
ible process but not the other? The answer lies not in the gas but in the environment.

A gas undergoing a free expansion is an isolated system; nothing in the environ-
ment changes. A doubling of the volume is a process in which ∆Ssys = ∆Sfree expansion  
=  nR ln 2 and ∆Senv = 0, so the entropy change of the universe is ∆Suniverse = ∆Ssys +  
∆Senv = nR ln 2 7 0. A free expansion increases the entropy of the universe. We  
can’t reverse the free expansion because a reversal would require a decrease in the 
entropy of the universe, which the second law doesn’t allow.

We can contrast this with doubling the volume in a slow quasi-static expansion. 
The system’s entropy change is the same, ∆Ssys = nR ln 2, but now the system isn’t 
the only thing changing. A slow isothermal expansion requires a heat input from the 
environment to keep the temperature constant, so the environment also has an entropy 
change. If Qenv is the heat flow relative to the environment and the exchange takes 
place at a constant temperature, then ∆Senv = Qenv/T.

Any heat removed from the environment is added to the system, so Qenv = -Qsys. 
An isothermal process has ∆Eth = 0 and thus, from the first law of thermodynam-
ics, Qsys = -W. In Chapter 19 you learned that the work done during an isothermal 
process is W = -nRT ln1Vf /Vi2. Thus Qenv = -nRT ln1Vf /Vi2 = -nRT ln 2 for a dou-
bling of the volume, and ∆Senv = Qenv/T = -nR ln 2, exactly opposite that of the sys-
tem. As a result, the entropy change of the universe is ∆Suniverse = ∆Ssys + ∆Senv = 0.

Thus the difference between the free expansion and the slow isothermal expansion 
is not the entropy change of the gas, which is the same in both cases, but the entropy 
change of the environment. The slow isothermal expansion is reversible because the 
entropy of the universe is unchanged, but we cannot reverse the free expansion with-
out violating the second law of thermodynamics.

Entropy and Life
The second law of thermodynamics is sometimes interpreted as saying that “things 
run down,” that order becomes disorder. But living systems seem to violate this rule:

■■ Plants grow from simple seeds to complex, organized entities.
■■ Single-cell fertilized eggs grow into complex, organized adults.
■■ Over billions of years, life has evolved from simple unicellular organisms into the 

complex forms we see today.

Rather than running down, living systems seem to be ramping up and becoming more 
complex. How can this be?

The important qualification in the second law is that the inexorable increase in 
entropy applies to isolated systems, those that do not exchange energy or matter with 
their environment. Living organisms are neither isolated nor in equilibrium. All liv-
ing organisms are maintained in a nonequilibrium state by a steady flow of energy 
passing through them, taking in low-entropy, high-quality energy in the form of food 

  
Sealed, but not isolated This glass 
container is a completely sealed system 
that holds living organisms, shrimp and 
algae. This is possible because the glass 
sphere and its contents, though sealed, 
are not an isolated system. Energy can be 
transferred in and out as light and heat. 
The organisms will quickly perish if the 
container is isolated from its environment  
by being wrapped in dark insulation.
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or sunlight and then producing thermal energy that increases the entropy of the en-
vironment. An organism can stay in a low-entropy state, or even decrease its entropy, 
because this flow of energy steadily increases the entropy of the environment. Life is 
possible without violating any laws of physics.

   CHAPTER 20 CHALLENGE EXAMPLE     Thermal energy in an adiabatic expansion

The pressure of a 1.0 * 104 cm3 cylinder of oxygen gas is 45 atm at 
a temperature of 20°C.

a. What is the thermal energy of the gas?

b. The gas expands adiabatically until the pressure is 1.0 atm. What 
is the change in the thermal energy of the gas?

MODEL Oxygen is a diatomic molecule. The temperature of a gas 
decreases during an adiabatic expansion, so we expect the thermal 
energy will decrease.

SOLVE a. A diatomic molecule has both translational and rota-
tional kinetic energy. Equation 20.37 for the thermal energy of a 
diatomic gas is

Eth = 5
2 nRT

We could use the ideal-gas law to calculate the number of moles 
of gas. It’s more straightforward, however, to use the ideal-gas law 
pV = nRT to write the thermal energy as

Eth = 5
2 pV

We noted in Chapter 19 that the product pV has units of J if p  
and V have SI units of Pa and m3. Thus the initial thermal energy 
of the gas is

(Eth)i = 5
2 145 atm *

1.013 * 105 Pa
1 atm 211.0 * 104 cm3 *

1 m3

106 cm32
= 1.1 * 105 J

b. We found in Chapter 19 that an adiabatic process—a process 
in which no heat is transferred—obeys the equation pfVf

g= piVi
g, 

where g = CP/CV is the specific heat ratio. A diatomic gas has 
g = 1.40. We can use pi = 45pf to calculate that the gas volume 
expands to

Vf = 1pi

pf
21/g

Vi = 451/1.40Vi = 15.2Vi

Consequently, the thermal energy after the expansion is

1Eth2f = 5
2 pfVf =

5
2

 1 pi

452(15.2Vi) = 0.33815
2 piVi2

= 0.3381Eth2i

The thermal energy decreases because the gas temperature falls 
during an adiabatic expansion. The change in the thermal energy 
of the gas is

∆Eth = 1Eth2f - 1Eth2i = -0.6621Eth2i = -7.3 * 104 J

REVIEW The gas temperature can fall dramatically during an 
adiabatic process. Our analysis is valid only if the system remains a 
gas, so we should verify that this is true. We can use pfVf = 0.338piVi 
and the ideal-gas law to infer that Tf = 0.338Ti = 99 K. This is 
a very low temperature, but it is above the 90 K boiling point of 
oxygen.
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Pressure is due to the force of the 
molecules colliding with the walls:

p =
1
3

 
N
V

 mvrms 

2 =
2
3

 
N
V

 Pavg

The root-mean-square speed vrms is the square root of the average 
of the squares of the molecular speeds:

vrms = 21v22avg

For molecules of mass m at temperature T, vrms = B 3kBT

m

The average translational kinetic energy of a molecule is 
Pavg = 3

2 kBT. The temperature of the gas T = 2Pavg/3kB  
measures the average translational kinetic energy.

Entropy S measures the number of ways in which a macrostate  
can be arranged microscopically:

S = kB ln Ω
where Ω, the multiplicity, is the number of microstates. Entropy 
is a state variable. A slow, reversible transfer of heat changes a 
system’s entropy by dS = dQ/T.

The thermal energy of a system is

Eth = translational kinetic energy + rotational
kinetic energy + vibrational energy

• Monatomic gas  Eth = 3
2 NkBT = 3

2 nRT

• Diatomic gas  Eth = 5
2 NkBT = 5

2 nRT

• Elemental solid  Eth = 3NkBT = 3nRT

Molar specific heats can be predicted from the thermal energy 
because ∆Eth = nC ∆T.

• Monatomic gas CV = 3
2 R

• Diatomic gas CV = 5
2 R

• Elemental solid C = 3R

Heat is energy transferred via 
collisions from more-energetic 
molecules on one side to less- 
energetic molecules on the other. 
Equilibrium is reached when 
1P12avg = 1P22avg, which implies 
T1f = T2f.

Summary The goal of Chapter 20 has been to see how macroscopic 
properties depend on the motion of atoms.

General Principles

Important Concepts

Applications

The micro/macro connection relates the macroscopic properties of a system to the motion and collisions of its atoms and molecules.

The Equipartition Theorem
Tells us how collisions distribute the energy in the system.
The energy stored in each mode of the system (each degree  
of freedom) is 12 NkBT or, in terms of moles, 12 nRT.

The Second Law of Thermodynamics
Tells us how collisions move a system toward equilibrium.
• The entropy of an isolated system can only increase or, in 

equilibrium, stay the same.

• Heat energy is transferred spontaneously from a hotter to a  
colder system, never from colder to hotter.

Q

mean free path, l
root-mean-square speed, vrms

degrees of freedom

equipartition theorem
irreversible process
reversible process

entropy, S
second law of thermodynamics
microstate

macrostate
multiplicity, Ω
isentropic process

Terms and Notation
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CONCEPTUAL QUESTIONS
1. Solids and liquids resist being compressed. They are not totally 

incompressible, but it takes large forces to compress them even 
slightly. If it is true that matter consists of atoms, what can you 
infer about the microscopic nature of solids and liquids from 
their incompressibility?

2. Gases, in contrast with solids and liquids, are very compressible. 
What can you infer from this observation about the microscopic 
nature of gases?

3. The density of air at STP is about 1
1000 the density of water. How 

does the average distance between air molecules compare to the 
average distance between water molecules? Explain.

4. The mean free path of molecules in a gas is 200 nm.
a. What will be the mean free path if the pressure is doubled 

while the temperature is held constant?
b. What will be the mean free path if the absolute temperature is 

doubled while the pressure is held constant?
5. Will the temperature of a gas in a container increase when we 

put the container on a moving train? Explain.
6. Suppose you could suddenly increase the speed of every mole-

cule in a gas by a factor of 4.
a. Would the rms speed of the molecules increase by a factor of 

41/2, 4, or 42? Explain.
b. Would the gas pressure increase by a factor of 41/2, 4, or 42? 

Explain.
7. Suppose you could suddenly increase the speed of every mole-

cule in a gas by a factor of 4.
a. Would the temperature of the gas increase by a factor of 41/2, 

4, or 42? Explain.
b. Would the molar specific heat at constant volume change? If 

so, by what factor? If not, why not?

8. The two containers of gas in FIGURE Q20.8 are in good thermal 
contact with each other but well insulated from the environment. 
They have been in contact for a long time and are in thermal 
equilibrium.
a. Is vrms of helium greater than, less than, or equal to vrms of 

argon? Explain.
b. Does the helium have more thermal energy, less thermal en-

ergy, or the same amount of thermal energy as the argon? 
Explain.

0.1 mol He 0.2 mol Ar

FIGURE Q20.8

9. Suppose you place an ice cube in a beaker of room-temperature 
water, then seal them in a rigid, well-insulated container. No 
energy can enter or leave the container.
a. If you open the container an hour later, will you find a beaker 

of water slightly cooler than room temperature, or a large ice 
cube and some 100°C steam?

b. Finding a large ice cube and some 100°C steam would not 
violate the first law of thermodynamics. W = 0 J and Q = 0 J 
because the container is sealed, and ∆Eth = 0 J because the 
increase in thermal energy of the water molecules that be-
came steam is offset by the decrease in thermal energy of 
the water molecules that turned to ice. Energy would be con-
served, yet we never see an outcome like this. Why not?

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises
Section 20.1 Connecting the Microscopic and the Macroscopic

Section 20.2 Molecular Speeds and Collisions

1. | The mean free path of a molecule in gas is 200 nm. What 
will the mean free path be if the gas temperature is halved at (a) 
constant volume and (b) constant pressure?

2. | The number density of an ideal gas at STP is called the 
Loschmidt number. Calculate the Loschmidt number.

3. || A 1.0 m * 1.0 m * 1.0 m cube of nitrogen gas is at 20°C and 
1.0 atm. Estimate the number of molecules in the cube with a 
speed between 700 m/s and 1000 m/s.

4. || At what pressure will the mean free path in room-temperature  
120°C2 nitrogen be 1.0 m?

5. || Integrated circuits are manufactured in a vacuum chamber in 
which the air pressure is 2 * 10-10 mm of mercury (Hg). What 
are (a) the number density and (b) the mean free path of the 
 molecule? Assume  T = 57°C.

6. || A lottery machine uses blowing air to keep 1000 ping-pong 
balls bouncing around inside a 2 m * 2 m * 2 m box. The 
 diameter of a ping-pong ball is 4 cm. What is the mean free path  
(in cm) between collisions?

7. || A cylinder of nitrogen and a cylinder of neon are at the same 
temperature and pressure. The mean free path of a nitrogen  
molecule is 150 nm. What is the mean free path of a neon  
atom?

Section 20.3 Pressure in a Gas

8. | Eleven molecules have speeds 15, 16, 17, …, 25 m/s. Calculate 
(a) vavg and (b) vrms.

9. || The molecules in a six-particle gas have velocities

  v 

u
1 = 120in - 30jn2 m/s     v 

u
4 = 30in m/s

 v 

u
2 = 140in + 70jn2 m/s     v 

u
5 = 140in - 40jn2 m/s

  v 

u
3 = 1-80in + 20jn2 m/s     v 

u
6 = 1-50in - 20jn2 m/s

Calculate (a) v 

u
avg, (b) vavg, and (c) vrms.
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616 CHAPTER 20 The Micro/Macro Connection

Section 20.5 Thermal Energy and Specific Heat

26. || The rms speed of the atoms in a 2.0 g sample of helium gas is 
700 m/s. What is the thermal energy of the gas?

27. || A 10 g sample of neon gas has 1700 J of thermal energy. 
Estimate the average speed of a neon atom.

28. || A 6.0 m * 8.0 m * 3.0 m room contains air at 20°C. What is 
the room’s thermal energy?

29. || The thermal energy of 1.0 mol of a substance is increased by 
1.0 J. What is the temperature change if the system is (a) a mona-
tomic gas, (b) a diatomic gas, and (c) a solid?

30. || The vibrational modes of molecular nitrogen are “frozen out” 
at room temperature but become active at temperatures above 
≈1500 K. The temperature in the combustion chamber of a jet 
engine can reach 2000 K, so an engineering analysis of com-
bustion requires knowing the thermal properties of materials at 
these temperatures. What is the expected specific heat ratio g for 
nitrogen at 2000 K?

31. ||| A cylinder of nitrogen gas has a volume of 15,000 cm3 and a 
pressure of 100 atm.
a. What is the thermal energy of this gas at room temperature 

120°C2?
b. What is the mean free path in the gas?
c. The valve is opened and the gas is allowed to expand slowly 

and isothermally until it reaches a pressure of 1.0 atm. What 
is the change in the thermal energy of the gas?

32. || What is the thermal energy of 200 cm3 of aluminum at  
127°C?

33. || A rigid container holds 0.20 g of hydrogen gas. How much 
heat is needed to change the temperature of the gas
a. From 50 K to 100 K?
b. From 250 K to 300 K?
c. From 2250 K to 2300 K?

Section 20.6 Heat Transfer and Thermal Equilibrium

34. | 2.0 mol of monatomic gas A initially has 5000 J of thermal en-
ergy. It interacts with 3.0 mol of monatomic gas B, which initially 
has 8000 J of thermal energy.
a. Which gas has the higher initial temperature?
b. What is the final thermal energy of each gas?

35. || 4.0 mol of monatomic gas A interacts with 3.0 mol of mona-
tomic gas B. Gas A initially has 9000 J of thermal energy, but in 
the process of coming to thermal equilibrium it transfers 1000 J 
of heat energy to gas B. How much thermal energy did gas B 
have initially?

Section 20.7 Irreversible Processes and the Second Law of 
Thermodynamics

Section 20.8 Microstates, Multiplicity, and Entropy

36. || Two containers hold several balls. Once a second, one of the 
balls is chosen at random and switched to the other container. 
After a long time has passed, you record the number of balls in 
each container every second. In 10,000 s, you find 80 times when 
all the balls were in one container (either one) and the other con-
tainer was empty.
a. How many balls are there?
b. What is the most likely number of balls to be found in one of 

the containers?

10. | FIGURE EX20.10 is a histogram showing the speeds of the mol-
ecules in a very small gas. What are (a) the most probable speed, 
(b) the average speed, and (c) the rms speed?

v (m/s)0

N

1

2

3

4

2 4 6 8FIGURE EX20.10

11. ||| At 100°C the rms speed of nitrogen molecules is 576 m/s. 
Nitrogen at 100°C and a pressure of 2.0 atm is held in a container 
with a 10 cm * 10 cm square wall. Estimate the rate of molecular 
collisions (collisions/s) on this wall.

12. || The number density in a container of neon gas is 2 *  
1025 m-3. The atoms are moving with an rms speed of 500 m/s. 
What are (a) the pressure inside the container and (b) the temperature 
of the gas?

13. || A cylinder contains gas at a pressure of 2.0 atm and a number 
density of 5.2 * 1025 m-3. The rms speed of the atoms is 500 m/s.  
Identify the gas.

Section 20.4 Temperature

14. || What are the rms speeds of (a) argon atoms and (b) hydrogen 
molecules at 727°C?

15. | A gas consists of a mixture of neon and argon. The rms speed 
of the neon atoms is 400 m/s. What is the rms speed of the argon 
atoms?

16. || At what temperature (in 5C) do hydrogen molecules have the 
same rms speed as nitrogen molecules at 100°C?

17. || 1.5 m/s is a typical walking speed. At what temperature (in 
mK) would nitrogen molecules have an rms speed of 1.5 m/s?

18. | The rms speed of molecules in a gas is 600 m/s. What will be 
the rms speed if the gas pressure and volume are both halved?

19. || By what factor does the rms speed of a molecule change if the 
temperature is increased from 10°C to 1000°C?

20. || Atoms can be “cooled” to incredibly low temperatures by let-
ting them interact with a laser beam. Various novel quantum phe-
nomena appear at these temperatures. What is the rms speed of 
cesium atoms that have been cooled to a temperature of 100 nK?

21. || 1.0 mol of argon has 3100 J of thermal energy. What is the gas 
temperature in 5C?

22. || Liquid helium boils at 4.2 K. In a flask, the helium gas above 
the boiling liquid is at the same temperature. What are (a) the 
mean free path in the gas, (b) the rms speed of the atoms, and  
(c) the average energy per atom?

23. | Suppose you double the temperature of a gas at constant vol-
ume. Do the following change? If so, by what factor?
a. The average translational kinetic energy of a molecule.
b. The rms speed of a molecule.
c. The mean free path.

24. | What are (a) the average kinetic energy and (b) the rms speed 
of a proton in the center of the sun, where the temperature is 
2.0 * 107 K?

25. | The atmosphere of the sun consists mostly of hydrogen atoms 
(not molecules) at a temperature of 6000 K. What are (a) the 
average translational kinetic energy per atom and (b) the rms 
speed of the atoms?
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48. | Interstellar space, far from any stars, is filled with a very low 
density of hydrogen atoms (H, not H2). The number density is 
about 1 atom/cm3 and the temperature is about 3 K.
a. Estimate the pressure in interstellar space. Give your answer 

in Pa and in atm.
b. What is the rms speed of the atoms?
c. What is the edge length L of an L * L * L cube of gas with 

1.0 J of thermal energy?
49. || Photons of light scatter off molecules, and the distance you 

can see through a gas is proportional to the mean free path of 
photons through the gas. Photons are not gas molecules, so the 
mean free path of a photon is not given by Equation 20.3, but its 
dependence on the number density of the gas and on the molecu-
lar radius is the same. Suppose you are in a smoggy city and can 
barely see buildings 500 m away.
a. How far would you be able to see if all the molecules around 

you suddenly doubled in volume?
b. How far would you be able to see if the temperature suddenly 

rose from 20°C to a blazing hot 1500°C with the pressure 
unchanged?

50. ||| You are watching a science fiction movie in which the hero 
shrinks down to the size of an atom and fights villains while 
jumping from air molecule to air molecule. In one scene,  
the hero’s molecule is about to crash head-on into the molecule 
on which a villain is riding. The villain’s molecule is initially  
50 molecular radii away and, in the movie, it takes 3.5 s for 
the molecules to collide. Estimate the air temperature required 
for this to be possible. Assume the molecules are nitrogen 
molecules, each traveling at the rms speed. Is this a plausible 
temperature for air?

51. ||| a. Find an expression for the vrms of gas molecules in terms of 
p, V, and the total mass of the gas M.

b. A gas cylinder has a piston at one end that is moving 
outward at speed vpiston during an isobaric expansion of 
the gas. Find an expression for the rate at which vrms is 
changing in terms of vpiston, the instantaneous value of 
vrms, and the instantaneous value L of the length of the 
cylinder.

c. A cylindrical sample chamber has a piston moving out-
ward at 0.50 m/s during an isobaric expansion. The 
rms speed of the gas molecules is 450 m/s at the in-
stant the chamber length is 1.5 m. At what rate is vrms  
changing?

52. || Equation 20.3 is the mean free path of a particle through a gas 
of identical particles of equal radius. An electron can be thought 
of as a point particle with zero radius.
a. Find an expression for the mean free path of an electron 

through a gas.
b. Electrons travel 3.0 km through the Stanford Linear Accel-

erator. In order for scattering losses to be negligible, the 
pressure inside the accelerator tube must be reduced to the 
point where the mean free path is at least 50 km. What is 
the  maximum possible pressure inside the accelerator tube, 
assuming T = 20°C? Give your answer in both Pa and atm.

37. || If N coins are tossed, the number of ways to obtain H heads 
can be calculated as N!/(H!   (N - H)!). This result from proba-
bility theory, called the binomial distribution, can confirm the 
values given in Table 20.3. For N = 12, what is the multiplicity 
of the macrostates (a) H = 0, (b) H = 3, and (c) H = 6?

38. || Your calculator can’t handle enormous exponents, but we 
can make sense of large powers of e by converting them to large 
powers of 10. If we write e = 10a, then eb = (10a)b = 10ab.
a. What is the value of a?
b. What is the multiplicity of a macrostate with entropy 

S = 1.0 J/K? Give your answer as a power of 10.
39. | How much heat energy is needed to change the entropy of a 

macrostate from 10.00 J/K to 10.01 J/K in a quasi-static process 
at a temperature of (a) 30 K, (b) 300 K, and (c) 3000 K?

Section 20.9 Using Entropy

40. || A 75 g ice cube at 0°C is placed on a very large table at 20°C. 
You can assume that the temperature of the table does not change. 
As the ice cube melts and then comes to thermal equilibrium, 
what are the entropy changes of (a) the water, (b) the table, and 
(c) the universe?

41. || What is the entropy change of the nitrogen if 250 mL of liquid 
nitrogen boils away and then warms to 20°C at constant pres-
sure? The density of liquid nitrogen is 810 kg/m3.

42. || A 150 cm3 cup of coffee cools from 88°C to the 20°C tem-
perature of the room. Assume that the temperature of the room 
does not change. What are the entropy changes of (a) the coffee, 
(b) the room, and (c) the universe?

43. || 2.0 mol of helium at 280°C undergo an isobaric process in 
which the helium entropy increases by 35 J/K. What is the final 
temperature of the gas?

44. || 75 g of aluminum at 100°C are placed in thermal contact with 
75 g of copper at 0°C. The two metals are isolated from the envi-
ronment. As the metals reach thermal equilibrium, what are the 
entropy changes of (a) the aluminum, (b) the copper, and (c) the 
universe?

Problems
45. || The pressure inside a tank of neon is 150 atm. The tempera-

ture is 25°C. On average, how many atomic diameters does a 
neon atom move between collisions?

46. || Dust particles are ≈10 mm in diameter. They are pulverized 
rock, with r ≈ 2500 kg/m3. If you treat dust as an ideal gas, 
what is the rms speed of a dust particle at 20°C?

47. || A mad engineer builds a cube, 2.5 m on a side, in which 
6.2-cm-diameter rubber balls are constantly sent flying in ran-
dom directions by vibrating walls. He will award a prize to any-
one who can figure out how many balls are in the cube without 
entering it or taking out any of the balls. You decide to shoot 
6.2-cm-diameter plastic balls into the cube, through a small hole, 
to see how far they get before colliding with a rubber ball. After 
many shots, you find they travel an average distance of 1.8 m. 
How many rubber balls do you think are in the cube?

M20_KNIG8221_05_GE_C20.indd   617 27/05/2022   20:31



618 CHAPTER 20 The Micro/Macro Connection

rotating dumbbell and find the rms angular velocity at this 
temperature of a nitrogen molecule around the z-axis, as 
shown in Figure 20.10.

62. | A monatomic gas and a diatomic gas have equal num-
bers of moles and equal temperatures. Both are heated at con-
stant pressure until their volume doubles. What is the ratio 
Qdiatomic /Qmonatomic?

63. || A water molecule has its three atoms arranged in a “V” shape, 
so it has rotational kinetic energy around any of three mutually 
perpendicular axes. However, like diatomic molecules, its vibra-
tional modes are not active at temperatures below 1000 K. What 
is the thermal energy of 2.0 mol of steam at a temperature of 
160°C?

64. || In the discussion following Equation 20.43 it was said that 
Q1 = -Q2. Prove that this is so.

65. || A monatomic gas is adiabatically compressed to 1
8 of its ini-

tial volume. Does each of the following quantities change? If so, 
does it increase or decrease, and by what factor? If not, why not?
a. The rms speed.
b. The mean free path.
c. The thermal energy of the gas.
d. The molar specific heat at constant volume.

66. || n moles of a diatomic gas with CV = 5
2 R has initial pressure pi 

and volume Vi. The gas undergoes a process in which the pres-
sure is directly proportional to the volume until the rms speed of 
the molecules has doubled.
a. Show this process on a pV diagram.
b. How much heat does this process require? Give your answer 

in terms of n, pi, and Vi.
67. || The 2010 Nobel Prize in Physics was awarded for the dis-

covery of graphene, a two-dimensional form of carbon in which 
the atoms form a two-dimensional crystal-lattice sheet only one 
atom thick. Predict the molar specific heat of graphene. Give 
your answer as a multiple of R.

68. || The rms speed of the molecules in 1.0 g of hydrogen gas is 
1800 m/s.
a. What is the total translational kinetic energy of the gas 

molecules?
b. What is the thermal energy of the gas?
c. 500 J of work are done to compress the gas while, in the same 

process, 1200 J of heat energy are transferred from the gas 
to the environment. Afterward, what is the rms speed of the 
molecules?

69. || n1 moles of a monatomic gas and n2 moles of a diatomic gas 
are mixed together in a container.
a. Derive an expression for the molar specific heat at constant 

volume of the mixture.
b. Show that your expression has the expected behavior if 

n1 S 0 or n2 S 0.
70. || The molar heat capacities of gases are not perfectly constant, 

as we’ve assumed, but increase slowly with temperature. An em-
pirical formula for the molar heat capacity at constant volume of 
nitrogen is CV = (20.6 - 1.6 * 10-3T + 8.0 * 10-6T 2) J/mol K, 
where T is in K. What is the entropy increase of the gas if 5.0 g 
of nitrogen in a rigid container are slowly heated from 300°C to 
500°C?

71. || A thin partition divides a container of volume V into two 
parts. One side contains nA moles of gas A in a fraction fA of the 
container; that is, VA = fAV. The other side contains nB moles of 
a different gas B at the same temperature in a fraction fB of the 
container. The partition is removed, allowing the gases to mix. 
Find an expression for the change of entropy. This is called the 
entropy of mixing.

53. || Uranium has two naturally occurring isotopes. 238U has a nat-
ural abundance of 99.3% and 235U has an abundance of 0.7%. It 
is the rarer 235U that is needed for nuclear reactors. The isotopes 
are separated by forming uranium hexafluoride, UF6, which 
is a gas, then allowing it to diffuse through a series of porous 
membranes. 235UF6 has a slightly larger rms speed than 238UF6 
and diffuses slightly faster. Many repetitions of this procedure 
gradually separate the two isotopes. What is the ratio of the rms 
speed of 235UF6 to that of 238UF6?

54. | On earth, STP is based on the average atmospheric pressure 
at the surface and on a phase change of water that occurs at an 
easily produced temperature, being only slightly cooler than 
the average air temperature. The atmosphere of Venus is almost  
entirely carbon dioxide 1CO22, the pressure at the surface is a stag-
gering 93 atm, and the average temperature is 470°C. Venusian 
scientists, if they existed, would certainly use the surface  
pressure as part of their definition of STP. To complete the defi-
nition, they would seek a phase change that occurs near the aver-
age temperature. Conveniently, the melting point of the element 
tellurium is 450°C. What are (a) the rms speed and (b) the mean 
free path of carbon dioxide molecules at Venusian STP based on 
this phase change in tellurium? The radius of a CO2 molecule is 
1.5 * 10-10 m.

55. ||| 5.0 * 1023 nitrogen molecules collide with a 10 cm2 wall each 
second. Assume that the molecules all travel with a speed of 
400 m/s and strike the wall head-on. What is the pressure on the 
wall?

56. ||| A 10 cm * 10 cm * 10 cm box contains 0.010 mol of nitrogen 
at 20°C. What is the rate of collisions (collisions/s) on one wall of 
the box?

57. || FIGURE P20.57 shows the thermal energy of 0.14 mol of gas as 
a function of temperature. What is CV for this gas?

T (°C)

Eth (J)

1892

1492

1092

0
2001000FIGURE P20.57

58. || A 100 cm3 box contains helium at a pressure of 2.0 atm and 
a temperature of 100°C. It is placed in thermal contact with a 
200 cm3 box containing argon at a pressure of 4.0 atm and a 
temperature of 400°C.
a. What is the initial thermal energy of each gas?
b. What is the final thermal energy of each gas?
c. How much heat energy is transferred, and in which direction?
d. What is the final temperature?
e. What is the final pressure in each box?

59. || A gas of 1.0 * 1020 atoms or molecules has 1.0 J of ther-
mal energy. Its molar specific heat at constant pressure is 
20.8 J/mol K. What is the temperature of the gas?

60. || 2.0 g of helium at an initial temperature of 300 K interacts 
thermally with 8.0 g of oxygen at an initial temperature of 600 K.
a. What is the initial thermal energy of each gas?
b. What is the final thermal energy of each gas?
c. How much heat energy is transferred, and in which direction?
d. What is the final temperature?

61. || a. What is the total rotational kinetic energy of 1.0 mol of 
nitrogen gas at 300 K?

b. A nitrogen molecule consists of two nitrogen atoms sepa-
rated by 0.11 nm, the bond length. Treat the molecule as a 
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c. 2.0 g of helium at an initial temperature of 300 K interacts 
thermally with 8.0 g of oxygen at an initial temperature of 
600 K. What is the final temperature? How much heat energy 
is transferred, and in which direction?

74. ||| Equation 20.57 is the entropy change of an ideal gas in terms 
of temperature and volume.
a. Find an expression for the entropy change of an ideal gas in 

terms of pressure and volume. Both CV and CP should appear 
in your answer.

b. A 250 cm3 container filled with 1.0 g of helium at 1.0 atm 
slowly expands to 500 cm3 as the pressure increases to 3.0 atm.  
What is the change of entropy of the helium?

75. ||| A 2.0 mol sample of oxygen gas in a rigid, 15 L container is 
slowly cooled from 250°C to 50°C by being in thermal contact 
with a large bath of 50°C water. What is the entropy change of  
(a) the gas and (b) the universe?

Challenge Problems
72. ||| An experiment you’re designing needs a gas with g = 1.50. 

You recall from your physics class that no individual gas has 
this value, but it occurs to you that you could produce a gas with 
g = 1.50 by mixing together a monatomic gas and a diatomic 
gas. What fraction of the molecules need to be monatomic?

73. ||| Consider a container like that shown in Figure 20.12, with n1  
moles of a monatomic gas on one side and n2 moles of a diatomic 
gas on the other. The monatomic gas has initial temperature T1i. 
The diatomic gas has initial temperature T2i.
a. Show that the equilibrium thermal energies are

 E1f =
3n1

3n1 + 5n2
 1E1i + E2i2

 E2f =
5n2

3n1 + 5n2
 1E1i + E2i2

b. Show that the equilibrium temperature is

Tf =
3n1T1i + 5n2T2i 

3n1 + 5n2
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620

Heat Engines and 
Refrigerators

21

Steam-engine locomotives are no 
longer used, but other devices that 
transform heat energy into useful 
work remain the foundation of our 
technological society.

What is a heat engine?
A heat engine is a device for transforming heat energy into useful 
work. Heat engines

■■ Follow a cyclical process that can be shown on a pV  diagram or 
an energy-transfer diagram.

■■ Require not only a source of heat but also a source of cooling. 
These are called the hot reservoir and the cold reservoir.

■■ Are governed by the first and second laws of thermodynamics.

V

p

1 3

2

Isotherm

  

Hot reservoir

Cold reservoir

QH

QC

Wout

❮❮ LOOKING BACK Sections 19.2–19.4 and 19.7 Work, heat, the first  
law of thermodynamics, and the specific heats of gases

What is a refrigerator?
A refrigerator is any device—including air 
conditioners—in which external work is  
used to “pump energy uphill” from cold 
to hot. A refrigerator is essentially a heat 
engine running in reverse. A refrigerator’s 
efficiency is given by its coefficient of 
performance.

How is the efficiency of an engine determined?
How good is an engine at transforming heat energy into work? 
We’ll define an engine’s thermal efficiency as

efficiency =
work done

heat required

Conservation of energy—the first law of thermodynamics—says 
that no engine can have an efficiency greater than one.

Is there a maximum possible efficiency?
Yes. And, surprisingly, it’s set by the second 
law’s prohibition of spontaneous heat  
flow from cold to hot. We’ll find that a  
perfectly reversible heat engine—a Carnot  
engine—has the maximum efficiency 
allowed by the laws of thermodynamics. 
The Carnot efficiency depends only on 
the temperatures of the hot and cold 
reservoirs.

❮❮ LOOKING BACK Section 20.7 The second law of thermodynamics

Why are heat engines important?
Modern society is powered by devices that transform fuel energy  
into useful work. Examples include engines for propelling cars and  
airplanes, power plants for generating electricity, and a wide variety  
of machines used in industry and manufacturing. These are all heat  
engines, and all are governed by the laws of thermodynamics. 
Maximizing efficiency—an important engineering and societal goal—
requires a good understanding of the underlying physical principles.

IN THIS CHAPTER, you will study the principles that govern heat engines and refrigerators.

Hot reservoir

Cold reservoir

QH

QC

Win

p

V

Isotherms

Adiabats

The Carnot cycle
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21.1 Turning Heat into Work
Thermodynamics is the branch of physics that studies the transformation of energy. 
Many practical devices are designed to transform energy from one form, such as the 
heat from burning fuel, into another, such as work. Chapters 19 and 20 established 
two laws of thermodynamics that any such device must obey:

First law Energy is conserved; that is, ∆Eth = W + Q.

Second law Entropy increases; that is, ∆S Ú 0 with equality only for a reversible 
process.

An important consequence of the second law is that heat energy is transferred spon-
taneously from a hotter system to a colder system but never from a colder system to a 
hotter system.

Our goal in this chapter is to discover what these two laws, especially the second 
law, imply about devices that turn heat into work. In particular:

■■ How does a practical device transform heat into work?
■■ What are the limitations and restrictions on these energy transformations?

Work Done by the System
The work W in the first law is the work done on the system by external forces from the 
environment. However, it makes more sense in “practical thermodynamics” to use the 
work done by the system. For example, you want to know how much useful work you 
can obtain from an expanding gas. The work done by the system is called Ws.

Work done by the environment and work done by the system are not mutually 
exclusive. In fact, they are very simply related by Ws = -W. In FIGURE 21.1, force F

u

gas 
due to the gas pressure does work when the piston moves. This is Ws, the work done 
by the system. At the same time, some object in the environment, such as a piston rod, 
must be pushing inward with force F

u

ext = -F
u

gas to keep the gas pressure from blowing 
the piston out. This force does the work W on the system, work that you’ve learned is 
the negative of the area under the pV curve of the process.

Because the forces are equal but opposite, we see that

   Ws = -W = the area under the pV curve (21.1)

When a gas expands and pushes the piston out, transferring energy out of the system, 
we say “the system does work on the environment.” While this may seem to imply 
that the environment is doing no work on the system, all the phrase means is that Ws 
is positive and W is negative. Similarly, “the environment does work on the system” 
means that W 7 0 (energy is transferred into the system) and thus Ws 6 0. Whether 
we use W or Ws is a matter of convenience.

The first law of thermodynamics ∆Eth = W + Q can be written in terms of Ws as

 Q = Ws + ∆Eth  (first law of thermodynamics) (21.2)

Any energy transferred into a system as heat is either used to do work or stored 
within the system as an increased thermal energy.

Energy-Transfer Diagrams
Suppose you drop a hot rock into the ocean. Heat energy is transferred from the rock 
to the ocean until the rock and ocean are at the same temperature. Although the ocean 
warms up ever so slightly, ∆Tocean is so small as to be completely insignificant. For all 
practical purposes, the ocean is infinite and unchangeable.

An energy reservoir is an object or a part of the environment so large that its 
temperature does not change when heat is transferred between the system and the 

(b) p

i

f

V
Vi Vf

Ws is the area
under the pV curve.

Fgas

Fext

The external force does
work W = -Fext∆x.

∆x

(a)

i f

The system does work Ws = Fgas∆x.
Ws = -W because Fgas = -Fext.

u

u

uu

FIGURE 21.1 Forces F
u

gas and F
u

ext both do 
work as the piston moves.
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reservoir. A reservoir at a higher temperature than the system is called a hot reservoir. 
A vigorously burning flame is a hot reservoir for small objects placed in the flame. A 
reservoir at a lower temperature than the system is called a cold reservoir. The ocean 
is a cold reservoir for the hot rock. We will use TH and TC to designate the temperatures  
of the hot and cold reservoirs.

Hot and cold reservoirs are idealizations, in the same category as frictionless  
surfaces and massless strings. No real object can maintain a perfectly constant  
temperature as heat is transferred in or out. Even so, an object can be modeled as a 
reservoir if it is much larger than the system that thermally interacts with it.

Heat energy is transferred between a system and a reservoir if they have different 
temperatures. We will define

QH = amount of heat transferred to or from a hot reservoir

QC = amount of heat transferred to or from a cold reservoir

By definition, QH and QC are positive quantities. The direction of heat transfer, which 
determines the sign of Q in the first law, will always be clear as we deal with thermo-
dynamic devices.

FIGURE 21.2a shows a heavy copper bar between a hot reservoir (at temperature TH) and 
a cold reservoir (at temperature TC). Heat QH is transferred from the hot reservoir into 
the copper and heat QC is transferred from the copper to the cold reservoir. FIGURE 21.2b 
is an energy-transfer diagram for this process. The hot reservoir is always drawn  
at the top, the cold reservoir at the bottom, and the system—the copper bar in this  
case—between them. Figure 21.2b shows heat QH being transferred into the system  
and QC being transferred out.

The first law of thermodynamics Q = Ws + ∆Eth refers to the system. Q is the net 
heat to the system, which, in this case, is Q = QH - QC. The copper bar does no work, 
so Ws = 0. The bar warms up when first placed between the two reservoirs, but it soon 
comes to a steady state where its temperature no longer changes. Then ∆Eth = 0. Thus 
the first law tells us that Q = QH - QC = 0, from which we conclude that QC = QH.

In other words, all of the heat transferred into the hot end of the rod is subsequently 
transferred out of the cold end. This isn’t surprising. After all, we know that heat is 
transferred spontaneously from a hotter object to a colder object. Even so, there has to 
be some means by which the heat energy gets from the hotter object to the colder. The 
copper bar provides a route for the energy transfer, and QC = QH is the statement that 
energy is conserved as it moves through the bar.

Contrast Figure 21.2b with FIGURE 21.2c. Figure 21.2c shows a system in which 
heat is being transferred from the cold reservoir to the hot reservoir. The first law of  
thermodynamics is not violated, because QH = QC, but the second law is. If there were 
such a system, it would allow the spontaneous (i.e., with no outside input or assistance) 
transfer of heat from a colder object to a hotter object. The process of Figure 21.2c  
is forbidden by the second law of thermodynamics.

Work into Heat and Heat into Work
Turning work into heat is easy—just rub two objects together. Work from the friction  
force increases the objects’ thermal energy and their temperature. Heat energy is then 
transferred from the warmer objects to the cooler environment. FIGURE 21.3 is the energy-  
transfer diagram for this process. The conversion of work into heat is 100% efficient 
in that all the energy supplied to the system as work is ultimately transferred to the 
environment as heat.

The reverse—transforming heat into work—isn’t so easy. Heat can be transformed into 
work in a one-time process, such as an isothermal expansion of a gas, but at the end the 
system is not restored to its initial state. To be practical, a device that transforms heat 
into work must return to its initial state at the end of the process and be ready for 
continued use. You want your car engine to turn over and over for as long as there’s fuel.

(a)

Fire

Hot reservoir at TH

Copper bar

Heat is transferred
from hot to cold.

Cold reservoir at TC

Ice

QH QC

FIGURE 21.2 Energy-transfer diagrams.

(b)

System

Hot reservoir

Cold reservoir TC

TH

QH

QC

The copper
bar is the
system.

Heat energy is transferred from a hot
reservoir to a cold reservoir. Energy
conservation requires QC = QH.

(c)

Hot reservoir

Cold reservoir TC

TH

QH

QC

Heat is never spontaneously
transferred from a colder object
to a hotter object.

System

System

Hot reservoir

Cold reservoir TC

TH

QC

W

Energy-transfer diagrams show work
entering or leaving from the side.

FIGURE 21.3 Work can be transformed 
into heat with 100% efficiency.
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Interestingly, no one has ever invented a “perfect engine” that transforms heat into 
work with 100% efficiency and returns to its initial state so that it can continue to do 
work as long as there is fuel. Of course, that such a device has not been invented is not 
a proof that it can’t be done. We’ll provide a proof shortly, but for now we’ll make the 
hypothesis that the process of FIGURE 21.4 is somehow forbidden.

Notice the asymmetry between Figures 21.3 and 21.4. The perfect transformation 
of work into heat is permitted, but the perfect transformation of heat into work is for-
bidden. This asymmetry parallels the asymmetry of the two processes in Figure 21.2. 
In fact, we’ll soon see that the “perfect engine” of Figure 21.4 is forbidden for exactly 
the same reason: the second law of thermodynamics.

21.2 Heat Engines and Refrigerators
The steam generator at your local electric power plant works by boiling water to  
produce high-pressure steam that spins a turbine (which then spins a generator to 
produce electricity). That is, the steam pressure is doing work. The steam is then  
condensed to liquid water and pumped back to the boiler to start the process again. 
There are two crucial ideas here. First, the device works in a cycle, with the water 
returning to its initial conditions once a cycle. Second, heat is transferred to the water 
in the boiler, but heat is transferred out of the water in the condenser.

Car engines and steam generators are examples of what we call heat engines. A 
heat engine is any closed-cycle device that extracts heat QH from a hot reservoir, 
does useful work, and exhausts heat QC to a cold reservoir. A closed-cycle device  
is one that periodically returns to its initial conditions, repeating the same process over 
and over. That is, all state variables (pressure, temperature, thermal energy, entropy, 
and so on) return to their initial values once every cycle. Consequently, a heat engine can  
continue to do useful work for as long as it is attached to the reservoirs.

FIGURE 21.5 is the energy-transfer diagram of a heat engine. Unlike the forbidden 
“perfect engine” of Figure 21.4, a heat engine is connected to both a hot reservoir and 
a cold reservoir. You can think of a heat engine as “siphoning off” some of the heat 
that moves from the hot reservoir to the cold reservoir and transforming that heat into 
work—some of the heat, but not all.

Because the temperature and thermal energy of a heat engine return to their initial 
values at the end of each cycle, there is no net change in Eth :

 1∆Eth2net = 0  (any heat engine, over one full cycle) (21.3)

Consequently, the first law of thermodynamics for a full cycle of a heat engine is 
(∆Eth)net = Q - Ws = 0.

Let’s define Wout to be the useful work done by the heat engine per cycle. The first 
law applied to a heat engine is

 Wout = Qnet = QH - QC (work per cycle done by a heat engine) (21.4)

This is just energy conservation. The energy-transfer diagram of Figure 21.5 is a pictorial 
representation of Equation 21.4.

 NOTE  Equations 21.3 and 21.4 apply only to a full cycle of the heat engine. They are 
not valid for any of the individual processes that make up a cycle.

For practical reasons, we would like an engine to do the maximum amount of work 
with the minimum amount of fuel. We can measure the performance of a heat engine 
in terms of its thermal efficiency h (lowercase Greek eta), defined as

  h =
Wout

QH
=

what you get

what you had to pay
 (21.5)

The steam turbine in a modern power 
plant is an enormous device. Expanding 
steam does work by spinning the turbine.

Hot reservoir

Perfect engine

TH

QH

Wout

FIGURE 21.4 There are no perfect engines 
that turn heat into work with 100% 
efficiency.

Hot reservoir

Heat
engine

Cold reservoir TC

TH

QH

QC

Wout

1. Heat energy QH is transferred
    from the hot reservoir (typically
    burning fuel) to the system.

2. Part of the
 energy is used
 to do useful
 work Wout.

3. The remaining energy
 QC = QH - Wout is exhausted
 to the cold reservoir (cooling
    water or the air) as waste heat.

FIGURE 21.5 The energy-transfer diagram 
of a heat engine.
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624 CHAPTER 21 Heat Engines and Refrigerators

Using Equation 21.4 for Wout, we can also write the thermal efficiency as

 h = 1 -
QC

QH
 (21.6)

FIGURE 21.6 illustrates the idea of thermal efficiency.
A perfect heat engine would have hperfect = 1. That is, it would be 100% efficient at 

converting heat from the hot reservoir (the burning fuel) into work. You can see from 
Equation 21.6 that a perfect engine would have no exhaust 1QC = 02 and would not 
need a cold reservoir. Figure 21.4 has already suggested that there are no perfect heat 
engines, that an engine with h = 1 is impossible. A heat engine must exhaust waste 
heat to a cold reservoir. It is energy that was extracted from the hot reservoir but not 
transformed to useful work.

Practical heat engines, such as car engines and steam generators, have thermal ef-
ficiencies in the range h ≈ 0.19 0.5. This is not large. Can a clever designer do better, 
or is this some kind of physical limitation?

Hot reservoir

Heat
engine

Cold reservoir TC

TH

QH is what
you pay.

QC = (1 - h)QH

is the energy that
wasn’t used.

Wout = hQH is
what you get.

FIGURE 21.6 h is the fraction of heat 
energy that is transformed into  
useful work.

STOP TO THINK 21.1 Rank in order, from largest to smallest, the work Wout 
performed by these four heat engines.

100 J

A

60 J

TC

TH

Wout

200 J

B

160 J

TC

TH

Wout

90 J

C

60 J

TC

TH

Wout

90 J

D

40 J

TC

TH

Wout

A Heat-Engine Example
To illustrate how these ideas actually work, FIGURE 21.7 shows a simple engine that 
converts heat into the work of lifting mass M.

(a) Heat is transferred 
into the gas from 
the burning fuel.

(b) The gas does work 
by lifting the mass 
in an isobaric 
expansion.

(c) The piston is locked and 
the mass is removed. 
The heat is turned off.

(d) The gas cools back to 
room temperature at 
constant volume. Then 
the piston is unlocked.

(e) A steadily increasing external force 
steadily raises the pressure in an 
isothermal compression until the 
initial pressure has been restored.

Fext

u

Heat
in

Isobaric heating and expansion

Heat
out

Constant-volume cooling Isothermal compression

Pin

M

M M

FIGURE 21.7 A simple heat engine transforms heat into work.

The net effect of this multistep process is to convert some of the fuel’s energy into 
the useful work of lifting the mass. There has been no net change in the gas, which 
has returned to its initial pressure, volume, and temperature at the end of step (e). We 
can start the whole process over again and continue lifting masses (doing work) as 
long as we have fuel.
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21.2 Heat Engines and Refrigerators 625

FIGURE 21.8 shows the heat-engine process on a pV diagram. It is a closed cycle  
because the gas returns to its initial conditions. No work is done during the isochoric  
process, and, as you can see from the areas under the curve, the work done by the  
gas to lift the mass is greater than the work the environment must do on the gas 
to recompress it. Thus this heat engine, by burning fuel, does net work per cycle: 
Wnet = Wlift - Wext = 1Ws21S2 + 1Ws23S1.

Notice that the cyclical process of Figure 21.8 involves two cooling processes in 
which heat is transferred from the gas to the environment. Heat energy is transferred 
from hotter objects to colder objects, so the system must be connected to a cold reservoir 
with TC 6 Tgas during these two processes. A key to understanding heat engines is that 
they require both a heat source (burning fuel) and a heat sink (cooling water, the air,  
or something at a lower temperature than the system). V

p
QH

QC

QC

Isotherm The mass is lifted in
an isobaric expansion.

An external force compresses the
gas back to its initial conditions.

Mass removed

The gas
undergoes
constant-
volume
cooling.

1 2

3

FIGURE 21.8 The closed-cycle pV diagram 
for the heat engine of Figure 21.7.

Analyze the heat engine of FIGURE 21.9 to determine (a) the net 
work done per cycle, (b) the engine’s thermal efficiency, and (c) 
the engine’s power output if it runs at 600 rpm. Assume the gas is 
monatomic.

MODEL The gas follows a closed cycle consisting of three distinct 
processes, each of which was studied in Chapters 18 and 19. For 
each of the three we need to determine the work done and the heat 
transferred.

SOLVE To begin, we can use the initial conditions at state 1 and the 
ideal-gas law to determine the number of moles of gas:

n =
p1V1

RT1
=

1200 * 103 Pa212.0 * 10-4 m32
18.31 J/mol K21300 K2 = 0.0160 mol

Process 1 S 2: The work done by the gas in the isobaric 
 expansion is

1Ws212 = p ∆V = 1200 * 103 Pa21    16.0 - 2.02 * 10-4 m32 = 80 J

We can use the ideal-gas law at constant pressure to find 
T2=1V2/V12T1 = 3T1 = 900 K. The heat transfer during a constant-  
pressure process is

 Q12 = nCP  

∆T

 = 10.0160 mol2120.8 J/mol K21900 K - 300 K2 = 200 J

where we used CP = 5
2 R for a monatomic ideal gas.

Process 2 S 3: No work is done in an isochoric process, so 
1Ws223 = 0. The temperature drops back to 300 K, so the heat 
transfer, with CV = 3

2 R, is

 Q23 = nCV ∆T

 = 10.0160 mol2112.5 J/mol K21300 K - 900 K2 = -120 J

Process 3 S 1: The gas returns to its initial state with volume 
V1. The work done by the gas during an isothermal process is

 1Ws231 = nRT ln1V1

V3
2

 = 10.0160 mol218.31 J/mol K21300 K2 ln11
32 = -44 J

Ws is negative because the environment does work on the gas to 
compress it. An isothermal process has ∆Eth = 0 and hence, from 
the first law,

Q31 = 1Ws231 = -44 J

Q is negative because the gas must be cooled as it is compressed to 
keep the temperature constant.

a. The net work done by the engine during one cycle is

Wout = 1Ws212 + 1Ws223 + 1Ws231 = 36 J

As a consistency check, notice that the net heat transfer is

Qnet = Q12 + Q23 + Q31 = 36 J

Equation 21.4 told us that a heat engine must have Wout = Qnet, and 
we see that it does.

b. The efficiency depends not on the net heat transfer but on the  
heat QH transferred into the engine from the flame. Heat enters 
during process 1 S 2, where Q is positive, and exits during processes  
2 S 3 and 3 S 1, where Q is negative. Thus

QH = Q12 = 200 J

QC = 0Q23 0 + 0Q31 0 = 164 J

Notice that QH - QC = 36 J = Wout. In this heat engine, 200 J of  
heat from the hot reservoir does 36 J of useful work. Thus the thermal  
efficiency is

h =
Wout

QH
=

36 J
200 J

= 0.18 or 18%

This heat engine is far from being a perfect engine!
Continued

EXAMPLE 21.1 ■ Analyzing a heat engine I

V (cm3)

p (kPa)
300 K isotherm

1 2

3

200

200

100

400 600
0

0

FIGURE 21.9 The heat engine of Example 21.1.

M21_KNIG8221_05_GE_C21.indd   625 30/05/2022   12:07



626 CHAPTER 21 Heat Engines and Refrigerators

Let’s think about this example a bit more before going on. We’ve said that a heat 
engine operates between a hot reservoir and a cold reservoir. Figure 21.9 doesn’t 
 explicitly show the reservoirs. Nonetheless, we know that heat is transferred from a 
hotter object to a colder object. Heat QH is transferred into the system during process 
1 S 2 as the gas warms from 300 K to 900 K. For this to be true, the hot-reservoir 
temperature TH must be Ú900 K. Likewise, heat QC is transferred from the system to 
the cold reservoir as the temperature drops from 900 K to 300 K in process 2 S 3. For  
this to be true, the cold-reservoir temperature TC must be …300 K.

So, while we really don’t know what the reservoirs are or their exact temperatures, 
we can say with certainty that the hot-reservoir temperature TH must exceed the highest 
temperature reached by the system and the cold-reservoir temperature TC must be less  
than the coldest system temperature.

Refrigerators
Your house or apartment has a refrigerator. Very likely it has an air conditioner. The 
purpose of these devices is to make air that is cooler than its environment even colder. 
The first does so by blowing hot air out into a warm room, the second by blowing it 
out to the hot outdoors. You’ve probably felt the hot air exhausted by an air conditioner  
compressor or coming out from beneath the refrigerator.

At first glance, a refrigerator or air conditioner may seem to violate the second law of  
thermodynamics. After all, doesn’t the second law forbid heat from being transferred  
from a colder object to a hotter object? Not quite: The second law says that heat is  
not spontaneously transferred from a colder to a hotter object. A refrigerator or air 
conditioner requires electric power to operate. They do cause heat to be transferred 
from cold to hot, but the transfer is “assisted” rather than spontaneous.

A refrigerator is any closed-cycle device that uses external work Win to remove  
heat QC from a cold reservoir and exhaust heat QH to a hot reservoir. FIGURE 21.10 is the 
energy-transfer diagram of a refrigerator. The cold reservoir is the air inside the refrig-
erator or the air inside your house on a summer day. To keep the air cold, in the face of  
inevitable “heat leaks,” the refrigerator or air conditioner compressor continuously  
removes heat from the cold reservoir and exhausts heat into the room or outdoors. You can 
think of a refrigerator as “pumping heat uphill,” much as a water pump lifts water uphill.

Because a refrigerator, like a heat engine, is a cyclical device, ∆Eth = 0. Conservation 
of energy requires

 QH = QC + Win (21.7)

To move energy from a colder to a hotter reservoir, a refrigerator must exhaust more 
heat to the outside than it removes from the inside. This has significant implications 
for whether or not you can cool a room by leaving the refrigerator door open.

The thermal efficiency of a heat engine was defined as “what you get (useful work 
Wout)< versus “what you had to pay (fuel to supply QH).< By analogy, we define the 
coefficient of performance K of a refrigerator to be

 K =
QC

Win
=

what you get

what you had to pay
 (21.8)

What you get, in this case, is the removal of heat from the cold reservoir. But you 
have to pay the electric company for the work needed to run the refrigerator. A better 

Refrigerator

Hot reservoir

Cold reservoir TC

TH

QH

QC

Win

The amount of heat exhausted to the hot
reservoir is larger than the amount of heat
extracted from the cold reservoir.

External work is used to remove heat
from a cold reservoir and exhaust heat
to a hot reservoir.

FIGURE 21.10 The energy-transfer 
diagram of a refrigerator.

c. An engine running at 600 rpm goes through 10 cycles per second. 
The power output is the work done per second:

 Pout = (work per cycle) * (cycles per second)

 = 360 J/s = 360 W

REVIEW Although we didn’t need Qnet, verifying that Qnet = Wout 
was a check of self-consistency. Heat-engine analysis requires many 
calculations and offers many opportunities to get signs wrong. How-
ever, there are a sufficient number of self-consistency checks so that 
you can almost always spot calculational errors if you check for them.

This air conditioner transfers heat energy 
from the cool indoors to the hot exterior.
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21.2 Heat Engines and Refrigerators 627

refrigerator will require less work to remove a given amount of heat, thus having a 
larger coefficient of performance.

A perfect refrigerator would require no work 1Win = 02 and would have Kperfect = ∞. 
But if Figure 21.10 had no work input, it would look like Figure 21.2c. That device was 
forbidden by the second law of thermodynamics because, with no work input, heat 
would move spontaneously from cold to hot.

We noted in Chapter 20 that the second law of thermodynamics can be stated several  
different but equivalent ways. We can now give a third informal statement:

Second law, informal statement #3 There are no perfect refrigerators with 
coefficient of performance K = ∞.

Any real refrigerator or air conditioner must use work to move energy from the cold 
reservoir to the hot reservoir, hence K 6 ∞.

No Perfect Heat Engines
We hypothesized above that there are no perfect heat engines—that is, no heat engines 
like the one shown in Figure 21.4 with QC = 0 and h = 1. Now we’re ready to prove this 
hypothesis. FIGURE 21.11 shows a hot reservoir at temperature TH and a cold reservoir 
at temperature TC. An ordinary refrigerator, one that obeys all the laws of physics, is  
operating between these two reservoirs.

Refrigerator

Hot reservoir

Cold reservoir TC

TH

QH2

QC

Win

Perfect
engine

Perfect engine Refrigerator
Heat transfer from
cold to hot with no
outside assistance

QH1

Wout

QH

QC

=

=

+

◀ FIGURE 21.11 A perfect engine 
driving an ordinary refrigerator would 
be able to violate the second law of 
thermodynamics.

Suppose we had a perfect heat engine, one that takes in heat QH from the high-  
temperature reservoir and transforms that energy entirely into work Wout. If we had 
such a heat engine, we could use its output to provide the work input to the refrigerator. 
The two devices combined have no connection to the external world. That is, there’s  
no net input or net output of work.

If we built a box around the heat engine and refrigerator, so that you couldn’t see 
what was inside, the only thing you would observe is heat being transferred with no 
outside assistance from the cold reservoir to the hot reservoir. But a spontaneous or 
unassisted transfer of heat from a colder to a hotter object is exactly what the second 
law of thermodynamics forbids. Consequently, our assumption of a perfect heat engine 
must be wrong. Hence another statement of the second law of thermodynamics is:

Second law, informal statement #4 There are no perfect heat engines with 
efficiency h = 1.

Any real heat engine must exhaust waste heat QC to a cold reservoir.

STOP TO THINK 21.2 It’s a hot day and your air conditioner is broken. Your roommate 
says, “Let’s open the refrigerator door and cool this place off.” Will this work?

a. Yes.  b. No.  c. It might, but it will depend on how hot the room is.
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628 CHAPTER 21 Heat Engines and Refrigerators

21.3 Ideal-Gas Heat Engines
We will focus on heat engines that use a gas as the working substance. The gasoline 
or diesel engine in your car is an engine that alternately compresses and expands a 
gaseous fuel-air mixture. A discussion of engines such as steam generators that rely 
on phase changes will be deferred to more advanced courses.

A gas heat engine can be represented by a closed-cycle trajectory in the pV dia-
gram, such as the one shown in FIGURE 21.12a. This observation leads to an important 
geometric interpretation of the work done by the system during one full cycle. You 
learned in Section 21.1 that the work done by the system is the area under the curve of 
a pV trajectory. As FIGURE 21.12b shows, the net work done during a full cycle is

   Wout = Wexpand - 0Wcompress 0 = area inside the closed curve (21.9)

V
Vmin Vmax

p

V

p

V
Vmin Vmax

Wout

p

(a)

V
Vmin

Wexpand 7 0 Wcompress 6 0

Vmax

p

(b)

A typical heat-engine cycle

As the gas expands,
the work Wexpand done
by the gas is positive.

As the gas is compressed,
the work Wcompress done by
the gas is negative.

The net work done by the
gas is the area enclosed
within the curve.

+ =

FIGURE 21.12 The work Wout done by the system during one full cycle is the area enclosed within the curve.

You can see that the net work done by a gas heat engine during one full cycle is 
the area enclosed by the pV curve for the cycle. A thermodynamic cycle with a larger 
enclosed area does more work than one with a smaller enclosed area. Notice that the 
gas must go around the pV trajectory in a clockwise direction for Wout to be positive.  
We’ll see later that a refrigerator uses a counterclockwise (ccw) cycle.

Ideal-Gas Summary
We’ve learned a lot about ideal gases in the last three chapters. All gas processes obey 
the ideal-gas law pV = nRT  and the first law of thermodynamics ∆Eth = Q - Ws. 
TABLE 21.1 summarizes the results for specific gas processes. This table shows Ws, the 
work done by the system, so the signs are opposite those in Chapter 19.

TABLE 21.1 Summary of ideal-gas processes

Process Gas law Work Ws Heat Q Thermal energy

Isochoric pi /Ti = pf /Tf 0 nCV ∆T ∆Eth = Q

Isobaric Vi /Ti = Vf /Tf p ∆V nCP ∆T ∆Eth = Q - Ws

Isothermal piVi = pfVf nRT ln1Vf /Vi2 Q = Ws ∆Eth = 0

pV ln1Vf /Vi2
Adiabatic piVi  

g = pfVf  

g 1pfVf - piVi2/11 - g2 0 ∆Eth = -Ws

TiVi  

g-1 = TfVf  

g-1 -nCV ∆T

Any piVi /Ti = pfVf /Tf area under curve ∆Eth = nCV∆T

There is one entry in this table that you haven’t seen before. The expression

 Ws =
pfVf - piVi

1 - g
 (work in an adiabatic process) (21.10)
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21.3 Ideal-Gas Heat Engines 629

for the work done in an adiabatic process follows from writing Ws = - ∆Eth =  -nCV ∆T, 
which you learned in Chapter 19, then using ∆T = ∆1pV2/nR and the definition of g. 
The proof will be left for a homework problem.

You learned in Chapter 20 that the thermal energy of an ideal gas depends only on 
its temperature. TABLE 21.2 lists the thermal energy, molar specific heats, and specific 
heat ratio g = CP/CV for monatomic and diatomic gases.

A Strategy for Heat-Engine Problems
The engine of Example 21.1 was not a realistic heat engine, but it did illustrate the kinds 
of reasoning and computations involved in the analysis of a heat engine.

TABLE 21.2 Properties of monatomic 
and diatomic gases

Monatomic Diatomic

Eth
3
2 nRT 5

2 nRT

CV
3
2 R 5

2 R

CP
5
2 R 7

2 R

g 5
3 = 1.67 7

5 = 1.40

PROBLEM-SOLVING STRATEGY 21.1

Heat-engine problems

MODEL Identify each process in the cycle.

VISUALIZE Draw the pV diagram of the cycle.

SOLVE There are several steps in the mathematical analysis.
■■ Use the ideal-gas law to complete your knowledge of n, p, V, and T at one point 
in the cycle.

■■ Use the ideal-gas law and equations for specific gas processes to determine p, 
V, and T at the beginning and end of each process.

■■ Calculate Q, Ws, and ∆Eth for each process.
■■ Find Wout by adding Ws for each process in the cycle. If the geometry is simple, 
you can confirm this value by finding the area enclosed within the pV curve.

■■ Add just the positive values of Q to find QH.
■■ Verify that 1∆Eth2net = 0. This is a self-consistency check to verify that you 
haven’t made any mistakes.

■■ Calculate the thermal efficiency h and any other quantities you need to complete 
the solution.

REVIEW Is 1∆Eth2net = 0? Do all the signs of Ws and Q make sense? Does h have 
a reasonable value? Have you answered the question?

A heat engine with a diatomic gas as the working substance uses 
the closed cycle shown in FIGURE 21.13. How much work does this 
engine do per cycle, and what is its thermal efficiency?

MODEL Processes 1 S 2 and 3 S 4 are isobaric. Processes 2 S 3 
and 4 S 1 are isochoric.

VISUALIZE The pV diagram has already been drawn.

SOLVE We know the pressure, volume, and temperature at state 4. 
The number of moles of gas in the heat engine is

n =
p4V4

RT4
=

1101,300 Pa211.0 m32
18.31 J/mol K21300 K2 = 40.6 mol

p/T = constant during an isochoric process and V/T = constant 
during an isobaric process. These allow us to find that T1 = T3 =  
900 K and T2 = 2700 K. This completes our knowledge of the 
state variables at all four corners of the diagram.

Process 1 S 2 is an isobaric expansion, so

1Ws212 = p ∆V = 13.0 * 101,300 Pa212.0 m32 = 6.08 * 105 J

EXAMPLE 21.2 ■ Analyzing a heat engine II

Continued

V (m3)

p (atm)

10

1

0

1 2

34

3

3

300 K isotherm

FIGURE 21.13 The pV diagram for the heat engine of  
Example 21.2.
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630 CHAPTER 21 Heat Engines and Refrigerators

We noted in Example 21.1 that a heat engine’s hot-reservoir temperature TH must  
exceed the highest temperature reached by the system and the cold-reservoir tempera-
ture TC must be less than the coldest system temperature. Although we don’t know what 
the reservoirs are in Example 21.2, we can be sure that TH 7 2700 K and TC 6 300 K.

where we converted the pressure to pascals. The heat transfer 
during an isobaric expansion is

 Q12 = nCP ∆T = 140.6 mol2129.1 J/mol K211800 K2
 = 21.27 * 105 J

where CP = 7
2 R for a diatomic gas. Then, using the first law,

∆E12 = Q12 - 1Ws212 = 15.19 * 105 J

Process 2 S 3 is an isochoric process, so (Ws)23 = 0 and

∆E23 = Q23 = nCV ∆T = -15.19 * 105 J

Notice that ∆T is negative.
Process 3 S 4 is an isobaric compression. Now ∆V is negative, 

so

1Ws234 = p ∆V = -2.03 * 105 J

and

Q34 = nCP ∆T = -7.09 * 105 J

Then ∆Eth = Q34 - 1Ws234 = -5.06 * 105 J.
Process 4 S 1 is another constant-volume process, so again 

1Ws241 = 0 and

∆E41 = Q41 = nCV ∆T = 5.06 * 105 J

The results of all four processes are shown in TABLE 21.3. The net 
results for Wout, Qnet, and 1∆Eth2net are found by summing the col-
umns. As expected, Wout = Qnet and 1∆Eth2net = 0.

The work done during one cycle is Wout = 4.05 * 105 J. 
Heat enters the system from the hot reservoir during processes  
1 S 2 and 4 S 1, where Q is positive. Summing these gives 
QH =  26.33 * 105 J. Thus the thermal efficiency of this engine is

h =
Wout

QH
=

4.05 * 105 J

26.33 * 105 J
= 0.15 = 15%

REVIEW The verification that Wout = Qnet and 1 ∆Eth2net = 0 gives 
us great confidence that we didn’t make any calculational errors. 
This engine may not seem very efficient, but h is quite typical of 
many real engines.

TABLE 21.3 Energy transfers in Example 21.2. All energies : 105 J

Process Ws Q 𝚫Eth

1 S 2 6.08 21.27 15.19

2 S 3 0 -15.19 -15.19

3 S 4 -2.03 -7.09 -5.06

4 S 1 0 5.06 5.06

Net 4.05 4.05 0

STOP TO THINK 21.3 What is the thermal efficiency of this heat engine?

a. 0.10
b. 0.50
c. 0.25
d. 4
e. Can’t tell without knowing QC 

p (Pa)

V (m3)0
0 0.1 0.2

20,000

40,000

QC

QC

QH = 4000 J

The Brayton Cycle
The heat engines of Examples 21.1 and 21.2 have been educational but not realistic. 
As an example of a more realistic heat engine we’ll look at the thermodynamic cycle 
known as the Brayton cycle. It is a reasonable model of a gas turbine engine. Gas  
turbines are used for electric power generation and as the basis for jet engines in aircraft 
and rockets. The Otto cycle, which describes the gasoline internal combustion engine, 
and the Diesel cycle, which, not surprisingly, describes the diesel engine, will be the 
subject of homework problems.

FIGURE 21.14a is a schematic look at a gas turbine engine, and FIGURE 21.14b is the 
corresponding pV diagram. To begin the Brayton cycle, air at an initial pressure p1 
is rapidly compressed in a compressor. This is an adiabatic process, with Q = 0, A jet engine uses a modified Brayton cycle.
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21.3 Ideal-Gas Heat Engines 631

because there is no time for heat to be exchanged with the surroundings. Recall that 
an adiabatic compression raises the temperature of a gas by doing work on it, not by 
heating it, so the air leaving the compressor is very hot.

The hot gas flows into a combustion chamber. Fuel is continuously admitted to the 
combustion chamber where it mixes with the hot gas and is ignited, transferring heat to 
the gas at constant pressure and raising the gas temperature yet further. The high-pressure 
gas then expands, spinning a turbine that does some form of useful work. This adiabatic 
expansion, with Q = 0, drops the temperature and pressure of the gas. The pressure at the 
end of the expansion through the turbine is back to p1, but the gas is still quite hot. The gas 
completes the cycle by flowing through a device called a heat exchanger that transfers 
heat energy to a cooling fluid. Large power plants are often sited on rivers or oceans in 
order to use the water for the cooling fluid in the heat exchanger.

This thermodynamic cycle, called a Brayton cycle, has two adiabatic processes—
the compression and the expansion through the turbine—plus a constant-pressure 
heating and a constant-pressure cooling. There’s no heat transfer during the adiabatic 
processes. The hot-reservoir temperature must be TH Ú T3 for heat to be transferred 
into the gas during process 2 S 3. Similarly, the heat exchanger will remove heat 
from the gas only if TC … T1.

The thermal efficiency of any heat engine is

h =
Wout

QH
= 1 -

QC

QH

Heat is transferred into the gas only during process 2 S 3. This is an isobaric process, 
so QH = nCP ∆T = nCP 1T3 - T22. Similarly, heat is transferred out only during the 
isobaric process 4 S 1.

We have to be careful with signs. Q41 is negative because the temperature decreases,  
but QC was defined as the amount of heat exchanged with the cold reservoir, a positive  
quantity. Thus

 QC = 0Q41 0 = 0 nCP 1T1 - T42 0 = nCP 1T4 - T12 (21.11)

With these expressions for QH and QC , the thermal efficiency is

 hBrayton = 1 -  
T4 - T1

T3 - T2
 (21.12)

This expression isn’t useful unless we compute all four temperatures. Fortunately, we 
can cast Equation 21.12 into a more useful form.

You learned in Chapter 19 that pV 

g = constant during an adiabatic process, where 
g = CP/CV is the specific heat ratio. If we use V = nRT/p from the ideal-gas law, 
V  

g = 1nR2gT  

gp-
 

g. 1nR2g is a constant, so we can write pV  

g = constant as

 p11-g2
 T g = constant (21.13)

Equation 21.13 is a pressure-temperature relationship for an adiabatic process. Because 
1T  

g21/g = T, we can simplify Equation 21.13 by raising both sides to the power 1/g. 
Doing so gives

 p11-g2/gT = constant (21.14)

during an adiabatic process.
Process 1 S 2 is an adiabatic process; hence

 p1 

11-g2/gT1 = p2 

11-g2/gT2 (21.15)

Isolating T1 gives

 T1 =
p2 

11-g2/g

p1 

11-g2/g
 T2 = 1p2

p1
211-g2/g

T2 = 1pmax

pmin
211-g2/g

T2 (21.16)

If we define the pressure ratio rp as rp = pmax/pmin , then T1 and T2 are related by

 T1 = rp 

(1-g)/gT2 (21.17)

(b)
p (atm)

V (m3)
Vmin

pmin

pmax

Vmax

1

2 3

Combustion

Cooling

Adiabatic
expansion

Adiabatic
compression

4

QC

QH

Combustion
chamber

Com-
pressor

Heat
exchanger

Turbine

32
Fuel

41

Cooling water

Wout

QC

QH

(a)

FIGURE 21.14 A gas turbine engine follows 
a Brayton cycle.
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632 CHAPTER 21 Heat Engines and Refrigerators

The algebra of getting to Equation 21.17 was a bit tricky, but the final result is fairly simple.
Process 3 S 4 is also an adiabatic process. The same reasoning leads to

 T4 = rp 

11-g2/gT3 (21.18)

If we substitute these expressions for T1 and T4 into Equation 21.12, the efficiency is

 hB = 1 -
T4 - T1

T3 - T2
= 1 -

rp 

11-g2/gT3 - rp 

11-g2/gT2

T3 - T2
= 1 -

rp
 11-g2/g1T3 - T22

T3 - T2

 = 1 - rp 

11-g2/g

Remarkably, all the temperatures cancel and we’re left with an expression that depends 
only on the pressure ratio. Noting that 11 - g2 is negative, we can make one final change  
and write

 hB = 1 -
1

rp 

1g-12/g
 (21.19)

FIGURE 21.15 is a graph of the efficiency of the Brayton cycle as a function of the pressure 
ratio, assuming g = 1.40 for a diatomic gas such as air.

21.4 Ideal-Gas Refrigerators
Suppose we were to operate a Brayton heat engine backward, going ccw rather than 
cw in the pV diagram. FIGURE 21.16a (which you should compare to Figure 21.14a) 
shows a device for doing this. FIGURE 21.16b is its pV diagram, and FIGURE 21.16c is the 
energy-transfer diagram. Starting from point 4, the gas is adiabatically compressed to 
increase its temperature and pressure. It then flows through a high-temperature heat 
exchanger where the gas cools at constant pressure from temperature T3 to T2. The gas 
then expands adiabatically, leaving it significantly colder at T1 than it started at T4. It 
completes the cycle by flowing through a low-temperature heat exchanger, where it 
warms back to its starting temperature.

Suppose that the low-temperature heat exchanger is a closed container of air 
 surrounding a pipe through which the engine’s cold gas is flowing. The heat-exchange 
process 1 S 4 cools the air in the container as it warms the gas flowing through the 
pipe. If you were to place eggs and milk inside this closed container, you would call 
it a refrigerator!

Going around a closed pV cycle in a ccw direction reverses the sign of W for each 
process in the cycle. Consequently, the area inside the curve of Figure 21.16b is Win, 
the work done on the system. Here work is used to extract heat QC from the cold 
 reservoir and exhaust a larger amount of heat QH = QC + Win to the hot reservoir. But 
where, in this situation, are the energy reservoirs?

Understanding a refrigerator is a little harder than understanding a heat engine. The 
key is to remember that heat is always transferred from a hotter object to a colder  
object. In particular,

■■ The gas in a refrigerator can extract heat QC from the cold reservoir only if the gas 
temperature is lower than the cold-reservoir temperature TC. Heat energy is then 
transferred from the cold reservoir into the colder gas.

■■ The gas in a refrigerator can exhaust heat QH to the hot reservoir only if the gas 
temperature is higher than the hot-reservoir temperature TH. Heat energy is then 
transferred from the warmer gas into the hot reservoir.

These two requirements place severe constraints on the thermodynamics of  
a refrigerator. Because there is no reservoir colder than TC, the gas cannot reach a 
temperature lower than TC by heat exchange. The gas in a refrigerator must use an 
adiabatic expansion 1Q = 02 to lower the temperature below TC. Likewise, a gas  
refrigerator requires an adiabatic compression to raise the gas temperature above TH.

hBrayton

rp0

10%

70%

60%

50%

40%

30%

20%

0 5 10 15 20 25 30

The efficiency first grows quickly 
as the pressure ratio is increased, 
reaching ≈50% at rp = 10, then 
levels off.

FIGURE 21.15 The efficiency of a Brayton 
cycle as a function of the pressure ratio rp.
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exchanger

Expander

Low-T heat
exchanger
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32

41
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(a)
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FIGURE 21.16 A refrigerator that extracts 
heat from the cold reservoir and exhausts 
heat to the hot reservoir.

(b)
p

V

1

2 3

High-T heat exchanger cools gas.
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the “refrigerator.”
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QH

QC
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21.4 Ideal-Gas Refrigerators 633

A refrigerator using helium gas operates on a reversed Brayton 
cycle with a pressure ratio of 5.0. Prior to compression, the gas 
occupies 100 cm3 at a pressure of 150 kPa and a temperature of 
-23°C. Its volume at the end of the expansion is 80 cm3. What are 
the refrigerator’s coefficient of performance and its power input if it  
operates at 60 cycles per second?

MODEL The Brayton cycle has two adiabatic processes and two  
isobaric processes. The work per cycle needed to run the refrigera-
tor is Win = QH - QC ; hence we can determine both the coefficient 
of performance and the power requirements from QH and QC. Heat 
energy is transferred only during the two isobaric processes.

VISUALIZE FIGURE 21.17 shows the pV cycle. We know from the 
pressure ratio of 5.0 that the maximum pressure is 750 kPa. Neither 
V2 nor V3 is known.

SOLVE To calculate heat we’re going to need the temperatures at 
the four corners of the cycle. First, we can use the conditions of 
state 4 to find the number of moles of helium:

n =
p4V4

RT4
= 0.00722 mol

Process 1 S 4 is isobaric; hence temperature T1 is

T1 =
V1

V4
 T4 = 10.8021250 K2 = 200 K = -73°C

With Equation 21.14 we found that the quantity p11-g2/gT re - 
mains constant during an adiabatic process. Helium is a monatomic  
gas with g = 5

3 , so 11 - g2/g = -  

2
5 = -0.40. For the adiabatic  

compression 4 S 3,

p3 

-0.40T3 = p4 

-0.40T4

Solving for T3 gives

T3 = 1p4

p3
2-0.40

T4 = 11
52-0.40

1250 K2 = 476 K = 203°C

The same analysis applied to the 2 S 1 adiabatic expansion gives

T2 = 1p1

p2
2-0.40

T1 = 11
52-0.40

1200 K2 = 381 K = 108°C

Now we can use CP = 5
2 R = 20.8 J/mol K for a monatomic gas to 

compute the heat transfers:

 QH = 0Q32 0 = nCP 1T3 - T22

 = 10.00722 mol2120.8 J/mol K2195 K2 = 14.3 J

 QC = 0Q14 0 = nCP 1T4 - T12

 = 10.00722 mol2120.8 J/mol K2150 K2 = 7.5 J

Thus the work input to the refrigerator is Win = QH - QC = 6.8 J. 
During each cycle, 6.8 J of work are done on the gas to extract 7.5 J  
of heat from the cold reservoir. Then 14.3 J of heat are exhausted 
into the hot reservoir.

The refrigerator’s coefficient of performance is

K =
QC

Win
=

7.5 J
6.8 J

= 1.1

The power input needed to run the refrigerator is

Pin = 6.8 
J

cycle
* 60 

cycles

s
= 410 

J
s

= 410 W

REVIEW These are fairly realistic values for a kitchen refrigerator.  
You pay your electric company for providing the work Win that ope r-
ates the refrigerator. The cold reservoir is the freezer compartment. 
The cold temperature TC must be higher than T4 1TC 7  -23°C2 
in order for heat to be transferred from the cold reservoir to the 
gas. A typical freezer temperature is -15°C, so this condition is 
satisfied. The hot reservoir is the air in the room. The back and 
underside of a refrigerator have heat-exchanger coils where the hot 
gas, after compression, transfers heat to the air. The hot tempera-
ture TH must be less than T2  1TH 6 108°C2 in order for heat to 
be transferred from the gas to the air. An air temperature ≈  25°C 
under a refrigerator satisfies this condition.

EXAMPLE 21.3 ■ Analyzing a refrigerator

p (kPa)

V (cm3)
1008060

1

2 3

4

-23°C = 250 K

4020

750

600

450

300

150

0
0

QC

QH

FIGURE 21.17 A Brayton-cycle refrigerator.

STOP TO THINK 21.4 What, if anything, is 
wrong with this refrigerator?

Refrigerator

Hot reservoir

Cold reservoir TC

TH

30 J

40 J

10 J
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634 CHAPTER 21 Heat Engines and Refrigerators

21.5 The Limits of Efficiency
Thermodynamics has its historical roots in the development of the steam engine and 
other machines of the early industrial revolution. Early steam engines, built on the 
basis of experience rather than scientific understanding, were not very efficient at 
converting fuel energy into work. The first major theoretical analysis of heat engines 
was published by the French engineer Sadi Carnot in 1824. The question that Carnot 
raised was: Can we make a heat engine whose thermal efficiency h approaches 1, or is 
there an upper limit h max that cannot be exceeded? To frame the question more clearly, 
imagine we have a hot reservoir at temperature TH and a cold reservoir at TC. What is 
the most efficient heat engine (maximum h) that can operate between these two energy 
reservoirs? Similarly, what is the most efficient refrigerator (maximum K) that can  
operate between the two reservoirs?

We just saw that a refrigerator is, in some sense, a heat engine running backward. 
We might thus suspect that the most efficient heat engine is related to the most effi-
cient refrigerator. Suppose we have a heat engine that we can turn into a refrigerator by  
reversing the direction of operation, thus changing the direction of the energy transfers, 
and with no other changes. In particular, the heat engine and the refrigerator operate  
between the same two energy reservoirs at temperatures TH and TC.

FIGURE 21.18a shows such a heat engine and its corresponding refrigerator. Notice 
that the refrigerator has exactly the same work and heat transfer as the heat en-
gine, only in the opposite directions. A device that can be operated as either a heat 
 engine or a refrigerator between the same two energy reservoirs and with the same  
energy transfers, with only their direction changed, is called a perfectly reversible  
engine. A perfectly reversible engine is an idealization, as was the concept of a  
perfectly elastic collision. Nonetheless, it will allow us to establish limits that no 
real engine can exceed.

Everyone knows that heat can produce 
motion. That it possesses vast motive 
power no one can doubt, in these days 
when the steam engine is everywhere 
so well known. . . .  Notwithstanding the 
satisfactory condition to which they 
have been brought today, their theory  
is very little understood. The ques-
tion has often been raised whether the  
motive power of heat is unbounded, or 
whether the possible improvements in 
steam engines have an assignable limit.

Sadi Carnot

+

=

=

QH

QC

Win

Hot reservoir

Cold reservoir

Perfectly reversible
heat engine

Perfectly reversible
refrigerator

Perfectly reversible
heat engine

Perfectly reversible
refrigerator

TC

TH

QH Same

SameQC

Wout

(a) (b)

TC

TH

QH

QCQC

Win

No work done and
no heat transferred

QH

Wout

QH = 0

QC = 0

Wout = 0

FIGURE 21.18 If a perfectly reversible heat engine is used to operate a perfectly reversible refrigerator, the two devices  
exactly cancel each other.

Suppose we have a perfectly reversible heat engine and a perfectly reversible  
refrigerator (the same device running backward) operating between a hot reservoir at 
temperature TH and a cold reservoir at temperature TC. Because the work Win needed 
to operate the refrigerator is exactly the same as the useful work Wout done by the heat 
engine, we can use the heat engine, as shown in FIGURE 21.18b, to drive the refrigera-
tor. The heat QC the engine exhausts to the cold reservoir is exactly the same as the  
heat QC the refrigerator extracts from the cold reservoir. Similarly, the heat QH the 
engine extracts from the hot reservoir matches the heat QH the refrigerator exhausts 
to the hot reservoir. Consequently, there is no net heat transfer in either direction. The 
refrigerator exactly replaces all the heat energy that had been transferred out of the 
hot reservoir by the heat engine.
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21.5 The Limits of Efficiency 635

You may want to compare the reasoning used here with the reasoning we used 
with Figure 21.11. There we tried to use the output of a “perfect” heat engine to run a 
refrigerator but did not succeed.

A Perfectly Reversible Engine Has  
Maximum Efficiency
Now we’ve arrived at the critical step in the reasoning. Suppose I claim to have a heat 
engine that can operate between temperatures TH and TC with more efficiency than a 
perfectly reversible engine. FIGURE 21.19 shows the output of this heat engine operating 
the same perfectly reversible refrigerator that we used in Figure 21.18b.

+

=

=Superefficient
heat engine

Perfectly reversible
refrigerator

TC

TH

QH

QC6QC

Win

Heat transfer
from cold to hot

6QH

Wout

FIGURE 21.19 A heat engine more efficient than a perfectly reversible engine could be used 
to violate the second law of thermodynamics.

Recall that the thermal efficiency and the work of a heat engine are

h =
Wout

QH
  and  Wout = QH - QC

If the new heat engine is more efficient than the perfectly reversible engine it  
replaces, it needs less heat QH from the hot reservoir to perform the same work  
Wout. If QH is less while Wout is the same, then QC must also be less. That is, the new 
heat engine exhausts less heat to the cold reservoir than does the perfectly reversible 
heat engine.

When this new heat engine drives the perfectly reversible refrigerator, the heat it 
exhausts to the cold reservoir is less than the heat extracted from the cold reservoir 
by the refrigerator. Similarly, this engine extracts less heat from the hot reservoir than 
the refrigerator exhausts. Thus the net result of using this superefficient heat engine 
to operate a perfectly reversible refrigerator is that heat is transferred from the cold 
reservoir to the hot reservoir without outside assistance.

But this can’t happen. It would violate the second law of thermodynamics. Hence 
we have to conclude that no heat engine operating between reservoirs at temperatures 
TH and TC can be more efficient than a perfectly reversible engine. This very important  
conclusion is another version of the second law:

Second law, informal statement #5 No heat engine operating between reser voirs 
at temperatures TH and TC can be more efficient than a perfectly reversible engine 
operating between these temperatures.
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636 CHAPTER 21 Heat Engines and Refrigerators

The answer to our question “Is there a maximum h that cannot be exceeded?” is 
a clear Yes! The maximum possible efficiency h max is that of a perfectly reversible 
engine. Because the perfectly reversible engine is an idealization, any real engine will 
have an efficiency less than h max.

A similar argument shows that no refrigerator can be more efficient than a perfectly 
reversible refrigerator. If we had such a refrigerator, and if we ran it with the output 
of a perfectly reversible heat engine, we could transfer heat from cold to hot with no  
outside assistance. Thus:

Second law, informal statement #6 No refrigerator operating between reser-
voirs at temperatures TH and TC can have a coefficient of performance larger than  
that of a perfectly reversible refrigerator operating between these temperatures.

Conditions for a Perfectly Reversible Engine
This argument tells us that h max and Kmax exist, but it doesn’t tell us what they are. Our 
final task will be to “design” and analyze a perfectly reversible engine. Under what  
conditions is an engine reversible?

An engine transfers energy by both mechanical and thermal interactions. Mechani-
cal interactions are pushes and pulls. The environment does work on the system, trans-
ferring energy into the system by pushing in on a piston. The system transfers energy  
back to the environment by pushing out on the piston.

The energy transferred by a moving piston is perfectly reversible, returning the 
 system to its initial state, with no change of temperature or pressure, only if the motion  
is frictionless. The slightest bit of friction will prevent the mechanical transfer of 
 energy from being perfectly reversible.

The circumstances under which heat transfer can be completely reversed aren’t 
quite so obvious. After all, Chapter 20 emphasized the irreversible nature of heat 
transfer. If objects A and B are in thermal contact, with TA 7 TB, then heat energy  
is transferred from A to B. But the second law of thermodynamics prohibits a heat 
transfer from B back to A. Heat transfer through a temperature difference is an  
irreversible process because it increases the entropy of the universe.

But suppose TA = TB. With no temperature difference, any heat that is transferred  
from A to B can, at a later time, be transferred from B back to A. This transfer, with 
∆Suniverse = 0, wouldn’t violate the second law, which prohibits only heat transfer from a 
colder object to a hotter object. Now you might object, and rightly so, that heat can’t move 
from A to B if they are at the same temperature because heat, by definition, is the energy  
transferred between two objects at different temperatures.

This is true, but consider a heat engine in which, during one part of the cycle, 
TH = Tengine + dT. That is, the hot reservoir is only infinitesimally hotter than the en-
gine. Heat QH can be transferred to the heat engine, but very slowly. If you later, with 
a reversed cycle, try to make the heat move from the engine back to the hot reservoir, 
the second law will prevent you from doing so with perfect precision. But, because 
the temperature difference is infinitesimal, you’ll be missing only an infinitesimal 
amount of heat. You can transfer heat reversibly in the limit dT S 0 (making this an 
isothermal process), but you must be prepared to spend an infinite amount of time 
doing so. Similarly, the engine can reversibly exchange heat with a cold reservoir at 
temperature TC = Tengine - dT.

Thus the thermal transfer of energy is reversible if the heat is transferred infinitely 
slowly in an isothermal process. This is an idealization, but so are completely fric-
tionless processes. Nonetheless, we can now say that a perfectly reversible engine 
must use only two types of processes:

1. Frictionless mechanical interactions with no heat transfer 1Q = 02, and
2. Thermal interactions in which heat is transferred in an isothermal process 
1  ∆Eth = 02.
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21.6 The Carnot Cycle 637

Any engine that uses only these two types of processes is called a Carnot engine. 
A Carnot engine is a perfectly reversible engine; thus it has the maximum possible 
thermal efficiency h max and, if operated as a refrigerator, the maximum possible 
 coefficient of performance Kmax.

21.6 The Carnot Cycle
The definition of a Carnot engine does not specify whether the engine’s working 
substance is a gas or a liquid. It makes no difference. Our argument that a perfectly 
reversible engine is the most efficient possible heat engine depended only on the  
engine’s reversibility. Consequently, any Carnot engine operating between TH and  
TC must have exactly the same efficiency as any other Carnot engine operating 
between the same two energy reservoirs. If we can determine the thermal efficiency 
of one Carnot engine, we’ll know the efficiency of all Carnot engines. Because 
 liquids and phase changes are complicated, we’ll analyze a Carnot engine that uses  
an ideal gas.

Designing a Carnot Engine
The Carnot cycle is an ideal-gas cycle that consists of the two adiabatic processes 
1Q = 02 and two isothermal processes 1∆Eth = 02 shown in FIGURE 21.20. These are 
the two types of processes allowed in a perfectly reversible gas engine. As a Carnot 
cycle operates,

1. The gas is isothermally compressed while in thermal contact with the cold reser-
voir at temperature TC . Heat energy QC = 0Q12 0  is removed from the gas as it is  
compressed in order to keep the temperature constant. The compression must  
take place extremely slowly because there can be only an infinitesimal temperature  
difference between the gas and the reservoir.

2. The gas is adiabatically compressed while thermally isolated from the environ-
ment. This compression increases the gas temperature until it matches tempera-
ture TH of the hot reservoir. No heat is transferred during this process.

3. After reaching maximum compression, the gas expands isothermally at tem-
perature TH. Heat QH = Q34 is transferred from the hot reservoir into the gas as 
it expands in order to keep the temperature constant.

4. Finally, the gas expands adiabatically, with Q = 0, until the temperature decreases  
back to TC.

Work is done in all four processes of the Carnot cycle, but heat is transferred only 
during the two isothermal processes.

The thermal efficiency of any heat engine is

h =
Wout

QH
= 1 -

QC

QH

We can determine h Carnot by finding the heat transfer in the two isothermal processes.
Process 1 S 2: Table 21.1 gives us the heat transfer in an isothermal process at 

temperature TC:

 Q12 = (Ws)12 = nRTC ln1V2

V1
2 = -nRTC ln1V1

V2
2 (21.20)

V1 7 V2, so the logarithm on the right is positive. Q12 is negative because heat is trans-
ferred out of the system, but QC is simply the amount of heat transferred to the cold 
reservoir:

 QC = 0Q12 0 = nRTC ln1V1

V2
2 (21.21)

p

V

1

2

3

4

TH

QH

QC TC

Isotherms

Adiabats

FIGURE 21.20 The Carnot cycle is perfectly 
reversible.
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638 CHAPTER 21 Heat Engines and Refrigerators

Process 3 S 4: Similarly, the heat transferred in the isothermal expansion at 
 temperature TH is

 QH = Q34 = 1Ws234 = nRTH ln1V4

V3
2 (21.22)

Thus the thermal efficiency of the Carnot cycle is

 hCarnot = 1 -
QC

QH
= 1 -

TC ln1V1/V22
TH ln1V4/V32

 (21.23)

We can simplify this expression. During the two adiabatic processes,

 TCV2 

g-1 = THV3 

g-1  and  TCV1 

g-1 = THV4 

g-1 (21.24)

An algebraic rearrangement gives

 V2 = V3 1TH

TC
21/1g-12

  and  V1 = V4 1TH

TC
21/1g-12

 (21.25)

from which it follows that

 
V1

V2
=

V4

V3
 (21.26)

Consequently, the two logarithms in Equation 21.23 cancel and we’re left with the 
result that the thermal efficiency of a Carnot engine operating between a hot reservoir 
at temperature TH and a cold reservoir at temperature TC is

 h
 Carnot = 1 -

TC

TH
  (Carnot thermal efficiency) (21.27)

This remarkably simple result, an efficiency that depends only on the ratio of the  
temperatures of the hot and cold reservoirs, is Carnot’s legacy to thermodynamics.

 NOTE  Temperatures TH and TC are absolute temperatures.

A Carnot engine is cooled by water at TC = 10°C. What temperature  
must be maintained in the hot reservoir of the engine to have a 
thermal efficiency of 70%?

MODEL The efficiency of a Carnot engine depends only on the  
temperatures of the hot and cold reservoirs.

SOLVE The thermal efficiency h Carnot = 1 - TC /TH can be rearranged 
to give

TH =
TC

1 - hCarnot
= 943 K = 670°C

where we used TC = 283 K.

REVIEW A “real” engine would need a higher temperature than  
this to provide 70% efficiency because no real engine will match 
the Carnot efficiency.

EXAMPLE 21.4 ■ A Carnot engine

The heat engine of Example 21.2 had a highest temperature of 
2700 K, a lowest temperature of 300 K, and a thermal efficiency of 
15%. What is the efficiency of a Carnot engine operating between 
these two temperatures?

SOLVE The Carnot efficiency is

h
 Carnot = 1 -

TC

TH
= 1 -

300 K
2700 K

= 0.89 = 89%

REVIEW The thermodynamic cycle used in Example 21.2 doesn’t 
come anywhere close to the Carnot efficiency.

EXAMPLE 21.5 ■ A real engine
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21.6 The Carnot Cycle 639

Entropy and Maximum Efficiency
Whether a heat engine is reversible or irreversible is a question we can answer by 
considering the change in entropy. The second law of thermodynamics tells us that 
∆Suniverse Ú 0, with equality only in the case of a reversible process. Let’s apply this 
idea to a heat engine.

A heat engine consists of the system itself plus the hot and cold reservoirs. During 
one complete cycle of a heat engine, the total entropy changes by

 ∆Suniverse = ∆Ssystem + ∆SH + ∆SC (21.28)

where ∆SH and ∆SC are the entropy changes of the reservoirs. Entropy is a state 
 variable that depends on only the state of the gas. Regardless of what happens during 
a cycle, a heat engine returns to the same state and thus to the same entropy at the end 
of each cycle. Thus ∆Ssystem = 0 over the course of a complete cycle.

The reservoirs, by definition, are so large that their temperatures don’t change.  
The removal of heat energy from the hot reservoir and the addition of heat energy to 
the cold reservoir are both isothermal processes, and we found in ❮❮ SECTION 20.9 that

 ∆SH = -
QH

TH
  and  ∆SC =

QC

TC
 (21.29)

∆SH is negative because QH is the quantity of heat withdrawn from the hot reservoir. 
Thus the total entropy change over one cycle is

 ∆Suniverse =
QC

TC
-

QH

TH
 Ú 0 (21.30)

All real heat engines have ∆Suniverse 7 0, which makes them irreversible; that is, run-
ning the cycle backward would not restore the reservoirs to their initial conditions. An 
entropy change greater than zero means that QC/TC 7 QH/TH. Making the engine more 
efficient by increasing Wout while reducing QC reduces the entropy change, but ∆Suniverse 
can’t go below zero. The efficiency that reduces ∆Suniverse to zero is the maximum 
possible efficiency, and it occurs for a perfectly reversible engine—a Carnot engine.

∆Suniverse is zero if QC/TC = QH/TH or, equivalently,

 
QC

QH
=

TC

TH
  (reversible heat engine) (21.31)

The efficiency of any heat engine was found to be h = 1 - QC/QH, so the efficiency 
of a perfectly reversible engine—the maximum efficiency allowed by the second 
law—is

 hmax = 1 -  
TC

TH
  (maximum possible efficiency) (21.32)

This is exactly the efficiency we found for a Carnot engine (Equation 21.27), so the 
Carnot efficiency is the maximum efficiency allowed by the second law of thermo-
dynamics. It is the efficiency of a perfectly reversible engine for which ∆Suniverse = 0. 
We can summarize our conclusions:

Second law, informal statement #7 No heat engine operating between energy 
reservoirs at temperatures TH and TC can exceed the Carnot efficiency

h
 Carnot = h

 max = 1 -
TC

TH

As Example 21.5 showed, real engines usually fall well short of the Carnot limit.
We also found, in informal statement #6 of the second law, that no refrigerator can 

exceed the coefficient of performance of a perfectly reversible refrigerator. We’ll leave 
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640 CHAPTER 21 Heat Engines and Refrigerators

the proof as a homework problem, but an entropy analysis very similar to what we just 
did for a heat engine shows that the coefficient of performance of a Carnot refrigerator is

 KCarnot =
TC

TH - TC
  (Carnot coefficient of performance) (21.33)

Thus we can state:

Second law, informal statement #8 No refrigerator operating between energy 
reservoirs at temperatures TH and TC can exceed the Carnot coefficient of performance

KCarnot =
TC

TH - TC

The Brayton-cycle refrigerator of Example 21.3 had coefficient of performance K = 1.1. 
Compare this to the limit set by the second law of thermodynamics.

SOLVE Example 21.3 found that the reservoir temperatures had to be TC Ú 250 K and 
TH … 381 K. A Carnot refrigerator operating between 250 K and 381 K has

KCarnot =
TC

TH - TC
=

250 K
381 K - 250 K

= 1.9

REVIEW This is the minimum value of KCarnot. It will be even higher if TC 7 250 K or 
TH 6 381 K. The coefficient of performance of the reasonably realistic refrigerator of 
Example 21.3 is less than 60% of the limiting value.

EXAMPLE 21.6 ■ Brayton versus Carnot

Statements #7 and #8 of the second law are a major result of this chapter, one with 
profound implications. The efficiency limit of a heat engine is set by the temperatures 
of the hot and cold reservoirs. High efficiency requires TC /TH V  1 and thus TH W TC. 
However, practical realities often prevent TH from being significantly larger than TC, 
in which case the engine cannot possibly have a large efficiency. This limit on the 
 efficiency of heat engines is a consequence of the second law of thermodynamics.

An electric power plant boils water to produce high-pressure steam 
at 400°C. The high-pressure steam spins a turbine as it expands, 
then the turbine spins the generator. The steam is then condensed 
back to water in an ocean-cooled heat exchanger at 25°C. What is 
the maximum possible efficiency with which heat energy can be 
converted to electric energy?

MODEL The maximum possible efficiency is that of a Carnot en-
gine operating between these temperatures.

SOLVE The Carnot efficiency depends on absolute temperatures,  
so we must use TH = 400°C = 673 K and TC = 25°C = 298 K. Then

h
 max = 1 -

298
673

= 0.56 = 56%

REVIEW This is an upper limit. Real coal-, oil-, gas-, and nuclear-  
heated steam generators actually operate at ≈35% thermal  
efficiency, converting only about one-third of the fuel energy to 
electric energy while exhausting about two-thirds of the energy  
to the environment as waste heat. (The heat source has nothing  
to do with the efficiency. All it does is boil water.) Not much can 
be done to alter the low-temperature limit. The high-temperature  
limit is determined by the maximum temperature and pressure  
the boiler and turbine can withstand. The efficiency of electricity 
generation is far less than most people imagine, but it is an unavoid- 
 able consequence of the second law of thermodynamics.

EXAMPLE 21.7 ■ Generating electricity

A limit on the efficiency of heat engines was not expected. We are used to think-
ing in terms of energy conservation, so it comes as no surprise that we cannot make 
an engine with h 7 1. But the limits arising from the second law were not anticipa-
ted, nor are they obvious. Nonetheless, they are a very real fact of life and a very real 
constraint on any practical device. No one has ever invented a machine that exceeds 
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21.6 The Carnot Cycle 641

the second-law limits, and we have seen that the maximum efficiency for realistic 
engines is surprisingly low.

STOP TO THINK 21.5 Could this heat engine  
be built?

a. Yes.
b. No.
c. It’s impossible to tell  

without knowing what  
kind of cycle it uses.

Hot reservoir

Heat
engine

Cold reservoir TC = 300 K

TH = 600 K

100 J

40 J

60 J

   CHAPTER 21 CHALLENGE EXAMPLE     Calculating efficiency

A heat engine using a monatomic ideal gas goes through the  
following closed cycle:

■■ Isochoric heating until the pressure is doubled.
■■ Isothermal expansion until the pressure is restored to its initial 

value.
■■ Isobaric compression until the volume is restored to its initial 

value.

What is the thermal efficiency of this heat engine? What would be 
the thermal efficiency of a Carnot engine operating between the 
highest and lowest temperatures reached by this engine?

MODEL The cycle consists of three familiar processes; we’ll need 
to analyze each. The amount of work and heat will depend on the 
quantity of gas, which we don’t know, but efficiency is a work-to-
heat ratio that is independent of the amount of gas.

VISUALIZE FIGURE 21.21 shows the cycle. The initial pressure,  
volume, and temperature are p, V, and T. The isochoric process increases 
the pressure to 2p and, because the ratio p/T is constant in an isochoric  
process, increases the temperature to 2T. The isothermal expansion  
is along the 2T isotherm. The product pV is constant in an isothermal 
process, so the volume doubles to 2V as the pressure returns to p.

SOLVE We know, symbolically, the state variables at each corner of 
the pV diagram. That is sufficient for calculating Ws, Q, and ∆Eth.

Process 1 S 2: An isochoric process has Ws = 0 and

Q = ∆Eth = nCV ∆T = 3
2 nRT

where we used CV = 3
2 R for a monatomic gas and ∆T =  2T - T = T.

Process 2 S 3: An isothermal process has ∆Eth = 0 and

Q = Ws = nR12T 2 ln 12V
V 2 = 12 ln 22nRT

Here we used the Table 21.1 result for the work done in an isothermal  
process.

Process 3 S 1: The work done by the gas is the area under 
the curve, which is negative because ∆V = V - 2V = -V in the 
compression:

Ws = area = p ∆V = -pV = -nRT

We used the ideal-gas law in the last step to express the result 
in terms of n and T. The heat transfer is also negative because 
∆T = T - 2T = -T:

Q = nCP ∆T = - 5
2 nRT

where we used CP = 5
2 R for a monatomic gas. Based on the first 

law, ∆Eth = Q - Ws = - 3
2 nRT.

Summing over the three processes, we see that 1∆Eth2net = 0, 
as expected, and

Wout = 12 ln 2 - 12nRT

Heat energy is supplied to the gas 1Q 7 02 in processes 1 S 2 and 
2 S 3, so

QH = 12 ln 2 + 3
22nRT

Thus the thermal efficiency of this heat engine is

h =
Wout

QH
=

12 ln 2 - 12nRT

12 ln 2 + 3
22nRT

= 0.134 = 13.4%

A Carnot engine would be able to operate between a high tem-
perature TH = 2T  and a low temperature TC = T. Its efficiency 
would be

hCarnot = 1 -
TC

TH
= 1 -

T
2T

= 0.500 = 50.0%

REVIEW As we anticipated, the thermal efficiency depends on the 
shape of the pV cycle but not on the quantity of gas or even on the val-
ues of p, V, or T. The heat engine’s 13.4% efficiency is considerably 
less than the 50% maximum possible efficiency set by the second  
law of thermodynamics.

FIGURE 21.21 The pV cycle of the heat engine.
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Heat Engines
Devices that transform heat into work. They require two energy 
reservoirs at different temperatures.

Cyclical process
(∆Eth)net = 0

QC

QH

Useful work done
Wout = QH - QC

Hot reservoir

Energy in

TH

TC Cold reservoir

Unused energy is 
exhausted as waste heat.

Thermal efficiency

h =
Wout

QH
=

what you get

what you pay

Second-law limit:

h … 1 -
TC

TH

Refrigerators
Devices that use work to transfer heat from a colder object to a 
hotter object.

Cyclical process
(∆Eth)net = 0

QC

QH

Work must be done
to transfer energy
from cold to hot.

Hot reservoir
Energy
QH = QC + Win

is exhausted to
the hot reservoir.

TH

TC Cold reservoir

Heat energy is
extracted from
the cold reservoir.

Win

Coefficient of performance

K =
QC

Win
=

what you get

what you pay

Second-law limit:

K …
TC

TH - TC

Summary The goal of Chapter 21 has been to study the principles that 
govern heat engines and refrigerators.

A perfectly reversible engine (a Carnot engine) can be operated as either a 
heat engine or a refrigerator between the same two energy reservoirs by revers-
ing the cycle and with no other changes.
• A Carnot heat engine has the maximum possible thermal efficiency of any heat 

engine operating between TH and TC  because ∆Suniverse = 0:

h
 Carnot = 1 -

TC

TH

• A Carnot refrigerator has the maximum 
possible coefficient of performance of any 
refrigerator operating between TH and TC :

KCarnot =
TC

TH - TC

The Carnot cycle for a gas engine  
consists of two isothermal processes  
and two adiabatic processes.

To analyze a heat engine or refrigerator:
MODEL Identify each process in the cycle.

VISUALIZE Draw the pV diagram of the cycle.

SOLVE There are several steps:

• Determine p, V, and T at the beginning and  
end of each process.

• Calculate ∆Eth, Ws, and Q for each process.

• Determine Win or Wout, QH, and QC.

• Calculate h = Wout /QH or K = QC/Win.

REVIEW Verify 1  ∆Eth2net = 0. 
Check signs.

General Principles

Important Concepts

Applications

TC

TH

p

V

1

2

3

4

Isotherms

Adiabats

An energy reservoir is a part of the environ-
ment so large in comparison to the system that its  
temperature doesn’t change as the system extracts 
heat energy from or exhausts heat energy to the  
reservoir. All heat engines and refrigerators oper-
ate between two energy reservoirs at different  
temperatures TH and TC.

The work Ws done by the  
system has the opposite  
sign to the work done on  
the system.

Ws = area under pV curve V

p

Vi Vf

Ws = area
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CONCEPTUAL QUESTIONS

thermodynamics
energy reservoir
energy-transfer diagram
heat engine

closed-cycle device
thermal efficiency, h
waste heat
refrigerator

coefficient of performance, K
heat exchanger
pressure ratio, rp

perfectly reversible engine

Carnot engine
Carnot cycle

Terms and Notation

1. In going from i to f in each of the three processes of FIGURE 
Q21.1, is work done by the system 1W 6 0, Ws 7 02, is work done 
on the system 1W 7 0, Ws 6 02, or is no net work done?

V

f

i f

i

i

f

p
(a)

V

p
(b)

V

p
(c)

FIGURE Q21.1

A B

C D

V

p

V

p

V

p

V

p

FIGURE Q21.2

p1

p2

V1 V2

p

V

A

C

B

Isotherm

FIGURE Q21.4

2. Rank in order, from largest to smallest, the amount of work 
1Ws2A to (Ws)D done by the gas in each of the cycles shown in 
FIGURE Q21.2. Explain.

3. Could you have a heat engine with h 7 1? Explain.
4. FIGURE Q21.4 shows the pV 

diagram of a heat engine. 
During which process or pro-
cesses is (a) heat added to the 
gas, (b) heat removed from 
the gas, (c) work done on the 
gas, and (d) work done by the 
gas?

V1 V2

V V

p2

p1

p p

Engine 1

V1 V2

p2

p1

Engine 2

FIGURE Q21.6

5. Rank in order, from largest to smallest, the thermal efficiencies, 
h1 to h4 of the four heat engines shown in FIGURE Q21.5. 

6. FIGURE Q21.6 shows the thermodynamic cycles of two heat  
engines. Which heat engine has the larger thermal efficiency?  
Or are they the same? Explain.

7. A heat engine satisfies Wout = Qnet. Why is there no ∆Eth term in 
this relationship?

8. Do the energy-transfer diagrams in FIGURE Q21.8 represent  
possible heat engines? If not, what is wrong?

FIGURE Q21.5

1

8 J

12 J

4 J

Hot reservoir

Cold reservoir

2

50 J

100 J

50 J

Hot reservoir

Cold reservoir

3

10 J

15 J

5 J

Hot reservoir

Cold reservoir

4

125 J

200 J

75 J

Hot reservoir

Cold reservoir

FIGURE Q21.8

(a)

125 J

150 J

50 J

Hot reservoir

Cold reservoir

600 K

300 K

(b)

80 J

120 J

40 J

Hot reservoir

Cold reservoir

600 K

300 K

(c)

40 J

120 J

80 J

Hot reservoir

Cold reservoir

600 K

300 K
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10. It gets pretty hot in your apartment. In browsing the Internet, 
you find a company selling small “room air conditioners.” You 
place the air conditioner on the floor, plug it in, and—the adver-
tisement says—it will lower the room temperature up to 10°F. 
Should you order one? Explain.

11. The first and second laws of thermodynamics are sometimes 
stated as “You can’t win” and “You can’t even break even.” Do 
these sayings accurately characterize the laws of thermodynam-
ics as applied to heat engines? Why or why not?

9. Do the energy-transfer diagrams in FIGURE Q21.9 represent pos-
sible refrigeration? If not, what is wrong?

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 21.1 Turning Heat into Work

Section 21.2 Heat Engines and Refrigerators

1. || A heat engine does 300 J of work per cycle while exhausting 
500 J of waste heat. What is the engine’s thermal efficiency?

2. | A heat engine with a thermal efficiency of 35% does 200 J 
of work per cycle. How much heat is (a) extracted from the heat 
reservoir and (b) exhausted to the cold reservoir per cycle?

3. || A Boeing 777 jet engine, the world’s largest, has a power 
output of 82 MW. It burns jet fuel with an energy density of 
43 MJ/kg. What is the engine’s fuel consumption rate, in kg/s, if 
its efficiency is 30%?

4. || A refrigerator requires 200 J of work to exhaust 800 J of heat 
per cycle. What is the refrigerator’s coefficient of performance?

5. | Exactly 100 J of work are done per cycle on a refrigera-
tor with a coefficient of performance of 2.0. How much heat is 
(a)  extracted from the cold reservoir and (b) exhausted to the hot 
reservoir per cycle?

6. || A 32%-efficient electric power plant produces 900 MW of 
electric power and discharges waste heat into 20°C ocean water. 
Suppose the waste heat could be used to heat homes during  
the winter instead of being discharged into the ocean. A typical 
American house requires an average of 20 kW for heating. How  
many homes could be heated with the waste heat of this one 
power plant?

7. || The power output of a car engine running at 2400 rpm is  
500 kW. How much (a) work is done and (b) heat is exhausted 
per cycle if the engine’s thermal efficiency is 20%? Give your 
answers in kJ.

8. || 1.0 L of 20°C water is placed in a refrigerator. The refrigerator’s 
motor must supply an extra 8.0 W of power to chill the water to  
5°C in 1.0 h. What is the refrigerator’s coefficient of performance?

Section 21.3 Ideal-Gas Heat Engines

Section 21.4 Ideal-Gas Refrigerators

9. || The cycle of FIGURE EX21.9 consists of three processes. Make 
a table with rows labeled A–C and columns labeled ∆Eth, Ws, and 
Q. Fill each box in the table with + , - , or 0 to indicate whether 
the quantity increases, decreases, or stays the same during that 
process.

10. || The cycle of FIGURE EX21.10 consists of three processes. 
Make a table with rows labeled A to C and columns labeled 
∆Eth , Ws , and Q. Fill each box in the table with + , - , or 0 to 
indicate whether the quantity increases, decreases, or stays the 
same during that process.

11. || A gas following the pV trajectory of FIGURE EX21.11 does 60 J 
of work per cycle. What is Vmax ?

V

p

A

C Isotherm

B

Adiabat

FIGURE EX21.9
V

p

A B

C

Adiabat

FIGURE EX21.10

V (cm3)

p (kPa)

2000

100

300

200

Vmax

0

FIGURE EX21.11

V (cm3)

p (atm)

2000

1

400 600

2

0

3

FIGURE EX21.12

V (cm3)

p (kPa)

1000

200

200
0

400

Q = -90 J

Q = -25 J

FIGURE EX21.13

114 J

V (cm3)

p (kPa)

1000

200

200
0

400

FIGURE EX21.14

12. || How much work is done per cycle by a gas following the pV 
trajectory of FIGURE EX21.12?

13. || What are (a) Wout and QH and (b) the thermal efficiency for 
the heat engine shown in FIGURE EX21.13?

14. || What are (a) Wout and QH and (b) the thermal efficiency for 
the heat engine shown in FIGURE EX21.14?

FIGURE Q21.9

(b)

70 J

20 J

50 J

Hot reservoir

Cold reservoir

600 K

300 K

(c)

70 J

50 J

20 J

Hot reservoir

Cold reservoir

600 K

300 K

(a)

30 J

20 J

50 J

Hot reservoir

Cold reservoir

600 K

300 K
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23. || Which, if any, of the refrigerators in FIGURE EX21.23 violate  
(a) the first law of thermodynamics or (b) the second law of thermo-
dynamics? Explain.

15. || How much heat is exhausted to the cold reservoir by the heat 
engine shown in FIGURE EX21.15?

V (cm3)

p (kPa)

3000

100

600

200

0

300

225 J

90 J

FIGURE EX21.15

V (cm3)

p (kPa)

0

100

600400200

200

0

300

180 J

100 J

FIGURE EX21.16

Adiabats

105 J

Ws = -119 J

Ws = 78 J

V

p

FIGURE EX21.21

Heat
engine

200 J

300 J

100 J

Hot reservoir TH = 600 K

TC = 300 KCold reservoir

(c)

Heat
engine

200 J

500 J

300 J

Hot reservoir TH = 600 K

TC = 300 KCold reservoir

(a)

Heat
engine

200 J

500 J

200 J

Hot reservoir TH = 600 K

TC = 300 KCold reservoir

(b)

FIGURE EX21.22

Refrigerator

40 J

60 J

20 J

Hot reservoir TH = 400 K

TC = 300 KCold reservoir

(a)

Refrigerator

30 J

40 J

20 J

Hot reservoir TH = 400 K

TC = 300 KCold reservoir

(c)

Refrigerator

40 J

50 J

10 J

Hot reservoir TH = 400 K

TC = 300 KCold reservoir

(b)

FIGURE EX21.23

16. || What are (a) the thermal efficiency and (b) the heat extracted 
from the hot reservoir for the heat engine shown in FIGURE EX21.16?

17. || A heat engine uses a diatomic gas in a Brayton cycle. What 
is the engine’s thermal efficiency if the gas volume is halved 
during the adiabatic compression?

18. || A 15 kW electric generator burns 1.2 gal of diesel fuel per 
hour. The energy density of diesel fuel is 140 MJ/gal . What is 
the generator’s thermal efficiency?

19. || An air conditioner removes 5.0 * 105 J/min of heat from a 
house and exhausts 8.0 * 105 J/min to the hot outdoors.
a. How much power does the air conditioner’s compressor require?
b. What is the air conditioner’s coefficient of performance?

20. || The coefficient of performance of a refrigerator is 6.0. The re-
frigerator’s compressor uses 115 W of electric power and is 95% 
efficient at converting electric power into work. What are (a) the 
rate at which heat energy is removed from inside the refrigerator 
and (b) the rate at which heat energy is exhausted into the room?

21. || What are (a) the heat extracted 
from the cold reservoir and (b) 
the coefficient of performance for 
the refrigerator shown in FIGURE 
EX21.21?

Section 21.5 The Limits of Efficiency

Section 21.6 The Carnot Cycle

22. || Which, if any, of the heat engines in FIGURE EX21.22 violate  
(a) the first law of thermodynamics or (b) the second law of 
thermo dynamics? Explain.

24. || At what cold-reservoir temperature (in °C) would a Carnot 
engine with a hot-reservoir temperature of 427°C have an effi-
ciency of 60%?

25. || A heat engine does 10 J of work and exhausts 15 J of waste 
heat during each cycle.
a. What is the engine’s thermal efficiency?
b. If the cold-reservoir temperature is 20°C, what is the mini-

mum possible temperature in °C of the hot reservoir?
26. | a. A heat engine does 200 J of work per cycle while exhaust-

ing 600 J of heat to the cold reservoir. What is the engine’s 
thermal efficiency?

b. A Carnot engine with a hot-reservoir temperature of 400°C  
has the same thermal efficiency. What is the cold-reservoir 
temperature in °C?

27. || A Carnot engine whose hot reservoir temperature is 600°C 
has the thermal efficiency of 25%. By how many degrees should 
the temperature of the cold reservoir be decreased to raise the 
engine’s efficiency to 45%?

28. | A Carnot engine operating between energy reservoirs at tem-
peratures 400 K and 600 K produces a power output of 800 W. 
What are the (a) thermal efficiency of the engine; (b) the rate of 
heat input, in W; and (c) the rate of heat output, in W?

29. || A heat engine operating between energy reservoirs at 20°C 
and 600°C has 30% of the maximum possible efficiency. How 
much energy must this engine extract from the hot reservoir to 
do 1000 J of work?

30. || The ideal gas in a Carnot engine extracts 1000 J of heat en-
ergy during the isothermal expansion at 300°C. How much heat 
energy is exhausted during the isothermal compression at 50°C?

31. | A Carnot refrigerator operating between -20°C and +20°C 
extracts heat from the cold reservoir at the rate 200 J/s. What 
are (a) the coefficient of performance of this refrigerator, (b) the 
rate at which work is done on the refrigerator, and (c) the rate at 
which heat is exhausted to the hot side?

32. | The coefficient of performance of a refrigerator is 5.0. The 
compressor uses 10 J of energy per cycle.
a. How much heat energy is exhausted per cycle?
b. If the hot-reservoir temperature is 27°C, what is the lowest 

possible temperature in °C of the cold reservoir?
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b. The car’s drivetrain efficiency (from the motor to the wheels) 
is 85% and the thermal efficiency of its engine is 20%. 
The engine burns gasoline, which has an energy density of 
130 MJ/gal . What is the car’s mpg (miles per gallon) at this 
speed?

41. || An ideal refrigerator utilizes a Carnot cycle operating be-
tween 0°C and 25°C. To turn 10 kg of liquid water at 0°C into 10 kg  
of ice at 0°C, (a) how much heat is exhausted into the room and 
(b) how much energy must be supplied to the refrigerator?

42. || A freezer with a coefficient of performance 30% that of a 
Carnot refrigerator keeps the inside temperature at -22°C in a 
25°C room. 3.0 L of water at 20°C are placed in the freezer. How 
long does it take for the water to freeze if the freezer’s compres-
sor does work at the rate of 200 W while the water is freezing?

43. || There has long been an interest in using the vast quantities 
of thermal energy in the oceans to run heat engines. A heat en-
gine needs a temperature difference, a hot side and a cold side. 
Conveniently, the ocean surface waters are warmer than the deep 
ocean waters. Suppose you build a floating power plant in the 
tropics where the surface water temperature is  ≈30°C. This 
would be the hot reservoir of the engine. For the cold reservoir, 
water would be pumped up from the ocean bottom where it is 
always ≈5°C. What is the maximum possible efficiency of such 
a power plant?

44. || A Carnot heat engine operates between reservoirs at 182°C 
and 0°C. If the engine extracts 25 J of energy from the hot reser-
voir per cycle, how many cycles will it take to lift a 10 kg mass a 
height of 10 m?

45. ||| A Carnot engine operates between temperatures of 5°C and 
500°C. The output is used to run a Carnot refrigerator operating 
between -5°C and 25°C. How many joules of heat energy does 
the refrigerator exhaust into the room for each joule of heat en-
ergy used by the heat engine?

46. | FIGURE P21.46 shows a Carnot heat engine driving a Carnot 
refrigerator.
a. Determine Q2, Q3, and Q4.
b. Is Q3 greater than, less than, or equal to Q1 ?
c. Do these two devices, when operated together in this way, 

violate the second law?

33. || A Carnot heat engine operating between energy reservoirs at 
300 K and 500 K does 250 J of work during one cycle. During 
this cycle, what is the entropy change of (a) the system, (b) the 
hot reservoir, and (c) the cold reservoir?

34. || A Carnot heat engine operates between energy reservoirs at 
300 K and 700 K. The entropy of the hot reservoir decreases by 
1.5 J/K per cycle. How much work does the engine do per cycle?

Problems
35. || Prove that the work done in an adiabatic process i S f is 

Ws = 1pfVf - piVi2/11 - g2.
36. || Prove that the coefficient of performance of a Carnot refriger-

ator is KCarnot = TC /1TH - TC2.
37. || FIGURE P21.37 shows a heat engine going through one cycle. 

The gas is diatomic. The masses are such that when the pin is 
removed, in steps 3 and 6, the piston does not move.
a. Draw the pV diagram for this heat engine.
b. How much work is done per cycle?
c. What is this engine’s thermal efficiency?

Locking
pin

1. Start.

5. Cool to 1.0 atm. 6. Remove pin.
 Continue cooling
 to 50 cm3.

7. Insert pin.
 Add mass.
 Start again.

2. Heat to 3 atm. 3. Remove pin.
 Continue heating
 to 100 cm3.

4. Insert pin.
 Remove mass.

50 cm3

1.0 atm
20°C

100 cm3

3.0 atm

Ice Ice

Remove

Add

FIGURE P21.37

Carnot
heat
engine Wout Win

600 K

300 K

Carnot
refrigerator

500 K

400 K
Q2

Q4

Q1 = 1000 J
Q3

FIGURE P21.46

38. || The engine that powers a crane burns fuel at a flame tempera-
ture of 2000°C. It is cooled by 20°C air. The crane lifts a 2000 kg 
steel girder 30 m upward. How much heat energy is transferred 
to the engine by burning fuel if the engine is 40% as efficient as 
a Carnot engine?

39. || A Carnot refrigerator operates between energy reservoirs at 
0°C and 250°C. A 2.4-cm-diameter, 50-cm-long copper bar con-
nects the two energy reservoirs. At what rate, in W, must work be 
done on the refrigerator to remove heat from the cold reservoir at 
the same rate that it arrives through the copper bar?

40. || At fairly slow speeds, a car’s resistance to motion is primar-
ily due to rolling friction. (Air drag becomes significant only at 
higher speeds.) Suppose a 2200 kg car with rubber tires is driving 
at 11 mph = 5.0 m/s. The coefficient of rolling friction is 0.020.
a. What propulsion power is needed to keep the car moving at 

a steady speed?

47. || A heat engine running backward is called a refrigerator if its 
purpose is to extract heat from a cold reservoir. The same engine 
running backward is called a heat pump if its purpose is to ex-
haust warm air into the hot reservoir. Heat pumps are widely used 
for home heating. You can think of a heat pump as a refrigerator 
that is cooling the already cold outdoors and, with its exhaust heat 
QH, warming the indoors. Perhaps this seems a little silly, but 
consider the following. Electricity can be directly used to heat a 
home by passing an electric current through a heating coil. This 
is a direct, 100% conversion of work to heat. That is, 15 kW of 
electric power (generated by doing work at the rate of 15 kJ/s at 
the power plant) produces heat energy inside the home at a rate of 
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54. || Suppose the hot side of a Carnot engine is attached not to a large 
energy reservoir but to an object with mass M, specific heat c, and 
initial temperature TH. Each small amount of heat energy drawn 
from the object to run the engine slightly decreases the object’s 
temperature. The engine will continue running, with lower and 
lower efficiency, until the object’s temperature is reduced to TC, the 
temperature of the cold reservoir, which we assume is a true energy 
reservoir. Find an expression for the total work done by the engine.

55. || A heat engine using a diatomic gas follows the cycle shown in 
FIGURE P21.55. Its temperature at point 1 is 20°C.
a. Determine Ws, Q, and ∆Eth for each of the three processes in 

this cycle. Display your results in a table.
b. What is the thermal efficiency of this heat engine?
c. What is the power output of the engine if it runs at 500 rpm?

15 kJ/s. Suppose that the neighbor’s home has a heat pump with 
a coefficient of performance of 5.0, a realistic value. Note that 
“what you get” with a heat pump is heat delivered, QH, so a heat 
pump’s coefficient of performance is defined as K = QH/Win.
a. How much electric power (in kW) does the heat pump use to 

deliver 15 kJ/s of heat energy to the house?
b. An average price for electricity is about 40 MJ per dollar. A 

furnace or heat pump will run typically 250 hours per month 
during the winter. What does one month’s heating cost in the 
home with a 15 kW electric heater and in the home of the 
neighbor who uses a heat pump?

48. || Home air conditioners in the United States have their power 
specified in the truly obscure units of tons, where 1 ton is the 
power needed to melt 1 ton (2000 lb or 910 kg) of ice in 24 hours. 
A modest-size house typically has a 4.0 ton air conditioner. If a 
4.0 ton air conditioner has a coefficient of performance of 2.5, a 
typical value, at what rate in kW is heat energy removed from the 
house?

49. || A car’s internal combustion engine can be modeled as a heat 
engine operating between a combustion temperature of 1500°C 
and an air temperature of 20°C with 30% of the Carnot effi-
ciency. The heat of combustion of gasoline is 47 kJ/g. What mass 
of gasoline is burned to accelerate a 1500 kg car from rest to a 
speed of 30 m/s?

50. ||| Consider a 1.0 MW power plant (this is the useful output in the 
form of electric energy) that operates between 30°C and 450°C at 
65% of the Carnot efficiency. This is enough electric energy for 
about 750 homes. One way to use energy more efficiently would 
be to use the 30°C “waste” energy to heat the homes rather than 
releasing that heat energy into the environment. This is called 
cogeneration, and it is used in some parts of Europe but rarely 
in the United States. The average home uses 70 GJ of energy 
per year for heating. For estimating purposes, assume that all 
the power plant’s exhaust energy can be transported to homes 
without loss and that home heating takes place at a steady rate 
for half a year each year. How many homes could be heated by 
the power plant?

51. || A typical coal-fired power plant burns 300 metric tons of 
coal every hour to generate 750 MW of electricity. 1 metric 
ton = 1000 kg. The density of coal is 1500 kg/m3 and its heat of 
combustion is 28 MJ/kg. Assume that all heat is transferred from 
the fuel to the boiler and that all the work done in spinning the 
turbine is transformed into electric energy.
a. Suppose the coal is piled up in a 10 m * 10 m room. How tall 

must the pile be to operate the plant for one day?
b. What is the power plant’s thermal efficiency?

52. || A nuclear power plant generates 3000 MW of heat energy 
from nuclear reactions in the reactor’s core. This energy is used to 
boil water and produce high-pressure steam at 300°C. The steam 
spins a turbine, which produces 1000 MW of electric power, 
then the steam is condensed and the water is cooled to 25°C  
before starting the cycle again.
a. What is the maximum possible thermal efficiency of the 

power plant?
b. What is the plant’s actual efficiency?
c. Cooling water from a river flows through the condenser (the 

low-temperature heat exchanger) at the rate of 1.2 * 108 L/h 
( ≈30 million gallons per hour). If the river water enters the 
condenser at 18°C, what is its exit temperature?

53. || The electric output of a power plant is 750 MW. Cooling 
water flows through the power plant at the rate 1.0 * 108 L/h. 
The cooling water enters the plant at 16°C and exits at 27°C. 
What is the power plant’s thermal efficiency?
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56. || A heat engine using 1.0 mol of a monatomic gas follows the 
cycle shown in FIGURE P21.56. 3750 J of heat energy is trans-
ferred to the gas during process 1 S 2.
a. Determine Ws, Q, and ∆Eth for each of the four processes in 

this cycle. Display your results in a table.
b. What is the thermal efficiency of this heat engine?

57. || FIGURE P21.57 shows the cycle for a heat engine that uses a 
gas having g = 1.25. The initial temperature is T1 = 300 K, and 
this engine operates at 20 cycles per second.
a. What is the power output of the engine?
b. What is the engine’s thermal efficiency?

58. || A heat engine using a monatomic gas follows the cycle shown 
in FIGURE P21.58.
a. Find Ws, Q, and ∆Eth for each process in the cycle. Display 

your results in a table.
b. What is the thermal efficiency of this heat engine?

59. || A heat engine uses a di-
atomic gas that follows the 
pV cycle in FIGURE P21.59.
a. Determine the pressure, 

volume, and temperature 
at point 2.

b. Determine ∆Eth, Ws, and 
Q for each of the three 
processes. Put your results 
in a table for easy reading.

c. How much work does this engine do per cycle and what is its 
thermal efficiency?
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648 CHAPTER 21 Heat Engines and Refrigerators

■■ Isothermal expansion to 4000 cm3.
■■ Isochoric cooling to 300 K.
■■ Isothermal compression to 2000 cm3.
■■ Isochoric heating to 600 K.

How much work does this engine do per cycle and what is its 
thermal efficiency?

In Problems 65 through 68 you are given the equation(s) used to solve 
a problem. For each of these, you are to

a. Write a realistic problem for which this is the correct equation(s).
b. Finish the solution of the problem.

65. 0.80 = 1 - 10°C + 2732/1TH + 2732
66. 4.0 = QC /Win

QH = 100 J

67. 0.20 = 1 - QC/QH

Wout = QH - QC = 20 J

68. 400 kJ = 1
2 1 pmax - 100 kPa213.0 m3 - 1.0 m32

Challenge Problems
69. ||| 100 mL of water at 15°C is placed in the freezer compart-

ment of a refrigerator with a coefficient of performance of 4.0. 
How much heat energy is exhausted into the room as the water is 
changed to ice at -15°C?

70. ||| FIGURE CP21.70 shows two insulated compartments separated 
by a thin wall. The left side contains 0.060 mol of helium at an 
initial temperature of 600 K and the right side contains 0.030 mol 
of helium at an initial temperature of 300 K. The compartment 
on the right is attached to a vertical cylinder, above which the air 
pressure is 1.0 atm. A 10-cm-diameter, 2.0 kg piston can slide 
without friction up and down the cylinder. Neither the cylinder  
diameter nor the volumes of the compartments are known.
a. What is the final temperature?
b. How much heat is transferred from the left side to the right side?
c. How high is the piston lifted due to this heat transfer?
d. What fraction of the heat is converted into work?

60. || A heat engine using 120 mg of helium as the working sub-
stance follows the cycle shown in FIGURE P21.60.
a. Determine the pressure, temperature, and volume of the gas 

at points 1, 2, and 3.
b. What is the engine’s thermal efficiency?
c. What is the maximum possible efficiency of a heat engine 

that operates between Tmax and Tmin ?
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61. || FIGURE P21.61 is the pV diagram of Example 21.2, but now 
the device is operated in reverse.
a. During which processes is heat transferred into the gas?
b. Is this QH, heat extracted from a hot reservoir, or QC, heat 

extracted from a cold reservoir? Explain.
c. Determine the values of QH and QC.
Hint: The calculations have been done in Example 21.2 and  
do not need to be repeated. Instead, you need to determine which 
processes now contribute to QH and which to QC.
d. Is the area inside the curve Win or Wout ? What is its value?
e. The device is now being operated in a ccw cycle. Is it a refrig-

erator? Explain.
62. || The heat engine shown in FIGURE P21.62 uses 2.0 mol of a 

monatomic gas as the working substance.
a. Determine T1, T2, and T3.
b. Make a table that shows ∆Eth, Ws, and Q for each of the three 

processes.
c. What is the engine’s thermal efficiency?

63. || The heat engine shown in FIGURE P21.63 uses 0.020 mol of a 
diatomic gas as the working substance.
a. Determine T1, T2, and T3.
b. Make a table that shows ∆Eth, Ws, and Q for each of the three 

processes.
c. What is the engine’s thermal efficiency?

64. ||| A heat engine with 0.20 mol of a monatomic ideal gas ini-
tially fills a 2000 cm3 cylinder at 600 K. The gas goes through 
the following closed cycle:

71. ||| A refrigerator using helium gas operates on the reversed cycle 
shown in FIGURE CP21.71. What are the refrigerator’s (a) coeffi-
cient of performance and (b) power input if it operates at 60 cycles  
per second?
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b. Use the adiabatic connection between T1 and T2 and also be-
tween T3 and T4 to show that the thermal efficiency of the 
Otto cycle is

h = 1 -
1

r1g-12

where r = Vmax /Vmin is the engine’s compression ratio.
c. Graph h versus r out to r = 30 for a diatomic gas.

74. ||| FIGURE CP21.74 shows the Diesel cycle. It is similar to the Otto 
cycle (see Problem 21.73), but there are two important differences. 
First, the fuel is not admitted until the air is fully compressed at 
point 2. Because of the high temperature at the end of an adiabatic 
compression, the fuel begins to burn spontaneously. (There are no 
spark plugs in a diesel engine!) Second, combustion takes place 
more slowly, with fuel continuing to be injected. This makes the 
ignition stage a constant-pressure process. The cycle shown, for 
one cylinder of a diesel engine, has a displacement Vmax - Vmin of 
1000 cm3 and a compression ratio r = Vmax/Vmin = 21. These are 
typical values for a diesel truck. The engine operates with intake 
air 1g = 1.402 at 25°C and 1.0 atm pressure. The quantity of fuel 
injected into the cylinder has a heat of combustion of 1000 J.

72. ||| A heat engine using a diatomic ideal gas goes through the 
following closed cycle:

■■ Isothermal compression until the volume is halved.
■■ Isobaric expansion until the volume is restored to its initial value.
■■ Isochoric cooling until the pressure is restored to its initial value.

What are the thermal efficiencies of (a) this heat engine and  
(b) a Carnot engine operating between the highest and lowest 
temperatures reached by this engine?

73. ||| The gasoline engine in your car can be modeled as the Otto 
cycle shown in FIGURE CP21.73. A fuel-air mixture is sprayed 
into the cylinder at point 1, where the piston is at its farthest 
distance from the spark plug. This mixture is compressed as the 
piston moves toward the spark plug during the adiabatic com-
pression stroke. The spark plug fires at point 2, releasing heat 
energy that had been stored in the gasoline. The fuel burns so 
quickly that the piston doesn’t have time to move, so the heating 
is an isochoric process. The hot, high-pressure gas then pushes 
the piston outward during the power stroke. Finally, an exhaust 
value opens to allow the gas temperature and pressure to drop 
back to their initial values before starting the cycle over again.
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a. Analyze the Otto cycle and show that the work done per cycle is

Wout =
nR

1 - g
 1T2 - T1 + T4 - T32

a. Find p, V, and T at each of the four corners of the cycle. 
Display your results in a table.

b. What is the net work done by the cylinder during one full cycle?
c. What is the thermal efficiency of this engine?
d. What is the power output in kW and horsepower 11 hp =  

746 W2 of an eight-cylinder diesel engine running at 2400 rpm?
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Tools What are the most important tools introduced in Part V?

Models What are the most important models of Part V?

Laws What laws of physics govern thermodynamics?

Key Findings What are the overarching findings of Part V?

Thermodynamics is an expanded view of systems and energy.

■■ A system exchanges energy with its environment via both work 
and heat. These are energy transfers.

■■ In a heat engine, heat energy is transformed into useful work 
when a system follows a cyclical process.

■■ Some processes are irreversible. A reversible Carnot engine is 
a heat engine with the maximum possible efficiency.

■■ Many macroscopic thermal properties of materials can be under-
stood in terms of the motions of atoms and molecules.

First law of thermodynamics Energy is conserved: ∆Eth = W + Q.

Second law of thermodynamics Heat is not spontaneously transferred from a colder object to a hotter object: ∆S Ú 0.

Ideal-gas law pV = nRT or pV = NkBT

Equipartition theorem The energy stored in each degree of freedom is 12  NkBT or 12  nRT.

Thermodynamic energy model

■■ Work and heat are energies trans-
ferred between the system and the 
environment.
■❚ Work is a mechanical interaction.
■❚ Heat is a thermal interaction.

■■ Transferring energy changes the 
system’s thermal energy as given 
by the first law: ∆Eth = W + Q.

Ideal-gas model

■■ For low densities and temperatures not too close to the conden-
sation point, all gases, regardless of composition, obey the  
ideal-gas law with the same value of the gas constant R.

Phases of matter

■■ Solid: Rigid, definite shape, 
nearly incompressible.

■■ Liquid: Fluid, takes shape of 
container, nearly incompressible.

■■ Gas: Noninteracting particles, 
highly compressible.

Carnot engine

■■ A perfectly reversible heat engine has the maximum possible effi-
ciency of any heat engine operating between TH and TC.

■■ The efficiency depends only on the reservoir temperatures, not on 
any details of the engine: hCarnot = 1 - TC/TH.

pV diagrams show

■❚ States
■❚ Processes

Four fundamental gas processes
■❚ Isochoric: ∆V = 0 and W = 0
■❚ Isobaric: ∆p = 0
■❚ Isothermal: ∆T = 0 and ∆Eth = 0
■❚ Adiabatic: Q = 0 and ∆S = 0

Work in gas processes
■❚ The work done on a gas is

 W = - 3
Vf

Vi

p dV

 = -area under the pV curve
■❚ For a closed cycle, the work done by a 
gas is Ws = area enclosed.

Heat and thermal energy
■❚ Heat is energy transferred in a thermal  
process when there is a temperature 
difference.

■❚ Thermal energy is the microscopic en-
ergy of moving atoms.

■❚ Heat, thermal energy, and temperature 
are related but not the same.

Heat is transferred by
■❚ Conduction
■❚ Convection
■❚ Radiation
■❚ Evaporation

Heating and cooling
■❚ The heat energy needed for a tem-
perature change is Q = mc ∆T or 
Q = nC ∆T.

■❚ For thermally isolated systems
Qnet = Q1 + Q2 + g = 0

Heat engines and refrigerators
Heat engines and refrigerators require both 
a hot reservoir and a cold reservoir.

■❚ A heat engine trans-
forms heat energy from 
a hot reservoir into 
work while exhaus t-
ing energy to the cold 
reservoir.

■❚ A refrigerator uses 
external work to 
“pump” heat energy 
from a cold reservoir 
to the hot reservoir.

■❚ A Carnot engine is 
the best possible en-
gine or refrigerator.

Thermodynamics
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OVERVIEW

Forces and Fields
Amber, or fossilized tree resin, has long been prized for its beauty. It has been 
known since antiquity that a piece of amber rubbed with fur can attract feathers or 
straw—seemingly magical powers to a pre-scientific society. It was also known to 
the ancient Greeks that certain stones from the region they called Magnesia could 
pick up pieces of iron. It is from these humble beginnings that we today have 
high-speed computers, lasers, and magnetic resonance imaging as well as such 
mundane modern-day miracles as the lightbulb.

The basic phenomena of electricity and magnetism are not as familiar as those 
of mechanics. You have spent your entire life exerting forces on objects and watch-
ing them move, but your experience with electricity and magnetism is probably 
much more limited. We will deal with this lack of experience by placing a large 
emphasis on the phenomena of electricity and magnetism.

We will begin by looking in detail at electric charge and the process of charging 
an object. It is easy to make systematic observations of how charges behave, and 
we will consider the forces between charges and how charges behave in different 
materials. Similarly, we will begin our study of magnetism by observing how 
magnets stick to some metals but not others and how magnets affect compass 
needles. But our most important observation will be that an electric current affects 
a compass needle in exactly the same way as a magnet. This observation, suggest-
ing a close connection between electricity and magnetism, will eventually lead us 
to the discovery of electromagnetic waves.

Our goal in Part VI is to develop a theory to explain the phenomena of elec-
tricity and magnetism. The linchpin of our theory will be the entirely new con-
cept of a field. Electricity and magnetism are about the long-range interactions of 
charges, both static charges and moving charges, and the field concept will help 
us understand how these interactions take place. We will want to know how fields 
are created by charges and how charges, in return, respond to the fields. Bit by bit, 
we will assemble a theory—based on the new concepts of electric and magnetic 
fields—that will allow us to understand, explain, and predict a wide range of elec-
tromagnetic behavior.

The story of electricity and magnetism is vast. The 19th-century formulation of 
the theory of electromagnetism, which led to sweeping revolutions in science and 
technology, has been called by no less than Einstein “the most important event in 
physics since Newton’s time.” Not surprisingly, all we can do in this text is devel-
op some of the basic ideas and concepts, leaving many details and applications to 
later courses. Even so, our study of electricity and magnetism will explore some 
of the most exciting and important topics in physics.

Electricity and Magnetism
PA R T

VI 

These bright loops above the surface of the sun—called 
coronal loops—are an extremely hot gas (7106 K) of 
charged particles moving along field lines of the sun’s 
magnetic field.

M22A_KNIG8221_05_GE_P06.indd   651 27/05/2022   16:27



652

Electric Charges and Forces

What is electric charge?
Electric phenomena depend on charge.

■■ There are two kinds of charge, called 
positive and negative.

■■ Electrons and protons—the constituents 
of atoms—are the basic charges of 
ordinary matter.

■■ Charging is the transfer of electrons from  
one object to another.

How do charges behave?
Charges have well-established behaviors:

■■ Two charges of the same kind repel; two 
opposite charges attract.

■■ Small neutral objects are attracted to a 
charge of either sign.

■■ Charge can be transferred from one 
object to another.

■■ Charge is conserved.

What are conductors and insulators?
There are two classes of materials with 
very different electric properties:

■■ Conductors are materials through or 
along which charge moves easily.

■■ Insulators are materials on or in which 
charge is immobile.

What is Coulomb’s law?
Coulomb’s law is the fundamental law for 
the electric force between two charged  
particles. Coulomb’s law, like Newton’s law  
of gravity, is an inverse-square law: The 
electric force is inversely proportional to  
the square of the distance between charges.

❮❮ LOOKING BACK Sections 3.2–3.4 Vector addition

❮❮ LOOKING BACK Sections 13.2–13.4 Gravity

What is an electric field?
How is a long-range force transmitted from 
one charge to another? We’ll develop the 
idea that charges create an electric field, and 
the electric field of one charge is the agent 
that exerts a force on another charge. That 
is, charges interact via electric fields. The 
electric field is present at all points in space.

Why are electric charges important?
Computers, cell phones, and optical fiber communications may 
seem to have little in common with the fact that you can get a shock 
when you touch a doorknob after walking across a carpet. But  
the physics of electric charges—how objects get charged and how 
charges interact with each other—is the foundation for all modern 
electronic devices and communications technology. Electricity 
and magnetism is a very large and very important topic, and it 
starts with simple observations of electric charges and forces.

IN THIS CHAPTER, you will learn that electric phenomena are based on charges, forces, and fields.

22

ElectronNucleus

Proton

Charged rod

Paper

Conductor
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Electricity powers much of 
modern society, from cars 
and buildings to phones and 
computers.
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22.1 The Charge Model 653

22.1 The Charge Model
You can receive a mildly unpleasant shock and produce a little spark if you touch 
a metal doorknob after walking across a carpet. Vigorously brushing your freshly 
washed hair makes all the hairs fly apart. A plastic comb that you’ve run through your 
hair will pick up bits of paper and other small objects, but a metal comb won’t.

The common factor in these observations is that two objects are rubbed together. 
Why should rubbing an object cause forces and sparks? What kind of forces are these? 
Why do metallic objects behave differently from nonmetallic? These are the questions  
with which we begin our study of electricity.

Our first goal is to develop a model for understanding electric phenomena in terms 
of charges and forces. We will later use our contemporary knowledge of atoms to un-
derstand electricity on a microscopic level, but the basic concepts of electricity make 
no reference to atoms or electrons. The theory of electricity was well established long 
before the electron was discovered.

Experimenting with Charges
Let us enter a laboratory where we can make observations of electric phenomena. The 
major tools in the lab are plastic, glass, and metal rods; pieces of wool and silk; and 
small metal spheres on wood stands. Let’s see what we can learn with these tools.

Discovering electricity I

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Plastic

Plastic

Rods that haven’t
been rubbed Plastic rubbed

with wool Plastic
rubbed
with
wool

Glass rubbed
with silk

Increased distance

Take a plastic rod that has been 
undisturbed for a long period 
of time and hang it by a thread. 
Pick up another undisturbed 
plastic rod and bring it close to 
the hanging rod. Nothing hap-
pens to either rod.

Rub both plastic rods with 
wool. Now the hanging rod 
tries to move away from the 
handheld rod when you bring 
the two close together. Two 
glass rods rubbed with silk 
also repel each other.

Bring a glass rod that has been 
rubbed with silk close to a hang - 
ing plastic rod that has been 
rubbed with wool. These two 
rods attract each other.

Further observations show that: 

■■ These forces are greater for 
rods that have been rubbed 
more vigorously.

■■ The strength of the forces  
decreases as the separation  
between the rods increases.

No forces were observed in Experiment 1. We will say that the original objects 
are neutral. Rubbing the rods (Experiments 2 and 3) somehow causes forces to be  
exerted between them. We will call the rubbing process charging and say that a 
rubbed rod is charged. For now, these are simply descriptive terms. The terms don’t 
tell us anything about the process itself.

Experiment 2 shows that there is a long-range repulsive force, requiring no contact, 
between two identical objects that have been charged in the same way. Furthermore, 
Experiment 4 shows that the force between two charged objects  depends on the 
distance between them. This is the first long-range force we’ve encountered since 
gravity was introduced in Chapter 5. It is also the first time we’ve observed a re-
pulsive force, so right away we see that new ideas will be needed to understand  
electricity.

Experiment 3 is a puzzle. Two rods seem to have been charged in the same way, by 
rubbing, but these two rods attract each other rather than repel. Why does the outcome  
of Experiment 3 differ from that of Experiment 2? Back to the lab.
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654 CHAPTER 22 Electric Charges and Forces

Our first set of experiments found that charged objects exert forces on each other. 
The forces are sometimes attractive, sometimes repulsive. Experiments 5 and 6 show 
that there is an attractive force between a charged object and a neutral (uncharged) 
object. This discovery presents us with a problem: How can we tell if an object is 
charged or neutral? Because of the attractive force between a charged and a neutral 
object, simply observing an electric force does not imply that an object is charged.

However, an important characteristic of any charged object appears to be that a 
charged object picks up small pieces of paper. This behavior provides a straightfor-
ward test to answer the question, Is this object charged? An object that passes the test 
by picking up paper is charged; an object that fails the test is neutral.

These observations let us tentatively advance the first stages of a charge model.

MODEL 22.1

Charge model, part I

1. Frictional forces, such as rubbing, add something called charge to an ob-
ject or remove it from the object. The process itself is called charging. More  
vigorous rubbing produces a larger quantity of charge.

2. There are two and only two kinds of charge. For now we will call these “plastic  
charge” and “glass charge.” Other objects can sometimes be charged by  
rubbing, but the charge they receive is either “plastic charge” or “glass charge.”

3. Two like charges (plastic/plastic or glass/glass) exert repulsive forces on each 
other. Two opposite charges (plastic/glass) attract each other.

4. The force between two charges is a long-range force. The size of the force 
increases as the quantity of charge increases and decreases as the distance be-
tween the charges increases.

5. Neutral objects have an equal mixture of both “plastic charge” and “glass 
charge.” The rubbing process somehow manages to separate the two.

Discovering electricity II

Experiment 5 Experiment 6 Experiment 7 Experiment 8

Charged rod

Paper

Charged plastic rod

Neutral rod

Charged plastic rod

Wool used to
rub plastic

Charged
object

Charged
plastic
rod

Charged
glass
rod

Hold a charged (i.e., rubbed)  
plastic rod over small pieces 
of paper. The pieces of paper 
leap up and stick to the rod. A 
charged glass rod does the same. 
However, a neutral rod has no  
effect on the pieces of paper.

Hang charged plastic and glass  
rods. Both are attracted to a neu- 
tral (i.e., unrubbed) plastic rod. 
Both are also attracted to a neutral 
glass rod. In fact, the charged rods 
are attracted to any neutral object, 
such as a finger or a piece of paper.

Rub a hanging plastic rod with 
wool and then hold the wool 
close to the rod. The rod is 
weakly attracted to the wool. 
The plastic rod is repelled by a 
piece of silk that has been used 
to rub glass.

Further experiments show that 
there appear to be no objects 
that, after being rubbed, pick up 
pieces of paper and attract both 
the charged plastic and glass 
rods.

A comb rubbed through your hair picks  
up small pieces of paper.

Postulate 2 is based on Experiment 8. If an object is charged (i.e., picks up paper), it  
always attracts one charged rod and repels the other. That is, it acts either “like plastic”  
or “like glass.” If there were a third kind of charge, different from the first two, an 

M22B_KNIG8221_05_GE_C22.indd   654 27/05/2022   17:23



22.1 The Charge Model 655

object with that charge should pick up paper and attract both the charged plastic and 
glass rods. No such objects have ever been found.

The basis for postulate 5 is the observation in Experiment 7 that a charged plastic 
rod is attracted to the wool used to rub it but repelled by silk that has rubbed glass. It 
appears that rubbing glass causes the silk to acquire “plastic charge.” The easiest way 
to explain this is to hypothesize that the silk starts out with equal amounts of “glass 
charge” and “plastic charge” and that the rubbing somehow transfers “glass charge” 
from the silk to the rod. This leaves an excess of “glass charge” on the rod and an 
excess of “plastic charge” on the silk.

While the charge model is consistent with the observations, it is by no means 
proved. We still have some large unexplained puzzles, such as why charged objects 
exert attractive forces on neutral objects.

Electric Properties of Materials
We still need to clarify how different types of materials respond to charges.

Discovering electricity III

Metal
Charged
plastic

The metal
sphere acquires
“plastic charge.”

Experiment 9

Charge a plastic rod by rubbing it with wool. Touch a neutral metal sphere with the 
rubbed area of the rod. The metal sphere then picks up small pieces of paper and 
repels a charged, hanging plastic rod. The metal sphere appears to have acquired 
“plastic charge.”

Paper

Rod that had
been charged

Experiment 10

Charge a plastic rod, then run your finger along it. After you’ve done so, the rod no 
longer picks up small pieces of paper or repels a charged, hanging plastic rod. Similarly, 
the metal sphere of Experiment 9 no longer repels the plastic rod after you touch it 
with your finger.

MetalMetal

Charged
plasticPlastic rod

This sphere
remains
neutral.

Experiment 11

Place two metal spheres close together with a plastic rod connecting them. Charge a sec-
ond plastic rod, by rubbing, and touch it to one of the metal spheres. Afterward, the metal 
sphere that was touched picks up small pieces of paper and repels a charged, hanging 
plastic rod. The other metal sphere does neither.

MetalMetal

Charged
plasticMetal rod

This sphere
acquires
“plastic
charge.”

Experiment 12

Repeat Experiment 11 with a metal rod connecting the two metal spheres. Touch one 
metal sphere with a charged plastic rod. Afterward, both metal spheres pick up small 
pieces of paper and repel a charged, hanging plastic rod.

Our final set of experiments has shown that

■■ Charge can be transferred from one object to another, but only when the objects 
touch. Contact is required. Removing charge from an object, which you can do by 
touching it, is called discharging.

■■ There are two types or classes of materials with very different electric properties. 
We call these conductors and insulators.

Experiment 12, in which a metal rod is used, is in sharp contrast to Experiment 11. 
Charge somehow moves through or along a metal rod, from one sphere to the other, 
but remains fixed in place on a plastic or glass rod. Let us define conductors as 
those materials through or along which charge easily moves and insulators as those 
materials on or in which charges are immobile. Glass and plastic are insulators; metal 
is a conductor.
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656 CHAPTER 22 Electric Charges and Forces

This information lets us add two more postulates to our charge model:

In Experiment 12, touching one metal sphere with a charged plas-
tic rod caused a second metal sphere to become charged with the 
same type of charge as the rod. Use the postulates of the charge 
model to explain this.

SOLVE We need the following postulates from the charge model:
7. Charge is transferred upon contact.
6. Metal is a conductor, and charge moves through a conductor
3. Like charges repel.

The plastic rod was charged by rubbing with wool. The charge 
doesn’t move around on the rod, because it is an insulator, but 
some of the “plastic charge” is transferred to the metal upon 
contact. Once in the metal, which is a conductor, the charges are 
free to move around. Furthermore, because like charges repel, 
these  plastic charges quickly move as far apart as they possibly 
can. Some move through the connecting metal rod to the second 
sphere. Consequently, the second sphere acquires “plastic charge.”

EXAMPLE 22.1 ■ Transferring charge

22.2 Charge
As you probably know, the modern names for the two types of charge are positive 
charge and negative charge. You may be surprised to learn that the names were 
coined by Benjamin Franklin.

So what is positive and what is negative? It’s entirely up to us! Franklin established the 
convention that a glass rod that has been rubbed with silk is positively charged. That’s 
it. Any other object that repels a charged glass rod is also positively charged. Any charged 
object that attracts a charged glass rod is negatively charged. Thus a plastic rod rubbed 
with wool is negative. It was only long afterward, with the discovery of electrons and  
protons, that electrons were found to be attracted to a charged glass rod while protons were  
repelled. Thus by convention electrons have a negative charge and protons a positive charge.

MODEL 22.1

Charge model, part II

6. There are two types of materials. Conductors are materials through or along 
which charge easily moves. Insulators are materials on or in which charges are 
immobile.

7. Charge can be transferred from one object to another by contact.

   NOTE    Both insulators and conductors can be charged. They differ in the mobility 
of the charge.

We have by no means exhausted the number of experiments and observations we 
might try. Early scientific investigators were faced with all of these results, plus many 
others. How should we make sense of it all? The charge model seems promising, but 
certainly not proven. We have not yet explained how charged objects exert attractive  
forces on neutral objects, nor have we explained what charge is, how it is transferred, 
or why it moves through some objects but not others. Nonetheless, we will take 
 advantage of our historical hindsight and continue to pursue this model. Homework 
problems will let you practice using the model to explain other observations.

STOP TO THINK 22.1 To determine if an object has “glass charge,” you need to

a. See if the object attracts a charged plastic rod.
b. See if the object repels a charged glass rod.
c. Do both a and b.
d. Do either a or b.
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Atoms and Electricity
Now let’s fast forward to the 21st century. The theory of electricity was developed 
without knowledge of atoms, but there is no reason for us to continue to overlook 
this important part of our contemporary perspective. FIGURE 22.1 shows that an atom 
consists of a very small and dense nucleus (diameter ∼10-14 m) surrounded by much 
less massive orbiting electrons. The electron orbital frequencies are so enormous 
(∼1015 revolutions per second) that the electrons seem to form an electron cloud of 
diameter ∼10-10 m, a factor 104 larger than the nucleus.

Experiments at the end of the 19th century revealed that electrons are particles with 
both mass and a negative charge. The nucleus is a composite structure consisting of 
protons, positively charged particles, and neutral neutrons. The atom is held together 
by the attractive electric force between the positive nucleus and the negative electrons.

One of the most important discoveries is that charge, like mass, is an inherent 
property of electrons and protons. It’s no more possible to have an electron without 
charge than it is to have an electron without mass. As far as we know today, electrons 
and protons have charges of opposite sign but exactly equal magnitude. (Very careful 
experiments have never found any difference.) This atomic-level unit of charge, called 
the fundamental unit of charge, is represented by the symbol e. TABLE 22.1 shows 
the masses and charges of protons and electrons. We need to define a unit of charge, 
which we will do in Section 22.4, before we can specify how much charge e is.

The Micro/Macro Connection
Electrons and protons are the basic charges of ordinary matter. Consequently,  
the various observations we made in Section 22.1 need to be explained in terms of 
electrons and protons.

   NOTE    Electrons and protons are particles of matter. Their motion is governed by 
Newton’s laws. Electrons can move from one object to another when the objects are in 
contact, but neither electrons nor protons can leap through the air from one object to 
another. An object does not become charged simply from being close to a charged object.

Charge is represented by the symbol q (or sometimes Q). A macroscopic object, 
such as a plastic rod, has charge

 q = Npe - Nee = 1Np - Ne2e (22.1)

where Np and Ne are the number of protons and electrons contained in the object. An 
object with an equal number of protons and electrons has no net charge (i.e., q = 0) 
and is said to be electrically neutral.

   NOTE    Neutral does not mean “no charges” but, instead, no net charge.

A charged object has an unequal number of protons and electrons. An object is 
positively charged if Np 7 Ne. It is negatively charged if Np 6 Ne. Notice that an 
object’s charge is always an integer multiple of e. That is, the amount of charge on 
an object varies by small but discrete steps, not continuously. This is called charge 
quantization.

In practice, objects acquire a positive charge not by gaining protons, as you might 
expect, but by losing electrons. Protons are extremely tightly bound within the nucleus 
and cannot be added to or removed from atoms. Electrons, on the other hand, are 
bound rather loosely and can be removed without great difficulty. The process of 
removing an electron from the electron cloud of an atom is called ionization. An 
atom that is missing an electron is called a positive ion. Its net charge is q = +e.

Some atoms can accommodate an extra electron and thus become a negative ion 
with net charge q = -e. A saltwater solution is a good example. When table salt (the 
chemical sodium chloride, NaCl) dissolves, it separates into positive sodium ions Na+ 
and negative chlorine ions Cl-. FIGURE 22.2 shows positive and negative ions.

The nucleus, exaggerated for
clarity, contains positive protons.

The electron cloud is negatively charged.

∼10-10 m

FIGURE 22.1 An atom.

TABLE 22.1 Protons and electrons

Particle Mass (kg) Charge

Proton 1.67 * 10-27 +e

Electron 9.11 * 10-31 -e

Positive ion Negative ion 

The atom has gained
one electron, giving it
a net negative charge.

The atom has lost one
electron, giving it a
net positive charge.

FIGURE 22.2 Positive and negative ions.
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658 CHAPTER 22 Electric Charges and Forces

All the charging processes we observed in Section 22.1 involved rubbing and 
friction. The forces of friction cause molecular bonds at the surface to break as the 
two materials slide past each other. Molecules are electrically neutral, but FIGURE 22.3 
shows that molecular ions can be created when one of the bonds in a large molecule is 
broken. The positive molecular ions remain on one material and the negative ions on 
the other, so one of the objects being rubbed ends up with a net positive charge and the 
other with a net negative charge. This is the way in which a plastic rod is charged by 
rubbing with wool or a comb is charged by passing through your hair.

Charge Conservation
One of the most important discoveries about charge is the law of conservation of 
charge: Charge is neither created nor destroyed. Charge can be transferred from one 
object to another as electrons and ions move about, but the total amount of charge 
remains constant. For example, charging a plastic rod by rubbing it with wool transfers 
electrons from the wool to the plastic as the molecular bonds break. The wool is left 
with a positive charge equal in magnitude but opposite in sign to the negative charge 
of the rod: qwool = -qplastic. The net charge remains zero.

Diagrams are going to be an important tool for understanding and explaining 
charges and the forces on charged objects. As you begin to use diagrams, it will be 
important to make explicit use of charge conservation. The net number of plusses and 
minuses drawn on your diagrams should not change as you show them moving around.

Electrically
neutral 
molecule

Positive
molecular
ion

Negative
molecular
   ion

Atoms

Bond

Friction

These bonds were
broken by friction.

This half of the
molecule lost an
electron.

This half of the
molecule gained an
extra electron.

FIGURE 22.3 Charging by friction usually 
creates molecular ions as bonds are 
broken.

STOP TO THINK 22.2 Rank in order, from most positive to most negative, the 
charges qA to qE of these five systems.

A

Proton

B

Electron

C

17 protons
19 electrons

E

Glass ball missing
3 electrons

D

1,000,000 protons
1,000,000 electrons

22.3 Insulators and Conductors
You have seen that there are two classes of materials as defined by their electric 
properties: insulators and conductors. FIGURE 22.4 looks inside an insulator and a  
metallic conductor. The electrons in the insulator are all tightly bound to the positive 
nuclei and not free to move around. Charging an insulator by friction leaves patches 
of molecular ions on the surface, but these patches are immobile.

In metals, the outer atomic electrons (called the valence electrons in chemistry) are 
only weakly bound to the nuclei. As the atoms come together to form a solid, these 
outer electrons become detached from their parent nuclei and are free to wander about 
through the entire solid. The solid as a whole remains electrically neutral, because 
we have not added or removed any electrons, but the electrons are now rather like a 
negatively charged gas or liquid—what physicists like to call a sea of electrons—
permeating an array of positively charged ion cores.

The primary consequence of this structure is that electrons in a metal are highly 
mobile. They can quickly and easily move through the metal in response to electric 
forces. The motion of charges through a material is what we will later call a current, 
and the charges that physically move are called the charge carriers. The charge  
carriers in metals are electrons.

Metals aren’t the only conductors. Ionic solutions, such as salt water, are also good 
conductors. But the charge carriers in an ionic solution are the ions, not electrons. 
We’ll focus on metallic conductors because of their importance in applications of 
electricity.

Valence electrons form 
a “sea of electrons.”

Insulator

Metal

Positive
ion cores

Nucleus

Valence electrons
are tightly bound.

Core electrons

Valence electrons

FIGURE 22.4 A microscopic look at 
insulators and conductors.
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22.3 Insulators and Conductors 659

Charging
Insulators are often charged by rubbing. The charge diagrams of FIGURE 22.5 show that 
the charges on the rod are on the surface and that charge is conserved. The charge can 
be transferred to another object upon contact, but it doesn’t move around on the rod.

Plastic

Wool

Rub the plastic rod
with a piece of wool.

The positive charge on the wool is
equal to the negative charge on the rod.

Negative charges are immobile
on the rod’s surface.This end is 

still neutral.

FIGURE 22.5 An insulating rod is charged by rubbing.

Charge is
transferred to the
metal upon contact.

These charges
repel each other.

Charge spreads
over the surface
of the metal.

Plastic

Metal

Very
fast

FIGURE 22.6 A conductor is charged by 
contact with a charged plastic rod.

Metals usually cannot be charged by rubbing, but Experiment 9 showed that a 
metal sphere can be charged by contact with a charged plastic rod. FIGURE 22.6 gives a 
pictorial explanation. An essential idea is that the electrons in a conductor are free to 
move. Once charge is transferred to the metal, repulsive forces between the negative  
charges cause the electrons to move apart from each other.

Note that the newly added electrons do not themselves need to move to the far cor-
ners of the metal. Because of the repulsive forces, the newcomers simply “shove” the 
entire electron sea a little to the side. The electron sea takes an extremely short time  
to adjust itself to the presence of the added charge, typically much less than 10-9 s. For 
all practical purposes, a conductor responds instantaneously to the addition or removal 
of charge.

Other than this very brief interval during which the electron sea is adjusting, the 
charges in an isolated conductor are in static equilibrium. That is, the charges are 
at rest (i.e., static) and there is no net force on any charge. This condition is called 
electrostatic equilibrium. If there were a net force on one of the charges, it would 
quickly move to an equilibrium point at which the force was zero.

Electrostatic equilibrium has an important consequence:

In an isolated conductor, any excess charge is located on the surface of the 
conductor.

To see this, suppose there were an excess electron in the interior of an isolated con-
ductor. The extra electron would upset the electrical neutrality of the interior and exert 
forces on nearby electrons, causing them to move. But their motion would violate the 
assumption of static equilibrium, so we’re forced to conclude that there cannot be any 
excess electrons in the interior. Any excess electrons push each other apart until they’re  
all on the surface.

Many electricity demonstrations are carried out with the help of 
an electroscope like the one shown in FIGURE 22.7. Touching the 
sphere at the top of an electroscope with a charged plastic rod 
causes the leaves to fly apart and remain hanging at an angle. Use 
charge diagrams to explain why.

MODEL We’ll use the charge model and the model of a conductor as 
a material through which electrons move.

VISUALIZE FIGURE 22.8 on the next page uses a series of charge 
diagrams to show the charging of an electroscope.

EXAMPLE 22.2 ■ Charging an electroscope

Continued

Metal sphere

Metal post

Very thin
gold leaves

Glass box to 
isolate gold leaves

Charging the
electroscope
causes the gold
leaves to repel
each other.

FIGURE 22.7 A charged electroscope.
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Discharging
The human body consists largely of salt water. Pure water is not a terribly  
good conductor, but salt water, with its Na+ and Cl- ions, is. Consequently, and  
occasionally tragically, humans are reasonably good conductors. This fact allows 
us to understand how it is that touching a charged object discharges it, as we ob-
served in Experiment 10. As FIGURE 22.9 shows, the net effect of touching a charged 
metal is that it and the conducting human together become a much larger conductor  
than the metal alone. Any excess charge that was initially confined to the metal  
can now spread over the larger metal + human conductor. This may not entirely  
discharge the metal, but in typical circumstances, where the human is much larger 
than the metal, the residual charge remaining on the metal is much reduced from  
the original charge. The metal, for most practical purposes, is discharged. In  
essence, two conductors in contact “share” the charge that was originally on just  
one of them.

Moist air is a conductor, although a rather poor one. Charged objects in air slowly 
lose their charge as the object shares its charge with the air. The earth itself is a giant 
conductor because of its water, moist soil, and a variety of ions. Any object that is 
physically connected to the earth through a conductor is said to be grounded. The 
effect of being grounded is that the object shares any excess charge it has with the 
entire earth! But the earth is so enormous that any conductor attached to the earth will 
be completely discharged.

The purpose of grounding objects, such as circuits and appliances, is to prevent the 
buildup of any charge on the objects. The third prong on appliances and electronics 
that have a three-prong plug is the ground connection. The building wiring physically 
connects that third wire deep into the ground somewhere just outside the building, 
often by attaching it to a metal water pipe that goes underground.

Charge Polarization
One observation from Section 22.1 still needs an explanation. How do charged  
objects exert an attractive force on a neutral object? To begin answering this question, 
FIGURE 22.10 shows a positively charged rod held close to—but not touching—a neutral 
electroscope. The leaves move apart and stay apart as long as you hold the rod near, 
but they quickly collapse when it is removed.

The charged rod doesn’t touch the electroscope, so no charge is added or removed. 
Instead, the metal’s sea of electrons is attracted to the positive rod and shifts slightly 
to create an excess of negative charge on the side near the rod. The far side of the 
electroscope now has a deficit of electrons—an excess positive charge. We say that 

Metal

Charges spread
through  the
metal + human
system. Very
little charge is
left on the metal.

The metal
is positively
charged.

Touch

FIGURE 22.9 Touching a charged metal 
discharges it.

The electroscope is polarized by
the charged rod. The sea of electrons
shifts toward the positive rod.

Although the net charge on the electroscope
is still zero, the leaves have excess positive
charge and repel each other.

FIGURE 22.10 A charged rod held close to 
an electroscope causes the leaves to repel 
each other.

Plastic

Electroscope

Very fast

1. Negative charges (i.e., elec-
    trons) are transferred from
    the rod to the metal sphere
    upon contact.

2. Metal is a conductor.
 Therefore charge very quickly
 spreads throughout the entire
 electroscope.

3. Like charges repel. The
 negatively charged leaves exert
 repulsive forces on each other,
 causing them to spread apart.

F
u

F
u

FIGURE 22.8 The process by which an electroscope is charged.
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22.3 Insulators and Conductors 661

the electroscope has been polarized. Charge polarization is a slight separation of  
the positive and negative charges in a neutral object. Because there’s no net charge, the  
electron sea quickly readjusts when the rod is removed.

Why don’t all the electrons rush to the side near the positive charge? Once the  
electron sea shifts slightly, the stationary positive ions begin to exert a force, a restoring  
force, pulling the electrons back to the right. The equilibrium position for the sea of 
electrons shifts just enough that the forces due to the external charge and the positive 
ions are in balance. In practice, the displacement of the electron sea is usually less 
than 10–15 m!

Charge polarization is the key to understanding how a charged object exerts an 
attractive force on a neutral object. FIGURE 22.11 shows a positively charged rod near 
a neutral piece of metal. Because the electric force decreases with distance, the  
attractive force on the electrons at the top surface is slightly greater than the  
repulsive force on the ions at the bottom. The net force toward the charged rod is 
called a polarization force. The polarization force arises because the charges in the 
metal are separated, not because the rod and metal are oppositely charged.

A negatively charged rod would push the electron sea slightly away, polarizing the 
metal to have a positive upper surface charge and a negative lower surface charge. 
Once again, these are the conditions for the charge to exert a net attractive force on 
the metal. Thus our charge model explains how a charged object of either sign attracts 
neutral pieces of metal.

The Electric Dipole
Polarizing a conductor is one thing, but why does a charged rod pick up paper, which 
is an insulator? Consider what happens when we bring a positive charge near an atom. 
As FIGURE 22.12 shows, the charge polarizes the atom. The electron cloud doesn’t move 
far, because the force from the positive nucleus pulls it back, but the center of positive 
charge and the center of negative charge are now slightly separated.

Fneg

u

Fnet

u

Fpos

u

1. The charged rod polarizes 
 the neutral metal.

2. The nearby negative charge is attracted 
 to the rod more strongly than the 
 distant positive charge is repelled,
 resulting in a net upward force.

FIGURE 22.11 The polarization force on a 
neutral piece of metal is due to the slight 
charge separation.

External
charge Atom

The external charge attracts the
atom’s negative charge, pulling the
negative charge slightly toward it.

The atom’s negative charge is closer to the
external charge than its positive charge, so the
atom is attracted toward the external charge.

Fpos

u

Fnet

u

Fneg

u

FIGURE 22.12 A neutral atom is polarized by and attracted toward an external charge.

External
charge

Electric dipoles

Insulator

Net force

FIGURE 22.13 The atoms in an insulator 
are polarized by an external charge.

Two opposite charges with a slight separation between them form what is called an 
electric dipole. (The actual distortion from a perfect sphere is minuscule, nothing 
like the distortion shown in the figure.) The attractive force on the dipole’s near end 
slightly exceeds the repulsive force on its far end because the near end is closer to the 
external charge. The net force, an attractive force between the charge and the atom, is 
another example of a polarization force.

An insulator has no sea of electrons to shift if an external charge is brought close. 
Instead, as FIGURE 22.13 shows, all the individual atoms inside the insulator become  
polarized. The polarization force acting on each atom produces a net polarization 
force toward the external charge. This solves the puzzle. A charged rod picks up 
pieces of paper by

■■ Polarizing the atoms in the paper,
■■ Then exerting an attractive polarization force on each atom.

This is important. Make sure you understand all the steps in the reasoning.

M22B_KNIG8221_05_GE_C22.indd   661 27/05/2022   17:23



662 CHAPTER 22 Electric Charges and Forces

Charging by Induction
Charge polarization is responsible for an interesting and counterintuitive way of 
charging an electroscope. FIGURE 22.14 shows a positively charged glass rod held near an 
electroscope but not touching it, while a person touches the electroscope with a finger.  
Unlike what happens in Figure 22.10, the electroscope leaves hardly move.

STOP TO THINK 22.3 An electroscope is positively charged by touching it with a 
positive glass rod. The electroscope leaves spread apart and the glass rod is removed. 
Then a negatively charged plastic rod is brought close to the top of the electroscope, 
but it doesn’t touch. What happens to the leaves?

a. The leaves get closer together.
b. The leaves spread farther apart.
c. One leaf moves higher, the other lower.
d. The leaves don’t move.

F
u

F
u

No contact

1. The charged rod polarizes the
 electroscope + person conductor.
 The leaves repel slightly due to
 polarization.

2. The negative charge on the electroscope
 is isolated when contact is broken.

3. When the rod is removed, the leaves
 first collapse as the polarization
 vanishes, then repel as the excess
 negative charge spreads out.

FIGURE 22.14 A positive rod can charge an electroscope negatively by induction.

Charge polarization occurs, as it did in Figure 22.10, but this time in the much 
larger electroscope + person conductor. If the person removes his or her finger while 
the system is polarized, the electroscope is left with a net negative charge and the  
person has a net positive charge. The electroscope has been charged opposite to the 
rod in a process called charging by induction.

22.4 Coulomb’s Law
The first three sections have established a model of charges and electric forces. This 
model has successfully provided a qualitative explanation of electric phenomena; now 
it’s time to become quantitative. Experiment 4 in Section 22.1 found that the electric 
force decreases with distance. The force law that describes this behavior is known as 
Coulomb’s law.

Charles Coulomb was one of many scientists investigating electricity in the late 18th 
century. Coulomb had the idea of studying electric forces using the torsion balance 
scheme by which Cavendish had measured the value of the gravitational constant G 
(see Section 13.4). This was a difficult experiment. Despite many obstacles, Coulomb 
announced in 1785 that the electric force obeys an inverse-square law analogous to  
Newton’s law of gravity. Today we know it as Coulomb’s law.
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22.4 Coulomb’s Law 663

We sometimes speak of the “force between charge q1 and charge q2,” but keep in 
mind that we are really dealing with charged objects that also have a mass, a size, and 
other properties. Charge is not some disembodied entity that exists apart from matter. 
Coulomb’s law describes the force between charged particles, which are also called 
point charges. A charged particle, which is an extension of the particle model we 
used in Part I, has a mass and a charge but has no size.

Coulomb’s law looks much like Newton’s law of gravity, but there is one important 
difference: The charge q can be either positive or negative. Consequently, the absolute 
value signs in Equation 22.2 are especially important. The first part of Coulomb’s law 
gives only the magnitude of the force, which is always positive. The direction must 
be determined from the second part of the law. FIGURE 22.15 shows the forces between 
different combinations of positive and negative charges.

Units of Charge
Coulomb had no unit of charge, so he was unable to determine a value for K, whose 
numerical value depends on the units of both charge and distance. The SI unit of 
charge, the coulomb (C), is based on defining the fundamental unit of charge e to be 
exactly 1.602 176 634 * 10-19 C. Stated another way, 1 C is the net charge of approx-
imately 6.2415 * 1018 protons. For calculations, we will use

e = 1.60 * 10-19 C

This is a very small amount of charge.

   NOTE    The amount of charge produced by friction is typically in the range 1 nC 
110-9 C2 to 100 nC. This is an excess or deficit of 1010 to 1012 electrons.

Once the unit of charge is established, torsion balance experiments such as 
Coulomb’s can be used to measure the electrostatic constant K. In SI units

K = 8.99 * 109 N m2/C2

It is customary to round this to K = 9.0 * 109 N m2/C2 for all but extremely precise 
calculations, and we will do so.

Surprisingly, we will find that Coulomb’s law is not explicitly used in much of the 
theory of electricity. While it is the basic force law, most of our future discussion and 
calculations will be of things called fields and potentials. It turns out that we can make 
many future equations easier to use if we rewrite Coulomb’s law in a somewhat more 
complicated way. Let’s define a new constant, called the permittivity constant P0  
(pronounced “epsilon zero” or “epsilon naught”), as

P0 =
1

4pK
= 8.85 * 10-12 C2/N m2

Coulomb’s law

1. If two charged particles having charges q1 and q2 are a distance r apart, the 
particles exert forces on each other of magnitude

 F1 on 2 = F2 on 1 =
K 0 q1 0 0 q2 0

r2  (22.2)

where K is called the electrostatic constant. These forces are an action/
reaction pair, equal in magnitude and opposite in direction.

2. The forces are directed along the line joining the two particles. The forces are 
repulsive for two like charges and attractive for two opposite charges.

u

Two
positive
charges

Two
negative
charges

Opposite
charges

r

F1 on 2

q1

q2

q1

q2

q1

q2

F2 on 1

u

F2 on 1

u

F1 on 2

u

F1 on 2

u

F2 on 1

u

FIGURE 22.15 Attractive and repulsive 
forces between charged particles.
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664 CHAPTER 22 Electric Charges and Forces

Rewriting Coulomb’s law in terms of P0 gives us

 F =
1

4pP0
 
0 q1 0 0 q2 0

r2  (22.3)

It will be easiest when using Coulomb’s law directly to use the electrostatic constant K.  
However, in later chapters we will switch to the second version with P0.

Using Coulomb’s Law
Coulomb’s law is a force law, and forces are vectors. It has been many chapters since 
we made much use of vectors and vector addition, but these mathematical techniques 
will be essential in our study of electricity and magnetism.

There are two important observations regarding Coulomb’s law:

1. Coulomb’s law applies only to point charges. A point charge is an idealized 
material object with charge and mass but with no size or extension. For practical 
purposes, two charged objects can be modeled as point charges if they are much 
smaller than the separation between them.

2. Electric forces, like other forces, can be superimposed. If multiple charges  
1, 2, 3, … are present, the net electric force on charge j due to all other charges is

 F
u

net = F
u

1 on j + F
u

2 on j + F
u

3 on j + g (22.4)

where each of the F
u

i on j is given by Equation 22.2 or 22.3.
These conditions are the basis of a strategy for using Coulomb’s law to solve elec-

trostatic force problems.

Metal 

Light 

Selenium

Toner 

Paper 

A

B

C

D

First, a selenium coating on a metal 
plate is given a uniform positive charge. 
Then a laser beam illuminates the plate 
where the image is bright. The selenium 
becomes conductive in these areas 
and loses its charge to the metal plate. 
Charge remains where the image is 
dark, forming a latent image. Negatively 
charged toner particles (microscopic 
beads of colored plastic resin) are at-
tracted to and stick to the positive latent 
image. The image is then transferred to 
a positively charged sheet of paper that 
draws the negatively charged toner parti-
cles away. Finally, heat and pressure fuse 
the toner particles to the paper. In prac-
tice this is done with belts and rollers, 
not fixed plates, but the idea is the same.

PROBLEM-SOLVING STRATEGY 22.1

Electrostatic forces and Coulomb’s law

MODEL Identify point charges or model objects as point charges.

VISUALIZE Use a pictorial representation to establish a coordinate system, show 
the positions of the charges, show the force vectors on the charges, define distances  
and angles, and identify what the problem is trying to find. This is the process of 
translating words to symbols.

SOLVE The mathematical representation is based on Coulomb’s law:

F1 on 2 = F2 on 1 =
K 0 q1 0 0 q2 0

r2

■■ Show the directions of the forces—repulsive for like charges, attractive for  
opposite charges—on the pictorial representation.

■■ When possible, do graphical vector addition on the pictorial representation. 
While not exact, it tells you the type of answer you should expect.

■■ Write each force vector in terms of its x- and y-components, then add the  
components to find the net force. Use the pictorial representation to determine 
which components are positive and which are negative.

REVIEW Check that your result has correct units and significant figures, is reason-
able, and answers the question.

Exercise 26 

A small plastic sphere charged to -10 nC is held 1.0 cm above a small 
glass bead at rest on a table. The bead has a mass of 15 mg and a 
charge of +10 nC. Will the glass bead “leap up” to the plastic sphere?

MODEL Model the plastic sphere and glass bead as point charges.

VISUALIZE FIGURE 22.16 establishes a y-axis, identifies the plastic 
sphere as q1 and the glass bead as q2, and shows a free-body diagram.

EXAMPLE 22.3 ■ Lifting a glass bead

Coulomb’s law is at work in the operation  
of photocopiers and laser printers. 
The process depends on the fact that 
a few  materials—notably the element 
 selenium—are photoconductors, which 
means that they are insulators in the 
dark but conductors in bright light.
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22.4 Coulomb’s Law 665

SOLVE If F1 on 2 is less than the gravitational force FG = m  beadg, 
then the bead will remain at rest on the table with F

u

1 on 2 + F
u

G +  
nu = 0

u
. But if F1 on 2 is greater than m  bead g, the glass bead will 

accelerate upward from the table. Using the values provided, we  
have

  F1 on 2 =
K � q1 0   0 q2 �

r2

  =
19.0 * 109 N m2/C22110 * 10-9 C2110 * 10-9 C2

10.010 m22

  = 9.0 * 10-3 N

 FG = mbead g = 1.5 * 10-4 N

F1 on 2 exceeds m  bead g by a factor of 60, so the glass bead will leap 
upward.

REVIEW The values used in this example are realistic for spheres 
≈2 mm in diameter. In general, as in this example, electric forces 
are significantly larger than gravitational forces. Consequently, we 
can neglect gravity when working electric-force problems unless 
the particles are fairly massive.

n
u

Plastic

Glass

F1 on 2

q1 = -10 nC

q2 = +10 nC

y

1.0 cm

0

FG

u

u

FIGURE 22.16 A pictorial representation of the charges  
and forces.

Two positively charged particles q1 and q2 = 3q1 are 10.0 cm apart 
on the x-axis. Where (other than at infinity) could a third charge q3 
be placed so as to experience no net force?

MODEL Model the charged particles as point charges.

VISUALIZE FIGURE 22.17 establishes a coordinate system with q1  
at the origin and q2 at x = d. We have no information about the  
sign of q3, so apparently the position we’re looking for will work 
for either sign. Suppose q3 is off the x-axis, such as at point A. The 
two repulsive (or attractive) electric forces on q3 cannot possibly 
add to zero, so q3 must be somewhere on the x-axis. At point B, 
outside the two charges, the two forces on q3 will always be in 
the same direction and, again, cannot add to zero. The only possi-
ble   location is at point C, somewhere on the x-axis between the 
charges where the two forces are in opposite directions.

SOLVE The mathematical problem is to find the position between 
charges q1 and q2 for which the forces F

u

1 on 3 and F
u

2 on 3 are equal in 
magnitude. If q3 is distance x from q1, it is distance d - x from q2. 
The magnitudes of the forces are

  F1 on 3 =
Kq1 0 q3 0

r13 

2 =
Kq1 0 q3 0

x2

  F2 on 3 =
Kq2 0 q3 0

r23 

2 =
K13q12 0 q3 0
1d - x22

where in the last step we used q2 = 3q1. Charges q1 and q2 are posi-
tive and do not need absolute value signs. Equating the two forces 
gives

Kq1 0 q3 0
x2 =

3Kq1 0 q3 0
1d - x22

The term Kq1 0 q3 0  cancels. Multiplying by x21d - x22 gives

1d - x22 = 3x2

which can be rearranged into the quadratic equation

2x2 + 2dx - d2 = 2x2 + 20x - 100 = 0

where we used d = 10 cm and x is in cm. The solutions to this equa-
tion are

x = +3.66 cm and -13.66 cm

Both are points where the magnitudes of the two forces are equal, 
but x = -13.66 cm is a point where the magnitudes are equal 
while the directions are the same. The solution we want, which is  
between the charges, is x = 3.66 cm. Thus the point to place q3 is 
3.66 cm from q1 along the line joining q1 and q2.

REVIEW q1 is smaller than q2, so we expect the point at which the 
forces balance to be closer to q1 than to q2. The solution seems 
reasonable. Note that the problem statement has no coordinates, so 
;x = 3.66 cm< is not an acceptable answer. You need to describe 
the position relative to q1 and q2.

EXAMPLE 22.4 ■ The point of zero force

q1 q2 B

0 x d = 10 cm

F1 on 3

F1 on 3

F1 on 3

F2 on 3F2 on 3

F2 on 3

A

C

u
u

u

u

uu

Only if q3 is somewhere along the line between 
q1 and q2 can the forces add to zero.

FIGURE 22.17 Three possible locations for charge q3. Only at 
point C can the net force possibly be zero.
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MATHEMATICAL REVIEW

Vectors and vector addition
Electric and magnetic forces and fields are vectors. It’s been 
many chapters since we made extensive use of vectors, so a 
brief review is worthwhile.

Vector A
u

 can be written in terms of its components Ax 
and Ay as

A
u

= Ax in + Ay jn = A cos u in + A sin u jn

where A is the magnitude of the vector. The dimen-
sionless unit vectors in = (1, positive x@direction) and 
jn = (1, positive y@direction) are “pointer vectors” in the di-
rections of the x- and y-axes. A third unit vector kn  along the 
z-axis will be needed when we study magnetism. If you know 
the components, you can use the Pythagorean theorem to find 
the magnitude of A

u
:

A = � A
u

� = 2A 2
x + A 2

y

The angle used to label a vector’s direction is your 
choice; use an angle that’s convenient. Vector A

u
 is measured 

from the +x-axis, but vector B
u
 is measured from the –y-axis. 

Thus

B
u

= Bx in + By jn = B sin f in - B cos f jn

The negative sign of By comes from looking at the drawing. 
Getting the signs right is essential, but there’s no automatic 
formula for doing so; you have to pay attention to the direction  

a vector points. If you know the components, you can use 
trigonometry to find the direction of B

u
:

f = tan-1 ` Bx

By
`

Only the magnitudes of the components are needed, not their 
signs, if the angle is less than 90°. However, you do have to 
look at the drawing to see if you need the inverse tangent of 
the x-over-y components or the y-over-x  components.

Both forces and fields are added using vector addi-
tion. If three electric forces act on a charge, the net force is 
F
u

net = F
u

1 + F
u

2 + F
u

3. The addition can be done graphically 
with the parallelogram method of Chapter 3, but most often we 
use components: F

u

net = 1Fnet2x in + 1Fnet2y jn with

1F
u

net2x = F1x + F2x + F3x = F1 cos u1 - F2 cos u2

1F
u

net2y = F1y + F2y + F3y = F1 sin u1 + F2 sin u2 - F3

Thus the procedure is to:

■■ Determine individual force or field vectors.
■■ Decompose the vectors into x- and y-components, paying 

attention to directions to get the signs right.
■■ Add the components to find the components of the net 

force or the net field.
■■ Use unit vectors to write the result as a vector.
■■ If needed, use the Pythagorean theorem and an arctangent 

to find the magnitude and a direction, such as angle f.

Bx

Ax

Ay

By

A

u

f

x

y

en

dn

u

B
u

F1

u1
u2

f
x

y

u

F3

u

F2

u

Fnet

u

Three charged particles with q1 = -50 nC, q2 = +50 nC, and 
q3 = +30 nC are placed on the corners of the 5.0 cm * 10.0 cm 
rectangle shown in FIGURE 22.18. What is the net force on charge q3 
due to the other two charges? Give your answer both in component 
form and as a magnitude and direction.

MODEL Model the charged particles as point charges.

VISUALIZE The pictorial representation of FIGURE 22.19 establishes 
a coordinate system. q1 and q3 are opposite charges, so force vector 
F
u

1 on 3 is an attractive force toward q1. q2 and q3 are like charges, so 

EXAMPLE 22.5 ■ Three charges

q3 = +30 nC

q1 = -50 nC

q2 = +50 nC

5.0 cm

10.0 cm

FIGURE 22.18 The three charges.
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22.5 The Electric Field 667

22.5 The Electric Field
Electric and magnetic forces, like gravity, are long-range forces; no contact is required 
for one charged particle to exert a force on another. But this raises some troubling issues. 
For example, consider the charged particles A and B in FIGURE 22.20 on the next page.  

force vector F
u

2 on 3 is a repulsive force away from q2. q1 and q2 have 
equal magnitudes, but F

u

2 on 3 has been drawn shorter than F
u

1 on 3 
because q2 is farther from q3. Vector addition has been used to draw 
the net force vector F

u

3 and to define its angle f.

SOLVE The question asks for a force, so our answer will be the 
vector sum F

u

3 = F
u

1 on 3 + F
u

2 on 3. We need to write F
u

1 on 3 and F
u

2 on 3 
in component form. The magnitude of force F

u

1 on 3 can be found 
using Coulomb’s law:

  F1 on 3 =
K 0 q1 0 0 q3 0

r13 

2

  =
19.0 * 109 N m2/C22150 * 10-9 C2130 * 10-9 C2

10.100 m22  

  = 1.35 * 10-3 N

where we used r13 = 10.0 cm.
The pictorial representation shows that F

u

1 on 3 points down-
ward, in the negative y-direction, so

F
u

1 on 3 = -1.35 * 10-3
 jn N

To calculate F
u

2 on 3 we first need the distance r23 between the 
charges:

r23 = 215.0 cm22 + 110.0 cm22 = 11.2 cm

The magnitude of F
u

2 on 3 is thus

  F2 on 3 =
K 0 q2 0 0 q3 0

r23 

2

  =
19.0 * 109 N m2/C22150 * 10-9 C2130 * 10-9 C2

10.112 m22

  = 1.08 * 10-3 N

This is only a magnitude. The vector F
u

2 on 3 is

F
u

2 on 3 = -F2 on 3 cos u in + F2 on 3 sin u jn

where angle u is defined in the figure and the signs (negative x- 
component, positive y-component) were determined from the 
 pictorial representation. From the geometry of the rectangle,

u = tan-1110.0 cm
5.0 cm 2 = tan-112.02 = 63.4°

Thus F
u

2 on 3 = 1-4.83in + 9.66jn2 * 10-4 N. Now we can add F
u

1 on 3 
and F

u

2 on 3 to find

F
u

3 = F
u

1 on 3 + F
u

2 on 3 = 1-4.83in - 3.84jn2 * 10-4 N

This would be an acceptable answer for many problems, but 
sometimes we need the net force as a magnitude and direction. 
With angle f as defined in the figure, these are

 F3 = 2F3x 

2 + F3y 

2 = 6.2 * 10-4 N

 f = tan-1 `
F3y

F3x
` = 38°

Thus F
u

3 = 16.2 * 10-4 N, 38° below the negative x-axis).

REVIEW The forces are not large, but they are typical of electro-
static forces. Even so, you’ll soon see that these forces can produce 
very large accelerations because the masses of the charged objects 
are usually very small.

FIGURE 22.19 A pictorial representation of the charges and 
forces.

STOP TO THINK 22.4 Charged spheres A and B exert repulsive 
forces on each other. qA = 4qB. Which statement is true?

a. FA on B 7 FB on A b. FA on B = FB on A c. FA on B 6 FB on A

BA
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If A suddenly starts moving, as shown by the arrow, the force vector on B must 
pivot to follow A. Does this happen instantly? Or is there some delay between when  
A moves and when the force F

u

A on B responds?
Neither Coulomb’s law nor Newton’s law of gravity is dependent on time, so the 

ans wer from the perspective of Newtonian physics has to be “instantly.” Yet most 
 scientists found this troubling. What if A is 100,000 light years from B? Will B 
 respond instantly to an event 100,000 light years away? The idea of instantaneous 
transmission of forces had become unbelievable to most scientists by the beginning 
of the 19th century. But if there is a delay, how long is it? How does the information 
to “change force” get sent from A to B? These were the issues when a young Michael 
Faraday appeared on the scene.

Michael Faraday is one of the most interesting figures in the history of science. 
Because of the late age at which he started his education—he was a teenager—he 
never became fluent in mathematics. In place of equations, Faraday’s brilliant and 
insightful mind developed many ingenious pictorial methods for thinking about and 
describing physical phenomena. By far the most important of these was the field.

The Concept of a Field
Faraday was particularly impressed with the pattern that iron filings make when 
sprinkled around a magnet, as seen in FIGURE 22.21. The pattern’s regularity and the 
curved lines suggested to Faraday that the space itself around the magnet is filled 
with some kind of magnetic influence. Perhaps the magnet in some way alters the 
space around it. In this view, a piece of iron near the magnet responds not directly to 
the magnet but, instead, to the alteration of space caused by the magnet. This space 
alteration, whatever it is, is the mechanism by which the long-range force is exerted.

FIGURE 22.22 illustrates Faraday’s idea. The Newtonian view was that A and B interact 
directly. In Faraday’s view, A first alters or modifies the space around it, and particle B 
then comes along and interacts with this altered space. The alteration of space becomes  
the agent by which A and B interact. Furthermore, this alteration could easily be 
imagined to take a finite time to propagate outward from A, perhaps in a wave-like 
fashion. If A changes, B responds only when the new alteration of space reaches it. 
The interaction between B and this alteration of space is a local interaction, rather 
like a contact force.

Faraday’s idea came to be called a field. The term “field,” which comes from math-
ematics, describes a function that assigns a vector to every point in space. When used in 
physics, a field conveys the idea that the physical entity exists at every point in space. That 
is, indeed, what Faraday was suggesting about how long-range forces operate. The charge 
makes an alteration everywhere in space. Other charges then respond to the alteration at 
their position. The alteration of the space around a mass is called the gravitational field. 
Similarly, the space around a charge is altered to create the electric field.

   NOTE    The concept of a field is in sharp contrast to the concept of a particle. A 
particle exists at one point in space. The purpose of Newton’s laws of motion is to 
determine how the particle moves from point to point along a trajectory. A field 
exists simultaneously at all points in space.

Faraday’s idea was not taken seriously at first; it seemed too vague and nonmathe-
matical to scientists steeped in the Newtonian tradition of particles and forces. But the 
significance of the concept of field grew as electromagnetic theory developed during 
the first half of the 19th century. What seemed at first a pictorial “gimmick” came to 
be seen as more and more essential for understanding electric and magnetic forces.

The Field Model
The basic idea is that the electric field is the agent that exerts an electric force on 
a charged particle. Or, if you prefer, that charged particles interact via the electric 
field. We postulate:

A B
Original FA on B

FA on B after
charge A moves

u

u

FIGURE 22.20 If charge A moves, how 
long does it take the force vector on B to 
respond?

FIGURE 22.21 Iron filings sprinkled 
around the ends of a magnet suggest that 
the influence of the magnet extends into 
the space around it.

In the Newtonian view, A
exerts a force directly on B.

In Faraday’s view, A alters
the space around it. (The wavy
lines are poetic license. We
don’t know what the alteration
looks like.)

Particle B  then responds to
the altered space. The altered
space is the agent that exerts
the force on B.

A

A

B

B

Ffield on B

FA on B

u

u

FIGURE 22.22 Newton’s and Faraday’s 
ideas about long-range forces.
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22.5 The Electric Field 669

1. Some set of charges, which we call the source charges, alters the space around 
them by creating an electric field E

u
 at all points in space.

2. A separate charge q in the electric field experiences force F
u

= qE
u
 exerted by 

the field. The force on a positive charge is in the direction of E
u
; the force on a 

negative charge is directed opposite to E
u
.

Thus the source charges exert an electric force on q through the electric field that 
they’ve created.

We can learn about the electric field by measuring the force on a probe charge q. 
If, as in FIGURE 22.23a, we place a probe charge at position (x, y, z) and measure force 
F
u

on q, then the electric field at position (x, y, z) is

 E
u1x, y, z2 =

F
u

on q at 1x, y, z2
q

 (22.5)

We’re defining the electric field as a force-to-charge ratio; hence the units of electric 
field are newtons per coulomb, or N/C. The magnitude E of the electric field is called 
the electric field strength.

It is important to recognize that probe charge q allows us to observe the field, but q is  
not responsible for creating the field. The field was already there, created by the source 
charges. FIGURE 22.23b shows the field at this point in space after probe charge q has been re-
moved. You could imagine “mapping out” the field by moving charge q all through space.

Because q appears in Equation 22.5, you might think that the electric field depends 
on the size of the charge used to probe it. It doesn’t. Coulomb’s law tells us that F

u

on q 
is proportional to q, so the electric field defined in Equation 22.5 is independent of the 
charge that probes it. The electric field depends only on the source charges that create it.

We can summarize these important ideas with the field model of charge interactions:

Position (x, y, z)

Position (x, y, z)

(a)

Fon q

u

If the probe charge feels
an electric forcec

q

cthen there’s an electric field
at this point in space.

(b)

E
u

FIGURE 22.23 Charge q is a probe of the 
electric field.

MODEL 22.2

Electric field
Charges interact via the electric field.

■■ The electric force on a charge is exerted by  
the electric field.

■■ The electric field is created by other charges,  
the source charges.

• The electric field is a vector.

• The field exists at all points in space.

• A charge does not feel its own field.
■■ If the electric field at a point in space is E

u
, a particle with charge q experiences 

an electric force F
u

on q = qE
u
.

• The force on a positive charge is in the direction of the field.

• The force on a negative charge is opposite the direction of the field.

Every cell in your body is electrically active in various ways. 
For example, nerve propagation occurs when large electric fields 
in the cell membranes of neurons cause ions to move through 
the cell walls. The field strength in a typical cell membrane is 
1.0 * 107 N/C. What is the magnitude of the electric force on a 
singly charged calcium ion?

MODEL The ion is a point charge in an electric field. A  
singly charged ion is missing one electron and has net charge 
q = +e.

SOLVE A charged particle in an electric field experiences an  
electric force F

u

on q = qE
u
. In this case, the magnitude of the force is

F = eE = 11.6 * 10-19 C211.0 * 107 N/C2 = 1.6 * 10-12 N

REVIEW This may seem like an incredibly tiny force, but it is  
applied to a particle with mass m ∼ 10-26 kg. The ion would have  
an unimaginable acceleration 1F/m ∼ 1014 m/s22 were it not for 
resistive forces as it moves through the membrane. Even so, an ion 
can cross the cell wall in less than 1 ms.

EXAMPLE 22.6 ■ Electric forces in a cell
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670 CHAPTER 22 Electric Charges and Forces

The Electric Field of a Point Charge
We will begin to put the definition of the electric field to full use in the next chapter. 
For now, to develop the ideas, we will determine the electric field of a single point 
charge q. FIGURE 22.24a shows charge q and a point in space at which we would like to 
know the electric field. To do so, we use a second charge q′ as a probe of the electric field.

For the moment, assume both charges are positive. The force on q′, which is repul-
sive and directed straight away from q, is given by Coulomb’s law:

 F
u

on q′ = 1 1
4pP0

 
qq′
r2 , away from q2 (22.6)

It’s customary to use 1/4pP0 rather than K for field calculations. Equation 22.5 defined the 
electric field in terms of the force on a probe charge; thus the electric field at this point is

 E
u

=
F
u

on q′

q′
= 1 1

4pP0
 
q

r2, away from q2 (22.7)

The electric field is shown in FIGURE 22.24b.

   NOTE    The expression for the electric field is similar to Coulomb’s law. To 
distinguish the two, remember that Coulomb’s law has a product of two charges in 
the numerator. It describes the force between two charges. The electric field has a 
single charge in the numerator. It is the field of a charge.

If we calculate the field at a sufficient number of points in space, we can draw a 
field diagram such as the one shown in FIGURE 22.25. Notice that the field vectors all 
point straight away from charge q. Also notice how quickly the arrows decrease in 
length due to the inverse-square dependence on r.

Keep these three important points in mind when using field diagrams:

1. The diagram is just a representative sample of electric field vectors. The field 
exists at all the other points. A well-drawn diagram can tell you fairly well what 
the field would be like at a neighboring point.

2. The arrow indicates the direction and the strength of the electric field at the 
point to which it is attached—that is, at the point where the tail of the vector 
is placed. In this chapter, we indicate the point at which the electric field is 
measured with a dot. The length of any vector is significant only relative to the 
lengths of other vectors.

3. Although we have to draw a vector across the page, from one point to another, 
an electric field vector is not a spatial quantity. It does not “stretch” from one 
point to another. Each vector represents the electric field at one point in space.

Unit Vector Notation
Equation 22.7 is precise, but it’s not terribly convenient. Furthermore, what happens if 
the source charge q is negative? We need a more concise notation to write the electric 
field, a notation that will allow q to be either positive or negative.

The basic need is to express “away from q” in mathematical notation. “Away from 
q” is a direction in space. To guide us, recall that we already have a notation for 

Fon q′

3. The electric field is
       E = Fon q′/q′
 It is a vector in the
 direction of Fon q′.

E
u

u
1. Use q′ to probe the
 field at this point.

2. Measure the
 force on q′.

q

q′
r

q

u u

u

(a)

(b)

FIGURE 22.24 Charge q′ is used to probe 
the electric field of point charge q.

FIGURE 22.25 The electric field of a 
positive point charge.

STOP TO THINK 22.5 An electron is placed at the position marked by the dot. The 
force on the electron is

a. Zero.  b. To the right.  c. To the left.
d. There’s not enough information to tell.

E
u

E
u

E
u

E
u
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22.5 The Electric Field 671

expressing certain directions—namely, the unit vectors in, jn, and kn. For example, unit 
vector in means “in the direction of the positive x-axis.” With a minus sign, - in means 
“in the direction of the negative x-axis.” Unit vectors, with a magnitude of 1 and no 
units, provide purely directional information.

With this in mind, let’s define the unit vector rn to be a vector of length 1 that points 
from the origin to a point of interest. Unit vector rn provides no information at all about 
the distance to the point; it’s simply a pointer that specifies the direction.

FIGURE 22.26 shows unit vectors rn1, rn2, and rn3 pointing toward points 1, 2, and 3. 
Unlike in and jn, unit vector rn does not have a fixed direction. Instead, unit vector rn 
specifies the direction “straight outward from this point.” But that’s just what we need 
to describe the electric field vector, which is shown at points 1, 2, and 3 due to a pos-
itive charge at the origin. No matter which point you choose, the electric field at that 
point is “straight outward” from the charge. In other words, the electric field E

u
 points 

in the direction of the unit vector rn.
With this notation, the electric field at distance r from a point charge q is

 E
u

=
1

4pP0
 
q

r2 rn  (electric field of a point charge) (22.8)

where rn is the unit vector from the charge toward the point at which we want to know 
the field. Equation 22.8 is identical to Equation 22.7, but written in a notation in which 
the unit vector rn expresses the idea “away from q.”

Equation 22.8 works equally well if q is negative. A negative sign in front of a vector 
simply reverses its direction, so the unit vector - rn points toward charge q. FIGURE 22.27 
shows the electric field of a negative point charge. It looks like the electric field of a positive 
point charge except that the vectors point inward, toward the charge, instead of outward.

We’ll end this chapter with three examples of the electric field of a point charge. Chapter 
23 will expand these ideas to the electric fields of multiple charges and of extended objects.

The unit vectors specify
the directions to the points.

r1

r3

n

n r2n

E3

E1

E2

3

1

2

Electric field at point 1
is in the direction of r1.n

n

u

u

E2 is in the direction of r2.
u

u

FIGURE 22.26 Using the unit vector rn.

FIGURE 22.27 The electric field of a 
negative point charge.

A -1.0 nC charged particle is located at the origin. Points 1, 2, 
and 3 have (x, y) coordinates (1 cm, 0 cm), (0 cm, 1 cm), and 
(1 cm, 1 cm), respectively. Determine the electric field E

u
 at these 

points, then show the vectors on an electric field diagram.

MODEL The electric field is that of a negative point charge.

VISUALIZE The electric field points straight toward the origin. It 
will be weaker at (1 cm, 1 cm), which is farther from the charge.

SOLVE The electric field is

E
u

=
1

4pP0
 
q

r2 rn

where q = -1.0 nC = -1.0 * 10-9 C. The distance r1 = r2 is 
1.0 cm =  0.010 m for points 1 and 2; thus the magnitude of E

u
 at 

these two points is

  E1 = E2 =
1

4pP0
 
0 q 0
r1 

2

  =
19.0 * 109 N m2/C2211.0 * 10-9 C2

10.010 m22 = 90,000 N/C

The unit vector pointing toward point 1, on the x-axis, is rn1 = in. 
Point 2 is on the y-axis, so the unit vector pointing toward point 2 
is rn2 = jn. Thus the electric fields at the first two points are

E
u

1 = -E1 rn1 = -90,000 in N/C

E
u

2 = -E2 rn2 = -90,000 jn N/C

where the minus sign comes from the sign of the charge.

Point 3 is at distance r3 = 22 * 1 cm = 0.0141 m, so the field 
has magnitude

E3 =
1

4pP0
 
� q �
r 2

3

=
(9.0 * 109 N m2/C2)(1.0 * 10-9 C)

(0.0141 m)2 = 45,000 N/C

The unit vector pointing toward point 3 is at a 45° angle, so

rn3 = cos 45° in + sin 45° jn = 0.707 in + 0.707 jn
Thus

E
u

3 = -E3 rn3 = (-31,800 in - 31,800 jn) N/C

These vectors are shown on the electric field diagram of FIGURE 22.28.

EXAMPLE 22.7 ■ Calculating the electric field

FIGURE 22.28 The electric field diagram of a -1.0 nC charged particle.
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672 CHAPTER 22 Electric Charges and Forces

The electron in a hydrogen atom orbits the proton at a radius of 
0.053 nm.

a. What is the proton’s electric field strength at the position of 
the electron?

b. What is the magnitude of the electric force on the electron?

SOLVE a. The proton’s charge is q = e. Its electric field strength at  
the distance of the electron is

 E =
1

4pP0
 
e

r2 =
1

4pP0
 

1.6 * 10-19 C

15.3 * 10-11 m22 = 5.1 * 1011 N/C

Note how large this field is compared to the field of Example 22.7.

b. We could use Coulomb’s law to find the force on the electron, 
but the whole point of knowing the electric field is that we can use 
it directly to find the force on a charge in the field. The magnitude 
of the force on the electron is

  Fon elec = 0 qe 0Eof proton

  = 11.60 * 10-19 C215.1 * 1011 N/C2
  = 8.2 * 10-8 N

EXAMPLE 22.8 ■ The electric field of a proton

STOP TO THINK 22.6 Rank in order, from largest to smallest, the electric field strengths 
E1 to E4 at points 1 to 4.

r

q
1

r

2q
2

2r

q
3

2r

2q
4

   CHAPTER 22 CHALLENGE EXAMPLE     A charge in static equilibrium

A horizontal electric field causes the charged ball in FIGURE 22.29 
to hang at a 15° angle, as shown. The spring is plastic, so it doesn’t 
discharge the ball, and in its equilibrium position the spring extends 
only to the vertical dashed line. What is the electric field strength?

MODEL Model the ball as a point charge in static equilibrium. The 
electric force on the ball is F

u

E = qE
u
. The charge is positive, so the 

force is in the same direction as the field.

VISUALIZE FIGURE 22.30 is a free-body diagram for the ball.

SOLVE The ball is in equilibrium, so the net force on the ball 
must be zero. With the field applied, the spring is stretched by 
∆x = L sin u = 10.60 m21sin 15°2 = 0.16 m, where L is the string 
length, and exerts a pulling force FSp = k ∆x to the left.

Newton’s second law, with au = 0
u

 for equilibrium, is

 aFx = FE - FSp - T sin u = 0 

 aFy = T cos u - FG = T cos u - mg = 0 

From the y-equation,

T =
mg

cos u
 

The x-equation is then

qE - k ∆x - mg tan u = 0

We can solve this for the electric field strength:

  E =
mg tan u + k ∆x

q

  =
10.0030 kg219.8 m/s22 tan 15° + 10.050 N/m210.16 m2

20 * 10-9 C
 

  = 7.9 * 105 N/C

REVIEW We don’t yet have a way of judging whether this is a  
reasonable field strength, but we’ll see in the next chapter that this 
is typical of the electric field strength near an object that has been 
charged by rubbing.

3.0 g, 20 nC

60 cm

0.050 N/m

15° E
u

FIGURE 22.29 A charged ball hanging in static equilibrium.

FIGURE 22.30 The free-body diagram.

M22B_KNIG8221_05_GE_C22.indd   672 27/05/2022   17:23



673

SOLVE Use Coulomb’s law and the vector addition 
of forces.

REVIEW Is the result reasonable?

Coulomb’s Law
The forces between two charged particles q1 and q2 separated by distance r are

F1 on 2 = F2 on 1 =
K 0 q1 0 0 q2 0

r2

The forces are repulsive for two like charges, attractive for two opposite charges.

To solve electrostatic force problems:

MODEL Model objects as point charges.

VISUALIZE Draw a picture showing charges and force vectors.

General Principles

The goal of Chapter 22 has been to learn that electric 
phenomena are based on charges, forces, and fields.

Summary

q1

q2

r

F2 on 1

F1 on 2

1

2

u

u

The Charge Model
There are two kinds of charge, positive and negative.
• Fundamental charges are protons and electrons, with charge {e where 

e = 1.60 * 10-19 C.

• Objects are charged by adding or removing electrons.

• The amount of charge is q = 1Np - Ne2e.

• An object with an equal number of protons and electrons is neutral,  
meaning no net charge.

Charged objects exert electric forces on each other.

• Like charges repel, opposite charges attract.

• The force increases as the charge increases.

• The force decreases as the distance increases.

There are two types of material, insulators and  
conductors. 

• Charge remains fixed in or on an insulator.

• Charge moves easily through or along conductors.

• Charge is transferred by contact between objects.

Charged objects attract neutral objects.

• Charge polarizes metal by shifting the electron sea.

• Charge polarizes atoms, creating electric dipoles.

• The polarization force is always an attractive force.

External
charge

Electric
dipoles

Net force

The Field Model
Charges interact with each other via the electric field E

u
.

• Charge A alters the space around it by creating  
an electric field.

Fon B

B

AA
u

• The field is the agent that exerts a force. The force on 
charge qB is F

u

on B = qBE
u
.

An electric field is identified and measured in terms of 
the force on a probe charge q:

E
u

= F
u

on q/q

• The electric field exists at all points in space.

• An electric field vector shows the field only at one point, 
the point at the tail of the vector.

The electric field of a point charge is

E
u

=
1

4pP0
 
q

r2 rn

Unit vector rn indicates “away from q.”

Important Concepts
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674 CHAPTER 22 Electric Charges and Forces

CONCEPTUAL QUESTIONS

Metal
A B

FIGURE Q22.8

Touch

A B

FIGURE Q22.9

A B

FIGURE Q22.11

Finger

FIGURE Q22.12

FIGURE Q22.13

neutral
charging
charge model
charge, q or Q
like charges
opposite charges
discharging
conductor
insulator

electron cloud
fundamental unit of charge, e
charge quantization
ionization
law of conservation of charge
sea of electrons
ion core
current
charge carrier

electrostatic equilibrium
grounded
charge polarization
polarization force
electric dipole
charging by induction
Coulomb’s law
electrostatic constant, K
point charge

coulomb, C
permittivity constant, P0

field
electric field, E

u

source charge
electric field strength, E
field model
field diagram

Terms and Notation

1. If you rub a fine, silk scarf over a glass rod, the latter develops 
the ability to pick up pieces of paper through electrostatic attrac-
tion. Was the electric charge truly created on the rod?

2. Can a conductor be charged? If so, how would you charge a con-
ductor? If not, why not?

3. Four lightweight balls A, B, C, and D are suspended by threads. 
Ball A has been touched by a plastic rod that was rubbed with 
wool. When the balls are brought close together, without touch-
ing, the following observations are made:

■■ Balls B, C, and D are attracted to ball A.
■■ Balls B and D have no effect on each other.
■■ Ball B is attracted to ball C.

What are the charge states (glass, plastic, or neutral) of balls A, 
B, C, and D? Explain.

4. Charged plastic and glass rods hang by threads.
a. An object repels the plastic rod. Can you predict what it will 

do to the glass rod? If so, what? If not, why not?
b. A different object attracts the plastic rod. Can you predict 

what it will do to the glass rod? If so, what? If not, why not?
5. Why does your shirt cling to your body when you wear it straight 

out of a dryer just after it has completed its drying cycle?
6. A plastic balloon that has been rubbed with wool will stick to a  

wall. Can you conclude that the wall is charged? If so, where does  
the charge come from? If not, why does the balloon stick?

7. Suppose there exists a third type of charge in addition to the 
two types we’ve called glass and plastic. Call this third type X 
charge. What experiment or series of experiments would you use 
to test whether an object has X charge? State clearly how each 
possible outcome of the experiments is to be interpreted.

8. The two oppositely charged metal spheres in FIGURE Q22.8 have 
equal quantities of charge. They are brought into contact with a 
neutral metal rod. What is the final charge state of each sphere 
and of the rod? Use both charge diagrams and words to explain.

9. Metal sphere A in FIGURE Q22.9 has 4 units of negative charge 
and an identical metal sphere B has 2 units of positive charge. 
The two spheres are brought into contact. What is the final 
charge state of each sphere? Explain.

10. A negatively charged electroscope has separated leaves.
a. Suppose you bring a negatively charged rod close to the top 

of the electroscope, but not touching. How will the leaves re-
spond? Use both charge diagrams and words to explain.

b. How will the leaves respond if you bring a positively charged 
rod close to the top of the electroscope, but not touching? Use 
both charge diagrams and words to explain.

11. Metal spheres A and B in FIGURE Q22.11 are initially neutral and 
are touching. A positively charged rod is brought near A, but 
not touching. Is A now positive, negative, or neutral? Use both 
charge diagrams and words to explain.

12. If you bring your finger near a lightweight, negatively charged 
hanging ball, the ball swings over toward your finger as shown in 
FIGURE Q22.12. Use charge diagrams and words to explain this 
observation.

13. Reproduce FIGURE Q22.13 on your paper. Then draw a dot (or 
dots) on the figure to show the position (or positions) where an 
electron would experience no net force.

14. Charges A and B in FIGURE 
Q22.14 are equal. Each charge 
exerts a force on the other of 
magnitude F. Suppose the 
charge of B is increased by 
a factor of 4, but everything 
else is unchanged. In terms of F, (a) what is the magnitude of the 
force on A, and (b) what is the magnitude of the force on B?

15. The electric force on a charged particle in an electric field is F. 
What will be the force if the particle’s charge is tripled and the 
electric field strength is halved?

F
u

F
u A B

A B
??

FIGURE Q22.14
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EXERCISES AND PROBLEMS

1.0 cm

1.0 nC -1.0 nC 4.0 nC

A B C

1.0 cm

FIGURE EX22.17

1.0 nC

-2.0 nC

2.0 nC

A

B

C

2.0 cm

1.0 cm

FIGURE EX22.18

2.0 nC

-2.0 nC

1.0 nC1.0 cm

1.0 cm

1.0 cm

60°

60°

FIGURE EX22.19

Problems labeled  integrate material from earlier chapters.

Exercises

Section 22.1 The Charge Model

Section 22.2 Charge

1. | 2.5 * 1010 electrons are added to a plastic rod by rubbing it 
with wool. What is the charge on the rod?

2. | A glass rod is charged to 5.5 nC by rubbing.
a. Have electrons been removed from the rod or protons added?
b. How many electrons have been removed or protons added?

3. || A plastic rod that has been charged to -20 nC touches a 
metal sphere. Afterward, the rod’s charge is -12 nC.
a. What kind of charged particle was transferred between the 

rod and the sphere, and in which direction? That is, did it 
move from the rod to the sphere or from the sphere to the rod?

b. How many charged particles were transferred?
4. || A glass rod that has been charged to +15 nC touches a metal 

sphere. Afterward, the rod’s charge is +10 nC.
a. What kind of charged particle was transferred between the 

rod and the sphere, and in which direction? That is, did it 
move from the rod to the sphere or from the sphere to the rod?

b. How many charged particles were transferred?
5. || What is the total charge of all the electrons in 200 mL of 

 liquid water?
6. || What mass of aluminum has a total nuclear charge of 500 C? 

Aluminum has atomic number 13.
7. | A linear accelerator uses alternating electric fields to accel-

erate electrons to close to the speed of light. A small number 
of the electrons collide with a target, but a large majority pass 
through the target and impact a beam dump at the end of the 
accelerator. In one experiment, the beam dump measured charge 
accumulating at a rate of -1.5 nC/s. How many electrons trav-
eled down the accelerator during the 90 min run?

8. | Metal spheres A and B are identical except that sphere A has 
a charge of -1.0 nC while sphere B has a charge of +3.0 nC.
a. If the spheres are brought into contact, do electrons move 

from A to B or from B to A?
b. How many electrons are transferred?

Section 22.3 Insulators and Conductors

9. | Figure 22.8 showed how an electroscope becomes negatively 
charged. The leaves will also repel each other if you touch the 
electroscope with a positively charged glass rod. Use a series 
of charge diagrams to explain what happens and why the leaves 
repel each other.

10. | Two neutral metal spheres on wood stands are touching. A 
negatively charged rod is held directly above the top of the left 
sphere, not quite touching it. While the rod is there, the right 
sphere is moved so that the spheres no longer touch. Then the rod 
is withdrawn. Afterward, what is the charge state of each sphere? 
Use charge diagrams to explain your answer.

11. || You have two neutral metal spheres on wood stands. Devise 
a procedure for charging the spheres so that they will have like 
charges of exactly equal magnitude. Use charge diagrams to 
explain your procedure.

12. || You have two neutral metal spheres on wood stands. Devise a 
procedure for charging the spheres so that they will have oppo-
site charges of exactly equal magnitude. Use charge diagrams to 
explain your procedure.

Section 22.4 Coulomb’s Law

13. | Two 20.0 g masses are 10 cm apart (center to center) on a 
frictionless table. Each has +100 nC of charge.
a. What is the magnitude of the electric force on one of the masses?
b. What is the initial acceleration of this mass if it is released 

and allowed to move?
14. || Two small plastic spheres each have a mass of 10 g and a charge 

of -75.0 nC. They are placed 5.0 cm apart (center to center).
a. What is the magnitude of the electric force on each sphere?
b. By what factor is the electric force on a sphere larger than its 

weight?
15. | Two protons are 1.0 fm apart.

a. What is the magnitude of the electric force on one proton due 
to the other?

b. What is the magnitude of the gravitational force on one pro-
ton due to the other?

c. What is the ratio of the electric force to the gravitational force?
16. || A small glass bead has been charged to +20 nC. A metal ball 

bearing located 2 cm above the bead feels a downward electric 
force of 0.018 N. What is the charge on the ball bearing?

17. || What is the magnitude of the net force on charge A in FIGURE 
EX22.17?

18. || What is the magnitude of the net force on charge B in FIGURE 
EX22.18?

19. || What is the force F
u
 on the 1.0 nC charge in FIGURE EX22.19? 

Give your answer as a magnitude and a direction.
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676 CHAPTER 22 Electric Charges and Forces

21. | A small plastic bead has been charged to -15 nC. What are 
the magnitude and direction of the acceleration of (a) a proton 
and (b) an electron that is 1.0 cm from the center of the bead?

22. | A 2.0 g plastic bead charged to -4.0 nC and a 4.0 g glass bead 
charged to +8.0 nC are 2.0 cm apart and free to move. What are 
the accelerations of (a) the plastic bead and (b) the glass bead?

23. || Two positive point charges q and 4q are at x = 0 and x = L, 
respectively, and free to move. A third charge is placed so that 
the entire three-charge system is in static equilibrium. What are 
the magnitude, sign, and x-coordinate of the third charge?

24. || A massless spring is attached to a support at one end and has a 
mass with a charge of 1.0 mC glued to the other end. A -3.0 mC 
charge is slowly brought close to the spring, which stretches to 
1.2 cm when the charges are 2.6 cm apart. What is the spring 
constant of the spring?

25. || A small glass marble hanging from a string is charged to  
+8.0 nC. A 2.0 g plastic bead is gently released 4.0 cm beneath 
the marble. What charge in nC must the plastic bead have to 
hang suspended in space beneath the marble?

Section 22.5 The Electric Field

26. || What magnitude charge creates a 1.0 N/C electric field at a 
point 1.0 m away?

27. | What are the strength and direction of the electric field 1.0 mm  
from (a) a proton and (b) an electron?

28. || What are the strength and direction of the electric field 4.0 cm  
from a small plastic bead that has been charged to -8.0 nC?

29. | The electric field at a point in space is E
u

= 1400 in +  100 jn2 N/C.
a. What is the electric force on a proton at this point? Give your 

answer in component form.
b. What is the electric force on an electron at this point? Give 

your answer in component form.
c. What is the magnitude of the proton’s acceleration?
d. What is the magnitude of the electron’s acceleration?

30. || What are the strength and direction of an electric field that 
will balance the weight of a 1.0 g plastic sphere that has been 
charged to -3.0 nC?

31. || The electric field of a +15 nC charge is (75,000 in +  
75,000 jn) N/C at (x, y) = (0, 0). What are the (x, y) coordinates 
of the charge?

32. || A -12 nC charge is located at 1x, y2 = 11.0 cm, 0 cm2. What 
are the electric fields at the positions 1x, y2 = 15.0 cm, 0 cm2, 
1-5.0 cm, 0 cm2, and 10 cm, 5.0 cm2? Write each electric field 
vector in component form.

33. || A +12 nC charge is located at the origin. What are the electric 
fields at the positions 1x, y2 = 15.0 cm, 0 cm2, (-5.0 cm, 5.0 cm),  
and 1-5.0 cm, -5.0 cm2? Write each electric field vector in 
component form.

-10 nC
4.0 cm

3.0 cm

1 2

3

FIGURE EX22.35

1.0 cm

2.0 cm

5.0 nC

2.0 cm

3

2

1

FIGURE EX22.36

Problems
37. || Two 1.0 g spheres are charged equally and placed 2.0 cm 

apart. When released, they begin to accelerate at 150 m/s2. What 
is the magnitude of the charge on each sphere?

38. || The nucleus of a 125Xe atom (an isotope of the element xenon 
with mass 125 u) is 6.0 fm in diameter. It has 54 protons and 
charge q = +54e.
a. What is the electric force on a proton 2.0 fm from the surface 

of the nucleus?
Hint: Treat the spherical nucleus as a point charge.
b. What is the proton’s acceleration?

39. || A 3.00-cm-long spring has a small plastic bead glued to 
each end. Charging each bead to -25 nC expands the spring by  
0.50 cm. What is the value of the spring constant?

40. || Two 1.5 g ball bearings are 2.0 cm apart. How many electrons 
must be transferred from one to the other so that, when released, 
they each initially accelerate toward the other with a = g?

41. | A smart phone charger delivers charge to the phone, in the 
form of electrons, at a rate of -0.75 C/s. How many electrons are 
delivered to the phone during 30 min of charging?

42. || Objects A and B are both positively charged. Both have a 
mass of 100 g, but A has twice the charge of B. When A and B 
are placed 10 cm apart, B experiences an electric force of 0.45 N.
a. What is the charge on A?
b. If the objects are released, what is the initial acceleration of A?

2.0 nC

2.0 nC

1.0 nC1.0 cm

1.0 cm

1.0 cm

60°

60°

FIGURE EX22.20

20. || What is the force F
u
 on the 1.0 nC charge in FIGURE EX22.20? 

Give your answer as a magnitude and a direction.

34. || A 0.10 g honeybee acquires a charge of +23 pC while flying.
a. The earth’s electric field near the surface is typically (100 

N/C, downward). What is the ratio of the electric force on the 
bee to the bee’s weight?

b. What electric field (strength and direction) would allow the 
bee to hang suspended in the air?

35. || What are the electric fields at points 1, 2, and 3 in FIGURE EX22.35?  
Give your answer in component form.

36. || What are the electric fields at points 1, 2, and 3 in FIGURE EX22.36? 
Give your answer in component form.
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46. || What is the force F
u
 on the 5.0 nC charge in FIGURE P22.46? 

Give your answer in component form.

-15 nC 5.0 nC

-10 nC

1.0 cm

3.0 cm

FIGURE P22.43

10 nC

8.0 nC

-10 nC

1.0 cm

3.0 cm

FIGURE P22.44

2.0 nC-2.0 nC

2.0 nC

-1.0 nC

-2.0 nC
1.0 cm

1.0 cm

FIGURE P22.45

5.0 nC

10 nC-5.0 nC

4.0 cm

3.0 cm

FIGURE P22.46

1.0 nC

2.0 nC 2.0 nC

-6.0 nC

5.0 cm5.0 cm 45°45°

FIGURE P22.47

1.0 nC

2.0 nC -2.0 nC

-6.0 nC

5.0 cm5.0 cm 45° 45°

FIGURE P22.48

10 cm

q1 q25.0 nC

10 cm

FIGURE P22.50

3.0 cm

2.0 nC

-2.0 nC

q

2.0 nC

3.0 cm

4.0 cm

2.0 cm

FIGURE P22.51

43. || What is the force F
u
 on the 5.0 nC charge in FIGURE P22.43? 

Give your answer as a magnitude and an angle measured cw or 
ccw (specify which) from the -x@axis.

48. || What is the force F
u
 on the 1.0 nC charge at the bottom in 

FIGURE P22.48? Give your answer in component form.

44. || What is the force F
u
 on the 8.0 nC charge in FIGURE P22.44? 

Give your answer as a magnitude and an angle measured cw or 
ccw (specify which) from the +x@axis.

45. || What is the force F
u
 on the -1.0 nC charge in the middle of 

FIGURE P22.45 due to the four other charges? Give your answer in 
component form.

47. || What is the force F
u
 on the 1.0 nC charge at the bottom in 

FIGURE P22.47? Give your answer in component form.

49. || A +2.0 nC charge is at the origin and a -4.0 nC charge is at 
x = 1.0 cm.
a. At what x-coordinate could you place a proton so that it 

would experience no net force?
b. Would the net force be zero for an electron placed at the 

same position? Explain.
50. || Charge q2 in FIGURE P22.50 is in equilibrium. What is q1?

51. || The -2.0 nC charge in FIGURE P22.51 is in equilibrium. 
What is q?
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678 CHAPTER 22 Electric Charges and Forces

58. || A 2.0 g metal cube and a 4.0 g metal cube are 6.0 cm apart, 
measured between their centers, on a horizontal surface. For 
both, the coefficient of static friction is 0.65. Both cubes, ini-
tially neutral, are charged at a rate of 7.0 nC/s. How long after 
charging begins does one cube begin to slide away? Which cube 
moves first?

59. || Two equal point charges 2.5 cm apart, both initially neutral, 
are being charged at the rate of 5.0 nC/s. At what rate (N/s) is the 
force between them increasing 1.0 s after charging begins?

60. ||| You have a lightweight spring whose unstretched length is 4.0 
cm. First, you attach one end of the spring to the ceiling and 
hang a 1.0 g mass from it. This stretches the spring to a length of 
5.0 cm. You then attach two small plastic beads to the opposite 
ends of the spring, lay the spring on a frictionless table, and give 
each plastic bead the same charge. This stretches the spring to a 
length of 4.5 cm. What is the magnitude of the charge (in nC) on 
each bead?

61. | An electric dipole consists of two opposite charges {q sep-
arated by a small distance s. The product p = qs is called the 
dipole moment. FIGURE P22.61 shows an electric dipole perpen-
dicular to an electric field E

u
. Find an expression in terms of p 

and E for the magnitude of the torque that the electric field exerts 
on the dipole.

Q = aq45°

L

-q

q

2L

FIGURE P22.52

-Q4Q

q-Q

L

L

FIGURE P22.53

E
uq

s
-q

Electric dipoleFIGURE P22.61

52. | FIGURE P22.52 shows three charges and the net force on 
charge -q. Charge Q is some multiple a of q. What is a?

53. || FIGURE P22.53 shows four charges at the corners of a square 
of side L. What is the magnitude of the net force on q?

54. || A positive point charge Q is located at x = a and a nega-
tive point charge -Q is at x = -a. A positive charge q can be 
placed anywhere on the y-axis. Find an expression for 1Fnet2x, the 
x-component of the net force on q, as a function of y.

55. || In a simple model of the hydrogen atom, the electron moves 
in a circular orbit of radius 0.053 nm around a stationary proton. 
How many revolutions per second does the electron make?

56. ||| Suppose the magnitude of the proton charge differs from the 
magnitude of the electron charge by a mere 1 part in 109.
a. What would be the force between two 2.0-mm-diameter cop-

per spheres 1.0 cm apart? Assume that each copper atom has 
an equal number of electrons and protons.

b. Would this amount of force be detectable? What can you con-
clude from the fact that no such forces are observed?

57. ||| You have two small, 2.0 g balls that have been given equal 
but opposite charges, but you don’t know the magnitude of the 
charge. To find out, you place the balls distance d apart on a slip-
pery horizontal surface, release them, and use a motion detector 
to measure the initial acceleration of one of the balls toward the 
other. After repeating this for several different separation dis-
tances, your data are as follows:

Distance (cm) Acceleration (m/s2)

2.0 0.74

3.0 0.30

4.0 0.19

5.0 0.10

Use an appropriate graph of the data to determine the magnitude 
of the charge.

62. || You sometimes create a spark when you touch a doorknob 
after shuffling your feet on a carpet. Why? The air always has a 
few free electrons that have been kicked out of atoms by cosmic 
rays. If an electric field is present, a free electron is accelerated 
until it collides with an air molecule. Most such collisions are 
elastic, so the electron collides, accelerates, collides, acceler-
ates, and so on, gradually gaining speed. But if the electron’s 
kinetic energy just before a collision is 2.0 * 10-18 J or more, 
it has sufficient energy to kick an electron out of the molecule 
it hits. Where there was one free electron, now there are two! 
Each of these can then accelerate, hit a molecule, and kick out 
another electron. Then there will be four free electrons. In other 
words, as FIGURE P22.62 shows, a sufficiently strong electric 
field causes a “chain reaction” of electron production. This is 
called a breakdown of the air. The current of moving electrons 
is what gives you the shock, and a spark is generated when the 
electrons recombine with the positive ions and give off excess 
energy as a burst of light.
a. The average distance between ionizing collisions is 2.0 mm. 

(The electron’s mean free path is less than this, but most col-
lisions are elastic collisions in which the electron bounces 
with no loss of energy.) What acceleration must an electron 
have to gain 2.0 * 10-18 J of kinetic energy in this distance?

b. What force must act on an electron to give it the acceleration 
found in part a?
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c. What strength electric field will exert this much force on an 
electron? This is the breakdown field strength. Note: The 
measured breakdown field strength is a little less than your 
calculated value because our model of the process is a bit too 
simple. Even so, your calculated value is close.

d. Suppose a free electron in air is 1.0 cm away from a point 
charge. What minimum charge is needed to cause a break-
down and create a spark as the electron moves toward the 
point charge?

100 nC
5.0 g 5.0 g

1.0 m1.0 m

100 nC

uu

FIGURE P22.63

E
u

100 nC -100 nC

50 cm50 cm

10° 10°

FIGURE P22.64

q2 = 1.0 nC

q1 = 1.0 nC

q3 = 1.0 nC

1.0 cm

1.0 cm

3.0 cm

FIGURE P22.66

E
u

5.0 gq

20°

FIGURE P22.67

E
uu

2.0 g25 nC

FIGURE P22.68

Electron knocked
from first atom

Electrons

Original electron

Atoms

2.0 mmBreakdown of the air

FIGURE P22.62

63. || Two 5.0 g point charges on 1.0-m-long threads repel each other 
after being charged to +100 nC, as shown in FIGURE P22.63. 
What is the angle u? You can assume that u is a small angle.

64. || The identical small spheres shown in FIGURE P22.64 are 
charged to +100 nC and -100 nC. They hang as shown in a 
100,000 N/C electric field. What is the mass of each sphere?

65. || A 10.0 nC charge is located at position 1x, y2 = (1.0 cm,  
2.0 cm). At what 1x, y2 position(s) is the electric field
a. -225,000 in N/C?
b. 1161,000 in + 80,500 jn2 N/C?
c. 121,600 in - 28,800 jn2 N/C?

66. | Three 1.0 nC charges are placed as shown in FIGURE P22.66. 
Each of these charges creates an electric field E

u
 at a point 3.0 cm 

in front of the middle charge.
a. What are the three fields E

u

1, E
u

2, and E
u

3 created by the three 
charges? Write your answer for each as a vector in component 
form.

b. Do you think that electric fields obey a principle of super-
position? That is, is there a “net field” at this point given by 
E
u

net = E
u

1 + E
u

2 + E
u

3? Use what you learned in this chapter 
and previously in our study of forces to argue why this is or 
is not true.

c. If it is true, what is E
u

net?

67. | An electric field E
u

= 100,000 in N/C causes the 5.0 g point 
charge in FIGURE P22.67 to hang at a 20° angle. What is the 
charge on the ball?

68. || An electric field E
u

= 200,000 in N/C causes the point charge 
in FIGURE P22.68 to hang at an angle. What is u?
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77. ||| Space explorers discover an 8.7 * 1017 kg asteroid that hap-
pens to have a positive charge of 4400 C. They would like to 
place their 3.3 * 105 kg spaceship in orbit around the asteroid. 
Interestingly, the solar wind has given their spaceship a charge 
of -1.2 C. What speed must their spaceship have to achieve a 
7500-km-diameter circular orbit?

78. ||| A small 1.0 g block charged to 75 nC is placed on a 30° in-
clined plane. The coefficients of static and kinetic friction are 
0.20 and 0.10, respectively. What minimum strength horizontal 
electric field is needed to keep the block from sliding down the 
plane?

79. ||| The force on the -1.0 nC charge is as shown in FIGURE 
CP22.79. What is the magnitude of this force?

69. || One 1.0 g bead is charged to +10 nC, a second to -10 nC. 
They rotate about their common center of mass at 150 rpm. 
What is the distance between the beads?

70. || a. Starting from rest, how long does it take an electron to move 
1.0 cm in a steady electric field of magnitude 100 N/C?

b. What is the electron’s speed after traveling 1.0 cm?
71. || A 5.0 g ball charged to 1.5 mC is tied to a 25-cm-long string. 

It swings at 250 rpm in a horizontal circle around a stationary 
ball charged to -2.5 mC. What is the tension in the string?

In Problems 72 through 75 you are given the equation(s) used to 
solve a problem. For each of these,

a. Write a realistic problem for which this is the correct equation(s).
b. Finish the solution of the problem.

72. 
19.0 * 109 N m2/C22 * N * 11.60 * 10-19 C2

11.0 * 10-6 m22  =  1.5 * 106 N/C

73. 
19.0 * 109 N m2/C22q2

10.0150 m22 = 0.020 N

74. 
19.0 * 109 N m2/C22115 * 10-9 C2

r2 = 54,000 N/C

75.  aFx = 2 *
19.0 * 109 N m2/C2211.0 * 10-9 C2q

110.020 m2/sin 30°22 * cos 30°

 =  5.0 * 10-5 N

 aFy = 0 N

Challenge Problems
76. ||| Two 3.0 g point charges on 1.0-m-long threads repel each 

other after being equally charged, as shown in FIGURE CP22.76. 
What is the magnitude of the charge q?

q
3.0 g 3.0 g

1.0 m1.0 m

q

20° 20°

FIGURE CP22.76

F
u

-1.0 nC

60°
30°

q10 nC
5.0 cm

FIGURE CP22.79

Q

r

s

-qq
FIGURE CP22.80

80. ||| In Section 22.3 we claimed that a charged object exerts a 
net attractive force on an electric dipole. Let’s investigate this. 
FIGURE CP22.80 shows a permanent electric dipole consisting of 
charges +q and -q separated by the fixed distance s. Charge 
+Q is distance r from the center of the dipole. We’ll assume, as 
is usually the case in practice, that s V r.
a. Write an expression for the net force exerted on the dipole by 

charge +Q.
b. Is this force toward +Q or away from +Q? Explain.
c. Use the binomial approximation 11 + x2-n ≈ 1 - nx if 

x V 1 to show that your expression from part a can be writ-
ten Fnet = 2KqQs/r3.

d. How can an electric force have an inverse-cube dependence? 
Doesn’t Coulomb’s law say that the electric force depends on 
the inverse square of the distance? Explain.
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The Electric Field

Where do electric fields come from?
Electric fields are created by charges.

■■ Electric fields add. The field due to 
several point charges is the sum of  
the fields due to each charge.

■■ Electric fields are vectors. Summing 
electric fields is vector addition.

■■ Two equal but opposite charges  
form an electric dipole.

■■ Electric fields can be represented  
by electric field vectors or electric  
field lines.

❮❮ LOOKING BACK Section 22.5 The electric field of a point charge

What if the charge is continuous?
For macroscopic charged objects, like rods 
or disks, we can think of the charge as 
having a continuous distribution.

■■ A charged object is characterized by  
its charge density—the charge per 
length, area, or volume.

■■ We’ll divide objects into small  
point charge–like pieces ∆Q.

■■ The summation of their electric  
fields will become an integral.

■■ We’ll calculate the electric fields of 
charged rods, loops, disks, and planes.

What fields are especially important?
We will develop and use four important electric field models.

Point charge Line of charge Plane of charge Sphere of charge

What is a parallel-plate capacitor?
Two parallel conducting plates with equal but 
opposite charges form a parallel-plate capacitor. 
You’ll learn that the electric field between the 
plates is a uniform electric field, the same at 
every point. Capacitors are also important  
elements of circuits, as you’ll see in Chapter 26.

How do charges respond to fields?
Electric fields exert forces on charges.

■■ Charged particles accelerate. 
Acceleration depends on the  
charge-to-mass ratio.

■■ A charged particle in a uniform field 
follows a parabolic trajectory.

■■ A dipole in an electric field feels a torque  
that aligns the dipole with the field.

❮❮ LOOKING BACK Section 4.2 Projectiles

IN THIS CHAPTER, you will learn how to calculate and use the electric field.

Field of a dipole

L

Total charge Q

Linear charge
density l = Q/L

∆Q

E
u

681

23

Lightning, a vivid example of the power 
of electricity, occurs when the electric 
field between the ground and the 
clouds becomes too strong.
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682 CHAPTER 23 The Electric Field

23.1 Electric Field Models
Chapter 22 introduced the key idea that charged particles interact via the electric 
field. In this chapter you will learn how to calculate the electric field of a set of 
charges. We will start with discrete point charges, then move on to calculating the 
electric field of a continuous distribution of charge. The latter will let you practice the 
mathematical skills you’ve been learning in calculus. Only at the end of the chapter 
will we look at what happens to charges that find themselves in an electric field.

The electric fields used in science and engineering are often caused by fairly com
plex distributions of charge. Sometimes these fields require exact calculations, but 
much of the time we can understand the physics by using simplified models of the 
electric field. A model, you’ll recall, is a highly simplified picture of reality, one that 
captures the essence of what we want to study without unnecessary complications.

Four common electric field models are the basis for understanding a wide variety 
of electric phenomena. We present them here together as a reference; the first half of 
this chapter will then be devoted to justifying and explaining these results.

MODEL 23.1

Four key electric fields
A point charge:

■■ Small charged objects

 E
u

=
1

4pP0
 
q

r2 rn

An infinitely long line of charge:
■■ Wires

E
u

= a 1
4pP0

 
2 �l �

r
, e away if +

toward if -
b

An infinitely wide plane of charge:
■■ Capacitors

E
u

= a h

2P0
, e away if +

toward if -
b

A sphere of charge:
■■ Electrodes

E
u

=
1

4pP0
 
Q

r2 rn for r 7 R

23.2 The Electric Field of Point Charges
Our starting point, from ❮❮ SECTION 22.5, is the electric field of a point charge q:

 E
u

=
1

4pP0
 
q

r2 rn  (electric field of a point charge) (23.1)

where rn is a unit vector pointing away from q and P0 = 8.85 * 10-12  C2/N m2 is the 
permittivity constant. FIGURE 23.1 reminds you of the electric fields of point charges. 
Although we have to give each vector we draw a length, keep in mind that each arrow 
represents the electric field at a point. The electric field is not a spatial quantity that 
“stretches” from one end of the arrow to the other.

▶ FIGURE 23.1 The electric field of a 
positive and a negative point charge.
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23.2 The Electric Field of Point Charges 683

The Electric Field of Multiple Point Charges
What happens if there is more than one charge? The electric field was defined as 
E
u

= F
u

on q /q, where F
u

on q is the electric force on charge q. Forces add as vectors, so the 
net force on q due to a group of point charges is the vector sum

F
u

on q = F
u

1 on q + F
u

2 on q + g
Consequently, the net electric field due to a group of point charges is

 E
u

net =
F
u

on q

q
=

F
u

1 on q

q
+

F
u

2 on q

q
+ g = E

u

1 + E
u

2 + g = a
i

E
u

i (23.2)

where E
u

i is the field from point charge i. That is, the net electric field is the vector 
sum of the electric fields due to each charge. In other words, electric fields obey the 
principle of superposition.

Thus vector addition is the key to electric field calculations.

PROBLEM-SOLVING STRATEGY 23.1

The electric field of multiple point charges

MODEL Model charged objects as point charges.

VISUALIZE For the pictorial representation:
■■ Establish a coordinate system and show the locations of the charges.
■■ Identify the point P at which you want to calculate the electric field.
■■ Draw the electric field of each charge at P.
■■ Use symmetry to determine if any components of E

u

net  are zero.

SOLVE The mathematical representation is E
u

net = gE
u

i.
■■ For each charge, determine its distance from P and the angle of E

u

i from the axes.
■■ Calculate the field strength of each charge’s electric field.
■■ Write each vector E

u

i in component form.
■■ Sum the vector components to determine E

u

net.

REVIEW Check that your result has correct units and significant figures, is rea
sonable (see TABLE 23.1), and agrees with any known limiting cases.

TABLE 23.1 Typical electric field strengths

Field location
Field strength  

(N/C)

Inside a current 
 carrying wire

10-3910-1

Near the earth’s  
 surface

1029104

Near objects charged  
 by rubbing

1039106

Electric breakdown in  
 air, causing a spark

3 * 106

Inside an atom 1011

Three equal point charges q are located on the yaxis at y = 0 and 
at y = {d. What is the electric field at a point on the xaxis?

MODEL This problem is a step along the way to understanding  
the electric field of a charged wire. We’ll assume that q is positive  
when drawing pictures, but the solution should allow for the  
possibility that q is negative. The question does not ask about any 
specific point, so we will be looking for a symbolic expression in 
terms of the unspecified position x.

VISUALIZE FIGURE 23.2 shows the charges, the coordinate sys
tem, and the three electric field vectors E

u

1, E
u

2, and E
u

3. Each of 
these fields points away from its source charge because of the 
assumption that q is positive. We need to find the vector sum 
E
u

net =  E
u

1 + E
u

2 + E
u

3.
Before rushing into a calculation, we can make our task much 

easier by first thinking qualitatively about the situation. For  
example, the fields E

u

1, E
u

2, and E
u

3 all lie in the xyplane, hence we  
can conclude without any calculations that 1Enet2z = 0. Next, look  

at the ycomponents of the fields. The fields E
u

1 and E
u

3 have equal  
magnitudes and are tilted away from the xaxis by the same angle  
u. Consequently, the ycomponents of E

u

1 and E
u

3 will cancel 
when added. E

u

2 has no ycomponent, so we can conclude that 
1Enet2y = 0. The only component we need to calculate is 1Enet2x.

EXAMPLE 23.1 ■ The electric field of three equal point charges

This is the point at which we
will calculate the electric field.

FIGURE 23.2 Calculating the electric field of three equal point 
charges.

Continued
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684 CHAPTER 23 The Electric Field

Limiting Cases
There are two cases for which we know what the result should be. First, let x become 
really small. As the point in Figure 23.2 approaches the origin, the fields E

u

1 and E
u

3 
become opposite to each other and cancel. Thus as x S 0, the field should be that of 
the single point charge q at the origin, a field we already know. Is it? Notice that

 lim
xS0

 
2x

1x2 + d223/2 = 0 (23.3)

Thus Enet S q/4pP0 x2 as x S 0, the expected field of a single point charge.
Now consider the opposite situation, where x becomes extremely large. From very 

far away, the three source charges will seem to merge into a single charge of size 
3q, just as three very distant lightbulbs appear to be a single light. Thus the field for 
x W d should be that of a point charge 3q. Is it?

The field is zero in the limit x S ∞  . That doesn’t tell us much, so we don’t want 
to go that far away. We simply want x to be very large in comparison to the spacing 
d between the source charges. If x W d, then the denominator of the second term of 
E
u

net is well approximated by 1x2 + d223/2 ≈ 1x223/2 = x3. Thus

 lim
x W d

 c 1

x2 +
2x

1x2 + d223/2 d =
1

x2 +
2x

x3 =
3

x2 (23.4)

Consequently, the net electric field far from the source charges is

 E
u

net1x W d2 =
1

4pP0
 
13q2

x2  in (23.5)

As expected, this is the field of a point charge 3q. These checks of limiting cases provide 
confidence in the result of the calculation.

FIGURE 23.3 is a graph of the field strength Enet  for the three charges of Example 23.1. 
Although we don’t have any numerical values, we can specify x as a multiple of the 
charge separation d. Notice how the graph matches the field of a single point charge 
when x V d and matches the field of a point charge 3q when x W d.

SOLVE We’re ready to calculate. The xcomponent of the field is

1Enet2x = 1E12x + 1E22x + 1E32x = 21E12x + 1E22x

where we used the fact that fields E
u

1 and E
u

3 have equal x 
components. Vector E

u

2 has only the xcomponent

1E22x = E2 =
1

4pP0
 
q2

r2 

2 =
1

4pP0
 
q

x2

where r2 = x is the distance from q2 to the point at which we are 
calculating the field. Vector E

u

1 is at angle u from the xaxis, so its 
xcomponent is

1E12x = E1 cos u =
1

4pP0
 
q1

r1 

2 cos u

where r1 is the distance from q1. This expression for (E1)x is correct, 
but it is not yet sufficient. Both the distance r1 and the angle u vary 
with the position x and need to be expressed as functions of x. From 
the Pythagorean theorem, r1 = 1x2 + d221/2. Thus

cos u =
x
r1

=
x

1x2 + d221/2

By combining these pieces, we see that 1E12x is

1E12x =
1

4pP0
 

q

x2 + d2 
x

1x2 + d221/2 =
1

4pP0
 

xq

1x2 + d223/2

This expression is a bit complex, but notice that the dimensions 
of x/1x2 + d223/2 are 1/m2, as they must be for the field of a point 
charge. Checking dimensions is a good way to verify that you  
haven’t made algebra errors.

We can now combine 1E12x and 1E22x to write

1Enet2x = 21E12x + 1E22x =
q

4pP0
 c 1

x2 +
2x

1x2 + d223/2 d

The other two components of E
u

net  are zero, hence the electric field 
of the three charges at a point on the xaxis is

E
u

net =
q

4pP0
 c 1

x2 +
2x

1x2 + d223/2 d  in

REVIEW This is the electric field only at points on the x-axis.  
Furthermore, this expression is valid only for x 7 0. The electric 
field to the left of the charges points in the opposite direction,  
but our expression doesn’t change sign for negative x. (This is a 
consequence of how we wrote 1E22x.) We would need to modify 
this expression to use it for negative values of x. The good news, 
though, is that our expression is valid for both positive and negative 
q. A negative value of q makes 1Enet2x negative, which would be an 
electric field pointing to the left, toward the negative charges.

x

Enet

Electric field of
point charge 3q

Electric field of
point charge q

2dd0 3d 4d
0

The electric field matches
that of a single point charge
q when x V d.

The electric field matches
that of point charge 3q
when x W d.

FIGURE 23.3 The electric field strength 
along a line perpendicular to three equal 
point charges.
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23.2 The Electric Field of Point Charges 685

The Electric Field of a Dipole
Two equal but opposite charges separated by a small distance form an electric dipole. 
FIGURE 23.4 shows two examples. In a permanent electric dipole, such as the water 
molecule, the oppositely charged particles maintain a small permanent separation. 
We can also create an electric dipole, as you learned in ❮❮ SECTION 22.3, by polarizing a 
neutral atom with an external electric field. This is an induced electric dipole.

FIGURE 23.5 shows that we can represent an electric dipole, whether permanent or  
induced, by two opposite charges {q separated by the small distance s. The dipole has  
zero net charge, but it does have an electric field. Consider a point on the positive yaxis.  
This point is slightly closer to +q than to -q, so the fields of the two charges do not cancel. 
You can see in the figure that E

u

dipole  points in the positive ydirection. Similarly, vector  
addition shows that E

u

dipole  points in the negative ydirection at points along the xaxis.
Let’s calculate the electric field of a dipole at a point on the axis of the dipole. This 

is the yaxis in Figure 23.5. The point is distance r+ = y - s/2 from the positive charge 
and r- = y + s/2 from the negative charge. The net electric field at this point has only 
a ycomponent, and the sum of the fields of the two point charges gives

  1Edipole2y = 1E+2y + 1E-2y =
1

4pP0
 

q

1y - 1
2 s22

+
1

4pP0
 

1-q2
1y + 1

2 s22
 

  =
q

4pP0
 c 1

1y - 1
2 s22

 -
1

1y + 1
2 s22

d  
(23.6)

If we combine the two terms over a common denominator (and omit some of the 
algebraic steps), we find

 1Edipole2y =
q

4pP0
 c 2ys

1 y - 1
2 s221 y + 1

2 s22
d  (23.7)

In practice, we almost always observe the electric field of a dipole at distances 
y W s—that is, for distances much larger than the charge separation. In such cases, the 
denominator can be approximated 1y - 1

2 s221y + 1
2 s22 ≈ y4. With this approximation, 

Equation 23.7 becomes

 1Edipole2y ≈
1

4pP0
 
2qs

y3  (23.8)

Because we assumed y W s, Equation 23.8 is called the far field of the dipole.
It is useful to define the dipole moment pu, shown in FIGURE 23.6, as the vector

 pu = (qs, from the negative to the positive charge) (23.9)

The direction of pu identifies the orientation of the dipole, and the dipolemoment  
magnitude p = qs determines the electric field strength. The SI units of the dipole 
moment are C m.

We can use the dipole moment to write a succinct expression for the far field at a 
point on the axis of a dipole:

 E
u

dipole = -
1

4pP0
 
2p

u

r3  (far field on the axis) (23.10)

where r is the distance measured from the center of the dipole. We’ve switched from y to r 
because we’ve now specified that Equation 23.10 is valid only along the axis of the dipole. 
Notice that the electric field along the axis points in the direction of the dipole moment pu.

A homework problem will let you calculate the electric field in the plane that bisects 
the dipole. This is the field shown on the xaxis in Figure 23.5, but it could equally well 
be the field on the zaxis as it comes out of the page. The field, for r W s, is

 E
u

dipole = -
1

4pP0
 

p
u

r3 
  (far field in the bisecting plane) (23.11)

This dipole is induced, or stretched, by
the electric field acting on the + and -
charges.

A water molecule is a permanent dipole
because the negative electrons spend
more time with the oxygen atom.

O
H H E

u
E
u

FIGURE 23.4 Permanent and induced 
electric dipoles.

E+
u

E-
u

Edipole

u

E+
u

E-
u

Edipole

u

x

y

s

A dipole
has no net
charge.

-q

+q

The dipole electric field
at this point is in the
positive y-direction.

The dipole electric field
at this point is in the
negative y-direction.

u u
E+ 7 E-
because the
+ charge is
closer.

FIGURE 23.5 The dipole electric field at 
two points.

-q

+qs

The dipole moment p is a
vector pointing from the
negative to the positive
charge with magnitude qs.

p
u

u

FIGURE 23.6 The dipole moment.
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686 CHAPTER 23 The Electric Field

This field is opposite to pu, and it is only half the strength of the onaxis field at the same 
distance.

   NOTE    Do these inversecube equations violate Coulomb’s law? Not at all. Coulomb’s 
law describes the force between two point charges, and from Coulomb’s law we 
found that the electric field of a point charge varies with the inverse square of the 
distance. But a dipole is not a point charge. The field of a dipole decreases more 
rapidly than that of a point charge, which is to be expected because the dipole is, 
after all, electrically neutral.

The water molecule H2O has a permanent dipole moment of  
magnitude 6.2 * 10-30 C m. What is the electric field strength  
1.0 nm from a water molecule at a point on the dipole’s axis?

MODEL The size of a molecule is ≈0.1 nm. Thus r W s, and we 
can use Equation 23.10 for the onaxis electric field of the molecule’s 
dipole moment.

SOLVE The onaxis electric field strength at r = 1.0 nm is

  E ≈
1

4pP0
 
2p

r3 = 19.0 * 109 N m2/C22 
216.2 * 10-30 C m2
11.0 * 10-9 m23

  = 1.1 * 108 N/C

REVIEW By referring to Table 23.1 you can see that the field strength 
is “strong” compared to our everyday experience with charged  
objects but “weak” compared to the electric field inside the atoms  
themselves. This seems reasonable.

EXAMPLE 23.2 ■ The electric field of a water molecule

Electric Field Lines
We can’t see the electric field. Consequently, we need pictorial tools to help us visu
alize it in a region of space. One method, introduced in Chapter 22, is to picture the 
electric field by drawing electric field vectors at various points in space. Another way 
to picture the field is to draw electric field lines. As FIGURE 23.7 shows,

■■ Electric field lines are continuous curves tangent to the electric field vectors.
■■ Closely spaced field lines indicate a greater field strength; widely spaced field lines 

indicate a smaller field strength.
■■ Electric field lines start on positive charges and end on negative charges.
■■ Electric field lines never cross.

The third bullet point follows from the fact that electric fields are created by charge. 
However, we will have to modify this idea in Chapter 30 when we find another way 
to create an electric field.

FIGURE 23.8 shows three electric fields represented by electric field lines. Notice that 
the electric field of a dipole points in the direction of pu (right to left) on both sides of 
the dipole, but points opposite to pu (left to right) in the bisecting plane.

Field line

The field vectors are 
tangent to the field lines.

The field is stronger
where the field lines
are closer together.

Field vector

FIGURE 23.7 Electric field lines.

(c)(b)(a) Field vectors

FIGURE 23.8 The electric field lines of (a) a positive point charge, (b) a negative point charge, and (c) a dipole.
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23.3 The Electric Field of a Continuous Charge Distribution 687

Neither fieldvector diagrams nor fieldline diagrams are perfect pictorial repre
sentations of an electric field. The field vectors are somewhat harder to draw, and 
they show the field at only a few points, but they do clearly indicate the direction and 
strength of the electric field at those points. Fieldline diagrams perhaps look more 
elegant, and they’re sometimes easier to sketch, but there’s no formula for knowing 
where to draw the lines. We’ll use both fieldvector diagrams and fieldline diagrams, 
depending on the circumstances.

STOP TO THINK 23.1 At the dot, the electric field points

a. Left. b. Right.
c. Up. d. Down.
e. The electric field is zero.

23.3  The Electric Field of a Continuous 
Charge Distribution

Ordinary objects—tables, chairs, beakers of water—seem to our senses to be contin
uous distributions of matter. There is no obvious evidence for atoms, even though we 
have good reasons to believe that we would find atoms if we subdivided the matter 
sufficiently far. Thus it is easier, for many practical purposes, to consider matter to be 
continuous and to talk about the density of matter. Density—the number of kilograms 
of matter per cubic meter—allows us to describe the distribution of matter as if the 
matter were continuous rather than atomic.

Much the same situation occurs with charge. If a charged object contains a large 
number of excess electrons—for example, 1012 extra electrons on a metal rod—it is 
not practical to track every electron. It makes more sense to consider the charge to be 
continuous and to describe how it is distributed over the object.

FIGURE 23.9a shows an object of length L, such as a plastic rod or a metal wire, with 
charge Q spread uniformly along it. (We will use an uppercase Q for the total charge 
of an object, reserving lowercase q for individual point charges.) The linear charge 
density l is defined to be

 l =
Q

L
 (23.12)

Linear charge density, which has units of C/m, is the amount of charge per meter 
of length. The linear charge density of a 20cmlong wire with 40 nC of charge is 
2.0 nC/cm or 2.0 * 10-7 C/m.

 NOTE   The linear charge density l is analogous to the linear mass density m that you 
used in Chapter 16 to find the speed of a wave on a string.

We’ll also be interested in charged surfaces. FIGURE 23.9b shows a twodimensional 
distribution of charge across a surface of area A. We define the surface charge 
density h (lowercase Greek eta) to be

 h =
Q

A
 (23.13)

Surface charge density, with units of C/m2, is the amount of charge per square 
meter. A 1.0 mm * 1.0 mm square on a surface with h = 2.0 * 10-4 C/m2 contains 
2.0 * 10-10 C or 0.20 nC of charge. (The volume charge density r = Q/V, measured 
in C/m3, will be used in Chapter 24.)

(b) Charge Q on a surface of area A. The
surface charge density is h = Q/A.

The charge in a small
area ∆A is ∆Q = h∆A.

Area A

(a) Charge Q on a rod of
length L. The linear
charge density is
l = Q/L.

The charge in a small
length ∆L is ∆Q = l∆L.

L

∆L

FIGURE 23.9 One-dimensional and 
two-dimensional continuous charge 
distributions.
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688 CHAPTER 23 The Electric Field

Figure 23.9 and the definitions of Equations 23.12 and 23.13 assume that the object 
is uniformly charged, meaning that the charges are evenly spread over the object. 
We will assume objects are uniformly charged unless noted otherwise.

 NOTE   Some textbooks represent the surface charge density with the symbol s. 
Because s is also used to represent conductivity, an idea we’ll introduce in Chapter 27,  
we’ve selected a different symbol for surface charge density.

L0

Total charge Q

The rod’s linear charge
density is l.

The charge in a small
length dx is dQ = ldx.

dx

x

FIGURE 23.10 Setting up an integral to 
calculate the charge on a rod.

STOP TO THINK 23.2 A piece of plastic is uniformly charged with surface 
charge density hA . The plastic is then broken into a large piece with surface 
charge density hB and a small piece with surface charge density hC . Rank in 
order, from largest to smallest, the surface charge densities hA to hC .

hA hB hC

Integration Is Summation
Calculating the electric field of a continuous charge distribution usually requires setting  
up and evaluating integrals—a skill you’ve been learning in calculus. It is common 
to think that “an integral is the area under a curve,” an idea we used in our study of  
kinematics.

But integration is much more than a tool for finding areas. More generally, integration 
is summation. That is, an integral is a sophisticated way to add an infinite number  
of infinitesimally small pieces. The area under a curve happens to be a special case in  
which you’re summing the small areas y1x2 dx of an infinite number of tall, narrow  
boxes, but the idea of integration as summation has many other applications.

Suppose, for example, that a charged object is divided into a large number 
of small pieces numbered i = 1, 2, 3, c, N having small quantities of charge 
∆Q1, ∆Q2, ∆Q3, c   , ∆QN. Figure 23.9 showed small pieces of charge for a charged 
rod and a charged sheet, but the object could have any shape. The total charge on the 
object is found by summing all the small charges:

 Q = a
N

i=1
∆Qi (23.14)

If we now let ∆Qi S 0 and N S ∞   , then we define the integral:

 Q = lim
∆QS0 a

N

i=1
∆Qi = 3

object

dQ (23.15)

That is, integration is the summing of an infinite number of infinitesimally small 
pieces of charge. This use of integration has nothing to do with the area under a curve.

Although Equation 23.15 is a formal statement of “add up all the little pieces,” it’s 
not yet an expression that can actually be integrated with the tools of calculus. Integrals 
are carried out over coordinates, such as dx or dy, and we also need coordinates to 
specify what is meant by “integrate over the object.” This is where densities come in.

Suppose we want to find the total charge of a thin, charged rod of length L. First, we 
establish an xaxis with the origin at one end of the rod, as shown in FIGURE 23.10. Then 
we divide the rod into lots of tiny segments of length dx. Each of these little segments  
has a charge dQ, and the total charge on the rod is the sum of all the dQ values—that’s 
what Equation 23.15 is saying. Now the critical step: The rod has some linear charge den
sity l. Consequently, the charge of a small segment of the rod is dQ = l dx. Densities 
are the link between quantities and coordinates. Finally, “integrate over the rod”  
means to integrate from x = 0 to x = L. Thus the total charge on the rod is

 Q = 3
rod

dQ = 3
L

0
l dx (23.16)
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23.3 The Electric Field of a Continuous Charge Distribution 689

Now we have an expression that can be integrated. If l is constant, as it is for a uni
formly charged rod, we can take it outside the integral to find Q = l  L. But we could 
also use Equation 23.16 for a nonuniformly charged rod where l is some function of x.

This discussion reveals two key ideas that will be needed for calculating electric fields:

■■ Integration is the tool for summing a vast number of small pieces.
■■ Density is the connection between quantities and coordinates.

A Problem-Solving Strategy
Our goal is to find the electric field of a continuous distribution of charge, such as a 
charged rod or a charged disk. We have two basic tools to work with:

■■ The electric field of a point charge, and
■■ The principle of superposition.

We can apply these tools with a threestep strategy:

1. Divide the total charge Q into many small pointlike charges ∆Q.
2. Use our knowledge of the electric field of a point charge to find the electric field 

of each ∆Q.
3. Calculate the net field E

u

net by summing the fields of all the ∆Q.

As you’ve no doubt guessed, we’ll let the sum become an integral.
We will go step by step through several examples to illustrate the procedures. 

However, we first need to flesh out the steps of the problemsolving strategy. The aim 
of this problemsolving strategy is to break a difficult problem down into small steps 
that are individually manageable.

PROBLEM-SOLVING STRATEGY 23.2

The electric field of a continuous distribution of charge

MODEL Model the charge distribution as a simple shape.

VISUALIZE For the pictorial representation:
■■ Draw a picture, establish a coordinate system, and identify the point P at  
which you want to calculate the electric field.

■■ Divide the total charge Q into small pieces of charge ∆Q, using shapes for 
which you already know how to determine E

u
. This is often, but not always, a 

division into point charges.
■■ Draw the electric field vector at P for one or two small pieces of charge. This 
will help you identify distances and angles that need to be calculated.

SOLVE The mathematical representation is E
u

net = gE
u

i.
■■ Write an algebraic expression for each of the three components of E

u
 (unless 

you are sure one or more is zero) at point P. Let the 1x, y, z2 coordinates of the 
point remain variables.

■■ Replace the small charge ∆Q with an equivalent expression involving a charge 
density and a coordinate, such as dx. This is the critical step in making the 
transition from a sum to an integral because you need a coordinate to serve 
as the integration variable.

■■ Express all angles and distances in terms of the coordinates.
■■ Let the sum become an integral. The integration limits for this variable must 
“cover” the entire charged object.

REVIEW Check that your result is consistent with any limits for which you know 
what the field should be.

Exercise 16 
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690 CHAPTER 23 The Electric Field

FIGURE 23.11 shows a thin, uniformly charged rod of length L with 
total charge Q. Find the electric field strength at radial distance r in 
the plane that bisects the rod.

MODEL The rod is thin, so we’ll assume the charge lies along a line 
and forms what we call a line of charge. The rod’s linear charge 
density is l = Q/L.

VISUALIZE FIGURE 23.12 illustrates the steps of the problemsolving 
strategy. Distance r is simply a distance; we need a coordinate sys
tem to carry out the calculation. We’ve chosen a coordinate system 
in which the rod lies along the yaxis and point P, in the bisecting 
plane, is at distance x on the xaxis. We’ll calculate the field at this 
point and then, at the end, replace x with the more generic r. We’ve 
then divided the rod into N small segments of charge ∆Q, each of 
which is small enough to model as a point charge. For every ∆Q in 
the bottom half of the wire with a field that points to the right and 
up, there’s a matching ∆Q in the top half whose field points to the 
right and down. The ycomponents of these two fields cancel, hence 
the net electric field on the x-axis points straight away from the 
rod. The only component we need to calculate is Ex.

SOLVE Each of the little segments of charge can be modeled as a 
point charge. We know the electric field of a point charge, so we 
can write the xcomponent of E

u

i, the electric field of segment i, as

1Ei2x = Ei cos ui =
1

4pP0
 
∆Q

ri 

2  cos ui

where ri is the distance from charge i to point P. You can see from 
the figure that ri = 1yi 

2 + x221/2 and cos ui = x/ri = x/1yi 

2 + x221/2. 
With these, 1Ei2x is

  1Ei2x =
1

4pP0
 

∆Q

yi 

2 + x2 
x2yi 

2 + x2

  =
1

4pP0
 

x ∆Q

1yi 

2 + x223/2

If we now sum this expression over all the charge segments, the net 
xcomponent of the electric field is

Ex = a
N

i=1
1Ei2x =

1
4pP0

 a
N

i=1
 

x ∆Q

1 yi 

2 + x223/2

This is the same superposition we did for the N = 3 case in Exam
ple 23.1. The only difference is that we have now written the result 
as an explicit summation so that N can have any value. We want to 
let N S ∞  and to replace the sum with an integral, but we can’t 
integrate over Q; it’s not a geometric quantity. This is where the 
linear charge density enters. The quantity of charge in each segment 
is related to its length ∆y by ∆Q = l ∆y = 1Q/L2∆y. In terms of 
the linear charge density, the electric field is

Ex =
Q/L

4pP0
 a

N

i=1
 

x ∆y

1yi 

2 + x223/2

Now we’re ready to let the sum become an integral. If we let N S ∞  , 
then each segment becomes an infinitesimal length ∆y S dy while 
the discrete position variable yi becomes the continuous integration 
variable y. The sum from i = 1 at the bottom end of the line of 
charge to i = N at the top end will be replaced with an integral from 
y = -L/2 to y = +L/2. Thus in the limit N S ∞  ,

Ex =
Q/L

4pP0
 3

L/2

-L/2
 

x dy

1y2 + x223/2

This is a standard integral that you have learned to do in calculus 
and that can be found in Appendix A. Note that x is a constant as far 
as this integral is concerned. Integrating gives

  Ex =
Q/L

4pP0
 

y

x 2y2 + x2
 `

L/2

-L/2

  =
Q/L

4pP0
 c L /2

x 21L /222 + x2
-

-L /2

x 21-L /222 + x2
d

  =
1

4pP0
 

Q

x 2x2 + 1L /222

The field depends on only the distance r from the wire, not on a specific 
coordinate system, so we can now replace x with r to write that the elec
tric field strength Erod  at distance r from the center of a charged rod is

Erod =
1

4pP0
 

0Q 0
r 2r2 + 1L/222

The field strength must be positive, so we added absolute value 
signs to Q to allow for the possibility that the charge could be nega
tive. The only restriction is to remember that this is the electric field 
at a point in the plane that bisects the rod.

REVIEW Suppose we are at a point very far from the rod. If r W L, 
the rod appears to be a point charge Q in the distance. Thus in 
the limiting case r W L, we expect the rod’s electric field to 
be that of a point charge. If r W L, the square root becomes 
1r2 + 1L/22221/2 ≈ 1r221/2 = r and the electric field strength at dis
tance r becomes Erod ≈ Q/4pP0r

2, the field of a point charge. The 
fact that our expression of Erod has the correct limiting behavior gives 
us confidence that we haven’t made any mistakes in its derivation.

EXAMPLE 23.3 ■ The electric field of a line of charge

L r

Total charge Q

What is the electric
field at this point?

The linear charge
density is l = Q/L.

FIGURE 23.11 A thin, uniformly charged rod.

Draw field vectors at P to establish distances 
and angles. Note how the y-components from 
symmetrically opposed charge segments cancel. 

Divide the rod into N small segments
of length ∆y and charge ∆Q = l∆y.

FIGURE 23.12 Calculating the electric field of a line of charge.
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23.4 The Electric Fields of Some Common Charge Distributions 691

An Infinite Line of Charge
What if the rod or wire becomes very long, becoming a line of charge, while the 
linear charge density l remains constant? To answer this question, we can rewrite the 
expression for Erod by factoring 1L /222 out of the denominator:

Erod =
1

4pP0
 
0Q 0

r # L /2
 

121 + 4r2/L2
=

1
4pP0

 
2 0 l 0

r
 

121 + 4r2/L2

where 0 l 0 = 0Q 0 /L is the magnitude of the linear charge density. If we now let L S ∞   , 
the last term becomes simply 1 and we’re left with

E
u

line = 1 1
4pP0

 
2 �l�

r
, e away from line if charge +

toward line if charge - 2 (line of charge) (23.17)

where we’ve now included the field’s direction. FIGURE 23.13 shows the electric field 
vectors of an infinite line of positive charge. The vectors would point inward for a 
negative line of charge.

 NOTE   Unlike a point charge, for which the field decreases as 1/r2, the field of an 
infinitely long charged wire decreases more slowly—as only 1/r.

The infinite line of charge is the second of our important electric field models. 
Although no real wire is infinitely long, the field of a realistic finitelength wire is 
well approximated by Equation 23.17 except at points near the end of the wire.

STOP TO THINK 23.3 Which of the following actions will increase the electric field strength at the position 
of the dot?

a. Make the rod longer without changing the charge.
b. Make the rod shorter without changing the charge.
c. Make the rod wider without changing the charge.
d. Make the rod narrower without changing the charge.

e. Add charge to the rod.
f. Remove charge from the rod.
g. Move the dot farther from the rod.
h. Move the dot closer to the rod.

Charged rod

23.4  The Electric Fields of Some Common 
Charge Distributions

In this section we’ll derive the electric fields for several important charge distributions.

Infinite line of charge

The field points straight away
from the line at all pointsc

cand its strength 
decreases with distance.

FIGURE 23.13 The electric field of an 
infinite line of charge.

A thin ring of radius R is uniformly charged with total charge Q. 
Find the electric field at a point on the axis of the ring (perpendic
ular to the ring).

MODEL Because the ring is thin, we’ll assume the charge lies along 
a circle of radius R. You can think of this as a line of charge of 
length 2pR wrapped into a circle. The linear charge density along 
the ring is l = Q/2pR.

VISUALIZE FIGURE 23.14 on the next page shows the ring and il
lustrates the steps of the problemsolving strategy. We’ve chosen a 
coordinate system in which the ring lies in the xyplane and point P 
is on the zaxis. We’ve then divided the ring into N small segments 
of charge ∆Q, each of which can be modeled as a point charge. As 
you can see from the figure, the component of the field perpendic
ular to the axis cancels for two diametrically opposite segments. 
Thus we need to calculate only the zcomponent Ez.

EXAMPLE 23.4 ■ The electric field of a ring of charge

Continued
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692 CHAPTER 23 The Electric Field

FIGURE 23.15 shows two representations of the onaxis electric field of a positively 
charged ring. Figure 23.15a shows that the electric field vectors point away from the 
ring, increasing in length until reaching a maximum when 0 z 0 ≈ R, then decreasing. 
The graph of 1Ering2z in Figure 23.15b confirms that the field strength has a maximum 
on either side of the ring. Notice that the electric field at the center of the ring is zero, 
even though this point is surrounded by charge. You might want to spend a minute 
thinking about why this has to be the case.

A Disk of Charge
FIGURE 23.16 shows a disk of radius R that is uniformly charged with charge Q. This is 
a mathematical disk, with no thickness, and its surface charge density is

 h =
Q

A
=

Q

pR2 (23.18)

We would like to calculate the onaxis electric field at distance z from the center of 
this disk. Our problemsolving strategy tells us to divide a continuous charge into seg
ments for which we already know how to find E

u
. Because we now know the onaxis 

electric field of a ring of charge, let’s divide the disk into N very narrow rings of radius 
r and width ∆r. One such ring, with radius ri and charge ∆Qi, is shown.

We need to be careful with notation. The R in Example 23.4 was the radius of the 
ring. Now we have many rings, and the radius of ring i is ri. Similarly, Q was the charge 
on the ring. Now the charge on ring i is ∆Qi, a small fraction of the total charge on the 
disk. With these changes, the electric field at distance z of ring i, with radius ri, is

 1Ei2z =
1

4pP0
 

z ∆Qi

1z2 + ri 

223/2 (23.19)

The onaxis electric field of the charged disk is the sum of the electric fields of all 
of the rings:

 1Edisk2z = a
N

i=1
1Ei2z =

z
4pP0

 a
N

i=1
 

∆Qi

1z2 + ri 

223/2 (23.20)

SOLVE The zcomponent of the electric field due to segment i is

1Ei2z = Ei cos ui =
1

4pP0
 
∆Q

ri 

2  cos ui

You can see from the figure that every segment of the ring, independent 
of i, has

ri = 2z2 + R2

cos ui =
z
ri

=
z2z2 + R2

Consequently, the field of segment i is

1Ei2z =
1

4pP0
 

∆Q

z2 + R2 
z2z2 + R2

=
1

4pP0
 

z

1z2 + R223/2 ∆Q

The net electric field is found by summing 1Ei2z due to all N segments:

Ez = a
N

i=1
1Ei2z =

1
4pP0

 
z

1z2 + R223/2 a
N

i=1
∆Q

We were able to bring all terms involving z to the front because z is 
a constant as far as the summation is concerned. Surprisingly, we 
don’t need to convert the sum to an integral to complete this calcu
lation. The sum of all the ∆Q around the ring is simply the ring’s 
total charge, g∆Q = Q, hence the field on the axis is

1Ering2z =
1

4pP0
 

zQ

1z2 + R223/2

This expression is valid for both positive and negative z (i.e., on 
either side of the ring) and for both positive and negative charge.

REVIEW It will be left as a homework problem to show that this 
result gives the expected limit when z W R.

P

ui

ri

ui z

z

y

x

R

Segment i
with charge
∆Q

Divide the ring into segments.

The field perpendicular
to the axis cancels for
two diametrically
opposed segments.

Ei

u

FIGURE 23.14 Calculating the on-axis electric field of a ring of charge.

z

(Ering)z

-R-2R R 2R

(b)

(a)

Maximum
field strength

The field is zero
in the center.

FIGURE 23.15 The on-axis electric field of 
a ring of charge.
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23.4 The Electric Fields of Some Common Charge Distributions 693

The critical step, as always, is to relate ∆Q to a coordinate. Because we now have a  
surface, rather than a line, the charge in ring i is ∆Q = h ∆Ai, where ∆Ai is the 
area of ring i. We can find ∆Ai, as you’ve learned to do in calculus, by “unrolling” 
the ring to form a narrow rectangle of length 2pri and width ∆r. Thus the area of 
ring i is ∆Ai = 2pri ∆r and the charge is ∆Qi = 2phri ∆r. With this substitution,  
Equation 23.20 becomes

 1Edisk2z =
hz

2P0
 a

N

i=1
 

ri ∆r

1z2 + ri 

223/2 (23.21)

As N S ∞ , ∆r S dr and the sum becomes an integral. Adding all the rings means 
integrating from r = 0 to r = R; thus

 1Edisk2z =
hz

2P0
 3

R

0

r dr

1z2 + r223/2 (23.22)

All that remains is to carry out the integration. This is straightforward if we make 
the variable change u = z2 + r2. Then du = 2r dr or, equivalently, r dr = 1

2 du. At the 
lower integration limit r = 0, our new variable is u = z2. At the upper limit r = R, the 
new variable is u = z2 + R2.

 NOTE   When changing variables in a definite integral, you must also change the 
limits of integration.

With this variable change the integral becomes

1Edisk2z =
hz

2P0
 
1
2

 3
z2+R2

z2

du

u3/2 =
hz

4P0
 
-2

u1/2 `
z2+R2

z2
=

hz

2P0
 c 1

z
 -

12z2 + R2
d  (23.23)

If we multiply through by z, the onaxis electric field of a charged disk with surface 
charge density h = Q/pR2 is

 1Edisk2z =
h

2P0
 c 1 -

z2z2 + R2
d  (23.24)

 NOTE   This expression is valid only for z 7 0. The field for z 6 0 has the same 
magnitude but points in the opposite direction.

Limiting Cases
It’s a bit difficult to see what Equation 23.24 is telling us, so let’s compare it to what we 
already know. First, you can see that the quantity in square brackets is dimensionless. 
The surface charge density h = Q/A has the same units as q/r2, so h/2P0 has the same  
units as q/4pP0 r2. This tells us that h/2P0 really is an electric field.

Next, let’s move very far away from the disk. At distance z W R, the disk appears 
to be a point charge Q in the distance and the field of the disk should approach that 
of a point charge. If we let z S ∞  in Equation 23.24, so that z2 + R2 ≈ z2, we find 
1Edisk2z S 0. This is true, but not quite what we wanted. We need to let z be very large 
in comparison to R, but not so large as to make Edisk vanish. That requires a little more 
care in taking the limit.

We can cast Equation 23.24 into a somewhat more useful form by factoring the z2 
out of the square root to give

 1Edisk2z =
h

2P0
 c 1 -

121 + R2/z2
d  (23.25)

Now R2/z2 V 1 if z W R, so the second term in the square brackets is of the form 
11 + x2-1/2 where x V 1. We can then use the binomial approximation

11 + x2n ≈ 1 + nx if x V 1  (binomial approximation)

2pri

Area ∆Ai = 2pri ∆r
∆r

∆r

Field due
to ring i

Ring i with radius ri and
area ∆Ai. If we unroll the
ring it looks as shown below.

z

R

ri

Disk with
radius R and
charge Q

The charge of
the ring is ∆Qi.

Ei

u

FIGURE 23.16 Calculating the on-axis field 
of a charged disk.
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694 CHAPTER 23 The Electric Field

to simplify the expression in square brackets:

 1 -
121 + R2/z2

= 1 - 11 + R2/z22-1/2 ≈ 1 - 11 + 1-  
1
22 

R2

z2 2 =
R2

2z2 (23.26)

This is a good approximation when z W R. Substituting this approximation into 
Equation 23.25, we find that the electric field of the disk for z W R is

 1Edisk2z ≈
h

2P0
 
R2

2z2 =
Q/pR2

4P0
 
R2

z2 =
1

4pP0
 
Q

z2  if z W R (23.27)

This is, indeed, the field of a point charge Q, giving us confidence in Equation 23.24 
for the onaxis electric field of a disk of charge.

A 10cmdiameter plastic disk is charged uniformly with an extra 
1011 electrons. What is the electric field 1.0 mm above the surface 
at a point near the center?

MODEL Model the plastic disk as a uniformly charged disk. We are 
seeking the onaxis electric field. Because the charge is negative, 
the field will point toward the disk.

SOLVE The total charge on the plastic square is Q = N1-e) =  
-1.60 * 10-8 C. The surface charge density is

h =
Q

A
=

Q

pR2 =
-1.60 * 10-8 C

p10.050 m22 = -2.04 * 10-6 C/m2

The electric field at z = 0.0010 m, given by Equation 23.25, is

Ez =
h

2P0
 c 1 -

121 + R2/z2
d = -1.1 * 105  N/C

The minus sign indicates that the field points toward, rather than 
away from, the disk. As a vector,

E
u

= 11.1 * 105 N/C, toward the disk2
REVIEW The total charge, -16 nC, is typical of the amount of 
charge produced on a small plastic object by rubbing or friction. 
Thus 105 N/C is a typical electric field strength near an object that 
has been charged by rubbing, as you saw in Table 23.1.

EXAMPLE 23.5 ■ The electric field of a charged disk

A Plane of Charge
Many electronic devices use charged, flat surfaces—disks, squares, rectangles, and 
so on—to steer electrons along the proper paths. These charged surfaces are called 
electrodes. Although any real electrode is finite in extent, we can often model an 
electrode as an infinite plane of charge. As long as the distance z to the electrode is 
small in comparison to the distance to the edges, we can reasonably treat the edges as 
if they are infinitely far away.

The electric field of a plane of charge is found from the onaxis field of a charged 
disk by letting the radius R S ∞. That is, a disk with infinite radius is an infinite 
plane. From Equation 23.24, we see that the electric field of a plane of charge with 
surface charge density h is

 Eplane =
h

2P0
= constant (23.28)

This is a simple result, but what does it tell us? First, the field strength is directly 
proportional to the charge density h: more charge, bigger field. Second, and more 
interesting, the field strength is the same at all points in space, independent of the 
distance z. The field strength 1000 m from the plane is the same as the field strength 
1 mm from the plane.

How can this be? It seems that the field should get weaker as you move away 
from the plane of charge. But remember that we are dealing with an infinite plane of 
charge. What does it mean to be “close to” or “far from” an infinite object? For a disk 
of finite radius R, whether a point at distance z is “close to” or “far from” the disk is a 
comparison of z to R. If z V R, the point is close to the disk. If z W R, the point is 
far from the disk. But as R S ∞, we have no scale for distinguishing near and far. In 
essence, every point in space is “close to” a disk of infinite radius.

No real plane is infinite in extent, but we can interpret Equation 23.28 as saying 
that the field of a surface of charge, regardless of its shape, is a constant h/2P0 for those 
points whose distance z to the surface is much smaller than their distance to the edge.
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23.5 The Parallel-Plate Capacitor 695

We do need to note that the derivation leading to Equation 23.28 considered only 
z 7 0. For a positively charged plane, with h 7 0, the electric field points away from 
the plane on both sides of the plane. This requires Ez 6 0 (E

u
 pointing in the negative 

zdirection) on the side with z 6 0. Thus a complete description of the electric field, 
valid for both sides of the plane and for either sign of h, is

 E
u

plane = 1 �h �
2P0

, e away from plane if charge +
toward plane if charge - 2 (plane of charge) (23.29)

The infinite plane of charge is the third of our important electric field models.
FIGURE 23.17 shows two views of the electric field of a positively charged plane. All 

the arrows would be reversed for a negatively charged plane. It would have been very 
difficult to anticipate this result from Coulomb’s law or from the electric field of a single  
point charge, but step by step we have been able to use the concept of the electric field 
to look at increasingly complex distributions of charge.

A Sphere of Charge
The one last charge distribution for which we need to know the electric field is a 
sphere of charge. This problem is analogous to wanting to know the gravitational 
field of a spherical planet or star. The procedure for calculating the field of a sphere of 
charge is the same as we used for lines and planes, but the integrations are significantly 
more difficult. We will skip the details of the calculations and, for now, simply assert 
the result without proof. In Chapter 24 we’ll use an alternative procedure to find the  
field of a sphere of charge.

A sphere of charge Q and radius R, be it a uniformly charged sphere or just a spheri
cal shell, has an electric field outside the sphere 1r Ú R2 that is exactly the same as that  
of a point charge Q located at the center of the sphere:

 E
u

sphere =
Q

4pP0r
2 rn  for r Ú R (23.30)

This assertion is analogous to our earlier assertion that the gravitational force between 
stars and planets can be computed as if all the mass is at the center.

FIGURE 23.18 shows the electric field of a sphere of positive charge. The field of a 
negative sphere would point inward.

+Q

The electric field outside a sphere or spherical
shell is the same as the field of a point charge
Q at the center.

FIGURE 23.18 The electric field of a sphere 
of positive charge.

E
uPerspective view

FIGURE 23.17 Two views of the electric 
field of a plane of charge.

E
uEdge view

STOP TO THINK 23.4 Rank in order, from  
largest to smallest, the electric field strengths  
E1 to E5 at these five points near a plane of 
charge.

3

1

2

4 5

23.5 The Parallel-Plate Capacitor
FIGURE 23.19 shows two metal plates called electrodes, one with charge +Q and the 
other with -Q, placed facetoface a distance d apart. This arrangement of two 
electrodes, charged equally but oppositely, is called a parallel-plate capacitor. 
Capacitors play important roles in many electric circuits. Our goal is to find the elec
tric field both inside the capacitor (i.e., between the plates) and outside the capacitor.

 NOTE   The net charge of a capacitor is zero. Capacitors are charged by transferring 
electrons from one plate to the other. The plate that gains N electrons has charge 
-Q = N1-e). The plate that loses electrons has charge +Q. The symbol Q that we 
will use in equations refers to the magnitude of the charge on each plate.

d

Area A

+Q -Q

FIGURE 23.19 A parallel-plate capacitor.
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696 CHAPTER 23 The Electric Field

FIGURE 23.20 is an enlarged view of the capacitor plates, seen from the side. We will 
assume that the plate separation d is much smaller than their diameter, so the “broken 
off” look at the top and bottom indicates that the plates extend far above and below 
what we see in the figure. Because opposite charges attract, all of the charge is on the 
inner surfaces of the two plates. Thus the inner surfaces of the plates can be modeled 
as two planes of charge with equal but opposite surface charge densities. As you can 
see from the figure, at all points in space the electric field E

u

+ of the positive plate 
points away from the plane of positive charges. Similarly, the field E

u

- of the negative 
plate everywhere points toward the plane of negative charges.

 NOTE   You might think the right capacitor plate would somehow “block” the electric 
field created by the positive plate and prevent the presence of an E

u

+ field to the right 
of the capacitor. To see that it doesn’t, consider an analogous situation with gravity. 
The strength of gravity above a table is the same as its strength below it. Just as the 
table doesn’t block the earth’s gravitational field, intervening matter or charges do 
not alter or block an object’s electric field.

Outside the capacitor, E
u

+ and E
u

- point in opposite directions. Because the field of 
a plane of charge is independent of the distance from the plane, the fields also have 
equal magnitudes. Consequently, the fields E

u

+ and E
u

- add to zero outside the capaci
tor plates. There’s no electric field outside an ideal parallelplate capacitor.

Inside the capacitor, between the electrodes, field E
u

+ points from positive to negative 
and has magnitude h/2P0 = Q/2P0A, where A is the surface area of each electrode. 
Field E

u

- also points from positive to negative and also has magnitude Q/2P0 A, so the 
inside field E

u

+ + E
u

- is twice that of a plane of charge. Thus

 E
u

capacitor = • 1 Q

P0 A
, from positive to negative  2 inside

 0
u

outside

 (23.31)

FIGURE 23.21a shows the electric field—this time using field lines—of an ideal 
parallelplate capacitor. No real capacitor is infinite in extent, but the ideal 
 parallelplate capacitor is a very good approximation for all but the most precise 
calculations as long as the electrode separation d is much smaller than the elec
trodes’ size. FIGURE 23.21b shows that the interior field of a real capacitor is virtually 
identical to that of an ideal capacitor but that the exterior field isn’t quite zero. This 
weak field outside the capacitor is called the fringe field. We will always assume 
that the plates are very close together and use Equation 23.31 for the field inside a 
parallelplate capacitor.

 NOTE   The shape of the electrodes—circular or square or any other shape—is not 
relevant as long as the electrodes are very close together.

(b) Real capacitor—edge view

d

Enet = 0

Inside the capacitor,
E+ and E- are parallel,
so the net field is large.

The capacitor’s charge resides on the
inner surfaces as planes of charge.

Outside the capacitor,
E+ and E- are opposite,
so the net field is zero.

Edge view
of electrodes

Enet
u u

E+
u E+

u

E-
u

E+
u

E-
u

E-
u

u u u u

u
Enet = 0
u u

FIGURE 23.20 The electric fields inside 
and outside a parallel-plate capacitor.

The field is uniform.

(a) Ideal capacitor—edge view

FIGURE 23.21 Ideal versus real capacitors.

Two 1.0 cm * 2.0 cm rectangular electrodes are 1.0 mm apart. 
What charge must be placed on each electrode to create a uniform 
electric field of strength 2.0 * 106 N/C? How many electrons must 
be moved from one electrode to the other to accomplish this?

MODEL The electrodes can be modeled as an ideal parallelplate 
capacitor because the spacing between them is much smaller than 
their lateral dimensions.

SOLVE The electric field strength between the plates of a capacitor 
is E = Q/P0 A. Thus the charge to produce a field of strength E is

  Q = 18.85 * 10-12 C2/N m2212.0 * 10-4 m2212.0 * 106 N/C2
  = 3.5 * 10-9 C = 3.5 nC

The positive plate must be charged to +3.5 nC and the negative 
plate to -3.5 nC. In practice, the plates are charged by using a 
battery to move electrons from one plate to the other. The number 
of electrons in 3.5 nC is

N =
Q

e
=

3.5 * 10-9 C

1.60 * 10-19 C/electron
= 2.2 * 1010 electrons

Thus 2.2 * 1010 electrons are moved from one electrode to the 
 other. Note that the capacitor as a whole has no net charge.

REVIEW The plate spacing does not enter the result. As long as the 
spacing is much smaller than the plate dimensions, as is true in this 
example, the field is independent of the spacing.

EXAMPLE 23.6 ■ The electric field between the plates of a capacitor
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23.6 Motion of a Charged Particle in an Electric Field 697

Uniform Electric Fields
FIGURE 23.22 shows an electric field that is the same—in strength and direction—at 
every point in a region of space. This is called a uniform electric field. A uniform 
electric field is analogous to the uniform gravitational field near the surface of the 
earth. Uniform fields are of great practical significance because, as you will see in 
the next section, computing the trajectory of a charged particle moving in a uniform 
electric field is a straightforward process.

The easiest way to produce a uniform electric field is with a parallelplate capacitor,  
as you can see in Figure 23.21a. Indeed, our interest in capacitors is due in large  
measure to the fact that the electric field is uniform. Many electric field problems 
refer to a uniform electric field. Such problems carry an implicit assumption that the 
action is taking place inside a parallelplate capacitor.

STOP TO THINK 23.5 Rank in order, from largest to  
smallest, the electric field strengths E1 to E5 at points  
1 to 5 inside this parallelplate capacitor. 1

2 3 4

5

23.6  Motion of a Charged Particle in an 
Electric Field

Our motivation for introducing the concept of the electric field was to understand the 
longrange electric interaction of charges. Some charges, the source charges, create an 
electric field. Other charges then respond to that electric field. The first five sections 
of this chapter have focused on the electric field of the source charges. Now we turn  
our attention to the second half of the interaction.

FIGURE 23.23 shows a particle of charge q and mass m at a point where an electric 
field E

u
 has been produced by other charges, the source charges. The electric field 

exerts a force

F
u

on q = qE
u

on the charged particle. Notice that the force on a negatively charged particle is opposite 
in direction to the electric field vector. Signs are important!

E
u

E
u

E
u

The vector is the electric
field at this point.

Fon q

Fon q

The force on a negative charge is
opposite the direction of E.

The force on a positive charge
is in the direction of E.

uu

u

u

FIGURE 23.23 The electric field exerts a force on a charged particle.

E
u

FIGURE 23.22 A uniform electric field.

If F
u

on q is the only force acting on q, it causes the charged particle to accelerate with

 a
u =

F
u

on q

m
=

q
m

 E
u
 (23.32)
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698 CHAPTER 23 The Electric Field

This acceleration is the response of the charged particle to the source charges that 
created the electric field. The ratio q/m is especially important for the dynamics of 
chargedparticle motion. It is called the charge-to-mass ratio. Two equal charges, 
say a proton and a Na+ ion, will experience equal forces F

u
= qE

u
 if placed at the same 

point in an electric field, but their accelerations will be different because they have 
different masses and thus different chargetomass ratios. Two particles with different 
charges and masses but with the same chargetomass ratio will undergo the same 
acceleration and follow the same trajectory.

Motion in a Uniform Field
The motion of a charged particle in a uniform electric field is especially important for 
its basic simplicity and because of its many valuable applications. A uniform field is 
constant at all points—constant in both magnitude and direction—within the region 
of space where the charged particle is moving. It follows, from Equation 23.32, that  
a charged particle in a uniform electric field will move with constant acceleration.  
The magnitude of the acceleration is

 a =
qE
m

= constant (23.33)

where E is the electric field strength, and the direction of au is parallel or antiparallel to 
E
u
, depending on the sign of q.

Identifying the motion of a charged particle in a uniform field as being one of  
constant acceleration brings into play all the kinematic machinery that we developed in 
Chapters 2 and 4 for constantacceleration motion. The basic trajectory of a charged par
ticle in a uniform field is a parabola, analogous to the projectile motion of a mass in the 
nearearth uniform gravitational field. In the special case of a charged particle moving  
parallel to the electric field vectors, the motion is onedimensional, analogous to the 
onedimensional vertical motion of a mass tossed straight up or falling straight down.

 NOTE   The gravitational acceleration augrav always points straight down. The electric 
field acceleration auelec can point in any direction. You must know the electric field E

u
 

in order to learn the direction of au.

The technique of gel electrophoresis uses 
an electric field to measure “DNA finger-
prints.” DNA fragments are charged, and 
fragments with different charge-to-mass 
ratios are separated by the field.

Two 6.0cmdiameter electrodes are spaced 5.0 mm apart. They are 
charged by transferring 1.0 * 1011 electrons from one electrode to  
the other. An electron is released from rest just above the surface of the 
negative electrode. How long does it take the electron to cross to the  
positive electrode? What is its speed as it collides with the  positive 
 electrode? Assume the space between the electrodes is a vacuum.

MODEL The electrodes form a parallelplate capacitor. The charges 
on the electrodes cannot escape, but any additional charges between 
the capacitor plates will be accelerated by the electric field. The 
electric field inside a parallelplate capacitor is a uniform field, so 
the electron will have constant acceleration.

VISUALIZE FIGURE 23.24 shows an edge view of the capacitor and 
the electron. The force on the negative electron is opposite the  
electric field, so the electron is repelled by the negative electrode as 
it accelerates across the gap of width d.

SOLVE The electrodes are not point charges, so we cannot use  
Coulomb’s law to find the force on the electron. Instead, we must 
analyze the electron’s motion in terms of the electric field inside the 
capacitor. The field is the agent that exerts the force on the electron, 
causing it to accelerate. The charge on the capacitor is Q = Ne, 

where N is the number of electrons transferred from one electrode 
to the other. The electric field strength inside a parallelplate ca
pacitor with charge Q is

E =
h

P0
=

Q

P0 A
=

Ne

P0pR2 = 639,000 N/C

EXAMPLE 23.7 ■ An electron moving across a capacitor

a
u

E
u

d = 5.0 mm

2R = 6.0 cm

The capacitor was charged by transferring 1011 electrons 
from the right electrode to the left electrode.

Electron

+Q-Q

FIGURE 23.24 An electron accelerates across a capacitor (plate 
separation exaggerated).
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23.6 Motion of a Charged Particle in an Electric Field 699

Parallel electrodes such as those in Example 23.7 are often used to accelerate 
charged particles. If the positive plate has a small hole in the center, a beam of elec
trons will pass through the hole and emerge with a speed of 3.3 * 107 m/s. This is 
the basic idea of the electron gun used until quite recently in cathode-ray tube (CRT) 
devices such as televisions and computer display terminals. (A negatively charged 
electrode is called a cathode, so the physicists who first learned to produce electron 
beams in the late 19th century called them cathode rays.)

The electron’s acceleration in this field is

a =
eE
m

= 1.1 * 1017 m/s2

where we used the electron mass m = 9.11 * 10-31 kg from Table 
22.1. This is an enormous acceleration compared to accelerations 
we’re familiar with for macroscopic objects. We can use one 
dimensional kinematics, with xi = 0 and vi = 0, to find the time 
required for the electron to cross the capacitor:

  xf = d = 1
2 a 1∆t22

  ∆t = A2d
a

= 3.0 * 10-10 s = 0.30 ns

The electron’s speed as it reaches the positive electrode is

v = a ∆t = 3.3 * 107 m/s

REVIEW We used e rather than -e to find the acceleration because 
we already knew the direction; we needed only the magnitude. The 
electron’s speed, after traveling a mere 5 mm, is approximately 
10% the speed of light.

An electron gun creates a beam of electrons moving horizontally 
with a speed of 3.3 * 107 m/s. The electrons enter a 2.0cmlong 
gap between two parallel electrodes where the electric field is 
E
u

= (5.0 * 104 N/C, down). In which direction, and by what angle, 
is the electron beam deflected by these electrodes?

MODEL The electric field between the electrodes is uniform.  
Assume that the electric field outside the electrodes is zero.

VISUALIZE FIGURE 23.25 shows an electron moving through the 
electric field. The electric field points down, so the force on the 
(negative) electrons is upward. The electrons will follow a parabolic  
trajectory, analogous to that of a ball thrown horizontally, except 
that the electrons “fall up” rather than down.

SOLVE This is a twodimensional motion problem. The electron 
enters the capacitor with velocity vector vu0 = v0x in = 3.3 *107 in m/s 
and leaves with velocity vu1 = v1x in + v1yjn. The electron’s angle of 
travel upon leaving the electric field is

u = tan-11v1y

v1x
2

This is the deflection angle. To find u we must compute the final 
velocity vector vu1.

There is no horizontal force on the electron, so v1x =  
v0x = 3.3 * 107 m/s. The electron’s upward acceleration is

  ay =
eE
m

=
11.60 * 10-19 C215.0 * 104 N/C2

9.11 * 10-31 kg
 

  = 8.78 * 1015 m/s2 

We can use the fact that the horizontal velocity is constant to deter
mine the time interval ∆t needed to travel length 2.0 cm:

∆t =
L

v0x
=

0.020 m

3.3 * 107 m/s
= 6.06 * 10-10 s

Vertical acceleration will occur during this time interval, resulting 
in a final vertical velocity

v1y = v0y + ay ∆t = 5.3 * 106 m/s

The electron’s velocity as it leaves the capacitor is thus

vu1 = 13.3 * 107 in + 5.3 * 106 jn2 m/s

and the deflection angle u is

u = tan-11v1y

v1x
2 = 9.1°

REVIEW We know that the electron beam in a cathoderay tube can 
be deflected enough to cover the screen, so a deflection angle of 9° 
seems reasonable. Our neglect of the gravitational force is seen to 
be justified because the acceleration of the electrons is enormous in 
comparison to the freefall acceleration g.

EXAMPLE 23.8 ■ Deflecting an electron beam

v1

v0
E = (5.0 * 104 N/C, down)

L = 2.0 cm

u

Deflection plates

u

u
u

FIGURE 23.25 The deflection of an electron beam in a uniform 
electric field.
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700 CHAPTER 23 The Electric Field

By using two sets of deflection plates—one for vertical deflection and one for 
horizontal—a cathoderay tube could steer the electrons to any point on the screen. 
Electrons striking a phosphor coating on the inside of the screen would then make a 
dot of light.

F- F+
(b)

This dipole is in equilibrium.
E
u

uu

STOP TO THINK 23.6 Which electric field is responsible for the proton’s trajectory?

Parabolic
trajectory

   (a) (b) (c) (d) (e)

23.7 Motion of a Dipole in an Electric Field
Let us conclude this chapter by returning to one of the more striking puzzles we faced 
when making the observations at the beginning of Chapter 22. There you found that 
charged objects of either sign exert forces on neutral objects, such as when a comb 
used to brush your hair picks up pieces of paper. Our qualitative understanding of the 
polarization force was that it required two steps:

■■ The charge polarizes the neutral object, creating an induced electric dipole.
■■ The charge then exerts an attractive force on the near end of the dipole that is 

slightly stronger than the repulsive force on the far end.

We are now in a position to make that understanding more quantitative.

Dipoles in a Uniform Field
FIGURE 23.26a shows an electric dipole in a uniform external electric field E

u
 that has 

been created by source charges that are not shown. That is, E
u
 is not the field of the 

dipole but, instead, is a field to which the dipole is responding. In this case, because 
the field is uniform, the dipole is presumably inside an unseen parallelplate capacitor.

The net force on the dipole is the sum of the forces on the two charges forming the 
dipole. Because the charges {q are equal in magnitude but opposite in sign, the two 
forces F

u

+ = +qE
u
 and F

u

- = -qE
u
 are also equal but opposite. Thus the net force on 

the dipole is

 F
u

net = F
u

+ + F
u

- =  0
u

 (23.34)

There is no net force on a dipole in a uniform electric field.
There may be no net force, but the electric field does affect the dipole. Because the 

two forces in Figure 23.26a are in opposite directions but not aligned with each other, 
the electric field exerts a torque on the dipole and causes the dipole to rotate.

The torque rotates the dipole until it is aligned with the electric field, as shown in 
FIGURE 23.26b. In this position, the dipole experiences not only no net force but also 
no torque. Thus Figure 23.26b represents the equilibrium position for a dipole in a 
uniform electric field. Notice that the positive end of the dipole is in the direction in 
which E

u
 points.

FIGURE 23.27 shows a sample of permanent dipoles, such as water molecules, in an  
external electric field. All the dipoles rotate until they are aligned with the electric 
field. This is the mechanism by which the sample becomes polarized. Once the dipoles  
are aligned, there is an excess of positive charge at one end of the sample and an excess  
of negative charge at the other end. The excess charges at the ends of the sample are  
the basis of the polarization forces we discussed in Section 22.3.

E
u

E
u

F+

F-

(a) The electric field exerts
a torque on this dipole.

u

u

FIGURE 23.26 A dipole in a uniform 
electric field.

E
u

E
u

The dipoles align with the electric field.

Excess negative charge
on this surface

Excess positive charge
on this surface

FIGURE 23.27 A sample of permanent 
dipoles is polarized in an electric field.
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23.7 Motion of a Dipole in an Electric Field 701

It’s not hard to calculate the torque. Recall from Chapter 12 that the magnitude of 
a torque is the product of the force and the moment arm. FIGURE 23.28 shows that there 
are two forces of the same magnitude 1F+ = F- = qE2, each with the same moment 
arm 1d = 1

2 s sin u2. Thus the torque on the dipole is

 t = 2 * dF+ = 211
2 s sin u21qE2 = pE sin u (23.35)

where p = qs was our definition of the dipole moment. The torque is zero when the 
dipole is aligned with the field, making u = 0.

Also recall from Chapter 12 that the torque can be written in a compact mathema
tical form as the cross product between two vectors. The terms p and E in Equation 
23.35 are the magnitudes of vectors, and u is the angle between them. Thus in vector 
notation, the torque exerted on a dipole moment pu by an electric field E

u
 is

 t
u = p

u * E
u
 (23.36)

The torque is greatest when pu is perpendicular to E
u
, zero when pu is aligned with or 

opposite to E
u
.

F+

F-

E
u

u

u

s sinud = 12

u

s

Line of action

Moment arm

-q

+q

1
2 s sinud = 

p
u

In terms of vectors, t = p * E.
u uu

FIGURE 23.28 The torque on a dipole.

Two 1.0 g balls are connected by a 2.0cmlong insulating rod 
of negligible mass. One ball has a charge of +10 nC, the other a 
charge of -10 nC. The rod is held in a 1.0 * 104 N/C uniform elec
tric field at an angle of 30° with respect to the field, then released. 
What is its initial angular acceleration?

MODEL The two oppositely charged balls form an electric dipole. 
The electric field exerts a torque on the dipole, causing an angular 
acceleration.

VISUALIZE FIGURE 23.29 shows the dipole in the electric field.

SOLVE The dipole moment is p = qs = 11.0 * 10-8 C2 *  
10.020 m2 = 2.0 * 10-10 C m. The torque exerted on the dipole 
moment by the electric field is

  t = pE sin u = 12.0 * 10-10 C m211.0 * 104 N/C2 sin 30°

  = 1.0 * 10-6 N m

You learned in Chapter 12 that a torque causes an angular acceler
ation a = t/I, where I is the moment of inertia. The dipole rotates 
about its center of mass, which is at the center of the rod, so the 
moment of inertia is

I = m1r1 

2 + m2r2 

2 = 2m11
2 s22 = 1

2 ms2 = 2.0 * 10-7 kg m2

Thus the rod’s angular acceleration is

a =
t

I
=

1.0 * 10-6 N m

2.0 * 10-7 kg m2 = 5.0 rad/s2

REVIEW This value of a is the initial angular acceleration, when  
the rod is first released. The torque and the angular acceleration 
will decrease as the rod rotates toward alignment with E

u
.

EXAMPLE 23.9 ■ The angular acceleration of a dipole dumbbell

p
u

s = 2.0 cm

1.0 g

+10 nC

1.0 g

-10 nC

E = 1.0 * 104 N/C
30°

FIGURE 23.29 The dipole of Example 23.9.

Dipoles in a Nonuniform Field
Suppose that a dipole is placed in a nonuniform electric field, one in which the field 
strength changes with position. For example, FIGURE 23.30 shows a dipole in the non
uniform field of a point charge. The first response of the dipole is to rotate until it is 
aligned with the field, with the dipole’s positive end pointing in the same direction 
as the field. Now, however, there is a slight difference between the forces acting on 
the two ends of the dipole. This difference occurs because the electric field, which 
depends on the distance from the point charge, is stronger at the end of the dipole 
nearest the charge. This causes a net force to be exerted on the dipole.

Which way does the force point? Once the dipole is aligned, the leftward attractive 
force on its negative end is slightly stronger than the rightward repulsive force on its 
positive end. This causes a net force toward the point charge.

In fact, for any nonuniform electric field, the net force on a dipole is toward the 
 direction of the strongest field. Because any finitesize charged object, such as a charged 
rod or a charged disk, has a field strength that increases as you get closer to the object,  
we can conclude that a dipole will experience a net force toward any charged object.

E
u

E
u

Fnet

u

FIGURE 23.30 An aligned dipole is drawn 
toward a point charge.
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702 CHAPTER 23 The Electric Field

The water molecule H2O has a permanent dipole moment of mag
nitude 6.2 * 10-30 C m. A water molecule is located 10 nm from a 
Na+ ion in a saltwater solution. What force does the ion exert on the 
water molecule?

VISUALIZE FIGURE 23.31 shows the ion and the dipole. The forces 
are an action/reaction pair.

SOLVE A Na+ ion has charge q = +e. The electric field of the ion 
aligns the water’s dipole moment and exerts a net force on it. We 
could calculate the net force on the dipole as the small difference 
between the attractive force on its negative end and the repulsive 
force on its positive end. Alternatively, we know from Newton’s 

third law that the force F
u

dipole on ion has the same magnitude as the 
force F

u

ion on dipole that we are seeking. We calculated the onaxis field 
of a dipole in Section 23.2. An ion of charge q = e will experience a 
force of magnitude F = qEdipole = eEdipole when placed in that field. 
The dipole’s electric field, which we found in Equation 23.10, is

Edipole =
1

4pP0
 
2p

r3

The force on the ion at distance r = 1.0 * 10-8 m is

Fdipole on ion = eEdipole =
1

4pP0
 
2ep

r3 = 1.8 * 10-14 N

Thus the force on the water molecule is Fion on dipole = 1.8 * 10-14 N.

REVIEW While 1.8 * 10-14 N may seem like a very small force, it 
is ≈1011 times larger than the size of the earth’s gravitational force 
on these atomic particles. Forces such as these cause water mole
cules to cluster around any ions that are in solution. This cluster
ing plays an important role in the microscopic physics of solutions 
studied in chemistry and biochemistry.

EXAMPLE 23.10 ■ The force on a water molecule

Fdipole on ion Fion on dipole

r = 10 nm

Na+ ion Water molecule

uu

FIGURE 23.31 The interaction between an ion and a permanent 
dipole.

   CHAPTER 23 CHALLENGE EXAMPLE     An orbiting proton

In a vacuum chamber, a proton orbits a 1.0cmdiameter metal 
ball 1.0 mm above the surface with a period of 1.0 ms. What is the 
charge on the ball?

MODEL Model the ball as a charged sphere. The electric field of a 
charged sphere is the same as that of a point charge at the center, 
so the radius of the ball is irrelevant. Assume that the gravitational 
force on the proton is extremely small compared to the electric force 
and can be neglected.

VISUALIZE FIGURE 23.32 shows the orbit and the force on the 
 proton.

SOLVE The ball must be negative, with an inward electric field  
exerting an inward electric force on the positive proton. This is  

exactly the necessary condition for uniform circular motion. Recall  
from Chapter 8 that Newton’s second law for uniform circular mo
tion is 1Fnet2r = mv2/r. Here the only radial force has magnitude 
Felec = eE, so the proton will move in a circular orbit if

eE =
mv2

r

The electric field strength of a sphere of charge Q at distance r is 
E = Q/4pP0 r2. From Chapter 4, orbital speed and period are relat
ed by v = circumference/period = 2pr/T. With these substitutions, 
Newton’s second law becomes

eQ

4pP0r2 =
4p2m

T 2  r

Solving for Q, we find

Q =
16p3P0 mr3

eT 2 = 9.9 * 10-12 C

where we used r = 6.0 mm as the radius of the proton’s orbit. Q is 
the magnitude of the charge on the ball. Including the sign, we have

Qball = - 9.9 * 10-12 C

REVIEW This is not a lot of charge, but it shouldn’t take much 
charge to affect the motion of something as light as a proton.

FIGURE 23.32 An orbiting proton.
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Summary

Sources of E
u

Electric fields are created by charges.

Multiple point charges

MODEL Model objects as point charges.

VISUALIZE Establish a coordinate system and draw field vectors.

SOLVE Use superposition: E
u

= E
u

1 + E
u

2 + E
u

3 + g

Continuous distribution of charge

MODEL Model objects as simple shapes.

VISUALIZE

• Establish a coordinate system.

• Divide the charge into small segments ∆Q.

• Draw a field vector for one or two pieces of charge.

SOLVE

• Find the field of each ∆Q.

• Write E
u
 as the sum of the fields of all ∆Q. Don’t forget that it’s a 

vector sum; use components.

• Use the charge density 1l or h2 to replace ∆Q with an integration 
coordinate, then integrate.

Four Key Electric Field Models
Point charge with charge q

E
u

=
1

4pP0

q

r2 rn

Infinite line of charge with linear charge 
density l

E
u

line = 1 1
4pP0

 
2 �l�

r
, e away if +

toward if - 2

Infinite plane of charge with surface 
charge density h

E
u

plane = 1 �h �
2P0

, e away if +
toward if - 2

Sphere of charge with total charge Q

Same as a point charge Q for r 7 R

R

Electric dipole

p
u

s

-q +q

The electric dipole moment is

pu = (qs, from negative to positive)

Field on axis: E
u

=
1

4pP0
 
2p

u

r3

Field in bisecting plane: E
u

= -
1

4pP0
 
p
u

r3

Parallel-plate capacitor
The electric field inside an ideal  
capacitor is a uniform electric field:

E
u

= 1 Q

P0 A
, from positive to negative2

E
u

Consequences of E
u

The electric field exerts a force  
on a charged particle:

F
u

= qE
u

The force causes acceleration:

au = 1q/m2E
u

Trajectories of charged particles are calculated with kinematics.

The electric field exerts a torque on  
a dipole:

t = pE sin u

The torque tends to align the  
dipoles with the field.

In a nonuniform electric field, a  
dipole has a net force in the direction  
of increasing field strength.

General Principles

Applications

The goal of Chapter 23 has been to learn how to calculate  
and use the electric field.

E
u

E
u

F
u

F
u

E
u

E
u

E
u

F
u
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704 CHAPTER 23 The Electric Field

dipole moment, pu

electric field line
linear charge density, l
surface charge density, h

uniformly charged
line of charge
electrode

plane of charge
sphere of charge
parallelplate capacitor

fringe field
uniform electric field
chargetomass ratio, q/m

Terms and Notation

CONCEPTUAL QUESTIONS

1. You’ve been assigned the task of determining the magnitude and 
direction of the electric field at a point in space. Give a stepby
step procedure of how you will do so. List any objects you will 
use, any measurements you will make, and any calculations you 
will need to perform. Make sure that your measurements do not 
disturb the charges that are creating the field.

2. Reproduce FIGURE Q23.2 on your paper. For each part, draw a 
dot or dots on the figure to show any position or positions (other 
than infinity) where E

u
=  0

u
.

7. The irregularly shaped area of charge in 
FIGURE Q23.7 has surface charge density 
hi. Each dimension (x and y) of the area 
is reduced by a factor of 3.163.
a. What is the ratio hf /hi, where hf is 

the final surface charge density?
b. An electron is very far from the area. 

What is the ratio Ff /Fi of the electric 
force on the electron after the area is reduced to the force 
before the area was reduced?

8. A circular disk has a surface charge density of 4 nC/cm2. What will 
the surface charge density be if the radius of the disk is doubled?

9. A sphere of radius R has charge Q. The electric field strength at 
distance r 7 R is Ei. What is the ratio Ef /Ei of the final to initial 
electric field strengths if (a) Q is halved, (b) R is halved, and (c) r 
is halved (but is still 7 R)? Each part changes only one quantity; 
the other quantities have their initial values.

10. The ball in FIGURE Q23.10 is suspended from a large, uniformly 
charged positive plate. It swings with period T. If the ball is dis
charged, will the period increase, decrease, or stay the same? 
Explain.

(a)

(b)

FIGURE Q23.2

1

2
4

3

FIGURE Q23.3 FIGURE Q23.4

FIGURE Q23.7

Mass m
Charge q

FIGURE Q23.10

5

432

1

FIGURE Q23.11

3. Rank in order, from largest to smallest, the electric field strengths 
E1 to E4 at points 1 to 4 in FIGURE Q23.3. Explain.

4. A small segment of wire in FIGURE Q23.4 contains a charge of 5 nC.
a. If the segment is shrunk to half its original length, what is 

the ratio lf /li, where li and lf  are the initial and final linear 
charge densities, respectively?

b. If a proton is situated far away from the wire, what is the ratio 
Ff /Fi, of the electric force on the proton after the segment is 
shrunk to the electric force before the segment was shrunk?

c. Suppose the original segment of wire is stretched to 10 times 
its original length. How much charge must be added to the 
wire to keep the linear charge density unchanged?

5. An electron experiences a force of magnitude F when it is 2 cm 
from a very long, charged wire, with a linear charge density of l.  
If the charge density is halved, at what distance from the wire 
will a proton experience a force of the magnitude F?

6. FIGURE Q23.6 shows a hollow 
soda straw that has been uni
formly charged with positive 
charge. What is the electric 
field at the center (inside) of the 
straw? Explain.

11. Rank in order, from largest to smallest, the electric field strengths 
E1 to E5 at the five points in FIGURE Q23.11. Explain.

12. A parallelplate capacitor consists of two square plates, size 
L * L, separated by a distance d. The plates are given a charge 
of {Q. What is the ratio Ef /Ei of the final to initial electric field 
strengths if (a) Q is halved; (b) L is doubled; and (c) d is doubled? 
Each part changes only one quantity; the other quantities remain 
the same.

13. A small object is released at point 3 in the center of the capacitor 
in FIGURE Q23.11. For each situation, does the object move to the 
right, to the left, or remain in place? If it moves, does it acceler
ate or move at constant speed?
a. A positive object is released from rest.
b. A neutral but polarizable object is released from rest.
c. A negative object is released from rest.

Inside straw

FIGURE Q23.6
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15. Three charges are placed at the corners 
of the triangle in FIGURE Q23.15. The + +  
charge has twice the quantity of charge 
of the two -  charges; the net charge is 
zero. Is the triangle in equilibrium? If so, 
explain why. If not, draw the equilibrium 
orientation.

14. A proton and an electron are released from rest in the center of 
a capacitor.
a. Is the force ratio Fp/Fe greater than 1, less than 1, or equal to 

1? Explain.
b. Is the acceleration ratio ap/ae greater than 1, less than 1, or 

equal to 1? Explain.

FIGURE Q23.15

5.0 cm

5.0 cm5.0 cm
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FIGURE EX23.4

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 23.2 The Electric Field of Point Charges

1. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIGURE EX23.1? Specify the di
rection as an angle cw from vertical.

2. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIGURE EX23.2? Specify the di
rection as an angle cw from vertical.

3. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIGURE EX23.3? Specify the di
rection as an angle cw from horizontal.

4. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIGURE EX23.4? Specify the di
rection as an angle cw from horizontal.

5. || The electric field strength 1.0 cm from an electric dipole, on 
the axis of the dipole, is 2.0 * 105 N/C.
a. What is the dipole moment in nC mm?
b. What is the magnitude of each of the dipole’s charges if they 

are 2.0 mm apart?
c. If the dipole is replaced by a single charge, what magnitude 

of charge in nC will give the same field strength 1.0 cm away?

6. || An electric dipole is formed from two charges, {q, spaced 
1.0 cm apart. The dipole is at the origin, oriented along the yaxis. 
The electric field strength at the point 1x, y2 = 10 cm, 10 cm2  
is 360 N/C.
a. What is the charge q? Give your answer in nC.
b. What is the electric field strength at the point 1x, y2 =  

110 cm, 0 cm2?
7. || An electret is similar to a magnet, but rather than being 

permanently magnetized, it has a permanent electric dipole 
moment. Suppose a small electret with electric dipole moment 
1.0 * 10-7 C m is 25 cm from a small ball charged to +25 nC, 
with the ball on the axis of the electric dipole. What is the mag
nitude of the electric force on the ball?

Section 23.3 The Electric Field of a Continuous Charge Distribution

8. || A 10cmlong thin glass rod uniformly charged to +10 nC 
and a 10cmlong thin plastic rod uniformly charged to -10 nC 
are placed side by side, 4.0 cm apart. What are the electric field 
strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm from the 
glass rod along the line connecting the midpoints of the two rods?

9. || The electric field strength 15.0 cm from a very long charged 
wire is 4000 N/C. What is the electric field strength 3.0 cm from 
the wire?

10. || A small glass bead, charged to +8.0 nC, is in the plane that  
bisects a thin, uniformly charged, 10cmlong glass rod and is  
4 cm from the rod’s center. The bead is repelled from the rod 
with a force of 720 mN. What is the total charge on the rod?

11. || Two 10cmlong thin glass rods uniformly charged to +10 nC 
are placed side by side, 4.0 cm apart. What are the electric field 
strengths E1 to E3 at distances 1.0 cm, 2.0 cm, and 3.0 cm to the 
right of the rod on the left along the line connecting the mid
points of the two rods?

12. ||| The electric field 2.0 cm from a very long charged wire is 
(1000 N/C, toward the wire). What is the charge (in nC) on a 
5.0cmlong segment of the wire?

13. || A 10cmlong thin rod has the nonuniform charge density 
l1x2 = 112.0 nC/cm2e-�x�/2.0 cm, where x is measured from the 
center of the rod. What is the total charge on the rod?
Hint: This exercise requires an integration. Think about how to 
handle the absolute value sign.

Section 23.4 The Electric Fields of Some Common Charge 
Distributions

14. || Two 10cmdiameter charged rings face each other, 20 cm 
apart. Both rings are charged to +20 nC. What is the electric field 
strength at (a) the midpoint between the two rings and (b) the 
center of the left ring?
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706 CHAPTER 23 The Electric Field

Section 23.6 Motion of a Charged Particle in an Electric Field

26. || Two parallel plates 1.0 cm apart are equally and oppositely 
charged. An electron is released from rest at the surface of the 
negative plate and simultaneously a proton is released from rest at 
the surface of the positive plate. How far from the negative plate 
is the point at which the electron and proton pass each other?

27. || Two 2.0cmdiameter disks face each other, 1.0 mm apart. 
They are charged to {10 nC.
a. What is the electric field strength between the disks?
b. A proton is shot from the negative disk toward the positive 

disk. What launch speed must the proton have to just barely 
reach the positive disk?

28. | An electron traveling parallel to a uniform electric field in
creases its speed from 2.0 * 107 m/s to 4.0 * 107 m/s over a dis
tance of 1.2 cm. What is the electric field strength?

29. || The surface charge density on an infinite charged plane is 
-2.0 * 10-6 C/m2. A proton is shot straight away from the plane 
at 2.0 * 106 m/s. How far does the proton travel before reaching 
its turning point?

30. || A proton is fired horizontally into a 1.0 * 105 N/C vertical 
electric field. It rises 1.0 cm vertically after having traveled 5.0 cm  
horizontally. What was the proton’s initial speed?

31. || Electrostatic cleaners remove small dust particles and pol
len grains from air by first ionizing them, then flowing the air 
between the plates of a parallelplate capacitor, parallel to the 
plates, where electric forces deposit charged particles on one of 
the electrodes. A typical pollen grain has a mass of 5.0 * 10-10 g, 
the ionizer charges it with 750 extra electrons, and a fan moves 
the air at 3.0 m/s. Ignore air resistance and gravity.
a. How long does it take a pollen grain to pass between 

12 cm * 12 cm electrodes?
b. What minimum electric field strength is needed to deflect the 

grain by 3.0 mm before it leaves the electrodes?
32. ||| An electron in a vacuum chamber is fired with a speed of 

8300 km/s toward a large, uniformly charged plate 75 cm away. 
The electron reaches a closest distance of 15 cm before being 
repelled. What is the plate’s surface charge density?

Section 23.7 Motion of a Dipole in an Electric Field

33. || A point charge Q is distance r from a dipole consisting of 
charges {q separated by distance s. The dipole is initially oriented 
so that Q is in the plane bisecting the dipole. Immediately after the 
dipole is released, what are (a) the magnitude of the force and (b) 
the magnitude of the torque on the dipole? You can assume r W s.

15. || Two 10cmdiameter charged rings face each other, 20 cm 
apart. The left ring is charged to -20 nC and the right ring is 
charged to +20 nC.
a. What is the electric field E

u
, both magnitude and direction, at 

the midpoint between the two rings?
b. What is the force on a proton at the midpoint?

16. || Two 10cmdiameter charged disks face each other, 20 cm 
apart. The left disk is charged to -50 nC and the right disk is 
charged to +50 nC.
a. What is the electric field E

u
, both magnitude and direction, at 

the midpoint between the two disks?
b. What is the force F

u
 on a -1.0 nC charge placed at the 

midpoint?
17. || The electric field strength 8.0 cm from the surface of a 

5.0cmdiameter metal ball is 60,000 N/C. What is the charge  
(in nC) on the ball?

18. || A proton 1.0 mm above the center of a 3.0 cm * 3.0 cm elec
trode experiences a force of 0.50 pN toward the electrode. What 
is the charge on the electrode?

19. || You’ve hung two very large 
sheets of plastic facing each other 
with distance d between them, 
as shown in FIGURE EX23.19. 
By rubbing them with wool and 
silk, you’ve managed to give one 
sheet a uniform surface charge 
density h1 = -h0 and the other 
a uniform surface charge density 
h2 = +3h0. What are the electric 
field vectors at points 1, 2, and 3?

20. || A thin ring with radius R and charge Q lies in the xyplane, 
centered at the origin. By what factor will the electric field 
strength increase at z = 2R if the ring is replaced by a sphere 
with radius R and charge Q, centered at the origin?

21. || A 3.0 m *  3.0 m flat carpet acquires a uniformly distrib
uted charge of -20 mC after you and your friends walk across it 
several times. A 2.0 mg dust particle is suspended in midair just 
above the center of the carpet. What is the charge on the dust 
particle?

Section 23.5 The Parallel-Plate Capacitor

22. || A parallelplate capacitor is formed from two 2.0cmdiameter 
electrodes spaced 3.0 mm apart. The electric field strength inside 
the capacitor is 2.0 * 106 N/C. What is the charge (in nC) on each 
electrode?

23. || Two circular disks spaced 0.80 mm apart form a parallelplate 
capacitor. Transferring 2.0 * 109 electrons from one disk to the 
other causes the electric field strength to be 3.0 * 105 N/C. What 
are the diameters of the disks?

24. | An experiment found that air “breaks down” when the electric 
field strength in a parallelplate capacitor reaches 3.5 * 106 N/C, 
causing a spark. The capacitor is made from two 2.0 cm * 2.0 cm 
electrodes. How many electrons must be transferred from one 
electrode to the other to create a spark between the electrodes?

25. || FIGURE EX23.25 shows a 1.5 g ball hanging from a string in
side a parallelplate capacitor made with 12 cm * 12 cm elec
trodes. The electrodes are charged to {75 nC. What is the 
charge on the ball in nC?

d

1 2 3

h1 = -h0 h2 = 3h0

FIGURE EX23.19

12 cm × 12 cm

15°

FIGURE EX23.25

M23_KNIG8221_05_GE_C23.indd   706 28/05/2022   10:37



Exercises and Problems 707

42. ||| FIGURE P23.42 is a cross section of two infinite lines of charge 
that extend out of the page. The linear charge densities are {l. 
Find an expression for the electric field strength E at height y 
above the midpoint between the lines.

43. || Derive Equation 23.11 for the field E
u

dipole in the plane that 
bisects an electric dipole.

44. || FIGURE P23.44 shows a thin rod of length L with total charge Q.
a. Find an expression for the electric field strength at point P on 

the axis of the rod at distance r from the center.
b. Verify that your expression has the expected behavior if 

r W L.
c. Evaluate E at r = 3.0 cm if L = 5.0 cm and Q = 3.0 nC.

34. | The permanent electric dipole moment of a particular mole
cule is 1.1 * 10-30 C m. What is the maximum possible torque 
on the molecule in a 8.0 * 108 N/C field?

35. || An ammonia molecule (NH3) has a permanent electric dipole 
moment 5.0 * 10-30 C m. A proton is 2.0 nm from the molecule 
in the plane that bisects the dipole. What is the magnitude of the 
torque on the molecule?

Problems
36. || What are the strength and direction of the electric field at the 

position indicated by the dot in FIGURE P23.36? Give your answer 
(a) in component form and (b) as a magnitude and angle mea
sured cw or ccw (specify which) from the positive x-axis.

2.0 cm

4.0 cm
5.0 nC

10 nC

-5.0 nC

FIGURE P23.36

2.0 cm

4.0 cm

10 nC10 nC

-5.0 nC

FIGURE P23.37

3.0 cm

5.0 cm
-10 nC 10 nC

-5.0 nC

FIGURE P23.38

L

L
-Q4Q

-Q
P

FIGURE P23.39

37. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIGURE P23.37? Give your answer 
(a) in component form and (b) as a magnitude and angle mea
sured cw or ccw (specify which) from the positive x-axis.

38. || What are the strength and direction of the electric field at the 
position indicated by the dot in FIGURE P23.38? Give your answer 
(a) in component form and (b) as a magnitude and angle mea
sured cw or ccw (specify which) from the positive x-axis.

39. || FIGURE P23.39 shows three charges at the corners of a square. 
Write the electric field at point P in component form.

40. || A -15 nC charge is at x = +2.0 cm on the xaxis. A sec
ond charge q is located somewhere on the xaxis to the left 
of the origin. The electric field at y = 2.0 cm on the yaxis is 
E
u

= 3.0 * 105 in N/C. What are (a) the charge q in nC and (b) its 
distance from the origin?

41. || FIGURE P23.41 is a cross section of two infinite lines of charge 
that extend out of the page. Both have linear charge density l. 
Find an expression for the electric field strength E at height y 
above the midpoint between the lines.

Lines of charge
coming out of the page

y

d

FIGURE P23.41

Lines of charge
coming out of the page

y

d

FIGURE P23.42

L

r

P

FIGURE P23.44

L

x

P
x

y

FIGURE P23.45

Center

L

FIGURE P23.48

u

x

y

R

FIGURE P23.49

45. ||| FIGURE P23.45 shows a thin rod of length L with total charge 
Q. Find an expression for the electric field E

u
 at point P. Give your 

answer in component form.
46. || Show that the onaxis electric field of a ring of charge has the 

expected behavior when z V R and when z W R.
47. || A ring of radius R has total charge Q.

a. At what distance along the zaxis is the electric field strength 
a maximum?

b. What is the electric field strength at this point?
48. || Charge Q is uniformly distributed along a thin, flexible rod 

of length L. The rod is then bent into the semicircle shown in 
FIGURE P23.48.
a. Find an expression for the electric field E

u
 at the center of the 

semicircle.
Hint: A small piece of arc length ∆s spans a small angle 
∆u = ∆s/R, where R is the radius.
b. Evaluate the field strength if L = 10 cm and Q = 30 nC.

49. || A plastic rod with linear charge density l is bent into the 
quarter circle shown in FIGURE P23.49. We want to find the elec
tric field at the origin.
a. Write expressions for the x and ycomponents of the electric 

field at the origin due to a small piece of charge at angle u.
b. Write, but do not evaluate, definite integrals for the x and 

ycomponents of the net electric field at the origin.
c. Evaluate the integrals and write E

u

net in component form.
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57. || Your physics assignment is 
to figure out a way to use elec
tricity to launch a small 6.0cm
long plastic drink stirrer. You 
decide that you’ll charge the 
little plastic rod by rubbing it 
with fur, then hold it near a 
long, charged wire, as shown 
in FIGURE P23.57. When you let 
go, the electric force of the wire on the plastic rod will shoot 
it away. Suppose you can uniformly charge the plastic stirrer 
to 10 nC and that the linear charge density of the long wire is 
1.0 * 10-7 C/m. What is the net electric force on the plastic stir
rer if the end closest to the wire is 2.0 cm away?
Hint: The stirrer cannot be modeled as a point charge; an integra
tion is required.

58. ||| The combustion of fossil fuels produces micronsized par
ticles of soot, one of the major components of air pollution. 
The terminal speeds of these particles are extremely small, 
so they remain suspended in air for very long periods of time. 
Furthermore, very small particles almost always acquire small 
amounts of charge from cosmic rays and various atmospheric 
effects, so their motion is influenced not only by gravity but also 
by the earth’s weak electric field. Consider a small spherical 
particle of radius r, density r, and charge q. As you learned in 
Chapter 6, a small sphere moving with speed v experiences a 
drag force Fdrag = 6phrv, where h is the viscosity of the air. 
a. A particle falling at its terminal speed vterm is in equilibrium 

with no net force. Write Newton’s second law for this par
ticle falling in the presence of a downward electric field of 
strength E, then solve to find an expression for vterm.

b. Soot is primarily carbon, and carbon in the form of graph
ite has a density of 2200 kg/m3. In the absence of an electric  
field, what is the terminal speed in mm/s of a 1.0mm 
diameter graphite particle? The viscosity of air at 20°C is 
1.8 * 10-5 kg/m s.

c. The earth’s electric field is typically (150 N/C, downward). 
In this field, what is the terminal speed in mm/s of a 1.0mm 
diameter graphite particle that has acquired 250 extra 
electrons?

59. | In a classical model of the hydrogen atom, the electron orbits 
the proton in a circular orbit of radius 0.053 nm. What is the 
orbital frequency in rev/s? The proton is so much more massive 
than the electron that you can assume the proton is at rest.

60. || A 2.0mmdiameter glass sphere has a charge of +1.0 nC. 
What speed does an electron need to orbit the sphere 1.0 mm 
above the surface?

61. || An electric field can induce an electric dipole in a neutral 
atom or molecule by pushing the positive and negative charges 
in opposite directions. The dipole moment of an induced dipole 
is directly proportional to the electric field. That is, p

u = aE
u
, 

where a is called the polarizability of the molecule. A bigger 
field stretches the molecule farther and causes a larger dipole 
moment.
a. What are the units of a?
b. An ion with charge q is distance r from a molecule with polar

izability a. Find an expression for the force E
u

ion on dipole.

50. || An infinite plane of charge with surface charge density 
3.2 mC/m2 has a 20cmdiameter circular hole cut out of it. What 
is the electric field strength directly over the center of the hole at 
a distance of 12 cm?
Hint: Can you create this charge distribution as a superposition 
of charge distributions for which you know the electric field?

51. || A uniform electric field’s strength is increasing with time as 
E = 11.5 * 104 + (5.0 * 1010 s-1)t2 N/C. A proton is released in 
the field from rest at t = 0. What is the proton’s speed 1.0 ms 
later?

52. ||| A parallelplate capacitor has 2.0 cm * 2.0 cm electrodes 
with surface charge densities {1.0 * 10-6 C/m2. A proton tra
veling parallel to the electrodes at 1.0 * 106 m/s enters the center 
of the gap between them. By what distance has the proton been 
deflected sideways when it reaches the far edge of the capacitor? 
Assume the field is uniform inside the capacitor and zero outside 
the capacitor.

53. || The two parallel plates in FIGURE P23.53 are 2.0 cm apart and 
the electric field strength between them is 1.0 * 104 N/C. An 
electron is launched at a 45° angle from the positive plate. What 
is the maximum initial speed v0 the electron can have without 
hitting the negative plate?

v0
u

2.0 cm
45°

FIGURE P23.53

4.0 cm

v0

45°

u

FIGURE P23.54

Electrons

d

FIGURE P23.55

6.0 cm

Plastic stirrer

2.0 cm

l = 1.0 * 10-7 C/m

FIGURE P23.57

54. || An electron is launched at a 45° angle and a speed of 
5.0 * 106 m/s from the positive plate of the parallelplate capacitor  
shown in FIGURE P23.54. The electron lands 4.0 cm away.
a. What is the electric field strength inside the capacitor?
b. What is the smallest possible spacing between the plates?

55. || A problem of practical interest 
is to make a beam of electrons turn 
a 90° corner. This can be done with 
the  parallelplate capacitor shown 
in FIGURE P23.55. An electron with 
kinetic energy 3.0 * 10-17 J enters 
through a small hole in the bottom 
plate of the capacitor.
a. Should the bottom plate be charged 

positive or negative relative to the 
top plate if you want the electron to 
turn to the right? Explain.

b. What strength electric field is needed if the electron is to 
emerge from an exit hole 1.0 cm away from the entrance hole, 
traveling at right angles to its original direction?

Hint: The difficulty of this problem depends on how you choose 
your coordinate system.
c. What minimum separation dmin must the capacitor plates 

have?
56. || Protons traveling in the +xdirection have kinetic energy 

5.4 * 10-14 J . What uniform electric field E
u
 will stop the pro

tons in 1.0 m?
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70. ||| a. An infinitely long sheet of charge of width L lies in the xy
plane between x = -L /2 and x = L /2. The surface charge 
density is h. Derive an expression for the electric field E

u
 

along the xaxis for points outside the sheet 1x 7 L /22.
b. Verify that your expression has the expected behavior if 

x W L.
Hint: ln11 + u2 ≈ u if u V 1.
c. Draw a graph of field strength E versus x for x 7 L /2.

71. ||| A thin cylindrical shell of radius R and length L, like a soda 
straw, is uniformly charged with surface charge density h. What is 
the electric field strength at the center of one end of the cylinder?

72. ||| One type of inkjet printer, called an electrostatic inkjet 
printer, forms the letters by using deflecting electrodes to steer 
charged ink drops up and down vertically as the ink jet sweeps 
horizontally across the page. The ink jet forms 30@mm@diameter 
drops of ink, charges them by spraying 800,000 electrons on the 
surface, and shoots them toward the page at a speed of 20 m/s. 
Along the way, the drops pass through two horizontal, paral
lel electrodes that are 6.0 mm long, 4.0 mm wide, and spaced  
1.0 mm apart. The distance from the center of the electrodes to 
the paper is 2.0 cm. To form the tallest letters, which have a height 
of 6.0 mm, the drops need to be deflected upward (or downward) 
by 3.0 mm. What electric field strength is needed between the 
electrodes to achieve this deflection? Ink, which consists of dye 
particles suspended in alcohol, has a density of 800 kg/m3.

73. ||| A proton orbits a long charged wire, making 1.0 * 106 revo
lutions per second. The radius of the orbit is 1.0 cm. What is the 
wire’s linear charge density?

74. ||| You have a summer intern position with a company that de
signs and builds nanomachines. An engineer with the company 
is designing a microscopic oscillator to help keep time, and 
you’ve been assigned to help him analyze the design. He wants 
to place a negative charge at the center of a very small, positively 
charged metal ring. His claim is that the negative charge will 
undergo simple harmonic motion at a frequency determined by 
the amount of charge on the ring.
a. Consider a negative charge near the center of a positively 

charged ring centered on the zaxis. Show that there is a re
storing force on the charge if it moves along the zaxis but 
stays close to the center of the ring. That is, show there’s a 
force that tries to keep the charge at z = 0.

b. Show that for small oscillations, with amplitude V R, a par
ticle of mass m with charge -q undergoes simple harmonic 
motion with frequency

f =
1

2p
 B qQ

4pP0mR3

R and Q are the radius and charge of the ring.
c. Evaluate the oscillation frequency for an electron at the center  

of a 2.0@mm@diameter ring charged to 1.0 * 10-13 C.

62. || Show that an infinite line of charge with linear charge density 
l exerts an attractive force on an electric dipole with magnitude 
F = 2lp/4pP0r

2. Assume that r, the distance from the line, is 
much larger than the charge separation in the dipole.

63. || The ozone molecule O3 has a permanent dipole moment of 
1.8 * 10-30 C m. Although the molecule is very slightly bent—
which is why it has a dipole moment—it can be modeled as a 
uniform rod of length 2.5 * 10-10 m with the dipole moment per
pendicular to the axis of the rod. Suppose an ozone molecule is 
in a 5000 N/C uniform electric field. In equilibrium, the dipole 
moment is aligned with the electric field. But if the molecule 
is rotated by a small angle and released, it will oscillate back 
and forth in simple harmonic motion. What is the frequency f of 
oscillation?

In Problems 64 through 67 you are given the equation(s) used to solve 
a problem. For each of these

a. Write a realistic problem for which this is the correct equation(s).
b. Finish the solution of the problem.

64. 19.0 * 109 N m2/C22 
12.0 * 10-9 C2 s

10.025 m23 = 1150 N/C

65. 19.0 * 109 N m2/C22 
212.0 * 10-7 C/m2

r
= 25,000 N/C

66. 
h

2P0
 c 1 -

z2z2 + R2
d =

1
2

 
h

2P0

67. 2.0 * 1012 m/s2 =
11.60 * 10-19 C2E

11.67 * 10-27 kg2

E =
Q

18.85 * 10-12 C2/N m2210.020 m22 

Challenge Problems
68. ||| A rod of length L lies along the yaxis with its center at the 

origin. The rod has a nonuniform linear charge density l = a 0 y 0 , 
where a is a constant with the units C/m2.
a. Draw a graph of l versus y over the length of the rod.
b. Determine the constant a in terms of L and the rod’s total 

charge Q.
c. Find the electric field strength of the rod at distance x on the 

xaxis.
69. ||| a. An infinitely long sheet of charge of width L lies in the 

xyplane between x = -L /2 and x = L /2. The surface 
charge density is h. Derive an expression for the electric 
field E

u
 at height z above the centerline of the sheet.

b. Verify that your expression has the expected behavior if 
z V L and if z W L.

c. Draw a graph of field strength E versus z.
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Gauss’s Law

What is Gauss’s law?
Gauss’s law is a general statement about 
the nature of electric fields. It is more  
fundamental than Coulomb’s law and is the 
first of what we will later call Maxwell’s 
equations, the governing equations of 
electricity and magnetism.

Gauss’s law says that the electric flux 
through a closed surface is proportional 
to the amount of charge Qin enclosed 
within the surface. This seemingly abstract 
statement will be the basis of a powerful 
strategy for finding the electric fields 
of charge distributions that have a high 
degree of symmetry.

❮❮ LOOKING BACK Section 22.5 The electric  
field of a point charge Section 23.2 Electric  
field lines

What good is symmetry?
For charge distributions with a high degree 
of symmetry, the symmetry of the  electric 
field must match the symmetry of the 
charge distribution. Important symmetries 
are planar symmetry, cylindrical symmetry, 
and spherical symmetry. The concept of 
symmetry plays an important role in math 
and science.

What is electric flux?
The amount of electric field passing 
through a surface is called the electric flux. 
Electric flux is analogous to the amount of 
air or water flowing through a loop. You  
will learn to calculate the flux through open 
and closed surfaces.

❮❮ LOOKING BACK Section 9.3 Vector dot 
products

How is Gauss’s law used?
Gauss’s law is easier to use than  
superposition for finding the electric 
field both inside and outside of charged 
spheres, cylinders, and planes. To use 
Gauss’s law, you calculate the electric flux 
through a Gaussian surface surrounding 
the charge. This will turn out to be much 
easier than it sounds!

What can we learn about conductors?
Gauss’s law can be used to establish several 
properties of conductors in electrostatic 
equilibrium. In particular:

■■ Any excess charge is all on the surface.
■■ The interior electric field is zero.
■■ The external field is perpendicular to the 

surface.

IN THIS CHAPTER, you will learn about and apply Gauss’s law.

24

E
u

E
u

Qin

Cylindrical
symmetry

E
u

E
u

E
u

Gaussian
surface

E = 0
u u

E
u

An electric field image of 
blood plasma from healthy 
blood. The wire in the center 
creates the electric field. 
Variations in the shape and 
color of the pattern can give 
early warning of cancer.
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24.1 Symmetry
To continue our exploration of electric fields, suppose we knew only two things:

1. The field points away from positive charges, toward negative charges, and
2. An electric field exerts a force on a charged particle.

From this information alone, what can we deduce about the electric field of the in-
finitely long charged cylinder shown in FIGURE 24.1?

We don’t know if the cylinder’s diameter is large or small. We don’t know if the 
charge density is the same at the outer edge as along the axis. All we know is that the 
charge is positive and the charge distribution has cylindrical symmetry. We say that 
a charge distribution is symmetric if there is a group of geometric transformations 
that don’t cause any physical change.

To make this idea concrete, suppose you close your eyes while a friend transforms 
a charge distribution in one of the following three ways. He or she can

■■ Translate (that is, displace) the charge parallel to an axis,
■■ Rotate the charge about an axis, or
■■ Reflect the charge in a mirror.

When you open your eyes, will you be able to tell if the charge distribution has been 
changed? You might tell by observing a visual difference in the distribution. Or the 
results of an experiment with charged particles could reveal that the distribution has 
changed. If nothing you can see or do reveals any change, then we say that the charge  
distribution is symmetric under that particular transformation.

FIGURE 24.2 shows that the charge distribution of Figure 24.1 is symmetric with 
respect to

■■ Translation parallel to the cylinder axis. Shifting an infinitely long cylinder by 1 mm  
or 1000 m makes no noticeable or measurable change.

■■ Rotation by any angle about the cylinder axis. Turning a cylinder about its axis by 
1° or 100° makes no detectable change.

■■ Reflections in any plane containing or perpendicular to the cylinder axis. Exchanging 
top and bottom, front and back, or left and right makes no detectable change.

A charge distribution that is symmetric under these three groups of geometric 
transformations is said to be cylindrically symmetric. Other charge distributions have 
other types of symmetries. Some charge distributions have no symmetry at all.

Our interest in symmetry can be summed up in a single statement:

The symmetry of the electric field must match the symmetry of the charge 
distribution.

If this were not true, you could use the electric field to test whether the charge  
distribution had undergone a transformation.

Now we’re ready to see what we can learn about the electric field in Figure 24.1. 
Could the field look like FIGURE 24.3a? (Imagine this picture rotated about the axis.) 
That is, is this a possible field? This field looks the same if it’s translated parallel to the  

Infinitely long
charged cylinder

FIGURE 24.1 A charge distribution with 
cylindrical symmetry.

Rotation
about the
axis

Translation
parallel to
the axis

Reflection
perpendicular
to the axis

Reflection
in plane
containing
the axis

Original
cylinder

FIGURE 24.2 Transformations that don’t 
change an infinite cylinder of charge.

E
u

E
u

Reflection plane

(a) Is this a possible electric field of an infinitely
long charged cylinder? Suppose the charge and
the field are reflected in a plane perpendicular
to the axis.

Reflect

FIGURE 24.3 Could the field of a cylindrical charge distribution look like this?

E
u

E
u

(b) The charge distribution is not changed by the
reflection, but the field is. This field doesn’t
match the symmetry of the cylinder, so the
cylinder’s field can’t look like this.
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712 CHAPTER 24 Gauss’s Law

cylinder axis, if up and down are exchanged by reflecting the field in a plane coming 
out of the page, or if you rotate the cylinder about its axis.

But the proposed field fails one test: reflection in a plane perpendicular to the axis, 
a reflection that exchanges left and right. This reflection, which would not make any 
change in the charge distribution itself, produces the field shown in FIGURE 24.3b. This 
change in the field is detectable because a positively charged particle would now have 
a component of motion to the left instead of to the right.

The field of Figure 24.3a, which makes a distinction between left and right, is  
not cylindrically symmetric and thus is not a possible field. In general, the electric 
field of a cylindrically symmetric charge distribution cannot have a component 
parallel to the cylinder axis.

Well then, what about the electric field shown in FIGURE 24.4a? Here we’re  looking 
down the axis of the cylinder. The electric field vectors are restricted to planes  
perpendicular to the cylinder and thus do not have any component parallel to the  
cylinder axis. This field is symmetric for rotations about the axis, but it’s not  symmetric  
for a reflection in a plane containing the axis.

The field of FIGURE 24.4b, after this reflection, is easily distinguishable from the 
field of Figure 24.4a. Thus the electric field of a cylindrically symmetric charge 
distribution cannot have a component tangent to the circular cross section.

FIGURE 24.5 shows the only remaining possible field shape. The electric field is  
radial, pointing straight out from the cylinder like the bristles on a bottle brush. This 
is the one electric field shape matching the symmetry of the charge distribution.

E
u E

u

(a)

The charge distribution
is not changed by
reflecting it in a plane
containing the axis.

Reflection plane

Reflect

End view
of cylinder

E
u

E
u

(b) This field is changed.
It doesn’t match
the symmetry of
the cylinder, so the
field can’t look
like this.

FIGURE 24.4 Or might the field of a 
cylindrical charge distribution look like this?

E
u

E
u

Side view

FIGURE 24.5 This is the only shape for the electric field that matches the symmetry of the 
charge distribution.

E
u

E
u

End view

What Good Is Symmetry?
Given how little we assumed about Figure 24.1—that the charge distribution is  
cylindrically symmetric and that electric fields point away from positive charges—
we’ve been able to deduce a great deal about the electric field. In particular, we’ve 
deduced the shape of the electric field.

Now, shape is not everything. We’ve learned nothing about the strength of the field 
or how strength changes with distance. Is E constant? Does it decrease like 1/r or 1/r2? 
We don’t yet have a complete description of the field, but knowing what shape the field  
has to have will make finding the field strength a much easier task.

That’s the good of symmetry. Symmetry arguments allow us to rule out many  
conceivable field shapes as simply being incompatible with the symmetry of the 
charge distribution. Knowing what doesn’t happen, or can’t happen, is often as useful 
as knowing what does happen. By the process of elimination, we’re led to the one  
and only shape the field can possibly have. Reasoning on the basis of symmetry is a 
sometimes subtle but always powerful means of reasoning.

Three Fundamental Symmetries
Three fundamental symmetries appear frequently in electrostatics. The first row of 
FIGURE 24.6 shows the simplest form of each symmetry. The second row shows a more 
complex, but more realistic, situation with the same symmetry.
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24.2 The Concept of Flux 713

   NOTE    Figures must be finite in extent, but the planes and cylinders in Figure 24.6 
are assumed to be infinite.

Objects do exist that are extremely close to being perfect spheres, but no real  
cylinder or plane can be infinite in extent. Even so, the fields of infinite planes and 
cylinders are good models for the fields of finite planes and cylinders at points not too 
close to an edge or an end. The fields that we’ll study in this chapter, even if idealized, 
have many important applications.

Planar symmetry

Basic
symmetry:

The field is
perpendicular
to the plane.

Infinite
plane

FIGURE 24.6 Three fundamental symmetries.

Cylindrical symmetry

The field is radial
toward or away
from the axis.

Infinite
cylinder

Spherical symmetry

The field is radial
toward or away
from the center.

More
complex
example:

Infinite parallel-plate capacitor Coaxial cylinders Concentric spheres

STOP TO THINK 24.1 A uniformly charged rod has a finite length  
L. The rod is symmetric under rotations about the axis and under  
reflection in any plane containing the axis. It is not symmetric under 
translations or under reflections in a plane perpendicular to the axis 
unless that plane bisects the rod. Which field shape or shapes match the 
symmetry of the rod?

(a)

(b)

(c)

(d)

(e)

24.2 The Concept of Flux
FIGURE 24.7a on the next page shows an opaque box surrounding a region of space. We 
can’t see what’s in the box, but there’s an electric field vector coming out of each face 
of the box. Can you figure out what’s in the box?
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714 CHAPTER 24 Gauss’s Law

Of course you can. Because electric fields point away from positive charges, it 
seems clear that the box contains a positive charge or charges. Similarly, the box in 
FIGURE 24.7b certainly contains a negative charge.

What can we tell about the box in FIGURE 24.7c? The electric field points into the 
box on the left. An equal electric field points out on the right. An electric field passes 
through the box, but we see no evidence there’s any charge (or at least any net charge) 
inside the box. These examples suggest that the electric field as it passes into, out of, 
or through the box is in some way connected to the charge within the box.

To explore this idea, suppose we surround a region of space with a closed surface, 
a surface that divides space into distinct inside and outside regions. Within the context 
of electrostatics, a closed surface through which an electric field passes is called a 
Gaussian surface, named after the 19th-century mathematician Karl Gauss. This is 
an imaginary, mathematical surface, not a physical surface, although it might coincide 
with a physical surface. For example, FIGURE 24.8a shows a spherical Gaussian surface 
surrounding a charge.

A closed surface must, of necessity, be a surface in three dimensions. But three- 
dimensional pictures are hard to draw, so we’ll often look at two-dimensional cross 
sections through a Gaussian surface, such as the one shown in FIGURE 24.8b. Now we 
can tell from the spherical symmetry of the electric field vectors poking through the 
surface that the positive charge inside must be spherically symmetric and centered at 
the center of the sphere.

E
u

E
u

A Gaussian surface
that doesn’t match
the symmetry of the
electric field isn’t
very useful.

FIGURE 24.10 Not every surface is useful 
for learning about charge.

E
u

Opaque
box

The field is coming 
out of each face of 
the box. There must 
be a positive charge 
in the box.

(a)

FIGURE 24.7 Although we can’t see into the boxes, the electric fields passing through the faces tell us something about what’s in them.

E
u

The field is going 
into each face of the 
box. There must be 
a negative charge in 
the box.

(b)

E
u

E
u

(c) A field passing
through the box
implies there’s
no net charge
in the box.

E
u

E
u

(a) A Gaussian surface
is a closed surface
around a charge.

FIGURE 24.8 Gaussian surface 
surrounding a charge. A two-dimensional 
cross section is usually easier to draw.

E
u

E
u

(b) A two-dimensional
cross section through
a spherical Gaussian
surface is easier to draw.

E
u

E
u

Cylindrical Gaussian
surface

(a)

FIGURE 24.9 A Gaussian surface is most useful when it matches the shape of the field.

E
u

E
u

E
u

E
u

Two-dimensional cross sections
of a Gaussian surface

TopSide

(b)

A Gaussian surface is most useful when it matches the shape and symmetry of  
the field. For example, FIGURE 24.9a shows a cylindrical Gaussian surface—a closed 
cylinder—surrounding some kind of cylindrical charge distribution, such as a charged 
wire. FIGURE 24.9b simplifies the drawing by showing two-dimensional end and side 
views. Because the Gaussian surface matches the symmetry of the charge distribution,  
the electric field is everywhere perpendicular to the side wall and no field passes 
through the top and bottom surfaces.

For contrast, consider the spherical surface in FIGURE 24.10. This is also a 
Gaussian surface, and the protruding electric field tells us there’s a positive charge 
inside. It might be a point charge located on the left side, but we can’t really say. A  
Gaussian surface that doesn’t match the symmetry of the charge distribution isn’t  
terribly useful.

These examples lead us to two conclusions:
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1. The electric field, in some sense, “flows” out of a closed surface surrounding a re-
gion of space containing a net positive charge and into a closed surface surrounding  
a net negative charge. The electric field may flow through a closed surface surround-
ing a region of space in which there is no net charge, but the net flow is zero.

2. The electric field pattern through the surface is particularly simple if the closed 
surface matches the symmetry of the charge distribution inside.

The electric field doesn’t really flow like a fluid, but the metaphor is a useful one. The 
Latin word for flow is flux, and the amount of electric field passing through a surface  
is called the electric flux. Our first conclusions, stated in terms of electric flux, are

■■ There is an outward flux through a closed surface around a net positive charge.
■■ There is an inward flux through a closed surface around a net negative charge.
■■ There is no net flux through a closed surface around a region of space in which 

there is no net charge.

This chapter has been entirely qualitative thus far as we’ve established pictorially 
what we mean by symmetry, flux, and the fact that the electric flux through a closed 
surface has something to do with the charge inside. In the next two sections you’ll 
learn how to calculate the electric flux through a surface and how the flux is related 
to the enclosed charge. That relationship, Gauss’s law, will allow us to determine the 
electric fields of some interesting and useful charge distributions.

STOP TO THINK 24.2 This box contains

a. A positive charge. b. A negative charge.
c. No charge. d. A net positive charge.
e. A net negative charge. f. No net charge.

24.3 Calculating Electric Flux
Let’s start with a brief overview of where this section will take us. We’ll begin with  
a definition of flux that is easy to understand, then we’ll turn that simple definition 
into a formidable-looking integral. We need the integral because the simple definition 
applies only to uniform electric fields and flat surfaces. Those are good starting points, 
but we’ll soon need to calculate the flux of nonuniform fields through curved surfaces.

Mathematically, the flux of a nonuniform field through a curved surface is described 
by a special kind of integral called a surface integral. It’s quite possible that you have 
not yet encountered surface integrals in your calculus course, and the “novelty factor” 
contributes to making this integral look worse than it really is. We will emphasize 
over and over the idea that an integral is just a fancy way of doing a sum, in this case  
the sum of the small amounts of flux through many small pieces of a surface.

The good news is that every surface integral we need to evaluate in this chapter, or that 
you will need to evaluate for the homework problems, is either zero or is so easy that you 
will be able to do it in your head. This seems like an astounding claim, but you will soon 
see it is true. The key will be to make effective use of the symmetry of the electric field.

The Basic Definition of Flux
Imagine holding a rectangular wire loop of area A in front of a fan. As FIGURE 24.11 on the 
next page shows, the volume of air flowing through the loop each second depends on the 
angle between the loop and the direction of flow. The flow is maximum through a loop 
that is perpendicular to the airflow; no air goes through the same loop if it lies parallel 
to the flow.
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716 CHAPTER 24 Gauss’s Law

The flow direction is identified by the velocity vector v 

u. We can identify the loop’s 
orientation by defining a unit vector nn normal to the plane of the loop. Angle u is then 
the angle between v 

u and nn. The loop perpendicular to the flow in Figure 24.11a has 
u = 0°; the loop parallel to the flow in Figure 24.11b has u = 90°. You can think of u  
as the angle by which a loop has been tilted away from perpendicular.

   NOTE    A surface has two sides, so nn could point either way. We’ll choose the side 
that makes u … 90°.

You can see from Figure 24.11c that the velocity vector v 

u can be decomposed into 
components v# = v cos u perpendicular to the loop and v‘ = v sin u parallel to the loop. 
Only the perpendicular component v# carries air through the loop. Consequently, the 
volume of air flowing through the loop each second is

 volume of air per second (m3/s) = v#A = vA cos u (24.1)

u = 0° is the orientation for maximum flow through the loop, as expected, and no air 
flows through the loop if it is tilted 90°.

An electric field doesn’t flow in a literal sense, but we can apply the same idea to 
an electric field passing through a surface. FIGURE 24.12 shows a surface of area A in 
a uniform electric field E

u
. Unit vector nn is normal to the surface, and u is the angle 

between nn and E
u
. Only the component E# = E cos u passes through the surface.

With this in mind, and using Equation 24.1 as an analog, let’s define the electric 
flux Φe (uppercase Greek phi) as

 Φe = E#A = EA cos u (24.2)

The electric flux measures the amount of electric field passing through a surface of 
area A if the normal to the surface is tilted at angle u from the field.

Equation 24.2 looks very much like a vector dot product: E
u # A

u
= EA cos u. (You 

may want to review the dot product in ❮❮  SECTION 9.3.) For this idea to work, let’s define 
an area vector A

u
= Ann to be a vector in the direction of nn—that is, perpendicular to 

the surface—with a magnitude A equal to the area of the surface. Vector A
u

 has units 
of m2. FIGURE 24.13a shows two area vectors.

v
u nn

Loop

Air
flow

(a)

The air flowing through the
loop is maximum when u = 0°.

FIGURE 24.11 The amount of air flowing through a loop depends on the angle between v  

u and nn.

nn

E
u

u

uu

E ‘

E#

Surface
of area A

Normal to
surface

E# = E cosu is the component
of the electric field that passes
through the surface.

u is the angle
between n and E.n

u

FIGURE 24.12 An electric field passing 
through a surface.

A
u

A
u

Area A Area A

(a)

Area vector A is 
perpendicular to 
the surface. The 
magnitude of A is 
the surface area A. 

u

u

FIGURE 24.13 The electric flux can be defined in terms of the area vector A
u

.

nn

v
u

Unit vector
normal to loop

(b)

No air flows through
the loop when u = 90°.

nn

v
u

u

u

u

v ‘

v#

(c) The loop is
tilted by angle u.

v# = v cosu is the component of the
air velocity perpendicular to the loop.

A
u

E
uu

(b)

The electric flux 
through the surface 
is  Φe = E # A.

uu

FIGURE 24.13b shows an electric field passing through a surface of area A. The angle 
between vectors A

u
 and E

u
 is the same angle used in Equation 24.2 to define the electric 

flux, so Equation 24.2 really is a dot product. Thus we can write the electric flux as
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 Φe = E
u # A

u
 (electric flux of a constant electric field) (24.3)

Writing the flux as a dot product helps make clear how angle u is defined: u is the 
angle between the electric field and a line perpendicular to the plane of the surface.

 NOTE   Figure 24.13b shows a circular area, but the shape of the surface is not 
relevant. However, Equation 24.3 is restricted to a constant electric field passing 
through a planar surface.

Two 100 cm2 parallel electrodes are spaced 2.0 cm apart. One is 
charged to +5.0 nC, the other to -5.0 nC. A 1.0 cm * 1.0 cm sur-
face between the electrodes is tilted to where its normal makes a 
45° angle with the electric field. What is the electric flux through 
this surface?

MODEL Assume the surface is located near the center of the  
cap acitor where the electric field is uniform. The electric flux doesn’t  
depend on the shape of the surface.

VISUALIZE The surface is square, rather than circular, but other-
wise the situation looks like Figure 24.13b.

SOLVE In Chapter 23, we found the electric field inside a parallel- 
plate capacitor to be

  E =
Q

P0 Aplates 
=

5.0 * 10-9 C

18.85 * 10-12 C2/N m2211.0 * 10-2 m22 

  = 5.65 * 104 N/C

A 1.0 cm * 1.0 cm surface has A = 1.0 * 10-4 m2. The electric 
flux through this surface is

  Φe = E
u # A

u
= EA cos u

  = 15.65 * 104 N/C211.0 * 10-4 m22 cos 45°

  = 4.0 N m2/C

REVIEW The units of electric flux are the product of electric field 
and area units: N m2/C.

EXAMPLE 24.1 ■ The electric flux inside a parallel-plate capacitor

The Electric Flux of a Nonuniform Electric Field
Our initial definition of the electric flux assumed that the electric field E

u
 was constant over 

the surface. How should we calculate the electric flux if E
u

 varies from point to point on the 
surface? We can answer this question by returning to the analogy of air flowing through 
a loop. Suppose the airflow varies from point to point. We can still find the total volume 
of air passing through the loop each second by dividing the loop into many small areas, 
finding the flow through each small area, then adding them. Similarly, the electric flux 
through a surface can be calculated as the sum of the fluxes through smaller pieces 
of the surface. Because flux is a scalar, adding fluxes is easier than adding electric fields.

FIGURE 24.14 shows a surface in a nonuniform electric field. Imagine dividing the 
surface into many small pieces of area dA. Each little area has an area vector dA

u
  

perpendicular to the surface. Two of the little pieces are shown in the figure. The 
electric fluxes through these two pieces differ because the electric fields are different.

Consider the small piece i where the electric field is E
u

i. The small electric flux dΦi 
through area 1dA

u2i is

 dΦi = E
u

i
# 1dA

u2i (24.4)

The flux through every other little piece of the surface is found the same way. The total 
electric flux through the entire surface is then the sum of the fluxes through each of  
the small areas:

 Φe = a
i
dΦi = a

i
E
u

i
# 1dA

u2i (24.5)

Now let’s go to the limit dA
u

S dA
u

. That is, the little areas become infinitesimally 
small, and there are infinitely many of them. Then the sum becomes an integral, and 
the electric flux through the surface is

Piece j

Piece i

(dA)i

u

(dA)j

u

Ej

u

Ei

u

The total area A can be divided
into many small pieces of area dA.
E may be different at each piece.
u

FIGURE 24.14 A surface in a nonuniform 
electric field.

 Φe = 3
surface

E
u # dA

u
 (24.6)

The integral in Equation 24.6 is called a surface integral.
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Equation 24.6 may look rather frightening if you haven’t seen surface integrals  
before. Despite its appearance, a surface integral is no more complicated than integrals  
you know from calculus. After all, what does 1 f 1x2 dx really mean? This expression 
is a shorthand way to say “Divide the x-axis into many little segments of length dx, 
evaluate the function f 1x2 in each of them, then add up f 1x2 dx for all the segments 
along the line.” The integral in Equation 24.6 differs only in that we’re dividing a 
surface into little pieces instead of a line into little segments. In particular, we’re  
summing the fluxes through a vast number of very tiny pieces.

You may be thinking, “OK, I understand the idea, but I don’t know what to do.  
In calculus, I learned formulas for evaluating integrals such as 1x2 dx. How do I  
evaluate a surface integral?” This is a good question. We’ll deal with evaluation 
shortly, and it will turn out that the surface integrals in electrostatics are quite easy 
to evaluate. But don’t confuse evaluating the integral with understanding what the 
integral means. The surface integral in Equation 24.6 is simply a shorthand notation 
for the summation of the electric fluxes through a vast number of very tiny pieces  
of a surface.

The electric field might be different at every point on the surface, but suppose it 
isn’t. That is, suppose a flat surface is in a uniform electric field E

u
. A field that is 

the same at every single point on a surface is a constant as far as the integration of 
Equation 24.6 is concerned, so we can take it outside the integral. In that case,

 Φe = 3
surface

E
u # d A

u
= 3

surface

E cos u dA = E cos u 3
surface

dA (24.7)

The integral that remains in Equation 24.7 tells us to add up all the little areas into 
which the full surface was subdivided. But the sum of all the little areas is simply the 
area of the surface:

 3
surface

dA = A (24.8)

This idea—that the surface integral of dA is the area of the surface—is one we’ll use 
to evaluate most of the surface integrals of electrostatics. If we substitute Equation 
24.8 into Equation 24.7, we find that the electric flux in a uniform electric field is 
Φe = EA cos u. We already knew this, from Equation 24.2, but it was important to 
see that the surface integral of Equation 24.6 gives the correct result for the case of a 
uniform electric field.

The Flux Through a Curved Surface
Most of the Gaussian surfaces we considered in the last section were curved surfaces. 
FIGURE 24.15 shows an electric field passing through a curved surface. How do we find 
the electric flux through this surface? Just as we did for a flat surface!

Divide the surface into many small pieces of area dA. For each, define the area 
vector dA

u
 perpendicular to the surface at that point. Compared to Figure 24.14,  

the only difference that the curvature of the surface makes is that the dA
u
 are no longer 

parallel to each other. Find the small electric flux dΦi = E
u

i
# 1dA

u2i through each little 
area, then add them all up. The result, once again, is

 Φe = 3
surface

E
u # dA

u
 (24.9)

We assumed, in deriving this expression the first time, that the surface was flat and 
that all the dA

u
 were parallel to each other. But that assumption wasn’t necessary. The 

meaning of Equation 24.9—a summation of the fluxes through a vast number of very 
tiny pieces—is unchanged if the pieces lie on a curved surface.

Curved surface
of total area A

(dA)i

u

Ei

u

The flux through
this little piece is
dΦi = Ei # (dA)i.

uu

FIGURE 24.15 A curved surface in an 
electric field.

M24_KNIG8221_05_GE_C24.indd   718 30/05/2022   08:01



24.3 Calculating Electric Flux 719

We seem to be getting more and more complex, using surface integrals first  
for nonuniform fields and now for curved surfaces. But consider the two situations 
shown in FIGURE 24.16. The electric field E

u
 in Figure 24.16a is everywhere tangent, or 

parallel, to the curved surface. We don’t need to know the magnitude of E
u
 to recognize 

that E
u # dA

u
 is zero at every point on the surface because E

u
 is perpendicular to dA

u
 at 

every point. Thus Φe = 0. A tangent electric field never pokes through the surface, so  
it has no flux through the surface.

The electric field in Figure 24.16b is everywhere perpendicular to the surface and 
has the same magnitude E at every point. E

u
 differs in direction at different points on 

a curved surface, but at any particular point E
u
 is parallel to dA

u
 and E

u # dA
u
 is simply 

E dA. In this case,

 Φe = 3
surface

E
u # dA

u
= 3

surface

E dA = E 3
surface

dA = EA (24.10)

As we evaluated the integral, the fact that E has the same magnitude at every point on 
the surface allowed us to bring the constant value outside the integral. We then used 
the fact that the integral of dA over the surface is the surface area A.

We can summarize these two situations with a Tactics Box.

E
u

(b)

Area A

E is everywhere
perpendicular to the
surface and has the same
magnitude at each point.
The flux is EA.

u

E
u

(a)

Area A

E is everywhere tangent
to the surface. The flux
is zero.

u

FIGURE 24.16 Electric fields that are 
everywhere tangent to or everywhere 
perpendicular to a curved surface.

TACTICS BOX 24.1

Evaluating surface integrals
1  If the electric field is everywhere tangent to a surface, the electric flux through 

the surface is Φe = 0.
2  If the electric field is everywhere perpendicular to a surface and has the  

same magnitude E at every point, the electric flux through the surface is 
Φe = EA.

These two results will be of immeasurable value for using Gauss’s law because 
every flux we’ll need to calculate will be one of these situations. This is the basis for 
our earlier claim that the evaluation of surface integrals is not going to be difficult.

The Electric Flux Through a Closed Surface
Our final step, to calculate the electric flux through a closed surface such as a box, a 
cylinder, or a sphere, requires nothing new. We’ve already learned how to calculate 
the electric flux through flat and curved surfaces, and a closed surface is nothing more  
than a surface that happens to be closed.

However, the mathematical notation for the surface integral over a closed surface 
differs slightly from what we’ve been using. It is customary to use a little circle on 
the integral sign to indicate that the surface integral is to be performed over a closed 
surface. With this notation, the electric flux through a closed surface is

 Φe = C E
u # dA

u
 (24.11)

Only the notation has changed. The electric flux is still the summation of the fluxes 
through a vast number of tiny pieces, pieces that now cover a closed surface.

   NOTE    A closed surface has a distinct inside and outside. The area vector dA
u
 is 

defined to always point toward the outside. This removes an ambiguity that was 
present for a single surface, where dA

u
 could point to either side.

Now we’re ready to calculate the flux through a closed surface.
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720 CHAPTER 24 Gauss’s Law

TACTICS BOX 24.2

Finding the flux through a closed surface
1  Choose a Gaussian surface made up of pieces that are everywhere tangent to  

the electric field or everywhere perpendicular to the electric field.
2  Use Tactics Box 24.1 to evaluate the surface integrals over these surfaces, then 

add the results.

Exercise 10 

A charge distribution with cylindrical symmetry has created the 
electric field E

u
= E01r2/r0 

22rn, where E0 and r0 are constants and 
where unit vector rn lies in the xy-plane. Calculate the electric flux 
through a closed cylinder of length L and radius R that is centered 
along the z-axis.

MODEL The electric field extends radially outward from the z-axis 
with cylindrical symmetry. The z-component is Ez = 0. The cylin-
der is a Gaussian surface.

VISUALIZE FIGURE 24.17a is a view of the electric field looking 
along the z-axis. The field strength increases with increasing radial 
distance, and it’s symmetric about the z-axis. FIGURE 24.17b is the 
closed Gaussian surface for which we need to calculate the electric 
flux. We can place the cylinder anywhere along the z-axis because 
the electric field extends forever in that direction.

SOLVE To calculate the flux, we divide the closed cylinder into 
three surfaces: the top, the bottom, and the cylindrical wall. The 
electric field is tangent to the surface at every point on the top and 
bottom surfaces. Hence, according to step 1 in Tactics Box 24.1, 
the flux through those two surfaces is zero. For the cylindrical  
wall, the electric field is perpendicular to the surface at every point 
and has the constant magnitude E = E01R2/r0 

22 at every point on 
the surface. Thus, from step 2 in Tactics Box 24.1,

Φwall = EAwall 

If we add the three pieces, the net flux through the closed surface is

  Φe = C E
u # dA

u
= Φtop + Φbottom + Φwall = 0 + 0 + EAwall

  = EAwall

We’ve evaluated the surface integral, using the two steps in 
Tactics Box 24.1, and there was nothing to it! To finish, all we 
need to recall is that the surface area of a cylindrical wall is 
circumference * height, or Awall = 2pRL. Thus

Φe = 1E0 
R2

r0 

22 12pRL2 =
2pLR3

r0 

2  E0

REVIEW LR3/r0 

2 has units of m2, an area, so this expression for  
Φe has units of N m2/C. These are the correct units for electric 
flux, giving us confidence in our answer. Notice the important role 
played by symmetry. The electric field was perpendicular to the 
wall and of constant value at every point on the wall because the 
Gaussian surface had the same symmetry as the charge distribu-
tion. We would not have been able to evaluate the surface integral 
in such an easy way for a surface of any other shape. Symmetry is 
the key.

EXAMPLE 24.2 ■ Calculating the electric flux through a closed cylinder

L

(b)

y

x

z

Radius R

Gaussian 
surface

There is no field
through the end.

The field is 
everywhere
perpendicular
to the wall.

Electric field, looking 
along the z-axis

(a)

x

y

FIGURE 24.17 The electric field and the closed surface through 
which we will calculate the electric flux.

STOP TO THINK 24.3 The total electric flux  
through this box is

a. 0 N m2/C
b. 1 N m2/C
c. 2 N m2/C
d. 4 N m2/C
e. 6 N m2/C
f. 8 N m2/C

Plane of charge

Cross section of a
1 m * 1 m * 1 m box

E = (1 N/C, up)
u

E = (1 N/C, down)
u
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24.4 Gauss’s Law 721

24.4 Gauss’s Law
The last section was long, but knowing how to calculate the electric flux through a 
closed surface is essential for the main topic of this chapter: Gauss’s law. Gauss’s law 
is equivalent to Coulomb’s law for static charges, although Gauss’s law will look very 
different.

The purpose of learning Gauss’s law is twofold:

■■ Gauss’s law allows the electric fields of some continuous distributions of charge to 
be found much more easily than does Coulomb’s law.

■■ Gauss’s law is valid for moving charges, but Coulomb’s law is not (although it’s a 
very good approximation for velocities that are much less than the speed of light). 
Thus Gauss’s law is ultimately a more fundamental statement about electric fields 
than is Coulomb’s law.

Let’s start with Coulomb’s law for the electric field of a point charge. FIGURE 24.18 
shows a spherical Gaussian surface of radius r centered on a positive charge q. Keep in 
mind that this is an imaginary, mathematical surface, not a physical surface. There is 
a net flux through this surface because the electric field points outward at every point 
on the surface. To evaluate the flux, given formally by the surface integral of Equation 
24.11, notice that the electric field is perpendicular to the surface at every point on the 
surface and, from Coulomb’s law, it has the same magnitude E = q/4pP0r

2 at every 
point on the surface. This simple situation arises because the Gaussian surface has 
the same symmetry as the electric field.

Thus we know, without having to do any hard work, that the flux integral is

 Φe = C E
u # dA

u
= EAsphere (24.12)

The surface area of a sphere of radius r is Asphere = 4pr2. If we use Asphere and the 
Coulomb-law expression for E in Equation 24.12, we find that the electric flux through 
the spherical surface is

 Φe =
q

4pP0r
2 4pr2 =

q
P0

 (24.13)

You should examine the logic of this calculation closely. We really did evaluate the 
surface integral of Equation 24.11, although it may appear, at first, as if we didn’t do much. 
The integral was easily evaluated, we reiterate for emphasis, because the closed surface 
on which we performed the integration matched the symmetry of the charge distribution.

   NOTE    We found Equation 24.13 for a positive charge, but it applies equally to 
negative charges. According to Equation 24.13, Φe is negative if q is negative. And 
that’s what we would expect from the basic definition of flux, E

u # A
u

. The electric field 
of a negative charge points inward, while the area vector of a closed surface points  
outward, making the dot product negative.

Electric Flux Is Independent of Surface Shape  
and Radius
Notice something interesting about Equation 24.13. The electric flux depends on the 
amount of charge but not on the radius of the sphere. Although this may seem a bit 
surprising, it’s really a direct consequence of what we mean by flux. Think of the fluid 
analogy with which we introduced the term “flux.” If fluid flows outward from a central 
point, all the fluid crossing a small-radius spherical surface will, at some later time, 
cross a large-radius spherical surface. No fluid is lost along the way, and no new fluid is  
created. Similarly, the point charge in FIGURE 24.19 is the only source of electric field. 
Every electric field line passing through a small-radius spherical surface also passes 
through a large-radius spherical surface. Hence the electric flux is independent of r.

E
u

E
u

Point charge q
r

Cross section of a Gaussian sphere of
radius r. This is a mathematical surface,
not a physical surface.

The electric field is everywhere
perpendicular to the surface and has
the same magnitude at every point.

FIGURE 24.18 A spherical Gaussian 
surface surrounding a point charge.

Every field line passes through the smaller
and the larger sphere. The flux through the
two spheres is the same.

FIGURE 24.19 The electric flux is the  
same through every sphere centered on a 
point charge.
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722 CHAPTER 24 Gauss’s Law

   NOTE    This argument hinges on the fact that Coulomb’s law is an inverse-square 
force law. The electric field strength, which is proportional to 1/r2, decreases 
with distance. But the surface area, which increases in proportion to r2, exactly 
compensates for this decrease. Consequently, the electric flux of a point charge 
through a spherical surface is independent of the radius of the sphere.

This conclusion about the flux has an extremely important generalization. FIGURE 24.20a 
shows a point charge and a closed Gaussian surface of arbitrary shape and dimensions. All  
we know is that the charge is inside the surface. What is the electric flux through this  
arbitrary surface?

One way to answer the question is to approximate the surface as a patchwork of 
spherical and radial pieces. The spherical pieces are centered on the charge and the 
radial pieces lie along lines extending outward from the charge. (Figure 24.20 is a 
two-dimensional drawing so you need to imagine these arcs as actually being pieces 
of a spherical shell.) The figure, of necessity, shows fairly large pieces that don’t match 
the actual surface all that well. However, we can make this approximation as good as 
we want by letting the pieces become sufficiently small.

The electric field is everywhere tangent to the radial pieces. Hence the electric flux 
through the radial pieces is zero. The spherical pieces, although at varying distances 
from the charge, form a complete sphere. That is, any line drawn radially outward 
from the charge will pass through exactly one spherical piece, and no radial lines can 
avoid passing through a spherical piece. You could even imagine, as FIGURE 24.20b 
shows, sliding the spherical pieces in and out without changing the angle they subtend 
until they come together to form a complete sphere.

Consequently, the electric flux through these spherical pieces that, when assembled, 
form a complete sphere must be exactly the same as the flux q/P0 through a spherical 
Gaussian surface. In other words, the flux through any closed surface surrounding  
a point charge q is

 Φe = C E
u # dA

u
=

q
P0

 (24.14)

This surprisingly simple result is a consequence of the fact that Coulomb’s law is an 
inverse-square force law. Even so, the reasoning that got us to Equation 24.14 is rather 
subtle and well worth reviewing.

Charge Outside the Surface
The closed surface shown in FIGURE 24.21a has a point charge q outside the surface but  
no charges inside. Now what can we say about the flux? By approximating this surface 
with spherical and radial pieces centered on the charge, as we did in Figure 24.20, we 
can reassemble the surface into the equivalent surface of FIGURE 24.21b. This closed 

(a)

Point charge

The spherical pieces are
centered on the charge.

Gaussian surface
of arbitrary shape

The radial pieces are along lines
extending out from the charge.
There’s no flux through these.

FIGURE 24.20 An arbitrary Gaussian 
surface can be approximated with 
spherical and radial pieces.

(b)

The spherical pieces can
slide in or out to form
a complete sphere. Hence
the flux through the
pieces is the same as
the flux through a sphere.

E
u

Point charge
outside surface

Closed
surface

(a)

The flux is negative
on some pieces of
the surface.

Approximating this surface with spherical
and radial pieces allows it to be reassembled
as the surface in part (b) that has the same flux.

The flux is positive
on some pieces of
the surface.

FIGURE 24.21 A point charge outside a Gaussian surface.

A
u

A
u

E
u

Two-dimensional
cross section

The fluxes through these surfaces are
equal but opposite. The net flux is zero.

(b)

A is opposite to E, so
the flux is negative.

u u

A is parallel to E, so
the flux is positive.

u u
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24.4 Gauss’s Law 723

surface consists of sections of two spherical shells, and it is equivalent in the sense  
that the electric flux through this surface is the same as the electric flux through the 
original surface of Figure 24.21a.

If the electric field were a fluid flowing outward from the charge, all the fluid  
entering the closed region through the first spherical surface would later exit the  
region through the second spherical surface. There is no net flow into or out of the 
closed region. Similarly, every electric field line entering this closed volume through 
one spherical surface exits through the other spherical surface.

Mathematically, the electric fluxes through the two spherical surfaces have the 
same magnitude because Φe is independent of r. But they have opposite signs because 
the outward-pointing area vector A

u
 is parallel to E

u
 on one surface but opposite to E

u
 

on the other. The sum of the fluxes through the two surfaces is zero, and we are led to 
the conclusion that the net electric flux is zero through a closed surface that does 
not contain any net charge. Charges outside the surface do not produce a net flux 
through the surface.

This isn’t to say that the flux through a small piece of the surface is zero. In fact, 
as Figure 24.21a shows, nearly every piece of the surface has an electric field either 
entering or leaving and thus has a nonzero flux. But some of these are positive and 
some are negative. When summed over the entire surface, the positive and negative 
contributions exactly cancel to give no net flux.

Multiple Charges
Finally, consider an arbitrary Gaussian surface and a group of charges q1, q2, q3,c 
such as those shown in FIGURE 24.22. What is the net electric flux through the surface?

By definition, the net flux is

Φe = C E
u # dA

u

From the principle of superposition, the electric field is E
u

= E
u

1 + E
u

2 +  E
u

3 + g, 
where E

u

1, E
u

2, E
u

3,care the fields of the individual charges. Thus the flux is

  Φe = C E
u

1
# dA

u
+ C E

u

2
# dA

u
+ C E

u

3
# dA

u
+ g  

  = Φ1 + Φ2 + Φ3 + g 
(24.15)

where Φ1, Φ2, Φ3,c are the fluxes through the Gaussian surface due to the individual  
charges. That is, the net flux is the sum of the fluxes due to individual charges. But  
we know what those are: q/P0 for the charges inside the surface and zero for the charges  
outside. Thus

 Φe = 1q1

P0
+

q2

P0
+ g +

qi

P0
 for all charges inside the surface2

  +  10 + 0 + g + 0 for all charges outside the surface2 
(24.16)

We define

 Qin = q1 + q2 + g + qi for all charges inside the surface (24.17)

as the total charge enclosed within the surface. With this definition, we can write our  
result for the net electric flux in a very neat and compact fashion. For any closed  
surface enclosing total charge Qin, the net electric flux through the surface is

 Φe = C E
u # dA

u
=

Qin 
P0

 (24.18)

This result for the electric flux is known as Gauss’s law.

Two-dimensional
cross section of a
Gaussian surface

The fluxes due to charges
inside the surface add.

q1

q2

q3

Total charge
inside is Qin.

The fluxes due to charges
outside the surface are all zero.

FIGURE 24.22 Charges both inside and 
outside a Gaussian surface.
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724 CHAPTER 24 Gauss’s Law

What Does Gauss’s Law Tell Us?
In one sense, Gauss’s law doesn’t say anything new or anything that we didn’t already 
know from Coulomb’s law. After all, we derived Gauss’s law from Coulomb’s law. 
But in another sense, Gauss’s law is more important than Coulomb’s law. Gauss’s law 
states a very general property of electric fields—namely, that charges create electric 
fields in just such a way that the net flux of the field is the same through any surface 
surrounding the charges, no matter what its size and shape may be. This fact may have 
been implied by Coulomb’s law, but it was by no means obvious. And Gauss’s law 
will turn out to be particularly useful later when we combine it with other electric and 
magnetic field equations.

Gauss’s law is the mathematical statement of our observations in Section 24.2. 
There we noticed a net “flow” of electric field out of a closed surface containing 
charges. Gauss’s law quantifies this idea by making a specific connection between the 
“flow,” now measured as electric flux, and the amount of charge.

But is it useful? Although to some extent Gauss’s law is a formal statement about 
electric fields, not a tool for solving practical problems, there are exceptions: Gauss’s 
law will allow us to find the electric fields of some very important and very practical 
charge distributions much more easily than if we had to rely on Coulomb’s law. We’ll 
consider some examples in the next section.

STOP TO THINK 24.4 These are two-dimensional cross sections through three-dimensional 
closed spheres and a cube. Rank in order, from largest to smallest, the electric fluxes ΦA to ΦE 
through surfaces A to E.

A B C D E

q

R

q

2R 2R

q
R

2q 2q

R

24.5 Using Gauss’s Law
In this section, we’ll use Gauss’s law to determine the electric fields of several  
important charge distributions. Some of these you already know, from Chapter 23; 
others will be new. Three important observations can be made about using Gauss’s 
law:

1. Gauss’s law applies only to a closed surface, called a Gaussian surface.
2. A Gaussian surface is not a physical surface. It need not coincide with the  

boundary of any physical object (although it could if we wished). It is an imaginary,  
mathematical surface in the space surrounding one or more charges.

3. We can’t find the electric field from Gauss’s law alone. We need to apply Gauss’s 
law in situations where, from symmetry and superposition, we already can guess 
the shape of the field.

These observations and our previous discussion of symmetry and flux lead to the 
following strategy for solving electric field problems with Gauss’s law.
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24.5 Using Gauss’s Law 725

PROBLEM-SOLVING STRATEGY 24.1

Gauss’s law

MODEL Model the charge distribution as a distribution with symmetry.

VISUALIZE Draw a picture of the charge distribution.
■■ Determine the symmetry of its electric field.
■■ Choose and draw a Gaussian surface with the same symmetry.
■■ You need not enclose all the charge within the Gaussian surface.
■■ Be sure every part of the Gaussian surface is either tangent to or perpendicular 
to the electric field.

SOLVE The mathematical representation is based on Gauss’s law

Φe = C E
u # dA

u
=

Qin 
P0

■■ Use Tactics Boxes 24.1 and 24.2 to evaluate the surface integral.

REVIEW Check that your result has correct units and significant figures, is reasonable,  
and answers the question.

Exercise 19 

In Chapter 23 we asserted, without proof, that the electric field  
outside a sphere of total charge Q is the same as the field of a point 
charge Q at the center. Use Gauss’s law to prove this result.

MODEL The charge distribution within the sphere need not be uni-
form (i.e., the charge density might increase or decrease with r), but it  
must have spherical symmetry in order for us to use Gauss’s law. We  
will assume that it does.

VISUALIZE FIGURE 24.23 shows a sphere of charge Q and radius  
R. We want to find E

u
 outside this sphere, for distances r 7 R. The 

spherical symmetry of the charge distribution tells us that the electric 
field must point radially outward from the sphere. Although Gauss’s 
law is true for any surface surrounding the charged sphere, it is useful 
only if we choose a Gaussian surface to match the spherical symmetry  
of the charge distribution and the field. Thus a spherical surface of  
radius r 7 R concentric with the charged sphere will be our Gaussian 

surface. Because this surface surrounds the entire sphere of charge,  
the enclosed charge is simply Qin = Q.

SOLVE Gauss’s law is

Φe = C E
u # dA

u
=

Qin 

P0
=

Q

P0

To calculate the flux, notice that the electric field is everywhere 
perpendicular to the spherical surface. And although we don’t know 
the electric field magnitude E, spherical symmetry dictates that E 
must have the same value at all points equally distant from the cen-
ter of the sphere. Thus we have the simple result that the net flux  
through the Gaussian surface is

Φe = EAsphere = 4pr2E

where we used the fact that the surface area of a sphere is 
Asphere = 4pr2. With this result for the flux, Gauss’s law is

4pr2E =
Q

P0

Thus the electric field at distance r outside a sphere of charge is

Eoutside =
1

4pP0
 
Q

r2

Or in vector form, making use of the fact that E
u
 is radially outward,

E
u

outside =
1

4pP0
 
Q

r2 rn

where rn is a radial unit vector.

REVIEW The field is exactly that of a point charge Q, which is what 
we wanted to show.

EXAMPLE 24.3 ■ Outside a sphere of charge

dA
u

dA
u

dA
u

E
u

E
u

E
u

R

r

Gaussian
surface

Sphere of
total charge Q

E is everywhere 
perpendicular to 
the surface.

u

FIGURE 24.23 A spherical Gaussian surface surrounding a  
sphere of charge.
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726 CHAPTER 24 Gauss’s Law

The derivation of the electric field of a sphere of charge depended crucially on a proper 
choice of the Gaussian surface. We would not have been able to evaluate the flux integral 
so simply for any other choice of surface. It’s worth noting that the result of Example 24.3 
can also be proven by the superposition of point-charge fields, but it requires a difficult 
three-dimensional integral and about a page of algebra. We obtained the answer using  
Gauss’s law in just a few lines. Where Gauss’s law works, it works extremely well! How-
ev er, it works only in situations, such as this, with a very high degree of symmetry.

What is the electric field inside a uniformly charged sphere?

MODEL We haven’t considered a situation like this before. To be-
gin, we don’t know if the field strength is increasing or decreasing 
as we move outward from the center of the sphere. But the field 
inside must have spherical symmetry. That is, the field must point 
radially inward or outward, and the field strength can depend only 
on r. This is sufficient information to solve the problem because it 
allows us to choose a Gaussian surface.

VISUALIZE FIGURE 24.24 shows a spherical Gaussian surface with 
radius r … R inside, and concentric with, the sphere of charge. This 
surface matches the symmetry of the charge distribution, hence  
E
u
 is perpendicular to this surface and the field strength E has the 

same value at all points on the surface.

SOLVE The flux integral is identical to that of Example 24.3:

Φe = EAsphere = 4pr2E

Consequently, Gauss’s law is

Φe = 4pr2E =
Qin 

P0

The difference between this example and Example 24.3 is that 
Qin is no longer the total charge of the sphere. Instead, Qin is the  
amount of charge inside the Gaussian sphere of radius r. Because the  
charge distribution is uniform, the volume charge density is

r =
Q

VR
=

Q
4
3 pR3

The charge enclosed in a sphere of radius r is thus

Qin = rVr = 1 Q
4
3 pR32 14

3 pr32 =
r3

R3 Q

The amount of enclosed charge increases with the cube of the dis-
tance r from the center and, as expected, Qin = Q if r = R. With this  
expression for Qin, Gauss’s law is

4pr2E =
1r3/R32Q

P0

Thus the electric field at radius r inside a uniformly charged sphere is

Einside =
1

4pP0
 
Q

R3 r

The electric field strength inside the sphere increases linearly with 
the distance r from the center.

REVIEW The field inside and the field outside a sphere of charge 
match at the boundary of the sphere, r = R, where both give 
E = Q/4pP0R

2. In other words, the field strength is continuous 
as we cross the boundary of the sphere. These results are shown 
graphically in FIGURE 24.25.

EXAMPLE 24.4 ■ Inside a sphere of charge

R

r

Gaussian surface inside
the sphere of charge

Sphere of
total charge Q

FIGURE 24.24 A spherical Gaussian surface inside a uniform 
sphere of charge.

Q

4pP0R2

r
0

0
R

E

R

The field inside the sphere
increases linearly with distance.

The field outside the
sphere decreases as 1/r2.

FIGURE 24.25 The electric field strength of a uniform sphere of 
charge of radius R.

In Chapter 23, we used superposition to find the electric field  
of a long, charged wire with linear charge density l 1C/m2. It  
was not an easy derivation. Find the electric field using  
Gauss’s law.

MODEL A long, charged wire can be modeled as an infinitely long 
line of charge.

VISUALIZE FIGURE 24.26 shows an infinitely long line of charge. 
We can use the symmetry of the situation to see that the only  

EXAMPLE 24.5 ■ The electric field of a long, charged wire
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Example 24.5, for the electric field of a long, charged wire, contains a subtle but 
important idea, one that often occurs when using Gauss’s law. The Gaussian cylinder 
of length L encloses only some of the wire’s charge. The pieces of the charged wire 
outside the cylinder are not enclosed by the Gaussian surface and consequently do not 
contribute anything to the net flux. Even so, they are essential to the use of Gauss’s 
law because it takes the entire charged wire to produce an electric field with cylindri-
cal symmetry. In other words, the charge outside the cylinder may not contribute to 
the flux, but it affects the shape of the electric field. Our ability to write Φe = EAcyl 
depended on knowing that E is the same at every point on the wall of the cylinder. 
That would not be true for a charged wire of finite length, so we cannot use Gauss’s 
law to find the electric field of a finite-length charged wire.

possible shape of the electric field is to point straight into or out 
from the wire, rather like the bristles on a bottle brush. The shape 
of the field suggests that we choose our Gaussian surface to be a 
cylinder of radius r and length L, centered on the wire. Because 
Gauss’s law refers to closed surfaces, we must include the ends of 
the cylinder as part of the surface.

SOLVE Gauss’s law is

Φe = C E
u # dA

u
=

Qin

P0

where Qin is the charge inside the closed cylinder. We have two tasks: 
to evaluate the flux integral, and to determine how much charge is 
inside the closed surface. The wire has linear charge density l, so 

the amount of charge inside a cylinder of length L is simply

Qin = lL

Finding the net flux is just as straightforward. We can divide the 
flux through the entire closed surface into the flux through each 
end plus the flux through the cylindrical wall. The electric field E

u
, 

pointing straight out from the wire, is tangent to the end surfaces at 
every point. Thus the flux through these two surfaces is zero. On the 
wall, E

u
 is perpendicular to the surface and has the same strength E  

at every point. Thus

Φe = Φtop + Φbottom + Φwall = 0 + 0 + EAcyl = 2prLE

where we used Acyl = 2prL as the surface area of a cylindrical 
wall of radius r and length L. Once again, the proper choice of the 
Gaussian surface reduces the flux integral merely to finding a sur-
face area. With these expressions for Qin and Φe, Gauss’s law is

Φe = 2prLE =
Qin

P0
=

lL
P0

Thus the electric field at distance r from a long, charged wire is

Ewire =
l

2pP0r

REVIEW This agrees exactly with the result of the more complex 
derivation in Chapter 23. Notice that the result does not depend on 
our choice of L. A Gaussian surface is an imaginary device, not a 
physical object. We needed a finite-length cylinder to do the flux 
calculation, but the electric field of an infinitely long wire can’t 
depend on the length of an imaginary cylinder.

The field is tangent to
the surface on the ends.
The flux is zero.

The field is perpendicular to
the surface on the cylinder wall.

FIGURE 24.26 A Gaussian surface around a charged wire.

Use Gauss’s law to find the electric field of an infinite plane of 
charge with surface charge density h 1C/m22.

MODEL A uniformly charged flat electrode can be modeled as an 
infinite plane of charge.

VISUALIZE FIGURE 24.27 on the next page shows a uniformly  
charged plane with surface charge density h. We will assume  
that the plane extends infinitely far in all directions, although  
we obviously have to show “edges” in our drawing. The planar 

symmetry allows the electric field to point only straight toward  
or away from the plane. With this in mind, choose as a Gaussian 
surface a cylinder with length L and faces of area A centered on  
the plane of charge. Although we’ve drawn them as circular, the 
shape of the faces is not relevant.

SOLVE The electric field is perpendicular to both faces of the  
cylinder, so the total flux through both faces is Φfaces = 2EA. (The 
fluxes add rather than cancel because the area vector A

u
 points  

EXAMPLE 24.6 ■ The electric field of a plane of charge

Continued
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728 CHAPTER 24 Gauss’s Law

The plane of charge is an especially good example of how powerful Gauss’s law 
can be. Finding the electric field of a plane of charge via superposition was a difficult 
and tedious derivation. With Gauss’s law, once you see how to apply it, the problem is 
simple enough to solve in your head!

You might wonder, then, why we bothered with superposition at all. The reason is 
that Gauss’s law, powerful though it may be, is effective only in a limited number of 
situations where the field is highly symmetric. Superposition always works, even if the 
derivation is messy, because superposition goes directly back to the fields of individual  
point charges. It’s good to use Gauss’s law when you can, but superposition is often  
the only way to attack real-world charge distributions.

outward on each face.) There’s no flux through the wall of the 
cylinder because the field vectors are tangent to the wall. Thus the 
net flux is simply

Φe = 2EA

The charge inside the cylinder is the charge contained in area A of 
the plane. This is

Qin = hA

With these expressions for Qin and Φe, Gauss’s law is

Φe = 2EA =
Qin

P0
=

hA

P0

Thus the electric field of an infinite charged plane is

Eplane =
h

2P0

This agrees with the result in Chapter 23.

REVIEW This is another example of a Gaussian surface enclosing 
only some of the charge. Most of the plane’s charge is outside the 
Gaussian surface and does not contribute to the flux, but it does  
affect the shape of the field. We wouldn’t have planar symmetry, 
with the electric field exactly perpendicular to the plane, without 
all the rest of the charge on the plane.

dA
u

E
u

E
u

L

Infinite plane of charge Gaussian surface

Area A

dA
u

FIGURE 24.27 The Gaussian surface extends to both sides of a 
plane of charge.

STOP TO THINK 24.5 Which Gaussian surface would allow you to use Gauss’s law 
to calculate the electric field outside a uniformly charged cube?

a. A sphere whose center coincides with the center of the charged cube
b. A cube whose center coincides with the center of the charged cube and that has 

parallel faces
c. Either a or b
d. Neither a nor b

24.6  Conductors in Electrostatic 
Equilibrium

Consider a charged conductor, such as a charged metal electrode, in electrostatic 
equilibrium. That is, there is no current through the conductor and the charges are 
all stationary. One very important conclusion is that the electric field is zero at all  
points inside a conductor in electrostatic equilibrium. That is, E

u

in = 0
u
. If this 

weren’t true, the electric field would cause the charge carriers to move and thus  
violate the assumption that all the charges are at rest. Let’s use Gauss’s law to see  
what else we can learn.
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24.6 Conductors in Electrostatic Equilibrium 729

At the Surface of a Conductor
FIGURE 24.28 shows a Gaussian surface just barely inside the physical surface of a con-
ductor that’s in electrostatic equilibrium. The electric field is zero at all points inside 
the conductor, hence the electric flux Φe through this Gaussian surface must be zero. 
But if Φe = 0, Gauss’s law tells us that Qin = 0. That is, there’s no net charge within 
this surface. There are charges—electrons and positive ions—but no net charge.

If there’s no net charge in the interior of a conductor in electrostatic equilibrium, 
then all the excess charge on a charged conductor resides on the surface of the 
conductor. Any charges added to a conductor quickly spread across the surface until 
reaching positions of electrostatic equilibrium, but there is no net charge inside the 
conductor.

There may be no electric field inside a charged conductor, but the presence of net 
charge requires an exterior electric field in the space outside the conductor. FIGURE 24.29  
shows that the electric field right at the surface of the conductor has to be  
perpendicular to the surface. To see that this is so, suppose E

u

surface had a component 
tangent to the surface. This component of E

u

surface would exert a force on the surface 
charges and cause a surface current, thus violating the assumption that all charges are 
at rest. The only exterior electric field consistent with electrostatic equilibrium is one 
that is perpendicular to the surface.

We can use Gauss’s law to relate the field strength at the surface to the charge 
density on the surface. FIGURE 24.30 shows a small Gaussian cylinder with faces very 
slightly above and below the surface of a charged conductor. The charge inside this 
Gaussian cylinder is hA, where h is the surface charge density at this point on the  
conductor. There’s a flux Φ = AEsurface through the outside face of this cylinder 
but, unlike Example 24.6 for the plane of charge, no flux through the inside face  
because E

u

in = 0
u

 inside the conductor. Furthermore, there’s no flux through the wall 
of the cylinder because E

u

surface is perpendicular to the surface. Thus the net flux is 
Φe = AEsurface. Gauss’s law is

 Φe = AEsurface =
Qin

P0
=

hA
P0

 (24.19)

from which we can conclude that the electric field at the surface of a charged conductor is

 E
u

surface = 1 hP0
, perpendicular to surface2 (24.20)

In general, the surface charge density h is not constant on the surface of a conductor 
but depends on the shape of the conductor. If we can determine h, by either calculating  
it or measuring it, then Equation 24.20 tells us the electric field at that point on the 
surface. Alternatively, we can use Equation 24.20 to deduce the charge density on the  
conductor’s surface if we know the electric field just outside the conductor.

Charges and Fields Inside a Conductor
FIGURE 24.31 shows a charged conductor with a hole inside. Can there be charge  
on this interior surface? To find out, we place a Gaussian surface around the hole, 
infinitesimally close but entirely within the conductor. The electric flux Φe through 
this Gaussian surface is zero because the electric field is zero everywhere inside the 
conductor. Thus we must conclude that Qin = 0. There’s no net charge inside this 
Gaussian surface and thus no charge on the surface of the hole. Any excess charge 
resides on the exterior surface of the conductor, not on any interior surfaces.

Furthermore, because there’s no electric field inside the conductor and no charge 
inside the hole, the electric field inside the hole must also be zero. This conclusion has 
an important practical application. For example, suppose we need to exclude the electric 
field from the region in FIGURE 24.32a on the next page enclosed within dashed lines. We 
can do so by surrounding this region with the neutral conducting box of FIGURE 24.32b.

The flux through the Gaussian surface
is zero. Hence all the excess charge
must be on the surface.

The electric field inside is zero.

E = 0
u u

FIGURE 24.28 A Gaussian surface just 
inside a conductor’s surface.

E
u

Surface charge

The electric field at the
surface is perpendicular
to the surface.

E = 0
u u

FIGURE 24.29 The electric field at the 
surface of a charged conductor.

A
u

E
u

Surface charge
density h

Gaussian
surface

The electric field is perpendicular
to the surface.

E = 0
u u

FIGURE 24.30 A Gaussian surface extending 
through the surface has a flux only through 
the outer face.

The flux through the Gaussian surface is 
zero. There’s no net charge inside, hence 
no charge on this interior surface.

A hollow completely
enclosed by the conductor

E = 0
u u

FIGURE 24.31 A Gaussian surface 
surrounding a hole inside a conductor.
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730 CHAPTER 24 Gauss’s Law

This region of space is now a hole inside a conductor, thus the interior electric field 
is zero. The use of a conducting box to exclude electric fields from a region of space is 
called screening. Solid metal walls are ideal, but in practice wire screen or wire mesh—
sometimes called a Faraday cage—provides sufficient screening for all but the most 
sensitive applications. The price we pay is that the exterior field is now very complicated.

Finally, FIGURE 24.33 shows a charge q inside a hole within a neutral conductor. 
The electric field inside the conductor is still zero, hence the electric flux through 
the Gaussian surface is zero. But Φe = 0 requires Qin = 0. Consequently, the charge 
inside the hole attracts an equal charge of opposite sign, and charge -q now lines the 
inner surface of the hole. There is a field inside the hole, but the charge on the inner 
surface keeps the field of the point charge from continuing into the conductor.

The conductor as a whole is neutral, so moving -q to the surface of the hole must 
leave +q behind somewhere else. Where is it? It can’t be in the interior of the con-
ductor, as we’ve seen, and that leaves only the exterior surface. In essence, an internal 
charge polarizes the conductor just as an external charge would. Net charge -q moves 
to the inner surface and net charge +q is left behind on the exterior surface.

 NOTE   When we say that the electric field is zero inside a conductor, we mean within 
the material that forms the conductor. Charges can create a field inside an enclosed 
cavity inside a conductor, but that field does not extend into the conducting medium.

FIGURE 24.32 The electric field can be excluded from a region of space by surrounding it with 
a conducting box.

Neutral
conductor

Point
charge q

The flux through the Gaussian surface is zero,
hence there’s no net charge inside this surface.
There must be charge -q on the inside
surface to balance point charge q.

The outer surface must have charge +q
so that the conductor remains neutral.

E = 0
u u

FIGURE 24.33 A charge in the hole causes 
a net charge on the interior and exterior 
surfaces.

E
u

Parallel-plate capacitor(a)

We want to exclude the
electric field from this region.

(b) The conducting box has been polarized
and has induced surface charges.

The electric field is perpendicular
to all conducting surfaces.

E = 0
u u

TACTICS BOX 24.3

Finding the electric field of a conductor in electrostatic 
equilibrium
1  The electric field is zero at all points inside the conductor.
2  Any excess charge resides entirely on the exterior surface.
3  The external electric field at the surface of a charged conductor is perpendicu-

lar to the surface and of magnitude h/P0, where h is the surface charge density 
at that point.

4  The electric field is zero inside any hole within a conductor unless there is a  
charge in the hole.

Exercises 20–24 

A 2.0-cm-diameter brass sphere has been given a charge of 2.0 nC. 
What is the electric field strength at the surface?

MODEL Brass is a conductor. The excess charge resides on the  
surface.

VISUALIZE The charge distribution has spherical symmetry. The 
electric field points radially outward from the surface.

SOLVE We can solve this problem in two ways. One uses the fact 
that a sphere, because of its complete symmetry, is the one shape 

EXAMPLE 24.7 ■ The electric field at the surface of a charged metal sphere

M24_KNIG8221_05_GE_C24.indd   730 30/05/2022   08:01



24.6 Conductors in Electrostatic Equilibrium 731

for which any excess charge will spread out to a uniform surface 
charge density. Thus

h =
q

Asphere 
=

q

4pR2 =
2.0 * 10-9 C

4p10.010 m22 = 1.59 * 10-6 C/m2

From Equation 24.20, we know the electric field at the surface has 
strength

Esurface =
h

P0
=

1.59 * 10-6 C/m2

8.85 * 10-12 C2/N m2 = 1.8 * 105 N/C

Alternatively, we could have used the result, obtained earlier in 
the chapter, that the electric field strength outside a sphere of 
charge Q is Eoutside = Qin/14pP0r

22. But Qin = q and, at the sur-
face, r = R. Thus

  Esurface =
1

4pP0
 

q

R2 = 19.0 * 109 N m2/C22 
2.0 * 10-9 C

10.010 m22

  = 1.8 * 105 N/C

As we can see, both methods lead to the same result.

   CHAPTER 24 CHALLENGE EXAMPLE     The electric field of a slab of charge

An infinite slab of charge of thickness 2a is centered in the xy-
plane. The volume charge density is r = r011 - 0 z 0 /a2. Find the 
electric field strengths inside and outside this slab of charge.

MODEL The charge density is not uniform. Starting at r0 in the  
xy-plane, it decreases linearly with distance above and below the 
xy-plane until reaching zero at z = {a, the edges of the slab.

VISUALIZE FIGURE 24.34 shows an edge view of the slab of 
charge and, as Gaussian surfaces, side views of two cylinders with 
cross-section area A. By symmetry, the electric field must point 
away from the xy-plane; the field cannot have an x- or y-component.

SOLVE Gauss’s law is

Φe = C E
u # dA

u
=

Qin

P0

With symmetry, finding the net flux is straightforward. The elec-
tric field is perpendicular to the faces of the cylinders and pointing 
outward, so the total flux through the faces is Φfaces = 2EA, where 
E may depend on distance z. The field is parallel to the walls of the 
cylinders, so Φwall = 0. Thus the net flux is simply

Φe = 2EA

Because the charge density is not uniform, we need to integrate 
to find Qin, the charge inside the cylinder. We can slice the cylinder 
into small slabs of infinitesimal thickness dz and volume dV = A dz. 
Figure 24.34 shows one such little slab at distance z from the  
xy-plane. The charge in this little slab is

dq = r dV = r011 -
z
a2A dz

where we assumed that z is positive. Because the charge is symmet-
ric about z = 0, we can avoid difficulties with the absolute value 
sign in the charge density by integrating from 0 and multiplying by 
2. For the Gaussian cylinder that ends inside the slab of charge, at  
distance z, the total charge inside is

  Qin = 3dq = 23
z

0
r011 -

z
a2A dz

  = 2r0 A c z `
0

z

-
1
2a

 z2 `
0

z

d

  = 2r0 Az11 -
z

2a2
Gauss’s law inside the slab is then

Φe = 2Einside A =
Qin

P0
=

2r0 Az

P0
11 -

z
2a2

The area A cancels, as it must because it was an arbitrary choice, 
leaving

Einside =
r0 z

P0
11 -

z
2a2

The field strength is zero at z = 0, then increases as z increases. 
This expression is valid only above the xy-plane, for z 7 0, but the 
field strength is symmetric on the other side.

For the Gaussian cylinder that extends outside the slab of 
charge, the integral for Q has to end at z = a. Thus

Qin = 2r0 Aa11 -
a
2a2 = r0 Aa

independent of distance z. With this, Gauss’s law gives

Eoutside =
Qin 

2P0 A
=

r0 a

2P0

This matches Einside at the surface, z = a, so the field is continuous 
as it crosses the boundary.

REVIEW Outside a sphere of charge, the field is the same as that of 
a point charge at the center. Similarly, the field outside an infinite 
slab of charge should be the same as that of an infinite charged 
plane. We found, by integration, that the total charge in an area A 
of the slab is Q = r0 Aa. If we squished this charge into a plane, the 
surface charge density would be h = Q/A = r0 a. Thus our expres-
sion for Eoutside could be written h/2P0, which matches the field we 
found in Example 24.6 for a plane of charge.

FIGURE 24.34 Two cylindrical Gaussian surfaces for an infinite 
slab of charge.
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Summary The goal of Chapter 24 has been to learn about and apply 
Gauss’s law.

General Principles

Important Concepts

Applications

Gauss’s Law
For any closed surface enclosing net charge Qin, the net electric flux through the surface is

Φe = C E
u # dA

u
=

Qin 

P0
 

The electric flux Φe is the same for any closed surface enclosing charge Qin.

To solve electric field problems with Gauss’s law:

Charge creates the electric field that is  
responsible for the electric flux.

Conductors in Electrostatic Equilibrium
• The electric field is zero at all points inside the conductor.

• Any excess charge resides entirely on the exterior surface.

• The external electric field is perpendicular to the surface and of magnitude h/P0, where h is the surface charge 
density.

• The electric field is zero inside any hole within a conductor unless there is a charge in the hole.

Symmetry
The symmetry of the electric field must 
match the symmetry of the  
charge distribution.

In practice, Φe is computable only if 
the symmetry of the Gaussian surface 
matches the symmetry of the charge 
distribution.

MODEL Model the charge distribution as one with symmetry.

VISUALIZE Draw a picture of the charge distribution.
Draw a Gaussian surface with the same symmetry as the  
electric field, every part of which is either tangent to or  
perpendicular to the electric field.

SOLVE Apply Gauss’s law and 
Tactics Boxes 24.1 and 24.2 to 
evaluate the surface integral.

REVIEW Is the result reasonable?

Charges outside the surface
contribute to the electric field, but
they don’t contribute to the flux.

Qin is the sum of all enclosed
charges. This charge contributes
to the flux.

Gaussian surface

Flux is the amount of electric field  
passing through a surface of area A:

Φe = E
u # A

u

where A
u

 is the area vector.

For closed surfaces:
A net flux in or out indicates that  
the surface encloses a net charge.

Field lines passing through but  
with no net flux mean that the  
surface encloses no net charge.

Surface integrals calculate the flux by summing the fluxes 
through many small pieces of the surface:

Φe = aE
u # dA

u

S 3E
u # dA

u

Two important situations:
If the electric field is everywhere  
tangent to the surface, then

Φe = 0

If the electric field is everywhere  
perpendicular to the surface and has  
the same strength E at all points, then

Φe = E A

A
u

E
uu

E
udA

u

E
u

E = 0
u u
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CONCEPTUAL QUESTIONS

symmetric
Gaussian surface

electric flux, Φe 
area vector, A

u
surface integral
Gauss’s law

screening

Terms and Notation

1. A net charge of Q is kept inside a hollow Teflon 
cube and the same charge is distributed over the 
surface of a metal cube of identical dimensions 
as the Teflon cube. In which case can Gauss’s 
law not be used to determine the electric field of 
the cubes? Why? 

2. FIGURE Q24.2 shows cross sections of three-dimensional closed 
surfaces. They have a flat top and bottom surface above and below 
the plane of the page. However, the electric field is everywhere 
parallel to the page, so there is no flux through the top or bottom 
surface. The electric field is uniform over each face of the sur-
face. For each, does the surface enclose a net positive charge, a net  
negative charge, or no net charge? Explain.

6. What is the electric flux through each of the surfaces A to E in 
FIGURE Q24.6? Give each answer as a multiple of q/P0.

FIGURE Q24.1

(a)

10 N/C

10 N/C

10 N/C

10 N/C

(b)

10 N/C

10 N/C10 N/C

(c)

10 N/C

10 N/C10 N/C

FIGURE Q24.2

3. The square and circle in FIGURE Q24.3 are in the same uniform 
field. The diameter of the circle equals the edge length of the square. 
Is Φsquare larger than, smaller than, or equal to Φcircle? Explain.

FIGURE Q24.3

A B

FIGURE Q24.4

(a)
q

q
q

(b)

q

q
q

-q -q

-q -q

-q -q

(c)

q

q
q

FIGURE Q24.5

-3q

-q

q

3q

EA

B

C

D

FIGURE Q24.6

4. In FIGURE Q24.4, where the field is uniform, is the magnitude of  
ΦA larger than, smaller than, or equal to the magnitude of ΦB? 
Explain.

5. What is the electric flux through each of the surfaces in FIGURE 
Q24.5? Give each answer as a multiple of q/P0.

7. The charged balloon in FIGURE 
Q24.7 expands as it is blown up, 
increasing in size from the initial 
to final diameters shown. Do the 
electric field strengths at points  
1, 2, and 3 increase, decrease,  
or stay the same? Explain your  
reasoning for each.

1 2
Initial

Final

3

FIGURE Q24.7

8. The two spheres in FIGURE Q24.8 on the next page surround equal  
charges. Three students are discussing the situation.

Student 1: The fluxes through spheres A and B are equal because 
they enclose equal charges.

Student 2: But the electric field on sphere B is weaker than the 
electric field on sphere A. The flux depends on the electric field 
strength, so the flux through A is larger than the flux through B.
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734 CHAPTER 24 Gauss’s Law

Which of these students, if any, do you agree with? Explain.Student 3: I thought we learned that flux was about surface area. 
Sphere B is larger than sphere A, so I think the flux through B is 
larger than the flux through A.

Which of these students, if any, do you agree with? Explain.

A
B

q q

FIGURE Q24.8

2r

A B

q

r

q

r1
2

FIGURE Q24.9

9. The sphere and ellipsoid in FIGURE Q24.9 surround equal charges.  
Four students are discussing the situation.

Student 1: The fluxes through A and B are equal because the 
average radius is the same.

Student 2: I agree that the fluxes are equal, but that’s because 
they enclose equal charges.
Student 3: The electric field is not perpendicular to the surface for 
B, and that makes the flux through B less than the flux through A.
Student 4: I don’t think that Gauss’s law even applies to a  
situation like B, so we can’t compare the fluxes through A and B.

10. A small, metal sphere hangs by an insu-
lating thread within the larger, hollow 
conducting sphere of FIGURE Q24.10. 
A conducting wire extends from the 
small sphere through, but not touch-
ing, a small hole in the hollow sphere. 
A charged rod is used to transfer pos-
itive charge to the protruding wire. 
After the charged rod has touched 
the wire and been removed, are the 
following surfaces positive, negative,  
or not charged? Explain.
a. The small sphere.
b. The inner surface of the hollow sphere.
c. The outer surface of the hollow sphere.

Wire

FIGURE Q24.10

End viewSide view

FIGURE EX24.1 FIGURE EX24.2

FIGURE EX24.3

Field strengths
in N/C

20

20

10

15

FIGURE EX24.4

Field strengths
in N/C

10

15

10

15

FIGURE EX24.5

15

15

10 20

Field strengths
in N/C10

FIGURE EX24.6

EXERCISES AND PROBLEMS

Problems labeled  integrate material from earlier chapters.

Exercises

Section 24.1 Symmetry

1. | FIGURE EX24.1 shows two cross sections of two infinitely long 
coaxial cylinders. The inner cylinder has a positive charge, the 
outer cylinder has an equal negative charge. Draw this figure on 
your paper, then draw electric field vectors showing the shape of 
the electric field.

2. | FIGURE EX24.2 shows a cross section of two concentric spheres. 
The inner sphere has a negative charge. The outer sphere has a 
positive charge larger in magnitude than the charge on the inner 
sphere. Draw this figure on your paper, then draw electric field  
vectors showing the shape of the electric field.

3. | FIGURE EX24.3 shows a cross section of two infinite parallel 
planes of charge. Draw this figure on your paper, then draw elec-
tric field vectors showing the shape of the electric field.

Section 24.2 The Concept of Flux

4. | The electric field is constant over each face of the tetrahedron 
shown in FIGURE EX24.4. Does the box contain positive charge, 
negative charge, or no charge? Explain.

5. | The electric field is constant over each face of the tetrahedron 
shown in FIGURE EX24.5. Does the box contain positive charge, 
negative charge, or no charge? Explain.

6. | The cube in FIGURE EX24.6 
contains no net charge. The 
electric field is constant over 
each face of the cube. Does the 
missing electric field vector on 
the front face point in or out? 
What is the field strength?
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15. || A box of dimensions 1 cm * 1 cm * 1 cm has its edges aligned 
with the xyz-axes, and is in the electric field, E

u
= 1500x + 1502in N/C, 

where x is in meters. What is the net electric flux through the box?
16. | What is the net electric flux through the two cylinders shown 

in FIGURE EX24.16? Give your answer in terms of R and E.

7. | The cube in FIGURE EX24.7 
contains negative charge. The 
electric field is constant over 
each face of the cube. Does  
the missing electric field vec-
tor on the front face point in 
or out? What strength must  
this field exceed?

10

20

10 20

Field strengths
in N/C

10

FIGURE EX24.7

E
unn

30°

200 N/C

10 cm * 10 cm

FIGURE EX24.8

E
u

30°

15 cm * 15 cm

nnn

180 N/C

FIGURE EX24.9

E
u

nn

60°

10 cm * 20 cm

FIGURE EX24.10

E
u

E
u

(a)

2R

(b)

2R

FIGURE EX24.16

2q

2q

-q

FIGURE EX24.17

2q -2q

3q

FIGURE EX24.18

Section 24.3 Calculating Electric Flux

8. || What is the electric flux through the surface shown in  
FIGURE EX24.8?

9. || What is the electric flux through the surface shown in  
FIGURE EX24.9?

10. || The electric flux through the surface shown in FIGURE EX24.10  
is 25 N m2/C. What is the electric field strength?

11. || A 1.0 cm *  5 .0 cm rectangle lies in the xy-plane with unit 
vector nn pointing in the +z-direction. What is the electric flux 
through the rectangle if the electric field is
a. E

u
= (1000 in + 2000 kn) N/C? 

b. E
u

= (2000 jn + 2000 kn) N/C? 
12. || A 1.0 cm *  5 .0 cm rectangle lies in the xz-plane with unit 

vector nn pointing in the +y-direction. What is the electric flux 
through the rectangle if the electric field is
a. E

u
= (2000 in - 4000 kn) N/C? 

b. E
u

= (1000 jn - 4000 kn) N/C? 
13. || A 4.0-cm-diameter circle lies in the yz-plane with unit vector nn 

pointing in the +x-direction. What is the electric flux through the cir-
cle if the electric field is E

u
= ( - 1000 in + 2000 jn - 4000 kn) N/C?

14. || A 20 cm *  20 cm rectangle lies in the first quadrant of the 
xy-plane with one corner at the origin. Unit vector nn points in the 
+z-direction. What is the electric flux through the rectangle if 
the electric field is E

u
= (4000 m-1) x kn N/C?

Hint: Divide the rectangle into narrow strips of width dx.

Section 24.4 Gauss’s Law

Section 24.5 Using Gauss’s Law

17. | FIGURE EX24.17 shows three charges. Draw these charges on 
your paper four times. Then draw two-dimensional cross sections 
of three-dimensional closed surfaces through which the electric 
flux is (a) -q/P0, (b) q/P0, (c) 3q/P0, and (d) 4q/P0.

18. | FIGURE EX24.18 shows three charges. Draw these charges on 
your paper four times. Then draw two-dimensional cross sections 
of three-dimensional closed surfaces through which the electric  
flux is (a) 2q/P0, (b) q/P0, (c) 0, and (d) 5q/P0.

19. | FIGURE EX24.19 shows three Gaussian surfaces and the electric  
flux through each. What are the three charges q1, q2, and q3?

q1 q2

q3

ΦA = -q/P0 ΦC = -2q/P0

ΦB = 3q/P0

FIGURE EX24.19

+100 nC-1 nC (inside)

FIGURE EX24.20

+100 nC +1 nC (inside) -100 nCFIGURE EX24.21

20. || What is the net electric flux through the torus (i.e., doughnut 
shape) of FIGURE EX24.20?

21. || What is the net electric flux through the cylinder of FIGURE 
EX24.21?
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736 CHAPTER 24 Gauss’s Law

31. | A 50 mC charge is at the center of a 1.0 cm * 1.0 cm *  1.0 cm 
cube. What is the electric flux through the top surface of the cube?

32. | Charges q1 = -4Q and q2 = +2Q are located at x = -a and 
x = +a, respectively. What is the net electric flux through a 
sphere of radius 2a centered (a) at the origin and (b) at x = 2a?

33. || A neutral conductor contains a hollow cavity in which there is 
a +100 nC point charge. A charged rod then transfers -50 nC to 
the conductor. Afterward, what is the charge (a) on the inner wall 
of the cavity, and (b) on the exterior surface of the conductor?

34. || A spherically symmetric charge distribution produces the elec-
tric field E

u
= 15000r22rn N/C, where r is in m.

a. What is the electric field strength at r = 20 cm?
b. What is the electric flux through a 40-cm-diameter spherical 

surface that is concentric with the charge distribution?
c. How much charge is inside this 40-cm-diameter spherical 

surface?
35. || A hollow metal sphere has inner radius a and outer radius b. 

The hollow sphere has charge +2Q. A point charge +Q sits at the  
center of the hollow sphere.
a. Determine the electric fields in the three regions r … a, 

a 6 r 6 b, and r Ú b.
b. How much charge is on the inside surface of the hollow 

sphere? On the exterior surface?
36. || A 20-cm-radius ball is uniformly charged to 80 nC.

a. What is the ball’s volume charge density 1C/m32?
b. How much charge is enclosed by spheres of radii 5, 10, and 

20 cm?
c. What is the electric field strength at points 5, 10, and 20 cm 

from the center?
37. || FIGURE P24.37 shows a solid metal sphere at the center of a 

hollow metal sphere. What is the total charge on (a) the exterior of 
the inner sphere, (b) the inside surface of the hollow sphere, and  
(c) the exterior surface of the hollow sphere?

22. || 1.3 billion excess electrons are inside a closed surface. What  
is the net electric flux through the surface?

23. || The net electric flux through a dodecahedron is 2400 N m2/C. 
How much charge is enclosed within the dodecahedron?

Section 24.6 Conductors in Electrostatic Equilibrium

24. || The electric field strength just above one face of a copper coin 
is 1500 N/C. What is the surface charge density on this face of the 
coin?

25. || A thin, horizontal, 10-cm-diameter copper plate is charged to 
3.5 nC. If the charge is uniformly distributed on the surface, what  
are the strength and direction of the electric field
a. 0.1 mm above the center of the top surface of the plate?
b. at the plate’s center of mass?
c. 0.1 mm below the center of the bottom surface of the plate?

26. || A spark occurs at the tip of a metal needle if the electric field 
strength exceeds 3.0 * 106 N/C, the field strength at which air 
breaks down. What is the minimum surface charge density for 
producing a spark?

27. | The conducting box in FIGURE EX24.27 has been given an  
excess negative charge. The surface density of excess electrons at  
the center of the top surface is 5.0 * 1010 electrons/m2. What are 
the electric field strengths E1 to E3 at points 1 to 3?

Closed surface

Q

FIGURE EX24.28

3
2
1

FIGURE EX24.27

E
u

400 N/C

30°

2.0 m

4.0 m

E

A

D

C

B

FIGURE P24.29

E
u

500 N/C

30°

Top view of a
3.0 cm * 3.0 cm * 3.0 cm cube

A

D

B C

FIGURE P24.30

E
u

E
u

8 cm
17 cm

10 cm

15 cm

15,000 N/C 15,000 N/C

Conducting
spheres

5 cm

FIGURE P24.37

28. | FIGURE EX24.28 shows a hollow cavity within a neutral conduc-
tor. A point charge Q is inside the cavity. What is the net electric 
flux through the closed surface that surrounds the conductor?

Problems
29. | Find the electric fluxes ΦA to ΦE through surfaces A to E in 

FIGURE P24.29.

30. | FIGURE P24.30 shows four sides of a 3.0 cm * 3.0 cm *  3.0 cm 
cube.
a. What are the electric fluxes ΦA to ΦD through sides A to D?
b. What is the net flux through these four sides?

38. || The earth has a vertical electric field at the surface, pointing 
down, that averages 100 N/C. This field is maintained by various 
atmospheric processes, including lightning. What is the excess 
charge on the surface of the earth?

39. || Figure 24.32b showed a conducting box inside a parallel-plate 
capacitor. The electric field inside the box is E

u
=  0

u
. Suppose the 

surface charge on the exterior of the box could be frozen. Draw 
a picture of the electric field inside the box after the box, with its 
frozen charge, is removed from the capacitor.
Hint: Superposition.

40. || A hollow metal sphere has 6 cm and 10 cm inner and outer 
radii, respectively. The surface charge density on the inside  
surface is -100 nC/m2. The surface charge density on the exterior 
surface is +100 nC/m2. What are the strength and direction of the  
electric field at points 4, 8, and 12 cm from the center?
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49. || A very long, uniformly charged cylinder has radius R and linear 
charge density l. Find the cylinder’s electric field strength (a) outside 
the cylinder, r Ú R, and (b) inside the cylinder, r … R. (c) Show that  
your answers to parts a and b match at the boundary, r = R.

50. || A long, thin straight wire with linear charge density l runs 
down the center of a thin, hollow metal cylinder of radius R.  
The cylinder has a net linear charge density 2l. Assume l is 
positive. Find expressions for the electric field strength (a) inside 
the cylinder, r 6 R, and (b) outside the cylinder, r 7 R. In what 
direction does the electric field point in each of the cases?

51. || The electric field must be zero inside a conductor in electrostatic 
equilibrium, but not inside an insulator. It turns out that we can still 
apply Gauss’s law to a Gaussian surface that is entirely within an 
insulator by replacing the right-hand side of Gauss’s law, Qin/P0, 
with Qin/P, where P is the permittivity of the material. (Technically, 
P0 is called the vacuum permittivity.) Suppose that a 50 nC point 
charge is surrounded by a thin, 32-cm-diameter spherical rubber 
shell and that the electric field strength inside the rubber shell is  
2500 N/C. What is the permittivity of rubber?

52. || Three long, concentric cylindrical shells of radii R, 2R, and 
3R have linear charge densities -l0, +2l0, and -l0, respec-
tively. The thickness of each shell is negligible. What are the 
electric field strength and direction in the four regions (a) r 6 R, 
(b) R 6 r 6 2R, (c) 2R 6 r 6 3R, and (4) r 7 3R?

53. ||| A long cylinder with radius b and volume charge density r has 
a spherical hole with radius a 6 b centered on the axis of the cyl-
inder. What is the electric field strength inside the hole at radial  
distance r 6 a in a plane that is perpendicular to the cylinder 
through the center of the hole?
Hint: Can you create this charge distribution as a superposition 
of charge distributions for which you can use Gauss’s law to find 
the electric field?

54. || A spherical shell has inner radius Rin and outer radius Rout. The 
shell contains total charge Q, uniformly distributed. The interior  
of the shell is empty of charge and matter.
a. Find the electric field strength outside the shell, r Ú Rout.
b. Find the electric field strength in the interior of the shell, 

r … Rin.
c. Find the electric field strength within the shell, Rin … r … Rout.
d. Show that your solutions match at both the inner and outer 

boundaries.
55. ||| An early model of the atom, proposed by Rutherford after his 

discovery of the atomic nucleus, had a positive point charge +Ze 
(the nucleus) at the center of a sphere of radius R with uniformly 
distributed negative charge -Ze. Z is the atomic number, the 
number of protons in the nucleus and the number of electrons in 
the negative sphere.
a. Show that the electric field strength inside this atom is

Ein =
Ze

4pP0
 1 1

r2 -
r

R32
b. What is E at the surface of the atom? Is this the expected val-

ue? Explain.
c. A uranium atom has Z = 92 and R = 0.10 nm. What is the 

electric field strength at r = 1
2 R?

56. || Newton’s law of gravity and Coulomb’s law are both inverse- 
square laws. Consequently, there should be a “Gauss’s law for 
gravity.”
a. The electric field was defined as E

u
= F

u

on q/q, and we used this 
to find the electric field of a point charge. Using analogous 
reasoning, what is the gravitational field gu of a point mass?  

41. || An infinitely wide, horizontal metal plate lies above a hori-
zontal infinite sheet of charge with surface charge density 
800 nC/m2. The bottom surface of the plate has surface charge 
density -100 nC/m2. What is the surface charge density on the 
top surface of the plate?

42. || A uniformly charged ball of radius a and charge -Q is at the 
center of a hollow metal shell with inner radius b and outer radius 
c. The hollow sphere has net charge +2Q. Determine the electric 
field strength in the four regions r … a, a 6 r 6 b, b … r … c, and 
r 7 c.

43. || Find the electric field inside and outside a hollow plastic ball 
of radius R that has charge Q uniformly distributed on its outer 
surface.

44. | The three parallel planes of charge shown in FIGURE P24.44 
have surface charge densities -  12 h, h, and -  12 h. Find the electric  
fields E

u

A to E
u

D in regions A to D. The upward direction is the  
+y-direction.

A

B

C

D

h-

h-

h

1
2

1
2

FIGURE P24.44

A

B

D

Cd

Surface charge density h

Conductor

FIGURE P24.46

A

B

D

E

Cl

Q1 = Q

Q2 = 2Q

a

b
c

d

FIGURE P24.47

45. || An infinite slab of charge of thickness 2z0 lies in the xy-
plane between z = -z0 and z = +z0. The volume charge density 
r 1C/m32 is a constant.
a. Use Gauss’s law to find an expression for the electric field 

strength inside the slab 1-z0 … z … z02.
b. Find an expression for the electric field strength above the 

slab 1z Ú z02.
c. Draw a graph of E from z = 0 to z = 3z0.

46. || FIGURE P24.46 shows an infinitely wide conductor parallel 
to and distance d from an infinitely wide plane of charge with 
 surface charge density h. What are the electric fields E

u

A to E
u

D in 
regions A to D?

47. || FIGURE P24.47 shows two very large slabs of metal that are 
parallel and distance l apart. The top and bottom of each slab  
has surface area A. The thickness of each slab is so small in  
comparison to its lateral dimensions that the surface area around 
the sides is negligible. Metal 1 has total charge Q1 = Q and metal 2  
has total charge Q2 = 2Q. Assume Q is positive. In terms of Q 
and A, determine
a. The electric field strengths EA to EE in regions A to E.
b. The surface charge densities ha to hd on the four surfaces a 

to d.
48. || An infinite slab of charge is centered in the xy-plane. It has 

charge density r = r0e
- �z�/z0, where r0 and z0 are constants. This 

is a charge density that decreases exponentially as you move 
away from z = 0 in either the positive or negative direction. Find 
the electric field strength at distance z from the center of the slab.
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738 CHAPTER 24 Gauss’s Law

58. ||| An infinite cylinder of radius R has a linear charge density l. 
The volume charge density 1C/m32 within the cylinder 1r … R2 is 
r1r2 = rr0/R, where r0 is a constant to be determined.
a. Draw a graph of r versus x for an x-axis that crosses the cylinder 

perpendicular to the cylinder axis. Let x range from -2R to 2R.
b. The charge within a small volume dV is dq = r dV. The integral 

of r dV over a cylinder of length L is the total charge Q = lL  
within the cylinder. Use this fact to show that r0 = 3l/2pR2.

Hint: Let dV be a cylindrical shell of length L, radius r, and thick-
ness dr. What is the volume of such a shell?
c. Use Gauss’s law to find an expression for the electric field 

strength E inside the cylinder, r … R, in terms of l and R.
d. Does your expression have the expected value at the surface, 

r = R? Explain.
59. ||| A sphere of radius R has total charge Q. The volume charge 

density (C/m3) within the sphere is r(r) = C/r2, where C is a con-
stant to be determined.
a. The charge within a small volume dV is dq = r dV. The integral 

of r dV over the entire volume of the sphere is the total charge 
Q. Use this fact to determine the constant C in terms of Q and R.

Hint: Let dV be a spherical shell of radius r and thickness dr. 
What is the volume of such a shell?
b. Use Gauss’s law to find an expression for the electric field 

strength E inside the sphere, r … R, in terms of Q and R.
c. Does your expression have the expected value at the surface, 

r = R? Explain.
60. ||| A sphere of radius R has total charge Q. The volume charge 

density (C/m3) within the sphere is

r = r011 -
r
R2

This charge density decreases linearly from r0 at the center to 
zero at the edge of the sphere.
a. Show that r0 = 3Q/pR3.
b. Show that the electric field inside the sphere points radially 

outward with magnitude

E =
Qr

4pP0R3 14 - 3 
r
R2

c. Show that your result of part b has the expected value at r = R.
61. ||| A spherical ball of charge has radius R and total charge Q. The 

electric field strength inside the ball 1r … R2 is E1r2 = r4Emax/R4.
a. What is Emax in terms of Q and R?
b. Find an expression for the volume charge density r1r2 inside 

the ball as a function of r.
c. Verify that your charge density gives the total charge Q when 

integrated over the volume of the ball.

Write your answer using the unit vector rn, but be careful with 
signs; the gravitational force between two “like masses” is 
attractive, not repulsive.

b. What is Gauss’s law for gravity, the gravitational equivalent 
of Equation 24.18? Use ΦG for the gravitational flux, gu for the 
gravitational field, and Min for the enclosed mass.

c. A spherical planet is discovered with mass M, radius R, and 
a mass density that varies with radius as r = r011 - r/2R2, 
where r0 is the density at the center. Determine r0 in terms 
of M and R.

Hint: Divide the planet into infinitesimal shells of thickness dr, 
then sum (i.e., integrate) their masses.
d. Find an expression for the gravitational field strength inside 

the planet at distance r 6 R.

Challenge Problems
57. ||| All examples of Gauss’s law have used highly symmetric 

surfaces where the flux integral is either zero or EA. Yet we’ve 
claimed that the net Φe = Qin/P0 is independent of the surface. 
This is worth checking. FIGURE CP24.57 shows a cube of edge 
length L centered on a long thin wire with linear charge density l.  
The flux through one face of the cube is not simply EA because, in 
this case, the electric field varies in both strength and direction. But  
you can calculate the flux by actually doing the flux integral.

y

x

Linear charge
density l

L

dy

z

dA
u

FIGURE CP24.57

a. Consider the face parallel to the yz-plane. Define area dA
u

 as  
a strip of width dy and height L with the vector pointing in 
the x-direction. One such strip is located at position y. Use 
the known electric field of a wire to calculate the electric flux 
dΦ through this little area. Your expression should be written 
in terms of y, which is a variable, and various constants. It 
should not explicitly contain any angles.

b. Now integrate dΦ to find the total flux through this face.
c. Finally, show that the net flux through the cube is Φe =  Qin/P0.
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The Electric Potential25

What is electric potential energy?
Recall that potential energy is an interaction 
energy. Charged particles that interact via 
the electric force have electric potential 
energy Uelec. You’ll learn that there’s a close 
analogy with gravitational potential energy.

❮❮ LOOKING BACK Section 10.1 Potential energy
❮❮ LOOKING BACK Section 10.5 Energy diagrams

What is the electric potential?
You’ve seen that source charges create an  
electric field. Source charges also create an  
electric potential. The electric potential V

■■ Exists everywhere in space.
■■ Is a scalar.
■■ Causes charges to have potential energy.
■■ Is measured in volts.

What potentials are especially important?
We’ll calculate the electric potential of  
four important charge distributions: a point 
charge, a charged sphere, a ring of charge, 
and a parallel-plate capacitor. Finding the 
potential of a continuous charge distribution 
is similar to calculating electric fields, but 
easier because potential is a scalar.

❮❮ LOOKING BACK Section 23.3 The electric field

How is potential represented?
Electric potential is a fairly abstract idea, so it  
will be important to visualize how the electric  
potential varies in space. One way of doing so is  
with equipotential surfaces. These are mathe matical 
surfaces, not physical surfaces, with the same  
value of the potential V at every point.

How is electric potential used?
A charged particle q in an electric  
potential V has electric potential  
energy U = qV.

■■ Charged particles accelerate as they 
move through a potential difference.

■■ Mechanical energy is conserved:

Kf + qVf = Ki + qVi

❮❮ LOOKING BACK Section 10.4 Energy conservation

Why is energy important in electricity?
Energy allows things to happen. You want your lights to light, your 
computer to compute, and your music to play. All these require  
energy—electric energy. This is the first of two chapters that 
explore electric energy and its connection to electric forces and 
fields. You’ll then be prepared to understand electric circuits—
which are all about how energy is transformed and transferred 
from sources, such as batteries, to devices that utilize and  
dissipate the energy.

IN THIS CHAPTER, you will learn to use the electric potential and electric potential energy.

System

Interactions

Electric potential

0 V100 V
2575 50

Potential of a point charge

0 V 500 V

A “battery park” stores electric 
energy from wind and solar 
generators, then supplies that 
energy to the grid after dark or 
when the wind is too light.
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740 CHAPTER 25 The Electric Potential

25.1 Electric Potential Energy
We started our study of electricity with electric forces and fields. But in electricity, just 
as in mechanics, energy is also a powerful idea. This chapter and the next will explore 
how energy is used in electricity, introduce the important concept of electric potential,  
and lay the groundwork for our upcoming study of electric circuits.

It’s been many chapters since we dealt much with work and energy, but these ideas 
will now be essential to our story. Consequently, the Looking Back recommendations 
in the chapter preview are especially important. You will recall that a system’s mecha
nical energy Emech = K + U is conserved for particles that interact with each other 
via conservative forces, where K and U are the kinetic and potential energy. That is,

 ∆Emech = ∆K + ∆U = 0 (25.1)

We need to be careful with notation because we are now using E to represent the electric 
field strength. To avoid confusion, we will represent mechanical energy either as the  
sum K + U or as Emech, with an explicit subscript.

   NOTE    Recall that for any X, the change in X is ∆X = Xfinal - Xinitial.

A key idea of Chapters 9 and 10 was that energy is the energy of a system, and 
clearly defining the system is crucial. Kinetic energy K = 1

2 mv2 is a system’s energy 
of motion. For a multiparticle system, K is the sum of the kinetic energies of each 
particle in the system.

Potential energy U is the interaction energy of the system. Suppose the particles of 
the system move from some initial set of positions i to final positions f. As the particles 
move, the action/reaction pairs of forces between the particles—the interaction forces—
do work and the system’s potential energy changes. In ❮❮  SECTION 10.1 we defined the  
change in potential energy to be

 ∆U = -Winteraction1i S f2 (25.2)

where the notation means the work done by the interaction forces as the configuration 
changes from i to f. This rather abstract definition will make more sense when we see 
specific applications.

Recall that work is done when a force acts on a particle as it is being displaced. In 
❮❮  SECTION 9.3 you learned that a constant force F

u
 does work

 W = F
u # ∆ ru = F ∆r cos u (25.3)

as the particle undergoes displacement ∆ru, where u is the angle between the force and the 
displacement. FIGURE 25.1 reminds you of the three special cases u = 0°, 90°, and 180°.

   NOTE    Work is not the oftremembered “force times distance.” Work is force times 
distance only in the one very special case in which the force is both constant and 
parallel to the displacement.

If the force is not constant, we can calculate the work by dividing the path into 
many small segments of length dx, finding the work done in each segment, and then 
summing (i.e., integrating) from the start of the path to the end. The work done in one 
such segment is dW = F1x2 cos u dx, where F1x2 indicates that the force is a function 
of position x. Thus the work done on the particle as it moves from xi to xf is

 W = 3
xf

xi

F1x2 cos u dx (25.4)

Finally, recall that a conservative force is one for which the work done on a particle 
as it moves from position i to position f is independent of the path followed. We’ll 
assert for now, and prove later, that the electric force is a conservative force, and thus 
we can define an electric potential energy.

F
u

F
u

F
u

F
u

F
u

F
u

i

f

u = 180°
W = -F ∆r

u = 0°
W = F ∆r

u = 90°
W = 0

i

f

i

f

∆r
u

∆r
u

The particle undergoes
displacement ∆r.

u

∆r
u

FIGURE 25.1 The work done by a constant 
force.
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yf

yi
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FG

Gravitational
field

The gravitational field does
work on the particle.

The net force on the particle is down.
It gains kinetic energy (i.e., speeds up)
as it loses potential energy.

g
u

g
u

g
u

∆r
u

FG

u

FIGURE 25.2 Potential energy is 
transformed into kinetic energy as a 
particle moves in a gravitational field.

A Gravitational Analogy
Gravity, like electricity, is a longrange force. Much as we defined the electric field 
E
u

= F
u

on q/q, we can also define a gravitational field—the agent that exerts gravitational 
forces on masses—as F

u

on m/m. But F
u

on m = mgu near the earth’s surface; thus the familiar 
gu = 19.80 N/kg, down2 is really the gravitational field! Notice how we’ve written the 
units of gu as N/kg, but you can easily show that N/kg = m/s2. The gravitational field 
near the earth’s surface is a uniform field in the downward direction.

FIGURE 25.2 shows a particle of mass m falling in the gravitational field. The gravitational 
force is in the same direction as the particle’s displacement, so the gravitational field 
does a positive amount of work on the particle. The gravitational force is constant, 
hence the work done by the gravitational field is

 WG = FG ∆r cos 0° = mg 0 yf - yi 0 = mgyi - mgyf  (25.5)

We have to be careful with signs because ∆r, the magnitude of the displacement vector, 
must be a positive number.

Now we can see how the definition of ∆U in Equation 25.2 makes sense. The 
change in gravitational potential energy is

 ∆UG = Uf - Ui = -WG1i S f2 = mgyf - mgyi  (25.6)

Comparing the initial and final terms on the two sides of the equation, we see that the 
gravitational potential energy near the earth is the familiar quantity

 UG = mgy (25.7)

We could add a constant to UG, but we’ve made the customary choice that UG = 0 at y = 0.

The Potential Energy of a Charge  
in a Uniform Electric Field
FIGURE 25.3 shows a charged particle inside a parallelplate capacitor with electrode 
spacing d. This is a uniform electric field, and the situation looks very much like 
Figure 25.2 for a mass in a uniform gravitational field. The one difference is that gu 
always points down whereas the positivetonegative electric field can point in any  
direction. To deal with this, let’s define a coordinate axis s that points from the  negative 
plate, which we define to be s = 0, toward the positive plate. The electric field E

u
  

then points in the negative sdirection, just as the gravitational field gu points in the  
negative ydirection. This saxis, which is valid no matter how the capacitor is oriented,  
is analogous to the yaxis used for gravitational potential energy.

A positive charge q inside the capacitor speeds up and gains kinetic energy as it  
“falls” toward the negative plate. Is the charge losing potential energy as it gains kinetic 
energy? Indeed it is, and the calculation of the potential energy is just like the calculation 
of gravitational potential energy. The electric field exerts a constant force F = qE on the 
charge in the direction of motion; thus the work done on the charge by the electric field is

 Welec = F ∆r cos 0° = qE 0 sf - si 0 = qEsi - qEsf (25.8)

where we again have to be careful with the signs because sf 6 si.
The work done by the electric field causes the electric potential energy to change by

 ∆Uelec = Uf - Ui = -Welec1i S f2 = qEsf - qEsi (25.9)

Comparing the initial and final terms on the two sides of the equation, we see that the 
electric potential energy of charge q in a uniform electric field is

 Uelec = qEs (25.10)

where s is measured from the negative plate. We could add a constant to Uelec, but 
we’ve made the choice that Uelec = 0 at s = 0. Equation 25.10 was derived with the 
assumption that q is positive, but it is valid for either sign of q.

E
u

E
u

F
u

F
u

Electric field

0 sf si d
s

The electric field does work on the particle.

The particle is “falling” in the direction of E. 
u

∆r
u

FIGURE 25.3 The electric field does work 
on the charged particle.

M25_KNIG8221_05_GE_C25.indd   741 31/05/2022   10:32



742 CHAPTER 25 The Electric Potential

   NOTE    Although Equation 25.10 is sometimes called “the potential energy of charge 
q,” it is really the potential energy of the charge + capacitor system.

FIGURE 25.4 shows positive and negative charged particles moving in the uniform 
electric field between the plates of a parallelplate capacitor. For a positive charge, 
Uelec decreases and K increases as the charge moves toward the negative plate  
(decreasing s). Thus a positive charge is going “downhill” if it moves in the direction of  
the electric field. A positive charge moving opposite the field direction is going  
“uphill,” slowing as it transforms kinetic energy into electric potential energy.

E
u

v
u

v
u

Slowing down Speeding up

For a positive charge,
the field direction is
“downhill.” Potential
energy decreases as the
charge speeds up.

For a negative charge,
the field direction is
“uphill.” Potential
energy increases as the
charge slows.

U c K T

U T K c

E
u

v
u

v
u

U c K T

U T K c

FIGURE 25.4 A charged particle exchanges kinetic and potential energy as it moves in an electric field.

s
smax0

0

Energy

Emech

Uelec

qEd

U

K

Kinetic and potential
energy are transformed 
into each other.

The particle reaches
a turning point when
Uelec = Emech.

Mechanical energy
is constant.

FIGURE 25.5 The energy diagram for a 
positively charged particle in a uniform 
electric field.

According to Equation 25.10, a negative charged particle has negative potential 
energy. You learned in Chapter 10 that there’s nothing wrong with negative potential 
energy—it’s simply less than the potential energy at some arbitrarily chosen reference 
location. The more important point, from Equation 25.10, is that the potential energy 
increases (becomes less negative) as a negative charge moves toward the negative 
plate. A negative charge moving in the field direction is going “uphill,” transforming 
kinetic energy into electric potential energy as it slows.

FIGURE 25.5 is an energy diagram for a positively charged particle in an electric field. 
Recall that an energy diagram is a graphical representation of how kinetic and potential  
energies are transformed as a particle moves. For positive q, the electric potential 
energy given by Equation 25.10 increases linearly from 0 at the negative plate (with 
U0 = 0) to qEd at the positive plate. The total mechanical energy—which is under 
your control—is constant. If Emech 6 qEd, as shown here, a positively charged particle 
projected from the negative plate will gradually slow (transforming kinetic energy 
into potential energy) until it reaches a turning point where Uelec = Emech. But if you 
project the particle with greater speed, such that Emech 7 qEd, it will be able to cross  
the gap to collide with the positive plate.

A 2.0 cm * 2.0 cm parallelplate capacitor with a 2.0 mm spac
ing is charged to {1.0 nC. First a proton and then an electron are  
released from rest midway between the capacitor plates. Assume the  
motion takes place in a vacuum.

a. What is each particle’s energy?

b. What is each particle’s speed as it reaches the plate?

MODEL We’ll define the system to be the charged particle and the 
charged electrodes. This is an isolated system with no dissipation, 
so the mechanical energy is conserved.

VISUALIZE FIGURE 25.6 is a beforeandafter pictorial represen
tation, as you learned to draw in Part II. Each particle is released 
from rest 1K = 02 and moves “downhill” toward lower potential  
energy. Thus the proton moves toward the negative plate, the electron  
toward the positive plate.

EXAMPLE 25.1 ■ Conservation of energy

-1.0 nC +1.0 nC

2.0 cm
*

2.0 cm

After: After:Before:

0 si = d = 2.0 mm
s

sf of electron

sf of proton

d1
2

FIGURE 25.6 A proton and an electron in a capacitor.
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25.2 The Potential Energy of Point Charges 743

25.2  The Potential Energy of Point Charges
FIGURE 25.7a shows two charges q1 and q2, which we will assume to be like charges.  
These two charges interact, and the energy of their interaction can be found by 
calculating the work done by the electric field of q1 on q2 as q2 moves from position 
xi to position xf. We’ll assume that q1 has been glued down and is unable to move, as 
shown in FIGURE 25.7b.

The force on q2 is entirely in the direction of motion, so cos u = 1. Thus the work 
done by the electric field as q2 moves from xi to xf is

Welec =3
xf

xi

 F1 on 2 dx = 3
xf

xi

 
Kq1q2

x2   dx = Kq1q2 
-1
x

 `
xf

xi

= -
Kq1q2

xf
+

Kq1q2

xi
 (25.11)

The potential energy of the two charges is related to the work done by

 ∆Uelec = Uf - Ui = -Welec1i S f2 =
Kq1q2

xf
-

Kq1q2

xi
 (25.12)

By comparing the left and right sides of the equation we see that the potential energy 
of the twopointcharge system is

 Uelec =
Kq1q2

x
 (25.13)

SOLVE a. The saxis was defined to point from the negative  
toward the positive plate of the capacitor. Both charged particles 
have si = 1

2 d, where d = 2.0 mm is the plate separation. The pro
ton 1q = e2 has energy

Emech p = Ki + Ui = 0 + eE11
2 d2 =  12 eEd

while the electron 1q = -e2 has

Emech e = Ki + Ui = 0 - eE11
2 d2 = -1

2 eEd

The electric field inside the parallelplate capacitor, from 
 Chapter 23, is

E =
Q

P0 A
= 2.82 * 105 N/C

Thus the particles’ energies can be calculated to be

Emech p = 4.5 * 10-17 J and Emech e = -4.5 * 10-17 J

Notice that the electron’s mechanical energy is negative.

b. Conservation of mechanical energy requires Kf + Uf =  
Ki + Ui = Emech. The proton collides with the negative plate, so 
Uf = 0, and the final kinetic energy is Kf = 1

2 mpvf 

2 = Emech p. Thus 
the proton’s impact speed is

1vf2p = B2Emech p

mp
= 2.3 * 105 m/s

Similarly, the electron collides with the positive plate, where 
Uf = qEd = -eEd = 2Emech e. Thus energy conservation for the 
electron is

Kf = 1
2 mevf 

2 = Emech e - Uf = Emech e - 2Emech e = -Emech e

We found the electron’s mechanical energy to be negative, so Kf is 
positive. The electron reaches the positive plate with speed

1vf2e = B -2Emech e

me
= 1.0 * 107 m/s

REVIEW Even though both particles have mechanical energy with 
the same magnitude, the electron has a much greater final speed 
due to its much smaller mass.

STOP TO THINK 25.1 A plastic rod 
is negatively charged. The figure shows 
an end view of the rod. A positively 
charged particle moves in a circular arc 
around the plastic rod. Is the work done 
on the charged particle by the rod’s elec
tric field positive, negative, or zero?

End view of
charged rod

Motion of positively
charged particle

F
u

q1 q2

q1

Fixed in
position

q2

xi0 xf

x

(a)

(b)

The electric field of q1 does work
on q2 as q2 moves from xi to xf.

Like charges exert repulsive forces.

The force changes
with distance.

∆r
u

F2 on 1

u
F1 on 2

u

FIGURE 25.7 The interaction between two 
point charges.
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744 CHAPTER 25 The Electric Potential

We chose to integrate along the xaxis for convenience, but all that matters is the 
distance between the charges. Thus a general expression for the electric potential  
energy is

 Uelec =
Kq1q2

r
=

1
4pP0

 
q1q2

r
  (two point charges) (25.14)

This is explicitly the energy of the system, not the energy of just q1 or q2.

   NOTE    The electric potential energy of two point charges looks almost the same as the 
force between the charges. One important difference is the r in the denominator of the 
potential energy compared to the r2 in Coulomb’s law. Another is that Equation 25.14  
does not have the absolute values of the charges, which means that Uelec can be 
negative.

Three important points need to be noted:

■■ The potential energy of two charged particles is zero only when they are infinitely 
far apart. This makes sense because two charged particles cease interacting only 
when they are infinitely far apart.

■■ We derived Equation 25.14 for two like charges, but it is equally valid for two 
opposite charges. The potential energy of two like charges is positive and of two 
opposite charges is negative.

■■ Because the electric field outside a sphere of charge is the same as that of a point 
charge at the center, Equation 25.14 is also the electric potential energy of two 
charged spheres. Distance r is the distance between their centers.

Charged-Particle Interactions
FIGURE 25.8a shows the potentialenergy curve—a hyperbola—for two like charges as 
a function of the distance r between them. Also shown is the total energy line for two 
charged particles approaching each other with equal but opposite momenta.

You can see that the total energy line crosses the potentialenergy curve at  
rmin. This is a turning point. The two charges gradually slow down, because of the 
repulsive force between them, until the distance separating them is rmin. At this  
point, the kinetic energy is zero and both particles are instantaneously at rest. Both 
then reverse direction and move apart, speeding up as they go. rmin is the distance  
of closest approach.

Two opposite charges are a little trickier because of the negative energies. Negative 
total energies seem troubling at first, but they characterize bound systems. FIGURE 25.8b  
shows two oppositely charged particles moving apart from each other with equal but 
opposite momenta. If Emech 6 0, as shown, then their total energy line crosses the 
potentialenergy curve at rmax. That is, the particles slow down, lose kinetic energy, 
reverse directions at maximum separation rmax, and then “fall” back together. They 
cannot escape from each other. Although moving in three dimensions rather than one, 
the electron and proton of a hydrogen atom are a bound system, and their mechanical 
energy is negative.

Two oppositely charged particles can escape from each other if Emech 7 0. They’ll 
slow down, but eventually the potential energy vanishes and the particles still have 
kinetic energy. The threshold condition for escape is Emech = 0, which will allow the 
particles to reach infinite separation 1U S 02 at infinitesimally slow speed 1K S 02. 
The initial speed that gives Emech = 0 is called the escape speed.

   NOTE    Real particles can’t be infinitely far apart, but Uelec = 0 is an excellent 
approximation when particles are so far apart that they have no meaningful 
interaction. Two charged particles for which Uelec ≈ 0 are sometimes described as 
“far apart” or “far away.”

Closest approach for
two like charges

Emech

Uelec

r

rmin

ri

rf = rmin

Kf = 0

Ki

ri0
0

Energy

(a) Like charges

Emech

Uelec

r

(b) Opposite charges

rmax

ri

rf = rmaxri0
0

Energy

Maximum separation of
two opposite charges

Before:

After:

Before:

After:

Kf = 0Ki

FIGURE 25.8 The potential-energy 
diagrams for two like charges and two 
opposite charges.
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25.2 The Potential Energy of Point Charges 745

The Electric Force Is a Conservative Force
Potential energy can be defined only if the force is conservative, meaning that the work 
done on the particle as it moves from position i to position f is independent of the path  
followed between i and f. FIGURE 25.9 demonstrates that electric force is indeed conservative.

F
u

i f i f i f
The electric force is a central force. As a result,
zero work is done as q2 moves along a circular
arc because the force is perpendicular to the
displacement.

Approximate the path using circular arcs
and radial lines centered on q1. 

q1 q1 q1

Consider an alternative path for
q2 to move from i to f.

All the work is done along the radial line
segments, which are equivalent to a straight
line from i to f. This is the work that was
calculated in Equation 25.11.

q2

FIGURE 25.9 The work done on q2 is independent of the path from i to f.

A proton is fired from far away at a 1.0mmdiameter glass sphere 
that has been charged to +100 nC. What initial speed must the  
proton have to just reach the surface of the glass?

MODEL Energy is conserved. The glass sphere can be modeled as a 
charged particle, so the potential energy is that of two point charges. 
The glass is so much more massive than the proton that it remains 
at rest as the proton moves. The proton starts “far away,” which we  
interpret as sufficiently far to make Ui ≈ 0.

VISUALIZE FIGURE 25.10 shows the beforeandafter pictorial repre
sentation. To “just reach” the glass sphere means that the proton comes 
to rest, vf = 0, as it reaches rf = 0.50 mm, the radius of the sphere.

SOLVE Conservation of energy Kf + Uf = Ki + Ui is

0 +
Kqpqsphere

rf
= 1

2 mvi 

2 + 0

The proton charge is qp = e. With this, we can solve for the proton’s 
initial speed:

vi = B 2Keqsphere

mrf
= 1.86 * 107 m/s

EXAMPLE 25.2 ■ Approaching a charged sphere

vi

rf = R
vf = 0

ri ≈ ∞ so Ui = 0

Before:

After:

R

FIGURE 25.10 A proton approaching a glass sphere.

An interaction between two elementary particles causes an electron 
and a positron (a positive electron) to be shot out back to back with 
equal speeds. What minimum speed must each have when they are 
100 fm apart in order to escape each other?

MODEL Energy is conserved. The particles end “far apart,” which 
we interpret as sufficiently far to make Uf ≈ 0.

VISUALIZE FIGURE 25.11 shows the beforeandafter pictorial  
representation. The minimum speed to escape is the speed that  
allows the particles to reach rf = ∞  with vf = 0.

SOLVE Uelec is the potential energy of the electron + positron  
system. Similarly, K is the total kinetic energy of the system.  
The electron and the positron, with equal masses and equal 
speeds, have equal kinetic energies. Conservation of energy 
Kf + Uf = Ki + Ui is

0 + 0 + 0 = 1
2 mvi 

2 + 1
2 mvi 

2 +
Kqeqp

ri
= mvi 

2 -
Ke2

ri

Using ri = 100 fm = 1.0 * 10-13 m, we can calculate the minimum 
initial speed to be

vi = BKe2

mri
= 5.0 * 107 m/s

REVIEW vi is a little more than 10% the speed of light, just about  
the limit of what a “classical” calculation can predict. We would 
need to use the theory of relativity if vi were any larger.

EXAMPLE 25.3 ■ Escape speed

FIGURE 25.11 An electron and a positron flying apart.
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746 CHAPTER 25 The Electric Potential

Multiple Point Charges
If more than two charges are present, their potential energy is the sum of the potential  
energies due to all pairs of charges. If the charges are labeled 1, 2, 3, …, then the 
potential energy is

 Uelec = a
All pairs

 
Kqiqj

rij
 (25.15)

where rij is the distance between qi and qj. Be sure to include each pair only once.

   NOTE    For energyconservation problems, it’s necessary to calculate only the potential 
energy for those pairs of charges for which the distance rij changes. The potential energy 
of any pair that doesn’t move is an additive constant with no physical consequences.

Three electrons are spaced 1.0 mm apart along a vertical line. The 
outer two electrons are fixed in position.

a. Is the center electron at a point of stable or unstable equilibrium?

b. If the center electron is displaced horizontally by a small distance,  
what will its speed be when it is very far away?

MODEL Energy is conserved. The outer two electrons don’t move, 
so we don’t need to include the potential energy of their interaction.

VISUALIZE FIGURE 25.12 shows the situation.

SOLVE a. The center electron is in equilibrium exactly in the center  
because the two electric forces on it balance. But if it moves a 
little to the right or left, no matter how little, then the horizontal 
components of the forces from both outer electrons will push the 
center electron farther away. This is an unstable equilibrium for 
horizontal displacements, like being on the top of a hill.

b. A small displacement will cause the electron to move away. If 
the displacement is only infinitesimal, the initial conditions are 
1r122i = 1r232i = 1.0 mm and vi = 0. “Far away” is interpreted as 
rf S ∞ , where Uf ≈ 0. There are now two terms in the potential 
energy, so conservation of energy Kf + Uf = Ki + Ui gives

  12 mvf 

2 + 0 + 0 = 0 + c Kq1q2

1r122i
+

Kq2q3

1r232i
d

  = c Ke2

1r122i
+

Ke2

1r232i
d

This is easily solved to give

vf = B 2
m

 c Ke2

1r122i
+

Ke2

1r232i
d = 1000 m/s

EXAMPLE 25.4 ■ Launching an electron

(r12)i = 1.0 mm

vi = 0
vf

1

2

3

(r23)i = 1.0 mm

(r12)f ≈ ∞

(r23)f ≈ ∞

Before: After:

FIGURE 25.12 Three electrons.

STOP TO THINK 25.2 Rank in order, from largest to smallest, the potential energies UA 
to UD of these four pairs of charges. Each +  symbol represents the same amount of charge.

r

A

r

B

2r

C

2r

D

25.3 The Potential Energy of a Dipole
The electric dipole has been our model for understanding how charged objects interact  
with neutral objects. In Chapter 23 we found that an electric field exerts a torque on a  
dipole. We can complete the picture by calculating the potential energy of an electric  
dipole in a uniform electric field.

FIGURE 25.13 shows a dipole in an electric field E
u
. Recall that the dipole moment p

u
 is 

a vector that points from -q to q with magnitude p = qs. The forces F
u

+ and F
u

- exert 
a torque on the dipole, but now we’re interested in calculating the work done by these 
forces as the dipole rotates from angle fi to angle ff.

p
u

E
u

E
u

F+
u

F-
u

s
f

The electric forces exert
a torque on the dipole.

FIGURE 25.13 The electric field does work 
as a dipole rotates.
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25.4 The Electric Potential 747

When a force component Fs acts through a small displacement ds, the force does 
work dW = Fs   ds. If we exploit the rotationallinear motion analogy from Chapter 12, 
where torque t is the analog of force and angular displacement ∆f is the analog of 
linear displacement, then a torque acting through a small angular displacement df 
does work dW = t df. From Chapter 23, the torque on the dipole in Figure 25.13 is  
t = -pE sin f, where the minus sign is due to the torque trying to cause a clockwise 
rotation. Thus the work done by the electric field on the dipole as it rotates through  
the small angle df is

 dWelec = -pE sin f df (25.16)

The total work done by the electric field as the dipole turns from fi to ff is

 Welec = -pE3
ff

fi

 sin f df = pE cos ff - pE cos fi (25.17)

The potential energy associated with the work done on the dipole is

 ∆Uelec = Uf - Ui = -Welec1i S f2 = -pE cos ff + pE cos fi (25.18)

By comparing the left and right sides of Equation 25.18, we see that the potential 
energy of an electric dipole pu in a uniform electric field E

u
 is

 Uelec = -pE cos f = - pu # E
u
 (25.19)

FIGURE 25.14 shows the energy diagram of a dipole. The potential energy is minimum 
at f = 0° where the dipole is aligned with the electric field. This is a point of stable  
equilibrium. A dipole exactly opposite E

u
, at f = {180°, is at a point of unstable  

equilibrium. Any disturbance will cause it to flip around. A frictionless dipole with 
mechanical energy Emech will oscillate back and forth between turning points on either 
side of f = 0°.

The water molecule is a permanent electric dipole with dipole 
moment 6.2 * 10-30 C m. A water molecule is aligned in an elec
tric field with field strength 1.0 * 107 N/C. How much energy is 
needed to rotate the molecule 90°?

MODEL The molecule is at the point of minimum energy. It won’t 
spontaneously rotate 90°. However, an external force that supplies 
energy, such as a collision with another molecule, can cause the 
water molecule to rotate.

SOLVE The molecule starts at fi = 0° and ends at ff = 90°. The 
increase in potential energy is

  ∆Uelec = Uf - Ui = -pE cos 90° - 1-pE cos 0°2
  = pE = 6.2 * 10-23 J

This is the energy needed to rotate the molecule 90°.

REVIEW ∆Uelec is significantly less than kBT at room temperature. 
Thus collisions with other molecules can easily supply the energy 
to rotate the water molecules and keep them from staying aligned  
with the electric field.

EXAMPLE 25.5 ■ Rotating a molecule

pE

-pE

-180° 180°0°
0 f

Energy

Emech

Stable
equilibrium
at f = 0°

Unstable
equilibrium
at f = {180°

Turning points for
oscillation with
energy Emech

FIGURE 25.14 The energy of a dipole in an 
electric field.

25.4 The Electric Potential
We introduced the concept of the electric field in Chapter 22 because action at a 
distance raised concerns and difficulties. The field provides an intermediary through 
which two charges exert forces on each other. Charge q1 somehow alters the space 
around it by creating an electric field E

u

1. Charge q2 then responds to the field, expe
riencing force F

u
= q2E

u

1.
In defining the electric field, we separated the charges that are the source of the 

field from the charge in the field. The force on charge q is related to the electric field 
of the source charges by

force on q by sources = [charge q] * [alteration of space by the source charges]
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748 CHAPTER 25 The Electric Potential

Let’s try a similar procedure for the potential energy. The electric potential energy is 
due to the interaction of charge q with other charges, so let’s write

 potential energy of q + sources

 = [charge q] * [ potential for interaction with the source charges]

FIGURE 25.15 shows this idea schematically.
In analogy with the electric field, we will define the electric potential V (or, for 

brevity, just the potential) as

 V K
Uq +  sources

q
 (25.20)

Charge q is used as a probe to determine the electric potential, but the value of V  
is independent of q. The electric potential, like the electric field, is a property  
of the source charges. And, like the electric field, the electric potential fills the  
space around the source charges. It is there whether or not another charge is there to 
experience it.

In practice, we’re usually more interested in knowing the potential energy if a charge 
q happens to be at a point in space where the electric potential of the source charges is 
V. Turning Equation 25.20 around, we see that the electric potential energy is

 Uelec = Uq +  sources = qV (25.21)

Once the potential has been determined, it’s very easy to find the potential energy.
The unit of electric potential is the joule per coulomb, which is called the volt V:

1 volt = 1 V K 1 J/C

This unit is named for Alessandro Volta, who invented the electric battery in the year 
1800. Microvolts (mV), millivolts (mV), and kilovolts (kV) are commonly used units.

   NOTE    Once again, commonly used symbols are in conflict. The symbol V is widely 
used to represent volume, and now we’re introducing the same symbol to represent 
potential. To make matters more confusing, V is the abbreviation for volts. In printed 
text, V for potential is italicized and V for volts is not, but you can’t make such a 
distinction in handwritten work. This can be confusing, but these are the commonly 
accepted symbols. It’s incumbent upon you to be especially alert to the context in 
which a symbol is used.

Using the Electric Potential
The electric potential is an abstract idea, and it will take some practice to see just what 
it means and how it is useful. We’ll use multiple representations—words, pictures, 
graphs, and analogies—to explain and describe the electric potential.

   NOTE    It is unfortunate that the terms “potential” and “potential energy” are so 
much alike. Despite the similar names, they are very different concepts and are not 
interchangeable. TABLE 25.1 will help you to distinguish between the two.

To begin, consider charged particles that move in a vacuum without collisions.  
If we know the electric potential in a region of space, we can determine whether a 
charged particle speeds up or slows down as it moves through that region. FIGURE 25.16 
illustrates this idea. Here a group of source charges, which remains hidden offstage, 
has created an electric potential V that increases from left to right. A charged particle q,  
which for now we’ll assume to be positive, has electric potential energy Uelec = qV. If 
the particle moves to the right, its potential energy increases and so, by energy conser
vation, its kinetic energy must decrease. A positive charge slows down as it moves 
into a region of higher electric potential.

Source charges

The source charges alter
the space around them by
creating an electric potential.

If charge q is in the potential,
the electric potential energy is
Uq + sources = qV.

The potential at
this point is V.

FIGURE 25.15 Source charges alter the 
space around them by creating an electric 
potential.

TABLE 25.1 Distinguishing electric 
potential and potential energy

The electric potential is a property of the 
source charges and, as you’ll soon see, is 
related to the electric field. The electric  
potential is present whether or not a 
charged particle is there to experience it. 
Potential is measured in J/C, or V.

The electric potential energy is the  
interaction energy of a charged particle 
with the source charges. Potential energy 
is measured in J.

This battery is labeled 1.5 volts. As we’ll 
soon see, a battery is a source of electric 
potential.
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25.4 The Electric Potential 749

It is customary to say that the particle moves through a potential difference 
∆V = Vf - Vi. The potential difference between two points is often called the voltage.  
The particle that travels to the right moves through a positive potential difference 
1∆V 7 0 because Vf 7 Vi2, so we can say that a positively charged particle slows down 
as it moves through a positive potential difference.

The particle that moves to the left in Figure 25.16 travels in the direction of  
decreasing electric potential—through a negative potential difference—and loses  
potential energy. It speeds up as it transforms potential energy into kinetic energy. A 
negatively charged particle would slow down because its potential energy qV would 
increase as V decreases. TABLE 25.2 summarizes these ideas.

Because Uelec = qV, we can write the conservation of mechanical energy state
ment Kf + Uf = Ki + Ui for a charged particle in a vacuum as

 Kf + qVf = Ki + qVi (25.22)

Conservation of energy is the basis of a powerful problemsolving strategy.

∆V 7 0

∆V 6 0

Direction of increasing V

if

fi
Lower potential Higher potential

A positive charge speeds up as it
moves toward lower electric potential.

The potential difference is negative.

A positive charge slows down as it
moves toward higher electric potential.

The potential difference is positive.

FIGURE 25.16 In the absence of other applied forces, a charged particle speeds up or slows 
down as it moves through a potential difference.

TABLE 25.2 Charged particles moving in 
an electric potential

Electric potential

Increasing 
1∆V 7 02

Decreasing 
1∆V 6 02

+  charge Slows down Speeds up

-  charge Speeds up Slows down

PROBLEM-SOLVING STRATEGY 25.1

Conservation of energy in charge interactions

MODEL Define the system. If possible, model it as an isolated system for which 
mechanical energy is conserved.

VISUALIZE Draw a beforeandafter pictorial representation. Define symbols,  
list known values, and identify what you’re trying to find.

SOLVE The mathematical representation is based on the law of conservation of  
mechanical energy:

Kf + qVf = Ki + qVi

■■ Is the electric potential given in the problem statement? If not, you’ll need to 
use a known potential, such as that of a point charge, or calculate the potential 
using the procedure given later, in ProblemSolving Strategy 25.2.

■■ Ki and Kf are the sums of the kinetic energies of all moving particles.
■■ Some problems may need additional conservation laws, such as conservation 
of charge or conservation of momentum.

REVIEW Check that your result has correct units and significant figures, is  
reasonable, and answers the question.

Exercise 22 
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750 CHAPTER 25 The Electric Potential

25.5  The Electric Potential Inside  
a Parallel-Plate Capacitor

Earlier in the chapter we found an expression for the electric potential energy of a 
charged particle between the plates of a parallelplate capacitor. Now let’s investigate 
the electric potential. FIGURE 25.18 shows two parallel electrodes, separated by distance 
d, with surface charge density {h. As a specific example, we’ll let d = 3.00 mm 
and h = 4.42 * 10-9 C/m2. The electric field inside the capacitor, as you learned in 
Chapter 23, is

  E
u

= 1 hP0
 , from positive toward negative2  

  = (500 N/C, from right to left) 
(25.23)

This electric field is due to the source charges on the capacitor plates.

A proton with a speed of 2.0 * 105 m/s enters a region of space in 
which there is an electric potential. What is the proton’s speed after 
it moves through a potential difference of 100 V? What will be the 
final speed if the proton is replaced by an electron?

MODEL The system is the charge plus the unseen source charges 
that create the potential. Assume that the proton moves in a vacuum.  
This is an isolated system, so mechanical energy is conserved.

VISUALIZE FIGURE 25.17 is a beforeandafter pictorial represent
ation of a charged particle moving through a potential difference. 
A positive charge slows down as it moves into a region of higher 
potential 1K S U2. A negative charge speeds up 1U S K2.

SOLVE The potential energy of charge q is U = qV. Conservation 
of energy, now expressed in terms of the electric potential V, is 
Kf + qVf = Ki + qVi, or

Kf = Ki - q ∆V

where ∆V = Vf - Vi is the potential difference through which the 
particle moves. In terms of the speeds, energy conservation is

1
2 mvf 

2 = 1
2 mvi 

2 - q ∆V

We can solve this for the final speed:

vf = Bvi 

2 -
2q

m
 ∆V

For a proton, with q = e, the final speed is

  1vf2p = B12.0 * 105 m/s22 -
211.60 * 10-19 C21100 V2

1.67 * 10-27 kg

  = 1.4 * 105 m/s

An electron, though, with q = -e and a different mass, reaches 
speed 1vf2e = 5.9 * 106 m/s.

REVIEW The proton slowed down and the electron sped up, as we 
expected. Note that the electric potential already existed in space 
due to other charges that are not explicitly seen in the problem.  
The electron and proton have nothing to do with creating the  
potential. Instead, they respond to the potential by having potential 
energy U = qV.

EXAMPLE 25.6 ■ Moving through a potential difference

Before: After:

Potential difference
∆V = Vf - Vi

qq
vi vf

FIGURE 25.17 A charged particle moving through a potential 
difference.

STOP TO THINK 25.3 A proton is released from rest at point 2, where the potential 
is 0 V. Afterward, the proton

a. Remains at rest at point 2.
b. Moves toward point 1 with a steady speed.
c. Moves toward point 1 with an increasing speed.
d. Moves toward point 3 with a steady speed.
e. Moves toward point 3 with an increasing speed.

-100 V 0 V +100 V

1 2 3

E
u

E
u

0 d
s

d = 3.00 mm
h = -4.42 * 10-9 C/m2

h = +4.42 * 10-9 C/m2

FIGURE 25.18 A parallel-plate capacitor.
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25.5 The Electric Potential Inside a Parallel-Plate Capacitor  751

In Section 25.1, we found that the electric potential energy of a charge q in the 
uniform electric field of a parallelplate capacitor is

 Uelec = Uq +  sources = qEs (25.24)

Uelec is the energy of q interacting with the source charges on the capacitor plates.
Our new view of the interaction is to separate the role of charge q from the role of 

the source charges by defining the electric potential V = Uq +  sources /q. Thus the elec
tric potential inside a parallelplate capacitor is

 Vcap = Es (25.25)

where s is the distance from the negative electrode. The electric potential, like the 
electric field, exists at all points inside the capacitor. The electric potential is created 
by the source charges on the capacitor plates and exists whether or not charge q is 
inside the capacitor.

FIGURE 25.19 illustrates the important point that the electric potential increases  
linearly from the negative plate, where V- = 0, to the positive plate, where V+ = Ed. 
Let’s define the potential difference ∆VC between the two capacitor plates to be

 ∆VC = V+ - V- = Ed (25.26)

In our specific example, ∆VC = 1500 N/C210.0030 m2 = 1.5 V. The units work out 
because 1.5 1N m2/C = 1.5 J/C = 1.5 V.

   NOTE    People who work with circuits would call ∆VC “the voltage across the 
capacitor” or simply “the capacitor voltage.”

Equation 25.26 has an interesting implication. Thus far, we’ve determined the  
electric field inside a capacitor by specifying the surface charge density h on the 
plates. Alternatively, we could specify the capacitor voltage ∆VC (i.e., the potential 
difference between the capacitor plates) and then determine the electric field strength as

 E =
∆VC

d
 (25.27)

In fact, this is how E is determined in practical applications because it’s easy to measure 
∆VC with a voltmeter but difficult, in practice, to know the value of h.

Equation 25.27 implies that the units of electric field are volts per meter, or V/m. 
We have been using electric field units of newtons per coulomb. In fact, as you can 
show as a homework problem, these units are equivalent to each other. That is,

1 N/C = 1 V/m

   NOTE    Volts per meter are the electric field units used by scientists and engineers in 
practice. We will now adopt them as our standard electric field units.

Returning to the electric potential, we can substitute E = ∆VC /d into Equation 
25.25 for Vcap. Thus the electric potential inside a capacitor is

 Vcap =
s
d

 ∆VC  (electric potential inside a parallel@plate capacitor) (25.28)

The potential increases linearly from V- = 0 V at the negative plate 1s = 02 to V+ =  
∆VC at the positive plate 1s = d2.

Visualizing Electric Potential
Let’s explore the electric potential inside the capacitor by looking at several different, 
but related, ways that the potential can be represented graphically.

s

V

∆VC

V+

V-

s = 0 s = d

FIGURE 25.19 The electric potential of a 
parallel-plate capacitor increases linearly 
from the negative to the positive plate.
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752 CHAPTER 25 The Electric Potential

Graphical representations of the electric potential between the plates of a capacitor

A graph of potential 
versus s. You can see the 
potential increasing from 
0.0 V at the negative 
plate to 1.5 V at the  
positive plate.

A threedimensional view showing  
equipotential surfaces. These are  
mathematical surfaces, not physical  
surfaces, with the same value of V at  
every point. The equipotential surfaces  
of a capacitor are planes parallel to the  
capacitor plates. The capacitor plates  
are also equipotential surfaces.

A twodimensional contour 
map. The capacitor plates and 
the equipotential surfaces are 
seen edgeon, so you need to 
imagine them extending above 
and below the plane of the  
page.

A threedimensional elevation 
graph. The potential is graphed 
vertically versus the scoordinate 
on one axis and a generalized 
“yzcoordinate” on the other axis. 
Viewing the right face of the  
elevation graph gives you the  
potential graph.

0.5

1.0

1.5

0.0

V (volts)

yz

s

0 1 2 3

0.0 V 1.0 V

0.5 V 1.5 V

- 
pl

at
e

- plate

+ 
pl

at
e

+ plate

0.0 V
0.5 V

1.0 V
1.5 V

s (mm)

V (volts)

1.5

1.0

0.5

0.0
0 1 2 3

Equipotential surfaces Contour map Elevation graphPotential graph

+ plate

- plate

E
u

0.0 V 0.6 V 1.2 V

0.3 V 0.9 V 1.5 V

FIGURE 25.20 Equipotentials and electric 
field vectors inside a parallel-plate capacitor.

∆V = 1.5 V

1.5 V

A battery is a source
of potential.

FIGURE 25.21 Using a battery to charge a 
capacitor to a precise value of ∆VC.

These four graphical representations show the same information from different 
perspectives, and the connecting lines help you see how they are related. If you think 
of the elevation graph as a “mountain,” then the contour lines on the contour map are 
like the lines of a topographic map.

The potential graph and the contour map are the two representations most widely 
used in practice because they are easy to draw. Their limitation is that they are trying 
to convey threedimensional information in a twodimensional presentation. When 
you see graphs or contour maps, you need to imagine the threedimensional equipo
tential surfaces or the threedimensional elevation graph.

There’s nothing special about showing equipotential surfaces or contour lines every  
0.5 V. We chose these intervals because they were convenient. As an alternative, FIGURE 25.20  
shows how the contour map looks if the contour lines are spaced every 0.3 V. Contour 
lines and equipotential surfaces are imaginary lines and surfaces drawn to help us visu
alize how the potential changes in space. Drawing the map more than one way reinforces 
the idea that there is an electric potential at every point inside the capacitor, not just at the 
points where we happened to draw a contour line or an equipotential surface.

   NOTE    Equipotential surfaces are always equally spaced in voltage.

Figure 25.20 also shows the electric field vectors. Notice that

■■ The electric field vectors are perpendicular to the equipotential surfaces.
■■ The electric field points in the direction of decreasing potential. In other words, the 

electric field points “downhill” on a graph or map of the electric potential.

Chapter 26 will present a more indepth exploration of the connection between the 
electric field and the electric potential. There you will find that these observations are  
always true. They are not unique to the parallelplate capacitor.

Finally, you might wonder how we can arrange a capacitor to have a surface charge 
density of precisely 4.42 * 10-9 C/m2. Simple! As FIGURE 25.21 shows, we use wires to 
attach 3.00mmspaced capacitor plates to a 1.5 V battery. This is another topic that 
we’ll explore in Chapter 26, but it’s worth noting now that a battery is a source of 
potential. That’s why batteries are labeled in volts, and it’s a major reason we need to 
thoroughly understand the concept of potential.
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25.5 The Electric Potential Inside a Parallel-Plate Capacitor  753

In writing the electric potential inside a parallelplate capacitor, we made the 
choice that V- = 0 V at the negative plate. But that is not the only possible choice. 
FIGURE 25.24 on the next page shows three parallelplate capacitors, each having the 
same capacitor voltage ∆VC = V+ - V- = 100 V, but each with a different choice for 
the location of the zero point of the electric potential. Notice the terminal symbols 
(lines with small circles at the end) showing how the potential, from a battery or a 
power supply, is applied to each plate; these symbols are common in electronics.

You’ve been assigned the task of measuring the speed of protons  
as they emerge from a small accelerator. To do so, you decide to  
measure how much voltage is needed across a parallelplate capacitor  
to stop the protons. The capacitor you choose has a 2.0 mm plate 
separation and a small hole in one plate that you shoot the protons 
through. By filling the space between the plates with a lowdensity 
gas, you can see (with a microscope) a slight glow from the region 
where the protons collide with and excite the gas molecules. The 
width of the glow tells you how far the protons travel before being 
stopped and reversing direction. Varying the voltage across the  
capacitor gives the following data:

Voltage (V) Glow width (mm)

1000 1.7

1250 1.3

1500 1.1

1750 1.0

2000 0.8

What value will you report for the speed of the protons?

MODEL The system is the proton plus the capacitor charges. This is 
an isolated system, so mechanical energy is conserved.

VISUALIZE FIGURE 25.22 is a beforeandafter pictorial represen
tation  of the proton entering the capacitor with speed vi and  later 
reaching a turning point with vf = 0 m/s after traveling distance 
sf = glow width. For the protons to slow, the hole through which they 
pass has to be in the negative plate. The saxis has s = 0 at this point.

SOLVE The conservation of energy equation, with the proton  
having charge q = e, is Kf + eVf = Ki + eVi. The initial potential 

energy is zero, because the capacitor’s electric potential is zero at 
si = 0, and the final kinetic energy is zero. Equation 25.28 for the 
potential inside the capacitor gives

eVf = e1sf

d
 ∆VC2 = Ki = 1

2 mvi 

2

Solving for the distance traveled, you find

sf =
dmvi 

2

2e
 

1
∆VC

Thus a graph of the distance traveled versus the inverse of the  
capacitor voltage should be a straight line with zero yintercept and 
slope dmvi 

2/2e. You can use the experimentally determined slope to 
find the proton speed.

FIGURE 25.23 is a graph of sf versus 1/∆VC. It has the expected 
shape, and the slope of the bestfit line is seen to be 1.72 V m. The 
units are those of the riseoverrun. Using the slope, you calculate 
the proton speed:

  vi = B 2e
dm

* slope = B211.60 * 10-19 C211.72 V m2
10.0020 m211.67 * 10-27 kg2

  = 4.1 * 105 m/s

REVIEW This would be a very high speed for a macroscopic object 
but is quite typical of the speeds of charged particles.

EXAMPLE 25.7 ■ Measuring the speed of a proton

E
u

E
u

sf

vf = 0 m/s

∆VC

2.0 0.0
s (mm)

After:

Before:
si = 0 mm
vi

FIGURE 25.22 A proton stopping in a capacitor.

sf (m * 10-3)

Best-fit line

1/∆VC (V-1 * 10-3)

y = 1.72x - 3.0E-05

0.0

0.5

1.0

2.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

FIGURE 25.23 A graph of the data.
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754 CHAPTER 25 The Electric Potential

The important thing to notice is that the three contour maps in Figure 25.24 repre
sent the same physical situation. The potential difference between any two points is the  
same in all three maps. The electric field is the same in all three. We may prefer one of 
these figures over the others, but there is no measurable physical difference between them.

E
u

E
u

E
u

0 V100 V

∆V = 50 V

-100 V0 V

∆V = 50 V

-50 V50 V
2575 50 -75-25 -50 -2525 0

∆V = 50 V

The potential difference is the same. The electric field inside is the same.

(a) (b) (c)

FIGURE 25.24 These three choices for V = 0 represent the same physical situation. These  
are contour maps, showing the edges of the equipotential surfaces.

q

q

(b)

(a)

q′

r

To determine the potential
of q at this pointc

cplace charge q′ at the point
as a probe and measure the
potential energy Uq′ + q .

FIGURE 25.25 Measuring the electric 
potential of charge q.

STOP TO THINK 25.4 Rank in order, from largest to 
smallest, the potentials V1 to V5 at the points 1 to 5.

E
u

21

5

3

4

25.6 The Electric Potential of a Point Charge
Another important electric potential is that of a point charge. FIGURE 25.25a shows 
charge q and a point in space at which we would like to know the electric potential. To 
do so, as shown in FIGURE 25.25b, we let a second charge q′ probe the electric potential 
of q. The potential energy of the two point charges is

 Uq′+ q =
1

4pP0
 
qq′
r

 (25.29)

Thus, by definition, the electric potential of charge q is

 Vpoint =
Uq′+ q

q′
=

1
4pP0

 
q
r
  (electric potential of a point charge) (25.30)

The potential of Equation 25.30 extends through all of space, showing the influ
ence of charge q, but it weakens with distance as 1/r. This expression for V assumes 
that we have chosen V = 0 V to be at r = ∞  . This is the most logical choice for a point 
charge because the influence of charge q ends at infinity.

The expression for the electric potential of charge q is similar to that for the elec
tric field of charge q. The difference most quickly seen is that Vpoint depends on 1/r 
whereas E

u
 depends on 1/r2. But it is also important to notice that the potential is a 

scalar whereas the field is a vector. Thus the mathematics of using the potential are 
much easier than the vector mathematics using the electric field requires.

For example, the electric potential 1.0 cm from a +1.0 nC charge is

V1 cm =
1

4pP0
 
q
r

= 19.0 * 109 N m2/C22 
1.0 * 10-9 C

0.010 m
= 900 V

1 nC is typical of the electrostatic charge produced by rubbing, and you can see that such  
a charge creates a fairly large potential nearby. Why are we not shocked and injured 
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25.6 The Electric Potential of a Point Charge 755

when working with the “high voltages” of such charges? The sensation of being  
shocked is a result of current, not potential. Some highpotential sources simply do  
not have the ability to generate much current. We will look at this issue in Chapter 28.

Visualizing the Potential of a Point Charge
FIGURE 25.26 shows four graphical representations of the electric potential of a point 
charge. These match the four representations of the electric potential inside a capacitor, 
and a comparison of the two is worthwhile. This figure assumes that q is positive; you  
may want to think about how the representations would change if q were negative.

r

V

3V1

2V1

V1

0

y

Equipotential surfaces Contour map Elevation graphPotential graph

V

x

FIGURE 25.26 Four graphical representations of the electric potential of a positive point charge.

The Electric Potential of a Charged Sphere
In practice, you are more likely to work with a charged sphere, of radius R and total 
charge Q, than with a point charge. Outside a uniformly charged sphere, the electric 
potential is identical to that of a point charge Q at the center. That is,

 Vsphere =
1

4pP0
 
Q
r
  (sphere of charge, r Ú R) (25.31)

We can cast this result in a more useful form. It is customary to speak of charging 
an electrode, such as a sphere, “to” a certain potential, as in “Bob charged the sphere 
to a potential of 3000 volts.” This potential, which we will call V0, is the potential right 
on the surface of the sphere. We can see from Equation 25.31 that

 V0 = V1at r = R2 =
Q

4pP0R
 (25.32)

Consequently, a sphere of radius R that is charged to potential V0 has total charge

 Q = 4pP0RV0 (25.33)

If we substitute this expression for Q into Equation 25.31, we can write the potential 
outside a sphere that is charged to potential V0 as

 Vsphere =
R
r

 V0  (sphere charged to potential V0) (25.34)

Equation 25.34 tells us that the potential of a sphere is V0 on the surface and decreases 
inversely with the distance. The potential at r = 3R is 13 V0.

STOP TO THINK 25.5 Rank in order, from largest to 
smallest, the potential differences ∆V12, ∆V13, and ∆V23  
between points 1 and 2, points 1 and 3, and points 2 and 3.

q
1 2

3

A plasma ball consists of a small metal ball 
charged to a potential of about 2000 V 
inside a hollow glass sphere. The electric 
field of the high-voltage ball is sufficient 
to cause a gas breakdown at this pressure, 
creating “lightning bolts” between the 
ball and the glass sphere.

M25_KNIG8221_05_GE_C25.indd   755 31/05/2022   10:32



756 CHAPTER 25 The Electric Potential

25.7  The Electric Potential of  
Many Charges

Suppose there are many source charges q1, q2, . . . . The electric potential V at a point in 
space is the sum of the potentials due to each charge:

 V = a
i

 
1

4pP0
 
qi

ri
 (25.35)

where ri is the distance from charge qi to the point in space where the potential is being 
calculated. In other words, the electric potential, like the electric field, obeys the 
principle of superposition.

As an example, the contour map and elevation graph in FIGURE 25.28 show that  
the potential of an electric dipole is the sum of the potentials of the positive and negative  
charges. Potentials such as these have many practical applications. For example,  
electrical activity within the body can be monitored by measuring equipotential lines on 
the skin. Figure 25.28c shows that the equipotentials near the heart are a slightly distorted 
but recognizable electric dipole. This is the potential measured by an electrocardiogram.

(a) Contour map

Equipotential surfaces

V

x

(b) Elevation graph

y

FIGURE 25.28 The electric potential of an electric dipole.

A proton is released from rest at the surface of a 1.0cmdiameter 
sphere that has been charged to +1000 V.

a. What is the charge of the sphere?

b. What is the proton’s speed at 1.0 cm from the sphere?

MODEL Energy is conserved. The potential outside the charged 
sphere is the same as the potential of a point charge at the center.

VISUALIZE FIGURE 25.27 shows the situation.

SOLVE a. The charge of the sphere is

Q = 4pP0RV0 = 0.56 * 10-9 C = 0.56 nC

b. A sphere charged to V0 = +1000 V is positively charged. The 
proton will be repelled by this charge and move away from the 
sphere. The conservation of energy equation Kf + eVf =Ki + eVi, 
with Equation 25.34 for the potential of a sphere, is

1
2 mvf 

2 +
eR
rf

 V0 = 1
2 mvi 

2 +
eR
ri

 V0

The proton starts from the surface of the sphere, ri = R, with vi = 0. 
When the proton is 1.0 cm from the surface of the sphere, it has 
rf = 1.0 cm + R = 1.5 cm. Using these, we can solve for vf:

vf = B 2eV0

m
 11 -

R
rf
2 = 3.6 * 105 m/s

REVIEW This example illustrates how the ideas of electric potential 
and potential energy work together, yet they are not the same thing.

EXAMPLE 25.8 ■ A proton and a charged sphere

Before: After:

1.0 cm +1000 V
vi = 0

ri = R

vf

rf = R + 1.0 cm

FIGURE 25.27 A sphere and a proton.

(c) Equipotentials near the heart
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25.7 The Electric Potential of Many Charges  757

The Potential of a Continuous Distribution of Charge
Equation 25.35 is the basis for determining the potential of a continuous distribution of 
charge, such as a charged rod or a charged disk. The procedure is much like the one you 
learned in Chapter 23 for calculating the electric field of a continuous distribution of  
charge, but easier because the potential is a scalar. We will continue to assume that the 
object is uniformly charged, meaning that the charges are evenly spaced over the object.

What is the electric potential at the  
point indicated in FIGURE 25.29?

MODEL The potential is the sum  
of the potentials due to each charge.

SOLVE The potential at the indicated point is

  V =
1

4pP0
 
q1

r1
+

1
4pP0

 
q2

r2

  = 19.0 * 109 N m2/C2212.0 * 10-9 C
0.050 m

+
-1.0 * 10-9 C

0.040 m 2
  = 135 V

REVIEW The potential is a scalar, so we found the net potential  
by adding two numbers. We don’t need any angles or components 
to calculate the potential.

EXAMPLE 25.9 ■ The potential of two charges

4.0 cm5.0 cm

3.0 cm
+2.0 nC -1.0 nC

▶ FIGURE 25.29 Finding the 
potential of two charges.

A thin, uniformly charged ring of radius R has total charge Q. Find 
the potential at distance z on the axis of the ring.

MODEL Because the ring is thin, we’ll assume the charge lies along 
a circle of radius R.

VISUALIZE FIGURE 25.30 on the next page illustrates the problem 

solving strategy. We’ve chosen a coordinate system in which the 
ring lies in the xyplane and point P is on the zaxis. We’ve then 
divided the ring into N small segments of charge ∆Q, each of  
which can be modeled as a point charge. The distance ri between 
segment i and point P is

EXAMPLE 25.10 ■ The potential of a ring of charge

Continued

PROBLEM-SOLVING STRATEGY 25.2

The electric potential of a continuous distribution of charge

MODEL Model the charge distribution as a simple shape.

VISUALIZE For the pictorial representation:
■■ Draw a picture, establish a coordinate system, and identify the point P at  
which you want to calculate the electric potential.

■■ Divide the total charge Q into small pieces of charge ∆Q, using shapes for which 
you already know how to determine V. This division is often, but not always,  
into point charges.

■■ Identify distances that need to be calculated.

SOLVE The mathematical representation is V = gVi.
■■ Use superposition to form an algebraic expression for the potential at P. Let  
the 1x, y, z2 coordinates of the point remain as variables.

■■ Replace the small charge ∆Q with an equivalent expression involving a charge 
density and a coordinate, such as dx. This is the critical step in making the 
transition from a sum to an integral because you need a coordinate to serve 
as the integration variable.

■■ All distances must be expressed in terms of the coordinates.
■■ Let the sum become an integral. The integration limits will depend on the 
 coordinate system you have chosen.

REVIEW Check that your result is consistent with any limits for which you know 
what the potential should be.

Exercise 29 
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758 CHAPTER 25 The Electric Potential

ri = 2R2 + z2

Note that ri is a constant distance, the same for every charge segment.

SOLVE The potential V at P is the sum of the potentials due to each 
segment of charge:

V = a
N

i=1
Vi = a

N

i=1
 

1
4pP0

 
∆Q

ri
=

1
4pP0

 
12R2 + z2

 a
N

i=1
∆Q

We were able to bring all terms involving z to the front because z  
is a constant as far as the summation is concerned. Surprisingly, we 
don’t need to convert the sum to an integral to complete this cal
culation. The sum of all the ∆Q charge segments around the ring 
is simply the ring’s total charge, g1∆Q2 = Q; hence the electric  
potential on the axis of a charged ring is

Vring on axis =
1

4pP0
 

Q2R2 + z2

REVIEW From far away, the ring appears as a point charge Q in the 
distance. Thus we expect the potential of the ring to be that of a 
point charge when z W R. You can see that Vring ≈ Q/4pP0z when 
z W R, which is, indeed, the potential of a point charge Q.

P
z

z

y

x

R

Segment i
with charge
∆Q

What is the potential here?

ri = 2R2 + z2

FIGURE 25.30 Finding the potential of a ring of charge.

   CHAPTER 25 CHALLENGE EXAMPLE     The potential of a charged disk

A thin plastic disk of radius R is uniformly coated with charge until 
it receives total charge Q.

a. What is the potential at distance z along the axis of the disk?

b. What is the potential energy if an electron is 1.00 cm from a 
3.50cmdiameter disk that has been charged to +5.00 nC?

MODEL Model the disk as a uniformly charged disk of zero thick
ness, radius R, and charge Q. The disk has uniform surface charge 
density h = Q/A=Q/pR2. We can take advantage of now knowing 
the onaxis potential of a ring of charge.

VISUALIZE Orient the disk in the xyplane, as shown in FIGURE 25.31,  
with point P at distance z. Then divide the disk into rings of equal 
width ∆r. Ring i has radius ri and charge ∆Qi.

SOLVE a. We can use the result of Example 25.10 to write the 
potential at distance z of ring i as

Vi =
1

4pP0
 

∆Qi2ri 

2 + z2

The potential at P due to all the rings is the sum

V = a
i

 Vi =
1

4pP0
 a

N

i=1
 

∆Qi2ri 

2 + z2

The critical step is to relate ∆Qi to a coordinate. Because we now 
have a surface, rather than a line, the charge in ring i is ∆Qi =  h ∆Ai, 
where ∆Ai is the area of ring i. We can find ∆Ai, as you’ve learned to 
do in calculus, by “unrolling” the ring to form a narrow rectangle of 
length 2pri and width ∆r. Thus the area of ring i is ∆Ai = 2pri ∆r  
and the charge is

∆Qi = h ∆Ai =
Q

pR2 2pri ∆r =
2Q

R2  ri ∆r

With this substitution, the potential at P is

V =
1

4pP0
 a

N

i=1
 
2Q

R2  
ri ∆ri2ri 

2 + z2
 S  

Q

2pP0 R
2 3

R

0
 

r dr2r2 + z2

where, in the last step, we let N S ∞  and the sum become an in
tegral. This integral can be found in Appendix A, but it’s not hard 
to evaluate with a change of variables. Let u = r2 + z2, in which 
case r dr = 1

2 du. Changing variables requires that we also change 
the integration limits. You can see that u = z2 when r = 0, and 
u = R2 + z2 when r = R. With these changes, the onaxis potential 
of a charged disk is

  Vdisk on axis =
Q

2pP0R2 3
R2+z2

z2
 
1
2 du

u1/2 =
Q

2pP0R2 u1/2 `
R2+z2

z2

  =
Q

2pP0R2 12R2 + z2 - z2
b. To calculate the potential energy, we first need to determine the 
potential of the disk at z = 0.0100 m. Using R = 0.0175 m and 
Q = 5.00 nC, you can calculate V = 2980 V. The electron’s charge  
is q = -e = -1.60 * 10-19 C, so the potential energy with an 
 electron at z = 1.00 cm is Uelec = qV = -4.77 * 10-16 J.

REVIEW We earlier found that the potential 1 cm from a 1 nC point 
charge is 900 V. Thus a potential of 2980 V at the same distance 
from a 5 nC disk seems reasonable.

Disk with
radius R and
charge Q

The potential at this point is
the sum of the potentials due
to all the thin rings in the disk.

FIGURE 25.31 Finding the potential of a disk of charge.
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Electric Potential Energy
If charge q is placed in an electric potential V, the system’s electric 
potential energy (interaction energy) is

Uelec = qV

Point charges and dipoles
The electric potential energy of two point charges is

Uq1 +  q2
=

Kq1q2

r
=

1
4pP0

 
q1q2

r

The potential energy of two opposite charges is negative.
The potential energy in an electric field of an electric dipole with 
dipole moment pu is

Uelec = -pE cos u = - pu # E
u

Solving conservation of energy problems
MODEL Model as an isolated system.

VISUALIZE Draw a beforeandafter representation.

SOLVE Mechanical energy is conserved.

• Mathematically Kf + qVf = Ki + qVi.

• K is the sum of the kinetic energies of all particles.

• V is the potential due to the source charges.

Sphere of charge Q  

Same as a point charge  
if r Ú R

Parallel-plate capacitor  

V = Es, where s is measured  
from the negative plate. The  
electric field inside is

E =
∆VC

d

Units  

Electric potential: 1 V = 1 J/C

Electric field: 1 V/m = 1 N/C

Sources of Potential
The electric potential V, like the electric field, is created by source 
charges. Two major tools for calculating the potential are:

• The potential of a point charge, Vpoint =
1

4pP0
 
q

r
• The principle of superposition

For multiple point charges
Use superposition: V = V1 + V2 + V3 + g
For a continuous distribution of charge
MODEL Model as a simple charge distribution.

VISUALIZE Draw a pictorial representation.

• Establish a coordinate system.

• Identify where the potential will be calculated.

SOLVE Set up a sum.

• Divide the charge into pointlike ∆Q.

• Find the potential due to each ∆Q.

• Use the charge density 1l or h2 to replace ∆Q with an integration 
coordinate, then sum by integrating.

V is easier to calculate than E
u

 because potential is a scalar.

Graphical representations of the potential:

r

V

Equipotential surfaces

Contour map Elevation graph

Potential graph

General Principles

Applications

The goals of Chapter 25 have been to use the electric potential 
and electric potential energy.

Summary

s

∆VC

0

electric potential energy, U
electric potential, V

volt, V
potential difference, ∆V

voltage, ∆V
equipotential surface

contour map
elevation graph

Terms and Notation
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760 CHAPTER 25 The Electric Potential

CONCEPTUAL QUESTIONS

U (*10-12 J)

r (fm)0

2

4

0 20 40

FIGURE Q25.2

i

f

FIGURE Q25.3

2 3

1

FIGURE Q25.4

E
u

A B C D E F

FIGURE Q25.5

4

3

21

5

FIGURE Q25.8

21

1 mm

3 mm

FIGURE Q25.9

1. Answer the following questions:
a. A charge q1 is at a distance r from a positive point charge Q. 

Another charge q2 = q1/2 is at a distance 2r from Q. What is 
the ratio U1/U2 of their potential energies due to their interac
tions with Q?

b. A charge q1 is at a distance s from the negative plate of a par
allelplate capacitor. Another charge q2 = q1/3 is also at a dis
tance s from the negative plate. What is the ratio U1/U2 of 
their potential energies?

2. FIGURE Q25.2 shows the potential energy of a proton 1q = +e2 
and a lead nucleus 1q = +82e2. The horizontal scale is in units of  
femtometers, where 1 fm = 10-15 m.
a. A proton is fired toward a lead nucleus from very far away. 

How much initial kinetic energy does the proton need to 
reach a turning point 10 fm from the nucleus? Explain.

b. How much kinetic energy does the proton of part a have when 
it is 20 fm from the nucleus and moving toward it, before the 
collision?

3. An electron moves along the trajectory of FIGURE Q25.3 from i to f.
a. Does the electric potential energy increase, decrease, or stay 

the same? Explain.
b. Is the electron’s speed at f greater than, less than, or equal to 

its speed at i? Explain.
4. Two protons are launched with the same speed from point 1 inside 

the parallelplate capacitor of FIGURE Q25.4. Points 2 and 3 are the  
same distance from the negative plate.
a. Is ∆U1S2, the change in potential energy along the path 

1 S 2, larger than, smaller than, or equal to ∆U1S3?
b. Is the proton’s speed v2 at point 2 larger than, smaller than, or 

equal to v3? Explain.

5. Rank in order, from most positive to most negative, the potential 
energies UA to UF of the six electric dipoles in the uniform electric  
field of FIGURE Q25.5. Explain.

6. FIGURE Q25.6 shows the electric 
potential along the xaxis.
a. Draw a graph of the poten 

tial energy of a 0.1 C charged 
particle. Provide a numeri
cal scale for both axes.

b. If the charged particle is 
shot toward the right from 
x = 1 m with 1.0 J of kinetic 
energy, where is its turning point? Use your graph to explain.

7. A capacitor with plates separated by distance d is charged to a  
potential difference ∆VC. All wires and batteries are disconnected, 
then the two plates are pulled apart (with insulated handles) to a  
new separation of distance 2d.
a. Does the capacitor charge Q change as the separation  

increases? If so, by what factor? If not, why not?
b. Does the electric field strength E change as the separation 

increases? If so, by what factor? If not, why not?
c. Does the potential difference ∆VC change as the separation 

increases? If so, by what factor? If not, why not?
8. Rank in order, from largest to smallest, the electric potentials V1 

to V5 at points 1 to 5 in FIGURE Q25.8. Explain.

V (V)

x (m)0

10

20

0 1 2 3

FIGURE Q25.6

9. FIGURE Q25.9 shows two points inside a capacitor. Let V = 0 V at  
the negative plate.
a. What is the ratio V2 /V1 of the electric potentials? Explain.
b. What is the ratio E2 /E1 of the electric field strengths?

10. FIGURE Q25.10 shows two points near a 
positive point charge.
a. What is the ratio V2 /V1 of the electric 

potentials? Explain.
b. What is the ratio E2 /E1 of the electric 

field strengths?
11. FIGURE Q25.11 shows three points near two point charges. The 

charges have equal magnitudes. For each part, rank in order, from  
most positive to most negative, the potentials V1 to V3.

1 2

1 mm

3 mm

FIGURE Q25.10

1
(a)

2 3

FIGURE Q25.11

1
(b)

2 3

FIGURE Q25.12

12. Reproduce FIGURE Q25.12 on your paper. Then draw a dot (or 
dots) on the figure to show the position (or positions) at which the 
electric potential is zero.
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EXERCISES AND PROBLEMS

3.0 cm

1.0 nC

1.0 nC

-2.0 nC

3.0 cm

3.0 cm

FIGURE EX25.5

3.0 cm

4.0 cm

-4.0 nC 3.0 nC

3.0 nCFIGURE EX25.6

Problems labeled  integrate material from earlier chapters.

Exercises

Section 25.1 Electric Potential Energy

1. || The strength of an electric field is 25,000 N/C inside a par
allelplate capacitor with 2 mm spacing. A proton is released 
from rest at the positive plate. What is the proton’s speed when it 
reaches the negative plate?

2. || An electric field of strength 15,000 N/C is inside a paral
lelplate capacitor of 1.5 mm spacing. An electron is released 
from rest at the negative plate. What is the electron’s speed when 
it reaches the positive plate?

3. || A proton is released from rest at the positive plate of a paral
lelplate capacitor. It crosses the capacitor and reaches the neg
ative plate with a speed of 40,000 m/s. What will be the final 
speed of an electron released from rest at the negative plate?

4. || An electron is released from rest at the center of a parallelplate  
capacitor that has a 1.0 mm spacing. The electron then strikes 
one of the plates with a speed of 1.5 * 106 m/s . What is the elec
tric field strength inside the capacitor?

Section 25.2 The Potential Energy of Point Charges

5. || What is the electric potential energy of the group of charges in 
FIGURE EX25.5? 

7. || Two positive point charges are 3.0 cm apart. If the electric 
potential energy is 45 mJ, what is the magnitude of the force bet
ween the two charges?

8. || Three charged particles are placed at the corners of an equilateral 
triangle that has edge length 4.0 cm. One particle has charge + 4.0 
nC and a second has charge + 8.0 nC. What is the third charge if the 
electric potential energy of the three charged particles is zero?

Section 25.3 The Potential Energy of a Dipole

9. | An ozone (O3) molecule perpendicular to an electric field 
has 2.5 *  10-21 J more potential energy than an ozone molecule 
aligned with the field. The dipole moment of an ozone molecule 
is 1.8 * 10-30 C m. What is the strength of the electric field?

10. || FIGURE EX25.10 shows the 
potential energy of an electric 
dipole. Consider a dipole that 
oscillates between {60°.
a. What is the dipole’s me

chanical energy?
b. What is the dipole’s kinetic 

energy when it is aligned 
with the electric field?

Section 25.4 The Electric Potential

11. | What is the speed of an electron that has been accelerated 
from rest through a potential difference of 12 V?

12. | What is the speed of a proton that has been accelerated from 
rest through a potential difference of -12 V?

13. || What potential difference is needed to accelerate a He+ ion 
(charge +e, mass 4u) from rest to 4.0 * 104 m/s?

14. || What potential difference is needed to accelerate an electron 
from rest to 4.0 * 104 m/s?

15. | A He+ ion (charge +e, mass 4u) with an initial speed of 
1.0 * 105 m/s is brought to rest by an electric field.
a. Did the ion move into a region of higher potential or lower 

potential?
b. What was the potential difference that stopped the ion?

16. || An electron with an initial speed of 500,000 m/s is brought to 
rest by an electric field.
a. Did the electron move into a region of higher potential or 

lower potential?
b. What was the potential difference that stopped the electron?

17. || In proton-beam therapy, a highenergy beam of protons is 
fired at a tumor. As the protons stop in the tumor, their kinetic 
energy breaks apart the tumor’s DNA, thus killing the tumor 
cells. For one patient, it is desired to deposit 0.10 J of proton  
energy in the tumor. To create the proton beam, protons are  
accelerated from rest through a 10,000 kV potential difference. 
What is the total charge of the protons that must be fired at  
the tumor?

18. || A 500 pg dust particle has charge -150e. Its speed is 
4.0 m/s at point 1, where the electric potential is V1 = 3000 V. 
What speed will it have at point 2, where the potential is 
V2 = -8000 V? Ignore air resistance and gravity.

19. || A proton travels along the xaxis through an electric poten
tial V = (200 V/m) x. Its speed is 2.5 * 105 m/s as it passes the 
origin, moving in the +xdirection. What is the proton’s speed at 
x = 1.0 m?

20. | A student wants to make a very small particle accelerator 
using a 9.0 V battery. What speed will (a) a proton and (b) an 
electron have after being accelerated from rest through the 9.0 V 
potential difference?

2

-2

0
-180° 0° 180°

U (mJ)

f

FIGURE EX25.10

6. || What is the electric potential energy of the group of charges in  
FIGURE EX25.6?
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762 CHAPTER 25 The Electric Potential

Section 25.7 The Electric Potential of Many Charges

30. || What is the electric potential at the point indicated with the dot 
in FIGURE EX25.30?

Section 25.5 The Electric Potential Inside a Parallel-Plate Capacitor

21. | Show that 1 V/m = 1 N/C.
22. || A 5.0cmdiameter parallelplate capacitor has a 1.5 mm 

spacing. The electric field strength inside the capacitor is 
5.0 * 105 V/m.
a. What is the potential difference across the capacitor?
b. How much charge is on each plate?

23. || Two 2.00 cm * 2.00 cm plates that form a parallelplate  
capacitor are charged to {0.708 nC. What are the electric field 
strength inside and the potential difference across the capacitor if 
the spacing between the plates is (a) 1.00 mm and (b) 2.00 mm?

24. || Two 2.0cmdiameter disks spaced 2.0 mm apart form a 
parallelplate capacitor. The electric field between the disks is 
5.0 * 105 V/m.
a. What is the voltage across the capacitor?
b. An electron is launched from the negative plate. It strikes the 

positive plate at a speed of 2.0 * 107 m/s. What was the elec
tron’s speed as it left the negative plate?

25. || A capacitor is formed from two 2.0 cm *  2 .0 cm electrodes 
spaced 1.0 mm apart. The electrodes are charged to {5.0 nC.  
What is the capacitor voltage?

26. || In FIGURE EX25.26, a proton is fired with a speed of 200,000 m/s 
from the midpoint of the capacitor toward the positive plate.
a. Show that this is insufficient speed to reach the positive plate.
b. What is the proton’s speed as it collides with the negative plate?

0 V 500 V

200,000 m/s

FIGURE EX25.26

3.0 cm
2.0 nC

1.0 nC

-2.0 nC

3.0 cm3.0 cm

FIGURE EX25.30

3.0 cm

4.0 cm

2.0 nC

2.0 nC -1.0 nC

FIGURE EX25.31

2.0 cm

4.0 cm

q

5.0 nC

-5.0 nC

FIGURE EX25.32

Section 25.6 The Electric Potential of a Point Charge

27. | a. What is the electric potential at points A, B, and C in 
FIGURE EX25.27?

b. What are the potential differences ∆VAB = VB - VA and 
∆VCB = VB - VC?

28. || A 1.0mmdiameter ball bearing has 2.0 * 109 excess elec
trons. What is the ball bearing’s potential?

29. | In a semiclassical model of the hydrogen atom, the electron 
orbits the proton at a distance of 0.053 nm.
a. What is the electric potential of the proton at the position of 

the electron?
b. What is the electron’s potential energy?

31. || What is the electric potential at the point indicated with the dot  
in FIGURE EX25.31?

32. || The electric potential at the dot in FIGURE EX25.32 is 3140 V. 
What is charge q?

33. || Two small charged spheres are 5.0 cm apart. One is charged 
to +25 nC, the other to -15 nC. A proton is released from rest 
halfway between the spheres. What is the proton’s speed after it 
has moved 1.0 cm?

34. || Four small spheres, each charged to +15 nC, form a square 
2.0 cm on each side. From far away, a proton is shot toward the 
square along a line perpendicular to the square and passing 
through its center. What minimum initial speed does the proton 
need to pass through the square of charges?

35. | The two halves of the rod in FIGURE EX25.35 are uniformly 
charged to {Q. What is the electric potential at the point indicated 
by the dot?

L

d

FIGURE EX25.35

x
ba

 FIGURE EX25.36

36. || Two point charges qa and qb are located on the xaxis at x = a 
and x = b. FIGURE EX25.36 is a graph of V, the electric potential.
a. What are the signs of qa and qb?
b. What is the ratio � qa/qb �?
c. Draw a graph of Ex, the xcomponent of the electric field, as 

a function of x.

A B
2.0 nC

C

2.0 cm

1.0 cm

FIGURE EX25.27
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45. || An arrangement of source charges produces the electric potential 
V = 5000x2 along the xaxis, where V is in volts and x is in meters.  
What is the maximum speed of a 1.0 g, 10 nC charged particle  
that moves in this potential with turning points at {8.0 cm?

46. || The electron gun in an old TV picture tube accelerates electrons 
between two parallel plates 1.2 cm apart with a 25 kV potential 
difference between them. The electrons enter through a small hole 
in the negative plate, accelerate, then exit through a small hole in 
the positive plate. Assume that the holes are small enough not to  
affect the electric field or potential.
a. What is the electric field strength between the plates?
b. With what speed does an electron exit the electron gun if its 

entry speed is close to zero?
   NOTE    The exit speed is so fast that we really need to use the 
theory of relativity to compute an accurate value. Your answer  
to part b is in the right range but a little too big.

47. || A proton moves along the xaxis where some arrangement of 
charges has produced the potential V1x2 = V0  sin12px/l2, where 
V0 = 5000 V and l = 1.0 mm.
a. What minimum speed must the proton have at x = 0 to move 

down the axis without being reflected?
b. What is the maximum speed reached by a proton that at x = 0 

has the speed you calculated in part a?
48. || A room with 3.0mhigh ceilings has a metal plate on the floor 

with V = 0 V and a separate metal plate on the ceiling. A 1.0 g 
glass ball charged to +4.9 nC is shot straight up at 5.0 m/s. How 
high does the ball go if the ceiling voltage is (a) +3.0 * 106  V 
and (b) -3.0 * 106  V?

49. || A 0.25 pg dust particle with 50 excess electrons is sitting at 
rest on top of a 5.0cmdiameter metal sphere. Closing a switch 
charges the sphere almost instantaneously. To what potential 
must the sphere be charged to launch the dust particle to a height 
of 5.0 m? Ignore air resistance.

50. || The electric potential in a region of space is given by 
V = V03(x2 + 2y2)/(0.10 m)24 , where V0 is a constant. A proton 
released from rest at (x, y) = (20 cm, 0 cm) reaches the origin 
with a speed of 7.5 * 105 m/s .
a. What is V0?
b. At what value of y on the yaxis should a He+ ion (charge +e, 

mass 4 u) be released from rest to reach the origin with the 
same speed?

51. || What is the escape speed of an electron launched from the 
surface of a 1.0cmdiameter glass sphere that has been charged 
to 10 nC?

52. ||| An electric dipole has dipole moment p. If r W s, where  
s is the separation between the charges, show that the electric 
potential of the dipole can be written

V =
1

4pP0
 
p cos u

r2

where r is the distance from the center of the dipole and u is the 
angle from the dipole axis.

53. || Three electrons form an equilateral triangle 1.0 nm on each 
side. A proton is at the center of the triangle. What is the potential  
energy of this group of charges?

Problems
37. ||| Two point charges 2.0 cm apart have an electric potential energy 

-180 mJ. The total charge is 30 nC. What are the two charges?
38. ||| A -10.0 nC point charge and a +20.0 nC point charge are 

15.0 cm apart on the xaxis.
a. What is the electric potential at the point on the xaxis where 

the electric field is zero?
b. What is the magnitude of the electric field at the point on the 

xaxis, between the charges, where the electric potential is 
zero?

39. || A +3.0 nC charge is at x = 0 cm and a -1.0 nC charge is at 
x = 4 cm. At what point or points on the xaxis is the electric 
potential zero?

40. || Two small metal cubes with masses 2.0 g and 4.0 g are tied 
together by a 5.0cmlong massless string and are at rest on a 
frictionless surface. Each is charged to +2.0 mC.
a. What is the energy of this system?
b. What is the tension in the string?
c. The string is cut. What is the speed of each cube when they 

are far apart?
Hint: There are two conserved quantities. Make use of both.

41. || A -3.0 nC charge is on the xaxis at x = -9 cm and a +4.0 nC 
charge is on the xaxis at x = 16 cm. At what point or points on  
the yaxis is the electric potential zero?

42. || The four 1.0 g spheres shown in FIGURE P25.42 are released 
simultaneously and allowed to move away from each other. What 
is the speed of each sphere when they are very far apart?

1.0 cm

1.0 cm

10 nC10 nC

10 nC10 nC

FIGURE P25.42

1

2

30 V 10 V -10 V

FIGURE P25.43

43. || A proton’s speed as it passes point 1 is 50,000 m/s. It follows 
the trajectory shown in FIGURE P25.43. What is the proton’s 
speed at point 2?

44. || Living cells “pump” singly ionized sodium ions, Na+, from the 
inside of the cell to the outside to maintain a membrane potential 
∆Vmembrane = Vin - Vout = -70 mV. It is called pumping because 
work must be done to move a positive ion from the negative inside 
of the cell to the positive outside, and it must go on continuously be
cause sodium ions “leak” back through the cell wall by diffusion.
a. How much work must be done to move one sodium ion from 

the inside of the cell to the outside?
b. At rest, the human body uses energy at the rate of approxi

mately 100 W to maintain basic metabolic functions. It has 
been estimated that 20% of this energy is used to operate  
the sodium pumps of the body. Estimate—to one significant 
figure—the number of sodium ions pumped per second.
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764 CHAPTER 25 The Electric Potential

61. || Two 10cmdiameter electrodes 0.50 cm apart form a parallel
plate capacitor. The electrodes are attached by metal wires to the 
terminals of a 15 V battery. What are the charge on each electrode, 
the electric field strength inside the capacitor, and the potential  
difference between the electrodes
a. While the capacitor is attached to the battery?
b. After insulating handles are used to pull the electrodes away 

from each other until they are 1.0 cm apart? The electrodes 
remain connected to the battery during this process.

c. After the original electrodes (not the modified electrodes of 
part b) are expanded until they are 20 cm in diameter while 
remaining connected to the battery?

62. || Electrodes of area A are spaced distance d apart to form a 
parallel plate capacitor. The electrodes are charged to {q.
a. What is the infinitesimal increase in electric potential energy 

dU if an infinitesimal amount of charge dq is moved from the 
negative electrode to the positive electrode?

b. An uncharged capacitor can be charged to {Q by transfer
ring charge dq over and over and over. Use your answer to 
part a to show that the potential energy of a capacitor charged 
to {Q is Ucap = 1

2 Q ∆VC.
63. || We’ve seen that molecular bonds can be modeled as springs. 

Suppose a positive ion (+e) and a negative ion (-e) are attached to 
the ends of a microscopic spring that has an unstretched length of 
0.25 nm. As the ions vibrate back and forth, their separation oscil
lates between 0.20 nm and 0.25 nm. What is the spring constant?

64. || The potential 1.0 cm from the surface of a metal sphere is 
8000 V. The potential 3.0 cm from the surface is 4000 V. What 
are (a) the radius of the sphere and (b) the charge on the sphere?

65. || Two spherical drops of mercury each have a charge of  
0.10 nC and a potential of 300 V at the surface. The two drops 
merge to form a single drop. What is the potential at the surface 
of the new drop?

66. | A Van de Graaff generator is a device for generating a large 
electric potential by building up charge on a hollow metal  
sphere. A typical classroomdemonstration model has a diameter 
of 30 cm.
a. How much charge is needed on the sphere for its potential to 

be 500,000 V?
b. What is the electric field strength just outside the surface of 

the sphere when it is charged to 500,000 V?
67. || FIGURE P25.67 shows two uniformly charged spheres. What is 

the potential difference between points 1 and 2? Which point is 
at the higher potential?
Hint: The potential at any point is the superposition of the poten
tials due to all charges.

54. || Your lab assignment for the week is to measure the amount of 
charge on the 6.0cmdiameter metal sphere of a Van de Graaff 
generator. To do so, you’re going to use a spring with spring con
stant 0.65 N/m to launch a small, 1.5 g bead horizontally toward 
the sphere. You can reliably charge the bead to 2.5 nC, and your 
plan is to use a video camera to measure the bead’s closest ap
proach to the edge of the sphere as you change the compression 
of the spring. Your data are as follows:

Compression (cm) Closest approach (cm)

1.6 5.5

1.9 2.6

2.2 1.6

2.5 0.4

Use an appropriate graph of the data to determine the sphere’s  
charge in nC. You can assume that the bead’s motion is entirely hor
izontal, that the spring is so far away that the bead has no interac
tion with the sphere as it’s launched, and that the approaching bead  
does not alter the charge distribution on the sphere.

55. ||| A 2.0mmdiameter glass bead is positively charged. The  
potential difference between a point 2.0 mm from the bead  
and a point 4.0 mm from the bead is 500 V. What is the charge 
on the bead?

56. | A proton is fired from far away toward the nucleus of an iron 
atom. Iron is element number 26, and the diameter of the nucleus 
is 9.0 fm. What initial speed does the proton need to just reach the  
surface of the nucleus? Assume the nucleus remains at rest.

57. | In the form of radioactive decay known as alpha decay, an 
unstable nucleus emits a heliumatom nucleus, which is called  
an alpha particle. An alpha particle contains two protons and two 
neutrons, thus having mass m = 4 u and charge q = 2e. Suppose 
a uranium nucleus with 92 protons decays into thorium, with 90 
protons, and an alpha particle. The alpha particle is initially at 
rest at the surface of the thorium nucleus, which is 15 fm in diam
eter. What is the speed of the alpha particle when it is detected in 
the laboratory? Assume the thorium nucleus remains at rest.

58. ||| A proton is fired from far away toward the nucleus of a  
mercury atom. Mercury is element number 80, and the diameter  
of the nucleus is 14.0 fm. If the proton is fired at a speed of 
4.0 * 107 m/s, what is its closest approach to the surface of the 
nucleus? Assume the nucleus remains at rest.

59. || A 2.0cmdiameter copper ring has 5.0 * 109 excess elec
trons. A proton is released from rest on the axis of the ring, 
5.0 cm from its center. What is the proton’s speed as it passes 
through the center of the ring?

60. || Two 10cmdiameter electrodes 0.50 cm apart form a parallel  
plate capacitor. The electrodes are attached by metal wires to 
the terminals of a 15 V battery. After a long time, the capacitor 
is disconnected from the battery but is not discharged. What are 
the charge on each electrode, the electric field strength inside 
the capacitor, and the potential difference between the electrodes
a. Right after the battery is disconnected?
b. After insulating handles are used to pull the electrodes away 

from each other until they are 1.0 cm apart?
c. After the original electrodes (not the modified electrodes of 

part b) are expanded until they are 20 cm in diameter?

1 2
25 nC

10 cm

60 cm

100 cm
100 nC

FIGURE P25.67

68. ||| Two metal objects that are in contact must be at the same po
tential, an assertion we’ll prove in the next chapter. Suppose a 
metal sphere of radius R is charged to 1000 V and a second metal 
sphere of radius 2R is charged to 2000 V. The two spheres are 
brought into contact and then separated. Afterward, what is the 
potential of each sphere?
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In Problems 75 through 77 you are given the equation(s) used to solve  
a problem. For each of these,

a. Write a realistic problem for which this is the correct equation(s).
b. Finish the solution of the problem.

75. 
19.0 * 109 N m2/C22q1q2

0.030 m
= 90 * 10-6 J

q1 + q2 = 40 nC

76. 1
2 11.67 * 10-27 kg212.5 * 106 m/s22 + 0 =

1
2 11.67 * 10-27 kg2vi 

2 +

19.0 * 109 N m2/C2212.0 * 10-9 C211.60 * 10-19 C2
0.0010 m

77. 
19.0 * 109 N m2/C2213.0 * 10-9 C2

0.030 m
+

19.0 * 109 N m2/C2213.0 * 10-9 C2
10.030 m2 + d

= 1200 V

Challenge Problems
78. ||| An electric dipole consists of 1.0 g spheres charged to {2.0 nC 

at the ends of a 10cmlong massless rod. The dipole rotates on 
a frictionless pivot at its center. The dipole is held perpendicu
lar to a uniform electric field with field strength 1000 V/m, then 
released. What is the dipole’s angular velocity at the instant it is 
aligned with the electric field?

79. ||| A proton and an alpha particle 1q = +2e, m = 4 u2 are fired 
directly toward each other from far away, each with an initial 
speed of 0.010c. What is their distance of closest approach, as 
measured between their centers?

80. ||| Bead A has a mass of 15 g and a charge of -5.0 nC. Bead B 
has a mass of 25 g and a charge of -10.0 nC. The beads are held 
12 cm apart (measured between their centers) and released. What  
maximum speed is achieved by each bead?

81. ||| Two 2.0mmdiameter beads, C and D, are 10 mm apart,  
measured between their centers. Bead C has mass 1.0 g and 
charge 2.0 nC. Bead D has mass 2.0 g and charge -1.0 nC. If the 
beads are released from rest, what are the speeds vC and vD at the 
instant the beads collide?

82. ||| A thin rod of length L and total charge Q has the nonuniform 
linear charge distribution l1x2 = l 0 x/L, where x is measured 
from the rod’s left end.
a. What is l0 in terms of Q and L?
b. What is the electric potential on the axis at distance d left of 

the rod’s left end?
83. ||| A hollow cylindrical shell of length L and radius R has charge 

Q uniformly distributed along its length. What is the electric  
potential at the center of the cylinder?

69. || The arrangement of charges shown in FIGURE P25.69 is called 
a linear electric quadrupole. The positive charges are located at 
y = {s. Notice that the net charge is zero. Find an expression for 
the electric potential on the yaxis at distances y W s. Give your 
answer in terms of the quadrupole moment, Q = 2qs2.

R
2R 2R

FIGURE P25.74

z

x

Charge Q

Point on bisecting line

Point on axis

L

FIGURE P25.70

y

x

q

q

-2q

FIGURE P25.69

FIGURE P25.72

R

Center

Charge Q

70. || FIGURE P25.70 shows a thin rod of length L and charge Q. 
Find an expression for the electric potential a distance x away 
from the center of the rod on the axis of the rod.

71. ||| FIGURE P25.70 shows a thin rod of length L and charge Q. Find 
an expression for the electric potential a distance z away from the  
center of rod on the line that bisects the rod.

72. | FIGURE P25.72 shows a thin rod  
with charge Q that has been bent  
into a semicircle of radius R. Find  
an expression for the electric poten
tial at the center.

73. || A disk with a hole has inner radius Rin and outer radius Rout. 
The disk is uniformly charged with total charge Q. Find an ex
pression for the onaxis electric potential at distance z from the 
center of the disk. Verify that your expression has the correct 
behavior when Rin S 0.

74. || The wire in FIGURE P25.74 has linear charge density l. What is  
the electric potential at the center of the semicircle?
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766

Potential and Field

How are electric potential and field related?
The electric field and the electric potential 
are intimately connected. In fact, they are 
simply two different perspectives on how 
source charges alter the space around them.

 ■ The electric potential can be found if you 
know the electric field.

 ■ The electric field can be found if you  
know the electric potential.

 ■ Electric field lines are always  
perpendicular to equipotential surfaces.

 ■ The electric field points “downhill” in  
the direction of decreasing potential.

 ■ The electric field is stronger where 
equipotentials are closer together.

❮❮ LOOKING BACK Sections 25.4–25.6   
The electric potential and its graphical 
representations

What are the properties of conductors?
You’ll learn about the properties of  
conductors in electrostatic equilibrium,  
finding the same results as using Gauss’s law:

 ■ Any excess charge is on the surface.
 ■ The interior electric field is zero.
 ■ The exterior electric field is  

perpendicular to the surface.
 ■ The entire conductor is an equipotential.

What are sources of electric potential?
A potential difference—voltage—is created 
by separating positive and negative charges.

 ■ Work must be done to separate charges.  
The work done per charge is called the  
emf of a device. Emf is measured in volts.

 ■ We’ll use a charge escalator model of a 
battery in which chemical reactions “lift” 
charges from one terminal to the other.

What is a capacitor?
Any two electrodes with equal and opposite 
charges form a capacitor. Their capacitance 
indicates their capacity for storing charge. 
The energy stored in a capacitor will lead us 
to recognize that electric energy is stored 
in the electric field.

❮❮ LOOKING BACK Section 23.5 Parallel-plate  
capacitors

How are capacitors used?
Capacitors are important circuit elements 
that store charge and energy.

 ■ You’ll learn to work with combinations of 
capacitors arranged in series and parallel.

 ■ You’ll learn that an insulator—called a 
dielectric—between the capacitor plates 
alters the capacitor in useful ways.

∆VC -Q

+Q

C1 C2 C3

IN THIS CHAPTER, you will learn how the electric potential is related to the electric field.

26 

These solar cells are  
photovoltaic cells, meaning  
that light creates a voltage—  
a potential difference.

V

V

Decreasing
V

E
u

E
u

E
u

E
u

E
u

E
u

E
u

E = 0
u u

∆Vbat
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26.1 Connecting Potential and Field 767

26.1 Connecting Potential and Field
FIGURE 26.1 shows the four key ideas of force, field, potential energy, and potential.  
The electric field and the electric potential were based on force and potential energy. 
We know, from Chapters 9 and 10, that force and potential energy are closely related.  
The focus of this chapter is to establish a similar relationship between the electric 
field and the electric potential. The electric potential and electric field are not two 
distinct entities, simply two different ways of describing how source charges alter 
the space around them.

If this is true, we should be able to find the electric potential from the electric field. 
Chapter 25 introduced all the pieces we need to do so. We used the potential energy of  
charge q and the source charges to define the electric potential as

 V K
Uq +  sources

q
 (26.1)

Potential energy is defined in terms of the work done by force F
u
 on charge q as it 

moves from position i to position f:

 ∆U = -W1i S f2 = - 3
sf

si

Fs ds = - 3
f

i
F
u # ds

u (26.2)

But the force exerted on charge q by the electric field is F
u

= qE
u
. Putting these three 

pieces together, you can see that the charge q cancels out and the potential difference 
between two points in space is

 ∆V = Vf - Vi = - 3
sf

si

Es ds = - 3
f

i
E
u # ds

u (26.3)

where s is the position along a line from point i to point f. That is, we can find the 
potential difference between two points if we know the electric field.

   NOTE    The minus sign tells us that the potential decreases along the field direction.

A graphical interpretation of Equation 26.3 is

 Vf = Vi - (area under the Es@versus@s curve between si and sf) (26.4)

Notice, because of the minus sign in Equation 26.3, that the area is subtracted from Vi.

E
u

F
u

Acts locally

Everywhere
in space

Force
concept

Energy
concept

U

V

FIGURE 26.1 The four key ideas.

FIGURE 26.2 is a graph of Ex, the x-component of the electric field, 
versus position along the x-axis. Find and graph V1x2. Assume 
V = 0 V at x = 0 m.

MODEL The potential difference is the negative of the area under 
the curve.

VISUALIZE Ex is positive throughout this region of space, meaning 
that E

u
 points in the positive x-direction.

SOLVE We can see that Ex = 1000x V/m, where x is in m. Thus

  Vf = V1x2 = 0 - (area under the Ex curve)

  = -1
2 * base * height = -1

2 1x211000x2 = -500x2 V

FIGURE 26.3 shows that the electric potential in this region of space 
is parabolic, decreasing from 0 V at x = 0 m to -2000 V at x = 2 m.

REVIEW The electric field points in the direction in which V is 
decreasing. We’ll soon see that this is a general rule.

EXAMPLE 26.1  ■ Finding the potential

x (m)

V (V)

1 2
0

-2000

-1000

V(x) = -500x2 V

FIGURE 26.3 Graph of V versus x.

x (m)

Ex (V/m)

0 1 2
0

1000

2000

x

∆V = -area

FIGURE 26.2 Graph of Ex versus  x.
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768 CHAPTER 26  Potential and Field

To see how this works, let’s use the electric field of a point charge to find its  
electric potential. FIGURE 26.4 identifies a point P at sf = r at which we want to know 
the potential and calls this position f. We’ve chosen position i to be at si = ∞ and 
identified that as the zero point of the potential. The integration of Equation 26.3 is 
straight inward along the radial line from i to f:

 ∆V = V1r2 - V1∞2 = - 3
r

∞
Es ds = 3

∞

r
Es ds (26.5)

The electric field is radially outward. Its s-component is

Es =
1

4pP0
 
q

s2

Thus the potential at distance r from a point charge q is

 V1r2 = V1∞2 +
q

4pP0
 3

∞

r
 
ds

s2 = V1∞2 +
q

4pP0
 
-1
s

`
∞

r
= 0 +

1
4pP0

 
q
r

 (26.6)

We’ve rediscovered the potential of a point charge that you learned in Chapter 25:

 Vpoint charge =
1

4pP0
 
q
r

 (26.7)

TACTICS BOX 26.1 

Finding the potential from the electric field
1  Draw a picture and identify the point at which you wish to find the potential. 

Call this position f.
2  Choose the zero point of the potential, often at infinity. Call this position i.
3  Establish a coordinate axis from i to f along which you already know or can 

easily determine the electric field component Es.
4   Carry out the integration of Equation 26.3 to find the potential.

Exercise 1 

In Chapter 23, the electric field inside a capacitor was found to be 

E
u

= 1 Q

P0 A
, from positive to negative2

Find the electric potential inside the capacitor. Let V = 0 V at the 
negative plate.

MODEL The electric field inside a capacitor is a uniform field.

VISUALIZE FIGURE 26.5 shows the capacitor and establishes a  
point P where we want to find the potential. We’ve chosen an s-axis  
measured from the negative plate, which is the zero point of the 
potential.

SOLVE We’ll integrate along the s-axis from si = 0 (where 
Vi = 0 V) to sf = s. Notice that E

u
 points in the negative s-direction, 

so Es = -Q/P0 A. Q/P0 A is a constant, so

V1s2 = Vf = Vi - 3
s

0
Es ds = - 1-

Q

P0 A
23 s

0
 ds =

Q

P0 A
 s = Es

REVIEW V = Es is the capacitor potential we deduced in Chapter 
25 by working directly with the potential energy. The potential  

increases linearly from V = 0 at the negative plate to V = Ed at the 
positive plate. Here we found the potential by explicitly recognizing  
the connection between the potential and the field.

EXAMPLE 26.2  ■ The potential of a parallel-plate capacitor

E
u

E
u

s

i at ∞

fP

r

q

Identify the point at which
to find the potential. This
is position f at sf = r.

Establish a coordinate axis
along which E is known.

Choose a zero point of
the potential. In this case,
position i is at si = ∞.

1

3

2

Integrate along the s-axis.4

u

FIGURE 26.4 Finding the potential of a 
point charge.

E
u

E
u

V = 0 V

0

i f
P

ds
s

Choose a zero point
of the potential.

2 Establish a
coordinate axis.

3

Find the potential here.1

E points in the
negative s-direction.

u

FIGURE 26.5 Finding the potential inside a capacitor.
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26.2 Finding the Electric Field from the Potential  769

26.2  Finding the Electric Field  
from the Potential

FIGURE 26.6 shows two points i and f separated by a very small distance ∆s, so small that 
the electric field is essentially constant over this very short distance. The work done by 
the electric field as a charge q moves through this small distance is W = Fs ∆s = qEs ∆s. 
Consequently, the potential difference between these two points is

 ∆V =
∆Uq +  sources

q
=

-W
q

= -Es ∆s (26.8)

In terms of the potential, the component of the electric field in the s-direction is 
Es = -∆V/∆s. In the limit ∆s S 0,

 Es = -
dV

ds
 (26.9)

Now we have reversed Equation 26.3 and can find the electric field from the potential. 
We’ll begin with examples where the field is parallel to a coordinate axis, then we’ll 
look at what Equation 26.9 tells us about the geometry of the field and the potential.

Field Parallel to a Coordinate Axis
The derivative in Equation 26.9 gives Es, the component of the electric field parallel 
to the displacement ∆s

u.  It doesn’t tell us about the electric field component perpen-
dicular to ∆s

u.  Thus Equation 26.9 is most useful if we can use symmetry to select a 
coordinate axis that is parallel to E

u
 and along which the perpendicular component of 

E
u
 is known to be zero.

For example, suppose we knew the potential of a point charge to be V = q/4pP0r 
but didn’t remember the electric field. Symmetry requires that the field point straight 
outward from the charge, with only a radial component Er. If we choose the s-axis to 
be in the radial direction, parallel to E

u
, we can use Equation 26.9 to find

 Er = -
dV

dr
= -

d

dr
 1 q

4pP0r 2 =
1

4pP0
 
q

r2 (26.10)

This is, indeed, the well-known electric field of a point charge.
Equation 26.9 is especially useful for a continuous distribution of charge because 

calculating V, which is a scalar, is usually much easier than calculating the vector E
u
 

directly from the charge. Once V is known, E
u
 is found simply by taking a derivative.

In Chapter 25, we found the on-axis potential of a ring of radius R 
and charge Q to be 

Vring =
1

4pP0
 

Q2z2 + R2

Find the on-axis electric field of a ring of charge.

SOLVE Symmetry requires the electric field along the z-axis to 
point straight outward from the ring with only a z-component Ez. 
The electric field at position z is

  Ez = -
dV

dz
= -

d

dz
 1 1

4pP0
 

Q2z2 + R2 2
  =

1
4pP0

 
zQ

1z2 + R223/2

REVIEW This result is in perfect agreement with the electric field 
we found in Chapter 23, but this calculation was easier because we 
didn’t have to deal with vectors or angles.

EXAMPLE 26.3  ■ The electric field of a ring of charge

A geometric interpretation of Equation 26.9 is that the electric field is the nega-
tive of the slope of the V-versus-s graph. This interpretation should be familiar. You 
learned in Chapter 10 that the force on a particle is the negative of the slope of the 

E
u

A very small
displacement
of charge q

Es

q

u∆s
f

i

Es, the component of E
in the direction of motion,
is essentially constant over
the small distance ∆s.

u

FIGURE 26.6 The electric field does work 
on charge q.

M26_KNIG8221_05_GE_C26.indd   769 27/06/22   8:37 AM



770 CHAPTER 26  Potential and Field

potential-energy graph: F = -dU/ds. In fact, Equation 26.9 is simply F = -dU/ds 
with both sides divided by q to yield E and V. This geometric interpretation is an  
important step in developing an understanding of potential.

FIGURE 26.7 is a graph of the electric potential in a region of space 
where E

u
 is parallel to the x-axis. Draw a graph of Ex versus x.

MODEL The electric field is the negative of the slope of the potential  
graph.

SOLVE There are three regions of different slope:

  0 6 x 6 2 cm b∆V/∆x = 120 V2/10.020 m2 = 1000 V/m
Ex = -1000 V/m

  2 6 x 6 4 cm b∆V/∆x = 0 V/m
Ex = 0 V/m

EXAMPLE 26.4  ■ Finding E from the slope of V

10

-10

0

V (V)

2 4 6 8
x (cm)

FIGURE 26.7 Graph of V versus position x.

1000

500

0

-500

-1000

4

The value of Ex is the negative
of the slope of the potential graph.

6 8

Ex (V/m)

x (cm)
2

FIGURE 26.8 Graph of Ex versus position x.

STOP TO THINK 26.1 Which potential graph describes the electric field at the left?

E
u

y

x  

V

y

(a)

V

y

(b)

V

y

(c)

V

y

(d)

V

y

(e)

The Geometry of Potential and Field
Equations 26.3 for V in terms of Es and 26.9 for Es in terms of V have profound 
implications for the geometry of the potential and the field. FIGURE 26.9 shows two 
equipotential surfaces, with V+ positive relative to V-. To learn about the electric field 
E
u
 at point P, allow a charge to move through the two displacements ∆s

u
1 and ∆s

u
2. 

Displacement ∆s
u

1 is tangent to the equipotential surface, hence a charge moving in 
this direction experiences no potential difference. According to Equation 26.9, the 
electric field component along a direction of constant potential is Es = -dV/ds = 0. 
In other words, the electric field component tangent to the equipotential is E‘ = 0.

Displacement ∆s
u

2 is perpendicular to the equipotential surface. There is a potential 
difference along ∆s

u
2, hence the electric field component is

E # = -
dV

ds
≈ -

∆V

∆s
= -

V+ - V-

∆s2

P 

Direction of
decreasing
potential

Equipotential
surfaces

Maximum change
in potential

No change in
potential

u∆s1
V-

V+
∆s2

u

FIGURE 26.9 The electric field at P is 
related to the shape of the equipotential 
surfaces.

 4 6 x 6 8 cm b∆V/∆x = 1-20 V2/10.040 m2 = -500 V/m
Ex = 500 V/m

The results are shown in FIGURE 26.8.

REVIEW The electric field E
u
 points to the left (Ex is negative) for 

0 6 x 6 2 cm and to the right (Ex is positive) for 4 6 x 6 8 cm. 
Notice that the electric field is zero in a region of space where 
the potential is not changing.
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26.2 Finding the Electric Field from the Potential  771

You can see that the electric field is inversely proportional to ∆s2, the spacing between the 
equipotential surfaces. Furthermore, because 1V+ - V-2 7 0, the minus sign tells us that 
the electric field is opposite in direction to ∆s

u
2.  In other words, E

u
 is perpendicular to the 

equipotential surfaces and points “downhill” in the direction of decreasing potential.
These important ideas are summarized in FIGURE 26.10.

E
u

E
u

E
u

Direction of
decreasing
potential

V+

V+

V-

V-

u
1. E is everywhere
 perpendicular to the
 equipotential surfaces.

4. Equipotential surfaces
 have equal potential
 differences between
 them.

u
2. E points “downhill,”
 in the direction of
 decreasing V.

3. The field strength is
 inversely proportional to
 the spacing ∆s between
 the equipotential surfaces.∆s

FIGURE 26.10 The geometry of the potential and the field.

Mathematically, we can calculate the individual components of E
u
 at any point by 

extending Equation 26.9 to three dimensions:

 E
u

= Ex in + Ey jn + Ez kn = - 10V

0x
 in +

0V

0y
 jn +

0V

0z
 kn2 (26.11)

where 0V/0x is the partial derivative of V with respect to x while y and z are held 
constant. You may recognize from calculus that the expression in parentheses is the 
gradient of V, written ∇V. Thus, E

u
= - ∇V. More advanced treatments of the electric 

field make extensive use of this mathematical relationship, but for the most part we’ll 
limit our investigations to those we can analyze graphically.

In FIGURE 26.11 a 1 cm * 1 cm grid is superimposed on a contour 
map of the potential. Estimate the strength and direction of the 
electric field at points 1, 2, and 3. Show your results graphically by 
drawing the electric field vectors on the contour map.

MODEL The electric field is perpendicular to the equipotential lines, 
points “downhill,” and depends on the slope of the potential hill.

VISUALIZE The potential is highest on the bottom and the right. 
An elevation graph of the potential would look like the lower-right 
quarter of a bowl or a football stadium.

SOLVE Some distant but unseen source charges have created 
an electric field and potential. We do not need to see the source 
charges to relate the field to the potential. Because E ≈ -∆V/∆s, 
the electric field is stronger where the equipotential lines are closer 

together and weaker where they are farther apart. If Figure 26.11 
were a topographic map, you would interpret the closely spaced 
contour lines at the bottom of the figure as a steep slope.

FIGURE 26.12 shows how measurements of ∆s from the grid are 
combined with values of ∆V  to determine E

u
. Point 3 requires an 

estimate of the spacing between the 0 V and the 100 V surfaces. 
Notice that we’re using the 0 V and 100 V equipotential surfaces 
to determine E

u
 at a point on the 50 V equipotential.

REVIEW The directions of E
u
 are found by drawing downhill vec-

tors perpendicular to the equipotentials. The distances between the 
equipotential surfaces are needed to determine the field strengths.

EXAMPLE 26.5  ■ Finding the electric field from the equipotential surfaces

1 cm

1 cm

0 V

0 V
2

3

1

50 V 100 V

50 V

100 V

FIGURE 26.11 Equipotential lines.

0 V

2

3

150 V

100 V

100 V change over
4 cm is 2500 V/m.

100 V change over
2 cm is 5000 V/m.

100 V change over 
≈ 2.5 cm is 4000 V/m.

FIGURE 26.12 The electric field at points 1 to 3.
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772 CHAPTER 26  Potential and Field

Kirchhoff’s Loop Law
FIGURE 26.13 shows two points, 1 and 2, in a region of electric field and potential. You 
learned in Chapter 25 that the work done in moving a charge between points 1 and 2 is 
independent of the path. Consequently, the potential difference between points 1 and 
2 along any two paths that join them is ∆V = 20 V. This must be true in order for the 
idea of an equipotential surface to make sense.

Now consider the path 1–a–b–c–2–d–1 that ends where it started. What is the po-
tential difference “around” this closed path? The potential increases by 20 V in mov-
ing from 1 to 2, but then decreases by 20 V in moving from 2 back to 1. Thus ∆V = 0 V  
around the closed path.

The numbers are specific to this example, but the idea applies to any loop (i.e., a 
closed path) through an electric field. The situation is analogous to hiking on the side 
of a mountain. You may walk uphill during parts of your hike and downhill during 
other parts, but if you return to your starting point your net change of elevation is zero. 
So for any path that starts and ends at the same point, we can conclude that

 ∆Vloop = a
i
1∆V2i = 0 (26.12)

Stated in words, the sum of all the potential differences encountered while moving 
around a loop or closed path is zero. This statement is known as Kirchhoff’s loop law.

Kirchhoff’s loop law is a statement of energy conservation because a charge that 
moves around a loop and returns to its starting point has ∆U = q ∆V = 0. Kirchhoff’s 
loop law and a second Kirchhoff’s law you’ll meet in the next chapter will turn out to be 
the two fundamental principles of circuit analysis.

2
d

a

b
c

1

20 V

30 V

40 V

The potential difference
along path 1-a-b-c-2 is
∆V = 0 V + 10 V 
          + 0 V + 10 V 
      = 20 V.

The potential difference
along path 1-d-2 is
∆V = 20 V + 0 V = 20 V.

FIGURE 26.13 The potential difference 
between points 1 and 2 is the same along 
either path.

A corona discharge occurs at pointed 
metal tips where the electric field can be 
very strong.

STOP TO THINK 26.2 Which set of equipotential  
surfaces matches this electric field?

50 V 0 V

(a)

0 V 50 V

(b)

0 V 50 V

(c)

0 V 50 V

(d)

E
u

26.3  A Conductor in Electrostatic Equilibrium
The basic relationships between potential and field allow us to draw some  interesting 
and important conclusions about conductors. You learned in Chapter 22 that any  
excess charges on a conductor in electrostatic equilibrium are always located on the 
surface of the conductor. Using similar reasoning, we can conclude that the electric 
field is zero at any interior point of a conductor in electrostatic equilibrium. Why? 
If the field were other than zero, then there would be a force F

u
= qE

u
 on the charge 

carriers and they would move, creating a current. But there are no currents in a con-
ductor in electrostatic equilibrium, so it must be that E

u
= 0

u
 at all interior points.

The two points inside the conductor in FIGURE 26.14 are connected by a line that re-
mains entirely inside the conductor. We can find the potential difference ∆V = V2 - V1 
between these points by using Equation 26.3 to integrate Es along the line from 1 to 2.  
But Es = 0 at all points along the line, because E

u
= 0

u
; thus the value of the integral is 
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26.3 A Conductor in Electrostatic Equilibrium 773

zero and ∆V = 0. In other words, any two points inside a conductor in electrostatic 
equilibrium are at the same potential.

When a conductor is in electrostatic equilibrium, the entire conductor is at the 
same potential. If we charge a metal sphere, then the entire sphere is at a single poten-
tial. Similarly, a charged metal rod or wire is at a single potential if it is in electrostatic 
equilibrium. It’s worth noting that two conductors that come into contact form a single 
conductor, so they exchange charge as needed to reach a common potential.

If E
u

= 0
u

 inside a charged conductor but E
u

≠ 0
u

 outside, what happens right at the  
surface? If the entire conductor is at the same potential, then the surface is an  
equipotential surface. You have seen that the electric field is always perpendicular to 
an equipotential surface, hence the exterior electric field E

u
 of a charged conductor 

is perpendicular to the surface.
We can also conclude that the electric field, and thus the surface charge density, 

is largest at sharp points. This follows from our earlier discovery that the field at 
the surface of a sphere of radius R can be written E = V0 /R. If we approximate the 
rounded corners of a conductor with sections of spheres, all of which are at the same 
potential V0, the field strength will be largest at the corners with the smallest radii of 
curvature—the sharpest points.

The integral of E–ds from 1 to 2
is zero because the field inside
the conductor is zero. 

1

Conductor

2
s

∆V = 0

E = 0
u

u u

u

FIGURE 26.14 All points inside a conductor 
in electrostatic equilibrium are at the 
same potential.

5. The exterior electric field is
 perpendicular to the surface.

1. All excess charge
 is on the surface.

2. The surface is
 an equipotential.

3. The electric field
 inside is zero.

4. The interior is all
 at the same potential. 6. The surface charge density

 and the electric field strength
 are largest at sharp corners.

E = 0
u u

FIGURE 26.15 Properties of a conductor in electrostatic equilibrium.

FIGURE 26.15 summarizes what we know about conductors in electrostatic equilibrium. 
These are important and practical conclusions because conductors are the primary 
components of electrical devices.

We can use similar reasoning to estimate the electric field and potential between 
two charged conductors. As an example, FIGURE 26.16 shows a negatively charged metal 
sphere near a flat metal plate. The surfaces of the sphere and the flat plate are equipo-
tentials, hence the electric field must be perpendicular to both. Close to a surface, the 
electric field is still nearly perpendicular to the surface. Consequently, an equipoten-
tial surface close to an electrode must roughly match the shape of the electrode.

In between, the equipotential surfaces gradually change as they “morph” from one 
electrode shape to the other. It’s not hard to sketch a contour map showing a plausible 
set of equipotential surfaces. You can then draw electric field lines (field lines are 
easier to draw than field vectors) that are perpendicular to the equipotentials, point 
“downhill,” and are closer together where the contour line spacing is smaller.

STOP TO THINK 26.3 Three charged metal spheres of different radii are connected by a 
thin metal wire. The potential and electric field at the surface of each sphere are V and E. 
Which of the following is true?

Wire

A B C

a. VA = VB = VC and EA = EB = EC b. VA = VB = VC and EA 7 EB 7 EC

c. VA 7 VB 7 VC and EA = EB = EC d. VA 7 VB 7 VC and EA 7 EB 7 EC

e. VC 7 VB 7 VA and EC = EB = EA f. VC 7 VB 7 VA and EC 7 EB 7 EA

10 V

0 V 50 V

20 V
30 V

40 V

The equipotential surfaces gradually
change from the shape of one electrode
to that of the other.

The field lines are perpendicular to 
the equipotential surfaces.

FIGURE 26.16 Estimating the field and 
potential between two charged conductors.
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774 CHAPTER 26  Potential and Field

26.4  Sources of Electric Potential
We’ve now studied many properties of the electric potential and seen how potential and 
field are connected, but we’ve not said much about how an electric potential is created. 
Simply put, an electric potential difference is created by separating positive and  
negative charges. Shuffling your feet on the carpet transfers electrons from the carpet  
to you, creating a potential difference between you and a doorknob that causes a spark 
and a shock as you touch it. Charging a capacitor by moving electrons from one plate 
to the other creates a potential difference across the capacitor.

As FIGURE 26.17 shows, moving charge from one electrode to another creates an 
electric field E

u
 pointing from the positive toward the negative electrode. As a conse-

quence, there is a potential difference between the electrodes that is given by

∆V = Vpos - Vneg = - 3
pos

neg
Es ds

where the integral runs from any point on the negative electrode to any point on the 
positive. The net charge is zero, but pulling the positive and negative charges apart 
creates a potential difference.

Now electric forces try to bring positive and negative charges together, so a 
 nonelectrical process is needed to separate charges. As an example, the Van de Graaff  
generator shown in FIGURE 26.18a separates charges mechanically. A moving plastic 
or leather belt is charged, then the charge is mechanically transported via the conveyor 
belt to the spherical electrode at the top of the insulating column. The charging of the 
belt could be done by friction, but in practice a corona discharge created by the strong  
electric field at the tip of a needle is more efficient and reliable.

E
u

3. Because of the electric field,
 there’s a potential difference
 between the electrodes.

-Q

∆V

1. Charge is separated
 by moving electrons
 from one electrode
 to the other.

2. The separation
 creates an electric
 field from + to -.

+Q

FIGURE 26.17 A charge separation creates 
a potential difference.

Hollow metal sphere(a)

Electric motor

Insulating plastic tube

2. The plastic or leather
 belt is the conveyor
 belt that mechanically
 transports charge to the top. 3. A pointed wire draws

 charge off the belt and
 charges the sphere.

1. A corona discharge
 charges the belt
 positively.

FIGURE 26.18 A Van de Graaff generator.

(b)

A Van de Graaff generator has two noteworthy features:

 ■ Charge is mechanically transported from the negative side to the positive side. This 
charge separation creates a potential difference between the spherical electrode and 
its surroundings.

 ■ The electric field of the spherical electrode exerts a downward force on the positive 
charges moving up the belt. Consequently, work must be done to “lift” the positive 
charges. The work is done by the electric motor that runs the belt.

A classroom-demonstration Van de Graaff generator like the one shown in  
FIGURE 26.18b creates a potential difference of several hundred thousand volts between 
the upper sphere and its surroundings. The maximum potential is reached when the 
electric field near the sphere becomes large enough to cause a breakdown of the air. 
This produces a spark and temporarily discharges the sphere. A large Van de Graaff 
generator surrounded by vacuum can reach a potential of 20 MV or more. These  
generators are used to accelerate protons for nuclear physics experiments.
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26.4  Sources of Electric Potential 775

Batteries and emf
The most common source of electric potential is a battery, which uses chemical  
reactions to separate charges. A battery consists of chemicals, called electrolytes,  
sandwiched between two electrodes made of different metals. Chemical reactions in the 
electrolytes transport ions (i.e., charges) from one electrode to the other. This chemical 
process pulls positive and negative charges apart, creating a potential difference be-
tween the terminals of the battery. When the chemicals are used up, the reactions cease  
and the battery is dead.

We can sidestep the chemistry details by introducing the charge escalator 
model of a battery.

MODEL 26.1 

Charge escalator model of a battery
A battery uses chemical reactions to separate charges.

 ■ The charge escalator “lifts” positive charges from 
the negative terminal to the positive terminal. This 
requires work, with the energy being supplied by 
the chemical reactions.

 ■ The work done per charge is called the emf of the 
battery: E = Wchem/q.

 ■ The charge separation creates a potential difference 
∆Vbat between the terminals. An ideal battery has 
∆Vbat = E.

 ■ Limitations: ∆Vbat 6 E if current flows through the battery. In most cases, the 
difference is small and a battery can be considered ideal.

Ion
flow

q

Charge q gains
potential energy ∆U.

In
cr

ea
si

ng
 U ∆Vbat

Emf is pronounced as the sequence of letters e-m-f. The symbol for emf is E, a 
script E, and the units of emf are joules per coulomb, or volts. The rating of a battery, 
such as 1.5 V or 9 V, is the battery’s emf.

The key idea is that emf is work, specifically the work done per charge to pull 
positive and negative charges apart. This work can be done by mechanical forces, 
chemical reactions, or—as you’ll see later—magnetic forces. Because work is  
done, charges gain potential energy and their separation creates a potential difference 
∆Vbat between the positive and negative terminals of the battery. This is called the 
terminal voltage.

In an ideal battery, which has no internal energy losses, the work Wchem done to 
move charge q from the negative to the positive terminal goes entirely to increasing 
the potential energy of the charge, and so ∆Vbat = E. In practice, the terminal voltage 
is slightly less than the emf when current flows through a battery—we’ll discuss this 
in Chapter 28—but the difference is usually small and in most cases we can model 
batteries as being ideal.

Batteries in Series
Many consumer goods, from flashlights to digital cameras, use more than one battery. 
Why? A particular type of battery, such as an AA or AAA battery, produces a fixed 
emf determined by the chemical reactions inside. The emf of one battery, often 1.5 V,  
is not sufficient to light a lightbulb or power a camera. But just as you can ascend 
three floors of a building by taking three escalators in succession, we can produce a 
larger potential difference by placing two or more batteries in series.

FIGURE 26.19 shows two batteries with the positive terminal of one literally touching 
the negative terminal of the next. Flashlight batteries usually are arranged like this. 

∆V1

∆V2

∆Vseries = ∆V1 + ∆V2

FIGURE 26.19 Batteries in series.
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776 CHAPTER 26  Potential and Field

Other devices, such as cameras, achieve the same effect by using conducting metal 
wires between one battery and the next. Either way, the total potential difference of 
batteries in series is simply the sum of their individual terminal voltages:

 ∆Vseries = ∆V1 + ∆V2 + g  (batteries in series) (26.13)

-Q

∆VC

The separated charge has created a
potential difference even though the
net charge is zero.

+Q

FIGURE 26.20 Two equally but oppositely 
charged electrodes form a capacitor.

STOP TO THINK 26.4 What total potential difference is created by these three batteries?

3.0 V 1.0 V 3.0 V

26.5  Capacitance and Capacitors
FIGURE 26.20 shows two electrodes that have been charged to {Q. Their net charge is 
zero, but something has separated positive and negative charges. Consequently, there 
is a potential difference ∆V  between the electrodes.

It seems plausible that ∆V  is directly proportional to Q. That is, doubling the 
amount of charge on the electrodes will double the potential difference. We can write 
this as Q = C ∆V, where the proportionality constant

 C =
Q

∆VC
 (26.14)

is called the capacitance of the two electrodes. The two electrodes themselves form a 
capacitor, so we’ve written a subscript C on ∆VC to indicate that this is the capacitor 
voltage, the potential difference between the positive and negative electrodes.

   NOTE    You’ve already met the parallel-plate capacitor, but a capacitor can be 
formed from any two electrodes. The electrodes of a capacitor always have equal 
but opposite charges (zero net charge), and the Q appearing in equations is the 
magnitude (always positive) of this amount of charge.

The SI unit of capacitance is the farad, named in honor of Michael Faraday. One 
farad is defined as

1 farad =  1 F =  1 C/V

One farad turns out to be an enormous amount of capacitance. Practical capacitors are 
usually measured in units of microfarads 1mF2 or picofarads 11 pF =  10-12 F2.

Turning Equation 26.14 around, we see that the amount of charge on a capacitor 
that has been charged to ∆VC is

 Q = C  ∆VC  (charge on a capacitor) (26.15)

The amount of charge is determined jointly by the potential difference and by a prop-
erty of the electrodes called capacitance. As we’ll see, capacitance depends only on 
the geometry of the electrodes.

The Parallel-Plate Capacitor
A parallel-plate capacitor consists of two flat electrodes (the plates) facing each other 
with a plate separation d that is small compared to the sizes of the plates. You learned 
in Chapter 25 that the potential difference across a parallel-plate capacitor is related to 
the electric field inside by ∆VC = Ed. And you know from Chapter 23 that the electric 
field inside a parallel-plate capacitor is

 E =
Q

P0 A
 (26.16)Capacitors are important elements in 

electric circuits.
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26.5  Capacitance and Capacitors 777

where A is the surface area of the plates. Combining these gives

 Q =
P0 A

d
 ∆VC (26.17)

You can see that the charge is proportional to the potential difference, as expected. 
So from the definition of capacitance, Equation 26.14, we find that the capacitance of 
a parallel-plate capacitor is

 C =
Q

∆VC
=

P0 A

d
  (parallel@plate capacitor) (26.18)

The capacitance is a purely geometric property of the electrodes, depending only on 
their surface area and spacing. Capacitors of other shapes will have different formulas 
for their capacitance, but all will depend entirely on geometry. A cylindrical capacitor 
is the topic of the Chapter 26 Challenge Example, and a homework problem will let 
you analyze a spherical capacitor.

Back plate

Front plate
(Diaphragm)

A condenser microphone, the type of micro
phone typically used in a recording studio,  
is simply a parallelplate capacitor in 
which the front electrode—seen in the 
photo with the microphone’s outer shell 
removed—is a very thin, lightweight metal 
foil. (“Condenser” is an oldfashioned 
term for a capacitor.) Sound waves cause 
the foil to vibrate as a diaphragm, which 
slightly changes the spacing between 
the electrodes and thus the capacitance. 
The charge on a capacitor is Q = C ∆VC, so 
charge flows to and from the capacitor as 
its capacitance oscillates. This oscillating 
flow of charge—an oscillating current—is 
sensed and amplified to become the mi
crophone’s output voltage.

The spacing between the plates of a 1.0 mF capacitor is 0.050 mm.

a. What is the surface area of the plates?

b. How much charge is on the plates if this capacitor is charged to 1.5 V?

MODEL Assume the capacitor is a parallel-plate capacitor.

SOLVE a. From the definition of capacitance,

A =
dC
P0

= 5.65 m2

b. The charge is Q = C ∆VC = 1.5 * 10-6 C = 1.5 mC.

REVIEW The surface area needed to construct a 1.0 mF capacitor (a fairly typical value) 
is enormous. We’ll see in Section 26.7 how the area can be reduced by inserting an insu-
lator between the capacitor plates.

EXAMPLE 26.6  ■ Charging a capacitor

Charging a Capacitor
All well and good, but how does a capacitor get charged? By connecting it to a battery! 
FIGURE 26.21a shows the two plates of a capacitor shortly after two conducting wires have 
connected them to the two terminals of a battery. At this instant, the battery’s charge 
escalator is moving charge from one capacitor plate to the other, and it is this work done 
by the battery that charges the capacitor. (The connecting wires are conductors, and 
you learned in Chapter 22 that charges can move through conductors as a current.) The 
capacitor voltage ∆VC steadily increases as the charge separation continues.

(b)

∆Vbat

Ions are
not moving

∆VC = ∆Vbat

When ∆VC = ∆Vbat, the current stops
and the capacitor is fully charged.

The positive terminal, wire,
and top capacitor plate are
an equipotential.

Charged

(a)

∆Vbat

∆VC 6 ∆Vbat

Current

Current

Ion
flow

The charge escalator moves charge from
one plate to the other. ∆VC increases as
the charge separation increases.

Charging

FIGURE 26.21 A parallelplate capacitor is charged by a battery.
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778 CHAPTER 26  Potential and Field

   NOTE    Negative electrons that move from positive to negative are the charge carriers 
in metal wires. However, you’ll learn in the next chapter that current—as shown in 
Figure 26.21a—is defined to be the equivalent motion of positive charge from negative 
to positive. Thinking of current as the motion of positive charges is perfectly adequate 
from a macroscopic perspective of considering only the consequences of a current.

But this process cannot continue forever. The growing positive charge on the upper 
capacitor plate exerts a repulsive force on new charges coming up the escalator, and 
eventually the capacitor charge gets so large that no new charges can arrive. The ca-
pacitor in FIGURE 26.21b is now fully charged. In Chapter 28 we’ll analyze how long 
the charging process takes, but it is typically less than a nanosecond for a capacitor 
connected directly to a battery with copper wires.

Once the capacitor is fully charged, with charges no longer in motion, the positive 
capacitor plate, the upper wire, and the positive terminal of the battery form a single 
conductor in electrostatic equilibrium. This is an important idea, and it wasn’t true 
while the capacitor was charging. As you just learned, any two points in a conductor in 
electrostatic equilibrium are at the same potential. Thus the positive plate of a fully 
charged capacitor is at the same potential as the positive terminal of the battery.

Similarly, the negative plate of a fully charged capacitor is at the same potential 
as the negative terminal of the battery. Consequently, the potential difference ∆VC  
between the capacitor plates exactly matches the potential difference ∆Vbat between 
the battery terminals. A capacitor attached to a battery charges until ∆VC = ∆Vbat. 
Once the capacitor is charged, you can disconnect it from the battery; it will maintain 
this charge and potential difference until and unless something—a current—allows 
positive charge to move back to the negative plate. An ideal capacitor in vacuum would 
stay charged forever.

Combinations of Capacitors
Two or more capacitors are often joined together. FIGURE 26.22 illustrates two basic 
combinations: parallel capacitors and series capacitors. Notice that a capacitor is 
represented in circuit diagrams by two parallel lines.

The keys on computer keyboards are  
capacitor switches. Pressing the key 
pushes two capacitor plates closer 
together, increasing their capacitance.  
A larger capacitor can hold more charge, 
so a momentary current carries charge 
from the battery (or power supply) to the 
capacitor. This current is sensed, and the 
keystroke is then recorded.

E C1 C2 C3

Parallel capacitors are joined 
top to top and bottom to bottom.

The circuit symbol for a
capacitor is two parallel lines.

FIGURE 26.22 Parallel and series capacitors.

C1

C2

C3

Series capacitors
are joined end to
end in a row.

E

   NOTE    The terms “parallel capacitors” and “parallel-plate capacitor” do not describe 
the same thing. The former term describes how two or more capacitors are connected 
to each other, the latter describes how a particular capacitor is constructed.

As we’ll show, parallel or series capacitors (or, as is sometimes said, capacitors 
“in parallel” or “in series”) can be represented by a single equivalent capacitance. 
We’ll demonstrate this first with the two parallel capacitors C1 and C2 of FIGURE 26.23a.  
Because the two top electrodes are connected by a conducting wire, they form a 
single conductor in electrostatic equilibrium. Thus the two top electrodes are at the 
same potential. Similarly, the two connected bottom electrodes are at the same poten-
tial. Consequently, two (or more) capacitors in parallel each have the same potential  
difference ∆VC between the two electrodes.

Ceq

Same ∆VC as C1 and C2

Q = Q1 + Q2

(b)

E

Same total charge as C1 and C2

C1 C2

Parallel capacitors
have the same ∆VC.

Q1 = C1∆VC Q2 = C2∆VC

(a)

E

FIGURE 26.23 Replacing two parallel 
capacitors with an equivalent capacitor.

M26_KNIG8221_05_GE_C26.indd   778 27/06/22   8:38 AM



26.5  Capacitance and Capacitors 779

The charges on the two capacitors are Q1 = C1 ∆VC and Q2 = C2 ∆VC. Altogether, 
the battery’s charge escalator moved total charge Q = Q1 + Q2 from the negative elec-
trodes to the positive electrodes. Suppose, as in FIGURE 26.23b, we replaced the two 
capacitors with a single capacitor having charge Q = Q1 + Q2 and potential difference 
∆VC. This capacitor is equivalent to the original two in the sense that the battery can’t 
tell the difference. In either case, the battery has to establish the same potential differ-
ence and move the same amount of charge.

By definition, the capacitance of this equivalent capacitor is

 Ceq =
Q

∆VC
=

Q1 + Q2

∆VC
=

Q1

∆VC
+

Q2

∆VC
= C1 + C2 (26.19)

This analysis hinges on the fact that parallel capacitors each have the same potential 
difference �VC. We could easily extend this analysis to more than two capacitors. If 
capacitors C1, C2, C3,c are in parallel, their equivalent capacitance is

 Ceq = C1 + C2 + C3 + g  (parallel capacitors) (26.20)

Neither the battery nor any other part of a circuit can tell if the parallel capacitors are 
replaced by a single capacitor having capacitance Ceq.

Now consider the two series capacitors in FIGURE 26.24a. The center section,  
consisting of the bottom plate of C1, the top plate of C2, and the connecting wire, is 
electrically isolated. The battery cannot remove charge from or add charge to this 
section. If it starts out with no net charge, it must end up with no net charge. As a con-
sequence, the two capacitors in series have equal charges {Q. The battery transfers 
Q from the bottom of C2 to the top of C1. This transfer polarizes the center section, as 
shown, but it still has Qnet = 0.

The potential differences across the two capacitors are ∆V1 = Q/C1 and ∆V2 =Q/C2. 
The total potential difference across both capacitors is ∆VC = ∆V1 + ∆V2 . Suppose, as 
in FIGURE 26.24b, we replaced the two capacitors with a single capacitor having charge 
Q and potential difference ∆VC = ∆V1 + ∆V2. This capacitor is equivalent to the orig-
inal two because the battery has to establish the same potential difference and move 
the same amount of charge in either case.

By definition, the capacitance of this equivalent capacitor is Ceq = Q/∆VC. The 
inverse of the equivalent capacitance is thus

 
1

Ceq
=

∆VC

Q
=

∆V1 + ∆V2

Q
=

∆V1

Q
+

∆V2

Q
=

1
C1

+
1
C2

 (26.21)

This analysis hinges on the fact that series capacitors each have the same charge 
Q. We could easily extend this analysis to more than two capacitors. If capacitors 
C1, C2, C3,c are in series, their equivalent capacitance is

 Ceq = 1 1
C1

+
1
C2

+
1
C3

+ g2-1

  (series capacitors) (26.22)

   NOTE    Be careful to avoid the common error of adding the inverses but forgetting 
to invert the sum.

Let’s summarize the key facts before looking at a numerical example:

 ■ Parallel capacitors all have the same potential difference ∆VC. Series capacitors all 
have the same amount of charge {Q.

 ■ The equivalent capacitance of a parallel combination of capacitors is larger than any 
single capacitor in the group. The equivalent capacitance of a series combination of  
capacitors is smaller than any single capacitor in the group.

E Ceq

Same Q as C1 and C2

∆VC = ∆V1 + ∆V2

(b)

Same total potential difference as C1 and C2

Series capacitors have the same Q.

No net charge
on this isolated
segment

∆V2 = Q/C2

(a)

E

C1

C2

-Q

+Q

-Q

+Q

∆V1 = Q/C1

FIGURE 26.24 Replacing two series 
capacitors with an equivalent capacitor.
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Find the charge on and the potential difference across each of the 
three capacitors in FIGURE 26.25.

MODEL Assume the battery is ideal, with ∆Vbat = E = 12 V. Use 
the results for parallel and series capacitors.

SOLVE The three capacitors are neither in parallel nor in series, 
but we can break them down into smaller groups that are. A 
useful method of circuit analysis is first to combine elements until 
reaching a single equivalent element, then to reverse the process 
and calculate values for each element. FIGURE 26.26 shows the  
analysis of this circuit. Notice that we redraw the circuit after every 
step. The equivalent capacitance of the 3 mF and 6 mF capacitors 
in series is found from

EXAMPLE 26.7  ■ A capacitor circuit

C1 = 3 mF

12 V
C3 = 1 mFC2 = 5 mF

E

FIGURE 26.25 A capacitor circuit.

STOP TO THINK 26.5 Rank in order, from largest to smallest, the equivalent capaci-
tance (Ceq)A to (Ceq)D of circuits A to D.

A

5 mF

B C D

3 mF 3 mF 3 mF
4 mF

4 mF

3 mF

3 mF

3 mF
1

2 3
5 mF

3 mF

12 V

1 mF5 mF

3 mF

6 mF
12 V

3 mF

6 mF
12 V2 mF12 V

∆V2 = 4 V
Q2 = C2 ∆V2 = 20 mC

∆V3 = 4 V
Q3 = C3 ∆V3 = 4 mC

Check: 20 mC + 4 mC
   = 24 mC

Q1 = 24 mC
∆V1 = 8 V

Q1 = 24 mC
∆V1 = Q1/C1 = 8 V

∆VC = ∆Vbat = 12 V

Q = C ∆VC = 24 mC

In series: Ceq = 2 mFIn parallel: Ceq = 6 mF Q2+3 = 24 mC

∆V2+3 = Q2+3/C2+3 

            = 4 V

Check: 8 V + 4 V = 12 V

Equivalent
capacitance

12 V

1 mF

FIGURE 26.26 Analyzing the capacitor circuit.

Ceq = 1 1
3 mF

 +
1

6 mF 2-1

= 12
6

+
1
6 2-1

 mF = 2 mF

Once we get to the single equivalent capacitance, we find that 
∆VC = ∆Vbat = 12 V and Q = C ∆VC = 24 mC. Now we can reverse  
direction. Capacitors in series all have the same charge, so the charge  
on C1 and on C2+3 is {24 mC. This is enough to determine that 
∆V1 = 8 V and ∆V2+3 = 4 V. Capacitors in parallel all have the  
same potential difference, so ∆V2 = ∆V3 = 4 V. This is enough to 
find that Q2 = 20 mC and Q3 = 4 mC. The charge on and the poten-
tial difference across each of the three capacitors are shown in the 
final step of Figure 26.26.

REVIEW Notice that we had two important checks of internal  
consistency. ∆V1 + ∆V2+3 = 8 V + 4 V add up to the 12 V  
we had found for the 2 mF equivalent capacitor. Then 
Q2 + Q3 = 20 mC + 4 mC add up to the 24 mC we had found for 
the 6 mF equivalent capacitor. We’ll do much more circuit analysis 
of this type in Chapter 28, but it’s worth noting now that circuit 
analysis becomes nearly foolproof if you make use of these checks 
of internal consistency.
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26.6 The Energy Stored in a Capacitor 781

26.6 The Energy Stored in a Capacitor
Capacitors are important elements in electric circuits because of their ability to store 
energy. FIGURE 26.27 shows a capacitor being charged. The instantaneous value of the 
charge on the two plates is {q, and this charge separation has established a potential 
difference ∆V = q/C between the two electrodes.

An additional charge dq is in the process of being transferred from the negative to the 
positive electrode. The battery’s charge escalator must do work to lift charge dq “uphill” 
to a higher potential. Consequently, the potential energy of dq + capacitor increases by

 dU = dq ∆V =
q dq

C
 (26.23)

   NOTE    Energy must be conserved. This increase in the capacitor’s potential energy 
is provided by the battery.

The total energy transferred from the battery to the capacitor is found by integrating 
Equation 26.23 from the start of charging, when q = 0, until the end, when q = Q. 
Thus we find that the energy stored in a charged capacitor is

 UC =
1
C

 3
Q

0
q dq =

Q2

2C
 (26.24)

In practice, it is often easier to write the stored energy in terms of the capacitor’s 
potential difference ∆VC = Q/C. This is

 UC =
Q2

2C
= 1

2 C1∆VC22 (26.25)

The potential energy stored in a capacitor depends on the square of the potential dif-
ference across it. This result is reminiscent of the potential energy U = 1

2 k1∆x22 stored 
in a spring, and a charged capacitor really is analogous to a stretched spring. A stretched 
spring holds the energy until we release it, then that potential energy is transformed into 
kinetic energy. Likewise, a charged capacitor holds energy until we discharge it. Then the 
potential energy is transformed into the kinetic energy of moving charges (the current).

The instantaneous charge
on the plates is {q.

The charge escalator does work 
dq ∆V to move charge dq from the 
negative plate to the positive plate.

∆V

-q

+q

dq

FIGURE 26.27 The charge escalator does 
work on charge dq as the capacitor is 
being charged.

How much energy is stored in a 220 mF camera-flash capacitor that 
has been charged to 330 V? What is the average power dissipation 
if this capacitor is discharged in 1.0 ms?

SOLVE The energy stored in the charged capacitor is

UC = 1
2 C1∆VC22 = 1

2 1220 * 10-6 F21330 V22 = 12 J

If this energy is released in 1.0 ms, the average power dissipation is

P =
∆E

∆t
=

12 J

1.0 * 10-3 s
= 12,000 W

REVIEW The stored energy is equivalent to raising a 1 kg mass  
1.2 m. This is a rather large amount of energy, which you can see 
by imagining the damage a 1 kg mass could do after falling 1.2 m. 
When this energy is released very quickly, which is possible in an 
electric circuit, it provides an enormous amount of power.

EXAMPLE 26.8  ■ Storing energy in a capacitor

The usefulness of a capacitor stems from the fact that it can be charged slowly (the 
charging rate is usually limited by the battery’s ability to transfer charge) but then can 
release the energy very quickly. A mechanical analogy would be using a crank to slowly 
stretch the spring of a catapult, then quickly releasing the energy to launch a massive rock.

The capacitor described in Example 26.8 is typical of the capacitors used in the flash 
units of cameras. The camera batteries charge a capacitor, then the energy stored in the 
capacitor is quickly discharged into a flashlamp. The charging process in a camera takes 
several seconds, which is why you can’t fire a camera flash twice in quick succession.

An important medical application of capacitors is the defibrillator. A heart attack or 
a serious injury can cause the heart to enter a state known as fibrillation in which the 
heart muscles twitch randomly and cannot pump blood. A strong electric shock through 
the chest completely stops the heart, giving the cells that control the heart’s rhythm a 
chance to restore the proper heartbeat. A defibrillator has a large capacitor that can store  

A defibrillator, which can restore a normal 
heartbeat, discharges a capacitor through 
the patient’s chest.
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up to 360 J of energy. This energy is released in about 2 ms through two “paddles” pressed 
against the patient’s chest. It takes several seconds to charge the capacitor, which is why, on 
television medical shows, you hear an emergency room doctor or nurse shout “Charging!”

The Energy in the Electric Field
We can “see” the potential energy of a stretched spring in the tension of the coils. If 
a charged capacitor is analogous to a stretched spring, where is the stored energy? It’s 
in the electric field!

FIGURE 26.28 shows a parallel-plate capacitor in which the plates have area A and are 
separated by distance d. The potential difference across the capacitor is related to the 
electric field inside the capacitor by ∆VC = Ed. The capacitance, which we found in 
Equation 26.18, is C = P0 A/d. Substituting these into Equation 26.25, we find that the 
energy stored in the capacitor is

 UC = 1
2 C1∆VC22 =

P0 A

2d
 1Ed22 =

P0

2
 1Ad2E2 (26.26)

The quantity Ad is the volume inside the capacitor, the region in which the 
capacitor’s electric field exists. (Recall that an ideal capacitor has E

u
= 0

u
 everywhere 

except between the plates.) Although we talk about “the energy stored in the capac-
itor,” Equation 26.26 suggests that, strictly speaking, the energy is stored in the 
capacitor’s electric field.

Because Ad is the volume in which the energy is stored, we can define an energy 
density uE of the electric field:

 uE =
energy stored

volume in which it is stored
=

UC

Ad
=

P0

2
 E2 (26.27)

The energy density has units J/m3. We’ve derived Equation 26.27 for a parallel-plate 
capacitor, but it turns out to be the correct expression for any electric field.

From this perspective, charging a capacitor stores energy in the capacitor’s electric 
field as the field grows in strength. Later, when the capacitor is discharged, the energy 
is released as the field collapses.

We first introduced the electric field as a way to visualize how a long-range force 
operates. But if the field can store energy, the field must be real, not merely a pictorial 
device. We’ll explore this idea further in Chapter 31, where we’ll find that the energy 
transported by a light wave—the very real energy of warm sunshine—is the energy of 
electric and magnetic fields.

26.7  Dielectrics
FIGURE 26.29a shows a parallel-plate capacitor with the plates separated by vacuum, the 
perfect insulator. Suppose the capacitor is charged to voltage 1∆VC20, then disconnected  
from the battery. The charge on the plates will be {Q0, where Q0 = C01∆VC20.  
We’ll use a subscript 0 in this section to refer to a vacuum-insulated capacitor.

Capacitor plate with area A

d

The capacitor’s energy is stored in the electric
field in volume Ad between the plates.

FIGURE 26.28 A capacitor’s energy is 
stored in the electric field.

d

(a) (∆VC)0

Capacitance C0 in vacuum Capacitance C 7 C0

+Q0-Q0 +Q0∆VC

Dielectric(b)

FIGURE 26.29 Vacuuminsulated and dielectricfilled capacitors.
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Now suppose, as in FIGURE 26.29b, an insulating material, such as oil or glass or plastic, is 
slipped between the capacitor plates. We’ll assume for now that the insulator is of thickness 
d and completely fills the space. An insulator in an electric field is called a dielectric, for 
reasons that will soon become clear, so we call this a dielectric-filled capacitor. How does 
a dielectric-filled capacitor differ from the vacuum-insulated capacitor?

The charge on the capacitor plates does not change. The insulator doesn’t allow 
charge to move through it, and the capacitor has been disconnected from the battery, so 
no charge can be added to or removed from either plate. That is, Q = Q0. Nonetheless, 
measurements of the capacitor voltage with a voltmeter would find that the voltage has 
decreased: ∆VC 6 1∆VC20. Consequently, based on the definition of capacitance, the  
capacitance has increased:

C =
Q

∆VC
7

Q0

1∆VC20
= C0

Example 26.6 found that the plate size needed to make a 1 mF capacitor is unreasonably 
large. It appears that we can get more capacitance with the same plates by filling the  
capacitor with an insulator.

We can utilize two tools you learned in Chapter 23, superposition and polarization, 
to understand the properties of dielectric-filled capacitors. Figure 23.27 showed how 
an insulating material becomes polarized in an external electric field. FIGURE 26.30a  
reproduces the basic ideas from that earlier figure. The electric dipoles in Figure 26.30a 
could be permanent dipoles, such as water molecules, or simply induced dipoles due to 
a slight charge separation in the atoms. However the dipoles originate, their alignment 
in the electric field—the polarization of the material—produces an excess positive 
charge on one surface, an excess negative charge on the other. The insulator as a whole 
is still neutral, but the external electric field separates positive and negative charges.

FIGURE 26.30b represents the polarized insulator as simply two sheets of charge with 
surface charge densities {hinduced. The size of hinduced depends both on the strength of 
the electric field and on the properties of the insulator. These two sheets of charge create  
an electric field—a situation we analyzed in Chapter 23. In essence, the two sheets of 
induced charge act just like the two charged plates of a parallel-plate capacitor. The 
induced electric field (keep in mind that this field is due to the insulator responding 
to the external electric field) is

E
u

induced = c 1hinduced

P0
, from positive to negative2 inside the insulator

0
u
 outside the insulator

 
 (26.28)

It is because an insulator in an electric field has two sheets of induced electric charge 
that we call it a dielectric, with the prefix di, meaning two, the same as in “diatomic” 
and “dipole.”

Inserting a Dielectric into a Capacitor
FIGURE 26.31 on the next page shows what happens when you insert a dielectric into a  
capacitor. The capacitor plates have their own surface charge density h0 = Q0 /A. This 
creates the electric field E

u

0 = (h0 /P0, from positive to negative) into which the dielec-
tric is placed. The dielectric responds with induced surface charge density hinduced and 
the induced electric field E

u

induced. Notice that E
u

induced points opposite to E
u

0. By the 
principle of superposition, another important lesson from Chapter 23, the net electric 
field between the capacitor plates is the vector sum of these two fields:

 E
u

= E
u

0 + E
u

induced = (E0 - Einduced, from positive to negative) (26.29)

The presence of the dielectric weakens the electric field, from E0 to E0 - Einduced, 
but the field still points from the positive capacitor plate to the negative capacitor 
plate. The field is weakened because the induced surface charge in the dielectric acts 
to counter the electric field of the capacitor plates.

u
E0

Excess positive charge
on this surface

Excess negative charge
on this surface

This is the external electric field.

This is the induced field of the
surface charges. It is the field
of a parallel-plate capacitor.

(a) The insulator is polarized.

E0

u

u u
E = 0

u u
E = 0

u
Einduced

+hinduced

-hinduced

(b) The polarized insulator—a dielectric—can  
 be represented as two sheets of surface   
 charge. This surface charge creates an   
 electric field inside the insulator.   

FIGURE 26.30 An insulator in an external 
electric field.
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Let’s define the dielectric constant k (Greek kappa) as

 k K
E0

E
 (26.30)

Equivalently, the field strength inside a dielectric in an external field is E = E0/k. The  
dielectric constant is the factor by which a dielectric weakens an electric field, so 
k Ú 1. You can see from the definition that k is a pure number with no units.

The dielectric constant, like density or specific heat, is a property of a material. 
Easily polarized materials have larger dielectric constants than materials not easily 
polarized. Vacuum has k = 1 exactly, and low-pressure gases have k ≈ 1. (Air has 
kair = 1.00 to three significant figures, so we won’t worry about the very slight effect 
air has on capacitors.) TABLE 26.1 lists the dielectric constants for different materials.

The electric field inside the capacitor, although weakened, is still uniform. Con-
sequently, the potential difference across the capacitor is

 ∆VC = Ed =
E0

k
 d =

1∆VC20

k
 (26.31)

where 1∆VC20 = E0d was the voltage of the vacuum-insulated capacitor. The presence 
of a dielectric reduces the capacitor voltage, the observation with which we started 
this section. Now we see why; it is due to the polarization of the material. Further, the 
new capacitance is

 C =
Q

∆VC
=

Q0

1∆VC20/k
= k 

Q0

1∆VC20
= kC0 (26.32)

Filling a capacitor with a dielectric increases the capacitance by a factor equal to the 
dielectric constant. This ranges from virtually no increase for an air-filled capacitor to a  
capacitance 300 times larger if the capacitor is filled with strontium titanate.

We’ll leave it as a homework problem to show that the induced surface charge 
density is

 hinduced = h011 -
1
k 2 (26.33)

hinduced ranges from nearly zero when k ≈ 1 to ≈h0 when k W 1.

   NOTE    We assumed that the capacitor was disconnected from the battery after being 
charged, so Q couldn’t change. If you insert a dielectric while a capacitor is attached 
to a battery, then it will be ∆VC, fixed at the battery voltage, that can’t change. In 
this case, more charge will flow from the battery until Q = kQ0. In both cases, the 
capacitance increases to C = kC0.

E

Surface charge
density {h0 on
the capacitor plates

The net electric field is the
superposition E0 + Einduced.
It still points from positive
to negative but is weaker
than E0.

E0 = 
h0

P0
Einduced = 

hinduced

P0

Polarized dielectric has
surface charge density
{hinduced. Einduced is
opposite E0.

u

u

u u

FIGURE 26.31 The consequences of filling a capacitor with a dielectric.

TABLE 26.1 Properties of dielectrics

Material
Dielectric  
constant K

Dielectric  
strength  

Emax (106 V/m)

Vacuum 1 —

Air (1 atm) 1.0006 3

Teflon 2.1 60

Polystyrene  
 plastic

2.6 24

Mylar 3.1 7

Paper 3.7 16

Pyrex glass 4.7 14

Pure water  
 (20°C)

80 —

Titanium  
 dioxide

110 6

Strontium  
 titanate

300 8

M26_KNIG8221_05_GE_C26.indd   784 27/06/22   8:38 AM



26.7  Dielectrics 785

Solid or liquid dielectrics allow a set of electrodes to have more capacitance than 
they would if filled with air. Not surprisingly, as FIGURE 26.32 shows, this is  important 
in the production of practical capacitors. In addition, dielectrics allow capacitors  
to be charged to higher voltages. All materials have a maximum electric field they 
can sustain without breakdown—the production of a spark. The breakdown electric 
field of air, as we’ve noted previously, is about 3 * 106 V/m. In general, a material’s  
maximum sustainable electric field is called its dielectric strength. Table 26.1  
includes dielectric strengths for air and the solid dielectrics. (The breakdown of water 
is extremely sensitive to ions and impurities in the water, so water doesn’t have a well- 
defined dielectric strength.)

Many materials have dielectric strengths much larger than air. Teflon, for example, 
has a dielectric strength 20 times that of air. Consequently, a Teflon-filled capacitor 
can be safely charged to a voltage 20 times larger than an air-filled capacitor with the 
same plate separation. An air-filled capacitor with a plate separation of 0.2 mm can 
be charged only to 600 V, but a capacitor with a 0.2-mm-thick Teflon sheet could be 
charged to 12,000 V.

A 5.0 nF parallel-plate capacitor is charged to 160 V. It is then dis-
connected from the battery and immersed in distilled water. What 
are (a) the capacitance and voltage of the water-filled capacitor and 
(b) the energy stored in the capacitor before and after its immersion?

MODEL Pure distilled water is a good insulator. (The conductivity 
of tap water is due to dissolved ions.) Thus the immersed capacitor 
has a dielectric between the electrodes.

SOLVE a. From Table 26.1, the dielectric constant of water is 
k = 80. The presence of the dielectric increases the capacitance to

C = kC0 = 80 * 5.0 nF = 400 nF

At the same time, the voltage decreases to

∆VC =
1∆VC20

k
=

160 V
80

= 2.0 V

b. The presence of a dielectric does not alter the derivation leading 
to Equation 26.25 for the energy stored in a capacitor. Right after 
being disconnected from the battery, the stored energy was

1UC20 = 1
2 C01∆VC2 2

0 = 1
2 15.0 * 10-9 F21160 V22 = 6.4 * 10-5 J

After being immersed, the stored energy is

UC = 1
2 C1∆VC22 = 1

2 1400 * 10-9 F212.0 V22 = 8.0 * 10-7 J

REVIEW Water, with its large dielectric constant, has a big effect on 
the capacitor. But where did the energy go? We learned in Chapter 
23 that a dipole is drawn into a region of stronger electric field. The 
electric field inside the capacitor is much stronger than just out-
side the capacitor, so the polarized dielectric is actually pulled into 
the capacitor. The “lost” energy is the work the capacitor’s electric 
field did pulling in the dielectric.

EXAMPLE 26.9  ■ A water-filled capacitor

A defibrillator unit contains a 150 mF capacitor that is charged to 
2100 V. The capacitor plates are separated by a 0.050-mm-thick 
insulator with dielectric constant 120.

a. What is the area of the capacitor plates?

b. What are the stored energy and the energy density in the electric 
field when the capacitor is charged?

MODEL Model the defibrillator as a parallel-plate capacitor with a 
dielectric.

SOLVE a. The capacitance of a parallel-plate capacitor in a vac-
uum is C0 = P0 A/d. A dielectric increases the capacitance by the 
factor k, to C = kC0, so the area of the capacitor plates is

A =
Cd
kP0

=
1150 * 10-6 F215.0 * 10-5 m2

12018.85 * 10-12 C2/N m22 = 7.1 m2

Although the surface area is very large, Figure 26.32 shows how 
very large sheets of very thin metal can be rolled up into capacitors 
that you hold in your hand.

b. The energy stored in the capacitor is

UC = 1
2 C  1∆VC22 = 1

2 1150 * 10-6 F212100 V22 = 330 J

Because the dielectric has increased C by a factor of k, the en-
ergy density of Equation 26.27 is increased by a factor of k to 
uE = 1

2 kP0E2. The electric field strength in the capacitor is

E =
∆VC

d
=

2100 V

5.0 * 10-5 m
= 4.2 * 107 V/m

Consequently, the energy density is

  uE = 1
2 1120218.85 * 10-12 C2/N m2214.2 * 107 V/m22

  = 9.4 * 105 J/m3

REVIEW 330 J is a substantial amount of energy—equivalent to that 
of a 1 kg mass traveling at 25 m/s. And it can be delivered very 
quickly as the capacitor is discharged through the patient’s chest.

EXAMPLE 26.10  ■ Energy density of a defibrillator

Many real capacitors are a
rolled-up sandwich of metal
foils and thin, insulating dielectrics.

Metal foil

Dielectric

FIGURE 26.32 A practical capacitor.
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   CHAPTER 26 CHALLENGE EXAMPLE     The Geiger counter: A cylindrical capacitor

The radiation detector known as a Geiger counter consists of a 
25-mm-diameter cylindrical metal tube, sealed at the ends, with 
a 1.0-mm-diameter wire along its axis. The wire and cylinder 
are separated by a low-pressure gas whose dielectric strength is 
1.0 * 106 V/m.

a. What is the capacitance per unit length?

b. What is the maximum potential difference between the wire and 
the tube?

MODEL Model the Geiger counter as two infinitely long, concentric,  
conducting cylinders. Applying a potential difference between 
the cylinders charges them like a capacitor; indeed, they are a  
cylindrical capacitor. The charge on an infinitely long conductor is 
infinite, but the linear charge density l is the charge per unit length  
(C/m), which is finite. So for a cylindrical capacitor we compute 
the capacitance per unit length C = l/∆V, in F/m, rather than an 
absolute capacitance. To avoid breakdown of the gas, the field 
strength at the surface of the wire—the point of maximum field 
strength—must not exceed the dielectric strength.

VISUALIZE FIGURE 26.33 shows a cross section of the Geiger  
counter tube. We’ve chosen to let the outer cylinder be positive, 
with an inward-pointing electric field, but a negative outer cylinder 
would lead to the same answer since it’s only the field strength that 
we’re interested in.

SOLVE a. Gauss’s law tells us that the electric field between the 
cylinders is due only to the charge on the inner cylinder. Thus E

u
  

is the field of a long, charged wire—a field we found in Chapter 
23 using superposition and again in Chapter 24 using Gauss’s law.  
It is

E
u

= 1 l

2pP0r
, inward2

where l is the magnitude of the linear charge density. We need to 
connect this field to the potential difference between the wire and 
the outer cylinder. For that, we need to use Equation  26.3:

∆V = Vf - Vi = - 3
sf

si

 Es ds

We’ll integrate along a radial line from si = R1 on the surface of the 
inner cylinder to sf = R2 at the outer cylinder. The field component 
Es is negative because the field points inward. Thus the potential 
difference is

  ∆V = - 3
R2

R1

1-
l

2pP0s 2ds =
l

2pP0
 3

R2

R1

 
ds
s

  =
l

2pP0
 ln s `

R2

R1

=
l

2pP0
 ln1R2

R1
2

We see that the applied potential difference and the linear charge 
density are related by

l

2pP0
=

∆V

ln1R2/R12
Thus the capacitance per unit length is

  C =
l

∆VC
=

2pP0

 ln1R2/R12

  =
2p18.85 * 10-12 C2/N m22

 ln1252 = 17 pF/m

You should convince yourself that the units of P0 are equivalent to F/m.

b. Using the above in the expression for E
u
, we find the electric field 

strength at distance r is

E =
∆V

r ln1R2 /R12
The field strength is a maximum at the surface of the wire, where 
it reaches

Emax =
∆V

R1 ln1R2/R12
The maximum applied voltage will bring Emax to the dielectric 
strength, Emax = 1.0 * 106 V/m. Thus the maximum potential dif-
ference between the wire and the tube is

  ∆Vmax = R1Emax ln1R2

R1
2

  = 15.0 * 10-4 m211.0 * 106 V/m2ln1252
  = 1600 V

REVIEW This is the maximum possible voltage, but it’s not  
practical to operate right at the maximum. Real Geiger counters 
operate with typically a 1000 V potential difference to avoid an 
accidental breakdown of the gas. If a high-speed charged particle 
from a radioactive decay then happens to pass through the tube, it 
will collide with and ionize a number of the gas atoms. Because the 
tube is already very close to breakdown, the addition of these extra 
ions and electrons is enough to push it over the edge: A breakdown 
of the gas occurs, with a spark jumping across the tube. The “click-
ing” sounds of a Geiger counter are made by amplifying the current 
pulses associated with the sparks.

FIGURE 26.33 Cross section of a Geiger counter tube.
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The Geometry of Potential and Field
The electric field
• Is perpendicular to the  

equipotential surfaces.

• Points “downhill” in the  
direction of decreasing V.

• Is inversely proportional to  
the spacing ∆s between the  
equipotential surfaces.

For a conductor in electrostatic equilibrium

• The interior electric field is zero.

• The exterior electric field is  
perpendicular to the surface.

• The surface is an equipotential.

• The interior is at the same  
potential as the surface.

Combinations of Capacitors
Series capacitors

C1 C2 C3

Ceq = 1 1
C1

+
1
C2

+
1
C3

+ g2-1

Parallel capacitors

C1 C2 C3

Ceq = C1 + C2 + C3 + g

Conservation of Energy
The sum of all potential differences  
around a closed path is zero.

g1∆V2i = 0

Connecting V and E
u

The electric potential and the electric field are two different  
perspectives of how source charges alter the space around  
them. V and E

u
 are related by

∆V = Vf - Vi = - 3
sf

si

Es ds

where s is measured from point i to point f and Es is the component 
of E

u
 parallel to the line of integration.

Graphically

 ∆V = the negative of the area
 under the Es graph

 Es = -
dV

ds
 = the negative of the slope

 of the potential graph

A battery is a source of potential.
The charge escalator in a battery  
uses chemical reactions to move  
charges from the negative terminal  
to the positive terminal:

∆Vbat = E
where the emf E is the work per  
charge done by the charge escalator.

Capacitors  
The capacitance of two conductors  
charged to {Q is

C =
Q

∆VC
 

A parallel-plate capacitor has

C =
P0 A

d

Filling the space between the plates with a dielectric of dielectric 
constant k increases the capacitance to C = kC0.

The energy stored in a capacitor is uC = 1
2 C1∆VC22.

This energy is stored in the electric field at density uE = 1
2 kP0 E

2.

General Principles

Important Concepts

Applications

The goal of Chapter 26 has been to learn how the electric 
potential is related to the electric field.

Summary

E
u

E
u

E
u

Decreasing
V

∆V3

∆V2∆V1

∆V4

∆Vbat

E
u

E
u

E
u

u
E = 0

u

x

Ex

∆V = -area

∆VC -Q

+Q
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CONCEPTUAL QUESTIONS

Kirchhoff’s loop law
Van de Graaff generator
battery
charge escalator model
emf, E

terminal voltage, ∆Vbat 
ideal battery
capacitance, C
capacitor
capacitor voltage, ∆VC

farad, F
parallel capacitors
series capacitors
equivalent capacitance, Ceq 
energy density, uE

dielectric
induced electric field
dielectric constant, k
dielectric strength

Terms and Notation

1. FIGURE Q26.1 is a graph of electric potential in a region of space 
where E

u
 is parallel to the x-axis. Obtain the corresponding graph 

of Ex versus x.

1
0

20
(a)

(b)
x (cm)

V (v)

(c)

40

–20

–40

2 3 4 5

FIGURE Q26.1

1
0

1000

x (cm)

Ex (V/m)

2000

–1000

–2000

2

‘a’

3

FIGURE Q26.2

1

0 V

0 m 1 m 2 m 3 m 4 m
x

10 V 20 V 30 V 40 V

2

FIGURE Q26.4

20 V

50 V

1

80 V

d

120 V

140 V

2

160 V

dFIGURE Q26.5

x (m)

V (V)

321

-100

0

100

FIGURE Q26.6

A 1

3

5

2
4

6

B

E
u

E
u

FIGURE Q26.7

Post

Leaf

FIGURE Q26.8

2. What will the potential difference for the ‘a’ region be, in the 
graph of Ex versus x shown in FIGURE Q26.2

3. a. Suppose that E
u

=  0
u

 V/m throughout some region of space. 
Can you conclude that V = 0 V in this region? Explain.

b. Suppose that V = 0 V throughout some region of space. Can 
you conclude that E

u
= 0

u
 V/m in this region? Explain.

4. Estimate the electric fields E
u

1 and E
u

2 at points 1 and 2 in FIGURE 
Q26.4. Don’t forget that E

u
 is a vector.

5. FIGURE Q26.5 shows two parallel-plate capacitors with the same 
spacing. Is the electric field strength E1 at point 1 larger than, 
smaller than, or equal to the electric field strength E2 at point 2? 
Explain.

6. An electron is released from rest at x = 2 m in the potential 
shown in FIGURE Q26.6. Does it move? If so, to the left or to the 
right? Explain.

7. FIGURE Q26.7 shows an electric field diagram. Dashed lines A 
and B are two surfaces in space, not physical objects.
a. Is the electric potential at point 1 higher than, lower than, or 

equal to the electric potential at point 2? Explain.
b. Rank in order, from largest to smallest, the magnitudes of the 

potential differences ∆V12, ∆V34, and ∆V56.
c. Is surface A an equipotential surface? What about surface B? 

Explain why or why not.
8. FIGURE Q26.8 shows a negatively charged electroscope. The gold 

leaf stands away from the rigid metal post. Is the electric poten-
tial of the leaf higher than, lower than, or equal to the potential 
of the post? Explain.

Sphere 1

Sphere 2

r1 7 r2

Switch

r1 r2

FIGURE Q26.9

9. The two metal spheres in FIGURE Q26.9 are connected by a 
metal wire with a switch in the middle. Initially the switch is 
open. Sphere 1, with the larger radius, is given a positive charge. 
Sphere 2, with the smaller radius, is neutral. Then the switch is 
closed. Afterward, sphere 1 has charge Q1, is at potential V1, 
and the electric field strength at its surface is E1. The values for 
sphere 2 are Q2, V2, and E2.
a. Is V1 larger than, smaller than, or equal to V2? Explain.
b. Is Q1 larger than, smaller than, or equal to Q2? Explain.
c. Is E1 larger than, smaller than, or equal to E2? Explain.
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10. FIGURE Q26.10 shows a 9 V battery with metal wires attached 
to each end. What are the potential differences, ∆V12 = V2 - V1, 
∆V23 = V3 - V2, ∆V34 = V4 - V3, and ∆V41 = V1 - V4?

4
1

9 V

3

2

FIGURE Q26.10

d∆Vbat

FIGURE Q26.11 C

Q

-Q

1

2C

Q

-Q

2

2C

2Q

-2Q

4

C

2Q

-2Q

3

FIGURE Q26.12

x (m)

Ex (V/m)

321
0

200

-200

400

FIGURE EX26.3

x (m)

Ex (V/m)

3210
0

100

200

FIGURE EX26.4

E = 1000 V/m

3 
cm

A

B

7 cmFIGURE EX26.5

11. The parallel-plate capacitor in FIGURE Q26.11 is connected to a 
battery having potential difference ∆Vbat. Without breaking any 
of the connections, insulating handles are used to increase the 
plate separation to 2d.

a. Does the potential difference ∆VC change as the separation 
increases? If so, by what factor? If not, why not?

b. Does the capacitance change? If so, by what factor? If not, 
why not?

c. Does the capacitor charge Q change? If so, by what factor? If 
not, why not?

12. Rank in order, from largest to smallest, the potential differences 
1∆VC21 to 1∆VC24 of the four capacitors in FIGURE Q26.12. Explain.

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 26.1 Connecting Potential and Field

1. || What is the potential difference between xi = -9.0 cm  and 
xf =10.0 cm in the uniform electric field E

u
= 1 - 2000in - 2000jn

- 1000 kn2 V/m?
2. || What is the potential difference between zi = 5.0 cm and zf =  

40 cm in the uniform electric field Ez = 5000 V/m?
3. || FIGURE EX26.3 is a graph of Ex. What is the potential differ-

ence between xi = 1.0 m and xf = 3.0 m?

4. || FIGURE EX26.4 is a graph of Ex. The potential at the origin is 
-50 V. What is the potential at x = 3.0 m?

5. | a. Which point in FIGURE EX26.5, A or B, has a larger electric 
potential?

b. What is the potential difference between A and B?

Section 26.2 Finding the Electric Field from the Potential

6. | What are the magnitude and direction of the electric field at 
the dot in FIGURE EX26.6?

600 V

1 cm

200 V

-200 V

1 cm

FIGURE EX26.6

0 V

1 cm

1 cm

200 V

-200 V

x

y

45°

FIGURE EX26.7

x (cm)

V (V)

1

-10

2 3-1-2-3

10

FIGURE EX26.8

1 cm

0 V

75 V

25 V

50 V
1

2
1 cm

FIGURE EX26.9

7. | What are the magnitude and direction of the electric field at 
the dot in FIGURE EX26.7?

8. | FIGURE EX26.8 shows a graph of V versus x in a region of 
space. The potential is independent of y and z. What is Ex at 
(a) x = -2 cm, (b) x = 0 cm, and (c) x = 2 cm?

9. | Determine the magnitude and direction of the electric field at 
points 1 and 2 in FIGURE EX26.9.

10. | A -8.0 V equipotential surface and a +8.0 V equipotential 
surface are 2.0 mm apart. What is the electric field strength at a 
point halfway between the two surfaces?
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790 CHAPTER 26  Potential and Field

24. | A switch that connects a battery to a 50 mF capacitor is 
closed. Several seconds later you find that the capacitor plates 
are charged to {1.5 mC. What is the emf of the battery?

25. | A 6 mF capacitor, a 10 mF capacitor, and a 16 mF capacitor 
are connected in series. What is their equivalent capacitance?

26. | A 6 mF capacitor, a 10 mF capacitor, and a 16 mF capacitor 
are connected in parallel. What is their equivalent capacitance?

27. | What is the equivalent capacitance of the three capacitors in 
FIGURE EX26.27?

11. | FIGURE EX26.11 is a graph of V versus x. Draw the corres-
ponding graph of Ex versus x.

x (cm)

V (V)

0

-100

100

10 20 30

FIGURE EX26.11

x (cm)

V (V)

0

-50

50

1 2 3

FIGURE EX26.12

∆V12 = 30 V

∆V23 = 50 V

∆V34

∆V41 = -60 V

1

2

3

4FIGURE EX26.14

12. | FIGURE EX26.12 is a graph of V versus x. Draw the corres-
ponding graph of Ex versus x.

13. || The electric potential in a region of uniform electric field is 
-2.5 kV at z = -500 mm and +2.5 kV at z = +1.0 m. What is Ez?

14. | What is the potential difference ∆V34 in FIGURE EX26.14?

15. | The electric potential along the x-axis is V = (10x + 15x2)V, 
where x is in meters. What is Ex at (a) x = 2.0 m and (b) x = 3.0 m?

16. | The electric potential along the x-axis is V = 300e-x/2 V, where 
x is in meters. What is Ex at (a) x = 10 m and (b) x = 30 m?

Section 26.4 Sources of Electric Potential

17. | How much charge does a 9.0 V battery transfer from the nega-
tive to the positive terminal while doing 27 J of work?

18. | How much work does the charge escalator do to move 20 mC 
of charge from the negative terminal to the positive terminal of a 
12 V battery?

19. | Light from the sun allows a solar cell to move electrons from 
the positive to the negative terminal, doing 2.4 * 10-19 J of work 
per electron. What is the emf of this solar cell?

20. | What is the emf of a battery that does 100 J of work to move 
8.0 * 1019 electrons from the positive to the negative terminal  
in 3.0 s?

Section 26.5 Capacitance and Capacitors

21. | Two 4.0 cm diameter aluminum electrodes are spaced 1.50 mm  
apart. The electrodes are connected to a 120 V battery.
a. What is the capacitance?
b. What is the magnitude of the charge on each electrode?

22. || What is the capacitance of the two metal spheres shown in 
FIGURE EX26.22?

-20 nC+20 nC

∆V = 100 VFIGURE EX26.22

2 mF

1 mF
3 mF

FIGURE EX26.27

20 mF

30 mF

16 mF

16 mF

FIGURE EX26.28

23. | You need to construct a 100 pF capacitor for a science project. 
You plan to cut two L * L metal squares and insert small spacers 
between their corners. The thinnest spacers you have are 0.20 mm  
thick. What is the proper value of L?

28. | What is the equivalent capacitance of the three capacitors in 
FIGURE EX26.28?

29. | You need a capacitance of 50 mF, but you don’t happen to 
have a 50 mF capacitor. You do have a 75 mF capacitor. What 
additional capacitor do you need to produce a total capacitance 
of 50 mF? Should you join the two capacitors in parallel or in 
series?

30. | You need a capacitance of 50 mF, but you don’t happen to 
have a 50 mF capacitor. You do have a 30 mF capacitor. What 
additional capacitor do you need to produce a total capacitance 
of 50 mF? Should you join the two capacitors in parallel or in 
series?

Section 26.6 The Energy Stored in a Capacitor

31. | To what potential should you charge a 1.0 mF capacitor to 
store 1.0 J of energy?

32. || A 2.0-cm-diameter parallel-plate capacitor with a spacing of 
0.50 mm is charged to 200 V. What are (a) the total energy stored 
in the electric field and (b) the energy density?

33. || 100 pJ of energy is stored in a 1 cm * 1 cm * 1 cm region of 
uniform electric field. What is the electric field strength?

34. | The 90 mF capacitor in a defibrillator unit supplies an average 
of 6500 W of power to the chest of the patient during a discharge 
lasting 5.0 ms. To what voltage is the capacitor charged?

Section 26.7 Dielectrics

35. || Two 4.0 cm * 4.0 cm metal plates are separated by a 
0.20-mm-thick piece of Teflon.
a. What is the capacitance?
b. What is the maximum potential difference between the 

plates?
36. || Two 5.0 mm *  5.0 mm electrodes are held 0.10 mm apart 

and are attached to a 9.0 V battery. Without disconnecting the 
battery, a 0.10-mm-thick sheet of Mylar is inserted between the 
electrodes. What are the capacitor’s potential difference, electric 
field, and charge (a) before and (b) after the Mylar is inserted?
Hint: Section 26.7 considered a capacitor with isolated plates. 
What changes, and what doesn’t, when the plates stay connected 
to the battery?
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46. || The electric potential near the origin is V = 200/2x2 + y2, 
where x and y are in meters. What are the strength and direction 
of the electric field at 1x, y2 = 12.0 m, 1.0 m2? Give the direction 
as an angle cw or ccw (specify which) from the positive x-axis.

47. || It is postulated that the radial electric field of a group of 
charges falls off as Er = C/rn, where C is a constant, r is the 
distance from the center of the group, and n is an unknown expo-
nent. To test this hypothesis, you make a field probe consisting 
of two needle tips spaced 1.00 mm apart. You orient the needles 
so that a line between the tips points to the center of the charges, 
then use a voltmeter to read the potential difference between the 
tips. After you take measurements at several distances from the 
center of the group, your data are as follows:

Distance (cm) Potential difference (mV)

2.0 34.7

4.0 6.6

6.0 2.1

8.0 1.2

10.0 0.6

Use an appropriate graph of the data to determine the constants 
C and n.

48. || The electric field in a region of space is E
u

= (800x in -  
600y jn) V/m, where x and y are in m. The zero of electric po-
tential is at the origin. What are (a) the electric field and (b) the 
electric potential at the point (x,y) = (2.0 m, 1.0 m)?
Hint: The potential difference is the same along any path con-
necting two points.

49. || Two positive point charges q are located on the y-axis at 
y = {a.
a. Write an expression for the electric potential at position x on 

the x-axis.
b. The binomial approximation is (1 + z)n ≈ 1 + nz if z V 1. 

Use this to find an expression for the potential along the  
x-axis if x V a—that is, very near the origin.

c. Symmetry dictates that the electric field along the x-axis has 
only an x-component: Ey = Ez = 0. Find an expression for Ex 
if x V a.

d. What is the force on an electron at position x on the x-axis, 
with x V a?

e. Your answer to part d shows that an electron experiences a 
linear restoring force, so it will undergo simple harmonic mo-
tion. What is the oscillation frequency in GHz for an electron 
moving between two 1.0 nC charges separated by 2.0 mm?

50. || The metal spheres in FIGURE P26.50 are charged to {300 V. 
Draw this figure on your paper, then draw a plausible contour 
map of the potential, showing and labeling the -300 V, -200 V, 
-100 V, . . . , 300 V equipotential surfaces.

x (cm)
10 2 3

-50 nC +100 nC -50 nC

All three have a 
2.0 cm * 2.0 cm 
cross section.

FIGURE P26.41

42. || a. Use the methods of 
Chapter 25 to find the 
potential at distance 
x on the axis of the 
charged rod shown in 
FIGURE P26.42.

b. Use the result of part a 
to find the electric field 
at distance x on the axis of a rod.

43. || Use the on-axis potential of a charged disk from Chapter 25 
to find the on-axis electric field of a charged disk.

44. || Engineers discover that the electric potential between two 
electrodes can be modeled as V1x2 = V0 ln11 + x/d2, where V0  
is a constant, x is the distance from the first electrode in the 
direction of the second, and d is the distance between the 
electrodes. What is the electric field strength midway between 
the electrodes?

45. || The electric potential in a region of space is 
V = 1150x2 -200y22 V, where x and y are in meters. 
What are the strength and direction of the electric field at 
1x, y2 = 12.0 m, 2.0 m2? Give the direction as an angle cw or 
ccw (specify which) from the positive x-axis.

-300 V +300 V

FIGURE P26.50

51. | Metal sphere 1 has a positive charge of 6.0 nC. Metal sphere 
2, which is twice the diameter of sphere 1, is initially uncharged. 
The spheres are then connected together by a long, thin metal 
wire. What are the final charges on each sphere?

37. || A typical cell has a layer of negative charge on the inner 
surface of the cell wall and a layer of positive charge on the 
outside surface, thus making the cell wall a capacitor. What is 
the capacitance of a 50-mm-diameter cell with a 7.0-nm-thick 
cell wall whose dielectric constant is 9.0? Because the cell’s 
diameter is much larger than the wall thickness, it is reasonable 
to ignore the curvature of the cell and think of it as a parallel- 
plate capacitor.

Problems
38. || The electric field in a region of space is Ex = 5000x V/m, 

where x is in meters.
a. Graph Ex versus x over the region -1 m … x … 1 m.
b. Find an expression for the potential V at position x. As a ref-

erence, let V = 0 V at the origin.
c. Graph V versus x over the region -1 m … x … 1 m.

39. || The electric field in a region of space is Ex = -1000x2 V/m, 
where x is in meters.
a. Graph Ex versus x over the region -1 m … x … 1 m.
b. What is the potential difference between xi = -20 cm and 

xf = 30 cm?
40. || An infinitely long cylinder of radius R has linear charge den-

sity l. The potential on the surface of the cylinder is V0, and 
the electric field outside the cylinder is Er = l/2pP0 r. Find the 
potential relative to the surface at a point that is distance r from 
the axis, assuming r 7 R.

41. || FIGURE P26.41 is an edge view of three charged metal 
electrodes. Let the left electrode be the zero point of the electric 
potential. What are V and E

u
 at (a) x = 0.5 cm, (b) x = 1.5 cm, 

and (c) x = 2.5 cm?

x

y

Charge Q

-L /2 L /2

FIGURE P26.42
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61. || Initially, the switch in FIGURE P26.61 is in position A and 
capacitors C2 and C3 are uncharged. Then the switch is flipped 
to position B. Afterward, the voltage across C1 is 4.0 V. What is 
the emf of the battery?

52. || Two 2.0 cm * 2.0 cm metal electrodes are spaced 1.0 mm 
apart and connected by wires to the terminals of a 9.0 V battery.
a. What are the charge on each electrode and the potential dif-

ference between them?
The wires are disconnected, and insulated handles are used to 
pull the plates apart to a new spacing of 2.0 mm.
b. What are the charge on each electrode and the potential dif-

ference between them?
53. ||| The electric potential is 40 V at point A near a uniformly 

charged sphere. At point B, 2.0 mm farther away from the sphere, 
the potential has decreased by 0.16 mV. How far is point A from 
the center of the sphere?

54. | Find expressions for the equivalent capacitance of (a) N identical 
capacitors C in parallel and (b) N identical capacitors C in series.

55. | Two 2.0 cm * 2.0 cm metal electrodes are spaced 1.0 mm 
apart and connected by wires to the terminals of a 9.0 V battery.
a. What are the charge on each electrode and the potential dif-

ference between them?
While the plates are still connected to the battery, insulated han-
dles are used to pull them apart to a new spacing of 2.0 mm.
b. What are the charge on each electrode and the potential dif-

ference between them?
56. || What are the charge on and the potential difference across 

each capacitor in FIGURE P26.56?

6 mF
C1

2 mF30 V
C2 C3

4 mF

FIGURE P26.56

12 V

C1 = 16 mF 

C2 = 40 mF 

C3 = 60 mF 

FIGURE P26.57

9 V

C1 = 5 mF 

C2 = 15 mF 

C3 = 30 mF 

FIGURE P26.58

C

C

C

C

C

b

a

C
12 V

FIGURE P26.59

15 mF

A B

Switch

20 mF

30 mF
100 V C1

C2

C3

FIGURE P26.60

10 mF

A B

Switch

E
C1

12 mF 8 mF
C2 C3

FIGURE P26.61

12 mF

C2

60 V

1

2

FIGURE P26.62

R1

Coaxial cable

R2

FIGURE P26.68

57. || What are the charge on and the potential difference across 
each capacitor in FIGURE P26.57?

58. || What are the charge on and the potential difference across 
each capacitor in FIGURE P26.58?

59. | Six identical capacitors with capacitance C are connected as 
shown in FIGURE P26.59.
a. What is the equivalent capacitance of these six capacitors?
b. What is the potential difference between points a and b?

60. || Initially, the switch in FIGURE P26.60 is in position A and  
capacitors C2 and C3 are uncharged. Then the switch is flipped to 
position B. Afterward, what are the charge on and the potential 
difference across each capacitor?

62. || A battery with an emf of 60 V is connected to the two capaci-
tors shown in FIGURE P26.62. Afterward, the charge on capacitor 
2 is 450 mC. What is the capacitance of capacitor 2?

63. || Capacitors C1 = 10 mF and C2 = 20 mF are each charged 
to 10 V, then disconnected from the battery without changing 
the charge on the capacitor plates. The two capacitors are then 
connected in parallel, with the positive plate of C1 connected to 
the negative plate of C2 and vice versa. Afterward, what are the 
charge on and the potential difference across each capacitor?

64. || An isolated 5.0 mF parallel-plate capacitor has 4.0 mC of 
charge. An external force changes the distance between the elec-
trodes until the capacitance is 2.0 mF. How much work is done 
by the external force?

65. || You’ve built a device that uses the energy from a rapidly 
discharged capacitor to launch the capacitor straight up. One 
capacitor, with a mass of 3.5 g, is launched to a height of 1.6 m after 
having been charged to 100 V. What is its capacitance in mF?

66. || The flash unit in a camera uses a 3.0 V battery to charge a 
capacitor. The capacitor is then discharged through a flashlamp. 
The discharge takes 10 ms, and the average power dissipated in 
the flashlamp is 10 W. What is the capacitance of the capacitor?

67. || The label rubbed off one of the capacitors you are using to 
build a circuit. To find out its capacitance, you place it in series 
with a 10 mF capacitor and connect them to a 9.0 V battery. Using 
your voltmeter, you measure 6.0 V across the unknown capacitor. 
What is the unknown capacitor’s capacitance?

68. ||| High-frequency signals are often 
transmitted along a coaxial cable, 
such as the one shown in FIGURE 
P26.68. For example, the cable TV 
hookup coming into your home is a 
coaxial cable. The signal is carried 
on a wire of radius R1 while the outer 
conductor of radius R2 is grounded 
(i.e., at V = 0 V). An insulating ma-
terial fills the space between them, and an insulating plastic 
coating goes around the outside.
a. Find an expression for the capacitance per meter of a coaxial 

cable. Assume that the insulating material between the cylinders 
is air.

b. Evaluate the capacitance per meter of a cable having 
R1 = 0.50 mm and R2 = 3.0 mm.

69. || A capacitor that uses 0.50-mm-thick paper as a dielectric is 
charged to the maximum sustainable voltage. What are (a) the 
capacitor voltage and (b) the strength of the induced electric 
field?
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Challenge Problems
78. ||| An electric dipole at the origin consists of two charges {q 

spaced distance s apart along the y-axis.
a. Find an expression for the potential V1x, y2 at an arbitrary point 

in the xy-plane. Your answer will be in terms of q, s, x, and y.
b. Use the binomial approximation to simplify your result of 

part a when s V x and s V y.
c. Assuming s V x and y, find expressions for Ex and Ey, the 

components of E
u
 for a dipole.

d. What is the on-axis field E
u
? Does your result agree with 

Equation 23.10?
e. What is the field E

u
 on the bisecting axis? Does your result 

agree with Equation 23.11?
79. ||| Charge is uniformly distributed with charge density r inside 

a very long cylinder of radius R. Find the potential difference 
between the surface and the axis of the cylinder.

80. ||| Consider a uniformly charged sphere of radius R and total 
charge Q. The electric field Eout  outside the sphere 1r Ú R2 is 
simply that of a point charge Q. In Chapter 24, we used Gauss’s 
law to find that the electric field Ein inside the sphere 1r … R2 is 
radially outward with field strength

Ein =
1

4pP0
 
Q

R3 r

a. The electric potential Vout  outside the sphere is that of a point 
charge Q. Find an expression for the electric potential Vin at 
position r inside the sphere. As a reference, let Vin = Vout  at 
the surface of the sphere.

b. What is the ratio Vcenter /Vsurface?
c. Graph V versus r for 0 … r … 3R.

81. ||| a. Find an expression for the capacitance of a spherical 
capacitor, consisting of concentric spherical shells of radii 
R1 (inner shell) and R2 (outer shell).

b. A spherical capacitor with a 1.0 mm gap between the 
shells has a capacitance of 100 pF. What are the diameters 
of the two spheres?

82. ||| Two 5.0-cm-diameter metal disks separated by a 0.50-mm-
thick piece of Pyrex glass are charged to a potential difference of 
1000 V. What are (a) the surface charge density on the disks and 
(b) the surface charge density on the glass?

83. ||| Each capacitor in FIGURE CP26.83 has capacitance C. What is 
the equivalent capacitance between points a and b?

70. || The current that charges a capacitor transfers energy that 
is stored in the capacitor’s electric field. Consider a 2.0 mF ca-
pacitor, initially uncharged, that is storing energy at a constant 
200 W rate. What is the capacitor voltage 2.0 ms after charging 
begins?

71. || A vacuum-insulated parallel-plate capacitor with plate  
separation d has capacitance C0. What is the capacitance if an 
insulator with dielectric constant k and thickness d/2 is slipped 
between the electrodes without changing the plate separation?

72. || A typical cell has a membrane potential of -70 mV, meaning 
that the potential inside the cell is 70 mV less than the potential 
outside due to a layer of negative charge on the inner surface 
of the cell wall and a layer of positive charge on the outer sur-
face. This effectively makes the cell wall a charged capacitor. 
Because a cell’s diameter is much larger than the wall thickness, 
it is reasonable to ignore the curvature of the cell and think of it 
as a parallel-plate capacitor. How much energy is stored in the 
electric field of a 50-mm-diameter cell with a 7.0-nm-thick cell 
wall whose dielectric constant is 9.0?

73. ||| A nerve cell in its resting state has a membrane potential of 
-70 mV, meaning that the potential inside the cell is 70 mV less 
than the potential outside due to a layer of negative charge on the 
inner surface of the cell wall and a layer of positive charge on 
the outer surface. This effectively makes the cell wall a charged 
capacitor. When the nerve cell fires, sodium ions, Na+, flood 
through the cell wall to briefly switch the membrane potential to 
+40 mV. Model the central body of a nerve cell—the soma—as 
a 50-mm-diameter sphere with a 7.0-nm-thick cell wall whose 
dielectric constant is 9.0. Because a cell’s diameter is much larger 
than the wall thickness, it is reasonable to ignore the curvature 
of the cell and think of it as a parallel-plate capacitor. How many 
sodium ions enter the cell as it fires?

74. || Derive Equation 26.33 for the induced surface charge density 
on the dielectric in a capacitor.

In Problems 75 through 77 you are given the equation(s) used to 
solve a problem. For each of these, you are to

a. Write a realistic problem for which this is the correct equation(s).
b. Finish the solution of the problem.

75. 2az V/m = -
dV

dz
, where a is a constant with units of V/m2

V1z = 02 = 10 V

76. 400 nC = 1100 V2C

C =
18.85 * 10-12 C2/N m2210.10 m * 0.10 m2

d

77. 1 1
3 mF

+
1

6 mF 2-1

+ C = 4 mF

a

b
FIGURE CP26.83
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Current and Resistance

What is current?
Current is the flow of charge through a 
conductor. We can’t see charge moving, 
but two indicators of current are:

 ■ A nearby compass needle is deflected.
 ■ A wire with a current gets warm.

Current I is measured in amperes,  
a charge flow rate of one coulomb  
per second. You know this informally  
as “amps.”

❮❮ LOOKING BACK Section 23.6 The motion of  
charges in electric fields

How does current flow?
We’ll develop a model of conduction:

 ■ Connecting a wire to a battery causes a 
nonuniform surface charge distribution.

 ■ The surface charges create an electric  
field inside the wire.

 ■ The electric field pushes the sea of  
electrons through the metal.

 ■ Electrons are the charge carriers in  
metals, but it is customary to treat  
current as the motion of positive charges.

Current is I . Current density J = I/A is the  
amount of current per square meter.

What law governs current?
Current is governed by Kirchhoff’s junction law.

 ■ The current is the same everywhere in a circuit with no junctions.
 ■ The sum of currents entering a junction equals the sum leaving.

Same I

Iin
Iout

What are resistivity and resistance?
Collisions of electrons with atoms cause a 
conductor to resist the motion of charges.

 ■ Resistivity is an electrical property of a 
material, such as copper.

 ■ Resistance is a property of a specific wire 
or circuit element based on the material 
of which it is made and its size and shape.

What is Ohm’s law?
Ohm’s law says that the current flowing 
through a wire or circuit element depends 
on both the potential difference across it 
and the element’s resistance:

I = ∆V/R

❮❮ LOOKING BACK Section 26.4 Sources of potential

IN THIS CHAPTER, you will learn how and why charge moves through a wire as a current.

27 

A lightbulb filament is  
a very thin tungsten 
wire that is heated until 
it glows by passing  
a current through it.

Deflects

Gets warm

I

I

E
u

E
u

E
u

R∆V

I

I

M27_KNIG8221_05_GE_C27.indd   794 25/06/22   2:49 PM



27.1 The Electron Current 795

27.1 The Electron Current
We’ve focused thus far on situations in which charges are in static equilibrium. Now 
it’s time to explore the controlled motion of charges—currents. Let’s begin with a 
simple question: How does a capacitor get discharged? FIGURE 27.1a shows a charged 
capacitor. If, as in FIGURE 27.1b, we connect the two capacitor plates with a metal wire, 
a conductor, the plates quickly become neutral; that is, the capacitor has been dis-
charged. Charge has somehow moved from one plate to the other.

(a)

Isolated electrodes stay
charged indefinitely.

FIGURE 27.1 A capacitor is discharged by a metal wire.

However, a connecting
wire quickly dis-
charges the
capacitor.

The net charge of each
plate is decreasing.

(b) (c)

cand a compass needle to deflect.

Current causes the
wire to get warmc

In Chapter 22, we defined current as the motion of charges. It would seem that the 
capacitor is discharged by a current in the connecting wire. Let’s see what else we can 
observe. FIGURE 27.1c shows that the connecting wire gets warm. If the wire is very thin 
in places, such as the thin filament in a lightbulb, the wire gets hot enough to glow. 
The current-carrying wire also deflects a compass needle, an observation we’ll explore 
further in Chapter 29. For now, we will use “makes the wire warm” and “deflects a 
compass needle” as indicators that a current is present in a wire.

Charge Carriers
The charges that move in a conductor are called the charge carriers. FIGURE 27.2  
reminds you of the microscopic model of a metallic conductor that we introduced 
in Chapter 22. The outer electrons of metal atoms—the valence electrons—are  
only weakly bound to the nuclei. When the atoms come together to form a solid, the 
outer electrons become detached from their parent nuclei to form a fluid-like sea of 
electrons that can move through the solid. That is, electrons are the charge carriers 
in metals. Notice that the metal as a whole remains electrically neutral. This is not a 
perfect model because it overlooks some quantum effects, but it provides a reasonably 
good description of current in a metal.

   NOTE    Electrons are the charge carriers in metals. Other conductors, such as ionic 
solutions or semiconductors, have different charge carriers. We will focus on metals 
because of their importance to circuits, but don’t think that electrons are always the 
charge carrier.

The conduction electrons in a metal, like molecules in a gas, undergo random  
thermal motions, but there is no net motion. We can change that by pushing on the 
sea of electrons with an electric field, causing the entire sea of electrons to move in 
one direction like a gas or liquid flowing through a pipe. This net motion, which takes 
place at what we’ll call the drift speed vd, is superimposed on top of the random 
thermal motions of the individual electrons. The drift speed is quite small. As we’ll 
establish later, 10-4 m/s is a fairly typical value for vd.

As FIGURE 27.3 shows, the entire sea of electrons moves from left to right at the drift 
speed. Suppose an observer could count the electrons as they pass through this cross 
section of the wire. Let’s define the electron current ie to be the number of elec-
trons per second that pass through a cross section of a wire or other conductor. The 

Ions (metal atoms minus valence 
electrons) occupy fixed positions.

The conduction electrons are bound to the
solid as a whole, not to any particular atom.
They are free to move around.

The metal as a whole is electrically neutral.

FIGURE 27.2 The sea of electrons is a 
model of electrons in a metal.

vd

Electrons

Wire

The electron current ie is the number
of electrons passing through this
cross section of the wire per second.

The sea of electrons flows through
a wire at the drift speed vd.

FIGURE 27.3 The electron current.
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796 CHAPTER 27  Current and Resistance

units of electron current are s-1. Stated another way, the number Ne of electrons that 
pass through the cross section during the time interval ∆t is

 Ne = ie ∆t (27.1)

Not surprisingly, the electron current depends on the electrons’ drift speed. To see how, 
FIGURE 27.4 shows the sea of electrons moving through a wire at the drift speed vd. The 
electrons passing through a particular cross section of the wire during the interval ∆t 
are shaded. How many of them are there?

vd

There are ne electrons
per cubic meter of wire.

The sea of electrons
is moving to the right
with drift speed vd.

Wire at time t A cross section
of the wire

The sea of electrons has moved
forward distance ∆x = vd ∆t.
The shaded volume is V = A ∆x.

Wire at time t + ∆t Cross-section area A

∆x

FIGURE 27.4 The sea of electrons moves to the right with drift speed vd.

TABLE 27.1 Conduction-electron  
density in metals

Metal
Electron  

density (m−3)

Aluminum 18 * 1028

Iron 17 * 1028

Copper 8.5 * 1028

Gold 5.9 * 1028

Silver 5.8 * 1028

The electrons travel distance ∆x = vd ∆t to the right during the interval ∆t, form-
ing a cylinder of charge with volume V = A ∆x. If the number density of conduction 
electrons is ne electrons per cubic meter, then the total number of electrons in the 
cylinder is

 Ne = neV = ne A ∆x = ne Avd ∆t (27.2)

Comparing Equations 27.1 and 27.2, you can see that the electron current in the wire is

 ie = ne Avd (27.3)

You can increase the electron current—the number of electrons per second moving 
through the wire—by making them move faster, by having more of them per cubic meter, 
or by increasing the size of the pipe they’re flowing through. That all makes sense.

Depending on the element, each atom contributes one or more valence electrons 
to the sea of electrons. Thus the number of conduction electrons per cubic meter is an 
integer multiple of the number of atoms per cubic meter, a quantity that can be deter-
mined from the metal’s mass density. TABLE 27.1 gives values of the conduction-electron 
density ne for several metals.

What is the electron current in a 2.0-mm-diameter copper wire if 
the electron drift speed is 1.0 * 10-4 m/s?

SOLVE This is a straightforward calculation. The wire’s cross- 
section area is A = pr2 = 3.14 * 10-6 m2. Table 27.1 gives the 
electron density for copper as 8.5 * 1028 m-3. Thus we find

ie = ne Avd = 2.7 * 1019 s-1

REVIEW This is an incredible number of electrons to pass through 
a section of the wire every second. The number is high not because  
the sea of electrons moves fast—in fact, it moves at literally a 
snail’s pace—but because the density of electrons is so enormous. 
This is a fairly typical electron current.

EXAMPLE 27.1 ■ The size of the electron current

STOP TO THINK 27.1 These four wires are made of the same metal. Rank in order, 
from largest to smallest, the electron currents iA to iD.

A CB D

r2r

2v 2vv
v

rr 1
2
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27.2 Creating a Current 797

Discharging a Capacitor
FIGURE 27.5 shows a capacitor charged to {16 nC as it is being discharged by a 
2.0-mm-diameter, 20-cm-long copper wire. How long does it take to discharge the 
capacitor? We’ve noted that a fairly typical drift speed of the electron current through a 
wire is 10-4 m/s. At this rate, it would take 2000 s, or about a half hour, for an electron 
to travel 20 cm.

But this isn’t what happens. As far as our senses are concerned, the discharge of a 
capacitor is instantaneous. So what’s wrong with our simple calculation?

The important point we overlooked is that the wire is already full of electrons. As 
an analogy, think of water in a hose. If the hose is already full of water, adding a drop 
to one end immediately (or very nearly so) pushes a drop out the other end. Likewise 
with the wire. As soon as the excess electrons move from the negative capacitor plate 
into the wire, they immediately (or very nearly so) push an equal number of electrons 
out the other end of the wire and onto the positive plate, thus neutralizing it. We don’t 
have to wait for electrons to move all the way through the wire from one plate to the 
other. Instead, we just need to slightly rearrange the charges on the plates and in  
the wire.

Let’s do a rough estimate of how much rearrangement is needed and how long the 
discharge takes. Using the conduction-electron density of copper in Table 27.1, we can 
calculate that there are 5 * 1022 conduction electrons in the wire. The negative plate 
in FIGURE 27.6, with Q = -16 nC, has 1011 excess electrons, far fewer than in the wire. 
In fact, the length of copper wire needed to hold 1011 electrons is a mere 4 * 10-13 m.

The instant the wire joins the capacitor plates together, the repulsive forces between 
the excess 1011 electrons on the negative plate cause them to push their way into the 
wire. As they do, 1011 electrons are squeezed out of the final 4 * 10-13 m of the wire 
and onto the positive plate. If the electrons all move together, and if they move at the 
typical drift speed of 10-4 m/s—both less than perfect assumptions but fine for mak-
ing an estimate—it takes 4 * 10-9 s, or 4 ns, to move 4 * 10-13 m and discharge the 
capacitor. And, indeed, this is the right order of magnitude for how long the electrons 
take to rearrange themselves so that the capacitor plates are neutral.

-16 nC +16 nC

Missing 1011

electrons

Electron
current

20-cm-long copper wire

ie
ie

1011 excess
electrons

FIGURE 27.5 How long does it take to 
discharge this capacitor?

1. The 1011 excess electrons on the
 negative plate move into the wire. 

2. The vast sea of
 electrons in the 
 wire is pushed
 4 * 10-13 m to
 the side in 4 ns.

3. 1011 electrons are
 pushed out of the
 wire and onto the
 positive plate. This
 plate is now neutral.

2.0-mm-diameter wire

FIGURE 27.6 The sea of electrons needs 
only a minuscule rearrangement.

STOP TO THINK 27.2 Why does the light in a room come on instantly when you flip 
a switch several meters away?

27.2 Creating a Current
Suppose you want to slide a book across the table to your friend. You give it a quick 
push to start it moving, but it begins slowing down because of friction as soon as you 
take your hand off. The book’s kinetic energy is transformed into thermal energy, 
leaving the book and the table slightly warmer. The only way to keep the book moving 
at a constant speed is to continue pushing it.

As FIGURE 27.7 shows, the sea of electrons is similar to the book. If you push the sea 
of electrons, you create a current of electrons moving through the conductor. But the 
electrons aren’t moving in a vacuum. Collisions between the electrons and the atoms of 
the metal transform the electrons’ kinetic energy into the thermal energy of the metal, 
making the metal warmer. (Recall that “makes the wire warm” is one of our indicators 
of a current.) Consequently, the sea of electrons will quickly slow down and stop unless 
you continue pushing. How do you push on electrons? With an electric field!

One of the important conclusions of Chapter 24 was that E
u

=  0
u
 inside a conductor 

in electrostatic equilibrium. But a conductor with electrons moving through it is not in 
electrostatic equilibrium. An electron current is a net motion of charges sustained 
by an internal electric field.

Thus the quick answer to “What creates a current?” is “An electric field.” But why 
is there an electric field in a current-carrying wire?

f
u

E
u

E
u

u

u

Fpush

Because of friction, a steady push is 
needed to move the book at steady speed.

Retarding force Sea of electrons

Fpush

u
fk

Because of collisions with atoms, a steady 
push is needed to move the sea of electrons 
at steady speed. 

FIGURE 27.7 Sustaining the electron 
current with an electric field.
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798 CHAPTER 27  Current and Resistance

Establishing the Electric Field in a Wire
FIGURE 27.8a shows two metal wires attached to the plates of a charged capacitor. The 
wires are conductors, so some of the charges on the capacitor plates become spread 
out along the wires as a surface charge. (Remember that all excess charge on a con-
ductor is located on the surface.)

This is an electrostatic situation, with no current and no charges in motion. 
Consequently—because this is always true in electrostatic equilibrium—the electric 
field inside the wire is zero. Symmetry requires there to be equal amounts of charge  
to either side of each point to make E

u
=  0

u
 at that point; hence the surface charge  

density must be uniform along each wire except near the ends (where the details need 
not concern us). We implied this uniform density in Figure 27.8a by drawing equally 
spaced + and -  symbols along the wire. Remember that a positively charged surface 
is a surface that is missing electrons.

More positive

A B C D

More negative

The four rings A through D
model the nonuniform charge
distribution on the wire.

The nonuniform charge distribution
creates a net field to the right at all
points inside the wire.

EA points away from A and EB points
away from B, but A has more charge
so the net field points to the right.

uu

Enet

u

EA

u

EB

u

ED

uEC

u

Enet

u
Enet

u
EC

u
EB

u

FIGURE 27.9 A varying surface charge distribution creates an internal electric field inside the wire.

E = 0
u u

Negative plate

Positive plate(a)

There is no current 
because electrons can’t 
move across the gap.

Uniform surface
charge density

u u
E = 0 at all points
inside the wire.

FIGURE 27.8 The surface charge on the wires before and after they are connected.

E
u

(b)

The surface charge
density now varies
along the wire.

The wire is neutral at
the midpoint between
the capacitor plates.

The nonuniform surface charge density
creates an electric field inside the wire.

Now we connect the ends of the wires together. What happens? The excess electrons 
on the negative wire suddenly have an opportunity to move onto the positive wire that is  
missing electrons. Within a very brief interval of time 1≈10-9 s2, the sea of electrons 
shifts slightly and the surface charge is rearranged into a nonuniform distribution like  
that shown in FIGURE 27.8b. The surface charge near the positive and negative plates 
remains strongly positive and negative because of the large amount of charge on 
the capacitor plates, but the midpoint of the wire, halfway between the positive and 
negative plates, is now electrically neutral. The new surface charge density on the 
wire varies from positive at the positive capacitor plate through zero at the midpoint  
to negative at the negative plate.

This nonuniform distribution of surface charge has an extremely important conse-
quence. FIGURE 27.9 shows a section from a wire on which the surface charge density 
becomes more positive toward the left and more negative toward the right. Calculating 
the exact electric field is complicated, but we can understand the basic idea if we 
model this section of wire with four circular rings of charge.
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27.2 Creating a Current 799

In Chapter 23, we found that the on-axis field of a ring of charge

 ■ Points away from a positive ring, toward a negative ring;
 ■ Is proportional to the amount of charge on the ring; and
 ■ Decreases with distance away from the ring.

The field midway between rings A and B is well approximated as E
u

net ≈ E
u

A + E
u

B. 
Ring A has more charge than ring B, so E

u

net points away from A.
The analysis of Figure 27.9 leads to a very important conclusion:

A nonuniform distribution of surface charges along a wire creates a net electric 
field inside the wire that points from the more positive end of the wire toward 
the more negative end of the wire. This is the internal electric field E

u
 that 

pushes the electron current through the wire.

Note that the surface charges are not the moving charges of the current. Further, the 
current—the moving charges—is inside the wire, not on the surface. In fact, as the 
next example shows, the electric field inside a current-carrying wire can be established 
with an extremely small amount of surface charge.

Table 23.1 in Chapter 23 gave a typical electric field strength in 
a current-carrying wire as 0.01 N/C or, as we would now say, 
0.01 V/m. (We’ll verify this value later in this chapter.) Two 
2.0-mm-diameter rings are 2.0 mm apart. They are charged  
to {Q. What value of Q causes the electric field at the midpoint  
to be 0.010 V/m?

MODEL Use the on-axis electric field of a ring of charge from 
Chapter 23.

VISUALIZE FIGURE 27.10 shows the two rings. Both contribute 
equally to the field strength, so the electric field strength of the 

positive ring is E+ = 0.0050 V/m. The distance z = 1.0 mm is half 
the ring spacing.

SOLVE Chapter 23 found the on-axis electric field of a ring of 
charge Q to be 

E+ =
1

4pP0
 

zQ

1z2 + R223/2

Thus the charge needed to produce the desired field is

  Q =
4pP01z2 + R223/2

z
 E+

  =
1     10.0010 m22 + 10.0010 m22 23/2

19.0 * 109 N m2/C2210.0010 m2  10.0050 V/m2

  = 1.6 * 10-18 C

REVIEW The electric field of a ring of charge is largest at  
z ≈ R, so these two rings are a simple but reasonable model for 
estimating the electric field inside a 2.0-mm-diameter wire. We 
find that the surface charge needed to establish the electric field 
is very small. A mere 10 electrons have to be moved from one 
ring to the other to charge them to {1.6 * 10-18 C. The resulting  
electric field is sufficient to drive a sizable electron current 
through the wire.

EXAMPLE 27.2 ■ The surface charge on a current-carrying wire

2.0 mm

2.0 mm

z = 1.0 mm

-Q+Q

u
E-

u
E+

Enet

u

FIGURE 27.10 The electric field of two charged rings.

STOP TO THINK 27.3 The two charged rings are a model of the surface charge  
distribution along a wire. Rank in order, from largest to smallest, the electron currents  
EA to EE at the midpoint between the rings.

A  B  C  D  E
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800 CHAPTER 27  Current and Resistance

A Model of Conduction
Electrons don’t just magically move through a wire as a current. They move because 
an electric field inside the wire—a field created by a nonuniform surface charge den-
sity on the wire—pushes on the sea of electrons to create the electron current. The field 
has to keep pushing because the electrons continuously lose energy in collisions with 
the positive ions that form the structure of the solid. These collisions provide a drag  
force, much like friction.

We will model the conduction electrons—those electrons that make up the sea of 
electrons—as free particles moving through the lattice of the metal. In the absence  
of an electric field, the electrons, like the molecules in a gas, move randomly in all  
directions with a distribution of speeds. If we assume that the average kinetic energy 
of the electrons is given by the same 32 kBT  that applies to an ideal gas, we can calculate  
that the average electron speed at room temperature is ≈105 m/s. This estimate turns 
out, for quantum physics reasons, to be not quite right, but it correctly indicates that 
the conduction electrons are moving very fast.

However, an individual electron does not travel far before colliding with an ion and 
being scattered to a new direction. FIGURE 27.11a shows that an electron bounces back 
and forth between collisions, but its average velocity is zero, and it undergoes no net 
displacement. This is similar to molecules in a container of gas.

Suppose we now turn on an electric field. FIGURE 27.11b shows that the steady  
electric force causes the electrons to move along parabolic trajectories between  
collisions. Because of the curvature of the trajectories, the negatively charged  
electrons begin to drift slowly in the direction opposite the electric field. The  
motion is similar to a ball moving in a pinball machine with a slight downward  
tilt. An individual electron ricochets back and forth between the ions at a high rate  
of speed, but now there is a slow net motion in the “downhill” direction. Even so,  
this net displacement is a very small effect superimposed on top of the much larger 
thermal motion. Figure 27.11b has greatly exaggerated the rate at which the drift 
would occur.

Suppose an electron just had a collision with an ion and has rebounded with velocity 
v 

u
0. The acceleration of the electron between collisions is

 ax =
F
m

=
eE
m

 (27.4)

where E is the electric field strength inside the wire and m is the mass of the electron. 
(We’ll assume that E

u
 points in the negative x-direction.) The field causes the x-component 

of the electron’s velocity to increase linearly with time:

 vx = v0x + ax ∆t = v0x +
eE
m

 ∆t (27.5)

The electron speeds up, with increasing kinetic energy, until its next collision with 
an ion. The collision transfers much of the electron’s kinetic energy to the ion and thus 
to the thermal energy of the metal. This energy transfer is the “friction” that raises 
the temperature of the wire. The electron then rebounds, in a random direction, with 
a new initial velocity v 

u
0, and starts the process all over.

FIGURE 27.12a shows how the velocity abruptly changes due to a collision. Notice 
that the acceleration (the slope of the line) is the same before and after the collision. 
FIGURE 27.12b follows an electron through a series of collisions. You can see that each 
collision “resets” the velocity. The primary observation we can make from Figure 
27.12b is that this repeated process of speeding up and colliding gives the electron a 
nonzero average velocity. The magnitude of the electron’s average velocity, due to 
the electric field, is the drift speed vd of the electron.

If we observe all the electrons in the metal at one instant of time, their average 
velocity is

 vd = vx = v0x +
eE
m

 ∆t (27.6)

Ions in the lattice
of the metal

The electron has frequent collisions with
ions, but it undergoes no net displacement.

(a) No electric field

Electron

FIGURE 27.11 A microscopic view of a 
conduction electron moving through a 
metal.

E
u

E
u

Parabolic trajectories
in the electric field

Net displacement

(b) With an electric field

A net displacement in the direction
opposite to E is superimposed on the
random thermal motion.

u
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27.3 Current and Current Density 801

where a bar over a quantity indicates an average value. The average value of v0x, the  
velocity with which an electron rebounds after a collision, is zero. We know this because,  
in the absence of an electric field, the sea of electrons moves neither right nor left.

The quantity ∆t is the time since the last collision, and—with some statistical 
calculations that we’ll skip—the average value of ∆t is the mean time between 
collisions, which we designate t. The mean time between collisions, analogous to 
the mean free path between collisions in the kinetic theory of gases, depends on the 
metal’s temperature but can be considered a constant in the equations below.

Thus the average speed at which the electrons are pushed along by the electric field is

 vd =
et
m

 E (27.7)

We can complete our model of conduction by using Equation 27.7 for vd in the 
electron-current equation ie = ne Avd. Upon doing so, we find that an electric field 
strength E in a wire of cross-section area A causes an electron current

 ie =
neetA

m
 E (27.8)

The electron density ne and the mean time between collisions t are properties of  
the metal.

Equation 27.8 is the main result of this model of conduction. We’ve found that the 
electron current is directly proportional to the electric field strength. A stronger 
electric field pushes the electrons faster and thus increases the electron current.

vx

0
vd

Because the acceleration is
always in the same direction,
the average velocity is not zero.

The average
rebound
velocity is zero.

The mean time
between
collisions is t.

(b) A series of collisions.

t

∆t

vx

0

Collision

The electron velocity as
it collides with an ion

After the collision
the acceleration is
again eE/m.

The electron rebounds
with velocity v0x.

(a) An electron collides with an ion.

t

The acceleration between collisions
(the slope of the line) is a = eE/m.

FIGURE 27.12 The electron velocity as a function of time.

Example 27.1 found the electron current to be 2.7 * 1019 s-1 for  
a 2.0-mm-diameter copper wire in which the electron drift speed  
is 1.0 * 10-4 m/s. If an internal electric field of 0.020 V/m is 
needed to sustain this current, a typical value, how many collisions 
per second, on average, do electrons in copper undergo?

MODEL Use the model of conduction.

SOLVE From Equation 27.7, the mean time between collisions is

t =
mvd

eE
= 2.8 * 10-14 s

The average number of collisions per second is the inverse:

Collision rate =  
1
t

= 3.5 * 1013 s-1

REVIEW This was another straightforward calculation simply to  
illustrate the incredibly large collision rate of conduction electrons.

EXAMPLE 27.3 ■ Collisions in a copper wire

27.3 Current and Current Density
We have developed the idea of a current as the motion of electrons through metals.  
But the properties of currents were known and used for a century before the discovery 
that electrons are the charge carriers in metals. We need to connect our ideas about the  
electron current to the conventional definition of current.
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Because the coulomb is the unit of charge, and because currents are charges in 
motion, it seemed quite natural in the 19th century to define current as the rate, in 
coulombs per second, at which charge moves through a wire. If Q is the total amount 
of charge that has moved past a point in the wire, we define the current I in the wire 
to be the rate of charge flow:

 I K
dQ

dt
 (27.9)

For a steady current, which will be our primary focus, the amount of charge delivered 
by current I during the time interval ∆t is

 Q = I ∆t (27.10)

The SI unit for current is the coulomb per second, which is called the ampere A:

1 ampere = 1 A K 1 coulomb per second = 1 C/s

The current unit is named after the French scientist André Marie Ampère, who made 
major contributions to the study of electricity and magnetism in the early 19th cen-
tury. The amp is an informal abbreviation of ampere. Household currents are typically 
≈  1 A. For example, the current through a 1200 W hair dryer is 10 A, meaning that 
10 C of charge flow through the bulb every second. Currents in consumer electronics, 
such as stereos and computers, are much less. They are typically measured in milliamps  
11 mA = 10-3 A2 or microamps 11 mA = 10-6 A2.

Equation 27.10 is closely related to Equation 27.1, which said that the number of 
electrons delivered during a time interval ∆t is Ne = ie ∆t. Each electron has charge 
of magnitude e; hence the total charge of Ne electrons is Q = eNe. Consequently, the 
conventional current I and the electron current ie are related by

 I =
Q

∆t
=

eNe 

∆t
= eie (27.11)

Because electrons are the charge carriers, the rate at which charge moves is e times the 
rate at which the electrons move.

In one sense, the current I and the electron current ie differ by only a scale factor. 
The electron current ie, the rate at which electrons move through a wire, is more fun-
damental because it looks directly at the charge carriers. The current I, the rate at 
which the charge of the electrons moves through the wire, is more practical because 
we can measure charge more easily than we can count electrons.

Despite the close connection between ie and I, there’s one extremely important 
distinction. Because currents were known and studied before it was known what the 
charge carriers are, the direction of current is defined to be the direction in which 
positive charges seem to move. Thus the direction of the current I is the same as 
that of the internal electric field E

u
. But because the charge carriers turned out to be 

negative, at least for a metal, the direction of the current I in a metal is opposite the 
direction of motion of the electrons.

The situation shown in FIGURE 27.13 may seem disturbing, but it makes no real 
difference. A capacitor is discharged regardless of whether positive charges move 
toward the negative plate or negative charges move toward the positive plate.  
The primary application of current is the analysis of circuits, and in a circuit—a 
macroscopic device—we simply can’t tell what is moving through the wires. All 
of our calculations will be correct and all of our circuits will work perfectly well 
if we choose to think of current as the flow of positive charge. The distinction is 
important only at the microscopic level.

E
u

I

ie

The current I is in the direction that positive 
charges would move. It is in the direction of E.

u

The electron current ie is the motion of actual 
charge carriers. It is opposite to E and I.

u

FIGURE 27.13 The current I is opposite the 
direction of motion of the electrons in a 
metal.

The electron current in the copper wire 
of Examples 27.1 and 27.3 was 2.7 * 1019

electrons/s. To find the conventional 
current, multiply by e to get 4.3 C/s,  
or 4.3 A.
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The Current Density in a Wire
We found the electron current in a wire of cross-section area A to be ie = ne Avd. Thus 
the current I is

 I = eie = neevd A (27.12)

The quantity neevd depends on the charge carriers and on the internal electric field that 
determines the drift speed, whereas A is simply a physical dimension of the wire. It 
will be useful to separate these quantities by defining the current density J in a wire 
as the current per square meter of cross section:

 J = current density K
I
A

= neevd (27.13)

The current density has units of A/m2. A specific piece of metal, shaped into a wire 
with cross-section area A, carries current I = JA.

A 1.0 A current passes through a 1.0-mm-diameter copper wire. 
What are the current density and the drift speed of the electrons  
in the wire?

SOLVE We can find the drift speed from the current density. The 
current density is

J =
I
A

=
I

pr2 =
1.0 A

p10.00050 m22 = 1.3 * 106 A/m2

The electron drift speed is thus

vd =
J

nee
= 9.6 * 10-5 m/s = 0.096 mm/s

where the conduction-electron density for copper was taken from 
Table 27.1.

REVIEW We earlier used 1.0 * 10-4 m/s as a typical electron drift 
speed. This example shows where that value comes from.

EXAMPLE 27.4 ■ Finding the electron drift speed

Charge Conservation and Current
FIGURE 27.14 shows two identical lightbulbs in the wire connecting two charged capacitor 
plates. Both bulbs glow as the capacitor is discharged. How do you think the brightness 
of bulb A compares to that of bulb B? Is one brighter than the other? Or are they equally 
bright? Think about this before going on.

You might have predicted that B is brighter than A because the current I, which 
carries positive charges from plus to minus, reaches B first. In order to be glowing, 
B must use up some of the current, leaving less for A. Or perhaps you realized that 
the actual charge carriers are electrons, moving from minus to plus. The conventional 
current I may be mathematically equivalent, but physically it’s the negative electrons 
rather than positive charge that actually move. Because the electrons get to A first, 
you might have predicted that A is brighter than B.

In fact, both bulbs are equally bright. This is an important observation, one that 
demands an explanation. After all, “something” gets used up to make the bulb glow, so 
why don’t we observe a decrease in the current? Current is the amount of charge moving 
through the wire per second. There are only two ways to decrease I: either decrease  
the amount of charge, or decrease the charge’s drift speed through the wire. Electrons, 
the charge carriers, are charged particles. The lightbulb can’t destroy electrons without  
violating both the law of conservation of mass and the law of conservation of charge. Thus  
the amount of charge (i.e., the number of electrons) cannot be changed by a lightbulb.

Do charges slow down after passing through the bulb? This is a little trickier, so 
consider the fluid analogy shown in FIGURE 27.15. Suppose the water flows into one end 
at a rate of 2.0 kg/s. Is it possible that the water, after turning a paddle wheel, flows out 
the other end at a rate of only 1.5 kg/s? That is, does turning the paddle wheel cause  
the water current to decrease?

We can’t destroy water molecules any more than we can destroy electrons, we can’t  
increase the density of water by pushing the molecules closer together, and there’s  
nowhere to store extra water inside the pipe. Each drop of water entering the left end 
pushes a drop out the right end; hence water flows out at exactly the same rate it flows in.

B

A

FIGURE 27.14 How does the brightness of 
bulb A compare to that of bulb B?

v

The amount of water leaving the turbine equals
the amount entering; the number of electrons
leaving the bulb equals the number entering.

v

Flow of
electrons

FIGURE 27.15 A current dissipates energy, 
but the flow is unchanged.
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The same is true for electrons in a wire. The rate of electrons leaving a lightbulb  
(or any other device) is exactly the same as the rate of electrons entering the 
lightbulb. The current does not change. A lightbulb doesn’t “use up” current, but it 
does—like the paddlewheel in the fluid analogy—use energy. The kinetic energy of 
the electrons is dissipated by their collisions with the ions in the metal (atomic-level 
friction) as the electrons move through the atoms, making the wire hotter until, in the 
case of the lightbulb filament, it glows. The lightbulb affects the amount of current 
everywhere in the wire, a process we’ll examine later in the chapter, but the current 
doesn’t change as it passes through the bulb.

There are many issues that we’ll need to look at before we can say that we under-
stand how currents work, and we’ll take them one at a time. For now, we draw a first 
important conclusion: Due to conservation of charge, the current must be the same 
at all points in an individual current-carrying wire.

I

The current in a wire is
the same at all points.

I = constant

(a)

FIGURE 27.16 The sum of the currents into a junction must equal the sum of the currents 
leaving the junction.

Input currents

Output currents

Junction
(b)

Σ Iin = Σ Iout

FIGURE 27.16a summarizes the situation in a single wire. But what about FIGURE 27.16b,  
where one wire splits into two and two wires merge into one? A point where a wire 
branches is called a junction. The presence of a junction doesn’t change our basic 
reasoning. We cannot create or destroy electrons in the wire, and neither can we store 
them in the junction. The rate at which electrons flow into one or many wires must be 
exactly balanced by the rate at which they flow out of others. For a junction, the law 
of conservation of charge requires that

 a Iin = a Iout (27.14)

where, as usual, the Σ symbol means summation.
This basic conservation statement—that the sum of the currents into a junction 

equals the sum of the currents leaving—is called Kirchhoff’s junction law. The 
junction law, together with Kirchhoff’s loop law that you met in Chapter 26, will play 
an important role in circuit analysis in the next chapter.

STOP TO THINK 27.4 What are the magnitude and the  
direction of the current in the fifth wire?

6 A

4 A

3 A

2 A

?
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27.4 Conductivity and Resistivity
The current density J = neevd is directly proportional to the electron drift speed vd. 
We earlier used the microscopic model of conduction to find that the drift speed is 
vd = etE/m, where t is the mean time between collisions and m is the mass of an  
electron. Combining these, we find the current density is

 J = neevd = nee1etE
m 2 =

nee
2t

m
 E (27.15)

The quantity nee
2t/m depends only on the conducting material. According to 

Equation 27.15, a given electric field strength will generate a larger current density in a  
material with a larger electron density ne or longer times t between collisions than in  
materials with smaller values. In other words, such a material is a better conductor 
of current.

It makes sense, then, to define the conductivity s of a material as

 s = conductivity =
nee

2t

m
 (27.16)

Conductivity, like density, characterizes a material as a whole. All pieces of copper 
(at the same temperature) have the same value of s, but the conductivity of copper is 
different from that of aluminum. Notice that the mean time between collisions t can 
be inferred from measured values of the conductivity.

With this definition of conductivity, Equation 27.15 becomes

 J = sE (27.17)

This is a result of fundamental importance. Equation 27.17 tells us three things:

1. Current is caused by an electric field exerting forces on the charge carriers.
2. The current density, and hence the current I = JA, depends linearly on the 

strength of the electric field. To double the current, you must double the strength 
of the electric field that pushes the charges along.

3. The current density also depends on the conductivity of the material. Different 
conducting materials have different conductivities because they have different 
values of the electron density and, especially, different values of the mean time 
between electron collisions with the lattice of atoms.

The value of the conductivity is affected by the structure of a metal, by any impurities,  
and by the temperature. As the temperature increases, so do the thermal vibrations of 
the lattice atoms. This makes them “bigger targets” and causes collisions to be more 
frequent, thus lowering t and decreasing the conductivity. Metals conduct better at low  
temperatures than at high temperatures.

For many practical applications of current it will be convenient to use the inverse 
of the conductivity, called the resistivity:

 r = resistivity =
1
s

=
m

nee
2t

 (27.18)

The resistivity of a material tells us how reluctantly the electrons move in response to 
an electric field. TABLE 27.2 gives measured values of the resistivity and conductivity for 
several metals and for carbon. You can see that they vary quite a bit, with copper and  
silver being the best two conductors.

The units of conductivity, from Equation 27.17, are those of J/E, namely A C/N m2. 
These are clearly awkward. In the next section we will introduce a new unit called the 
ohm, symbolized by Ω (uppercase Greek omega). It will then turn out that resistivity 
has units of Ω  m and conductivity has units of Ω-1 m-1.

This woman is measuring her percentage 
body fat by gripping a device that sends 
a small electric current through her body. 
Because muscle and fat have different 
resistivities, the amount of current allows 
the fat-to-muscle ratio to be determined.

TABLE 27.2 Resistivity and conductivity 
of conducting materials

Material
Resistivity  

( �  m)
Conductivity  
( �−1 m−1)

Aluminum 2.8 * 10-8 3.5 * 107

Copper 1.7 * 10-8 6.0 * 107

Gold 2.4 * 10-8 4.1 * 107

Iron 9.7 * 10-8 1.0 * 107

Silver 1.6 * 10-8 6.2 * 107

Tungsten 5.6 * 10-8 1.8 * 107

Nichrome* 1.5 * 10-6 6.7 * 105

Carbon 3.5 * 10-5 2.9 * 104

*Nickel-chromium alloy used for heating 
wires.
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Superconductivity
In 1911, the Dutch physicist Heike Kamerlingh Onnes was studying the conductivity of 
metals at very low temperatures. Scientists had just recently discovered how to liquefy 
helium, and this opened a whole new field of low-temperature physics. As we noted 
above, metals become better conductors (i.e., they have higher conductivity and lower 
resistivity) at lower temperatures. But the effect is gradual. Onnes, however, found that 
mercury suddenly and dramatically loses all resistance to current when cooled below 
a temperature of 4.2 K. This complete loss of resistance at low temperatures is called  
superconductivity.

Later experiments established that the resistivity of a superconducting metal is not 
just small, it is truly zero. The electrons are moving in a frictionless environment, 
and charge will continue to move through a superconductor without an electric field. 
Superconductivity was not understood until the 1950s, when it was explained as being 
a specific quantum effect.

Superconducting wires can carry enormous currents because the wires are not 
heated by electrons colliding with the atoms. Very strong magnetic fields can be 
created with superconducting electromagnets, but applications remained limited 
for many decades because all known superconductors required temperatures less 
than 20 K. This situation changed dramatically in 1986 with the discovery of high- 
temperature superconductors. These ceramic-like materials are superconductors 
at temperatures as “high” as 125 K. Although -150°C may not seem like a high 
temperature to you, the technology for producing such temperatures is simple and 
inexpensive. Thus many new superconductor applications are likely to appear in  
coming years.

A 2.0-mm-diameter aluminum wire carries a current of 800 mA. What is the electric  
field strength inside the wire?

SOLVE The electric field strength is

E =
J
s

=
I

spr2 =
0.80 A

13.5 * 107 Ω-1 m-12p10.0010 m22 = 0.0073 V/m

where the conductivity of aluminum was taken from Table 27.2.

REVIEW This is a very small field in comparison with those we calculated in Chapters 
22 and 23. This calculation justifies the claim in Table 23.1 that a typical electric field 
strength inside a current-carrying wire is ≈0.01 V/m. It takes very few surface charges 
on a wire to create the weak electric field necessary to push a considerable current 
through the wire. The reason, once again, is the enormous value of the charge-carrier 
density ne. Even though the electric field is very tiny and the drift speed is agonizingly 
slow, a wire can carry a substantial current due to the vast number of charge carriers 
able to move.

EXAMPLE 27.5 ■ The electric field in a wire

Superconductors have unusual magnetic 
properties. Here a small permanent  
magnet levitates above a disk of the  
high-temperature superconductor 
YBa2Cu3O7 that has been cooled to  
liquid-nitrogen temperature.

STOP TO THINK 27.5 Rank in order, from largest to smallest, the current densities JA  
to JD in these four wires.

A CB D

r2rrr I 2I 2I I

s 2ss
s
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27.5 Resistance and Ohm’s Law
FIGURE 27.17 shows a section of wire of length L with a potential difference ∆V = V+ - V- 
between the ends. Perhaps the two ends of the wire are connected to a battery. A 
potential difference represents separated positive and negative charges, and, as you 
saw earlier, some of these charges move onto the surface of the wire. The nonuniform 
charge distribution creates an electric field in the wire, and that electric field is now 
driving current through the wire by pushing the charge carriers.

We found in Chapter 26 that the field and the potential are closely related to each 
other, with the field pointing “downhill,” perpendicular to the equipotential surfaces. 
Thus it should come as no surprise that the current through the wire is related to the 
potential difference between the ends of the wire.

Recall that the electric field component Es is related to the potential by Es = -dV/ds. 
We’re interested in only the electric field strength E = � Es � , so the minus sign isn’t 
relevant. The field strength is constant inside a constant-diameter conductor; thus

 E =
∆V
∆s

=
∆V
L

 (27.19)

Equation 27.19 is an important result: The electric field strength inside a constant- 
diameter conductor—the field that drives the current forward—is simply the potential 
difference between the ends of the conductor divided by its length.

Now we can use E to find the current I in the conductor. We found earlier that the 
current density is J = sE, and the current in a wire of cross-section area A is related 
to the current density by I = JA. Thus

 I = JA = AsE =
A
r

 E (27.20)

where r = 1/s is the resistivity.
Combining Equations 27.19 and 27.20, we see that the current is

 I =
A
rL

 ∆V  (27.21)

That is, the current is directly proportional to the potential difference between the 
ends of a conductor. We can cast Equation 27.21 into a more useful form if we define 
the resistance of a conductor to be

 R =
rL

A
 (27.22)

The resistance is a property of a specific conductor because it depends on the conductor’s 
length and diameter as well as on the resistivity of the material from which it is made.

The SI unit of resistance is the ohm, defined as

1 ohm = 1 Ω K 1 V/A

The ohm is the SI unit of resistance, although kilohms 11 kΩ = 103 Ω2 and megohms 
11 MΩ = 106 Ω2 are widely used. You can now see from Equation 27.22 why the 
resistivity r has units of Ω  m while the units of conductivity s are Ω-1 m-1.

The resistance of a wire or conductor increases as the length increases. This seems 
reasonable because it should be harder to push electrons through a longer wire than a 
shorter one. Decreasing the cross-section area also increases the resistance. This again 
seems reasonable because the same electric field can push more electrons through a 
fat wire than a skinny one.

   NOTE    It is important to distinguish between resistivity and resistance. Resistivity 
describes just the material, not any particular piece of it. Resistance characterizes a 
specific piece of the conductor with a specific geometry. The relationship between 
resistivity and resistance is analogous to that between mass density and mass.

Temperature sensors found in industry,  
automobiles, and digital thermometers 
frequently use a thermistor, a semiconductor- 
based resistor whose resistance value is 
very sensitive to temperature. For exam-
ple, one commercially available thermistor 
drops from 7400 Ω at 0°C to 2800 Ω at 
20°C. The current that flows in response 
to an applied voltage changes as the resis-
tance changes, in accordance with Ohm’s 
law. A small microprocessor uses a current 
measurement to calculate the resistance 
and thus infer the temperature.

∆V

L

I

Area A

The potential difference creates an
electric field inside the conductor
and causes charges to flow through it.

Equipotential surfaces
are perpendicular to the
electric field.

V+ V-

E
u

E
u

FIGURE 27.17 The current I is related to 
the potential difference ∆V.
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The definition of resistance allows us to write the current through a conductor as

 I =
∆V
R
  (Ohm>s law) (27.23)

In other words, establishing a potential difference ∆V  between the ends of a conductor 
of resistance R creates an electric field (via the nonuniform distribution of charges on 
the surface) that, in turn, causes a current I = ∆V /R through the conductor. The smaller  
the resistance, the larger the current. This simple relationship between potential  
difference and current is known as Ohm’s law.

   NOTE    Ohm’s law is true for a conductor of any shape, but Equation 27.22 for the 
value of the resistance is valid only for a conductor with a constant cross-section area.

Resistivity measurements on the leaves of corn plants are a good 
way to assess stress and the plant’s overall health. To determine re-
sistivity, the current is measured when a voltage is applied between 
two electrodes placed 20 cm apart on a leaf that is 2.5 cm wide and 
0.20 mm thick. The following data are obtained by using several 
different voltages:

Voltage (V) Current (MA)

5.0 2.3

10.0 5.1

15.0 7.5

20.0 10.3

25.0 12.2

What is the resistivity of the leaf tissue?

MODEL Model the leaf as a bar of length L = 0.20 m with a  
rectangular cross-section area A = 10.025 m212.0 * 10-4 m2 =  
5.0 * 10-6 m2. The potential difference creates an electric field  
inside the leaf and causes a current. The current and the potential 
difference are related by Ohm’s law.

SOLVE We can find the leaf’s resistivity r from its resistance R. 
Ohm’s law

I =
1
R

 ∆V

tells us that a graph of current versus potential difference should be 
a straight line through the origin with slope 1/R. The graph of the 

data in FIGURE 27.18 is as expected. Using the slope of the best-fit 
line, 0.50 mA/V, we find the leaf’s resistance to be

R =
1

0.50 mA/V
= 2.0 * 106 

V
A

= 2.0 * 106 Ω

We can now use Equation 27.22 to find the resistivity:

r =
AR
L

=
15.0 * 10-6 m2212.0 * 106 Ω2

0.20 m
= 50 Ω  m

REVIEW This is a huge resistivity compared to metals, but that’s  
not surprising; the conductivity of the salty fluids in a leaf is  
certainly much less than that of a metal. In fact, this value is typical 
of the resistivities of plant and animal tissues.

EXAMPLE 27.6 ■ The resistivity of a leaf

∆V (V)

3

0
0 5 10 15

Best-fit line

y = 0.50x - 0.02

20 25

6

9

12

I (mA)

FIGURE 27.18 A graph of current versus potential difference.

Batteries and Current
Our study of current has focused on the discharge of a capacitor because we can  
understand where all the charges are and how they move. By contrast, we can’t easily see  
what’s happening to the charges inside a battery. Nonetheless, current in most “real” 
circuits is driven by a battery rather than by a capacitor. Just like the wire discharging 
a capacitor, a wire connecting two battery terminals deflects a compass needle, gets 
warm, and makes a lightbulb glow brightly. These indicators tell us that charges flow 
through the wire from one terminal to the other.
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The one major difference between a capacitor and a battery is the duration of  
the current. The current discharging a capacitor is transient, ceasing as soon as the 
excess charge on the capacitor plates is removed. In contrast, the current supplied by a  
battery is sustained.

We can use the charge escalator model of a battery to understand why. FIGURE 27.19 
shows the charge escalator creating a potential difference ∆Vbat by lifting positive 
charge from the negative terminal to the positive terminal. Once at the positive termi-
nal, positive charges can move through the wire as current I. In essence, the charges are 
“falling downhill” through the wire, losing the energy they gained on the escalator. This  
energy transfer to the wire warms the wire.

Eventually the charges find themselves back at the negative terminal of the  
battery, where they can ride the escalator back up and repeat the journey. A battery, 
unlike a charged capacitor, has an internal source of energy (the chemical reac-
tions) that keeps the charge escalator running. It is the charge escalator that sustains  
the current in the wire by providing a continually renewed supply of charge at the 
battery terminals.

An important consequence of the charge escalator model, one you learned in  
the previous chapter, is that a battery is a source of potential difference. It is true 
that charges flow through a wire connecting the battery terminals, but current is a 
consequence of the battery’s potential difference. The battery’s emf is the cause;  
current, heat, light, sound, and so on are all effects that happen when the battery is 
used in certain ways.

Distinguishing cause and effect will be vitally important for understanding how a 
battery functions in a circuit. The reasoning is as follows:

1. A battery is a source of potential difference ∆Vbat. An ideal battery has ∆Vbat = E.
2. The battery creates a potential difference ∆Vwire = ∆Vbat between the ends of a 

wire.
3. The potential difference ∆Vwire causes an electric field E = ∆Vwire /L in the wire.
4. The electric field establishes a current I = JA = sAE in the wire.
5. The magnitude of the current is determined jointly by the battery and the wire’s 

resistance R to be I = ∆Vwire /R.

Resistors and Ohmic Materials
Circuit textbooks often write Ohm’s law as V = IR rather than I = ∆V/R. This can 
be misleading until you have sufficient experience with circuit analysis. First, Ohm’s 
law relates the current to the potential difference between the ends of the conductor. 
Engineers and circuit designers mean “potential difference” when they use the symbol 
V, but the symbol is easily misinterpreted as simply “the potential.” Second, V = IR or 
even ∆V = IR suggests that a current I causes a potential difference ∆V. As you have 
seen, current is a consequence of a potential difference; hence I = ∆V/R is a better  
description of cause and effect.

Despite its name, Ohm’s law is not a law of nature. It is limited to those materials  
whose resistance R remains constant—or very nearly so—during use. The materials  
to which Ohm’s law applies are called ohmic. FIGURE 27.20a shows that the current  
through an ohmic material is directly proportional to the potential difference. 
Doubling the potential difference doubles the current. Metal and other conductors are 
ohmic devices.

Because the resistance of metals is small, a circuit made exclusively of metal wires 
would have enormous currents and would quickly deplete the battery. It is useful to 
limit the current in a circuit with ohmic devices, called resistors, whose resistance  
is significantly larger than the metal wires. Resistors are made with poorly conducting  
materials, such as carbon, or by depositing very thin metal films on an insulating 
substrate.
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U

Ion
flow

Negative terminal
U = 0

Positive terminal
U = q∆Vbat

The charge “falls downhill” through 
the wire, but a current can be sustained
because of the charge escalator.

The charge escalator “lifts” charge from the 
negative side to the positive side. Charge q
gains energy ∆U = q∆Vbat.

Current I

I

I

In
cr

ea
si

ng
 U∆Vbat

FIGURE 27.19 A battery’s charge escalator 
causes a sustained current in a wire.

(b) Nonohmic materials

DiodeI

∆V

This curve is not
linear and does not
have a constant slope.

I

(a) Ohmic materials

∆V

The current is directly
proportional to the
potential difference.

The resistance is

R = 
1

slope

FIGURE 27.20 Current-versus-potential-
difference graphs for ohmic and  
nonohmic materials.
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810 CHAPTER 27  Current and Resistance

Some materials and devices are nonohmic, meaning that the current through the de-
vice is not directly proportional to the potential difference. For example, FIGURE 27.20b 
shows the I@versus@∆V graph of a commonly used semiconductor device called a diode. 
Diodes do not have a well-defined resistance. Batteries, where ∆V = E is determined 
by chemical reactions, and capacitors, where the relationship between I and ∆V differs  
from that of a resistor, are important nonohmic devices.

   NOTE    The tungsten filament in an incandescent lightbulb is an approximately ohmic 
resistor as long as it’s glowing, but over large temperature swings—the difference 
between off and on—the filament is nonohmic. Its resistance at room temperature is 
much smaller than its resistance when hot. A light-emitting diode (LED) is a special 
type of diode, so an LED lightbulb is always nonohmic.

We can identify three important classes of ohmic circuit materials:

1. Wires are metals with very small resistivities r and thus very small resistances 
1R V 1 Ω2. An ideal wire has R = 0 Ω; hence the potential difference be-
tween the ends of an ideal wire is ∆V = 0 V even if there is a current in it. We 
will usually adopt the ideal-wire model of assuming that any connecting wires 
in a circuit are ideal.

2. Resistors are poor conductors with resistances usually in the range 101 to 106 Ω. 
They are used to control the current in a circuit. Most resistors in a circuit have 
a specified value of R, such as 500 Ω.

3. Insulators are materials such as glass, plastic, or air. An ideal insulator has 
R = ∞ Ω; hence there is no current in an insulator even if there is a potential 
difference across it 1I = ∆V/R = 0 A2. This is why insulators can be used to 
hold apart two conductors at different potentials. All practical insulators have 
R W 109 Ω and can be treated, for our purposes, as ideal.

   NOTE    Ohm’s law will be an important part of circuit analysis in the next chapter 
because resistors are essential components of almost any circuit. However, it is 
important that you apply Ohm’s law only to the resistors and not to anything else.

FIGURE 27.21a shows a resistor connected to a battery with current-carrying wires. 
There are no junctions; hence the current I through the resistor is the same as the cur-
rent in each wire. Because the wire’s resistance is much less than that of the resistor, 
Rwire V Rresist, the potential difference ∆Vwire = IRwire between the ends of each wire 
is much less than the potential difference ∆Vresist = IRresist across the resistor.

If we assume ideal wires with Rwire = 0 Ω, then ∆Vwire = 0 V and all the voltage 
drop occurs across the resistor. In this ideal-wire model, shown in FIGURE 27.21b,  
the wires are equipotentials, and the segments of the voltage graph corresponding to  
the wires are horizontal. As we begin circuit analysis in the next chapter, we will 
assume that all wires are ideal unless stated otherwise. Thus our analysis will be  
focused on the resistors.

(a) The current is constant along the
wire-resistor-wire combination.

(b)

In the ideal-wire
model there is no
voltage drop along
the wires. All the
voltage drop is
across the resistor:
∆Vresist = ∆Vbat.

V

Wire Resistor
Distance around circuit

Wire

∆Vresist

∆Vbat

Wire
II

Resistor

E

FIGURE 27.21 The potential along a  
wire-resistor-wire combination.

The resistors used in circuits range from a 
few ohms to millions of ohms of resistance.

What resistor would have a 15 mA current if connected across the terminals of a 9.0 V 
battery?

MODEL Assume the resistor is connected to the battery with ideal wires.

SOLVE Connecting the resistor to the battery with ideal wires makes ∆Vresist =  
∆Vbat = 9.0 V. From Ohm’s law, the resistance giving a 15 mA current is

R =
∆Vresist

I
=

9.0 V
0.015 A

= 600 Ω

REVIEW Currents of a few mA and resistances of a few hundred ohms are quite typical 
of real circuits.

EXAMPLE 27.7 ■ A battery and a resistor
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27.5 Resistance and Ohm’s Law 811

STOP TO THINK 27.6 A wire connects 
the positive and negative terminals of 
a battery. Two identical wires connect 
the positive and negative terminals of 
an identical battery. Rank in order, from 
largest to smallest, the currents I1 to I4 at 
points 1 to 4.

E E

1

2

3

Identical wires

Identical batteries

4

  CHAPTER 27 CHALLENGE EXAMPLE    Measuring body composition

The woman in the photo on page 805 is gripping a device that mea-
sures body fat. To illustrate how this works, FIGURE 27.22 models an 
upper arm as part muscle and part fat, showing the resistivities of 
each. Nonconductive elements, such as skin and bone, have been 
ignored. This is obviously not a picture of the actual structure, but 
gathering all the fat tissue together and all the muscle tissue together 
is a model that predicts the arm’s electrical character quite well.

A 0.87 mA current is recorded when a 0.60 V potential differ-
ence is applied across an upper arm having the dimensions shown 
in the figure. What are the percentages of muscle and fat in this 
person’s upper arm?

MODEL Model the muscle and the fat as separate resistors con-
nected to a 0.60 V battery. Assume the connecting wires to be ideal, 
with no “loss” of potential along the wires.

VISUALIZE FIGURE 27.23 shows the circuit, with the side-by-side 
muscle and fat resistors connected to the two terminals of the  
battery.

SOLVE The measured current of 0.87 mA is Itotal, the current trav-
eling from the battery to the arm and later back to the battery. This 
current splits at the junction between the two resistors. Kirchhoff’s 
junction law, for the conservation of charge, requires

Itotal = Imuscle + Ifat

The current through each resistor can be found from Ohm’s law: 
I = ∆V/R. Each resistor has ∆V = 0.60 V because each is connec-
ted to the battery terminals by lossless, ideal wires, but they have 
different resistances.

Let the fraction of muscle tissue be x; the fraction of fat is then 
1 - x. If the cross-section area of the upper arm is A = pr2, then  
the muscle resistor has Amuscle = xA while the fat resistor has 
Afat = 11 - x2A. The resistances are related to the resistivities  
and the geometry by

Rmuscle =
rmuscle L

Amuscle
=

rmuscle L

xpr2

Rfat =
rfat L

Afat
=

rfat L

11 - x2pr2

The currents are thus

Imuscle =
∆V

Rmuscle
=

xpr2 ∆V
rmuscle L

= 0.93x mA

Ifat =
∆V
Rfat

=
11 - x2pr2 ∆V

rfat L
= 0.4811 - x2 mA

The sum of these is the total current:

  Itotal = 0.87 mA = 0.93x mA + 0.4811 - x2 mA

  = 10.48 + 0.45x2 mA

Solving, we find x = 0.87. This subject’s upper arm is 87% muscle 
tissue, 13% fat tissue.

REVIEW The percentages seem reasonable for a healthy adult. A 
real measurement of body fat requires a more detailed model of 
the human body, because the current passes through both arms and 
across the chest, but the principles are the same.

Fat tissue
25 Ωm

Muscle tissue
13 Ωm

8.0 cm

25 cm

FIGURE 27.22 A simple model for the resistance of an arm.

FIGURE 27.23 Circuit for passing current through the upper arm.
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The goal of Chapter 27 has been to learn how and why charge 
moves through a wire as a current.

Current is a nonequilibrium motion  
of charges sustained by an electric field. 
Nonuniform surface charge density creates  
an electric field in a wire. The electric field 
pushes the electron current ie in a direction  
opposite to E

u
. The conventional current I  

is in the direction in which positive charge  
seems to move.

Electron current
ie = rate of electron flow

Ne = ie ∆t

Conventional current
I = rate of charge flow = eie

Q = I ∆t

Current density
J = I/A

Conservation of Charge
The current is the same at any two 
points in a wire.
At a junction,

a Iin = a Iout

This is Kirchhoff’s junction law.

General Principles

Summary

E
u

I

ie

A

Same I

Iin
Iout

Sea of electrons  

Conduction electrons move freely around 
the positive ions that form the atomic 
lattice.

Conduction  

An electric field causes a slow drift at speed 
vd to be superimposed on the rapid but 
random thermal motions of the electrons.

Collisions of electrons with the ions transfer energy to the atoms. 
This makes the wire warm and lightbulbs glow. More collisions 
mean a higher resistivity r and a lower conductivity s.

The drift speed is vd =
et
m

 E, where t is the mean time between 
collisions.

The electron current is related to the drift speed by

ie = ne Avd

where ne is the electron density.

An electric field E in a conductor causes a current density 
J = neevd = sE, where the conductivity is

s =
nee

2t

m
The resistivity is r = 1/s.

Important Concepts

vd

E
u

Resistors  

A potential difference ∆Vwire between the ends of  
a wire creates an electric field inside the wire:

Ewire =
∆Vwire

L

The electric field causes a current in the direction  
of decreasing potential.

The size of the current is

I =
∆Vwire

R

where R =
rL

A
 is the wire’s resistance.

This is Ohm’s law.

Applications

∆Vwire

D
ec

re
as

in
g 

V
I

current, I
drift speed, vd

electron current, ie

mean time between  
 collisions, t

ampere, A
current density, J
junction
Kirchhoff’s junction law
conductivity, s

resistivity, r
superconductivity
resistance, R
ohm, Ω
Ohm’s law

resistor
ideal wire
ideal insulator
ideal-wire model

Terms and Notation
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Conceptual Questions 813

CONCEPTUAL QUESTIONS

FIGURE Q27.1

FIGURE Q27.4

I2 I3

I1

I4

FIGURE Q27.6

A

B

C

FIGURE Q27.7

A B C

FIGURE Q27.8

2r
4L

EDCBA

L
r

L
2r r

2L2L
2r

FIGURE Q27.11

1. Suppose a time machine has just brought you forward from  
1750 (post-Newton but pre-electricity) and you’ve been shown 
the lightbulb demonstration of FIGURE Q27.1. Do observations or 
simple measurements you might make—measurements that must  
make sense to you with your 1700s knowledge—prove that some-
thing is flowing through the wires? Or might you advance an 
alternative hypothesis for why the bulb is glowing? If your answer to 
the first question is yes, state what observations and/or measure-
ments are relevant and the reasoning from which you can infer that 
something must be flowing. If not, can you offer an alternative 
hypothesis about why the bulb glows that could be tested?

2. Consider a lightbulb circuit such as the one in FIGURE Q27.1.
a. From the simple observations and measurements you can 

make on this circuit, can you distinguish a current composed 
of positive charge carriers from a current composed of nega-
tive charge carriers? If so, describe how you can tell which it 
is. If not, why not?

b. One model of current is the motion of discrete charged parti-
cles. Another model is that current is the flow of a continuous 
charged fluid. Do simple observations and measurements on 
this circuit provide evidence in favor of either one of these 
models? If so, describe how. If not, why not?

3. The electron drift speed in a wire is exceedingly slow—typically 
only a fraction of a millimeter per second. Yet when you turn on 
a flashlight switch, the light comes on almost instantly. Resolve 
this apparent paradox.

4. Is FIGURE Q27.4 a possible surface charge distribution for a  
current-carrying wire? If so, in which direction is the current?  
If not, why not?

5. What is the difference between current and current density?
6. All the wires in FIGURE Q27.6 are made 

of the same material and have the same 
diameter. Rank in order, from largest to 
smallest, the currents I1 to I4. Explain.

7. Both batteries in FIGURE Q27.7 are ideal and identical, and all 
lightbulbs are the same. Rank in order, from brightest to least 
bright, the brightness of bulbs A to C. Explain.

8. Both batteries in FIGURE Q27.8 are ideal and identical, and all 
lightbulbs are the same. Rank in order, from brightest to least 
bright, the brightness of bulbs A to C. Explain.

9. The wire in FIGURE Q27.9 consists of 
two segments of different diameters 
but made from the same metal. The 
current in segment 1 is I1.
a. Compare the currents in the two 

segments. That is, is I2 greater than, less than, or equal to I1? 
Explain.

b. Compare the current densities J1 and J2 in the two segments.
c. Compare the electric field strengths E1 and E2 in the two 

segments.
d. Compare the drift speeds (vd)1 and (vd)2 in the two segments.

10. The current in a wire is halved. What happens to (a) the current 
density, (b) the conduction electron density, (c) the mean time 
between collisions, and (d) the electron drift velocity? Are each 
of these doubled, halved, or unchanged? Explain.

11. The wires in FIGURE Q27.11 are all made of the same material. 
Rank in order, from largest to smallest, the resistances RA to RE 
of these wires. Explain.

I1 1 2

FIGURE Q27.9

12. Which, if any, of these statements are true? (More than one may 
be true.) Explain. Assume the batteries are ideal.
a. A battery supplies the energy to a circuit.
b. A battery is a source of potential difference; the potential 

difference between the terminals of the battery is always the 
same.

c. A battery is a source of current; the current leaving the bat-
tery is always the same.
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814 CHAPTER 27  Current and Resistance

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 27.1 The Electron Current

1. || The electron drift speed in a 1.0-mm-diameter gold wire is 
5.0 * 10-5 m/s. How long does it take 1 mole of electrons to flow 
through a cross section of the wire?

2. || 2.5 * 1020 electrons flow through a cross section of a 4.0-mm-  
diameter copper wire in 1.0 s. What is the electron drift speed?

3. || Electrons flow through a 2.5-mm-diameter iron wire at 
3.0 * 10-4 m/s. How many electrons move through a cross sec- 
tion of the wire each day?

4. || In 2.0 ms, 5.1 * 1017 electrons flow with a drift speed of 
0.75 mm/s through a cross section of a 2.0 mm *  2.0 mm square 
wire. Of what metal is the wire made?

Section 27.2 Creating a Current

5. || a. How many conduction electrons are there in a 1.0-mm- 
diameter gold wire that is 10 cm long?

b. How far must the sea of electrons in the wire move to  
deliver -32 nC of charge to an electrode?

6. || A 2.0 * 10-3 V/m electric field creates a 3.5 * 1017 elec/s cur-
rent in a 1.0-mm-diameter aluminum wire. What are (a) the drift 
speed and (b) the mean time between collisions for electrons  
in this wire?

7. | The electron drift speed is 3.5 * 10-4 m/s in a metal with  
a mean time between collisions of 3.0 * 10-14 s. What is the 
electric field strength?

8. || The mean time between collisions for electrons in a gold wire 
is 25 fs, where 1 fs = 1 femtosecond = 10-15 s .
a. What is the electron drift speed in a 35 mV/m electric field?
b. How many minutes does it take for an electron to move 1.0 m 

down the wire?
c. How many times does the electron collide with an ion while 

moving this distance?

Section 27.3 Current and Current Density

9. | The current in a 100 watt lightbulb is 0.85 A. The filament 
inside the bulb is 0.25 mm in diameter.
a. What is the current density in the filament?
b. What is the electron current in the filament?

10. | A superconducting magnet carries a 100 A current through a 
0.50-mm-diameter superconducting wire that is wound into a coil.
a. What is the current density in the wire?
b. How much charge flows through the wire in 15 minutes?

11. || In an integrated circuit, the current density in a gold film,  
3.5 mm thick and 85 mm wide, is 9 * 105 A/m2. How much 
charge flows through the film in 10 minutes?

12. | The current in an electric hair dryer is 12.0 A. How many 
electrons flow through the hair dryer in 3.0 min?

13. | When a nerve cell fires, charge is transferred across the 
cell membrane to change the cell’s potential from negative to 
positive. For a typical nerve cell, 9.0 pC of charge flows in a 
time of 0.50 ms. What is the average current through the cell 
membrane?

14. | The current in a 3.0 mm * 3.0 mm square copper wire is 3.5 A.  
What are (a) the current density and (b) the electron drift speed?

15. || A hollow copper wire with an inner diameter of 0.50 mm and 
an outer diameter of 1.0 mm carries a current of 12 A. What is 
the current density in the wire?

16. | A cell phone battery is rated at 4000 mA h, meaning that after 
being fully charged, it can supply a 4000 mA current for 1 h 
before being completely discharged. If, after the battery is fully 
charged, you leave the phone on until the battery is completely 
dead, how much charge leaves the battery?

Section 27.4 Conductivity and Resistivity

17. || The electric field in a 1.5 mm * 1.5 mm square copper wire is 
0.042 V/m. What is the current in the wire?

18. || A square silver wire is hollow, with outer dimensions 
2.0 mm *  2 .0 mm and inner dimensions 1.0 mm *  1 .0 mm. 
What electric field strength is needed to create a 5.0 A current in 
the wire?

19. || What electric field strength is needed to create a 5.0 A current 
in a 2.0-mm-diameter iron wire?

20. || A 15-cm-long nichrome wire is connected across the termi-
nals of a 1.5 V battery.
a. What is the electric field inside the wire?
b. What is the current density inside the wire?
c. If the current in the wire is 2.0 A, what is the wire’s diameter?

21. || A 3.0-mm-diameter wire carries a 12 A current when the 
electric field is 0.085 V/m. What is the wire’s resistivity?

22. | A 0.0056 V/m electric field creates a 1.1 A current in a 
2.0-mm-diameter wire. What material is the wire made of?

23. || A hollow copper sphere has inner radius 1.0 cm and outer ra-
dius 2.5 cm. A 5.0 A current flows radially outward from the inner 
surface to the outer surface. What is the electric field strength at 
r = 2.0 cm?

24. | The two segments of the wire in  
FIGURE EX27.24 have equal diam-
eters but different conductivities s1  
and s2. Current I passes through this wire. If the conductivities  
have the ratio s2/s1 = 2, what is the ratio E2/E1 of the electric  
field strengths in the two segments of the wire?

Section 27.5 Resistance and Ohm’s Law

25. | Wire 1 and 2 are made of the same metal. Wire 2 has thrice the 
length and thrice the diameter of wire 1. What are the ratios (a) 
r1/r2 of the resistivity and (b) R2/R1 of the resistances of the two 
wires?

26. | A 1.5 V battery provides 0.50 A of current.
a. At what rate (C/s) is charge lifted by the charge escalator?
b. How much work does the charge escalator do to lift 1.0 C of 

charge?
c. What is the power output of the charge escalator?

27. || An engineer cuts a 1.0-m-long, 0.33-mm-diameter piece of 
wire, connects it across a 1.5 V battery, and finds that the current 
in the wire is 8.0 A. Of what material is the wire made?

28. || What is the resistance of
a. A 2.0-m-long gold wire that is 0.20 mm in diameter?
b. A 10-cm-long piece of carbon with a 1.0 mm * 1.0 mm 

square cross section?
29. | The electric field inside a 30-cm-long copper wire is 

5.0 mV/m. What is the potential difference between the ends of 
the wire?

s1 Is2

FIGURE EX27.24
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a. How many electrons strike the screen each second?
b. What is the current density in the electron beam?
c. The electrons move with a velocity of 4.0 * 107 m/s. What 

electric field strength is needed to accelerate electrons from 
rest to this velocity in a distance of 5.0 mm?

d. Each electron transfers its kinetic energy to the picture tube 
screen upon impact. What is the power delivered to the screen 
by the electron beam?

42. || A sculptor has asked you to help electroplate gold onto a brass 
statue. You know that the charge carriers in the ionic solution 
are singly charged gold ions, and you’ve calculated that you must  
deposit 0.50 g of gold to reach the necessary thickness. How 
much current do you need, in mA, to plate the statue in 3.0 hours?

43. || FIGURE P27.43 shows a 4.0-cm-
wide plastic film being wrapped 
onto a 2.0-cm-diameter roller that 
turns at 90 rpm. The plastic has a 
uniform surface charge density of 
-2.0 nC/cm2.
a. What is the current of the moving film?
b. How long does it take the roller to accumulate a charge of 

-10 mC?
44. || Thermistors, resistors whose resistance is a sensitive function 

of temperature, are widely used in industry and consumer de-
vices to measure temperature. The resistance of a thermistor at 
temperature T can be modeled as R = R0 exp3b 11/T - 1/T024 , 
where T0 is a reference temperature, the temperatures are in 
K, and b is a constant with units of K. Suppose you connect a 
thermistor to a 10.0 V battery and measure the current through 
it at different temperatures. At 25.0°C, which you select as your 
reference temperature, the current is 10.0 mA.
a. What is the value of R0?
b. Raising the temperature to 30.0°C causes the current to increase 

to 12.5 mA. What is the value of b?
c. What is the temperature in °C when the current is 5.0 mA?

45. || You’ve been asked to determine whether a new material your 
company has made is ohmic and, if so, to measure its electrical 
conductivity. Taking a 0.50 mm * 1.0 mm * 45 mm sample, you 
wire the ends of the long axis to a power supply and then measure 
the current for several different potential differences. Your data  
are as follows:

Voltage (V) Current (A)

0.200 0.47

0.400 1.06

0.600 1.53

0.800 1.97

Use an appropriate graph of the data to determine whether the 
material is ohmic and, if so, its conductivity.

46. | The biochemistry that takes place inside cells depends on 
various elements, such as sodium, potassium, and calcium, that 
are dissolved in water as ions. These ions enter cells through nar-
row pores in the cell membrane known as ion channels. Each ion 
channel, which is formed from a specialized protein molecule, is 
selective for one type of ion. Measurements with microelectrodes 
have shown that a 0.30-nm-diameter potassium ion 1K+2 channel  
carries a current of 1.8 pA.
a. How many potassium ions pass through if the ion channel 

opens for 1.0 ms?
b. What is the current density in the ion channel?

30. || a. How long must a 0.60-mm-diameter aluminum wire be to 
have a 0.50 A current when connected to the terminals of 
a 1.5 V flashlight battery?

b. What is the current if the wire is half this length?
31. || The terminals of a 0.70 V watch battery are connected by a 

100-m-long gold wire with a diameter of 0.10 mm. What is the 
current in the wire?

32. || The femoral artery is the large artery that carries blood to the 
leg. What is the resistance of a 20-cm-long column of blood in 
a 1.0-cm-diameter femoral artery? The conductivity of blood is 
0.63 Ω-1 m-1.

33. | Household wiring often uses 2.0-mm-diameter copper wires. 
The wires can get rather long as they snake through the walls 
from the fuse box to the farthest corners of your house. What 
is the potential difference across a 20-m-long, 2.0-mm-diameter 
copper wire carrying an 8.0 A current?

34. | An ideal battery would produce an extraordinarily large  
current if “shorted” by connecting the positive and negative  
terminals with a short wire of very low resistance. Real batteries 
do not. The current of a real battery is limited by the fact that 
the battery itself has resistance. What is the resistance of a 9.0 V 
battery that produces a 21 A current when shorted by a wire of 
negligible resistance?

35. | FIGURE EX27.35 is a current-  
versus-potential-difference graph 
for a material. What is the material’s 
resistance?

∆V (V)

1

0
0 50 100

2

I (A)

FIGURE EX27.35

36. || You want to make a 25 Ω resistor from a poorly conducting 
material that has resistivity 0.020 Ω  m. The resistor will be a 
cylinder with a length 5 times its diameter. Current will flow 
lengthwise through the resistor. What should be its length in cm?

37. || The resistance of a very fine aluminum wire with a 10 mm *
10 mm square cross section is 1000 Ω. A 1000 Ω resistor is made 
by wrapping this wire in a spiral around a 3.0-mm-diameter  
glass core. How many turns of wire are needed?

38. || Pencil “lead” is actually carbon. What is the current if a 9.0 V  
potential difference is applied between the ends of a 0.70-mm- 
diameter, 6.0-cm-long lead from a mechanical pencil?

Problems
39. || Energetic particles, such as protons, can be detected with a 

silicon detector. When a particle strikes a thin piece of silicon,  
it creates a large number of free electrons by ionizing silicon 
atoms. The electrons flow to an electrode on the surface of the 
detector, and this current is then amplified and detected. In one 
experiment, each incident proton creates, on average, 35,000 
electrons; the electron current is amplified by a factor of 100;  
and the experimenters record an amplified current of 3.5 mA. 
How many protons are striking the detector per second?

40. || For what electric field strength would the current in a 
2.0-mm-diameter nichrome wire be the same as the current in 
a 1.0-mm-diameter aluminum wire in which the electric field 
strength is 0.0080 V/m?

41. || The electron beam inside an old television picture tube is  
0.40 mm in diameter and carries a current of 50 mA. This  
electron beam impinges on the inside of the picture tube screen.

2.0 cm

4.0 cm

FIGURE P27.43
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816 CHAPTER 27  Current and Resistance

56. || A hollow metal cylinder has inner radius a, outer radius b, 
length L, and conductivity s. The current I is radially outward 
from the inner surface to the outer surface.
a. Find an expression for the electric field strength inside the 

metal as a function of the radius r from the cylinder’s axis.
b. Evaluate the electric field strength at the inner and outer 

surfaces of an iron cylinder if a = 1.0 cm, b = 2.5 cm, 
L = 10 cm, and I = 25 A.

57. || The resistivity of a metal increases slightly with increased 
temperature. This can be expressed as r = r031 + a1T - T024 , 
where T0 is a reference temperature, usually 20°C, and a is the 
temperature coefficient of resistivity.
a. First find an expression for the current I through a wire of 

length L, cross-section area A, and temperature T when con-
nected across the terminals of an ideal battery with terminal 
voltage ∆V . Then, because the change in resistance is small, 
use the binomial approximation to simplify your expression. 
Your final expression should have the temperature coefficient 
a in the numerator.

b. For copper, a = 3.9 * 10-3 °C-1 . Suppose a 2.5-m-long, 
0.40-mm-diameter copper wire is connected across the ter-
minals of a 1.5 V ideal battery. What is the current in the  
wire at 20°C?

c. What is the rate, in A/°C, at which the current changes with 
temperature as the wire heats up?

58. || The total amount of charge in coulombs that has entered a 
wire at time t is given by the expression Q = 4t - t2, where t is in 
seconds and t Ú 0.
a. Find an expression for the current in the wire at time t.
b. Graph I versus t for the interval 0 … t … 4 s.

59. || The total amount of charge that has entered a wire at time t is 
given by the expression Q = 120 C211 - e-t/12.0 s22, where t is in 
seconds and t Ú 0.
a. Find an expression for the current in the wire at time t.
b. What is the maximum value of the current?
c. Graph I versus t for the interval 0 … t … 10 s.

60. || The current in a wire at time t is given by the expression 
I = 12.0 A2e-t/12.0 ms2, where t is in microseconds and t Ú 0.
a. Find an expression for the amount of charge (in coulombs) 

that has entered the wire at time t. The initial conditions are  
Q = 0 C at t = 0 ms.

b. Graph Q versus t for the interval 0 … t … 10 ms.
61. || The current supplied by a battery slowly decreases as the bat-

tery runs down. Suppose that the current as a function of time is 
I = 10.75 A2e-t/16 h2. What is the total number of electrons trans-
ported from the positive electrode to the negative electrode by 
the charge escalator from the time the battery is first used until it 
is completely dead?

62. | What diameter should the nichrome wire in FIGURE P27.62 be 
in order for the electric field strength to be the same in both wires?

47. || A 1.5-m-long wire is made of a metal with the same electron 
density as copper. The wire is connected across the terminals 
of a 9.0 V battery. What conductivity would the metal need for 
the drift velocity of electrons in the wire to be 60 mph? By what 
factor is this larger than the conductivity of copper?

48. | The starter motor of a car engine draws a current of 150 A 
from the battery. The copper wire to the motor is 5.0 mm in  
diameter and 1.2 m long. The starter motor runs for 0.80 s until 
the car engine starts.
a. How much charge passes through the starter motor?
b. How far does an electron travel along the wire while the starter  

motor is on?
49. || The resistivity of a metal increases slightly with increased 

temperature. This can be expressed as r = r03         

1 + a1T - T024 , 
where T0 is a reference temperature, usually 20°C, and a 
is the temperature coefficient of resistivity. For copper, 
a = 3.9 * 10-3 °C-1 . Suppose a long, thin copper wire has a  
resistance of 0.25 Ω at 20°C. At what temperature, in °C, will its 
resistance be 0.30 Ω?

50. || Variations in the resistivity of blood can give valuable clues 
about changes in various properties of the blood. Suppose a 
medical device inserts microelectrodes into a 1.5-mm-diameter 
vein at positions 5.0 cm apart. What is the blood resistivity if a 
9.0 V potential difference causes a 230 mA current through the 
blood in the vein?

51. || The conducting path between the right hand and the left hand 
can be modeled as a 10-cm-diameter, 160-cm-long cylinder. The 
average resistivity of the interior of the human body is 5.0 Ω  m. 
Dry skin has a much higher resistivity, but skin resistance can be 
made negligible by soaking the hands in salt water. If skin resis-
tance is neglected, what potential difference between the hands 
is needed for a lethal shock of 100 mA across the chest? Your 
result shows that even small potential differences can produce 
dangerous currents when the skin is wet.

52. ||| The conductive tissues of the upper leg can be modeled as a 
40-cm-long, 12-cm-diameter cylinder of muscle and fat. The re-
sistivities of muscle and fat are 13 Ω  m and 25 Ω  m, respectively. 
One person’s upper leg is 82% muscle, 18% fat. What current is 
measured if a 1.5 V potential difference is applied between the 
person’s hip and knee?

53. || Electrical engineers sometimes use a wire’s conductance, 
G = sA/L, instead of its resistance.
a. Write Ohm’s law in terms of conductance, starting with 

“∆V = ”.
b. What is the conductance of a 5.4-cm-long, 0.15-mm-diameter 

tungsten wire?
c. A 1.5 A current flows through the wire of part b. What is the 

potential difference between the ends of the wire?
54. || You need to design a 1.0 A fuse that “blows” if the current  

exceeds 1.0 A. The fuse material in your stockroom melts at a  
current density of 500 A/cm2. What diameter wire of this material  
will do the job?

55. || A superconducting wire has a critical current density at  
which the wire suddenly loses its superconductivity and becomes 
a normal conductor. This is called a quench of superconductivity,  
and it’s potentially very damaging for a superconducting mag-
net. A superconducting magnet you’re designing will wind a coil 
with a 1.0-mm-diameter wire whose critical current density is 
950 A/mm2. To have a margin of safety, you need to limit the 
maximum possible current density to 80% of the critical value. 
What is the maximum allowable current in the wire?

I

Nichrome

Aluminum
1.0 mm diameter

FIGURE P27.62

I = 2.0 A

vd = 2.0 * 10-4 m/s

1.0 mm
2.0 mm

FIGURE P27.63

63. | The two wires in FIGURE P27.63 are made of the same mate-
rial. What are (a) the current and (b) the electron drift speed in 
the 2.0-mm-diameter segment of the wire?
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b. Does the current increase with time, decrease with time, or 
remain steady? Explain.

c. What is the total amount of energy dissipated in the wire?
71. || A long, round wire has resistance R. What will the wire’s re-

sistance be if you stretch it to twice its initial length?

Challenge Problems
72. ||| A 5.0-mm-diameter proton beam carries a total current of  

1.5 mA. The current density in the proton beam, which increases 
with distance from the center, is given by J = Jedge1r/R2, where R 
is the radius of the beam and Jedge is the current density at the edge.
a. How many protons per second are delivered by this proton beam?
b. Determine the value of Jedge.

73. ||| A wire of radius R has a current density that increases linearly 
with distance from the center of the wire: J1r2 = kr, where k is 
a constant. Find an expression for k in terms of R and the total 
current I carried by the wire.

74. ||| FIGURE CP27.74 shows a wire that is made of two equal-  
diameter segments with conductivities s1 and s2. When current 
I passes through the wire, a thin layer of charge appears at the 
boundary between the segments.
a. Find an expression for the surface charge density h on the 

boundary. Give your result in terms of I, s1, s2, and the wire’s 
cross-section area A.

b. A 1.0-mm-diameter wire made of copper and iron segments 
carries a 5.0 A current. How much charge accumulates at the 
boundary between the segments?

64. || An aluminum wire consists of the 
three segments shown in FIGURE P27.64. 
The current in the top segment is 10 A. 
For each of these three segments, find the
a. Current I.
b. Current density J.
c. Electric field E.
d. Drift velocity vd.
e. Electron current ie.
Place your results in a table for easy 
viewing.

65. | You’ve decided to protect your house by placing a 5.0-m-tall 
iron lightning rod next to the house. The top is sharpened to a 
point and the bottom is in good contact with the ground. From 
your research, you’ve learned that lightning bolts can carry up to 
50 kA of current and last up to 50 ms.
a. How much charge is delivered by a lightning bolt with these 

parameters?
b. You don’t want the potential difference between the top and 

bottom of the lightning rod to exceed 100 V. What minimum 
diameter must the rod have?

66. || A 2.0-mm-diameter wire formed from a composite material 
has a resistivity that decreases with distance along the wire as 
r = r0e

-ax, where r0 = 4.0 * 10-5 Ω  m, x (in m) is measured 
from one end of the wire, and the constant a = 4.0 m-1. What is 
the resistance of a 50-cm-long length of this wire?

67. || A 20-cm-long hollow nichrome tube of inner diameter 2.8 mm, 
outer diameter 3.0 mm is connected, at its ends, to a 3.0 V battery. 
What is the current in the tube?

68. | The batteries in FIGURE P27.68 are identical. Both resistors 
have equal currents. What is the resistance of the resistor on the 
right?

10 A

2.0 mm

2.0 mm

1.0 mm

FIGURE P27.64

RE ?

E

FIGURE P27.68

t

∆Vbat (V)

0 2 h
0

1.5

FIGURE P27.69

s1 s2 I

Surface charge density hFIGURE CP27.74

69. || A 1.5 V flashlight battery is connected to a wire with a  
resistance of 3.0 Ω. FIGURE P27.69 shows the battery’s potential 
difference as a function of time. What is the total charge lifted by  
the charge escalator?

70. || Two 10-cm-diameter metal plates 1.0 cm apart are charged to 
{12.5 nC. They are suddenly connected together by a 0.224-mm- 
diameter copper wire stretched taut from the center of one plate to  
the center of the other.
a. What is the maximum current in the wire?

75. ||| A 300 mF capacitor is charged to 9.0 V, then connected in 
parallel with a 5000 Ω resistor. The capacitor will discharge 
because the resistor provides a conducting pathway between the 
capacitor plates, but much more slowly than if the plates were 
connected by a wire. Let t = 0 s be the instant the fully charged 
capacitor is first connected to the resistor. At what time has the 
capacitor voltage decreased by half, to 4.5 V?
Hint: The current through the resistor is related to the rate at 
which charge is leaving the capacitor. Consequently, you’ll need 
a minus sign that you might not have expected.

76. ||| A thin metal cylinder of length L and radius R1 is coaxial 
with a thin metal cylinder of length L and a larger radius R2 .  
The space between the two coaxial cylinders is filled with a 
material that has resistivity r . The two cylinders are connected  
to the terminals of a battery with potential difference ∆V, causing  
current I to flow radially from the inner cylinder to the outer 
cylinder. Find an expression for the resistance of this device.
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Fundamentals of Circuits

What is a circuit?
Circuits—from flashlights to computers—
are the controlled motion of charges  
through conductors and resistors.

 ■ This chapter focuses on DC circuits, 
meaning direct current, in which potentials 
and currents are constant.

 ■ You’ll learn to draw circuit diagrams.

❮❮ LOOKING BACK Section 26.4 Sources of  
potential

How are circuits analyzed?
Any circuit, no matter how complex, can  
be analyzed with Kirchhoff’s two laws:

 ■ The junction law (charge conservation) 
relates the currents at a junction.

 ■ The loop law (energy conservation)  
relates the voltages around a closed loop.

 ■ We’ll also use Ohm’s law for resistors.

How do circuits use energy?
Circuits use energy to do things, such as  
lighting a bulb or turning a motor. You’ll  
learn to calculate power, the rate at which  
the battery supplies energy to a circuit  
and the rate at which a resistor dissipates  
energy. Many circuit elements are rated by  
their power consumption in watts.

How are resistors combined?
Resistors, like capacitors, often occur in  
series or in parallel. These combinations  
of resistors can be simplified by replacing  
them with a single resistor with equivalent 
resistance.

❮❮ LOOKING BACK Sections 27.3–27.5  
Current, resistance, and Ohm’s law

What is an RC circuit?
Capacitors are charged and discharged  
by current flowing through a resistor.  
These important circuits are called RC  
circuits. Their uses range from heart  
defibrillators to digital electronics. You’ll 
learn that capacitors charge and discharge 
exponentially with time constant t = RC .

❮❮ LOOKING BACK Section 26.5 Capacitors

Why are circuits important?
We live in an electronic era, and electric circuits surround you:  
your household wiring, the ignition system in your car, your music 
and communication devices, and your tablets and computers. 
Electric circuits are one of the most important applications of 
physics, and in this chapter you will see how the seemingly abstract 
ideas of electric charge, field, and potential are the foundation for 
many of the things we take for granted in the 21st century.

Q

t
0 t

IN THIS CHAPTER, you will learn the fundamental physical principles that govern electric circuits.

28

A magnified look at a silicon wafer 
on which hundreds of integrated 
circuits are being created.

E R

∆V4

∆V1

∆V2

∆V3

I 
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28.1 Circuit Elements and Diagrams 819

28.1 Circuit Elements and Diagrams
The last several chapters have focused on the physics of electric forces, fields, and 
potentials. Now we’ll put those ideas to use by looking at one of the most important 
applications of electricity: the controlled motion of charges in electric circuits. This 
chapter is not about circuit design—you will see that in more advanced courses—but 
about understanding the fundamental ideas that underlie all circuits.

FIGURE 28.1 shows an electric circuit in which a resistor and a capacitor are connected 
by wires to a battery. To understand the functioning of this circuit, we do not need to 
know whether the wires are bent or straight, or whether the battery is to the right or 
to the left of the resistor. The literal picture of Figure 28.1 provides many irrelevant 
details. It is customary when describing or analyzing circuits to use a more abstract 
picture called a circuit diagram. A circuit diagram is a logical picture of what is 
connected to what.

A circuit diagram also replaces pictures of the circuit elements with symbols. 
FIGURE 28.2 shows the basic symbols that we will need. The longer line at one end of the 
battery symbol represents the positive terminal of the battery. Notice that a lightbulb, 
like a wire or a resistor, has two “ends,” and current passes through the bulb. It is often 
useful to think of a lightbulb as a resistor that gives off light when a current is present. 
A lightbulb filament is not a perfectly ohmic material, but the resistance of a glowing  
incandescent lightbulb remains reasonably constant if you don’t change ∆V  by much.

Resistor Capacitor

FIGURE 28.1 An electric circuit.

Battery Wire JunctionResistor Bulb Capacitor Switch

FIGURE 28.2 A library of basic symbols used for electric circuit drawings.

FIGURE 28.3 is a circuit diagram of the circuit shown in Figure 28.1. Notice how the 
circuit elements are labeled. The battery’s emf E is shown beside the battery, and +  
and -  symbols, even though somewhat redundant, are shown beside the terminals. 
We would use numerical values for E, R, and C if we knew them. The wires, which 
in practice may bend and curve, are shown as straight-line connections between the 
circuit elements.

RE C

FIGURE 28.3 A circuit diagram for the 
circuit of Figure 28.1.

STOP TO THINK 28.1 Which of these diagrams represent the same circuit?

(a) (b)

(c) (d)
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820 CHAPTER 28 Fundamentals of Circuits

28.2 Kirchhoff’s Laws and the Basic Circuit
We are now ready to begin analyzing circuits. To analyze a circuit means to find:

1. The potential difference across each circuit component.
2. The current in each circuit component.

Because charge is conserved, the total current into the junction of FIGURE 28.4 
must equal the total current leaving the junction. That is,

 a Iin = a Iout (28.1)

This statement, which you met in Chapter 27, is Kirchhoff’s junction law.
Because energy is conserved, a charge that moves around a closed path has 

∆Uelec = 0. We apply this idea to the circuit of FIGURE 28.5 by adding all of the poten-
tial differences around the loop formed by the circuit. Doing so gives

 ∆Vloop = a 1∆V2i = 0 (28.2)

where 1∆V2i is the potential difference of the ith component in the loop. This state-
ment, introduced in Chapter 26, is Kirchhoff’s loop law.

Kirchhoff’s loop law can be true only if at least one of the 1∆V2i is negative. To 
apply the loop law, we need to establish rules to define which potential differences are 
positive and which are negative.

Iout

Iin

I3

I1 I2

Junction law:  I1 = I2 + I3

Junction

FIGURE 28.4 Kirchhoff’s junction law.

Start and
end here.

Loop

Loop law:  ∆V1 + ∆V2 + ∆V3 + ∆V4 = 0

∆V4 ∆V2

∆V1

∆V3

Add the potential
differences around
the loop.

FIGURE 28.5 Kirchhoff’s loop law.

TACTICS BOX 28.1

Using Kirchhoff’s loop law
1  Draw a circuit diagram. Label all known and unknown quantities.
2  Assign a direction to the current. Draw and label a current arrow I to show 

your choice.
 ■ If you know the actual current direction, choose that direction.
 ■ If you don’t know the actual current direction, make an arbitrary choice. 

All that will happen if you choose wrong is that your value for I will end 
up negative.

3  “Travel” around the loop. Start at any point in the circuit, then go all 
the way around the loop in the direction you assigned to the current in 
step 2. As you go through each circuit element, ∆V  is interpreted to mean 
∆V = Vdownstream - Vupstream.

 ■ For an ideal battery in the negative-to-positive 
direction:

∆Vbat = +E

 ■ For an ideal battery in the positive-to-negative 
direction:

∆Vbat = -E

 ■ For a resistor:     ∆Vres = -∆VR = -IR

4  Apply the loop law: a 1∆V2i = 0
Exercises 4–7 

Potential increases

Travel

Potential decreases

Travel

Potential decreases

I

   NOTE    Ohm’s law gives us only the magnitude ∆VR = IR of the potential difference 
across a resistor. For using Kirchhoff’s law, ∆Vres = Vdownstream - Vupstream =  -∆VR. 
That is, the potential decreases in the direction of the current.
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28.2 Kirchhoff’s Laws and the Basic Circuit 821

The Basic Circuit
The most basic electric circuit is a single resistor connected to the two terminals of a 
battery. FIGURE 28.6a shows a literal picture of the circuit elements and the connecting 
wires; FIGURE 28.6b is the circuit diagram. Notice that this is a complete circuit, 
forming a continuous path between the battery terminals.

The resistor might be a known resistor, such as “a 10 Ω resistor,” or it might be 
some other resistive device, such as a lightbulb. Regardless of what the resistor is, it is 
called the load. The battery is called the source.

FIGURE 28.7 shows the use of Kirchhoff’s loop law to analyze this circuit. Two things 
are worth noting:

1. This circuit has no junctions, so the current I is the same in all four sides of the 
circuit. Kirchhoff’s junction law is not needed.

2. We’re assuming the ideal-wire model, in which there are no potential differ-
ences along the connecting wires.

Kirchhoff’s loop law, with two circuit elements, is

 ∆Vloop = a 1∆V2i = ∆Vbat + ∆Vres 

   = 0 
(28.3)

Let’s look at each of the two voltages in Equation 28.3:

1. The potential increases as we travel through the battery on our clockwise jour-
ney around the loop. We enter the negative terminal and, farther downstream, 
exit the positive terminal after having gained potential E. Thus

∆Vbat = +E

2. The potential of a conductor decreases in the direction of the current, which 
we’ve indicated with the +  and -  signs in Figure 28.7. Thus

∆Vres = Vdownstream - Vupstream = -IR

 NOTE   Determining which potential differences are positive and which are negative 
is perhaps the most important step in circuit analysis.

With this information, the loop equation becomes

 E - IR = 0 (28.4)

We can solve the loop equation to find that the current in the circuit is

 I =
E
R

 (28.5)

We can then use the current to find that the magnitude of the resistor’s potential dif-
ference is

 ∆VR = IR = E (28.6)

This result should come as no surprise. The potential energy that the charges gain in 
the battery is subsequently lost as they “fall” through the resistor.

 NOTE   The current that the battery delivers depends jointly on the emf of the battery 
and the resistance of the load.

R

(b)

E

Load

(a)

Source

FIGURE 28.6 The basic circuit of a resistor 
connected to a battery.

RE

The orientation of the battery
indicates a clockwise current, so
assign a clockwise direction to I.

I

∆Vbat = +E

∆Vres = - IR

Determine ∆V for each circuit element.3

2

Draw a circuit diagram.1

FIGURE 28.7 Analysis of the basic circuit 
using Kirchhoff’s loop law.
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822 CHAPTER 28 Fundamentals of Circuits

Analyze the circuit shown in FIGURE 28.8.

a. Find the current in and the potential difference across each 
resistor.

b. Draw a graph showing how the potential changes around the 
circuit, starting from V = 0 V at the negative terminal of the 6 V 
battery.

MODEL Assume ideal connecting wires and ideal batteries, for 
which ∆Vbat = E.

VISUALIZE In FIGURE 28.9, we’ve redrawn the circuit and defined 
E1, E2, R1, and R2. Because there are no junctions, the current is the 
same through each component in the circuit. With some thought, 
we might deduce whether the current is cw or ccw, but we do not 
need to know in advance of our analysis. We will choose a clock-
wise direction and solve for the value of I. If our solution is posi-
tive, then the current really is cw. If the solution should turn out to 
be negative, we will know that the current is ccw.

SOLVE a. How do we deal with two batteries? Can charge  
f low “backward” through a battery, from positive to negative? 
Consider the charge escalator analogy. Left to itself, a charge 
escalator lifts charge from lower to higher potential. But it  
is possible to run down an up escalator, as many of you have 
probably done. If two escalators are placed “head to head,” 
whichever is stronger will, indeed, force the charge to run down 
the up escalator of the other battery. The current in a battery can 
be from positive to negative if driven in that direction by a larger  
emf from a second battery. Indeed, this is how rechargeable 
batteries are recharged.

Kirchhoff’s loop law, going clockwise from the negative termi-
nal of battery 1, is

 ∆Vloop = a∆V2i

 = ∆Vbat 1 + ∆Vres 1 + ∆Vbat 2 + ∆Vres 2 = 0

All the signs are +  because this is a formal statement of adding  
potential differences around the loop. Next we can evaluate each 
∆V. As we go cw, the charges gain potential in battery 1 but lose 
potential in battery 2. Thus ∆Vbat 1 = +E1 and ∆Vbat 2 = -E2. There 
is a loss of potential in traveling through each resistor, because 
we’re traversing them in the direction we assigned to the current, 
so ∆Vres 1 = - IR1 and ∆Vres 2 = - IR2. Thus Kirchhoff’s loop law 
becomes

  a 1∆V2i = E1 - IR1 - E2 - IR2

  = E1 - E2 - I1R1 + R22 = 0

We can solve this equation to find the current in the loop:

I =
E1 - E2

R1 + R2
=

6 V - 9 V
4 Ω + 2 Ω

= -0.50 A

The value of I is negative; hence the actual current in this circuit 
is 0.50 A counterclockwise. You perhaps anticipated this from the 
orientation of the 9 V battery with its larger emf.

The potential difference across the 4 Ω resistor is

∆Vres 1 = - IR1 = -1-0.50 A214 Ω2 = +2.0 V

Because the current is actually ccw, the resistor’s potential increases in 
the cw direction of our travel around the loop. Similarly, ∆Vres 2 =1.0 V.

b. FIGURE 28.10 shows the potential experienced by charges flow-
ing around the circuit. The distance s is measured from the 6 V 
battery’s negative terminal, and we have chosen to let V = 0 V at 
that point. The potential ends at the value from which it started.

REVIEW Notice how the potential drops 9 V upon passing through 
battery 2 in the cw direction. It then gains 1 V upon passing  
through R2 to end at the starting potential.

EXAMPLE 28.1 ■ Two resistors and two batteries

2 Ω

9 V6 V

4 Ω

FIGURE 28.8 Circuit for Example 28.1.

FIGURE 28.9 Analyzing the circuit.

V

s0 V

-2 V

4 V

8 V

Gain 6 V in battery 1.
Gain 1 V in 2 Ω.

Lose 9 V in
battery 2.

There’s no potential change
along an ideal wire.

Gain 2 V
in 4 Ω. 

FIGURE 28.10 A graphical presentation of how the potential 
changes around the loop.
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28.3 Energy and Power
The circuit of FIGURE 28.11 has two identical lightbulbs, A and B. Which is brighter? Or 
are they equally bright? Think about this before going on.

You might have been tempted to say that A is brighter. After all, the current gets to 
A first, so A might “use up” some of the current and leave less for B. But this would 
violate the law of conservation of charge. There are no junctions between A and B, so 
the current through the two bulbs must be the same. Hence the bulbs are equally bright.

What a bulb uses is not current but energy. The battery’s charge escalator is an 
energy-transfer process, transferring chemical energy Echem stored in the battery to 
the potential energy U of the charges. That energy is, in turn, transformed into the 
thermal energy of the resistors, increasing their temperature until—in the case of 
lightbulb filaments—they glow.

A charge gains potential energy ∆U = q ∆Vbat as it moves up the charge escala-
tor in the battery. For an ideal battery, with ∆Vbat = E, the battery supplies energy 
∆U = qE as it lifts charge q from the negative to the positive terminal.

It is useful to know the rate at which the battery supplies energy to the charges. 
Recall from Chapter 9 that the rate at which energy is transferred is power, measured 
in joules per second or watts. If energy ∆U = qE is transferred to charge q, then the 
rate at which energy is transferred from the battery to the moving charges is

 Pbat = rate of energy transfer =
dU
dt

=
dq

dt
 E (28.7)

But dq/dt, the rate at which charge moves through the battery, is the current I. Hence 
the power supplied by a battery, or the rate at which the battery (or any other source of 
emf) transfers energy to the charges passing through it, is

 Pbat = IE  (power delivered by an emf ) (28.8)

IE has units of J/s, or W. For example, a 120 V battery that generates 2 A of current is 
delivering 240 W of power to the circuit.

Energy Dissipation in Resistors
Pbat is the energy transferred per second from the battery’s store of chemicals to the 
moving charges that make up the current. But what happens to this energy? Where 
does it end up? FIGURE 28.12, a section of a current-carrying resistor, reminds you of 
our microscopic model of conduction. The electrons accelerate in the electric field, 
transforming potential energy into kinetic, then collide with atoms in the lattice. The 
collisions transfer the electron’s kinetic energy to the thermal energy of the lattice. 
The potential energy was acquired in the battery, so the entire energy-transfer process 
looks like

Echem S U S K S Eth

The net result is that the battery’s chemical energy is transferred to the thermal 
energy of the resistors, raising their temperature.

Consider a charge q that moves all the way through a resistor with a potential dif-
ference ∆VR between its two ends. The charge loses potential energy ∆U = -q ∆VR, 

STOP TO THINK 28.2 What is ∆V  across 
the unspecified circuit element? Does the po-
tential increase or decrease when traveling 
through this element in the direction assigned 
to I?

Identical
bulbs

E
B

A

FIGURE 28.11 Which lightbulb is brighter?

I

Atoms in
the lattice

Electron
current

Current
Collisions transfer energy to the lattice.
The energy transformation is K S Eth.

The electric field causes electrons to speed
up. The energy transformation is U S K.

L

E
u

FIGURE 28.12 A current-carrying resistor 
dissipates energy.

6 V

I

12 V

8 V

?
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824 CHAPTER 28 Fundamentals of Circuits

and, after a vast number of collisions, all that energy is transformed into thermal  
energy. Thus the resistor’s increase in thermal energy due to this one charge is

 ∆Eth = q ∆VR (28.9)

The rate at which energy is transferred from the current to the resistor is then

 PR =
dEth

dt
=

dq

dt
 ∆VR = I ∆VR (28.10)

Power—so many joules per second—is the rate at which energy is dissipated by the resis-
tor as charge flows through it. The resistor, in turn, transfers this energy to the air and to the 
circuit board on which it is mounted, causing the circuit and all its surroundings to heat up.

From our analysis of the basic circuit, in which a single resistor is connected to a 
battery, we learned that ∆VR = E. That is, the potential difference across the resistor 
is exactly the emf supplied by the battery. But then Equations 28.8 and 28.10, for Pbat 
and PR, are numerically equal, and we find that

 PR = Pbat (28.11)

The answer to the question “What happens to the energy supplied by the battery?” 
is “The battery’s chemical energy is transformed into the thermal energy of the re-
sistor.” The rate at which the battery supplies energy is exactly equal to the rate at 
which the resistor dissipates energy. This is, of course, exactly what we would have 
expected from energy conservation.

How much current is “drawn” by a 100 W incandescent lightbulb 
connected to a 120 V outlet?

MODEL Most household appliances, such as a 100 W lightbulb or a 
1500 W hair dryer, have a power rating. The rating does not mean 
that these appliances always dissipate that much power. These ap pli-
ances are intended for use at a standard household voltage of 120 V,  
and their rating is the power they will dissipate if operated with a 
potential difference of 120 V. Their power consumption will differ 
from the rating if they are operated at any other potential difference.

SOLVE Because the lightbulb is operating as intended, it will dis-
sipate 100 W of power. Thus

I =
PR

∆VR
=

100 W
120 V

= 0.833 A

REVIEW A current of 0.833 A in this lightbulb transfers 100 J/s to 
the thermal energy of the filament, which, in turn, dissipates 100 J/s 
as heat and light to its surroundings.

EXAMPLE 28.2 ■ The power of light

Most loudspeakers are designed to have a resistance of 8 Ω. If an 
8 Ω loudspeaker is connected to a stereo amplifier with a rating of 
100 W, what is the maximum possible current to the loudspeaker?

MODEL The rating of an amplifier is the maximum power it can 
deliver. Most of the time it delivers far less, but the maximum  
might be reached for brief, intense sounds like cymbal crashes.

SOLVE The loudspeaker is a resistive load. The maximum current 
to the loudspeaker occurs when the amplifier delivers maximum 
power Pmax = 1Imax22R. Thus

Imax = BPmax

R
= B 100 W

8 Ω
= 3.5 A

EXAMPLE 28.3 ■ The power of sound

A resistor obeys Ohm’s law, ∆VR = IR. (Remember that Ohm’s law gives only the 
magnitude of ∆VR.) This gives us two alternative ways of writing the power dissipated  
by a resistor. We can either substitute IR for ∆VR or substitute ∆VR/R for I. Thus

 PR = I ∆VR = I2R =
1∆VR22

R
  (power dissipated by a resistor) (28.12)

If the same current I passes through several resistors in series, then PR = I 2R tells us 
that most of the power will be dissipated by the largest resistance. This is why a lightbulb 
filament glows but the connecting wires do not. Essentially all of the power supplied by 
the battery is dissipated by the high-resistance lightbulb filament and essentially no power 
is dissipated by the low-resistance wires. The filament gets very hot, but the wires do not.
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28.4 Series Resistors 825

Kilowatt Hours
The energy dissipated (i.e., transformed into thermal energy) by a resistor during time 
∆t is Eth = PR ∆t. The product of watts and seconds is joules, the SI unit of energy. 
However, your local electric company prefers to use a different unit, the kilowatt hour, 
to measure the energy you use each month.

A load that consumes PR kW of electricity for ∆t hours has used PR ∆t kilowatt 
hours of energy, abbreviated kWh. For example, a 4000 W electric water heater  
uses 40 kWh of energy in 10 hours. A 1500 W hair dryer uses 0.25 kWh of energy 
in 10 minutes. Despite the rather unusual name, a kilowatt hour is a unit of energy.  
A homework problem will let you find the conversion factor from kilowatt hours to joules.

Your monthly electric bill specifies the number of kilowatt hours you used last 
month. This is the amount of energy that the electric company delivered to you, via 
an electric current, and that you transformed into light and thermal energy inside 
your home. The cost of electricity varies throughout the country, but the average 
cost of electricity in the United States is approximately 15. per kWh 1+0.15/kWh2. 
Thus it costs about $6.00 to run your water heater for 10 hours, about 4. to dry 
your hair.

The electric meter on the side of your 
house or apartment records the kilowatt 
hours of electric energy that you use.

STOP TO THINK 28.3 Rank in order, from largest to smallest, the powers PA to PD 
dissipated in resistors A to D.

R
A

∆V

R
B

2∆V

2R
C

∆V

R
D

∆V

1
2

28.4 Series Resistors
Consider the three lightbulbs in FIGURE 28.13. The batteries are identical and the bulbs 
are identical. You learned in the previous section that B and C are equally bright,  
because the current is the same through both, but how does the brightness of B compare 
to that of A? Think about this before going on.

FIGURE 28.14a shows two resistors placed end to end between points a and b. Resis-
tors that are aligned end to end, with no junctions between them, are called series  
resistors or, sometimes, resistors “in series.” Because there are no junctions, the cur-
rent I must be the same through each of these resistors. That is, the current out of the 
last resistor in a series is equal to the current into the first resistor.

The potential differences across the two resistors are ∆V1 = IR1 and ∆V2 = IR2. 
The total potential difference ∆Vab between points a and b is the sum of the individual 
potential differences:

 ∆Vab = ∆V1 + ∆V2 = IR1 + IR2 = I1R1 + R22 (28.13)

Identical
bulbs

Identical
batteries

E
C

B

E A

FIGURE 28.13 How does the brightness of 
bulb B compare to that of A?

R1

a b

R2
II

∆V1 ∆V2

(a)  Two resistors in series (b)  An equivalent resistor

∆Vab = ∆V1 + ∆V2

Rab = R1 + R2

a b
II

∆Vab

Same current

Same potential difference

FIGURE 28.14 Replacing two series resistors with an equivalent resistor.
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826 CHAPTER 28 Fundamentals of Circuits

Suppose, as in FIGURE 28.14b, we replaced the two resistors with a single resistor 
having current I and potential difference ∆Vab = ∆V1 + ∆V2. We can then use Ohm’s 
law to find that the resistance Rab between points a and b is

 Rab =
∆Vab

I
=

I1R1 + R22
I

= R1 + R2 (28.14)

Because the battery has to establish the same potential difference across the load and 
provide the same current in both cases, the two resistors R1 and R2 act exactly the 
same as a single resistor of value R1 + R2. We can say that the single resistor Rab is 
equivalent to the two resistors in series.

There was nothing special about having only two resistors. If we have N resistors in 
series, their equivalent resistance is

 Req = R1 + R2 +
   
g

 

+ RN  (series resistors) (28.15)

The current and the power output of the battery will be unchanged if the N series 
resistors are replaced by the single resistor Req. The key idea in this analysis is that 
resistors in series all have the same current.

 NOTE   Compare this idea to what you learned in Chapter 26 about capacitors in 
series. The end-to-end connections are the same, but the equivalent capacitance is 
not the sum of the individual capacitances.

Now we can answer the lightbulb question posed at the beginning of this section. 
Suppose the resistance of each lightbulb is R. The battery drives current IA = E/R 
through bulb A. Bulbs B and C are in series, with an equivalent resistance Req = 2R, 
but the battery has the same emf E. Thus the current through bulbs B and C is 
IB+C = E/Req = E/2R = 1

2 IA. Bulb B has only half the current of bulb A, so B is dimmer.
Many people predict that A and B should be equally bright. It’s the same battery, so 

shouldn’t it provide the same current to both circuits? No! A battery is a source of emf, 
not a source of current. In other words, the battery’s emf is the same no matter how the 
battery is used. When you buy a 1.5 V battery you’re buying a device that provides a 
specified amount of potential difference, not a specified amount of current. The bat-
tery does provide the current to the circuit, but the amount of current depends on the 
resistance of the load. Your 1.5 V battery causes 1 A to pass through a 1.5 Ω load but 
only 0.1 A to pass through a 15 Ω load. As an analogy, think about a water faucet. The 
pressure in the water main underneath the street is a fixed and unvarying quantity set 
by the water company, but the amount of water coming out of a faucet depends on how 
far you open it. A faucet opened slightly has a “high resistance,” so only a little water 
flows. A wide-open faucet has a “low resistance,” and the water flow is large.

In summary, a battery provides a fixed and unvarying emf (potential differ-
ence). It does not provide a fixed and unvarying current. The amount of current 
depends jointly on the battery’s emf and the resistance of the circuit attached to 
the battery.

The touchscreen on your phone is a 
capacitive device in which your finger 
changes the capacitance and causes a 
small flow of current. Most point-of-sale 
screens, however, especially ones signed 
with a stylus, are resistive devices. Behind 
the LCD screen are two parallel plates 
spaced about 0.1 mm apart. Pressing the 
screen brings the plates into contact at 
one point.

V V

5 V 0 V

0 V

5 V

Decreasing V

Resistive
plate

Contact with conducting plate

Measure x… …then y

a. What is the current in the circuit of FIGURE 28.15a?

b. Draw a graph of potential versus position in the circuit, going cw  
from V = 0 V at the battery’s negative terminal.

MODEL The three resistors are end to end, with no junctions be-
tween them, and thus are in series. Assume ideal connecting wires 
and an ideal battery.

SOLVE a. The battery “acts” the same—it provides the same cur-
rent at the same potential difference—if we replace the three series  

resistors by their equivalent resistance

Req = 15 Ω + 4 Ω + 8 Ω = 27 Ω

This is shown as an equivalent circuit in FIGURE 28.15b. Now we 
have a circuit with a single battery and a single resistor, for which 
we know the current to be

I =
E

Req
=

9 V
27 Ω

= 0.333 A

EXAMPLE 28.4 ■ A series resistor circuit

One plate is a resistive material; the 
other is a conductor connected to a volt-
meter. To locate the point of contact, a 
potential difference is first applied hor-
izontally across the resistive plate. The 
voltage at the point of contact, sensed 
by the conducting plate, is a function of 
the point’s horizontal position. Once this 
voltage is read, the potential difference 
is applied vertically and the conducting 
plate senses the vertical position. This 
process is repeated several hundred times  
a second, which allows the screen to follow 
the positions of a moving stylus.
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28.5 Real Batteries 827

Ammeters
A device that measures the current in a circuit element is called an ammeter. Because 
charge flows through circuit elements, an ammeter must be placed in series with the 
circuit element whose current is to be measured.

FIGURE 28.16a shows a simple one-resistor circuit with an unknown emf E. We can 
measure the current in the circuit by inserting the ammeter as shown in FIGURE 28.16b. 
Notice that we have to break the connection between the battery and the resistor in 
order to insert the ammeter. Now the current in the resistor has to first pass through 
the ammeter.

Because the ammeter is now in series with the resistor, the total resistance seen 
by the battery is Req = 6 Ω + Rammeter. In order that the ammeter measure the current 
without changing the current, the ammeter’s resistance must, in this case, be V6 Ω. 
Indeed, an ideal ammeter has Rammeter = 0 Ω and thus has no effect on the current. 
Real ammeters come very close to this ideal.

The ammeter in Figure 28.16b reads 0.50 A, meaning that the current through the 
6 Ω resistor is I = 0.50 A. Thus the resistor’s potential difference is ∆VR = IR = 3.0 V. 
If the ammeter is ideal, with no resistance and thus no potential difference across it, 
then, from Kirchhoff’s loop law, the battery’s emf is E = ∆VR = 3.0 V.

b. I = 0.333 A is the current in each of the three resistors in the 
original circuit. Thus the potential differences across the resis - 
tors are ∆Vres 1 = - IR1 = -5.0 V, ∆Vres 2 = - IR2 = -1.3 V, and  

∆Vres 3 = - IR3 = -2.7 V for the 15 Ω, the 4 Ω, and the 8 Ω  
resistors. FIGURE 28.15c shows that the potential increases by 9 V 
due to the battery, then decreases by 9 V in three steps.

27 Ω9 V

I

9 V 4 Ω

8 Ω

15 Ω

(b) (c)(a)
V

0 V

3 V

6 V

9 V

Battery

15 Ω

4 Ω

8 Ω

s

FIGURE 28.15 Analyzing a circuit with series resistors.

6 Ω

Ammeter(b) 0.50 A

I

A

The current being 
measured must pass 
through an ammeter.

E

6 Ω

(a)

E

FIGURE 28.16 An ammeter measures the 
current flowing through a circuit element.

STOP TO THINK 28.4 What are the current and the potential at points 1 to 5?

1 2

2 Ω2 A 3 Ω

3 4

1 Ω 4 Ω

5

V = 0 V

28.5 Real Batteries
Real batteries, like ideal batteries, use chemical reactions to separate charge, create 
a potential difference, and provide energy to the circuit. However, real batteries also 
provide a slight resistance to the charges on the charge escalator. They have what is 
called an internal resistance, which is symbolized by r. FIGURE 28.17 on the next 
page shows both an ideal and a real battery.

From our vantage point outside a battery, we cannot see E and r separately. To the 
user, the battery provides a potential difference ∆Vbat called the terminal voltage. 
∆Vbat = E for an ideal battery, but the presence of the internal resistance affects ∆Vbat. 
Suppose the current in the battery is I. As charges travel from the negative to the 
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828 CHAPTER 28 Fundamentals of Circuits

positive terminal, the potential increases by E but decreases by ∆Vint = -Ir due to the 
internal resistance. Thus the terminal voltage of the battery is

 ∆Vbat = E - Ir … E (28.16)

Only when I = 0, meaning that the battery is not being used, is ∆Vbat = E.
FIGURE 28.18 shows a single resistor R connected to the terminals of a battery having 

emf E and internal resistance r. Resistances R and r are in series, so we can replace 
them, for the purpose of circuit analysis, with a single equivalent resistor Req = R + r. 
Hence the current in the circuit is

 I =
E

Req
=

E
R + r

 (28.17)

If r V R, so that the internal resistance of the battery is negligible, then I ≈ E/R, ex-
actly the result we found before. But the current decreases significantly as r increases.

r

E

I

I

∆Vbat = E - IrReal
battery

E

I

I

∆Vbat = EIdeal
battery

Internal
resistance

FIGURE 28.17 An ideal battery and a real 
battery.

r

E

R E R + r

Although physically separated, the internal
resistance r is electrically in series with R.

This means the two circuits are equivalent.

I

I

=

FIGURE 28.18 A single resistor connected to a real battery is in series with the battery’s 
internal resistance, giving Req = R + r.

We can use Ohm’s law to find that the potential difference across the load resistor R is

 ∆VR = IR =
R

R + r
 E (28.18)

Similarly, the potential difference across the terminals of the battery is

 ∆Vbat = E - Ir = E -
r

R + r
 E =

R
R + r

 E (28.19)

The potential difference across the resistor is equal to the potential difference between 
the terminals of the battery, where the resistor is attached, not equal to the battery’s 
emf. Notice that ∆Vbat = E only if r = 0 (an ideal battery with no internal resistance).

A 6 Ω flashlight bulb is powered by a 3 V battery with an internal 
resistance of 1 Ω. What are the power dissipation of the bulb and 
the terminal voltage of the battery?

MODEL Assume ideal connecting wires but not an ideal battery.

VISUALIZE The circuit diagram looks like Figure 28.18. R is the 
resistance of the bulb’s filament.

SOLVE Equation 28.17 gives us the current:

I =
E

R + r
=

3 V
6 Ω + 1 Ω

= 0.43 A

This is 15% less than the 0.5 A an ideal battery would supply. The 
potential difference across the resistor is ∆VR = IR = 2.6 V, thus 
the power dissipation is

PR = I ∆VR = 1.1 W

The battery’s terminal voltage is

∆Vbat =
R

R + r
 E =

6 Ω
6 Ω + 1 Ω

 3 V = 2.6 V

REVIEW 1 Ω is a typical internal resistance for a flashlight battery. 
The internal resistance causes the battery’s terminal voltage to be 
0.4 V less than its emf in this circuit.

EXAMPLE 28.5 ■ Lighting up a flashlight
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28.6 Parallel Resistors 829

A Short Circuit
In FIGURE 28.19 we’ve replaced the resistor with an ideal wire having Rwire = 0 Ω. 
When a connection of very low or zero resistance is made between two points in a cir-
cuit that are normally separated by a higher resistance, we have what is called a short 
circuit. The wire in Figure 28.19 is shorting out the battery.

If the battery were ideal, shorting it with an ideal wire 1R = 0 Ω2 would cause 
the current to be I = E/0 = ∞ . The current, of course, cannot really become infinite. 
Instead, the battery’s internal resistance r becomes the only resistance in the circuit. If 
we use R = 0 Ω in Equation 28.17, we find that the short-circuit current is

 Ishort =
E
r

 (28.20)

A 3 V battery with 1 Ω internal resistance generates a short circuit current of 3 A. This 
is the maximum possible current that this battery can produce. Adding any external 
resistance R will decrease the current to a value less than 3 A.

What is the short-circuit current of a 12 V car battery with an  
internal resistance of 0.020 Ω? What happens to the power  
supplied by the battery?

SOLVE The short-circuit current is

Ishort =
E
r

=
12 V

0.02 Ω
= 600 A

Power is generated by chemical reactions in the battery and  
dissipated by the load resistance. But with a short-circuited battery, 
the load resistance is inside the battery! The “shorted” battery has 
to dissipate power P = I 2r = 7200 W internally.

REVIEW This value is realistic. Car batteries are designed  
to drive the starter motor, which has a very small resistance and 
can draw a current of a few hundred amps. That is why the bat-
tery cables are so thick. A shorted car battery can produce an 
enormous amount of current. The normal response of a shorted  
car battery is to explode; it simply cannot dissipate this much power.  
Shorting a flashlight battery can make it rather hot, but your life 
is not in danger. Although the voltage of a car battery is relatively 
small, a car battery can be dangerous and should be treated with 
great respect.

EXAMPLE 28.6 ■ A short-circuited battery

r

E

Ishort

This wire is shorting
out the battery.

FIGURE 28.19 The short-circuit current of 
a battery.

Most of the time a battery is used under conditions in which r V R and the inter-
nal resistance is negligible. The ideal battery model is fully justified in that case. Thus 
we will assume that batteries are ideal unless stated otherwise. But keep in mind that 
batteries (and other sources of emf) do have an internal resistance, and this internal 
resistance limits the current of the battery.

28.6 Parallel Resistors
FIGURE 28.20 is another lightbulb puzzle. Initially the switch is open. The current is the 
same through bulbs A and B and they are equally bright. Bulb C is not glowing. What 
happens to the brightness of A and B when the switch is closed? And how does the 
brightness of C then compare to that of A and B? Think about this before going on.

FIGURE 28.21a on the next page shows two resistors aligned side by side with their 
ends connected at c and d. Resistors connected at both ends are called parallel 
 resistors or, sometimes, resistors “in parallel.” The left ends of both resistors are at 
the same potential Vc. Likewise, the right ends are at the same potential Vd. Thus the 
potential differences ∆V1 and ∆V2 are the same and are simply ∆Vcd.

Kirchhoff’s junction law applies at the junctions. The input current I splits into  
currents I1 and I2 at the left junction. On the right, the two currents are recombined 
into current I. According to the junction law,

 I = I1 + I2 (28.21)

We can apply Ohm’s law to each resistor, along with ∆V1 = ∆V2 = ∆Vcd, to find that 
the current is

E CB

A

Identical bulbs

FIGURE 28.20 What happens to the 
brightness of the bulbs when the switch 
is closed?
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 I =
∆V1

R1
+

∆V2

R2
=

∆Vcd

R1
+

∆Vcd

R2 
= ∆Vcd 1 1

R1
+

1
R2

2 (28.22)

Suppose, as in FIGURE 28.21b, we replaced the two resistors with a single resistor 
having current I and potential difference ∆Vcd. This resistor is equivalent to the origi-
nal two because the battery has to establish the same potential difference and provide 
the same current in either case. A second application of Ohm’s law shows that the 
resistance between points c and d is

 Rcd =
∆Vcd

I
= 1 1

R1
+

1
R2

2-1

 (28.23)

The single resistor Rcd draws the same current as resistors R1 and R2, so, as far as the 
battery is concerned, resistor Rcd is equivalent to the two resistors in parallel.

There is nothing special about having chosen two resistors to be in parallel. If we 
have N resistors in parallel, the equivalent resistance is

 Req = 1 1
R1

+
1
R2

+ g +
1

RN
2-1

  (parallel resistors) (28.24)

The behavior of the circuit will be unchanged if the N parallel resistors are replaced 
by the single resistor Req. The key idea of this analysis is that resistors in parallel all 
have the same potential difference.

 NOTE   Don’t forget to take the inverse—the -1 exponent in Equation 28.24—after 
adding the inverses of all the resistances.

R1

R2

c d

∆V1 = ∆V2 = ∆Vcd

∆Vcd

I I

c d
I I

I1

I2

Same
potential
difference

Same
current

1
R1

1
R2

 + Rcd = 1 2-1

(a)  Two resistors in parallel

(b)  An equivalent resistor

FIGURE 28.21 Replacing two parallel 
resistors with an equivalent resistor.

Two identical resistors*

In series Req = 2R

In parallel Req =
R
2

*R1 = R2 = R

The three resistors of FIGURE 28.22 are connected to a 9 V battery. 
Find the potential difference across and the current through each 
resistor.

MODEL The resistors are in parallel. Assume an ideal battery and 
ideal connecting wires.

SOLVE The three parallel resistors can be replaced by a single 
equivalent resistor

Req = 1 1
15 Ω

+
1

4 Ω
+

1
8 Ω 2-1

= 10.4417 Ω-12-1 = 2.26 Ω

The equivalent circuit is shown in FIGURE 28.23a, from which we 
find the current to be

I =
E

Req
=

9 V
2.26 Ω

= 3.98 A

The potential difference across Req is ∆Veq = E = 9.0 V. Now we 
have to be careful. Current I divides at the junction into the smaller 
currents I1, I2, and I3 shown in FIGURE 28.23b. However, the division 
is not into three equal currents. According to Ohm’s law, resistor  
i has current Ii = ∆Vi /Ri. Because the three resistors are each con-
nected to the battery by ideal wires, as is the equivalent resistor, 
their potential differences are equal:

∆V1 = ∆V2 = ∆V3 = ∆Veq = 9.0 V

Thus the currents are

I1 =
9 V

15 Ω
= 0.60 A I2 =

9 V
4 Ω

= 2.25 A I3 =
9 V
8 Ω

= 1.13 A

REVIEW The sum of the three currents is 3.98 A, as required by 
Kirchhoff’s junction law.

EXAMPLE 28.7 ■ A parallel resistor circuit

8 Ω9 V 4 Ω15 Ω

FIGURE 28.22 Parallel resistor circuit of Example 28.7.

8 Ω9 V

3.98 A I1 I2 I3

3.98 A

4 Ω15 Ω

(b)

2.26 Ω9 V

I
(a)

FIGURE 28.23 The parallel resistors can be replaced by a single equivalent resistor.
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The result of Example 28.7 seems surprising. The equivalent of a parallel combination 
of 15 Ω, 4 Ω, and 8 Ω was found to be 2.26 Ω. How can the equivalent of a group of 
resistors be less than any single resistance in the group? Shouldn’t more resistors imply 
more resistance? The answer is yes for resistors in series but not for resistors in parallel. 
Even though a resistor is an obstacle to the flow of charge, parallel resistors provide more 
pathways for charge to get through. Consequently, the equivalent of several resistors in 
parallel is always less than any single resistor in the group.

Complex combinations of resistors can often be reduced to a single equivalent re-
sistance through a step-by-step application of the series and parallel rules. The final 
example in this section illustrates this idea.

Summary of series and parallel  
resistors

I ∆V

Series Same Add

Parallel Add Same

What is the equivalent resistance of the group of resistors shown in 
FIGURE 28.24?

MODEL This circuit contains both series and parallel resistors.

SOLVE Reduction to a single equivalent resistance is best done in a 
series of steps, with the circuit being redrawn after each step. The 
procedure is shown in FIGURE 28.25. Note that the 10 Ω and 25 Ω 
resistors are not in parallel. They are connected at their top ends 

but not at their bottom ends. Resistors must be connected to each 
other at both ends to be in parallel. Similarly, the 10 Ω and 45 Ω 
resistors are not in series because of the junction between them. If 
the original group of four resistors occurred within a larger circuit, 
they could be replaced with a single 15.4 Ω resistor without having 
any effect on the rest of the circuit.

EXAMPLE 28.8 ■ A combination of resistors

25 Ω

45 Ω90 Ω

10 Ω

FIGURE 28.24 A combination of resistors.

25 Ω 15.4 Ω=
30 Ω

10 Ω

=
25 Ω

40 Ω

FIGURE 28.25 The combination is reduced to a single equivalent 
resistor.

To return to the lightbulb question that began this section, FIGURE 28.26 has redrawn 
the circuit with each bulb shown as a resistance R. Initially, before the switch is closed, 
bulbs A and B are in series with equivalent resistance 2R. The current from the battery is

Ibefore =
E

2R
=

1
2

 
E
R

This is the current in both bulbs.
Closing the switch places bulbs B and C in parallel. The equivalent resistance of 

two identical resistors in parallel is Req = 1
2 R. This equivalent resistance of B and C 

is in series with bulb A; hence the total resistance of the circuit is 32 R and the current 
leaving the battery is

Iafter =
E

3R/2
=

2
3

 
E
R

7 Ibefore

Closing the switch decreases the circuit resistance and thus increases the current leav-
ing the battery.

All the charge flows through A, so A increases in brightness when the switch is closed. 
The current Iafter then splits at the junction. Bulbs B and C have equal resistance, so the  
current splits equally. The current in B is 13 1E/R2, which is less than Ibefore. Thus B decreases  
in brightness when the switch is closed. Bulb C has the same brightness as bulb B.

Voltmeters
A device that measures the potential difference across a circuit element is called a 
voltmeter. Because potential difference is measured across a circuit element, from 

Total
resistance
R

Total
resistance
2R

2E/3R

E/3R E/3R

E

R

A

C

Closed

B RR

E/2R

E/2R

E

R

A

C

Open

B RR

3
2

FIGURE 28.26 The lightbulbs of Figure 
28.20 with the switch open and closed.
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832 CHAPTER 28 Fundamentals of Circuits

one side to the other, a voltmeter is placed in parallel with the circuit element whose 
potential difference is to be measured.

FIGURE 28.27a shows a simple circuit in which a 17 Ω resistor is connected across a 9 V 
battery with an unknown internal resistance. By connecting a voltmeter across the resis-
tor, as shown in FIGURE 28.27b, we can measure the potential difference across the resistor. 
Unlike an ammeter, using a voltmeter does not require us to break the connections.

Because the voltmeter is now in parallel with the resistor, the total resistance seen by the 
battery is Req = 11/17 Ω + 1/Rvoltmeter2-1. In order that the voltmeter measure the voltage 
without changing the voltage, the voltmeter’s resistance must, in this case, be W17 Ω. 
Indeed, an ideal voltmeter has Rvoltmeter = ∞  Ω, and thus has no effect on the voltage. 
Real voltmeters come very close to this ideal, and we will always assume them to be so.

The voltmeter in Figure 28.27b reads 8.5 V. This is less than E because of the bat-
tery’s internal resistance. Equation 28.18 found an expression for the resistor’s poten-
tial difference ∆VR. That equation is easily solved for the internal resistance r:

r =
E - ∆VR

∆VR
 R =

0.5 V
8.5 V

 17 Ω = 1.0 Ω

Here a voltmeter reading was the one piece of experimental data we needed in order to 
determine the battery’s internal resistance.

r

9 V

17 Ω

(a)

r

9 V

17 Ω

(b)

Voltmeter

V 8.5 V∆V

FIGURE 28.27 A voltmeter measures the 
potential difference across an element.

A multimeter is an instrument that can 
measure voltage, current, or resistance. 
To use one, you must know whether the 
meter needs to be in series or in parallel 
with the circuit element that is being 
measured.

STOP TO THINK 28.5 Rank in order, 
from brightest to dimmest, the identical 
bulbs A to D.

A

B

C

D

E

28.7 Resistor Circuits
We can use the information in this chapter to analyze a variety of more complex but 
more realistic circuits.

PROBLEM-SOLVING STRATEGY 28.1

Resistor circuits

MODEL Model wires as ideal and, where appropriate, batteries as ideal.

VISUALIZE Draw a circuit diagram. Label all known and unknown quantities.

SOLVE Base your mathematical analysis on Kirchhoff’s laws, Ohm’s law, and on 
the rules for series and parallel resistors.

 ■ Step by step, reduce the circuit to the smallest possible number of equivalent 
resistors.

 ■ Write Kirchhoff’s loop law for each independent loop in the circuit.
 ■ Determine the current through and the potential difference across the equivalent  
resistors.

 ■ Rebuild the circuit, using the facts that the current is the same through all resistors 
in series and the potential difference is the same for all parallel resistors.

REVIEW Use two important checks as you rebuild the circuit.
 ■ Verify that the sum of the potential differences across series resistors matches 

∆V  for the equivalent resistor.
 ■ Verify that the sum of the currents through parallel resistors matches I for the 
equivalent resistor.

Exercise 26 
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Find the current through and the potential difference across each of 
the four resistors in the circuit shown in FIGURE 28.28.

MODEL Assume an ideal battery, with no internal resistance, and 
ideal connecting wires.

VISUALIZE Figure 28.28 shows the circuit diagram. We’ll keep  
redrawing the diagram as we analyze the circuit.

SOLVE First, we break the circuit down, step by step, into one with 
a single resistor. FIGURE 28.29a shows this done in three steps. The 
final battery-and-resistor circuit is our basic circuit, with current

I =
E
R

=
12 V

400 Ω
= 0.030 A = 30 mA

The potential difference across the 400 Ω resistor is ∆V400 =  
∆Vbat = E = 12 V.

Second, we rebuild the circuit, step by step, finding the currents 
and potential differences at each step. FIGURE 28.29b repeats the 
steps of Figure 28.29a exactly, but in reverse order. The 400 Ω  
resistor came from two 800 Ω resistors in parallel. Because 
∆V400 =  12 V, it must be true that each ∆V800 = 12 V. The current 
through each 800 Ω is then I = ∆V/R = 15 mA. The checkpoint is 
to note that 15 mA + 15 mA = 30 mA.

The right 800 Ω resistor was formed by 240 Ω and 560 Ω in  
series. Because I800 = 15 mA, it must be true that I240 = I560 = 15 mA. 
The potential difference across each is ∆V = IR, so ∆V240 = 3.6 V 
and ∆V560 = 8.4 V. Here the checkpoint is to note that  
3.6 V + 8.4 V = 12 V = ∆V800, so the potential differences add as 
they should.

Finally, the 240 Ω resistor came from 600 Ω and 400 Ω in  
parallel, so they each have the same 3.6 V potential difference 
as their 240 Ω equivalent. The currents are I600 = 6 mA and 
I400 = 9 mA. Note that 6 mA + 9 mA = 15 mA, which is our third 
checkpoint. We now know all currents and potential differences.

REVIEW We checked our work at each step of the rebuilding  
process by verifying that currents summed properly at junctions 
and that potential differences summed properly along a series  
of resistances. This “check as you go” procedure is extremely  
important. It provides you, the problem solver, with a built-in error 
finder that will immediately inform you if a mistake has been made.

EXAMPLE 28.9 ■ Analyzing a complex circuit

400 Ω

600 Ω

560 Ω800 Ω12 V

FIGURE 28.28 A complex resistor circuit.

(a) Break down the circuit.

400 Ω

560 Ω800 Ω
12 V

600 Ω

240 Ω

560 Ω800 Ω
800 Ω

800 Ω
400 Ω12 V

Reduce parallel
combination.

Reduce series
combination.

Reduce parallel
combination.

Equivalent
resistor

FIGURE 28.29 The step-by-step circuit analysis.

(b) Rebuild the circuit.

400 Ω
3.6 V 560 Ω

8.4 V

3.6 V
600 Ω

6.0 mA

12 V

9.0 mA

560 Ω
8.4 V

15 mA

240 Ω
3.6 V

15 mA 15 mA
30 mA

800 Ω
12 V

800 Ω
12 V

800 Ω
12 V

800 Ω
12 V

30 mA

15 mA 15 mA

30 mA30 mA

15 mA 15 mA15 mA
12 V

400 Ω
12 V

Parallel resistors have the
same potential difference.

Parallel resistors have the
same potential difference.

Series resistors have
the same current.
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834 CHAPTER 28 Fundamentals of Circuits

Find the current through and the potential difference across the 
100 Ω resistor in the circuit of FIGURE 28.30.

MODEL Assume ideal batteries and ideal connecting wires.

VISUALIZE Figure 28.30 shows the circuit diagram. None of the re-
sistors are connected in series or in parallel, so this circuit cannot 
be reduced to a simpler circuit.

SOLVE Kirchhoff’s loop law applies to any loop. To analyze a multi -  
loop problem, we need to write a loop-law equation for each  
loop. FIGURE 28.31 redraws the circuit and defines clockwise cur-
rents I1 in the left loop and I2 in the right loop. But what about the 
middle branch? Let’s assign a downward current I3 to the middle 
branch. If we apply Kirchhoff’s junction law gIin = gIout  to the 
junction above the 100 Ω resistor, as shown in the blow-up of Fig-
ure 28.31, we see that I1 = I2 + I3 and thus I3 = I1 - I2. If I3 ends 
up being a positive number, then the current in the middle branch 
really is downward. A negative I3 will signify an upward current.

Kirchhoff’s loop law for the left loop, going clockwise from the 
lower left corner, is

a 1∆V2i = 19 V - 1300 Ω2I1 - 1100 Ω2I3 - 12 V = 0

We’re traveling through the 100 Ω resistor in the direction of I3, the 
“downhill” direction, so the potential decreases. The 12 V battery is tra-
versed positive to negative, so there we have ∆V = -E = -12 V. For 
the right loop, we’re going to travel “uphill” through the 100 Ω resistor, 
opposite to I3, and gain potential. Thus the loop law for the right loop is

a 1∆V2i = 12 V + 1100 Ω2I3 - 1200 Ω2I2 = 0

If we substitute I3 = I1 - I2 and then rearrange the terms, we find 
that the two independent loops have given us two simultaneous 
equations in the two unknowns I1 and I2:

 400I1 - 100I2 = 7

 -100I1 + 300I2 = 12

We can eliminate I2 by multiplying through the first equation by 3 
and then adding the two equations. This gives 1100I1 = 33, from 
which I1 = 0.030 A = 30 mA. Using this value in either of the two 
loop equations gives I2 = 0.050 A = 50 mA. Because I2 7 I1, the 
current through the 100 Ω resistor is I3 = I1 - I2 = -20 mA, or, 
because of the minus sign, 20 mA upward. The potential difference 
across the 100 Ω resistor is ∆V100 Ω = I3R = 2.0 V, with the bottom  
end more positive.

REVIEW The three “legs” of the circuit are in parallel, so they 
must have the same potential difference across them. The left leg 
has ∆V = 19 V - 10.030 A21300 Ω2 = 10 V, the middle leg has 
∆V = 12 V - 10.020 A21100 Ω2 = 10 V, and the right leg has 
∆V = 10.050 A21200 Ω2 = 10 V. Consistency checks such as 
these are very important. Had we made a numerical error in our 
circuit analysis, we would have caught it at this point.

EXAMPLE 28.10 ■ Analyzing a two-loop circuit

200 Ω
100 Ω300 Ω

19 V 12 V

FIGURE 28.30 A two-loop circuit.

200 Ω
100 Ω300 Ω

19 V 12 V
I2I1

I2

I3

I1

I3

Kirchhoff’s junction law 
requires I1 = I2 + I3.  

FIGURE 28.31 Applying Kirchhoff’s laws.

The circular prong of a three-prong plug 
is a connection to ground.

28.8 Getting Grounded
People who work with electronics are often heard to say that something is “grounded.” 
It always sounds quite serious, perhaps somewhat mysterious. What is it?

The circuit analysis procedures we have discussed so far deal only with potential 
differences. Although we are free to choose the zero point of potential anywhere that 
is convenient, our analysis of circuits has not revealed any need to establish a zero 
point. Potential differences are all we have needed.

Difficulties can begin to arise, however, if you want to connect two different cir-
cuits together. Perhaps you would like to connect your DVD to your television or your 
computer monitor to the computer itself. Incompatibilities can arise unless all the 
circuits to be connected have a common reference point for the potential.

You learned previously that the earth itself is a conductor. Suppose we have two 
circuits. If we connect one point of each circuit to the earth by an ideal wire, and 
we also agree to call the potential of the earth Vearth = 0 V, then both circuits have 
a common reference point. But notice something very important: one wire connects 
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28.8 Getting Grounded 835

the circuit to the earth, but there is not a second wire returning to the circuit. That is, 
the wire connecting the circuit to the earth is not part of a complete circuit, so there 
is no current in this wire! Because the wire is an equipotential, it gives one point in 
the circuit the same potential as the earth, but it does not in any way change how the 
circuit functions. A circuit connected to the earth in this way is said to be grounded, 
and the wire is called the ground wire.

FIGURE 28.32a shows a fairly simple circuit with a 10 V battery and two resistors 
in series. The symbol beneath the circuit is the ground symbol. It indicates that a 
wire has been connected between the negative battery terminal and the earth, but the 
presence of the ground wire does not affect the circuit’s behavior. The total resistance 
is 8 Ω + 12 Ω = 20 Ω, so the current in the loop is I = 110 V2/120 Ω2 = 0.50 A. 
The potential differences across the two resistors are found, using Ohm’s law, to be 
∆V8 = 4 V and ∆V12 = 6 V. These are the same values that we would find if the 
ground wire were not present. So what has grounding the circuit accomplished?

FIGURE 28.32b shows the actual potential at several points in the circuit. By definition, 
Vearth = 0 V. The negative battery terminal and the bottom of the 12 Ω resistor are con-
nected by ideal wires to the earth, so the potential at these two points must also be zero. 
The positive terminal of the battery is 10 V more positive than the negative terminal, so 
Vneg = 0 V implies Vpos = +10 V. Similarly, the fact that the potential decreases by 6 V 
as charge flows through the 12 Ω resistor now implies that the potential at the junction 
of the resistors must be +6 V. The potential difference across the 8 Ω resistor is 4 V, so 
the top has to be at +10 V. This agrees with the potential at the positive battery termi-
nal, as it must because these two points are connected by an ideal wire.

All that grounding the circuit does is allow us to have specific values for the poten-
tial at each point in the circuit. Now we can say “The voltage at the resistor junction is 
6 V,” whereas before all we could say was “There is a 6 V potential difference across 
the 12 Ω resistor.”

There is one important lesson from this: Being grounded does not affect the cir-
cuit’s behavior under normal conditions. You cannot use “because it is grounded” to 
explain anything about a circuit’s behavior.

We added “under normal conditions” because there is one exception. Most circuits 
are enclosed in a case of some sort that is held away from the circuit with insulators. 
Sometimes a circuit breaks or malfunctions in such a way that the case comes into elec-
trical contact with the circuit. If the circuit uses high voltage, or even ordinary 120 V 
household voltage, anyone touching the case could be injured or killed by electrocution. 
To prevent this, many appliances or electrical instruments have the case itself grounded. 
Grounding ensures that the potential of the case will always remain at 0 V and be safe. 
If a malfunction occurs that connects the case to the circuit, a large current will pass 
through the ground wire to the earth and cause a fuse to blow. This is the only time the 
ground wire would ever have a current, and it is not a normal operation of the circuit.

8 Ω ∆V = 4 V

∆V = 6 V12 Ω

Potential
differences

The circuit is grounded
at this point.

0.50 A(a)

10 V

Ground
symbol

FIGURE 28.32 A circuit that is grounded at 
one point.

8 Ω

12 Ω

6 V

There is no current
in the ground wire.

10 V is the potential
at the dot.

0.50 A

(b)

10 V

10 V

0 V 0 V

10 V

Suppose the circuit of Figure 28.32 were grounded at the junction 
between the two resistors instead of at the bottom. Find the poten-
tial at each corner of the circuit.

VISUALIZE FIGURE 28.33 shows the new circuit. (It is customary to 
draw the ground symbol so that its “point” is always down.)

SOLVE Changing the ground point does not affect the circuit’s be-
havior. The current is still 0.50 A, and the potential differences across 
the two resistors are still 4 V and 6 V. All that has happened is that 
we have moved the V = 0 V reference point. Because the earth has 
Vearth = 0 V, the junction itself now has a potential of 0 V. The po-
tential decreases by 4 V as charge flows through the 8 Ω resistor. 

EXAMPLE 28.11 ■ A grounded circuit

8 Ω

12 Ω

0 V
0 V

0.50 A

10 V

4 V

-6 V-6 V

4 V

FIGURE 28.33 Circuit of Figure 28.32 grounded at the point 
between the resistors.

Continued
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28.9 RC Circuits
A resistor circuit has a steady current. By adding a capacitor and a switch, we can 
make a circuit in which the current varies with time as the capacitor charges and 
discharges. Circuits with resistors and capacitors are called RC circuits. RC circuits 
are at the heart of timekeeping circuits in applications ranging from the intermittent 
windshield wipers on your car to computers and other digital electronics.

FIGURE 28.34a shows a charged capacitor, a switch, and a resistor. The capacitor has 
charge Q0 and potential difference ∆V0 = Q0/C. There is no current, so the potential 
difference across the resistor is zero. Then, at t = 0, the switch closes and the capaci-
tor begins to discharge through the resistor.

How long does the capacitor take to discharge? How does the current through the 
resistor vary as a function of time? To answer these questions, FIGURE 28.34b shows the 
circuit at a later instant when the capacitor is partially discharged.

Kirchhoff’s loop law is valid for any circuit, not just circuits with batteries. The 
loop law applied to the circuit of Figure 28.34b, going around the loop cw, is

 ∆Vcap + ∆Vres =
Q

C
- IR = 0 (28.25)

Q and I in this equation are the instantaneous values of the capacitor charge and the 
resistor current.

The current I is the rate at which charge flows through the resistor: I = dq/dt. But 
the charge flowing through the resistor is charge that was removed from the capaci-
tor. That is, an infinitesimal charge dq flows through the resistor when the capacitor 
charge decreases by dQ. Thus dq = -dQ, and the resistor current is related to the 
instantaneous capacitor charge by

 I = -
dQ

dt
 (28.26)

Equation 28.26 tells us that I is positive when Q is decreasing (dQ 6 0), as we would 
expect. The reasoning that has led to Equation 28.26 is rather subtle but very important.

If we substitute Equation 28.26 into Equation 28.25 and then divide by R, the loop 
law for the RC circuit becomes

 
dQ

dt
+

Q

RC
= 0 (28.27)

Equation 28.27 is a first-order differential equation for the capacitor charge Q, but one 
that we can solve by direct integration. First, we rearrange Equation 28.27 to get all 
the charge terms on one side of the equation:

dQ

Q
= -

1
RC

 dt

The product RC is a constant for any particular circuit.

Because it ends at 0 V, the potential at the top of the 8 Ω resistor must 
be +4 V. Similarly, the potential decreases by 6 V through the 12 Ω 
resistor. Because it starts at 0 V, the bottom of the 12 Ω resistor must 
be at -6 V. The negative battery terminal is at the same potential 
as the bottom of the 12 Ω resistor, because they are connected by a 
wire, so Vneg = -6 V. Finally, the potential increases by 10 V as the 
charge flows through the battery, so Vpos = +4 V, in agreement, as it 
should be, with the potential at the top of the 8 Ω resistor.

REVIEW A negative voltage means only that the potential at that 
point is less than the potential at some other point that we chose to 
call V = 0 V. Only potential differences are physically meaning-
ful, and only potential differences enter into Ohm’s law: I = ∆V/R.  
The potential difference across the 12 Ω resistor in this example is 
6 V, decreasing from top to bottom, regardless of which point we 
choose to call V = 0 V.

The switch will
close at t = 0.

(a) Before the switch closes

Charge Q0

∆V0 = Q0/C

R
∆VR = 0I = 0C

FIGURE 28.34 Discharging a capacitor.

(b) After the switch closes

Charge Q
∆Vcap = Q/C

R
∆Vres = - IRIC

The current is reducing the 
charge on the capacitor.

The rear flasher on a bike helmet flashes 
on and off. The timing is controlled by an 
RC circuit.
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The capacitor charge was Q0 at t = 0 when the switch was closed. We want to inte-
grate from these starting conditions to charge Q at a later time t. That is,

 3
Q

Q0

 
dQ

Q
= -

1
RC

 3
t

0
 dt (28.28)

Both are well-known integrals, giving

ln Q `
Q

Q0

= ln Q - ln Q0 = ln1 Q

Q0
2 = -

t
RC

We can solve for the capacitor charge Q by taking the exponential of both sides, 
then multiplying by Q0. Doing so gives

 Q = Q0 e
-t/RC (28.29)

Notice that Q = Q0 at t = 0, as expected.
The argument of an exponential function must be dimensionless, so the quantity 

RC must have dimensions of time. It is useful to define the time constant t to be

 t = RC (28.30)

We can then write Equation 28.29 as

 Q = Q0 e
-t/t (28.31)

The capacitor voltage, directly proportional to the charge, also decays exponentially as

 ∆VC = ∆V0 e
- t/t  (capacitor discharging) (28.32)

The meaning of Equation 28.32 is easier to understand if we portray it graphically. 
FIGURE 28.35a shows the capacitor voltage as a function of time. The voltage decays ex-
ponentially, starting from ∆V0 at t = 0 and asymptotically approaching zero as t S ∞ . 
The time constant t is the time at which the voltage has decreased to e-1 (about 37%) 
of its initial value. At time t = 2t, the voltage has decreased to e-2 (about 13%) of its 
initial value. A graph of the capacitor’s charge would have the same shape.

 NOTE   The shape of the voltage graph is always the same, regardless of the specific 
value of the time constant t.

We find the resistor current by using Equation 28.26:

 I = -
dQ

dt
=

Q0

t
 e-t/t =

Q0

RC
 e-t/t =

∆V0

R
 e-t/t = I 0 e

-t/t (28.33)

where I0 = ∆V0/R is the initial current, immediately after the switch closes. FIGURE 28.35b 
is a graph of the resistor current versus t. You can see that the current undergoes the same  
exponential decay, with the same time constant, as the capacitor voltage.

 NOTE   There’s no specific time at which the capacitor has been completely dis-
charged, because ∆V  approaches zero asymptotically, but the voltage and current 
have dropped to less than 1% of their initial values at t = 5t. Thus 5t is a reasonable 
answer to the question “How long does it take to discharge a capacitor?”

(b) Current I

I has decreased to 37%
of its initial value at t = t.

t

0.37I0

I0

2tt 3t0
0

∆V0

(a)

0.13∆V0

Voltage ∆V

∆V has decreased to 37%
of its initial value at t = t.

An exponential decay curve

∆V has decreased to
13% of its initial
value at t = 2t.

t

0.37∆V0

0
0

2tt 3t

FIGURE 28.35 The decay curves of the 
capacitor voltage and the resistor current.

To determine the capacitance of an unmarked  
capacitor, you set up the circuit shown in FIGURE 
28.36. After holding the switch in posi tion a for 
several seconds, you suddenly flip it—at t =  0 
s—to position b while monitoring the resistor 
voltage with a voltmeter. Your measurements 
are shown in the table. What is the capacitance? 
And what was the resistor current 5.0 s after the 
switch changed position?

EXAMPLE 28.12 ■ Measuring capacitance

Time (s) Voltage (V)

0.0 9.0
2.0 5.4
4.0 2.7
6.0 1.6
8.0 1.0

9 V 25 kΩC

a b

V

FIGURE 28.36 An RC circuit for measuring capacitance.

Continued
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838 CHAPTER 28 Fundamentals of Circuits

Charging a Capacitor
FIGURE 28.38a shows a circuit that charges a capacitor. After the switch is closed, the 
battery’s charge escalator moves charge from the bottom electrode of the capacitor to 
the top electrode. The resistor, by limiting the current, slows the process but doesn’t 
stop it. The capacitor charges until ∆VC = E; then the charging current ceases. The 
full charge of the capacitor is Q0 = C1∆VC2max = CE.

The analysis is much like that of discharging a capacitor. As a homework problem, 
you can show that the capacitor voltage and the circuit current at time t are

 ∆V = E11 - e-t/t2 

 I = I0e
-t/t  (capacitor charging) 

(28.34)

where I0 = E/R and, again, t = RC. The “upside-down decay” of the capacitor voltage 
to E is shown graphically in FIGURE 28.38b.

(a)

Switch closes 
at t = 0 s.E C

R

FIGURE 28.38 Charging a capacitor.

MODEL The battery charges the capacitor to 9.0 V. Then, when the 
switch is flipped to position b, the capacitor discharges through the 
25,000 Ω resistor with time constant t = RC.

SOLVE With the switch in position b, the resistor is in parallel 
with the capacitor and both have the same potential difference 
∆VR = ∆VC = Q/C at all times. The capacitor charge decays  
exponentially as

Q = Q0 e
- t/t

Consequently, the resistor (and capacitor) voltage also decays ex-
ponentially:

∆VR =
Q0

C
 e- t/t = ∆V0 e

- t/t

where ∆V0 = 9.0 V is the potential difference at the instant the 
switch closes. To analyze exponential decays, we take the natural 
logarithm of both sides. This gives

ln1∆VR2 = ln1∆V02 + ln1e- t/t2 = ln1∆V02 -
1
t

 t

This result tells us that a graph of ln1∆VR2 versus t—a semi-log 
graph—should be linear with y-intercept ln1∆V02 and slope -1/t. 
If this turns out to be true, we can determine t and hence C from an 
experimental measurement of the slope.

FIGURE 28.37 is a graph of ln1∆VR2 versus t. It is, indeed, linear 
with a negative slope. From the y-intercept of the best-fit line, we 
find ∆V0 = e2.20 = 9.0 V, as expected. This gives us confidence in 
our analysis. Using the slope, we find

t = -
1

slope
= -

1

-0.28 s-1 = 3.6 s

With this, we can calculate

C =
t

R
=

3.6 s
25,000 Ω

= 1.4 * 10-4 F = 140 mF

The initial current is I0 = 19.0 V2/125,000 Ω2 = 360 mA. Current 
also decays exponentially with the same time constant, so the cur-
rent after 5.0 s is

I = I0e- t/t = 1360 mA2e-15.0 s2/13.6 s2 = 90 mA

REVIEW The time constant of an exponential decay can be esti-
mated as the time required to decay to one-third of the initial value. 
Looking at the data, we see that the voltage drops to one-third of 
the initial 9.0 V in just under 4 s. This is consistent with the more 
precise t = 3.6 s, so we have confidence in our results.

y = -0.28x + 2.20

Best-fit line

8

0.5

1.0

1.5

2.0

2.5
ln(∆VR)

t (s)
2 4 6

0.0
0

FIGURE 28.37 A semi-log graph of the data.

(b) Voltage ∆V

t

E

2tt 3t0
0 STOP TO THINK 28.6 The time constant for the discharge of this capacitor is

a. 5 s.
b. 4 s.
c. 2 s.
d. 1 s.
e. The capacitor doesn’t discharge because the  

resistors cancel each other.

2 Ω2 Ω
1 F
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   CHAPTER 28 CHALLENGE EXAMPLE     Energy dissipated during a capacitor discharge

The switch in FIGURE 28.39 has been in position 1 for a long time. 
It is suddenly switched to position 2 for 1.0 s, then back to 1. How 
much energy is dissipated by the 5500 Ω resistor?

MODEL With the switch in position 1, the capacitor 
charges through the 1200 Ω resistor with time constant 
tcharge = 11200 Ω2 * 12.0 * 10-4 F2 = 0.24 s. Because the switch 
has been in position 1 for a “long time,” which we interpret as being 
much longer than 0.24 s, we will assume that the capacitor is fully 
charged to 50 V when the switch is changed to position 2. The ca-
pacitor then discharges through the 5500 Ω resistor until the switch 
is returned to position 1. Assume ideal wires.

SOLVE Let t = 0 s be the time when the switch is moved from 1  
to 2, initiating the discharge. The battery and 1200 Ω resistor are  
irrelevant during the discharge, so the circuit looks like that of  
Figure 28.34b. The time constant is t = 15500 Ω212.0 * 10-4 F2 =  
1.1 s, so the capacitor voltage decreases from 50 V at t = 0 s to

∆V C = 150 V2e-11.0 s2/11.1 s2 = 20 V

at t = 1.0 s.

There are two ways to determine the energy dissipated in the 
resistor. We learned in Section 28.3 that a resistor dissipates ener-
gy at the rate dE/dt = PR = I 2R. The current decays exponentially 
as I = I0 exp1- t /t2, with I0 = ∆V0/R = 9.09 mA. We can find the 
energy that has been dissipated at time t = T by integrating:

  ∆E = 3
T

0
I 2R dt = I0 

2
 R3

T

0
 e-2t/t dt = - 1

2 tI0 

2
 Re-2t/t `

T

0

  = 1
2 tI0 

2
 R11 - e-2T/t2

The 2 in the exponent appears because we squared the expression 
for I. Evaluating for T = 1.0 s, we find

∆E = 1
2 11.1 s210.00909 A2215500 Ω211 - e-12.0 s2/11.1 s22 = 0.21 J

Alternatively, we can use the known capacitor voltages at t = 0 s 
and t = 1.0 s and UC = 1

2 C1∆VC22 to calculate the energy stored in 
the capacitor at these times:

UC1t = 0.0 s2 = 1
2 12.0 * 10-4 F2150 V22 = 0.25 J

UC1t = 1.0 s2 = 1
2 12.0 * 10-4 F2120 V22 = 0.04 J

The capacitor has lost ∆E = 0.21 J of energy, and this energy was 
dissipated by the current through the resistor.

REVIEW Not every problem can be solved in two ways, but doing 
so when it’s possible gives us great confidence in our result.

50 V 200 mF 5500 Ω

21

1200 Ω

FIGURE 28.39 Circuit of a switched capacitor.

28.9 RC Circuits 839
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840

The goal of Chapter 28 has been to learn the fundamental 
physical principles that govern electric circuits.

Summary

Solving Circuit Problems
MODEL Assume that wires and, where appropriate, batteries are ideal.

VISUALIZE Draw a circuit diagram. Label all quantities.

SOLVE Base the solution on Kirchhoff’s laws.

• Reduce the circuit to the smallest possible number of equivalent 
resistors.

• Write one loop equation for each independent loop.

• Find the current and the potential difference.

• Rebuild the circuit to find I and ∆V for each resistor.

REVIEW Verify that

• The sum of potential differences across series resistors matches 
∆V for the equivalent resistor.

• The sum of the currents through parallel resistors matches I for the 
equivalent resistor.

Kirchhoff’s loop law
For a closed loop:
• Assign a direction to  

the current I.

• g1∆V2i = 0

Kirchhoff’s junction law
For a junction:
• gIin = gIout

General Strategy

∆V4

∆V1

∆V2

∆V3

I 

Iin

Iout

Equivalent resistance

Groups of resistors can often be reduced to one equivalent resistor.

Series resistors

Req = R1 + R2 + R3 + g

Parallel resistors

Req = 1 1
R1

+
1
R2

+
1
R3

+ g2-1

RC circuits
The charge on and current through a 
discharging capacitor are

Q = Q0 e
-t/t

I = -
dQ

dt
=

Q0

t
 e-t/t = I0 e

-t/t

where t = RC is the time  
constant.

Applications

R1 R3R2

R2

R1

R3

RIC
Q

Q

t0
0

Q0

t

Ohm’s law
A potential difference ∆V  between the ends of a conductor with 
resistance R creates a current

I =
∆V
R

Signs of �V for Kirchhoff’s loop law 

Travel I

RE

Travel

E

Energy and power
The energy used by a circuit is supplied by the emf E of the 
battery through the energy transformations

Echem S U S K S Eth

The battery supplies energy at the rate

Pbat = IE

The resistors dissipate energy at the rate

PR = I ∆VR = I2R =
1∆VR22

R
 

Important Concepts

∆Vbat = +E            ∆Vbat = -E              ∆Vres = - IR
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Conceptual Questions 841

CONCEPTUAL QUESTIONS

circuit diagram
Kirchhoff’s junction law
Kirchhoff’s loop law
complete circuit
load

source
kilowatt hour, kWh
series resistors
equivalent resistance, Req

ammeter

internal resistance, r
terminal voltage, ∆Vbat

short circuit
parallel resistors
voltmeter

grounded
RC circuit
time constant, t

Terms and Notation

1. Rank in order, from largest to smallest, the currents IA to ID 
through the four resistors in FIGURE Q28.1.

IA

2 V

IB

1 V

IC

2 V

ID

1 V

2 Ω 2 Ω 1 Ω 1 Ω

FIGURE Q28.1

2. The tip of a flashlight bulb is touching the top of the 3 V battery 
in FIGURE Q28.2. Does the bulb light? Why or why not?

3 V

FIGURE Q28.2

2 Ω

6 V
1

2

FIGURE Q28.3

3. The wire is broken on the right side of the circuit in FIGURE Q28.3. 
What is the potential difference, V1 - V2, between points 1 and 2? 
Explain.

4. The circuit of FIGURE Q28.4 has two resistors, with R1 7 R2. Which 
of the two resistors dissipates the larger amount of power? Explain.

R1

R2

FIGURE Q28.4

R1 R2

FIGURE Q28.5

1
2

1
2

A

R

B

∆V∆V

2R

C

2 ∆V

R

D

2 ∆V

2R

FIGURE Q28.6

A

B

FIGURE Q28.8

B C

A

1

2

FIGURE Q28.9

5. The circuit of FIGURE Q28.5 has two resistors, with R1 7 R2. 
Which of the two resistors dissipates the larger amount of power? 
Explain.

6. Rank in order, from largest to smallest, the powers PA to PD dis-
sipated by the four resistors in FIGURE Q28.6.

7. A battery with internal resistance r is connected to a load 
 resistance R. If R is increased, does the terminal voltage of the 
battery increase, decrease, or stay the same? Explain.

8. Initially bulbs A and B in FIGURE Q28.8 are glowing. What hap-
pens to each bulb if the switch is closed? Does it get brighter, 
stay the same, get dimmer, or go out? Explain.

9. Bulbs A, B, and C in FIGURE Q28.9 are identical, and all are 
glowing.
a. Rank in order, from most to least, the brightnesses of the 

three bulbs. Explain.
b. Suppose a wire is connected between points 1 and 2. What 

happens to each bulb? Does it get brighter, stay the same, get 
dimmer, or go out? Explain.

10. In the circuit of FIGURE Q28.10, is the resistance between points 
1 and 2 (a) less than 100 Ω, (b) between 100 Ω and 150 Ω,  
(c) more than 150 Ω, or (d) is it not possible to say without 
 knowing the values of all the resistors? Explain.

R1

R3R2

100 Æ

1

2
50 Æ

FIGURE Q28.10

B

A

FIGURE Q28.11

∆VC

R1

t

R2
R3

FIGURE Q28.12

11. Bulbs A and B in FIGURE Q28.11 are identical, and both are 
glowing. What happens to each bulb when the switch is closed? 
Does its brightness increase, stay the same, decrease, or go out? 
Explain.

12. FIGURE Q28.12 shows the voltage 
as a function of time of a capaci-
tor as it is discharged (separately) 
through three different resistors. 
Rank in order, from largest to 
smallest, the values of the resis-
tances R1 to R3.
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EXERCISES AND PROBLEMS

12 V

100 Ω

50 Ω

10 mF

FIGURE EX28.1

9 V75 Ω

50 Ω

100 Ω

FIGURE EX28.2

12 V

8 V

I
3 Ω

4 Ω

FIGURE EX28.3

9 V 18 V

10 Ω

FIGURE EX28.4

40 V

65 Ω

30 Ω

FIGURE EX28.5

3 V 6 V

6 Ω

FIGURE EX28.6

Problems labeled  integrate material from earlier chapters.

Exercises

Section 28.1 Circuit Elements and Diagrams

1. | Draw a circuit diagram for the circuit of FIGURE EX28.1.

2. | Draw a circuit diagram for the circuit of FIGURE EX28.2.

Section 28.2 Kirchhoff’s Laws and the Basic Circuit

3. || In FIGURE EX28.3, what is the magnitude of the current in the 
wire to the right of the junction? Do the charged particles in this 
wire move to the right or to the left?

4. |

a. What are the magnitude and direction of the current in the 
10 Ω resistor in FIGURE EX28.4?

b. Draw a graph of the potential as a function of the distance 
traveled through the circuit, traveling cw from V = 0 V at 
the lower left corner.

5. | What is the magnitude of the potential difference across each 
resistor in FIGURE EX28.5?

6. | a. What are the magnitude and direction of the current in the 
6 Ω resistor in FIGURE EX28.6?

b. Draw a graph of the potential as a function of the distance 
traveled through the circuit, traveling cw from V = 0 V at 
the lower left corner.

Section 28.3 Energy and Power

7. | 1 kWh is how many joules?
8. | What is the resistance of a 1000 W (220 V) hair dryer? What 

is the current in the hair dryer when it is used?

9. | A 60 W lightbulb and a 100 W lightbulb are placed in the 
circuit shown in FIGURE EX28.9. Both bulbs are glowing.
a. Which bulb is brighter? Or are they equally bright?
b. Calculate the power dissipated by each bulb.

100 W

60 W

120 V

FIGURE EX28.9

12 V

R1 = 12 Ω

R2 = 18 Ω

FIGURE EX28.10

P

Q R

S

T

E

FIGURE EX28.11

∆V = 5.0 V

I = 100 mA

10 Ω 15 Ω R

FIGURE EX28.16

10. | How much power is dissipated by each resistor in FIGURE 
EX28.10?

11. || The five identical bulbs in FIGURE EX28.11 are all glowing. 
The battery is ideal. What is the order of brightness of the bulbs, 
from brightest to dimmest? Some may be equal.

12. | A car’s starter motor consumes 3.8 kW of electric power.
a. How much current does the motor draw from the 12 V car 

battery?
b. How much charge is delivered to the motor in the 2.0 s it 

takes to start?
13. || A standard 60 W (120 V) light bulb contains a 3-cm-long 

tungsten filament. The high-temperature resistivity of tungsten 
is 9 * 10-7 Ω  m. What is the diameter of the filament?

14. | A family uses 500 kWh of electricity a month.
a. What is the average current in the 220 V power line to the 

house?
b. On average, what is the resistance of the household?

15. | Many electric companies use time-of-day pricing in which 
electricity costs more during hours of high demand. Suppose 
electricity costs $0.21/kWh from 10 a.m. to 6 p.m.; $0.09/kWh at 
all other times. What is the annual cost of electricity for a 2.5 kW 
industrial pump that runs 24 hours a day?

Section 28.4 Series Resistors

Section 28.5 Real Batteries

16. | What is the value of resistor R in FIGURE EX28.16?

17. | The voltage across the terminals of a 6.0 V battery is 5.5 V 
when the battery is connected to a 10 Ω load. What is the bat-
tery’s internal resistance?
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Exercises and Problems 843

26. | What is the equivalent resistance between points 1 and 2 in 
FIGURE EX28.26?

19. || The two resistors in FIGURE EX28.19 dissipate a total of  
100 W. What is the current?

20. | A variable resistor R is connected across the terminals of a 
battery. FIGURE EX28.20 shows the current in the circuit as R is 
varied. What are the emf and internal resistance of the battery?

1.5 V

r
2.3 AA

FIGURE EX28.18

30 VR

10 Ω

I

FIGURE EX28.19

R (Ω)

I (A)

100
0

2

4

6

20 30 40

FIGURE EX28.20

r

E

Open: 1.636 A 
Closed: 1.565 A 

5.0 Ω 10.0 Ω

A

FIGURE EX28.21

21. || What are the emf and internal resistance of the battery in 
FIGURE EX28.21?

Section 28.6 Parallel Resistors

22. | What is the value of resistor R in FIGURE EX28.22?

10 Ω 15 Ω

2 A

R∆V = 8 V

FIGURE EX28.22

200 Ω

R

1 2
R

FIGURE EX28.23

15 V
20 Ω10 Ω

1 Ω

FIGURE EX28.24

100 Ω

100 Ω

100 Ω
100 Ω

100 Ω
100 Ω1 2

FIGURE EX28.25

100 Ω 100 Ω 100 Ω

100 Ω

100 Ω 100 Ω1 2

FIGURE EX28.26

16 Ω

25 Ω

60 Ω

40 Ω

35 Ω

1 2

FIGURE EX28.27

1 2

30 Ω

4 Ω 6 Ω

30 Ω

24 Ω

45 Ω

FIGURE EX28.28

5 Ω

20 Ω

10 Ω
I

FIGURE EX28.29

23. || Two of the three resistors in FIGURE EX28.23 are unknown but 
equal. The total resistance between points 1 and 2 is 75 Ω. What 
is the value of R?

24. | Compared to an ideal battery, by what percentage does the 
battery’s internal resistance reduce the potential difference 
across the 20 Ω resistor in FIGURE EX28.24?

25. | What is the equivalent resistance between points 1 and 2 in 
FIGURE EX28.25?

27. | What is the equivalent resistance between points 1 and 2 in 
FIGURE EX28.27?

28. | What is the equivalent resistance between points 1 and 2 in 
FIGURE EX28.28?

29. || The 10 Ω resistor in FIGURE EX28.29 is dissipating 40 W of 
power. How much power are the other two resistors dissipating?

Section 28.8 Getting Grounded

30. || In FIGURE EX28.30, what is the value of the potential at points 
1 and 2?

5 V

1

2

1 Ω

15 V

4 Ω

FIGURE EX28.30

6 V

31

2 4

1 Ω

9 V

2 Ω

FIGURE EX28.31

2 mF 2 mF 1 kΩ1 kΩ

FIGURE EX28.33

1 kΩ

1 kΩ2 mF

2 mF

FIGURE EX28.34

31. || In FIGURE EX28.31, the potential at point 4 is -8.0 V. At 
which numbered point is the circuit grounded?

Section 28.9 RC Circuits

32. | Show that the product RC has units of s.
33. || What is the time constant for the discharge of the capacitors 

in FIGURE EX28.33?

34. || What is the time constant for the discharge of the capacitors 
in FIGURE EX28.34?

18. | The battery in FIGURE EX28.18 is short-circuited by an ideal 
ammeter having zero resistance.
a. What is the battery’s internal resistance?
b. How much power is dissipated inside the battery?
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844 CHAPTER 28 Fundamentals of Circuits

46. || What is the equivalent resistance between points 1 and 2 in 
FIGURE P28.46?

47. || A small toaster that operates at 120 V has a heating element 
made from a 4.4-m-long, 0.70-mm-diameter nichrome wire. The 
resistivity, density, and specific heat of nichrome are, respec-
tively, 1.5 * 10-6 Ω  m, 8400 kg/m3, and 450 J/kg K.
a. What is the power rating of this toaster?
b. If half the heat energy is lost to the air, how long does it take 

the heating element to warm from 20°C to 450°C, about the 
temperature at which it first begins to glow red?

48. || A string of holiday lights can be wired in series, but all the 
bulbs go out if one burns out because that breaks the circuit. 
Most lights today are wired in series, but each bulb has a special 
fuse that short-circuits the bulb—making a connection around 
it—if it burns out, thus keeping the other lights on. Suppose a 
string of 50 lights is connected in this way and plugged into a 
120 V outlet. By what factor does the power dissipated by each 
remaining bulb increase when the first bulb burns out?

49. || Suppose you have resistors 2.5 kΩ, 3.5 kΩ, and 4.5 kΩ and 
a 100 V power supply. What is the ratio of the total power deliv-
ered to the resistors if they are connected in parallel to the total 
power delivered if they are connected in series?

50. || A lightbulb is in series with a 2.0 Ω resistor. The lightbulb 
dissipates 10 W when this series circuit is connected to a 9.0 V 
battery. What is the current through the lightbulb? There are two 
possible answers; give both of them.

51. || a. Load resistor R is attached to a battery of emf E and in-
ternal resistance r. For what value of the resistance R, in 
terms of E and r, will the power dissipated by the load 
resistor be a maximum?

b. What is the maximum power that the load can dissipate if 
the battery has E = 9.0 V and r = 1.0 Ω?

52. ||| For an ideal battery 1r = 0 Ω2, closing the switch in FIGURE 
P28.52 does not affect the brightness of bulb A. In practice, bulb 
A dims just a little when the switch closes. To see why, assume 
that the 1.50 V battery has an internal resistance r = 0.50 Ω and 
that the resistance of a glowing bulb is R = 6.00 Ω.
a. What is the current through bulb A when the switch is open?
b. What is the current through bulb A after the switch has closed?
c. By what percentage does the current through A change when 

the switch is closed?

35. || A 10 mF capacitor initially charged to 20 mC is discharged 
through a 1.0 kΩ resistor. How long does it take to reduce the 
capacitor’s charge to 10 mC?

36. | The switch in FIGURE EX28.36 
has been in position 1 for a long 
time. It is changed to position 2 
at t =  0 s. What are the charge Q 
on the capacitor and the current I 
through the resistor (a) immedi-
ately after the switch is closed?  
(b) at t =  50 ms? (c) at t = 200 ms?

37. || A capacitor is discharged through a 80 Ω resistor. The dis-
charge current decreases to 40% of its initial value in 1.0 ms. 
What is the value of the capacitor?

38. || What value resistor will discharge a 3.0 mF capacitor to 20% 
of its initial charge in 1.5 ms?

Problems
39. || It seems hard to justify spending $5.00 for an LED lightbulb 

when an ordinary incandescent bulb costs 50¢. To see if this 
makes sense, compare a 60 W incandescent bulb that lasts 1000 
hours to a 10 W LED bulb that has a lifetime of 15,000 hours. 
Both bulbs produce the same amount of visible light. If electricity  
costs $0.15/kWh, what is the total cost—purchase price plus  
energy—to get 15,000 hours of light from each type of bulb? This is  
called the life-cycle cost.

40. | A refrigerator has a 1000 W compressor, but the compressor 
runs only 20% of the time.
a. If electricity costs $0.15/kWh, what is the monthly (30 day) 

cost of running the refrigerator?
b. A more energy-efficient refrigerator with an 800 W compres-

sor costs $150 more. If you buy the more expensive refrigerator, 
how many months will it take to recover your additional cost?

41. || Two 75 W (120 V) lightbulbs are wired in series, then the 
combination is connected to a 120 V supply. How much power is 
dissipated by each bulb?

42. | An electric eel develops a 450 V potential difference be-
tween its head and tail. The eel can stun a fish or other prey by 
using this potential difference to drive a 0.80 A current pulse for  
1.0  ms. What are (a) the energy delivered by this pulse and  
(b) the total charge that flows?

43. || You have a 2.0 Ω resistor, a 3.0 Ω resistor, a 6.0 Ω resistor, 
and a 6.0 V battery. Draw a diagram of a circuit in which all 
three resistors are used and the battery delivers 9.0 W of power.

44. || A 1.0-m-long, 2.0-mm-diameter wire has a variable resistiv-
ity given by

r1x2 = 13.0 * 10-6211 +
x

2.0  m22

 Ω  m

where x is measured from one end of the wire. What is the current 
if this wire is connected to the terminals of a 12 V battery?

45. || a.  To which two points in the circuit of FIGURE P28.45 should 
a 12 V battery be connected to dissipate the most power?

b. What is the maximum power?

9 V
4 mF

25 Ω

1 2

FIGURE EX28.36

1

32 20 Ω

40 Ω30 Ω

FIGURE P28.45

10 Ω

6 Ω 4 Ω
12 Ω

3 Ω

2 Ω1

2

FIGURE P28.46

r

E
BA

FIGURE P28.52

53. || The ammeter in FIGURE P28.53 reads 3.0 A. Find I1, I2, and E.

2.0 Ω

1.0 Ω

3.0 A

A

I1

I2

3.0 Ω9.0 V

E
FIGURE P28.53

9 V

2 Ω

3 V

4 Ω

FIGURE P28.54

54. || What is the current in the 2 Ω resistor in FIGURE P28.54?
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62. || How much power is dissipated by the 2 Ω resistor in FIGURE 
P28.62?

63. || For what emf E does the 200 Ω resistor in FIGURE P28.63 dis-
sipate no power? Should the emf be oriented with its positive 
terminal at the top or at the bottom?

55. | What are the battery current Ibat and the potential difference 
V1 - V2 between points 1 and 2 when the switch in FIGURE 
P28.55 is (a) open and (b) closed?

5 Ω3 Ω

1 Ω3 Ω

24 V 21

FIGURE P28.55

R

I

A

Your ammeter

500 mA ammeter

FIGURE P28.56

6 Ω5 Ω

4 Ω

10 Ω

24 V

FIGURE P28.57

12 Ω6 Ω4 Ω

7 Ω

3 Ω

24 V

FIGURE P28.58

56. || A circuit you’re building needs an ammeter that goes from 
0 mA to a full-scale reading of 50 mA. Unfortunately, the only 
ammeter in the storeroom goes from 0 mA to a full-scale reading 
of only 500 mA. Fortunately, you’ve just finished a physics class, 
and you realize that you can make this ammeter work by putting 
a resistor in parallel with it, as shown in FIGURE P28.56. You’ve 
measured that the resistance of the ammeter is 50.0 Ω, not the 
0 Ω of an ideal ammeter.
a. What value of R must you use so that the meter will go to full 

scale when the current I is 50 mA?
b. What is the effective resistance of your ammeter?

57. || For the circuit shown in FIGURE P28.57, find the current 
through and the potential difference across each resistor. Place 
your results in a table for ease of reading.

58. || For the circuit shown in FIGURE P28.58, find the current 
through and the potential difference across each resistor. Place 
your results in a table for ease of reading.

59. || What is the current through the 20 Ω resistor in FIGURE 
P28.59?

20 Ω

2 Ω

100 V

4 Ω

5 Ω

FIGURE P28.59

12 V

3 Ω 16 Ω

4 Ω 48 Ω

FIGURE P28.60

12 V 5 Ω

5 Ω 9 V

10 Ω 3 V

FIGURE P28.61

3 Ω

6 Ω

2 Ω 6 V3 V

FIGURE P28.62

200 Ω

100 Ω 300 Ω

50 V E?

FIGURE P28.63

12 V

0.01 Ω

0.05 Ω

8 V

0.50 Ω

Good
battery

Dead
battery

Jumpers

Starter
motor

FIGURE P28.64

12 V

15 V
4 Ω

2 Ω

4 Ω

FIGURE P28.65

9 V 15 V

6 Ω 10 Ω

12 Ω

Bottom wire

24 Ω

FIGURE P28.66
60. || For the circuit shown in FIGURE P28.60, find the current 

through and the potential difference across each resistor. Place 
your results in a table for ease of reading.

61. || What is the current through the 10 Ω resistor in FIGURE 
P28.61? Is the current from left to right or right to left?

64. | A 12 V car battery dies not so much because its voltage drops 
but because chemical reactions increase its internal resistance. 
A good battery connected with jumper cables can both start the 
engine and recharge the dead battery. Consider the automotive 
circuit of FIGURE P28.64.
a. How much current could the good battery alone drive through 

the starter motor?
b. How much current is the dead battery alone able to drive 

through the starter motor?
c. With the jumper cables attached, how much current passes 

through the starter motor?
d. With the jumper cables attached, how much current passes 

through the dead battery, and in which direction?

65. || What power is dissipated by the 2 Ω resistor in FIGURE   
P28.65?

66. || How much current flows through the bottom wire in FIGURE  
P28.66, and in which direction?
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75. || The flash on a compact camera stores energy in a 120 mF 
 capacitor that is charged to 220 V. When the flash is fired, the 
capacitor is quickly discharged through a lightbulb with 5.0 Ω  
of resistance.
a. Light from the flash is essentially finished after two time 

constants have elapsed. For how long does this flash illumi-
nate the scene?

b. At what rate is the lightbulb dissipating energy 250 ms after 
the flash is fired?

c. What total energy is dissipated by the lightbulb?
76. || Intermittent windshield wipers use a variable resistor—one 

whose resistance changes as the control knob is rotated—in an 
RC circuit to set the delay between passes of the wipers. A typi-
cal circuit is shown in FIGURE P28.76. When the switch is closed, 
the capacitor (initially uncharged) begins to charge and the po-
tential at point 2 begins to increase. A sensor (which you can 
assume draws no current) measures the voltage between points 
1 and 2. When ∆V12 = 0 V, a signal is sent to the wiper motor 
and also to another part of the circuit (not shown) that discharges 
the capacitor so that the cycle can start over. What value of the 
variable resistor causes a pass of the wipers every 12 s?

67. | The capacitor in an RC circuit is discharged with a time 
constant of 15 ms. At what time after the discharge begins are  
(a) the charge on the capacitor reduced to 10% of its initial value 
and (b) the energy stored in the capacitor reduced to 10% its ini-
tial value?

68. || A circuit you’re using discharges a 20 mF capacitor through 
an unknown resistor. After charging the capacitor, you close a 
switch at t = 0 s and then monitor the resistor current with an 
ammeter. Your data are as follows:

Time (s) Current (MA)

0.5 890

1.0 640

1.5 440

2.0 270

2.5 200

Use an appropriate graph of the data to determine (a) the resis-
tance and (b) the initial capacitor voltage.

69. || A 200 mF defibrillator capacitor is charged to 1200 V. When 
fired through a patient’s chest, it loses 85% of its charge in 30 
ms. What is the resistance of the patient’s chest?

70. || A 50 mF capacitor that had  
been charged to 30 V is dis-
charged through a resistor. 
FIGURE P28.70 shows the ca-
pacitor voltage as a function of 
time. What is the value of the 
resistance? t (ms)

∆VC (V)

20
0

10

20

30

4 6

FIGURE P28.70

R

12 V Sensor

5 Ω

1 2

10 Ω 100 mF

Variable
resistor

FIGURE P28.76

8 Ω

30 Ω

60 mF

60 mF

20 mF
(∆VC)0 = 10 V 20 Ω

FIGURE P28.77

71. || A 0.75 mF capacitor is charged to 30 V. It is then connected 
in series with a 15 Ω resistor and a 90 Ω resistor and allowed 
to discharge completely. How much energy is dissipated by the 
15 Ω resistor?

72. || A 20  mF capacitor charged to 100 V is discharged through a 
resistor. The energy stored in the capacitor decreases by 75% in 
0.45 s. What is the value of the resistance?

73. || The capacitor in FIGURE 
P28.73 begins to charge after the 
switch closes at t = 0 s.
a. FIGURE P28.73What is ∆VC a 

very long time after the switch 
has closed?

b. What is Qmax in terms of E, R, 
and C?

c. In this circuit, does I = +dQ/dt  
or -dQ/dt? Explain.

d. Find an expression for the current I at time t. Graph I from 
t = 0 to t = 5t.

74. || The switch in Figure 28.38a closes at t = 0 s and, after a very 
long time, the capacitor is fully charged. Find expressions for (a) 
the total energy supplied by the battery as the capacitor is being 
charged, (b) total energy dissipated by the resistor as the capac-
itor is being charged, and (c) the energy stored in the capacitor 
when it is fully charged. Your expressions will be in terms of E, 
R, and C. (d) Do your results for parts a to c show that energy is 
conserved? Explain.

77. | The capacitors in FIGURE P28.77 are charged and the switch 
closes at t = 0 s. At what time has the current in the 8 Ω resistor 
decayed to half the value it had immediately after the switch was 
closed?

78. || Large capacitors can hold a potentially dangerous charge long 
after a circuit has been turned off, so it is important to make sure 
they are discharged before you touch them. Suppose a 120 mF 
capacitor from a camera flash unit retains a voltage of 150 V 
when an unwary student removes it from the camera. If the stu-
dent accidentally touches the two terminals with his hands, and 
if the resistance of his body between his hands is 1.8 kΩ, for 
how long will the current across his chest exceed the danger level 
of 50 mA?

Challenge Problems
79. ||| You’ve made the finals of the Science Olympics! As one of 

your tasks, you’re given 1.0 g of aluminum and asked to make 
a wire, using all the aluminum, that will dissipate 7.5 W when 
connected to a 1.5 V battery. What length and diameter will you 
choose for your wire?

E

R

C

Closes at t = 0 s

FIGURE P28.73
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82. ||| The capacitor in Figure 28.38a begins to charge after the 
switch closes at t = 0 s. Analyze this circuit and show that 
Q = Qmax11 - e-t/t2, where Qmax = CE.

83. ||| An oscillator circuit is important to many applications. A 
simple oscillator circuit can be built by adding a neon gas tube 
to an RC circuit, as shown in FIGURE CP28.83. Gas is normally 
a good insulator, and the resistance of the gas tube is essentially 
infinite when the light is off. This allows the capacitor to charge. 
When the capacitor voltage reaches a value Von, the electric field 
inside the tube becomes strong enough to ionize the neon gas. 
Visually, the tube lights with an orange glow. Electrically, the 
ionization of the gas provides a very-low-resistance path through 
the tube. The capacitor very rapidly (we can think of it as instan-
taneously) discharges through the tube and the capacitor voltage 
drops. When the capacitor voltage has dropped to a value Voff, 
the electric field inside the tube becomes too weak to sustain 
the ionization and the neon light turns off. The capacitor then 
starts to charge again. The capacitor voltage oscillates between 
Voff, when it starts charging, and Von, when the light comes on to 
discharge it.
a. Show that the oscillation period is

T = RC ln1E - Voff 

E - Von 
2

b. A neon gas tube has Von = 80 V and Voff = 20 V. What resis-
tor value should you choose to go with a 10 mF capacitor and 
a 90 V battery to make a 10 Hz oscillator?

80. ||| Digital circuits require actions to take place at precise times, 
so they are controlled by a clock that generates a steady se-
quence of rectangular voltage pulses. One of the most widely 
used integrated circuits for creating clock pulses is called a 555 
timer. FIGURE CP28.80 shows how the timer’s output pulses, 
oscillating between 0 V and 5 V, are controlled with two resis-
tors and a capacitor. The circuit manufacturer tells users that 
TH, the time the clock output spends in the high 15 V2 state, is 
TH = 1R1 + R22 C * ln 2. Similarly, the time spent in the low 
10 V2 state is TL = R2C * ln 2. You need to design a clock that 
will oscillate at 10 MHz and will spend 75% of each cycle in the 
high state. You will be using a 500 pF capacitor. What values do 
you need to specify for R1 and R2?

555
Timer

OutR2

5 V

0 V C

5 V

0 V

R1

FIGURE CP28.80

100 V

2.0 mF

Opens at t = 0 s

60 Ω

40 Ω

10 Ω

FIGURE CP28.81

C

R Neon
gas tube

E

t

∆VC

Von

Voff

E

0
T

FIGURE CP28.83

81. ||| The switch in FIGURE CP28.81 has been closed for a very long 
time.
a. What is the charge on the capacitor?
b. The switch is opened at t = 0 s. At what time has the charge 

on the capacitor decreased to 10% of its initial value?
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848

The Magnetic Field

What is magnetism?
Magnetism is an interaction between  
moving charges.

■■ Magnetic forces, similar to electric 
forces, are due to the action of 
magnetic fields.

■■ A magnetic field B
u

 is created by a 
moving charge.

■■ Magnetic interactions are understood 
in terms of magnetic poles: north  
and south.

■■ Magnetic poles never occur in isolation.  
All magnets are dipoles, with two poles.

■■ Practical magnetic fields are created by  
currents—collections of moving charges.

■■ Magnetic materials, such as iron, occur  
because electrons have an inherent  
magnetic dipole called electron spin.

What fields are especially important?
We will develop and use three important  
magnetic field models.

I

I

I

Long, straight wire Current loop
I I

Solenoid

How do charges respond to magnetic fields?
A charged particle moving in a magnetic field 
experiences a force perpendicular to both  
B
u

 and vu . The perpendicular force causes 
charged particles to move in circular orbits  
in a uniform magnetic field. This cyclotron  
motion has many important applications.

❮❮ LOOKING BACK Sections 8.2–8.3 Circular motion

❮❮ LOOKING BACK Section 12.10 The cross product

How do currents respond to magnetic fields?
Currents are moving charged particles, so:

■■ There’s a force on a current-carrying wire 
in a magnetic field.

■■ Two parallel current-carrying wires attract 
or repel each other.

■■ There’s a torque on a current loop in a 
magnetic field. This is how motors work.

Why is magnetism important?
Magnetism is much more important than a way to hold a shopping 
list on the refrigerator door. Motors and generators are based on 
magnetic forces. Many forms of data storage, from hard disks to  
the stripe on your credit card, are magnetic. Magnetic resonance 
imaging (MRI) is essential to modern medicine. Magnetic levitation 
trains are being built around the world. And the earth’s magnetic 
field keeps the solar wind from sterilizing the surface. There would 
be no life and no modern technology without magnetism.

IN THIS CHAPTER, you will learn about magnetism and the magnetic field.

29

This magnetic levitation train 
in China reaches a top speed 
of 460 km/h (280 mph).

S N

Magnetic field lines

v
u

B
u

F
u

I
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29.1 Magnetism 849

29.1 Magnetism
We began our investigation of electricity in Chapter 22 by looking at the results of 
simple experiments with charged rods. We’ll do the same with magnetism.

Discovering magnetism

Experiment 1
If a bar magnet is taped to  
a piece of cork and allowed  
to float in a dish of water, it always 
turns to align itself in an approx-
imate north-south direction. The 
end of a magnet that points north 
is called the north-seeking pole, or 
simply the north pole. The other 
end is the south pole.

Experiment 2

S N

S N S N

SN

If the north pole of one magnet is brought near the north pole of  
another magnet, they repel each other. Two south poles also repel  
each other, but the north pole of one magnet exerts an attractive  
force on the south pole of another magnet.

Experiment 3
The north pole of a bar magnet attracts one 
end of a compass needle and repels the 
other. Apparently the compass needle itself 
is a little bar magnet with a north pole and 
a south pole.

Experiment 4

N

S

N

S

N

S

Cutting a bar magnet in half produces two weaker but still complete 
magnets, each with a north pole and a south pole. No matter how  
small the magnets are cut, even down to microscopic sizes, each  
piece remains a complete magnet with two poles.

Experiment 5
Magnets can pick up some objects, such as paper 
clips, but not all. If an object is attracted to one 
end of a magnet, it is also attracted to the other 
end. Most materials, including copper (a penny), 
aluminum, glass, and plastic, experience no force 
from a magnet.

Experiment 6
A magnet does not affect an electroscope.  
A charged rod exerts a weak attractive force 
on both ends of a magnet. However, the force 
is the same as the force on a metal bar that 
isn’t a magnet, so it is simply a polarization 
force like the ones we studied in Chapter 22. 
Other than polarization forces, static charges 
have no effects on magnets.

What do these experiments tell us?

■■ First, magnetism is not the same as electricity. Magnetic poles and electric 
charges share some similar behavior, but they are not the same.

■■ Magnetism is a long-range force. Paper clips leap upward to a magnet.
■■ Magnets have two poles, called north and south poles, and thus are magnetic dipoles.  

Two like poles exert repulsive forces on each other; two opposite poles attract. The 
behavior is analogous to electric charges, but, as noted, magnetic poles and electric 
charges are not the same. Unlike charges, isolated north or south poles do not exist.

■■ The poles of a bar magnet can be identified by using it as a compass. The poles of other 
magnets can be identified by testing them against a bar magnet. A pole that attracts a 
known north pole and repels a known south pole must be a south magnetic pole.

■■ Materials that are attracted to a magnet are called magnetic materials. The most 
common magnetic material is iron. Magnetic materials are attracted to both poles of 
a magnet. This attraction is analogous to how neutral objects are attracted to both 
positively and negatively charged rods by the polarization force. The difference is 
that all neutral objects are attracted to a charged rod whereas only a few materials 
are attracted to a magnet.

Our goal is to develop a theory of magnetism to explain these observations.

Compasses and Geomagnetism
The north pole of a compass needle is attracted toward the north pole of the 
earth. Apparently the earth itself is a large magnet, as shown in FIGURE 29.1. The  

S
N

North

South

NW

ES

The needle of a 
compass is a small
magnet.

S
N

N

S

S

N

N

S

S

N

No effect

Currents in earth’s
iron core make the
earth a giant magnet. 

N

S

Geographic
north pole

Geomagnetic
north pole

Equator
S

N

FIGURE 29.1 The earth is a large magnet.
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850 CHAPTER 29 The Magnetic Field

reasons for the earth’s magnetism are complex, but geophysicists think that the earth’s 
magnetic poles arise from currents in its molten iron core. Two interesting facts about 
the earth’s magnetic field are (1) that the magnetic poles are offset slightly from the 
geographic poles of the earth’s rotation axis, and (2) that the geomagnetic north pole is 
actually a south magnetic pole! You should be able to use what you have learned thus 
far to convince yourself that this is the case.

STOP TO THINK 29.1 Does the compass needle 
rotate clockwise (cw), counterclockwise (ccw), or 
not at all?

PivotPositive
rod

N

S

29.2 The Discovery of the Magnetic Field
As electricity began to be seriously studied in the 18th century, some scientists 
speculated that there might be a connection between electricity and magnetism. 
Interestingly, the link between electricity and magnetism was discovered in the midst 
of a classroom lecture demonstration in 1819 by the Danish scientist Hans Christian 
Oersted. Oersted was using a battery—a fairly recent invention—to produce a large 
current in a wire. By chance, a compass was sitting next to the wire, and Oersted  
noticed that the current caused the compass needle to turn. In other words, the compass  
responded as if a magnet had been brought near.

Oersted’s discovery that magnetism is caused by an electric current is illustrated in 
FIGURE 29.2. Compasses placed around a wire all point north if there’s no current. But a 
strong current through the wire causes the compass needles to pivot until they are tangent 
to a circle around the wire Part c of the figure demonstrates an important right-hand 
rule that relates the orientation of the compass needles to the direction of the current.

Iron filings reveal the magnetic field 
around a current-carrying wire.

(a)

No
current

With no current, the
compass needles
point north.

Current-
carrying
wire

(b)

With a strong current, the
compass needles are tangent
to a circle around the wire.

I
(c)

I

cwith the north pole
in the direction your
fingers are pointing.

The compass needles
are tangent to the
circlec

Right-hand rule:
Point your right thumb
in the direction of 
the current.

N

FIGURE 29.2 Response of compass needles to a current in a straight wire.

Magnetism is more demanding than electricity in requiring a three-dimensional 
perspective of the sort shown in Figure 29.2. But since two-dimensional figures are 
easier to draw, we will make as much use of them as we can. Consequently, we will 
often need to indicate field vectors or currents that are perpendicular to the plane of the 
figure. FIGURE 29.3 shows the notation we will use. FIGURE 29.4 demonstrates this notation 
by showing the compasses around a current that is directed into the figure. To use the 
right-hand rule, point your right thumb in the direction of the current (into the figure). 
Your fingers will curl cw, and that is the direction in which the north poles of the com-
pass needles point.

The Magnetic Field
We introduced the idea of a field as a way to understand the long-range electric 
force. Although this idea appeared rather far-fetched, it turned out to be very useful. 

Vectors into figure Vectors out of figure

Current into figure Current out of figure

FIGURE 29.3 The notation for vectors and 
currents perpendicular to the plane of the 
figure.
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29.2 The Discovery of the Magnetic Field 851

We need a similar idea to understand the long-range force exerted by a current on a 
compass needle.

Let us define the magnetic field B
u

 as having the following properties:

1. A magnetic field is created at all points in space surrounding a current-carrying wire.
2. The magnetic field at each point is a vector. It has both a magnitude, which we 

call the magnetic field strength B, and a direction.
3. The magnetic field exerts forces on magnetic poles. The force on a north pole is 

parallel to B
u

; the force on a south pole is opposite B
u

.

FIGURE 29.5 shows a compass needle in a magnetic field. The field vectors are shown at 
several points, but keep in mind that the field is present at all points in space. A magnetic 
force is exerted on each of the two poles of the compass, parallel to B

u
 for the north pole and 

opposite B
u

 for the south pole. This pair of opposite forces exerts a torque on the needle,  
rotating the needle until it is parallel to the magnetic field at that point.

Notice that the north pole of the compass needle, when it reaches the equilibrium  
position, is in the direction of the magnetic field. Thus a compass needle can be used as 
a probe of the magnetic field, just as a charge was a probe of the electric field. Magnetic 
forces cause a compass needle to become aligned parallel to a magnetic field, with the 
north pole of the compass showing the direction of the magnetic field at that point.

Look back at the compass alignments around the current-carrying wire in Figure  
29.4. Because compass needles align with the magnetic field, the magnetic field at 
each point must be tangent to a circle around the wire. FIGURE 29.6a shows the mag-
netic field by drawing field vectors. Notice that the field is weaker (shorter vectors) at 
greater dis tances from the wire.

Another way to picture the field is with the use of magnetic field lines. These are 
imaginary lines drawn through a region of space so that

■■ A tangent to a field line is in the direction of the magnetic field, and
■■ The field lines are closer together where the magnetic field strength is larger.

FIGURE 29.6b shows the magnetic field lines around a current-carrying wire. Notice 
that magnetic field lines form loops, with no beginning or ending point. This is in 
contrast to electric field lines, which stop and start on charges.

Point your right thumb into the
figure—the current direction;
your fingers will curl cw. 

I

FIGURE 29.4 The orientation of the 
compasses is given by the right-hand rule.

B
u

B
u

B
u

B
u

B
u

B
u

B
u

B
u

F
u

F
u

The magnetic force
on the north pole is
parallel to the field.

The forces exert a torque
that aligns the compass
needle with the field.

Forces on the
magnetic poles

Magnetic
field
vectors

Pivot

N

S

FIGURE 29.5 The magnetic field exerts 
forces on the poles of a compass.

(b) Magnetic field
lines are circles.

I
B
u

B
u

(a) The magnetic field vectors are tangent to
circles around the wire, pointing in the
direction given by the right-hand rule.

The field is weaker farther from the wire.

FIGURE 29.6 The magnetic field around a 
current-carrying wire.

TACTICS BOX 29.1

Right-hand rule for fields

IPoint your right thumb in
the direction of the current.

Curl your fingers around the
wire to indicate a circle.

1

2

Your fingers point in the
direction of the magnetic
field lines around the wire.

3

Exercises 6–8 

   NOTE    The magnetic field of a current-carrying wire is very different from the 
electric field of a charged wire. The electric field of a charged wire points radially 
outward (positive wire) or inward (negative wire).

Two Kinds of Magnetism?
You might be concerned that we have introduced two kinds of magnetism. We opened 
this chapter discussing permanent magnets and their forces. Then, without warning, we 
switched to the magnetic forces caused by a current. It is not at all obvious that these  
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852 CHAPTER 29 The Magnetic Field

forces are the same kind of magnetism as that exhibited by stationary chunks of metal 
called “magnets.” Perhaps there are two different types of magnetic forces, one having to 
do with currents and the other being responsible for permanent magnets. One of the major 
goals for our study of magnetism is to see that these two quite different ways of producing 
magnetic effects are really just two different aspects of a single magnetic force.

STOP TO THINK 29.2 The magnetic field at  
position P points

I

P

a. Up. b. Down.
c. Into the figure. d. Out of the figure.

29.3  The Source of the Magnetic Field: 
Moving Charges

Figure 29.6 is a qualitative picture of the wire’s magnetic field. Our first task is to turn 
that picture into a quantitative description. Because current in a wire generates a mag-
netic field, and a current is a collection of moving charges, our starting point is the idea 
that moving charges are the source of the magnetic field. FIGURE 29.7 shows a charged 
particle q moving with velocity v 

u. The magnetic field of this moving charge is found to be

 B
u

point charge = 1m 0

4p
 
qv sin u

r2 , direction given by the right@hand rule2 (29.1)

where r is the distance from the charge and u is the angle between v 

u and r u.
Equation 29.1 is called the Biot-Savart law for a point charge (rhymes with Leo 

and bazaar), named for two French scientists whose investigations were motivated 
by Oersted’s observations. It is analogous to Coulomb’s law for the electric field of a 
point charge. Notice that the Biot-Savart law, like Coulomb’s law, is an inverse-square 
law. However, the Biot-Savart law is somewhat more complex than Coulomb’s law 
because the magnetic field depends on the angle u between the charge’s velocity and 
the line to the point where the field is evaluated.

   NOTE    A moving charge has both a magnetic field and an electric field. What you 
know about electric fields has not changed.

The SI unit of magnetic field strength is the tesla, abbreviated as T. The tesla is 
defined as

1 tesla = 1 T K 1 N/A m

You will see later in the chapter that this definition is based on the magnetic force on a 
current-carrying wire. One tesla is quite a large field; most magnetic fields are a small 
fraction of a tesla. TABLE 29.1 lists a few magnetic field strengths.

The constant m
 0 in Equation 29.1 is called the permeability constant. Its value is

m
 0 = 1.26 * 10-6 T m/A

This constant plays a role in magnetism similar to that of the permittivity constant P0 
in electricity.

The right-hand rule for finding the direction of B
u

 is similar to the rule used for a 
current-carrying wire: Point your right thumb in the direction of v 

u. The magnetic field 
vector B

u
 is perpendicular to the plane of r u and v 

u, pointing in the direction in which 
your fingers curl. In other words, the B

u
 vectors are tangent to circles drawn about the 

charge’s line of motion. FIGURE 29.8 shows a more complete view of the magnetic field 
of a moving positive charge. Notice that B

u
 is zero along the line of motion, where 

u = 0° or 180°, due to the sin u term in Equation 29.1.

   NOTE    The vector arrows in Figure 29.8 would have the same lengths but be 
reversed in direction for a negative charge.

r
u

v
u

B
u

u

Magnetic field
of the moving
point charge

Velocity of the
charged particle

Point
charge q 

This is the point
at which we want
to find B.

u

FIGURE 29.7 The magnetic field of a 
moving point charge.

TABLE 29.1 Typical magnetic field 
strengths

Field source Field strength (T)

Earth’s magnetic field 5 * 10-5

Refrigerator magnet 0.01

Industrial electromagnet 0.1

Superconducting magnet 10

q
Into figure

B
u

B
u

q

Line of
motion

v
u

B
u

B
u

B
u

FIGURE 29.8 Two views of the magnetic 
field of a moving positive charge.
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29.3 The Source of the Magnetic Field: Moving Charges 853

The requirement that a charge be moving to generate a magnetic field is explicit 
in Equation 29.1. If the speed v of the particle is zero, the magnetic field (but not the 
electric field!) is zero. This helps to emphasize a fundamental distinction between 
electric and magnetic fields: All charges create electric fields, but only moving 
charges create magnetic fields.

A proton moves with velocity v 

u = 1.0 * 107 in m/s. As it passes the 
origin, what is the magnetic field at the 1x, y, z2 positions (1 mm, 
0 mm, 0 mm), (0 mm, 1 mm, 0 mm), and (1 mm, 1 mm, 0 mm)?

MODEL The magnetic field is that of a moving charged particle.

VISUALIZE FIGURE 29.9 shows the geometry. The first point is on 
the x-axis, directly in front of the proton, with u1 = 0°. The second 
point is on the y-axis, with u2 = 90°, and the third is in the xy-plane.

SOLVE Position 1, which is along the line of motion, has u1 = 0°. 
Thus B

u

1 =  0
u
. Position 2 (at 0 mm, 1 mm, 0 mm) is at distance 

r2 = 1 mm = 0.001 m. Equation 29.1, the Biot-Savart law, gives us 
the magnetic field strength at this point as

  B =
m

 0

4p
 
qv sin u2

r2 

2

  =
1.26 * 10-6 T m/A

4p
 
11.60 * 10-19 C211.0 * 107 m/s2sin 90°

10.0010 m22

  = 1.60 * 10-13 T

According to the right-hand rule, the field points in the positive 
z-direction. Thus

B
u

2 = 1.60 * 10-13 kn T

where kn is the unit vector in the positive z-direction. The field at po-
sition 3, at (1 mm, 1 mm, 0 mm), also points in the z-direction, but 
it is weaker than at position 2 both because r is larger and because 
u is smaller. From geometry we know r3 = 12  mm = 0.00141 m 
and u3 = 45°. Another calculation using Equation 29.1 gives

B
u

3 = 0.57 * 10-13 kn T

REVIEW The magnetic field of a single moving charge is very small.

EXAMPLE 29.1 ■ The magnetic field of a proton

v
u

Position 3

Position 2 u
B2

u
B3

x

z

y

Position 1
B1 = 0
u u

FIGURE 29.9 The magnetic field of Example 29.1.

Superposition
The Biot-Savart law is the starting point for generating all magnetic fields, just as  
our earlier expression for the electric field of a point charge was the starting point 
for generating all electric fields. Magnetic fields, like electric fields, have been found 
experimentally to obey the principle of superposition. If there are n moving point 
charges, the net magnetic field is given by the vector sum

 B
u

total = B
u

1 + B
u

2 + g + B
u

n (29.2)

where each individual B
u

 is calculated with Equation 29.1. The principle of superposition 
will be the basis for calculating the magnetic fields of several important current distributions.

The Vector Cross Product
In ❮❮  SECTION 22.5, we found that the electric field of a point charge can be written

E
u

=
1

4pP0
 
q

r2 rn

where rn is a unit vector that points from the charge to the point at which we wish to 
calculate the field. Unit vector rn expresses the idea “away from q.”

The unit vector rn also allows us to write the Biot-Savart law more concisely, but 
we’ll need to use the form of vector multiplication called the cross product. To remind 
you, FIGURE 29.10 shows two vectors, C

u
 and D

u
, with angle a between them. The cross 

product of C
u

 and D
u

 is defined to be the vector

 C
u

* D
u

= (CD sin a, direction given by the right@hand rule) (29.3)

The symbol *  between the vectors is required to indicate a cross product. C
u

D
u

The cross product is
perpendicular to the plane.
Its magnitude is CD sina.

a

C * D
uu

Plane of C and D
u u

FIGURE 29.10 The cross product C
u

* D
u

 
is a vector perpendicular to the plane of 
vectors C

u
 and D

u
.
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854 CHAPTER 29 The Magnetic Field

 NOTE   The cross product of two vectors and the right-hand rule used to determine 
the direction of the cross product were introduced in ❮❮  SECTION 12.10 to describe torque 
and angular momentum. A review is worthwhile.

The Biot-Savart law, Equation 29.1, can be written in terms of the cross product as

 B
u

point charge =
m

 0

4p
 
qv 

u * rn

r2   (magnetic field of a point charge) (29.4)

where unit vector rn, shown in FIGURE 29.11, points from charge q to the point at which 
we want to evaluate the field. This expression for the magnetic field B

u
 has magnitude 

1m
 0 /4p2qv sin u/r2 (because the magnitude of rn is 1) and points in the correct direction 

(given by the right-hand rule), so it agrees completely with Equation 29.1.

v
u

rn

Point at which field
is evaluated

Velocity of the
charged particle

nUnit vector r 

u

u
B is in the direction
of v * r.n

FIGURE 29.11 Unit vector rn defines the 
direction from the moving charge to the 
point at which we evaluate the field.

The electron in FIGURE 29.12 is moving to the 
right. What is the direction of the electron’s 
magnetic field at the dot?

VISUALIZE Because the charge is negative, the magnetic field 
points opposite the direction of v 

u * rn. Unit vector rn points from the 
charge toward the dot. We can use the right-hand rule to find that 
v 

u * rn points into the figure. Thus the electron’s magnetic field at 
the dot points out of the figure.

EXAMPLE 29.2 ■ The magnetic field direction of a moving electron

v
u

rn

▶ FIGURE 29.12 A moving electron.

STOP TO THINK 29.3 The positive charge is moving straight out of 
the figure. What is the direction of the magnetic field at the dot?

v out of figure
u

a. Up b. Down c. Left d. Right

29.4 The Magnetic Field of a Current
Moving charges are the source of magnetic fields, but the magnetic fields of current- 
carrying wires—immense numbers of charges moving together—are much more  
important than the feeble magnetic fields of individual charges. Real current-carrying 
wires, with their twists and turns, have very complex fields. However, we can once 
again focus on the physics by using simplified models. It turns out that three common 
magnetic field models are the basis for understanding a wide variety of magnetic 
phenomena. We present them here together as a reference; the next few sections of this 
chapter will be devoted to justifying and explaining these results.

MODEL 29.1

Three key magnetic fields

Straight wires
An infinite wire:

I

B = 
m0

2p

I

r   

Flat coils
A current loop:

Bcenter = 
m0

2

NI

R

I

I N turns

  I I

Uniform fieldUniform field

Helical coils
A solenoid:

n = N/L

B = m0nI
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29.4 The Magnetic Field of a Current 855

To begin, we need to write the Biot-Savart law in terms of current. FIGURE 29.13a  
shows a current-carrying wire. The wire as a whole is electrically neutral, but current I  
represents the motion of positive charge carriers through the wire. Suppose the small 
amount of moving charge ∆q spans the small length ∆s. The charge has velocity 
v 

u = ∆ su/∆t, where the vector ∆ su, which is parallel to v 

u, is the charge’s displacement vec-
tor. If ∆q is small enough to treat as a point charge, the magnetic field it creates at a point 
in space is proportional to 1  ∆q2v 

u. We can write 1  ∆q2v 

u in terms of the wire’s current I as

 1  ∆q2v 

u = ∆q 
∆ su

∆t
=

∆q

∆t
 ∆ su = I ∆ su (29.5)

where we used the definition of current, I = ∆  q /∆t.
If we replace qv 

u in the Biot-Savart law with I ∆ su, we find that the magnetic field of 
a very short segment of wire carrying current I is

 
B
u

current segment =
m

 0

4p
 
I ∆ su * rn

r2

(magnetic field of a very short segment of current)
  (29.6)

Equation 29.6 is still the Biot-Savart law, only now written in terms of current 
rather than the motion of an individual charge. FIGURE 29.13b shows the direction of the 
current segment’s magnetic field as determined by using the right-hand rule.

Equation 29.6 is the basis of a strategy for calculating the magnetic field of a  
current-carrying wire. You will recognize that it is the same basic strategy you learned 
for calculating the electric field of a continuous distribution of charge. The goal is to 
break a problem down into small steps that are individually manageable.

B
u

rn

(b)

I

The magnetic field of the
short segment of current is
in the direction of ∆s * r.

u
n

∆s
u

v
u

u∆s

I

Charge ∆q in a
small length ∆s of a
current-carrying wire

(a)

FIGURE 29.13 Relating the charge velocity 
v  

u to the current I.

PROBLEM-SOLVING STRATEGY 29.1

The magnetic field of a current

MODEL Model the wire as a simple shape.

VISUALIZE For the pictorial representation:
■■ Draw a picture, establish a coordinate system, and identify the point P at which 
you want to calculate the magnetic field.

■■ Divide the current-carrying wire into small segments for which you already 
know how to determine B

u
. This is usually, though not always, a division into 

very short segments of length ∆s.
■■ Draw the magnetic field vector for one or two segments. This will help you 
identify distances and angles that need to be calculated.

SOLVE The mathematical representation is B
u

net = gB
u

i.
■■ Write an algebraic expression for each of the three components of B

u
 (unless 

you are sure one or more is zero) at point P. Let the 1x, y, z2-coordinates of the 
point remain as variables.

■■ Express all angles and distances in terms of the coordinates.
■■ Let ∆s S ds and the sum become an integral. Think carefully about the inte-
gration limits for this variable; they will depend on the boundaries of the wire 
and on the coordinate system you have chosen to use.

REVIEW Check that your result is consistent with any limits for which you know 
what the field should be.

The key idea here, as it was in Chapter 23, is that integration is summation. We 
need to add up the magnetic field contributions of a vast number of current segments, 
and we’ll do that by letting the sum become an integral.
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856 CHAPTER 29 The Magnetic Field

The magnetic field of an infinite, straight wire was the first of our key magnetic 
field models. Example 29.3 has shown that the field has magnitude

 Bwire =
m

 0

2p
 
I
r
 1long, straight wire2 (29.7)

The field direction, encircling the wire, is given by the right-hand rule.

A long, straight wire carries current I in the positive x-direction. 
Find the magnetic field at distance r from the wire.

MODEL Model the wire as being infinitely long.

VISUALIZE FIGURE 29.14 illustrates the steps in the problem-solving 
strategy. We’ve chosen a coordinate system with point P on the y-axis.  
We’ve then divided the wire into small segments, labeled with  
index i, each containing a small amount ∆q of moving charge. Unit 
vector rn and angle ui are shown for segment i. You should use the 
right-hand rule to convince yourself that B

u

i points out of the figure, 
in the positive z-direction. This is the direction no matter where seg-
ment i happens to be along the x-axis. Consequently, Bx (the compo-
nent of B

u
 parallel to the wire) and By (the component of B

u
 straight 

away from the wire) are zero. The only component of B
u

 we need to 
evaluate is Bz, the component tangent to a circle around the wire.

SOLVE We can use the Biot-Savart law to find the field 1Bi2z of seg-
ment i. The cross product ∆ sui * rn has magnitude 1  ∆x2112sin ui, hence

1Bi2z =
m

 0

4p
 
I ∆x sin ui

ri 

2 =
m

 0

4p
 
I sin ui

ri 

2  ∆x =
m

 0

4p
 

I sin ui

xi 

2 + y2 ∆x

where we wrote the distance ri in terms of xi and y. We also need to 
express ui in terms of xi and y. Because sin1180° - u2 = sin u, this is

sin ui = sin1180° - ui2 =
y

ri
=

y2xi 

2 + y2

With this expression for sin ui, the magnetic field of segment i is

1Bi2z =
m

 0

4p
 

Iy

1xi 

2 + y223/2 ∆x

Now we’re ready to sum the magnetic fields of all the segments. 
The superposition is a vector sum, but in this case only the z- 
components are nonzero. Summing all the 1Bi2z gives

Bwire =
m

 0 Iy

4p
 a

i
 

∆x

1xi 

2 + y223/2
S

m
 0 Iy

4p
 3

∞

-∞
 

dx

1x2 + y223/2

Only at the very last step did we convert the sum to an integral. Then  
our model of the wire as being infinitely long sets the integration  
limits at { ∞ . This is a standard integral that can be found in 
 Appendix A or with integration software. Evaluation gives

Bwire =
m

 0 Iy

4p
 

x

y2 1x2 + y221/2 `
∞

-∞
=

m
 0

2p
 
I
y

This is the magnitude of the field. The field direction is determined 
by using the right-hand rule.

The coordinate system was our choice, and there’s nothing spe-
cial about the y-axis. The symbol y is simply the distance from 
the wire, which is better represented by r. With this change, the 
magnetic field is

B
u

wire = 1 m 0

2p
 
I
r

 , 
tangent to a circle around the wire
in the right@hand direction 2

REVIEW FIGURE 29.15 shows the magnetic field of a current- 
carrying wire. Compare this to Figure 29.2 and convince yourself that  
the direction shown agrees with the right-hand rule.

EXAMPLE 29.3 ■ The magnetic field of a long, straight wire

rn

y

y

P

x
0

u
Bi due to segment i is
out of the figure at point P.

Divide the wire into segments.The z-axis is out of the figure.

ri

xi

∆x

180° - ui

ui Segment i
charge ∆q

I

FIGURE 29.14 Calculating the magnetic field of a long, straight 
wire carrying current I.

B
u

B
u

B
u

I

FIGURE 29.15 The magnetic field of a long, straight wire carrying 
current I.
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29.4 The Magnetic Field of a Current 857

Motors, loudspeakers, metal detectors, and many other devices generate magnetic 
fields with coils of wire. The simplest coil is a single-turn circular loop of wire. A 
circular loop of wire with a circulating current is called a current loop.

A 1.0-m-long, 1.0-mm-diameter nichrome heater wire is connected 
to a 12 V battery. What is the magnetic field strength 1.0 cm away 
from the wire?

MODEL 1 cm is much less than the 1 m length of the wire, so we 
will model the wire as infinitely long.

SOLVE The current through the wire is I = ∆Vbat/R, where the 
wire’s resistance R is

R =
rL

A
=

rL

pr2 = 1.9 Ω

The nichrome resistivity r = 1.50 * 10-6 Ω  m was taken from 
Table 27.2. Thus the current is I = 112 V2/11.9 Ω2 = 6.3 A. The 
magnetic field strength at distance d = 1.0 cm = 0.010 m from the 
wire is

  Bwire =
m

 0

2p
 
I
d

=  
11.26 * 10-6 T m/A216.3 A2

2p10.010 m2  

  = 1.3 * 10-4 T

REVIEW The magnetic field of the wire is slightly more than twice 
the strength of the earth’s magnetic field.

FIGURE 29.16a shows a current loop, a circular loop of wire with 
radius R that carries current I. Find the magnetic field of the current 
loop at distance z on the axis of the loop.

MODEL Real coils need wires to bring the current in and out, but 
we’ll model the coil as a current moving around the full circle 
shown in FIGURE 29.16b.

VISUALIZE FIGURE 29.17 shows a loop for which we’ve assumed 
that the current is circulating ccw. We’ve chosen a coordinate sys-
tem in which the loop lies at z = 0 in the xy-plane. Let segment i 
be the segment at the top of the loop. Vector ∆ sui is parallel to the 
x-axis and unit vector rn is in the yz-plane, thus angle ui, the angle 
between ∆ sui and rn, is 90°.

The direction of B
u

i, the magnetic field due to the current in seg-
ment i, is given by the cross product ∆ sui * rn. B

u

i must be perpendic-
ular to ∆ sui and perpendicular to rn. You should convince yourself 
that B

u

i in Figure 29.17 points in the correct direction. Notice that 
the y-component of B

u

i is canceled by the y-component of magnetic 
field B

u

j due to the current segment at the bottom of the loop, 180° 
away. In fact, every current segment on the loop can be paired with 
a segment 180° away, on the opposite side of the loop, such that the 
x- and y-components of B

u
 cancel and the components of B

u
 parallel 

to the z-axis add. In other words, the symmetry of the loop requires 
the on-axis magnetic field to point along the z-axis. Knowing that 
we need to sum only the z-components will simplify our calculation.

SOLVE We can use the Biot-Savart law to find the z-component 
1Bi2z = Bi cos f of the magnetic field of segment i. The cross prod-
uct ∆ sui * rn has magnitude 1  ∆s2112 sin 90° = ∆s, thus

1Bi 2z =
m

 0

4p
 
I ∆s

r2  cos f =
m0 I cos f

4p1z2 + R22  ∆s

where we used r = 1z2 + R221/2. You can see, because f + g =90°, 
that angle f is also the angle between rn and the radius of the loop. 
Hence cos f = R/r, and

1Bi2z =
m

 0 IR

4p1z2 + R223/2 ∆s

The final step is to sum the magnetic fields due to all the segments:

Bloop = a
i

 1Bi2z =
m0 IR

4p1z2 + R223/2 a
i

∆s

In this case, unlike the straight wire, none of the terms multiplying 
∆s depends on the position of segment i, so all these terms can be 
factored out of the summation. We’re left with a summation that 
adds up the lengths of all the small segments. But this is just the 
total length of the wire, which is the circumference 2pR. Thus the 
on-axis magnetic field of a current loop is

Bloop =
m

 0 IR

4p1z2 + R223/2 2pR =
m

 0

2
 

IR2

1z2 + R223/2

EXAMPLE 29.4 ■ The magnetic field strength near a heater wire

EXAMPLE 29.5 ■ The magnetic field of a current loop

I

I

(b)  An ideal current loop

I

I

(a)  A practical current loop

FIGURE 29.16 A current loop.

B
u

rn

ui = 90°

f

90°

90°

Segment j

Segment i, length ∆s

R II

x

y

z

z

r

g f

u
Bi

u
Bj

u∆si

∆sj
u

FIGURE 29.17 Calculating the magnetic field of a current loop.
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858 CHAPTER 29 The Magnetic Field

In practice, current often passes through a coil consisting of N turns of wire. If the 
turns are all very close together, so that the magnetic field of each is essentially the 
same, then the magnetic field of a coil is N times the magnetic field of a current loop. 
The magnetic field at the center 1z = 02 of an N-turn coil, or N-turn current loop, is

 Bcoil center =
m

 0

2
 
NI
R
  (N@turn current loop) (29.8)

This is the second of our key magnetic field models.

What current is needed in a 5-turn, 10-cm-diameter coil to cancel 
the earth’s magnetic field at the center of the coil?

MODEL One way to create a zero-field region of space is to gen-
erate a magnetic field equal to the earth’s field but pointing in the 
opposite direction. The vector sum of the two fields is zero.

VISUALIZE FIGURE 29.18 shows a five-turn coil of wire. We will as-
sume that the coil is thin and model it as a five-turn loop.

SOLVE The earth’s magnetic field, from Table 29.1, is 5 * 10-5 T. 
We can use Equation 29.8 to find that the current needed to gener-
ate a 5 * 10-5 T field is

I =
2RB
m

 0 N
=

210.050 m215.0 * 10-5 T2
511.26 * 10-6 T m/A2 = 0.80 A

REVIEW A 0.80 A current is easily produced. Although there are 
better ways to cancel the earth’s field than using a simple coil, this 
illustrates the idea.

EXAMPLE 29.6 ■ Matching the earth’s magnetic field

B
u

I

I

FIGURE 29.18 A coil of wire.

29.5 Magnetic Dipoles
We were able to calculate the on-axis magnetic field of a current loop, but determining  
the field at off-axis points requires either numerical integrations or an experimental 
mapping of the field. FIGURE 29.19 shows the full magnetic field of a current loop. This 
is a field with rotational symmetry, so to picture the full three-dimensional field, 
imagine Figure 29.19a rotated about the axis of the loop. Figure 29.19b shows the 
magnetic field in the plane of the loop as seen from the right. There is a clear sense, 
seen in the photo of Figure 29.19c, that the magnetic field leaves the loop on one side, 
“flows” around the outside, then returns to the loop.

There are two versions of the right-hand rule that you can use to determine which 
way a loop’s field points. Try these in Figure 29.19. Being able to quickly ascertain the 
field direction of a current loop is an important skill.

(a) Cross section through the current loop

FIGURE 29.19 The magnetic field of a current loop.

Out of figure

Into figure

(b) The current loop seen from the right

I

I

The field emerges
from the center of
the loop.

The field returns
around the outside
of the loop.

(c) A photo of iron filings
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29.5 Magnetic Dipoles 859

A Current Loop Is a Magnetic Dipole
A current loop has two distinct sides. Bar magnets also have two distinct sides or 
ends, so you might wonder if current loops are related to these permanent magnets. 
Consider the following experiments with a current loop. Notice that we’re showing the 
magnetic field only in the plane of the loop.

Investigating current loops

B
u

B
u

B
u

F
u

F
u F

u
F
u

F
u

F
u

I

I
NorthSouth

Aligns

Thread

N S
I

I

Repels

I

I

Attracts

S N

A current loop hung by a thread  
aligns itself with the magnetic  
field pointing north.

The north pole of a permanent magnet repels the  
side of a current loop from which the magnetic  
field is emerging.

The south pole of a permanent magnet  
attracts the side of a current loop from 
which the magnetic field is emerging.

These investigations show that a current loop is a magnet, just like a permanent 
magnet. A magnet created by a current in a coil of wire is called an electromagnet. 
An electromagnet picks up small pieces of iron, influences a compass needle, and acts 
in every way like a permanent magnet.

In fact, FIGURE 29.20 shows that a flat permanent magnet and a current loop generate 
the same magnetic field—the field of a magnetic dipole. For both, you can identify 
the north pole as the face or end from which the magnetic field emerges. The mag-
netic fields of both point into the south pole.

TACTICS BOX 29.2

Finding the magnetic field direction of a current loop
Use either of the following methods to find the magnetic field direction:

1  Point your right thumb in the direction of the current at any point on the loop 
and let your fingers curl through the center of the loop. Your fingers are then 
pointing in the direction in which B

u
 leaves the loop.

2  Curl the fingers of your right hand around the loop in the direction of the cur-
rent. Your thumb is then pointing in the direction in which B

u
 leaves the loop.

Exercises 18–20 

(b) Permanent magnet(a) Current loop

S N

Whether it’s a current loop or a permanent magnet,
the magnetic field emerges from the north pole.

S N

FIGURE 29.20 A current loop has magnetic poles and generates the same magnetic field—a 
dipole field—as a flat permanent magnet.
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860 CHAPTER 29 The Magnetic Field

One of the goals of this chapter is to show that magnetic forces exerted by currents 
and magnetic forces exerted by permanent magnets are just two different aspects of 
a single magnetism. This connection between permanent magnets and current loops 
will turn out to be a big piece of the puzzle.

The Magnetic Dipole Moment
The expression for the electric field of an electric dipole was considerably simplified 
when we considered the field at distances significantly larger than the size of the 
charge separation s. Let the axis of the dipole be the z-axis. At a point where z W s, 
we found that the on-axis field of an electric dipole is

E
u

dipole =
1

4pP0
 
2pu

z3

where the electric dipole moment pu = (qs, from negative to positive charge).
The on-axis magnetic field of a current loop is

Bloop =
m

 0

2
 

IR2

1z2 + R223/2

If z is much larger than the diameter of the current loop, z W R, we can make the 
 approximation 1z2 + R223/2 S z3. Then the loop’s field is

 Bloop ≈
m

 0

2
 
IR2

z3 =
m

 0

4p
 
21pR22I

z3 =
m

 0

4p
 
2AI

z3  (29.9)

where A = pR2 is the area of the loop.
A more advanced treatment of current loops shows that, if z is much larger than the 

size of the loop, Equation 29.9 is the on-axis magnetic field of a current loop of any 
shape, not just a circular loop. The shape of the loop affects the nearby field, but the 
distant field depends only on the current I and the area A enclosed within the loop. 
With this in mind, let’s define the magnetic dipole moment mu  of a current loop 
enclosing area A to be

mu = (AI, from the south pole to the north pole)

The SI units of the magnetic dipole moment are A m2.
The magnetic dipole moment, like the electric dipole moment, is a vector. It has the 

same direction as the on-axis magnetic field. Thus the right-hand rule for determining 
the direction of B

u
 also shows the direction of mu . FIGURE 29.21 shows the magnetic di-

pole moment of a circular current loop.
Because the on-axis magnetic field of a current loop points in the same direction 

as mu , we can combine Equation 29.9 and the definition of mu  to write the on-axis field 
of a magnetic dipole as

 B
u

dipole =
m

 0

4p
 
2mu

z3  (on the axis of a magnetic dipole) (29.10)

If you compare B
u

dipole to E
u

dipole , you can see that the magnetic field of a magnetic 
dipole is very similar to the electric field of an electric dipole.

A permanent magnet also has a magnetic dipole moment, and its on-axis magnetic 
field is given by Equation 29.10 when z is much larger than the size of the magnet. 
Equation 29.10 and laboratory measurements of the on-axis magnetic field can be 
used to determine a permanent magnet’s dipole moment. This magnetic dipole mo-
ment cannot be interpreted as the product of a current and an area; it’s simply a prop-
erty of the permanent magnet.

m
u

Loop area A

I

I

The magnetic dipole moment is perpendicular
to the loop, in the direction of the right-hand
rule. The magnitude of m is AI.

u

FIGURE 29.21 The magnetic dipole 
moment of a circular current loop.

Magnetic resonance imaging, or MRI, 
images soft tissues that are difficult 
to see with x rays. Protons, the nuclei 
of hydrogen atoms, have an inherent 
magnetic dipole moment that is called 
the proton’s spin. The laws of quantum 
physics dictate that a proton’s spin must 
be either aligned or antialigned with 
an external magnetic field. If hydrogen 
atoms in a magnetic field are irradi-
ated with radio waves of just the right 
frequency, typically around 50 MHz,  
some protons undergo a spin flip in which 
their alignment changes. Clever circuits 
deter mine the hydrogen density, a den-
sity that depends on the type of tissue,  
by detecting this resonance. Software  
then creates an image that displays the  
variation of the hydrogen density. 
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29.6 Ampère’s Law and Solenoids 861

STOP TO THINK 29.4 What is the current direction in this loop? 
And which side of the loop is the north pole?

a. Current cw; north pole on top
b. Current cw; north pole on bottom
c. Current ccw; north pole on top
d. Current ccw; north pole on bottom

29.6 Ampère’s Law and Solenoids
In principle, the Biot-Savart law can be used to calculate the magnetic field of any  
current distribution. In practice, the integrals are difficult to evaluate for anything other 
than very simple situations. We faced a similar situation for calculating electric fields, 
but we discovered an alternative method—Gauss’s law—for calculating the electric 
field of charge distributions with a high degree of symmetry.

Likewise, there’s an alternative method, called Ampère’s law, for calculating the 
magnetic fields of current distributions with a high degree of symmetry. Whereas 
Gauss’s law is written in terms of a surface integral, Ampère’s law is based on the 
mathematical procedure called a line integral.

Line Integrals
We’ve flirted with the idea of a line integral ever since introducing the concept of 
work in Chapter 9, but now we need to take a more serious look at what a line integral 
represents and how it is used. FIGURE 29.22a shows a curved line that goes from an 
initial point i to a final point f.

f

i

(a)

A line from i to f

FIGURE 29.22 Integrating along a line from i to f.

You’ll learn in Chapter 30 that a current can be induced in a  
closed loop of wire. If the loop happens to be made of a supercon-
ducting material, with zero resistance, the induced current will—
in principle—persist forever. The current cannot be measured with 
an ammeter because any real ammeter has resistance that will 
quickly stop the current. Instead, physicists measure the persistent 
current in a superconducting loop by measuring its magnetic field. 
What is the current in a 3.0-mm-diameter superconducting loop if 
the axial magnetic field is 9.0 mT at a distance of 2.5 cm?

MODEL The measurements are made far enough from the loop in 
comparison to its radius 1z W R2 that we can model the loop as 
a magnetic dipole rather than using the exact expression for the 
on-axis field of a current loop.

SOLVE The axial magnetic field strength of a dipole is

B =
m

 0

4p
 
2m

z3 =
m

 0

4p
 
2pR2I

z3 =
m

 0R
2I

2
 
1

z3

where we used m = AI = pR2I for the magnetic dipole moment of 
a circular loop of radius R. Thus the current is

  I =
2z3B

m
 0 R2 =

210.025 m2319.0 * 10-6 T2
11.26 * 10-6 T m/A210.0015 m22

  = 99 A

REVIEW This would be a very large current for ordinary wire. An 
important property of superconducting wires is their ability to carry 
current that would melt an ordinary wire.

EXAMPLE 29.7 ■ Measuring current in a superconducting loop

f

i

(b)

The line can be divided into many small
segments. The sum of all the ∆s’s is the
length l of the line.

∆s ∆s
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862 CHAPTER 29 The Magnetic Field

Suppose, as shown in FIGURE 29.22b, we divide the line into many small segments of 
length ∆s. The first segment is ∆s1, the second is ∆s2, and so on. The sum of all the 
∆s>s is the length l of the line between i and f. We can write this mathematically as

 l = a
k

∆sk S 3
f

i
ds (29.11)

where, in the last step, we let ∆s S ds and the sum become an integral.
This integral is called a line integral. All we’ve done is to subdivide a line into 

infinitely many infinitesimal pieces, then add them up. This is exactly what you do 
in calculus when you evaluate an integral such as 1x dx. In fact, an integration along 
the x-axis is a line integral, one that happens to be along a straight line. Figure 29.22 
differs only in that the line is curved. The underlying idea in both cases is that an 
integral is just a fancy way of doing a sum.

The line integral of Equation 29.11 is not terribly exciting. FIGURE 29.23a makes 
things more interesting by allowing the line to pass through a magnetic field. FIGURE 

29.23b again divides the line into small segments, but this time ∆  suk  is the displace-
ment vector of segment k. The magnetic field at this point in space is B

u

k.
Suppose we were to evaluate the dot product B

u

k
# ∆ suk at each segment, then add the 

values of B
u

k
# ∆ suk due to every segment. Doing so, and again letting the sum become 

an integral, we have

a
k

B
u

k
# ∆ suk S 3

f

i
B
u # d  su = the line integral of B

u # d  su from i to f

Once again, the integral is just a shorthand way to say: Divide the line into lots of little 
pieces, evaluate B

u

k
# ∆ suk for each piece, then add them up.

Although this process of evaluating the integral could be difficult, the only line 
integrals we’ll need to deal with fall into two simple cases. If the magnetic field is  
everywhere perpendicular to the line, then B

u
 # d  su = 0 at every point along the line 

and the integral is zero. If the magnetic field is everywhere tangent to the line and has 
the same magnitude B at every point, then B

u
 # d  su = B ds at every point and

 3
f

i
 B
u # d su = 3

f

i
B ds = B3

f

i
ds = Bl (29.12)

We used Equation 29.11 in the last step to integrate ds along the line.
Tactics Box 29.3 summarizes these two situations.

B
u

f

i

(a)

The line passes through a magnetic field.

FIGURE 29.23 Integrating B
u # d  su along a 

line from i to f.

f

i

(b) Magnetic field at segment k

Displacement of segment k

u
Bk

∆sk
u

TACTICS BOX 29.3

Evaluating line integrals
1  If B

u
 is everywhere perpendicular to a  

line, the line integral of B
u # d  su is

3
f

i
B
u # d  su = 0

2  If B
u

 is everywhere tangent to a line of  
length l and has the same magnitude B  
at every point, then

3
f

i
B
u # d  su = Bl

Exercises 23–24 

B
u

B
u

f

i

f

i
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29.6 Ampère’s Law and Solenoids 863

Ampère’s Law
FIGURE 29.24 shows a wire carrying current I into the figure and the magnetic field at 
distance r. The magnetic field of a current-carrying wire is everywhere tangent to a 
circle around the wire and has the same magnitude m

 0 I/2pr at all points on the circle. 
According to Tactics Box 29.3, these conditions allow us to easily evaluate the line 
integral of B

u # d  su along a circular path around the wire. Suppose we were to integrate 
all the way around the circle. That is, the initial point i of the integration path and 
the final point f will be the same point. This would be a line integral around a closed 
curve, which is denoted

C B
u # d  su

The little circle on the integral sign indicates that the integration is performed around 
a closed curve. The notation has changed, but the meaning has not.

Because B
u

 is tangent to the circle and of constant magnitude at every point on the 
circle, we can use Option 2 from Tactics Box 29.3 to write

 C B
u # d  su = Bl = B12pr2 (29.13)

where, in this case, the path length l is the circumference 2pr of the circle. The mag-
netic field strength of a current-carrying wire is B = m0I/2pr, thus

 C B
u # d  su = m

 0 I (29.14)

The interesting result is that the line integral of B
u # d  su around the current-carrying 

wire is independent of the radius of the circle. Any circle, from one touching the wire 
to one far away, would give the same result. The integral depends only on the amount 
of current passing through the circle that we integrated around.

This is reminiscent of Gauss’s law. In our investigation of Gauss’s law, we started 
with the observation that the electric flux Φe through a sphere surrounding a point 
charge depends only on the amount of charge inside, not on the radius of the sphere. 
After examining several cases, we concluded that the shape of the surface wasn’t  
relevant. The electric flux through any closed surface enclosing total charge Qin 
turned out to be Φe = Qin/P0.

Although we’ll skip the details, the same type of reasoning that we used to prove 
Gauss’s law shows that the result of Equation 29.14

■■ Is independent of the shape of the curve around the current.
■■ Is independent of where the current passes through the curve.
■■ Depends only on the total amount of current through the area enclosed by the  

integration path.

Thus whenever total current Ithrough passes through an area bounded by a closed curve, 
the line integral of the magnetic field around the curve is

 C B
u # d  su = m

 0 Ithrough (29.15)

This result for the magnetic field is known as Ampère’s law.
To make practical use of Ampère’s law, we need to determine which currents are 

positive and which are negative. The right-hand rule is once again the proper tool. If 
you curl your right fingers around the closed path in the direction in which you are 
going to integrate, then any current passing though the bounded area in the direction 
of your thumb is a positive current. Any current in the opposite direction is a negative 
current. In FIGURE 29.25, for example, currents I2 and I4 are positive, I3 is negative. Thus  
Ithrough = I2 - I3 + I4.

B
u

The integration starts and
stops at the same point.

The integration
path is a circle
of radius r.

r

I

B is everywhere tangent to the integration
path and has constant magnitude.

u

FIGURE 29.24 Integrating the magnetic 
field around a wire.

I1 doesn’t pass through
the enclosed area.

These currents pass through the
bounded area.

The integration
path is a closed
curve.

I1

I2

I4

I3

FIGURE 29.25 Using Ampère’s law.
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864 CHAPTER 29 The Magnetic Field

 NOTE   The integration path of Ampère’s law is a mathematical curve through space. 
It does not have to match a physical surface or boundary, although it could if we 
want it to.

In one sense, Ampère’s law doesn’t tell us anything new. After all, we derived 
Ampère’s law from the Biot-Savart law. But in another sense, Ampère’s law is more 
important than the Biot-Savart law because it states a very general property about 
magnetic fields. We will use Ampère’s law to find the magnetic fields of some import-
ant current distributions that have a high degree of symmetry.

A wire of radius R carries current I. Find the magnetic field inside 
the wire at distance r 6 R from the axis.

MODEL Assume the current density is uniform over the cross sec-
tion of the wire.

VISUALIZE FIGURE 29.26 shows a cross section through the wire. 
The wire has cylindrical symmetry, with all the charges moving 
parallel to the wire, so the magnetic field must be tangent to circles 
that are concentric with the wire. We don’t know how the strength 
of the magnetic field depends on the distance from the center—
that’s what we’re going to find—but the symmetry of the situation 
dictates the shape of the magnetic field.

SOLVE To find the field strength at radius r, we draw a circle of 
radius r. The amount of current passing through this circle is

Ithrough = JAcircle = pr2J

where J is the current density. Our assumption of a uniform current 
density allows us to use the full current I passing through a wire of 
radius R to find that

J =
I
A

=
I

pR2

Thus the current through the circle of radius r is

Ithrough =
r2

R2 I

Let’s integrate B
u # d su around the circumference of this circle. Ac-

cording to Ampère’s law,

C B
u # d su = m

 0Ithrough =
m

 0r2

R2  I

We know from the symmetry of the wire that B
u
 is everywhere tan-

gent to the circle and has the same magnitude at all points on the 
circle. Consequently, the line integral of B

u # d su around the circle 
can be evaluated using Option 2 of Tactics Box 29.3:

C B
u # d su = Bl = 2prB

where l = 2pr is the path length. If we substitute this expression 
into Ampère’s law, we find that

2prB =
m

 0r2

R2  I

Solving for B, we find that the magnetic field strength at radius r 
inside a current-carrying wire is

B =
m

 0I

2pR2 r

REVIEW The magnetic field inside a wire increases linearly  
with distance from the center until, at the surface of the wire, 
B = m

 0 I/2pR matches our earlier solution for the magnetic field 
outside a current-carrying wire. This agreement at r = R gives us 
confidence in our result. The magnetic field strength both inside 
and outside the wire is shown graphically in FIGURE 29.27.

EXAMPLE 29.8 ■ The magnetic field inside a current-carrying wire

B
u

B
u

Closed
integration
path R

r

I

Current-carrying
wire of radius R

By symmetry, the magnetic field
must be tangent to the circle.

Ithrough is the current inside radius r.

FIGURE 29.26 Using Ampère’s law inside a current-carrying wire.

1
2

r

B

Bmax

Bmax

0
0 R 2R 3R 4R

The magnetic field increases linearly
with distance inside the wire c

cand inversely with distance
outside the wire.

FIGURE 29.27 Graphical representation of the magnetic field of a 
current-carrying wire.
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29.6 Ampère’s Law and Solenoids 865

The Magnetic Field of a Solenoid
In our study of electricity, we made extensive use of the idea of a uniform electric 
field: a field that is the same at every point in space. We found that two closely spaced, 
parallel charged plates generate a uniform electric field between them, and this was 
one reason we focused so much attention on the parallel-plate capacitor.

Similarly, there are many applications of magnetism for which we would like to 
generate a uniform magnetic field, a field having the same magnitude and the same 
direction at every point within some region of space. Neither a long, straight wire nor 
a current loop produces a uniform magnetic field.

In practice, a uniform magnetic field is generated with a solenoid. A solenoid, 
shown in FIGURE 29.28, is a helical coil of wire of length L that is formed with N 
loops—usually called turns—of wire. The same current I passes through each turn as 
it travels through the coil. Solenoids may have hundreds or thousands of turns, some-
times wrapped in several layers.

I I

FIGURE 29.28 A solenoid.

FIGURE 29.29 Using superposition to find the magnetic field of a stack of current loops.
(a) A single loop

The magnetic field vector is
shown at six points.

(b) A stack of three loops

1 2 3

u
B2

u
B2

u
B1

u
B1

u
B3

u
B3

The fields reinforce each other here.

The fields of the three loops
nearly cancel here.

We can understand a solenoid by thinking of it as a stack of current loops. FIGURE  

29.29a shows the magnetic field of a single current loop at three points on the axis and 
three points equally distant from the axis. The field directly above the loop is opposite 
in direction to the field inside the loop. FIGURE 29.29b then shows three parallel loops. 
We can use information from Figure 29.29b to draw the magnetic fields of each loop 
at the center of loop 2 and at a point above loop 2.

The superposition of the three fields at the center of loop 2 produces a stronger field  
than that of loop 2 alone. But the superposition at the point above loop 2 produces  
a net magnetic field that is very much weaker than the field at the center of the loop. 
We’ve used only three current loops to illustrate the idea, but these tendencies are  
reinforced by including more loops. With many current loops along the same axis, 
the field in the center is strong and roughly parallel to the axis, whereas the field 
outside the loops is very close to zero.

FIGURE 29.30a is a photo of the magnetic field of a short solenoid. You can see that the 
magnetic field inside the coils is nearly uniform (i.e., the field lines are nearly parallel) 
and the field outside is much weaker. Our goal of producing a uniform magnetic field 
can be achieved by increasing the number of coils until we have an ideal solenoid that is  
infinitely long and in which the coils are as close together as possible. As FIGURE 29.30b 
shows, the magnetic field inside an ideal solenoid is uniform and parallel to the axis;  
the magnetic field outside is zero. No real solenoid is ideal, but a very uniform mag-
netic field can be produced near the center of a tightly wound solenoid whose length  
is much larger than its diameter.

We can use Ampère’s law to calculate the field of an ideal solenoid. FIGURE 29.31 on the 
next page shows a cross section through an infinitely long solenoid. The integration path 
that we’ll use is a rectangle of width l, enclosing N turns of the solenoid coil. Because  
this is a mathematical curve, not a physical boundary, there’s no difficulty with letting it 
protrude through the wall of the solenoid wherever we wish. The solenoid’s magnetic field 
direction, given by the right-hand rule, is left to right, so we’ll integrate around this path  
in the ccw direction.

B
u

u u
B = 0

u u
B = 0

(b)

The magnetic field is uniform inside this 
section of an ideal, infinitely long solenoid. 
The magnetic field outside the solenoid is zero.

(a) A short solenoid

FIGURE 29.30 The magnetic field of a 
solenoid.
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866 CHAPTER 29 The Magnetic Field

Each of the N wires enclosed by the integration path carries current I, so the total 
current passing through the rectangle is Ithrough = NI. Ampère’s law is thus

 C B
u # d su = m

 0 Ithrough = m
 0 NI (29.16)

The line integral around this path is the sum of the line integrals along each side. 
Along the bottom, where B

u
 is parallel to d su and of constant value B, the integral is 

simply Bl. The integral along the top is zero because the magnetic field outside an 
ideal solenoid is zero.

The left and right sides sample the magnetic field both inside and outside the sole-
noid. The magnetic field outside is zero, and the interior magnetic field is everywhere 
perpendicular to the line of integration. Consequently, as we recognized in Option 1 
of Tactics Box 29.3, the line integral is zero.

Only the integral along the bottom path is nonzero, leading to

C B
u # d su = Bl = m

 0 NI

Thus the strength of the uniform magnetic field inside a solenoid is

 Bsolenoid =
m

 0 NI

l
= m

 0 nI   (solenoid) (29.17)

where n = N/l is the number of turns per unit length. Measurements that need a uniform 
magnetic field are often conducted inside a solenoid, which can be built quite large.

B
u

B
u

l

This is the integration path
for Ampère’s law. There
are N turns inside.

B is tangent to the integration
path along the bottom edge.

u

FIGURE 29.31 A closed path inside and 
outside an ideal solenoid.

A 1.0-m-long MRI solenoid 
generates a 1.2 T magnetic 
field. To produce such a large 
field, the solenoid is wrapped 
with superconducting wire 
that can carry a 100 A cur-
rent. How many turns of wire 
does the solenoid need?

MODEL Assume that the solenoid is ideal.

SOLVE Generating a magnetic field with a solenoid is a trade-off 
between current and turns of wire. A larger current requires fewer 

turns, but the resistance of ordinary wires causes them to overheat 
if the current is too large. For a superconducting wire that can carry 
100 A with no resistance, we can use Equation 29.17 to find the 
required number of turns:

N =
lB
m

 0I
=

11.0 m211.2 T2
11.26 * 10-6 T m/A21100 A2 = 9500 turns

REVIEW The solenoid coil requires a large number of turns, but 
that’s not surprising for generating a very strong field. If the wires 
are 1 mm in diameter, there would be 10 layers with approximately 
1000 turns per layer.

EXAMPLE 29.9 ■ Generating an MRI magnetic field

The magnetic field of a finite-length solenoid is approximately uniform inside the 
solenoid and weak, but not zero, outside. As FIGURE 29.32 shows, the magnetic field out-
side the solenoid looks like that of a bar magnet. Thus a solenoid is an electromagnet,  
and you can use the right-hand rule to identify the north-pole end. A solenoid with 
many turns and a large current can be a very powerful magnet.

The north pole is the end from
which the field emerges.

I I

NS

Solenoid Bar magnet

S N

FIGURE 29.32 The magnetic fields of a finite-length solenoid and of a bar magnet.
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29.7 The Magnetic Force on a Moving Charge 867

29.7  The Magnetic Force on a Moving 
Charge

It’s time to switch our attention from how magnetic fields are generated to how magnetic 
fields exert forces and torques. Oersted discovered that a current passing through a wire 
causes a magnetic torque to be exerted on a nearby compass needle. Upon hearing of 
Oersted’s discovery, the French scientist André-Marie Ampère, for whom the SI unit of 
current is named, reasoned that the current was acting like a magnet and, if this were 
true, that two current-carrying wires should exert magnetic forces on each other.

To find out, Ampère set up two parallel wires that could carry large currents either 
in the same direction or in opposite (or “antiparallel”) directions. FIGURE 29.33 shows 
the outcome of his experiment. Notice that, for currents, “likes” attract and “oppo-
sites” repel. This is the opposite of what would have happened had the wires been 
charged and thus exerting electric forces on each other. Ampère’s experiment showed 
that a magnetic field exerts a force on a current.

Magnetic Force
Our investigation of this force begins more simply, with individual moving charges. 
A current consists of moving charges, so Ampère’s experiment implies that a mag-
netic field exerts a force on a moving charge. It turns out that the magnetic force is 
somewhat more complex than the electric force, depending not only on the charge’s 
velocity but also on how the velocity vector is oriented relative to the magnetic field. 
Consider the following experiments:

Investigating the magnetic force on a charged particle

F
u

F
u

Force perpendicular
to plane

Force greatest
at a = 90°

v
u

B
u

F
u

v
u

B
u

a
v
u

B
u

v
u

B
u

B
u

F = 0
u u

F = 0
u u

u
v = 0

u

Plane of
v and Bu u

There is no magnetic 
force on a charged 
particle at rest.

There is no magnetic 
force on a charged part icle 
moving parallel to a 
magnetic field.

As the angle a between the velocity and the magnetic field increases, the magnetic 
force also increases. The force is greatest when the angle is 90°. The magnetic force 
is always perpendicular to the plane containing v  

u and B
u

.

Notice that the relationship among v 

u, B
u

, and F
u
 is exactly the same as the geometric  

relationship among vectors C
u
, D

u
, and C

u
* D

u
. The magnetic force on a charge q as it 

moves through a magnetic field B
u

 with velocity v 

u can be written

 F
u

on q = qv 

u * B
u

= (qvB sin a, direction of right@hand rule) (29.18)

where a is the angle between v 

u and B
u

.
The right-hand rule is that of the cross product, shown in FIGURE 29.34. Notice that 

the magnetic force on a moving charged particle is perpendicular to both v 

u and B
u

.
The magnetic force has several important properties:

■■ Only a moving charge experiences a magnetic force. There is no magnetic force on 
a charge at rest 1v 

u = 0
u2 in a magnetic field.

■■ There is no force on a charge moving parallel 1a = 0°2 or antiparallel 1a = 180°2 
to a magnetic field.

■■ When there is a force, the force is perpendicular to the plane containing v 

u and B
u

.
■■ The force is a maximum 0 q 0 vB when v 

u is perpendicular to B
u

.
■■ The force on a negative charge is in the direction opposite to v 

u * B
u
.

I

I

“Opposite” currents repel.

F
u

F
u

F
u

F
u

F
u

F
u

F
u

F
u

I

I

“Like” currents attract.

FIGURE 29.33 The forces between parallel 
current-carrying wires.

B
u

F
u

v
u

FIGURE 29.34 The right-hand rule for 
magnetic forces.
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FIGURE 29.35 shows the relationship among v 

u, B
u

, and F
u
 for four moving charges. 

(The source of the magnetic field isn’t shown, only the field itself.) You can see the 
inherent three-dimensionality of magnetism, with the force perpendicular to both v 

u 
and B

u
. The magnetic force is very different from the electric force, which is parallel 

to the electric field.

v
u

B
u

u u
F = 0

FIGURE 29.35 Magnetic forces on four moving charges.

v
u

B
u

u
F points into figure

v
u

B
u

F
u

v
u

B
u

F
u

   NOTE    The magnetic force on a charged particle is always perpendicular to the 
particle’s displacement, which is in the direction of the velocity. Consequently, the 
magnetic force does no work.

A long wire carries a 10 A current from left to right. An elec-
tron 1.0 cm above the wire is traveling to the right at a speed of 
1.0 * 107 m/s. What are the magnitude and the direction of the 
magnetic force on the electron?

MODEL The magnetic field is that of a long, straight wire.

VISUALIZE FIGURE 29.36 shows the current and an electron moving 
to the right. The right-hand rule tells us that the wire’s magnetic 

field above the wire is out of the figure, so the electron is moving 
perpendicular to the field.

SOLVE The electron charge is negative, thus the direction of the 
force is opposite the direction of v 

u * B
u
. The right-hand rule shows 

that v 

u * B
u
 points down, toward the wire, so F

u
 points up, away from 

the wire. The magnitude of the force is 0 q 0 vB = evB. The field is 
that of a long, straight wire at distance r = 0.010 m:

B =
m

 0 I

2pr
= 2.0 * 10-4 T

Thus the magnitude of the force on the electron is

  F = evB = 11.60 * 10-19 C211.0 * 107 m/s212.0 * 10-4 T2
  = 3.2 * 10-16 N

The force on the electron is F
u

= 13.2 * 10-16 N, up2.

REVIEW This force will cause the electron to curve away from the 
wire.

EXAMPLE 29.10 ■ The magnetic force on an electron

Magnetic field
of current I

FIGURE 29.36 An electron moving parallel to a current-carrying 
wire.

We can draw an interesting and important conclusion at this point. You have seen 
that the magnetic field is created by moving charges. Now you also see that magnetic 
forces are exerted on moving charges. Thus it appears that magnetism is an interaction  
between moving charges.

Cyclotron Motion
Many important applications of magnetism involve the motion of charged particles in 
a magnetic field. Older television picture tubes use magnetic fields to steer electrons 
through a vacuum from the electron gun to the screen. Microwave generators, which 
are used in applications ranging from ovens to radar, use a device called a magnetron 
in which electrons oscillate rapidly in a magnetic field.

You’ve just seen that there is no force on a charge that has velocity v 

u parallel or 
antiparallel to a magnetic field. Consequently, a magnetic field has no effect on a 
charge moving parallel or antiparallel to the field. To understand the motion of 
charged particles in magnetic fields, we need to consider only motion perpendicular 
to the field.

FIGURE 29.37 shows a positive charge q moving with a velocity v 

u in a plane that is 
perpendicular to a uniform magnetic field B

u
. According to the right-hand rule, the 

v
u

v
u

v
u

F
u

F
u

F
u

u
B into figure

u u
v is perpendicular to B.

The magnetic force is always
perpendicular to v, causing the
particle to move in a circle.

u

FIGURE 29.37 Cyclotron motion of a 
charged particle moving in a uniform 
magnetic field.
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29.7 The Magnetic Force on a Moving Charge 869

magnetic force on this particle is perpendicular to the velocity v 

u. A force that is always 
perpendicular to v 

u changes the direction of motion, by deflecting the particle sideways, 
but it cannot change the particle’s speed. Thus a particle moving perpendicular to  
a uniform magnetic field undergoes uniform circular motion at constant speed. 
This motion is called the cyclotron motion of a charged particle in a magnetic field.

   NOTE    A negative charge will orbit in the opposite direction from that shown in 
Figure 29.37 for a positive charge.

You’ve seen many analogies to cyclotron motion earlier in this text. For a mass 
moving in a circle at the end of a string, the tension force is always perpendicular to v 

u. 
For a satellite moving in a circular orbit, the gravitational force is always perpendicular 
to v 

u. Now, for a charged particle moving in a magnetic field, it is the magnetic force of 
strength F = qvB that points toward the center of the circle and causes the particle to 
have a centripetal acceleration.

Newton’s second law for circular motion, which you learned in Chapter 8, is

 F = qvB = mar =
mv2

r
 (29.19)

Thus the radius of the cyclotron orbit is

 rcyc =
mv
qB

 (29.20)

The inverse dependence on B indicates that the size of the orbit can be decreased by 
increasing the magnetic field strength.

We can also determine the frequency of the cyclotron motion. Recall from your  
earlier study of circular motion that the frequency of revolution f is related to the speed  
and radius by f = v/2pr. A rearrangement of Equation 29.20 gives the cyclotron 
frequency:

 fcyc =
qB

2pm
 (29.21)

where the ratio q/m is the particle’s charge-to-mass ratio. Notice that the cyclotron 
frequency depends on the charge-to-mass ratio and the magnetic field strength but not 
on the charge’s speed.

Electrons undergoing circular motion in a 
magnetic field. You can see the electrons’ 
path because they collide with a low- 
density gas that then emits light.

In FIGURE 29.38, an electron is accelerated from rest through a  
potential difference of 500 V, then injected into a uniform magnetic 

field. Once in the magnetic field, it completes half a revolution in 
2.0 ns. What is the radius of its orbit?

MODEL Energy is conserved as the electron is accelerated by the 
potential difference. The electron then undergoes cyclotron motion 
in the magnetic field, although it completes only half a revolution 
before hitting the back of the acceleration electrode.

SOLVE The electron accelerates from rest 1vi = 0 m/s2 at Vi = 0 V 
to speed vf at Vf = 500 V. We can use conservation of energy 
Kf + qVf = Ki + qVi to find the speed vf with which it enters the 
magnetic field:

 12 mvf 

2 + 1-e2Vf = 0 + 0

  vf = B2eVf

m
= B211.60 * 10-19 C21500 V2

9.11 * 10-31 kg

  = 1.33 * 107 m/s

The cyclotron radius in the magnetic field is rcyc = mv/eB, but we 
first need to determine the field strength. Were it not for the electrode, 

EXAMPLE 29.11 ■ The radius of cyclotron motion

Continued

B
u

0 V 500 V

B = 0
u u

FIGURE 29.38 An electron is accelerated, then injected into a 
magnetic field.
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870 CHAPTER 29 The Magnetic Field

FIGURE 29.39a shows a more general situation in which the charged particle’s velocity  
v 

u is neither parallel nor perpendicular to B
u

. The component of v 

u parallel to B
u

 is not 
affected by the field, so the charged particle spirals around the magnetic field lines  
in a helical trajectory. The radius of the helix is determined by v 

u
1, the component of v 

u  
perpendicular to B

u
.

the electron would undergo circular motion with period T = 4.0 ns. 
Hence the cyclotron frequency is f = 1/T =2.5 * 108 Hz. We can use 
the cyclotron frequency to determine that the magnetic field strength is

  B =
2pmfcyc 

e
=

2p19.11 * 10-31 kg212.50 * 108 Hz2
1.60 * 10-19 C

  = 8.94 * 10-3 T

Thus the radius of the electron’s orbit is

rcyc =
mv
qB

= 8.5 * 10-3 m = 8.5 mm

REVIEW A 17-mm-diameter orbit is similar to what is seen in the 
photo just before this example, so this seems to be a typical size for 
electrons moving in modest magnetic fields.

Charged particles
spiral around the
magnetic field lines.

(a)

FIGURE 29.39 In general, charged particles spiral along helical trajectories around the magnetic field lines. This motion is 
responsible for the earth’s aurora.

The earth’s magnetic field leads
particles into the atmosphere near
the poles, causing the aurora.

(b) (c) The aurora

The motion of charged particles in a magnetic field is responsible for the earth’s 
aurora. High-energy particles and radiation streaming out from the sun, called the 
solar wind, create ions and electrons as they strike molecules high in the atmosphere. 
Some of these charged particles become trapped in the earth’s magnetic field, creating 
what is known as the Van Allen radiation belt.

As FIGURE 29.39b shows, the electrons spiral along the magnetic field lines until the 
field leads them into the atmosphere. The shape of the earth’s magnetic field is such 
that most electrons enter the atmosphere near the magnetic poles. There they collide 
with oxygen and nitrogen atoms, exciting the atoms and causing them to emit auroral 
light, as seen in FIGURE 29.39c.

STOP TO THINK 29.5 An electron moves perpendicular to a 
magnetic field. What is the direction of B

u
?

v
u

F
u

a. Left b. Up c. Into the figure
d. Right e. Down f. Out of the figure

The Cyclotron
Physicists studying the structure of the atomic nucleus and of elementary particles 
usually use a device called a particle accelerator. The first practical particle accelera-
tor, invented in the 1930s, was the cyclotron. Cyclotrons remain important for many 
applications of nuclear physics, such as the creation of radioisotopes for medicine.
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29.7 The Magnetic Force on a Moving Charge 871

A cyclotron, shown in FIGURE 29.40, consists of an evacuated chamber within a 
large, uniform magnetic field. Inside the chamber are two hollow conductors shaped 
like the letter D and hence called “dees.” The dees are made of copper, which doesn’t 
affect the magnetic field; are open along the straight sides; and are separated by a 
small gap. A charged particle, typically a proton, is injected into the magnetic field 
from a source near the center of the cyclotron, and it begins to move in and out of the 
dees in a circular cyclotron orbit.

The cyclotron operates by taking advantage of the fact that the cyclotron frequency 
fcyc of a charged particle is independent of the particle’s speed. An oscillating potential 
difference ∆V  is connected across the dees and adjusted until its frequency is exactly 
the cyclotron frequency. There is almost no electric field inside the dees (you learned  
in Chapter 24 that the electric field inside a hollow conductor is zero), but a strong 
electric field points from the positive to the negative dee in the gap between them.

Suppose the proton emerges into the gap from the positive dee. The electric field in 
the gap accelerates the proton across the gap into the negative dee, and it gains kinetic 
energy e ∆V. A half cycle later, when it next emerges into the gap, the potential of the 
dees (whose potential difference is oscillating at fcyc) will have changed sign. The 
proton will again be emerging from the positive dee and will again accelerate across 
the gap and gain kinetic energy e ∆V.

This pattern will continue orbit after orbit. The proton’s kinetic energy increases by 
2e ∆V  every orbit, so after N orbits its kinetic energy is K = 2Ne ∆V  (assuming that its 
initial kinetic energy was near zero). The radius of its orbit increases as it speeds up; 
hence the proton follows the spiral path shown in Figure 29.40 until it finally reaches 
the outer edge of the dee. It is then directed out of the cyclotron and aimed at a target.  
Although ∆V  is modest, usually a few hundred volts, the fact that the proton can under-
 go many thousands of orbits before reaching the outer edge allows it to acquire a  
very large kinetic energy.

The Hall Effect
A charged particle moving through a vacuum is deflected sideways, perpendicular 
to v 

u, by a magnetic field. In 1879, a graduate student named Edwin Hall showed that 
the same is true for the charges moving through a conductor as part of a current. This 
phenomenon—now called the Hall effect—is used to gain information about the 
charge carriers in a conductor. It is also the basis of a widely used technique for mea-
suring magnetic field strengths.

FIGURE 29.41a shows a magnetic field perpendicular to a flat, current-carrying 
conductor. You learned in Chapter 27 that the charge carriers move through a conductor at 
the drift speed vd. Their motion is perpendicular to B

u
, so each charge carrier experiences  

a magnetic force FB = evdB perpendicular to both B
u
 and the current I. However, for the 

first time we have a situation in which it does matter whether the charge carriers are  
positive or negative.

FIGURE 29.41b, with the field pointing toward you, shows that positive charge carriers 
moving in the direction of I are pushed toward the bottom surface of the conductor.  
This creates an excess positive charge on the bottom surface and leaves an excess 
negative charge on the top. FIGURE 29.41c, where the electrons in an electron current  
i move opposite the direction of I, shows that electrons would be pushed toward the 
bottom surface. (Be sure to use the right-hand rule and the sign of the electron charge 
to confirm the deflections shown in these figures.) Thus the sign of the excess charge 
on the bottom surface is the same as the sign of the charge carriers. Experimentally, 
the bottom surface is negative when the conductor is a metal, and this is one more 
piece of evidence that the charge carriers in metals are electrons.

Electrons are deflected toward the bottom surface once the current starts flowing, 
but the process can’t continue indefinitely. As excess charge accumulates on the top  
and bottom surfaces, it acts like the charge on the plates of a capacitor, creating a poten-
tial difference ∆V between the two surfaces and an electric field E = ∆V/w inside the  
conductor of width w. This electric field increases until the upward electric force F

u

E  

B
u

Bottom
magnet

Dees

Proton source

Protons
exit here.

The potential ∆V oscillates
at the cyclotron frequency fcyc.

FIGURE 29.40 A cyclotron.

v
u

E
u

(b) Conventional current
of positive charge
carriers

Top surface
is negative.

Electric field due to
charge separation

u
FB

∆VH

u
FE

I

(c) Top surface
is positive.

Electron
current

∆VH
i

v
u

E
u

FB

u

FE

u

v
u

B
u

F
u Area 

A = wt  t

w

The charge carriers
are deflected to 
the side.

I

(a)

FIGURE 29.41 In a magnetic field, the 
charge carriers of a current are deflected 
to one side.

M29_KNIG8221_05_GE_C29.indd   871 30/05/2022   16:17



872 CHAPTER 29 The Magnetic Field

on the charge carriers exactly balances the downward magnetic force F
u

B. Once the 
forces are balanced, a steady state is reached in which the charge carriers move in the 
direction of the current and no additional charge is deflected to the surface.

The steady-state condition, in which FB = FE, is

 FB = evdB = FE = eE = e 
∆V
w

 (29.22)

Thus the steady-state potential difference between the two surfaces of the conductor, 
which is called the Hall voltage ∆VH, is

 ∆VH = wvdB (29.23)

You learned in Chapter 27 that the drift speed is related to the current density J by 
J = nevd, where n is the charge-carrier density (charge carriers per m3). Thus

 vd =
J
ne

=
I/A
ne

=
I

wtne
 (29.24)

where A = wt is the cross-section area of the conductor. If we use this expression for 
vd in Equation 29.23, we find that the Hall voltage is

 ∆VH =
IB
tne

 (29.25)

The Hall voltage is very small for metals in laboratory-sized magnetic fields, typically 
in the microvolt range. Even so, measurements of the Hall voltage in a known magnetic 
field are used to determine the charge-carrier density n. Interestingly, the Hall voltage is 
larger for poor conductors that have smaller charge-carrier densities. A laboratory probe 
for measuring magnetic field strengths, called a Hall probe, measures ∆VH for a poor 
conductor whose charge-carrier density is known. The magnetic field is then determined 
from Equation 29.25.

A Hall probe consists of a strip of the metal bismuth that is 0.15 mm  
thick and 5.0 mm wide. Bismuth is a poor conductor with 
charge-carrier density 1.35 * 1025 m-3. The Hall voltage on the 
probe is 2.5 mV when the current through it is 1.5 A. What is the 
strength of the magnetic field, and what is the electric field strength 
inside the bismuth?

VISUALIZE The bismuth strip looks like Figure 29.41a. The thick-
ness is t = 1.5 * 10-4 m and the width is w = 5.0 * 10-3 m.

SOLVE Equation 29.25 gives the Hall voltage. We can rearrange the 
equation to find that the magnetic field is

  B =
tne
I

 ∆VH

  =
11.5 * 10-4 m211.35 * 1025 m-3211.60 *  10-19 C2

1.5 A
 0.0025 V

  = 0.54 T

The electric field created inside the bismuth by the excess charge 
on the surface is

E =
∆VH 

w
=

0.0025 V

5.0 * 10-3 m
= 0.50 V/m

REVIEW 0.54 T is a fairly typical strength for a laboratory magnet.

EXAMPLE 29.12 ■ Measuring the magnetic field

29.8  Magnetic Forces on Current- 
Carrying Wires

Ampère’s observation of magnetic forces between current-carrying wires motivated 
us to look at the magnetic forces on moving charges. We’re now ready to apply that 
knowledge to Ampère’s experiment. As a first step, let us find the force exerted by a 
uniform magnetic field on a long, straight wire carrying current I through the field. 
As FIGURE 29.42a shows, there’s no force on a current-carrying wire parallel to a mag-
netic field. This shouldn’t be surprising; it follows from the fact that there is no force 
on a charged particle moving parallel to B

u
.
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29.8 Magnetic Forces on Current-Carrying Wires  873

FIGURE 29.42b shows a wire perpendicular to the magnetic field. By the right-hand 
rule, each charge in the current has a force of magnitude qvB directed to the left. 
Consequently, the entire length of wire within the magnetic field experiences a force 
to the left, perpendicular to both the current direction and the field direction.

A current is moving charge, and the magnetic force on a current-carrying wire 
is simply the net magnetic force on all the charge carriers in the wire. FIGURE 29.43 
shows a wire of length l carrying current I and a small segment of length ∆x in which 
the charge carriers move with drift velocity v 

u
d. Suppose this small segment of the 

wire contains charge ∆q. The charge moves through the segment in a time inter-
val ∆t = ∆x/vd, during which it experiences a magnetic force—perpendicular to the 
wire—of magnitude F = ∆qvdB. If we multiply and divide by ∆t, we can write the 
force on the moving charge in this segment as

F = ∆qvdB =
∆q

∆t
 (vd ∆t)B = I ∆xB

In the last step we used the facts that ∆q/∆t is the current I and vd ∆t is the segment 
length ∆x.

If we add up the forces on all the small segments of wire, the force on length l of 
the wire—if it’s perpendicular to the magnetic field—is F = IlB. More generally, the 
force on length l of a current-carrying wire is

 F
u

wire = Il
u

* B
u

= (IlB sin a, direction of right@hand rule) (29.26)

where a is the angle between l
u
 (the direction of the current) and B

u
. As an aside, you 

can see from Equation 29.26 that the magnetic field B must have units of N/A m. This 
is why we defined 1 T = 1 N/A m in Section 29.3.

   NOTE    The right-hand rule for forces applies to a current-carrying wire. Point your right 
thumb in the direction of the current (parallel to l

u
) and your index finger in the direction 

of B
u

. Your middle finger is then pointing in the direction of the force F
u
 on the wire.

The 0.10 T uniform magnetic  
field of FIGURE 29.44 is  
horizontal, parallel to the 
floor. A straight segment  
of 1.0-mm-diameter copper  
wire, also parallel to the  
floor, is perpendicular to  
the magnetic field. What current through the wire, and in which  
direction, will allow the wire to “float” in the magnetic field?

MODEL The wire will float in the magnetic field if the magnetic 
force on the wire points upward and has magnitude mg, allowing it 
to balance the downward gravitational force.

SOLVE We can use the right-hand rule to determine which current 
direction experiences an upward force. With B

u
 pointing away from 

us, the direction of the current needs to be from left to right. The 
forces will balance when

F = IlB = mg = r1pr2l2g

where r = 8920 kg/m3 is the density of copper. The length of the 
wire cancels, leading to

  I =
rpr2g

B
=

18920 kg/m32p10.00050 m2219.80 m/s22
0.10 T

 

  = 0.69 A

A 0.69 A current from left to right will levitate the wire in the mag-
netic field.

REVIEW A 0.69 A current is quite reasonable, but this idea is useful 
only if we can get the current into and out of this segment of wire. 
In practice, we could do so with wires that come in from below the 
figure. These input and output wires would be parallel to B

u
 and not 

experience a magnetic force. Although this example is very simple, 
it is the basis for applications such as magnetic levitation trains.

EXAMPLE 29.13 ■ Magnetic levitation

F
u

I

I
B
u

B
u

(a) (b)

I

There’s no force on a
current parallel to a
magnetic field.

There is a magnetic
force in the direction
of the right-hand rule.

I

FIGURE 29.42 Magnetic force on a  
current-carrying wire.

I
∆q

∆x

l

F
u

vd
u

FIGURE 29.43 The force on a current is the 
force on the charge carriers.

B
u

FG

u

FIGURE 29.44 Magnetic levitation.

Force Between Two Parallel Wires
Now consider Ampère’s experimental arrangement of two parallel wires of length 
l, distance d apart. FIGURE 29.45a on the next page shows the currents I1 and I2 in the 
same direction; FIGURE 29.45b shows the currents in opposite directions. We will as-
sume that the wires are sufficiently long to allow us to use the earlier result for the 
magnetic field of a long, straight wire: B = m 0 I/2pr.
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874 CHAPTER 29 The Magnetic Field

As Figure 29.45a shows, the current I2 in the lower wire creates a magnetic field B
u

2 
at the position of the upper wire. B

u

2 points out of the figure, perpendicular to current 
I1. It is field B

u

2, due to the lower wire, that exerts a magnetic force on the upper 
wire. Using the right-hand rule, you can see that the force on the upper wire is down-
ward, thus attracting it toward the lower wire. The field of the lower current is not a 
uniform field, but it is the same at all points along the upper wire because the two 
wires are parallel. Consequently, we can use the field of a long, straight wire, with 
r = d, to determine the magnetic force exerted by the lower wire on the upper wire:

 Fparallel wires = I1l B2 = I1l 
m

 

 0I2

2pd
=

m
 0l I1I2

2pd
 (29.27)

As an exercise, you should convince yourself that the current in the upper wire exerts 
an upward-directed magnetic force on the lower wire with exactly the same magni-
tude. You should also convince yourself, using the right-hand rule, that the forces are 
repulsive and tend to push the wires apart if the two currents are in opposite directions.

Thus two parallel wires exert equal but opposite forces on each other, as required 
by Newton’s third law. Parallel wires carrying currents in the same direction 
attract each other; parallel wires carrying currents in opposite directions repel 
each other.

d

I2

I1

(a) Currents in same direction

Magnetic field B2 created by current I2

u

Magnetic field B1 created by current I1

u

F2 on 1

u

F1 on 2

u

F2 on 1

u

F1 on 2

u

u
u

u
B2

B1

u
F2 on 1

I1

I2

u
F2 on 1

F1 on 2 F1 on 2

(b) Currents in opposite directions

l

u

FIGURE 29.45 Magnetic forces between parallel current-carrying wires.

Two stiff, 50-cm-long, parallel wires are connected at the ends by 
metal springs. Each spring has an unstretched length of 5.0 cm  
and a spring constant of 0.025 N/m. The wires push each other 
apart when a current travels around the loop. How much current is 
required to stretch the springs to lengths of 6.0 cm?

MODEL Two parallel wires carrying currents in opposite directions 
exert repulsive magnetic forces on each other.

VISUALIZE FIGURE 29.46 shows the “circuit.” The springs are con-
ductors, allowing a current to travel around the loop. In equilibri-
um, the repulsive magnetic forces between the wires are balanced 
by the restoring forces FSp = k ∆y of the springs.

SOLVE Figure 29.46 shows the forces on the lower wire.  
The net force is zero, hence the magnetic force is FB = 2FSp.  
The force between the wires is given by Equation 29.27 with 
I1 = I2 = I:

FB =
m

 0lI 2

2pd
= 2FSp = 2k ∆y

where k is the spring constant and ∆y = 1.0 cm is the amount by 
which each spring stretches. Solving for the current, we find

I = B 4pkd ∆y

m
 0 l

= 17 A

REVIEW Devices in which a magnetic force balances a mechanical 
force are called current balances. They can be used to make very 
accurate current measurements.

EXAMPLE 29.14 ■ A current balance

FIGURE 29.46 The current-carrying wires of Example 29.14.
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29.9 Forces and Torques on Current Loops 875

29.9 Forces and Torques on Current Loops
You have seen that a current loop is a magnetic dipole, much like a permanent magnet. 
We will now look at some important features of how current loops behave in magnetic 
fields. This discussion will be largely qualitative, but it will highlight some of the 
important properties of magnets and magnetic fields. We will use these ideas in the 
next section to make the connection between electromagnets and permanent magnets.

FIGURE 29.47a shows two current loops. Using what we just learned about the forces 
between parallel and antiparallel currents, you can see that parallel current loops 
exert attractive magnetic forces on each other if the currents circulate in the same 
direction; they repel each other when the currents circulate in opposite directions.

We can think of these forces in terms of magnetic poles. Recall that the north pole 
of a current loop is the side from which the magnetic field emerges, which you can 
determine with the right-hand rule. FIGURE 29.47b shows the north and south magnetic 
poles of the current loops. When the currents circulate in the same direction, a north 
and a south pole face each other and exert attractive forces on each other. When the 
currents circulate in opposite directions, the two like poles repel each other.

Here, at last, we have a real connection to the behavior of magnets that opened our 
discussion of magnetism—namely, that like poles repel and opposite poles attract. 
Now we have an explanation for this behavior, at least for electromagnets. Magnetic 
poles attract or repel because the moving charges in one current exert attractive 
or repulsive magnetic forces on the moving charges in the other current. Our tour 
through interacting moving charges is finally starting to show some practical results!

Now let’s consider what happens to a current loop in a magnetic field. FIGURE 29.48 
shows a square current loop in a uniform magnetic field along the z-axis. As we’ve 
learned, the field exerts magnetic forces on the currents in each of the four sides of 
the loop. Their directions are given by the right-hand rule. Forces F

u

front and F
u

back are 
opposite to each other and cancel. Forces F

u

top and F
u

bottom also add to give no net force, 
but because F

u

top and F
u

bottom don’t act along the same line they will rotate the loop by 
exerting a torque on it.

Recall that torque is the magnitude of the force F multiplied by the moment arm 
d, the distance between the pivot point and the line of action. Both forces have the 
same moment arm d = 1

2  l sin u, hence the torque on the loop—a torque exerted by the 
magnetic field—is

 t = 2Fd = 21IlB211
2  l sin u2 = 1Il22B sin u = mB sin u (29.28)

where m = Il2 = IA is the loop’s magnetic dipole moment and u is the angle between 
the dipole moment vector mu  and the magnetic field B

u
.

Although we derived Equation 29.28 for a square loop, the result is valid for a current 
loop of any shape. Notice that Equation 29.28 looks like another example of a cross 
product. We earlier defined the magnetic dipole moment vector mu  to be a vector per-
pendicular to the current loop in a direction given by the right-hand rule. Figure 29.48 
shows that u is the angle between B

u
 and mu , hence the torque on a magnetic dipole is

 t
u = mu * B

u
 (29.29)

The torque is zero when the magnetic dipole moment mu  is aligned parallel or antipar-
allel to the magnetic field, and is maximum when mu  is perpendicular to the field. It is 
this magnetic torque that causes a compass needle—a magnetic moment—to rotate 
until it is aligned with the magnetic field.

An Electric Motor
The torque on a current loop in a magnetic field is the basis for how an electric motor 
works. As FIGURE 29.49 on the next page shows, the armature of a motor is a coil of wire 
wound on an axle. When a current passes through the coil, the magnetic field exerts a 
torque on the armature and causes it to rotate. If the current were steady, the armature 

(a)
Parallel
currents
attract.

(b)

Opposite
poles

attract.

Opposite
currents
repel.

Like
poles
repel.

S N S N

N SNS

FIGURE 29.47 Two alternative but 
equivalent ways to view magnetic forces.
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Ftop and Fbottom exert a torque that
rotates the loop about the x-axis.

d = l sinu

Magnetic field

FIGURE 29.48 A uniform magnetic field 
exerts a torque on a current loop.
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876 CHAPTER 29 The Magnetic Field

would oscillate back and forth around the equilibrium position until (assuming there’s 
some friction or damping) it stopped with the plane of the coil perpendicular to the field. 
To keep the motor turning, a device called a commutator reverses the current direction 
in the coils every 180°. (Notice that the commutator is split, so the positive terminal of 
the battery sends current into whichever wire touches the right half of the commutator.) 
The current reversal prevents the armature from ever reaching an equilibrium position, 
so the magnetic torque keeps the motor spinning as long as there is a current.

I

N

I

I

Armature

Magnet

The commutator reverses the current in the loop every half cycle
so that the force is always upward on the left side of the loop.

Downward magnetic force 
on the right side of the loop

Upward magnetic force 
on the left side of the loop

S

Rotation

B
u

F
u

F
u

F
u

FIGURE 29.49 A simple electric motor.

STOP TO THINK 29.6 What is the current direction in the loop?

a. Out of the figure at the top of the loop, into the 
figure at the bottom

b. Out of the figure at the bottom of the loop, into 
the figure at the top

m
u

Nucleus

I

I Electron

Magnetic dipole moment due to
the electron’s orbital motion

FIGURE 29.50 A classical orbiting electron 
is a tiny magnetic dipole.

S N

Repel

29.10 Magnetic Properties of Matter
Our theory has focused mostly on the magnetic properties of currents, yet our everyday  
experience is mostly with permanent magnets. We have seen that current loops and 
solenoids have magnetic poles and exhibit behaviors like those of permanent magnets,  
but we still lack a specific connection between electromagnets and permanent mag-
nets. The goal of this section is to complete our understanding by developing an  
atomic-level view of the magnetic properties of matter.

Atomic Magnets
A plausible explanation for the magnetic properties of materials is the orbital motion 
of the atomic electrons. FIGURE 29.50 shows a simple, classical model of an atom in 
which a negative electron orbits a positive nucleus. In this picture of the atom, the 
electron’s motion is that of a current loop! It is a microscopic current loop, to be sure, 
but a current loop nonetheless. Consequently, an orbiting electron acts as a tiny mag-
netic dipole, with a north pole and a south pole. You can think of the orbiting electron 
as an atomic-size magnet.
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However, the atoms of most elements contain many electrons. Unlike the solar 
system, where all of the planets orbit in the same direction, electron orbits are ar-
ranged to oppose each other: one electron moves counterclockwise for every electron 
that moves clockwise. Thus the magnetic dipole moments of individual orbits tend to 
cancel each other and the net magnetic dipole moment is either zero or very small.

The cancellation continues as the atoms are joined into molecules and the mole-
cules into solids. When all is said and done, the net magnetic dipole moment of any 
bulk matter due to the orbiting electrons is so small as to be negligible. There are 
various subtle magnetic effects that can be observed under laboratory conditions, but 
orbiting electrons cannot explain the very strong magnetic effects of a piece of iron.

The Electron Spin
The key to understanding atomic magnetism was the 1922 discovery that electrons 
have an inherent magnetic dipole moment. Perhaps this shouldn’t be surprising. An 
electron has a mass, which allows it to interact with gravitational fields, and a charge, 
which allows it to interact with electric fields. There’s no reason an electron shouldn’t 
also interact with magnetic fields, and to do so it comes with a magnetic dipole mo-
ment. The electron’s inherent magnetic dipole moment is usually called, more simply, 
its magnetic moment.

An electron’s inherent magnetic moment, shown in FIGURE 29.51, is often called the 
electron spin because, in a classical picture, a spinning ball of charge would have a 
magnetic moment. This classical picture is not a realistic portrayal of how the electron 
really behaves, but its inherent magnetic moment makes it seem as if the electron 
were spinning. While it may not be spinning in a literal sense, an electron really is a 
microscopic magnet.

We must appeal to the results of quantum physics to find out what happens in an 
atom with many electrons. The spin magnetic moments, like the orbital magnetic di-
pole moments, tend to oppose each other as the electrons are placed into their shells, 
causing the net magnetic moment of a filled shell to be zero. However, atoms con-
taining an odd number of electrons must have at least one valence electron with an 
unpaired spin. These atoms have a net magnetic moment due to the electron’s spin.

But atoms with magnetic moments don’t necessarily form a solid with magnetic 
properties. For most elements, the magnetic moments of the atoms are randomly ar-
ranged when the atoms join together to form a solid. As FIGURE 29.52 shows, this ran-
dom arrangement produces a solid whose net magnetic moment is very close to zero. 
This agrees with our common experience that most materials are not magnetic.

Ferromagnetism
It happens that in iron, and a few other substances, the spins interact with each other in  
such a way that their magnetic moments tend to all line up in the same direction, as 
shown in FIGURE 29.53. Materials that behave in this fashion are called ferromagnetic,  
with the prefix ferro meaning “iron-like.”

In ferromagnetic materials, the individual spin magnetic moments add together to 
create a macroscopic magnetic dipole moment. The material has a north and a south 
magnetic pole, generates a magnetic field, and aligns parallel to an external magnetic 
field. In other words, it is a magnet!

Although iron is a magnetic material, a typical piece of iron is not a strong per-
manent magnet. You need not worry that a steel nail, which is mostly iron and is 
easily lifted with a magnet, will leap from your hands and pin itself against the ham-
mer because of its own magnetism. It turns out, as shown in FIGURE 29.54 on the next 
page, that a piece of iron is divided into small regions, typically less than 100 mm in 
size, called magnetic domains. The magnetic dipole moments of all the iron atoms 
within each domain are perfectly aligned, so each individual domain, like Figure 
29.53, is a strong magnet.

The arrow represents
the inherent magnetic
moment of the electron.

FIGURE 29.51 Magnetic moment of the 
electron.

The magnetic dipole moments due to 
unpaired electrons point in random direc-
tions. The solid has no net magnetism.

FIGURE 29.52 The random magnetic 
moments of the atoms in a typical solid.

The electrons’ spin magnetic moments are
aligned. The solid has a macroscopic dipole
moment with north and south magnetic poles.

N

S

FIGURE 29.53 In a ferromagnetic material, 
the spin magnetic dipole moments are 
aligned.
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However, the various magnetic domains that form a larger solid, such as you might 
hold in your hand, are randomly arranged. Their magnetic dipoles largely cancel, 
much like the cancellation that occurs on the atomic scale for nonferromagnetic  
substances, so the solid as a whole has only a small magnetic dipole moment. That is  
why the nail is not a strong permanent magnet.

Induced Magnetic Dipoles
If a ferromagnetic substance is subjected to an external magnetic field, the external field 
exerts a torque on the magnetic dipole of each domain. The torque causes many of the 
domains to rotate and become aligned with the external field, just as a compass needle 
aligns with a magnetic field, although internal forces between the domains generally 
prevent the alignment from being perfect. In addition, atomic-level forces between the 
spins can cause the domain boundaries to move. Domains that are aligned along the  
external field become larger at the expense of domains that are opposed to the field. 
These changes in the size and orientation of the domains cause the material to develop 
a net magnetic dipole that is aligned with the external field. This magnetic dipole has 
been induced by the external field, so it is called an induced magnetic dipole.

   NOTE    The induced magnetic dipole is analogous to the polarization forces and 
induced electric dipoles that you studied in Chapter 23.

FIGURE 29.55 shows a ferromagnetic material near the end of a solenoid. The magnetic 
dipole moments of the domains align with the solenoid’s field, creating an induced 
magnetic dipole whose south pole faces the solenoid’s north pole. Consequently, the 
magnetic force between the poles pulls the ferromagnetic object to the electromagnet.

The fact that a magnet attracts and picks up ferromagnetic objects was one of the 
basic observations about magnetism with which we started the chapter. Now we have 
an explanation of how it works, based on three ideas:

1. Electrons are microscopic magnets due to their spin.
2. A ferromagnetic material in which the spins are aligned is organized into  

magnetic domains.
3. The individual domains align with an external magnetic field to produce an induced  

magnetic dipole moment for the entire object.

The object’s magnetic dipole may not return to zero when the external field is 
removed because some domains remain “frozen” in the alignment they had in the  
external field. Thus a ferromagnetic object that has been in an external field may be left 
with a net magnetic dipole moment after the field is removed. In other words, the object 
has become a permanent magnet. A permanent magnet is simply a ferromagnetic 
material in which a majority of the magnetic domains are aligned with each other to  
produce a net magnetic dipole moment.

Whether or not a ferromagnetic material can be made into a permanent magnet de-
pends on the internal crystalline structure of the material. Steel is an alloy of iron with 
other elements. An alloy of mostly iron with the right percentages of chromium and 
nickel produces stainless steel, which has virtually no magnetic properties at all be-
cause its particular crystalline structure is not conducive to the formation of domains. 
A very different steel alloy called Alnico V is made with 51% iron, 24% cobalt, 14% 
nickel, 8% aluminum, and 3% copper. It has extremely prominent magnetic properties 
and is used to make high-quality permanent magnets.

So we’ve come full circle. One of our initial observations about magnetism was that 
a permanent magnet can exert forces on some materials but not others. The theory of 
magnetism that we then proceeded to develop was about the interactions between mov-
ing charges. What moving charges had to do with permanent magnets was not obvious. 
But finally, by considering magnetic effects at the atomic level, we found that properties 
of permanent magnets and magnetic materials can be traced to the interactions of vast  
numbers of electron spins.

The spin magnetic
moments are aligned
within each domain.

Magnetic
domains

Magnetic moment
of a domain

FIGURE 29.54 Magnetic domains in a 
ferromagnetic material. The net magnetic 
dipole is nearly zero.

I I

The magnetic domains align with 
the solenoid’s magnetic field.

The induced magnetic dipole has
north and south magnetic poles.

I I

The attractive force between the 
opposite poles pulls the ferromagnetic 
material toward the solenoid.

N NSS

Ferromagnetic material

FIGURE 29.55 The magnetic field of the 
solenoid creates an induced magnetic 
dipole moment in the iron.
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STOP TO THINK 29.7 Which magnet or magnets induced this magnetic 
dipole moment?

N

S

(a)

S

N

(b)
N

S

(c)

S

N

(d)

   CHAPTER 29 CHALLENGE EXAMPLE     Designing a loudspeaker

A loudspeaker consists of a paper cone wrapped at the bottom with 
several turns of fine wire. As FIGURE 29.56 shows, this coil sits in 
a narrow gap between the poles of a circular magnet. To produce 
sound, the amplifier drives a current through the coil. The magnetic 
field then exerts a force on this current, pushing the cone and thus 
pushing the air to create a sound wave. An ideal speaker would ex-
perience only forces from the magnetic field, thus responding only 
to the current from the amplifier. Real speakers are balanced so as 
to come close to this ideal unless driven very hard.

Consider a 5.5 g loudspeaker cone with a 5.0-cm-diameter, 20-
turn coil having a resistance of 8.0 Ω. There is a 0.18 T field in the 
gap between the poles. These values are typical of the loudspeak-
ers found in car stereo systems. What is the oscillation amplitude 
of this speaker if driven by a 100 Hz oscillatory voltage from the 
amplifier with a peak value of 12 V?

MODEL Model the loudspeaker as ideal, responding only to mag-
netic forces. These forces cause the cone to accelerate. We’ll use 
kinematics to relate the acceleration to the displacement.

VISUALIZE FIGURE 29.57 shows the coil in the gap between the 
magnet poles. Magnetic fields go from north to south poles, so 
the field is radially outward. Consequently, the field at all points  
is perpendicular to the circular current. According to the right- 
hand rule, the magnetic force on the current is into or out of the 

figure, depending on whether the current is counterclockwise or 
clockwise, respectively.

SOLVE We can write the output voltage of the amplifier as 
∆V = V0 cos vt, where V0 = 12 V is the peak voltage and 
v = 2pf = 628 rad/s is the angular frequency at 100 Hz. The volt-
age drives current

I =
∆V
R

=
V0 cos vt

R

through the coil, where R is the coil’s resistance. This causes the 
oscillating in-and-out force that drives the speaker cone back and 
forth. Even though the coil isn’t a straight wire, the fact that the 
magnetic field is everywhere perpendicular to the current means 
that we can calculate the magnetic force as F = IlB where l is the 
total length of the wire in the coil. The circumference of the coil  
is p10.050 m2 = 0.157 m so 20 turns gives l = 3.1 m. The cone  
responds to the force by accelerating with a = F/m. Combining 
these pieces, we find the cone’s acceleration is

a =
IlB
m

=
V0lB cos vt

mR
= amax cos vt

It is straightforward to evaluate amax = 152 m/s2.
From kinematics, a = dv/dt and v = dx/dt. We need to integrate 

twice to find the displacement. First,

v = 3a dt = amax3cos vt dt =
amax

v
  sin vt

The integration constant is zero because we know, from simple har-
monic motion, that the average velocity is zero. Integrating again, 
we get

x = 3v dt =
amax

v 3sin vt dt = -
amax

v2   cos vt

where the integration constant is again zero if we assume the oscil-
lation takes place around the origin. The minus sign tells us that the 
displacement and acceleration are out of phase. The amplitude of 
the oscillation, which we seek, is

A =
amax

v2 =
152 m/s2

1628 rad/s22 = 3.8 * 10-4 m = 0.38 mm

REVIEW If you’ve ever placed your hand on a loudspeaker cone, you 
know that you can feel a slight vibration. An amplitude of 0.38 mm 
is consistent with this observation. The fact that the amplitude  
increases with the inverse square of the frequency explains why you 
can sometimes see the cone vibrating with an amplitude of several  
millimeters for low-frequency bass notes.

N

Wire coil

S

I

FIGURE 29.56 The coil and magnet of a loudspeaker.

FIGURE 29.57 The magnetic field in the gap, from north to south, 
is perpendicular to the current.
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The goal of Chapter 29 has been to learn about magnetism  
and the magnetic field.

At its most fundamental level, magnetism is an interaction between  
moving charges. The magnetic field of one moving charge exerts a  
force on another moving charge.

Magnetic Fields
The Biot-Savart law for a moving point charge

B
u

=
m

 0

4p
 
qv 

u * rn

r2

Magnetic field of a current
MODEL Model wires as simple shapes.

VISUALIZE Divide the wire into short segments.

SOLVE Use superposition:

• Find the field of each segment ∆s .

• Find B
u
 by summing the fields of all ∆s, usually as an integral.

An alternative method for fields with a high degree of symmetry 
is Ampère’s law:

C B
u # dsu = m

 0 Ithrough

where Ithrough is the current through the area bounded by the 
integration path.

Magnetic Forces
The magnetic force on a moving charge is

F
u

= qv 

u * B
u

The force is perpendicular to v 

u and B
u
.

The magnetic force on a current-  
carrying wire is

F
u

= I l
u

* B
u

F
u

= 0
u
 for a charge or current moving  

parallel to B
u
.

The magnetic torque on a magnetic  
dipole is

t  

u = m  

u * B
u

General Principles

Summary

u
F2 on 1

q1

q2
u
v2

Field B2 due to q2

u

v1
u

Field B1 due to q1

u

F1 on 2

u

v
u

B
u

rn
q q v

u

F
u

F
u

I

l

m
u

B
u

I

Wire

I

B = 
m0

2p

I

r

Loop

S N

Charged-particle motion
No force if v 

u is parallel to B
u

Circular motion at the cyclotron  
frequency fcyc = qB/2pm if v 

u  
is perpendicular to B

u

Parallel wires and current loops
Parallel currents attract.

Opposite currents repel.

S N N SNS S N

Applications

Solenoid

I I

Uniform field

B = 
m0NI

l

Flat magnet

S N

Right-hand rule 
Point your right thumb in the direction of I. Your fingers curl in 
the direction of B

u
. For a dipole, B

u
 emerges from the side that is  

the north pole.

v
u

v
u

F
u

Bcenter =
m

 0

2  
NI
R
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CONCEPTUAL QUESTIONS

north pole
south pole
magnetic dipole
magnetic material
right-hand rule
magnetic field, B

u

magnetic field lines

Biot-Savart law
tesla, T
permeability constant, m

 0

cross product
current loop
electromagnet
magnetic dipole moment, mu

line integral
Ampère’s law
uniform magnetic field
solenoid
cyclotron motion
cyclotron frequency, fcyc

cyclotron

Hall effect
Hall voltage, ∆VH

ferromagnetic
magnetic domain
induced magnetic dipole
permanent magnet

Terms and Notation

1. The lightweight glass sphere in FIGURE Q29.1 hangs by a thread. 
The north pole of a bar magnet is brought near the sphere.
a. Suppose the sphere is electrically neutral. Is it attracted to, 

repelled by, or not affected by the magnet? Explain.
b. Answer the same question if the sphere is positively charged.

Glass

FIGURE Q29.1

Metal

FIGURE Q29.2

I

FIGURE Q29.4 FIGURE Q29.5

v
u

(a) (b)

v
u

FIGURE Q29.6

v
u

v
u

(a) (b)

FIGURE Q29.7

(a) (b)
v
u v

u

F
u

F into figure
u

FIGURE Q29.8

F
u

v
u

u
v into figure

(a) (b)

u
F out of figureFIGURE Q29.9

FIGURE Q29.11

2. The metal sphere in FIGURE Q29.2 hangs by a thread. When the 
north pole of a magnet is brought near, the sphere is strongly at-
tracted to the magnet. Then the magnet is reversed and its south pole 
is brought near the sphere. How does the sphere respond? Explain.

3. You have two electrically neutral metal cylinders that exert 
strong attractive forces on each other. You have no other metal 
objects. Can you determine if both of the cylinders are magnets, 
or if one is a magnet and the other is just a piece of iron? If so, 
how? If not, why not?

4. What is the current direction in the wire of FIGURE Q29.4? Explain.

5. What is the current direction in the wire of FIGURE Q29.5? 
Explain.

6. What is the initial direction of deflection for the charged 
particles entering the magnetic fields shown in FIGURE Q29.6?

7. What is the initial direction of deflection for the charged parti-
cles entering the magnetic fields shown in FIGURE Q29.7?

8. Determine the magnetic field direction that causes the charged 
particles shown in FIGURE Q29.8 to experience the indicated 
magnetic force.

9. Determine the magnetic field direction that causes the charged 
particles shown in FIGURE Q29.9 to experience the indicated 
magnetic force.

10. You have a horizontal cathode-ray tube (CRT) for which the 
controls have been adjusted such that the electron beam should 
make a single spot of light exactly in the center of the screen. 
You observe, however, that the spot is deflected to the right. It 
is possible that the CRT is broken. But as a clever scientist, you 
realize that your laboratory might be in either an electric or a 
magnetic field. Assuming that you do not have a compass, any 
magnets, or any charged rods, how can you use the CRT itself to 
determine whether the CRT is broken, is in an electric field, or is 
in a magnetic field? You cannot remove the CRT from the room.

11. The south pole of a bar magnet is 
brought toward the current loop of 
FIGURE Q29.11. Does the bar magnet 
attract, repel, or have no effect on the 
loop? Explain.

12. Give a step-by-step explanation, using both words and pictures, 
of how a permanent magnet can pick up a piece of nonmagne-
tized iron.
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882 CHAPTER 29 The Magnetic Field

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 29.3 The Source of the Magnetic Field: Moving Charges

1. || What is the magnetic field strength at points 2 to 4 in FIGURE  
EX29.1? Assume that the wires overlap closely at 2 and 3, that 
each point is the same distance from nearby wires, and that all 
other wires are too far away to contribute to the field.

B1 = 20 mT

2 3

4

1

FIGURE EX29.1

u

3

4

1.0 mm
1.0 mm

21

5

B1 = (1.0 nT, out) 

FIGURE EX29.2

x (cm)

y (cm)

1

1

-1

-1

Proton

2.0 * 107 m/s

FIGURE EX29.5

x

y

1.0 cm

1.0 cm Electron

2.0 * 107 m/s

FIGURE EX29.6

Identical
wires

I d

FIGURE EX29.12

x (cm)

y (cm)

0

-1

1

1

a b c

2

Long wires

10 A

10 A

FIGURE EX29.13

2. || What are the magnetic field vectors B
u

2 through B
u

5 at points 2 
through 5 due to the moving charge in FIGURE EX29.2? Use “in” 
or “out” to indicate a direction into or out of the figure.

3. || A proton moves along the x-axis with vx = 2 * 107 m/s. As it 
passes the origin, what are the strength and direction of the mag-
netic field at the 1x, y, z2 positions (a) (2 cm, 0 cm, 0 cm), (b) (0 
cm, 2 cm, 0 cm), and (c) (0 cm, -1 cm, 0 cm)?

4. ||| An electron moves along the z-axis with vz = 1.5 * 107 m/s. 
As it passes the origin, what are the strength and direction of the 
magnetic field at the 1x, y, z2 positions (a) (2.0 cm, 0.0 cm, 0.0 cm), 
(b) (0.0 cm, 0.0 cm, -2.0 cm), and (c) (0.0 cm, 2.0 cm, 1.0 cm)?

5. ||| What is the magnetic field at the position of the dot in 
FIGURE EX29.5? Give your answer as a vector.

6. ||| What is the magnetic field at the position of the dot in 
FIGURE EX29.6? Give your answer as a vector.

Section 29.4 The Magnetic Field of a Current

7. | What currents are needed to generate the magnetic field 
strengths of Table 29.1 at a point 1.0 cm from a long, straight 
wire?

8. | The element niobium, which is a metal, is a superconduc-
tor (i.e., no electrical resistance) at temperatures below 9 K. 
However, the superconductivity is destroyed if the magnetic field 
at the surface of the metal reaches or exceeds 0.10 T. What is the 
maximum current in a straight, 4.0-mm-diameter superconduct-
ing niobium wire?

9. | A biophysics experiment uses a very sensitive magnetic-field 
probe to determine the current associated with a nerve impulse 
travelling along an axon. If the peak field strength 2 mm from an 
axon is 6 pT, what is the peak current carried by the axon?

10. | Although the evidence is weak, there has been concern in re-
cent years over possible health effects from the magnetic fields 
generated by electric transmission lines. A typical high-voltage 
transmission line is 20 m above the ground and carries a 200 A 
current at a potential of 110 kV.
a. What is the magnetic field strength on the ground directly 

under such a transmission line?
b. What percentage is this of the earth’s magnetic field of 50 mT?

11. || The magnetic field at the center of a 1.5 cm- diameter loop is 
1.9 mT.
a. What is the current in the loop?
b. A long straight wire carries the same current you found in 

part a. At what distance from the wire is the magnetic field 
2.2 mT?

12. | A wire carries current I into the junction shown in FIGURE   
EX29.12. What is the magnetic field at the dot?

13. || What are the magnetic fields at points a to c in FIGURE   
EX29.13? Give your answers as vectors.

14. | What are the magnetic field strength and direction at points 1 
to 3 in FIGURE EX29.14?

3

10 A

10 A
2

1
2.0 cm

4.0 cm

2.0 cm

FIGURE EX29.14

1.0 cm

2.0 cm

I I

FIGURE EX29.15

15. | The two loops in FIGURE EX29.15 have equal currents in 
opposite directions. What current will create a magnetic field 
strength of 350 mT at the center?

Section 29.5 Magnetic Dipoles

16. || A 150 A current circulates around a 4.0-mm-diameter super-
conducting ring.
a. What is the ring’s magnetic dipole moment?
b. What is the on-axis magnetic field strength 1.0 cm from the 

ring?
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generator to drive a current through the coil. How much current 
will be needed?

25. | Magnetic resonance imaging needs a magnetic field strength 
of 1.5 T. The solenoid is 1.8 m long and 75 cm in diameter. It is 
tightly wound with a single layer of 2.0-mm-diameter supercon-
ducting wire. What size current is needed?

Section 29.7 The Magnetic Force on a Moving Charge

26. | An electron moves in the magnetic field B
u

= 0.85 in T with 
a speed of 2.5 * 107 m/s in the directions shown in FIGURE 
EX29.26. For each, what is magnetic force F

u
 on the electron? 

Give your answers in component form.

17. || The on-axis magnetic field strength 15.0 cm from a small bar 
magnet is 100 mT.
a. What is the bar magnet’s magnetic dipole moment?
b. What is the on-axis field strength 10.0 cm from the magnet?

18. || A small, square loop carries a 20 A current. The on-axis mag-
netic field strength 40 cm from the loop is 8.5 nT. What is the 
edge length of the square?

Section 29.6 Ampère’s Law and Solenoids

19. || What is the line integral of B
u # d su between points i and f in 

FIGURE  EX29.19?
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FIGURE EX29.19

x (cm)

y (cm)

50

f

i

Integration
path

50

B = 0.10 T

FIGURE EX29.20
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FIGURE EX29.26

20. || What is the line integral of B
u # d su between points i and f in 

FIGURE  EX29.20?
21. || The value of the line integral of B

u # d su around the closed path 
in FIGURE EX29.21 is 1.38 * 10-5  T m. What are the direction 
(into or out of the figure) and magnitude of I3?

22. || The value of the line integral of B
u # d su around the closed path 

in FIGURE EX29.22 is 3.77 * 10-6 T m. What is I3?

23. || What is the line integral of B
u # d su between points i and f in 

FIGURE  EX29.23?
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FIGURE EX29.27

27. || A proton moves in the magnetic field B
u

= 0.50 in T with 
a speed of 1.0 * 107 m/s in the directions shown in FIGURE 
EX29.27. For each, what is magnetic force F

u
 on the proton?  

Give your answers in component form.

28. | Radio astronomers detect electromagnetic radiation at  
45 MHz from an interstellar gas cloud. They suspect this radia-
tion is emitted by electrons spiraling in a magnetic field. What  
is the magnetic field strength inside the gas cloud?

29. | To five significant figures, what are the cyclotron frequencies 
in a 3.0000 T magnetic field of the ions (a) O2 

+, (b) N2 

+, and (c) 
CO+? The atomic masses are shown in the table; the mass of the 
missing electron is less than 0.001 u and is not relevant at this 
level of precision. Although N2 

+ and CO+ both have a nominal 
molecular mass of 28, they are easily distinguished by virtue of 
their slightly different cyclotron frequencies. Use the following 
constants: 1 u = 1.6605 * 10-27 kg, e = 1.6022 * 10-19 C.

Atomic masses

12C 12.000

14N 14.003

16O 15.995

30. || For your senior project, you would like to build a cyclotron 
that will accelerate protons to 10% of the speed of light. The 
largest vacuum chamber you can find is 50 cm in diameter. What 
magnetic field strength will you need?

24. | An 8.0-m-diameter, 25-m-long cylindrical spaceship needs to 
have an internal magnetic field with the same strength as earth’s. 
A clever astronaut suggests wrapping the spaceship tightly with 
1.0-mm-diameter wire, then using the spaceship’s antimatter 
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884 CHAPTER 29 The Magnetic Field

39. || a. What is the magnitude of 
the torque on the current 
loop in FIGURE EX29.39?

b. What is the loop’s equi-
librium orientation?

31. | The microwaves in a microwave oven are produced in a spe-
cial tube called a magnetron. The electrons orbit the magnetic 
field at 2.4 GHz, and as they do so they emit 2.4 GHz electro-
magnetic waves.
a. What is the magnetic field strength?
b. If the maximum diameter of the electron orbit before the 

electron hits the wall of the tube is 2.5 cm, what is the maxi-
mum electron kinetic energy?

32. | The Hall voltage across a conductor in a 75 mT magnetic field 
is 2.4 mV. When used with the same current in a different mag-
netic field, the voltage across the conductor is 3.2 mV. What is 
the strength of the second field?

Section 29.8 Magnetic Forces on Current-Carrying Wires

33. | The two 10-cm-long parallel wires in FIGURE EX29.33 are sep-
arated by 5.0 mm. For what value of the resistor R will the force 
between the two wires be 5.4 * 10-5 N?

9 V 9 V10 cm

5.0 mm

2 Ω R

FIGURE EX29.33

1.5 A

2.0 g
wire

10 cm

B-field region

FIGURE EX29.34

10 A

10 A3

2

50 cm

2.0 cm

2.0 cm

10 A1

FIGURE EX29.35

B = 50 mT

15 V 10 cm

3 Ω

FIGURE EX29.36

4.0 cm

FIGURE EX29.37

2.0 cm

2.0 A
Wire

0.20 A

2.0 mm

FIGURE EX29.39

5.0 A

5.0 A

2

1

FIGURE P29.42

5.0 A

2.0 cm

FIGURE P29.43

34. | What magnetic field strength and direction will levitate the 
2.0 g wire in FIGURE EX29.34?

35. | What is the net force (magnitude and direction) on each wire 
in FIGURE EX29.35?

36. | The right edge of the circuit in FIGURE EX29.36 extends into 
a 50 mT uniform magnetic field. What are the magnitude and 
direction of the net force on the circuit?

37. || FIGURE EX29.37 is a cross section 
through three long wires with linear mass 
density 50 g/m. They each carry equal cur-
rents in the directions shown. The lower two 
wires are 4.0 cm apart and are attached to 
a table. What current I will allow the upper 
wire to “float” so as to form an equilateral 
triangle with the lower wires?

Section 29.9 Forces and Torques on Current Loops

38. || A square current loop 5.0 cm on each side carries a 500 mA cur-
rent. The loop is in a 1.2 T uniform magnetic field. The axis of the 
loop, perpendicular to the plane of the loop, is 30° away from the field 
direction. What is the magnitude of the torque on the current loop?

40. | A small bar magnet experiences a 0.020 N m torque when the 
axis of the magnet is at 45° to a 0.10 T magnetic field. What is 
the magnitude of its magnetic dipole moment?

Problems
41. || A long wire carrying a 5.0 A current perpendicular to the xy-

plane intersects the x-axis at x = -2.0 cm. A second, parallel 
wire carrying a 3.0 A current intersects the x-axis at x = +2.0 cm. 
At what point or points on the x-axis is the magnetic field zero 
if (a) the two currents are in the same direction and (b) the two 
currents are in opposite directions?

42. ||| The two insulated wires in FIGURE P29.42 cross at a 30° angle 
but do not make electrical contact. Each wire carries a 5.0 A 
current. Points 1 and 2 are each 4.0 cm from the intersection and 
equally distant from both wires. What are the magnitude and 
direction of the magnetic fields at points 1 and 2?

43. || What are the strength and direction of the magnetic field at 
the center of the loop in FIGURE P29.43?

44. || When seen from the end, three long, parallel wires form an 
equilateral triangle 6.0 cm on a side. The wires each carry a  
5.0 A current, with one current direction opposite the other two. 
What is the magnetic field strength at the center of the triangle?

45. | Find an expression for the magnetic field strength at the cen-
ter (point P) of the circular arc in FIGURE P29.45.

P

R

I

I

u

FIGURE P29.45

2.0 cm

1.0 cm

5.0 A

P

FIGURE P29.46

46. || What are the strength and direction of the magnetic field at 
point P in FIGURE P29.46?

47. || Each turn of a solenoid is a current loop with a magnetic di-
pole moment. Consider a 200-turn cylindrical solenoid that has 
an interior volume of 40 cm3 and for which each turn is a mag-
netic dipole moment with magnitude 8.0 * 10-4 A m2. What is 
the magnetic field strength inside the solenoid?

48. || The magnetic field strength at the north pole of a 2.0-cm-  
diameter, 8-cm-long Alnico magnet is 0.10 T. To produce the 
same field with a solenoid of the same size, carrying a current of 
2.0 A, how many turns of wire would you need?
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in opposite directions. The current density is uniformly distrib-
uted over each conductor.
a. Find expressions for three magnetic fields: within the inner 

conductor, in the space between the conductors, and outside 
the outer conductor.

b. Draw a graph of B versus r from r = 0 to r = 2R2 if R1 = 1
3 R2.

56. || A flat, circular disk of radius R is uniformly charged with 
total charge Q. The disk spins at angular velocity v about an 
axis through its center. What is the magnetic field strength at the 
center of the disk?

57. || A long, hollow wire has inner radius R1 and outer radius R2. 
The wire carries current I uniformly distributed across the area 
of the wire. Use Ampère’s law to find an expression for the mag-
netic field strength in the three regions 0 6 r 6 R1, R1 6 r 6 R2, 
and R2 6 r.

58. || A proton moving in a uniform magnetic field with v 

u
1 =

1.00 * 106 in m/s experiences force F
u

1 = 1.20 * 10-16 kn N. A 
second proton with v 

u
2 = 2.00 * 106 jn m/s experiences F

u

2 =
-4.16 * 10-16 kn N in the same field. What is B

u
? Give your 

answer as a magnitude and an angle measured ccw from the 
+x@axis.

59. || An electron travels with speed 1.0 * 107 m/s between the two 
parallel charged plates shown in FIGURE P29.59. The plates are 
separated by 1.0 cm and are charged by a 200 V battery. What 
magnetic field strength and direction will allow the electron to 
pass between the plates without being deflected?

49. || Your employer asks you to build a 30-cm-long solenoid with 
an interior field of 6.0 mT. The specifications call for a single 
layer of wire, wound with the coils as close together as possible. 
You have two spools of wire available. Wire 1 has a diameter of 
1.0 mm and has a maximum current rating of 6 A. Wire 2 is 0.50 
mm in diameter and can carry up to 1 A. Which wire should you 
use, and what current will you need?

50. || The earth’s magnetic field, with a magnetic dipole moment of 
8.0 * 1022 A m2, is generated by currents within the molten iron 
of the earth’s outer core. Suppose we model the core current as a 
3000-km-diameter current loop made from a 1000-km-diameter 
“wire.” The loop diameter is measured from the centers of this 
very fat wire.
a. What is the current in the current loop?
b. What is the current density J in the current loop?
c. To decide whether this is a large or a small current den-

sity, compare it to the current density of a 1.0 A current in a 
1.0-mm-diameter wire.

51. || Weak magnetic fields can be measured at the surface of the 
brain. Although the currents causing these fields are quite com-
plicated, we can estimate their size by modeling them as a cur-
rent loop around the equator of a 16-cm-diameter (the width of a 
typical head) sphere. What current is needed to produce a 3.0 pT 
field—the strength measured for one subject—at the pole of this 
sphere?

52. | The heart produces a weak magnetic field that can be used to 
diagnose certain heart problems. It is a dipole field produced by 
a current loop in the outer layers of the heart.
a. It is estimated that the field at the center of the heart is 90 pT. 

What current must circulate around an 8.0-cm-diameter loop, 
about the size of a human heart, to produce this field?

b. What is the magnitude of the heart’s magnetic dipole moment?
53. | What is the magnetic field 

strength at the center of the semi-
circle in FIGURE P29.53?

54. || The toroid of FIGURE P29.54 is a coil of wire wrapped around 
a doughnut-shaped ring (a torus). Toroidal magnetic fields are 
used to confine fusion plasmas.
a. From symmetry, what must be the shape of the magnetic 

field in this toroid? Explain.
b. Consider a toroid with N closely spaced turns carrying cur-

rent I. Use Ampère’s law to find an expression for the mag-
netic field strength at a point inside the torus at distance r 
from the axis.

c. Is a toroidal magnetic field a uniform field? Explain.

R I

FIGURE P29.53

N turns Axis

r

I

FIGURE P29.54

R1 R2

FIGURE P29.55

v
u

1.0 cm

FIGURE P29.59

10°

2.0 cm

0 V 10 kV

FIGURE P29.60

55. || The coaxial cable shown in FIGURE P29.55 consists of a solid 
inner conductor of radius R1 surrounded by a hollow, very thin 
outer conductor of radius R2. The two carry equal currents I, but 

60. || An electron in a cathode-ray tube is accelerated through a po-
tential difference of 10 kV, then passes through the 2.0-cm-wide 
region of uniform magnetic field in FIGURE P29.60. What field 
strength will deflect the electron by 10°?

61. || An antiproton (same properties as a proton except that 
q = -e) is moving in the combined electric and magnetic fields 
of FIGURE P29.61. What are the magnitude and direction of the 
antiproton’s acceleration at this instant?

E = 1000 V/m

B = 2.5 T

500 m/s

FIGURE P29.61

62. || An antiproton is identical to a proton except it has the opposite 
charge, -e . To study antiprotons, they must be confined in an ul-
trahigh vacuum because they will annihilate—producing gamma 
rays—if they come into contact with the protons of ordinary mat-
ter. One way of confining antiprotons is to keep them in a mag-
netic field. Suppose that antiprotons are created with a speed of 
1.5 * 104 m/s and then trapped in a 2.0 mT magnetic field. What 
minimum diameter must the vacuum chamber have to allow these 
antiprotons to circulate without touching the walls?
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886 CHAPTER 29 The Magnetic Field

creating a plasma of ionized deuterium gas at a temperature of 
1.0 * 108 K. No material substance can contain a plasma at this 
temperature, so the idea is to contain the plasma with magnetic 
fields. Consider the simplest model of using a solenoid to confine 
the ions to cyclotron motion around the field lines. The plasma 
ions have a range of speeds, and it’s necessary to contain all the 
ions with speeds up to three times the rms speed at the plasma 
temperature. What magnetic field strength is needed to keep the 
fastest ions in 20-cm-diameter cyclotron orbits? The actual mag-
netic fields are considerably more complex, but your answer is a 
reasonable estimate of the required field strengths.

68. || A proton moves in the uniform fields E
u

= 2500 kn V/m 
and B

u
= 0.50 kn T. At t = 0 s the proton is moving in a 1.0-cm- 

diameter circle in the xy-plane.
a. At what time does the proton have a speed of 5.0 * 105 m/s?
b. How many revolutions will the proton have made during this 

time interval?
69. || A Hall-effect probe to measure magnetic field strengths needs 

to be calibrated in a known magnetic field. Although it is not 
easy to do, magnetic fields can be precisely measured by mea-
suring the cyclotron frequency of protons. A testing laboratory 
adjusts a magnetic field until the proton’s cyclotron frequency is 
10.0 MHz. At this field strength, the Hall voltage on the probe is 
0.543 mV when the current through the probe is 0.150 mA. Later, 
when an unknown magnetic field is measured, the Hall voltage 
at the same current is 1.735 mV. What is the strength of this mag-
netic field?

70. ||| It is shown in more advanced courses that charged particles 
in circular orbits radiate electromagnetic waves, called cyclotron 
radiation. As a result, a particle undergoing cyclotron motion 
with speed v is actually losing kinetic energy at the rate

dK
dt

= - 1 m
 0 q4

6pcm22B2v2

How long does it take (a) an electron and (b) a proton to radiate 
away half its energy while spiraling in a 2.0 T magnetic field?

71. || The two springs in FIGURE P29.71 each have a spring con-
stant of 10 N/m. They are compressed by 1.0 cm when a current 
passes through the wire. How big is the current?

63. || a. A 75-cm-diameter cyclotron uses a 600 V oscillating po-
tential difference between the dees. What is the maximum 
kinetic energy of a proton if the magnetic field strength is 
0.50 T?

b. How many revolutions does the proton make before leav-
ing the cyclotron?

64. || FIGURE P29.64 shows a mass spectrometer, an analytical in-
strument used to identify the various molecules in a sample by 
measuring their charge-to-mass ratio q/m. The sample is ionized, 
the positive ions are accelerated (starting from rest) through a 
potential difference ∆V, and they then enter a region of uniform 
magnetic field. The field bends the ions into circular trajecto-
ries, but after just half a circle they either strike the wall or pass 
through a small opening to a detector. As the accelerating volt-
age is slowly increased, different ions reach the detector and are 
measured. Consider a mass spectrometer with a 200.00 mT mag-
netic field and an 8.0000 cm spacing between the entrance and 
exit holes. To five significant figures, what accelerating potential 
differences ∆V  are required to detect the ions (a) O2 

+, (b) N2 

+, 
and (c) CO+? See Exercise 29 for atomic masses; the mass of the 
missing electron is less than 0.001 u and is not relevant at this 
level of precision. Although N2 

+ and CO+ both have a nominal 
molecular mass of 28, they are easily distinguished by virtue of 
their slightly different accelerating voltages. Use the following 
constants:  1 u = 1.6605 * 10-27 kg, e = 1.6022 * 10-19 C.

Detector

d

∆V

FIGURE P29.64

v
u
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u
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z

30°
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FIGURE P29.65

65. || The uniform 30 mT magnetic field in FIGURE P29.65 points 
in the positive z-direction. An electron enters the region of mag-
netic field with a speed of 5.0 * 106 m/s and at an angle of 30° 
above the xy-plane. Find the radius r and the pitch p of the elec-
tron’s spiral trajectory.

66. ||| Particle accelerators, such as the Large Hadron Collider, use 
magnetic fields to steer charged particles around a ring. Consider 
a proton ring with 36 identical bending magnets connected by 
straight segments. The protons move along a 1.0-m-long circu-
lar arc as they pass through each magnet. What magnetic field 
strength is needed in each magnet to steer protons around the 
ring with a speed of 2.5 * 107 m/s? Assume that the field is uni-
form inside the magnet, zero outside.

67. || Controlled fusion is a possible future energy source that would 
harness the same nuclear fusion reactions that power the sun. The 
simplest fusion reaction is 2H + + 2H + S 3He+ + + n + energy, 
in which nuclei of two deuterium atoms fuse into a 3He nucleus 
while ejecting a neutron and releasing a substantial amount of 
energy. Deuterium is not an element but is the name given to 
“heavy hydrogen,” in which the nucleus is not simply a proton 
but a proton and a neutron, with atomic mass 2 u. Two positive 
deuterium nuclei, which repel each other, can get close enough to 
fuse only if they have very high speeds. This can be achieved by 

20 cm

I B = 0.5 T

FIGURE P29.71

5.0 cm

10.0 cm

50 g

Axle

10 turns

B
u

FIGURE P29.72

72. || The 10-turn loop of wire shown in FIGURE P29.72 lies in a 
horizontal plane, parallel to a uniform horizontal magnetic field, 
and carries a 2.0 A current. The loop is free to rotate about a 
nonmagnetic axle through the center. A 50 g mass hangs from 
one edge of the loop. What magnetic field strength will prevent 
the loop from rotating about the axle?

73. || Magnetic fields are sometimes measured by balancing mag-
netic forces against known mechanical forces. Your task is to 
measure the strength of a horizontal magnetic field using a 
12-cm-long rigid metal rod that hangs from two nonmagnetic 
springs, one at each end, with spring constants 1.3 N/m. You 
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77. ||| A wire along the x-axis carries current I in the negative  
x-direction through the magnetic field

B
u

= • B0 
x
l

  kn 0 …  x …  l

0 elsewhere
 

a. Draw a graph of B versus x over the interval -3
2 l 6 x 6 3

2 l.
b. Find an expression for the net force F

u

net on the wire.
c. Find an expression for the net torque on the wire about the 

point x = 0.

Challenge Problems
78. ||| A scientist measuring the resistivity of a new metal alloy left 

her ammeter in another lab, but she does have a magnetic field 
probe. So she creates a 6.5-m-long, 2.0-mm-diameter wire of the 
material, connects it to a 1.5 V battery, and measures a 3.0 mT 
magnetic field 1.0 mm from the surface of the wire. What is the 
material’s resistivity?

79. ||| FIGURE CP29.79 is an edge 
view of a 2.0 kg square loop,  
2.5 m on each side, with its 
lower edge resting on a fric-
tionless, horizontal surface. A 
25 A current is flowing around 
the loop in the direction shown. 
What is the strength of a uniform, horizontal magnetic field for 
which the loop is in static equilibrium at the angle shown?

80. ||| You have a 1.0-m-long copper wire. You want to make an 
 N-turn current loop that generates a 1.0 mT magnetic field at the 
center when the current is 1.0 A. You must use the entire wire. 
What will be the diameter of your coil?

81. ||| a. Derive an expression for the magnetic field strength at dis-
tance d from the center of a straight wire of finite length l 
that carries current I.

b. Determine the field strength at the center of a current- 
carrying square loop having sides of length 2R.

c. Compare your answer to part b to the field at the center of 
a circular loop of diameter 2R. Do so by computing the 
ratio Bsquare/Bcircle.

82. ||| A long, straight conducting wire of radius R has a nonuniform 
current density J = J0r/R, where J0 is a constant. The wire car-
ries total current I.
a. Find an expression for J0 in terms of I and R.
b. Find an expression for the magnetic field strength inside the 

wire at radius r.
c. At the boundary, r = R, does your solution match the known 

field outside a long, straight current-carrying wire?
83. ||| An infinitely wide flat sheet of charge flows out of the figure 

in FIGURE CP29.83. The current per unit width along the sheet 
(amps per meter) is given by the linear current density Js.
a. What is the shape of the magnetic field? To answer this ques-

tion, you may find it helpful to approximate the current sheet 
as many parallel, closely spaced current-carrying wires. Give 
your answer as a picture showing magnetic field vectors.

b. Find the magnetic field strength at distance d above or below 
the current sheet.

first position the rod to be level and perpendicular to the field, 
whose direction you determined with a compass. You then con-
nect the ends of the rod to wires that run parallel to the field and 
thus experience no forces. Finally, you measure the downward 
deflection of the rod, stretching the springs, as you pass current 
through it. Your data are as follows:

Current (A) Deflection (mm)

1.0  4

2.0  9

3.0 12

4.0 15

5.0 21

Use an appropriate graph of the data to determine the magnetic 
field strength.

74. || A conducting bar of length l and mass m rests at the left end of 
the two frictionless rails of length d in FIGURE P29.74. A uniform 
magnetic field of strength B points upward.
a. In which direction, into or out of the figure, will a current I  

through the conducting bar cause the bar to experience a 
force to the right?

b. Find an expression for the bar’s speed as it leaves the rails at 
the right end.
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B
u
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to ∞
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to ∞

FIGURE CP29.83

75. || a. In FIGURE P29.75, a long, straight, current-carrying wire of 
linear mass density m is suspended by threads. A magnetic 
field perpendicular to the wire exerts a horizontal force that 
deflects the wire to an equilibrium angle u. Find an expres-
sion for the strength and direction of the magnetic field B

u
.

b. What B
u
 deflects a 55 g/m wire to a 12° angle when the 

current is 10 A?
76. || An electromagnetic rail gun uses magnetic forces to launch 

projectiles. FIGURE P29.76 shows a 10-cm-long, 10 g metal wire 
that can slide without friction along 1.0-m-long horizontal rails. 
The rails are connected to a 300 V source, and a 0.10 T magnetic 
field fills the space between the rails. Each rail has linear resistiv-
ity l = 0.10 Ω/m, which means that the resistance is l multiplied 
by the length of rail through which current flows. Assume that 
the sliding wire and the left end, where the voltage source is, have 
zero resistance. The wire is initially placed at x0 = 5.0 cm, then 
the switch is closed. What is the wire’s speed as it leaves the rails?
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Electromagnetic Induction

What is an induced current?
A magnetic field can create a current in a 
loop of wire, but only if the amount of field 
through the loop is changing.

■■ This is called an induced current.
■■ The process is called electromagnetic 
induction.

❮❮ LOOKING BACK Chapter 29 Magnetic fields

What is magnetic flux?
A key idea will be the amount of magnetic  
field passing through a loop or coil. This  
is called magnetic flux. Magnetic flux  
depends on the strength of the magnetic  
field, the area of the loop, and the angle  
between them.

❮❮ LOOKING BACK Section 24.3 Electric flux

What is Lenz’s law?
Lenz’s law says that a current is induced 
in a closed loop if and only if the magnetic 
flux through the loop is changing. Simply 
having a flux does nothing; the flux has to 
change. You’ll learn how to use Lenz’s law 
to determine the direction of an induced 
current around a loop.

What is Faraday’s law?
Faraday’s law is the most important law 
connecting electric and magnetic fields, 
laying the groundwork for electromagnetic 
waves. Just as a battery has an emf that 
drives current, a loop of wire has an  
induced emf determined by the rate of 
change of magnetic flux through the loop.

❮❮ LOOKING BACK Section 26.4 Sources of 
potential

What is an induced field?
At its most fundamental level, Faraday’s 
law tells us that a changing magnetic field 
creates an induced electric field. This is an 
entirely new way to create an electric field, 
independent of charges. It is the induced 
electric field that drives the induced  
current around a conducting loop.

How is electromagnetic induction used?
Electromagnetic induction is one of the most important applications 
of electricity and magnetism. Generators use electromagnetic  
induction to turn the mechanical energy of a spinning turbine into  
electric energy. Inductors are important circuit elements that rely 
on electromagnetic induction. All forms of telecommunication are 
based on electromagnetic induction. And, not least, electromagnetic 
induction is the basis for light and other electromagnetic waves.

IN THIS CHAPTER, you will learn what electromagnetic induction is and how it is used.

30

Electromagnetic induction is the 
physics that underlies many modern 
technologies, from the generation of 
electricity to data storage.
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30.1 Induced Currents 889

30.1 Induced Currents
Oersted’s 1820 discovery that a current creates a magnetic field generated enormous 
excitement. One question scientists hoped to answer was whether the converse of 
Oersted’s discovery was true: that is, can a magnet be used to create a current?

The breakthrough came in 1831 when the American science teacher Joseph Henry 
and the English scientist Michael Faraday each discovered the process we now call 
 electromagnetic induction. Faraday—whom you met in Chapter 22 as the inventor of the 
concept of a field—was the first to publish his findings, so today we study Faraday’s law  
rather than Henry’s law.

Faraday’s 1831 discovery, like Oersted’s, was a happy combination of an unplanned 
event and a mind that was ready to recognize its significance. Faraday was experiment-
ing with two coils of wire wrapped around an iron ring, as shown in FIGURE 30.1. He had 
hoped that the magnetic field generated in the coil on the left would induce a magnetic 
field in the iron, and that the magnetic field in the iron might then somehow create a  
current in the circuit on the right.

Like all his previous attempts, this technique failed to generate a current. But 
Faraday happened to notice that the needle of the current meter jumped ever so 
slightly at the instant he closed the switch in the circuit on the left. After the switch 
was closed, the needle immediately returned to zero. The needle again jumped when 
he later opened the switch, but this time in the opposite direction. Faraday recognized  
that the motion of the needle indicated a current in the circuit on the right, but a 
momentary current only during the brief interval when the current on the left was 
starting or stopping.

Faraday’s observations, coupled with his mental picture of field lines, led him 
to suggest that a current is generated only if the magnetic field through the coil 
is changing. This explains why all the previous attempts to generate a current 
with static magnetic fields had been unsuccessful. Faraday set out to test this 
hypothesis.

Faraday investigates electromagnetic induction

Faraday placed one coil directly above the  
other, without the iron ring. There was no  
current in the lower circuit while the switch  
was in the closed position, but a momentary  
current appeared whenever the switch was  
opened or closed.

He pushed a bar magnet into a coil of wire.  
This action caused a momentary deflection  
of the current-meter needle, although holding  
the magnet inside the coil had no effect. A  
quick withdrawal of the magnet deflected  
the needle in the other direction.

Must the magnet move? Faraday created a  
momentary current by rapidly pulling a coil  
of wire out of a magnetic field. Pushing the  
coil into the magnet caused the needle to  
deflect in the opposite direction.

0

Open or
close switch.

0

Push or pull magnet.
S

N

0

Push or pull coil.

N

S

Opening or closing the switch creates a  
momentary current.

Pushing the magnet into the coil or pulling  
it out creates a momentary current.

Pushing the coil into the magnet or pulling  
it out creates a momentary current.

Faraday found that there is a current in a coil of wire if and only if the magnetic 
field passing through the coil is changing. This is an informal statement of what 
we’ll soon call Faraday’s law. The current in a circuit due to a changing magnetic 
field is called an induced current. An induced current is not caused by a battery; it  
is a completely new way to generate a current.

0

Switch

Current meter

Iron ring

Closing the switch
in the left circuit c

ccauses a momentary
current in the right circuit.

0

Switch

Opening the switch
in the left circuit c

ccauses a momentary
current in the opposite
direction.

0

No current while the switch stays closed

FIGURE 30.1 Faraday’s discovery.
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890 CHAPTER 30 Electromagnetic Induction

30.2 Motional emf
We’ll start our investigation of electromagnetic induction by looking at situations  
in which the magnetic field is fixed while the circuit moves or changes. Consider  
a conductor of length l that moves with velocity vu through a perpendicular uniform 
magnetic field B

u
, as shown in FIGURE 30.2. The charge carriers inside the wire—assumed  

to be positive—also move with velocity vu, so they each experience a magnetic force 
F
u

B = qvu * B
u
 of strength FB = qvB. This force causes the charge carriers to move,  

separating the positive and negative charges. The separated charges create an  
electric field inside the conductor.

E
u

l

Charge carriers in the conductor experience 
a force of magnitude FB = qvB. Positive 
charges are free to move and drift upward.

The charge flow continues until the electric 
and magnetic forces balance. Equilibrium 
requires FE = FB.

The resulting charge separation creates an 
electric field in the conductor. E increases 
as more charge flows.

v
u

v
u

B into figure
u

B
u

B
u

FB

u

v
u

FE

u

FB

u

u

FIGURE 30.2 The magnetic force on the charge carriers in a moving conductor creates an electric field inside the conductor.

The charge carriers continue to separate until the electric force FE = qE exactly 
balances the magnetic force FB = qvB, creating an equilibrium situation. This balance 
happens when the electric field strength is

 E = vB (30.1)

In other words, the magnetic force on the charge carriers in a moving conductor 
creates an electric field E = vB inside the conductor.

The charge separation also creates an electric potential difference between the 
two ends of the moving conductor. FIGURE 30.3a defines a coordinate system in which 
E
u

= -vB jn. Using the connection between the electric field and the electric potential,

 ∆V = Vtop - Vbottom = - 3
l

0
 Ey dy = - 3

l

0
 1-vB2 dy = vlB (30.2)

Thus the motion of the wire through a magnetic field induces a potential difference  
vlB between the ends of the conductor.

There’s an important analogy between this potential difference and the poten-
tial difference of a battery. FIGURE 30.3b reminds you that a battery uses a nonelectric 
force—the charge escalator—to separate positive and negative charges. The emf E 
of the battery was defined as the work performed per charge 1W/q2 to separate the 
charges. An isolated battery, with no current, has a potential difference ∆Vbat = E. We 
could refer to a battery, where the charges are separated by chemical reactions, as a 
source of chemical emf.

The moving conductor also develops a potential difference because of the work 
done to separate the charges—although what’s doing the work is a subtle issue be-
cause you learned in Chapter 29 that magnetic fields do no work. We’ll return to this 
later in the section. Regardless of what does the work, you can think of the moving 
conductor as a “battery” that stays charged only as long as it keeps moving but “runs 
down” if it stops. The emf of the conductor is due to its motion, rather than to chemi-
cal reactions inside, so we can define the motional emf of a conductor moving with 
velocity v 

u perpendicular to a magnetic field B
u
 to be

 E = vlB (30.3)

Chemical reactions separate the charges
and cause a potential difference between
the ends. This is a chemical emf.

(b)

Electric field
inside the battery

∆VbatE
u

v
u

B
u

E
u

Magnetic forces separate the charges and
cause a potential difference between the
ends. This is a motional emf.

∆V = vlB

0

l

y

(a)

Electric field inside
the moving conductor

FIGURE 30.3 Generating an emf.
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STOP TO THINK 30.1 A square conductor moves through a uniform magnetic field.  
Which of the figures shows the correct charge distribution on the conductor?

v
u

v
u

v
u

v
u

(a) (b)

(c) (d)

It is known that the earth’s magnetic field over northern Canada 
points straight down. The crew of a Boeing 747 aircraft flying at 
260 m/s over northern Canada finds a 0.95 V potential difference 
between the wing tips. The wing span of a Boeing 747 is 65 m. 
What is the magnetic field strength there?

MODEL The wing is a conductor moving through a magnetic field, 
so there is a motional emf.

SOLVE The magnetic field is perpendicular to the velocity, so we 
can use Equation 30.3 to find

B =
E
vL

=
0.95 V

1260 m/s2165 m2 = 5.6 * 10-5 T

REVIEW Chapter 29 noted that the earth’s magnetic field is roughly 
5 * 10-5 T. The field is somewhat stronger than this near the mag-
netic poles, somewhat weaker near the equator.

A metal bar of length l rotates with angular velocity v about a pivot 
at one end of the bar. A uniform magnetic field B

u
 is perpendicular 

to the plane of rotation. What is the potential difference between 
the ends of the bar?

VISUALIZE FIGURE 30.4 is a pictorial representation of the bar.  
The magnetic forces on the charge carriers will cause the outer end 
to be positive with respect to the pivot.

SOLVE Even though the bar is rotating, rather than moving in a 
straight line, the velocity of each charge carrier is perpendicular to 
B
u
. Consequently, the electric field created inside the bar is exactly 

that given in Equation 30.1, E = vB. But v, the speed of the charge 
carrier, now depends on its distance from the pivot. Recall that in 
rotational motion the tangential speed at radius r from the center  
of rotation is v = vr. Thus the electric field at distance r from the 
pivot is E = vrB. The electric field increases in strength as you 
move outward along the bar.

The electric field E
u
 points toward the pivot, so its radial com-

ponent is Er = -vrB. If we integrate outward from the center, the 
potential difference between the ends of the bar is

  ∆V = Vtip - Vpivot = - 3
l

0
Er dr

  = - 3
l

0
1-vrB2 dr = vB3

l

0
r dr = 1

2 vl2B

REVIEW 1
2 vl is the speed at the midpoint of the bar. Thus ∆V  is 

vmidlB, which seems reasonable.

EXAMPLE 30.1 ■ Measuring the earth’s magnetic field

EXAMPLE 30.2 ■ Potential difference along a rotating bar

The electric field strength
increases with r.

Angular velocity v

The speed at distance r is v = vr.

Pivot r

l

B
u

E
u

v
u

FIGURE 30.4 Pictorial representation of a metal bar rotating in a 
magnetic field.
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892 CHAPTER 30 Electromagnetic Induction

Induced Current in a Circuit
The moving conductor of Figure 30.2 had an emf, but it couldn’t sustain a current 
because the charges had nowhere to go. It’s like a battery that is disconnected from a 
circuit. We can change this by including the moving conductor in a circuit.

FIGURE 30.5 shows a conducting wire sliding with speed v along a U-shaped 
 conducting rail. We’ll assume that the rail is attached to a table and cannot move. The 
wire and the rail together form a closed conducting loop—a circuit.

Suppose a magnetic field B
u
 is perpendicular to the plane of the circuit. Charges in 

the moving wire will be pushed to the ends of the wire by the magnetic force, just as 
they were in Figure 30.2, but now the charges can continue to flow around the circuit. 
That is, the moving wire acts like a battery in a circuit.

The current in the circuit is an induced current. In this example, the induced cur-
rent is counterclockwise (ccw). If the total resistance of the circuit is R, the induced 
current is given by Ohm’s law as

 I =
E
R

=
vlB
R

 (30.4)

In this situation, the induced current is due to magnetic forces on moving charges.
We’ve assumed that the wire is moving along the rail at constant speed. It  

turns out that we must apply a continuous pulling force F
u

pull to make this happen. 
FIGURE 30.6 shows why. The moving wire, which now carries induced current I, is in 
a magnetic field. You learned in Chapter 29 that a magnetic field exerts a force on 
a current-carrying wire. According to the right-hand rule, the magnetic force F

u

mag 
on the moving wire points to the left. This “magnetic drag” will cause the wire to 
slow down and stop unless we exert an equal but opposite pulling force F

u

pull to keep 
the wire moving.

The magnitude of the magnetic force on a current-carrying wire was found in  
Chapter 29 to be Fmag = IlB. Using that result, along with Equation 30.4 for the induced  
current, we find that the force required to pull the wire with a constant speed v is

 Fpull = Fmag = IlB = 1vlB
R 2lB =

vl2B2

R
 (30.5)

The magnetic force on
the current-carrying
wire is opposite the motion.

u
Fmag

A pulling force to the right must
balance the magnetic force to keep
the wire moving at constant speed.

The induced current flows
through the moving wire.

l
u
Fpull

I

FIGURE 30.6 A pulling force is needed to 
move the wire to the right.

v
u

B
u

I

I

Conducting rail. Fixed
to table and doesn’t move.

Negative end
of wire

Positive end
of wire

2. The charge carriers flow around the
conducting loop as an induced current.

1. The charge carriers in the
 wire are pushed upward 
 by the magnetic force.

l

FIGURE 30.5 A current is induced in the  
circuit as the wire moves through a mag
netic field.

STOP TO THINK 30.2 Is there an induced current in 
this circuit? If so, what is its direction?

v
u

B
u

Energy Considerations
The environment must do work on the wire to pull it. What happens to the energy 
transferred to the wire by this work? Is energy conserved as the wire moves along the 
rail? It will be easier to answer this question if we think about power rather than work. 
Power is the rate at which work is done on the wire. You learned in Chapter 9 that 
the power exerted by a force pushing or pulling an object with velocity v is P = Fv.  
The power provided to the circuit by pulling on the wire is

 Pinput = Fpullv =
v2l2B2

R
 (30.6)

This is the rate at which energy is added to the circuit by the pulling force.
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30.2 Motional emf 893

But the circuit also dissipates energy by transforming electric energy into the  
thermal energy of the wires and components, heating them up. The power dissipated 
by current I as it passes through resistance R is P = I 2R. Equation 30.4 for the induced 
current I gives us the power dissipated by the circuit of Figure 30.5:

 Pdissipated = I 2R =
v2l2B2

R
 (30.7)

You can see that Equations 30.6 and 30.7 are identical. The rate at which work is 
done on the circuit exactly balances the rate at which energy is dissipated. In other 
words, it’s the work done by the external pulling force that allows the charge separa-
tion, creating the emf. The magnetic field moves the charges, but the external force 
supplies the energy.

If you have to pull on the wire to get it to move to the right, you might think that 
it would spring back to the left on its own. FIGURE 30.7 shows the same circuit with  
the wire moving to the left. In this case, you must push the wire to the left to keep it 
moving. The magnetic force is always opposite to the wire’s direction of motion.

In both Figure 30.6, where the wire is pulled, and Figure 30.7, where it is pushed, 
a mechanical force is used to create a current. In other words, we have a conversion 
of mechanical energy to electric energy. A device that converts mechanical energy  
to electric energy is called a generator. The slide-wire circuits of Figures 30.6 and 
30.7 are simple examples of a generator.

We can summarize our analysis as follows:

1. Pulling or pushing the wire through the magnetic field at speed v creates a  
motional emf E in the wire and induces a current I = E/R in the circuit.

2. To keep the wire moving at constant speed, a pulling or pushing force must  
balance the magnetic force on the wire. This force does work on the circuit.

3. The work done by the pulling or pushing force exactly balances the energy  
dissipated by the current as it passes through the resistance of the circuit.

I

I

2. The magnetic force
 on the current-carrying
 wire is to the right.

1. The magnetic force on the charge
 carriers is down, so the induced
 current flows clockwise.

Fmag

u
Fpush

u

FIGURE 30.7 A pushing force is needed to 
move the wire to the left.

FIGURE 30.8 shows a circuit consisting of a flashlight bulb, rated 
3.0 V/1.5 W, and ideal wires with no resistance. The right wire 
of the circuit, which is 10 cm long, is pulled at constant speed v 
through a perpendicular magnetic field of strength 0.10 T.

a. What speed must the wire have to light the bulb to full brightness?

b. What force is needed to keep the wire moving?

MODEL Treat the moving wire as a source of motional emf.

VISUALIZE The magnetic force on the charge carriers, F
u

B =   
qvu * B

u
, causes a counterclockwise (ccw) induced current.

SOLVE a. The bulb’s rating of 3.0 V/1.5 W means that at full 
brightness it will dissipate 1.5 W at a potential difference of 3.0 V. 
Because the power is related to the voltage and current by P = I ∆V,  

the current causing full brightness is

I =
P

∆V
=

1.5 W
3.0 V

= 0.50 A

The bulb’s resistance—the total resistance of the circuit—is

R =
∆V
I

=
3.0 V
0.50 A

= 6.0 Ω

Equation 30.4 gives the speed needed to induce this current:

v =
IR
lB

=
10.50 A216.0 Ω2
10.10 m210.10 T2 = 300 m/s

You can confirm from Equation 30.6 that the input power at this 
speed is 1.5 W.
b. From Equation 30.5, the pulling force must be

Fpull =
vl2B2

R
= 5.0 * 10-3 N

You can also obtain this result from Fpull = P/v.

REVIEW Example 30.1 showed that high speeds are needed to  
produce significant potential difference. Thus 300 m/s is not  
surprising. The pulling force is not very large, but even a small 
force can deliver large amounts of power P = Fv when v is large.

EXAMPLE 30.3 ■ Lighting a bulb

v
u3.0 V

1.5 W

10 cm

0.10 T

FIGURE 30.8 Circuit of Example 30.3.
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894 CHAPTER 30 Electromagnetic Induction

Eddy Currents
These ideas have interesting implications. Consider pulling a sheet of metal through a  
magnetic field, as shown in FIGURE 30.9. The metal, we will assume, is not a magnetic  
material, so it experiences no magnetic force if it is at rest. The charge carriers in the metal  
experience a magnetic force as the sheet is dragged between the pole tips of the magnet. 
A current is induced, just as in the loop of wire, but here the currents do not have wires to 
define their path. As a consequence, two “whirlpools” of current begin to circulate in the 
metal. These spread-out current whirlpools in a solid metal are called eddy currents.

As the eddy current passes between the pole tips, it experiences a magnetic force to 
the left—a retarding force. Thus an external force is required to pull a metal through  
a magnetic field. If the pulling force ceases, the retarding magnetic force quickly 
causes the metal to decelerate until it stops. Similarly, a force is required to push a sheet  
of metal into a magnetic field.

Eddy currents are often undesirable. The power dissipation of eddy currents can 
cause unwanted heating, and the magnetic forces on eddy currents mean that extra 
energy must be expended to move metals in magnetic fields. But eddy currents also 
have important useful applications. A good example is magnetic braking.

The moving train car has an electromagnet that straddles the rail, as shown in 
FIGURE 30.10. During normal travel, there is no current through the electromagnet and 
no magnetic field. To stop the car, a current is switched into the electromagnet. The 
current creates a strong magnetic field that passes through the rail, and the motion of 
the rail relative to the magnet induces eddy currents in the rail. The magnetic force  
between the electromagnet and the eddy currents acts as a braking force on the magnet 
and, thus, on the car. Magnetic braking systems are very efficient, and they have the  
added advantage that they heat the rail rather than the brakes.

v
u

S

NMetal sheet

u
Fpull

Eddy currents are induced when
a metal sheet is pulled through
a magnetic field.

The magnetic force on the eddy
currents is opposite in direction to v.

u

FIGURE 30.9 Eddy currents.

v
u

v
u

B
u

u

u

Fbrake

The electromagnets
are part of the
moving train car.

Eddy currents are induced in the rail.
Magnetic forces between the eddy currents
and the electromagnets slow the train.

Rail

Fbrake

FIGURE 30.10 Magnetic braking system.

STOP TO THINK 30.3 A square loop of copper wire is pulled through a region of 
magnetic field. Rank in order, from strongest to weakest, the pulling forces F

u

1, F
u

2, F
u

3, 
and F

u

4 that must be applied to keep the loop moving at constant speed.

v
u

v
u

v
u

v
u

B
u

F3

u
F4

u
F2

u
F1

u

30.3 Magnetic Flux
Faraday found that a current is induced when the amount of magnetic field passing 
through a coil or a loop of wire changes. And that’s exactly what happens as the slide 
wire moves down the rail in Figure 30.5! As the circuit expands, more magnetic field 
passes through. It’s time to define more clearly what we mean by “the amount of field 
passing through a loop.”

Imagine holding a rectangular loop in front of the fan shown in FIGURE 30.11. The 
amount of air flowing through the loop—the flux—depends on the angle of the  
loop. The flow is maximum if the loop is perpendicular to the flow, zero if the loop 
is rotated to be parallel to the flow. In general, the amount of air flowing through  
is proportional to the effective area of the loop (i.e., the area facing the fan):

 Aeff = ab cos u = A cos u (30.8)

where A = ab is the area of the loop and u is the tilt angle of the loop. A loop perpen-
dicular to the flow, with u = 0°, has Aeff = A, the full area of the loop.Fan

a

b

b 
co

su u

The flux is the amount
of air passing through
the loop per second.

A = ab

Aeff = ab cosu

FIGURE 30.11 The amount of air flowing 
through a loop depends on the effective 
area of the loop.
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30.3 Magnetic Flux 895

We can apply this idea to a magnetic field passing through a loop. FIGURE 30.12 
shows a loop of area A = ab in a uniform magnetic field. Think of the field vectors 
as if they were streamlines of air flowing into the figure. The density of streamlines 
(streamlines per m2) is proportional to the strength B of the magnetic field; a stron-
ger field would be represented by streamlines packed closer together. The number of 
streamlines passing through a loop of wire depends on two factors:

1. The density of streamlines, which is proportional to B, and
2. The effective area Aeff = A cos u of the loop.

The angle u is the angle between the magnetic field and the axis of the loop. The 
maximum number of streamlines passes through the loop when it is perpendicular to 
the magnetic field 1u = 0°2. No streamlines pass through the loop if it is tilted 90°.

B
u

B
u

B
u

a

a
b b cosu 0

a

Seen in the direction of the magnetic field:

These heights
are the same.

u = 0° u u = 90°

Loop seen from the side:

u

Loop perpendicular to field.
Maximum number of
streamlines pass through.

Loop rotated through angle u.
Fewer streamlines pass
through.

Loop rotated 90°.
No streamlines pass
through.

FIGURE 30.12 Magnetic field through a loop that is tilted at various angles.

With this in mind, let’s define the magnetic flux Φm as

 Φm = AeffB = AB cos u (30.9)

The magnetic flux measures the amount of magnetic field passing through a loop of 
area A if the loop is tilted at angle u from the field. The SI unit of magnetic flux is the 
weber. From Equation 30.9 you can see that

1 weber = 1 Wb = 1 T m2

Equation 30.9 is reminiscent of the vector dot product: A
u # B

u
= AB cos u. With that in 

mind, let’s define an area vector A
u
 to be a vector perpendicular to the loop, with 

magnitude equal to the area A of the loop. Vector A
u
 has units of m2. FIGURE 30.13a shows  

the area vector A
u
 for a circular loop of area A.

FIGURE 30.13b shows a magnetic field passing through a loop. The angle between 
vectors A

u
 and B

u
 is the same angle used in Equations 30.8 and 30.9 to define the effec-

tive area and the magnetic flux. So Equation 30.9 really is a dot product, and we can 
define the magnetic flux more concisely as

 Φm = A
u # B

u
 (30.10)

Writing the flux as a dot product helps make clear how angle u is defined: u is the angle  
between the magnetic field and the axis of the loop.

A
u

u u

A
u

B
u

The area vector is
perpendicular to the
loop. Its magnitude
is the area of the loop.

Loop of
area A

(a)

The angle u between
A and B is the angle
at which the loop
has been tilted.

u u

The magnetic
flux through
the loop is
Φm = A # B.

(b)

u

FIGURE 30.13 Magnetic flux can be 
defined in terms of an area vector A

u
.
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Magnetic Flux in a Nonuniform Field
Equation 30.10 for the magnetic flux assumes that the field is uniform over the area of 
the loop. We can calculate the flux in a nonuniform field, one where the field strength 
changes from one edge of the loop to the other, but we’ll need to use calculus.

FIGURE 30.15 shows a loop in a nonuniform magnetic field. Imagine dividing the 
loop into many small pieces of area dA. The infinitesimal flux dΦm through one such 
area, where the magnetic field is B

u
, is

 dΦm = B
u # dA

u
 (30.11)

The total magnetic flux through the loop is the sum of the fluxes through each of the 
small areas. We find that sum by integrating. Thus the total magnetic flux through the loop is

 Φm = 3B
u # dA

u

area of loop

 (30.12)

Equation 30.12 is a more general definition of magnetic flux. It may look rather for-
midable, so we’ll illustrate its use with an example.

B
u

Loop

Increasing field strength

Small area dA.
The flux through
this little area is
dΦm = B # dA.

uu

FIGURE 30.15 A loop in a nonuniform 
magnetic field.

FIGURE 30.14 is an edge view of a 10-cm-diameter circular loop  
in a uniform 0.050 T magnetic field. What is the magnetic flux 
through the loop?

SOLVE Angle u is the angle between the loop’s area vector A
u

, which 
is perpendicular to the plane of the loop, and the magnetic field B

u
. In 

this case, u = 60°, not the 30° angle shown in the figure. Vector A
u

 has 
magnitude A = pr2 = 7.85 * 10-3 m2. Thus the magnetic flux is

Φm = A
u # B

u
= AB cos u = 2.0 * 10-4 Wb

The 1.0 cm * 4.0 cm rectangular loop of FIGURE 30.16 is 1.0 cm 
away from a long, straight wire. The wire carries a current of  
1.0 A. What is the magnetic flux through the loop?

MODEL Model the wire as if it were infinitely long. The magnetic 
field strength of a wire decreases with distance from the wire, so 
the field is not uniform over the area of the loop.

VISUALIZE Using the right-hand rule, we see that the field, as 
it circles the wire, is perpendicular to the plane of the loop.  
FIGURE 30.17 redraws the loop with the field coming out of the fig-
ure and establishes a coordinate system.

SOLVE Let the loop have dimensions a and b, as shown, with the 
near edge at distance c from the wire. The magnetic field varies  

with distance x from the wire, but the field is constant along a line 
parallel to the wire. This suggests dividing the loop into many narrow 
rectangular strips of length b and width dx, each forming a small area 
dA = b dx. The magnetic field has the same strength at all points within 
this small area. One such strip is shown in the figure at position x.

EXAMPLE 30.4 ■ A circular loop in a magnetic field

EXAMPLE 30.5 ■ Magnetic flux from the current in a long, straight wire

30°

Circular loop

B
u

FIGURE 30.14 A circular loop in a magnetic field.

Loop

Long, straight wire

1.0 cm 1.0 cm

4.0 cm

I

FIGURE 30.16 A loop next to a currentcarrying wire.

Vector dA is coming
out of the figure.

Strip of area dA = b dx
at position x. Magnetic
flux through this strip
is dΦm = B dA.

u

FIGURE 30.17 Calculating the magnetic flux through the loop.
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30.4 Lenz’s Law
We started out by looking at a situation in which a moving wire caused a loop to 
expand in a magnetic field. This is one way to change the magnetic flux through the 
loop. But Faraday found that a current can be induced by any change in the magnetic 
flux, no matter how it’s accomplished.

For example, a momentary current is induced in the loop of FIGURE 30.18 as the bar 
magnet is pushed toward the loop, increasing the flux through the loop. Pulling the 
magnet back out of the loop causes the current meter to deflect in the opposite direc-
tion. The conducting wires aren’t moving, so this is not a motional emf. Nonetheless, 
the induced current is very real.

The German physicist Heinrich Lenz began to study electromagnetic induction 
after learning of Faraday’s discovery. Three years later, in 1834, Lenz announced a 
rule for determining the direction of the induced current. We now call his rule Lenz’s 
law, and it can be stated as follows:

The area vector dA
u
 is perpendicular to the strip (coming out of 

the figure), which makes it parallel to B
u
 1u = 0°2. Thus the infinites-

imal flux through this little area is

dΦm = B
u # dA

u
= B dA = B1b dx2 =

m0Ib

2px
  dx

where, from Chapter 29, we’ve used B = m
 0 I/2px as the magnetic 

field at distance x from a long, straight wire. Integrating “over the 
area of the loop” means to integrate from the near edge of the loop 
at x = c to the far edge at x = c + a. Thus

Φm =
m

 0 Ib

2p
 3

c+a

c
 
dx
x

=
m

 0 Ib

2p
  ln x `

c+a

c
=

m
 0 Ib

2p
  ln1c + a

c 2
Evaluating for a = c = 0.010 m, b = 0.040 m, and I = 1.0 A gives

Φm = 5.5 * 10-9 Wb

REVIEW The flux measures how much of the wire’s magnetic field 
passes through the loop, but we had to integrate, rather than simply 
using Equation 30.10, because the field is stronger at the near edge  
of the loop than at the far edge.

Lenz’s law There is an induced current in a closed, conducting loop if and only 
if the magnetic flux through the loop is changing. The direction of the induced 
current is such that the induced magnetic field opposes the change in the flux.

Lenz’s law is rather subtle, and it takes some practice to see how to apply it.

   NOTE    One difficulty with Lenz’s law is the term “flux.” In everyday language, the word 
“flux” already implies that something is changing. Think of the phrase, “The situation is in 
flux.” Not so in physics, where “flux,” the root of the word “flow,” means “passes through.” 
A steady magnetic field through a loop creates a steady, unchanging magnetic flux.

Lenz’s law tells us to look for situations where the flux is changing. This can hap-
pen in three ways.

1. The magnetic field through the loop changes (increases or decreases),
2. The loop changes in area or angle, or
3. The loop moves into or out of a magnetic field.

Lenz’s law depends on the idea that an induced current generates its own magnetic 
field B

u

induced. This is the induced magnetic field of Lenz’s law. You learned in Chapter 29  
how to use the right-hand rule to determine the direction of this induced magnetic field.

In Figure 30.18, pushing the bar magnet toward the loop causes the magnetic flux to 
increase in the downward direction. To oppose the change in flux, which is what Lenz’s 
law requires, the loop itself needs to generate the upward-pointing magnetic field of 
FIGURE 30.19. The induced magnetic field at the center of the loop will point upward if the 
current is ccw. Thus pushing the north end of a bar magnet toward the loop induces a ccw 
current around the loop. The induced current ceases as soon as the magnet stops moving.

u
Bmagnet

Current meter

In
0

A bar magnet pushed toward a loop
increases the flux through the loop.

Which direction
is the induced
current?

S

N

FIGURE 30.18 Pushing a bar magnet 
toward the loop induces a current.

0

u
Bmagnet

Induced
current

u
Binduced

2. The loop needs
 to generate an
 upward-pointing
 magnetic field
 to oppose the
 change in flux.

3. By the right-hand rule, a ccw
 current is needed to induce an
 upward-pointing magnetic field.

1. The flux through
 the loop increases
 downward as the
 magnet approaches.

S

N

FIGURE 30.19 The induced current is ccw.
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898 CHAPTER 30 Electromagnetic Induction

Now suppose the bar magnet is pulled back away from the loop, as shown in  
FIGURE 30.20a. There is a downward magnetic flux through the loop, but the flux  
decreases as the magnet moves away. According to Lenz’s law, the induced magnetic 
field of the loop opposes this decrease. To do so, the induced field needs to point in 
the downward direction, as shown in FIGURE 30.20b. Thus as the magnet is withdrawn, 
the induced current is clockwise (cw), opposite to the induced current of Figure 30.19.

Out
0The bar magnet

is moving away
from the loop.

(a)

S

N

Bmagnet

u

FIGURE 30.20 Pulling the magnet away induces a cw current.

0

Induced
current

2. A downward-pointing
 field is needed to
 oppose the change.

1. Downward flux
 due to the magnet
 is decreasing.

3. A downward-pointing field
 is induced by a cw current.

(b)

Binduced

u

   NOTE    Notice that the magnetic field of the bar magnet is pointing downward in  
both Figures 30.19 and 30.20. It is not the flux due to the magnet that the induced 
current opposes, but the change in the flux. This is a subtle but critical distinction. If 
the induced current opposed the flux itself, the current in both Figures 30.19 and 30.20 
would be ccw to generate an upward magnetic field. But that’s not what happens. When 
the field of the magnet points down and is increasing, the induced current opposes the 
increase by generating an upward field. When the field of the magnet points down but  
is decreasing, the induced current opposes the decrease by generating a downward field.

Using Lenz’s Law
FIGURE 30.21 shows six basic situations. The magnetic field can point either up or down 
through the loop. For each, the flux can either increase, hold steady, or decrease in 
strength. These observations form the basis for a set of rules about using Lenz’s law.

B
u

B
u

No induced
current

No induced
current

u
B up and steady

u
B down and steady

No change in flux
No induced field
No induced current

No change in flux
No induced field
No induced current

FIGURE 30.21 The induced current for six different situations.

B
u

B
u

Induced
current

Induced
current

u
B up and increasing

u
B down and increasing

Change in flux c
Induced field T
Induced current cw

Change in flux T
Induced field c
Induced current ccw

Binduced

u

Binduced

u

B
u

B
u

u

Induced
current

Binduced

Induced
current

Binduced

u
B up and decreasing

B down and decreasing

Change in flux T
Induced field c
Induced current ccw

Change in flux c
Induced field T
Induced current cw

u

u

M30_KNIG8221_05_GE_C30.indd   898 31/05/2022   15:58



30.4 Lenz’s Law 899

Let’s look at two examples.

TACTICS BOX 30.1

Using Lenz’s law
1  Determine the direction of the applied magnetic field. The field must  

pass through the loop.
2  Determine how the flux is changing. Is it increasing, decreasing, or staying 

the same?
3  Determine the direction of an induced magnetic field that will oppose  

the change in the flux.
■■ Increasing flux: the induced magnetic field points opposite the applied 

magnetic field.
■■ Decreasing flux: the induced magnetic field points in the same direction as 

the applied magnetic field.
■■ Steady flux: there is no induced magnetic field.

4  Determine the direction of the induced current. Use the right-hand rule  
to determine the current direction in the loop that generates the induced  
magnetic field you found in step 3.

Exercises 10–14 

FIGURE 30.22 shows two loops, one above the other. The upper loop has 
a battery and a switch that has been closed for a long time. How does 
the lower loop respond when the switch is opened in the upper loop?

MODEL We’ll use the right-hand rule to find the magnetic fields  
of current loops.

SOLVE FIGURE 30.23 shows the four steps of using Lenz’s law. 
Opening the switch induces a ccw current in the lower loop. This 
is a momentary current, lasting only until the magnetic field of the 
upper loop drops to zero.

REVIEW The conclusion is consistent with Figure 30.21.

EXAMPLE 30.6 ■ Lenz’s law 1

Upper loop

I

I

Lower loop

0

FIGURE 30.22 The two loops of Example 30.6.

By the right-hand rule, the
magnetic field of the upper loop
points up. It decreases rapidly
after the switch is opened.

The field due to the upper loop
passes through the lower loop. It
creates a flux through the lower
loop that is up and decreasing.

The induced field needs to point
upward to oppose the change in flux.

A ccw current induces an
upward magnetic field.

1

2

3 4

FIGURE 30.23 Applying Lenz’s law.

FIGURE 30.24 shows two coils wrapped side by side on a cylinder. 
When the switch for coil A is closed, does the induced current in coil B  
pass from right to left or from left to right through the current meter?

MODEL We’ll use the right-hand rule to find the magnetic field of a coil.

VISUALIZE It is very important to look at the direction in which  
a coil is wound around the cylinder. Notice that the two coils in 
Figure 30.24 are wound in opposite directions.

EXAMPLE 30.7 ■ Lenz’s law 2

Continued

0

Coil A Coil B

FIGURE 30.24 The two coils of Example 30.7.
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900 CHAPTER 30 Electromagnetic Induction

30.5 Faraday’s Law
Charges don’t start moving spontaneously. A current requires an emf to provide the 
energy. We started our analysis of induced currents with circuits in which a motional 
emf can be understood in terms of magnetic forces on moving charges. But we’ve also 
seen that a current can be induced by changing the magnetic field through a stationary 
circuit, a circuit in which there is no motion. There must be an emf in this circuit, even 
though the mechanism for this emf is not yet clear.

The emf associated with a changing magnetic flux, regardless of what causes  
the change, is called an induced emf E. Then, if there is a complete circuit having 
resistance R, a current

 Iinduced =
E
R

 (30.13)

is established in the wire as a consequence of the induced emf. The direction of the current is 
given by Lenz’s law. The last piece of information we need is the size of the induced emf E.

The research of Faraday and others eventually led to the discovery of the basic law 
of electromagnetic induction, which we now call Faraday’s law. It states:

SOLVE FIGURE 30.25 shows the four steps of using 
Lenz’s law. Closing the switch induces a current that 
passes from right to left through the current meter. The 
induced current is only momentary. It lasts only until the 
field from coil A reaches full strength and is no longer 
changing.

REVIEW The conclusion is consistent with Figure 30.21.

The magnetic field of
coil A is to the left.

Coil A creates a flux
through coil B that is to
the left and increasing.

The induced field needs
to point right to oppose
the change in flux.

Current direction
that induces a
field to the right

1 2 3

4

FIGURE 30.25 Applying Lenz’s law.

STOP TO THINK 30.4 A current-carrying 
wire is pulled away from a conducting loop in 
the direction shown. As the wire is moving,  
is there a cw current around the loop, a ccw 
current, or no current?

I

v
u

Faraday’s law An emf E is induced around a closed loop if the magnetic flux 
through the loop changes. The magnitude of the emf is

 E = ` dΦm

dt
`  (30.14)

and the direction of the emf is such as to drive an induced current in the direction 
given by Lenz’s law.

In other words, the induced emf is the rate of change of the magnetic flux through the loop.
As a corollary to Faraday’s law, an N-turn coil of wire in a changing magnetic field 

acts like N batteries in series. The induced emf of each turn of the coils add, so the induced  
emf of the entire coil is

 Ecoil = N `
dΦper coil

dt
` (Faraday's law for an N@turn coil) (30.15)
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30.5 Faraday’s Law 901

As a first example of using Faraday’s law, return to the situation of Figure 30.5,  
where a wire moves through a magnetic field by sliding on a U-shaped conducting 
rail. FIGURE 30.26 shows the circuit again. The magnetic field B

u
 is perpendicular to the  

plane of the conducting loop, so u = 0° and the magnetic flux is Φ = AB, where A is 
the area of the loop. If the slide wire is distance x from the end, the area is A = xl and 
the flux at that instant of time is

 Φm = AB = xlB (30.16)

The flux through the loop increases as the wire moves. According to Faraday’s law, 
the induced emf is

 E = ` dΦm

dt
` =

d
dt

 1xlB2 =
dx
dt

 lB = vlB (30.17)

where the wire’s velocity is v = dx/dt. We can now use Equation 30.13 to find that the 
induced current is

 I =
E
R

=
vlB
R

 (30.18)

The flux is increasing into the loop, so the induced magnetic field opposes this increase 
by pointing out of the loop. This requires a ccw induced current in the loop. Faraday’s law 
leads us to the conclusion that the loop will have a ccw induced current I = vlB/R. This is 
exactly the conclusion we reached in Section 30.2, where we analyzed the situation from 
the perspective of magnetic forces on moving charge carriers. Faraday’s law confirms 
what we already knew but, at least in this case, doesn’t seem to offer anything new.

Using Faraday’s Law
Most electromagnetic induction problems can be solved with a four-step strategy.

v
u

B
u

x

l

Induced current

Magnetic flux Φm = AB = xlB

I

I

FIGURE 30.26 The magnetic flux through 
the loop increases as the slide wire moves.

PROBLEM-SOLVING STRATEGY 30.1

Electromagnetic induction
MODEL Make simplifying assumptions about wires and magnetic fields.

VISUALIZE Draw a picture or a circuit diagram. Use Lenz’s law to determine the 
direction of the induced current.

SOLVE The mathematical representation is based on Faraday’s law

E = ` dΦm

dt
`

For an N-turn coil, multiply by N. The size of the induced current is I = E/R.

REVIEW Check that your result has correct units and significant figures, is  
reasonable, and answers the question.

Exercise 18 

A 2.0-cm-diameter loop of wire with a resistance of 0.010 Ω is 
placed in the center of the solenoid seen in FIGURE 30.27a on the 
next page. The solenoid is 4.0 cm in diameter, 20 cm long, and 
wrapped with 1000 turns of wire. FIGURE 30.27b shows the cur-
rent through the solenoid as a function of time as the solenoid is  
“powered up.” A positive current is defined to be cw when seen 
from the left. Find the current in the loop as a function of time  
and show the result as a graph.

MODEL The solenoid’s length is much greater than its diameter, so 
the field near the center should be nearly uniform.

VISUALIZE The magnetic field of the solenoid creates a magnetic 
flux through the loop of wire. The solenoid current is always positive, 
meaning that it is cw as seen from the left. Consequently, from the 
right-hand rule, the magnetic field inside the solenoid always points  
to the right. During the first second, while the solenoid current is 

EXAMPLE 30.8 ■ Electromagnetic induction in a solenoid

Continued
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902 CHAPTER 30 Electromagnetic Induction

increasing, the flux through the loop is to the right and increas-
ing. To oppose the change in the flux, the loop’s induced magnetic  
field must point to the left. Thus, again using the right-hand rule, 
the induced current must flow ccw as seen from the left. This is a 
negative current. There’s no change in the flux for t 7 1 s, so the 
induced current is zero.

SOLVE Now we’re ready to use Faraday’s law to find the magnitude 
of the current. Because the field is uniform inside the solenoid and  
perpendicular to the loop 1u = 0°2, the flux is Φm = AB, where 
A = pr2 =  3.14 * 10-4 m2 is the area of the loop (not the area of 
the solenoid). The field of a long solenoid of length l was found in 
Chapter 29 to be

B =
m

 0 NIsol

l

The flux when the solenoid current is Isol is thus

Φm =
m

 0  ANIsol

l

The changing flux creates an induced emf E that is given by 
Fara day’s law:

E = ` dΦm

dt
` =

m
 0  AN

l
 ` dIsol

dt
` = 2.0 * 10-6 ` dIsol

dt
`

From the slope of the graph, we find

` dIsol

dt
` = b10 A/s 0.0 s 6 t 6 1.0 s

0 A/s 1.0 s 6 t 6 3.0 s

Thus the induced emf is

E = b2.0 * 10-5 V 0.0 s 6 t 6 1.0 s
0 V 1.0 s 6 t 6 3.0 s

Finally, the current induced in the loop is

 Iloop =
E
R

= b -2.0 mA 0.0 s 6 t 6 1.0 s
0 mA 1.0 s 6 t 6 3.0 s

where the negative sign comes from Lenz’s law. This result is 
shown in FIGURE 30.28.

t (s)

 Solenoid current
Isol (A)

0
10 2 3

10

(b)

20 cm, 1000 turns

4.0 cm

2.0-cm-diameter loop

Positive
current

(a)

B
u

FIGURE 30.27 A loop inside a solenoid.

-2

0

2

t (s)
21 3

Iloop (mA)

The solenoid has a current, but
it’s not changing. Hence no
current is induced in the loop.

There is a ccw induced
current as the flux changes.

FIGURE 30.28 The induced current in the loop.

The body is a conductor, so rapid magnetic field changes in an 
MRI machine can induce currents in the body. To estimate the size 
of these currents, and any biological hazard they might impose, 
consider the “loop” of muscle tissue shown in FIGURE 30.29. This 
might be muscle circling the bone of your arm or thigh. Although 
muscle is not a great conductor—its resistivity is 1.5 Ω  m—we can 
consider it to be a conducting loop with a rather high resistance. 
Suppose the magnetic field along the axis of the loop drops from 

1.6 T to 0 T in 0.30 s, which is about the largest possible rate of 
change for an MRI solenoid. What current will be induced?

MODEL Model the muscle as a conducting loop. Assume that B  
decreases linearly with time.

SOLVE The magnetic field is parallel to the axis of the loop, with 
u = 0°, so the magnetic flux through the loop is Φm = AB = pr2B. 
The flux changes with time because B changes. According to  
Faraday’s law, the magnitude of the induced emf is

E = ` dΦm

dt
` = pr2 ` dB

dt
`

The rate at which the magnetic field changes is

dB
dt

=
∆B
∆t

=
-1.60 T
0.30 s

= -5.3 T/s

EXAMPLE 30.9 ■ Current induced by an MRI machine

8.0 cm
1.0 cm

B
u

FIGURE 30.29 Edge view of a loop of muscle tissue in a magnetic 
field.
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30.5 Faraday’s Law 903

   NOTE    We sometimes use R to represent the radius of a loop or coil. Be careful not 
to confuse a dimension R with resistance R.

What Does Faraday’s Law Tell Us?
The induced current in the slide-wire circuit of Figure 30.26 can be understood as a 
motional emf due to magnetic forces on moving charges. We had not anticipated this 
kind of current in Chapter 29, but it takes no new laws of physics to understand it. The 
induced currents in Examples 30.8 and 30.9 are different. We cannot explain these 
induced currents on the basis of previous laws or principles. This is new physics.

Faraday recognized that all induced currents are associated with a changing  
magnetic flux. There are two fundamentally different ways to change the magnetic 
flux through a conducting loop:

1. The loop can expand, contract, or rotate, creating a motional emf.
2. The magnetic field can change.

We can see both of these if we write Faraday’s law as

 E = ` dΦm

dt
` = ` Bu # dA

u

dt
+ A

u # dB
u

dt
`  (30.19)

The first term on the right side represents a motional emf. The magnetic flux changes 
because the loop itself is changing. This term includes not only situations like the 
slide-wire circuit, where the area A changes, but also loops that rotate in a magnetic 
field. The physical area of a rotating loop does not change, but the area vector A

u
  

does. The loop’s motion causes magnetic forces on the charge carriers in the loop.
The second term on the right side is the new physics in Faraday’s law. It says that 

an emf can also be created simply by changing a magnetic field, even if nothing is 
moving. This was the case in Examples 30.8 and 30.9. Faraday’s law tells us that  
the induced emf is simply the rate of change of the magnetic flux through the loop, 
regardless of what causes the flux to change.

STOP TO THINK 30.5 A conducting loop is halfway 
into a magnetic field. Suppose the magnetic field begins 
to increase rapidly in strength. What happens to the loop?

a. The loop is pushed upward, toward the top of the 
figure.

b. The loop is pushed downward, toward the bottom 
of the figure.

c. The loop is pulled to the left, into the magnetic field.
d. The loop is pushed to the right, out of the magnetic field.
e. The tension in the wires increases but the loop does not move.

dB/dt is negative because the field is decreasing, but all we need for 
Faraday’s law is the absolute value. Thus

E = pr2 ` dB
dt

` = p10.040 m2215.3 T/s2 = 0.027 V

To find the current, we need to know the resistance of the loop. Re-
call, from Chapter 27, that a conductor with resistivity r, length L, 
and cross-section area A has resistance R = rL /A. The length is the 
circumference of the loop, calculated to be L = 0.25 m, and we can 
use the 1.0 cm diameter of the “wire” to find A = 7.9 * 10-5 m2. 

With these values, we can compute R = 4700 Ω. As a result, the 
induced current is

I =
E
R

=
0.027 V
4700 Ω

= 5.7 * 10-6 A = 5.7 mA

REVIEW This is a very small current. Power—the rate of energy 
dissipation in the muscle—is

P = I 2R = 15.7 * 10-6 A2214700 Ω2 = 1.5 * 10-7 W

The current is far too small to notice, and the tiny energy dissipation  
will certainly not heat the tissue.

B
u
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30.6 Induced Fields
Faraday’s law is a tool for calculating the strength of an induced current, but one 
important piece of the puzzle is still missing. What causes the current? That is, what 
force pushes the charges around the loop against the resistive forces of the metal? The 
agents that exert forces on charges are electric fields and magnetic fields. Magnetic 
forces are responsible for motional emfs, but magnetic forces cannot explain the  
current induced in a stationary loop by a changing magnetic field.

FIGURE 30.30a shows a conducting loop in an increasing magnetic field. According to 
Lenz’s law, there is an induced current in the ccw direction. Something has to act on the 
charge carriers to make them move, so we infer that there must be an electric field tangent 
to the loop at all points. This electric field is caused by the changing magnetic field and  
is called an induced electric field. The induced electric field is the mechanism that 
creates a current inside a stationary loop when there’s a changing magnetic field.

The conducting loop isn’t necessary. The space in which the magnetic field  
is changing is filled with the pinwheel pattern of induced electric fields shown in 
FIGURE   30.30b. Charges will move if a conducting path is present, but the induced  
electric field is there as a direct consequence of the changing magnetic field.

But this is a rather peculiar electric field. All the electric fields we have examined 
until now have been created by charges. Electric field vectors pointed away from positive  
charges and toward negative charges. An electric field created by charges is called a  
Coulomb electric field. The induced electric field of Figure 30.30b is caused not by 
charges but by a changing magnetic field. It is called a non-Coulomb electric field.

So it appears that there are two different ways to create an electric field:

1. A Coulomb electric field is created by positive and negative charges.
2. A non-Coulomb electric field is created by a changing magnetic field.

Both exert a force F
u

= qE
u
 on a charge, and both create a current in a conductor. 

However, the origins of the fields are very different. FIGURE 30.31 is a quick summary of  
the two ways to create an electric field.

We first introduced the idea of a field as a way of thinking about how two charges 
exert long-range forces on each other through the emptiness of space. The field may 
have seemed like a useful pictorial representation of charge interactions, but we had 
little evidence that fields are real, that they actually exist. Now we do. The electric  
field has shown up in a completely different context, independent of charges, as the 
explanation of the very real existence of induced currents.

The electric field is not just a pictorial representation; it is real.

Calculating the Induced Field
The induced electric field is peculiar in another way: It is nonconservative. Recall that  
a force is conservative if it does no net work on a particle moving around a closed 
path. “Uphills” are balanced by “downhills.” We can associate a potential energy with 
a conservative force, hence we have gravitational potential energy for the conservative 
gravitational force and electric potential energy for the conservative electric force of 
charges (a Coulomb electric field).

But a charge moving around a closed path in the induced electric field of Figure 30.30 
is always being pushed in the same direction by the electric force F

u
= qE

u
. There’s never 

any negative work to balance the positive work, so the net work done in going around 
a closed path is not zero. Because it’s nonconservative, we cannot associate an electric 
potential with an induced electric field. Only the Coulomb field of charges has an  
electric potential.

However, we can associate the induced field with the emf of Faraday’s law. The 
emf was defined as the work required per unit charge to separate the charge. That is,

 E =
W
q

 (30.20)

IIInduced
current

Conducting loop

Region of 
increasing B

(a)

(b) Region of 
increasing B

u

u

Induced
electric field E

u

E
u

E
u

E
u

E
u

FIGURE 30.30 An induced electric field 
creates a current in the loop.

A Coulomb electric field
is created by charges.

A non-Coulomb electric field
is created by a changing
magnetic field.

B increasing or decreasing
u

E
u

E
u

E
u

E
u

FIGURE 30.31 Two ways to create an 
electric field.
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30.6 Induced Fields 905

In batteries, a familiar source of emf, this work is done by chemical forces. But the 
emf that appears in Faraday’s law arises when work is done by the force of an induced 
electric field.

If a charge q moves through a small displacement d  su, the small amount of work 
done by the electric field is dW = F

u # d  su = qE
u # d  su. The emf of Faraday’s law is an  

emf around a closed curve through which the magnetic flux Φm is changing. The work  
done by the induced electric field as charge q moves around a closed curve is

 Wclosed curve = qC E
u # d  su (30.21)

where the integration symbol with the circle is the same as the one we used in Ampère’s 
law to indicate an integral around a closed curve. If we use this work in Equa tion  30.20,  
we find that the emf around a closed loop is

 E =
Wclosed curve

q
= C E

u # d  su (30.22)

If we restrict ourselves to situations such as Figure 30.30 where the loop is perpendic-
ular to the magnetic field and only the field is changing, we can write Faraday’s law as  
E = 0 dΦm/dt 0 = A 0 dB/dt 0 . Consequently

 C E
u # d  su = A ` dB

dt
`  (30.23)

Equation 30.23 is an alternative statement of Faraday’s law that relates the induced 
electric field to the changing magnetic field.

The solenoid in FIGURE 30.32a provides a good example of the connection between E
u
  

and B
u
. If there were a conducting loop inside the solenoid, we could use Lenz’s law to 

determine that the direction of the induced current would be clockwise. But Faraday’s 
law, in the form of Equation 30.23, tells us that an induced electric field is present 
whether there’s a conducting loop or not. The electric field is induced simply due to 
the fact that B

u
 is changing.

It’s likely that you’ve charged your 
phone—or seen others doing so—simply 
by placing it on a flat charging pad. This 
is inductive charging, which makes use of 
Faraday’s law. The base unit drives an os
cillating current through a large, flat coil, 
generating an oscillating magnetic field 
perpendicular to the flat pad. The chang
ing flux through a smaller coil inside 
your phone then induces a current that 
recharges the battery. The widely used 
Qi standard (the Chinese word for “vital 
energy,” pronounced chee) uses a fre
quency of 110–250 KHz for a 5 W system 
and a higher frequency of 300 kHz for 
newer 15 W fastcharging systems. The 
efficiency—the ratio of charging power 
to consumed power—is only about 50%, 
considerably less than the nearperfect 
efficiency of a plugin charger.

u
B increasing

u
Induced E

u
Induced E

(b) The induced electric field 
circulates around the magnetic 
field lines.

r

(c)

Integration
curve

Top view into the solenoid.
B is coming out of the figure.

ds
u

ds
u

u

E
u

E
u

E
u

E
u

u
B increasing

(a) The current through the 
solenoid is increasing.

Increasing
current

I

FIGURE 30.32 The induced electric field circulates around the changing magnetic field inside 
a solenoid.

The shape and direction of the induced electric field have to be such that it could 
drive a current around a conducting loop, if one were present, and it has to be consistent  
with the cylindrical symmetry of the solenoid. The only possible choice, shown in  
FIGURE 30.32b, is an electric field that circulates clockwise around the magnetic field 
lines.

   NOTE    Circular electric field lines violate the Chapter 23 rule that electric field lines 
have to start and stop on charges. However, that rule applied only to Coulomb fields 
created by source charges. An induced electric field is a non-Coulomb field created 
not by source charges but by a changing magnetic field. Without source charges, 
induced electric field lines must form closed loops.
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906 CHAPTER 30 Electromagnetic Induction

To use Faraday’s law, choose a clockwise circle of radius r as the closed curve for 
evaluating the integral. FIGURE 30.32c shows that the electric field vectors are every-
where tangent to the curve, so the line integral of E

u
 is

 C E
u # d  su = El = 2prE (30.24)

where l = 2pr is the length of the closed curve. This is exactly like the integrals we 
did for Ampère’s law in Chapter 29.

If we stay inside the solenoid 1r 6 R2, the flux passes through area A = pr2 and 
Equation 30.24 becomes

 C E
u # d  su = 2prE = A ` dB

dt
` = pr2 ` dB

dt
`  (30.25)

Thus the strength of the induced electric field inside the solenoid is

 Einside =
r
2

 ` dB
dt

`  (30.26)

This result shows very directly that the induced electric field is created by a changing 
magnetic field. A constant B

u
, with dB/dt = 0, would give E = 0.

A 4.0-cm-diameter solenoid is wound with 2000 turns per meter. 
The current through the solenoid oscillates at 60 Hz with an am-
plitude of 2.0 A. What is the maximum strength of the induced 
electric field inside the solenoid?

MODEL Assume that the magnetic field inside the solenoid is  
uniform.

VISUALIZE The electric field lines are concentric circles around  
the magnetic field lines, as was shown in Figure 30.32b. They  
reverse direction twice every period as the current oscillates.

SOLVE You learned in Chapter 29 that the magnetic field strength 
inside a solenoid with n turns per meter is B = m

 0 nI. In this case, 
the current through the solenoid is I = I0 sin vt, where I0 = 2.0 A  
is the peak current and v = 2p160 Hz2 = 377 rad/s. Thus the  

induced electric field strength at radius r is

E =
r
2

 ` dB
dt

` =
r
2

 
d
dt

 1m
 0 nI0 sin vt2 = 1

2 m
 0 nrvI0 cos vt

The field strength is maximum at maximum radius 1r = R2 and at 
the instant when cos vt = 1. That is,

Emax = 1
2 m

 0 nRvI0 = 0.019 V/m

REVIEW This field strength, although not large, is similar to the 
field strength that the emf of a battery creates in a wire. Hence 
this induced electric field can drive a substantial induced current 
through a conducting loop if a loop is present. But the induced 
electric field exists inside the solenoid whether or not there is a 
conducting loop.

EXAMPLE 30.10 ■ An induced electric field

Occasionally it is useful to have a version of Faraday’s law without the absolute 
value signs. The essence of Lenz’s law is that the emf E opposes the change in Φm. 
Mathematically, this means that E must be opposite in sign to dB/dt. Consequently, we 
can write Faraday’s law as

 E = C E
u # d  su = -  

dΦm

dt
 (30.27)

For practical applications, it’s always easier to calculate just the magnitude of the 
emf with Faraday’s law and to use Lenz’s law to find the direction of the emf or the 
induced current. However, the mathematically rigorous version of Faraday’s law in 
Equation  30.27 will prove to be useful when we combine it with other equations, in 
Chapter 31, to predict the existence of electromagnetic waves.

Maxwell’s Theory of Electromagnetic Waves
In 1855, less than two years after receiving his undergraduate degree, the Scottish 
physicist James Clerk Maxwell presented a paper titled “On Faraday’s Lines of Force.” 
In this paper, he began to sketch out how Faraday’s pictorial ideas about fields could 
be given a rigorous mathematical basis. Maxwell was troubled by a certain lack of 
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symmetry. Faraday had found that a changing magnetic field creates an induced electric  
field, a non-Coulomb electric field not tied to charges. But what, Maxwell began to  
wonder, about a changing electric field?

To complete the symmetry, Maxwell proposed that a changing electric field creates 
an induced magnetic field, a new kind of magnetic field not tied to the existence 
of currents. FIGURE 30.33 shows a region of space where the electric field is increasing.  
This region of space, according to Maxwell, is filled with a pinwheel pattern  
of induced magnetic fields. The induced magnetic field looks like the induced electric 
field, with E

u
 and B

u
 interchanged, except that—for technical reasons explored in the 

next chapter—the induced B
u
 points the opposite way from the induced E

u
. Although 

there was no experimental evidence that induced magnetic fields existed, Maxwell 
went ahead and included them in his electromagnetic field theory. This was an  
inspired hunch, soon to be vindicated.

Maxwell soon realized that it might be possible to establish self-sustaining electric 
and magnetic fields that would be entirely independent of any charges or currents. 
That is, a changing electric field E

u
 creates a magnetic field B

u
, which then changes in 

just the right way to recreate the electric field, which then changes in just the right way 
to again recreate the magnetic field, and so on. The fields are continually recreated  
through electromagnetic induction without any reliance on charges or currents.

Maxwell was able to predict that electric and magnetic fields would be able to sustain 
themselves, free from charges and currents, if they took the form of an electromagnetic 
wave. The wave would have to have a very specific geometry, shown in FIGURE 30.34, in 
which E

u
 and B

u
 are perpendicular to each other as well as perpendicular to the direction  

of travel. That is, an electromagnetic wave would be a transverse wave.
Furthermore, Maxwell’s theory predicted that the wave would travel with speed

vem wave =
12P0 m

 0

where P0 is the permittivity constant from Coulomb’s law and m
 0 is the permeability 

constant from the law of Biot and Savart. Maxwell computed that an electromagnetic 
wave, if it existed, would travel with speed vem wave = 3.00 * 108 m/s.

We don’t know Maxwell’s immediate reaction, but it must have been both shock 
and excitement. His predicted speed for electromagnetic waves, a prediction that came 
directly from his theory, was none other than the speed of light! This agreement could 
be just a coincidence, but Maxwell didn’t think so. Making a bold leap of imagination, 
Maxwell concluded that light is an electromagnetic wave.

It took 25 more years for Maxwell’s predictions to be tested. In 1886, the German 
physicist Heinrich Hertz discovered how to generate and transmit radio waves. Two years 
later, in 1888, he was able to show that radio waves travel at the speed of light. Maxwell, 
unfortunately, did not live to see his triumph. He had died in 1879, at the age of 48.

30.7 Induced Currents: Three Applications
There are many applications of Faraday’s law and induced currents in modern technol-
ogy. In this section we will look at three: generators, transformers, and metal detectors.

Generators
A generator is a device that transforms mechanical energy into electric energy.  
FIGURE  30.35 on the next page shows a generator in which a coil of wire, perhaps spun 
by a windmill, rotates in a magnetic field. Both the field and the area of the loop are 
constant, but the magnetic flux through the loop changes continuously as the loop 
rotates. The induced current is removed from the rotating loop by brushes that press 
up against rotating slip rings.

The flux through the coil is

 Φm = A
u # B

u
= AB cos u = AB cos vt (30.28)

A changing electric field creates
an induced magnetic field.

Induced
magnetic field B

uRegion of
increasing E

u

A generator inside a hydroelectric dam 
uses electromagnetic induction to con
vert the mechanical energy of a spinning 
turbine into electric energy.

A changing magnetic field creates
an induced electric field.

Induced
electric field E

uRegion of
increasing B

u

FIGURE 30.33 Maxwell hypothesized the 
existence of induced magnetic fields.

x

y

z

Direction of propagation
at speed vem wave

B
u

E
u B

u

E
u

B
u

E
u

B
u E

u

FIGURE 30.34 A selfsustaining 
electromagnetic wave.

M30_KNIG8221_05_GE_C30.indd   907 31/05/2022   15:58



908 CHAPTER 30 Electromagnetic Induction

where v is the angular frequency 1v = 2pf 2 with which the coil rotates. The induced 
emf is given by Faraday’s law,

 Ecoil = -N  
dΦm

dt
= -ABN  

d
dt

 1cos vt2 = vABN sin vt (30.29)

where N is the number of turns on the coil. Here it’s best to use the signed version of 
Faraday’s law to see how Ecoil alternates between positive and negative.

Because the emf alternates in sign, the current through resistor R alternates back 
and forth in direction. Hence the generator of Figure 30.35 is an alternating-current 
generator, producing what we call an AC voltage.

B
u

I

R

I

I

Slip rings

Brushes
 0  t

E

I

The induced emf
as a function of time

N S

FIGURE 30.35 An alternatingcurrent generator.

A coil with area 2.0 m2 rotates in a 0.010 T magnetic field at a 
frequency of 60 Hz. How many turns are needed to generate a peak 
voltage of 160 V?

SOLVE The coil’s maximum voltage is found from Equation 30.29:

Emax = vABN = 2pfABN

The number of turns needed to generate Emax = 160 V is

N =
Emax 

2pfAB
=

160 V

2p160 Hz212.0 m2210.010 T2 = 21 turns

REVIEW A 0.010 T field is modest, so you can see that generating 
large voltages is not difficult with large 12 m22 coils. Commercial 
generators use water flowing through a dam, rotating windmill 
blades, or turbines spun by expanding steam to rotate the generator 
coils. Work is required to rotate the coil, just as work was required 
to pull the slide wire in Section 30.2, because the magnetic field  
exerts retarding forces on the currents in the coil. Thus a generator 
is a device that turns motion (mechanical energy) into a current 
(electric energy). A generator is the opposite of a motor, which turns  
a current into motion.

EXAMPLE 30.11 ■ An AC generator

Transformers
FIGURE 30.36 shows two coils wrapped on an iron core. The left coil is called the 
 primary coil. It has N1 turns and is driven by an oscillating voltage V1 cos vt. The 
magnetic field of the primary follows the iron core and passes through the right coil, 
which has N2 turns and is called the secondary coil. The alternating current through 
the primary coil causes an oscillating magnetic flux through the secondary coil and, 
hence, an induced emf. The induced emf of the secondary coil is delivered to the load 
as the oscillating voltage V2 cos vt.

The changing magnetic field inside the iron core is inversely proportional to the 
number of turns on the primary coil: B ∝ 1/N1. (This relation is a consequence of the 
coil’s inductance, an idea discussed in the next section.) According to Faraday’s law, 
the emf induced in the secondary coil is directly proportional to its number of turns: 

The magnetic field
follows the iron core.

Iron core
Primary coil
N1 turns

Secondary coil
N2 turns

Load

V2 cosvtV1 cosvt

FIGURE 30.36 A transformer.
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Esec ∝ N2. Combining these two proportionalities, the secondary voltage of an ideal 
transformer is related to the primary voltage by

 V2 =
N2

N1
 V1 (30.30)

Depending on the ratio N2 /N1, the voltage V2 across the load can be transformed to a  
higher or a lower voltage than V1. Consequently, this device is called a transformer. 
Transformers are widely used in the commercial generation and transmission of  
electricity. A step-up transformer, with N2 W N1, boosts the voltage of a generator up 
to several hundred thousand volts. Delivering power with smaller currents at higher 
voltages reduces losses due to the resistance of the wires. High-voltage transmission 
lines carry electric power to urban areas, where step-down transformers 1N2 V N12 
lower the voltage to 120 V.

Metal Detectors
Metal detectors, such as those used in airports for security, seem fairly mysterious.  
How can they detect the presence of any metal—not just magnetic materials such 
as iron—but not detect plastic or other materials? Metal detectors work because of 
induced currents.

A metal detector, shown in FIGURE 30.37, consists of two coils: a transmitter coil and 
a receiver coil. A high-frequency alternating current in the transmitter coil generates 
an alternating magnetic field along the axis. This magnetic field creates a changing 
flux through the receiver coil and causes an alternating induced current. The transmi-
tter and receiver are similar to a transformer.

Suppose a piece of metal is placed between the transmitter and the receiver. The 
alternating magnetic field through the metal induces eddy currents in a plane parallel to 
the transmitter and receiver coils. The receiver coil then responds to the superposition of 
the transmitter’s magnetic field and the magnetic field of the eddy currents. Because the 
eddy currents attempt to prevent the flux from changing, in accordance with Lenz’s law, 
the net field at the receiver decreases when a piece of metal is inserted between the coils. 
Electronic circuits detect the current decrease in the receiver coil and set off an alarm.  
Eddy currents can’t flow in an insulator, so this device detects only metals.

30.8 Inductors
Capacitors are useful circuit elements because they store potential energy UC in the 
electric field. Similarly, a coil of wire can be a useful circuit element because it stores 
energy in the magnetic field. In circuits, a coil is called an inductor because, as you’ll 
see, the potential difference across an inductor is an induced emf. An ideal inductor is 
one for which the wire forming the coil has no electric resistance. The circuit symbol 

for an inductor is .
We define the inductance L of a coil to be its flux-to-current ratio:

 L =
Φm

I
 (30.31)

Strictly speaking, this is called self-inductance because the flux we’re considering is 
the magnetic flux the solenoid creates in itself when there is a current. The SI unit of 
inductance is the henry, named in honor of Joseph Henry, defined as

1 henry = 1 H K 1 Wb/A = 1 T m2/A

Practical inductances are typically millihenries 1mH2 or microhenries 1mH2.
It’s not hard to find the inductance of a solenoid. In Chapter 29 we found that the 

magnetic field inside an ideal solenoid having N turns and length l is

B =
m

 0 NI

l

Transformers are essential for transport
ing electric energy from the power plant 
to cities and homes.

Metal

Transmitter coil

Receiver coil

Eddy currents in the metal
reduce the induced current
in the receiver coil.

Induced current due
to the transmitter coil

Induced current
due to eddy currents

FIGURE 30.37 A metal detector.
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910 CHAPTER 30 Electromagnetic Induction

The magnetic flux through one turn of the coil is Φper  turn = AB, where A is the cross- 
section area of the solenoid. The total magnetic flux through all N turns is

 Φm = N Φper  turn =
m

 0 N2A

l
 I (30.32)

Thus the inductance of a solenoid, using the definition of Equation 30.31, is

 Lsolenoid =
Φm

I
=

m
 0 N2A

l
 (30.33)

The inductance of a solenoid depends only on its geometry, not at all on the current. You 
may recall that the capacitance of two parallel plates depends only on their geometry, not  
at all on their potential difference.

An inductor is made by tightly wrapping 0.30-mm-diameter wire 
around a 4.0-mm-diameter cylinder. What length cylinder has an 
inductance of 10 mH?

SOLVE The cross-section area of the solenoid is A = pr2. If the 
wire diameter is d, the number of turns of wire on a cylinder of 
length l is N = l/d. Thus the inductance is

L =
m

 0 N 2A

l
=

m
 0 1l/d22pr2

l
=

m
 0 pr2l

d2

The length needed to give inductance L = 1.0 * 10-5 H is

  l =
d2L

m
 0 pr2 =

10.00030 m22 11.0 * 10-5 H2
11.26 * 10-6 T m/A2p10.0020 m22

  = 0.057 m = 5.7 cm

EXAMPLE 30.12 ■ The length of an inductor

The Potential Difference Across an Inductor
An inductor is not very interesting when the current through it is steady. If the inductor  
is ideal, with R = 0 Ω, the potential difference due to a steady current is zero. Inductors 
become important circuit elements when currents are changing. FIGURE 30.38a 
shows a steady current into the left side of an inductor. The solenoid’s magnetic field  
passes through the coils of the solenoid, establishing a flux.

In FIGURE 30.38b, the current into the solenoid is increasing. This creates an increasing 
flux to the left. According to Lenz’s law, an induced current in the coils will oppose this 
increase by creating an induced magnetic field pointing to the right. This requires the 
induced current to be opposite the current into the solenoid. This induced current will 
carry positive charge carriers to the left until a potential difference is established across  
the solenoid.

You saw a similar situation in Section 30.2. The induced current in a conductor  
moving through a magnetic field carried positive charge carriers to the top of the wire and  
established a potential difference across the conductor. The induced current in the  
moving wire was due to magnetic forces on the moving charges. Now, in Figure  30.38b, 
the induced current is due to the non-Coulomb electric field induced by the changing 
magnetic field. Nonetheless, the outcome is the same: a potential difference across  
the conductor.

We can use Faraday’s law to find the potential difference. The emf induced in a 
coil is

 Ecoil = N `
dΦper turn

dt
` = ` dΦm

dt
`  (30.34)

where Φm = N Φper turn is the total flux through all the coils. The inductance was defined  
such that Φm = LI, so Equation 30.34 becomes

 Ecoil = L ` dI
dt

`  (30.35)

(b)

∆VL
Increasing

current

The induced magnetic
field opposes the
change in flux.

The induced current carries positive
charge carriers to the left and establishes
a potential difference across the inductor.

The induced current
is opposite the
solenoid current.

B
u

Current I

Inductor coil(a)

Solenoid
magnetic
field

FIGURE 30.38 Increasing the current 
through an inductor.
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The induced emf is directly proportional to the rate of change of current through the 
coil. We’ll consider the appropriate sign in a moment, but Equation 30.35 gives us  
the size of the potential difference that is developed across a coil as the current through 
the coil changes. Note that Ecoil = 0 for a steady, unchanging current.

FIGURE 30.39 shows the same inductor, but now the current (still in to the left side) is 
decreasing. To oppose the decrease in flux, the induced current is in the same direction 
as the input current. The induced current carries charge to the right and establishes a  
potential difference opposite that in Figure 30.38b.

   NOTE    Notice that the induced current does not oppose the current through the 
inductor, which is from left to right in both Figures 30.38 and 30.39. Instead, in 
accordance with Lenz’s law, the induced current opposes the change in the current 
in the solenoid. The practical result is that it is hard to change the current through an 
inductor. Any effort to increase or decrease the current is met with opposition in the 
form of an opposing induced current. You can think of the current in an inductor as 
having inertia, trying to continue what it was doing without change.

Before we can use inductors in a circuit we need to establish a rule about signs that 
is consistent with our earlier circuit analysis. FIGURE 30.40 first shows current I passing  
through a resistor. You learned in Chapter 28 that the potential difference across  
a resistor is ∆Vres = - ∆VR = -IR, where the minus sign indicates that the potential 
decreases in the direction of the current.

We’ll use the same convention for an inductor. The potential difference across an 
inductor, measured along the direction of the current, is

 ∆VL = -L 
dI
dt

 (30.36)

If the current is increasing 1dI/dt 7 02, the input side of the inductor is more positive 
than the output side and the potential decreases in the direction of the current 1  ∆VL 6 02. 
This was the situation in Figure 30.38b. If the current is decreasing 1dI/dt 6 02, the 
input side is more negative and the potential increases in the direction of the current  
1  ∆VL 7 02. This was the situation in Figure 30.39.

The potential difference across an inductor can be very large if the current changes 
very abruptly 1large dI/dt2. FIGURE 30.41 shows an inductor connected across a battery. 
There is a large current through the inductor, limited only by the internal resistance 
of the battery. Suppose the switch is suddenly opened. A very large induced voltage  
is created across the inductor as the current rapidly drops to zero. This potential  
difference 1plus ∆Vbat 2 appears across the gap of the switch as it is opened. A large 
potential difference across a small gap often creates a spark.

Decreasing
current

Induced current

The induced current carries
positive charge carriers to the right.
The potential difference is opposite
that of Figure 30.38b.

Induced field

∆VL

FIGURE 30.39 Decreasing the current 
through an inductor.

∆Vres = - IR

I

The potential
always decreases.

Resistor Inductor

∆VL = -L

I

The potential decreases if
the current is increasing.

The potential increases if
the current is decreasing.  

dI

dt

FIGURE 30.40 The potential difference 
across a resistor and an inductor.

Before switch opened

Switch closed

∆Vbat I

As switch opened

Opening
Spark!

∆Vbat I ∆VL = -L is very large.

The current decreases
rapidly after the
switch opens.

dI

dt

FIGURE 30.41 Creating sparks.

Indeed, this is exactly how the spark plugs in your car work. The car’s generator sends 
a current through the coil, which is a big inductor. When a switch is suddenly opened, 
breaking the current, the induced voltage, typically a few thousand volts, appears across 
the terminals of the spark plug, creating the spark that ignites the gasoline. Older cars 
use a distributor to open and close an actual switch; more recent cars have electronic  
ignition in which the mechanical switch has been replaced by a transistor.
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912 CHAPTER 30 Electromagnetic Induction

Energy in Inductors and Magnetic Fields
Recall that electric power is Pelec = I ∆V. As current passes through an inductor, for 
which ∆VL = -L1dI/dt2, the electric power is

 Pelec = I ∆VL = -LI  
dI
dt

 (30.37)

Pelec is negative because a circuit with an increasing current is losing electric energy. 
That energy is being transferred to the inductor, which is storing energy UL at the rate

 
dUL

dt
= +LI  

dI
dt

 (30.38)

where we’ve noted that power is the rate of change of energy.
We can find the total energy stored in an inductor by integrating Equation 30.38 

from I = 0, where UL = 0, to a final current I. Doing so gives

 UL = L3
I

0
I dI = 1

2 LI 2 (30.39)

The potential energy stored in an inductor depends on the square of the current through 
it. Notice the analogy with the energy UC = 1

2 C1∆V22 stored in a capacitor.
In working with circuits we say that the energy is “stored in the inductor.” Strictly 

speaking, the energy is stored in the inductor’s magnetic field, analogous to how a 
capacitor stores energy in the electric field. We can use the inductance of a solenoid, 
Equation 30.33, to relate the inductor’s energy to the magnetic field strength:

 UL = 1
2 LI 2 =

m
 0 N2A

2l
 I 2 =

1
2m

 0
 Al1m 0 NI

l 22

 (30.40)

We made the last rearrangement in Equation 30.40 because m
 0 NI/l is the magnetic 

field inside the solenoid. Thus

 UL =
1

2m
 0

 AlB2 (30.41)

A 1.0 A current passes through a 10 mH inductor coil. What  
potential difference is induced across the coil if the current drops 
to zero in 5.0 ms?

MODEL Assume this is an ideal inductor, with R = 0 Ω, and that 
the current decrease is linear with time.

SOLVE The rate of current decrease is

dI
dt

≈
∆I
∆t

=
-1.0 A

5.0 * 10-6 s
= -2.0 * 105 A/s

The induced voltage is

∆VL = -L 
dI
dt

≈ -10.010 H21-2.0 * 105 A/s2 = 2000 V

REVIEW Inductors may be physically small, but they can pack a 
punch if you try to change the current through them too quickly.

EXAMPLE 30.13 ■ Large voltage across an inductor

STOP TO THINK 30.6 The potential at 1 is higher than the 
potential at 2. Which of the following statements about the 
inductor current I could be true?

a. I is from 1 to 2 and steady. b. I is from 1 to 2 and increasing.
c. I is from 1 to 2 and decreasing. d. I is from 2 to 1 and steady.
e. I is from 2 to 1 and increasing. f. I is from 2 to 1 and decreasing.

1 2
V1 7 V2

Energy in electric and magnetic fields

Electric fields Magnetic fields

A capacitor  
stores energy

An inductor  
stores energy

UC = 1
2 C1 ∆V 22 UL = 1

2 LI 2

Energy density  
in the field is

Energy density  
in the field is

uE =
P0

2
 E2 uB =

1
2m

 0
 B2
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30.9 LC Circuits 913

But Al is the volume inside the solenoid. Dividing by Al, the magnetic field energy 
density inside the solenoid (energy per m3) is

 uB =
1

2m
 0

 B2 (30.42)

We’ve derived this expression for energy density based on the properties of a solenoid, 
but it turns out to be the correct expression for the energy density anywhere there’s a 
magnetic field. Compare this to the energy density of an electric field uE = 1

2 P0 E2 that 
we found in Chapter 26.

The 10 mH inductor of Example 30.12 was 5.7 cm long and 4.0 mm  
in diameter. Suppose it carries a 100 mA current. What are the  
energy stored in the inductor, the magnetic energy density, and the 
magnetic field strength?

SOLVE The stored energy is

UL = 1
2 LI 2 = 1

2 11.0 * 10-5 H210.10 A22 = 5.0 * 10-8 J

The solenoid volume is 1pr22l = 7.16 * 10-7 m3. Using this gives 
the energy density of the magnetic field:

uB =
5.0 * 10-8 J

7.16 * 10-7 m3 = 0.070 J/m3

From Equation 30.42, the magnetic field with this energy density is

B = 22m
 0 uB = 4.2 * 10-4 T

EXAMPLE 30.14 ■ Energy stored in an inductor

30.9 LC Circuits
Telecommunication—radios, televisions, cell phones—is based on electromagnetic 
signals that oscillate at a well-defined frequency. These oscillations are generated and 
detected by a simple circuit consisting of an inductor and a capacitor. This is called an  
LC circuit. In this section we will learn why an LC circuit oscillates and determine 
the oscillation frequency.

FIGURE 30.42 shows a capacitor with initial charge Q0, an inductor, and a switch. 
The switch has been open for a long time, so there is no current in the circuit. Then, 
at t = 0, the switch is closed. How does the circuit respond? Let’s think it through 
qualitatively before getting into the mathematics.

As FIGURE 30.43 shows, the inductor provides a conducting path for discharging the 
capacitor. However, the discharge current has to pass through the inductor, and, as 
we’ve seen, an inductor resists changes in current. Consequently, the current doesn’t 
stop when the capacitor charge reaches zero.

Switch closes at t = 0.

Initial
charge Q0

C L

FIGURE 30.42 An LC circuit.

A B

CD

Q = +Q0

I = 0

v = 0

Maximum capacitor charge is
like a fully stretched spring.

The capacitor discharges
until the current is
a maximum.

Now the discharge goes
in the opposite direction. 

The current continues until the capacitor is 
fully recharged with opposite polarization.

The current continues until the
initial capacitor charge is restored. 

Q = 0

Max I

Max v

Maximum current is like the 
block having maximum speed.

Q = -Q0

I = 0

v = 0

Q = 0
Max I 

Max v

I

I

Analogy: 

B
u

B
u

FIGURE 30.43 The capacitor charge oscillates much like a block attached to a spring.
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914 CHAPTER 30 Electromagnetic Induction

A block attached to a stretched spring is a useful mechanical analogy. Closing the 
switch to discharge the capacitor is like releasing the block. The block doesn’t stop 
when it reaches the origin; its inertia keeps it going until the spring is fully compressed. 
Likewise, the current continues until it has recharged the capacitor with the opposite 
polarization. This process repeats over and over, charging the capacitor first one way,  
then the other. That is, the charge and current oscillate.

The goal of our circuit analysis will be to find expressions showing how the  
capacitor charge Q and the inductor current I change with time. As always, our starting  
point for circuit analysis is Kirchhoff’s voltage law, which says that all the potential 
differences around a closed loop must sum to zero. Choosing a cw direction for I, 
Kirchhoff’s law is

 ∆VC + ∆VL = 0 (30.43)

The potential difference across a capacitor is ∆VC = Q/C, and we found the potential 
difference across an inductor in Equation 30.36. Using these, Kirchhoff’s law becomes

 
Q

C
- L 

dI
dt

= 0 (30.44)

Equation 30.44 has two unknowns, Q and I. We can eliminate one of the unknowns by 
finding another relation between Q and I. Current is the rate at which charge moves, 
I = dq/dt, but the charge flowing through the inductor is charge that was removed 
from the capacitor. That is, an infinitesimal charge dq flows through the inductor when 
the capacitor charge changes by dQ = -dq. Thus the current through the inductor is  
related to the charge on the capacitor by

 I = -
dQ

dt
 (30.45)

Now I is positive when Q is decreasing, as we would expect. This is a subtle but important  
step in the reasoning.

Equations 30.44 and 30.45 are two equations in two unknowns. To solve them, 
we’ll first take the time derivative of Equation 30.45:

 
dI
dt

=
d
dt

 1-  
dQ

dt 2 = -
d2Q

dt2  (30.46)

We can substitute this result into Equation 30.44:

 
Q

C
+ L 

d2Q

dt2 = 0 (30.47)

Now we have an equation for the capacitor charge Q.
Equation 30.47 is a second-order differential equation for Q. Fortunately, it is an 

equation we’ve seen before and already know how to solve. To see this, we rewrite 
Equation 30.47 as

 
d2Q

dt2 = -
1

LC
 Q (30.48)

Recall, from Chapter 15, that the equation of motion for an undamped mass on a 
spring is

 
d2x

dt2 = -
k
m

 x (30.49)

Equation 30.48 is exactly the same equation, with x replaced by Q and k/m replaced by 
1/LC. This should be no surprise because we’ve already seen that a mass on a spring is 
a mechanical analog of the LC circuit.

A cell phone is actually a very  
sophisticated twoway radio that  
communicates with the nearest base 
station via highfrequency radio waves—
roughly 1000 MHz. As in any radio or 
communications device, the transmission 
frequency is established by the oscillating 
current in an LC circuit.
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30.10 LR Circuits 915

We know the solution to Equation 30.49. It is simple harmonic motion x1t2 =  x0 cos vt 
with angular frequency v = 1k/m. Thus the solution to Equation 30.48 must be

 Q1t2 = Q0 cos vt (30.50)

where Q0 is the initial charge, at t = 0, and the angular frequency is

 v = B 1
LC

 (30.51)

The charge on the upper plate of the capacitor oscillates back and forth between +Q0 
and -Q0 (the opposite polarization) with period T = 2p/v.

As the capacitor charge oscillates, so does the current through the inductor. Using 
Equation 30.45 gives the current through the inductor:

 I = -
dQ

dt
= vQ0 sin vt = Imax sin vt (30.52)

where Imax = vQ0 is the maximum current.
An LC circuit is an electric oscillator, oscillating at frequency f = v/2p.  

FIGURE 30.44 shows graphs of the capacitor charge Q and the inductor current I as 
functions of time. Notice that Q and I are 90° out of phase. The current is zero  
when the capacitor is fully charged, as expected, and the charge is zero when the 
current is maximum.

You have a 1.0 mH inductor. What capacitor should you choose to 
make an oscillator with a frequency of 920 kHz? (This frequency  
is near the center of the AM radio band.)

SOLVE The angular frequency is v = 2pf = 5.78 * 106 rad/s.  
Using Equation 30.51 for v gives the required capacitor:

C =
1

v2L
= 3.0 * 10-11 F = 30 pF

EXAMPLE 30.15 ■ An AM radio oscillator

The letters match the stages
shown in Figure 30.43.

A B C D A B C

-Q0

0

Q0

Capacitor
charge Q

- Imax

0

Imax

t

t

Inductor
current I

FIGURE 30.44 The oscillations of an LC 
circuit.

An LC circuit, like a mass on a spring, wants to respond only at its natural oscillation  
frequency v = 1/1LC . In Chapter 15 we defined a strong response at the natural 
 frequency as a resonance, and resonance is the basis for all telecommunications. The 
input circuit in radios, televisions, and cell phones is an LC circuit driven by the signal  
picked up by the antenna. This signal is the superposition of hundreds of sinusoidal 
waves at different frequencies, one from each transmitter in the area, but the circuit 
responds only to the one signal that matches the circuit’s natural frequency. That  
particular signal generates a large-amplitude current that can be further amplified and 
decoded to become the output that you hear.

30.10 LR Circuits
A circuit consisting of an inductor, a resistor, and (perhaps) a battery is called an  
LR circuit. FIGURE 30.45a is an example of an LR circuit. We’ll assume that the switch 
has been in position 1 for such a long time that the current is steady and unchanging. 
There’s no potential difference across the inductor, because dI/dt = 0, so it simply acts 
like a piece of wire. The current flowing around the circuit is determined entirely by 
the battery and the resistor: I0 = ∆V

 bat /R.
What happens if, at t = 0, the switch is suddenly moved to position 2? With the 

battery no longer in the circuit, you might expect the current to stop immediately.  
But the inductor won’t let that happen. The current will continue for some period of 
time as the inductor’s magnetic field drops to zero. In essence, the energy stored in  
the inductor allows it to act like a battery for a short period of time. Our goal is to 
determine how the current decays after the switch is moved.

R

(b)

∆VL

∆Vres

L

I

This is the circuit with the switch
in position 2. The inductor prevents
the current from stopping instantly.

R

(a)

L

2

1

∆Vbat

RI0 = 
 

∆Vbat

The switch has been in this position
for a long time. At t = 0 it is moved
to position 2.

FIGURE 30.45 An LR circuit.
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916 CHAPTER 30 Electromagnetic Induction

   NOTE    It’s important not to open switches in inductor circuits because they’ll spark, 
as Figure 30.41 showed. The unusual switch in Figure 30.45 is designed to make the 
new contact just before breaking the old one.

FIGURE 30.45b shows the circuit after the switch is changed. Our starting point, once 
again, is Kirchhoff’s voltage law. The potential differences around a closed loop must 
sum to zero. For this circuit, Kirchhoff’s law is

 ∆Vres + ∆VL = 0 (30.53)

The potential differences in the direction of the current are ∆Vres = -IR for the resistor 
and ∆VL = -L1dI/dt2 for the inductor. Substituting these into Equation 30.53 gives

 -RI - L  
dI
dt

= 0 (30.54)

We’re going to need to integrate to find the current I as a function of time. Before 
doing so, we rearrange Equation 30.54 to get all the current terms on one side of the 
equation and all the time terms on the other:

 
dI
I

= -
R
L

 dt = -
dt

1L/R2 (30.55)

We know that the current at t = 0, when the switch was moved, was I0. We want to 
integrate from these starting conditions to current I at the unspecified time t. That is,

 3
I

I0

dI
I

= -
1

1L/R23
t

0
 dt (30.56)

Both are common integrals, giving

 ln I `
I

I0

= ln I - ln I0 = ln 1 I
I0
2 = -

t
1L/R2 (30.57)

We can solve for the current I by taking the exponential of both sides, then multi-
plying by I0. Doing so gives I, the current as a function of time:

 I = I0e-t/1L/R2 (30.58)

Notice that I = I0 at t = 0, as expected.
The argument of the exponential function must be dimensionless, so L/R must have 

dimensions of time. If we define the time constant t of the LR circuit to be

 t =
L
R

 (30.59)

then we can write Equation 30.58 as

 I = I0e-t/t (30.60)

The time constant is the time at which the current has decreased to e-1 (about 37%) 
of its initial value. We can see this by computing the current at the time t = t:

 I 1at t = t2 = I0e-t/t = e-1I0 = 0.37I0 (30.61)

Thus the time constant for an LR circuit functions in exactly the same way as the time 
constant for the RC circuit we analyzed in Chapter 29. At time t = 2t, the current has  
decreased to e-2I0, or about 13% of its initial value.

The current is graphed in FIGURE 30.46. You can see that the current decays expo-
nentially. The shape of the graph is always the same, regardless of the specific value 
of the time constant t.0

0

0.13I0

0.37I0

0.50I0

I0

t
3t

I has decreased to
13% of I0 at t = 2t.

I has decreased to 37%
of its initial value at t = t.

Current I

2tt

FIGURE 30.46 The current decay in an LR 
circuit.
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The switch in FIGURE 30.47 has been in position 1 for a long time. It 
is changed to position 2 at t = 0 s.

a. What is the current in the circuit at t = 5.0 ms?

b. At what time has the current decayed to 1% of its initial value?

MODEL This is an LR circuit. We’ll assume ideal wires and an  
ideal inductor.

VISUALIZE The two resistors will be in series after the switch is 
thrown.

SOLVE Before the switch is thrown, while ∆VL = 0, the current is 
I0 = 110 V2/1100 Ω2 = 0.10 A = 100 mA. This will be the initial 

current after the switch is thrown because the current through an 
inductor can’t change instantaneously. The circuit resistance after 
the switch is thrown is R = 200 Ω, so the time constant is

t =
L
R

=
2.0 * 10-3 H

200 Ω
= 1.0 * 10-5 s = 10 ms

a. The current at t = 5.0 ms is

I = I0 e-t/t = 1100 mA2e-15.0 ms2/110 ms2 = 61 mA

b. To find the time at which a particular current is reached we need 
to go back to Equation 30.57 and solve for t:

t = -  
L
R

  ln1 I
I0
2 = -t ln1 I

I0
2

The time at which the current has decayed to 1 mA 11% of I02 is

t = -110 ms2 ln1 1 mA
100 mA2 = 46 ms

REVIEW For all practical purposes, the current has decayed away  
in ≈50 ms. The inductance in this circuit is not large, so a short 
decay time is not surprising.

EXAMPLE 30.16 ■ Exponential decay in an LR circuit

100 Ω

100 Ω 2 mH

2

1

10 V

The switch moves from 1 to 2 at t = 0. 

FIGURE 30.47 The LR circuit of Example 30.16.

STOP TO THINK 30.7 Rank in order, from largest to smallest, the time constants tA, tB, and 
tC of these three circuits.

R

LA

R

R

LB
R

L

R

C

   CHAPTER 30 CHALLENGE EXAMPLE     Induction heating

Induction heating uses induced currents to heat metal objects to 
high temperatures for applications such as surface hardening, braz-
ing, or even melting. To illustrate the idea, consider a copper wire 
formed into a 4.0 cm * 4.0 cm square loop and placed in a mag-
netic field—perpendicular to the plane of the loop—that oscillates 
with 0.010 T amplitude at a frequency of 1000 Hz. What is the 
wire’s initial temperature rise, in °C/min?

MODEL The changing magnetic flux through the loop will induce 
a current that, because of the wire’s resistance, will heat the wire. 
Eventually, when the wire gets hot, heat loss through radiation  
and/or convection will limit the temperature rise, but initially we 
can consider the temperature change due only to the heating by  
the current. Assume that the wire’s diameter is much less than the 
4.0 cm width of the loop.

VISUALIZE FIGURE 30.48 shows the copper loop in the magnetic 
field. The wire’s cross-section area A is unknown, but our assump-
tion of a thin wire means that the loop has a well-defined area L2. 

FIGURE 30.48 A copper wire being heated by induction.

Continued

30.10 LR Circuits 917
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918 CHAPTER 30 Electromagnetic Induction

Values of copper’s resistivity, density, and specific heat were taken 
from tables inside the back cover of the book. We’ve used subscripts 
to distinguish between mass density rmass and resistivity relec, a po-
tentially confusing duplication of symbols.

SOLVE Power dissipation by a current, P = I 2R, heats the wire. As 
long as heat losses are negligible, we can use the heating rate and the 
wire’s specific heat c to calculate the rate of temperature change. Our 
first task is to find the induced current. According to Faraday’s law,

I =
E
R

= -
1
R

 
dΦm

dt
= -

L2

R
 
dB
dt

where R is the loop’s resistance and Φm = L2B is the magnetic flux 
through a loop of area L2. The oscillating magnetic field can be  
written B = B0 cos vt, with B0 = 0.010 T and v = 2p * 1000 Hz =  
6280 rad/s. Thus

dB
dt

= -vB0 sin vt

from which we find that the induced current oscillates as

I =
vB0L2

R
 sin vt

As the current oscillates, the power dissipation in the wire is

P = I 2R =
v2B0 

2L4

R
 sin2vt

The power dissipation also oscillates, but very rapidly in compar-
ison to a temperature rise that we expect to occur over seconds or 
minutes. Consequently, we are justified in replacing the oscillating 
P with its average value Pavg. Recall that the time average of the 
function sin2vt is 1

2, a result that can be proven by integration or 
justified by noticing that a graph of sin2vt oscillates symmetrically 
between 0 and 1. Thus the average power dissipation in the wire is

Pavg =
v2B0 

2L4

2R
 

Recall that power is the rate of energy transfer. In this case, the 
power dissipated in the wire is the wire’s heating rate: dQ/dt = Pavg, 
where here Q is heat, not charge. Using Q = mc ∆T, from thermo-
dynamics, we can write

dQ

dt
= mc 

dT
dt

= Pavg =
v2B0 

2L4

2R

To complete the calculation, we need the mass and resistance 
of the wire. The wire’s total length is 4L, and its cross-section area 
is A. Thus

m = rmassV = 4rmass LA

R =
relec14L2

A
=

4relec L

A

Substituting these into the heating equation, we have

4rmass LAc 
dT
dt

=
v2B0 

2L3A

8relec

Interestingly, the wire’s cross-section area cancels. The wire’s  
temperature initially increases at the rate

dT
dt

=
v2B0 

2L2

32relecrmassc

All the terms on the right-hand side are known. Evaluating, we find

dT
dt

= 3.3 K/s = 200°C/min

REVIEW This is a rapid but realistic temperature rise for a small 
object, although the rate of increase will slow as the object begins 
losing heat to the environment through radiation and/or convec-
tion.  Induction heating can increase an object’s temperature by 
 several hundred degrees in a few minutes.
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Using Electromagnetic Induction
MODEL Make simplifying assumptions.

VISUALIZE Use Lenz’s law to determine the direction of the 
induced current.

SOLVE The induced emf is

E = ` dΦm

dt
`

Multiply by N for an N-turn coil.

The size of the induced current is I = E/R.

REVIEW Is the result reasonable?

Two ways to create an induced current
1. A motional emf is due to magnetic forces 

on moving charge carriers.

E = vlB

2. An induced electric field is due to a  
changing magnetic field.

C E
u # d  su = -

dΦm

dt

LC circuit

Oscillates at v = A 1
LC

LR circuit

Exponential change with t =
L
R

Lenz’s Law
There is an induced current in a closed conducting loop if and  
only if the magnetic flux through the loop is changing.
The direction of the induced current is such that the induced  
magnetic field opposes the change in the flux.

Magnetic flux  

Magnetic flux measures the amount of 
magnetic field passing through a surface.

Φm = A
u # B

u
= AB cos u

Inductors 

Solenoid inductance Lsolenoid =
m

 0 N 2A

l

Potential difference ∆VL = -L 
dI
dt

Energy stored UL = 1
2 LI 2

Magnetic energy density uB =
1

2m
 0

 B2

Faraday’s Law
An emf is induced around a closed loop if the 
magnetic flux through the loop changes.

Magnitude: E = ` dΦm

dt
`

Direction: As given by Lenz’s law

Three ways to change the flux

1. A loop moves into or out of a magnetic field.

v
u

B
u

 
2. The loop changes area or rotates.

3. The magnetic field through the loop increases  
or decreases.

General Principles

Important Concepts

Applications

The goal of Chapter 30 has been to learn what electromagnetic 
induction is and how it is used.

Summary

u
Decreasing B

I

I

A
u

B
u

u

Loop of
area A

v
u

B
u

B
u

In
N

S

l

B
uFB

u

v
u

Increasing B
u

E
u

E
u

C L

LR

M30_KNIG8221_05_GE_C30.indd   919 31/05/2022   15:58



920 CHAPTER 30 Electromagnetic Induction

CONCEPTUAL QUESTIONS

B
u

FIGURE Q30.1

S

N

FIGURE Q30.2

B
u

FIGURE Q30.4 FIGURE Q30.5

N

S

FIGURE Q30.6

NS

FIGURE Q30.7

N S

0

FIGURE Q30.8

electromagnetic induction
induced current
motional emf
generator
eddy current
magnetic flux, Φm

weber, Wb

area vector, A
u

Lenz’s law
induced emf, E
Faraday’s law
induced electric field
Coulomb electric field
non-Coulomb electric field

induced magnetic field
electromagnetic wave
primary coil
secondary coil
transformer
inductor
inductance, L

henry, H
LC circuit
LR circuit
time constant, t

Terms and Notation

1. What is the direction of the induced current in FIGURE Q30.1? 6. FIGURE Q30.6 shows a bar magnet being pushed toward a con-
ducting loop from below, along the axis of the loop.
a. What is the current direction in the loop? Explain.
b. Is there a magnetic force on the loop? If so, in which direction?  

Explain.
Hint: A current loop is a magnetic dipole.

c. Is there a force on the magnet? If so, in which direction?

2. You want to insert a loop of copper wire between the two perma-
nent magnets in FIGURE Q30.2. Is there an attractive magnetic force 
that tends to pull the loop in, like a magnet pulls on a paper clip? Or 
do you need to push the loop in against a repulsive force? Explain.

3. A vertical, rectangular loop of 
copper wire is half in and half 
out of the horizontal magnetic 
field in FIGURE Q30.3. (The field 
is zero beneath the dashed line.) 
The loop is released and starts 
to fall. Is there a net magnetic 
force on the loop? If so, in which  
direction? Explain.

B
u

B
u

Up

DownB = 0
u u

FIGURE Q30.3

4. Does the loop of wire in FIGURE Q30.4 have a clockwise current, 
a counterclockwise current, or no current under the following 
circumstances? Explain.
a. The magnetic field points out of the figure and is increasing.
b. The magnetic field points out of the figure and is constant.
c. The magnetic field points out of the figure and is decreasing.

5. The identical coils, A, B, and C are placed with their planes par-
allel to one another. The coils, A and C, carry currents as shown 
in FIGURE Q30.5. Coils B and C are fixed in position and coil A 
is moved towards B with a uniform motion. Is there any induced 
current in B? If no, give reasons. If yes, what is the direction of 
the induced current?

7. A bar magnet is pushed toward a loop of wire as shown in 
FIGURE  Q30.7. Is there a current in the loop? If so, in which  
direction? If not, why not?

8. FIGURE Q30.8 shows a bar magnet, a coil of wire, and a current 
meter. Is the current through the meter right to left, left to right, 
or zero for the following circumstances? Explain.
a. The magnet is inserted into the coil.
b. The magnet is held at rest inside the coil.
c. The magnet is withdrawn from the left side of the coil.

9. Is the magnetic field strength in FIGURE Q30.9 increas-
ing, decreas ing, or steady? Explain.

B
u

u
Induced E

FIGURE Q30.9

A B C
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Exercises and Problems 921

13. Rank in order, from largest to smallest, the three time constants tA  
to tC for the three circuits in FIGURE Q30.13. Explain.

10. An inductor with a 4.0 A current stores energy. At what current 
will the stored energy be three times as large?

11. a. Can you tell which of the inductors in FIGURE Q30.11 has the 
larger current through it? If so, which one? Explain.

b. Can you tell through which inductor the current is changing 
more rapidly? If so, which one? Explain.

c. If the current enters the inductor from the bottom, can you tell 
if the current is increasing, decreasing, or staying the same? If  
so, which? Explain.

2 H 2 V

I1

1 H 4 V

I2FIGURE Q30.11

R

L L

R

L
Circuit A Circuit B Circuit C

R L

R

FIGURE Q30.13

45°

5 cm

5 cm

10 cm

B
u

FIGURE EX30.4

2.0 T 1.0 T 

20 cm

30 cm

40 cm

FIGURE EX30.5

0.25 T3.0 cm

5.0 cm

FIGURE EX30.7

Solenoid 50°

FIGURE EX30.8

12. An LC circuit oscillates at a frequency of 5 KHz. What will the  
frequency be if the inductance is doubled?

14. For the circuit of FIGURE Q30.14:
a. What is the battery current 

immediately after the switch 
closes? Explain.

b. What is the battery current after 
the switch has been closed a 
long time? Explain.

10 V

5 Ω

5 mH

FIGURE Q30.14

EXERCISES AND PROBLEMS

Problems labeled  integrate material from earlier chapters.

Exercises

Section 30.2 Motional emf

1. | The strength of the earth’s magnetic field is 5.0 * 10-5 T. 
How fast would you have to drive your car to create a motional 
emf of 2.0 V along your radio antenna, which is 1.5 m tall? 
Assume that the motion of the antenna is perpendicular to B

u
.

2. | A 10-cm-long wire is pulled along a U-shaped conducting rail 
in a perpendicular magnetic field. The total resistance of the wire 
and rail is 0.20 Ω. Pulling the wire at a steady speed of 4.0 m/s  
causes 4.0 W of power to be dissipated in the circuit.
a. How big is the pulling force?
b. What is the strength of the magnetic field?

3. | A potential difference of  
0.050 V is developed across the 
10-cm-long wire of FIGURE EX30.3 
as it moves through a magnetic 
field perpendicular to the figure. 
What are the strength and direction 
(in or out) of the magnetic field?

Section 30.3 Magnetic Flux

4. || FIGURE EX30.4 shows a 10 cm *10 cm square bent at a 90° 
angle. A uniform 0.050 T magnetic field points downward at a 
45° angle. What is the magnitude of the magnetic flux through 
the loop?

10 cm

5.0 m/s

FIGURE EX30.3

5. || What is the magnitude of the magnetic flux through the loop 
shown in FIGURE EX30.5?

6. || An equilateral triangle 6.0 cm on a side is in a 2.0 mT  
uniform magnetic field. The magnetic flux through the triangle 
is 2 .0 mWb. What is the angle between the magnetic field and an 
axis perpendicular to the plane of the triangle?

7. | What is the magnitude of the mag-
netic flux through the 8.0-mm-diam-
eter loop shown in FIGURE EX30.7?

8. || FIGURE EX30.8 shows a 3.0-cm-diameter solenoid passing 
through the center of a 8.0-cm-diameter loop. The magnetic field  
inside the solenoid is 0.40 T. What is the magnitude of the  
magnetic flux through the loop when it is perpendicular to the 
solenoid and when it is tilted at a 50° angle?

Section 30.4 Lenz’s Law

9. | A solenoid is wound as 
shown in FIGURE EX30.9. 
a. Is there an induced current 

as magnet 1 is moved away 
from the solenoid? If so, 
what is the current direction 
through resistor R?

b. Is there an induced current 
as magnet 2 is moved away 
from the solenoid? If so, what is the current direction through 
resistor R?

2

1
R

S

N

SN

FIGURE EX30.9
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922 CHAPTER 30 Electromagnetic Induction

16. || A 750-turn coil of wire 2.5 cm in diameter is in a magnetic 
field that increases from 0.20 T to 0.50 T in 15 ms. The axis of 
the coil is parallel to the field. What is the emf of the coil?

17. || A 4.0-cm-diameter coil has 40 turns and a resistance of 
0.30 Ω. A magnetic field perpendicular to the coil is B =
0.050t + 0.020t2, where B is in tesla and t is in seconds.
a. Find an expression for the induced current I1t2 as a function 

of time.
b. Evaluate I at t = 2.0 s and t = 4.0 s.

Section 30.6 Induced Fields

18. | The magnetic field in FIGURE EX30.18 is decreasing at the rate 
0.10 T/s. What is the acceleration (magnitude and direction) of a 
proton initially at rest at points 1 to 4?

10. | There is a cw induced current in the conducting loop shown  
in FIGURE EX30.10. Is the magnetic field inside the loop increasing  
in strength, decreasing in strength, or steady?

I

I

FIGURE EX30.10

0.10 T 

20 cm

60°

FIGURE EX30.11

Isol

FIGURE EX30.12

(a) B increasing
  at 0.50 T/s

FIGURE EX30.13

4.0 cm

20 m/s

B = 0.30 T

FIGURE EX30.14

5.0 cm

5.0 cm

350 mA

FIGURE EX30.15

11. | The metal equilateral triangle in FIGURE EX30.11, 20 cm on 
each side, is halfway into a 0.10 T magnetic field.
a. What is the magnitude of the magnetic flux through the triangle?
b. If the magnetic field strength decreases, what is the direction 

of the induced current in the triangle?
12. | The current in the solenoid of FIGURE EX30.12 is increasing.  

The solenoid is surrounded by a conducting loop. Is there a  
current in the loop? If so, is the loop current cw or ccw?

Section 30.5 Faraday’s Law

13. | FIGURE EX30.13 shows a 10-cm-diameter loop in three differ-
ent magnetic fields. The loop’s resistance is 0.20 Ω. For each, 
what are the size and direction of the induced current?

(c) B decreasing
  at 0.50 T/s

(b) B decreasing
  at 0.50 T/s

14. | The loop in FIGURE EX30.14 is being pushed into the 0.30 T 
magnetic field at 20 m/s. The resistance of the loop is 0.60 Ω. What 
are the direction and the magnitude of the current in the loop?

15. | The resistance of the loop in FIGURE EX30.15 is 0.50 Ω. Is the 
magnetic field strength increasing or decreasing? At what rate 
1T/s2?

1

1 cm

2.0 cm

1 cm 1 cm

2 3 4

FIGURE EX30.18

t (s)

I (A)

0.10.0 0.2 0.3 0.4
0

5

FIGURE EX30.19

19. || FIGURE EX30.19 shows the current as a function of time 
through a 20-cm-long, 4.0-cm-diameter solenoid with 400 turns. 
Draw a graph of the induced electric field strength as a function 
of time at a point 1.0 cm from the axis of the solenoid.

20. || The magnetic field inside a 4.0-cm-diameter solenoid is 3.0 T 
and decreasing at 2.0 T/s. What is the electric field strength inside 
the solenoid at a point (a) on the axis and (b) 1.0 cm from the axis?

21. || A 12-cm-diameter, 1.0-m-long solenoid is wound with 2000 turns 
of superconducting wire. When the magnet is turned on, the current 
increases from 0 to Imax in 2.5 s. At t = 1.0 s, the induced electric 
field midway between the axis and the windings is 7.5 * 10-3 V/m. 
What is the solenoid’s steady magnetic field strength?

Section 30.7 Induced Currents: Three Applications

22. | Electricity is distributed from electrical sub-stations to sur-
rounding neighborhoods at 11,000 V. There is a 60 Hz oscillating 
(AC) voltage. Neighborhood transformers, seen on utility poles, 
step this voltage down to the 110 V, and that is what delivered to 
the houses.
a. How many turns does the primary coil on the transformer 

have if the secondary coil has 200 turns?
b. No energy is lost in an ideal transformer. So, the output power, 

P
 out from the secondary coil equals the input power,Pin to the 

primary coil. Suppose a neighborhood transformer delivers 
240 A at 110 V. What is the current in the 11000 V line from 
the sub-station?

23. | The charger for your electronic devices is a transformer. The 
voltage and frequency of electricity supplied for domestic use 
varies from country to country. Suppose a 50 Hz outlet voltage of 
230 V needs to be reduced to a device voltage of 2.0 V. The side 
of the transformer attached to the electronic device has 50 turns 
of wire. How many turns are on the side that plugs into the outlet?

Section 30.8 Inductors

24. | What is the potential difference across a 20 mH inductor if the 
current through the inductor drops from 250 mA to 75 mA in 15 ms? 
What is the direction of this potential difference? That is, does the 
potential increase or decrease along the direction of the current?

Chapter 30
Electromagnetic Induction

Conceptual Questions

3 f ′  3535.567 Hz 3536 Hz.= ;

 

Exercises and Problems

1. 30.25. 
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Exercises and Problems 923

35. | At t = 0 s, the current in the circuit in FIGURE EX30.35 is I0. 
At what time in ms is the current 12 I0?

36. | The switch in FIGURE EX30.36 has been open for a long time. 
It is closed at t = 0 s.
a. What is the current through the battery immediately after the 

switch is closed?
b. What is the current through the battery after the switch has 

been closed a long time?

25. | The maximum allowable potential difference across a 100 mH  
inductor is 200 V. You need to raise the current through the in-
ductor from 2.0 A to 5.0 A. What is the minimum time needed 
for changing the current?

26. || How much energy is stored in a 5.0-cm-diameter, 15-cm-long 
solenoid that has 300 turns of wire and carries a current of 0.40 A?

27. || A 100 mH inductor whose windings have a resistance of 
4.0 Ω is connected across a 12 V battery having an internal re-
sistance of 2.0 Ω. How much energy is stored in the inductor?

28. | MRI (magnetic resonance imaging) is a medical technique 
that produces detailed “pictures” of the interior of the body. The 
patient is placed into a solenoid that is 40 cm in diameter and 1.0 m  
long. A 100 A current creates a 5.0 T magnetic field inside the 
solenoid. To carry such a large current, the solenoid wires are 
cooled with liquid helium until they become superconducting 
(no electric resistance).
a. How much magnetic energy is stored in the solenoid? Assume 

that the magnetic field is uniform within the solenoid and 
quickly drops to zero outside the solenoid.

b. How many turns of wire does the solenoid have?

Section 30.9 LC Circuits

29. || A 2.0 mH inductor is connected in parallel with a variable  
capacitor. The capacitor can be varied from 100 pF to 200 pF. What  
is the range of oscillation frequencies for this circuit?

30. || An FM radio station broadcasts at a frequency of 100 MHz. 
What inductance should be paired with a 10 pF capacitor to build 
a receiver circuit for this station?

31. || An MRI machine needs to detect signals that oscillate at 
very high frequencies. It does so with an LC circuit containing a  
15 mH coil. To what value should the capacitance be set to detect 
a 450 MHz signal?

32. | The switch in FIGURE EX30.32 has been in position 1 for a 
long time. It is changed to position 2 at t = 0 s.
a. What is the maximum current through the inductor?
b. What is the first time at which the current is maximum?

1 2

2 Ω

2.0 mF 50 mH12 V

FIGURE EX30.32

75 mH

C 2C

FIGURE EX30.33

200 Ω

R

7.5 mH

FIGURE EX30.34

500 Ω

75 mH
750 Ω

FIGURE EX30.35

20 Ω

10 mH

10 V 20 Ω

FIGURE EX30.36

33. || The circuit in FIGURE EX30.33 oscillates at 130 kHz after the 
switch is closed. What is the capacitance C in nF?

Section 30.10 LR Circuits

34. | What value of resistor R gives the circuit in FIGURE EX30.34 a 
time constant of 25 ms?

Problems
37. | A 20 cm * 20 cm square loop has a resistance of 0.10 Ω. A 

magnetic field perpendicular to the loop is B = 4t - 2t2, where 
B is in tesla and t is in seconds. What is the current in the loop at 
t = 0.0 s, t = 1.0 s, and t = 2.0 s?

38. || A 100-turn, 2.0-cm-diameter coil is at rest with its axis  
vertical. A uniform magnetic field 60° away from vertical in-
creases from 0.50 T to 1.50 T in 0.60 s. What is the induced emf 
in the coil?

39. || A 100-turn, 8.0-cm-diameter coil is made of 0.50-mm-diam-
eter copper wire. A magnetic field is parallel to the axis of the 
coil. At what rate must B increase to induce a 2.0 A current  
in the coil?

40. || A 10 cm * 10 cm square loop of wire lies in the xy-plane. The 
magnetic field in this region of space is B

u
= 10.30t in + 0.50t2 kn2 T, 

where t is in s. What is the emf induced in the loop at (a) t = 0.5 s 
and (b) t = 1.0 s?

41. || A circular loop made from a flexible, conducting wire is 
shrinking. Its radius as a function of time is r = r0 e-bt. The loop 
is perpendicular to a steady, uniform magnetic field B. Find an 
expression for the induced emf in the loop at time t.

42. || A 4.0 cm * 4.0 cm square loop of wire is perpendicular to 
a uniform magnetic field. From t = 0 s to t = 6 s the magnetic 
field strength varies with time as B = (t3 - 6t2 + 14t) T, where t 
is in s. What is the maximum emf induced in the loop during this 
interval of time?

Hint: Use the signed version of Faraday’s law in Equation 
30.27.

43. ||| An 8.0 cm * 8.0 cm square loop is halfway into a mag-
netic field perpendicular to the plane of the loop. The loop’s 
mass is 10 g and its resistance is 0.010 Ω. A switch is closed at  
t = 0 s, causing the magnetic field to increase from 0 to 1.0 T 
in 0.010 s.
a. What is the induced current in the square loop?
b. With what speed is the loop “kicked” away from the mag-

netic field?

Hint: What is the impulse on the loop?

44. || A 20 cm * 20 cm square loop of wire lies in the xy-plane 
with its bottom edge on the x-axis. The resistance of the loop 
is 0.50 Ω. A magnetic field parallel to the z-axis is given by 
B = 0.80y2t, where B is in tesla, y in meters, and t in sec-
onds. What is the size of the induced current in the loop at 
t = 0.50 s?
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924 CHAPTER 30 Electromagnetic Induction

52. || The square loop shown in FIGURE P30.52 moves into a 0.80 T  
magnetic field at a constant speed of 10 m/s. The loop has a  
resistance of 0.10 Ω, and it enters the field at t = 0 s.
a. Find the induced current in the loop as a function of time. 

Give your answer as a graph of I versus t from t = 0 s to 
t = 0.020 s.

b. What is the maximum current? What is the position of the 
loop when the current is maximum?

45. ||| A 2.0 cm * 2.0 cm square loop of wire with resistance 0.010 Ω 
has one edge parallel to a long straight wire. The near edge of the 
loop is 1.0 cm from the wire. The current in the wire is increasing 
at the rate of 100 A/s. What is the current in the loop?

46. || FIGURE P30.46 shows a 4.0-cm-diameter loop with resistance 
0.10 Ω around a 2.0-cm-diameter solenoid. The solenoid is 10 cm  
long, has 100 turns, and carries the current shown in the graph. 
A positive current is cw when seen from the left. Find the current 
in the loop at (a) t = 0.5 s, (b) t = 1.5 s, and (c) t = 2.5 s.

2.0 cm4.0 cm

20

0

-20

1 2 3

Isol (A)

Isol

t (s)

FIGURE P30.46

1.0 cm2.0 cm

0.5

0

-0.5

0.01 0.02

Isol (A)

t (s)

FIGURE P30.47

I1

2 Ω

Coil 1 Coil 2

2.0 cm

2

0

-2

0.40.1 0.30.2

I1 (A)

t (s)

FIGURE P30.48

47. || FIGURE P30.47 shows a 1.0-cm-diameter loop with R = 0.50 Ω 
inside a 2.0-cm-diameter solenoid. The solenoid is 8.0 cm long, 
has 120 turns, and carries the current shown in the graph. A pos-
itive current is cw when seen from the left. Determine the cur-
rent in the loop at t = 0.010 s.

48. || FIGURE P30.48 shows two 20-turn coils tightly wrapped on 
the same 2.0-cm-diameter cylinder with 1.0-mm-diameter wire. 
The current through coil 1 is shown in the graph. Determine the 
current in coil 2 at (a) t = 0.05 s and (b) t = 0.25 s. A positive 
current is into the figure at the top of a loop. Assume that the 
magnetic field of coil 1 passes entirely through coil 2.

49. | An electric generator has an 18-cm-diameter, 120-turn coil 
that rotates at 60 Hz in a uniform magnetic field that is per-
pendicular to the rotation axis. What magnetic field strength is 
needed to generate a peak voltage of 170 V?

50. || A 40-turn, 4.0-cm-diameter coil with R = 0.40 Ω sur-
rounds a 3.0-cm-diameter solenoid. The solenoid is 20 cm long 
and has 200 turns. The 60 Hz current through the solenoid is  
I =  I0 sin12pft2. What is I0 if the maximum induced current in 
the coil is 0.20 A?

51. || A small, 2.0-mm-diameter circular loop with R = 0.020 Ω 
is at the center of a large 100-mm-diameter circular loop. Both 
loops lie in the same plane. The current in the outer loop changes 
from +1.0 A to -1.0 A in 0.10 s. What is the induced current in 
the inner loop?

10 cm 10 cm

10 m/s
B = 0.80 T

FIGURE P30.52

5.0 mF
20 V 2.0 Ω

2.0 cm

1.0 cm

0.5 cm

FIGURE P30.53

Stationary

B = 0.10 T

10 m/s
FIGURE P30.54

53. || A rectangular metal loop with 0.050 Ω resistance is placed 
next to one wire of the RC circuit shown in FIGURE P30.53. The 
capacitor is charged to 20 V with the polarity shown, then the 
switch is closed at t = 0 s.
a. What is the direction of current in the loop for t 7 0 s?
b. What is the current in the loop at t = 5.0 ms? Assume that 

only the circuit wire next to the loop is close enough to pro-
duce a significant magnetic field.

54. || The L-shaped conductor in FIGURE P30.54 moves at 10 m/s 
across and touches a stationary L-shaped conductor in a 0.10 T 
magnetic field. The two vertices overlap, so that the enclosed area 
is zero, at t = 0 s. The conductor has a resistance of 0.010 ohms  
per meter.
a. What is the direction of the induced current?
b. Find expressions for the induced emf and the induced current 

as functions of time.
c. Evaluate E and I at t = 0.10 s.

55. || A 20-cm-long, zero-resistance slide wire moves outward, 
on zero-resistance rails, at a steady speed of 10 m/s in a 0.10 T 
magnetic field. (See Figure 30.26.) On the opposite side, a 1.0 Ω 
carbon resistor completes the circuit by connecting the two rails. 
The mass of the resistor is 50 mg.
a. What is the induced current in the circuit?
b. How much force is needed to pull the wire at this speed?
c. If the wire is pulled for 10 s, what is the temperature increase 

of the carbon? The specific heat of carbon is 710 J/kg K.
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60. || Experiments to study vision often need to track the 
 movements of a subject’s eye. One way of doing so is to have 
the subject sit in a magnetic field while wearing special contact 
lenses with a coil of very fine wire circling the edge. A current is 
induced in the coil each time the subject rotates his eye. Consider 
the experiment of FIGURE P30.60 in which a 20-turn, 6.0-mm- 
diameter coil of wire circles the subject’s cornea while a 1.0 T 
magnetic field is directed as shown. The subject begins by look-
ing straight ahead. What emf is induced in the coil if the subject 
shifts his gaze by 5° in 0.20 s?

61. || A 10-turn coil of wire having a diameter of 1.0 cm and a re-
sistance of 0.20 Ω is in a 1.0 mT magnetic field, with the coil 
oriented for maximum flux. The coil is connected to an un-
charged 1.0 mF capacitor rather than to a current meter. The coil 
is quickly pulled out of the magnetic field. Afterward, what is 
the voltage across the capacitor?
Hint: Use I = dq/dt to relate the net change of flux to the amount 
of charge that flows to the capacitor.

62. || One way to measure the strength of a magnetic field is with 
a flip coil. Suppose a 200-turn, 4.0-cm-diameter coil with a re-
sistance of 2.0 Ω is connected to a 1.0 mF capacitor. The coil is 
held perpendicular to the field and the capacitor is discharged. 
Then the coil is quickly flipped 180° so that the opposite side 
is facing the magnetic field. Afterward, the capacitor voltage is 
measured to be 7.5 V. What is the field strength?
Hint: Use I = dq/dt to relate the net change of flux to the amount 
of charge that flows to the capacitor.

63. || Equation 30.26 is an expression for the induced electric field 
inside a solenoid 1r 6 R2. Find an expression for the induced 
electric field outside a solenoid 1r 7 R2 in which the magnetic 
field is changing at the rate dB/dt.

64. || A solenoid inductor has an emf of 0.20 V when the current 
through it changes at the rate 10.0 A/s. A steady current of 0.10 A  
produces a flux of 5.0 mWb per turn. How many turns does the 
inductor have?

65. | One possible concern with MRI (see Exercise 28) is turning 
the magnetic field on or off too quickly. Bodily fluids are con-
ductors, and a changing magnetic field could cause electric cur-
rents to flow through the patient. Suppose a typical patient has 
a maximum cross-section area of 0.060 m2. What is the smallest 
time interval in which a 5.0 T magnetic field can be turned on or 
off if the induced emf around the patient’s body must be kept to 
less than 0.10 V?

66. || FIGURE P30.66 shows the 
 current through a 10 mH induc-
tor. Draw a graph showing the 
potential difference ∆VL across 
the inductor for these 6 ms.

56. | The 10-cm-wide, zero-resistance slide wire shown in FIGURE 
P30.56 is pushed toward the 2.0 Ω resistor at a steady speed of 
0.50 m/s. The magnetic field strength is 0.50 T.
a. How big is the pushing force?
b. How much power does the pushing force supply to the wire?
c. What are the direction and magnitude of the induced current?
d. How much power is dissipated in the resistor?

2.0 Ω

0.50 T

Zero-resistance wires

Push

0.50 m/s

FIGURE P30.56

5.0 cm

0.20 T Crank

1.0 Ω/4.0 W bulb

FIGURE P30.57

57. ||  Your camping buddy has an idea for a light to go inside your 
tent. He happens to have a powerful (and heavy!) horseshoe mag-
net that he bought at a surplus store. This magnet creates a 0.20 T  
field between two pole tips 10 cm apart. His idea is to build the 
hand-cranked generator shown in FIGURE P30.57. He thinks you 
can make enough current to fully light a 1.0 Ω lightbulb rated at 
4.0 W. That’s not super bright, but it should be plenty of light for 
routine activities in the tent.
a. Find an expression for the induced current as a function of 

time if you turn the crank at frequency f. Assume that the 
semicircle is at its highest point at t = 0 s.

b. With what frequency will you have to turn the crank for the 
maximum current to fully light the bulb? Is this feasible?

58. || You’ve decided to make the magnetic projectile launcher 
shown in FIGURE P30.58 for your science project. An alumi-
num bar slides along metal rails through a magnetic field B. The 
switch closes at t = 0 s, while the bar is at rest, and a battery of 
emf Ebat starts a current flowing around the loop. The battery 
has internal resistance r. The resistances of the rails, which are 
separated by distance l, and the bar are effectively zero.
a. Show that the bar reaches a terminal speed vterm, and find an 

expression for vterm.
b. Evaluate vterm for Ebat = 1.0 V, r = 0.10 Ω, l = 6.0 cm, and 

B = 0.50 T.

B
u

l

Ebat

r

FIGURE P30.58

l

u
FG

FIGURE P30.59

B
u

Cornea

Eye

6.0-mm-diameter coil

FIGURE P30.60

-2

0

2

t (ms)
42 6

I (A)

FIGURE P30.66

59. || FIGURE P30.59 shows a U-shaped conducting rail that is ori-
ented vertically in a horizontal magnetic field. The rail has no 
electric resistance and does not move. A slide wire with mass m 
and resistance R can slide up and down without friction while 
maintaining electrical contact with the rail. The slide wire is re-
leased from rest.
a. Show that the slide wire reaches a terminal speed vterm, and 

find an expression for vterm.
b. Determine the value of vterm if l = 20 cm, m = 10 g, 

R = 0.10 Ω, and B = 0.50 T.
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76. | The switch in FIGURE P30.76 has been open for a long time. It 
is closed at t = 0 s. What is the current through the 20 Ω resistor
a. Immediately after the switch is closed?
b. After the switch has been closed a long time?
c. Immediately after the switch is reopened?

67. || FIGURE P30.67 shows the 
potential difference across a 
20 mH inductor. The current 
through the inductor at t = 0 ms 
is 0.25 A. What is the current at 
t = 10 ms?

68. ||| A 3.6 mH inductor with 
negligible resistance has a 1.0 A current through it. The current 
starts to increase at t = 0 s, creating a constant 5.0 mV voltage 
across the inductor. How much charge passes through the induc-
tor between t = 0 s and  t = 5.0 s?

69. || A 50 cm solenoid with 1000 turns has an inductance of 20 mH.
a. What is the magnetic field strength inside the inductor when 

the current is 75 mA?
b. Flipping a switch disconnects the inductor from the battery 

and connects it to a resistor. What is the value of the resis-
tance if the magnetic field decreases by 50% in 150 ms?

70. | The current through inductance L is given by I = I0 e-t/t.
a. Find an expression for the potential difference ∆VL across the 

inductor.
b. Evaluate ∆VL at t = 0, 1.0, and 3.0 ms if L = 20 mH, I0 =  

50 mA, and t = 1.0 ms.
71. ||| An LC circuit is built with a 20 mH inductor and an 8.0 pF 

capacitor. The capacitor voltage has its maximum value of 25 V 
at t = 0 s.
a. How long is it until the capacitor is first fully discharged?
b. What is the inductor current at that time?

72. | An electric oscillator is made with a 0.10 mF capacitor and 
a 1.0 mH inductor. The capacitor is initially charged to 5.0 V. 
What is the maximum current through the inductor as the circuit 
oscillates?

73. || For your final exam in electronics, you’re asked to build an 
LC circuit that oscillates at 10 kHz. In addition, the maximum 
current must be 0.10 A and the maximum energy stored in the 
capacitor must be 1.0 * 10-5 J. What values of inductance and 
capacitance must you use?

74. || The inductor in FIGURE P30.74 is a 9.0-cm-long, 2.0-cm- 
diameter solenoid wrapped with 300 turns. What is the current in  
the circuit 10 ms after the switch is moved from 1 to 2?

Challenge Problems
80. ||| In recent years it has been possible to buy a 1.0 F capacitor. 

This is an enormously large amount of capacitance. Suppose you 
want to build a 1.0 Hz oscillator with a 1.0 F capacitor. You have 
a spool of 0.25-mm-diameter wire and a 4.0-cm-diameter plastic 
cylinder. How long must your inductor be if you wrap it with  
2 layers of closely spaced turns?

-2

-1

0 t (ms)
5 10

∆V (V)

FIGURE P30.67

30 Ω

L6.0 V

1

2

FIGURE P30.74

300 mF 1200 mF

S2

5.3 H

S1

FIGURE P30.75

10 Ω

10 mH30 V 20 Ω

FIGURE P30.76

R

L∆Vbat

FIGURE P30.77

100 Ω

L9.0 V

1

2

FIGURE P30.78

50 Ω

L3.0 V

1

2

FIGURE P30.79

75. || The 300 mF capacitor in FIGURE P30.75 is initially charged to 
100 V, the 1200 mF capacitor is uncharged, and the switches are 
both open.
a. What is the maximum voltage to which you can charge the 

1200 mF capacitor by the proper closing and opening of the 
two switches?

b. How would you do it? Describe the sequence in which you 
would close and open switches and the times at which you 
would do so. The first switch is closed at t = 0 s.

77. || The switch in FIGURE P30.77 has been open for a long time. It 
is closed at t = 0 s.
a. After the switch has been closed for a long time, what is the 

current in the circuit? Call this current I0.
b. Find an expression for the current I as a function of time. 

Write your expression in terms of I0, R, and L.
c. Sketch a current-versus-time graph from t = 0 s until the cur-

rent is no longer changing.

78. || To determine the inductance of an unmarked inductor, you set 
up the circuit shown in FIGURE P30.78. After moving the switch 
from 1 to 2 at t = 0 s, you monitor the resistor voltage with an 
oscilloscope. Your data are shown in the table:

Time (Ms) Voltage (V)

 0 9.0

10 6.7

20 4.6

30 3.2

40 2.5

Use an appropriate graph of the data to determine the inductance.
79. || 5 .0 ms after the switch of FIGURE P30.79 is moved from 1 to 2, 

the magnetic energy stored in the inductor has decreased by half. 
What is the value of the inductance L?
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Exercises and Problems 927

84. ||| A 3.0-cm-diameter, 10-turn coil of wire, located at z = 0 in 
the xy-plane, carries a current of 2.5 A. A 2.0-mm-diameter con-
ducting loop with 2.0 * 10-4 Ω resistance is also in the xy-plane 
at the center of the coil. At t = 0 s, the loop begins to move along 
the z-axis with a constant speed of 75 m/s. What is the induced 
current in the conducting loop at t = 200 ms? The diameter of the 
conducting loop is much smaller than that of the coil, so you can 
assume that the magnetic field through the loop is everywhere 
the on-axis field of the coil.

85. ||| A 2.0-cm-diameter solenoid is wrapped with 1000 turns per 
meter. 0.50 cm from the axis, the strength of an induced electric 
field is 5.0 * 10-4 V/m. What is the rate dI/dt with which the 
current through the solenoid is changing?

86. ||| High-frequency signals are often transmitted along a  coaxial 
cable, such as the one shown in FIGURE CP30.86. For exam-
ple, the cable TV hookup coming into your home is a coaxial 
cable. The signal is carried on a wire of radius r1 while the outer 
conductor of radius r2 is grounded. A soft, flexible insulating 
material fills the space between them, and an insulating plastic 
coating goes around the outside.
a. Find an expression for the inductance per meter of a coax-

ial cable. To do so, consider the flux through a rectangle 
of length l that spans the gap between the inner and outer 
conductors.

b. Evaluate the inductance per meter of a cable having 
r1 = 0.50 mm and r2 = 3.0 mm.
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1.0 cm

2.0 cm
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d l

v
u

FIGURE CP30.82

r2

Inner conductor
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82. ||| The metal wire in FIGURE CP30.82 moves with speed v par-
allel to a straight wire that is carrying current I. The distance 
between the two wires is d. Find an expression for the potential 
difference between the two ends of the moving wire.

83. ||| Let’s look at the details of eddy-current braking. A square 
loop, length l on each side, is shot with velocity v0 into a uniform 
magnetic field B. The field is perpendicular to the plane of the 
loop. The loop has mass m and resistance R, and it enters the 
field at t = 0 s. Assume that the loop is moving to the right along 
the x-axis and that the field begins at x = 0 m.
a. Find an expression for the loop’s velocity as a function of 

time as it enters the magnetic field. You can ignore gravity, 
and you can assume that the back edge of the loop has not 
entered the field.

b. Calculate and draw a graph of v over the interval 0 s … t …
0.04 s for the case that v0 = 10 m/s, l = 10 cm, m = 1.0 g, 
R = 0.0010 Ω, and B = 0.10 T. The back edge of the loop 
does not reach the field during this time interval.

81. ||| The rectangular loop in FIGURE CP30.81 has 0.020 Ω resis-
tance. What is the induced current in the loop at this instant?
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928

Electromagnetic Fields 
and Waves

How do fields transform?
Whether the field at a point is electric  
or magnetic depends, surprisingly, on  
your motion relative to the charges and  
currents. You’ll learn how to transform the 
fields measured in one reference frame to  
a second reference frame moving relative  
to the first.

❮❮ LOOKING BACK Section 4.3 Relative motion

What is Maxwell’s theory of electromagnetism?
Electricity and magnetism can be summa-
rized in four equations for the fields, called 
Maxwell’s equations, and one equation  
that tells us how charges respond to fields.

 ■ Gauss’s law: Charges create electric  
fields.

 ■ Gauss’s law for magnetism: There are no 
isolated magnetic poles.

 ■ Faraday’s law: Electric fields can also 
be created by changing magnetic fields.

 ■ Ampère-Maxwell law: Magnetic fields 
can be created either by currents or by 
changing magnetic fields.

❮❮ LOOKING BACK Section 24.4 Gauss’s law

❮❮ LOOKING BACK Section 29.6 Ampère’s law

❮❮ LOOKING BACK Section 30.5 Faraday’s law

What are electromagnetic waves?
Maxwell’s equations predict the existence  
of self-sustaining oscillations of the electric  
and magnetic fields—electromagnetic 
waves—that travel through space without  
the presence of charges or currents.

 ■ In a vacuum, all electromagnetic waves—from 
radio waves to x rays—travel with the same 
speed vem = 1/1P0m 0 = c, the speed of light.

 ■ The fields E
u

 and B
u

 are perpendicular to each  
other and to the direction of travel.

 ■ Electromagnetic waves are launched by an  
oscillating dipole, called an antenna.

 ■ Electromagnetic waves transfer energy.
 ■ Electromagnetic waves also transfer  

momentum and exert radiation pressure.

❮❮ LOOKING BACK Section 16.4 The wave equation

What is polarization?
An electromagnetic wave is polarized if the 
electric field always oscillates in the same 
plane—the plane of polarization. Polarizers 
both create and analyze polarized light. You 
will learn to calculate the intensity of light 
transmitted through a polarizer and will see 
that light is completely blocked by crossed 
polarizers. Polarization is used in many  
types of modern optical instrumentation.

IN THIS CHAPTER, you will study the properties of electromagnetic fields and waves.

31
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Sugar crystals seen in polarized 
light. The crystals rotate the plane 
of polarization, and the different 
colors represent portions of the 
crystals of different thicknesses.
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31.1 E or B? It Depends on Your Perspective 929

31.1 E or B? It Depends on Your Perspective
Our story thus far has been that charges create electric fields and that moving charges, 
or currents, create magnetic fields. But consider FIGURE 31.1a, where Brittney, carrying 
charge q, runs past Alec with velocity vu. Alec sees a moving charge, and he knows 
that this charge creates a magnetic field. But from Brittney’s perspective, the charge 
is at rest. Stationary charges don’t create magnetic fields, so Brittney claims that the 
magnetic field is zero. Is there, or is there not, a magnetic field?

Or what about the situation in FIGURE 31.1b? Now Brittney is carrying the charge 
through a magnetic field that Alec has created. Alec sees a charge moving in a mag-
netic field, so he knows there’s a force F

u
= qvu * B

u
 on the charge. But for Brittney the 

charge is still at rest. Stationary charges don’t experience magnetic forces, so Brittney 
claims that F

u
=   0

u
.

Now, we may be a bit uncertain about magnetic fields, but surely there can be no 
disagreement over forces. After all, forces cause observable and measurable effects, 
so Alec and Brittney should be able to agree on whether or not the charge experiences 
a force. Further, if Brittney runs with constant velocity, then both Alec and Brittney 
are in inertial reference frames. You learned in Chapter 4 that these are the reference 
frames in which Newton’s laws are valid, so we can’t say that there’s anything abnor-
mal or unusual about Alec’s and Brittney’s observations.

This paradox has arisen because magnetic fields and forces depend on velocity, but 
we haven’t looked at the issue of velocity with respect to what or velocity as measured 
by whom. The resolution of this paradox will lead us to the conclusion that E

u
 and B

u
 

are not, as we’ve been assuming, separate and independent entities. They are closely 
intertwined.

Reference Frames
We introduced reference frames and relative motion in Chapter 4. To remind you, 
FIGURE 31.2 shows two reference frames labeled A and B. You can think of these as the 
reference frames in which Alec and Brittney, respectively, are at rest. Frame B moves 
with velocity vu  BA with respect to frame A. That is, an observer (Alec) at rest in A sees 
the origin of B (Brittney) go past with velocity vu  BA. Of course, Brittney would say that 
Alec has velocity vuAB = -vu  BA relative to her reference frame. We will stipulate that 
both reference frames are inertial reference frames, so vu  BA is constant.

Figure 31.2 also shows a particle C. Experimenters in frame A measure the mo-
tion of the particle and find that its velocity relative to frame A is vuCA. At the same 
instant, experimenters in B find that the particle’s velocity relative to frame B is v 

u
CB. 

In Chapter 4, we found that vuCA and vuCB are related by

 vuCA = vuCB + vu
 BA (31.1)

Equation 31.1, the Galilean transformation of velocity, tells us that the velocity of the 
particle relative to reference frame A is its velocity relative to frame B plus (vector 
addition!) the velocity of frame B relative to frame A.

Suppose the particle in Figure 31.2 is accelerating. How does its acceleration auCA, 
as measured in frame A, compare to the acceleration auCB measured in frame B? We 
can answer this question by taking the time derivative of Equation 31.1:

d vuCA

dt
=

d vuCB

dt
+

d vu
 BA

dt

The derivatives of vuCA and vuCB are the particle’s accelerations auCA and auCB in frames A 
and B, respectively. But vu  BA is a constant velocity, so d vu  BA/dt = 0

u
. Thus the Galilean 

transformation of acceleration is simply

 auCA = auCB (31.2)

v
u

u

(a)

Charge q moves with velocity v relative to Alec.

q

Alec

Brittney

FIGURE 31.1 Brittney carries a charge past 
Alec.

v
u

B
u

F
u

Alec

Brittney

(b)

Charge q moves through a magnetic field
established by Alec.

vBA

B

y

x

A

y

x

Reference frame B moves with
velocity vBA relative to frame A.u

u

The velocity of this particle is
measured to be vCA in frame A
and vCB in frame B.

u

u

C

FIGURE 31.2 Reference frames A and B.
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930 CHAPTER 31 Electromagnetic Fields and Waves

Brittney and Alec may measure different positions and velocities for a particle, but 
they agree on its acceleration. And if they agree on its acceleration, they must, by using 
Newton’s second law, agree on the force acting on the particle. That is, experimenters 
in all inertial reference frames agree about the force acting on a particle.

The Transformation of Electric and Magnetic Fields
Imagine that Alec has measured the electric field E

u

A and the magnetic field B
u

A in ref-
erence frame A. Our investigations thus far give us no reason to think that Brittney’s 
measurements of the fields will differ from Alec’s. After all, it seems like the fields 
are just “there,” waiting to be measured.

To find out if this is true, Alec establishes a region of space with a uniform 
magnetic field B

u

A but no electric field 1E
u

A =  0
u2. Then, as shown in FIGURE 31.3, he 

shoots a posi tive charge q through the magnetic field. At an instant when q is mov-
ing horizontally with velocity vu  CA, Alec observes that the particle experiences force 
F
u

A = qvu  CA * B
u

A. The direction of the force is straight up.
Suppose that Brittney, in frame B, runs alongside the charge with the same veloc-

ity: v 

u
BA = v 

u
CA. To her, in frame B, the charge is at rest. Nonetheless, because both 

 experimenters must agree about forces, Brittney must observe the same upward force 
on the charge that Alec observed. But there is no magnetic force on a stationary charge,  
so how can this be?

Because Brittney sees a stationary charge being acted on by an upward force, her 
only possible conclusion is that there is an upward-pointing electric field. After all, the 
electric field was initially defined in terms of the force experienced by a stationary charge. 
If the electric field in frame B is E

u

B, then the force on the charge is F
u

B = qE
u

B. But we 
know that F

u

B = F
u

A, and Alec has already measured F
u

A = qv 

u
CA * B

u

A = qv 

u
BA * B

u

A.  
Thus we’re led to the conclusion that

 E
u

B = v 

u
BA * B

u

A (31.3)

As Brittney runs past Alec, she finds that at least part of Alec’s magnetic field has  
become an electric field! Whether a field is seen as “electric” or “magnetic”  
depends on the motion of the reference frame relative to the sources of the field.

FIGURE 31.4 shows the situation from Brittney’s perspective. There is a force on 
charge q, the same force that Alec measured in Figure 31.3, but Brittney attributes this 
force to an electric field rather than a magnetic field. (Brittney needs a moving charge 
to measure magnetic forces, so we’ll need a different experiment to see whether or not 
there’s a magnetic field in frame B.)

More generally, suppose that an experimenter in reference frame A creates both 
an electric field E

u

A and a magnetic field B
u

A. A charge moving in A with velocity  
v 

u
CA experiences the force F

u

A = q1E
u

A + v 

u
CA * B

u

A2 shown in FIGURE 31.5a. The charge is  
at rest in a reference frame B that moves with velocity v 

u
BA = v 

u
CA so the force in B can 

be due only to an electric field: F
u

B = qE
u

B. Equating the forces, because experimenters 
in all inertial reference frames agree about forces, we find that

 E
u

B =  E
u

A + v 

u
BA * B

u

A (31.4)

The situation in frame A

In A, the force on q is
due to a magnetic field.

q vCA
u

BA

u

FA = qvCA * BA
u uu

FIGURE 31.3 A charged particle moves 
through a magnetic field in reference 
frame A and experiences a magnetic  
force.

u
EA

(a) The electric and magnetic 
fields in frame A

u uuu
FA = q(EA + vCA * BA)

u
EB

u u
vCB = 0

(b) The electric field in frame B,
where the charged particle is at rest

u
FB = qEB

u

vCA
u

BA

u

FIGURE 31.5 A charge in reference frame A experiences electric and magnetic forces. The 
charge experiences the same force in frame B, but it is due only to an electric field.

The situation in frame B

In B, the force on q is
due to an electric field.

q

The charge is at
rest in B.

BB = ?
u

FB = qEB

uu

In B, there’s 
an electric field
EB = vBA * BA.

uu u

FIGURE 31.4 In frame B, the charge 
experiences an electric force.
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Equation 31.4 transforms the electric and magnetic fields measured in reference frame 
A into the electric field measured in a frame B that moves relative to A with velocity 
v 

u
BA. FIGURE 31.5b shows the outcome. Although we used a charge as a probe to find 

Equation 31.4, the equation is strictly about fields in different reference frames; it 
makes no mention of charges.

A laboratory experimenter has created the parallel electric and magnetic fields  
E
u

= 10,000 in V/m and B
u

= 0.10 in T. A proton is shot into these fields with velocity 
vu = 1.0 * 105 jn m/s. What is the electric field in the proton’s reference frame?

MODEL Let the laboratory be reference frame A and a frame moving with the proton be  
reference frame B. The relative velocity is vu BA = 1.0 * 105 jn m/s.

VISUALIZE FIGURE 31.6 shows the geometry. The laboratory fields, now labeled A, are parallel 
to the x-axis while v 

u
BA is in the y-direction. Thus vu BA * B

u

A points in the negative z-direction.

SOLVE vuBA and B
u

A are perpendicular, so the magnitude of vuBA * B
u

A is 11.0 * 105 m/s2 *  
10.10 T21sin 90°2 = 10,000 V/m. Thus the electric field in frame B, the proton’s frame, is

  E
u

B = E
u

A + vu BA * B
u

A = 110,000 in - 10,000 kn2 V/m

  = 114,000 V/m, 45° below the x@axis2
REVIEW The force on the proton is the same in both reference frames. But in the proton’s  
reference frame that force is due entirely to an electric field tilted 45° below the x-axis.

EXAMPLE 31.1 ■ Transforming the electric field

x

z

y
vBA
u

vBA * BA
u u

BA

u

EB = EA + vBA * BA
u uu u

EA

u

FIGURE 31.6 Finding electric field E
u

B.
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u

B

y

x

A

y

x

u u
BA = 0

r

In frame A, the static charge creates
an electric field but no magnetic field.

Charge q at rest in A

(a)

B

y

xr

In frame B, the moving charge creates
both an electric and a magnetic field.

(b)

q

vBA
u

vCB = -vBA
u u

FIGURE 31.7 A charge at rest in frame A  
is moving in frame B.

To find a transformation equation for the magnetic field, FIGURE 31.7a shows charge 
q at rest in reference frame A. Alec measures the fields of a stationary point charge:

E
u

A =
1

4pP0
 
q

r2 rn   B
u

A =  0
u

What are the fields at this point in space as measured by Brittney in frame B? We  
can use Equation 31.4 to find E

u

B. Because B
u

A =  0
u
, the electric field in frame B is

 E
u

B = E
u

A =
1

4pP0
 
q

r2 rn (31.5)

In other words, Coulomb’s law is still valid in a frame in which the point charge is 
moving.

But Brittney also measures a magnetic field B
u

B, because, as seen in FIGURE 31.7b, 
charge q is moving in reference frame B. The magnetic field of a moving point charge 
is given by the Biot-Savart law:

 B
u

B =
m

 0

4p
 
q

r2 vu  CB * rn = -
m

 0

4p
 
q

r2 vu  BA * rn (31.6)

where we used the fact that the charge’s velocity in frame B is v 

u
CB = -v 

u
BA.

It will be useful to rewrite Equation 31.6 as

B
u

B = -
m

 0

4p
 
q

r2 vu  BA * rn = -P0 m
 0vu  BA * 1 1

4pP0
 
q

r2 rn2
The expression in parentheses is simply E

u

A, the electric field in frame A, so we have

 B
u

B = -P0 m
 0vu  BA * E

u

A (31.7)

Thus we find the remarkable idea that the Biot-Savart law for the magnetic field  
of a moving point charge is nothing other than the Coulomb electric field of a 
stationary point charge transformed into a moving reference frame.

We will assert without proof that if the experimenters in frame A create a magnetic 
field B

u

A in addition to the electric field E
u

A, then the magnetic field E
u

B is

 B
u

B = B
u

A - P0 m
 0vu  BA * E

u

A (31.8)

This is a general transformation matching Equation 31.4 for the electric field E
u

B.

31.1 E or B? It Depends on Your Perspective 931
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932 CHAPTER 31 Electromagnetic Fields and Waves

Notice something interesting. The constant m
 0 has units of T m/A; those of P0 are 

C2/N m2. By definition, 1 T = 1 N/A m and 1 A = 1 C/s. Consequently, the units of 
P0 m

 0 turn out to be s2/m2. In other words, the quantity 1/1P0 m
 0, with units of m/s, is 

a speed. But what speed? The constants are well known from measurements of static 
electric and magnetic fields, so we can compute

11P0 m
 0

=
1218.85 * 10-12 C2/N m2211.26 * 10-6 T m/A2

= 3.00 * 108 m/s

Of all the possible values you might get from evaluating 1/1P0 m
 0, what are the 

chances it would turn out to be c, the speed of light? It is not a random coincidence. In 
Section 31.5 we’ll show that electric and magnetic fields can exist as a traveling wave, 
and that the wave speed is predicted by the theory to be none other than

 vem = c =
11P0 m

 0
 (31.9)

For now, we’ll go ahead and write P0 m
 0 = 1/c2. With this, our Galilean field trans-

formation equations are

 E
u

B = E
u

A + vu  BA * B
u

A 

 B
u

B = B
u

A -
1

c2 vu  BA * E
u

A 
(31.10)

where vu  BA is the velocity of reference frame B relative to frame A and where, to  
reiterate, the fields are measured at the same point in space by experimenters at rest 
in each reference frame.

   NOTE    We’ll see shortly that these equations are valid only if vBA V c.

We can no longer believe that electric and magnetic fields have a separate,  
independent existence. Changing from one reference frame to another mixes and  
rearranges the fields. Different experimenters watching an event will agree on the  
outcome, such as the deflection of a charged particle, but they will ascribe it to different  
combinations of fields. Our conclusion is that there is a single electromagnetic field 
that presents different faces, in terms of E

u
 and B

u
, to different viewers.

The 1.0 T field of a large laboratory magnet points straight up. A 
rocket flies past the laboratory, parallel to the ground, at 1000 m/s. 
What are the fields between the magnet’s pole tips as measured—
very quickly!—by scientists on the rocket?

MODEL Let the laboratory be reference frame A and a frame moving  
with the rocket be reference frame B.

VISUALIZE FIGURE 31.8 shows the magnet and establishes the  
coordinate systems. The relative velocity is vu BA = 1000 in m/s.

SOLVE The fields in the laboratory reference frame are E
u

A = 0
u
 

and B
u

A = 1.0 jn T. Transforming the fields to the rocket’s reference 
frame gives first, for the electric field,

E
u

B = E
u

A + vu BA * B
u

A = vu BA * B
u

A

From the right-hand rule, vu BA * B
u

A is out of the figure, in the z- 
direction. vu BA and B

u

A are perpendicular, so

E
u

B = vBA BA kn = 1000 kn V/m

Similarly, for the magnetic field,

B
u

B = B
u

A -
1

c2 vu BA * E
u

A = E
u

A = 1.0 jn T

Thus the rocket scientists measure

E
u

B = 1000 kn V/m and B
u

B = 1.0 jn T

EXAMPLE 31.2 ■ Two views of a magnet

FIGURE 31.8 The rocket 
and the magnet.
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Almost Relativity
FIGURE 31.9a shows two positive charges moving side by side through frame A with 
velocity v 

u
CA. Charge q1 creates an electric field and a magnetic field at the position of 

charge q2. These are

E
u

A =
1

4pP0
 
q1

r2  jn and B
u

A =
m

 0

4p
 
q1vCA

r2  kn

where r is the distance between the charges, and we’ve used rn = jn and v 

u * rn = vkn.
How are the fields seen in frame B, which moves with v 

u
BA = v 

u
CA and in which the 

charges are at rest? From the field transformation equations,

 B
u

B = B
u

A -
1

c2 vu  BA * E
u

A =
m

 0

4p
 
q1vCA

r2  kn -
1

c2 1vCA in *
1

4pP0
 
q1

r2  jn2  
  =

m
 0

4p
 
q1vCA

r2  11 -
1

P0 m
 0c

22kn  
(31.11)

where we used in * jn = kn. But P0 m
 0 = 1/c2, so the term in parentheses is zero and thus 

B
u

B =  0
u
. This result was expected because q1 is at rest in frame B and shouldn’t create 

a magnetic field.
The transformation of the electric field is similar:

  E
u

B = E
u

A + vu  BA * B
u

A =
1

4pP0
 
q1

r2  jn + vBA in *
m

 0

4p
 
q1vCA

r2  kn  

  =
1

4pP0
 
q1

r2  11 - P0 m
 0 vBA 

2 2jn =
1

4pP0
 
q1

r2  11 -
vBA 

2

c2 2 jn  

(31.12)

where we used in * kn = - jn, vu  CA = vu BA, and P0m 0 = 1/c2. FIGURE 31.9b shows the charges 
and fields in frame B.

But now we have a problem. In frame B where the two charges are at rest and  
separated by distance r, the electric field due to charge q1 should be simply

E
u

B =
1

4pP0
 
q1

r2  jn

The field transformation equations have given a “wrong” result for the electric field E
u

B.
It turns out that the field transformations of Equations 31.10, which are based on 

Galilean relativity, aren’t quite right. We would need Einstein’s relativity—a topic 
that we’ll take up in Chapter 36—to give the correct transformations. However, the 
Galilean field transformations in Equations 31.10 are equivalent to the relativistically 
correct transformations when v V c, in which case v2

 /c2 V 1. You can see that the 
two expressions for E

u

B do, in fact, agree if vBA 

2 /c2 can be neglected.
Thus our use of the field transformation equations has an additional rule: Set v2

 /c2  
to zero. This is an acceptable rule for speeds v 6 107 m/s. Even with this limitation, our 
investigation has provided us with a deeper understanding of electric and magnetic fields.
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FIGURE 31.9 Two charges moving parallel 
to each other.

STOP TO THINK 31.1 The first diagram shows electric and magnetic fields in reference frame A. Which diagram shows the fields 
in frame B?

vBA
u

BA

u

EA

u x

z

y
x

z

y

A

B

 (a) (b) (c) (d)

u
EB

u
EB

u
EB

u
BB u

BB

u
BB

x

z

y

x

z

y

x

z

y

x

z

y

BB

uEB

u

31.1 E or B? It Depends on Your Perspective 933

M31_KNIG8221_05_GE_C31.indd   933 25/06/22   2:44 PM



934 CHAPTER 31 Electromagnetic Fields and Waves

Faraday’s Law Revisited
The transformation of electric and magnetic fields gives us new insight into Faraday’s 
law. FIGURE 31.10a shows a reference frame A in which a conducting loop is moving 
with velocity v 

u into a magnetic field. You learned in Chapter 30 that the magnetic 
field exerts a magnetic force F

u

B = qvu * B
u

= 1qvB, upward2 on the charges in the 
leading edge of the wire, creating an emf E = vLB and an induced current in the loop. 
We called this a motional emf.

How do things appear to an experimenter who is in frame B that moves with the 
loop at velocity vu BA = vu and for whom the loop is at rest? We have learned the import-
ant lesson that experimenters in different inertial reference frames agree about the 
outcome of any experiment; hence an experimenter in frame B agrees that there is an 
induced current in the loop. But the charges are at rest in frame B so there cannot be 
any magnetic force on them. How is the emf established in frame B?

We can use the field transformations to determine that the fields in frame B are

   E
u

B = E
u

A + vu * B
u

A = vu * B
u
  

  B
u

B = B
u

A -
1

c2 vu * E
u

A = B
u
  

(31.13)

where we used the fact that E
u

A =  0
u
 in frame A.

An experimenter in the loop’s frame sees not only a magnetic field but also the 
electric field E

u

B shown in FIGURE 31.10b. The magnetic field exerts no force on the 
charges, because they’re at rest in this frame, but the electric field does. The force on 
charge q is F

u

E = qE
u

B = q vu * B
u

= 1qvB, upward2. This is the same force as was mea-
sured in the laboratory frame, so it will cause the same emf and the same current. The 
outcome is identical, as we knew it had to be, but the experimenter in B attributes the 
emf to an electric field whereas the experimenter in A attributes it to a magnetic field.

Field E
u

B is, in fact, the induced electric field of Faraday’s law. Faraday’s law, fun-
damentally, is a statement that a changing magnetic field creates an electric field. 
But only in frame B, the frame of the loop, is the magnetic field changing. Thus the 
induced electric field is seen in the loop’s frame but not in the laboratory frame.

31.2 The Field Laws Thus Far
Let’s remind ourselves where we are in terms of discovering laws about the electro-
magnetic field. Gauss’s law, which you studied in Chapter 24, states a very general 
property of the electric field. It says that charges create electric fields in such a way 
that the electric flux of the field is the same through any closed surface surrounding 
the charges. FIGURE 31.11 illustrates this idea by showing the field lines passing through 
a Gaussian surface enclosing a charge.

The mathematical statement of Gauss’s law for the electric field says that for any 
closed surface enclosing total charge Qin, the net electric flux through the surface is

 1Φe 2closed surface = C E
u # dA

u
=

Qin

P0
 (31.14)

The circle on the integral sign indicates that the integration is over a closed surface. 
The units of electric flux are those of electric field times area, namely V m.

There’s an analogous equation for magnetic fields, an equation we implied in 
Chapter 29—where we noted that isolated north or south poles do not exist—but  
didn’t explicitly write it down. FIGURE 31.12 shows a Gaussian surface around a  
magnetic dipole. Magnetic field lines form continuous curves, without starting or 
stopping, so every field line leaving the surface at some point must reenter it at an-
other. Consequently, the net magnetic flux over a closed surface is zero.

v
u

u uu
FB = qv * B

(a) Laboratory frame A

The loop is moving to the right.

BA = B
u u

FIGURE 31.10 A motional emf as seen in 
two different reference frames.

u-v

(b) Loop frame B The induced electric
field points up.

The magnetic field is moving to the left.

FE = qEB

uu

EB = v * B
u u u

E
u

E
u

Gaussian surface

There is a net electric flux through
this surface that encloses a charge.

FIGURE 31.11 A Gaussian surface  
enclosing a charge.
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31.3 The Displacement Current 935

We’ve shown only one surface and one magnetic field, but this conclusion turns out 
to be a general property of magnetic fields. Because every north pole is accompanied 
by a south pole, we can’t enclose a “net pole” within a surface. Thus Gauss’s law for 
magnetic fields is

 1Φm 2closed surface = C B
u # dA

u
= 0 (31.15)

Equation 31.14 is the mathematical statement that Coulomb electric field lines start 
and stop on charges. Equation 31.15 is the mathematical statement that magnetic field 
lines form closed loops; they don’t start or stop (i.e., there are no isolated magnetic 
poles). These two versions of Gauss’s law are important statements about what types 
of fields can and cannot exist. They will become two of Maxwell’s equations.

The third field law we’ve established is Faraday’s law:

 E = C E
u # d  su = -

dΦm

dt
 (31.16)

where the line integral of E
u
 is around the closed curve that bounds the surface through 

which the magnetic flux Φm is calculated. Equation 31.16 is the mathematical state-
ment that an electric field can also be created by a changing magnetic field. The correct 
use of Faraday’s law requires a convention for determining when fluxes are positive 
and negative. The sign convention will be given in the next section, where we discuss 
the fourth and last field equation—an analogous equation for magnetic fields.

31.3 The Displacement Current
We introduced Ampère’s law in Chapter 29 as an alternative to the Biot-Savart law 
for calculating the magnetic field of a current. Whenever total current Ithrough passes 
through an area bounded by a closed curve, the line integral of the magnetic field 
around the curve is

 C B
u # d  su = m

 0 Ithrough (31.17)

FIGURE 31.13 illustrates the geometry of Ampère’s law. The sign of each current can be 
determined by using Tactics Box 31.1. In this case, Ithrough = I1 - I2.

TACTICS BOX 31.1

Determining the signs of flux and current
1  For a surface S bounded by a closed curve C, choose either the clockwise (cw) 

or counterclockwise (ccw) direction around C.
2  Curl the fingers of your right hand around the curve in the chosen direction, 

with your thumb perpendicular to the surface. Your thumb defines the positive 
direction.

 ■ A flux Φ through the surface is positive if the field is in the same direction 
as your thumb, negative if the field is in the opposite direction.

 ■ A current through the surface in the direction of your thumb is positive, in 
the direction opposite your thumb is negative.

Exercises 4–6 

Ampère’s law is the formal statement that currents create magnetic fields. 
Although Ampère’s law can be used to calculate magnetic fields in situations with 
a high degree of symmetry, it is more important as a statement about what types of 
magnetic field can and cannot exist.

B
u

B
u

Gaussian surface

There is no net magnetic flux
through this closed surface.

FIGURE 31.12 There is no net flux through a 
Gaussian surface around a magnetic dipole.

B
u

B
u

B
uI1

I2

Surface S

Positive
direction

Curve C

FIGURE 31.13 Ampère’s law relates the 
line integral of B

u
 around curve C to the 

current passing through surface S.
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936 CHAPTER 31 Electromagnetic Fields and Waves

Something Is Missing
Nothing restricts the bounded surface of Ampère’s law to being flat. It’s not hard to see 
that any current passing through surface S1 in FIGURE 31.14 must also pass through the 
curved surface S2. To interpret Ampère’s law properly, we have to say that the current 
Ithrough is the net current passing through any surface S that is bounded by curve C.

II

Surface S1 Surface S2

Closed curve C around wire

Any currents passing through
S1 must also pass through S2.

S1

Closed curve C around wire
S2

Even in this case, the net current
through S1, namely zero, matches
the net current through S2.

I

I

FIGURE 31.14 The net current passing through the flat surface S1 also passes through the 
curved surface S2.

dQ

dt

I

(a)

I

This is the magnetic field of the
current I that is charging the capacitor.

Current I 
passes through 
surface S1.

No current passes
through surface S2.

Cross section through a closed
curve C around the wire

(b)

The electric flux Φe through surface S2

increases as the capacitor charges.

S1

S2Curve C

I = 
dQ

dt
I = 

FIGURE 31.15 There is no current through 
surface S2 as the capacitor charges, but 
there is a changing electric flux.

But this leads to an interesting puzzle. FIGURE 31.15a shows a capacitor being 
charged. Current I, from the left, brings positive charge to the left capacitor plate. The 
same current carries charges away from the right capacitor plate, leaving the right 
plate negatively charged. This is a perfectly ordinary current in a conducting wire, 
and you can use the right-hand rule to verify that its magnetic field is as shown.

Curve C is a closed curve encircling the wire on the left. The current passes 
through surface S1, a flat surface across C, and we could use Ampère’s law to find 
that the magnetic field is that of a straight wire. But what happens if we try to use 
surface S2 to determine Ithrough? Ampère’s law says that we can consider any surface 
bounded by curve C, and surface S2 certainly qualifies. But no current passes through 
S2. Charges are brought to the left plate of the capacitor and charges are removed from 
the right plate, but no charge moves across the gap between the plates. Surface S1 has 
Ithrough = I, but surface S2 has Ithrough = 0. Another dilemma!

It would appear that Ampère’s law is either wrong or incomplete. Maxwell was 
the first to recognize the seriousness of this problem. He noted that there may be 
no current passing through S2, but, as FIGURE 31.15b shows, there is an electric flux 
Φe through S2 due to the electric field inside the capacitor. Furthermore, this flux 
is changing with time as the capacitor charges and the electric field strength grows. 
Faraday had discovered the significance of a changing magnetic flux, but no one had 
considered a changing electric flux.

The current I passes through S1, so Ampère’s law applied to S1 gives

C B
u # d  su = m

 0 Ithrough = m
 0 I

We believe this result because it gives the correct magnetic field for a current-carrying 
wire. Now the line integral depends only on the magnetic field at points on curve C, so 
its value won’t change if we choose a different surface S to evaluate the current. The 
problem is with the right side of Ampère’s law, which would incorrectly give zero if 
applied to surface S2. We need to modify the right side of Ampère’s law to recognize 
that an electric flux rather than a current passes through S2.

The electric flux between two capacitor plates of surface area A is

Φe = EA

The capacitor’s electric field is E = Q/P0  A; hence the flux is actually independent of 
the plate size:

 Φe =
Q

P0  A
 A =

Q
P0

 (31.18)
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The rate at which the electric flux is changing is

 
dΦe

dt
=

1
P0

 
dQ

dt
=

I
P0

 (31.19)

where we used I = dQ/dt. The flux is changing with time at a rate directly proportional  
to the charging current I.

Equation 31.19 suggests that the quantity P01dΦe /dt2 is in some sense “equivalent” 
to current I. Maxwell called the quantity

 Idisp = P0 
dΦe

dt
 (31.20)

the displacement current. He had started with a fluid-like model of electric and 
magnetic fields, and the displacement current was analogous to the displacement of 
a fluid. The fluid model has since been abandoned, but the name lives on despite the 
fact that nothing is actually being displaced.

Maxwell hypothesized that the displacement current was the “missing” piece of 
Ampère’s law, so he modified Ampère’s law to read

 C B
u # d su = m

 01Ithrough + Idisp2 = m
 01Ithrough + P0 

dΦe

dt 2 (31.21)

Equation 31.21 is now known as the Ampère-Maxwell law. When applied to Figure 
31.15b, the Ampère-Maxwell law gives

  S1: C B
u # d  su = m

 01Ithrough + P0
dΦe

dt 2 = m
 01I + 02 = m

 0 I

  S2: C B
u # d  su = m

 01Ithrough + P0
dΦe

dt 2 = m
 010 + I2 = m

 0 I

where, for surface S2, we used Equation 31.19 for dΦe /dt. Surfaces S1 and S2 now both 
give the same result for the line integral of B

u # d  su around the closed curve C.

   NOTE    The displacement current Idisp between the capacitor plates is numerically 
equal to the current I in the wires to and from the capacitor, so in some sense it 
allows “current” to be continuous all the way through the capacitor. Nonetheless, the 
displacement current is not a flow of charge. The displacement current is equivalent 
to a real current in that it creates the same magnetic field, but it does so with a 
changing electric flux rather than a flow of charge.

The Induced Magnetic Field
Ordinary Coulomb electric fields are created by charges, but a second way to create an 
electric field is by having a changing magnetic field. That’s Faraday’s law. Ordinary 
magnetic fields are created by currents, but now we see that a second way to create a  
magnetic field is by having a changing electric field. Just as the electric field created 
by a changing B

u
 is called an induced electric field, the magnetic field created by  

a changing E
u
 is called an induced magnetic field.

FIGURE 31.16 shows the close analogy between induced electric fields, governed 
by Faraday’s law, and induced magnetic fields, governed by the second term in the 
Ampère-Maxwell law. An increasing solenoid current causes an increasing magnetic  
field. The changing magnetic field, in turn, induces a circular electric field. The  
negative sign in Faraday’s law dictates that the induced electric field direction is ccw 
when seen looking along the magnetic field direction.

An increasing capacitor charge causes an increasing electric field. The changing 
electric field, in turn, induces a circular magnetic field. But the sign of the Ampère-
Maxwell law is positive, the opposite of the sign of Faraday’s law, so the induced magnetic  
field direction is cw when you’re looking along the electric field direction.

B
u

E
u

Increasing solenoid current

Increasing capacitor charge

Q

I
u

Increasing B

u
Induced E

u
Increasing E

u
Induced B

Faraday’s law describes an induced electric field.

The Ampère-Maxwell law describes
an induced magnetic field.

FIGURE 31.16 The close analogy between 
an induced electric field and an induced 
magnetic field.
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938 CHAPTER 31 Electromagnetic Fields and Waves

If a changing magnetic field can induce an electric field and a changing electric 
field can induce a magnetic field, what happens when both fields change simultane-
ously? That is the question that Maxwell was finally able to answer after he modified 
Ampère’s law to include the displacement current, and it is the subject to which we 
turn next.

A 2.0-cm-diameter parallel-plate capacitor with a 1.0 mm spac-
ing is being charged at the rate 0.50 C/s. What is the magnetic 
field strength inside the capacitor at a point 0.50 cm from the  
axis?

MODEL The electric field inside a parallel-plate capacitor is  
uniform. As the capacitor is charged, the changing electric field  
induces a magnetic field.

VISUALIZE FIGURE 31.17 shows the fields. The induced magnetic 
field lines are circles concentric with the capacitor.

SOLVE The electric field of a parallel-plate capacitor is E =  
Q/P0 A = Q/P0pR2. The electric flux through the circle of radius r 
(not the full flux of the capacitor) is

Φe = pr2E = pr2 
Q

P0pR2 =
r2

R2 
Q

P0

Thus the Ampère-Maxwell law is

C B
u # d  su = P0 m

 0 
dΦe

dt
= P0 m

 0 
d
dt

 1 r2

R2 
Q

P0
2 = m

 0 
r2

R2 
dQ

dt

The magnetic field is everywhere tangent to the circle of radius r, so 
the integral of B

u # d  su around the circle is simply BL = 2prB. With 
this value for the line integral, the Ampère-Maxwell law becomes

2prB = m
 0 

r2

R2 
dQ

dt
and thus

  B =
m

 0

2p
 

r

R2 
dQ

dt
= 12.0 * 10-7 T m/A2 

0.0050 m

10.010 m22 10.50 C/s2

  = 5.0 * 10-6 T

REVIEW Charging a capacitor at 0.5 C/s requires a 0.5 A charging 
current. We’ve seen many previous examples in which a current- 
carrying wire with I ≈ 1 A generates a nearby magnetic field of a  
few microtesla, so the result seems reasonable.

EXAMPLE 31.3 ■ The fields inside a charging capacitor

The magnetic field line is a circle concentric 
with the capacitor. The electric flux through 
this circle is pr2E.

FIGURE 31.17 The magnetic field strength is found by integrating 
around a closed curve of radius r.

STOP TO THINK 31.2 The electric field in four 
identical capacitors is shown as a function of time. 
Rank in order, from largest to smallest, the magnetic  
field strengths BA to BD at the outer edge of the  
capacitor at time T.

t

E

T

A
B

C

D

31.4 Maxwell’s Equations
James Clerk Maxwell was a young, mathematically brilliant Scottish physicist. In  
1855, barely 24 years old, he presented a paper to the Cambridge Philosophical So ciety  
entitled “On Faraday’s Lines of Force.” It had been 30 years and more since the major 
discoveries of Oersted, Ampère, Faraday, and others, but electromagnetism remained 
a loose collection of facts and “rules of thumb” without a consistent theory to link 
these ideas together.

Maxwell’s goal was to synthesize this body of knowledge and to form a theory of 
electromagnetic fields. The critical step along the way was his recognition of the need 
to include a displacement-current term in Ampère’s law.
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31.4 Maxwell’s Equations 939

Maxwell’s theory of electromagnetism is embodied in four equations that we today 
call Maxwell’s equations. These are

Classical physics

Newton’s first law

Newton’s second law

Newton’s third law

Newton’s law of gravity

Gauss’s law

Gauss’s law for magnetism

Faraday’s law

Ampère-Maxwell law

Lorentz force law

First law of thermodynamics

Second law of thermodynamics

  C E
u # dA

u
=

Qin

P0
  Gauss>s law

  C B
u # dA

u
= 0  Gauss>s law for magnetism

  C E
u # d  su = -

dΦm

dt
  Faraday>s law

  C B
u # d  su = m

 0 Ithrough + P0 m
 0 

dΦe

dt
    Ampère@Maxwell law

Maxwell’s claim is that these four equations are a complete description of electric  
and magnetic fields. They tell us how fields are created by charges and currents,  
and also how fields can be induced by the changing of other fields. We need one  
more equation for completeness, an equation that tells us how matter responds to  
electromagnetic fields. The general force equation

F
u

= q1E
u

+ v 

u * B
u2          Lorentz force law

is known as the Lorentz force law. Maxwell’s equations for the fields, together  
with the Lorentz force law to tell us how matter responds to the fields, form the 
complete theory of electromagnetism.

Maxwell’s equations bring us to the pinnacle of classical physics. When combined 
with Newton’s three laws of motion, his law of gravity, and the first and second laws 
of thermodynamics, we have all of classical physics—a total of just 11 equations.

While some physicists might quibble over whether all 11 are truly fundamental, the 
important point is not the exact number but how few equations we need to describe 
the overwhelming majority of our experience of the physical world. It seems as if we 
could have written them all on page 23 of this book and been finished, but it doesn’t 
work that way. Each of these equations is the synthesis of a tremendous number of 
physical phenomena and conceptual developments. To know physics isn’t just to know 
the equations, but to know what the equations mean and how they’re used. That’s why 
it’s taken us so many chapters and so much effort to get to this point. Each equation is  
a shorthand way to summarize a book’s worth of information!

Let’s summarize the physical meaning of the five electromagnetic equations:

 ■ Gauss’s law: Charged particles create an electric field.
 ■ Faraday’s law: An electric field can also be created by a changing magnetic 
field.

 ■ Gauss’s law for magnetism: There are no isolated magnetic poles.
 ■ Ampère-Maxwell law, first half: Currents create a magnetic field.
 ■ Ampère-Maxwell law, second half: A magnetic field can also be created by a 
changing electric field.

 ■ Lorentz force law, first half: An electric force is exerted on a charged particle 
in an electric field.

 ■ Lorentz force law, second half: A magnetic force is exerted on a charge  
moving in a magnetic field.

These are the fundamental ideas of electromagnetism. Other important ideas, such 
as Ohm’s law, Kirchhoff’s laws, and Lenz’s law, despite their practical importance, 
are not fundamental ideas. They can be derived from Maxwell’s equations, sometimes 
with the addition of empirically based concepts such as resistance.
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940 CHAPTER 31 Electromagnetic Fields and Waves

It’s true that Maxwell’s equations are mathematically more complex than Newton’s 
laws and that their solution, for many problems of practical interest, requires advanced 
mathematics. Fortunately, we have the mathematical tools to get just far enough into 
Maxwell’s equations to discover their most startling and revolutionary implication—
the prediction of electromagnetic waves.

31.5   ADVANCED TOPIC   Electromagnetic  
Waves

   NOTE    This optional section goes through the mathematics of showing that 
Maxwell’s equations predict electromagnetic waves. The key results of this section 
are summarized at the beginning of Section 31.6, so this section may be omitted 
with no loss of continuity.

Maxwell developed his four equations as a mathematical summary of what was 
known about electricity and magnetism in the mid-19th century: the properties of static 
electric and magnetic fields plus Faraday’s discovery of electromagnetic induction. 
Maxwell introduced the idea of displacement current—that a changing electric flux 
creates a magnetic field—on purely theoretical grounds; there was no experimental 
evidence at the time. But this new concept was the key to Maxwell’s success because  
it soon allowed him to make the remarkable and totally unexpected prediction of  
electromagnetic waves—self-sustaining oscillations of the electric and magnetic  
fields that propagate through space without the need for charges or currents.

Our goals in this section are to show that Maxwell’s equations lead to a wave equa-
tion for the electric and magnetic fields and to discover that all electromagnetic waves, 
regardless of frequency, travel through vacuum at the same speed, a speed we now call 
the speed of light. A completely general derivation of the wave equation is too mathe-
matically advanced for this textbook, so we will make a small number of assumptions—
but assumptions that will seem quite reasonable after our study of induced fields.

To begin, we will assume that electric and magnetic fields can exist independently 
of charges and currents in a source-free region of space. This is a very important 
assumption because it makes the statement that fields are real entities; they’re not 
just cute pictures that tell us about charges and currents. The source-free Maxwell’s 
equations, with no charges or currents, are

  C E
u # d A

u
= 0   C E

u # d  su = -
d Φm

dt
  

  C B
u # d A

u
= 0  C B

u # d  su = P0 m
 0 

d Φe

dt
  

(31.22)

Any electromagnetic wave traveling in empty space must be consistent with these 
equations.

The Structure of Electromagnetic Waves
Faraday discovered that a changing magnetic field creates an induced electric field, and 
Maxwell’s postulated displacement current says that a changing electric field creates an 
induced magnetic field. The idea behind electromagnetic waves, illustrated in FIGURE 

31.18, is that the fields can exist in a self-sustaining mode if a changing magnetic field 
creates an electric field that, in turn, happens to change in just the right way to recreate 
the original magnetic field. Notice that it has to be an electromagnetic wave, with chang-
ing electric and magnetic fields. A purely electric or purely magnetic wave cannot exist.

You saw in Section 30.6 that an induced electric field, which can drive an induced 
current around a conducting loop, is perpendicular to the changing magnetic field.  

Large radar installations like this one are 
used to track rockets and missiles.

B
u

E
u

Changing B
u

Changing E
u

Induced field

Induced field

FIGURE 31.18 Induced fields can be 
self-sustaining.
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And earlier in this chapter, when we introduced the displacement current, the induced 
magnetic field in a charging capacitor was perpendicular to the changing electric field. 
Thus we’ll make the assumption that E

u
 and B

u
 are perpendicular to each other in 

an electromagnetic wave. Furthermore—we’ll justify this shortly—E
u
 and B

u
 are each 

perpendicular to the direction of travel. Thus an electromagnetic wave is a transverse 
wave, analogous to a wave on a string, rather than a sound-like longitudinal wave.

We will also assume, to keep the mathematics as simple as possible, that an  
electromagnetic wave can travel as a plane wave, which you will recall from Chapter 16 
is a wave for which the fields are the same everywhere in a plane perpendicular to the di-
rection of travel. FIGURE 31.19a shows an electromagnetic plane wave propagating at speed 
vem along the x-axis. E

u
 and B

u
 are perpendicular to each other, as we’ve assumed, and to 

the direction of travel. We’ve defined the y- and z-axes to be, respectively, parallel to E
u
 and  

B
u
. Notice how the fields are the same at every point in a yz-plane slicing the x-axis.

Because a wave is a traveling disturbance, FIGURE 31.19b shows that the fields— 
at one instant of time—do change along the x-axis. These changing fields are the 
disturbance that is moving down the x-axis at speed vem, so E

u
 and B

u
 of a plane wave 

are functions of the two variables x and t. We’re not assuming that the wave has any 
particular shape—the shape of the wave is what we want to predict from Maxwell’s 
equations—simply that it’s a transverse wave moving along the x-axis.

Now that we know something about the structure of the wave, we can start to 
check its consistency with Maxwell’s equations. FIGURE 31.20 shows an imaginary box, 
a Gaussian surface, centered on the x-axis. Both electric and magnetic field vectors 
exist at each point in space, but the figure shows them separately for clarity. E

u
 oscil-

lates along the y-axis, so all electric field lines enter and leave the box through the top 
and bottom surfaces; no electric field lines pass through the sides of the box.

B
u

y

z

Magnetic field

The net magnetic flux through the box is zero.

x

B
u

B
u

B
u

B
u

E
u

E
u

E
u

E
u

The field strengths
vary with x.

The fields are the same at
every point in a yz-plane.

(b)

x

y

z

vem
u

B
u

B
u

B
u

E
u

E
u

E
u

(a)

x

y

z

vem
u

FIGURE 31.19 An electromagnetic plane 
wave.

E
u

z

y

Electric field

The net electric flux through the box is zero.

x

FIGURE 31.20 A closed surface can be used to check Gauss’s law for the electric and  
magnetic fields.

Because this is a plane wave, the magnitude of each electric field vector entering 
the bottom of the box is exactly matched by an electric field vector leaving the top. 
The electric flux through the top of the box is equal in magnitude but opposite in sign 
to the flux through the bottom, and the flux through the sides is zero. Thus the net 
electric flux is Φe = 0. There is no charge inside the box, because there are no sources 
in this region of space, so we also have Qin = 0. Hence the electric field of a plane 
wave is consistent with the first of the source-free Maxwell’s equations, Gauss’s law.

The exact same argument applies to the magnetic field. The net magnetic flux is 
Φm = 0; thus the magnetic field is consistent with the second of Maxwell’s equations.

Suppose that E
u
 or B

u
 had a component along the x-axis, the direction of travel. The 

fields change along the x-axis—that’s what a traveling wave is—so it would not be 
possible for the flux through the right face to exactly cancel the flux through the left 
face at every instant of time. An x-component of either field would violate Gauss’s 
law by creating a net flux when there are no enclosed sources. Thus our claim that an 
electromagnetic wave must be a transverse wave, with the fields perpendicular to the 
direction of travel, is a requirement of Gauss’s law.
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942 CHAPTER 31 Electromagnetic Fields and Waves

Faraday’s Law
Gauss’s law tells us that an electromagnetic wave has to be a transverse wave. What 
does Faraday’s law have to say? Faraday’s law is concerned with the changing magnetic 
flux through a closed curve, so let’s apply Faraday’s law to the narrow rectangle in the 
xy-plane shown in FIGURE 31.21. We’ll assume that ∆x is so small that B

u
 is essentially  

constant over the width of the rectangle.
The magnetic field B

u
 is perpendicular to the rectangle, so the magnetic flux is 

Φm = Bz Arectangle = Bz 

h∆x. As the wave moves, the flux changes at the rate

 
d  Φm

dt
=

d
dt
1Bz  h ∆x2 =

0 Bz

0 t
 h ∆x (31.23)

The ordinary derivative dBz/dt, which is the full rate of change of B from all possible 
causes, becomes a partial derivative 0 Bz/0 t in this situation because the change in 
magnetic flux is due entirely to the change of Bz with time and not at all to the spatial 
variation of Bz.

According to our sign convention, we need to go around the rectangle in a coun-
terclockwise direction to make the flux positive. Thus we must also use a counter-
clockwise direction to evaluate the line integral:

 C E
u # d  su = 3

right

E
u # d  su + 3

top

E
u # d  su + 3   

left

E
u # d  su + 3

bottom

E
u # d  su (31.24)

The electric field E
u
 points in the y-direction; hence E

u # d su = 0 at all points on the top 
and bottom edges and these two integrals are zero.

Along the left edge of the loop, at position x, E
u

 has the same value at every point. 
Figure  31.21 shows that the direction of E

u
 is opposite to d  su; thus E

u # d  su = -Ey1x2 ds. 
On the right edge of the loop, at position x + ∆x, E

u
 is parallel to d  su, and 

E
u # d  su =  Ey1x + ∆x2   ds. Thus the line integral of E

u # d  su around the rectangle is

 C E
u # d  su = -Ey1x2 h + Ey1x + ∆x2 h = 3    Ey1x + ∆x2 - Ey1x2   4  h (31.25)

   NOTE    Ey1x2 indicates that Ey is a function of the position x. It is not Ey multiplied 
by x.

You learned in calculus that the derivative of the function f 1x2 is

df

dx
= lim

∆xS0
c f 1x + ∆  x2 - f 1x2

∆  x
d

We’ve assumed that ∆  x is very small. If we now let the width of the rectangle go to 
zero, ∆  x S 0, Equation 31.25 becomes

 C E
u #

 d  su =
0 Ey

0 x
 h ∆  x (31.26)

We’ve used a partial derivative because Ey is a function of both position x and time t.
Now, using Equations 31.23 and 31.26, we can write Faraday’s law as

C E
u # d  su =

0 Ey

0 x
 h ∆  x = -

d Φm

dt
= -

0 Bz

0 t
 h ∆  x

The area h ∆  x of the rectangle cancels, and we’re left with

 
0 Ey

0 x
= -

0 Bz

0 t
 (31.27)

B
u

z

y
Integration direction

u
E(x)

u
E(x + ∆x)

x

∆x

h

FIGURE 31.21 Applying Faraday’s law.
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Equation 31.27, which compares the rate at which Ey varies with position to the rate at 
which Bz varies with time, is a required condition that an electromagnetic wave must 
satisfy to be consistent with Maxwell’s equations.

The Ampère-Maxwell Law
We have only one equation to go, but this one will now be easier. The Ampère-Maxwell 
law is concerned with the changing electric flux through a closed curve. FIGURE 31.22 
shows a very narrow rectangle in the xz-plane. The electric field is perpendicular to 
this rectangle; hence the electric flux through it is Φe = Ey Arectangle = Ey 

l ∆  x. This 
flux is changing at the rate

 
d Φe

dt
=

d
dt

 1Ey  l ∆  x2 =
0Ey

0t
 l ∆  x (31.28)

The line integral of B
u # d  su around this closed rectangle is calculated just like the line 

integral of E
u # d  su in Figure 31.21. B

u
 is perpendicular to d  su on the narrow ends, so 

B
u # d  su = 0. The field at all points on the left edge is B

u1x2, and this field is parallel to 
d  su to make B

u # d  su = Bz1x2 ds. Similarly, B
u # d  su = -Bz1x + ∆  x2 ds at all points on the 

right edge, where B
u
 is opposite to d  su. Thus, if we let ∆  x S 0,

C B
u # d  su = Bz1x2l - Bz1x + ∆  x2l = -   3Bz1x + ∆  x2-   Bz1x2    4     l = -

0Bz

0x
 l ∆  x (31.29)

Equations 31.28 and 31.29 can now be used in the Ampère-Maxwell law:

C B
u # d  su = -

0Bz

0x
 l ∆  x = P0 m

 0
d Φe

dt
= P0 m

 0 

0Ey

 0t
 l ∆  x

The area of the rectangle cancels, and we’re left with

 
0Bz

0x
= -P0 m

 0 

0Ey

0t
 (31.30)

Equation 31.30 is a second required condition that the fields must satisfy.

The Wave Equation
In ❮❮ SECTION 16.4, during our study of traveling waves, we derived the wave equation:

 
0 2D

0 t2 = v2 
0 

2D

0 x2  (31.31)

There we learned that any physical system that obeys this equation for some type of 
displacement D can have traveling waves that propagate along the x-axis with speed v.

If we start with Equation 31.27, the Faraday’s law requirement for any electromag-
netic wave, we can take the second derivative with respect to x to find

 
0 

2Ey

0 x 

2 = -
0 

2Bz

0 x 0t
 (31.32)

You’ve learned in calculus that the order of differentiation doesn’t matter, so 
02Bz/0x 0t = 02Bz/0t 0x. And from Equation 31.30,

 
0 2Bz

0t 0x
= -P0 m

 0 

0 2Ey

0t2  (31.33)

Substituting Equation 31.33 into Equation 31.32 and taking the constants to the other 
side, we have

 
0 

2Ey

0 t2 =
1

P0 m
 0
 
0 

2Ey

0x 

2   (the wave equation for electromagnetic waves) (31.34)

E
u

z

y

Integration direction

u
B(x)

u
B(x + ∆x)

x

∆x

l

FIGURE 31.22 Applying the Ampère-
Maxwell law.

31.5  Advanced Topic: Electromagnetic Waves  943

M31_KNIG8221_05_GE_C31.indd   943 25/06/22   2:44 PM



944 CHAPTER 31 Electromagnetic Fields and Waves

Equation 31.34 is the wave equation! And it’s easy to show, by taking second derivatives 
of Bz rather than Ey, that the magnetic field Bz obeys exactly the same wave equation.

As we anticipated, Maxwell’s equations have led to a prediction of electromagnetic 
waves. Referring to the general wave equation, Equation 31.31, we see that an electro-
magnetic wave must travel (in vacuum) with speed

 vem =
11P0 m

 0
 (31.35)

The constants P0 and m
 0 are known from electrostatics and magnetostatics, where  

they determined the size of E
u
 and B

u
 due to point charges. Thus we can calculate

 vem =
11P0 m

 0
= 3.00 * 108 m/s = c (31.36)

This is a remarkable conclusion. Coulomb’s law and the Biot-Savart law, in which 
P0 and m

 0 first appeared, have nothing to do with waves. Yet Maxwell’s theory of 
electromagnetism ends up predicting that electric and magnetic fields can form a 
self-sustaining electromagnetic wave if that wave travels with speed vem = 1/1P0 m

 0. 
No other speed will satisfy Maxwell’s equations.

Laboratory measurements had already determined that light travels at 3.0 * 108 m/s, 
so Maxwell was entirely justified in concluding that light is an electromagnetic wave. 
Furthermore, we’ve made no assumption about the frequency of the wave, so ap-
parently electromagnetic waves of any frequency, from radio waves to x rays, travel  
(in vacuum) with speed c, the speed of light.

Connecting E and B
The electric and magnetic fields of an electromagnetic wave both oscillate, but not 
independently of each other. The two field strengths are related. Ey and Bz both satisfy 
the same wave equation, so the traveling waves—just like a wave on a string—are

  Ey = E0 sin 1kx - vt2 = E0 sin c 2p1 x
l

- ft2 d  
 Bz = B0 sin 1kx - vt2 = B0 sin c 2p1 x

l
- ft2 d  (31.37)

where E0 and B0 are the amplitudes of the electric and magnetic portions of the wave 
and, as for any sinusoidal wave, k = 2p/l, v = 2pf, and lf = v = c. These waves 
have to satisfy Equation 31.27; thus

 
0Ey

0x
=

2pE0

l
 cos c 2p1 x

l
- ft2 d = -

0Bz

0t
= 2pf B0 cos c 2p1 x

l
- ft2 d  (31.38)

Equation 31.38 is true only if E0 = lfB0 = cB0. And since the electric and magnetic 
fields oscillate together, this relationship between their amplitudes has to hold true at 
any point on the wave. Thus E = cB at any point on the wave.

STOP TO THINK 31.3 An electromagnetic wave is propagating in the 
positive x-direction. At this instant of time, what is the direction of E

u

 at 
the center of the rectangle?

v
uz

y

u
B(x)

u
B(x + ∆x)

x

∆x

a. In the positive x-direction b. In the negative x-direction
c. In the positive y-direction d. In the negative y-direction
e. In the positive z-direction f. In the negative z-direction
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31.6 Properties of Electromagnetic Waves 945

31.6 Properties of Electromagnetic Waves
It had been known since the early 19th century, from experiments with interfer-
ence and diffraction, that light is a wave, but no one understood what was “waving.” 
Faraday speculated that light was somehow connected to electricity and magnetism, 
but Maxwell was the first to understand not only that light is an electromagnetic wave 
but also that electromagnetic waves can exist at any frequency, not just the frequencies  
of visible light.

In the previous section, we used Maxwell’s equations to discover that:

1. Maxwell’s equations predict the existence of sinusoidal electromagnetic waves 
that travel through empty space independent of any charges or currents.

2. The waves are transverse waves, with E
u
 and B

u
 perpendicular to the direction of 

propagation   vuem.
3. E

u
 and B

u
 are perpendicular to each other in a manner such that E

u
* B

u
 is in the 

direction of   vuem.
4. All electromagnetic waves, regardless of frequency or wavelength, travel in vac-

uum at speed vem = 1/1P0 m
 0 = c, the speed of light.

5. The field strengths are related by E = cB at every point on the wave.

FIGURE 31.23 illustrates many of these characteristics of electromagnetic waves. It’s 
a useful picture, and one that you’ll see in any textbook, but a picture that can be very 
misleading if you don’t think about it carefully. First and foremost, E

u
 and B

u
 are not 

spatial vectors. That is, they don’t stretch spatially in the y- or z-direction for a certain 
distance. Instead, these vectors are showing the field strengths and directions along a 
single line, the x-axis. An E

u
 vector pointing in the y-direction is saying, “At this point 

on the x-axis, where the tail is, this is the direction and strength of the electric field.” 
Nothing is “reaching” to a point in space above the x-axis.

Second, we’re assuming this is a plane wave, which, you’ll recall, is a wave  
for which the fields are the same everywhere in any plane perpendicular to v 

u
em.  

Figure 31.23 shows the fields only along one line. But whatever the fields are doing 
at a point on the x-axis, they are doing the same thing everywhere in the yz-plane that 
slices the x-axis at that point. With this in mind, let’s explore some other properties of 
electromagnetic waves.

Energy and Intensity
Waves transfer energy. Ocean waves erode beaches, sound waves set your eardrums 
vibrating, and light from the sun warms the earth. The energy flow of an electromag-
netic wave is described by the Poynting vector S

u
, defined as

 S
u

K
1
m

 0
 E
u

* B
u
 (31.39)

The Poynting vector, shown in FIGURE 31.24, has two important properties:

1. The Poynting vector points in the direction in which an electromagnetic wave is 
traveling. You can see this by looking back at Figure 31.23.

2. It is straightforward to show that the units of S are W/m2, or power (joules per 
second) per unit area. Thus the magnitude S of the Poynting vector measures the 
rate of energy transfer per unit area of the wave front.

Because E
u
 and B

u
 of an electromagnetic wave are perpendicular to each other, and 

E = cB, the magnitude of the Poynting vector is

S =
EB
m

 0
=

E2

cm
 0

= cP0 E2

The Poynting vector is a function of time, oscillating from zero to Smax = E0 

2/cm
 0 and 

back to zero twice during each period of the wave’s oscillation. That is, the energy 

B
u

E
u

E
u

E
u

E
u

B
u

B
u

B
u

E0

B0

x

y

z

1. A sinusoidal wave with frequency f and 
 wavelength l travels with wave speed vem.

Wavelength l

u
vem

u u
2. E and B are 
 perpendicular to 
 each other and to
 the direction of
 travel. The fields
 have amplitudes
 E0 and B0.

u u
3. E and B are in phase.
 That is, they have
 matching crests,
 troughs, and zeros.

FIGURE 31.23 A sinusoidal electro-
magnetic wave.

B
u

E
u

S
u

Wave direction

uu
The Poynting vector is
in the direction of E * B.

z

y

x

FIGURE 31.24 The Poynting vector.
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946 CHAPTER 31 Electromagnetic Fields and Waves

flow in an electromagnetic wave is not smooth. It “pulses” as the electric and magnetic 
fields oscillate in intensity. We’re unaware of this pulsing because the electromagnetic  
waves that we can sense—light waves—have such high frequencies.

Of more interest is the average energy transfer, averaged over one cycle of oscillation, 
which is the wave’s intensity I. In our earlier study of waves, we defined the intensity 
of a wave to be I = P/A, where P is the power (energy transferred per second) of a wave 
that impinges on area A. Because E = E0 sin3   2p1x/l - ft2   4 , and the average over one  
period of sin23  2p1x/l - ft2   4  is 12 , the intensity of an electromagnetic wave is

 I =
P
A

= Savg =
1

2cm
 0

 E0 

2 =
cP0

2
 E0 

2 (31.40)

Equation 31.40 relates the intensity of an electromagnetic wave, a quantity that is easily  
measured, to the amplitude E0 of the wave’s electric field.

The intensity of a plane wave, with constant electric field amplitude E0, would 
not change with distance. But a plane wave is an idealization; there are no true plane 
waves in nature. You learned in Chapter 16 that, to conserve energy, the intensity of a 
wave far from its source decreases with the inverse square of the distance. If a source 
with power Psource emits electromagnetic waves uniformly in all directions, the elec-
tromagnetic wave intensity at distance r from the source is

 I =
Psource

4pr2  (31.41)

Equation 31.41 simply expresses the recognition that the energy of the wave is spread 
over a sphere of surface area 4pr2.

A cell phone broadcasts a 0.60 W signal at a frequency of  
1.9 GHz. What are the amplitudes of the electric and magnetic 
fields at a distance of 10 cm, about the distance to the center of the 
user’s brain?

MODEL Treat the cell phone as a point source of electromagnetic 
waves.

SOLVE The intensity of a 0.60 W point source at a distance of  
10 cm is

I =
Psource

4pr2 =
0.60 W

4p10.10 m22 = 4.78 W/m2

We can find the electric field amplitude from the intensity:

  E0 = B 2I
cP0

= B 214.78 W/m22
13.00 * 108 m/s218.85 * 10-12 C2/N m22

  = 60 V/m

The amplitudes of the electric and magnetic fields are related by the 
speed of light. This allows us to compute

B0 =
E0

c
= 2.0 * 10-7 T

REVIEW The electric field amplitude is modest; the magnetic field 
amplitude is very small. This implies that the interaction of elec-
tromagnetic waves with matter is mostly due to the electric field.

EXAMPLE 31.4 ■ Fields of a cell phone

STOP TO THINK 31.4 An electromagnetic wave is traveling in the 
positive y-direction. The electric field at one instant of time is shown at 
one position. The magnetic field at this position points

a. In the positive x-direction. b. In the negative x-direction.
c. In the positive y-direction. d. In the negative y-direction.
e. Toward the origin. f. Away from the origin.

E
uz

y

x

Radiation Pressure
Electromagnetic waves transfer not only energy but also momentum. An object  
gains momentum when it absorbs electromagnetic waves, much as a ball at rest gains 
momentum when struck by a ball in motion.
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Suppose we shine a beam of light on an object that completely absorbs the light  
energy. If the object absorbs energy during a time interval ∆t, its momentum changes by

∆   p =
energy absorbed

c

This is a consequence of Maxwell’s theory, which we’ll state without proof.
The momentum change implies that the light is exerting a force on the object. 

Newton’s second law, in terms of momentum, is F = ∆  p/∆t. The radiation force due 
to the beam of light is

F =
∆p

∆t
=

(energy absorbed)/∆t
c

=
P
c

where P is the power (joules per second) of the light.
It’s more interesting to consider the force exerted on an object per unit area, which 

is called the radiation pressure prad. The radiation pressure on an object that ab-
sorbs all the light is

 prad =
F
A

=
P/A

c
=

I
c
 (31.42)

where I is the intensity of the light wave. The subscript on prad is important in this 
context to distinguish the radiation pressure from the momentum p.

A low-cost way of sending spacecraft to other planets would be  
to use the radiation pressure on a solar sail. The intensity of the 
sun’s electromagnetic radiation at distances near the earth’s orbit is  
about 1300 W/m2. What size sail would be needed to accelerate  
a 10,000 kg spacecraft toward Mars at 0.010 m/s2?

MODEL Assume that the solar sail is perfectly absorbing.

SOLVE The force that will create a 0.010 m/s2 acceleration is 
F = ma = 100 N. We can use Equation 31.42 to find the sail  

area that, by absorbing light, will receive a 100 N force from  
the sun:

A =
cF
I

=
13.00 * 108 m/s21100 N2

1300 W/m2 = 2.3 * 107 m2

REVIEW If the sail is a square, it would need to be 4.8 km * 4.8 km, 
or roughly 3 mi * 3 mi. This is large, but not entirely out of the 
question with thin films that can be unrolled in space. But how will 
the crew return from Mars?

EXAMPLE 31.5 ■ Solar sailing

Artist’s conception of a future spacecraft 
powered by radiation pressure from the sun.

Antennas
We’ve seen that an electromagnetic wave is self-sustaining, independent of charges or 
currents. However, charges and currents are needed at the source of an electromagnetic 
wave. We’ll take a brief look at how an electromagnetic wave is generated by an antenna.

FIGURE 31.25 is the electric field of an electric dipole. If the dipole is vertical, the 
electric field E

u

 at points along a horizontal line is also vertical. Reversing the dipole, 
by switching the charges, reverses E

u

. If the charges were to oscillate back and forth,  

E
u

E
u

Positive charge on top Negative charge on top

FIGURE 31.25 An electric dipole creates an electric field that reverses direction if the dipole 
charges are switched.
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948 CHAPTER 31 Electromagnetic Fields and Waves

switching position at frequency f, then E
u
 would oscillate in a vertical plane. The chang-

ing E
u
 would then create an induced magnetic field B

u
, which could then create an E

u
, 

which could then create a B
u
,c, and an electromagnetic wave at frequency f would 

radiate out into space.
This is exactly what an antenna does. FIGURE 31.26 shows two metal wires attached 

to the terminals of an oscillating voltage source. The figure shows an instant when the 
top wire is negative and the bottom is positive, but these will reverse in half a cycle. 
The wire is basically an oscillating dipole, and it creates an oscillating electric field. 
The oscillating E

u
 induces an oscillating B

u
, and they take off as an electromagnetic 

wave at speed vem = c. The wave does need oscillating charges as a wave source, but 
once created it is self-sustaining and independent of the source. The antenna might be 
destroyed, but the wave could travel billions of light years across the universe, bearing 
the legacy of James Clerk Maxwell.

B
u

E
u

B
u

B
u

E
u

E
u

The oscillating dipole causes an 
electromagnetic wave to move away 
from the antenna at speed vem = c.

An oscillating voltage causes
the dipole to oscillate.

Antenna
wire

FIGURE 31.26 An antenna generates a 
self-sustaining electromagnetic wave.

Liquid crystal displays (LCDs) are  
ubiquitous—from your digital watch to 
your phone to your TV. Liquid crystals 
have rod-shaped molecules that can flow 
like a liquid while staying aligned with 
one another like the atoms in a crystal. 
The aligned molecules in each pixel of an 
LCD act as a polarizing filter whose axis 
can be changed or rotated with an ap-
plied voltage. Bright polarized light from 
the back of the display passes through 
the liquid crystal array and is then, de-
pending on each pixel’s voltage, fully, 
partially, or not blocked by a crossed 
polarizer (see Figure 31.30) at the front 
of the display. Hundreds, thousands, or 
even millions of pixels of variable inten-
sity produce the image you see on the 
display.

STOP TO THINK 31.5 The amplitude of the oscillating electric field at your cell 
phone is 4.0 mV/m when you are 10 km east of the broadcast antenna. What is the 
electric field amplitude when you are 20 km east of the antenna?

a. 1.0 mV/m
c. 4.0 mV/m

b. 2.0 mV/m
d. There’s not enough information to tell.

31.7 Polarization
The plane of the electric field vector E

u
 and the Poynting vector S

u
 (the direction  

of propagation) is called the plane of polarization of an electromagnetic wave. 
FIGURE  31.27 shows two electromagnetic waves moving along the x-axis. The electric 
field in Figure 31.27a oscillates vertically, so we would say that this wave is vertically  
polarized. Similarly the wave in Figure 31.27b is horizontally polarized. Other  
polarizations are possible, such as a wave polarized 30° away from horizontal.

B
u

E
u

B
u

E
u

u

B
u

E
u

B
u

E
u

vem

x

y
Plane of
polarization

z

(b) Horizontal polarization

B
u

B
u

u
E
u

E
u

B
u

B
u

E
u

E
u x

y
Plane of
polarization

z

vem

(a) Vertical polarization

FIGURE 31.27 The plane of polarization is the plane in which the electric field vector 
oscillates.

   NOTE    This use of the term “polarization” is completely independent of the idea of 
charge polarization that you learned about in Chapter 22.

Some wave sources, such as lasers and radio antennas, emit polarized electro-
magnetic waves with a well-defined plane of polarization. By contrast, most natural 
sources of electromagnetic radiation are unpolarized, emitting waves whose electric 
fields oscillate randomly with all possible orientations.

A few natural sources are partially polarized, meaning that one direction of polarization  
is more prominent than others. The light of the sky at right angles to the sun is partially 
polarized because of how the sun’s light scatters from air molecules to create skylight. 
Bees and other insects make use of this partial polarization to navigate. Light reflected 
from a flat, horizontal surface, such as a road or the surface of a lake, has a predominantly  
horizontal polarization. This is the rationale for using polarizing sunglasses.
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31.7 Polarization 949

The most common way of artificially generating polarized visible light is to send 
unpolarized light through a polarizing filter. The first widely used polarizing filter 
was invented by Edwin Land in 1928, while he was still an undergraduate student.  
He developed an improved version, called Polaroid, in 1938. Polaroid, as shown 
in FIGURE 31.28, is a plastic sheet containing very long organic molecules known as  
polymers. The sheets are formed in such a way that the polymers are all aligned to 
form a grid, rather like the metal bars in a barbecue grill. The sheet is then chemically 
treated to make the polymer molecules somewhat conducting.

As a light wave travels through Polaroid, the component of the electric field oscillating  
parallel to the polymer grid drives the conduction electrons up and down the molecules. 
The electrons absorb energy from the light wave, so the parallel component of E

u
 is 

absorbed in the filter. But the conduction electrons can’t oscillate perpendicular to the 
molecules, so the component of E

u
 perpendicular to the polymer grid passes through 

without absorption. Thus the light wave emerging from a polarizing filter is polarized 
perpendicular to the polymer grid. The direction of the transmitted polarization is called  
the polarizer axis.

Malus’s Law
Suppose a polarized light wave of intensity I0 approaches a polarizing filter. What  
is the intensity of the light that passes through the filter? FIGURE 31.29 shows that an  
oscillating electric field can be decomposed into components parallel and perpen-
dicular to the polarizer axis. If we call the polarizer axis the y-axis, then the incident 
electric field is

 E
u

incident = E# i n + E‘ jn = E0 sin u i n + E0 cos u jn (31.43)

where u is the angle between the incident plane of polarization and the polarizer axis.
If the polarizer is ideal, meaning that light polarized parallel to the axis is 100% 

transmitted and light perpendicular to the axis is 100% blocked, then the electric field 
of the light transmitted by the filter is

 E
u

transmitted = E‘ jn = E0 cos u jn (31.44)

Because the intensity depends on the square of the electric field amplitude, you can see  
that the transmitted intensity is related to the incident intensity by

 Itransmitted = I0 cos2 u  (incident light polarized) (31.45)

This result, which was discovered experimentally in 1809, is called Malus’s law.
FIGURE 31.30a shows that Malus’s law can be demonstrated with two polarizing  

filters. The first, called the polarizer, is used to produce polarized light of intensity I0. 
The second, called the analyzer, is rotated by angle u relative to the polarizer. As the 
photographs of FIGURE 31.30b show, the transmission of the analyzer is (ideally) 100% 
when u = 0° and steadily decreases to zero when u = 90°. Two polarizing filters with 
perpendicular axes, called crossed polarizers, block all the light.

Polarizer

Unpolarized light(a)

Analyzer

u

FIGURE 31.30 The intensity of the transmitted light depends on the angle between the 
polarizing filters.

Polarizer axis

E
u

Unpolarized light
consists of waves
polarized in all
possible directions.

Polymers

u
Only the component of
E parallel to the axis 
is transmitted.

FIGURE 31.28 A polarizing filter.

(b)

u = 0° u = 45° u = 90°

E
u

x

y

u

u
E0 sinu

E0 cosu

The incident light is polarized
at angle u with respect to the 
polarizer axis.Polarizer axis

u
Only the component of E 
in the direction of the axis 
is transmitted.

FIGURE 31.29 An incident electric field can 
be decomposed into components parallel 
and perpendicular to a polarizer axis.
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950 CHAPTER 31 Electromagnetic Fields and Waves

Suppose the light incident on a polarizing filter is unpolarized, as is the light incident 
from the left on the polarizer in Figure 31.30a. The electric field of unpolarized light 
varies randomly through all possible values of u. Because the average value of cos2u  
is 12 , the intensity transmitted by a polarizing filter is

 Itransmitted = 1
2 I0   (incident light unpolarized) (31.46)

In other words, a polarizing filter passes 50% of unpolarized light and blocks 50%.
In polarizing sunglasses, the polymer grid is aligned horizontally (when the glasses 

are in the normal orientation) so that the glasses transmit vertically polarized light. 
Most natural light is unpolarized, so the glasses reduce the light intensity by 50%.  
But glare—the reflection of the sun and the skylight from roads and other horizontal 
surfaces—has a strong horizontal polarization. This light is almost completely blocked  
by the Polaroid, so the sunglasses “cut glare” without affecting the main scene you 
wish to see.

You can test whether your sunglasses are polarized by holding them in front of 
you and rotating them as you look at the glare reflecting from a horizontal surface. 
Polarizing sunglasses substantially reduce the glare when the glasses are “normal” but  
not when the glasses are 90° from normal. (You can also test them against a pair of 
sunglasses known to be polarizing by seeing if all light is blocked when the lenses of  
the two pairs are crossed.)

The vertical polarizer blocks the 
horizontally polarized glare from 
the surface of the water.

STOP TO THINK 31.6 Unpolarized light of equal intensity is incident on four pairs of polarizing filters. Rank in 
order, from largest to smallest, the intensities IA to ID transmitted through the second polarizer of each pair. 

30°

A

30° 60°

B

30°

  

30°

C

60°
30°

D

30°

   CHAPTER 31 CHALLENGE EXAMPLE     Light propulsion

Future space rockets might propel themselves by firing laser beams, 
rather than exhaust gases, out the back. The acceleration would be 
small, but it could continue for months or years in the vacuum of 
space. Consider a 1200 kg unmanned space probe powered by a 
15 MW laser. After one year, how far will it have traveled and how  
fast will it be going?

MODEL Assume the laser efficiency is so high that it can be pow-
ered for a year with a negligible mass of fuel.

SOLVE Light waves transfer not only energy but also momentum, 
which is how they exert a radiation-pressure force. We found that 
the radiation force of a light beam of power P is

F =
P
c

From Newton’s third law, the emitted light waves must exert an 
equal-but-opposite reaction force on the source of the light. In this 
case, the emitted light exerts a force of this magnitude on the space 

probe to which the laser is attached. This reaction force causes the 
probe to accelerate at

  a =
F
m

=
P

mc
=

15 * 106 W

11200 kg213.0 * 108 m/s2
  = 4.2 * 10-5 m/s2

As expected, the acceleration is extremely small. But one year is a large 
amount of time: ∆  t = 3.15 * 107 s. After one year of acceleration,

 v = a ∆  t = 1300 m/s

 d = 1
2 a1  ∆  t22 = 2.1 * 1010 m

The space probe will have traveled 2.1 * 1010 m and will be going 
1300 m/s.

REVIEW Even after a year, the speed is not exceptionally fast— 
only about 2900 mph. But the probe will have traveled a substantial 
distance, about 25% of the distance to Mars.
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Lorentz Force
This force law governs the interaction of charged particles with 
electromagnetic fields:

F
u

= q1E
u

+   vu * B
u2

• An electric field exerts a force on any charged particle.

• A magnetic field exerts a force on a moving charged particle.

Field  
Transformations
Fields measured in reference frame A 
to be E

u

A and B
u

A are found in frame  
B to be

E
u

B = E
u

A +   vu BA * B
u

A

B
u

B = B
u

A -
1

c2 vu BA * E
u

A

Maxwell’s Equations
These equations govern electromagnetic fields:

  C E
u # dA

u
=

Qin

P0
   Gauss>s law

  C B
u # dA

u
= 0   Gauss>s law for magnetism

  C E
u #

 d  su = -
dΦm

dt
   Faraday>s law

  C B
u #

 d  su = m
 0 Ithrough + P0 m

 0 
dΦe

dt
    Ampère@Maxwell law

Maxwell’s equations tell us that:

An electric field can be created by

• Charged particles
• A changing magnetic field

A magnetic field can be created by

• A current
• A changing electric field

Induced fields  

An induced electric field  
is created by a changing  
magnetic field.

Polarization  

The electric field and the Poynting vector define the plane of polarization. The intensity of polarized 
light transmitted through a polarizing filter is given by Malus’s law:

I = I0 cos2 u

where u is the angle between the electric field and the polarizer axis.

An electromagnetic wave is a self-sustaining electromagnetic field.

• An em wave is a transverse wave with E
u
, B

u
, and   vuem mutually perpendicular.

• An em wave propagates with speed vem = c = 1/1P0 m
 0.

• The electric and magnetic field strengths are related by E = cB.

• The Poynting vector S
u

= 1E
u

* B
u2/m

 0 is the energy transfer in the direction of travel.

• The wave intensity is I = P/A = 11/2cm
 02E0 

2 = 1cP0 /22E0 

2.

General Principles

Important Concepts

Applications

y

xA

y

xB

vBA
u

Increasing B
u

Induced E
u

Induced B
u

Increasing E
u

vem = c

B
u

E
u

B
u

E
u

S
u

An induced magnetic 
field is created by a 
changing electric field.

These fields can  
exist independently of  
charges and currents.

I0

I

u

u

The goal of Chapter 31 has been to study the properties of 
electromagnetic fields and waves.

Summary

M31_KNIG8221_05_GE_C31.indd   951 25/06/22   2:44 PM



952 CHAPTER 31 Electromagnetic Fields and Waves

CONCEPTUAL QUESTIONS

Galilean field transformation 
 equations
displacement current

Maxwell’s equations
electromagnetic wave
Poynting vector, S

u

intensity, I
radiation pressure, prad

antenna

plane of polarization
Malus’s law

Terms and Notation

1. Andre is flying his spaceship to the left through the laboratory 
magnetic field of FIGURE Q31.1.
a. Does Andre see a magnetic field? If so, in which direction 

does it point?
b. Does Andre see an electric field? If so, in which direction 

does it point?

B
u

Andre

FIGURE Q31.1

FIGURE Q31.3

S2 A

2 A

FIGURE Q31.4

E
u

Induced B
u

FIGURE Q31.5

B
u

E
u

B
u

E
u

u
vem

yx

z

yx

3000 V/m

10 mT

z(b)(a)

vem
u

FIGURE Q31.6

2. Sharon drives her rocket through a magnetic field as shown in 
FIGURE  Q31.2. She is travelling to the right at a speed of 800 m/s, 
as measured by Bill. As she passes Bill, she shoots a positive 
charge backward at a speed of 800 m/s relative to her.
a. According to Bill, what kind of force(s) act on the charge? In 

which direction?
b. According to Sharon, what kind of force(s) act on the charge? 

In which directions?
3. If you curl the fingers of your 

right hand as shown, is the electric 
flux in FIGURE Q31.3 positive or 
negative?

4. What is the current through surface S in FIGURE Q31.4 if you curl 
your right fingers in the direction of the arrow?

5. Is the electric field strength in FIGURE Q31.5 increasing, decreas-
ing, or not changing? Explain.

6. Do the situations in FIGURE Q31.6 represent possible electromag-
netic waves? If not, why not?

7. In what directions are the electromagnetic waves traveling in 
FIGURE Q31.7?

(a) B
u

E
u

B
u

E
u

FIGURE Q31.7

(b)

B
u

E
uB

u

E
u

FIGURE Q31.9

8. The intensity of an electromagnetic wave is 20 W/m2. What will 
the intensity be if the
a. amplitude of the electric field is halved?
b. amplitude of the magnetic field is halved?
c. amplitude of both the electric and magnetic fields are halved?
d. frequency is halved?

9. Older televisions used a loop 
antenna like the one in FIGURE 
Q31.9. How does this antenna 
work?

10. A vertically polarized electromagnetic wave passes through the 
five polarizers in FIGURE Q31.10. Rank in order, from largest to 
smallest, the transmitted intensities IA to IE.

A B C D E

FIGURE Q31.10

FIGURE Q31.2

Bill

800 m/s relative
to Sharon

800 m/s
relative to Bill

Sharon
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EXERCISES AND PROBLEMS

A

y

x

BA

u

EA

u
EA

u

FIGURE EX31.1

E = 1.0 * 106 V/m

2.0 * 106 m/s

B = 1.0 T

FIGURE EX31.4

3 T
2 T

3 T

1 T1 cm

1 cm ?
2 cm

3 T

FIGURE EX31.5

Problems labeled  integrate material from earlier chapters.

Exercises

Section 31.1 E or B? It Depends on Your Perspective

1. | FIGURE EX31.1 shows the electric 
and magnetic fields in frame A. A 
rocket in frame B travels parallel to 
one of the axes of the A coordinate 
system. Along which axis must the 
rocket travel, and in which direction, 
in order for the rocket scientists to 
measure (a) BB 7 BA, (b) BB = BA, and 
(c) BB 6 BA?

2. || A rocket cruises past a laboratory at 1.00 * 106 m/s in the 
positive x-direction just as a proton is launched with velocity 
(in the laboratory frame)   vu = 11.41 * 106 in + 1.41 * 106 jn2 m/s. 
What are the proton’s speed and its angle from the y-axis in  
(a) the laboratory frame and (b) the rocket frame?

3. || Scientists in the laboratory create a uniform electric field 
E
u
 =1.0 * 106 kn V/m in a region of space where B

u
=  0

u
. What are 

the fields in the reference frame of a rocket traveling in the posi-
tive x-direction at 1.0 * 106 m/s?

4. || A rocket zooms past the 
earth at v = 2.0 * 106 m/s. 
Scientists on the rocket have 
created the electric and mag-
netic fields shown in FIGURE 
EX31.4. What are the fields 
measured by an earthbound 
scientist?

Section 31.2 The Field Laws Thus Far

Section 31.3 The Displacement Current

5. || The magnetic field is uniform over each face of the box shown 
in FIGURE EX31.5. What are the magnetic field strength and direc-
tion on the front surface?

6. | What capacitance, in mF, has its potential difference increasing 
at 2.0 * 106 V/s when the displacement current in the capacitor  
is 1.5 A?

7. || A parallel-plate capacitor, 6 cm in diameter, has a 1 mm gap. 
What is the displacement current in the capacitor if the potential 
difference across the capacitor is increasing at 3 * 105 V/s?

8. || A parallel-plate capacitor, 8 cm in diameter, has a 0.5 mm 
spacing. The electric field between the plates is increasing at the 
rate of 2.0 * 106 V/m s. What is the magnetic field strength (a) on  
the axis, (b) 2 cm from the axis, and (c) 5 cm from the axis?

9. | Show that the quantity P01dΦe/dt2 has units of current.

10. || Show that the displacement current inside a parallel-plate ca-
pacitor can be written C1dVC/dt2.

Section 31.5 Electromagnetic Waves

11. | What is the electric field amplitude of an electromagnetic 
wave whose magnetic field amplitude is 2.0 mT?

12. | What is the magnetic field amplitude of an electromagnetic 
wave whose electric field amplitude is 12 V/m?

13. | The magnetic field of an electromagnetic wave in a vacuum 
is Bz = 14.00 mT2 sin 3   12.0 * 1072x - vt4 , where x is in meters 
and t is in seconds. What are the wave’s (a) wavelength, (b) fre-
quency, and (c) electric field amplitude?

14. | The electric field of an electromagnetic wave in a vacuum is 
Ey = 120.0 V/m2 cos 3   16.28 * 1082x - vt4 , where x is in m and  
t is in s. What are the wave’s (a) wavelength, (b) frequency, and 
(c) magnetic field amplitude?

Section 31.6 Properties of Electromagnetic Waves

15. | A radio wave is traveling in the negative y-direction. What is 
the direction of E

u
 at a point where B

u
 is in the positive x-direction?

16. | a. What is the magnetic field amplitude of an electromagnetic 
wave whose electric field amplitude is 100 V/m?

b. What is the intensity of the wave?
17. || A helium-neon laser emits a 1.0-mm-diameter laser beam 

with a power of 1.0 mW. What are the amplitudes of the electric 
and magnetic fields of the light wave?

18. || A radio receiver can detect signals with electric field ampli-
tudes as small as 300 mV/m. What is the intensity of the smallest 
detectable signal?

19. || A radio antenna broadcasts a 1.0 MHz radio wave with 25 kW 
of power. Assume that the radiation is emitted uniformly in all 
directions.
a. What is the wave’s intensity 30 km from the antenna?
b. What is the electric field amplitude at this distance?

20. | A 1000 W carbon-dioxide laser emits light with a wavelength 
of 10 mm into a 3.0-mm-diameter laser beam. What force does 
the laser beam exert on a completely absorbing target?

21. | A microwave beam with a wavelength of 1.5 cm has an inten-
sity of 25 W/m2. What is the magnetic field amplitude?

22. | At what distance from a 10 W point source of electromagnetic 
waves is the magnetic field amplitude 1.0 mT?

Section 31.7 Polarization

23. | FIGURE EX31.23 shows a hor-
izontally polarized radio wave of 
frequency 1.0 * 106 Hz traveling 
into the figure. The maximum 
electric field strength is 1000 V/m.  
What are
a. The maximum magnetic field 

strength?
b. The magnetic field strength 

and direction at a point where 
E
u
 =  1500 V/m, to the right2?

24. || Only 25% of the intensity of a polarized light wave passes 
through a polarizing filter. What is the angle between the elec-
tric field and the axis of the filter?

E
u

x

y

Electromagnetic
wave traveling
into figure

FIGURE EX31.23

M31_KNIG8221_05_GE_C31.indd   953 25/06/22   2:45 PM



954 CHAPTER 31 Electromagnetic Fields and Waves

c. Show that an experimenter in the loop’s frame sees a current 
I = lv passing through the center of the loop.

d. What electric and magnetic fields would an experimenter in 
the loop’s frame calculate at distance r from the current of 
part c?

e. Show that your fields of parts b and d are the same.

25. || A 200 mW vertically polarized laser beam passes through a 
polarizing filter whose axis is 35° from horizontal. What is the 
power of the laser beam as it emerges from the filter?

26. || Unpolarized light with intensity 350 W/m2 passes first 
through a polarizing filter with its axis vertical, then through a 
second polarizing filter. It emerges from the second filter with 
intensity 131 W/m2. What is the angle from vertical of the axis 
of the second polarizing filter?

Problems
27. || What is the electric field at the position of the electron in 

FIGURE P31.27? Give your answer in component form.

x

y

F
u

30°

3.2 * 10-13 N

Moving out of figure at 1.0 * 107 m/s

B = 0.10 T

FIGURE P31.27

v
u

E = 1.0 * 106 V/m

B = 0.10 T

v = 1.0 * 107 m/s

FIGURE P31.28

v
u

E
u

FIGURE P31.29

v
u

v = 2.0 * 107 m/s

B = 0.010 T

FIGURE P31.30

v
u

v
u Linear density l

FIGURE P31.32

t (ms)

∆VC (V)

0 1 2 3 4
0

100

50

FIGURE P31.36

28. || What is the force (magnitude and direction) on the proton in 
FIGURE P31.28? Give the direction as an angle cw or ccw from 
vertical.

29. | A proton is fired with a speed of 1.0 * 106 m/s through the 
parallel-plate capacitor shown in FIGURE P31.29. The capacitor’s 
electric field is E

u
= 11.0 * 105 V/m, down2.

a. What magnetic field B
u
, both strength and direction, must be 

applied to allow the proton to pass through the capacitor with 
no change in speed or direction?

b. Find the electric and magnetic fields in the proton’s reference 
frame.

c. How does an experimenter in the proton’s frame explain that 
the proton experiences no force as the charged plates fly by?

30. | What electric field strength and direction will allow the pro-
ton in FIGURE P31.30 to pass through this region of space without 
being deflected?

31. ||| An electron travels with   vu = 5.0 * 106 in m/s through a 
point in space where E

u
= 12.0 * 105 in - 2.0 * 105 jn2 V/m and 

B
u

= -0.10 kn T. What is the force on the electron?
32. || In FIGURE P31.32, a circular loop of radius r travels with 

speed v along a charged wire having linear charge density l. The 
wire is at rest in the laboratory frame, and it passes through the 
center of the loop.
a. What are E

u
 and B

u
 at a point on the loop as measured by a sci-

entist in the laboratory? Include both strength and direction.
b. What are the fields E

u
 and B

u
 at a point on the loop as mea-

sured by a scientist in the frame of the loop?

33. || The magnetic field inside a 4.0-cm-diameter superconducting 
solenoid varies sinusoidally between 8.0 T and 12.0 T at a fre-
quency of 10 Hz.
a. What is the maximum electric field strength at a point 1.5 cm 

from the solenoid axis?
b. What is the value of B at the instant E reaches its maximum 

value?
34. || A simple series circuit consists of a 150 Ω resistor, a 25 V 

battery, a switch, and a 2.5 pF parallel-plate capacitor (initially 
uncharged) with plates 5.0 mm apart. The switch is closed at 
t = 0 s.
a. After the switch is closed, find the maximum electric flux and 

the maximum displacement current through the capacitor.
b. Find the electric flux and the displacement current at 

t = 0.50 ns.
35. || A wire with conductivity s carries current I. The current is 

increasing at the rate dI/dt.
a. Show that there is a displacement current in the wire equal to 

1P0/s21dI/dt2.
b. Evaluate the displacement current for a copper wire in which 

the current is increasing at 1.0 * 106 A/s.
36. || FIGURE P31.36 shows the voltage across a 0.10 m F capacitor. 

Draw a graph showing the displacement current through the ca-
pacitor as a function of time.

37. || A 10 A current is charging a 1.0-cm-diameter parallel-plate 
capacitor.
a. What is the magnetic field strength at a point 2.0 mm radially 

from the center of the wire leading to the capacitor?
b. What is the magnetic field strength at a point 2.0 mm radially 

from the center of the capacitor?
38. || FIGURE P31.38 shows the electric field 

inside a cylinder of radius R = 3.0 mm. 
The field strength is increasing with 
time as E = 1.0 * 108t  2 V/m, where t is 
in s. The electric field outside the cylin-
der is always zero, and the field inside 
the cylinder was zero for t 6 0.
a. Find an expression for the electric 

flux Φe through the entire cylinder 
as a function of time.

E
u

R

FIGURE P31.38
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48. || The maximum electric field strength in air is 3.0 MV/m. 
Stronger electric fields ionize the air and create a spark. What is 
the maximum power that can be delivered by a 1.0-cm-diameter 
laser beam propagating through air?

49. || A LASIK vision-correction system uses a laser that emits 
10-ns-long pulses of light, each with 2.5 mJ of energy. The 
laser beam is focused to a 0.85-mm-diameter circle on the cor-
nea. What is the electric field amplitude of the light wave at the 
cornea?

50. || The intensity of sunlight reaching the earth is 1360 W/m2. 
Assuming all the sunlight is absorbed, what is the radiation- 
pressure force on the earth? Give your answer (a) in newtons and 
(b) as a fraction of the sun’s gravitational force on the earth.

51. || For radio and microwaves, the depth of penetration into the 
human body is proportional to l1/2. If 27 MHz radio waves 
penetrate to a depth of 14 cm, how far do 2.4 GHz microwaves 
penetrate?

52. || A laser beam shines straight up onto a flat, black foil of mass m.
a. Find an expression for the laser power P needed to levitate 

the foil.
b. Evaluate P for a foil with a mass of 25 mg.

53. | For a science project, you would like to horizontally suspend 
an 8.5 by 11 inch sheet of black paper in a vertical beam of light 
whose dimensions exactly match the paper. If the mass of the 
sheet is 1.0 g, what light intensity will you need?

54. || Large quantities of dust should have been left behind after 
the creation of the solar system. Larger dust particles, compa-
rable in size to soot and sand grains, are common. They create 
shooting stars when they collide with the earth’s atmosphere. But 
very small dust particles are conspicuously absent. Astronomers 
believe that the very small dust particles have been blown out 
of the solar system by the sun. By comparing the forces on dust 
particles, determine the diameter of the smallest dust particles 
that can remain in the solar system over long periods of time. 
Assume that the dust particles are spherical, black, and have a 
density of 2000 kg/m3. The sun emits electromagnetic radiation 
with power 3.9 * 1026 W.

55. || You’ve recently read about a chemical laser that generates 
a 20-cm-diameter, 25 MW laser beam. One day, after physics 
class, you start to wonder if you could use the radiation pressure 
from this laser beam to launch small payloads into orbit. To see 
if this might be feasible, you do a quick calculation of the accel-
eration of a 20-cm-diameter, 100 kg, perfectly absorbing block. 
What speed would such a block have if pushed horizontally 100 m  
along a frictionless track by such a laser?

56. || Unpolarized light of intensity I0 is incident on three polariz-
ing filters. The axis of the first is vertical, that of the second is 
45° from vertical, and that of the third is horizontal. What light 
intensity emerges from the third filter?

57. || Unpolarized light of intensity I0 is incident on two polarizing 
filters. The transmitted light intensity is I0/10. What is the angle 
between the axes of the two filters?

58. || Unpolarized light of intensity I0 is incident on a stack of 7 
polarizing filters, each with its axis rotated 15° cw with respect 
to the previous filter. What light intensity emerges from the last 
filter?

b. Draw a picture showing the magnetic field lines inside and 
outside the cylinder. Be sure to include arrowheads showing 
the field’s direction.

c. Find an expression for the magnetic field strength as a func-
tion of time at a distance r 6 R from the center. Evaluate the 
magnetic field strength at r = 2.0 mm, t = 2.0 s.

d. Find an expression for the magnetic field strength as a func-
tion of time at a distance r 7 R from the center. Evaluate the 
magnetic field strength at r = 4.0 mm, t = 2.0 s.

39. || A long, thin superconducting wire carrying a 15 A current passes 
through the center of a thin, 2.0-cm-diameter ring. A uniform elec-
tric field of increasing strength also passes through the ring, parallel 
to the wire. The magnetic field inside the ring is zero.
a. At what rate is the electric field strength increasing?
b. Is the electric field in the direction of the current or opposite 

to the current?
40. || A 1.0 mF capacitor is discharged, starting at t = 0 s.

The displacement current between the plates is Idisp =  
110 A2exp1- t/2.0 ms2. What was the capacitor’s initial voltage 
1∆VC20?

41. || At one instant, the electric and magnetic fields at one point 
of an electromagnetic wave are E

u
= 1200 in + 300 jn - 50 kn2 V/m 

and B
u

= B017.3 in - 7.3 jn + a kn2 mT.
a. What are the values of a and B0?
b. What is the Poynting vector at this time and position?

42. || a. Show that uE and uB, the energy densities of the electric 
and magnetic fields, are equal to each other in an elec-
tromagnetic wave. In other words, show that the wave’s 
energy is divided equally between the electric field and 
the magnetic field.

b. What is the total energy density in an electromagnetic 
wave of intensity 1000 W/m2?

43. | The intensity of sunlight reaching the earth is 1360 W/m2.
a. What is the power output of the sun?
b. What is the intensity of sunlight reaching Mars?

44. | Assume that a 7.0-cm-diameter, 100 W lightbulb radiates all 
its energy as a single wavelength of visible light. Estimate the 
electric and magnetic field amplitudes at the surface of the bulb.

45. || An electromagnetic wave has an electric field ampli-
tude of 50 V/m. The field has a maximum rate of change of 
7.5 * 1010 (V/m)/s . What is the wavelength?

46. | When the Voyager 2 spacecraft passed Neptune in 1989, it 
was 4.5 * 109 km from the earth. Its radio transmitter, with 
which it sent back data and images, broadcast with a mere 21 W 
of power. Assuming that the transmitter broadcast equally in all 
directions,
a. What signal intensity was received on the earth?
b. What electric field amplitude was detected?
The received signal was somewhat stronger than your result be-
cause the spacecraft used a directional antenna, but not by much.

47. || In reading the instruction manual that came with your garage- 
door opener, you see that the transmitter unit in your car  
produces a 250 mW, 350 MHz signal and that the receiver unit is 
supposed to respond to a radio wave at this frequency if the elec-
tric field amplitude exceeds 0.10 V/m. You wonder if this is really 
true. To find out, you put fresh batteries in the transmitter and start 
walking away from your garage while opening and closing the door. 
Your garage door finally fails to respond when you’re 42 m away. 
What is the electric field amplitude at the receiver when it first fails?
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956 CHAPTER 31 Electromagnetic Fields and Waves

Challenge Problems
61. ||| Laboratory scientists have cre-

ated the electric and magnetic 
fields shown in FIGURE CP31.61. 
These fields are also seen by sci-
entists who zoom past in a rocket 
traveling in the x-direction at 
1.0 * 106 m/s. According to the 
rocket scientists, what angle does 
the electric field make with the 
axis of the rocket?

62. ||| A cube of water 10 cm on a side is placed in a microwave 
beam having E0 = 11 kV/m. The microwaves illuminate one 
face of the cube, and the water absorbs 80% of the incident en-
ergy. How long will it take to raise the water temperature by 
50°C? Assume that the water has no heat loss during this time.

63. ||| An 80 kg astronaut has gone outside his space capsule to do 
some repair work. Unfortunately, he forgot to lock his safety 
tether in place, and he has drifted 5.0 m away from the capsule. 
Fortunately, he has a 1000 W portable laser with fresh batteries 
that will operate it for 1.0 h. His only chance is to accelerate him-
self toward the space capsule by firing the laser in the opposite 
direction. He has a 10 h supply of oxygen. How long will it take 
him to reach safety?

64. ||| An electron travels with v 

u = 5.0 * 106 in m/s through a point 
in space where B

u
= 0.10 jn T. The force on the electron at this 

point is F
u

= 19.6 * 10-14 in - 9.6 * 10-14 kn2 N. What is the elec-
tric field?

65. ||| The radar system at an airport broadcasts 11 GHz micro-
waves with 150 kW of power. An approaching airplane with a 
31 m2 cross section is 30 km away. Assume that the radar broad-
casts uniformly in all directions and that the airplane scatters 
microwaves uniformly in all directions. What is the electric field 
strength of the microwave signal received back at the airport 
200 ms later?

66. ||| Consider current I passing through a resistor of radius r, 
length L, and resistance R.
a. Determine the electric and magnetic fields at the surface of 

the resistor. Assume that the electric field is uniform through-
out, including at the surface.

b. Determine the strength and direction of the Poynting vector 
at the surface of the resistor.

c. Show that the flux of the Poynting vector (i.e., the integral of 
S
u # dA

u
) over the surface of the resistor is I 2R. Then give an 

interpretation of this result.

59. || It has been proposed that small spacecraft could reach other 
planets in a fairly short time—days instead of many months—if 
they unfurl a reflective sail and are accelerated by a powerful 
laser beam generated by an earth-orbiting laser.
a. What speed would a spacecraft need to reach Mars in 8.0 

days when Mars is closest to earth?
b. The laser beam would need to stay focused on the space-

craft’s sail during the acceleration phase. Laser beams slowly 
increase in diameter due to diffraction—the topic of Chapter 
33—but it’s possible that an extension of current technology 
would allow the diameter of a laser beam to be no more than 
100 m, a plausible diameter for a sail, at a distance 10 times 
the distance to the moon. What steady acceleration would a 
spacecraft need to reach the speed you found in part a in a 
distance 10 times that from the earth to the moon?

c. For how long, in hours, would the acceleration need to last?
d. What laser beam power, in GW, would be needed to send a 

10 kg probe to Mars in 8.0 days? (That probe would be large 
enough to carry some sensors, cameras, and communication 
equipment.) Your answer is about a factor of 5000 greater 
than the most powerful continuous laser developed to date. It 
would be quite an engineering challenge to build such a laser, 
but there’s no inherent reason it couldn’t be done.

60. | The concept of space-based solar power was proposed 50 
years ago. It is technically feasible but so far not economically 
feasible. The idea is that a giant solar-panel array in geosyn-
chronous orbit would collect solar energy, convert the energy 
to microwaves, and then beam the microwaves down to a large 
antenna on the ground below. The efficiency of converting solar 
energy to electricity and to microwaves is about 30%; the effi-
ciency of converting microwaves to electric power on the grid is 
85%. The somewhat low efficiency is offset by the fact that, un-
like terrestrial solar panels, the satellite would be continuously 
in sunlight and could provide solar energy 24 hours a day.
a. A large nuclear or fossil-fuel power plant generates 1.0 GW of 

electric power. To replace this power plant with space-based 
solar power, what would the diameter of a circular solar-cell 
array need to be? The intensity of sunlight above the earth’s at-
mosphere is 1300 W/m2. Your answer is large, but still feasible.

b. There is some concern that birds or stray aircraft would be 
incinerated if they flew through the microwave beam. What 
is the minimum diameter of a receiving antenna that would 
keep the electric field amplitude just above the ground from 
exceeding 1600 V/m, a value known to be safe? Your answer 
is again large, but still feasible.

45°

E = 1.0 * 106 V/m

1.0 * 106 m/s

B = 0.50 T

FIGURE CP31.61
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AC Circuits

What is an AC circuit?
The circuits of Chapter 28, with a steady 
current in one direction, are called DC 
circuits—direct current. A circuit with an 
oscillating emf is called an AC circuit, for 
alternating current. The wires that transport 
electricity across the country—the grid—
use alternating current.

❮❮ LOOKING BACK Chapter 28 Circuits

How do circuit elements act in an AC circuit?
Resistors in an AC circuit act as they  
do in a DC circuit. But you’ll learn that  
capacitors and inductors are more useful  
in AC circuits than in DC circuits.

 ■ The voltage across and the current 
through a capacitor or inductor are  
90° out of phase. One is peaking when 
the other is zero, and vice versa.

 ■ The peak voltage V and peak current 
I have an Ohm’s-law–like relationship 
V = IX, where X, which depends on 
frequency, is called the reactance.

 ■ Unlike resistors, capacitors and inductors 
do not dissipate energy.

❮❮ LOOKING BACK Section 26.5 Capacitors

❮❮ LOOKING BACK Section 30.8 Inductors

What is a phasor?
AC voltages oscillate sinusoidally, so  
the mathematics of AC circuits is that of 
SHM. You’ll learn a new way to represent 
oscillating quantities—as a rotating vector 
called a phasor. The instantaneous value of  
a phasor quantity is its horizontal projection.

❮❮ LOOKING BACK Chapter 15 Simple harmonic 
motion and resonance

What is an RLC circuit?
A circuit with a resistor, inductor, and  
capacitor in series is called an RLC circuit.  
An RLC circuit has a resonance—a  
large current over a narrow range of  
frequencies—that allows it to be tuned to a 
specific frequency. As a result, RLC circuits  
are very important in communications.

Why are AC circuits important?
AC circuits are the backbone of our technological society. 
Generators automatically produce an oscillating emf, AC power  
is easily transported over large distances, and transformers allow 
engineers to shift the AC voltage up or down. The circuits of 
radio, television, and cell phones are also AC circuits because 
they work with oscillating voltages and currents—at much higher 
frequencies than the grid, but the physical principles are the same.

IN THIS CHAPTER, you will learn about and analyze AC circuits.

32

Engineers control the grid that  
provides power to the state of California.

E

0

E0

-E0

2TT

Peak
emf

t

TT1
2

v and i

Current

0 t

Voltage

The current and voltage 
are 90° out of phase with 
each other.

Instantaneous
emf

E0

vt

v

I

v
2v00 v0
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958 CHAPTER 32 AC Circuits

32.1 AC Sources and Phasors
One of the examples of Faraday’s law cited in Chapter 30 was an electric generator. 
A turbine, which might be powered by expanding steam or falling water, causes a 
coil of wire to rotate in a magnetic field. As the coil spins, the emf and the induced 
current oscillate sinusoidally. The emf is alternately positive and negative, causing  
the charges to flow in one direction and then, a half cycle later, in the other. The 
oscillation frequency of the grid in North and South America is f = 60 Hz, whereas 
most of the rest of the world uses a 50 Hz oscillation.

The generator’s peak emf—the peak voltage—is a fixed, unvarying quantity, so 
it might seem logical to call a generator an alternating-voltage source. Nonetheless, 
circuits powered by a sinusoidal emf are called AC circuits, where AC stands for al-
ternating current. By contrast, the steady-current circuits you studied in Chapter 28 
are called DC circuits, for direct current.

AC circuits are not limited to the use of 50 Hz or 60 Hz power-line voltages. Audio, 
radio, television, and telecommunication equipment all make extensive use of AC  
circuits, with frequencies ranging from approximately 102 Hz in audio circuits to 
approximately 109 Hz in cell phones. These devices use electrical oscillators rather 
than generators to produce a sinusoidal emf, but the basic principles of circuit analysis  
are the same.

You can think of an AC generator or oscillator as a battery whose output voltage un-
dergoes sinusoidal oscillations. The instantaneous emf of an AC generator or oscillator,  
shown graphically in FIGURE 32.1a, can be written

 E = E0 cos vt (32.1)

where E0 is the peak or maximum emf and v = 2pf  is the angular frequency in radians 
per second. Recall that the units of emf are volts. As you can imagine, the mathematics  
of AC circuit analysis are going to be very similar to the mathematics of simple 
harmonic motion.

An alternative way to represent the emf and other oscillatory quantities is with the 
phasor diagram of FIGURE 32.1b. A phasor is a vector that rotates counterclockwise 
(ccw) around the origin at angular frequency v. The length or magnitude of the phasor 
is the maximum value of the quantity. For example, the length of an emf phasor is E0. 
The angle vt is the phase angle, an idea you learned about in Chapter 15, where we  
made a connection between circular motion and simple harmonic motion.

The quantity’s instantaneous value, the value you would measure at time t, is the 
 projection of the phasor onto the horizontal axis. This is also analogous to the connection 
between circular motion and simple harmonic motion. FIGURE 32.2 helps you visualize 
the phasor rotation by showing how the phasor corresponds to the more familiar graph at  
several specific points in the cycle.

1
2

1
4

3
4

p
2

3p
2

0
0

E0

E

-E0

t
TT T T

vt = 0
E = E0

vt = 
E = 0

vt = p
E = -E0

vt = 
E = 0

vt = 2p
E = E0

FIGURE 32.2 The correspondence between 
a phasor and points on a graph.

STOP TO THINK 32.1 The magnitude of the instantaneous value of the emf repre-
sented by this phasor is

a. Increasing.
b. Decreasing.
c. Constant.
d. It’s not possible to tell without knowing t.

(a) The emf oscillates
as E = E0 cosvt.

0

E0

E

-E0

t
2TT

Peak
emf

The oscillation period
is T = 1/f = 2p/v.

FIGURE 32.1 An oscillating emf can be 
represented as a graph or as a phasor 
diagram.

(b)

The phasor rotates
ccw at angular
frequency v.

Phase
angle

Phasor
length E0

The tip of
the phasor goes
once around the
circle in time T.

The instantaneous emf
value is the projection
of the phasor onto the
horizontal axis.

E0-E0

vt

E0 cosvt

E0

E

Resistor Circuits
In Chapter 28 you learned to analyze a circuit in terms of the current I, voltage V, and 
potential difference ∆  V. Now, because the current and voltage are oscillating, we will 
use lowercase i to represent the instantaneous current through a circuit element and v 
for the circuit element’s instantaneous voltage.
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32.1 AC Sources and Phasors 959

FIGURE 32.3 shows the instantaneous current iR through a resistor R. The poten-
tial difference across the resistor, which we call the resistor voltage vR, is given by 
Ohm’s law:

 vR = iRR (32.2)

FIGURE 32.4 shows a resistor R connected across an AC emf E. Notice that the circuit 
symbol for an AC generator is . We can analyze this circuit in exactly the same 
way we analyzed a DC resistor circuit. Kirchhoff’s loop law says that the sum of all 
the potential differences around a closed path is zero:

 a∆V = ∆Vsource + ∆V
  res = E - vR = 0 (32.3)

The minus sign appears, just as it did in the equation for a DC circuit, because the 
potential decreases when we travel through a resistor in the direction of the current. 
We find from the loop law that vR = E = E0 cos vt. This isn’t surprising because the 
resistor is connected directly across the terminals of the emf.

The resistor voltage in an AC circuit can be written

 vR = V
  R cos vt (32.4)

where VR is the peak or maximum voltage. You can see that VR = E0 in the single- 
resistor circuit of Figure 32.4. Thus the current through the resistor is

 iR =
vR 

R
=

V
  R cos vt

R
= IR cos vt (32.5)

where IR = VR/R is the peak current.

   NOTE    Ohm’s law applies to both the instantaneous and peak currents and voltages 
of a resistor.

The resistor’s instantaneous current and voltage are in phase, both oscillating as  
cos vt. FIGURE 32.5 shows the voltage and the current simultaneously on a graph and 
as a phasor diagram. The fact that the current phasor is shorter than the voltage  
phasor has no significance. Current and voltage are measured in different units, so you 
can’t compare the length of one to the length of the other. Showing the two different 
quantities on a single graph—a tactic that can be misleading if you’re not careful— 
illustrates that they oscillate in phase and that their phasors rotate together at the same 
angle and frequency.

+ -

iR

R

The instantaneous resistor voltage
is vR = iRR. The potential decreases
in the direction of the current.

The instantaneous current
in the resistor

FIGURE 32.3 Instantaneous current iR 
through a resistor.

∆Vsource = E

iR

∆Vres = -vRR

This is the current direction
when E 7 0. A half cycle later
it will be in the opposite direction.

FIGURE 32.4 An AC resistor circuit.

0

VR

IR

vR and iR

vR = VR cosvt

iR = IR cosvt

-VR

- IR

t
T

The resistor voltage and
current oscillate in phase.

iR

IR

VR

vR

Voltage phasor, length VR

Current phasor, length IR

Instantaneous
current and voltage

vt

FIGURE 32.5 Graph and phasor diagrams 
of the resistor current and voltage.

In the circuit of FIGURE 32.6, what are (a) the 
peak voltage across each resistor and (b) the 
instantaneous resistor voltages at t = 20 ms?

VISUALIZE Figure 32.6 shows the circuit  
diagram. The two resistors are in series.

SOLVE a. The equivalent resistance of  
the two series resistors is Req = 5 Ω +15 Ω = 20 Ω. The instantaneous current through 
the equivalent resistance is

  iR =
vR

Req
=

E0 cos vt

Req
=

1100 V2 cos12p160 Hz2t2
20 Ω

  =15.0 A2 cos12p160 Hz2t2

EXAMPLE 32.1 ■ Finding resistor voltages

15 Ω

5 Ω
(100 V) cos(2p(60 Hz)t)

FIGURE 32.6 An AC resistor circuit.

Continued
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960 CHAPTER 32 AC Circuits

32.2 Capacitor Circuits
FIGURE 32.7a shows current iC charging a capacitor with capacitance C. The instant-
aneous capacitor voltage is vC = q/C, where {q is the charge on the two capacitor 
plates at this instant. It is useful to compare Figure 32.7a to Figure 32.3 for a resistor.

FIGURE 32.7b, where capacitance C is connected across an AC source of emf E, is the 
most basic capacitor circuit. The capacitor is in parallel with the source, so the capac-
itor voltage equals the emf: vC = E = E0 cos vt. It will be useful to write

 vC = VC cos vt (32.6)

where VC is the peak or maximum voltage across the capacitor. You can see that 
VC = E0 in this single-capacitor circuit.

To find the current to and from the capacitor, we first write the charge

 q = CvC = CVC cos vt (32.7)

The current is the rate at which charge flows through the wires, iC = dq/dt, thus

 iC =
dq

dt
=

d

dt
 1CVC cos vt2 = -vCVC sin vt (32.8)

We can most easily see the relationship between the capacitor voltage and current if 
we use the trigonometric identity -sin1x2 = cos1x + p/22 to write

 iC = vCVC cos1vt +
p

2 2 (32.9)

In contrast to a resistor, a capacitor’s current (Equation 32.9) and voltage (Equation 
32.6) are not in phase. In FIGURE 32.8a, a graph of the instantaneous voltage vC and cur-
rent iC, you can see that the current peaks one-quarter of a period before the voltage 

The peak current is IR = 5.0 A, and this is also the peak current through the two resistors 
that form the 20 Ω equivalent resistance. Hence the peak voltage across each resistor is

VR = IRR = b25 V 5 Ω resistor
75 V 15 Ω resistor

b. The instantaneous current at t = 0.020 s is

iR = 15.0 A2 cos  1    2p160 Hz210.020 s2    2  = 1.55 A

The resistor voltages at this time are

vR = iRR = b 7.7 V 5 Ω resistor
23.2 V 15 Ω resistor

REVIEW The sum of the instantaneous voltages, 30.9 V, is what you would find by  
calculating E at t = 20 ms. This self-consistency gives us confidence in the answer.

STOP TO THINK 32.2 The resistor whose voltage and current 
phasors are shown here has resistance R that is

a. 71 Ω
b. 61 Ω
c. It’s not possible to tell.

VR IR

E = E0 cosvt

iC

vCC

(b)

iC

C

iC

The instantaneous capacitor
voltage is vC = q / C. The potential
decreases from + to -.

The instantaneous current
to and from the capacitor

+ -

(a)

FIGURE 32.7 An AC capacitor circuit.
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32.2 Capacitor Circuits 961

peaks. The phase angle of the current phasor on the phasor diagram of FIGURE 32.8b 
is p/2 rad—a quarter of a circle—larger than the phase angle of the voltage phasor.

We can summarize this finding:

The AC current of a capacitor leads the capacitor voltage by p/2 rad, or 90°.

The current reaches its peak value IC at the instant the capacitor is fully discharged 
and vC = 0. The current is zero at the instant the capacitor is fully charged.

A simple harmonic oscillator provides a mechanical analogy of the 90° phase 
difference between current and voltage. You learned in Chapter 15 that the position  
and velocity of a simple harmonic oscillator are

 x = A cos vt

 v =
dx

dt
= -vA sin vt = -vmax sin vt = vmax cos1vt +

p

2 2
You can see that the velocity of an oscillator leads the position by 90° in the same way 
that the capacitor current leads the voltage.

Capacitive Reactance
We can use Equation 32.9 to see that the peak current to and from a capacitor is 
IC = vCVC. This relationship between the peak voltage and peak current looks much 
like Ohm’s law for a resistor if we define the capacitive reactance XC to be

 XC K
1
vC

 (32.10)

With this definition,

 IC =
VC

XC
 or VC = IC XC (32.11)

The units of reactance, like those of resistance, are ohms.

   NOTE    Reactance relates the peak voltage VC and current IC. But reactance differs 
from resistance in that it does not relate the instantaneous capacitor voltage and 
current because they are out of phase. That is, vC ≠ iC XC.

A resistor’s resistance R is independent of the emf frequency. In contrast, as seen in 
FIGURE 32.9, a capacitor’s reactance XC depends inversely on the frequency. The reac-
tance becomes very large at low frequencies (i.e., the capacitor is a large impediment 
to current). This makes sense because v = 0 would be a nonoscillating DC circuit, and  
we know that a steady DC current cannot pass through a capacitor. The reactance 
decreases as the frequency increases until, at very high frequencies, XC ≈ 0 and the 
capacitor begins to act like an ideal wire. This result has important consequences for 
how capacitors are used in many circuits.

T

iC peaks   T before vC peaks. We say
that the current leads the voltage by 90°.

vC and iC

IC

VC

- IC

-VC

Voltage vC

Current iC

t
T

(a)

0
1
2

1
4

FIGURE 32.8 Graph and phasor diagrams 
of the capacitor current and voltage.

The current phasor leads
the voltage phasor by 90°.

These are the instantaneous
current and voltage.

IC

iC

VC

vC

vt + 

vt

Voltage phasor 

(b)

p
2

What is the capacitive reactance of a 0.10 mF capacitor at 100 Hz (an audio frequency) 
and at 100 MHz (an FM-radio frequency)?

SOLVE At 100 Hz,

XC 1at 100 Hz2 =
1
vC

=
1

2p1100 Hz211.0 * 10-7 F2 = 16,000 Ω

Increasing the frequency by a factor of 106 decreases XC by a factor of 106, giving

XC 1at 100 MHz2 = 0.016 Ω

REVIEW A capacitor with a substantial reactance at audio frequencies has virtually no 
reactance at FM-radio frequencies.

EXAMPLE 32.2 ■ Capacitive reactance

The reactance is very
large at low frequencies.

The reactance is very
small at high frequencies.

Capacitive reactance

XC = 
1

vC

XC

v

FIGURE 32.9 The capacitive reactance as a 
function of frequency.
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962 CHAPTER 32 AC Circuits

32.3 RC Filter Circuits
You learned in Chapter 28 that a resistance R causes a capacitor to be charged or 
discharged with time constant t = RC. We called this an RC circuit. Now that we’ve 
looked at resistors and capacitors individually, let’s explore what happens if an RC 
circuit is driven continuously by an alternating current source.

FIGURE 32.10 shows a circuit in which a resistor R and capacitor C are in series with 
an emf E oscillating at angular frequency v. Before launching into a formal analysis, 
let’s try to understand qualitatively how this circuit will respond as the frequency is 
varied. If the frequency is very low, the capacitive reactance will be very large, and 
thus the peak current IC will be very small. The peak current through the resistor 
is the same as the peak current to and from the capacitor (just as in DC circuits, 
conservation of charge requires IR = IC); hence we expect the resistor’s peak voltage 
VR = IRR to be very small at very low frequencies.

On the other hand, suppose the frequency is very high. Then the capacitive  
reactance approaches zero and the peak current, determined by the resistance alone, 
will be IR = E0 /R. The resistor’s peak voltage VR = IR will approach the peak source 
voltage E0 at very high frequencies.

This reasoning leads us to expect that VR will increase steadily from 0 to E0  
as v is increased from 0 to very high frequencies. Kirchhoff’s loop law has to be 
obeyed, so the capacitor voltage VC will decrease from E0 to 0 during the same  
change of frequency. A quantitative analysis will show us how this behavior can  
be used as a filter.

The goal of a quantitative analysis is to determine the peak current I and the two 
peak voltages VR and VC as functions of the emf amplitude E0 and frequency v. Our 
analytic procedure is based on the fact that the instantaneous current i is the same for 
two circuit elements in series.

A 10 mF capacitor is connected to a 1000 Hz oscillator with a peak emf of 5.0 V. What is 
the peak current to the capacitor?

VISUALIZE Figure 32.7b showed the circuit diagram. It is a simple one-capacitor circuit.

SOLVE The capacitive reactance at v = 2pf = 6280 rad/s is

XC =
1
vC

=
1

16280 rad/s2110 * 10-6 F2 = 16 Ω

The peak voltage across the capacitor is VC = E0 = 5.0 V; hence the peak current is

IC =
VC

XC
=

5.0 V
16 Ω

= 0.31 A

REVIEW Using reactance is just like using Ohm’s law, but don’t forget it applies to only 
the peak current and voltage, not the instantaneous values.

EXAMPLE 32.3 ■ Capacitor current

STOP TO THINK 32.3 What is the capacitive reactance of “no capacitor,” just a 
continuous wire?

a. 0    b. ∞     c. Undefined

vRR

C

E = E0 cosvt 

i

i

vC

FIGURE 32.10 An RC circuit driven by an 
AC source.
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Using phasors to analyze an RC circuit

I I

VR

VC

I

vt

VR

VC

E0

VC

VR

E0

Begin by drawing a current  
phasor of length I. This is the  
starting point because the series 
circuit elements have the same  
current i. The angle at which  
the phasor is drawn is not  
relevant.

The current and voltage of a  
resistor are in phase, so draw a  
resistor voltage phasor of  
length VR parallel to the current 
phasor I. The capacitor current 
leads the capacitor voltage by  
90°, so draw a capacitor volt-
age phasor of length VC that is  
90° behind [i.e., clockwise (cw) 
from] the current phasor.

The series resistor and capaci-
tor are in parallel with the emf,  
so their instantaneous voltages  
satisfy vR + vC = E. This is a  
vector addition of phasors, so  
draw the emf phasor as the vec-
tor sum of the two voltage pha-
sors. The emf is E = E0 cos vt, 
hence the emf phasor is at  
angle vt.

The length of the emf phasor,  
E0, is the hypotenuse of a right  
triangle formed by the resistor  
and capacitor phasors. Thus  
E0 

2 = VR 

2 + VC 

2.

The relationship E0 

2 = VR 

2 + VC 

2 is based on the peak values, not the instantaneous 
values, because the peak values are the lengths of the sides of the right triangle. The 
peak voltages are related to the peak current I via VR = IR and VC = IXC, thus

  E0 

2 = VR 

2 + VC 

2 = 1IR22 + 1IXC 22 = 1R2 + XC 

2
 2I 2 

  =1R2 + 1/v2C2
 2I 2 

(32.12)

Consequently, the peak current in the RC circuit is

 I =
E02R2 + XC 

2
=

E02R2 + 1/v2C2
 (32.13)

Knowing I gives us the two peak voltages:

  VR = IR =
E0 R

 2R2 + XC 

2
=

E0 R

 2R2 + 1/v2C2
 

    VC = IXC =
E0 XC2R2 + XC 

2
=

E0 /vC2R2 + 1/v2C2
 

(32.14)

Frequency Dependence
Our goal was to see how the peak current and voltages vary as functions of the 
frequency v. Equations 32.13 and 32.14 are rather complex and best interpreted by 
looking at graphs. FIGURE 32.11 is a graph of VR and VC versus v.

You can see that our qualitative predictions have been borne out. That is, VR increases  
from 0 to E0 as v is increased, while VC decreases from E0 to 0. The explanation for 
this behavior is that the capacitive reactance XC decreases as v increases. For low 
frequencies, where XC W R, the circuit is primarily capacitive. For high frequencies, 
where XC V R, the circuit is primarily resistive.

The frequency at which VR = VC is called the crossover frequency vc. The 
crossover frequency is easily found by setting the two expressions in Equations 32.14 
equal to each other. The denominators are the same and cancel, as does E0, leading to

 vc =
1

RC
 (32.15)

In practice, fc = vc/2p is also called the crossover frequency.

E0

VR and VC The capacitor voltage approaches
E0 as v approaches 0.

The resistor voltage
approaches E0 as v
approaches ∞.

Crossover frequency

0
0

vc 2vc 3vc 4vc

v

FIGURE 32.11 Graph of the resistor and 
capacitor peak voltages as functions of 
the emf angular frequency v.
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vout = vCC

R

Frequency vE

Transmits frequencies  v 6 vc and
blocks frequencies v 7 vc

(a) Low-pass filter 

FIGURE 32.12 Low-pass and high-pass 
filter circuits.

We’ll leave it as a homework problem to show that VR = VC = E0 /12 when v = vc. 
This may seem surprising. After all, shouldn’t VR and VC add up to E0?

No! VR and VC are the peak values of oscillating voltages, not the instantaneous 
values. The instantaneous values do, indeed, satisfy vR + vC = E at all instants of 
time. But the resistor and capacitor voltages are out of phase with each other, as the 
phasor diagram shows, so the two circuit elements don’t reach their peak values at 
the same time. The peak values are related by E0 

2 = VR 

2 + VC 

2, and you can see that 
VR = VC = E0 /12 satisfies this equation.

   NOTE    It’s very important in AC circuit analysis to make a clear distinction between 
instantaneous values and peak values of voltages and currents. Relationships that are 
true for one set of values may not be true for the other.

Filters
FIGURE 32.12a is the circuit we’ve just analyzed; the only difference is that the capacitor 
voltage vC is now identified as the output voltage vout. This is a voltage you might  
measure or, perhaps, send to an amplifier for use elsewhere in an electronic instrument.  
You can see from the capacitor voltage graph in Figure 32.11 that the peak output  
voltage is V

  out ≈ E0 if v V vc, but V
  out ≈ 0 if v W vc. In other words,

 ■ If the frequency of an input signal is well below the crossover frequency, the input 
signal is transmitted or passed with little loss to the output.

 ■ If the frequency of an input signal is well above the crossover frequency, the input 
signal is strongly attenuated and the output is very nearly zero.

This circuit is called a low-pass filter.
The circuit of FIGURE 32.12b, which instead uses the resistor voltage vR for the output  

vout, is a high-pass filter. The output is V
  out ≈ 0 if v V vc, but V

  out ≈ E
 0 if v W vc. 

That is, an input signal whose frequency is well above the crossover frequency is 
transmitted without loss to the output.

Filter circuits are widely used in electronics. For example, a high-pass filter de-
signed to have fc = 100 Hz would pass the audio frequencies associated with speech 
( f 7 200 Hz) while blocking 60 Hz “noise” that can be picked up from power lines. 
Similarly, the high-frequency hiss from old vinyl records can be attenuated with a 
low-pass filter, allowing the lower-frequency audio signal to pass.

A simple RC filter suffers from the fact that the crossover region where VR ≈ VC is 
fairly broad. More sophisticated filters have a sharper transition from off 1V

  out ≈ 02 to 
on 1V

  out ≈ E
 0 2, but they’re based on the same principles as the RC filter analyzed here.

vout = vRR

C

Frequency vE

Transmits frequencies  v 7 vc and
blocks frequencies v 6 vc

(b) High-pass filter 

For a science project, you’ve built a radio to listen to AM radio 
broadcasts at frequencies near 1 MHz. The basic circuit is an antenna,  
which produces a very small oscillating voltage when it absorbs the 
energy of an electromagnetic wave, and an amplifier. Unfortunately, 
your neighbor’s short-wave radio broadcast at 10 MHz interferes 
with your reception. Having just finished physics, you decide to 
solve this problem by placing a filter between the antenna and the 
amplifier. You happen to have a 500 pF capacitor. What frequency 
should you select as the filter’s crossover frequency? What value of 
resistance will you need to build this filter?

MODEL You need a low-pass filter to block signals at 10 MHz while 
passing the lower-frequency AM signal at 1 MHz.

VISUALIZE The circuit will look like the low-pass filter in Fig-
ure 32.12a. The oscillating voltage generated by the antenna will 
be the emf, and vout will be sent to the amplifier.

SOLVE You might think that a crossover frequency near 5 MHz, 
about halfway between 1 MHz and 10 MHz, would work best. But 
5 MHz is a factor of 5 higher than 1 MHz while only a factor of  
2 less than 10 MHz. A crossover frequency the same factor above 
1 MHz as it is below 10 MHz will give the best results. In practice, 
choosing fc = 3 MHz would be sufficient. You can then use Equa-
tion 32.15 to select the proper resistor value:

  R =
1

vcC
=

1

2p13 * 106 Hz21500 * 10-12 F 2
  =106 Ω ≈ 100 Ω

REVIEW Rounding to 100 Ω is appropriate because the crossover 
frequency was determined to only one significant figure. Such 
“sloppy design” is adequate when the two frequencies you need to 
distinguish are well separated.

EXAMPLE 32.4 ■ Designing a filter
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32.4 Inductor Circuits
FIGURE 32.13a shows the instantaneous current iL through an inductor. If the current is 
changing, the instantaneous inductor voltage is

 vL = L 
diL

dt
 (32.16)

You learned in Chapter 30 that the potential decreases in the direction of the current  
if the current is increasing 1diL /dt 7 02 and increases if the current is decreasing 
1diL /dt 6 02.

FIGURE 32.13b is the simplest inductor circuit. The inductor L is connected across the 
AC source, so the inductor voltage equals the emf: vL = E = E0 cos vt. We can write

 vL = VL cos vt (32.17)

where VL is the peak or maximum voltage across the inductor. You can see that VL = E0 
in this single-inductor circuit.

We can find the inductor current iL by integrating Equation 32.17. First, we use 
Equation 32.17 to write Equation 32.16 as

 diL =
vL

L
 dt =

VL

L
 cos vt dt (32.18)

Integrating gives

  iL =
VL

L 3cos vt dt =
VL

vL
 sin vt =

VL

vL
 cos1vt -

p

2 2 
  = IL cos1vt -

p

2 2 (32.19)

where IL = VL/vL is the peak or maximum inductor current.

   NOTE    Mathematically, Equation 32.19 could have an integration constant i0. An 
integration constant would represent a constant DC current through the inductor, but 
there is no DC source of potential in an AC circuit. Hence, on physical grounds, we 
set i0 = 0 for an AC circuit.

We define the inductive reactance, analogous to the capacitive reactance, to be

 XL K vL (32.20)

STOP TO THINK 32.4 Rank in order, from largest to smallest, the crossover frequen-
cies 1vc 2A to 1vc 2D of these four circuits.

100 Ω 100 Ω 50 Ω 50 Ω

100 mF

A

200 mF

B

200 mF

C

100 mF

D

(a)

iL

L
+ -

The instantaneous current
through the inductor

The instantaneous inductor
voltage is vL = L (diL/dt).

FIGURE 32.13 Using an inductor in an AC 
circuit.

(b)

L

iL

vLE = E0 cosvt
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Then the peak current IL = VL /vL and the peak voltage are related by

 IL =
VL

XL
 or VL = ILXL (32.21)

FIGURE 32.14 shows that the inductive reactance increases as the frequency increases. 
This makes sense. Faraday’s law tells us that the induced voltage across a coil increases 
as the time rate of change of B

u
 increases, and B

u
 is directly proportional to the inductor  

current. For a given peak current IL, B
u
 changes more rapidly at higher frequencies 

than at lower frequencies, and thus V
  L is larger at higher frequencies than at lower 

frequencies.
FIGURE 32.15a is a graph of the inductor voltage and current. You can see that the 

current peaks one-quarter of a period after the voltage peaks. The angle of the current 
phasor on the phasor diagram of FIGURE 32.15b is p/2 rad less than the angle of the 
voltage phasor. We can summarize this finding:

The AC current through an inductor lags the inductor voltage by P/2 rad,  
or 90°.

E = E0 cosvt

i

i
vC

vL

vR

C

L

R

FIGURE 32.16 A series RLC circuit.

Inductive reactance
XL = vL

The reactance increases
with increasing frequency.

XL

v

FIGURE 32.14 The inductive reactance as a 
function of frequency.

0

vL and iL

Current iL

Voltage vL

VL

IL

-VL

- IL

t
T

(a) iL peaks   T after vL peaks.
We say that the current lags
the voltage by 90°.

T1
2

1
4

FIGURE 32.15 Graph and phasor diagrams of the inductor current and voltage.

iL

IL

VL

vL

Voltage phasor
vt

(b)

The current phasor lags
the voltage phasor by 90°.

vt - p2

A 25 mH inductor is used in a circuit that oscillates at 100 kHz. 
The current through the inductor reaches a peak value of 20 mA at 
t = 5.0 ms. What is the peak inductor voltage, and when, closest to 
t = 5.0 ms, does it occur?

MODEL The inductor current lags the voltage by 90°, or, equiva-
lently, the voltage reaches its peak value one-quarter period before 
the current.

VISUALIZE The circuit looks like Figure 32.15b.

SOLVE The inductive reactance at f = 100 kHz is

XL = vL = 2p11.0 * 105 Hz2125 * 10-6 H2 = 16 Ω

Thus the peak voltage is VL = ILXL = 120 mA2116 Ω2 = 320 mV. 
The voltage peak occurs one-quarter period before the current 
peaks, and we know that the current peaks at t = 5.0 ms. The  
period of a 100 kHz oscillation is 10.0 ms, so the voltage peaks at

t = 5.0 ms -
10.0 ms

4
= 2.5 ms

EXAMPLE 32.5 ■ Current and voltage of an inductor

32.5 The Series RLC Circuit
The circuit of FIGURE 32.16, where a resistor, inductor, and capacitor are in series, is 
called a series RLC circuit. The series RLC circuit has many important applications 
because, as you will see, it exhibits resonance behavior.

The analysis, which is very similar to our analysis of the RC circuit in Section 32.3, 
will be based on a phasor diagram. Notice that the three circuit elements are in series 
with each other and, together, are in parallel with the emf. We can draw two conclu-
sions that form the basis of our analysis:

1. The instantaneous current of all three elements is the same: i = iR = iL = iC.
2. The sum of the instantaneous voltages matches the emf: E = vR + vL + vC.
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Using phasors to analyze an RLC circuit

I
VR

VL

VC

I
VR

VL - VC
E0

VR

VL - VC

E0

f

I
 vt

Begin by drawing a current  
phasor of length I. This is the  
starting point because the series 
circuit elements have the same 
current i.

The current and voltage of a  
resistor are in phase, so draw a  
resistor voltage phasor parallel  
to the current phasor I. The  
capacitor current leads the  
capacitor voltage by 90°, so  
draw a capacitor voltage phasor 
that is 90° behind the current  
phasor. The inductor current  
lags the voltage by 90°, so draw  
an inductor voltage phasor 90° 
ahead of the current phasor.

The instantaneous voltages sat-
isfy E = vR + vL + vC. In  
terms of phasors, this is a vector 
addition. We can do the addi-
tion in two steps. Because the  
capacitor and inductor phasors  
are in opposite directions, their 
vector sum has length VL - VC. 
Adding the resistor phasor, at  
right angles, then gives the emf 
phasor E at angle vt.

The length E0 of the emf pha-
sor is the hypotenuse of a  
right triangle. Thus 

E
 0 

2 = V
  R 

2 + 1V
  L - V

  C22

If VL 7 VC, which we’ve assumed, then the instantaneous current i lags the emf by 
a phase angle f. We can write the current, in terms of f, as

 i = I cos1vt - f2 (32.22)

Of course, there’s no guarantee that V
  L will be larger than V

  C. If the opposite is true, 
V

  L 6 V
  C, the emf phasor is on the other side of the current phasor. Our analysis is still 

valid if we consider f to be negative when i is ccw from E. Thus f can be anywhere 
between -90° and +90°.

Now we can continue much as we did with the RC circuit. Based on the right 
 triangle, E

 0 

2 is

 E
 0 

2 = V
  R 

2 + 1V
  L - V

  C 22 = 3R2 + 1X
 L - X

 C 224 I 2 (32.23)

where we wrote each of the peak voltages in terms of the peak current I and a resis-
tance or a reactance. Consequently, the peak current in the RLC circuit is

 I =
E02R2 + 1XL - XC 22

=
E02R2 + 1vL - 1 /vC 22

 (32.24)

The three peak voltages are then found from VR = IR, VL = IXL, and VC = IXC.

Impedance
The denominator of Equation 32.24 is called the impedance Z of the circuit:

 Z = 2R2 + 1X
 L - X

 C 22 (32.25)

Impedance, like resistance and reactance, is measured in ohms. The circuit’s peak 
 current can be written in terms of the source emf and the circuit impedance as

 I =
E0

Z
 (32.26)

Equation 32.26 is a compact way to write I, but it doesn’t add anything new to 
Equation 32.24.
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Phase Angle
It is often useful to know the phase angle f between the emf and the current. You can 
see from FIGURE 32.17 that

tan f =
V

  L - V
  C

V
  R

=
1X

  L - X
 C2I

RI

The current I cancels, and we’re left with

 f = tan-11X
 L - X

 C

R 2 (32.27)

We can check that Equation 32.27 agrees with our analyses of single-element  
circuits. A resistor-only circuit has X

 L = X
 C = 0 and thus f = tan-1102 = 0 rad. In 

other words, as we discovered previously, the emf and current are in phase. An AC 
inductor circuit has R = XC = 0 and thus f = tan-11    ∞   2 = p /2 rad, agreeing with our 
earlier finding that the inductor current lags the voltage by 90°.

Other relationships can be found from the phasor diagram and written in terms of 
the phase angle. For example, we can write the peak resistor voltage as

 V
  R = E

 0 cos f (32.28)

Notice that the resistor voltage oscillates in phase with the emf only if f = 0 rad.

Resonance
Suppose we vary the emf frequency v while keeping everything else constant. 
There is very little current at very low frequencies because the capacitive reactance 
XC = 1/vC 1and thus Z2 is very large. Similarly, there is very little current at very high 
frequencies because the inductive reactance XL = vL becomes very large.

If I approaches zero at very low and very high frequencies, there should be some in-
termediate frequency where I is a maximum. Indeed, you can see from Equation 32.24 
that the denominator will be a minimum, making I a maximum, when X

 L = X
 C, or

 vL =
1
vC

 (32.29)

The frequency v0 that satisfies Equation 32.29 is called the resonance frequency:

 v0 =
12LC

 (32.30)

This is the frequency for maximum current in the series RLC circuit. The maximum 
current

 Imax =
E

 0

R
 (32.31)

is that of a purely resistive circuit because the impedance is Z = R at resonance.
You’ll recognize v0 as the oscillation frequency of the LC circuit we analyzed in 

Chapter 30. The current in an ideal LC circuit oscillates forever as energy is transferred  
back and forth between the capacitor and the inductor. This is analogous to an ideal, 
frictionless simple harmonic oscillator in which the energy is transformed back and 
forth between kinetic and potential.

Adding a resistor to the circuit is like adding damping to a mechanical oscillator. The  
emf is then a sinusoidal driving force, and the series RLC circuit is directly analo-
gous to the driven, damped oscillator that you studied in Chapter 15. A mechanical 
oscillator exhibits resonance by having a large-amplitude response when the driving  
frequency matches the system’s natural frequency. Equation 32.30 is the natural  
frequency of the series RLC circuit, the frequency at which the current would  

VR

VL - VC

E0

f

I

VR = E0 cosf

The current lags the emf by

f = tan-1  = tan-1VL - VC

VR
1 2 XL - XC

R1 2
FIGURE 32.17 The current is not in phase 
with the emf.
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like to oscillate. Consequently, the circuit has a large current response when the  
oscillating emf matches this frequency.

FIGURE 32.18 shows the peak current I of a series RLC circuit as the emf frequency 
v is varied. Notice how the current increases until reaching a maximum at frequency 
v0, then decreases. This is the hallmark of a resonance.

As R decreases, causing the damping to decrease, the maximum current becomes 
larger and the curve in Figure 32.18 becomes narrower. You saw exactly the same 
behavior for a driven mechanical oscillator. The emf frequency must be very close to 
v0 in order for a lightly damped system to respond, but the response at resonance is 
very large.

For a different perspective, FIGURE 32.19 graphs the instantaneous emf E = E
 0 cos vt 

and current i = I cos1vt - f2 for frequencies below, at, and above v0. The current 
and the emf are in phase at resonance 1f = 0 rad2 because the capacitor and inductor 
essentially cancel each other to give a purely resistive circuit. Away from resonance, 
the current decreases and begins to get out of phase with the emf. You can see, from 
Equation 32.27, that the phase angle f is negative when XL 6 XC (i.e., the frequency 
is below resonance) and positive when XL 7 XC (the frequency is above resonance).

Resonance circuits are widely used in radio, television, and communication 
equipment because of their ability to respond to one particular frequency (or very 
narrow range of frequencies) while suppressing others. The selectivity of a resonance 
circuit improves as the resistance decreases, but the inherent resistance of the wires 
and the inductor coil keeps R from being 0 Ω.

I

v
2v00 v0

R = 8 Ω

R = 25 Ω

R = 50 Ω

The maximum 
current is E0 /R.

FIGURE 32.18 A graph of the current I 
versus emf frequency for a series RLC 
circuit.

0

E0

E and i

-E0

t
T

Below resonance: v 6 v0

0

E0

E and i

-E0

t
T

The current is in phase with the emf.
f = 0

Resonance: v = v0

Maximum current

0

E0

E and i

-E0

t
T

The current lags the emf.
f 7 0

Above resonance: v 7 v0

The current leads the emf.
f 6 0

FIGURE 32.19 Graphs of the emf E and the current i at frequencies below, at, and above the 
resonance frequency v0.

An AM radio antenna picks up a 1000 kHz signal with a peak volt-
age of 5.0 mV. The tuning circuit consists of a 60 mH inductor in 
series with a variable capacitor. The inductor coil has a resistance 
of 0.25 Ω, and the resistance of the rest of the circuit is negligible.

a. To what value should the capacitor be tuned to listen to this 
radio station?

b. What is the peak current through the circuit at resonance?

c. A stronger station at 1050 kHz produces a 10 mV antenna sig-
nal. What is the current at this frequency when the radio is tuned 
to 1000 kHz?

MODEL The inductor’s 0.25 Ω resistance can be modeled as a re-
sistance in series with the inductance, hence we have a series RLC 
circuit. The antenna signal at v = 2p * 1000 kHz is the emf.

VISUALIZE The circuit looks like Figure 32.16.

SOLVE  a. The capacitor needs to be tuned to where it and the 
inductor are resonant at v0 = 2p * 1000 kHz. The appropriate 
value is

  C =
1

Lv0 

2 =
1

160 * 10-6 H216.28 * 106 rad/s22

  = 4.2 * 10-10 F = 420 pF

b. XL = XC at resonance, so the peak current is

I =
E

 0

R
=

5.0 * 10-3 V
0.25 Ω

= 0.020 A = 20 mA

c. The 1050 kHz signal is “off resonance,” so we need to compute 
XL = vL = 396 Ω and XC = 1/vC = 361 Ω at v = 2p * 1050 kHz. 
The peak voltage of this signal is E0 = 10 mV. With these values, 
Equation 32.24 for the peak current is

I =
E

 02R2 + 1XL - XC 22
= 0.28 mA

REVIEW These are realistic values for the input stage of an AM 
radio. You can see that the signal from the 1050 kHz station is 
strongly suppressed when the radio is tuned to 1000 kHz.

EXAMPLE 32.6 ■ Designing a radio receiver

32.5 The Series RLC Circuit 969
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1
2

pR is a maximum
when iR = {IR.

pR is zero
when iR is zero.

0

IR

iR

- IR

t
2TT

0
0

IR
2R

pR

t
2TT

1
2 IR

2R

The average power
is PR = IR

2R.

FIGURE 32.20 The instantaneous current 
and power of a resistor.

32.6 Power in AC Circuits
A primary role of the emf is to supply energy. Some circuit devices, such as motors 
and lightbulbs, use the energy to perform useful tasks. Other circuit devices dissipate 
the energy as an increased thermal energy in the components and the surrounding 
air. Chapter 28 examined the topic of power in DC circuits. Now we can perform a 
similar analysis for AC circuits.

The emf supplies energy to a circuit at the rate

 psource = iE (32.32)

where i and E are the instantaneous current from and potential difference across the 
emf. We’ve used a lowercase p to indicate that this is the instantaneous power. We 
need to look at the energy losses in individual circuit elements.

Resistors
For a resistor, power is the rate at which energy is dissipated. This is

 pR = iRvR = iR 

2R (32.33)

We can use iR = IR cos vt to write the resistor’s instantaneous power as

 pR = iR 

2R = IR 

2R cos2 vt (32.34)

FIGURE 32.20 shows the instantaneous power graphically. You can see that, because 
the cosine is squared, the power oscillates twice during every cycle of the emf. The 
energy dissipation peaks both when iR = IR and when iR = -IR.

In practice, we’re more interested in the average power than in the instantaneous 
power. The average power P is the total energy dissipated per second. We can find 
PR for a resistor by using the identity cos21x2 = 1

2 11 + cos 2x2 to write

PR = IR 

2R cos2 vt = IR 

2R3   

1
2 11 + cos 2vt2    4 = 1

2 IR 

2R + 1
2 IR 

2R cos 2vt

The cos 2vt term oscillates positive and negative twice during each cycle of the emf. 
Its average, over one cycle, is zero. Thus the average power dissipation of a resistor is

 PR = 1
2 IR 

2R  (average power dissipation of a resistor) (32.35)

It is useful to write Equation 32.25 as

 PR = 1 IR22
22

R = 1Irms22R (32.36)

where the quantity

 Irms =
IR22

 (32.37)

is called the root-mean-square current, or rms current, Irms. Technically, an rms 
quantity is the square root of the average, or mean, of the quantity squared. For a sinu-
soidal oscillation, the rms value turns out to be the peak value divided by 12.

The rms current allows us to compare Equation 32.36 directly to the energy dissi-
pated by a resistor in a DC circuit: P = I 2R. You can see that the average power of a 
resistor in an AC circuit with Irms = 1 A is the same as in a DC circuit with I = 1 A. 
As far as power is concerned, an rms current is equivalent to an equal DC current.

STOP TO THINK 32.5 A series RLC circuit has VC = 5.0 V, VR = 7.0 V, and VL =  
9.0 V. Is the frequency above, below, or equal to the resonance frequency?
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Similarly, we can define the root-mean-square voltage and emf:

 Vrms =
VR22

   Erms =
E

 022
 (32.38)

The resistor’s average power in terms of the rms quantities is

 PR = 1Irms22R =
1Vrms22

R
= IrmsVrms (32.39)

and the average power supplied by the emf is

 Psource = Irms Erms (32.40)

The single-resistor circuit that we analyzed in Section 32.1 had VR = E or, equiva-
lently, Vrms = Erms. You can see from Equations 32.39 and 32.40 that the power of 
the resistor (rate of energy dissipation) exactly matches the power of the emf (rate of 
energy supplied). This must be the case in order to conserve energy.

   NOTE    Voltmeters, ammeters, and other AC measuring instruments are calibrated 
to give the rms value. An AC voltmeter would show that the “line voltage” of an 
electrical outlet in the United States is 120 V. This is Erms. The peak voltage E

 0 
is larger by a factor of 12, or E

 0 = 170 V. The power-line voltage is sometimes 
specified as “120 V/60 Hz,” showing the rms voltage and the frequency.

The appliance label on a toaster shows 
that its average power is 850 W at 
Vrms = 120 V.

A 1600 W hair dryer is plugged into a 120 V/60 Hz outlet. What 
is the resistance of the heater element? What is the peak current 
through the hair dryer?

MODEL The dryer’s heater element acts as a resistor.

VISUALIZE FIGURE 32.21 is a simple one-resistor circuit.

SOLVE An appliance labeled 1600 W is designed to dissipate an av-
erage 1600 W at Vrms = 120 V. We can use Equation 32.39 to find

R =
1Vrms22

PR
=

1120 V22

1600 W
= 9 Ω

The rms current is then found from

Irms =
PR

Vrms
=

1600 W
120 V

= 13.3 A

The peak current is IR = 12 Irms = 19 A.

REVIEW Calculations with rms values are just like the calculations 
for DC circuits.

EXAMPLE 32.7 ■ Drying your hair

FIGURE 32.21 An AC circuit with a heater element as a resistor.

Capacitors and Inductors
In Section 32.2, we found that the instantaneous current to a capacitor is  iC =   
-vCVC sin vt. Thus the instantaneous energy dissipation in a capacitor is

 pC = vCiC = 1VC cos vt21-vCVC sin vt2 = -1
2 vCVC 

2 sin 2vt (32.41)

where we used sin12x2 = 2 sin1x2 cos1x2.
FIGURE 32.22 on the next page shows Equation 32.41 graphically. Energy is transferred 

into the capacitor (positive power) as it is charged, but, instead of being dissipated,  
as it would be by a resistor, the energy is stored as potential energy in the  
capacitor’s electric field. Then, as the capacitor discharges, this energy is given back 
to the circuit. Power is the rate at which energy is removed from the circuit, hence p is 
negative as the capacitor transfers energy back into the circuit.

Using a mechanical analogy, a capacitor is like an ideal, frictionless simple 
 harmonic oscillator. Kinetic and potential energy are constantly being exchanged,  
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1
2

1
2

0

VC

-VC

t
TT

Capacitor voltage

Capacitor power

0

Pmax

pC

vC

-Pmax

t
TT

Discharges

E decreases

Energy
from
field to
circuit

Charges

E increases

Energy
from
circuit to
field

Discharges

E decreases

Energy
from
field to
circuit

Charges

E increases

Energy
from
circuit to
field

The average
power is zero.

FIGURE 32.22 Energy flows into and 
out of a capacitor as it is charged and 
discharged.

but there is no dissipation because none of the energy is transformed into thermal  
energy. The important conclusion is that a capacitor’s average power is zero: P

 C = 0.
The same is true of an inductor. An inductor alternately stores energy in the mag-

netic field, as the current is increasing, then transfers energy back to the circuit as the 
current decreases. The instantaneous power oscillates between positive and negative, 
but an inductor’s average power is zero: PL =   0.

   NOTE    We’re assuming ideal capacitors and inductors. Real capacitors and inductors 
inevitably have a small amount of resistance and dissipate a small amount of energy. 
However, their energy dissipation is negligible compared to that of the resistors in 
most practical circuits.

The Power Factor
In an RLC circuit, energy is supplied by the emf and dissipated by the resistor. But an 
RLC circuit is unlike a purely resistive circuit in that the current is not in phase with 
the potential difference of the emf.

We found in Equation 32.22 that the instantaneous current in an RLC circuit is 
i = I cos1vt - f2, where f is the angle by which the current lags the emf. Thus the 
instantaneous power supplied by the emf is

 psource = iE = 1I cos1vt - f221E
 0 cos vt2 = IE

 0 cos vt cos1vt - f2 (32.42)

We can use the expression cos1x - y2 = cos1x2 cos1y2 + sin1x2 sin1y2 to write the 
power as

 psource = 1IE
 0 cos f2 cos2vt + 1IE

 0 sin f2 sin vt cos vt (32.43)

In our analysis of the power of a resistor and a capacitor, we found that the average 
of cos2vt is 12 and the average of sin vt cos vt is zero. Thus we can immediately write 
that the average power supplied by the emf is

 Psource = 1
2 IE

 0 cos f = Irms Erms cos f (32.44)

The rms values, you will recall, are I/12 and E
 0 /12.

The term cos f, called the power factor, arises because the current and the emf in 
a series RLC circuit are not in phase. Because the current and the emf aren’t pushing 
and pulling together, the source delivers less energy to the circuit.

We’ll leave it as a homework problem for you to show that the peak current in an 
RLC circuit can be written I = Imax cos f, where Imax = E

 0 /R was given in Equation 
32.31. In other words, the current term in Equation 32.44 is a function of the power 
factor. Consequently, the average power is

 Psource = Pmax cos2f (32.45)

where Pmax = 1
2 Imax E

 0 is the maximum power the source can deliver to the circuit.
The source delivers maximum power only when cos f = 1. This is the case when 

XL - XC = 0, requiring either a purely resistive circuit or an RLC circuit operating 
at the resonance frequency v0. The average power is zero for a purely capacitive or 
purely inductive load with, respectively, f = -90° or f = +90°, as found above.

Motors of various types, especially large industrial motors, use a significant frac-
tion of the electric energy generated in industrialized nations. Motors operate most 
efficiently, doing the maximum work per second, when the power factor is as close to 
1 as possible. But motors are inductive devices, due to their electromagnet coils, and 
if too many motors are attached to the electric grid, the power factor is pulled away 
from 1. To compensate, the electric company places large capacitors throughout the 

Industrial motors use a significant  
fraction of the electric energy generated 
in the United States.
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32.6 Power in AC Circuits 973

transmission system. The capacitors dissipate no energy, but they allow the electric 
system to deliver energy more efficiently by keeping the power factor close to 1.

Finally, we found in Equation 32.28 that the resistor’s peak voltage in an RLC 
circuit is related to the emf peak voltage by VR = E

 0 cos f or, dividing both sides by 12, Vrms = Erms cos f. We can use this result to write the energy loss in the resistor as

 PR = IrmsVrms = Irms Erms cos f (32.46)

But this expression is Psource, as we found in Equation 32.44. Thus we see that the 
energy supplied to an RLC circuit by the emf is ultimately dissipated by the resistor.

STOP TO THINK 32.6 The emf and the 
current in a series RLC circuit oscillate as 
shown. Which of the following (perhaps 
more than one) would increase the rate at 
which energy is supplied to the circuit? 0

E0

I

E and i

i
E

-E0

- I

t
T

a. Increase E
 0 b. Increase L

c. Increase C d. Decrease E
 0

e. Decrease L f. Decrease C

   CHAPTER 32 CHALLENGE EXAMPLE     Power in an RLC circuit

An audio amplifier drives a series RLC circuit consisting of an 
8.0 Ω loudspeaker, a 160 mF capacitor, and a 1.5 mH inductor. The 
amplifier output is 15.0 V rms at 500 Hz.

a. What power is delivered to the speaker?

b. What maximum power could the amplifier deliver, and how 
would the capacitor have to be changed for this to happen?

MODEL The emf and voltage of an RLC circuit are not in phase, 
and that affects the power delivered to the circuit. All the power 
is dissipated by the circuit’s resistance, which in this case is the 
loudspeaker.

VISUALIZE The circuit looks like Figure 32.16.

SOLVE a. The emf delivers power Psource = IrmsErms cos f, where 
f is the phase angle between the emf and the current. The rms 
current is Irms = Erms /Z, where Z is the impedance. To calculate Z, 
we need the reactances of the capacitor and inductor, and these, in 
turn, depend on the frequency. At 500 Hz, the angular frequency 
is v = 2p1500 Hz2 = 3140 rad/s. With this, we can find

XC =
1
vC

=
1

13140 rad/s21160 * 10-6 F2 = 1.99 Ω

XL = vL = 13140 rad/s210.0015 H2 = 4.71 Ω

Now we can calculate the impedance:

Z = 2R2 + 1XL - XC22 = 8.45 Ω

and thus

Irms =
Erms

Z
=

15.0 V
8.45 Ω

= 1.78 A

Lastly, we need the phase angle between the emf and the current:

f = tan-11XL - XC

R 2 = 18.8°

The power factor is cos118.8°2 = 0.947, and thus the power deliv-
ered by the emf is

Psource = Irms Erms cos f = 11.78 A2115.0 V210.9472 = 25 W

b. Maximum power is delivered when the current is in phase 
with the emf, making the power factor 1.00. This occurs when 
XC = XL, making the impedance Z = R = 8.0 Ω and the current 
Irms = Erms/R = 1.88 A. Then

Psource = Irms Erms cos f = 11.88 A2115.0 V211.002 = 28 W

To deliver maximum power, we need to change the capacitance to 
make XC = XL = 4.71 Ω. The required capacitance is

C =
1

13140 rad/s214.71 Ω2 = 68 mF

So delivering maximum power requires lowering the capacitance 
from 160 mF to 68 mF.

REVIEW Changing the capacitor not only increases the power factor, 
it also increases the current. Both contribute to the higher power.
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The goal of Chapter 32 has been to learn about and analyze  
AC circuits.

AC circuits are driven by an emf

E = E0 cos vt

that oscillates with angular frequency v = 2pf.

Phasors can be used to  
represent the oscillating  
emf, current, and voltage.

Basic circuit elements

Element i and v
Resistance/ 
reactance I and V Power

Resistor In phase R is fixed V = IR IrmsVrms

Capacitor i leads v by 90° XC = 1/vC V = IXC 0

Inductor i lags v by 90° XL = vL V = IXL 0

For many purposes, especially calculating power, the root-mean-square (rms) 
quantities

Vrms = V/12  Irms = I/12  Erms = E0 /12

are equivalent to the corresponding DC quantities.

Important Concepts

Summary

The horizontal projection
is the instantaneous value E.

E

E0

vt

The length
of the
phasor is
the peak
value E0.

Using phasor diagrams

• Start with a phasor (v or i)  
common to two or more  
circuit elements.

• The sum of instantaneous  
quantities is vector addition.

• Use the Pythagorean theorem  
to relate peak quantities.

RC filter circuits 

vCC

R

E

Instantaneous and peak quantities  
The instantaneous quantities v and i vary sinusoidally. The  
peak quantities V and I are the maximum values of v and i. For 
capacitors and inductors, the peak quantities are related by  
V = IX, where X is the reactance, but this relationship does  
not apply to v and i.

Kirchhoff’s loop law says that the sum of the potential differences 
around a loop is zero.

Charge conservation says that circuit elements in series all  
have the same instantaneous current i and the same peak  
current I.

Series RLC circuits 

L

C

R

E

Key Skills

Applications

I

vt

VR

VC

E0

For an RC circuit, shown here,

vR + vC = E
VR 

2 + VC 

2 = E0 

2

vC =
E

 0 

 XC2R2 + XC 

2

vC S E
 0 as v S 0

A low-pass filter transmits low frequencies and blocks high 
frequencies.

vRR

C

E

vR =
E

 0 R

  2R2 + XC 

2

vR S E
 0 as v S ∞

A high-pass filter transmits high frequencies and blocks low 
frequencies.

I = E
 0 /Z where Z is the impedance

Z = 2R2 + 1X
 L - X

 C22

VR = IR  VL = IX
 L  VC = IX

 C

When v = v0 = 1/1LC (the resonance frequency), the current in 
the circuit is a maximum Imax = E0 /R.

In general, the current i lags behind E by the phase angle 
f = tan-1

  1     1X
 L - X

 C2/R 2 .

The power supplied by the emf is Psource = Irms Erms cos f, where 
cos f is called the power factor.

The power lost in the resistor is PR = IrmsVrms = 1Irms22R.
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CONCEPTUAL QUESTIONS

AC circuit
DC circuit
phasor
capacitive reactance, XC

crossover frequency, vc

low-pass filter
high-pass filter
inductive reactance, XL

series RLC circuit
impedance, Z
resonance frequency, v0

average power, P

root-mean-square current, Irms

power factor, cos f

Terms and Notation

1. FIGURE Q32.1 shows emf phasors 1, 
2, and 3.
a. For each, what is the instanta-

neous value of the emf?
b. At this instant, is the magnitude 

of each emf increasing, decreas-
ing, or holding constant?

2. A resistor is connected across an oscillating emf. The peak cur-
rent through the resistor is 1 A. What is the peak current if
a. the resistance R is halved?
b. the peak emf E

 0 is halved?
c. the frequency v is halved?

3. A capacitor is connected across an oscillating emf. The peak cur-
rent through the capacitor is 1 A. What is the peak current if
a. the capacitance C is halved?
b. the peak emf E

 0 is halved?
c. the frequency v is halved?

4. A low-pass RC filter has a crossover frequency, fc = 100 Hz. 
What is fc if
a. the resistance R is halved?
b. the capacitance C is halved?
c. the peak emf E

 0 is halved?
5. An inductor is connected across an oscillating emf. The peak 

current through the inductor is 2.0 A. What is the peak current if:
a. The inductance L is doubled?
b. The peak emf E

 0 is doubled?
c. The frequency v is doubled?

100 V

1

2

3

-100 V

-100 V 100 V

FIGURE Q32.1

6. The resonance frequency of a series RLC circuit is 1000 Hz. 
What is the resonance frequency if:
a. The resistance R is doubled?
b. The inductance L is doubled?
c. The capacitance C is doubled?
d. The peak emf E

 0 is doubled?
7. In the series RLC circuit represented by the phasors of  

FIGURE  Q32.7, is the emf frequency less than, equal to, or greater 
than the resonance frequency v0? Explain.

I

E0 

FIGURE Q32.7

E0

225° at
t = 2.0 ms

-50 V

FIGURE EX32.1

E0 = 12 V
Phasor at
t = 15 ms

30°

FIGURE EX32.2

8. The resonance frequency of a series RLC circuit is less than the 
emf frequency. Does the current lead or lag the emf? Explain.

9. The current in a series RLC circuit lags the emf by 20°. You can-
not change the emf. What two different things could you do to 
the circuit that would increase the power delivered to the circuit 
by the emf?

10. The average power dissipated by a resistor is 4.0 W. What is PR if:
a. The resistance R is doubled while E

 0 is held fixed?
b. The peak emf E

 0 is doubled while R is held fixed?
c. Both are doubled simultaneously?

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 32.1 AC Sources and Phasors

1. || The emf phasor in FIGURE 
EX32.1 is shown at t = 2.0 ms.
a. What is the angular frequency 

v? Assume this is the first 
rotation.

b. What is the peak value of the 
emf?

2. || The emf phasor in FIGURE 
EX32.2 is shown at t = 15 ms.
a. What is the angular frequency  

v? Assume this is the first 
rotation.

b. What is the instantaneous 
value of the emf?

3. || Draw the phasor for the emf E = 1170 V2 cos  1    12p * 60 Hz2t2  
at t = 60 ms.

4. | A 110 Hz source of emf has a peak voltage of 50 V. Draw the 
emf phasor at t = 3.0 ms.
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14. || a. Evaluate VC in FIGURE 
EX32.14 at emf frequen-
cies 1, 3, 10, 30, and 
100 kHz.

b. Graph VC versus fre-
quency. Draw a smooth 
curve through your five 
points.

Section 32.3 RC Filter Circuits

15. | A high-pass RC filter with a crossover frequency of 500 Hz 
uses a 50 Ω resistance. What is the value of the capacitor?

16. | A low-pass RC filter with a crossover frequency of 500 Hz 
uses a 50 Ω resistor. What is value of the capacitor?

17. | A low-pass filter consists of a 200 mF capacitor in series with 
a 100 Ω resistor. The circuit is driven by an AC source with a 
peak voltage of 10.0 V.
a. What is the crossover frequency, fc?
b. What is VC when f = 1

2  fc, fc, and 2 fc?
18. || A high-pass RC filter is connected to an AC source with a 

peak voltage of 15 V. The peak capacitor voltage is 5 V. What is 
the peak resistor voltage?

19. || What are VR and VC if the emf frequency in FIGURE EX32.19 
is (a) 2.5 kHz and (b) 25 kHz?

5. | A 200 Ω resistor is connected to an AC source with E0 = 10 V.  
What is the peak current through the resistor if the emf fre-
quency is (a) 100 Hz? (b) 100 kHz?

6. | FIGURE EX32.6 shows voltage and current graphs for a resistor.
a. What is the emf frequency f ?
b. What is the value of the resistance R?
c. Draw the resistor’s voltage and current phasors at t = 15 ms.

10 V

vR iR

0
0.02 s

Voltage

Current

0.00 s 0.04 s

-10 V

0.50 A

0

-0.50 A

FIGURE EX32.6

10 V

vC iC

0
0.01 s

Voltage

Current

0.00 s 0.02 s

-10 V

15 mA

0

-15 mA

FIGURE EX32.9

Section 32.2 Capacitor Circuits

7. | A 0.20 mF capacitor is connected across an AC generator that 
produces a peak voltage of 20 V. What is the peak current to and 
from the capacitor if the emf frequency is
a. 50 Hz?
b. 50 kHz?

8. | The peak current to and from a capacitor is 20 mA. What is 
the peak current if
a. the emf frequency is doubled?
b. the emf peak voltage is doubled (at the original frequency)?

9. | FIGURE EX32.9 shows voltage and current graphs for a capacitor.
a. What is the emf frequency f?
b. What is the value of the capacitance C?

10. | A capacitor is connected to a 15 kHz oscillator. The peak cur-
rent is 65 mA when the rms voltage is 6.0 V. What is the value of 
the capacitance C?

11. | A 20 nF capacitor is connected across an AC generator that 
produces a peak voltage of 5.0 V.
a. At what frequency f is the peak current 50 mA?
b. What is the instantaneous value of the emf at the instant 

when iC = IC?
12. || A capacitor has a peak current of 330 mA when the peak volt-

age at 250 kHz is 2.2 V.
a. What is the capacitance?
b. If the peak voltage is held constant, what is the peak current 

at 500 kHz?
13. || a. Evaluate VR in FIGURE 

EX32.13 at emf frequen-
cies 100, 300, 1000, 
3000, and 10,000 Hz.

b. Graph VR versus fre-
quency. Draw a smooth 
curve through your five 
points.

(10 V) cosvt 100 Ω

1.6 mF

FIGURE EX32.13

(10 V) cosvt

16 Ω

1.0 mF

FIGURE EX32.14

(10 V) cosvt

200 Ω

100 nF

FIGURE EX32.19

20. || A high-pass filter consists of a 1 mF capacitor in series with a 
200 Ω resistor. The circuit is drawn by an AC source with a peak 
voltage of 10.0 V.
a. What is the crossover frequency, fc?
b. What is VC when f = 1

2  fc, fc, and 2 fc?
21. || An electric circuit, whether it’s a simple lightbulb or a com-

plex amplifier, has two input terminals that are connected to 
the two output terminals of the voltage source. The impedance 
between the two input terminals (often a function of frequency) 
is the circuit’s input impedance. Most circuits are designed to 
have a large input impedance. To see why, suppose you need to 
amplify the output of a high-pass filter that is constructed with 
a 1.2 kΩ resistor and a 15 mF capacitor. The amplifier you’ve 
chosen has a purely resistive input impedance. For a 60 Hz sig-
nal, what is the ratio VR load/VR no load of the filter’s peak voltage 
output with (load) and without (no load) the amplifier connected 
if the amplifier’s input impedance is (a) 1.5 kΩ and (b) 150 kΩ?

Section 32.4 Inductor Circuits

22. | The peak current through an inductor is 10 mA. What is the 
peak current if
a. The emf frequency is doubled?
b. The emf peak voltage is doubled (at the original frequency)?

23. | A 20 mH inductor is connected across an AC generator that 
produces a peak voltage of 10 V. What is the peak current through 
the inductor if the emf frequency is (a) 100 Hz? (b) 100 kHz?
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Section 32.6 Power in AC Circuits

34. | The heating element of a toaster dissipates 1500 W when con-
nected to a 120 V/60 Hz power line. What is its resistance?

35. || For what absolute value of the phase angle does a source de-
liver 75% of the maximum possible power to an RLC circuit?

36. || A resistor dissipates 2.0 W when the rms voltage of the emf is 
10.0 V. At what rms voltage will the resistor dissipate 10.0 W?

37. | A series RLC circuit attached to a 120 V/60 Hz power line 
draws a 2.4 A rms current with a power factor of 0.87. What is 
the value of the resistor?

38. | The motor of an electric drill draws a 3.5 A rms current at the 
power-line voltage of 120 V rms. What is the motor’s power if 
the current lags the voltage by 20°?

39. || A series RLC circuit with a 100 Ω resistor dissipates 80 W when 
attached to a 120 V/60 Hz power line. What is the power factor?

Problems
40. || For an RC filter circuit, show that VR = VC = E

 0 /12 at 
v = vc.

41. || Show that Equation 32.27 for the phase angle f of a series 
RLC circuit gives the correct result for a capacitor-only circuit.

42. | a. What is the peak current supplied by the emf in FIGURE 
P32.42?

b. What is the peak voltage across the 3.0 mF capacitor?

24. | FIGURE EX32.24 shows voltage and current graphs for an 
inductor.
a. What is the emf frequency f?
b. What is the value of the inductance L?

1 V

vL iL

0
0.01 s

Voltage

Current

0.00 s 0.02 s

-1 V

2 A

0

-2 A

FIGURE EX32.24

(10 V) cosvt

10 Ω

10 mH

10 mF

FIGURE EX32.32

(10 V) cosvt

10 Ω

1.0 mH

1.0 mF

FIGURE EX32.33

E0 = 10 V
f = 200 Hz

6.0 mF

3.0 mF

4.0 mF

FIGURE P32.42

E0 cosvt

i
iR iC

CR

FIGURE P32.47

25. || An inductor has a peak current of 330 mA when the peak volt-
age at 45 MHz is 2.2 V.
a. What is the inductance?
b. If the peak voltage is held constant, what is the peak current 

at 90 MHz?
26. || An inductor is connected to a 15 kHz oscillator. The peak 

current is 65 mA when the rms voltage is 6.0 V. What is the value 
of the inductance L?

Section 32.5 The Series RLC Circuit

27. | A series RLC circuit has a 200 kHz resonance frequency. What 
is the resonance frequency if
a. The resistor value is doubled?
b. The capacitor value is doubled?

28. | A series RLC circuit has a 200 kHz resonance frequency. 
What is the resonance frequency if the capacitor value is doubled 
and, at the same time, the inductor value is halved?

29. | A series RLC circuit consists of a 50 Ω resistor, a 3.3 mH 
inductor, and a 480 nF capacitor. It is connected to an oscillator 
with a peak voltage of 5.0 V. Determine the impedance, the peak  
current, and the phase angle at frequencies (a) 3000 Hz,  
(b) 4000 Hz, and (c) 5000 Hz.

30. || What capacitor in series with a 100 Ω resistor and a 20 mH 
inductor will give a resonance frequency of 1000 Hz?

31. || At what frequency f do a 1.0 mF capacitor and a 1.0 mH 
inductor have the same reactance? What is the value of the 
reactance at this frequency?

32. | For the circuit of FIGURE EX32.32,
a. What is the resonance frequency, in both rad/s and Hz?
b. Find VR and VL at resonance.
c. How can VL be larger than E

 0? Explain.

33. | For the circuit of FIGURE EX32.33,
a. What is the resonance frequency, in both rad/s and Hz?
b. Find VR and VC at resonance.
c. How can VC be larger than E

 0? Explain.

43. || a. For an RC circuit, find an expression for the angular fre-
quency at which VR = 1

2 E
 0.

b. What is VC at this frequency?
44. || a. For an RC circuit, find an expression for the angular fre-

quency at which VC = 1
2 E

 0.
b. What is VR at this frequency?

45. || A series RC circuit is built with a 12 kΩ  resistor and a  
parallel-plate capacitor with 15-cm-diameter electrodes. A 12 V, 
36 kHz source drives a peak current of 0.65 mA through the 
circuit. What is the spacing between the capacitor plates?

46. || You have a resistor and a capacitor of unknown values. First, 
you charge the capacitor and discharge it through the resistor. By 
monitoring the capacitor voltage on an oscilloscope, you see that 
the voltage decays to half its initial value in 2.5 ms. You then use 
the resistor and capacitor to make a low-pass filter. What is the 
crossover frequency fc?

47. || FIGURE P32.47 shows a parallel RC circuit.
a. Use a phasor-diagram analysis to find expressions for the 

peak currents IR and IC.
Hint: What do the resistor and capacitor have in common? Use 
that as the initial phasor.
b. Complete the phasor analysis by finding an expression for the 

peak emf current I.
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58. || Show that the power factor of a series RLC circuit is 
cos  f = R/Z.

59. || For a series RLC circuit, show that
a. The peak current can be written I = Imax cos f.
b. The average power can be written P

 source =  Pmax cos2 f.
60. || The tuning circuit in an FM radio receiver is a series RLC 

circuit with a 0.200 mH inductor.
a. The receiver is tuned to a station at 104.3 MHz. What is the 

value of the capacitor in the tuning circuit?
b. FM radio stations are assigned frequencies every 0.2 MHz, 

but two nearby stations cannot use adjacent frequencies. 
What is the maximum resistance the tuning circuit can have 
if the peak current at a frequency of 103.9 MHz, the clos-
est frequency that can be used by a nearby station, is to be 
no more than 0.10% of the peak current at 104.3 MHz? The 
radio is still tuned to 104.3 MHz, and you can assume the two 
stations have equal strength.

61. || A television channel is assigned the frequency range from  
54 MHz to 60 MHz. A series RLC tuning circuit in a TV receiver 
resonates in the middle of this frequency range. The circuit uses 
a 16 pF capacitor.
a. What is the value of the inductor?
b. In order to function properly, the current throughout the 

frequency range must be at least 50% of the current at the 
resonance frequency. What is the minimum possible value of 
the circuit’s resistance?

62. | Lightbulbs labeled 40 W, 
60 W, and 100 W are con-
nected to a 120 V/60 Hz 
power line as shown in FIGURE 
P32.62. What is the rate at 
which energy is dissipated in 
each bulb?

63. | Commercial electricity is generated and transmitted as three-
phase electricity. Instead of a single emf, three separate wires 
carry currents for the emfs E1 = E

 0 cos vt, E2 = E
 0 cos1vt +120°2, 

and E3 = E
 0 cos1vt - 120°2 over three parallel wires, each of 

which supplies one-third of the power. This is why the long- 
distance transmission lines you see in the countryside have three 
wires. Suppose the transmission lines into a city supply a total of 
450 MW of electric power, a realistic value.
a. What would be the rms current in each wire if the transmis-

sion voltage were E
 0 = 120 V rms?

b. In fact, transformers are used to step the transmission-line 
voltage up to 500 kV rms. What is the current in each wire?

c. Big transformers are expensive. Why does the electric com-
pany use step-up transformers?

64. ||| A generator consists of a 12-cm by 16-cm rectangular loop 
with 500 turns of wire spinning at 60 Hz in a 25 mT uniform 
magnetic field. The generator output is connected to a series 
RC circuit consisting of a 120 Ω resistor and a 35 mF capacitor. 
What is the average power delivered to the circuit?

65. ||| You’re the operator of a 15,000 V rms, 60 Hz electrical sub-
station. When you get to work one day, you see that the station is 
delivering 6.0 MW of power with a power factor of 0.90.
a. What is the rms current leaving the station?
b. How much series capacitance should you add to bring the 

power factor up to 1.0?
c. How much power will the station then be delivering?

48. || The small transformers that power many consumer products 
produce a 12.0 V rms, 60 Hz emf. Design a circuit using resistors 
and capacitors that uses the transformer voltage as an input and 
produces a 6.0 V rms output that leads the input voltage by 45°.

49. || Use a phasor diagram to analyze 
the RL circuit of FIGURE P32.49. In 
particular,
a. Find expressions for I, VR, and VL.
b. What is VR in the limits v S 0 

and v S ∞?
c. If the output is taken from the 

resistor, is this a low-pass or a 
high-pass filter? Explain.

d. Find an expression for the crossover frequency vc.
50. ||| A series RL circuit is built with a 110 Ω resistor and a 5.0-cm-

long, 1.0-cm-diameter solenoid with 800 turns of wire. What 
is the peak magnetic flux through the solenoid if the circuit is 
driven by a 12 V, 5.0 kHz source?

51. || A series RLC circuit consists of a 75 Ω resistor, a 0.12 H in-
ductor, and a 30 mF capacitor. It is attached to a 120 V/60 Hz 
power line. What are (a) the peak current I, (b) the phase angle f, 
and (c) the average power dissipated?

52. || A series RLC circuit consists of a 25 Ω resistor, a 0.10 H 
inductor, and a 100 mF capacitor. It draws a 2.5 A rms current 
when attached to a 60 Hz source. What are (a) the emf Erms, 
(b) the phase angle f, and (c) the average power dissipated?

53. || A series RLC circuit consists of a 550 Ω resistor, a 2.1 mH 
inductor, and a 550 nF capacitor. It is connected to a 50 V rms 
oscillating voltage source with an adjustable frequency. An os-
cillating magnetic field is observed at a point 2.5 mm from the 
center of one of the circuit wires, which is long and straight. 
What is the maximum magnetic field amplitude that can be 
generated?

54. | In FIGURE P32.54, what is the current supplied by the emf 
when (a) the frequency is very small and (b) the frequency is 
very large?

40 W

100 W120 V/60 Hz

60 W

FIGURE P32.62

E0 cosvt

R

L

FIGURE P32.49

10 V rms

50 Ω100 Ω

50 mH 20 mF

FIGURE P32.54

55. || A series RLC circuit consists of a 50 Ω resistor, a 3.3 mH 
inductor, and a 480 nF capacitor. It is connected to a 5.0 kHz 
oscillator with a peak voltage of 5.0 V. What is the instantaneous 
current i when
a. E = E

 0?
b. E = 0 V and is decreasing?

56. || The current lags the emf by 30° in a series RLC circuit with 
E

 0 = 10 V and R = 50 Ω. What is the peak current through the 
circuit?

57. || A series RLC circuit consists of a 50 Ω resistor, a 3.3 mH 
inductor, and a 480 nF capacitor. It is connected to a 3.0 kHz 
oscillator with a peak voltage of 5.0 V. What is the instantaneous 
emf E when
a. i = I?
b. i = 0 A and is decreasing?
c. i = - I?
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69. ||| a. Show that the average power in a series RLC circuit is

Pavg =
v21Erms2 

2R

v2R2 + L21v2 - v0 

222

b. Prove that the energy dissipation is a maximum at v = v0.
70. ||| a. Show that the peak inductor voltage in a series RLC circuit 

is maximum at frequency

vL = 1 1

v0 

2 -
1
2

 R2C22-1/2

b. A series RLC circuit with E
 0 = 10.0 V consists of a 1.0 Ω 

resistor, a 1.0 mH inductor, and a 1.0 mF capacitor. What  
is VL at v = v0 and at v = vL?

71. ||| The telecommunication circuit shown in FIGURE CP32.71 has 
a parallel inductor and capacitor in series with a resistor.
a. Use a phasor diagram to show that the peak current through 

the resistor is

I =
E0BR2 + 1 1
XL

-
1

XC
2-2

Hint: Start with the inductor phasor vL.
b. What is I in the limits v S 0 and v S ∞?
c. What is the resonance frequency v0? What is I at this 

frequency?

66. || Commercial electricity is generated and transmitted as three-  
phase electricity. Instead of a single emf E = E

 0 cos vt, three  
separate wires carry currents for the emfs E1 = E

 0 cos vt, E
 2 =  

E
 0 cos1vt + 120°2, and E3 = E

 0 cos1vt - 120°2. This is why the 
long-distance transmission lines you see in the countryside have 
three parallel wires, as do many distribution lines within a city.
a. Draw a phasor diagram showing phasors for all three phases 

of a three-phase emf.
b. Show that the sum of the three phases is zero, producing  

what is referred to as neutral. In single-phase electricity,  
provided by the familiar 120 V/60 Hz electric outlets in your 
home, one side of the outlet is neutral, as established at a 
nearby electrical substation. The other, called the hot side, 
is one of the three phases. (The round opening is connected 
to ground.)

c. Show that the potential difference between any two of the 
phases has the rms value 13 Erms, where Erms is the famil-
iar single-phase rms voltage. Evaluate this potential differ-
ence for Erms = 120 V. Some high-power home appliances, 
especially electric clothes dryers and hot-water heaters, are 
designed to operate between two of the phases rather than 
between one phase and neutral. Heavy-duty industrial motors 
are designed to operate from all three phases, but full three-
phase power is rare in residential or office use.

67. || A motor attached to a 120 V/60 Hz power line draws an 8.0 A 
current. Its average energy dissipation is 800 W.
a. What is the power factor?
b. What is the rms resistor voltage?
c. What is the motor’s resistance?
d. How much series capacitance needs to be added to increase 

the power factor to 1.0?

Challenge Problems
68. ||| FIGURE CP32.68 shows voltage and current graphs for a series 

RLC circuit.
a. What is the resistance R?
b. If L = 200 mH, what is the resonance frequency in Hz?

10 V

E i

0
50

Voltage

0 100 ms

-10 V

0

-2 A

2 ACurrent

FIGURE CP32.68

R

L CE0 cosvt

FIGURE CP32.71

E0 cosvt R L C

FIGURE CP32.72

72. ||| Consider the parallel RLC circuit shown in FIGURE CP32.72.
a. Show that the current drawn from the emf is

I = E0 B 1

R2 + 1 1
vL

- vC22

Hint: Start with a phasor that is common to all three circuit 
elements.
b. What is I in the limits v S 0 and v S ∞?
c. Find the frequency for which I is a minimum.
d. Sketch a graph of I versus v.
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 ■ Charge, like mass, is a fundamental property of matter.  
There are two kinds of charge: positive and negative.

 ■ Charges interact via the electric field:
 ❚ Source charges create an electric field.
 ❚ A charge in the field experiences an electric force.

 ■ Moving charges (currents) interact with other moving  
charges via magnetic fields and forces.

 ■ Fields are also created when other fields change:
 ❚ A changing magnetic field induces an electric field.
 ❚ A changing electric field induces a magnetic field.

Electric potential and potential energy
 ■ Electric interactions can also be  

described by an electric potential:

Vpoint charge = q/4pP0 r
 ❚ A charge q in a potential has potential 

energy U = qV.
 ❚ Mechanical energy is conserved.

 ■ Field and potential are closely  
related.
 ❚ The field is perpen-

dicular to equipo-
tential surfaces.

 ❚ The field points 
“downhill” toward 
lower potential.

Circuits
 ■ Batteries are sources of 

emf.
 ■ Current is the rate of flow 

of charge: I = dQ/dt.
 ■ Circuit elements:

 ❚ Capacitors: Q = C ∆V
 ❚ Resistors: I = ∆V/R (Ohm’s law)
 ❚ Capacitors and resistors can be  

combined in series or in parallel.
 ■ Kirchhoff’s laws:

 ❚ Loop law: The sum of potential dif-
ferences around a loop is zero.

 ❚ Junction law: The sum of currents at 
a junction is zero.

Uniform fields
 ■ A parallel-plate capacitor 

creates a uniform electric 
field.

 ■ A solenoid creates a  
uniform magnetic field.

Induced currents
 ■ Lenz’s law: An 

induced electric 
current flows  
in the direction 
such that the  
induced magnetic 
field opposes the 
change in the  
magnetic flux.

Charge model

 ■ Two types of charge: positive and negative.
 ❚ Like charges repel, opposite charges attract.
 ❚ Charge is conserved but can be transferred.

 ■ Two types of materials: conductors and insulators.
 ■ Neutral objects (no net charge) can be polarized.

Electric field model

 ■ Charges interact via the electric field.
 ❚ Source charges create an electric field.
 ❚ Charge q experiences F

u

on q = qE
u
.

 ■ Important electric field models
 ❚ Point charge   ❚  Long charged wire
 ❚ Charged sphere    ❚  Charged plane

Magnetic field models

 ■ Moving charges and currents interact  
via the magnetic field.
 ❚ Current creates a magnetic field.
 ❚ Charge q experiences F

u

on q = qv
u * B

u
.

 ❚ Current I experiences F
u

on I = I l
u

* B
u
.

 ■ Important magnetic field models
 ❚ Straight, current-carrying wire
 ❚ Current loop  ❚  Solenoid

Electromagnetic waves

 ■ An electromagnetic wave is a self- 
sustaining electromagnetic field.
 ❚ E

u
 and B

u
 are perpendicular to vu.

 ❚ Wave speed vem = 1/1P0  m
 0 = c.

Maxwell’s equations are the formal statements of the laws of electricity and magnetism, but most problem solving is based on simpler versions 
of these equations:

Coulomb’s law E
u

point charge =
1

4pP0
 
q

r2 rn Gauss’s law C E
u # dA

u
=

Qin

P0

Biot-Savart law B
u

point charge =
m0

4p
 
qv
u * rn

r2
Ampère’s law C B

u # d  s
u = m

 0 Ithrough

Lorentz force law F
u

on q = qE
u

+ qv
u * B

u

Faraday’s law E = � dΦm/dt �   Iinduced = E/R in the direction of Lenz>s law

Key Findings What are the overarching findings of Part VI?

Tools What are the most important tools introduced in Part VI?

Models What are the most important models of electricity and magnetism?

Laws What laws of physics govern electricity and magnetism?

Electricity and Magnetism
PART 

VI

I

I I

B
u

E
u

B
u

E
u

vem = c

E
u

Decreasing V

E
u

Decreasing B

Induced current

I

I

 KNOWLEDGE STRUCTURE
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981

OVERVIEW

The Story of Light
Optics is the area of physics concerned with the properties and applications of 
light, including how light interacts with matter. But what is light? This is an an-
cient question with no simple answer. Rather than an all-encompassing theory of 
light, we will develop three different models of light, each of which describes and 
explains the behavior of light within a certain range of physical situations.

The wave model is based on the well-known fact that light is a wave—specifically, 
an electromagnetic wave. This model builds on what you learned about waves in 
Part IV of this text. Light waves, like any wave, are diffuse, spread out through 
space, and exhibit superposition and interference. The wave model of light has 
many important applications, including

■■ Precision measurements.
■■ Optical coatings on lenses, sensors, and windows.
■■ Optical computing.

   NOTE    Although light is an electromagnetic wave, your understanding of these 
chapters depends on nothing more than the “waviness” of light. You can begin 
these chapters either before or after your study of electricity and magnetism in 
Part VI. The electromagnetic aspects of light waves are discussed in Chapter  31.

Another well-known fact—that light travels in straight lines—is the basis for 
the ray model. The ray model will allow us to understand

■■ Image formation with lenses and mirrors.
■■ Optical fibers.
■■ Optical instruments ranging from cameras to telescopes.

One of the most amazing optical instruments is your eye. We’ll investigate op-
tics of the eye and learn how glasses or contact lenses can correct some defects 
of vision.

The photon model, part of quantum physics, is mentioned here for complete-
ness but won’t be developed until Part VIII of this text. In the quantum world, 
light consists of tiny packets of energy—photons—that have both wave-like and 
particle-like properties. Photons will help us understand how atoms emit and ab-
sorb light.

For the most part, these three models are mutually exclusive; hence we’ll pay 
close attention to establishing guidelines for when each model is valid.

Optics
PA R T

VII 

These optical fibers—thin, flexible threads of glass that 
channel laser light much like water flowing through a 
pipe—are what make high-speed internet a reality.
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Wave Optics

What is light?
You will learn that light has aspects of both 
waves and particles. We will introduce  
three models of light.

■■ The wave model of light—the subject of  
this chapter—describes how light waves 
spread out and how the superposition of 
multiple light waves causes interference.

■■ The ray model of light, in which light  
travels in straight lines, will explain how 
mirrors and lenses work. It is the subject  
of Chapter 34.

■■ The photon model of light, which will be 
discussed in Part VIII, is an important part  
of quantum physics.

One of our tasks will be to learn when  
each model is appropriate.

❮❮ LOOKING BACK Sections 16.5, 16.7,  
and 16.8 Light waves, wave fronts, phase,  
and intensity

What is diffraction?
Diffraction is the ability of a wave to  
spread out after passing through a small  
hole or going around a corner. The diffrac-
tion of light indicates that light is a wave.  
One interesting finding will be that a smaller 
hole causes more spreading.

Does light exhibit interference?
Yes. You previously studied the thin-film 
interference of light reflecting from two 
surfaces. In this chapter we will examine 
the interference fringes that are seen after 
light passes through two narrow, closely 
spaced slits in an opaque screen.

❮❮ LOOKING BACK Section 17.7 Interference

What is a diffraction grating?
A diffraction grating is a periodic array of 
closely spaced slits or grooves. Different 
wavelengths are sent in different directions 
when light passes through a diffraction 
grating. Two similar wavelengths can be 
distinguished because the fringes of each 
are very narrow and precisely located.

How is interference used?
Diffraction gratings are the basis of  
spectroscopy, a tool for analyzing  
the composition of materials by the  
wavelengths they emit. Interferometers 
make precise measurements, ranging from 
the vibrations of wings to the movements 
of continents, with the controlled use of 
interference. And interference plays a key 
role in optical computers.

IN THIS CHAPTER, you will learn about and apply the wave model of light.

33

The vivid colors of this peacock 
feather—which change as you see it 
from different angles—are not due to 
pigments. Instead, the colors are due 
to the interference of light waves.

Photon model

Ray model

Wave model

Double-slit interference

Diffraction-grating fringes

Interferometer fringes
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33.1 Models of Light 983

33.1 Models of Light
The study of light is called optics. But what is light? The first Greek scientists did 
not make a distinction between light and vision. Light, to them, was inseparable from 
seeing. But gradually there arose a view that light actually “exists,” that light is some 
sort of physical entity that is present regardless of whether or not someone is looking. 
But if light is a physical entity, what is it?

Newton, in addition to his pioneering work in mathematics and mechanics in the 
1660s, investigated the nature of light. Newton knew that a water wave, after passing 
through an opening, spreads out to fill the space behind the opening. You can see this 
in FIGURE 33.1a, where plane waves, approaching from the left, spread out in circular 
arcs after passing through a hole in a barrier. This inexorable spreading of waves is 
the phenomenon called diffraction. Diffraction is a sure sign that whatever is passing  
through the hole is a wave.

In contrast, FIGURE 33.1b shows that sunlight makes sharp-edged shadows. We  
don’t see the light spreading out in circular arcs after passing through an opening. 
This behavior is what you would expect if light consists of noninteracting particles 
traveling in straight lines. Some particles would pass through the openings to make 
bright areas on the floor, others would be blocked and cause the well-defined shadow. 
This reasoning led Newton to the conclusion that light consists of very small, light, 
fast particles that he called corpuscles.

The situation changed dramatically in 1801, when the English scientist Thomas 
Young announced that he had produced interference of light. Young’s experiment, 
which we will analyze in the next section, quickly settled the debate in favor of a wave 
theory of light because interference is a distinctly wave-like phenomenon. But if light 
is a wave, what is waving? It was ultimately established that light is an electromagnetic  
wave, an oscillation of the electromagnetic field requiring no material medium in 
which to travel.

But this satisfying conclusion was soon undermined by new discoveries at the start 
of the 20th century. Albert Einstein’s introduction of the concept of the photon—a 
wave having certain particle-like characteristics—marked the end of classical physics 
and the beginning of a new era called quantum physics. Equally important, Einstein’s 
theory marked yet another shift in our age-old effort to understand light.

   NOTE    Optics, as we will study it, was developed before it was known that light is 
an electromagnetic wave. This chapter requires an understanding of waves, from 
Chapters 16 and 17, but does not require a knowledge of electromagnetic fields. 
Thus you can study Part VII either before or after your study of electricity and 
magnetism in Part VI. Light polarization, the one aspect of optics that does require 
some familiarity with electromagnetic waves, is covered in Chapter 31.

Three Views
Light is a real physical entity, but the nature of light is elusive. Light is the chameleon 
of the physical world. Under some circumstances, light acts like particles traveling in 
straight lines. But change the circumstances, and light shows the same kinds of wave-like 
behavior as sound waves or water waves. Change the circumstances yet again, and light  
exhibits behavior that is neither wave-like nor particle-like but has characteristics of both.

Rather than an all-encompassing “theory of light,” it will be better to develop three 
models of light. Each model successfully explains the behavior of light within a 
certain domain—that is, within a certain range of physical situations. Our task will 
be twofold:

1. To develop clear and distinct models of light.
2. To learn the conditions and circumstances for which each model is valid.

We’ll begin with a brief summary of all three models.

(b)

A beam of sunlight
has a sharp edge.

(a) Plane waves approach from the left.

Circular waves spread out on the right.

FIGURE 33.1 Water waves spread out 
behind a small hole in a barrier, but  
light passing through an archway makes a 
sharp-edged shadow.
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984 CHAPTER 33 Wave Optics

33.2 The Interference of Light
Scientists of the 17th and 18th centuries might have reached a different conclusion 
about the nature of light had they seen the experiment depicted in FIGURE 33.2. Here 
light of a single wavelength (or color) passes through a narrow slit that is only 0.1 mm 
wide, about twice the width of a human hair. The image shows how the light appears 
on a viewing screen 2 m behind the slit. If light travels in straight lines, as Newton 
thought, we should see a narrow strip of light, about 0.1 mm wide, with dark shadows 
on either side. Instead, we see a band of light extending over about 2.5 cm, a distance 
much wider than the aperture, with dimmer patches of light extending even farther on 
either side.

If you compare Figure 33.2 to the water wave of Figure 33.1a, you see that the light 
is spreading out behind the opening. The light is exhibiting diffraction, the sure sign 
of waviness. We will look at diffraction in more detail later in the chapter. For now, 
we merely need the observation that light does, indeed, spread out behind an opening 
that is sufficiently narrow. Light is acting as a wave, so we should—as Thomas Young 
did—be able to observe the interference of light waves.

A Brief Review of Interference
Waves obey the principle of superposition: If two waves overlap, their displace-
ments  add—whether it’s the displacement of air molecules in a sound wave or the 
electric field in a light wave. You learned in ❮❮  SECTIONS 17.5–17.7 that constructive   
interference occurs when the crests of two waves overlap, adding to produce a  
wave with a larger amplitude and thus a greater intensity. Conversely, the overlap  
of the crest of one wave with the trough of another wave produces a wave with  
reduced amplitude (perhaps even zero) and thus a lesser intensity. This is destruc-
tive interference.

FIGURE 33.3 shows two in-phase sources of sinusoidal waves. The circular rings,  
you will recall, are the wave crests, and they are spaced one wavelength l apart. 
Although Figure 33.3 is a snapshot, frozen in time, you should envision both sets of 
rings propagating outward at the wave speed as the sources oscillate.

We can measure distances simply by counting rings. For example, you can see 
that the dot on the right side is exactly three wavelengths from the top source and  
exactly four wavelengths from the bottom source, making r1 = 3l and r2 = 4l. At this 
point, the path-length difference is ∆r = r2 - r1 = l. Points where 𝚫r is an integer  
number of wavelengths are points of constructive interference. The waves may 
have traveled difference distances, but crests align with crests and troughs align with 
troughs to produce a wave with a larger amplitude.

Incident laser beam

Viewing 
screen

2.5 cm

2 m

0.1-mm-wide 
slit in an 
opaque screen

FIGURE 33.2 Light, just like a water wave, 
does spread out behind an opening if the 
opening is sufficiently narrow.

l

3
2∆r = l

∆r = l

∆r = l

∆r = 2l

∆r = 2l

∆r = 0

1
2∆r = l

1
2∆r = l

Antinodal line
(constructive)

Nodal line
(destructive)

3
2∆r = l

FIGURE 33.3 Constructive and destructive 
interference occur along antinodal and 
nodal lines.

Three models of light

The Wave Model The Ray Model The Photon Model

The wave model of light is res-
ponsible for the well-known  
“fact” that light is a wave.  
Indeed, under many circum- 
stances light exhibits the same behavior  
as sound or water waves. Lasers and  
electro-optical devices are best described  
by the wave model of light. Some aspects  
of the wave model were introduced in  
Chapters 16 and 17, and it is the primary 
focus of this chapter.

An equally well-known “fact” is  
that light travels in straight lines.  
These straight-line paths are called  
light rays. The properties of prisms,  
mirrors, and lenses are best understood in terms  
of light rays. For the most part, waves and  
rays are mutually exclusive models of light. One  
of our important tasks will be to learn when  
each model is appropriate. Ray optics is the 
subject of Chapters 34 and 35.

Modern technology is increa-
singly  reliant on quantum  
physics. In the quantum  
world, light behaves like  
neither a wave nor a particle. Instead, light 
consists of photons that have both wave-like 
and particle-like properties. Much of the  
quantum theory of light is beyond the scope 
of this textbook, but we will take a peek at 
some of the important ideas in Part VIII.
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33.2 The Interference of Light 985

If the path-length difference is a half-integer number of wavelengths, then the 
crest of one wave will arrive with the trough of the other. Thus points where 𝚫r 
is a half-integer number of wavelengths are points of destructive interference. 
Mathematically, the conditions for interference are:

 
Constructive interference: ∆r = ml

Destructive interference: ∆r =    1   m + 1
2  2   l
  m = 0, 1, 2, c (33.1)

Destructive interference is perfect destructive interference, with zero intensity, only if 
both waves have exactly the same amplitude.

The set of all points for which ∆r = ml is called an antinodal line. Maximum 
constructive interference is happening at every point along this line. If these are sound 
waves, you will hear maximum loudness by standing on an antinodal line. If these are 
light waves, you will see maximum brightness everywhere an antinodal line touches 
a viewing screen.

Similarly, maximum destructive interference occurs along nodal lines—analogous 
to the nodes of a one-dimensional standing wave. If these are light waves, a viewing 
screen will be dark everywhere it intersects a nodal line.

Young’s Double-Slit Experiment
Let’s now see how these ideas about interference apply to light waves. FIGURE 33.4a 
shows an experiment in which a laser beam is aimed at an opaque screen containing 
two long, narrow slits that are very close together. This pair of slits is called a double 
slit, and in a typical experiment they are ≈0.1 mm wide and spaced ≈0.5 mm apart. 
We will assume that the laser beam illuminates both slits equally and that any light 
passing through the slits impinges on a viewing screen. This is the essence of Young’s 
experiment of 1801, although he used sunlight rather than a laser.

What should we expect to see on the screen? FIGURE 33.4b is a view from above 
the experiment, looking down on the top ends of the slits and the top edge of 
the viewing screen. Because the slits are very narrow, light spreads out behind 
each slit exactly as it did in Figure 33.2. These two spreading waves overlap 
and interfere with each other, just as if they were sound waves emitted by two  

(a)

Top view of
the double slit

m = 4

m = 3

m = 2

m = 1

m = 0

m = 1

m = 2

m = 3

m = 4

1. A plane wave is incident
 on the double slit.

2. Waves spread out
 behind each slit.

3. The waves interfere in the
 region where they overlap.

4. Bright fringes occur where the anti-
 nodal lines intersect the viewing screen.

(b)

l

Central
maximum

Incident laser beam

Viewing
screen

The drawing is not to scale: The distance
to the screen is actually much greater
than the distance between the slits.

The two waves overlap as
they spread out behind the
two slits. The two overlapped
waves interfere, resulting in
a pattern of light and dark
bands on the screen.

FIGURE 33.4 A double-slit interference experiment.
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986 CHAPTER 33 Wave Optics

loudspeakers. Notice how the antinodal lines of constructive interference are just 
like those in Figure 33.3.

The image in Figure 33.4b shows how the screen looks. As expected, the light is 
intense at points where an antinodal line intersects the screen. There is no light at all at  
points where a nodal line intersects the screen. These alternating bright and dark bands  
of light, due to constructive and destructive interference, are called interference 
fringes. The fringes are numbered m = 0, 1, 2, 3,c   , going outward from the center. 
The brightest fringe, at the midpoint of the viewing screen, with m = 0, is called the 
central maximum.

STOP TO THINK 33.1 Suppose the viewing screen in Figure 33.4 is moved closer to 
the double slit. What happens to the interference fringes?

a. They get brighter but otherwise do not change.
b. They get brighter and closer together.
c. They get brighter and farther apart.
d. They get out of focus.
e. They fade out and disappear.

Analyzing Double-Slit Interference
Figure 33.4 showed qualitatively how interference is produced behind a double slit by 
the overlap of the light waves spreading out behind each slit. Now let’s analyze the 
experiment more carefully. FIGURE 33.5 shows a double-slit experiment in which the 
spacing between the two slits is d and the distance to the viewing screen is L. We will 
assume that L is very much larger than d. Consequently, we don’t see the individual 
slits in the upper part of Figure 33.5.

Let P be a point on the screen at angle u. To determine whether the interference at 
P is constructive, destructive, or in between, we need to examine ∆r, the path-length 
difference of light coming from the two slits. The insert to Figure  33.5 shows the in-
dividual slits and the paths from these slits to point P. Because P is so far away on this 
scale, the two paths are virtually parallel, both at angle u. Both slits are illuminated by 
the same wave front from the laser; hence the slits act as sources of identical, in-phase 
waves 1∆f0 = 02. Thus the interference at point P is constructive, producing a bright 
fringe, if ∆r = ml at that point.

The midpoint on the viewing screen at y = 0 is equally distant from both slits 
1∆r = 02 and thus is a point of constructive interference. This is the bright fringe 
identified as the central maximum in Figure 33.4b. The path-length difference  
increases as you move away from the center of the screen, and the m = 1 fringes 
occur at the points where ∆r = 1l—that is, where one wave has traveled exactly one 
wavelength farther than the other. In general, the mth bright fringe occurs where the 
wave from one slit travels m wavelengths farther than the wave from the other slit 
and thus 𝚫r  ∙ mL.

You can see from the magnified portion of Figure 33.5 that the wave from the lower  
slit travels an extra distance

 ∆r = d sin u (33.2)

If we use this result for the path-length difference in Equation 33.1, we find that bright 
fringes (constructive interference) occur at angles um such that

 ∆r = d sin um = ml  m = 0, 1, 2, 3,   c (33.3)

We added the subscript m to denote that um is the angle of the mth bright fringe, starting  
with m = 0 at the center.

u u

u
Path length r1

Path length r2

The paths are virtually
parallel because the
screen is so distant.

The two slits are invisible
at this scale because d V L.

Two light waves
meet and
interfere at P.

This little segment 
∆r = d sinu is the
path-length
difference.

Slit
spacing
d

u

PDouble slit

Viewing
screen

L

L tanu

0

y

FIGURE 33.5 Geometry of the double-slit 
experiment. The experiment is being 
viewed from above.
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33.2 The Interference of Light 987

In practice, the angle u in a double-slit experiment is very small (61°). We can 
use the small-angle approximation sin u ≈ u, where u must be in radians, to write 
Equation 33.3 as

 um = m 
l

d
  m = 0, 1, 2, 3,   c  (angles of bright fringes) (33.4)

This gives the angular positions in radians of the bright fringes in the interference pattern.

Positions of the Fringes
It’s usually easier to measure distances rather than angles, so we can also specify point 
P by its position on a y-axis with the origin directly across from the midpoint between 
the slits. You can see from Figure 33.5 that

 y = L tan u (33.5)

Using the small-angle approximation once again, this time in the form tan u ≈ u, we 
can substitute um from Equation 33.4 for tan um in Equation 33.5 to find that the mth 
bright fringe occurs at position

 ym =
ml  L

d
  m = 0, 1, 2, 3,   c  (positions of bright fringes) (33.6)

The interference pattern is symmetrical, so there is an mth bright fringe at the same 
distance on both sides of the center. You can see this in Figure 33.4b. As we’ve noted, 
the m    ∙   1 fringes occur at points on the screen where the light from one slit travels 
exactly one wavelength farther than the light from the other slit.

   NOTE    Equations 33.4 and 33.6 do not apply to the interference of sound waves from  
two loudspeakers. The approximations we’ve used (small angles, L W d) are usually 
not valid for the much longer wavelengths of sound waves.

Equation 33.6 predicts that the interference pattern is a series of equally spaced 
bright lines on the screen, exactly as shown in Figure 33.4b. How do we know the 
fringes are equally spaced? The fringe spacing between the m fringe and the m + 1 
fringe is

 ∆y = ym+1 - ym =
(m + 12l  L

d
-

ml  L
d

=
l  L
d

 (33.7)

Because ∆y is independent of m, any two adjacent bright fringes have the same spacing.
The dark fringes in the image are bands of destructive interference. They occur 

at positions where the path-length difference of the waves is a half-integer number of 
wavelengths:

 ∆r = 1   m + 1
2  2   l  m = 0, 1, 2,   c  

(destructive
interference) (33.8)

We can use Equation 33.2 for ∆r and the small-angle approximation to find that the 
dark fringes are located at positions

 y=m = 1m + 1
22    

l  L
d
  m = 0, 1, 2,   c  

(positions of
dark fringes) (33.9)

We have used y=m, with a prime, to distinguish the location of the mth minimum from 
the mth maximum at ym. You can see from Equation 33.9 that the dark fringes are 
located exactly halfway between the bright fringes.
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988 CHAPTER 33 Wave Optics

As a quick example, suppose that light from a helium-neon laser 1l = 633 nm2 
illuminates two slits spaced 0.40 mm apart and that a viewing screen is 2.0 m behind 
the slits. The m = 2 bright fringe is located at position

y2 =
2l  L

d
=

21633 * 10-9 m212.0 m2
4.0 * 10-4 m

= 6.3 mm

Similarly, the m = 2 dark fringe is found at y=2 = 1
   

2 + 1
22   lL/d = 7.9 mm. Because  

the fringes are counted outward from the center, the m = 2 bright fringe occurs before 
the m = 2 dark fringe.

A double-slit interference pattern is observed on a screen 1.0 m 
behind two slits spaced 0.30 mm apart. Ten bright fringes span a 
distance of 1.7 cm. What is the wavelength of the light?

MODEL It is not always obvious which fringe is the central 
maximum. Slight imperfections in the slits can make the interference  
fringe pattern less than ideal. However, you do not need to identify 
the m = 0 fringe because you can make use of the fact that the 
fringe spacing ∆y is uniform. Ten bright fringes have nine spaces 
between them (not ten—be careful!).

VISUALIZE The interference pattern looks like the image of  
Figure 33.4b.

SOLVE The fringe spacing is

∆y =
1.7 cm

9
= 1.89 * 10-3 m

Using this fringe spacing in Equation 33.7, we find that the wave-
length is

l =
d
L

 ∆y = 5.7 * 10-7 m = 570 nm

It is customary to express the wavelengths of visible light in 
nanometers. Be sure to do this as you solve problems.

REVIEW Young’s double-slit experiment not only demonstrat-
ed that light is a wave, it provided a means for measuring the  
wavelength. You learned in Chapter 16 that the wavelengths of  
visible light span the range 400–700 nm. These lengths are smaller 
than we can easily comprehend. A wavelength of 570 nm, which 
is in the middle of the visible spectrum, is only about 1% of the 
diameter of a human hair.

EXAMPLE 33.1 ■ Measuring the wavelength of light

STOP TO THINK 33.2 Light of wavelength l1 illuminates a double slit, and inter-
ference fringes are observed on a screen behind the slits. When the wavelength is 
changed to l2, the fringes get closer together. Is l2 larger or smaller than l1?

Intensity of the Double-Slit Interference Pattern
Equations 33.6 and 33.9 locate the positions of maximum and zero intensity. To  
complete our analysis we need to calculate the light intensity at every point on the 
screen. In ❮❮  CHAPTER 17, where interference was introduced, you learned that the net 
amplitude E of two superimposed waves is

 E = ` 2e cos1∆f

2 2 `  (33.10)

where, for light waves, e is the electric field amplitude of each individual wave. 
Because the sources (i.e., the two slits) are in phase, the phase difference ∆f  
at the point where the two waves are combined is due only to the path-length 
difference: ∆f = 2p1∆r/l2. Using Equation 33.2 for ∆r, along with the small-angle 
approximation and Equation 33.5 for y, we find the phase difference at position y on 
the screen to be

 ∆f = 2p 
∆r
l

= 2p 
d sin u
l

≈ 2p 
d tan u
l

=
2pd
l  L

 y (33.11)
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33.3 The Diffraction Grating 989

Substituting Equation 33.11 into Equation 33.10, we find the wave amplitude at posi-
tion y to be

 E = ` 2e cos1pd
lL

 y2 `  (33.12)

The light intensity, which is what we see, is proportional to the square of the 
amplitude. The intensity of a single slit, with amplitude e, is I1 = Ce2, where C is a 
proportionality constant. For the double slit, the intensity at position y on the screen is

 I = CE2 = 4Ce2 cos21pd
lL

 y2 (33.13)

Replacing Ce2 with I1, we see that the intensity of an ideal double-slit interference 
pattern at position y is

 Idouble = 4I1 cos21pd
l  L

 y2 (33.14)

We’ve said “ideal” because we’ve assumed that e, the electric field amplitude of each 
wave, is constant across the screen.

FIGURE 33.6a is a graph of the ideal double-slit intensity versus position y. Notice the  
unusual orientation of the graph, with the intensity increasing toward the left so that 
the y-axis can match the experimental layout. You can see that the intensity oscillates  
between dark fringes 1Idouble = 02 and bright fringes 1Idouble = 4I12. The maxima 
occur at points where ym = ml  L/d. This is what we found earlier for the positions of 
the bright fringes, so Equation 33.14 is consistent with our initial analysis.

One curious feature is that the light intensity at the maxima is I = 4I1, four times 
the intensity of the light from each slit alone. You might think that two slits would 
make the light twice as intense as one slit, but interference leads to a different result. 
Mathematically, two slits make the amplitude twice as big at points of constructive 
interference 1E = 2e2, so the intensity increases by a factor of 22 = 4. Physically, this 
is conservation of energy. The line labeled 2I1 in Figure 33.6a is the uniform intensity  
that two slits would produce if the waves did not interfere. Interference does not change  
the amount of light energy coming through the two slits, but it does redistribute the 
light energy on the viewing screen. You can see that the average intensity of the  
oscillating curve is 2I1, but the intensity of the bright fringes gets pushed up from 2I1 
to 4I1 in order for the intensity of the dark fringes to drop from 2I1 to 0.

Equation 33.14 predicts that, ideally, all interference fringes are equally bright, but 
you saw in Figure 33.4b that the fringes decrease in brightness as you move away from  
the center. The erroneous prediction stems from our assumption that the amplitude e 
of the wave from each slit is constant across the screen. A more detailed calculation, 
which we will do in Section 33.5, must consider the varying intensity of the light that 
has diffracted through each of the slits. We’ll find that Equation 33.14 is still correct  
if I1 slowly decreases as y increases.

FIGURE 33.6b summarizes this analysis by graphing the light intensity (Equation 33.14)  
with I1 slowly decreasing as y increases. Comparing this graph to the image, you can  
see that the wave model of light has provided an excellent description of Young’s  
double-slit interference experiment.

33.3 The Diffraction Grating
Suppose we were to replace the double slit with an opaque screen that has N closely 
spaced slits. When illuminated from one side, each of these slits becomes the source 
of a light wave that diffracts, or spreads out, behind the slit. Such a multi-slit device  
is called a diffraction grating. The light intensity pattern on a screen behind a  
diffraction grating is due to the interference of N overlapped waves.

y

4I1 0
Light intensity

Central
maximum

In reality, the fringe
intensity decreases
because the intensity
of the light from a
single slit is not
uniform.

Slits

(b)

7
6
5
4
3
2
1
0
1
2
3
4
5
6
7

y

m

4I1 2I1 0
Light intensity

Fringe
spacing ∆y

Ideally, the bright
fringes would all have
equal intensity.

Maximum
intensity is 4I1.

Slits

(a)

FIGURE 33.6 Intensity of the interference 
fringes in a double-slit experiment.
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990 CHAPTER 33 Wave Optics

   NOTE    The terms “interference” and “diffraction” have historical roots that predate 
our modern understanding of wave optics, and thus their use can be confusing. 
Physically, both arise from the superposition of overlapped waves. Interference usually  
describes a superposition of waves coming from distinct sources—as in double-slit  
interference. Diffraction usually describes how the superposition of different portions  
of a single wave front causes light to bend or spread after encountering an obstacle, 
such as a narrow slit. Diffraction is important in a diffraction grating because light 
does spread out behind each slit, but the intensity pattern seen behind a diffraction 
grating results from the interference of light waves coming from each of the slits. 
It might more logically be called an interference grating, but it’s not. Don’t let the 
name confuse you.

FIGURE 33.7 shows a diffraction grating in which N slits are equally spaced a  
distance d apart. This is a top view of the grating, as we look down on the experiment, 
and the slits extend above and below the page. Only 10 slits are shown here, but a  
practical grating will have hundreds or even thousands of slits. Suppose a plane  
wave of wavelength l approaches from the left. The crest of a plane wave arrives 
simultaneously at each of the slits, causing the wave emerging from each slit to be in 
phase with the wave emerging from every other slit. Each of these emerging waves 
spreads out, just like the light wave in Figure 33.2, and after a short distance they all 
overlap with each other and interfere.

We want to know how the interference pattern will appear on a screen behind the 
grating. The light wave at the screen is the superposition of N waves, from N slits, as 
they spread and overlap. As we did with the double slit, we’ll assume that the distance 
L to the screen is very large in comparison with the slit spacing d; hence the path 
followed by the light from one slit to a point on the screen is very nearly parallel to 
the path followed by the light from neighboring slits. The paths cannot be perfectly 
parallel, of course, or they would never meet to interfere, but the slight deviation from 
perfect parallelism is too small to notice. You can see in Figure 33.7 that the wave 
from one slit travels distance ∆r = d sin u more than the wave from the slit above it 
and ∆r = d sin u less than the wave below it. This is the same reasoning we used in 
Figure 33.5 to analyze the double-slit experiment.

Figure 33.7 is a magnified view of the slits. FIGURE 33.8 steps back to where we  
can see the viewing screen. If the angle u is such that ∆r = d sin u = ml, where m is  
an integer, then the light wave arriving at the screen from one slit will be exactly in 
phase with the light waves arriving from the two slits next to it. But each of those 
waves is in phase with waves from the slits next to them, and so on until we reach  
the end of the grating. In other words, N light waves, from N different slits, will  
all be in phase with each other and interfere constructively when they arrive at a 
point on the screen at angle Um such that

 d sin um = ml  m = 0, 1, 2, 3,   c (33.15)

The screen will have bright constructive-interference fringes at the values of um given 
by Equation 33.15. We say that the light is “diffracted at angle um.<

Because it’s usually easier to measure distances rather than angles, the position ym 
of the mth maximum is

 ym = L tan um   (positions of bright fringes) (33.16)

The integer m is called the order of the diffraction. For example, light diffracted at u2 
would be the second-order diffraction. Practical gratings, with very small values for d, 
display only a few orders. Because d is usually very small, it is customary to charac-
terize a grating by the number of lines per millimeter. Here “line” is synonymous with 
“slit,” so the number of lines per millimeter is simply the inverse of the slit spacing d 
in millimeters.

d

d

Plane wave
approaching
from left

N slits with
spacing d

Toward

distant screen

l

The wave from each slit
travels ∆r = d sinu farther
than the wave from the
slit above it.

Spreading circular waves
from each slit overlap and
interfere.

∆r = d sinu

u

u

u

u

FIGURE 33.7 Top view of a diffraction 
grating with N = 10 slits.
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-y1

y1

y2
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Grating

∆r = 1l between
adjacent waves.

∆r = 2l between
adjacent waves.

u1

u2

FIGURE 33.8 Angles of constructive 
interference.

400 nm

A microscopic side-on look at a diffraction 
grating.
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33.3 The Diffraction Grating 991

   NOTE    The condition for constructive interference in a grating of N slits is identical 
to Equation 33.4 for just two slits. Equation 33.15 is simply the requirement that the 
path-length difference between adjacent slits, be they two or N, is ml. But unlike 
the angles in double-slit interference, the angles of constructive interference from a 
diffraction grating are generally not small angles. The reason is that the slit spacing 
d in a diffraction grating is so small that l/d is not a small number. Thus you cannot 
use the small-angle approximation to simplify Equations 33.15 and 33.16.

The wave amplitude at the points of constructive interference is Ne because N 
waves of amplitude e combine in phase. Because the intensity depends on the square 
of the amplitude, the intensities of the bright fringes of a diffraction grating are

 Imax = N2I1 (33.17)

where, as before, I1 is the intensity of the wave from a single slit. You can see that the 
fringe intensities increase rapidly as the number of slits increases.

Not only do the fringes get brighter as N increases, they also get narrower. This 
is again a matter of conservation of energy. If the light waves did not interfere, the 
intensity from N slits would be NI1. Interference increases the intensity of the bright 
fringes by an extra factor of N, so to conserve energy the width of the bright fringes 
must be proportional to 1/N. For a realistic diffraction grating, with N 7  100, the 
interference pattern consists of a small number of very bright and very narrow fringes 
while most of the screen remains dark. FIGURE 33.9a shows the interference pattern 
behind a diffraction grating both graphically and with a simulation of the viewing 
screen. A comparison with Figure 33.6b shows that the bright fringes of a diffraction 
grating are much sharper and more distinct than the fringes of a double slit.

Because the bright fringes are so distinct, diffraction gratings are used for 
measuring the wavelengths of light. Suppose the incident light consists of two slightly 
different wavelengths. Each wavelength will be diffracted at a slightly different angle 
and, if N is sufficiently large, we’ll see two distinct fringes on the screen. FIGURE 33.9b 
illustrates this idea. By contrast, the bright fringes in a double-slit experiment are too 
broad to distinguish the fringes of one wavelength from those of the other.

y 

u1

u2

N 2I1 0

m = 2

m = 1

m = 0

m = 1

m = 2

Narrow, bright
fringes. Most of
the screen is dark.

Grating Light
intensity

(a)

FIGURE 33.9 The interference pattern 
behind a diffraction grating.

y

0

0

Light
intensity

Blue light has a longer 
wavelength than violet, 
and thus diffracts more.

All wavelengths 
overlap at y = 0.

Grating

(b)

Light from a sodium lamp passes through a diffraction grating  
having 1000 slits per millimeter. The interference pattern is viewed 
on a screen 1.000 m behind the grating. Two bright yellow fringes 
are visible 72.88 cm and 73.00 cm from the central maximum. 
What are the wavelengths of these two fringes?

VISUALIZE This is the situation shown in Figure 33.9b. The two 
fringes are very close together, so we expect the wavelengths to 
be only slightly different. No other yellow fringes are mentioned, 
so we will assume these two fringes are the first-order diffraction 
1m = 12.

SOLVE The distance ym of a bright fringe from the central maxi-
mum is related to the diffraction angle by ym = L tan um. Thus the 
diffraction angles of these two fringes are

u1 = tan-11y1

L 2 = b36.08° fringe at 72.88 cm
36.13° fringe at 73.00 cm

These angles must satisfy the interference condition d sin u1 = l, 
so the wavelengths are l = d sin u1. What is d? If a 1 mm length of 
the grating has 1000 slits, then the spacing from one slit to the next 
must be 1/1000 mm, or d = 1.000 * 10-6 m. Thus the wavelengths 
creating the two bright fringes are

l = d sin u1 = b589.0 nm fringe at 72.88 cm
589.6 nm fringe at 73.00 cm

REVIEW We had data accurate to four significant figures, and all 
four were necessary to distinguish the two wavelengths.

EXAMPLE 33.2 ■ Measuring wavelengths emitted by sodium atoms

The science of measuring the wavelengths of atomic and molecular emissions is 
called spectroscopy. The two sodium wavelengths in this example are called the  
sodium doublet, a name given to two closely spaced wavelengths emitted by the atoms 
of one element. This doublet is an identifying characteristic of sodium. Because no 
other element emits these two wavelengths, the doublet can be used to identify the 
presence of sodium in a sample of unknown composition, even if sodium is only a very  
minor constituent. This procedure is called spectral analysis.
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Reflection Gratings
We have analyzed what is called a transmission grating, with many parallel slits.  
In practice, most diffraction gratings are manufactured as reflection gratings. The 
simplest reflection grating, shown in FIGURE 33.10a, is a mirror with hundreds or  
thousands of narrow, parallel grooves cut into the surface. The grooves divide the  
surface into many parallel reflective stripes, each of which, when illuminated,  
becomes the source of a spreading wave. Thus an incident light wave is divided into 
N overlapped waves. The interference pattern is exactly the same as the interference 
pattern of light transmitted through N parallel slits, so Equation 33.15 still applies.

The rainbow of colors reflected from the DVD surface in Figure 33.10b is an every-
day display of this phenomenon. The surface of a DVD is smooth plastic with a mirror- 
like reflective coating in which millions of microscopic holes and lines, each less than  
5.0 μm in width, encode digital information. From an optical perspective, the array of holes 
in a shiny surface is a two-dimensional version of the reflection grating shown in Figure 
33.10a. Reflection gratings can be manufactured at very low cost simply by stamping holes 
or grooves into a reflective surface, and these are widely sold as toys and novelty items. 
Rainbows of color are seen as each wavelength of white light is diffracted at a unique angle.

Naturally occurring reflection gratings are responsible for some forms of color  
in nature. The brilliant colors of a peacock feather, seen in the photo at the beginning 
of this chapter, are due not to pigments but to the structure of the feather. A microscope 
would reveal that each feather consists of millions of regularly spaced microscopic 
structures called barbules. The barbules act as a reflection grating and create the ever- 
changing, multicolored hues of iridescence as the angle between the grating and  
your eye changes. The iridescence of some insects is due to diffraction from parallel 
microscopic ridges on the shell.

A reflection grating can be made by cutting
parallel grooves in a mirror surface.

Incident light Different wavelengths
diffracted at different
angles

Mirror
surface

Few mm

(a)

FIGURE 33.10 Reflection gratings.

STOP TO THINK 33.3 White light passes through a diffraction grating and forms 
rainbow patterns on a screen behind the grating. For each rainbow,

a. The red side is on the right, the violet side on the left.
b. The red side is on the left, the violet side on the right.
c. The red side is closest to the center of the screen, the violet side is farthest from  

the center.
d. The red side is farthest from the center of the screen, the violet side is closest to  

the center.

Incident light of
wavelength l

Single slit
of width a

Secondary
maxima

Distance L

Central
maximum

Viewing screen

FIGURE 33.11 A single-slit diffraction 
experiment.

(b)

The microscopic pits 
that store information 
on the DVD act as a 
diffraction grating.

740 nm

   NOTE    Thin-film interference, another important example of interference, was 
covered in Section 17.6 because it can be understood with a simpler one-dimensional 
analysis.

33.4 Single-Slit Diffraction
We opened this chapter with a photograph (Figure 33.1a) of a water wave passing 
through a hole in a barrier, then spreading out on the other side. You then saw an 
image (Figure 33.2) showing that light, after passing through a very narrow slit, also 
spreads out on the other side. This is called diffraction.

FIGURE 33.11 shows the experimental arrangement for observing the diffraction of 
light through a narrow slit of width a. Diffraction through a tall, narrow slit is known 
as single-slit diffraction. A viewing screen is placed distance L behind the slit, 
and we will assume that L W a. The light pattern on the viewing screen consists of  
a central maximum flanked by a series of weaker secondary maxima and dark 
fringes. Notice that the central maximum is significantly broader than the secondary 
maxima. It is also significantly brighter than the secondary maxima, although that 
is hard to tell here because this image has been overexposed to make the secondary 
maxima show up better.
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33.4 Single-Slit Diffraction 993

Huygens’ Principle
Our analysis of the superposition of waves from distinct sources, such as two 
loudspeakers or the two slits in a double-slit experiment, has tacitly assumed  
that the sources are point sources, with no measurable extent. To understand  
diffraction, we need to think about the propagation of an extended wave front.  
This is a problem first considered by the Dutch scientist Christiaan Huygens, a  
contemporary of Newton.

Huygens lived before a mathematical theory of waves had been developed, so he 
developed a geometrical model of wave propagation. His idea, which we now call 
Huygens’ principle, has two steps:

1. Each point on a wave front is the source of a spherical wavelet that spreads out 
at the wave speed.

2. At a later time, the shape of the wave front is the line tangent to all the wavelets.

FIGURE 33.12 illustrates Huygens’ principle for a plane wave and a spherical wave.  
The line tangent to the wavelets of a plane wave is a plane that has propagated to the 
right. The line tangent to the wavelets of a spherical wave is a larger sphere.

Huygens’ principle is a visual device, not a theory of waves. Nonetheless, the full 
mathematical theory of waves, as it developed in the 19th century, justifies Huygens’ 
basic idea, although it is beyond the scope of this textbook to prove it.

Analyzing Single-Slit Diffraction
FIGURE 33.13a shows a wave front passing through a narrow slit of width a. According 
to Huygens’ principle, each point on the wave front can be thought of as the source of 
a spherical wavelet. These wavelets overlap and interfere, producing the diffraction 
pattern seen on the viewing screen. The full mathematical analysis, using every point 
on the wave front, is a fairly difficult problem in calculus. We’ll be satisfied with a 
geometrical analysis based on just a few wavelets.

FIGURE 33.13b shows the paths of several wavelets that travel straight ahead to the 
central point on the screen. (The screen is very far to the right in this magnified view 
of the slit.) The paths are very nearly parallel to each other, thus all the wavelets travel 
the same distance and arrive at the screen in phase with each other. The constructive 
interference between these wavelets produces the central maximum of the diffraction 
pattern at u = 0.

The situation is different at points away from the center. Wavelets 1 and 2 in  
FIGURE 33.13c start from points that are distance a/2 apart. If the angle is such that ∆r12,  
the extra distance traveled by wavelet 2, happens to be l/2, then wavelets 1 and 2 arrive  
out of phase and interfere destructively. But if ∆r12 is l/2, then the difference ∆r34 
between paths 3 and 4 and the difference ∆r56 between paths 5 and 6 are also l/2.  

Each point on the
initial wave front
is the source of a
spherical wavelet.

The wave front
at a later time
is tangent to all
the wavelets.

Initial
wave
front

(a) Plane wave

FIGURE 33.12 Huygens’ principle applied 
to the propagation of plane waves and 
spherical waves.

Each point 
is the source 
of a spherical 
wavelet.

(b) Spherical wave

Initial
wave
front

The wave front at a later time 
is tangent to all the wavelets.

a

The wavelets going straight forward all travel 
the same distance to the screen. Thus they arrive
in phase and interfere constructively to produce
the central maximum.

u = 0

(b) (c)

u

u

∆r12

These wavelets all meet on the screen 
at angle u. Wavelet 2 travels distance 
∆r12 = (a/2) sinu farther than wavelet 1.

Each point on
the wave front
is paired with
another point
distance a/2
away.

1

3

5

2

4

6

a
2

Slit width a

Initial
wave
front

Greatly magnified view of slit

The wavelets from each point on the initial 
wave front overlap and interfere, creating 
a diffraction pattern on the screen.

(a)

▼ FIGURE 33.13 Each point on the wave 
front is a source of spherical wavelets. The 
superposition of these wavelets produces 
the diffraction pattern on the screen.
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994 CHAPTER 33 Wave Optics

Those pairs of wavelets also interfere destructively. The superposition of all the wavelets  
produces perfect destructive interference.

Figure 33.13c shows six wavelets, but our conclusion is valid for any number of 
wavelets. The key idea is that every point on the wave front can be paired with 
another point distance a/2 away. If the path-length difference is l/2, the wavelets 
from these two points arrive at the screen out of phase and interfere destructively. 
When we sum the displacements of all N wavelets, they will—pair by pair—add to 
zero. The viewing screen at this position will be dark. This is the main idea of the 
analysis, one worth thinking about carefully.

You can see from Figure 33.13c that ∆r12 = 1a/22sin u. This path-length difference 
will be l/2, the condition for destructive interference, if

 ∆r12 =
a
2

  sin u1 =
l

2
 (33.18)

or, equivalently, if a sin u1 = l.

   NOTE    Equation 33.18 cannot be satisfied if the slit width a is less than the wave 
length l. If a wave passes through an opening smaller than the wavelength, the 
central maximum of the diffraction pattern expands to where it completely fills the 
space behind the opening. There are no minima or dark spots at any angle. This 
situation is uncommon for light waves, because l is so small, but quite common in 
the diffraction of sound and water waves.

We can extend this idea to find other angles of perfect destructive interference. 
Suppose each wavelet is paired with another wavelet from a point a/4 away. If ∆r 
between these wavelets is l/2, then all N wavelets will again cancel in pairs to  
give complete destructive interference. The angle u2 at which this occurs is found  
by replacing a/2 in Equation 33.18 with a/4, leading to the condition a sin u2 = 2l. 
This process can be continued, and we find that the general condition for complete 
destructive interference is

 a sin up = pl  p = 1, 2, 3,   c (33.19)

When up V 1 rad, which is almost always true for light waves, we can use the 
small-angle approximation to write

 up = p 
l

a
  p = 1, 2, 3,   c  (angles of dark fringes) (33.20)

Equation 33.20 gives the angles in radians to the dark minima in the diffraction pattern  
of Figure 33.11. Notice that p = 0 is explicitly excluded. p = 0 corresponds to the 
straight-ahead position at u = 0, but you saw in Figures 33.11 and 33.13b that u = 0 is 
the central maximum, not a minimum.

   NOTE    It is perhaps surprising that Equations 33.19 and 33.20 are mathematically  
the same as the condition for the mth maximum of the double-slit interference pattern.  
But the physical meaning here is quite different. Equation 33.20 locates the minima 
(dark fringes) of the single-slit diffraction pattern.

You might think that we could use this method of pairing wavelets from different 
points on the wave front to find the maxima in the diffraction pattern. Why not take 
two points on the wave front that are distance a/2 apart, find the angle at which their 
wavelets are in phase and interfere constructively, then sum over all points on the 
wave front? There is a subtle but important distinction. FIGURE 33.14 shows six vector 
arrows. The arrows in Figure 33.14a are arranged in pairs such that the two members 
of each pair cancel. The sum of all six vectors is clearly the zero vector 0

u
, representing 

destructive interference. This is the procedure we used in Figure 33.13c to arrive at 
Equation 33.18.

(b)

Each pair of vectors interferes constructively.
Even so, the vector sum of all six vectors is zero.

(a)

Each pair of vectors interferes destructively.
The vector sum of all six vectors is zero.

FIGURE 33.14 Destructive interference  
by pairs leads to net destructive 
interference, but constructive  
interference by pairs does not necessarily 
lead to net constructive interference.
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The arrows in Figure 33.14b are arranged in pairs such that the two members of 
each pair point in the same direction—constructive interference! Nonetheless, the 
sum of all six vectors is still 0

u
. To have N waves interfere constructively requires 

more than simply having constructive interference between pairs. Each pair must 
also be in phase with every other pair, a condition not satisfied in Figure 33.14b. 
Constructive interference by pairs does not necessarily lead to net constructive 
interference. It turns out that there is no simple formula to locate the maxima of a 
single-slit diffraction pattern.

Optional Section 33.5 will calculate the full intensity pattern of a single slit. The  
results are shown graphically in FIGURE 33.15. You can see the bright central maximum 
at u = 0, the weaker secondary maxima, and the dark points of destructive interference 
at the angles given by Equation 33.20. Compare this graph to the image of Figure 33.11  
and make sure you see the agreement between the two.

Light from a helium-neon laser 1l = 633 nm2 passes through  
a narrow slit and is seen on a screen 2.0 m behind the slit. The  
first minimum in the diffraction pattern is 1.2 cm from the central 
maximum. How wide is the slit?

MODEL A narrow slit produces a single-slit diffraction pattern. A 
displacement of only 1.2 cm in a distance of 200 cm means that 
angle u1 is certainly a small angle.

VISUALIZE The intensity pattern will look like Figure 33.15.

SOLVE We can use the small-angle approximation to find that the 
angle to the first minimum is

u1 =
1.2 cm
200 cm

= 0.00600 rad = 0.344°

The first minimum is at angle u1 = l/a, from which we find that the  
slit width is

a =
l

u1
=

633 * 10-9 m

6.00 * 10-3 rad
= 1.1 * 10-4 m = 0.11 mm

REVIEW This is typical of the slit widths used to observe single-slit 
diffraction. You can see that the small-angle approximation is well 
satisfied.

EXAMPLE 33.3 ■ Diffraction of a laser through a slit

The Width of a Single-Slit Diffraction Pattern
It is easier to measure positions on the screen rather than angles. The position of the  
pth dark fringe, at angle up, is yp = L tan up, where L is the distance from the slit to 
the viewing screen. Using Equation 33.20 for up and the small-angle approximation 
tan up ≈ up, we find that the dark fringes in the single-slit diffraction pattern are 
located at

 yp =
pl  L

a
  p = 1, 2, 3,   c  (positions of dark fringes) (33.21)

A diffraction pattern is dominated by the central maximum, which is much brighter 
than the secondary maxima. The width w of the central maximum, shown in Figure 33.15,  
is defined as the distance between the two p = 1 minima on either side of the central 
 maximum. Because the pattern is symmetrical, the width is simply w = 2y1. This is

 w =
2l  L

a
   (single slit) (33.22)

The width of the central maximum is twice the spacing LL/a between the dark 
fringes on either side. The farther away the screen (larger L), the wider the pattern of 
light on it becomes. In other words, the light waves are spreading out behind the slit, 
and they fill a wider and wider region as they travel farther.

An important implication of Equation 33.22, one contrary to common sense, is that 
a narrower slit (smaller a) causes a wider diffraction pattern. The smaller the opening  
you squeeze a wave through, the more it spreads out on the other side.

The central maximum of this single-slit 
diffraction pattern appears white because 
the photo is overexposed. The width of 
the central maximum is clear.

y

u1

p = 2

p = 1

Width w

p = 1

p = 2

Single
slit

Screen

a

Light
intensity

Central
maximum

0

L W a

FIGURE 33.15 A graph of the intensity of a 
single-slit diffraction pattern.
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996 CHAPTER 33 Wave Optics

33.5   ADVANCED TOPIC   A Closer Look at 
Diffraction

Interference and diffraction are manifestations of superposition. Mathematically, the 
superposition of waves at a fixed point in space (r1 and r2 constant) involves sums 
such as e cos1vt2 + e cos1vt + ∆f2, where e is the electric field amplitude of each 
wave and ∆f is the phase difference between them due to the fact that the waves have 
traveled different distances. Interestingly, we can use geometry to compute the sums 
that are relevant to interference and diffraction.

FIGURE 33.16a shows two vectors, each with amplitude e, rotating in the xy-plane with 
angular frequency v. At any instant, the angle from the x-axis is the vector’s phase,  
vt or vt + ∆f. A rotating vector that encodes amplitude and phase information is 
called a phasor, and Figure 33.16a is a phasor diagram. Notice two key features. 
First, the vectors rotate together, keeping a fixed angle ∆f between them. Second, the 
projections of the phasors onto the x-axis are e cos1vt2 and e cos1vt + ∆f2, exactly 
what we add in a superposition calculation.

To see how this works, let’s return to Young’s double-slit experiment. The bright 
and dark interference fringes arise from the superposition of two waves, one from 
each slit, with a phase difference ∆f = 2p ∆r/l due to the path-length difference 
∆r. FIGURE 33.16b represents each wave as a phasor with amplitude e. We’re interested 
only in their superposition, not the rapid oscillation at frequency v, so we can draw 
the first phasor horizontally. If we add the phasors as vectors, using the tip-to-tail 
method, the magnitude E of their vector sum is the electric field amplitude of the 
superposition of the two waves.

We can use geometry and trigonometry to determine E. We have an isosceles 
triangle whose large angle, complementary to ∆f, is 180° - ∆f. Consequently, the 
two smaller, equal angles are each ∆f/2, and thus the base of the isosceles triangle 
has length E = 2e cos1∆f/22. The figure shows a triangle for which cos1∆f/22 is 
positive, but cos1∆f/22 can be negative at some points in the double-slit pattern. 
Amplitude, however, must be a positive number, so in general

 E = ` 2e cos1    

∆f

2
  2 `  (33.23)

Light passes through a 0.12-mm-wide slit and forms a diffraction 
pattern on a screen 1.00 m behind the slit. The width of the central 
maximum is 0.85 cm. What is the wavelength of the light?

SOLVE From Equation 33.22, the wavelength is

  l =
aw
2L

=
11.2 * 10-4 m210.0085 m2

211.00 m2
  = 5.1 * 10-7 m = 510 nm

EXAMPLE 33.4 ■ Determining the wavelength

STOP TO THINK 33.4 The figure shows two single-slit diffraction patterns. 
The distance between the slit and the viewing screen is the same in both cases. 
Which of the following (perhaps more than one) could be true?

a. The slits are the same for both; l1 7 l2.
b. The slits are the same for both; l2 7 l1.
c. The wavelengths are the same for both; a1 7 a2.
d. The wavelengths are the same for both; a2 7 a1.
e. The slits and the wavelengths are the same for both; p1 7 p2.
f. The slits and the wavelengths are the same for both; p2 7 p1.

l1

l2

(a)

(b)

e

e

e
E

e

ecosvt

ecos (∆f/2)

∆f

∆f

v

vt

∆f/2

∆f/2

Vector addition of the
phasors is the amplitude of
the wave superposition.

Phasors rotate with
angular frequency v.

The angle between the
phasors, the phase
difference, stays constant.

x

y

y

x

FIGURE 33.16 Phasor diagrams for double-
slit interference.
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Equation 33.23 is identical to Equation 33.10, which we found previously to be the   
am plitude of the double-slit interference pattern. The intensity of the interference 
pattern is proportional to E2.

The Single Slit Revisited
Let’s use phasors to find the intensity of the diffraction pattern of a single slit.  
FIGURE  33.17a shows a slit of width a with N point sources of Huygens’ wavelets, each 
separated by distance a/N. (We’ll soon consider the entire wave front by letting 
N S ∞ .) We need to calculate the superposition of these N wavelets at a point on a 
distant screen, so far away in comparison with the slit width a that the directions are 
all essentially parallel at angle u.

In the double-slit experiment, two waves from slits separated by distance d had a 
phase difference ∆f = 2pd sin u/l. By exactly the same reasoning, the phase differ-
ence between two adjacent wavelets separated by a/N is ∆fadj = 2p1a/N2 sin u/l. 
This is the phase difference for every pair of adjacent wavelets.

FIGURE 33.17b analyzes the diffraction at u = 0, the center of the diffraction pattern. 
Here all the wavelets travel straight ahead, and the phase difference between adjacent  
wavelets is ∆fadj = 0. Consequently, the phasor diagram shows N phasors in a straight 
line with amplitude E0 = Ne.

FIGURE 33.17c is the phasor diagram for superposition at an arbitrary point on the 
screen with u ∙ 0. All N phasors have the same length e—so the length of the chain 
of phasors is still E0 = Ne—but each is rotated by angle ∆fadj with respect to the 
preceding phasor. The angle of the last phasor, after N rotations, is

 b = N ∆fadj =
2pa sin u

l
 (33.24)

Notice that b is independent of N. It is the phase difference between a wavelet originating 
at the top edge of the slit and one originating at the bottom edge, distance a away.

E is the amplitude of the superposition of the N wavelets. To determine E, let 
N S ∞ . This makes our calculation exact, because now we’re considering every point 
on the wave front. It also makes our calculation easier, because now the chain of 
phasors, with length E0, is simply the arc of a circle.

FIGURE 33.18 shows the geometry. The triangle at the upper right is a right triangle, 
so a + b = 90°. But a and the angle subtending the arc also add up to 90°, so the angle  
subtending the arc must be b. We’ve divided it into two angles, each b/2, in order to 
create two right triangles along E. You can see that E = 2R sin1b/22. In addition, the 
arc length, if b is in radians, is E0 = bR. Eliminating R, we find that the amplitude of 
the superposition is

 E = E0 
 sin1b/22

b/2
= E0 

 sin1pa sin u/l2
pa sin u/l

 (33.25)

The diffraction-pattern intensity is proportional to E2, thus

 Islit = I0 c  sin1pa sin u/l2
pa sin u/l

d
2

 (33.26)

where I0 (proportional to E0 

2) is the intensity at the center of the central maximum, 
u = 0. (Recall, from l’Hôpital’s rule, that  sin x/x S 1 as x S 0.) FIGURE 33.19 is  
a graph of Equation 33.26. You can see that it is, indeed, exactly what we observe  
for single-slit diffraction—a bright central maximum flanked by weaker secondary 
maxima. The minima occur where the numerator of Equation 33.26 is zero. This  
requires sin up = pl/a for p = 1, 2, 3, c, which is exactly the result for the dark 
fringes that we found previously.

We usually measure positions on a screen rather than angles. For a screen at  
distance L, a point on the screen at distance y from the center of the pattern is at  

Superposition
of N wavelets

a/N

(a) Slit width a

(b) Center of the diffraction pattern

(c) Arbitrary point in the diffraction pattern

u
The phase difference
between two adjacent
wavelets is ∆fadj.

Each phasor is
rotated by ∆fadj.

N wavelets
will meet at a
distant screen.

u = 0
E0 = Ne

b = N∆fadj

e

e

e

E

e e e

Total length = E0 = Ne

x

y

FIGURE 33.17 Phasor diagrams for single-
slit diffraction.

b

2

b

b

b

E

R

R

Arc length E0 = bR

a

R sin
b

2

R sin
b

2

FIGURE 33.18 Calculating the 
superposition.
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FIGURE 33.19 The single-slit diffraction 
pattern.
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angle u =  tan -11y/L2. For very small angles, which is also typical, the small-angle 
approximation tan u ≈ sin u ≈ u allows us to write the intensity at position y as

 Islit = I0 c  sin1pay/lL2
pay/lL

d
2

  (small angles) (33.27)

In this case the minima are at yp = plL/a, also as we found previously.
You might think that the maxima would occur where the numerator in Equation 

33.27 is 1. However, y also appears in the denominator, and that affects the maxima.  
Setting the derivative of Equation 33.27 to zero, to locate the maxima, leads to 
a  tran scendental equation, one that cannot be solved algebraically. It can be solved 
numerically, leading to the result that, for small angles, the first two maxima occur at 
ymax 1 = 1.43lL/a and ymax 2 = 2.46lL/a.

Light with a wavelength of 500 nm passes through a 150@mm@wide 
slit and is viewed on a screen 2.5 m behind the slit. At what distance  
from the center of the diffraction pattern is the intensity 50% 
of maximum?

MODEL The slit produces a single-slit diffraction pattern. Assume 
that the diffraction angles are small enough to justify the small- 
angle approximation.

VISUALIZE Figure 33.19 showed a graph of the intensity distri-
bution. The intensity falls to 50% of maximum before the first 
minimum and never returns to 50% after the first minimum.

SOLVE From Equation 33.27, the intensity at position y is

I = I0 c
 sin1pay/lL2

pay/lL
d

2

The intensity will have fallen to 50% of maximum I0 when

 sin1pay/lL2
pay/lL

= A1
2

= 0.707

This is a transcendental equation; there is no exact solution. 
However, it can easily be solved on a calculator with only a small 

amount of trial and error. If we let x = pay/lL, then the equation 
we want to solve is  sin x/x = 0.707, where x is in radians. Put your 
calculator in radian mode, guess a value of x, compute  sin x/x, and 
then use the result to make an improved guess. The first minimum, 
y1 = lL/a, has x = p rad, and we know that the solution is less 
than this.

First try: x = 1.0 rad gives  sin x /x = 0.841.
Second try: x = 1.5 rad gives  sin x /x = 0.665.

With just two guesses we’ve narrowed the range to 
1.0 rad 6 x 6 1.5 rad. It only takes about three more tries to arrive 
at x = 1.39 rad as the answer to three significant figures. Thus the 
intensity has dropped to 50% of maximum at

y =
1.39
p

 
lL
a

= 3.7 mm

REVIEW Diffraction patterns seen in the laboratory are typically a  
centimeter or two wide. This point is within the central maximum,  
so  ≈4 mm from the center is reasonable. And ≈4 mm from the 
center at a distance of 2.5 m certainly justifies our use of the small- 
angle approximation.

EXAMPLE 33.5 ■ Single-slit intensity

The Complete Double-Slit Intensity
Figure 33.4 showed double-slit interference occurring between two overlapping waves  
as they “spread out behind the two slits.” The waves are spreading because light has 
passed through two narrow slits, and each slit is causing single-slit diffraction. What we 
see in double-slit interference is actually interference between two overlapping single- 
slit diffraction patterns. Interference produces the fringes, but the diffraction pattern— 
the amount of light reaching the screen—determines how bright the fringes are.

We earlier calculated the ideal double-slit intensity, Idouble = 4I1 cos21pdy/lL2, for 
two slits separated by distance d. But each slit has width a, so the double-slit pattern is 
modulated by the single-slit diffraction intensity for a slit of width a. Thus a realistic 
double-slit intensity, for small angles, is

 Idouble = I0 c  sin1pay/lL2
pay/lL

d
2

 cos21pdy/lL2 (33.28)

The cosine term produces the fringe oscillations, but now the overall intensity is  
determined by the diffraction of the individual slits. If the slits are extremely narrow  
1a V d2, which we tacitly assumed before, then the central maximum of the single-slit 
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33.6 Circular-Aperture Diffraction 999

pattern is very broad and we see many fringes with only a slow decline in the fringe 
intensity. This was the case in Figure 33.6b.

But many double slits have a width a that is only slightly smaller than the slit spacing 
d, and this leads to a complex interplay between diffraction and interference. FIGURE 

33.20 shows a double-slit interference pattern for two 0.055-mm-wide slits separated by 
0.35 mm and, for comparison, the diffraction pattern of a single 0.055-mm-wide slit. 
Diffraction of the individual slits determines the overall brightness on the screen—it is 
the spreading of the light behind the slit—and within this we see the interference between  
light waves from the two slits. It seems there could be no better proof that light is a wave!

Notice that the m = 7 interference fringe is missing (and m = 8 is so weak as to 
be almost invisible). If an interference maximum falls exactly on a minimum (a zero) 
in the single-slit diffraction pattern, then we have what is called a missing order. 
Interference maxima occur at ym = mlL/d and diffraction minima are at yp = plL/a, 
where m and p are integers. Equating these, to find where they overlap, we see that 
order m is missing if

 mmissing = p 
d
a
  p = 1, 2, 3, c (33.29)

m has to be an integer, so the order is truly missing only for certain slit-spacing-to-width 
ratios d/a. In the case of Figure 33.20, d/a = 7 and so the m = 7 order is missing (it falls 
on the p = 1 diffraction minimum), as is m = 14. In practice, one or more interference 
maxima may be too weak to be seen even if they don’t satisfy Equation 33.29 exactly.

33.6 Circular-Aperture Diffraction
Diffraction occurs if a wave passes through an opening of any shape. Diffraction by a 
single slit establishes the basic ideas of diffraction, but a common situation of practical  
importance is diffraction of a wave by a circular aperture. Circular diffraction is 
mathematically more complex than diffraction from a slit, and we will present results 
without derivation.

Consider some examples. A loudspeaker cone generates sound by the rapid oscil-
lation of a diaphragm, but the sound wave must pass through the circular aperture de-
fined by the outer edge of the speaker cone before it travels into the room beyond. This 
is diffraction by a circular aperture. Telescopes and microscopes are the reverse. Light 
waves from outside need to enter the instrument. To do so, they must pass through a 
circular lens. In fact, the performance limit of optical instruments is determined by 
the diffraction of the circular openings through which the waves must pass. This is an 
issue we’ll look at in Chapter 35.

FIGURE 33.21 shows a circular aperture of diameter D. Light waves passing through 
this aperture spread out to generate a circular diffraction pattern. You should com-
pare this to Figure 33.11 for a single slit to note the similarities and differences. The 
diffraction pattern still has a central maximum, now circular, and it is surrounded by 
a series of secondary bright fringes.

Single slit: 0.055 mm width

Missing orders

Two slits: 0.055 mm width, 0.35 mm separation

Interference from
two slits causes
the fringes.

The intensity
is set by the
diffraction of
each slit.

m
03 3 66 99 1212 1515

FIGURE 33.20 The overall intensity of 
a double-slit interference pattern is 
governed by the single-slit diffraction 
through each slit.

u1

p = 2

p = 3

p = 3

p = 1

Width w

p = 1

p = 2

Circular
aperture

Diameter D

Light
intensity

Central
maximum

FIGURE 33.21 The diffraction of light by a circular opening.
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1000 CHAPTER 33 Wave Optics

Angle u1 locates the first minimum in the intensity, where there is perfect destructive  
interference. A mathematical analysis of circular diffraction finds

 sin u1 =
1.22l

D
 ?  u1 (33.30)

where D is the diameter of the circular opening. The last step in Equation 33.30 uses 
the small-angle approximation, which is almost always valid for the diffraction of 
light but usually is not valid for the diffraction of sound waves.

Within the small-angle approximation, the width of the central maximum is

 w = 2y1 = 2L tan u1 ≈  
2.44l  L

D
   (circular aperture) (33.31)

The diameter of the diffraction pattern increases with distance L, showing that light spreads 
out behind a circular aperture, but it decreases if the size D of the aperture is increased.

u1

u1

a

Long wavelength, l ≈ a.
This wave quickly fills the
region behind the opening.

Short wavelength, l V a.
This wave spreads slowly
and remains a well-defined
beam.

FIGURE 33.22 The diffraction of a long-
wavelength wave and a short-wavelength 
wave through the same opening.

Light from a helium-neon laser 1l = 633 nm2 passes through a 
0.50-mm-diameter hole. How far away should a viewing screen be 
placed to observe a diffraction pattern whose central maximum is 
3.0 mm in diameter?

SOLVE Equation 33.31 gives us the appropriate screen distance:

L =
wD

2.44l
=

13.0 * 10-3 m215.0 * 10-4 m2
2.441633 * 10-9 m2 = 0.97 m

EXAMPLE 33.6 ■ Shining a laser through a circular hole

33.7 The Wave Model of Light
We opened this chapter by noting that there are three models of light, each useful within 
a certain range of circumstances. We are now at a point where we can establish an 
important condition that separates the wave model of light from the ray model of light.

When light passes through an opening of size a, the angle of the first diffraction 
minimum is

 u1 = sin-11la 2 (33.32)

Equation 33.32 is for a slit, but the result is very nearly the same if a is the diameter of 
a circular aperture. Regardless of the shape of the opening, the factor that determines 
how much a wave spreads out behind an opening is the ratio L/a, the size of the  
wavelength compared to the size of the opening.

FIGURE 33.22 illustrates the difference between a wave whose wavelength is much 
smaller than the size of the opening and a second wave whose wavelength is comparable  
to the opening. A wave with l/a ≈   1 quickly spreads to fill the region behind the  
opening. Light waves, because of their very short wavelength, almost always have 
l/a V 1 and diffract to produce a slowly spreading “beam” of light.

Now we can better appreciate Newton’s dilemma. With everyday-sized openings, 
sound and water waves have l/a ≈   1 and diffract to fill the space behind the opening.  
Consequently, this is what we come to expect for the behavior of waves. We see now 
that light really does spread out behind an opening, but the very small l/a ratio usually  
makes the diffraction pattern too small to see. Diffraction begins to be discernible 
only when the size of the opening is a fraction of a millimeter or less. If we wanted the 
diffracted light wave to fill the space behind the opening 1u1 ≈ 90°2, as a sound wave  
does, we would need to reduce the size of the opening to a ≈ 0.001 mm!

FIGURE 33.23 shows light passing through a hole of diameter D. According to the 
ray model, light rays passing through the hole travel straight ahead to create a bright  
circular spot of diameter D on a viewing screen. This is the geometric image of the 
slit. In reality, diffraction causes the light to spread out behind the slit, but—and this is 
the important point—we will not notice the spreading if it is less than the diameter 
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33.7 The Wave Model of Light 1001

D of the geometric image. That is, we will not be aware of diffraction unless the 
bright spot on the screen increases in diameter.

This idea provides a reasonable criterion for when to use ray optics and when to 
use wave optics:

■■ If the spreading due to diffraction is less than the size of the opening, use the ray 
model and think of light as traveling in straight lines.

■■ If the spreading due to diffraction is greater than the size of the opening, use the 
wave model of light.

The crossover point between these two regimes occurs when the spreading due  
to diffraction is equal to the size of the opening. The central-maximum width of a 
circular-aperture diffraction pattern is w = 2.44l  L/D. If we equate this diffraction 
width to the diameter of the aperture itself, we have

 
2.44l  L

Dc 
= Dc  (33.33)

where the subscript c on Dc  indicates that this is the crossover between the ray model 
and the wave model. Because we’re making an estimate—the change from the ray 
model to the wave model is gradual, not sudden—to one significant figure, we find

 Dc ≈ 22l  L (33.34)

This is the diameter of a circular aperture whose diffraction pattern, at distance L, has 
width w ≈ D. We know that visible light has l ≈ 500 nm, and a typical distance in 
laboratory work is L ≈ 1 m. For these values,

Dc ≈ 1 mm

Thus diffraction is significant, and you should use the wave model, when light passes 
through openings smaller than about 1 mm. The ray model, which we’ll study in the 
next chapter, is the more appropriate model when light passes through openings larger 
than about 1 mm. Lenses and mirrors, in particular, are almost always larger than  
1 mm, so they will be analyzed with the ray model.

We can now pull all these ideas together in a more complete presentation of the 
wave model of light.

Screen

Hole of
diameter D

Incident light

If light travels in straight lines, the image on 
the screen is the same size as the hole. 
Diffraction will not be noticed unless the light 
spreads over a diameter larger than D.

FIGURE 33.23 Diffraction will be noticed 
only if the bright spot on the screen is 
wider than D.

MODEL 33.1

Wave model of light
For use when diffraction is significant.

■■ Light is an electromagnetic wave.

• Light travels through vacuum at speed c.

• Wavelength l and frequency f are related by lf = c.

• Most of optics depends only on the waviness of light,  
not on its electromagnetic properties.

■■ Light exhibits diffraction and interference.

• Light spreads out after passing through an opening. The amount  
of spread is inversely proportional to the size of the opening.

• Two equal-wavelength light waves interfere. Constructive and  
destructive interference depend on the path-length difference.

■■ Limitations:

• The ray model is a better description when diffraction is not significant.
 Use the wave model with openings 6 1 mm in size.
 Use the ray model with openings 7 1 mm in size.

• The photon model is a better description of extremely weak light or the light emitted in atomic transitions.

Magnetic
field

Electric
field

l

vem = c

Diffraction

Interference
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1002 CHAPTER 33 Wave Optics

33.8 Interferometers
Scientists and engineers have devised many ingenious methods for using interference 
to control the flow of light and to make very precise measurements with light waves. 
A device that makes practical use of interference is called an interferometer.

Interference requires two waves of exactly the same wavelength. One way of 
guaranteeing that two waves have exactly equal wavelengths is to divide one wave 
into two parts of smaller amplitude. Later, at a different point in space, the two parts 
are recombined. Interferometers are based on the division and recombination of a  
single wave.

The Michelson Interferometer
Albert Michelson, the first American scientist to receive a Nobel Prize, invented an  
optical interferometer, shown in FIGURE 33.24, in which an incoming light wave is 
divided by a beam splitter, a partially silvered mirror that reflects half the light 
but transmits the other half. The two waves then travel toward mirrors M1 and M2. 
Half of the wave reflected from M1 is transmitted through the beam splitter, where it 
recombines with the reflected half of the wave returning from M2. The superimposed 
waves travel on to a light detector, originally a human observer but now more likely 
an electronic photodetector.

After separating, the two waves travel distances r1 = 2L1 and r2 = 2L2 before 
recombining, with the factors of 2 appearing because the waves travel to the mirrors 
and back again. Thus the path-length difference between the two waves is

 ∆r = 2L2 - 2L1 (33.35)

The conditions for constructive and destructive interference between the two recom-
bined beams are the same as for double-slit interference: ∆r = ml and ∆r =     1m + 1

2l2   , 
respectively. Thus constructive and destructive interference occur when

 
Constructive: L2 - L1 = m 

l

2

Destructive: L2 - L1 =     1m + 1
22l2
  m = 0, 1, 2, c (33.36)

You might expect the interferometer output to be either “bright” or “dark.” Instead, 
a viewing screen shows the pattern of circular interference fringes seen in FIGURE 33.25. 
Our analysis was for light waves that impinge on the mirrors exactly perpendicular to 
the surface. In an actual experiment, some of the light waves enter the interferometer 
at slightly different angles and, as a result, the recombined waves have slightly altered 
path-length differences ∆r. These waves cause the alternating bright and dark fringes 
as you move outward from the center of the pattern. Their analysis will be left to more 
advanced courses in optics. Equations 33.36 are valid at the center of the circular  
pattern; thus there is a bright or dark central spot when one of the conditions in 
Equations 33.36 is true.

Mirror M2 can be moved forward or backward by turning a precision screw, 
 causing the central spot to alternate in a bright-dark-bright-dark-bright cycle that is 
easily seen or monitored by a photodetector. Suppose the interferometer is adjusted to  
produce a bright central spot. The next bright spot will appear when M2 has moved 
half a wavelength, increasing the path-length difference by one full wavelength. The 
number ∆m of maxima appearing as M2 moves through distance  ∆L2 is

 ∆m =
∆L2

l/2
 (33.37)

Very precise wavelength measurements can be made by moving the mirror while 
counting the number of new bright spots appearing at the center of the pattern. The 
number ∆m is counted and known exactly. The only limitation on how precisely l 

1. The wave is
 divided at
 this point.

2. The returning
 waves recombine
 at this point.

3. The detector measures
 the superposition of the
 two waves that have
 traveled different paths.

Mirror M2

Mirror M1

Adjustment
screw

Source

L2

L1

Beam
splitter

FIGURE 33.24 A Michelson interferometer.

FIGURE 33.25 Photograph of the 
interference fringes produced by a 
Michelson interferometer.

LIGO, the Laser Interferometer 
Gravitational-Wave Observatory, de-
tects cosmic gravitational waves with 
a Michelson interferometer that has 
4-km-long arms. A passing gravitational 
wave changes the arm length by roughly 
1/1000 the diameter of a proton, but 
modern interferometric techniques can 
detect this.
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33.8 Interferometers 1003

can be measured this way is the precision with which distance ∆L2 can be measured. 
Unlike l, which is microscopic, ∆L2 is typically a few millimeters, a macroscopic 
distance that can be measured very accurately using precision screws, micrometers, 
and other techniques. Michelson’s invention provided a way to transfer the precision 
of macroscopic distance measurements to an equal precision for the wavelength of light.

Interferometers are also playing a key role in the development of optical computers 
because the bright and dark outputs of constructive and destructive interference can 
be the 1’s and 0’s of binary code.

An experimenter uses a Michelson interferometer to measure one 
of the wavelengths of light emitted by neon atoms. She slowly 
moves mirror M2 until 10,000 new bright central spots have ap-
peared. (In a modern experiment, a photodetector and computer 
would eliminate the possibility of experimenter error while count-
ing.) She then measures that the mirror has moved a distance of 
3.164 mm. What is the wavelength of the light?

MODEL An interferometer produces a new maximum each time  
L2 increases by l/2.

SOLVE The mirror moves ∆L2 = 3.164 mm = 3.164 * 10-3 m.  
We can use Equation 33.37 to find

l =
2 ∆L2

∆m
= 6.328 * 10-7 m = 632.8 nm

REVIEW A measurement of ∆L2 accurate to four significant fig-
ures  allowed us to determine l to four significant figures. This 
happens to be the neon wavelength that is emitted as the laser beam  
in a helium-neon laser.

EXAMPLE 33.7 ■ Measuring the wavelength of light

STOP TO THINK 33.5 A Michelson interferometer using light of wavelength l has 
been adjusted to produce a bright spot at the center of the interference pattern. Mirror 
M1 is then moved distance l toward the beam splitter while M2 is moved distance l 
away from the beam splitter. How many bright-dark-bright fringe shifts are seen?

a. 0 b. 1
c. 2 d. 4
e. 8 f. It’s not possible to say without knowing l.

Holography
No discussion of wave optics would be complete without mentioning holography, 
which has both scientific and artistic applications. The basic idea is a simple extension 
of interferometry.

FIGURE 33.26a shows how a hologram is made. A beam splitter divides a laser 
beam into two waves. One wave illuminates the object of interest. The light scattered  
by this object is a very complex wave, but it is the wave you would see if you looked at 
the object from the position of the film. The other wave, called the reference beam, is 
reflected directly toward the film. The scattered light and the reference beam meet at 
the film and interfere. The film records their interference pattern.

(b) A hologram

An enlarged photo of the
developed film. This is
the hologram.

Hologram
(developed
film)

Laser beam along the
reference beam direction

(c) Playing a hologram

The diffraction of the laser beam through the
light and dark patches of the film reconstructs
the original scattered wave.

An observer
“sees” the object
as if it were here.

(a) Recording a hologram

Laser

Film

Plane waves

Beam
splitter

Object
beam

Object

Reference
beam

The interference between the
scattered light and the reference
beam is recorded on the film.

The scattered
light has a
complex
wave front.

FIGURE 33.26 Holography is an important application of wave optics.
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1004 CHAPTER 33 Wave Optics

The interference patterns we’ve looked at in this chapter have been simple patterns 
of stripes and circles because the light waves have been well-behaved plane waves and  
spherical waves. The light wave scattered by the object in Figure 33.26a is exceedingly 
complex. As a result, the interference pattern recorded on the film—the hologram— 
is a seemingly random pattern of whorls and blotches. FIGURE 33.26b is an enlarged 
photograph of a portion of a hologram. It’s certainly not obvious that information is 
stored in this pattern, but it is.

The hologram is “played” by sending just the reference beam through it, as seen 
in FIGURE 33.26c. The reference beam diffracts through the transparent parts of the 
hologram, just as it would through the slits of a diffraction grating. Amazingly, the 
diffracted wave is exactly the same as the light wave that had been scattered by  
the object! In other words, the diffracted reference beam reconstructs the original 
scattered wave. As you look at this diffracted wave, from the far side of the hologram, 
you “see” the object exactly as if it were there. The view is three dimensional because, 
by moving your head with respect to the hologram, you can see different portions of 
the wave front.

A hologram.

   CHAPTER 33 CHALLENGE EXAMPLE     Measuring the index of refraction of a gas

A Michelson interferometer uses a helium-neon laser with wave-
length lvac = 633 nm. In one arm, the light passes through a 
4.00-cm-thick glass cell. Initially the cell is evacuated, and the in-
terferometer is adjusted so that the central spot is a bright fringe.  
The cell is then slowly filled to atmospheric pressure with a gas.  
As the cell fills, 43 bright-dark-bright fringe shifts are seen 
and counted. What is the index of refraction of the gas at this 
wave length?

MODEL Adding one additional wavelength to the round trip causes 
one bright-dark-bright fringe shift. Changing the length of the arm 
is one way to add wavelengths, but not the only way. Increasing 
the index of refraction also adds wavelengths because light has a 
shorter wavelength when traveling through a material with a larger 
index of refraction.

VISUALIZE FIGURE 33.27 shows a Michelson interferometer with a 
cell of thickness d in one arm.

SOLVE To begin, all the air is pumped out of the cell. As light 
travels from the beam splitter to the mirror and back, the number of 
wavelengths inside the cell is

m1 =
2d
lvac

where the 2 appears because the light passes through the cell twice.
The cell is then filled with gas at 1 atm pressure. Light travels 

slower in the gas, v = c/n, and you learned in Chapter 16 that the 
reduction in speed decreases the wavelength to lvac/n. With the cell  
filled, the number of wavelengths spanning distance d is

m2 =
2d
l

=
2d

lvac/n

The physical distance has not changed, but the number of wave-
lengths along the path has. Filling the cell has increased the path by

∆m = m2 - m1 = 1n - 12 
2d
lvac

wavelengths. Each increase of one wavelength causes one bright-
dark-bright fringe shift at the output. Solving for n, we find

n = 1 +
lvac ∆m

2d
= 1 +

16.33 * 10-7 m21432
210.0400 m2 = 1.00034

REVIEW This may seem like a six-significant-figure result, but 
there are really only two. What we’re measuring is not n but n - 1. 
We know the fringe count to two significant figures, and that has 
allowed us to compute n - 1 = lvac ∆m/2d = 3.4 * 10-4.

Mirror M2

Mirror M1

Source

L2

d

L1

Beam
splitter

Gas-filled cell of thickness d.
Light goes through this cell twice.

FIGURE 33.27 Measuring the index of refraction.
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Diffraction is the spreading of a wave after it 
passes through an opening.

Constructive and destructive interference are 
due to the overlap of two or more waves as they 
spread behind openings.

Interference due to wave-front division

Waves overlap as they spread out behind slits. Constructive interference 
occurs along antinodal lines. Bright fringes are seen where the antinodal 
lines intersect the viewing screen.

Double slit with separation d:
Equally spaced bright fringes are located at

um =
ml

d
  ym =

ml L
d

   m = 0, 1, 2,c

The fringe spacing is ∆y =
l L
d

Diffraction grating with slit spacing d:
Very bright and narrow fringes are located at  
angles and positions

d sin um = ml  ym = L tan um

Interference due to amplitude division

An interferometer divides a wave, lets the two waves travel different paths, then 
recombines them. Interference is constructive if one wave travels an integer 
number of wavelengths more or less than the other wave. The difference can  
be due to an actual path-length difference or to a different index of refraction.

Michelson interferometer  

The number of bright-dark-bright fringe shifts as mirror M2 moves  
distance ∆L2 is

∆m =
∆L2

l/2

Huygens’ principle says that each point 
on a wave front is the source of a spherical  
wavelet. The wave front at a later time is 
tangent to all the wavelets.

Diffraction

Single slit of width a:
A bright central maximum 
of width

w =
2l L

a

is flanked by weaker secondary maxima.
Dark fringes are located at angles such that

a sin up = pl  p = 1, 2, 3,c

If l/a V 1, then from the small-angle approximation

up =
pl

a
  yp =

pl L

a

Circular aperture of diameter D:
A bright central maximum of diameter

w =
2.44l L

D

is surrounded by circular secondary maxima.
The first dark fringe is located at

u1 =
1.22l

D
  y1 =

1.22l L
D

For an aperture of any shape, a smaller opening causes a 
more rapid spreading of the wave behind the opening.

The wave model of light considers light to be a wave propagating through space. Diffraction and interference are important.

The ray model of light considers light to travel in straight lines like little particles. Diffraction and interference are not important.

Diffraction is important when the width of the diffraction pattern of an aperture equals or exceeds the size of the aperture.
For a circular aperture, the crossover between the ray and wave models occurs for an opening of diameter Dc ≈ 12l L.

In practice, Dc ≈ 1 mm for visible light. Thus

• Use the wave model when light passes through openings 6 1 mm in size. Diffraction effects are usually important.

• Use the ray model when light passes through openings 7 1 mm in size. Diffraction is usually not important.

General Principles

Applications

Important Concepts

The goal of Chapter 33 has been to learn about and apply  
the wave model of light.

Summary
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CONCEPTUAL QUESTIONS

0

Intensity

Incident
light

x
FIGURE Q33.1

A B C D E

FIGURE Q33.3

optics
diffraction
models of light
wave model
ray model
photon model

double slit
interference fringes
central maximum
fringe spacing, ∆y
diffraction grating
order, m

spectroscopy
single-slit diffraction
secondary maxima
Huygens’ principle
phasor
missing order

circular aperture
interferometer
beam splitter
hologram

Terms and Notation

1. FIGURE Q33.1 shows light waves passing through two closely 
spaced, narrow slits. The graph shows the intensity of light on a  
screen behind the slits. Reproduce these graph axes, including the  
zero and the tick marks locating the double-slit fringes, then draw  
a graph to show how the light-intensity pattern will appear if the 
right slit is blocked, allowing light to go through only the left slit. 
Explain your reasoning.

2. In a double-slit interference experiment, which of the following 
actions (perhaps more than one) would cause the fringe spac-
ing to increase? (a) Increasing the wavelength of the light. (b) 
Increasing the slit spacing. (c) Increasing the distance to the 
viewing screen. (d) Submerging the entire experiment in water.

3. FIGURE Q33.3 shows the viewing screen in a double-slit experi-
ment. Fringe C is the central maximum. What will happen to the 
fringe spacing if
a. The wavelength of the light is decreased?
b. The spacing between the slits is decreased?
c. The distance to the screen is decreased?
d. Suppose the wavelength of the light is 500 nm. How much 

farther is it from the dot on the screen in the center of fringe  
E to the left slit than it is from the dot to the right slit?

4. FIGURE Q33.3 is the interference pattern seen on a viewing screen 
behind 2 slits. Suppose the 2 slits were replaced by 20 slits having  
the same spacing d between adjacent slits.
a. Would the number of fringes on the screen increase, decrease,  

or stay the same?
b. Would the fringe spacing increase, decrease, or stay the same?
c. Would the width of each fringe increase, decrease, or stay the  

same?
d. Would the brightness of each fringe increase, decrease, or 

stay the same?

5. FIGURE Q33.5 shows the light intensity on a viewing screen 
behind a single slit of width a. The light’s wavelength is l. Is 
l 6 a, l = a, l 7 a, or is it not possible to tell? Explain.

FIGURE Q33.5 FIGURE Q33.6

6. FIGURE Q33.6 shows the light intensity on a viewing screen be-
hind a circular aperture. What happens to the width of the central  
maximum if
a. The wavelength of the light is increased?
b. The diameter of the aperture is increased?
c. How will the screen appear if the aperture diameter is less 

than the light wavelength?
7. Narrow, bright fringes are observed on a screen behind a diffrac-

tion grating. The distance of the screen from the grating is now 
increased. Do the fringes on the screen get closer together, go 
farther apart, remain the same, or disappear? Explain.

8.  a. A green light shines through a hole of diameter 150 mm and is 
observed on a screen. If the diameter of the hole is increased 
by 15%, does the circular spot of light on the screen decrease 
in diameter, increase in diameter, or stay the same? Explain.

b. A green light shines through a hole of diameter 15 mm and is 
observed on a screen. If the diameter of the hole is increased 
by 25%, does the circular spot of light on the screen decrease 
in diameter, increase in diameter, or stay the same? Explain.

9. A Michelson interferometer using 600 nm light is adjusted to 
have a bright central spot. One mirror is then moved 150 nm 
forward, the other, 150 nm back. Afterward, is the central spot 
bright, dark, or in between? Explain.

10. A Michelson interferometer is set up to display constructive interfer-
ence (a bright central spot in the fringe pattern of Figure 33.25) 
using light of wavelength l. If the wavelength is changed to l/2, 
does the central spot remain bright, does the central spot become 
dark, or do the fringes disappear? Explain. Assume the fringes are  
viewed by a detector sensitive to both wavelengths.
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Exercises and Problems 1007

Problems labeled  integrate material from earlier chapters.

Exercises

Section 33.2 The Interference of Light

1. | A double slit is illuminated simultaneously with an orange 
light of wavelength 630 nm and a light of an unknown wave-
length. A bright fringe of m = 5 from the light of the unknown 
wavelength overlaps the fringe of m = 3 from the orange light. 
What is the wavelength of the unknown light?

2. | Two narrow slits are spaced 50 mm apart and are illuminated 
with a light of wavelength 600 nm. What is the angle of the 
bright fringe of m = 3 in radians and in degrees?

3. | Light of wavelength 550 nm illuminates a double slit, and the 
interference pattern is observed on a screen behind the slit. The 
third maximum is measured to be 3.0 cm from the central maxi-
mum. The slits are then illuminated with light of wavelength 440 
nm. How far is the fourth maximum from the central maximum?

4. | A double-slit experiment is performed with a light of wave-
length 600 nm. The bright interference fringes are spaced 1.5 
mm apart on the viewing screen. What will the fringe spacing 
be if the wavelength of the light is changed to 420 nm?

5. || Light of 630 nm wavelength illuminates two slits that are  
0.25 mm apart. FIGURE EX33.5 shows the intensity pattern seen 
on a screen behind the slits. What is the distance to the screen?

EXERCISES AND PROBLEMS

12. | A 3-cm-wide diffraction grating has 2000 slits. It is illumi-
nated by a light of wavelength 450 nm. What are the angles (in 
degrees) of the first two diffraction orders?

13. | A diffraction grating produces a first-order maximum at an 
angle of 20.0°. What is the angle of the second-order maximum?

14. | Excited potassium atoms emit deep-violet light at wavelengths 
404.4 nm and 404.7 nm. Suppose light from a potassium lamp 
passes through a diffraction grating that has 800 slits per millime-
ter. How far behind the grating must a viewing screen be placed so 
that the two first-order fringes are separated by 1.0 mm?

15. || The two most prominent wavelengths in the light emitted by 
a hydrogen discharge lamp are 656 nm (red) and 486 nm (blue). 
Light from a hydrogen lamp illuminates a diffraction grating 
with 500 lines/mm, and the light is observed on a screen 1.50 m 
behind the grating. What is the distance between the first-order 
red and blue fringes?

16. || A helium-neon laser 1l = 633 nm2 illuminates a diffraction 
grating. The distance between the two m = 1 bright fringes is 
32 cm on a screen 2.0 m behind the grating. What is the spacing 
between slits of the grating?

17. || FIGURE EX33.17 shows the interference pattern on a screen  
1.0 m behind an 800 lines/mm diffraction grating. What is the 
wavelength (in nm) of the light?

0
x (cm)

1 2

Intensity

FIGURE EX33.5

6. | Light from a sodium lamp 1l = 589 nm2 illuminates two nar-
row slits. The fringe spacing on a screen 100 cm behind the slits 
is 4 mm. What is the spacing (in mm) between the two slits?

7. | In a double-slit experiment, the slit separation is 250 times 
the wavelength of the light. What is the angular separation (in 
degrees) between two adjacent bright fringes?

8. || A double-slit interference pattern is created by two narrow 
slits spaced 0.3 mm apart. The distance between the first and the 
fifth minimum on a screen 60 cm behind the slits is 6 mm. What 
is the wavelength (in nm) of the light used in this experiment?

9. || FIGURE EX33.9 shows the light intensity on a screen behind 
a double slit. The slit spacing is 0.20 mm and the wavelength 
of the light is 620 nm. What is the distance from the slits to the 
screen?

2.0 cm

0

Intensity (mW/m2)

12

x (cm)

FIGURE EX33.9

89.7 cm 89.7 cm
43.6 cm 43.6 cm

Intensity

x (cm)

FIGURE EX33.17

0
x (cm)

321

Intensity

FIGURE EX33.22
10. || FIGURE EX33.9 shows the light intensity on a screen behind a 

double slit. The slit spacing is 0.20 mm and the screen is 2.0 m 
behind the slits. What is the wavelength (in nm) of the light?

Section 33.3 The Diffraction Grating

11. | Light of wavelength 620 nm illuminates a diffraction grating. 
The second-order maximum is at angle 39.5°. How many lines 
per millimeter does this grating have?

18. || FIGURE EX33.17 shows the interference pattern on a screen  
1.0 m behind a diffraction grating. The wavelength of the light is  
620 nm. How many lines per millimeter does the grating have?

Section 33.4 Single-Slit Diffraction

19. || A helium-neon laser 1l = 633 nm2 illuminates a single slit 
and is observed on a screen 1.5 m behind the slit. The distance 
between the first and second minima in the diffraction pattern is 
4.75 mm. What is the width (in mm) of the slit?

20. || In a single-slit experiment, the slit width is 200 times the 
wavelength of the light. What is the width (in mm) of the central 
maximum on a screen 2.0 m behind the slit?

21. || A 0.50-mm-wide slit is illuminated by light of wavelength 
500 nm. What is the width (in mm) of the central maximum on a 
screen 2.0 m behind the slit?

22. || Light of 630 nm wavelength 
illuminates a single slit of width 
0.15 mm. FIGURE EX33.22 shows 
the intensity pattern seen on a 
screen behind the slit. What is 
the distance to the screen?

23. | Light from a helium-neon laser 1l = 633 nm2 is incident on 
a single slit. What is the largest slit width for which there are no 
minima in the diffraction pattern?

24. || Light of 600 nm wavelength passes through a single slit and 
creates a 2.0-cm-wide central maximum on a screen behind the 
slit. What wavelength of light will create a 3.0-cm-wide central 
maximum on a screen twice as far away?
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Section 33.8 Interferometers

36. | Moving mirror M2 of a Michelson interferometer a distance of 
100 mm causes 500 bright-dark-bright fringe shifts. What is the 
wavelength of the light?

37. | A Michelson interferometer uses red light with a wavelength 
of 656.45 nm from a hydrogen discharge lamp. How many 
bright-dark-bright fringe shifts are observed if mirror M2 is 
moved exactly 1 cm?

38. || A Michelson interferometer uses a diode laser with a 
wavelength of 620 nm. The interferometer is adjusted so that the 
central spot is a bright fringe. A glass wedge with index of re-
fraction 1.50 is slowly lowered into the laser beam in one arm of 
the interferometer. The edge that enters first is razor sharp, then 
the thickness of the glass gradually increases. How thick, in mm,  
is the portion of the wedge that the laser beam passes through 
after you have counted 650 bright-dark-bright fringe shifts?

Problems
39. | FIGURE P33.39 shows the light intensity on a screen 2.5 m 

behind an aperture. The aperture is illuminated with light of 
wavelength 620 nm.
a. Is the aperture a single slit or a double slit? Explain.
b. If the aperture is a single slit, what is its width? If it is a dou-

ble slit, what is the spacing between the slits?

27. || FIGURE EX33.26 shows the light intensity on a screen behind 
a single slit. The wavelength of the light is 600 nm and the slit 
width is 0.15 mm. What is the distance from the slit to the screen?

Section 33.5 A Closer Look at Diffraction

28. || A laser beam illuminates a single, narrow slit, and the dif-
fraction pattern is observed on a screen behind the slit. The first 
secondary maximum is 26 mm from the center of the diffraction 
pattern. How far is the first minimum from the center of the dif-
fraction pattern?

29. ||| Two 50@mm@wide slits spaced 0.25 mm apart are illuminated 
by blue laser light with a wavelength of 450 nm. The interference 
pattern is observed on a screen 2.0 m behind the slits. How many 
bright fringes are seen in the central maximum that spans the 
distance between the first missing order on one side and the first 
missing order on the other side?

30. ||| A laser beam with a wavelength of 480 nm illuminates two 
0.12-mm-wide slits separated by 0.30 mm. The interference pat-
tern is observed on a screen 2.3 m behind the slits. What is the 
light intensity, as a fraction of the maximum intensity I0, at a 
point halfway between the center and the first minimum?

Section 33.6 Circular-Aperture Diffraction

31. | Your artist friend is designing an exhibit inspired by circular- 
aperture diffraction. A pinhole in a red zone is going to be  
illuminated with a red laser beam of wavelength 670 nm, while 
a pinhole in a violet zone is going to be illuminated with a violet 
laser beam of wavelength 410 nm. She wants all the diffraction 
patterns seen on a distant screen to have the same size. For this to 
work, what must be the ratio of the red pinhole’s diameter to that 
of the violet pinhole?

32. || A 0.50-mm-diameter hole is illuminated by light of 
wavelength 550 nm. What is the width (in mm) of the central 
maximum on a screen 2.0 m behind the slit?

33. || Infrared light of wavelength 2.5 mm illuminates a 0.20-mm-  
diameter hole. What is the angle of the first dark fringe in 
radians? In degrees?

34. || Light from a helium-neon laser 1l = 633 nm2 passes through 
a circular aperture and is observed on a screen 4.0 m behind the 
aperture. The width of the central maximum is 2.5 cm. What is 
the diameter (in mm) of the hole?

35. || You want to photograph a circular diffraction pattern whose 
central maximum has a diameter of 1.0 cm. You have a helium- 
neon laser 1l = 633 nm2 and a 0.12-mm-diameter pinhole.  
How far behind the pinhole should you place the screen that’s to 
be photographed?
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x (cm)

3 4 5

Intensity

FIGURE P33.39
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x (cm)

3 4 65

Intensity

FIGURE P33.40

40. | FIGURE P33.40 shows the light intensity on a screen 2.5 m 
behind an aperture. The aperture is illuminated with light of 
wavelength 620 nm.
a. Is the aperture a single slit or a double slit? Explain.
b. If the aperture is a single slit, what is its width? If it is a dou-

ble slit, what is the spacing between the slits?

41. || Light from a helium-neon laser 1l = 633 nm2 is used to illu-
minate two narrow slits. The interference pattern is observed on 
a screen 3.0 m behind the slits. Twelve bright fringes are seen, 
spanning a distance of 52 mm. What is the spacing (in mm) be-
tween the slits?

42. || The intensity at the central maximum of a double-slit interfer-
ence pattern is 4I1. The intensity at the first minimum is zero. At 
what fraction of the distance from the central maximum to the 
first minimum is the intensity I1? Assume an ideal double slit.

43. | Two vertical, high-frequency radio antennas are 20 m apart.  
2.0 km away, in a plane parallel to the plane of the antennas,  
“bright” spots of radio intensity are spaced 5.0 m apart, separated by 
spots with almost no radio intensity. What is the radio frequency?

44. || A diffraction grating having 500 lines/mm diffracts visible 
light at 30°. What is the light’s wavelength?

45. || Helium atoms emit light at several wavelengths. Light from 
a helium lamp illuminates a diffraction grating and is observed 
on a screen 50.00 cm behind the grating. The emission at wave-
length 501.5 nm creates a first-order bright fringe 21.90 cm from 
the central maximum. What is the wavelength of the bright 
fringe that is 31.60 cm from the central maximum?

0 1
x (cm)

2 3

Intensity

FIGURE EX33.26

25. || You need to use your cell phone, which broadcasts an  
800 MHz signal, but you’re behind two massive, radio-wave- 
absorbing buildings that have only a 15 m space between them. 
What is the angular width, in degrees, of the electromagnetic 
wave after it emerges from between the buildings?

26. || FIGURE EX33.26 shows the light intensity on a screen behind 
a single slit. The slit width is 0.20 mm and the screen is 1.5 m 
behind the slit. What is the wavelength (in nm) of the light?
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53. | The wings of some beetles have 
closely spaced parallel lines of mel-
anin, causing the wing to act as a 
reflection grating. Sup pose sunlight 
shines straight onto a beetle wing. 
If the melanin lines on the wing are 
spaced 2.0 mm apart, what is the 
first-order diffraction angle for green 
light 1l = 550 nm2?

54. || Light from a sodium lamp (l = 589 nm) illuminates a narrow 
slit and is observed on a screen 75 cm behind the slit. The dis-
tance between the first and third dark fringes is 7.5 mm. What is 
the width (in mm) of the slit?

55. | If sunlight shines straight onto a peacock feather, the feather 
appears bright blue when viewed from 15° on either side of the 
incident beam of light. The blue color is due to diffraction from 
parallel rods of melanin in the feather barbules, as was described 
on page 992. Other wavelengths in the incident light are dif-
fracted at different angles, leaving only the blue light to be seen. 
The average wavelength of blue light is 470 nm. Assuming this 
to be the first-order diffraction, what is the spacing of the mela-
nin rods in the feather?

56. || You’ve found an unlabeled diffraction grating. Before you 
can use it, you need to know how many lines per mm it has. To 
find out, you illuminate the grating with light of several differ-
ent wavelengths and then measure the distance between the two 
first-order bright fringes on a viewing screen 150 cm behind the 
grating. Your data are as follows:

Wavelength (nm) Distance (cm)

430 109.6

480 125.4

530 139.8

580 157.2

630 174.4

680 194.8

Use the best-fit line of an appropriate graph to determine the 
number of lines per mm.

57. || A diffraction grating has slit spacing d. Fringes are viewed on 
a screen at distance L. Find an expression for the wavelength of 
light that produces a first-order fringe on the viewing screen at 
distance L from the center of the screen.

58. || For light that strikes a reflection grating perpendicular to the 
grating, the condition for bright fringes in the reflected light is 
exactly the same as the bright-fringe condition for a transmission 
grating. A DVD makes a useful reflection grating because it has 
many narrow, mirror-like surfaces between the regularly spaced 
circular tracks of “pits” where the data are encoded. If a green 
laser pointer with a wavelength of 532 nm illuminates a DVD, a 
first-order diffraction spot is seen 1.00 m from the laser beam on 
a screen that is 1.00 m from the DVD and parallel to it. What is 
the track spacing on the DVD?

59. ||| A student performing a double-slit experiment is using a 
green laser with a wavelength of 530 nm. She is confused when 
the m = 5 maximum does not appear. She had predicted that this 
bright fringe would be 1.6 cm from the central maximum on a 
screen 1.5 m behind the slits.
a. Explain what prevented the fifth maximum from being observed.
b. What is the width of her slits?

46. || X-ray diffraction is a technique used to determine the structure 
of crystals. X rays are light waves that have a wavelength of only 
a few nanometers or less. For wavelengths this short, the parallel 
planes of atoms in a crystal, spaced less than a nanometer apart, 
act very much like the slits of a diffraction grating. If x rays are 
sent through a crystal, a careful analysis finds that the condi-
tion for bright fringes of x-ray diffraction is 2d sin(um/2) = ml, 
where d is the spacing between the planes of the crystal—called 
the lattice spacing. This agrees with the diffraction-grating 
equation at small angles, where sin(um/2) ≈ um/2, but it differs 
slightly at larger angles.
a. If x rays with a wavelength of 0.190 nm are sent through a 

crystal of tungsten, the first-order diffraction is observed at 
34.5°. What is the lattice spacing of tungsten?

b. At what angle is second-order diffraction observed?
47. || A diffraction grating with 600 lines/mm is illuminated with 

light of wavelength 510 nm. A very wide viewing screen is 2.0 m 
behind the grating.
a. What is the distance between the two m = 1 bright fringes?
b. How many bright fringes can be seen on the screen?

48. || Because sound is a wave, it’s possible to make a diffraction 
grating for sound from a large board of sound-absorbing material 
with several parallel slits cut for sound to go through. When 10 kHz 
sound waves pass through such a grating, listeners 10 m from the 
grating report “loud spots” 1.4 m on both sides of center. What is 
the spacing between the slits? Use 340 m/s for the speed of sound.

49. | White light (400–700 nm) incident on a 600 lines/mm diffrac-
tion grating produces rainbows of diffracted light. What is the width 
of the first-order rainbow on a screen 2.0 m behind the grating?

50. || A chemist identifies compounds by identifying bright lines 
in their spectra. She does so by heating the compounds until 
they glow, sending the light through a diffraction grating, and 
measuring the positions of first-order spectral lines on a detector 
15.0 cm behind the grating. Unfortunately, she has lost the card 
that gives the specifications of the grating. Fortunately, she has 
a known compound that she can use to calibrate the grating. She 
heats the known compound, which emits light at a wavelength 
of 461 nm, and observes a spectral line 9.95 cm from the center 
of the diffraction pattern. What are the wavelengths emitted by 
compounds A and B that have spectral lines detected at positions 
8.55 cm and 12.15 cm, respectively?

51. ||| a. Find an expression for the positions y1 of the first- 
order fringes of a diffraction grating if the line spacing  
is large enough for the small-angle approximation 
tan u ≈  sin u ≈ u to be valid. Your expression should be 
in terms of d, L, and l.

b. Use your expression from part a to find an expression for 
the separation ∆y on the screen of two fringes that differ 
in wavelength by ∆l.

c. Rather than a viewing screen, modern spectrometers use 
detectors—similar to the one in your digital camera—that 
are divided into pixels. Consider a spectrometer with a  
333 lines/mm grating and a detector with 100 pixels/mm 
located 12 cm behind the grating. The resolution of a 
spectrometer is the smallest wavelength separation ∆lmin 
that can be measured reliably. What is the resolution of 
this spectrometer for wavelengths near 550 nm, in the  
center of the visible spectrum? You can assume that the 
fringe due to one specific wavelength is narrow enough to 
illuminate only one column of pixels.

52. || What is the longest wavelength for which a third-order fringe 
can be observed with a diffraction grating that has 800 lines/mm?
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66. | Suppose two distant sources of light are separated by angle f 
when viewed from the center of a circular aperture. Each source 
creates a diffraction pattern, and the two central maxima are sep-
arated by the same angle f. If f is large, there will be two distinct 
bull’s-eye patterns and you can tell, just by looking at the screen, 
that there are two sources. If f is very small, the diffraction pat-
terns will overlap so much that you cannot observe two distinct 
sources. The two sources will be marginally resolved, which 
means that you can just barely detect two sources, if the central 
maximum of one diffraction pattern falls on the first minimum of 
the other diffraction pattern—that is, if f = u1 = 1.22l/D. The 
Arecibo Observatory in Puerto Rico was a 310-m-diameter radio 
telescope that collapsed in 2020. Incoming radio waves reflected 
from the receiving dish rather than passing through it, but the  
laws of diffraction work the same in both cases. What was the 
angular resolution—the smallest angle by which two sources could 
be separated and still be recognized as two distinct sources—
when the radio telescope was looking for signals at a frequency of 
1.5 GHz? Give your answer in minutes of arc, where 1° is divided 
into 60 minutes.

67. || Light of wavelength 600 nm passes though two slits separated 
by 0.20 mm and is observed on a screen 1.0 m behind the slits. 
The location of the central maximum is marked on the screen 
and labeled y = 0.
a. At what distance, on either side of y = 0, are the m = 1 bright 

fringes?
b. A very thin piece of glass is then placed in one slit. Because 

light travels slower in glass than in air, the wave passing 
through the glass is delayed by 5.0 * 10-16 s in comparison 
to the wave going through the other slit. What fraction of the 
period of the light wave is this delay?

c. With the glass in place, what is the phase difference ∆f0 be-
tween the two waves as they leave the slits?

d. The glass causes the interference fringe pattern on the screen 
to shift sideways. Which way does the central maximum move 
(toward or away from the slit with the glass) and by how far?

68. || A Michelson interferometer operating at a 600 nm wavelength 
has a 2.00-cm-long glass cell in one arm. To begin, the air is 
pumped out of the cell and mirror M2 is adjusted to produce a 
bright spot at the center of the interference pattern. Then a valve 
is opened and air is slowly admitted into the cell. The index of re-
fraction of air at 1.00 atm pressure is 1.00028. How many bright-
dark-bright fringe shifts are observed as the cell fills with air?

69. || Optical computers require microscopic optical switches to 
turn signals on and off. One device for doing so, which can be 
implemented in an integrated circuit, is the Mach-Zender inter-
ferometer seen in FIGURE P33.69. Light from an on-chip infrared 
laser 1l = 1.000 mm2 is split into two waves that travel equal 
distances around the arms of the interferometer. One arm passes 
through an electro-optic crystal, a transparent material that can 
change its index of refraction in response to an applied voltage. 
Suppose both arms are exactly the same length and the crystal’s 
index of refraction with no applied voltage is 1.522.

60. || Scientists shine a laser beam on a 35@mm@wide slit and pro-
duce a diffraction pattern on a screen 70 cm behind the slit. 
Careful measurements show that the intensity first falls to 25% 
of maximum at a distance of 7.2 mm from the center of the dif-
fraction pattern. What is the wavelength of the laser light?
Hint: Use the trial-and-error technique demonstrated in Example 
33.5 to solve the transcendental equation.

61. | Light from a helium-neon laser 1l = 633 nm2 illuminates a 
circular aperture. It is noted that the diameter of the central maxi-
mum on a screen 50 cm behind the aperture matches the diameter 
of the geometric image. What is the aperture’s diameter (in mm)?

62. || A helium-neon laser 1l = 633 nm2 is built with a glass tube 
of inside diameter 1.0 mm, as shown in FIGURE P33.62. One mir-
ror is partially transmitting to allow the laser beam out. An elec-
trical discharge in the tube causes it to glow like a neon light. 
From an optical perspective, the laser beam is a light wave that 
diffracts out through a 1.0-mm-diameter circular opening.
a. Can a laser beam be perfectly parallel, with no spreading? 

Why or why not?
b. The angle u1 to the first minimum is called the divergence 

angle of a laser beam. What is the divergence angle of this 
laser beam?

c. What is the diameter (in mm) of the laser beam after it travels 
3.0 m? Note that the wave model is appropriate because the 
spreading, at this distance, is significantly larger than the size 
of the opening.

d. What is the diameter of the laser beam after it travels 1.0 km?
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Beam splitter
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FIGURE P33.69

Discharge 1.0 mm
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63. || One day, after pulling down your window shade, you notice 
that sunlight is passing through a pinhole in the shade and mak-
ing a small patch of light on the far wall. Having recently studied 
optics in your physics class, you’re not too surprised to see that 
the patch of light seems to be a circular diffraction pattern. It 
appears that the central maximum is about 1 cm across, and you 
estimate that the distance from the window shade to the wall is 
about 3 m. Estimate (a) the average wavelength of the sunlight 
(in nm) and (b) the diameter of the pinhole (in mm).

64. | A radar for tracking aircraft broadcasts a 12 GHz micro-
wave beam from a 2.0-m-diameter circular radar antenna. From 
a wave perspective, the antenna is a circular aperture through 
which the microwaves diffract.
a. What is the diameter of the radar beam at a distance of 30 km?
b. If the antenna emits 100 kW of power, what is the average 

microwave intensity at 30 km?
65. | Scientists use laser range-finding to measure the distance to the 

moon with great accuracy. A brief laser pulse is fired at the moon, 
then the time interval is measured until the “echo” is seen by a tele-
scope. A laser beam spreads out as it travels because it diffracts 
through a circular exit as it leaves the laser. In order for the reflected 
light to be bright enough to detect, the laser spot on the moon must be 
no more than 1.0 km in diameter. Staying within this diameter is ac-
complished by using a special large-diameter laser. If l = 532 nm, 
what is the minimum diameter of the circular opening from which 
the laser beam emerges? The earth-moon distance is 384,000 km.
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wavelength separation (in first order) for which the diffrac-
tion fringes can barely be resolved.

d. Ordinary hydrogen atoms emit red light with a wavelength of 
656.45 nm. In deuterium, which is a “heavy” isotope of hy-
drogen, the wavelength is 656.27 nm. What is the minimum 
number of slits in a diffraction grating that can barely resolve 
these two wavelengths in the first-order diffraction pattern?

74. ||| FIGURE CP33.74 shows light 
of wavelength l incident at 
angle f on a reflection grating 
of spacing d. We want to find 
the angles um at which con-
structive interference occurs.
a. The figure shows paths 

1 and 2 along which two 
waves travel and interfere. 
Find an expression for 
the path-length difference 
∆r = r2 - r1.

b. Using your result from part 
a, find an equation (analo-
gous to Equation 33.15) for 
the angles um at which dif-
fraction occurs when the light is incident at angle f. Notice 
that m can be a negative integer in your expression, indicating 
that path 2 is shorter than path 1.

c. Show that the zeroth-order diffraction is simply a “reflec-
tion.” That is, u0 = f.

d. Light of wavelength 500 nm is incident at f = 40° on a 
reflection grating having 700 reflection lines/mm. Find all 
angles um at which light is diffracted. Negative values of um 
are interpreted as an angle left of the vertical.

e. Draw a picture showing a single 500 nm light ray incident at 
f = 40° and showing all the diffracted waves at the correct 
angles.

75. ||| The pinhole camera of FIGURE CP33.75 images distant objects 
by allowing only a narrow bundle of light rays to pass through 
the hole and strike the film. If light consisted of particles, you 
could make the image sharper and sharper (at the expense of get-
ting dimmer and dimmer) by making the aperture smaller and 
smaller. In practice, diffraction of light by the circular aperture 
limits the maximum sharpness that can be obtained. Consider 
two distant points of light, such as two distant streetlights. Each 
will produce a circular diffraction pattern on the film. The two 
images can just barely be resolved if the central maximum of one 
image falls on the first dark fringe of the other image. (This is 
called Rayleigh’s criterion, and we will explore its implication 
for optical instruments in Chapter 35.)
a. Optimum sharpness of one image occurs when the diameter 

of the central maximum equals the diameter of the pinhole. 
What is the optimum hole size for a pinhole camera in which 
the film is 20 cm behind the hole? Assume l = 550 nm, an 
average value for visible light.

b. For this hole size, what is the angle a (in degrees) between 
two distant sources that can barely be resolved?

c. What is the distance between two street lights 1 km away that 
can barely be resolved?

a. With no voltage applied, is the output bright (switch closed, 
optical signal passing through) or dark (switch open, no sig-
nal)? Explain.

b. What is the first index of refraction of the electro-optic crys-
tal larger than 1.522 that changes the optical switch to the 
state opposite the state you found in part a?

70. || To illustrate one of the ideas of holography in a simple way, 
consider a diffraction grating with slit spacing d. The small-angle 
approximation is usually not valid for diffraction gratings, be-
cause d is only slightly larger than l, but assume that the l/d 
ratio of this grating is small enough to make the small-angle ap-
proximation valid.
a. Use the small-angle approximation to find an expression 

for the fringe spacing on a screen at distance L behind the 
grating.

b. Rather than a screen, suppose you place a piece of film at 
distance L behind the grating. The bright fringes will expose 
the film, but the dark spaces in between will leave the film 
unexposed. After being developed, the film will be a series 
of alternating light and dark stripes. What if you were to now 
“play” the film by using it as a diffraction grating? In other 
words, what happens if you shine the same laser through the 
film and look at the film’s diffraction pattern on a screen at 
the same distance L? Demonstrate that the film’s diffraction 
pattern is a reproduction of the original diffraction grating.

Challenge Problems
71. ||| A 500 lines/mm diffraction grating is illuminated by light 

of wavelength 510 nm. How many bright fringes are seen on a 
2.0-m-wide screen located 2.0 m behind the grating?

72. ||| A double-slit experiment is set up using a helium-neon laser 
1l = 633 nm2. Then a very thin piece of glass 1n = 1.502 is 
placed over one of the slits. Afterward, the central point on the 
screen is occupied by what had been the m = 10 dark fringe. 
How thick is the glass?

73. ||| FIGURE CP33.73 shows two 
nearly overlapped intensity 
peaks of the sort you might 
produce with a diffraction 
grating (see Figure 33.9b). As 
a practical matter, two peaks 
can just barely be resolved if 
their spacing ∆y equals the 
width w of each peak, where 
w is measured at half of the 
peak’s height. Two peaks 
closer together than w will merge into a single peak. We can use 
this idea to understand the resolution of a diffraction grating.
a. In the small-angle approximation, the position of the m = 1 

peak of a diffraction grating falls at the same location as 
the m = 1 fringe of a double slit: y1 = lL/d. Suppose two 
wavelengths differing by ∆l pass through a grating at the 
same time. Find an expression for ∆y, the separation of their 
first-order peaks.

b. We noted that the widths of the bright fringes are propor-
tional to 1/N, where N is the number of slits in the grating. 
Let’s hypothesize that the fringe width is w = y1/N. Show that 
this is true for the double-slit pattern. We’ll then assume it to 
be true as N increases.

c. Use your results from parts a and b together with the idea 
that ∆ymin = w to find an expression for ∆lmin, the minimum 

∆y

w
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1012

Ray Optics

What are light rays?
A light ray is a concept, not a physical thing. It is the line along 
which light energy flows.

 ■ Rays travel in straight lines. Two rays can cross without 
disturbing one another.

 ■ Objects are sources of light rays.
 ■ Reflection and refraction by mirrors and lenses create images of 

objects. Points to which light rays converge are called real images. 
Points from which light rays diverge are called virtual images.

 ■ The eye sees an object or an image when diverging bundles of 
rays enter the pupil and are focused to a real image on the retina.

Eye

Rays

Object Image

You’ll use both graphical and mathematical techniques to analyze 
how light rays travel and how images are formed.

What is the law of reflection?
Light rays bounce, or reflect, off a surface.

 ■ Specular reflection is mirror like.
 ■ Diffuse reflection is like light reflecting 

from the page of this book.

The law of reflection says that the angle 
of reflection equals the angle of incidence. 
You’ll learn how reflection allows images to 
be seen in both flat and curved mirrors.

What is refraction?
Light rays change direction at the boundary 
when they move from one medium to  
another. This is called refraction, and it is  
the basis for image formation by lenses. 
Snell’s law will allow you to find the angles 
on both sides of the boundary.

❮❮ LOOKING BACK Section 16.5 Index of refraction

How do lenses form images?
Lenses form images by refraction.

 ■ We’ll start with ray tracing, a graphical 
method of seeing how and where images 
are formed.

 ■ We’ll then develop the thin-lens equation  
for more quantitative results.

The same methods apply to image formation  
by curved mirrors.

Why is optics important?
Optics is everywhere, from your smart phone camera and your  
car headlights to laser pointers and the optical scanners that read 
bar codes. Our knowledge of the microscopic world and of the  
cosmos comes through optical instruments. And, of course, your 
eye is one of the most marvelous optical devices of all. Modern 
optical engineering is called photonics. Photonics does draw on 
all three models of light, as needed, but ray optics is usually the 
foundation on which optical instruments are designed.

IN THIS CHAPTER, you will learn about and apply the ray model of light.

34

Light travels in straight  
lines—light rays—except  
for points where it refracts  
or reflects.
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34.1 The Ray Model of Light 1013

Light rays

A beam of light

Direction
of travel

FIGURE 34.1 A laser beam or beam of 
sunlight is a bundle of parallel light rays.

34.1 The Ray Model of Light
A flashlight makes a beam of light through the night’s darkness. Sunbeams stream 
into a darkened room through a small hole in the shade. Laser beams are even more 
well defined. Our everyday experience that light travels in straight lines is the basis of 
the ray model of light.

The ray model is an oversimplification of reality but nonetheless is very useful 
within its range of validity. In particular, the ray model of light is valid as long as any 
apertures through which the light passes (lenses, mirrors, and holes) are very large 
compared to the wavelength of light. In that case, diffraction and other wave aspects 
of light are negligible and can be ignored. The analysis of Section 33.7 found that the 
crossover between wave optics and ray optics occurs for apertures ≈1 mm in diameter.  
Lenses and mirrors are almost always larger than 1 mm, so the ray model of light is 
the appropriate model for the practical optics of image formation.

To begin, let us define a light ray as a line in the direction along which light  
energy is flowing. A light ray is an abstract idea, not a physical entity or a “thing.” 
Any narrow beam of light, such as the laser beam in FIGURE 34.1, is actually a bundle 
of many parallel light rays. You can think of a single light ray as the limiting case of a 
laser beam whose diameter approaches zero. Laser beams are good approximations of 
light rays, but any real laser beam is a bundle of many parallel rays.

Chapter 33 briefly introduced the three models of light. Here we expand on the ray  
model, the subject of this chapter.

Objects
FIGURE 34.2 on the next page illustrates the idea that objects—sources of light—can 
be either self-luminous, such as the sun, flames, and lightbulbs, or reflective. Most 
objects are reflective. A tree, unless it is on fire, is seen or photographed by virtue of 

MODEL 34.1

Ray model of light
For use when diffraction is not significant.

 ■ Light rays travel in straight lines.

• The speed of light is v = c/n, where n is the  
material’s index of refraction.

• Light rays cross without interacting.
 ■ Light rays travel forever unless they interact  
with matter.

• At an interface between two materials, rays  
can be reflected and/or refracted.

• Within a material, light rays can be either  
scattered or absorbed.

 ■ An object is a source of light rays.

• Rays originate at every point on an object.
• Rays are sent in all directions.

 ■ The eye sees by focusing a diverging bundle of light rays.

• Diverging rays enter the pupil and are focused on the retina.
• Your brain perceives the object as being at the 

point from which the rays are diverging.
 ■ Limitations: Use the wave model if diffraction is sig-
nificant. The ray model is usually valid if openings are 
larger than about 1 mm, while the wave model is more 
appropriate if openings are smaller than about 1 mm.

Exercise 3 

Reflection

Refraction

Absorption
Scattering

Eye

Diverging bundle of rays
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1014 CHAPTER 34 Ray Optics

reflected sunlight or reflected skylight. People, houses, and pages in a printed book 
reflect light from self-luminous sources. In this chapter we are concerned not with 
how the light originates but with how it behaves after leaving the object.

Light rays from an object are emitted in all directions, but you are not aware of 
light rays unless they enter the pupil of your eye. Consequently, most light rays go 
completely unnoticed. For example, light rays travel from the sun to the tree in Figure 
34.2, but you’re not aware of these unless the tree reflects some of them into your eye. 
Or consider a laser beam. You’ve probably noticed that it’s almost impossible to see 
the beam from a laser pointer as it crosses the room unless there’s dust in the air. The 
dust scatters a few of the light rays toward your eye, but in the absence of dust you 
would be completely unaware of a very powerful light beam traveling past you. Light 
rays exist independently of whether you are seeing them.

FIGURE 34.3 shows two idealized sets of light rays. The diverging rays from a point 
source are emitted in all directions. It is useful to think of each point on an object 
as a point source of light rays. A parallel bundle of rays could be a laser beam. 
Alternatively it could represent a distant object, an object such as a star so far away 
that the rays arriving at the observer are essentially parallel to each other.

Reflected light

The tree is a
reflective object.

The camera “sees” light rays
reflected by the tree but not
the rays from the sun.

The sun is a self-
luminous object.

Emitted light

FIGURE 34.2 Self-luminous and reflective 
objects.

Point source Parallel bundle

FIGURE 34.3 Point sources and parallel bundles represent idealized objects.

These are just a few of the
infinitely many rays leaving
the object.

FIGURE 34.4 A ray diagram simplifies the 
situation by showing only a few rays.

Ray Diagrams
Rays originate from every point on an object and travel outward in all directions, but 
a diagram trying to show all these rays would be hopelessly messy and confusing. 
To simplify the picture, we usually use a ray diagram showing only a few rays. For 
example, FIGURE 34.4 is a ray diagram showing only a few rays leaving the top and 
bottom points of the object and traveling to the right. These rays will be sufficient to 
show us how the object is imaged by lenses or mirrors.

   NOTE    Ray diagrams are the basis for a pictorial representation that we’ll use 
throughout this chapter. Be careful not to think that a ray diagram shows all of the 
rays. The rays shown on the diagram are just a subset of the infinitely many rays 
leaving the object.

Apertures
It has been known since ancient times that light passing through a small hole in an 
opaque barrier casts a dim but full-color image of the outside world onto a wall, as 
shown in FIGURE 34.5a. Such a device is known as a camera obscura, Latin for “dark 
room.” A pinhole camera is a miniature version of a camera obscura. But there is one 
problem with viewing the image: It’s upside down!

A hole through which light passes is called an aperture. FIGURE 34.5b uses the ray 
model of light passing through a small aperture to explain how the camera obscura 
works. Each point on an object emits light rays in all directions, but only a very few of 
these rays pass through the aperture and reach the back wall. As the figure illustrates, 
the geometry of the rays causes the image to be upside down.

Actually, as you may have realized, each point on the object illuminates a small 
but extended patch on the wall. This is because the non-zero size of the aperture—
needed for the image to be bright enough to see—allows several rays from each point 
on the object to pass through at slightly different angles. As a result, the image is 
slightly blurred and out of focus. (Diffraction also becomes an issue if the hole gets 

Image on
back wall

Darkened room

Object

Aperture

(a)

FIGURE 34.5 A camera obscura.

These rays don’t make
it through the hole.

The image is upside down. If the hole is
sufficiently small, each point on the image
corresponds to one point on the object.

(b)

do di

hiho
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34.2 Reflection 1015

too small.) We’ll later discover how a modern camera, with a lens, improves on the 
camera obscura.

You can see from the similar triangles in Figure 34.5b that the object and image 
heights are related by

 
hi

ho
=

di

do
 (34.1)

where do is the distance to the object and di is the depth of the camera obscura. Any 
realistic camera obscura has di 6 do; thus the image is smaller than the object.

We can apply the ray model to more complex apertures, such as the L-shaped 
aperture in FIGURE 34.6. The pattern of light on the screen is found by tracing all the 
straight-line paths—the ray trajectories—that start from the point source and pass 
through the aperture. We will see an enlarged L on the screen, with a sharp boundary 
between the image and the dark shadow.

Some rays are
blocked by the
opaque screen.

Light

Point source

Aperture

Screen

Shadow

FIGURE 34.6 Light through an aperture.

STOP TO THINK 34.1 A long, thin lightbulb illumi-
nates a vertical aperture. Which pattern of light do you 
see on a viewing screen behind the aperture?

(a)

 

(b)

 

(c)

 

(d)

Light

Screen

34.2 Reflection
Reflection of light is a familiar, everyday experience. You see your reflection in the 
bathroom mirror first thing every morning, reflections in your car’s rearview mirror 
as you drive to school, and the sky reflected in puddles of standing water. Reflection 
from a flat, smooth surface, such as a mirror or a piece of polished metal, is called 
specular reflection, from speculum, the Latin word for “mirror.”

FIGURE 34.7a shows a bundle of parallel light rays reflecting from a mirror-like 
surface. You can see that the incident and reflected rays are both in a plane that is 
normal, or perpendicular, to the reflective surface. A three-dimensional perspective 
accurately shows the relationship between the light rays and the surface, but figures 
such as this are hard to draw by hand. Instead, it is customary to represent reflection 
with the simpler pictorial representation of FIGURE 34.7b. In this figure,

 ■ The plane of the page is the plane of incidence, the plane containing both incident 
and reflected rays. The reflective surface extends into the page.

 ■ A single light ray represents the entire bundle of parallel rays. This is oversimpli-
fied, but it keeps the figure and the analysis clear.

The angle ui between the ray and a line perpendicular to the surface—the normal 
to the surface—is called the angle of incidence. Similarly, the angle of reflection 
ur is the angle between the reflected ray and the normal to the surface. The law of 
reflection, easily demonstrated with simple experiments, states that

1. The incident ray and the reflected ray are in the same plane normal to the sur-
face, and

2. The angle of reflection equals the angle of incidence: ur = ui.

   NOTE    Optics calculations always use the angle measured from the normal, not the 
angle between the ray and the surface.

(a)

Reflective
surface

Both the incident and reflected rays lie in 
a plane that is perpendicular to the surface.

(b)

Angle of
incidence

Normal

Reflective surface

ui ur

Angle of
reflection

Reflected ray
Incident ray

FIGURE 34.7 Specular reflection of light.
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1016 CHAPTER 34 Ray Optics

Diffuse Reflection
Most objects are seen by virtue of their reflected light. For a “rough” surface, the 
law of reflection ur = ui is obeyed at each point but the irregularities of the surface 
cause the reflected rays to leave in many random directions. This situation, shown in 
FIGURE  34.9, is called diffuse reflection. It is how you see this page, the wall, your  
hand, your friend, and so on.

By a “rough” surface, we mean a surface that is rough or irregular in comparison  
to the wavelength of light. Because visible-light wavelengths are ≈0.5 mm, any surface  
with texture, scratches, or other irregularities larger than 1 mm will cause diffuse 
reflection rather than specular reflection. A piece of paper may feel quite smooth to 
your hand, but a microscope would show that the surface consists of distinct fibers  
much larger than 1 mm. By contrast, the irregularities on a mirror or a piece of  
polished metal are much smaller than 1 mm.

The Plane Mirror
One of the most commonplace observations is that you can see yourself in a mirror. How? 
FIGURE 34.10a shows rays from point source P reflecting from a mirror. Consider the partic-
ular ray shown in FIGURE 34.10b. The reflected ray travels along a line that passes through 
point P′ on the “back side” of the mirror. Because ur = ui, simple geometry dictates that 
P′ is the same distance behind the mirror as P is in front of the mirror. That is, s′ = s.

Magnified view of surface

Each ray obeys the law of reflection
at that point, but the irregular surface
causes the reflected rays to leave in
many random directions.

FIGURE 34.9 Diffuse reflection from an 
irregular surface.

Mirror

(a)

Object
P

Rays from P reflect from
the mirror. Each ray obeys
the law of reflection.

FIGURE 34.10 The light rays reflecting from a plane mirror.

A dressing mirror on a closet door is 1.50 m tall. The bottom is 
0.50 m above the floor. A bare lightbulb hangs 1.00 m from the 
closet door, 2.50 m above the floor. How long is the streak of  
reflected light across the floor?

MODEL Treat the lightbulb as a point source and use the ray model 
of light.

VISUALIZE FIGURE 34.8 is a pictorial representation of the light 
rays. We need to consider only the two rays that strike the edges 
of the mirror. All other reflected rays will fall between these two.

SOLVE Figure 34.8 has used the law of reflection to set the angles  
of reflection equal to the angles of incidence. Other angles have been 
identified with simple geometry. The two angles of incidence are

  u1 = tan-110.50 m
1.00 m2 = 26.6°

  u2 = tan-112.00 m
1.00 m2 = 63.4°

The distances to the points where the rays strike the floor are then

 l1 =
2.00 m
tan u1

= 4.00 m

 l2 =
0.50 m
tan u2

= 0.25 m

Thus the length of the light streak is l1 - l2 = 3.75 m.

EXAMPLE 34.1 ■ Light reflecting from a mirror

Bulb

2.50 m

1.00 m

Mirror

0.50 m

1.50 m

0.50 m

l2l1

u1

u2

u2 u1

The angles are the same
by the law of reflection.

FIGURE 34.8 Pictorial representation of the light rays  
reflecting from a mirror.

(b)

Object

This reflected ray appears to have
been traveling along a line that 
passed through point P′.

P P′

s

ui ur

ur

s′
(c)

Object

Eye

The reflected rays all diverge from P′, which
appears to be the source of the reflected rays. 
Your eye collects the bundle of diverging rays
and “sees” the light coming from P′.

P

Object distance Image distance

P′
Virtual
image

s s′
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34.2 Reflection 1017

   NOTE    In ray optics we use primes to distinguish images from objects. Thus P′ is an 
image point and s′ is an image distance.

The location of point P′ in Figure 34.10b is independent of the value of ui. Conse-
quently, as FIGURE 34.10c shows, the reflected rays all appear to be coming from point  
P′  . For a plane mirror, the distance s′ to point P′ is equal to the object distance s:

 s′ = s  (plane mirror) (34.2)

If rays diverge from an object point P and interact with a mirror so that the reflected 
rays diverge from point P′ and appear to come from P′, then we call P′ a virtual 
image of point P. The image is “virtual” in the sense that no rays actually leave P′, 
which is in darkness behind the mirror. But as far as your eye is concerned, the light 
rays act exactly as if the light really originated at P′. So while you may say “I see P in 
the mirror,” what you are actually seeing is the virtual image of P. Distance s′ is the 
image distance.

For an extended object, such as the one in FIGURE 34.11, each point on the object 
from which rays strike the mirror has a corresponding image point an equal distance 
on the opposite side of the mirror. The eye captures and focuses diverging bundles of 
rays from each point of the image in order to see the full image in the mirror. Two 
facts are worth noting:

1. Rays from each point on the object spread out in all directions and strike every 
point on the mirror. Only a very few of these rays enter your eye, but the other 
rays are very real and might be seen by other observers.

2. Rays from points P and Q enter your eye after reflecting from different areas of 
the mirror. This is why you can’t always see the full image of an object in a very 
small mirror.

Your eye intercepts only
a very small fraction of
all the reflected rays.

The rays from P and Q that
reach your eye reflect from
different areas of the mirror. 

P

Q Q′

P′
sP sP′

FIGURE 34.11 Each point on the extended 
object has a corresponding image point 
an equal distance on the opposite side of 
the mirror.

If your height is h, what is the shortest mirror on the wall in which 
you can see your full image? Where must the top of the mirror be 
hung?

MODEL Use the ray model of light.

VISUALIZE FIGURE 34.12 is a pictorial representation of the light 
rays. We need to consider only the two rays that leave your head 
and feet and reflect into your eye.

SOLVE Let the distance from your eyes to the top of your head be 
l1 and the distance to your feet be l2. Your height is h = l1 + l2. 
A light ray from the top of your head that reflects from the mir-
ror at ur = ui and enters your eye must, by congruent triangles, 
strike the mirror a distance 1

2 l1 above your eyes. Similarly, a ray 
from your foot to your eye strikes the mirror a distance 1

2 l2 below 
your eyes. The distance between these two points on the mirror is 
1
2 l1 + 1

2 l2 = 1
2 h. A ray from anywhere else on your body can reach 

your eye if it strikes the mirror between these two points. Pieces 
of the mirror outside these two points are irrelevant, not because 
rays don’t strike them but because the reflected rays don’t reach  

your eye. Thus the shortest mirror in which you can see your full 
reflection is 1

2 h. But this will work only if the top of the mirror is 
hung midway between your eyes and the top of your head.

REVIEW It is interesting that the answer does not depend on how  
far you are from the mirror.

EXAMPLE 34.2 ■ How high is the mirror?

1
2

1
2

1
2

l2

l2

l2

l1

h

l1

FIGURE 34.12 Pictorial representation of light rays from your 
head and feet reflecting into your eye.

STOP TO THINK 34.2 How many images of the ball 
can you see in the mirrors?

a. 1
b. 2
c. 3
d. 4

Observer
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1018 CHAPTER 34 Ray Optics

34.3 Refraction
Two things happen when a light ray is incident on a smooth boundary between two 
transparent materials, such as the boundary between air and glass:

1. Part of the light reflects from the boundary, obeying the law of reflection. This is 
how you see reflections from pools of water or storefront windows.

2. Part of the light continues into the second medium. It is transmitted rather than 
reflected, but the transmitted ray changes direction as it crosses the boundary. 
The transmission of light from one medium to another, but with a change in 
direction, is called refraction.

The photograph of FIGURE 34.13 shows the refraction of a light beam as it passes through 
a glass prism. Notice that the ray direction changes as the light enters and leaves the 
glass. Our goal in this section is to understand refraction, so we will usually ignore the  
weak reflection and focus on the transmitted light.

   NOTE    A transparent material through which light travels is called the medium. 
This term has to be used with caution. The material does affect the light speed, but 
a transparent material differs from the medium of a sound or water wave in that 
particles of the medium do not oscillate as a light wave passes through. For a light 
wave it is the electromagnetic field that oscillates.

FIGURE 34.14a shows the refraction of light rays in a parallel beam of light, such as 
a laser beam, and rays from a point source. Our analysis will be easier, however, if  
we focus on a single light ray. FIGURE 34.14b is a ray diagram showing the refraction of a 
single ray at a boundary between medium 1 and medium 2. Let the angle between the 
ray and the normal be u1 in medium 1 and u2 in medium 2. For the medium in which 
the ray is approaching the boundary, this is the angle of incidence as we’ve previously 
defined it. The angle on the transmitted side, measured from the normal, is called the 
angle of refraction. Notice that u1 is the angle of incidence in Figure  34.14b and the 
angle of refraction in FIGURE 34.14c, where the ray is traveling in the opposite direction.

Reflected ray

Incident ray

Ray refracted
at glass-air
boundary

Ray refracted
at air-glass
boundary

FIGURE 34.13 A light beam refracts twice 
in passing through a glass prism.

(a) Refraction of parallel and point-source rays

FIGURE 34.14 Refraction of light rays.

The ray has
a kink at the
boundary.

Angle of refraction

Angle of
incidence 

(b) Refraction from a lower-index medium to
     a higher-index medium

Refracted
ray

Incident
ray Medium 1

Normal

Weak reflected
ray

Medium 2
Assume n2 7 n1u2

u1

Angle of incidence

(c) The reversed ray

Refracted
ray

Incident
ray

Medium 1
Medium 2

The incident and refracted
angles are interchanged
but the values of u1 and u2

remain the same.

u2

u1

Weak reflected
ray

Angle of
refraction 

Refraction was first studied experimentally by the Arab scientist Ibn al-Haitham,  
in about the year 1000, and later by the Dutch scientist Willebrord Snellius. Snell’s law  
says that when a ray refracts between medium 1 and medium 2, having indices of 
refraction n1 and n2, the ray angles u1 and u2 in the two media are related by

 n1 sin u1 = n2 sin u2   (Snell>s law of refraction) (34.3)

Notice that Snell’s law does not mention which is the incident angle and which is the 
refracted angle.

The Index of Refraction
To Snellius and his contemporaries, n was simply an “index of the refractive power” 
of a transparent substance. The relationship between the index of refraction and the 
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34.3 Refraction 1019

speed of light was not recognized until the development of a wave theory of light in the  
19th century. Theory predicts, and experiment confirms, that light travels through a 
transparent medium, such as glass or water, at a speed less than its speed c in vacuum. 
In Section 16.5, we defined the index of refraction n of a transparent medium as

 n =
c

vmedium
 (34.4)

where vmedium is the light speed in the medium. This implies, of course, that vmedium = c/n.  
The index of refraction of a medium is always n 7 1 except for vacuum.

TABLE 34.1 shows measured values of n for several materials. There are many types 
of glass, each with a slightly different index of refraction, so we will keep things 
simple by accepting n = 1.50 as a typical value. Notice that cubic zirconia, used to 
make costume jewelry, has an index of refraction much higher than glass.

We can accept Snell’s law as simply an empirical discovery about light. Alterna-
tively, and perhaps surprisingly, we can use the wave model of light to justify Snell’s 
law. The key ideas we need are:

 ■ Wave fronts represent the crests of waves. They are spaced one wavelength apart.
 ■ The wavelength in a medium with index of refraction n is l = lvac /n, where lvac is 

the vacuum wavelength.
 ■ Wave fronts are perpendicular to the wave’s direction of travel.
 ■ The wave fronts stay lined up as a wave crosses from one medium into another.

FIGURE 34.15 shows a wave crossing the boundary between two media, where we’re 
assuming n2 7 n1. Because the wavelengths differ on opposite sides of the bound-
ary, the wave fronts can stay lined up only if the waves in the two media are 
 traveling in different directions. In other words, the wave must refract at the boundary  
to keep the crests of the wave aligned.

To analyze Figure 34.15, consider the segment of boundary of length l between the 
two wave fronts. This segment is the common hypotenuse of two right triangles. From 
the upper triangle, which has one side of length l1, we see

 l =
l1

sin u1
 (34.5)

where u1 is the angle of incidence. Similarly, the lower triangle, where u2 is the angle 
of refraction, gives

 l =
l2

sin u2
 (34.6)

Equating these two expressions for l, and using l1 = lvac /n1 and l2 = lvac /n2, we find

 
lvac

n1 sin u1
=

lvac

n2 sin u2
 (34.7)

Equation 34.7 can be true only if

 n1 sin u1 = n2 sin u2 (34.8)

which is Snell’s law.

Examples of Refraction
Look back at Figure 34.14. As the ray in Figure 34.14b moves from medium 1 to me-
dium 2, where n2 7 n1, it bends closer to the normal. In Figure 34.14c, where the ray 
moves from medium 2 to medium 1, it bends away from the normal. This is a general 
conclusion that follows from Snell’s law:

 ■ When a ray is transmitted into a material with a higher index of refraction, it bends 
toward the normal.

 ■ When a ray is transmitted into a material with a lower index of refraction, it bends 
away from the normal.

TABLE 34.1 Indices of refraction

Medium n

Vacuum 1.00 exactly

Air (actual) 1.0003

Air (accepted) 1.00

Water 1.33

Ethyl alcohol 1.36

Oil 1.46

Glass (typical) 1.50

Polystyrene plastic 1.59

Cubic zirconia 2.18

Diamond 2.41

Silicon (infrared) 3.50

u1

u2

l
n2

n1

l2

l1

Wave
fronts Rays

FIGURE 34.15 Snell’s law is a consequence 
of the wave model of light.
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1020 CHAPTER 34 Ray Optics

This rule becomes a central idea in a procedure for analyzing refraction problems.

TACTICS BOX 34.1

Analyzing refraction
1  Draw a ray diagram. Represent the light beam with one ray.
2  Draw a line normal to the boundary. Do this at each point where the ray 

intersects a boundary.
3  Show the ray bending in the correct direction. The angle is larger on the 

side with the lower index of refraction. This is the qualitative application of 
Snell’s law.

4  Label angles of incidence and refraction. Measure all angles from the normal.
5  Use Snell’s law. Calculate the unknown angle or unknown index of refraction.

Exercises 11–15 

A laser beam is aimed at a 1.0-cm-thick sheet of glass at an angle 
30° above the glass.

a. What is the laser beam’s direction of travel in the glass?
b. What is its direction in the air on the other side?
c. By what distance is the laser beam displaced?

MODEL Represent the laser beam with a single ray and use the ray 
model of light.

VISUALIZE FIGURE 34.16 is a pictorial representation in which  
the first four steps of Tactics Box 34.1 are identified. Notice that 
the angle of incidence is u1 = 60°, not the 30° value given in the 
problem.

SOLVE a. Snell’s law, the final step in the Tactics Box, is 
n1 sin u1 = n2 sin u2. Using u1 = 60°, we find that the direction of 
travel in the glass is

  u2 = sin-11n1 sin u1

n2
2 = sin-11sin 60°

1.5 2
  = sin-110.5772 = 35.3°

b. Snell’s law at the second boundary is n2 sin u3 = n1 sin u4. 
You can see from Figure 34.16 that the interior angles are equal: 

u3 = u2 = 35.3°. Thus the ray emerges back into the air traveling 
at angle

  u4 = sin-11n2 sin u3

n1
2 = sin-111.5 sin 35.3°2

  = sin-110.8672 = 60°

This is the same as u1, the original angle of incidence. The glass 
doesn’t change the direction of the laser beam.
c. Although the exiting laser beam is parallel to the initial laser 
beam, it has been displaced sideways by distance d. FIGURE 34.17 
shows the geometry for finding d. From trigonometry, d = l sin f. 
Further, f = u1 - u2 and l = t/cos u2, where t is the thickness of the 
glass. Combining these gives

  d = l sin f =
t

cos u2
 sin1u1 - u22

  =
11.0 cm2 sin 24.7°

cos 35.3°
= 0.51 cm

The glass causes the laser beam to be displaced sideways by 0.51 cm.

REVIEW The laser beam exits the glass still traveling in the same 
direction as it entered. This is a general result for light traveling 
through a medium with parallel sides. Notice that the displacement 
d becomes zero in the limit t S 0. This will be an important obser-
vation when we get to lenses.

EXAMPLE 34.3 ■ Deflecting a laser beam

n2 = 1.50

n1 = 1.00

n1 = 1.00 30°

u4

u3

u2

u1

Draw normal to boundary.

Label angles, measured
from normal.

Draw ray diagram.

Show smaller angle in
medium with larger n.

1 2

3 4

FIGURE 34.16 The ray diagram of a laser beam passing through  
a sheet of glass.

u2

u1

Displaced laser beam

Initial laser beam

t l
d

f = u1 - u2

d

FIGURE 34.17 The laser beam is deflected sideways by distance d.
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34.3 Refraction 1021

Total Internal Reflection
What would have happened in Example 34.4 if the prism angle had been 45° rather 
than 30°? The light rays would approach the rear surface of the prism at an angle of 
incidence u1 = 45°. When we try to calculate the angle of refraction at which the ray 
emerges into the air, we find

 sin u2 =
n1

n2
  sin u1 =

1.59
1.00

  sin 45° = 1.12

 u2 = sin-1(1.12) = ???

Angle u2 does not exist because the sine of an angle can’t be larger than 1. The 
ray is unable to refract through the boundary. Instead, 100% of the light reflects from  
the boundary back into the prism. This process is called total internal reflection, 
often abbreviated TIR. That it really happens is illustrated in FIGURE 34.20. Here three 
laser beams enter a prism from the left. The bottom two refract out through the right 
side of the prism. The blue beam, which is incident on the prism’s top face, undergoes 
total internal reflection and then emerges through the right surface.

FIGURE 34.21 shows several rays leaving a point source in a medium with index of  
refraction n1. The medium on the other side of the boundary has n2 6 n1. As we’ve 
seen, crossing a boundary into a material with a lower index of refraction causes the 
ray to bend away from the normal. Two things happen as angle u1 increases. First, the 
refraction angle u2 approaches 90°. Second, the fraction of the light energy transmitted  
decreases while the reflected fraction increases.

A critical angle is reached when u2 = 90°. Because sin 90° = 1, Snell’s law 
n1 sin uc = n2 sin 90° gives the critical angle of incidence as

 uc = sin-11n2

n1
2 (34.9)

FIGURE 34.18 shows a laser beam deflected by a 30°-60°-90° prism. 
What is the prism’s index of refraction?

MODEL Represent the laser beam with a single ray and use the ray 
model of light.

VISUALIZE FIGURE 34.19 uses the steps of Tactics Box 34.1 to draw 
a ray diagram. The ray is incident perpendicular to the front face 
of the prism 1uincident = 0°2, thus it is transmitted through the first 
boundary without deflection. At the second boundary it is espe-
cially important to draw the normal to the surface at the point of 
incidence and to measure angles from the normal.

SOLVE From the geometry of the triangle you can find that the la-
ser’s angle of incidence on the hypotenuse of the prism is u1 = 30°, 

the same as the apex angle of the prism. The ray exits the prism 
at angle u2 such that the deflection is f = u2 - u1 = 22.6°. Thus 
u2 = 52.6°. Knowing both angles and n2 = 1.00 for air, we can use 
Snell’s law to find n1:

n1 =
n2 sin u2

sin u1
=

1.00 sin 52.6°
sin 30°

= 1.59

REVIEW Referring to the indices of refraction in Table 34.1, we see 
that the prism is made of plastic.

EXAMPLE 34.4 ■ Measuring the index of refraction

30°

22.6°

60°

Laser beam

FIGURE 34.18 A prism deflects a laser beam.

u1 and u2 are measured from the normal.

FIGURE 34.19 Pictorial representation of a laser beam passing 
through the prism.

FIGURE 34.20 The blue laser beam 
undergoes total internal reflection inside 
the prism.

Transmission is getting weaker.

The angle of incidence is increasing.

Reflection is getting stronger.

n1

n2 6 n1

uc

u2 = 90°

u1 7 uc

Critical angle when u2 = 90°

Total internal reflection
occurs when u1 Ú uc.

FIGURE 34.21 Refraction and reflection of 
rays as the angle of incidence increases.
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The refracted light vanishes at the critical angle and the reflection becomes 100% for 
any angle u1 Ú uc. The critical angle is well defined because of our assumption that 
n2 6 n1. There is no critical angle and no total internal reflection if n2 + n1.

As a quick example, the critical angle in a typical piece of glass at the glass-air 
boundary is

uc glass = sin-111.00
1.502 = 42°

The fact that the critical angle is less than 45° has important applications. For example,  
FIGURE 34.22 shows a pair of binoculars. The lenses are much farther apart than your 
eyes, so the light rays need to be brought together before exiting the eyepieces. Rather 
than using mirrors, which get dirty and require alignment, binoculars use a pair  
of prisms on each side. Thus the light undergoes two total internal reflections and 
emerges from the eyepiece. (The actual arrangement is a little more complex than in 
Figure 34.22, to avoid left-right reversals, but this illustrates the basic idea.)

TIR
TIR TIR

TIR

Angles of incidence exceed the critical angle.

FIGURE 34.22 Binoculars make use of 
total internal reflection.

Laser

Detector

(a)

u1

Glass fiberTIR

TIR

TIR

TIR

FIGURE 34.24 Light rays are confined 
within an optical fiber by total internal 
reflection.

A small lightbulb is set in the bottom of a 3.0-m-deep swimming 
pool. What is the diameter of the circle of light seen on the water’s 
surface from above?

MODEL Use the ray model of light.

VISUALIZE FIGURE 34.23 is a pictorial representation. The light-
bulb emits rays at all angles, but only some of the rays refract into 
the air and are seen from above. Rays striking the surface at greater 
than the critical angle undergo TIR and remain within the water. 
The diameter of the circle of light is the distance between the two 
points at which rays strike the surface at the critical angle.

SOLVE From trigonometry, the circle diameter is D = 2h tan uc, 
where h is the depth of the water. The critical angle for a water-air 
boundary is uc = sin-111.00/1.332 = 48.7°. Thus

D = 213.0 m2 tan 48.7° = 6.8 m

EXAMPLE 34.5 ■ Total internal reflection

D

h = 3.0 m
Water, n1 = 1.33

Air, n2 = 1.00

Rays at the critical angle uc form the edge
of the circle of light seen from above.

FIGURE 34.23 Pictorial representation of the rays leaving a 
lightbulb at the bottom of a swimming pool.

Fiber Optics
The most important modern application of total internal reflection is the transmission 
of light through optical fibers. FIGURE 34.24a shows a laser beam shining into the end 
of a long, narrow-diameter glass tube. The light rays pass easily from the air into the 
glass, but they then impinge on the inside wall of the glass tube at an angle of incidence 
u1 approaching 90°. This is well above the critical angle, so the laser beam undergoes 
TIR and remains inside the glass. The laser beam continues to “bounce” its way down 
the tube as if the light were inside a pipe. Indeed, optical fibers are sometimes called 
“light pipes.” The rays are below the critical angle 1u1 ≈ 02 when they finally reach 
the end of the fiber, thus they refract out without difficulty and can be detected.

While a simple glass tube can transmit light, a glass-air boundary is not sufficiently 
reliable for commercial use. Any small scratch on the side of the tube alters the rays’ 
angle of incidence and allows leakage of light. FIGURE 34.24b shows the construction of 
a practical optical fiber. A small-diameter glass core is surrounded by a layer of glass 
cladding. The glasses used for the core and the cladding have ncore 7 ncladding; thus 
light undergoes TIR at the core-cladding boundary and remains confined within the 
core. This boundary is not exposed to the environment and hence retains its integrity  
even under adverse conditions.

Even glass of the highest purity is not perfectly transparent. Absorption in the glass, 
even if very small, causes a gradual decrease in light intensity. The glass used for the core 
of optical fibers has a minimum absorption at a wavelength of 1.55 mm, in the infrared, 
so this is the laser wavelength used for long-distance signal transmission. Light at this 
wavelength can travel hundreds of kilometers through a fiber without significant loss.

Core (few mm diameter)

Cladding

Plastic protective cover(b)
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34.4 Image Formation by Refraction at a Plane Surface 1023

34.4  Image Formation by Refraction at a 
Plane Surface

If you see a fish that appears to be swimming close to the front window of the aquarium, 
but then look through the side of the aquarium, you’ll find that the fish is actually farther  
from the window than you thought. Why is this?

To begin, recall that vision works by focusing a diverging bundle of rays onto the 
retina. The point from which the rays diverge is where you perceive the object to be. 
FIGURE 34.25a shows how you would see a fish out of water at distance d.

Now place the fish back into the aquarium at the same distance d. For simplicity,  
we’ll ignore the glass wall of the aquarium and consider the water-air boundary.  
(The thin glass of a typical window has only a very small effect on the refraction of 
the rays and doesn’t change the conclusions.) Light rays again leave the fish, but this 
time they refract at the water-air boundary. Because they’re going from a higher to a 
lower index of refraction, the rays refract away from the normal. FIGURE 34.25b shows 
the consequences.

A bundle of diverging rays still enters your eye, but now these rays are diverging 
from a closer point, at distance d′. As far as your eye and brain are concerned, it’s  
exactly as if the rays really originate at distance d′, and this is the location at which 
you see the fish. The object appears closer than it really is because of the refraction  
of light at the boundary.

We found that the rays reflected from a mirror diverge from a point that is not the 
object point. We called that point a virtual image. Similarly, if rays from an object 
point P refract at a boundary between two media such that the rays then diverge from 
a point P′ and appear to come from P′, we call P′ a virtual image of point P. The 
virtual image of the fish is what you see.

Let’s examine this image formation a bit more carefully. FIGURE 34.26 shows a 
boundary between two transparent media having indices of refraction n1 and n2.  
Point P, a source of light rays, is the object. Point P′, from which the rays appear 
to diverge, is the virtual image of P. Distance s is called the object distance. Our 
goal is to determine distance s′, the image distance. Both are measured from  
the boundary.

A line perpendicular to the boundary is called the optical axis. Consider a ray 
leaving the object at angle u1 with respect to the optical axis. u1 is also the angle of 
incidence at the boundary, where the ray refracts into the second medium at angle u2. 
By tracing the refracted ray backward, you can see that u2 is also the angle between 
the refracted ray and the optical axis at point P′.

The distance l is common to both the incident and the refracted rays, and you can 
see that l = s tan u1 = s′ tan u2. However, it is customary in optics for virtual image 
distances to be negative. (The reason will be clear when we get to image formation 
by lenses.) Hence we will insert a minus sign, finding that

 s′ = -  

tan u1

tan u2
 s (34.10)

STOP TO THINK 34.3 A light ray travels 
from medium 1 to medium 3 as shown. For 
these media,

a. n3 7 n1   b. n3 = n1   c. n3 6 n1

d. We can’t compare n1 to n3 without 
knowing n2.

30°
20°

10°

n1 n2 n3

d′

Object Image

Refraction causes the rays
to bend at the boundary.

(b) A fish in the aquarium

Now the rays that reach the eye are
diverging from this point, the image.

d Eye

Object

The rays that reach the eye are diverging
from this point, the object.

(a) A fish out of water

FIGURE 34.25 Refraction of the light rays 
causes a fish in the aquarium to be seen at 
distance d′    .

s

Rays diverge from the
virtual image at P′.

n1 n2

s′

P′P

Object Optical
axis

Virtual
image

u1

u1

u2

u2

l

FIGURE 34.26 Finding the virtual image P′ 
of an object at P. We’ve assumed n1 7 n2.
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Snell’s law relates the sines of angles u1 and u2; that is,

 
sin u1

sin u2
=

n2

n1
 (34.11)

In practice, the angle between any of these rays and the optical axis is very small 
because the size of the pupil of your eye is very much less than the distance between 
the object and your eye. (The angles in the figure have been greatly exaggerated.) 
Rays that are nearly parallel to the axis are called paraxial rays. The small-angle 
approximation sin u ≈ tan u ≈ u, where u is in radians, can be applied to paraxial 
rays. Consequently,

 
tan u1

tan u2
≈

sin u1

sin u2
=

n2

n1
 (34.12)

Using this result in Equation 34.10, we find that the image distance is

 s′ = -  

n2

n1
 s (34.13)

The minus sign tells us that we have a virtual image.

   NOTE    The fact that the result for s′ is independent of u1 implies that all paraxial 
rays appear to diverge from the same point P′. This property of the diverging rays is 
essential in order to have a well-defined image.

A fish and a sailor look at each other through a 5.0-cm-thick glass 
porthole in a submarine. There happens to be an air bubble right in 
the center of the glass. How far behind the surface of the glass does 
the air bubble appear to the fish? To the sailor?

MODEL Represent the air bubble as a point source and use the ray 
model of light.

VISUALIZE Paraxial light rays from the bubble refract into the air 
on one side and into the water on the other. The ray diagram looks 
like Figure 34.26.

SOLVE The index of refraction of the glass is n1 = 1.50. The bubble 
is in the center of the window, so the object distance from either side 
of the window is s = 2.5 cm. On the water side, the image distance is

s′ = -  

n2

n1
 s = -  

1.33
1.50

 12.5 cm2 = -  2.2 cm

The minus sign indicates a virtual image. Physically, the fish sees 
the bubble 2.2 cm behind the surface. The image distance on the 
air side is

s′ = -  

n2

n1
 s = -  

1.00
1.50

 12.5 cm2 = -1.7 cm

So the sailor sees the bubble 1.7 cm behind the surface.

REVIEW The image distance is less for the sailor because of the 
larger difference between the two indices of refraction.

EXAMPLE 34.6 ■ An air bubble in a window

34.5 Thin Lenses: Ray Tracing
A camera obscura or a pinhole camera forms images on a screen, but the images  
are faint and not perfectly focused. The ability to create a bright, well-focused  
image is vastly improved by using a lens. A lens is a transparent object that uses 
refraction at curved surfaces to form an image from diverging light rays. We will defer 
a mathematical analysis of lenses until the next section. First, we want to establish  
a pictorial method of understanding image formation. This method is called ray tracing.

FIGURE 34.27 shows parallel light rays entering two different lenses. The left lens, 
called a converging lens, causes the rays to refract toward the optical axis. The 
common point through which initially parallel rays pass is called the focal point of 
the lens. The distance of the focal point from the lens is called the focal length f  of 
the lens. The right lens, called a diverging lens, refracts parallel rays away from the 
optical axis. This lens also has a focal point, but it is not as obvious.
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34.5 Thin Lenses: Ray Tracing 1025

   NOTE    A converging lens is thicker in the center than at the edges. A diverging lens 
is thicker at the edges than at the center.

FIGURE 34.28 clarifies the situation. In the case of a diverging lens, a backward  
projection of the diverging rays shows that they appear to have started from the same 
point. This is the focal point of a diverging lens, and its distance from the lens is the 
focal length of the lens. In the next section we’ll relate the focal length to the curvature  
and index of refraction of the lens, but now we’ll use the practical definition that  
the focal length is the distance from the lens at which rays parallel to the optical 
axis converge or from which they diverge.

   NOTE    The focal length f  is a property of the lens, independent of how the lens 
is used. The focal length characterizes a lens in much the same way that a mass m 
characterizes an object or a spring constant k characterizes a spring.

Converging Lenses
These basic observations about lenses are enough to understand image formation by a 
thin lens. A thin lens is a lens whose thickness is very small in comparison to its focal 
length and in comparison to the object and image distances. We’ll make the approx-
imation that the thickness of a thin lens is zero and that the lens lies in a plane called 
the lens plane. Within this approximation, all refraction occurs as the rays cross 
the lens plane, and all distances are measured from the lens plane. Fortunately, the 
thin-lens approximation is quite good for most practical applications of lenses.

   NOTE    We’ll draw lenses as if they have a thickness, because that is how we expect 
lenses to look, but our analysis will not depend on the shape or thickness of a lens.

FIGURE 34.29 shows three important situations of light rays passing through a thin 
converging lens. Part a is familiar from Figure 34.28. If the direction of each of  
the rays in Figure 34.29a is reversed, Snell’s law tells us that each ray will exactly 
retrace its path and emerge from the lens parallel to the optical axis. This leads to 
Figure 34.29b, which is the “mirror image” of part a. Notice that the lens actually has 
two focal points, located at distances f  on either side of the lens.

Converging lens

FIGURE 34.27 Parallel light rays pass through a converging lens and a diverging lens.

This is the focal point.
Rays actually converge
at this point.

Converging lens

Parallel rays

Focal length f

Optical axis

FIGURE 34.28 The focal lengths of 
converging and diverging lenses.

Diverging lens

Diverging lens

Focal length f

This is the focal point.
Rays appear to diverge
from this point.

Parallel rays

Optical axis

Parallel rays

Near focal point

f

Any ray passing through the near focal
point emerges from the lens parallel to
the optical axis.

(b) Lens plane

Center of lens
Rays are
not bent.

Any ray directed at the center of the lens
passes through in a straight line.

(c)

Parallel rays

Far focal point

Lens plane

f

Any ray initially parallel to the optical
axis will refract through the focal point
on the far side of the lens.

(a)

FIGURE 34.29 Three important sets of rays passing through a thin converging lens.
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Figure 34.29c shows three rays passing through the center of the lens. At the center, 
the two sides of a lens are very nearly parallel to each other. Earlier, in Example 34.3, 
we found that a ray passing through a piece of glass with parallel sides is displaced 
but not bent and that the displacement becomes zero as the thickness approaches zero. 
Consequently, a ray through the center of a thin lens, with zero thickness, is neither 
bent nor displaced but travels in a straight line.

These three situations form the basis for ray tracing.

Real Images
FIGURE 34.30 shows a lens and an object whose object distance s from the lens is larger 
than the focal length. Rays from point P on the object are refracted by the lens so as 
to converge at point P′ on the opposite side of the lens at image distance s′. If rays 
diverge from an object point P and interact with a lens such that the refracted rays 
converge at point P′, actually meeting at P′, then we call P′ a real image of point 
P. Contrast this with our prior definition of a virtual image as a point from which 
rays—which never meet—appear to diverge. For a real image, the image distance s′ 
is positive.

Detector

Mirror
Loss

45°

IR laser

Many cars have automatic windshield wip-
ers that adjust their speed in response to 
the intensity of the rain. The technology— 
simpler than it might seem—is based on 
total internal reflection. An infrared laser 
just below the rearview mirror shoots 
out a laser beam that strikes the front of 
the windshield glass from the inside at a 
45° angle. This is larger than the critical 
angle of a glass-air boundary, so on a dry 
day the light rays undergo total internal 
reflection within the glass and return to a 
sensor. But 45° is smaller than the critical 
angle of a glass-water boundary, so water 
drops on the windshield cause some of 
the light to refract. The decrease in the 
laser-beam intensity returning to the 
sensor is detected by the car’s computer, 
which judges the amount of rain that 
strikes the windshield and adjusts the 
wiper speed accordingly.

Detector

Mirror
Loss

45°

IR laser

All the rays leaving one point in the
object plane (P) are refracted by the
lens and converge to one point in the
image plane (P′).

Near focal point

Optical axis

Special rays Lens plane

Far focal point

Object plane

P

P′

Q′

R′

Q

R

Object

Image plane

Image

f

s

f

s′

FIGURE 34.30 Rays from an object point P are refracted by the lens and converge to a real 
image at point P′.

All points on the object that are in the same plane, the object plane, converge to 
image points in the image plane. Points Q and R in the object plane of Figure 34.30 
have image points Q′ and R′ in the same plane as point P′. Once we locate one point 
in the image plane, such as P′, we know that the full image lies in the same plane.

There are two important observations to make about Figure 34.30. First, the  
image is upside down with respect to the object. This is called an inverted image, and 
it is a standard characteristic of real-image formation with a converging lens. Second, 
rays from point P fill the entire lens surface, and all portions of the lens contribute to 
the image. A larger lens will “collect” more rays and thus make a brighter image.

FIGURE 34.31 is a close-up view of the rays very near the image plane. The rays don’t 
stop at P′ unless we place a screen in the image plane. When we do so, we see a sharp, 
well-focused image on the screen. To focus an image, you must either move the screen 
to coincide with the image plane or move the lens or object to make the image plane 
coincide with the screen. For example, the focus knob on a projector moves the lens 
forward or backward until the image plane matches the screen position.

   NOTE    The ability to see a real image on a screen sets real images apart from virtual 
images. But keep in mind that we need not see a real image in order to have an 
image. A real image exists at a point in space where the rays converge even if there’s 
no viewing screen in the image plane.

The image will be blurry and
out of focus on a screen in
these planes.

The rays don’t
stop unless they’re
blocked by a screen.

A sharp, well-focused
image is seen on a screen
placed in the image plane.

P′

FIGURE 34.31 A close-up look at the rays 
near the image plane.
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Figure 34.30 highlights three “special rays” based on the three situations of Figure  
34.29. These three rays alone are sufficient to locate the image point P′. That is, we 
don’t need to draw all the rays shown in Figure 34.30. The procedure known as ray 
tracing consists of locating the image by the use of just these three rays.

TACTICS BOX 34.2

Ray tracing for a converging lens
1  Draw an optical axis. Use graph paper or a ruler! Establish an appropriate scale.
2  Center the lens on the axis. Mark and label the focal points at distance f  on 

either side.
3  Represent the object with an upright arrow at distance s. It’s usually best 

to place the base of the arrow on the axis and to draw the arrow about half the 
radius of the lens.

4  Draw the three “special rays” from the tip of the arrow. Use a straightedge.
a. A ray parallel to the axis refracts through the far focal point.
b. A ray that enters the lens along a line through the near focal point emerges 

parallel to the axis.
c. A ray through the center of the lens does not bend.

5  Extend the rays until they converge. This is the image point. Draw the rest 
of the image in the image plane. If the base of the object is on the axis, then the 
base of the image will also be on the axis.

6  Measure the image distance s′. Also, if needed, measure the image height 
relative to the object height.

Exercises 18–23 

A 4.0-cm-diameter flower is 200 cm from the 50-cm-focal-length 
lens of a camera. How far should the light detector be placed be-
hind the lens to record a well-focused image? What is the diameter 
of the image on the detector?

MODEL The flower is in the object plane. Use ray tracing to locate 
the image.

VISUALIZE FIGURE 34.32 shows the ray-tracing diagram and  
the steps of Tactics Box 34.2. The image has been drawn in the 
plane where the three special rays converge. You can see from the 
drawing that the image distance is s′ ≈ 67 cm. This is where the 
detector needs to be placed to record a focused image.

The heights of the object and image are labeled h and h′. The 
ray through the center of the lens is a straight line, thus the object 
and image both subtend the same angle u. Using similar triangles,

   h′
 s′

=
h
s

Solving for h′ gives

h′ = h   

s′
s

= 14.0 cm2 
67 cm
200 cm

= 1.3 cm

The flower’s image has a diameter of 1.3 cm.

REVIEW We’ve been able to learn a great deal about the image  
from a simple geometric procedure.

EXAMPLE 34.7 ■ Finding the image of a flower

5 The convergence point is
the tip of the image. Draw
the rest of the image.

4 Draw the 3 special rays from the tip of the arrow.
a. Parallel to the axis.
b. Through the near focal point.
c. Through the center of the lens.

3 Draw the object as an arrow
with its base on the axis.

1 Lay out the optical axis, with a scale.

2 Draw the lens and mark
its focal points.

6 Measure the image distance.

h′
h

f

s = 200 cm

25 cm

s′

f

u
u

FIGURE 34.32 Ray-tracing diagram for Example 34.7.
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1028 CHAPTER 34 Ray Optics

Lateral Magnification
The image can be either larger or smaller than the object, depending on the location 
and focal length of the lens. But there’s more to a description of the image than just its 
size. We also want to know its orientation relative to the object. That is, is the image 
upright or inverted? It is customary to combine size and orientation information into a 
single number. The lateral magnification m is defined as

 m = -  

s′
s

 (34.14)

You just saw in Example 34.7 that the image-to-object height ratio is h′/h = s′/s. 
Consequently, we interpret the lateral magnification m as follows:

1. A positive value of m indicates that the image is upright relative to the object. 
A negative value of m indicates that the image is inverted relative to the object.

2. The absolute value of m gives the size ratio of the image and object: h′/h = 0m 0 . 
The heights h and h′ are physical distances and are always positive numbers.

The lateral magnification in Example 34.7 would be m = -0.33, indicating that the 
image is inverted and 33% the size of the object.

   NOTE    The image-to-object height ratio is called lateral magnification to distinguish 
it from angular magnification, which we’ll introduce in the next chapter. In practice, 
m is simply called “magnification” when there’s no chance of confusion. Although 
we usually think that “to magnify” means “to make larger,” in optics the absolute 
value of the magnification can be either  71 (the image is larger than the object) or 
61 (the image is smaller than the object).

STOP TO THINK 34.4 A lens produces a sharply focused, inverted image on a screen.  
What will you see on the screen if the lens is removed?

a. The image will be inverted and blurry.
b. The image will be upright and sharp.
c. The image will be upright and blurry.
d. The image will be much dimmer but  

otherwise unchanged.
e. There will be no image at all.

P′

P

Virtual
image

Object

Focal point

A ray along a line through the near focal
point refracts parallel to the optical axis.

The refracted rays are diverging.
They appear to come from point P′.

f

s′
s

f

FIGURE 34.33 Rays from an object at 
distance s 6 f  are refracted by the lens 
and diverge to form a virtual image.

Screen

ImageLens

Object

Virtual Images
The previous section considered a converging lens with the object at distance s 7 f. 
That is, the object was outside the focal point. What if the object is inside the focal 
point, at distance s 6 f ? FIGURE 34.33 shows just this situation, and we can use ray 
tracing to analyze it.

The special rays initially parallel to the axis and through the center of the lens 
present no difficulties. However, a ray through the near focal point would travel 
toward the left and would never reach the lens! Referring back to Figure 34.29b, 
you can see that the rays emerging parallel to the axis entered the lens along a line 
passing through the near focal point. It’s the angle of incidence on the lens that is 
important, not whether the light ray actually passes through the focal point. This 
was the basis for the wording of step 4b in Tactics Box 34.2 and is the third special 
ray shown in Figure 34.33.

You can see that the three refracted rays don’t converge. Instead, all three rays  
appear to diverge from point P′. This is the situation we found for rays reflecting from 
a mirror and for the rays refracting out of an aquarium. Point P′ is a virtual image of 
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34.5 Thin Lenses: Ray Tracing 1029

the object point P. Furthermore, it is an upright image, having the same orientation 
as the object.

The refracted rays, which are all to the right of the lens, appear to come from P′, 
but none of the rays were ever at that point. No image would appear on a screen placed 
in the image plane at P′. So what good is a virtual image?

Your eye collects and focuses bundles of diverging rays; thus, as FIGURE 34.34a 
shows, you can see a virtual image by looking through the lens. This is exactly what 
you do with a magnifying glass, producing a scene like the one in FIGURE 34.34b. In 
fact, you view a virtual image anytime you look through the eyepiece of an optical 
instrument such as a microscope or binoculars.

As before, the image distance s′ for a virtual image is defined to be a negative 
number (s′* 0), indicating that the image is on the opposite side of the lens from a 
real image. With this choice of sign, the definition of magnification, m = -s′/s, is 
still valid. A virtual image with negative s′ has m 7 0, thus the image is upright. This 
agrees with the rays in Figure 34.33 and the photograph of Figure 34.34b.

   NOTE    A lens thicker in the middle than at the edges is classified as a converging 
lens. The light rays from an object can converge to form a real image after passing 
through such a lens, but only if the object distance is larger than the focal length of 
the lens: s 7 f. If s 6 f, the rays diverge to produce a virtual image.

P′

P

Virtual
image

Object

Your eye sees the
virtual image at P′.

The refracted rays are diverging
and appear to come from P′.

f

(a)

FIGURE 34.34 A converging lens is a 
magnifying glass when the object distance 
is less than f.

(b)

To see a flower better, a naturalist holds a 6.0-cm-focal-length mag-
nifying glass 4.0 cm from the flower. What is the magnification?

MODEL The flower is in the object plane. Use ray tracing to locate 
the image.

VISUALIZE FIGURE 34.35 shows the ray-tracing diagram. The  
three special rays diverge from the lens, but we can use a straight-
edge to extend the rays backward to the point from which they  
diverge. This point, the image point, is seen to be 12 cm to the left 
of the lens. Because this is a virtual image, the image distance is a 
negative s′ = -12 cm. Thus the magnification is

m = -     

s′
   s

    = -  
-12 cm
4.0 cm

= 3.0

The image is three times as large as the object and, because m is 
positive, upright.

EXAMPLE 34.8 ■ Magnifying a flower

Image

Object

Focal point

f

s′
s

f

12 cm 4 48 8

Trace these rays back 
to the image location.

FIGURE 34.35 Ray-tracing diagram for Example 34.8.

Diverging Lenses
A lens thicker at the edges than in the middle is called a diverging lens. FIGURE 34.36 
shows three important sets of rays passing through a diverging lens. These are based 
on Figures 34.27 and 34.28, where you saw that rays initially parallel to the axis  
diverge after passing through a diverging lens.

f

Any ray directed along a line toward
the far focal point emerges from the 
lens parallel to the optical axis.

Parallel rays

Far focal point

Any ray directed at the center
of the lens passes through in a
straight line.

Center of lens Rays are not bent.
f

Any ray initially parallel to the
optical axis diverges along a line
through the near focal point.

Parallel rays

Near focal point

FIGURE 34.36 Three important sets of rays passing through a thin diverging lens.
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1030 CHAPTER 34 Ray Optics

Ray tracing follows the steps of Tactics Box 34.2 for a converging lens except that 
two of the three special rays in step 4 are different.

TACTICS BOX 34.3

Ray tracing for a diverging lens
1 – 3  Follow steps 1 through 3 of Tactics Box 34.2.
4  Draw the three “special rays” from the tip of the arrow. Use a straightedge.

a. A ray parallel to the axis diverges along a line through the near focal point.
b. A ray along a line toward the far focal point emerges parallel to the axis.
c. A ray through the center of the lens does not bend.

5  Trace the diverging rays backward. The point from which they are diverging 
is the image point, which is always a virtual image.

6  Measure the image distance s′. This will be a negative number.

Exercise 24 

A diverging lens with a focal length of 50 cm is placed 100 cm 
from a flower. Where is the image? What is its magnification?

MODEL The flower is in the object plane. Use ray tracing to locate 
the image.

VISUALIZE FIGURE 34.37 shows the ray-tracing diagram. The  
three special rays (labeled a, b, and c to match the Tactics Box) do 
not converge. However, they can be traced backward to an inter-
section ≈33 cm to the left of the lens. A virtual image is formed  
at s′ = -33 cm with magnification

m = -   
s′

    s
   = -  

-33 cm
100 cm

= 0.33

The image, which can be seen by looking through the lens, is one-
third the size of the object and upright.

REVIEW Ray tracing with a diverging lens is somewhat trickier 
than with a converging lens, so this example is worth careful study.

EXAMPLE 34.9 ■ Demagnifying a flower

5
4

6

FIGURE 34.37 Ray-tracing diagram for Example 34.9.

Diverging lenses always make virtual images and, for this reason, are rarely used 
alone. However, they have important applications when used in combination with 
other lenses. Cameras, eyepieces, and eyeglasses often incorporate diverging lenses.

34.6 Thin Lenses: Refraction Theory
Ray tracing is a powerful visual approach for understanding image formation, but it 
doesn’t provide precise information about the image. We need to develop a quantitative 
relationship between the object distance s and the image distance s′.

To begin, FIGURE 34.38 shows a spherical boundary between two transparent media 
with indices of refraction n1 and n2. The sphere has radius of curvature R. Consider 
a ray that leaves object point P at angle a and later, after refracting, reaches point P′. 
Figure 34.38 has exaggerated the angles to make the picture clear, but we will restrict 
our analysis to paraxial rays traveling nearly parallel to the axis. For paraxial rays, all 
the angles are small and we can use the small-angle approximation.

The ray from P is incident on the boundary at angle u1 and refracts into medium 
n2 at angle u2, both measured from the normal to the surface at the point of incidence. 
Snell’s law is n1 sin u1 = n2 sin u2, which in the small-angle approximation is

 n1u1 = n2u2 (34.15)

You can see from the geometry of Figure 34.38 that angles a, b, and f are related by

 u1 = a + f  and  u2 = f - b (34.16)
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34.6 Thin Lenses: Refraction Theory 1031

Using these expressions in Equation 34.15, we can write Snell’s law as

 n11a + f2 = n21f - b2 (34.17)

This is one important relationship between the angles.
The line of height t, from the axis to the point of incidence, is the vertical leg of 

three different right triangles having vertices at points P, C, and P′. Consequently,

 tan a ≈ a =
t

s + d
  tan b ≈ b =

t
s′ - d

  tan f ≈ f =
t

R - d
 (34.18)

But d S 0 for paraxial rays, thus

 a =
t
s
  b =

t
s′
  f =

t
R

 (34.19)

This is the second important relationship that comes from Figure 34.38.
If we use Equations 34.19 in Equation 34.17, the t cancels and we find

 
n1

s
+

n2

s′
=

n2 - n1

R
 (34.20)

Equation 34.20 is independent of angle a. Consequently, all paraxial rays leaving 
point P later converge at point P′. If an object is located at distance s from a spherical 
refracting surface, an image will be formed at distance s′ given by Equation 34.20.

Equation 34.20 was derived for a surface that is convex toward the object point, and the 
image is real. However, the result is also valid for virtual images or for surfaces that are 
concave toward the object point as long as we adopt the sign convention shown in TABLE 34.2.

Section 34.4 considered image formation due to refraction by a plane surface. 
There we found (in Equation 34.13) an image distance s′ = -1n2/n12s. A plane can 
be thought of as a sphere in the limit R S ∞ , so we should be able to reach the same 
conclusion from Equation 34.20. Indeed, as R S ∞   , the term 1n2 - n12/R S 0 and 
Equation 34.20 becomes s′ = -1n2 /n12s.

s

d

t

s′

R

C
Object
point

Image
point

Center of
sphere

Spherical surface

n2n1

A line through C is
normal to the surface.

a f

u   1

u   2

b

P P′

FIGURE 34.38 Image formation due to refraction at a spherical surface. The angles are 
exaggerated.

One end of a 4.0-cm-diameter glass rod is shaped like a hemi-
sphere. A small lightbulb is 6.0 cm from the end of the rod. Where 
is the bulb’s image located?

MODEL Model the lightbulb as a point source of light and consider 
the paraxial rays that refract into the glass rod.

VISUALIZE FIGURE 34.39 shows the situation. n1 = 1.00 for air and 
n2 = 1.50 for glass.

SOLVE The radius of the surface is half the rod diameter, so 
R = 2.0 cm. Equation 34.20 is

1.00
6.0 cm

+
1.50
s′

=
1.50 - 1.00

2.0 cm
=

0.50
2.0 cm

Solving for the image distance s′ gives

 
1.50
s′

=
0.50

2.0 cm
-

1.00
6.0 cm

= 0.0833 cm-1

 s′ =
1.50

0.0833
= 18 cm

REVIEW This is a real image located 18 cm inside the glass rod.

EXAMPLE 34.10 ■ Image formation inside a glass rod

FIGURE 34.39 The curved surface refracts the light to form a real 
image.

TABLE 34.2 Sign convention for 
refracting surfaces

Positive Negative

R Convex toward  
the object

Concave toward 
the object

s′ Real image,  
opposite side  
from object

Virtual image, 
same side as 
object
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Lenses
The thin-lens approximation assumes rays refract one time, at the lens plane. In fact, 
as FIGURE 34.41 shows, rays refract twice, at spherical surfaces having radii of curvature  
R1 and R2. Let the lens have thickness t and be made of a material with index of refrac-
tion n. For simplicity, we’ll assume that the lens is surrounded by air.

A goldfish lives in a spherical fish bowl 50 cm in diameter. If the 
fish is 10 cm from the near edge of the bowl, where does the fish 
appear when viewed from the outside?

MODEL Model the fish as a point source and consider the paraxial 
rays that refract from the water into the air. The thin glass wall has 
little effect and will be ignored.

VISUALIZE FIGURE 34.40 shows the rays refracting away from the 
normal as they move from the water into the air. We expect to find 
a virtual image at a distance less than 10 cm.

SOLVE The object is in the water, so n1 = 1.33 and n2 = 1.00. The 
inner surface is concave (you can remember “concave” because it’s 
like looking into a cave), so R = -25 cm. The object distance is 
s = 10 cm. Thus Equation 34.20 is

1.33
10 cm

+
1.00
s′

=
1.00 - 1.33

-25 cm
=

0.33
25 cm

Solving for the image distance s′ gives

 
1.00
s′

=
0.33

25 cm
-

1.33
10 cm

= -0.12 cm-1

 s′ =
1.00

-0.12 cm-1 
= -8.3 cm

REVIEW The image is virtual, located to the left of the boundary.  
A person looking into the bowl will see a fish that appears to be  
8.3 cm from the edge of the bowl.

EXAMPLE 34.11 ■ A goldfish in a bowl

s′

Object

Virtual image

n1 = 1.33 n2 = 1.00
R = -25 cm

s = 10 cm

FIGURE 34.40 The curved surface of a fish bowl produces a 
virtual image of the fish.

STOP TO THINK 34.5 Which of these 
actions will move the real image point P′ 
farther from the boundary? More than one 
may work.

a. Increase the radius of curvature R.
b. Increase the index of refraction n.
c. Increase the object distance s.
d. Decrease the radius of curvature R.
e. Decrease the index of refraction n.
f. Decrease the object distance s.

P C P′

s s′

R

Air n

P ″P′

Radius R2 of second surface

First surface refraction Second surface refraction

Final image

Object

Radius R1 of first surface

P

s1
s1′

s2′s2 t

The image of the first
surface is the object
for the second surface.

n

FIGURE 34.41 Image formation by a lens.
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34.6 Thin Lenses: Refraction Theory 1033

The object at point P is distance s1 to the left of the lens. The first surface of the 
lens, of radius R1, refracts the rays from P to create an image at point P′. We can use 
Equation 34.20 for a spherical surface to find the image distance s=1:

 
1
s1

+
n
s=1

=
n - 1

R1
 (34.21)

where we used n1 = 1 for the air and n2 = n for the lens. We’ll assume that the image 
P′ is a virtual image, but this assumption isn’t essential to the outcome.

With two refracting surfaces, the image P′ of the first surface becomes the ob-
ject for the second surface. That is, the rays refracting at the second surface appear 
to have come from P′. Object distance s2 from P′ to the second surface looks like it 
should be s2 = s=1 + t, but P′ is a virtual image, so s=1 is a negative number. Thus the 
distance to the second surface is s2 = 0 s=1 0    + t = t - s=1. We can find the image of P′ by 
a second application of Equation 34.20, but now the rays are incident on the surface 
from within the lens, so n1 = n and n2 = 1. Consequently,

 
n

t - s=1
+

1
s=2

=
1 - n

R2
 (34.22)

For a thin lens, which has t S 0, Equation 34.22 becomes

 -  
n
s=1

+
1
s=2

=
1 - n

R2
= -  

n - 1
R2

 (34.23)

Our goal is to find the distance s=2 to point P″, the image produced by the lens as 
a whole. This goal is easily reached if we simply add Equations 34.21 and 34.23,  
eliminating s=1 and giving

 
1
s1

+
1
s=2

=
n - 1

R1
-

n - 1
R2

= 1n - 121 1
R1

-
1
R2

2 (34.24)

The numerical subscripts on s1 and s=2 no longer serve a purpose. If we replace s1  
by s, the object distance from the lens, and s=2 by s′, the image distance, Equation 34.24  
becomes the thin-lens equation:

 
1
s

+
1
s′

=
1
f
   (thin@lens equation) (34.25)

where the focal length of the lens is

 
1
f

= 1n - 121 1
R1 

-
1
R2

2  (lens maker>s equation) (34.26)

Equation 34.26 is known as the lens maker’s equation. It allows you to determine 
the focal length from the shape of a thin lens and the material used to make it.

We can verify that this expression for f  really is the focal length of the lens by 
 recalling that rays initially parallel to the optical axis pass through the focal point on 
the far side. In fact, this was our definition of the focal length of a lens. Parallel rays 
must come from an object extremely far away, with object distance s S ∞  and thus 
1/s = 0. In that case, Equation 34.25 tells us that the parallel rays will converge at 
distance s′ = f  on the far side of the lens, exactly as expected.

We derived the thin-lens equation and the lens maker’s equation from the specific 
lens geometry shown in Figure 34.41, but the results are valid for any lens as long as 
all quantities are given appropriate signs. The sign convention used with Equations 
34.25 and 34.26 is given in TABLE 34.3.

   NOTE    For a thick lens, where the thickness t is not negligible, we can solve 
Equations 34.21 and 34.22 in sequence to find the position of the image point P″.

TABLE 34.3 Sign convention for thin lenses

Positive Negative

R1, R2 Convex toward 
the object

Concave toward 
the object

f Converging  
lens, thicker  
in center

Diverging  
lens, thinner in 
center

s′ Real image,  
opposite side 
from object

Virtual image, 
same side as 
object
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Thin-Lens Image Formation
Although the thin-lens equation allows precise calculations, the lessons of ray tracing 
should not be forgotten. The most powerful tool of optical analysis is a combination of 
ray tracing, to gain an intuitive understanding of the ray trajectories, and the thin-lens 
equation.

What is the focal length of the glass meniscus lens shown in  
FIGURE  34.42? Is this a converging or diverging lens?

SOLVE If the object is on the left, then the first surface has 
R1 = -40 cm (concave toward the object) and the second surface 
has R2 = -20 cm (also concave toward the object). The index of 
refraction of glass is n = 1.50, so the lens maker’s equation is

  
1
f

= 1n - 121 1
R1 

-
1
R2

2 = 11.50 - 121 1
-40 cm

-
1

-20 cm2
  = 0.0125 cm-1

Inverting this expression gives f = 80 cm. This is a converging lens, 
as seen both from the positive value of f  and from the fact that the  
lens is thicker in the center.

The objective lens of a microscope uses a plano-convex glass lens 
with the flat side facing the specimen. A real image is formed  
160 mm behind the lens when the lens is 8.0 mm from the speci-
men. What is the radius of the lens’s curved surface?

MODEL Treat the lens as a thin lens with the specimen as the  
object. The lens’s focal length is given by the lens maker’s  
equation.

VISUALIZE FIGURE 34.43 clarifies the shape of the lens and defines 
R2. The index of refraction was taken from Table 34.1.

SOLVE We can use the lens maker’s equation to solve for R2  
if we know the lens’s focal length. Because we know both the  
object and image distances, we can use the thin-lens equation to find

1
f

=
1
s

+
1
s′

=
1

8.0 mm
+

1
160 mm

= 0.131 mm-1

The focal length is f = 1/10.131 mm-12 = 7.6 mm, but 1/f  is all we 
need for the lens maker’s equation. The front surface of the lens is 
planar, which we can consider a portion of a sphere with R1 S ∞ . 
Consequently 1/R1 = 0.  With this, we can solve the lens maker’s 
equation for R2:

  
1
R2

=
1
R1

-
1

n - 1
 
1
f

= 0 - 1 1
1.50 - 1210.131 mm-12

  = -0.262 mm-1

 R2 = -3.8 mm

The minus sign appears because the curved surface is concave 
 toward the object. Physically, the radius of the curved surface is 
3.8 mm.

REVIEW The actual thickness of the lens has to be less than R2,
probably no more than about 1.0 mm. This thickness is signifi-
cantly less than the object and image distances, so the thin-lens 
approximation is justified.

EXAMPLE 34.12 ■ Focal length of a meniscus lens

EXAMPLE 34.13 ■ Designing a lens

R1 = 40 cm

R2 = 20 cm

n = 1.50

FIGURE 34.42 A meniscus lens.

Image and
object distances
not to scale

R2
R1 = ∞

s′ = 160 mm

s = 8.0 mm

n = 1.50

FIGURE 34.43 A plano-convex microscope lens.
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34.7  Image Formation with  
Spherical Mirrors

Curved mirrors—such as those used in telescopes, security and rearview mirrors, and 
searchlights—can be used to form images, and their images can be analyzed with ray 
diagrams similar to those used with lenses. We’ll consider only the important case of 
spherical mirrors, whose surface is a section of a sphere.

Concave Mirrors
FIGURE 34.45 shows a concave mirror, a mirror in which the edges curve toward the 
light source. Rays parallel to the optical axis reflect from the surface of the mirror 
so as to pass through a single point on the optical axis. This is the focal point of the 
mirror. The focal length is the distance from the mirror surface to the focal point. A 
concave mirror is analogous to a converging lens, but it has only one focal point.

Let’s begin by considering the case where the object’s distance s from the mirror 
is greater than the focal length 1s 7 f 2, as shown in FIGURE 34.46 on the next page. We 
see that the image is real (and inverted) because rays from the object point P converge 
at the image point P′. Although an infinite number of rays from P all meet at P′, each 
ray obeying the law of reflection, you can see that three “special rays” are enough to 
determine the position and size of the image:

 ■ A ray parallel to the axis reflects through the focal point.
 ■ A ray through the focal point reflects parallel to the axis.
 ■ A ray striking the center of the mirror reflects at an equal angle on the opposite side 

of the axis.

These three rays also locate the image if s 6 f, but in that case the image is virtual and  
behind the mirror. Once again, virtual images have a negative image distance s′   .

A biologist uses a magnifying lens that sits 2.0 cm above a speci-
men. The magnification is 4.0. What is the focal length of the lens?

MODEL A magnifying lens is a converging lens with the object 
 distance less than the focal length 1s 6 f 2. Assume it is a thin lens.

VISUALIZE FIGURE 34.44 shows the lens and a ray-tracing dia-
gram. We do not need to know the actual shape of the lens, so the 
figure shows a generic converging lens.

SOLVE A virtual image is upright, so m = +4.0. The magnifica-
tion is m = -s′/s, thus

s′ = -4.0 s = -14.0212.0 cm2 = -8.0 cm

We can use s and s′ in the thin-lens equation to find the focal length:

1
f

=
1
s

+
1
s′

=
1

2.0 cm
+

1
-8.0 cm

= 0.375 cm-1

f = 2.7 cm

REVIEW f 7 2 cm, as expected.

EXAMPLE 34.14 ■ A magnifying lens

s = 2.0 cm

Focal point

Lens plane

Specimen

Virtual image

s′ = -  4.0s

f

FIGURE 34.44 Pictorial representation of a magnifying lens.

STOP TO THINK 34.6 A lens forms a real image of a lightbulb, but the image of the bulb 
on a viewing screen is blurry because the screen is slightly in front of the image plane. To 
focus the image, should you move the lens toward the bulb or away from the bulb?

Focal length f

Parallel rays

Concave mirror

Optical axis

This is the focal point. 
Parallel rays converge 
at this point.

FIGURE 34.45 The focal point and focal 
length of a concave mirror.
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   NOTE    A thin lens has negligible thickness and all refraction occurs at the lens 
plane. Similarly, we will assume that mirrors are thin (even though drawings may 
show a thickness) and thus all reflection occurs at the mirror plane.

Convex Mirrors
FIGURE 34.47 shows parallel light rays approaching a mirror in which the edges curve  
away from the light source. This is called a convex mirror. In this case, the  
reflected rays appear to come from a point behind the mirror. This is the focal point 
for a convex mirror.

A common example of a convex mirror is a silvered ball, such as a tree ornament. 
You may have noticed that if you look at your reflection in such a ball, your image 
appears right-side-up but is quite small. As another example, FIGURE 34.48 shows a city 
skyline reflected in a polished metal sphere. Let’s use ray tracing to understand why 
the skyscrapers all appear to be so small.

FIGURE 34.49 shows an object in front of a convex mirror. In this case, the reflected 
rays—each obeying the law of reflection—create an upright image of reduced height 
behind the mirror. We see that the image is virtual because no rays actually converge 
at the image point P′   . Instead, diverging rays appear to come from this point. Once 
again, three special rays are enough to find the image.

Convex mirrors are used for a variety of safety and monitoring applications, such 
as passenger-side rearview mirrors and the round mirrors used in stores to keep an eye  

This ray entered parallel to the
optical axis, and thus appears to
have come from the focal point.

This ray was heading for the
focal point, and thus emerges
parallel to the optical axis.

s′

P′

f

Mirror plane

Virtual
image

Object

Special rays

Optical axis
s

P

FIGURE 34.49 A virtual image formed by a convex mirror.

s′

Object

Real
image

Special rays Mirror plane

f

s

P′

P

FIGURE 34.46 A real image formed by a concave mirror.

Parallel rays

Convex
mirror

Optical axis

Focal length f

This is the focal 
point. Rays 
appear to diverge 
from this point.

FIGURE 34.47 The focal point and focal 
length of a convex mirror.

FIGURE 34.48 A city skyline is reflected in 
this polished sphere.
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34.7 Image Formation with Spherical Mirrors  1037

on the customers. When an object is reflected in a convex mirror, the image appears 
smaller than the object itself. Because the image is, in a sense, a miniature version of 
the object, you can see much more of it within the edges of the mirror than you could 
with an equal-sized flat mirror.

TACTICS BOX 34.4

Ray tracing for a spherical mirror
1  Draw an optical axis. Use graph paper or a ruler! Establish a scale.
2  Center the mirror on the axis. Mark and label the focal point at distance f  

from the mirror’s surface.
3  Represent the object with an upright arrow at distance s. It’s usually best 

to place the base of the arrow on the axis and to draw the arrow about half the 
radius of the mirror.

4  Draw the three “special rays” from the tip of the arrow. All reflections 
occur at the mirror plane.

a. A ray parallel to the axis reflects through (concave) or away from (convex) 
the focal point.

b. An incoming ray passing through (concave) or heading toward (convex) the 
focal point reflects parallel to the axis.

c. A ray that strikes the center of the mirror reflects at an equal angle on the 
opposite side of the optical axis.

5  Extend the rays forward or backward until they converge. This is the 
image point. Draw the rest of the image in the image plane. If the base of the 
object is on the axis, then the base of the image will also be on the axis.

6  Measure the image distance s′   . Also, if needed, measure the image height 
relative to the object height.

Exercises 28–29 

A 3.0-cm-high object is located 60 cm from a concave mirror. The 
mirror’s focal length is 40 cm. Use ray tracing to find the position 
and height of the image.

MODEL Use the ray-tracing steps of Tactics Box 34.4.

VISUALIZE FIGURE 34.50 shows the steps of Tactics Box 34.4.

SOLVE We can use a ruler to find that the image position is 
s′ ≈ 120 cm in front of the mirror and its height is h′ ≈ 6 cm.

REVIEW The image is a real image because light rays converge at 
the image point.

EXAMPLE 34.15 ■ Analyzing a concave mirror

FIGURE 34.50 Ray-tracing diagram for a concave mirror.

1 Lay out the optical 
axis, with a scale.

3

Measure the image distance.

Draw the object as 
an arrow with its 
base on the axis.

4

The convergence point is 
the tip of the image. Draw 
the rest of the image.

Draw the 3 special rays from the tip of the arrow.
a. Parallel to the axis.
b. Through the focal point.
c. Hitting the center of the mirror.

6

Draw the mirror and 
mark its focal point.

2

5
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1038 CHAPTER 34 Ray Optics

The Mirror Equation
The thin-lens equation assumes lenses have negligible thickness (so a single refraction 
occurs in the lens plane) and the rays are nearly parallel to the optical axis (paraxial 
rays). If we make the same assumptions about spherical mirrors—the mirror has neg-
ligible thickness and so paraxial rays reflect at the mirror plane—then the object and 
image distances are related exactly as they were for thin lenses:

 
1
s

+
1
s′

=
1
f
   (mirror equation) (34.27)

The focal length of the mirror, as you can show as a homework problem, is related to 
the mirror’s radius of curvature by

 f =
R
2

 (34.28)

TABLE 34.4 shows the sign convention used with spherical mirrors. It differs from  
the convention for lenses, so you’ll want to carefully compare this table to Table 34.3. 
A concave mirror (analogous to a converging lens) has a positive focal length while a 
convex mirror (analogous to a diverging lens) has a negative focal length. The lateral 
magnification of a spherical mirror is computed exactly as for a lens:

 m = -  

s′
s

 (34.29)

TABLE 34.4 Sign convention for 
spherical mirrors

Positive Negative

R, f Concave toward  
the object

Convex toward 
the object

s′ Real image,  
same side  
as object

Virtual image, 
opposite side 
from object

A 3.0-cm-high object is located 20 cm from a concave mirror. The 
mirror’s radius of curvature is 80 cm. Determine the position, ori-
entation, and height of the image.

MODEL Treat the mirror as a thin mirror.

VISUALIZE The mirror’s focal length is f = R/2 = +40 cm, where 
we used the sign convention from Table 34.4. With the focal length 
known, the three special rays in FIGURE 34.51 show that the image 
is a magnified, virtual image behind the mirror.

SOLVE The thin-mirror equation is

1
20 cm

+
1
s′

=
1

40 cm

This is easily solved to give s′ = -40 cm, in agreement with the ray 
tracing. The negative sign tells us this is a virtual image behind the  
mirror. The magnification is

m = -  
-40 cm
20 cm

= +2.0

Consequently, the image is 6.0 cm tall and upright.

REVIEW This is a virtual image because light rays diverge from  
the image point. You could see this enlarged image by standing 
behind the object and looking into the mirror. In fact, this is how 
magnifying cosmetic mirrors work.

EXAMPLE 34.16 ■ Analyzing a concave mirror

Object

10 cm

Mirror plane

Virtual
image

s′

f = 40 cm

s = 20 cm

FIGURE 34.51 Pictorial representation of Example 34.16.

STOP TO THINK 34.7 A concave mirror of focal length f  forms an image of the moon.  
Where is the image located?

a. At the mirror’s surface
b. Almost exactly a distance f  behind the mirror
c. Almost exactly a distance f  in front of the mirror
d. At a distance behind the mirror equal to the distance of the moon in front of the 

mirror
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   CHAPTER 34 CHALLENGE EXAMPLE     Optical fiber imaging

An endoscope is a thin bundle of 
optical fibers that can be inserted 
through a bodily opening or small 
incision to view the interior of the 
body. As FIGURE 34.52 shows, an 
objective lens forms a real image 
on the entrance face of the fiber 
bundle. Individual fibers, using 
total internal reflection, transport 
the light to the exit face, where it 
emerges. The doctor (or a TV cam-
era) observes the object by viewing 
the exit face through an eyepiece lens.

Consider an endoscope having a 3.0-mm-diameter objective 
lens with a focal length of 1.1 mm. These are typical values. The 
indices of refraction of the core and the cladding of the optical fi-
bers are 1.62 and 1.50, respectively. To give maximum brightness, 
the objective lens is positioned so that, for an on-axis object, rays 
passing through the outer edge of the lens have the maximum angle 
of incidence for undergoing TIR in the fiber. How far should the 
objective lens be placed from the object the doctor wishes to view?

MODEL Represent the object as an on-axis point source and use the 
ray model of light.

VISUALIZE FIGURE 34.53 shows the real image being focused on the 
entrance face of the endoscope. Inside the fiber, rays that strike 
the cladding at an angle of incidence greater than the critical angle 
uc undergo TIR and stay in the fiber; rays are lost if their angle of 
incidence is less than uc. For maximum brightness, the lens is po-
sitioned so that a ray passing through the outer edge refracts into 
the fiber at the maximum angle of incidence umax for which TIR 
is possible. A smaller-diameter lens would sacrifice light-gathering 
power, whereas the outer rays from a larger-diameter lens would 
impinge on the core-cladding boundary at less than uc and would 
not undergo TIR.

SOLVE We know the focal length of the lens. We can use the ge-
ometry of the ray at the critical angle to find the image distance s′   , 
then use the thin-lens equation to find the object distance s. The 
critical angle for TIR inside the fiber is

uc = sin-11ncladding

ncore
2 = sin-111.50

1.622 = 67.8°

A ray incident on the core-cladding boundary at exactly the criti-
cal angle must have entered the fiber, at the entrance face, at angle 
u2 = 90° - uc = 22.2°. For optimum lens placement, this ray passed 
through the outer edge of the lens and was incident on the entrance  
face at angle umax. Snell’s law at the entrance face is

nair sin umax = 1.00 sin umax = ncore sin u2

and thus

umax = sin-111.62 sin 22.2°2 = 37.7°

We know the lens radius, r = 1.5 mm, so the distance of the lens 
from the fiber—the image distance s′—is

s′ =
r

tan umax
 =

1.5 mm
tan137.7°2 = 1.9 mm

Now we can use the thin-lens equation to locate the object:

  
1
s

=
1
f

-
1
s′

=
1

1.1 mm
-

1
1.9 mm

 s = 2.6 mm

The doctor, viewing the exit face of the fiber bundle, will see a 
focused image when the objective lens is 2.6 mm from the object 
she wishes to view.

REVIEW The object and image distances are both greater than the 
focal length, which is correct for forming a real image.

Objective lens

Object to
be viewed

Entrance face

Exit face

Eyepiece
lens

Light travels through
one fiber by TIR.

The emerging cone
of rays from one fiber

An endoscope—a
bundle of thousands
of parallel optical
fibers

A real image is formed on the
entrance face of the fiber bundle.

FIGURE 34.52 An endoscope.

A ray at umax strikes the core-
cladding boundary at exactly uc

and undergoes TIR.

Rays entering at smaller
angles stay within the fiber.

Rays entering at angles
greater than umax do not
undergo TIR and are lost.

Cladding
Core

Object

umax

u2
uc

s′s

r

FIGURE 34.53 Magnified view of the entrance of an optical fiber.
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Refraction
Snell’s law of refraction:

n1 sin u1 = n2 sin u2

Index of refraction is n = c/v.
The ray is closer to the normal on the 
side with the higher index of refraction.

If n2 6 n1, total internal reflection (TIR) occurs when the angle 
of incidence u1 Ú uc = sin-11n2/n12.

Image formation  

If rays diverge from P and interact  
with a lens or mirror so that the  
refracted/reflected rays converge  
at P′, then P′ is a real image of P.

If rays diverge from P and interact with a 
lens or mirror so that the refracted/reflected rays diverge from P′ 
and appear to come from P′, then P′ is a virtual image of P.

Spherical surface: Object and image distances are related by
n1

s
+

n2 

s′
=

n2 - n1 

R

Plane surface: R S ∞   , so s′ = -1n2/n12s.

Thin lenses  

The image and object distances 
are related by

1
s

+  

1
s′

=
1
f

where the focal length is given by the lens maker’s equation:

1
f

= 1n - 121 1
R1

-
1
R2

2
R +  for surface convex toward object -  for concave

f +  for a converging lens -  for diverging

s′ +  for a real image -  for virtual

Reflection
Law of reflection: ur = ui

Reflection can be specular  
(mirror-like) or diffuse  
(from rough surfaces).

Plane mirrors: A virtual  
image is formed at P′  
with s′ = s.

The ray model of light  

Light travels along straight lines, called light rays, at speed 
v = c/n.

A light ray continues forever unless an interaction with matter 
causes it to reflect, refract, scatter, or be absorbed.

Light rays come from objects. Each point on the object sends rays 
in all directions.

The eye sees an object (or an image) when diverging rays are  
collected by the pupil and focused on the retina.

Ray optics is valid when lenses, mirrors, and apertures are larger 
than ≈1 mm.

Ray tracing  

3 special rays in 3 basic situations:

Converging lens
Real image

Converging lens
Virtual image

Diverging lens
Virtual image

Magnification: m = -  
s′
s

m is +  for an upright image, -  for inverted.

The height ratio is h′/h = 0m 0 .

Spherical mirrors 
The image and object  
distances are related by

1
s

+  

1
s′

=
1
f

R, f +  for concave mirror -  for convex

s′ +  for a real image -  for virtual

Focal length f = R/2

General Principles

Important Concepts

Applications

The goals of Chapter 34 have been to learn about and apply the ray 
model of light.

Summary

P P′

s s′ = s

ui ur

Incident
ray

Refracted
ray

Normal

u2

u1

n1

n2

P P′R

n1 n2

s′s

Focal length f

s′s

M34_KNIG8221_05_GE_C34.indd   1040 25/06/22   2:29 PM



Conceptual Questions 1041

CONCEPTUAL QUESTIONS

Midpoint

FIGURE Q34.2

1 2

n1 n2
FIGURE Q34.4

light ray
object
point source
parallel bundle
ray diagram
camera obscura
aperture
specular reflection
angle of incidence
angle of reflection
law of reflection

diffuse reflection
virtual image
refraction
angle of refraction
Snell’s law
total internal reflection (TIR)
critical angle, uc

object distance, s
image distance, s′
optical axis
paraxial rays

lens
ray tracing
converging lens
focal point
focal length, f
diverging lens
thin lens
lens plane
real image
object plane
image plane

inverted image
lateral magnification, m
upright image
thin-lens equation
lens maker’s equation
spherical mirror
concave mirror
convex mirror

Terms and Notation

1. You are using a camera to take pictures. In one case, you use a 
square aperture to block out excess light and in the second case, 
you use a rectangular aperture. However, the area of both the ap-
ertures is the same and both are placed at the same distance from 
the face of the camera. Would the pictures taken under these two 
situations be different in any obvious way? Explain.

2. You are looking at the image of a pencil in a mirror, as shown in 
FIGURE Q34.2.
a. What happens to the image if the top half of the mirror, down 

to the midpoint, is covered with a piece of cardboard? Explain.
b. What happens to the image if the bottom half of the mirror is 

covered with a piece of cardboard? Explain.

3. One problem with using optical fibers for communication is that 
a light ray passing directly down the center of the fiber takes 
less time to travel from one end to the other than a ray taking a 
longer, zig-zag path. Thus light rays starting at the same time but 
traveling in slightly different directions reach the end of the fiber 
at different times. This problem can be solved by making the re-
fractive index of the glass change gradually from a higher value 
in the center to a lower value near the edges of the fiber. Explain 
how this reduces the difference in travel times.

4. A light beam passing from medium 2 to me-
dium 1 is refracted as shown in FIGURE Q34.4. 
Is n1 larger than n2, is n1 smaller than n2, or is 
there not enough information to tell? Explain.

5. A fish in an aquarium with flat sides looks out at a hungry cat. 
To the fish, does the distance to the cat appear to be less than the 
actual distance, the same as the actual distance, or more than the 
actual distance? Explain.

6. A lens is used to focus the image of an extended object.
a. What is the minimum number of rays needed to locate its 

image? Explain.
b. How many rays from this extended object actually strike the 

lens and refract to the image?
7. The object and lens in FIGURE Q34.7 are positioned to form a 

well-focused, inverted image on a viewing screen. Then a piece 
of cardboard is lowered just in front of the lens to cover the top 
half of the lens. Describe what you see on the screen when the 
cardboard is in place.

Screen

LensFIGURE Q34.7

FIGURE Q34.8

8. A converging lens creates the image shown in FIGURE Q34.8. Is 
the object distance less than the focal length f, between f and 2f, 
or greater than 2f? Explain.

9. A concave mirror brings the sun’s rays to a focus in front of the 
mirror. Suppose the mirror is submerged in a swimming pool 
but still pointed up at the sun. Will the sun’s rays be focused 
nearer to, farther from, or at the same distance from the mirror? 
Explain.

10. You see an upright, magnified image of your face when you look 
into a magnifying cosmetic mirror. Where is the image? Is it in 
front of the mirror’s surface, on the mirror’s surface, or behind 
the mirror’s surface? Explain.

11. When you look at your reflection in the bowl of a spoon, it is 
upside down. Why?
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EXERCISES AND PROBLEMS

60°

f
FIGURE EX34.5

3.0 m

5.0 m

Wall

Mirror

Laser beam

f

FIGURE EX34.6

15 cm

5 cm

15 cm

10 cm

B

A
Mirror

FIGURE EX34.7

d n

R

FIGURE EX34.16

Exercises

Section 34.1 The Ray Model of Light

1. | a. How long does it take for light to travel 2 m in vacuum?
b. What distance does light travel in water, glass, and cubic 

zirconia during the time that it travels 2 m in vacuum?
2. || A point source of light illuminates an aperture 3 m away. A 

12-cm-wide bright patch of light appears on a screen 1 m behind 
the aperture. How wide is the aperture?

3. | A student has built a 10-cm-long pinhole camera for a  science-fair 
project. She wants to photograph her friend, who is 180 cm tall, and 
have the image on the film be 5 cm high. How far should the front of 
the camera be from her friend?

4. || A 5-cm-thick layer of oil is sandwiched between a 2-cm-thick 
sheet of glass and a 2-cm-thick sheet of polystyrene plastic. How 
long (in ns) does it take light incident perpendicular to the glass 
to pass through this 9-cm-thick sandwich?

Section 34.2 Reflection

5. | The mirror in FIGURE EX34.5 deflects a horizontal laser beam 
by 60°. What is the angle f?

6. | At what angle f should the laser beam in FIGURE EX34.6 be 
aimed at the mirrored ceiling in order to hit the midpoint of the 
far wall?

7. | A light ray leaves point A in FIGURE EX34.7, reflects from the 
mirror, and reaches point B. How far below the top edge does the 
ray strike the mirror?

8. || When you look into your car’s 5.0-cm-tall rear-view mirror 
from 35 cm away, the front of a bus, from the ground to the roof, 
exactly fills the mirror. If the bus is 17 m from the mirror, how 
tall is the bus?

9. | It is 165 cm from your eyes to your toes. You’re standing  
200 cm in front of a tall mirror. How far is it from your eyes to the  
image of your toes?

Section 34.3 Refraction

10. | A 1-cm-thick layer of water stands on a horizontal slab of 
glass. A light ray in the air is incident on the water 45° from the 
normal. What is the ray’s direction of travel in the glass?

11. | A laser beam in air is incident on a liquid at an angle of 45° 
with respect to the normal. The laser beam’s angle in the liquid is 
30°. What is the liquid’s index of refraction?

12. ||| A costume jewelry pendant made of cubic zirconia is sub-
merged in oil. A light ray strikes one face of the zirconia  crystal 
at an angle of incidence of 30°. Once inside, what is the ray’s angle 
with respect to the face of the crystal?

13. || The glass core of an optical fiber has an index of refraction 
1.60. The index of refraction of the cladding is 1.48. What is the 
maximum angle a light ray can make with the wall of the core if 
it is to remain inside the fiber?

14. || An underwater diver sees the sun 60° above the horizontal. How 
high is the sun above the horizon to a fisherman in a boat above  
the diver?

15. || A thin glass rod is submerged in oil. What is the critical angle 
for light traveling inside the rod?

16. || FIGURE EX34.16 shows a transparent hemisphere with radius R  
and index of refraction n. What is the maximum distance d for 
which a light ray parallel to the axis refracts out through the 
curved surface?

Section 34.4 Image Formation by Refraction at a Plane Surface

17. | A biologist keeps a specimen of his favorite beetle embedded 
in a cube of polystyrene plastic. The hapless bug appears to be 
2.0 cm within the plastic. What is the beetle’s actual distance be-
neath the surface?

18. | A fish in a flat-sided aquarium sees a can of fish food on the 
counter. To the fish’s eye, the can looks to be 30 cm outside the 
aquarium. What is the actual distance between the can and the 
aquarium? (You can ignore the thin glass wall of the aquarium.)

19. | To a fish in an aquarium, the 4.00-mm-thick walls appear to 
be only 3.50 mm thick. What is the index of refraction of the 
walls?

20. || A giant ocean tank at an aquarium has acrylic plastic walls  
18 cm thick. The index of refraction of acrylic plastic is 1.49. A fish  
is 220 cm from the inside wall. To a viewer on the outside, how 
far does the fish appear to be from the outside wall?
Hint: The image of the first refraction is the object for the second 
refraction.

Section 34.5 Thin Lenses: Ray Tracing

21. || An object is 30 cm in front of a converging lens with a focal 
length of 5 cm. Use ray tracing to determine the location of the 
image. Is the image upright or inverted?

22. || An object is 20 cm in front of a converging lens with a focal 
length of 10 cm. Use ray tracing to determine the location of the 
image. Is the image upright or inverted?
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Determine the image distance and image height by making 
measurements on your diagram.

b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

34. || A 1.0-cm-tall object is 75 cm in front of a symmetric converg-
ing glass lens that has 30 cm radii of curvature. What are the (a) 
position and (b) height of the image?

35. || A 2.0-cm-tall object is 15 cm in front of a plano-convex poly-
styrene plastic lens that has a 13 cm radius of curvature. What 
are the (a) position and (b) height of the image?

36. || A 1.0-cm-tall object is 60 cm in front of a diverging lens that 
has a -30 cm focal length.
a. Use ray tracing to find the position and height of the image. 

To do this accurately, use a ruler or paper with a grid. 
Determine the image distance and image height by making 
measurements on your diagram.

b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

37. || A 2.0-cm-tall object is 15 cm in front of a diverging lens that 
has a -20 cm focal length.
a. Use ray tracing to find the position and height of the image. 

To do this accurately, use a ruler or paper with a grid. 
Determine the image distance and image height by making 
measurements on your diagram.

b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

Section 34.7 Image Formation with Spherical Mirrors

38. | A 1.0-cm-tall object is 20 cm in front of a convex mirror that 
has a -60 cm focal length. Calculate the position and height of 
the image. State whether the image is in front of or behind the 
mirror, and whether the image is upright or inverted.

39. || An object is 40 cm in front of a concave mirror with a focal 
length of 20 cm. Use ray tracing to locate the image. Is the image 
upright or inverted?

40. || An object is 12 cm in front of a concave mirror with a focal 
length of 20 cm. Use ray tracing to locate the image. Is the image 
upright or inverted?

41. || An object is 30 cm in front of a convex mirror with a focal 
length of -20 cm. Use ray tracing to locate the image. Is the 
image upright or inverted?

42. | A 1.0-cm-tall object is 20 cm in front of a concave mirror 
that has a 60 cm focal length. Calculate the position and height 
of the image. State whether the image is in front of or behind the 
mirror, and whether the image is upright or inverted.

Problems
43. ||| An advanced computer sends information to its various parts 

via infrared light pulses traveling through silicon fibers. To ac-
quire data from memory, the central processing unit sends a light-
pulse request to the memory unit. The memory unit processes the 
request, then sends a data pulse back to the central processing 
unit. The memory unit takes 0.5 ns to process a request. If the 
information has to be obtained from memory in 2.0 ns, what is 
the maximum distance the memory unit can be from the central 
processing unit?

23. || An object is 6 cm in front of a converging lens with a focal 
length of 10 cm. Use ray tracing to determine the location of the 
image. Is the image upright or inverted?

24. || An object is 15 cm in front of a diverging lens with a focal 
length of -15 cm. Use ray tracing to determine the location of 
the image. Is the image upright or inverted?

Section 34.6 Thin Lenses: Refraction Theory

25. || Find the focal length of the plano-concave polystyrene plastic 
lens in FIGURE EX34.25.

Plano-concave lens

40 cm

FIGURE EX34.25

24 cm

40 cm

FIGURE EX34.26

40 cm

Meniscus lens

30 cm

FIGURE EX34.27

40 cm

40 cm

FIGURE EX34.28

26. || Find the focal length of the glass lens in FIGURE EX34.26.
27. || Find the focal length of the meniscus polystyrene plastic lens 

in FIGURE EX34.27.

28. || Find the focal length of the glass lens in FIGURE EX34.28.
29. || Amber is fossilized tree resin prized for its golden translucent 

appearance. Many pieces of amber contain the fossils of insects 
that were stuck in the resin. Suppose a 4.0-cm-diameter amber 
marble has an ant in its center. As you look at the marble, how far 
beneath the surface does the ant appear to be? Amber’s index of 
refraction is 1.54.

30. | A goldfish lives in a 50-cm-diameter spherical fish bowl. The 
fish sees a cat watching it. If the cat’s face is 20 cm from the edge 
of the bowl, how far from the edge does the fish see it as being? 
(You can ignore the thin glass wall of the bowl.)

31. | A 1.0-cm-tall candle flame is 60 cm from a lens with a focal 
length of 20 cm. What are the image distance and the height of 
the flame’s image?

32. || A 1.0-cm-tall object is 10 cm in front of a converging lens that 
has a 30 cm focal length.
a. Use ray tracing to find the position and height of the image. 

To do this accurately, use a ruler or paper with a grid. 
Determine the image distance and image height by making 
measurements on your diagram.

b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

33. || A 2.0-cm-tall object is 40 cm in front of a converging lens 
that has a 20 cm focal length.
a. Use ray tracing to find the position and height of the image. 

To do this accurately, use a ruler or paper with a grid. 
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50. ||| A horizontal meter stick is centered at the bottom of a 
3.0-m-deep, 3.0-m-wide pool of water. Suppose you place your 
eye just above the edge of the pool and look along the direction 
of the meter stick. What angle do you observe between the two 
ends of the meter stick if the pool is (a) empty and (b) completely 
filled with water?

51. || It’s nighttime, and you’ve dropped your goggles into a 
3.0-m-deep swimming pool. If you hold a laser pointer 1.0 m 
above the edge of the pool, you can illuminate the goggles if the 
laser beam enters the water 2.0 m from the edge. How far are the 
goggles from the edge of the pool?

52. || A 4.0-m-wide swimming pool is filled to the top. The bottom 
of the pool becomes completely shaded in the afternoon when 
the sun is 20° above the horizon. How deep is the pool?

53. ||| An astronaut is exploring an unknown planet when she acci-
dentally drops an oxygen canister into a 1.50-m-deep pool filled 
with an unknown liquid. Although she dropped the canister  
21 cm from the edge, it appears to be 31 cm away when she peers in  
from the edge. What is the liquid’s index of refraction? Assume 
that the planet’s atmosphere is similar to earth’s.

54. || Shown from above in FIGURE P34.54 is one corner of a rect-
angular box filled with water. A laser beam starts 10 cm from 
side A of the container and enters the water at position x. You 
can ignore the thin walls of the container.
a. If x = 15 cm, does the laser beam refract back into the air 

through side B or reflect from side B back into the water? 
Determine the angle of refraction or reflection.

b. Repeat part a for x = 25 cm.
c. Find the minimum value of x for which the laser beam passes 

through side B and emerges into the air.

44. | A red ball is placed at point A in FIGURE P34.44.
a. How many images are seen by an observer at point O?
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FIGURE P34.44
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b. What are the 1x, y2 coordinates of each image?
45. || A microscope is focused on a black dot. When a 1.00-cm-thick 

piece of plastic is placed over the dot, the microscope objective 
has to be raised 0.40 cm to bring the dot back into focus. What is 
the index of refraction of the plastic?

46. || The place you get your hair cut has two nearly parallel mir-
rors 5.0 m apart. As you sit in the chair, your head is 2.0 m from 
the nearer mirror. Looking toward this mirror, you first see your 
face and then, farther away, the back of your head. (The mirrors 
need to be slightly nonparallel for you to be able to see the back 
of your head, but you can treat them as parallel in this problem.) 
How far away does the back of your head appear to be? Neglect 
the thickness of your head.

47. || A light ray in air is incident on a transparent material whose 
index of refraction is n.
a. Find an expression for the (non-zero) angle of incidence 

whose angle of refraction is half the angle of incidence.
b. Evaluate your expression 

for light incident on glass.
48. || The 80-cm-tall, 65-cm-wide 

tank shown in FIGURE P34.48 
is completely filled with water. 
The tank has marks every 10 cm  
along one wall, and the 0 cm 
mark is barely submerged. As 
you stand beside the opposite 
wall, your eye is level with the 
top of the water.
a. Can you see the marks from 

the top of the tank (the 0 cm 
mark) going down, or from 
the bottom of the tank (the 80 cm mark) coming up? Explain.

b. Which is the lowest or highest mark, depending on your an-
swer to part a, that you can see?

49. || The meter stick in FIGURE P34.49 lies on the bottom of a 
100-cm-long tank with its zero mark against the left edge. You 
look into the tank at a 30° angle, with your line of sight just graz-
ing the upper left edge of the tank. What mark do you see on the  
meter stick if the tank is (a) empty, (b) half full of water, and  
(c) completely full of water?

55. || A horizontal laser beam enters the glass 
prism shown in FIGURE P34.55. When the 
laser beam exits the prism, by what angle 
will it have been deflected from horizontal?

56. || Optical engineers need to know the cone of acceptance of an 
optical fiber. This is the maximum angle that an entering light 
ray can make with the axis of the fiber if it is to be guided down 
the fiber. What is the cone of acceptance of an optical fiber for 
which the index of refraction of the core is 1.55 while that of the 
cladding is 1.45? You can model the fiber as a cylinder with a flat 
entrance face.

57. || One of the contests at the school carnival is to throw a spear 
at an underwater target lying flat on the bottom of a pool. The 
water is 1.0 m deep. You’re standing on a small stool that places 
your eyes 3.0 m above the bottom of the pool. As you look at the 
target, your gaze is 30° below horizontal. At what angle below 
horizontal should you throw the spear in order to hit the target? 
Your raised arm brings the spear point to the level of your eyes as 
you throw it, and over this short distance you can assume that the 
spear travels in a straight line rather than a parabolic trajectory.
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66. ||| A 25-cm-long rod lies along the optical axis of a converging 
lens, perpendicular to the lens plane. The lens has a 30 cm focal 
length. The rod’s real image, along the optical axis on the other 
side of the lens, is also 25 cm long. What is the distance from the 
lens to the nearest end of the rod?

67. || An old-fashioned slide projector needs to create a 98-cm-
high image of a 2.0-cm-tall slide. The screen is 300 cm from the 
slide.
a. What focal length does the lens need? Assume that it is a thin 

lens.
b. How far should you place the lens from the slide?

68. || A lightbulb is 3.0 m from a wall. What are the focal length 
and the position (measured from the bulb) of a lens that will form 
an image on the wall that is twice the size of the lightbulb?

69. || A converging lens with focal length f creates a real image of 
an object. What is the minimum possible distance between the 
object and its image? Your answer will be a multiple of f.

70. || A plano-concave glass lens (flat on one side, concave on the 
other) creates an image with magnification +0.40 of an object  
75 cm from the lens. What is the radius of curvature of the lens’s 
curved surface?

71. || An object is 60 cm from a screen. What are the radii of a sym-
metric converging plastic lens (i.e., two equally curved surfaces) 
that will form an image on the screen twice the height of the object?

72. || A lens placed 10 cm in front of an object creates an upright 
image twice the height of the object. The lens is then moved 
along the optical axis until it creates an inverted image twice the 
height of the object. How far did the lens move?

73. || A wildlife photographer with a 200-mm-focal-length tele-
photo lens on his camera is taking a picture of a rhinoceros that 
is 100 m away. Suddenly, the rhino starts charging straight to-
ward the photographer at a speed of 5.0 m/s. What is the speed, 
in mm/s, of the image of the rhinoceros? Is the image moving 
toward or away from the lens?

74. || Some electro-optic materials can change their index of refrac-
tion in response to an applied voltage. Suppose a plano-convex 
lens (flat on one side, a 15.0 cm radius of curvature on the other), 
made from a material whose normal index of refraction is 1.500, 
is creating an image of an object that is 50.0 cm from the lens. By 
how much would the index of refraction need to be increased to 
move the image 5.0 cm closer to the lens?

75. || A concave mirror has a 40 cm radius of curvature. How far 
from the mirror must an object be placed to create an upright 
image three times the height of the object?

76. || A 2.0-cm-tall object is placed in front of a mirror. A 1.0-cm-
tall upright image is formed behind the mirror, 150 cm from the 
object. What is the focal length of the mirror?

77. || A cosmetic mirror has a magnification of 2.0 when you 
look into it from 30 cm away. What is the mirror’s radius of 
curvature?

78. || A spherical mirror of radius R has its center at C, as shown in 
FIGURE P34.78. A ray parallel to the axis reflects through F, the 
focal point. Prove that f = R/2 if f V 1 rad.

58. || There’s one angle of incidence b 
onto a prism for which the light inside 
an isosceles prism travels parallel to the 
base and emerges at angle b.
a. Find an expression for b in terms of 

the prism’s apex angle a and index 
of refraction n.

b. A laboratory measurement finds that b = 52.2° for a prism 
shaped like an equilateral triangle. What is the prism’s index 
of refraction?

59. || You’re visiting the shark tank at the aquarium when you see 
a 2.5-m-long shark that appears to be swimming straight toward 
you at 2.0 m/s. What is the shark’s actual speed through the 
water? You can ignore the glass wall of the tank.

60. || Paraxial light rays approach a transparent sphere parallel to 
an optical axis passing through the center of the sphere. The rays 
come to a focus on the far surface of the sphere. What is the 
sphere’s index of refraction?

61. || To determine the focal length of a lens, you place the lens in 
front of a small lightbulb and then adjust a viewing screen to get 
a sharply focused image. Varying the lens position produces the 
following data:

Bulb to lens (cm) Lens to screen (cm)

20 61

22 47

24 39

26 37

28 32

Use the best-fit line of an appropriate graph to determine the 
focal length of the lens.

62. | A dentist uses a curved mirror to view the back side of teeth in 
the upper jaw. Suppose she wants an upright image with a magnifi-
cation of 1.5 when the mirror is 1.2 cm from a tooth. Should she use 
a convex or a concave mirror? What focal length should it have?

63. || The illumination lights in an operating room use a concave 
mirror to focus an image of a bright lamp onto the surgical site. 
One such light uses a mirror with a 30 cm radius of curvature. If 
the mirror is 1.2 m from the patient, how far should the lamp be 
from the mirror?

64. ||| A keratometer is an optical device used to measure the ra-
dius of curvature of the eye’s cornea—its entrance surface. This 
measurement is especially important when fitting contact lenses, 
which must match the cornea’s curvature. Most light incident on 
the eye is transmitted into the eye, but some light reflects from 
the cornea, which, due to its curvature, acts like a convex mirror. 
The keratometer places a small, illuminated ring of known diam-
eter 7.5 cm in front of the eye. The optometrist, using an eyepiece, 
looks through the center of this ring and sees a small virtual image 
of the ring that appears to be behind the cornea. The optometrist 
uses a scale inside the eyepiece to measure the diameter of the 
image and calculate its magnification. Suppose the optometrist 
finds that the magnification for one patient is 0.049. What is the 
absolute value of the radius of curvature of her cornea?

65. || A 2.0-cm-tall candle flame is 2.0 m from a wall. You happen 
to have a lens with a focal length of 32 cm. How many places 
can you put the lens to form a well-focused image of the candle 
flame on the wall? For each location, what are the height and 
orientation of the image?

FIGURE P34.58
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1046 CHAPTER 34 Ray Optics

a. Write an expression for the time t it takes the light ray to 
travel from A to B. Your expression should be in terms of 
the distances a, b, and w; the variable x; and the indices of 
refraction n1 and n2.

b. The time depends on x. There’s one value of x for which the 
light travels from A to B in the shortest possible time. We’ll 
call it xmin. Write an expression (but don’t try to solve it!) 
from which xmin could be found.

c. Now, by using the geometry of the figure, derive Snell’s law 
from your answer to part b.

You’ve proven that Snell’s law is equivalent to the statement that 
“light traveling between two points follows the path that requires 
the shortest time.” This interesting way of thinking about refrac-
tion is called Fermat’s principle.

82. ||| A fortune teller’s “crystal ball” (actually just glass) is 10 cm 
in diameter. Her secret ring is placed 6.0 cm from the edge of the 
ball.
a. An image of the ring appears on the opposite side of the crys-

tal ball. How far is the image from the center of the ball?
b. Draw a ray diagram showing the formation of the image.
c. The crystal ball is removed and a thin lens is placed where 

the center of the ball had been. If the image is still in the 
same position, what is the focal length of the lens?

83. ||| Consider an object of thickness ds (parallel to the axis) in 
front of a lens or mirror. The image of the object has thickness 
ds′. Define the longitudinal magnification as M = ds′/ds. Prove 
that M = -m2, where m is the lateral magnification.

Challenge Problems
79. ||| The mirror in FIGURE CP34.79 is covered with a piece of glass 

whose thickness at the center equals the mirror’s radius of cur-
vature. A point source of light is outside the glass. How far from 
the mirror is the image of this source?

Glass

4.0 cm

2.0 cm

FIGURE CP34.79
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B
FIGURE CP34.81

80. ||| Consider a lens having index of refraction n2 and surfaces 
with radii R1 and R2. The lens is immersed in a fluid that has 
index of refraction n1.
a. Derive a generalized lens maker’s equation to replace 

Equation 34.26 when the lens is surrounded by a medium 
other than air. That is, when n1 ≠ 1.

b. A symmetric converging glass lens (i.e., two equally curved 
surfaces) has two surfaces with radii of 40 cm. Find the focal 
length of this lens in air and the focal length of this lens in 
water.

81. ||| FIGURE CP34.81 shows a light ray that travels from point A 
to point B. The ray crosses the boundary at position x, making 
angles u1 and u2 in the two media. Suppose that you did not know 
Snell’s law.
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Optical Instruments

What is an optical instrument?
Optical instruments, such as cameras,  
microscopes, and telescopes, are used to  
produce images for viewing or detection. Most 
use several individual lenses in combination 
to improve performance. You’ll learn how to 
analyze a system with multiple lenses.

❮❮ LOOKING BACK Sections 34.5–34.6  
Thin lenses

How does a camera work?
A camera uses a lens—made of several  
individual lenses—to project a real image 
onto a light-sensitive detector. The detector 
in a digital camera uses millions of tiny pixels.

■■ You’ll learn about focusing and zoom.
■■ You’ll also learn how to calculate a lens’s 

f-number, which, along with shutter 
speed, determines the exposure.

How does vision work?
The human eye is much like a camera;  
the cornea and lens together focus a  
real image onto the retina. You’ll learn 
about two defects of vision—myopia  
(nearsightedness) and hyperopia  
(farsightedness)—and how they can be  
corrected with eyeglasses.

What optical systems are used to magnify things?
Lenses and mirrors can be used to magnify  
objects both near and far.

■■ A simple magnifying glass has a low 
magnification of 2*  or 3* .

■■ Microscopes use two sets of lenses to  
reach magnifications up to 1000* .

■■ Telescopes magnify distant objects.

Is color important in optics?
Color depends on the wavelength of light.

■■ The index of refraction is slightly  
wavelength dependent, so different  
wavelengths refract at different angles.  
This is the main reason we have rainbows.

■■ Many materials absorb or scatter some  
wavelengths more than others.

What is the resolution of an optical system?
Light passing through a lens undergoes  
diffraction, just like light passing through a  
circular hole. Images are not perfect points  
but are tiny diffraction patterns, and this  
limits how well two nearby objects can  
be resolved. You’ll learn about Rayleigh’s  
criterion for the resolution of two images.

❮❮ LOOKING BACK Section 33.6 Circular-aperture  
diffraction

IN THIS CHAPTER, you will learn about some common optical instruments and their limitations.

35

A modern phone has three 
independent cameras. Each, 
with its own lens, is optimized 
for a particular type of photo.

Aperture

Lens

Retina
Lens

Cornea

You can text

Sunlight

Rainbow
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1048 CHAPTER 35 Optical Instruments

35.1 Lenses in Combination
Only the simplest magnifiers are built with a single lens of the sort we analyzed in 
Chapter 34. Optical instruments, such as microscopes and cameras, are invariably 
built with multiple lenses. The reason, as we’ll see, is to improve the image quality.

The analysis of multi-lens systems requires only one new rule: The image of the 
first lens acts as the object for the second lens. To see why this is so, FIGURE 35.1 shows 
a simple telescope consisting of a large-diameter converging lens, called the objective, 
and a smaller converging lens used as the eyepiece. (We’ll analyze telescopes more 
thoroughly later in the chapter.) Highlighted are the three special rays you learned to  
use in Chapter 34:

■■ A ray parallel to the optical axis refracts through the focal point.
■■ A ray through the focal point refracts parallel to the optical axis.
■■ A ray through the center of the lens is undeviated.

P

f1

Virtual image seen
through the eyepiece

The real image of the objective lens
acts as the object for the eyepiece lens.

Objective lens

Object

Eyepiece

Lens plane

P′

P ″

Special rays of
the eyepiece

f1 f2f2

Special rays of
the objective

FIGURE 35.1 Ray-tracing diagram of a simple astronomical telescope.

The rays passing through the objective converge to a real image at P′  , but they 
don’t stop there. Instead, light rays diverge from P′ as they approach the second 
lens. As far as the eyepiece is concerned, the rays are coming from P∙  , and thus 
P∙ acts as the object for the second lens. The three special rays passing through the 
objective lens are sufficient to locate the image P′  , but these rays are generally not 
the special rays for the second lens. However, other rays converging at P′ leave at the 
correct angles to be the special rays for the eyepiece. That is, a new set of special rays 
is drawn from P′ to the second lens and used to find the final image point P″.

   NOTE    One ray seems to “miss” the eyepiece lens, but this isn’t a problem. All rays 
passing through the lens converge to (or diverge from) a single point, and the purpose 
of the special rays is to locate that point. To do so, we can let the special rays refract as 
they cross the lens plane, regardless of whether the physical lens really extends that far.

A magnifying “lens” (used 
in the singular) is usually a 
combination of two or more 
lenses. The combination has 
much better optical prop-
erties than a single lens be-
cause, as you’ll learn later in 
the chapter, the combination 

is able to reduce or eliminate aberrations that impair a lens’s ability 
to form sharp images. Consider a magnifying lens in which light 
passes through first a diverging lens, with f1 = -10.0 mm, and 
then a converging lens, with f2 = 20.0 mm, with the two lenses 
spaced 12.0 mm apart. Suppose you use this combination lens to 
view a small bug 20.0 mm from the diverging lens while you look 
through the converging lens. Where is the bug’s image, and what is 
its lateral magnification?

EXAMPLE 35.1 ■ A magnifying lens
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35.1 Lenses in Combination 1049

A combination lens, such as a magnifier or a camera lens or the eyepiece lens for a 
telescope, can be characterized by an effective focal length. For example, a camera 
lens might be specified as a “35 mm lens,” which means an effective focal length of 
35 mm. The calculation of effective focal lengths for real lenses is the subject of an 
advanced optics course, but the result for a combination of two thin lenses is simple. 
For two thin lenses with focal lengths f1 and f2 separated by distance L, their effective 
focal length feff is given by

 
1

feff
=

1
f1

+
1
f2

-
L

f1  f2
 (35.1)

For example, we can calculate that the magnifying lens of Example 35.1 has effective 
focal length feff = 100 mm. The idea of effective focal length will be especially 
important when we look at camera lenses in the next section.

Two thin lenses in contact have separation L = 0, and thus the inverse of the effec-
tive focal length is the sum of the inverses of the individual focal lengths. We can state 
this more clearly by defining the power of a lens as the inverse of its focal length:

 Power of a lens = P =
1
f

 (35.2)

MODEL Each lens is a thin lens. The image of the first lens is the 
object for the second lens.

VISUALIZE FIGURE 35.2 shows the geometry and a few of the rays. 
The image is an upright, virtual image far to the left of the diverg-
ing lens.

SOLVE For the first lens, the bug is at object distance s1 = 20.0 mm. 
Its image is found from the thin-lens equation:

1
s=1

=
1
f1

-
1
s1

=
1

-10.0 mm
-

1
20.0 mm

= -0.150 mm-1

s=1 = -6.67 mm

This is a virtual image 6.67 mm to the left of the first lens. The 
magnification of the first lens is

m1 = -
s=1
s1

= -
-6.67 mm
20.0 mm

= +0.333

The image of the diverging lens now acts as the object for the con-
verging lens. It is distance s2 = 6.67 mm + 12.0 mm = 18.67 mm 
from the second lens. Another application of the thin-lens equation 
yields

1
s=2

=
1
f2

-
1
s2

=
1

20.0 mm
-

1
18.67 mm

= -0.00357 mm-1

s=2 = -280 mm

This is a virtual image 280 mm to the left of the converging lens 
with magnification

m2 = -
s2′
s2

= -
-280 mm
18.67 mm

= +15.0

The second lens magnifies the image of the first lens, so the total 
magnification is the product of the individual magnifications:

mtotal = m1m2 = +5.00

Thus an upright image 280 mm in front of the converging lens has 
a total lateral magnification of +5.00. You see this image when you 
look at the bug through the converging lens.

REVIEW A hand lens like the one in the photo usually consists 
of two lenses (a doublet) or three (a triplet). The magnification 
marking *10 is the angular magnification, which we’ll introduce 
in Section 35.4, not the lateral magnification that we calculated in 
this example.

The image of the first lens acts as
the object for the second lens.

Rays are diverging from
an image far to the left.

FIGURE 35.2 Pictorial representation of a combination lens.
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1050 CHAPTER 35 Optical Instruments

A lens with more power (a shorter focal length) causes light rays to refract through 
a larger angle. The SI unit of lens power is the diopter, abbreviated D, defined as 
1 D = 1 m-1. Thus a lens with f = 50 cm = 0.50 m has power P = 2.0 D.

You can see that Peff = P1 + P2 for thin lenses in contact. That is, the total refrac-
tive power is simply the sum of the individual refractive powers. But be careful to 
apply this only to lenses in contact; you still need to use Equation 35.1 for the more 
general situation.

STOP TO THINK 35.1 The second lens in this optical instrument

a. Causes the light rays to focus closer than they would 
with the first lens acting alone.

b. Causes the light rays to focus farther away than they 
would with the first lens acting alone.

c. Inverts the image but does not change where the light 
rays focus.

d. Prevents the light rays from reaching a focus.
Lens 1 Lens 2

35.2 The Camera
A camera, shown in FIGURE 35.3, “takes a picture” by using a lens to focus a real, in-
verted image on a light-sensitive detector. The camera lens is always a combination of 
two or more individual lenses. Real camera lenses are quite complex; a professional- 
quality lens may have as many as eight individual lenses. Fortunately, the simple two-
lens model of FIGURE 35.4 illustrates the main ideas. This combination of converging 
and diverging lenses corrects some of the defects inherent in a single lens, as we’ll 
discuss later in the chapter.

Aperture

Object

Image

Detector

Lens

FIGURE 35.3 A camera.

Lens barrel
Shorter focal length Longer focal length

Focal point of the converging lens

FIGURE 35.4 A simple camera lens is a combination lens.

A zoom lens changes the effective focal length by changing the spacing between 
the converging and diverging lenses. This is what’s happening when the lens barrel 
on a camera moves in and out as you use the zoom. For objects more than about 10 
focal lengths from the lens, which would typically be no more than about 50 cm, the 
condition s W feff (and thus 1/s V 1/feff) leads to the approximation s′ ≈ feff. In 
other words, objects more than about 10 focal lengths away are essentially at infinity, 
so parallel rays are focused one focal length behind the lens.

For such an object, the lateral magnification of the image is

   m = -
s′
s

≈
f
s

 (35.3)

Equation 35.3 tells us that the size of the image is directly proportional to the effective 
focal length of the lens. The effective focal length is easily changed by varying the 
distance between the individual lenses, and this is exactly how a zoom lens works. A 
lens that can be varied from feff min = 6 mm to feff max = 18 mm gives magnifications 
spanning a factor of 3, and that is why it is specified as a 3* zoom lens. This is typical 
of the lens on a point-and-shoot camera.
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Controlling the Exposure
The camera also must control the amount of light reaching the detector. Too little light 
results in photos that are underexposed; too much light gives overexposed pictures. 
Both the shutter and the lens diameter help control the exposure.

The shutter is “opened” for a selected amount of time as the image is recorded. 
Older cameras used a spring-loaded mechanical shutter that literally opened and 
closed; digital cameras electronically control the amount of time the detector is active. 
Either way, the exposure—the amount of light captured by the detector—is directly  
proportional to the time the shutter is open. Typical exposure times range from 
1/1000 s or less for a sunny scene to 1/30 s or more for dimly lit or indoor scenes. The 
exposure time is generally referred to as the shutter speed.

The amount of light passing through the lens is controlled by an adjustable  
aperture, also called an iris because it functions much like the iris of your eye. The 
aperture sets the effective diameter D of the lens. The full area of the lens is used when  
the aperture is fully open, but a stopped-down aperture allows light to pass through only  
the central portion of the lens.

The light intensity on the detector is directly proportional to the area of the aper-
ture; a lens with twice as much area will collect and focus twice as many light rays 
from the object to make an image twice as bright. The aperture area is proportional to 
the square of its diameter, so the intensity I is proportional to D2. The light intensity—
power per square meter—is also inversely proportional to the area of the image. That 
is, the light reaching the detector is more intense if the rays collected from the object 
are focused into a small area than if they are spread out over a large area. The lateral 
size of the image is proportional to the focal length of the lens, as we saw in Equation 
35.3, so the area of the image is proportional to f 2 and thus I is proportional to 1/f 2. 
Altogether, I ∝ D2/f 2.

By long tradition, the light-gathering ability of a lens is specified by its f-number, 
defined as

 f@number =
f

D
 (35.4)

The f@number of a lens may be written either as f/4.0, to mean that the f@number is 4.0, 
or as F4.0. The instruction manuals with some digital cameras call this the aperture 
value rather than the f@number. A digital camera in fully automatic mode does not dis-
play shutter speed or f@number, but that information is displayed if you set your camera 
to any of the other modes. For example, the display 1/125 F5.6 means that your camera 
is going to achieve the correct exposure by adjusting the diameter of the lens aperture 
to give f/D = 5.6 and by opening the shutter for 1/125 s. If your lens’s effective focal  
length is 10 mm, the diameter of the lens aperture will be

D =
f

f@number
=

10 mm
5.6

= 1.8 mm

The front element of the zoom lens on a camera is a converging lens 
with a focal length of 30 mm. The rear element is a diverging lens 
with a -44 mm focal length. The distance between the lenses can be 
varied from 5.0 mm to 24 mm. What is the zoom range of this lens?

MODEL Each lens is a thin lens. The effective focal length of the 
lens combination is given by Equation 35.1.

VISUALIZE The lens geometry was shown in Figure 35.4.

SOLVE When the lenses are close together, separated by only 5.0 mm,  
the effective focal length is calculated as

1
feff

=
1

30 mm
+

1
-44 mm

-
5.0 mm

(30 mm)(-44 mm)
= 0.0144 mm-1

feff max = 70 mm

A similar calculation when the lenses are separated by 24 mm gives 
feff min = 35 mm. This lens would be specified as a 35–70  mm 
zoom lens.

REVIEW This type of lens is used on a larger camera that has the 
zoom lenses specified by their focal-length range rather than by 
their magnification range.

EXAMPLE 35.2 ■ Designing a zoom lens

An iris can change the effective diameter 
of a lens and thus the amount of light 
reaching the detector.
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   NOTE    The f in f@number is not the focal length f ; it’s just a name. And the / in f/4 
does not mean division; it’s just a notation. These both derive from the long history 
of photography.

Because the aperture diameter is in the denominator of the f@number, a larger- 
diameter aperture, which gathers more light and makes a brighter image, has a smaller 
f@number. The light intensity on the detector is related to the lens’s f@number by

 I ∝
D2

f 2 =
1

( f@number)2 (35.5)

Historically, a lens’s f@numbers could be adjusted in the sequence 2.0, 2.8, 4.0, 5.6, 
8.0, 11, 16. Each differs from its neighbor by a factor of 12, so changing the lens by 
one ;f stop” changed the light intensity by a factor of 2. A modern digital camera is 
able to adjust the f@number continuously.

The exposure, the total light reaching the detector while the shutter is open,  
depends on the product I ∆tshutter. A small f@number (large aperture diameter D) and 
short ∆tshutter can produce the same exposure as a larger f@number (smaller aperture) 
and a longer ∆tshutter. It might not make any difference for taking a picture of a distant 
mountain, but action photography needs very short shutter times to “freeze” the 
action. Thus action photography requires a large-diameter lens with a small f@number.

Focal length and f-number information 
is stamped on a camera lens. This lens is 
labeled 5.8–23.2 mm 1:2.6–5.5. The first 
numbers are the range of focal lengths. 
They span a factor of 4, so this is a 4*  
zoom lens. The second numbers show 
that the minimum f-number ranges from 
F2.6 (for the 5.8 mm focal length) to  
F5.5 (for the 23.2 mm focal length).

Before a race, a photographer finds that she can make a perfectly 
exposed photo of the track while using a shutter speed of 1/250 s 
and a lens setting of F8.0. To freeze the sprinters as they go past, 
she plans to use a shutter speed of 1/1000 s. To what f@number must 
she set her lens?

MODEL The exposure depends on I ∆tshutter, and the light intensity 
depends inversely on the square of the f@number.

SOLVE Changing the shutter speed from 1/250 s to 1/1000 s 
will reduce the light reaching the detector by a factor of 4. To 
compensate, she needs to let 4 times as much light through the 
lens. Because I  is proportional to 1/(f@number)2, the intensity will 
increase by a factor of 4 if she decreases the f@number by a factor 
of 2. Thus the correct lens setting is F4.0.

EXAMPLE 35.3 ■ Capturing the action

The Detector
For traditional cameras, the light-sensitive detector was film. Today’s digital cam-
eras use a rectangular array of many millions of small light detectors called pixels. 
When light hits one of these pixels, it generates an electric charge proportional to the 
light intensity. Thus an image is recorded on the detector in terms of little packets of 
charge. After the image has been recorded, the charges are read out, the signal levels 
are digitized, and the picture is stored in the digital memory of the camera.

FIGURE 35.5a shows a detector “chip” and, schematically, the magnified appearance 
of the pixels on its surface. To record color information, different pixels are covered by 
red, green, or blue filters. A pixel covered by a green filter, for instance, records only 
the intensity of the green light hitting it. Later, the camera’s microprocessor interpolates 
nearby colors to give each pixel an overall true color. The pixels are so small—a few 
micrometers across—that the picture looks “smooth” even after some enlargement. Even 
so, as you can see in FIGURE 35.5b, sufficient magnification reveals the individual pixels.

(b)

40 *

4600 * 3500 pixels

1 pixel

(a)

FIGURE 35.5 The detector used in a digital 
camera.

STOP TO THINK 35.2 A photographer has adjusted his camera for a correct ex posure  
with a short-focal-length lens. He then decides to zoom in by increasing the focal 
length. To maintain a correct exposure without changing the shutter speed, the dia-
meter of the lens aperture should

a. Be increased. b. Be decreased. c. Stay the same.
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35.3 Vision
The human eye is a marvelous and intricate organ. If we leave the biological details  
to biologists and focus on the eye’s optical properties, we find that it functions  
very much like a camera. Like a camera, the eye has refracting surfaces that focus 
incoming light rays, an adjustable iris to control the light intensity, and a light- 
sensitive detector.

FIGURE 35.6 shows the basic structure of the eye. It is roughly spherical, about  
2.4 cm in diameter. The transparent cornea, which is somewhat more sharply curved, 
and the lens are the eye’s refractive elements. The eye is filled with a clear, jellylike 
fluid called the aqueous humor (in front of the lens) and the vitreous humor (behind 
the lens). The indices of refraction of the aqueous and vitreous humors are 1.34, only 
slightly different from the 1.33 of pure water. The lens, although not uniform, has an 
average index of 1.40. The pupil, a variable-diameter aperture in the iris, automati-
cally opens and closes to control the light intensity. A fully dark-adapted eye can open 
to ≈8 mm, and the pupil closes down to ≈1.5 mm in bright sun. This corresponds to 
f@numbers from roughly F3 to F16, very similar to a camera.

Optic
nerve

Retina

Lens

Cornea

Cornea

Ciliary muscle

Aqueous humor Most of the refraction occurs
at the cornea’s surface.

Vitreous humor

Iris

Pupil

FIGURE 35.6 The human eye.

The eye’s detector, the retina, consists of specialized light-sensitive cells called 
rods and cones. The rods, sensitive mostly to light and dark, are most important in 
very dim lighting. Color vision, which requires somewhat more light, is due to the 
cones, of which there are three types. FIGURE 35.7 shows the wavelength responses 
of the cones. They have overlapping ranges, especially the red- and green-sensitive 
cones, so two or even all three cones respond to light of any particular wavelength.  
The relative response of the different cones is interpreted by your brain  
as light of a particular color. Color is a perception, a response of our sensory and 
nervous systems, not something inherent in the light itself. Other animals, with 
slightly different retinal cells, can see ultraviolet or infrared wavelengths that we  
cannot see.

Focusing and Accommodation
The eye, like a camera, focuses light rays to an inverted image on the retina. Perhaps 
surprisingly, most of the refractive power of the eye is due to the cornea, not the lens. 
The cornea is a sharply curved, spherical surface, and you learned in Chapter 34 that 
images are formed by refraction at a spherical surface. The rather large difference 
between the index of refraction of air and that of the aqueous humor causes a significant 
refraction of light rays at the cornea. In contrast, there is much less difference between 
the indices of the lens and its surrounding fluid, so refraction at the lens surfaces is 
weak. The lens fine-tunes the eye’s focus, but the air-cornea boundary is responsible  
for the majority of the refraction.

l (nm)
400 500 600 700

Relative
sensitivity

Blue-sensitive
cones

Red-sensitive
cones

Green-sensitive
cones

The eye has maximum
sensitivity for green
light at l ≈ 550 nm.

FIGURE 35.7 Wavelength sensitivity of the 
three types of cones in the human retina.
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The ciliary muscles are relaxed
for distant vision. 

The ciliary muscles are contracted
for near vision, causing the lens to
curve more. 

FP = ∞

NP = 25 cm

FIGURE 35.8 Normal vision of far and  
near objects.

You can recognize the power of the cornea if you open your eyes underwater. 
Everything is very blurry! When light enters the cornea through water, rather than 
through air, there’s almost no difference in the indices of refraction at the surface. 
Light rays pass through the cornea with almost no refraction, so what little focusing 
ability you have while underwater is due to the lens alone.

A camera focuses by moving the lens. The eye focuses by changing the focal length 
of the lens, a feat it accomplishes by using the ciliary muscles to change the curvature 
of the lens surface. The ciliary muscles are relaxed when you look at a distant scene. 
Thus the lens surface is relatively flat and the lens has its longest focal length. As  
you shift your gaze to a nearby object, the ciliary muscles contract and cause the 
lens to bulge. This process, called accommodation, decreases the lens’s radius of 
curvature and thus decreases its focal length.

The farthest distance at which a relaxed eye can focus is called the eye’s far point 
(FP). The far point of a normal eye is infinity; that is, the relaxed eye can focus on objects  
extremely far away. The closest distance at which an eye can focus, using maximum 
accommodation, is the eye’s near point (NP). (Objects can be seen closer than the near 
point, but they’re not sharply focused on the retina.) A near point of 25 cm—typical of 
young adults—is considered to be normal vision. Both situations are shown in FIGURE 35.8.

Refractive Errors of the Eye and Their Correction
The near point of normal vision is considered to be 25 cm, but the near point of  
any individual changes with age. The near point of young children can be as little as  
10 cm. The “normal” 25 cm near point is characteristic of young adults, but the near 
point of most individuals begins to move outward by age 40 or 45 and can reach 
200 cm by age 60. This loss of accommodation, which arises because the lens loses 
flexibility, is called presbyopia. Even if their vision is otherwise normal, individuals 
with presbyopia need reading glasses to bring their near point back to 25 or 30 cm, a 
comfortable distance for reading.

Presbyopia is known as a refractive error of the eye. Two other common refractive 
errors are hyperopia and myopia. All three can be corrected with lenses—either 
eyeglasses or contact lenses—that assist the eye’s focusing. Corrective lenses are pre-
scribed not by their focal length but by their power, the inverse of the focal length in m.

A person who is farsighted can see faraway objects (but even then must use some 
accommodation rather than a relaxed eye), but his near point is larger than 25 cm, often 
much larger, so he cannot focus on nearby objects. The cause of farsightedness—called 
hyperopia—is an eyeball that is too short for the refractive power of the cornea and 
lens. As FIGURES 35.9a and b show, no amount of accommodation allows the eye to focus  
on an object 25 cm away, the normal near point.

With hyperopia, the eye needs assistance to focus the rays from a near object onto the 
closer-than-normal retina. This assistance is obtained by adding refractive power with 
the positive (i.e., converging) lens shown in FIGURE 35.9c. To understand why this works, 
recall that the image of a first lens acts as the object for a second lens. The goal is to 
allow the person to focus on an object 25 cm away. If a corrective lens forms an upright, 
virtual image at the person’s actual near point, that virtual image acts as an object for 
the eye itself and, with maximum accommodation, the eye can focus these rays onto the 
retina. Presbyopia, the loss of accommodation with age, is corrected in the same way.

   NOTE    Figures 35.9 and 35.10 show the corrective lenses as they are actually shaped—
called meniscus lenses—rather than with our usual lens shape. Nonetheless, the  
lens in Figure 35.9c is a converging lens because it’s thicker in the center than at the 
edges. The lens in Figure 35.10c is a diverging lens because it’s thicker at the edges 
than in the center.

A person who is nearsighted can clearly see nearby objects when the eye is relaxed 
(and extremely close objects by using accommodation), but no amount of relaxation 
allows her to see distant objects. Nearsightedness—called myopia—is caused by an 
eyeball that is too long. As FIGURE 35.10a shows, rays from a distant object come to a 
focus in front of the retina and have begun to diverge by the time they reach the retina. 
The eye’s far point, shown in FIGURE 35.10b, is less than infinity.

The optometrist’s prescription is -2.25 D 
for the right eye (top) and -2.50 D for the  
left (bottom), the minus sign indicating 
that these are diverging lenses. The 
optometrist doesn’t write the D because 
the lens maker already knows that pre-
scriptions are in diopters. Most people’s 
eyes are not exactly the same, so each  
eye usually gets a different lens.
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To correct myopia, we needed a diverging lens, as shown in FIGURE 35.10c, to slightly 
defocus the rays and move the image point back to the retina. To focus on a very 
distant object, the person needs a corrective lens that forms an upright, virtual image 
at her actual far point. That virtual image acts as an object for the eye itself and, when 
fully relaxed, the eye can focus these rays onto the retina.

A converging lens forms a virtual image 
at the eye’s near point. This image acts as 
the object for the eye and is what the eye 
actually focuses on. 

Maximum accommodation

NP 7 25 cm

With maximum accommodation, the 
eye tries to focus the image behind the 
actual retina. Thus the image is blurry. 

Shortened eyeball

Retina position
of normal eye

Focused image

This is the closest point at 
which the eye can focus. 

25 cm

(a)

(b)

(c)

25 cm

This is the actual object the 
eye wants to see. 

FIGURE 35.9 Hyperopia.

Parallel rays from
distant object

Elongated eyeball

Retina position
of normal eye

Focused image

A fully relaxed eye focuses the image in front 
of the actual retina. The image is blurry. 

Fully relaxed

FP 6 ∞

This is the farthest point at 
which the eye can focus. 

The eye wants to see
a distant object. 

A diverging lens forms a virtual image 
at the eye’s far point. This image acts 
as the object for the eye and is what 
the eye actually focuses on. 

(a)

(b)

(c)

FIGURE 35.10 Myopia.

Sanjay has hyperopia. The near point of his left eye is 150 cm. 
What prescription lens will restore normal vision?

MODEL Normal vision will allow Sanjay to focus on an object  
25 cm away. In measuring distances, we’ll ignore the small space 
between the lens and his eye.

SOLVE Because Sanjay can see objects at 150 cm, using maximum 
accommodation, we want a lens that creates a virtual image at  

position s′ = -150 cm (negative because it’s a virtual image) of an 
object held at s = 25 cm. From the thin-lens equation,

1
f

=
1
s

+
1
s′

=
1

0.25 m
+

1
-1.50 m

= 3.3 m-1

1/f  is the lens power, and m-1 are diopters. Thus the prescription is 
for a lens with power P = 3.3 D.

REVIEW Hyperopia is always corrected with a converging lens.

EXAMPLE 35.4 ■ Correcting hyperopia

Martina has myopia. The far point of her left eye is 200 cm. What 
prescription lens will restore normal vision?

MODEL Normal vision will allow Martina to focus on a very dis-
tant object. In measuring distances, we’ll ignore the small space 
between the lens and her eye.

SOLVE Because Martina can see objects at 200 cm with a fully re-
laxed eye, we want a lens that will create a virtual image at position 

s′ =  -200 cm (negative because it’s a virtual image) of a distant 
object at s = ∞  cm. From the thin-lens equation,

1
f

=
1
s

+
1
s′

=
1

∞   m
 +

1
-2.0 m

= -0.5 m-1

Thus the prescription is for a lens with power P = -0.5 D.

REVIEW Myopia is always corrected with a diverging lens.

EXAMPLE 35.5 ■ Correcting myopia
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35.4 Optical Systems That Magnify
A camera allows us to capture images of events that take place too quickly for our 
unaided eye to resolve. Another use of optical systems is to magnify—to see objects 
smaller or closer together than our eye can see.

The easiest way to magnify an object requires no extra optics at all; simply get 
closer! The closer you get, the bigger the object appears. Obviously the actual size 
of the object is unchanged as you approach it, so what exactly is getting “bigger”? 
Consider the green arrow in FIGURE 35.11a. We can determine the size of its image on 
the retina by tracing the rays that are undeviated as they pass through the center of the 
lens. (Here we’re modeling the eye’s optical system as one thin lens.) If we get closer 
to the arrow, now shown as red, we find the arrow makes a larger image on the retina. 
Our brain interprets the larger image as a larger-appearing object. The object’s actual 
size doesn’t change, but its apparent size gets larger as it gets closer.

Technically, we say that closer objects look larger because they subtend a larger 
angle u, called the angular size of the object. The red arrow has a larger angular 
size than the green arrow, u2 7 u1, so the red arrow looks larger and we can see more 
detail. But you can’t keep increasing an object’s angular size by moving closer be-
cause you can’t focus on the object if it’s closer than your near point, which we’ll take 
to be a normal 25 cm. FIGURE 35.11b defines the angular size uNP of an object at your 
near point. If the object’s height is h and if we assume the small-angle approximation 
tan u ≈ u, the maximum angular size viewable by your unaided eye is

 uNP =
h

25 cm
 (35.6)

Suppose we view the same object, of height h, through the single converging lens 
in FIGURE 35.12. If the object’s distance from the lens is less than the lens’s focal length, 
we’ll see an enlarged, upright image. Used in this way, the lens is called a magnifier 
or magnifying glass. The eye sees the virtual image subtending angle u, and it can 
focus on this virtual image as long as the image distance is more than 25 cm. Within 
the small-angle approximation, the image subtends angle u = h/s. In practice, we 
usually want the image to be at distance s′ ≈ ∞  so that we can view it with a relaxed 
eye as a “distant object.” This will be true if the object is very near the focal point: 
s ≈ f. In this case, the image subtends angle

 u =
h
s

≈
h
f

 (35.7)

STOP TO THINK 35.3 You need to improvise a magnifying glass to read some very 
tiny print. Should you borrow the eyeglasses from your hyperopic friend or from your 
myopic friend?

a. The hyperopic friend b. The myopic friend
c. Either will do. d. Neither will work.

As the object gets closer, the angle 
it subtends becomes larger. Its 
angular size has increased.

Further, the size of the image
on the retina gets larger. The
object’s apparent size has
increased.

(a) Same object at two different distances

(b)

u1

u2

25 cm

uNPh

Near point

FIGURE 35.11 Angular size.

u

s

f

Virtual image

The image of the lens acts as the object
for the eye. This is what the eye focuses on.

The object is placed very near
the focal point of the lens.

Object

h

FIGURE 35.12 The magnifier.
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Let’s define the angular magnification M as

 M =
u

uNP
 (35.8)

Angular magnification is the increase in the apparent size of the object that you achieve 
by using a magnifying lens rather than simply holding the object at your near point. 
Substituting from Equations 35.6 and 35.7, we find the angular magnification of a  
magnifying glass is

 M =
25 cm

f
 (35.9)

The angular magnification depends on the focal length of the lens but not on the size of 
the object. Although it would appear we could increase angular magnification without 
limit by using lenses with shorter and shorter focal lengths, the inherent limitations of 
lenses we discuss later in the chapter limit the magnification of a simple lens to about 
4* . More complex magnifiers with two or three lenses reach 20* , but beyond that one  
would use a microscope.

   NOTE    Don’t confuse angular magnification M with lateral magnification m. Lateral  
magnification compares the height of an object to the height of its image. The  
lateral magnification of a magnifying glass is ≈∞  because the virtual image is at 
s′ ≈ ∞   , but that doesn’t make the object seem infinitely big. Its apparent size is 
determined by the angle subtended on your retina, and that angle remains finite. 
Thus angular magnification tells us how much bigger things appear.

The Microscope
Microscopes are ubiquitous in science and engineering. You may have used a com-
pound microscope, like the one in FIGURE 35.13, in a laboratory course. The essential 
idea is that a microscope can achieve a magnification up to 1000* by a two-step 
magnification process.

   NOTE    Many microscopes, like the one in Figure 35.13, use a prism to bend the light 
path to a comfortable viewing angle. This doesn’t change the imaging properties, 
so we’ll consider a simplified model in which the light travels along a straight tube.

FIGURE 35.14 is a two-lens model of a microscope. The object is located just slightly 
outside the focal point of the objective, a converging lens with a short focal length. 
The objective lens creates a magnified real image inside the microscope tube. That real 
image is then observed and further magnified by the eyepiece, which functions as a 
magnifier to produce a distant virtual image that is viewed by a relaxed eye. The over-
all magnification of a microscope, an angular magnification M, is the product of the 
lateral magnification of the objective and the angular magnification of the eyepiece:

 M = mobj Meye (35.10)

Eyepiece

Objective lens

Illuminator

Focus knob

Prism (bends light path 
so that eyepiece is at a 
comfortable angle)

Stage (moves up 
and down to 
focus sample)

FIGURE 35.13 A compound microscope.

Objective Eyepiece
Tube length L

Flange

Microscope tube

The object is just
past the focal point. The magnified image of the objective

acts as the object for the eyepiece.

The eyepiece acts as a
magnifier. It forms an
image at infinity that is
seen by a relaxed eye.

fobj fobj feye feyel

s s′

h′

h

FIGURE 35.14 The optics of a microscope.
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The angular magnification of the eyepiece is given by Equation 35.9: Meye =  
(25 cm)/feye. The most common microscope eyepiece is a 10* magnifier, but 5* and 
20* eyepieces are sometimes used.

We can find an approximate expression for the magnification of the objective by 
considering the two shaded triangles in the figure. The triangle on the left has height 
h, the object height, and width fobj. The triangle on the right has height h′, the image 
height, and width l, the distance between the focal point and the image. These are 
similar triangles because they have the same angles, so h′/h = l/fobj. But h′/h, the 
ratio of image height to object height, is ∙ m ∙ , the absolute value of the lateral magni-
fication. We need to include a negative sign to show that the image is inverted, so the 
lateral magnification of the objective lens is

 mobj = -
h′
h

= -
l

fobj
 (35.11)

Unfortunately, there’s no easy way to determine l, and it varies from one objective lens 
to another.

One thing that doesn’t change, though, is the physical length of the microscope 
tube measured between the flanges at the ends where the objective and eyepiece are 
screwed in. This is called the tube length L. Most biological microscopes are stan-
dardized with tube length L = 160 mm. It turns out that length l in Equation 35.11 
differs from the tube length L by only a few percent; thus mobj ≈ -L/fobj is a good 
approximation for the magnification of the objective. We can use this to see that a 20* 
objective has a focal length fobj ≈ (160 mm)/mobj = 8 mm.

In practice, the true magnifications of the objective (without the minus sign) and 
the eyepiece are stamped on the barrels, and the microscope’s overall magnification 
is the product of the two. A set of objectives on a rotating turret might include 10*, 
20*, 40*, and 100*. When combined with a 10* eyepiece, the microscope’s angular 
magnification ranges from 100* to 1000*.

STOP TO THINK 35.4 The final image produced by a microscope is

a. A real image inside the microscope.
b. A virtual image inside the microscope.
c. A real image outside the microscope.
d. A virtual image outside the microscope.
e. Either b or d, depending on the eyepiece.

A pathologist inspects a sample 
of 7@mm@diameter human blood 
cells under a microscope. She 
selects a 40*  objective and a 
10*  eyepiece. What size object, 
viewed from 25 cm, has the same 
apparent size as a blood cell seen 
through the microscope?

MODEL Angular magnification compares the magnified angular 
size to the angular size seen at the near-point distance of 25 cm.

SOLVE The microscope’s angular magnification is M = -1402 *  
1102 = -400. The magnified cells will have the same apparent  
size as an object 400 * 7 mm ≈ 3 mm in diameter seen from a 
distance of 25 cm.

REVIEW 3 mm is about the size of a capital O in a printed book, so 
a blood cell seen through the microscope will have about the same 
apparent size as an O seen from a comfortable reading distance.

EXAMPLE 35.6 ■ Viewing blood cells

The Telescope
A microscope magnifies small, nearby objects to look large. A telescope magnifies 
distant objects, which might be quite large, so that we can see details that are blended 
together when seen by eye.
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FIGURE 35.15 shows the optical layout of a simple telescope. A large-diameter objective 
lens (larger lenses collect more light and thus can see fainter objects) collects the par-
allel rays from a distant object 1s = ∞   2 and forms a real, inverted image at distance 
s′ = fobj. Unlike a microscope, which uses a short-focal-length objective, the focal 
length of a telescope objective is very nearly the length of the telescope tube. Then, just 
as in the microscope, the eyepiece functions as a simple magnifier. The viewer observes 
an inverted image, but that’s not a serious problem in astronomy. Telescopes used to 
look at objects on earth have a somewhat different design to obtain an upright image.

The eyepiece acts as a
magnifier to form an
image at infinity that is
seen by a relaxed eye.

Parallel rays from
a distant object

Angle subtended by the distant object Angle subtended by the
virtual image seen by the eye

EyepieceFocal points
coincide

Objective

uobj

ueye

feye

h′

fobj

FIGURE 35.15 A refracting telescope.

Eyepiece

Primary mirror

Secondary mirror

FIGURE 35.16 A reflecting telescope.

Suppose the distant object, as seen by the objective lens, subtends angle uobj. If  
the image seen through the eyepiece subtends a larger angle ueye, then the angular 
magnification is M = ueye/uobj. We can see from the undeviated ray passing through 
the center of the objective lens that (using the small-angle approximation)

uobj ≈ -  
h′
fobj

where the minus sign indicates the inverted image. The image of height h′ acts as the 
object for the eyepiece, and we can see that the final image observed by the viewer 
subtends angle

ueye =
h′
feye

Consequently, the angular magnification of a telescope is

 M =
ueye

uobj
= -  

fobj

feye
 (35.12)

The angular magnification is simply the ratio of the objective focal length to the 
eyepiece focal length.

Because the stars and galaxies are so distant, light-gathering power is more  
important to astronomers than magnification. Large light-gathering power requires 
a large-diameter objective lens, but large lenses are not practical; they begin to sag 
under their own weight. Thus refracting telescopes, with two lenses, are relatively 
small. Serious astronomy is done with a reflecting telescope, such as the one 
shown in FIGURE 35.16.

A large-diameter mirror (the primary mirror) focuses the rays to form a real image, 
but, for practical reasons, a secondary mirror reflects the rays sideways before they 
reach a focus. This moves the primary mirror’s image out to the edge of the telescope 
where it can be viewed by an eyepiece on the side. None of these changes affects the 
overall analysis of the telescope, and its angular magnification is given by Equation 
35.12 if fobj  is replaced by fpri, the focal length of the primary mirror.
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35.5 Color and Dispersion
One of the most obvious visual aspects of light is the phenomenon of color. Yet color, 
for all its vivid sensation, is not inherent in the light itself. Color is a perception, not a 
physical quantity. Color is associated with the wavelength of light, but the fact that we 
see light with a wavelength of 650 nm as “red” tells us how our visual system responds 
to electromagnetic waves of this wavelength. There is no “redness” associated with the  
light wave itself.

Most of the results of optics do not depend on color; a microscope works the same 
with red light and blue light. Even so, indices of refraction are slightly wavelength 
dependent, which will be important in the next section where we consider the resolu-
tion of optical instruments. And color in nature is an interesting subject, one worthy 
of a short digression.

Color
It has been known since antiquity that irregularly shaped glass and crystals cause 
sunlight to be broken into various colors. A common idea was that the glass or crystal 
somehow altered the properties of the light by adding color to the light. Newton sug-
gested a different explanation. He first passed a sunbeam through a prism, producing 
the familiar rainbow of light. We say that the prism disperses the light. Newton’s novel 
idea, shown in FIGURE 35.17a, was to use a second prism, inverted with respect to the  
first, to “reassemble” the colors. He found that the light emerging from the second 
prism was a beam of pure, white light.

But the emerging light beam is white only if all the rays are allowed to move 
between the two prisms. Blocking some of the rays with small obstacles, as in 
FIGURE 35.17b, causes the emerging light beam to have color. This suggests that color 
is associated with the light itself, not with anything that the prism is doing to the 
light. Newton tested this idea by inserting a small aperture between the prisms  
to pass only the rays of a particular color, such as green. If the prism alters the 
properties of light, then the second prism should change the green light to other 
colors. Instead, the light emerging from the second prism is unchanged from the 
green light entering the prism.

These and similar experiments show that

1. What we perceive as white light is a mixture of all colors. White light can be 
dispersed into its various colors and, equally important, mixing all the colors 
produces white light.

2. The index of refraction of a transparent material differs slightly for different  
colors of light. Glass has a slightly larger index of refraction for violet light  
than for green light or red light. Consequently, different colors of light refract 
at slightly different angles. A prism does not alter the light or add anything  
to the light; it simply causes the different colors that are inherent in white light 
to follow slightly different trajectories.

Dispersion
It was Thomas Young, with his two-slit interference experiment, who showed that 
different colors are associated with light of different wavelengths. The longest  
wavelengths are perceived as red light and the shortest as violet light. TABLE 35.1 is a 
brief summary of the visible spectrum of light. Visible-light wavelengths are used so 
frequently that it is well worth committing this short table to memory.

The slight variation of index of refraction with wavelength is known as  
dispersion. FIGURE 35.18 shows the dispersion curves of two common glasses. 
Notice that n is larger when the wavelength is shorter, thus violet light refracts 
more than red light.

White
light

White
light

A second prism can
combine the colors
back into white light.

A prism disperses
white light into colors.

(a)

FIGURE 35.17 Newton used prisms to 
study color.

White
light

Green
light

The second prism does
not change pure colors.

An aperture selects
a green ray of light.

(b)

TABLE 35.1 A brief summary of the visible 
spectrum of light

Color Approximate wavelength

Deepest red 700 nm

Red 650 nm

Green 550 nm

Blue 450 nm

Deepest violet 400 nm

1.62
1.60
1.58
1.56
1.54
1.52
1.50 l (nm)

300 400 500 600 700 800

Crown glass

UV

IR

Flint glass

n increases as l decreases.
n

FIGURE 35.18 Dispersion curves show 
how the index of refraction varies with 
wavelength.
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Rainbows
One of the most interesting sources of color in nature is the rainbow. The details get 
somewhat complicated, but FIGURE 35.19a shows that the basic cause of the rainbow is 
a combination of refraction, reflection, and dispersion.

Figure 35.19a might lead you to think that the top edge of a rainbow is violet. In 
fact, the top edge is red, and violet is on the bottom. The rays leaving the drop in 
Figure 35.19a are spreading apart, so they can’t all reach your eye. As FIGURE 35.19b 
shows, a ray of red light reaching your eye comes from a drop higher in the sky than a 
ray of violet light. In other words, the colors you see in a rainbow refract toward your 
eye from different raindrops, not from the same drop. You have to look higher in the 
sky to see the red light than to see the violet light.

Example 34.4 found that a ray incident on a 30° prism is deflected 
by 22.6° if the prism’s index of refraction is 1.59. Suppose this is 
the index of refraction of deep violet light and deep red light has an 
index of refraction of 1.54.

a. What is the deflection angle for deep red light?

b. If a beam of white light is dispersed by this prism, how wide is 
the rainbow spectrum on a screen 2.0 m away?

VISUALIZE Figure 34.19 showed the geometry. A ray of any  
wavelength is incident on the hypotenuse of the prism at u1 = 30°.

SOLVE a. If n1 = 1.54 for deep red light, the refraction angle is

u2 = sin-11n1 sin u1

n2
2 = sin-111.54 sin 30°

1.00 2 = 50.4°

Example 34.4 showed that the deflection angle is f = u2 - u1, so 
deep red light is deflected by fred = 20.4°. This angle is slightly 
smaller than the previously observed fviolet = 22.6°.
b. The entire spectrum is spread between fred = 20.4° and fviolet=
22.6°. The angular spread is

d = fviolet - fred = 2.2° = 0.038 rad

At distance r, the spectrum spans an arc length

s = rd = 12.0 m210.038 rad2 = 0.076 m = 7.6 cm

REVIEW The angle is so small that there’s no appreciable difference 
between arc length and a straight line. The spectrum will be 7.6 cm 
wide at a distance of 2.0 m.

EXAMPLE 35.7 ■ Dispersing light with a prism

(b) Red light is refracted
predominantly at 42.5°. The red
light reaching your eye comes
from drops higher in the sky.

Violet light is refracted
predominantly at 40.8°. The violet
light reaching your eye comes
from drops lower in the sky.

You see a rainbow with red on
the top, violet on the bottom.

Eye

Sunlight
42.5°

40.8°

(a)

1. The sun is behind
 your back when
 you see a rainbow.

2. Dispersion causes different colors
 to refract at different angles.

3. Most of the light refracts
 into the air at this point,
 but a little reflects back
 into the drop.

4. Dispersion separates the
 colors even more as the rays
 refract back into the air.

Sunlight

FIGURE 35.19 Light seen in a rainbow has undergone refraction +  reflection +  refraction  
in a raindrop.

Colored Filters and Colored Objects
White light passing through a piece of green glass emerges as green light. A possible 
explanation would be that the green glass adds “greenness” to the white light, but 
Newton found otherwise. Green glass is green because it absorbs any light that is “not 
green.” We can think of a piece of colored glass or plastic as a filter that removes all 
wavelengths except a chosen few.

If a green filter and a red filter are overlapped, as in FIGURE 35.20, no light gets 
through. The green filter transmits only green light, which is then absorbed by the red 
filter because it is “not red.”

This behavior is true not just for glass filters, which transmit light, but for pigments 
that absorb light of some wavelengths but reflect light at other wavelengths. For 

Red filter

Green filterBlack where filters overlap

FIGURE 35.20 No light at all passes 
through both a green and a red filter.

M35_KNIG8221_05_GE_C35.indd   1061 31/05/2022   12:52



1062 CHAPTER 35 Optical Instruments

example, red paint contains pigments reflecting light at wavelengths near 650 nm 
while absorbing all other wavelengths. Pigments in paints, inks, and natural objects 
are responsible for most of the color we observe in the world, from the red of lipstick 
to the blue of a blueberry.

As an example, FIGURE 35.21 shows the absorption curve of chlorophyll. Chlorophyll 
is essential for photosynthesis in green plants. The chemical reactions of photosynthesis 
are able to use red light and blue/violet light, thus chlorophyll absorbs red light and blue/
violet light from sunlight and puts it to use. But green and yellow light are not absorbed. 
Instead, to conserve energy, these wavelengths are mostly reflected to give the object 
a greenish-yellow color. When you look at the green leaves on a tree, you’re seeing the  
light that was reflected because it wasn’t needed for photosynthesis.

Light Scattering: Blue Skies and Red Sunsets
In the ray model of Section 34.1 we noted that light within a medium can be scattered 
or absorbed. As we’ve now seen, the absorption of light can be wavelength dependent 
and can create color in objects. What are the effects of scattering?

Light can scatter from small particles that are suspended in a medium. If the 
particles are large compared to the wavelengths of light—even though they may be 
microscopic and not readily visible to the naked eye—the light essentially reflects 
off the particles. The law of reflection doesn’t depend on wavelength, so all colors 
are scattered equally. White light scattered from many small particles makes the 
medium appear cloudy and white. Two well-known examples are clouds, where 
micrometer-size water droplets scatter the light, and milk, which is a colloidal suspen-
sion of microscopic droplets of fats and proteins.

A more interesting aspect of scattering occurs at the atomic level. The atoms and 
molecules of a transparent medium are much smaller than the wavelengths of light, 
so they can’t scatter light simply by reflection. Instead, the oscillating electric field of 
the light wave interacts with the electrons in each atom in such a way that the light is 
scattered. This atomic-level scattering is called Rayleigh scattering.

Unlike the scattering by small particles, Rayleigh scattering from atoms and mole-
cules does depend on the wavelength. A detailed analysis shows that the intensity of 
scattered light depends inversely on the fourth power of the wavelength: Iscattered ∝ l-4. 
This wavelength dependence explains why the sky is blue and sunsets are red.

As sunlight travels through the atmosphere, the l-4 dependence of Rayleigh scatter-
ing causes the shorter wavelengths to be preferentially scattered. If we take 650 nm as 
a typical wavelength for red light and 450 nm for blue light, the intensity of scattered 
blue light relative to scattered red light is

Iblue

Ired
= 1650

45024

 ≈ 4

Four times more blue light is scattered toward us than red light and thus, as FIGURE 35.22 
shows, the sky appears blue.

Sunlight has to travel much farther through the atmosphere when we see it at sun-
rise or sunset than it does during the midday hours. In fact, the path length through 
the atmosphere at sunset is so long that essentially all the short wavelengths have 
been lost due to Rayleigh scattering. Only the longer wavelengths remain—orange 
and red—and they make the colors of the sunset.

35.6 The Resolution of Optical Instruments
A camera could focus light with a single lens. A microscope objective could be built 
with a single lens. So why would anyone ever use a lens combination in place of a 
single lens? There are two primary reasons.

First, as you learned in the previous section, any lens has dispersion. That is, its 
index of refraction varies slightly with wavelength. Because the index of refraction for 

Sunsets are red because all the blue  
light has scattered as the sunlight passes 
through the atmosphere.

100%

Absorption

l (nm)
400 500 600 700

0%

The green and
yellow light that
is not absorbed
is reflected and
gives plants their
green color.

Chlorophyll absorbs most of the
red and blue/violet light for use
in photosynthesis.

FIGURE 35.21 The absorption curve of 
chlorophyll.

Sun

Air molecules

At midday the scattered light is mostly
blue because molecules preferentially
scatter shorter wavelengths.

At sunset, when the light has traveled much
farther through the atmosphere, the light is
mostly red because the shorter wavelengths
have been lost to scattering.

Observer
at midday

Observer
at sunset

FIGURE 35.22 Rayleigh scattering by 
molecules in the air gives the sky and 
sunsets their color.
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violet light is larger than for red light, a lens’s focal length is shorter for violet light 
than for red light. Consequently, different colors of light come to a focus at slightly 
different distances from the lens. If red light is sharply focused on a viewing screen, 
then blue and violet wavelengths are not well focused. This imaging error, illustrated 
in FIGURE 35.23a, is called chromatic aberration.

Second, our analysis of thin lenses was based on paraxial rays traveling nearly 
parallel to the optical axis. A more exact analysis, taking all the rays into account, 
finds that rays incident on the outer edges of a spherical surface are not focused at 
exactly the same point as rays incident near the center. This imaging error, shown in 
FIGURE 35.23b, is called spherical aberration. Spherical aberration, which causes the 
image to be slightly blurred, gets worse as the lens diameter increases.

Fortunately, the chromatic and spherical aberrations of a converging lens and a 
diverging lens are in opposite directions. When a converging lens and a diverging lens 
with different indices of refraction are used in combination, their aberrations tend 
to cancel. A combination lens, such as the one in FIGURE 35.23c, can produce a much 
sharper focus than a single lens with the equivalent focal length. This is the main 
reason that most optical instruments use combination lenses rather than single lenses.

Diffraction Again
According to the ray model of light, a perfect lens (one with no aberrations) should 
be able to form a perfect image. But the ray model of light, though a very good model 
for lenses, is not an absolutely correct description of light. If we look closely, the 
wave aspects of light haven’t entirely disappeared. In fact, the performance of optical 
equipment is limited by the diffraction of light.

FIGURE 35.24a shows a plane wave, with parallel light rays, being focused by a lens of 
diameter D. According to the ray model of light, a perfect lens would focus parallel rays 
to a perfect point. Notice, though, that only a piece of each wave front passes through the 
lens and gets focused. In effect, the lens itself acts as a circular aperture in an opaque 
barrier, allowing through only a portion of each wave front. Consequently, the lens 
diffracts the light wave. The diffraction is usually very small because D is usually much 
greater than the wavelength of the light; nonetheless, this small amount of diffraction is  
the limiting factor in how well the lens can focus the light.

FIGURE 35.24b separates the diffraction from the focusing by modeling the lens as 
an actual aperture of diameter D followed by an “ideal” diffractionless lens. You 
learned in Chapter 33 that a circular aperture produces a diffraction pattern with a 
bright central maximum surrounded by dimmer fringes. A converging lens brings this 
diffraction pattern to a focus in the image plane, as shown in FIGURE 35.24c. As a result, 
a perfect lens focuses parallel light rays not to a perfect point of light, as we expected, 
but to a small, circular diffraction pattern.

Rays at different angles
focus at different points.

(b) Spherical aberration

(c) Correcting aberrations

High power,
low dispersion

Low power,
high dispersion

All rays meet at
the same focus.

Different wavelengths
focus at different points.

(a) Chromatic aberration

FIGURE 35.23 Chromatic aberration and 
spherical aberration prevent simple lenses 
from forming perfect images.

(b) The aperture and focusing effects
 can be separated.

Wave fronts

Ideal diffractionless lens
with focal length f

Circular aperture
of diameter D

D

f

The first dark fringe
is focused at position y1.

Light is diffracting at angle u1

to the first dark fringe.

(c) The lens focuses the diffraction
 pattern in the focal plane.

Wave fronts

w

Width

Parallel
rays

Light intensity

f

u1

Rays are converging
to the focal point.

Spherical wave
fronts are converging
to the focal point.

Rays are perpendicular
to the wave fronts.

(a) A lens acts as a circular aperture.

Wave fronts

Not focused

Not focused

D

FIGURE 35.24 A lens both focuses and diffracts the light passing through.
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The angle to the first minimum of a circular diffraction pattern is u1 = 1.22l  /D. 
The ray that passes through the center of a lens is not bent, so Figure 35.24c uses this 
ray to show that the position of the dark fringe is y1 = f tan u1 ≈ f u1. Thus the width of 
the central maximum in the focal plane is

wmin ≈ 2f u1 =
2.44lf

D
 (minimum spot size) (35.13)

This is the minimum spot size to which a lens can focus light.
Lenses are often limited by aberrations, so not all lenses can focus parallel light 

rays to a spot this small. A well-crafted lens, for which Equation 35.13 is the minimum  
spot size, is called a diffraction-limited lens. No optical design can overcome the 
spreading of light due to diffraction, and it is because of this spreading that the image 
point has a minimum spot size. The image of an actual object, rather than of parallel 
rays, becomes a mosaic of overlapping diffraction patterns, so even the most perfect 
lens inevitably forms an image that is slightly fuzzy.

For various reasons, it is difficult to produce a diffraction-limited lens having a 
focal length that is less than half its diameter—that is, f 7 0.5D. This implies that the 
smallest diameter to which you can focus a spot of light, no matter how hard you 
try, is wmin? L. This is a fundamental limit on the performance of optical equipment.
Diffraction has very real consequences!

One example of these consequences is found in the manufacturing of integrated  
circuits. Integrated circuits are made by creating a “mask” showing all the components  
and their connections. A lens images this mask onto the surface of a semiconductor 
wafer that has been coated with a substance called photoresist. Bright areas in the 
mask expose the photoresist, and subsequent processing steps chemically etch away 
the exposed areas while leaving behind areas that had been in the shadows of the 
mask. This process is called photolithography.

The power of a microprocessor and the amount of memory in a memory chip 
depend on how small the circuit elements can be made. Diffraction dictates that a 
circuit element can be no smaller than the smallest spot to which light can be focused. 
With clever technology, such as decreasing the effective wavelength by covering 
the surface with a liquid that has a high index of refraction, the minimum spot size 
can be reduced to ≈l/4. If the mask is projected with an ultraviolet laser having 
l ≈ 200 nm, then the smallest elements on a chip are about 50 nm wide. This is, in 
fact, just about the current limit of technology.

The size of the features in an integrated 
circuit is limited by the diffraction of light.

A 12-cm-diameter telescope lens has a focal length of 1.0 m. What is the diameter of 
the image of a star in the focal plane if the lens is diffraction limited and if the earth’s 
atmosphere is not a limitation?

MODEL Stars are so far away that they appear as points in space. An ideal diffractionless 
lens would focus their light to arbitrarily small points. Diffraction prevents this. Model the 
telescope lens as a 12-cm-diameter aperture in front of an ideal lens with a 1.0 m focal length.

SOLVE The minimum spot size in the focal plane of this lens is

w =
2.44lf

D

where D is the lens diameter. What is l? Because stars emit white light, the longest 
wavelengths spread the most and determine the size of the image that is seen. If we use 
l = 700 nm as the upper limit of visible wavelengths, we find w =  1.4 * 10-5 m = 14 mm.

REVIEW This is certainly small, and it would appear as a point to your unaided eye. None-
theless, the spot size would be easily noticed if it were recorded by a camera because the 
detector pixels are typically 3-5 mm in size. Turbulence and temperature effects in the 
atmosphere, the causes of the “twinkling” of stars, prevent ground-based telescopes from 
being this good, but space-based telescopes really are diffraction limited.

EXAMPLE 35.8 ■ Seeing stars
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Resolution
Suppose you point a telescope at two nearby stars in a galaxy far, far away. If you use 
the best possible detector, will you be able to distinguish separate images for the two 
stars, or will they blur into a single blob of light? A similar question could be asked 
of a microscope. Can two microscopic objects, very close together, be distinguished 
if sufficient magnification is used? Or is there some size limit at which their images 
will blur together and never be separated? These are important questions about the 
resolution of optical instruments.

Because of diffraction, the image of a distant star or a distant headlight is not a 
point but a circular diffraction pattern. Our question, then, really is: How close to-
gether can two diffraction patterns be before you can no longer distinguish them? One 
of the major scientists of the 19th century, Lord Rayleigh, studied this problem and 
suggested a reasonable rule that today is called Rayleigh’s criterion.

FIGURE 35.25 shows two distant point sources being imaged by a lens of diameter D.  
The angular separation between the objects, as seen from the lens, is a. Rayleigh’s 
criterion states that

■■ The two objects are resolvable if a 7 umin, where umin = u1 = 1.22l  /D is the angle 
of the first dark fringe in the circular diffraction pattern.

■■ The two objects are not resolvable if a 6 umin because their diffraction patterns are 
too overlapped.

■■ The two objects are marginally resolvable if a = umin. The central maximum of 
one image falls exactly on top of the first dark fringe of the other image. This is the 
situation shown in the figure.

FIGURE 35.26 shows enlarged photographs of the images of two point sources. The 
images are circular diffraction patterns, not points. The two images are close but 
distinct where the objects are separated by a 7 umin. Two objects really were recorded 
in the photo at the bottom, but their separation is a 6 umin and their images have 
blended together. In the middle photo, with a = umin, you can see that the two images 
are just barely resolved.

The angle

 umin =
1.22l

D
   (angular resolution of a lens) (35.14)

is called the angular resolution of a lens. The angular resolution of a telescope 
depends on the diameter of the objective lens (or the primary mirror) and the wavelength 
of the light; magnification is not a factor. Two images will remain overlapped and 
unresolved no matter what the magnification if their angular separation is less than 
umin. For visible light, where l is pretty much fixed, the only parameter over which the 
astronomer has any control is the diameter of the lens or mirror of the telescope. The 
urge to build ever-larger telescopes is motivated, in part, by a desire to improve the 
angular resolution. (Another motivation is to increase the light-gathering power so as 
to see objects farther away.)

The performance of a microscope is also limited by the diffraction of light pass-
ing through the objective lens. Just as light cannot be focused to a spot smaller than 
about a wavelength, the most perfect microscope cannot resolve the features of objects 
separated by less than one wavelength, or roughly 500 nm. (Some clever tricks with 
the phase of the light can improve the resolution to about 200 nm, but diffraction is 
still the limiting factor.) Because atoms are approximately 0.1 nm in diameter, vastly 
smaller than the wavelength of visible or even ultraviolet light, there is no hope of ever 
seeing atoms with an optical microscope. This limitation is not simply a matter of 
needing a better design or more precise components; it is a fundamental limit set by 
the wave nature of the light with which we see.

D

a
a = umin

Image 1

Image 2

The maximum of image 2 falls on the
first dark fringe of image 1. The
images are marginally resolved.

The image of each object is a small
circular diffraction pattern.

Object 1

Object 2

Distant
point sources

FIGURE 35.25 Two images that are 
marginally resolved.

a = umin

a 6 umin

a 7 umin

Marginally
resolved

Resolved

Not resolved

FIGURE 35.26 Enlarged photographs of 
the images of two point sources.
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STOP TO THINK 35.5 Four diffraction-limited lenses focus plane waves of light with 
the same wavelength l. Rank in order, from largest to smallest, the spot sizes wA to wD.

f = 10 mm

2 mm

f = 5 mm

2 mm

f = 10 mm

4 mm

f = 24 mm

8 mmA B C D

   CHAPTER 35 CHALLENGE EXAMPLE     Visual acuity

The normal human eye has maximum visual acuity with a pupil 
diameter of about 3 mm. For larger pupils, acuity decreases due 
to increasing aberrations; for smaller pupils, acuity decreases due 
to increasing diffraction. If your pupil diameter is 2.0 mm, as it 
would be in bright light, what is the smallest-diameter circle that 
you should be able to see as a circle, rather than just an unresolved 
blob, on an eye chart at the standard distance of 20 ft? The index of 
refraction inside the eye is 1.34.

MODEL Assume that a 2.0-mm-diameter pupil is diffraction lim-
ited. Then the angular resolution is given by Rayleigh’s criterion. 
Diffraction increases with wavelength, so the eye’s acuity will be 
affected more by longer wavelengths than by shorter wavelengths. 
Consequently, assume that the light’s wavelength in air is 600 nm.

VISUALIZE Let the diameter of the circle be d. FIGURE 35.27 shows 
the circle at distance s = 20 ft = 6.1 m. “Seeing the circle,” shown 
edge-on, requires resolving the top and bottom lines as distinct.

SOLVE The angular separation of the top and bottom lines of the 
circle is a = d/s. Rayleigh’s criterion says that a perfect lens with 
aperture D can just barely resolve these two lines if

a =
d
s

= umin =
1.22leye

D
=

1.22lair

neye D

The diffraction takes place inside the eye, where the wavelength 
is shortened to leye = lair /neye. Thus the circle diameter that can 
barely be resolved with perfect vision is

d =
1.22lair s

neye D
=

1.221600 * 10-9 m216.1 m2
11.34210.0020 m2 ≈ 2 mm

That’s about the height of a capital O in a printed book, so in  
principle you should—in very bright light—just barely be able to 
recognize it as an O at 20 feet.

REVIEW On an eye chart, the O on the line for 20/20 vision—the 
stand ard of excellent vision—is about 7 mm tall, so the calculated 
2 mm, although in the right range, is a bit too small. There are two 
reasons. First, although aberrations of the eye are reduced with a 
smaller pupil, they haven’t vanished. And second, for a 2-mm-tall  
object at 20 ft, the size of the image on the retina is barely larger 
than the spacing between the cone cells, so the resolution of 
the “detector” is also a factor. Your eye is a very good optical 
instrument, but not perfect.

FIGURE 35.27 Viewing a circle of diameter d.
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Resolution

a

D

The angular resolution of a lens of diameter D is

umin = 1.22l/D

Rayleigh’s criterion states that two objects separated by an  
angle a are marginally resolvable if a = umin.

Magnifiers  

For relaxed-eye viewing, the angular magnification of a lens is

M =
25 cm

f

For microscopes and telescopes, angular magnification, not  
lateral magnification, is the important characteristic. The eyepiece 
acts as a magnifier to view the image formed by the objective lens.

Microscopes  

The object is very close to the focal point of the objective.

The total angular magnification is M = mobj Meye.

L

Objective Eyepiece

The best possible spatial resolution of a microscope, limited by 
diffraction, is about one wavelength of light.

Telescopes  

The object is  
very far from  
the objective.

The total angular magnification is M = -  
fobj 

feye 
.

Lens Combinations

The image of the first lens acts as the object for the  
second lens.

Lens power: P =
1
f
   diopters, 1 D = 1 m-1

Cameras  

Form a real, inverted image on a detector. The lens’s f-number is

f@number =
f

D

The light intensity on the detector is

I ∝
1

1 f@number22

Vision  

Refraction at the cornea is responsible for most of the focusing. The 
lens provides fine-tuning by changing its shape (accommodation).

FP NP

In normal vision, the eye can focus from a far point (FP) at ∞   
(relaxed eye) to a near point (NP) at ≈  25 cm (maximum 
accommodation).

• Hyperopia (farsightedness) is corrected with a converging lens.

• Myopia (nearsightedness) is corrected with a diverging lens.

Focusing and spatial resolution  

The minimum spot size to which a lens of focal length f and 
diameter D can focus light is limited by diffraction to

wmin =
2.44l f

D

With the best lenses that can be manufactured, wmin ≈ l.

Important Concepts

Applications

The goal of Chapter 35 has been to learn about some common 
optical instruments and their limitations.

Summary

Objective
Eyepiece
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CONCEPTUAL QUESTIONS

effective focal length, f
power, P
diopter, D
camera
aperture
f-number
pixel
cornea

pupil
iris
retina
accommodation
far point
near point
presbyopia
hyperopia

myopia
angular size
magnifier
angular magnification, M
objective
eyepiece
refracting telescope
reflecting telescope

dispersion
Rayleigh scattering
chromatic aberration
spherical aberration
minimum spot size, wmin 
Rayleigh’s criterion
angular resolution

Terms and Notation

1. Suppose a camera’s exposure is correct when the lens has a focal 
length of 5 mm. Will the picture be overexposed, underexposed, 
or still correct if the focal length is “zoomed” to 15 mm without 
changing the diameter of the lens aperture? Explain.

2. A camera has a circular aperture immediately behind the lens. 
Reducing the aperture diameter to half its initial value will
A. Make the image blurry.
B. Cut off the outer half of the image and leave the inner half 

unchanged.
C. Make the image less bright.
D. All the above.
Explain your choice.

3. Suppose you wanted special glasses designed to let you see under - 
water without a face mask. Should the glasses use a converging 
or diverging lens? Explain.

4. A red card is illuminated by red light. What color will the card 
appear? What if it’s illuminated by blue light?

5. The center of the galaxy is filled with low-density hydrogen gas 
that scatters light rays. An astronomer wants to take a picture of 
the center of the galaxy. Will the view be better using ultraviolet 
light, visible light, or infrared light? Explain.

6. A friend lends you the eyepiece of his microscope to use on your 
own microscope. He claims the spatial resolution of your micro-
scope will be halved, since his eyepiece has the same diameter 
as yours but twice the magnification. Is his claim valid? Explain.

7. A diffraction-limited lens can focus light to a 10@mm@diameter 
spot on a screen. Do the following actions make the spot diameter 
larger, make it smaller, or leave it unchanged?
A. Decreasing the wavelength of the light.
B. Decreasing the lens diameter.
C. Decreasing the lens focal length.
D. Decreasing the lens-to-screen distance.

8. To focus parallel light rays to the smallest possible spot, should 
you use a lens with a small f@number or a large f@number? Explain.

9. An astronomer is trying to observe two distant stars. The stars are 
marginally resolved when she looks at them through a filter that 
passes green light with a wavelength near 550 nm. Which of the 
following actions would improve the resolution? Assume that the  
resolution is not limited by the atmosphere.
A. Changing the filter to a different wavelength. If so, should she 

use a shorter or a longer wavelength?
B. Using a telescope with an objective lens of the same diameter 

but a different focal length. If so, should she select a shorter or 
a longer focal length?

C. Using a telescope with an objective lens of the same focal 
length but a different diameter. If so, should she select a larger 
or a smaller diameter?

D. Using an eyepiece with a different magnification. If so, should 
she select an eyepiece with more or less magnification?

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 35.1 Lenses in Combination

1. || Two converging lenses with focal lengths of 60 cm and 30 
cm are 15 cm apart. A 3-cm-tall object is 22.5 cm in front of the 
60-cm-focal-length lens.
a. Use ray tracing to find the position and height of the image. 

Do this accurately using a ruler or paper with a grid, and then 
make measurements on your diagram.

b. Calculate the image position and height. Compare with your 
ray-tracing answers obtained in part a.

2. || A converging lens with a focal length of 40 cm and a diverging 

lens with a focal length of -40 cm are 160 cm apart. A 2.0-cm-tall  
object is 60 cm in front of the converging lens.
a. Use ray tracing to find the position and height of the final 

image. Do this accurately using a ruler or paper with a grid, 
then make measurements on your diagram.

b. Calculate the image position and height. Compare with your 
ray-tracing answers in part a.

3. || A 1-cm-tall object is 10 cm to the left of a lens with a focal 
length of 5 cm. A second lens, with a focal length of 7.5 cm, is 15 
cm to the right of the first lens.
a. Use ray tracing to find the position and height of the image. 

Do this accurately using a ruler or paper with a grid, and then 
make measurements on your diagram.

b. Calculate the image position and height. Compare with your 
ray-tracing answers obtained in part a.

M35_KNIG8221_05_GE_C35.indd   1068 31/05/2022   12:53



Exercises and Problems 1069

21. || A sheet of glass has nred = 1.52 and nviolet = 1.55. A narrow 
beam of white light is incident on the glass at 30°. What is the 
angular spread of the light inside the glass?

22. || A hydrogen discharge lamp emits light with two prominent 
wavelengths: 656 nm (red) and 486 nm (blue). The light enters 
a flint-glass prism perpendicular to one face and then refracts 
through the hypotenuse back into the air. The angle between 
these two faces is 35°.
a. Use Figure 35.18 to estimate to {0.002 the index of refrac-

tion of flint glass at these two wavelengths.
b. What is the angle (in degrees) between the red and blue light 

as it leaves the prism?
23. || Infrared telescopes, which use special infrared detectors,  

are able to peer farther into star-forming regions of the galaxy 
because infrared light is not scattered as strongly as is visible 
light by the tenuous clouds of hydrogen gas from which new 
stars are created. For what wavelength of light is the scattering 
only 1% that of light with a visible wavelength of 500 nm?

Section 35.6 The Resolution of Optical Instruments

24. || A scientist needs to focus a helium-neon laser beam 
(l = 633 nm) to a 10@mm@diameter spot 8.0 cm behind a lens.
a. What focal-length lens should she use?
b. What minimum diameter must the lens have?

25. || Two lightbulbs are 1.5 m apart. From what distance can these 
lightbulbs be marginally resolved by a small telescope with an 
objective lens of diameter 5 cm? Assume that the lens is diffrac-
tion limited and  l = 600 nm.

Problems
26. || The rays leaving the two-component optical system of  

FIGURE P35.26 produce two distinct images of the 1.0-cm-tall 
object. What are the position (relative to the lens), orientation, 
and height of each image?

4. | a. What is the power of a lens with a focal length of 25 mm?
b. What is the focal length of a second lens that could be placed in 

contact with the first lens to provide an overall power of 30 D?
5. | A 20-cm-focal-length lens and a 40-cm-focal-length lens 

used together have an effective focal length of 16 cm. What is the 
distance between the two lenses?

Section 35.2 The Camera

6. | A camera’s close-up lens is aimed at a butterfly 200 mm in 
front of the lens, creating a focused image on the detector 50 mm 
behind the lens. A proper exposure requires an f-number of F8.0. 
What is the correct diameter of the lens aperture?

7. | A 2.0-m-tall man is 10 m in front of a camera with a 15-mm-
focal-length lens. How tall is his image on the detector?

8. | What is the aperture diameter of a 12-mm-focal-length lens 
set to F4.0?

9. | A camera takes a properly exposed photo at F5.6 and 1/125 s. 
What shutter speed should be used if the lens is changed to F4.0?

10. || A camera takes a properly exposed photo with a 3.0-mm- 
diameter aperture and a shutter speed of 1/125 s. What is the ap-
propriate aperture diameter for a 1/500 s shutter speed?

Section 35.3 Vision

11. | Ellen wears eyeglasses with the prescription -1.0 D.
a. What eye condition does Ellen have?
b. What is her far point without the glasses?

12. | Ramon has contact lenses with the prescription +2.0 D.
a. What eye condition does Ramon have?
b. What is his near point without the lenses?

13. | What is the f-number of a relaxed eye with the pupil fully 
dilated to 8.0 mm? Model the eye as a single lens 2.4 cm in front 
of the retina.

Section 35.4 Optical Systems That Magnify

14. ||| A magnifier has a magnification of 5* . How far from the lens 
should an object be held so that its image is seen at the near-point dis-
tance of 25 cm? Assume that your eye is immediately behind the lens.

15. || A standardized biological microscope with a 160 mm tube 
length has an 8.0-mm-focal-length objective. What focal-length 
eyepiece should be used to achieve a total magnification ≈100*?

16. || A microscope has a 160 mm tube length. What focal-length 
objective will give total magnification ≈500* when used with 
an eyepiece having a focal length of 5.0 cm?

17. || A small grain is observed though a microscope with a 50* 
objective and a 10* eyepiece. What is the grain’s diameter if its 
angular size when seen through the eyepiece is 1.5°? Give your 
answer in mm.

18. | A reflecting telescope is built with a 20-cm-diameter mirror 
having a 1.00 m focal length. It is used with a 10*  eyepiece. What 
are (a) the magnification and (b) the f@number of the telescope?

19. | A 20*  telescope has a 12-cm-diameter objective lens. What 
minimum diameter must the eyepiece lens have to collect all the 
light rays from an on-axis distant source?

Section 35.5 Color and Dispersion

20. | A narrow beam of white light is incident on a sheet of quartz. 
The beam disperses in the quartz, with red light (l ≈ 700 nm) 
traveling at an angle of 30° with respect to the normal and vio-
let light (l ≈ 400 nm) traveling at 27°. The index of refraction 
of quartz for red light is 1.45. What is the index of refraction of 
quartz for violet light?

f = 10 cm f = 10 cm

5.0 cm 5.0 cm

Mirror Lens

FIGURE P35.26

f = 2.0 cm f = -1.5 cm

Lens Mirror

5.0 cm

FIGURE P35.27

27. ||| In FIGURE P35.27, parallel rays from the left are focused to 
a point at two locations on the optical axis. Find the position of 
each location, giving your answer as a distance left or right of the 
lens.

28. | A common optical instrument in a laser laboratory is a beam 
expander. One type of beam expander is shown in FIGURE P35.28. 
The parallel rays of a laser beam of width w1 enter from the left.
a. For what lens spacing d does a parallel laser beam exit from 

the right?
b. What is the width w2 of the exiting laser beam?

f2 7 f1

f1

d

w1 w2

FIGURE P35.28
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1070 CHAPTER 35 Optical Instruments

a. Which lens should you use for the objective and which for the 
eyepiece? Explain.

b. What will be the magnification of your telescope?
c. How far apart should the two lenses be when you focus on 

distant objects?
38. || A microscope with a tube length of 180 mm achieves a total 

magnification of 800*  with a 40*  objective and a 20*  eye-
piece. The microscope is focused for viewing with a relaxed eye. 
Approximately how far is the sample from the objective lens?

39. || Modern microscopes are more likely to use a camera than 
human viewing. This is accomplished by replacing the eyepiece in 
Figure 35.14 with a photo-ocular that focuses the image of the objec-
tive to a real image on the sensor of a digital camera. Suppose the sen-
sor is 22.5 mm wide, a typical value, with 4.0 mm * 4.0 mm pixels.
a. What is the field of view? That is, what width on the micro-

scope stage, in mm, fills the sensor?
b. The photo of a cell is 120 pixels in diameter. What is the cell’s  

actual diameter, in mm?
40. || A simple and relatively inexpensive micro-

scope eyepiece is the Ramsden eyepiece shown 
in FIGURE P35.40. Two plano-convex lenses have 
their curved surfaces facing each other, which a 
more advanced analysis shows is the orientation 
that minimizes spherical aberration. That same 
analysis finds that chromatic aberration is minimized with lens spac-
ing L = 1

2 (f1 + f2). Your task is to design a 10* Ramsden eyepiece 
in which the first lens has a focal length of 30 mm. What are (a) the 
focal length and (b) the spacing of the second lens?

41. | White light is incident onto a 
30° prism at the 40° angle shown in 
FIGURE P35.41. Violet light emerges 
perpendicular to the rear face of 
the prism. The index of refraction 
of violet light in this glass is 2.0% 
larger than the index of refraction of 
red light. At what angle f does red 
light emerge from the rear face?

42. | High-power lasers are used to cut and weld materials by focus-
ing the laser beam to a very small spot. This is like using a mag - 
ni fying lens to focus the sun’s light to a small spot that can burn things. 
As an engineer, you have designed a laser cutting device in which the 
material to be cut is placed 5.0 cm behind the lens. You have selected 
a high-power laser with a wavelength of 1.06 mm. Your calculations 
indicate that the laser must be focused to a 5.0@mm@diameter  
spot in order to have sufficient power to make the cut. What is the 
minimum diameter of the lens you must install?

43. ||| Once dark adapted, the pupil of your eye is approximately  
7 mm in diameter. The headlights of an oncoming car are 120 cm 
apart. If the lens of your eye is diffraction limited, at what distance 
are the two headlights marginally resolved? Assume a wavelength 
of 600 nm and that the index of refraction inside the eye is 1.33. 
(Your eye is not really good enough to resolve headlights at this 
distance, due both to aberrations in the lens and to the size of the 
receptors in your retina, but it comes reasonably close.)

44. || The resolution of a digital camera is limited by two factors: 
diffraction by the lens, a limit of any optical system, and the fact 
that the sensor is divided into discrete pixels. Consider a typical 
point-and-shoot camera that has a 20-mm-focal-length lens and 
a sensor with 2.5 mm * 2.5 mm pixels.
a. First, assume an ideal, diffractionless lens. At a distance of 

100 m, what is the smallest distance, in cm, between two 
point sources of light that the camera can barely resolve? In 

f2 7 0 f1 0
f1 6 0

d

w1 w2

FIGURE P35.29

29. | A common optical instrument in a laser laboratory is a beam 
expander. One type of beam expander is shown in FIGURE P35.29. 
The parallel rays of a laser beam of width w1 enter from the left.
a. For what lens spacing d does a parallel laser beam exit from 

the right?
b. What is the width w2 of the exiting laser beam?

f1 f2

L

FIGURE P35.40

f

White light

40°

30°

FIGURE P35.41

f1 = 10 cm f2 = -30 cm

5.0 cm 5.0 cm

1.0 cm

FIGURE P35.30

30. ||| In FIGURE P35.30, what are the position, height, and orienta-
tion of the final image? Give the position as a distance to the 
right or left of the lens.

31. || A 1.0-cm-tall object is 110 cm from a screen. A diverging lens 
with focal length -20 cm is 20 cm in front of the object. What 
are the focal length and distance from the screen of a second 
lens that will produce a well-focused, 2.0-cm-tall image on  
the screen?

32. || A 15-cm-focal-length converging lens is 20 cm to the right 
of a 7.0-cm-focal-length converging lens. A 1.0-cm-tall object is 
distance L to the left of the 7.0-cm-focal-length lens.
a. For what value of L is the final image of this two-lens system 

halfway between the two lenses?
b. What are the height and orientation of the final image?

33. || Yang can focus on objects 150 cm away with a relaxed eye. 
With full accommodation, she can focus on objects 20 cm away. 
After her eyesight is corrected for distance vision, what will her 
near point be while wearing her glasses?

34. || The cornea, a boundary between the air and the aqueous 
humor, has a 3.0 cm focal length when acting alone. What is its 
radius of curvature?

35. || Mars (6800 km diameter) is viewed through a telescope on a 
night when it is 1.1 * 108 km from the earth. Its angular size as 
seen through the eyepiece is 0.50°, the same size as the full moon 
seen by the naked eye. If the eyepiece focal length is 25 mm, 
how long is the telescope?

36. | You’ve been asked to build a telescope from a 2.0*  magnify-
ing lens and a 5.0*  magnifying lens.
a. What is the maximum magnification you can achieve?
b. Which lens should be used as the objective? Explain.
c. What will be the length of your telescope?

37. | Marooned on a desert island and with a lot of time on your 
hands, you decide to disassemble your glasses to make a crude 
telescope with which you can scan the horizon for rescuers. 
Luckily you’re farsighted, and, like most people, your two eyes 
have different lens prescriptions. Your left eye uses a lens of 
power +4.5 D, and your right eye’s lens is +3.0 D.
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f = R/12n2 - n1 - 12, where n1 and n2 are, 
respectively, the indices of refraction of the 
diverging and the converging lenses. Don’t forget 
to make the thin-lens approximation.

b. Because of dispersion, either lens alone would 
focus red rays and blue rays at different points. 
Define ∆n1 and ∆n2 as nblue - nred  for the two 
lenses. What value of the ratio ∆n1/ ∆n2 makes 
fblue = fred  for the two-lens system? That is, the 
two-lens system does not exhibit chromatic aberration.

c. Indices of refraction for two types of glass are given in the 
table. To make an achromatic doublet, which glass should 
you use for the converging lens and which for the diverging 
lens? Explain.

nblue nred

Crown glass 1.525 1.517

Flint glass 1.632 1.616

d. What value of R gives a focal length of 10.0 cm?
50. ||| FIGURE CP35.50 shows a lens combination in which the lens 

separation L is less than the focal length of the converging lens. 
The procedure for combination lenses is to let the image of the 
first lens be the object for the second lens, but in this case the 
image of the first lens—shown as a dot—is on the far side of  
the second lens. This is called a virtual object, a point that 
light rays are converging toward but never reach. The top half 
of Figure CP35.50 shows that the converging rays are refracted 
again by the diverging lens and come to a focus farther to the 
right. The procedure for combination lenses will continue to 
work if we use a negative object distance for a virtual object.
a. For input light rays parallel to the axis from a very distant 

object, find the point at which the rays are focused for 
lens separations of 5 cm and 10 cm. Give your answers as 
distances to the right of the diverging lens.

b. Equation 35.1 defined the effective focal length feff of a lens 
combination, but we didn’t discuss how it is used. Although 
an actual ray refracts twice, once at each lens, we can extend 
the output rays leftward to where they need to bend only once 
in a plane called the principal plane. The principal plane is 
similar to the lens plane of a single lens, where a single bend 
occurs, but the principal plane generally does not coincide 
with the physical lens; it’s just a mathematical plane in space. 
The effective focal length is measured from the principal 
plane, so parallel input rays are focused at distance feff beyond 
the principal plane. Find the positions of the principal planes 
for lens separations of 5 cm and 10 cm. Give your answers as 
distances to the left of the diverging lens.

answering this question, consider what has to happen on the 
sensor to show two image points rather than one. You can use 
s′ = f  because s W f.

b. You can achieve the pixel-limited resolution of part a only if 
the diffraction width of each image point is no greater than 
1 pixel in diameter. For what lens diameter is the minimum 
spot size equal to the width of a pixel? Use 600 nm for the 
wavelength of light.

c. What is the f-number of the lens for the diameter you found in 
part b? Your answer is a quite realistic value of the f-number 
at which a camera transitions from being pixel limited to 
being diffraction limited. For f-numbers smaller than this 
(larger-diameter apertures), the resolution is limited by the 
pixel size and does not change as you change the aperture. 
For f-numbers larger than this (smaller-diameter apertures), 
the resolution is limited by diffraction, and it gets worse as 
you “stop down” to smaller apertures.

45. || The Hubble Space Telescope has a mirror diameter of 2.4 m. 
Suppose the telescope is used to photograph stars near the center 
of our galaxy, 30,000 light years away, using red light with a 
wavelength of 650 nm.
a. What’s the distance (in km) between two stars that are mar-

ginally resolved? The resolution of a reflecting telescope is 
calculated exactly the same as for a refracting telescope.

b. For comparison, what is this distance as a multiple of the dis-
tance of Jupiter from the sun?

46. || Alpha Centauri, the nearest star to our solar system, is 4.3 
light years away. Assume that Alpha Centauri has a planet 
with an advanced civilization. Professor Dhg, at the planet’s 
Astronomical Institute, wants to build a telescope with which he 
can find out whether any planets are orbiting our sun.
a. What is the minimum diameter for an objective lens that will 

just barely resolve Jupiter and the sun? The radius of Jupiter’s 
orbit is 780 million km. Assume l = 600 nm.

b. Building a telescope of the necessary size does not appear to 
be a major problem. What practical difficulties might prevent 
Professor Dhg’s experiment from succeeding?

Challenge Problems
47. ||| A beam of white light enters a transparent material. 

Wavelengths for which the index of refraction is n are refracted at 
angle u2. Wavelengths for which the index of refraction is n + dn, 
where dn V n, are refracted at angle u2 + du.
a. Show that the angular separation of the two wavelengths, in 

radians, is du =  -1dn/n2 tan u2.
b. A beam of white light is incident on a piece of glass at  30.0°. 

Deep violet light is refracted 0.28° more than deep red light. 
The index of refraction for deep red light is known to be 
1.552. What is the index of refraction for deep violet light?

48. ||| Your task in physics laboratory is to make a microscope 
from two lenses. One lens has a focal length of 2.0 cm, the other 
1.0 cm. You plan to use the more powerful lens as the objective, 
and you want the eyepiece to be 16 cm from the objective.
a. For viewing with a relaxed eye, how far should the sample be 

from the objective lens?
b. What is the magnification of your microscope?

49. ||| The lens shown in FIGURE CP35.49 is called an achromatic 
doublet, meaning that it has no chromatic aberration. The left 
side is flat, and all other surfaces have radii of curvature R.
a. For parallel light rays coming from the left, show that 

the effective focal length of this two-lens system is 

n1 n2

FIGURE  
CP35.49

feff

Lf1 = 20 cm f2 = -40 cm
The rays actually refract twice.

The effective focal length feff is measured from an imaginary
plane where the focusing could occur with a single refraction.

Principal
plane

Virtual object

FIGURE CP35.50
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■■ Light waves
■❚ Are electromagnetic waves.
■❚ Spread out after passing through openings.
■❚ Exhibit interference.

A third model of light, the photon model, will be introduced in Part VIII.

■■ Light rays
■❚ Travel in straight lines.
■❚ Do not interact.
■❚ Form images.

Key Findings What are the overarching findings of Part VII?
Part VII has looked at two models of light: light waves and light rays.

Optics
PART  

VII
 KNOWLEDGE STRUCTURE

Superposition/interference Constructive interference occurs where crests overlap crests, destructive interference where crests overlap troughs.

Law of reflection ur = ui                Law of refraction (Snell’s law)  
        n1 sin u1 = n2 sin u2

Rayleigh’s criterion Two objects can be resolved by a lens of diameter D if their angular separation exceeds 1.22l /D.

Laws What laws of physics govern optics?

ui ur

u2

u1

n1

n2

Diffraction
■■ Dark fringes in a single-slit diffraction 
pattern are at up 

=
 

pl/a,  p =  1, 2,c

   Slit width a

■❚ The central maximum of the diffrac-
tion has width w = 2lL/a.

■❚ A circular hole has a central maximum 
of width w = 2.44lL/D.

Double-slit interference
■■ Bright equally spaced fringes are located at

 ym = mLl/d    m = 0, 1, 2,c

   Slit spacing d

Diffraction gratings
■■ Very narrow bright fringes are at

 d sin um = ml   ym = L tan um

Ray tracing
■■ For lenses and  
mirrors, three special  
rays locate the image.
■❚ Parallel to the axis
■❚ Through the focal point
■❚ Through the center

Images
■■ If rays converge at P′, then P′ is a  
real image and s′ is positive.

■■ If rays diverge from P′, then P′ is a  
virtual image and s′ is negative.

Thin lenses and mirrors
■■ The thin-lens and thin-mirror equation for 
focal length f is

1
s

+
1
s′

=
1
f

■■ Lateral magnification is m = -s′/s.

Optical instruments
■■ With multiple lenses, the image of  
one lens is the object for the next.

Vision
■■ Hyperopia occurs when the eye’s near 
point is too far away. It is corrected with  
a converging lens.

■■ Myopia occurs when the eye’s far point  
is too close. It is corrected with a 
diverging lens.

Resolution
■■ Diffraction limits optical instruments.

■❚ The smallest spot to which  
light can be focused is  
wmin = 2.44lf/D.

■❚ Two objects can be  
resolved if their angular  
separation exceeds  
1.22l/D.

Tools What are the most important tools introduced in Part VII?

Wave model

■■ Light is an electromagnetic wave.
■❚ Light travels through vacuum at speed c.
■❚ Wavelength and frequency are related by lf = c.

■■ Light exhibits diffraction and interference.
■❚ Light spreads out after passing through an  
opening.

■❚ Equal-wavelength light waves interfere. Inter-
ference depends on the path-length difference.

■■ The wave model is usually appropriate for  
openings smaller than about 1 mm.

Ray model

■■ Light rays travel in straight lines.
■❚ The speed is v = c/n, where n is the index of refraction.

■■ Light rays travel forever unless they interact with matter.
■❚ Reflection and refraction
■❚ Scattering and absorption

■■ An object is a source of rays.
■❚ Rays originate at every point.

■■ The eye sees by focusing a  
diverging bundle of rays.

■■ The ray model is usually appropriate for openings larger than 
about 1 mm.

Models What are the most important models of Part VII?

Diverging bundle of rays

Eye

Object

s′s
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OVERVIEW

Contemporary Physics
Our journey into physics is nearing its end. We began roughly 350 years ago 
with Newton’s discovery of the laws of motion. Parts VI and VII have brought 
us to the end of the 19th century, just over 100 years ago. Along the way you’ve 
learned about the motion of particles, the conservation of energy, the physics 
of waves, and the electromagnetic interactions that hold atoms together and 
generate light waves. We begin the last phase of our journey with confidence.

Newton’s mechanics and Maxwell’s electromagnetism were the twin pillars 
of science at the end of the 19th century and remain the basis for much of engi-
neering and applied science in the 21st century. Despite the successes of these 
theories, a series of discoveries starting around 1900 and continuing into the 
first few decades of the 20th century profoundly altered our understanding of 
the universe at the most fundamental level.

■■ Einstein’s theory of relativity forced scientists to completely revise their 
concepts of space and time. Our exploration of these fascinating ideas will 
end with perhaps the most famous equation in physics: Einstein’s E = mc2.

■■ Experimenters found that the classical distinction between particles and waves 
breaks down at the atomic level. Light sometimes acts like a particle, while 
electrons and even entire atoms sometimes act like waves. We will need a new 
theory of light and matter—quantum physics—to explain these phenomena.

These two theories form the basis for physics—and, increasingly, engineering—as 
it is practiced today.

The complete theory of quantum physics, as it was developed in the 1920s, 
describes atomic particles in terms of an entirely new concept called a wave 
function. One of our most important tasks in Part VIII will be to learn what a 
wave function is, what laws govern its behavior, and how to relate wave functions  
to experimental measurements. We will concentrate on one-dimensional  
models that, while not perfect, will be adequate for understanding the essential 
features of scanning tunneling microscopes, various semiconductor devices, 
radioactive decay, and other applications.

We’ll complete our study of quantum physics with an introduction to atomic  
and nuclear physics. You will learn where the electron-shell model of chem-
istry comes from, how atoms emit and absorb light, what’s inside the nucleus, 
and why some nuclei undergo radioactive decay.

The quantum world with its wave functions and probabilities can seem 
strange and mysterious, yet quantum physics gives the most definitive and 
accurate predictions of any physical theory ever devised. The contemporary 
perspective of quantum physics will be a fitting end to our journey.

Relativity and Quantum 
Physics

PA R T 

VIII 

This plot shows the instantaneous intensity of a focused laser beam.
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Relativity

What is an inertial reference frame?
Inertial reference frames are reference  
frames that move relative to each other  
with constant velocity.

■■ You’ll learn to work with the positions  
and times of events.

■■ All the clocks in an inertial reference  
frame are synchronized.

❮❮ LOOKING BACK Section 4.3 Relative motion

What is relativity about?
Einstein’s theory of relativity is based on  
a simple-sounding principle: The laws of  
physics are the same in all inertial reference  
frames. This leads to these conclusions:

■■ Light travels at the same speed c in all  
inertial reference frames.

■■ No object or information can travel faster  
than the speed of light.

How does relativity affect time?
Time is relative. Two reference frames  
moving relative to each other measure  
different time intervals between two events.

■■ Time dilation is the idea that moving  
clocks run slower than clocks at rest.

■■ We’ll examine the famous twin paradox.

How does relativity affect space?
Distances are also relative. Two reference  
frames moving relative to each other find  
different distances between two events.

■■  Length contraction is the idea that  
the length of an object is less when  
the object is moving than when it is  
at rest.

How does relativity affect mass and energy?
Einstein’s most famous equation, 
E = mc2, says that mass can be  
transformed into energy, and energy 
into mass, as long as the total energy is 
conserved.

■■ Nuclear fission converts mass into energy.
■■ Collisions between high-speed particles  

create new particles from energy.

Does relativity have applications?
Abstract though it may seem, relativity is  
important in technologies such as medical  
PET scans (positron-emission tomography)  
and nuclear energy. And the global GPS  
system, a technology we use every day,  
functions only when the signals from precision 
clocks in orbiting satellites are corrected for  
relativistic time dilation.

 IN THIS CHAPTER, you will learn how relativity changes our concepts of space and time.

36

The Compact Muon Solenoid 
detector at the Large Hadron 
Collider, where protons are 
accelerated to 99.999999%  
of the speed of light.

Velocity of S′
relative to S

y

xS

y′

x′

v

S′

 

v

Light travels at
speed c in frame S′.

And also at speed
c in frame S.

y

xS

y′

x′S′

0 s 1 s

y

xS

Time 7 1 s in S

v

y

xS

Meter stick

v

Length 6 1 m in S

Photon Photon

Annihilate

e- e+
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36.2 Galilean Relativity 1075

36.1 Relativity: What’s It All About?
What do you think of when you hear the phrase “theory of relativity”? Albert Einstein? 
E = mc2? Black holes? Time travel? Perhaps you’ve heard that the theory of relativity 
is so complicated and abstract that only a handful of people in the whole world really 
understand it.

There is, without doubt, a certain mystique associated with relativity, an aura of 
the strange and exotic. The good news is that understanding the ideas of relativity is 
well within your grasp. Einstein’s special theory of relativity, the portion of relativity 
we’ll study, is not mathematically difficult at all. The challenge is conceptual because 
relativity questions deeply held assumptions about the nature of space and time. In 
fact, that’s what relativity is all about—space and time.

What’s Special About Special Relativity?
Einstein’s first paper on relativity, in 1905, dealt exclusively with inertial reference 
frames, reference frames that move relative to each other with constant velocity. Ten 
years later, Einstein published a more encompassing theory of relativity that considered  
accelerated motion and its connection to gravity. The second theory, because it’s 
more general in scope, is called general relativity. General relativity is the theory 
that describes black holes, curved spacetime, and the evolution of the universe. It is a 
fascinating theory but, alas, very mathematical and outside the scope of this textbook.

Motion at constant velocity is a “special case” of motion—namely, motion for 
which the acceleration is zero. Hence Einstein’s first theory of relativity has come to 
be known as special relativity. It is special in the sense of being a restricted, special 
case of his more general theory, not special in the everyday sense meaning distinctive 
or exceptional. Special relativity, with its conclusions about time dilation and length 
contraction, is what we will study.

36.2 Galilean Relativity
Relativity is the process of relating measurements in one reference frame to those in 
a different reference frame moving relative to the first. To appreciate and understand 
what is new in Einstein’s theory, we need a firm grasp of the ideas of relativity that are 
embodied in Newtonian mechanics. Thus we begin with Galilean relativity.

Reference Frames
Suppose you’re passing me as we both drive in the same direction along a freeway. My 
car’s speedometer reads 55 mph while your speedometer shows 60 mph. Is 60 mph 
your “true” speed? That is certainly your speed relative to someone standing beside 
the road, but your speed relative to me is only 5 mph. Your speed is 120 mph relative 
to a driver approaching from the other direction at 60 mph.

An object does not have a “true” speed or velocity. The very definition of velocity, 
v = ∆x  /  ∆t, assumes the existence of a coordinate system in which, during some time 
interval ∆t, the displacement ∆x is measured. The best we can manage is to specify an 
object’s velocity relative to, or with respect to, the coordinate system in which it is measured.

Let’s define a reference frame to be a coordinate system in which experimenters 
equipped with meter sticks, stopwatches, and any other needed equipment make position 
and time measurements on moving objects. Three ideas are implicit in our definition of  
a reference frame:

■■ A reference frame extends infinitely far in all directions.
■■ The experimenters are at rest in the reference frame.
■■ The number of experimenters and the quality of their equipment are sufficient to 

measure positions and velocities to any level of accuracy needed.

Albert Einstein (1879–1955) was one of 
the most influential thinkers in history.
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1076 CHAPTER 36 Relativity

The first two ideas are especially important. It is often convenient to say “the 
laboratory reference frame” or “the reference frame of the rocket.” These are shorthand 
expressions for “a reference frame, infinite in all directions, in which the laboratory  
(or the rocket) and a set of experimenters happen to be at rest.”

   NOTE    A reference frame is not the same thing as a “point of view.” That is, each 
person or each experimenter does not have his or her own private reference frame. 
All experimenters at rest relative to each other share the same reference frame.

FIGURE 36.1 shows two reference frames called S and S′. The coordinate axes in S are 
x, y, z and those in S′ are x′, y′, z′. Reference frame S′ moves with velocity v relative  
to S or, equivalently, S moves with velocity -v relative to S′. There’s no implication 
that either reference frame is “at rest.” Notice that the zero of time, when experimenters  
start their stopwatches, is the instant that the origins of S and S′ coincide.

We will restrict our attention to inertial reference frames, implying that the  
relative velocity v is constant. You should recall from Chapter  5 that an inertial 
reference frame is a reference frame in which Newton’s first law, the law of  
inertia, is valid. In particular, an inertial reference frame is one in which an isolated 
particle, one on which there are no forces, either remains at rest or moves in a  
straight line at constant speed.

Any reference frame moving at constant velocity with respect to an inertial reference 
frame is itself an inertial reference frame. Conversely, a reference frame accelerating 
with respect to an inertial reference frame is not an inertial reference frame. Our 
restriction to reference frames moving with respect to each other at constant velocity— 
with no acceleration—is the “special” part of special relativity.

   NOTE    An inertial reference frame is an idealization. A true inertial reference frame 
would need to be floating in deep space, far from any gravitational influence. In 
practice, an earthbound laboratory is a good approximation of an inertial reference 
frame because the accelerations associated with the earth’s rotation and motion 
around the sun are too small to influence most experiments.

S

y

x S′

y′

x′

v

The axes of S
and S′ have the
same orientation.

The origins of S and S′ coincide at t = 0.

Frame S′ moves with 
velocity v relative to
frame S, parallel to
the x- and x′-axes.

S

y

x S′

y′

x′

-v

Alternatively, frame S moves with
velocity -v relative to frame S′.

FIGURE 36.1 The standard reference 
frames S and S′.

STOP TO THINK 36.1 Which of these is an inertial reference frame (or a very good 
approximation)?

a. Your bedroom
b. A car rolling down a steep hill
c. A train coasting along a level track
d. A rocket being launched
e.  A roller coaster going over the top of a hill
f. A sky diver falling at terminal speed

The Galilean Transformations
Suppose a firecracker explodes at time t. The experimenters in reference frame S 
determine that the explosion happened at position x. Similarly, the experimenters  
in S′ find that the firecracker exploded at x′ in their reference frame. What is the 
relationship between x and x′?

FIGURE 36.2 shows the explosion and the two reference frames. You can see from the 
figure that x = x′ + vt, thus

 
x = x′ + vt
y = y′
z = z′

  or  
x′ = x - vt
y′ = y
z′ = z

 (36.1)

S

y

x S′

y′

x′

v

At time t, the origin of S′ has moved 
distance vt to the right. Thus x = x′ + vt.

Origins coincide
at t = 0.

Distances perpendicular to 
the motion are not affected.
Thus y′ = y and z′ = z.

x′vt

x

Firecracker

y′ = y

FIGURE 36.2 The position of an exploding 
firecracker is measured in reference 
frames S and S′.
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36.2 Galilean Relativity 1077

These are the Galilean transformations of position. If you know a position measured  
by the experimenters in one inertial reference frame, you can calculate the position 
that would be measured by experimenters in any other inertial reference frame.

Suppose the experimenters in both reference frames now track the motion of  
the object in FIGURE  36.3 by measuring its position at many instants of time. The 
experimenters in S find that the object’s velocity is uu. During the same time interval 
∆t, the experimenters in S′ measure the velocity to be uu′.

   NOTE    In this chapter, we will use v to represent the velocity of one reference frame 
relative to another. We will use uu and uu′ to represent the velocities of objects with 
respect to reference frames S and S′.

We can find the relationship between uu and uu′ by taking the time derivatives of 
Equations 36.1 and using the definition ux = dx/dt:

 ux =
dx
dt

=
dx′
dt

+ v = u=
x + v

 uy =
dy

dt
=

dy′
dt

= u=
y

The equation for uz is similar. The net result is

 
ux = u=

x + v
uy = u=

y

uz = u=
z

  or  
u=

x = ux - v
u=

y = uy

u=
z = uz

 (36.2)

Equations 36.2 are the Galilean transformations of velocity. If you know the velocity 
of a particle in one inertial reference frame, you can find the velocity that would be 
measured by experimenters in any other inertial reference frame.

   NOTE    In Section  4.3 you learned the Galilean transformation of velocity as 
v 

u
CB =  v 

u
CA + v 

u
AB, where v 

u
AB means “the velocity of A relative to B.” Equations 36.2 

are equivalent for relative motion parallel to the x-axis but are written in a more 
formal notation that will be useful for relativity.

u
u

In frame S′, the velocity is u′.

v

S′

y′

x′S

y

x

u
The object’s velocity in frame S is u.

-v

u
u′

S′

y′

x′S

y

x

u

FIGURE 36.3 The velocity of a moving 
object is measured in reference frames S 
and S′.

An airplane is flying at speed 200 m/s with respect to the ground. 
Sound wave 1 is approaching the plane from the front, sound wave 
2 is catching up from behind. Both waves travel at 340 m/s relative 
to the ground. What is the speed of each wave relative to the plane?

MODEL Assume that the earth (frame S) and the airplane (frame  
S′) are inertial reference frames. Frame S′, in which the airplane  
is at rest, moves at v = 200 m/s relative to frame S.

VISUALIZE FIGURE 36.4 shows the airplane and the sound waves.

SOLVE The speed of a mechanical wave, such as a sound wave or a 
wave on a string, is its speed relative to its medium. Thus the speed 
of sound is the speed of a sound wave through a reference frame 
in which the air is at rest. This is reference frame S, where wave 1  
travels with velocity u1 = -340 m/s and wave 2 travels with 
velocity u2 = +340 m/s. Notice that the Galilean transformations 
use velocities, with appropriate signs, not just speeds.

The airplane travels to the right with reference frame S′ at vel- 
ocity v. We can use the Galilean transformations of velocity to find 
the velocities of the two sound waves in frame S′:

 u=
1 = u1 - v = -340 m/s - 200 m/s = -540 m/s

 u=
2 = u2 - v = 340 m/s - 200 m/s = 140 m/s

REVIEW This isn’t surprising. If you’re driving at 50 mph, a car 
coming the other way at 55 mph is approaching you at 105 mph. 
A car coming up behind you at 55 mph is gaining on you at the 
rate of only 5 mph. Wave speeds behave the same. Notice that a 
mechanical wave appears to be stationary to a person moving at  
the wave speed. To a surfer, the crest of the ocean wave remains at 
rest under his or her feet.

EXAMPLE 36.1 ■ The speed of sound

S

y

x
S′

y′

x′

v

The plane’s frame S′ travels 
at v = 200 m/s relative to 
the ground’s frame S.

Wave 2 travels at
u2 = +340 m/s 
in frame S.

Wave 1 travels at
u1 = -340 m/s 
in frame S.

FIGURE 36.4 Experimenters in the plane measure different 
speeds for the waves than do experimenters on the ground.
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1078 CHAPTER 36 Relativity

The Galilean Principle of Relativity
Experimenters in reference frames S and S′ measure different values for position and 
velocity. What about the force on and the acceleration of the particle in FIGURE 36.5? 
The strength of a force can be measured with a spring scale. The experimenters in 
reference frames S and S′ both see the same reading on the scale (assume the scale 
has a bright digital display easily seen by all experimenters), so both conclude that the 
force is the same. That is, F′ = F.

We can compare the accelerations measured in the two reference frames by 
taking the time derivative of the velocity transformation equation u′ = u - v. (We’ll 
assume, for simplicity, that the velocities and accelerations are all in the x-direction.) 
The relative velocity v between the two reference frames is constant, with dv/dt = 0, 
thus

 a′ =
du′
dt

=
du
dt

= a (36.3)

Experimenters in reference frames S and S′ measure different values for an object’s 
position and velocity, but they agree on its acceleration.

If F = ma in reference frame S, then F′ = ma′ in reference frame S′. Stated 
another way, if Newton’s second law is valid in one inertial reference frame, then it 
is valid in all inertial reference frames. Because other laws of mechanics, such as the 
conservation laws, follow from Newton’s laws of motion, we can state this conclusion 
as the Galilean principle of relativity:

STOP TO THINK 36.2 Ocean waves are approaching the beach at 10 m/s. A boat 
heading out to sea travels at 6 m/s. How fast are the waves moving in the boat’s 
reference frame?

a. 16 m/s b. 10 m/s c. 6 m/s d. 4 m/s

S

y

x S′

y′

x′

v

Experimenters in both frames
measure the same force.

Experimenters in both frames
measure the same acceleration.

Acceleration

Force
m

 FIGURE 36.5 Experimenters in both 
reference frames test Newton’s second  
law by measuring the force on a particle 
and its acceleration.

Galilean principle of relativity The laws of mechanics are the same in all 
inertial reference frames.

The Galilean principle of relativity is easy to state, but to understand it we must 
understand what is and is not “the same.” To take a specific example, consider the law 
of conservation of momentum. FIGURE 36.6a shows two particles about to collide. Their 
total momentum in frame S, where particle 2 is at rest, is Pi = 9.0 kg m/s. This is an 
isolated system, hence the law of conservation of momentum tells us that the momen-
tum after the collision will be Pf = 9.0 kg m/s.

FIGURE 36.6b has used the velocity transformation to look at the same particles in 
frame S′ in which particle 1 is at rest. The initial momentum in S′ is P =

i = -18 kg m/s. 
Thus it is not the value of the momentum that is the same in all inertial reference 
frames. Instead, the Galilean principle of relativity tells us that the law of momentum 
conservation is the same in all inertial reference frames. If Pf = Pi in frame S, then it 
must be true that P =

f = P =
i in frame S′. Consequently, we can conclude that P =

f will be 
-18 kg m/s after the collision in S′.

36.3 Einstein’s Principle of Relativity
The 19th century was an era of optics and electromagnetism. Thomas Young dem-
onstrated in 1801 that light is a wave, and by midcentury scientists had devised tech-
niques for measuring the speed of light. Faraday discovered electromagnetic induction 

S

y

x S′

y′

x′

1

2.0 kg

2

-9.0 m/s

u′2 = -9.0 m/s

P′i = -18 kg m/s

(b) Collision seen in frame S′

1.0  kg

9.0 m/s

Pi = 9.0 kg m/s
S

y

x S′

y′

x′

1 2

(a) Collision seen in frame S

2.0 kg1.0 kg

u1 = 9.0 m/s

FIGURE 36.6 Total momentum measured 
in two reference frames.
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36.3 Einstein’s Principle of Relativity 1079

in 1831, setting in motion a series of events leading to Maxwell’s prediction, in 1864, 
that light waves travel with speed

c =
12P0m0

= 3.00 * 108 m/s

This is a quite specific prediction with no wiggle room. But in what reference 
frame is this the speed of light? And, if light travels with speed c in some inertial 
reference frame S, then surely, as FIGURE 36.7 shows, the light speed must be more or 
less than c in a reference frame S′ that moves with respect to S. There could even be 
reference frames in which light is frozen and doesn’t move at all!

It was in this muddled state of affairs that a young Albert Einstein made his mark 
on the world. Even as a teenager, Einstein had wondered how a light wave would look 
to someone “surfing” the wave, traveling alongside the wave at the wave speed. You 
can do that with a water wave or a sound wave, but light waves seemed to present a 
logical difficulty. An electromagnetic wave sustains itself by virtue of the fact that a 
changing magnetic field induces an electric field and a changing electric field induces 
a magnetic field. But to someone moving with the wave, the fields would not change. 
How could there be an electromagnetic wave under these circumstances?

Several years of thinking about the connection between electromagnetism and 
reference frames led Einstein to the conclusion that all the laws of physics, not just the 
laws of mechanics, should obey the principle of relativity. In other words, the principle 
of relativity is a fundamental statement about the nature of the physical universe. Thus 
we can remove the restriction in the Galilean principle of relativity and state a much 
more general principle:

Principle of relativity All the laws of physics are the same in all inertial refer -
ence frames.

All the results of Einstein’s theory of relativity flow from this one simple statement.

The Constancy of the Speed of Light
If Maxwell’s equations of electromagnetism are laws of physics, and there’s every 
reason to think they are, then, according to the principle of relativity, Maxwell’s 
equations must be true in every inertial reference frame. On the surface this seems 
to be an innocuous statement, equivalent to saying that the law of conservation of 
momentum is true in every inertial reference frame. But follow the logic:

1. Maxwell’s equations are true in all inertial reference frames.
2. Maxwell’s equations predict that electromagnetic waves, including light, travel 

at speed c = 3.00 * 108 m/s.
3. Therefore, light travels at speed c in all inertial reference frames.

FIGURE 36.8 shows the implications of this conclusion. All experimenters, regardless 
of how they move with respect to each other, find that all light waves, regardless of the 
source, travel in their reference frame with the same speed c. If Cathy’s velocity toward 
Jaylon and away from Yang is v = 0.9c, Cathy finds, by making measurements in her 
reference frame, that the light from Jaylon approaches her at speed c, not at c + v = 1.9c. 
And the light from Yang, which left Yang at speed c, catches up from behind at speed  
c relative to Cathy, not the c - v = 0.1c you would have expected.

Although this prediction goes against all shreds of common sense, the experimental 
evidence for it is strong. Laboratory experiments are difficult because even the highest 
laboratory speed is insignificant in comparison to c. In the 1930s, however, physicists 
R. J. Kennedy and E. M. Thorndike realized that they could use the earth itself as a 
laboratory. The earth’s speed as it circles the sun is about 30,000 m/s. The relative 

S

y

x

S′

y′

x′

v

If light travels at speed c
in reference frame S,  c

cthen surely light travels at some
other speed in a different reference 
frame that moves with respect to S.

c - v

c

FIGURE 36.7 It seems as if the speed of 
light should differ from c in a reference 
frame moving through the ether.

This light wave leaves Yang at 
speed c relative to Yang. It approaches 
Cathy at speed c relative to Cathy.

This light wave leaves Jaylon at 
speed c relative to Jaylon. It approaches
Cathy at speed c relative to Cathy.

v = 0.9c

Yang Cathy Jaylon

FIGURE 36.8 Light travels at speed c in  
all inertial reference frames, regardless  
of how the reference frames are moving 
with respect to the light source.
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velocity of the earth in January differs by 60,000 m/s from its velocity in July, when  
the earth is moving in the opposite direction. Kennedy and Thorndike were able to 
use a very sensitive and stable interferometer to show that the numerical values of the 
speed of light in January and July differ by less than 2 m/s.

More recent experiments have used unstable elementary particles, called p mesons, 
that decay into high-energy photons of light. The p mesons, created in a particle ac-
celerator, move through the laboratory at 99.975% the speed of light, or v = 0.99975c, as 
they emit photons at speed c in the p meson’s reference frame. As FIGURE 36.9 shows, you 
would expect the photons to travel through the laboratory with speed c + v = 1.99975c. 
Instead, the measured speed of the photons in the laboratory was, within experimental  
error, 3.00 * 108 m/s.

In summary, every experiment designed to compare the speed of light in different 
reference frames has found that light travels at 3.00 * 108 m/s in every inertial 
reference frame, regardless of how the reference frames are moving with respect to 
each other.

How Can This Be?
You’re in good company if you find this impossible to believe. Suppose I shot a ball 
forward at 50 m/s while driving past you at 30 m/s. You would certainly see the ball 
traveling at 80 m/s relative to you and the ground. What we’re saying with regard to 
light is equivalent to saying that the ball travels at 50 m/s relative to my car and at 
the same time travels at 50 m/s relative to the ground, even though the car is moving 
across the ground at 30 m/s. It seems logically impossible.

You might think that this is merely a matter of semantics. If we can just get  
our definitions and use of words straight, then the mystery and confusion will 
disappear. Or perhaps the difficulty is a confusion between what we “see” versus 
what “really happens.” In other words, a better analysis, one that focuses on what 
really happens, would find that light “really” travels at different speeds in different  
reference frames.

Alas, what “really happens” is that light travels at 3.00 * 108 m/s in every  
inertial reference frame, regardless of how the reference frames are moving with 
respect to each other. It’s not a trick. There remains only one way to escape the  
logical contradictions.

The definition of velocity is u = ∆x/∆t, the ratio of a distance traveled to the time 
interval in which the travel occurs. Suppose you and I both make measurements on an 
object as it moves, but you happen to be moving relative to me. Perhaps I’m standing 
on the corner, you’re driving past in your car, and we’re both trying to measure the 
velocity of a bicycle. Further, suppose we have agreed in advance to measure the 
position of the bicycle first as it passes the tree in FIGURE 36.10, then later as it passes 
the lamppost. Your ∆x′, the bicycle’s displacement, differs from my ∆x because of 
your motion relative to me, causing you to calculate a bicycle velocity u′ in your 
reference frame that differs from its velocity u in my reference frame. This is just the 
Galilean transformations showing up again.

Now let’s repeat the measurements, but this time let’s measure the velocity of a 
light wave as it travels from the tree to the lamppost. Once again, your ∆x′ differs 
from my ∆x, and the obvious conclusion is that your light speed u′ differs from my 
light speed u. The difference will be very small if you’re driving past in your car, very 
large if you’re flying past in a rocket traveling at nearly the speed of light. Although 
this conclusion seems obvious, it is wrong. Experiments show that, for a light wave, 
we’ll get the same values: u′ = u.

The only way this can be true is if your ∆t is not the same as my ∆t. If the time it 
takes the light to move from the tree to the lamppost in your reference frame, a time 
we’ll now call ∆t′, differs from the time ∆t it takes the light to move from the tree to 
the lamppost in my reference frame, then we might find that ∆x′/∆t′ = ∆x/∆t. That 
is, u′ = u even though you are moving with respect to me.

S

y

x

S′

y′

x′

v = 0.99975c

Meson
reference
frame

Laboratory
reference
frame

A photon is emitted at speed c relative to 
the p meson. Measurements find that the 
photon’s speed in the laboratory reference
frame is also c.

p

FIGURE 36.9 Experiments find that the 
photons travel through the laboratory 
with speed c, not the speed 1.99975c  
that you might expect.

M36B_KNIG8221_05_GE_C36.indd   1080 01/06/2022   15:35



36.4 Events and Measurements 1081

We’ve assumed, since the beginning of this textbook, that time is simply time. It 
flows along like a river, and all experimenters in all reference frames simply use it. 
For example, suppose the tree and the lamppost both have big clocks that we both can 
see. Shouldn’t we be able to agree on the time interval ∆t the light needs to move from 
the tree to the lamppost?

Perhaps not. It’s demonstrably true that ∆x′ ≠ ∆x. It’s experimentally verified that 
u′ = u for light waves. Something must be wrong with assumptions that we’ve made 
about the nature of time. The principle of relativity has painted us into a corner, and  
our only way out is to reexamine our understanding of time.

36.4 Events and Measurements
To question some of our most basic assumptions about space and time requires extreme 
care. We need to be certain that no assumptions slip into our analysis unnoticed.  
Our goal is to describe the motion of a particle in a clear and precise way, making the 
barest minimum of assumptions.

Events
The fundamental element of relativity is called an event. An event is a physical acti- 
 vity that takes place at a definite point in space and at a definite instant of time. An 
exploding firecracker is an event. A collision between two particles is an event. A light  
wave hitting a detector is an event.

Events can be observed and measured by experimenters in different reference frames. 
An exploding firecracker is as clear to you as you drive by in your car as it is to me  
standing on the street corner. We can quantify where and when an event occurs with 
four numbers: the coordinates 1x, y, z2 and the instant of time t. These four numbers,  
illustrated in FIGURE 36.11, are called the spacetime coordinates of the event.

The spatial coordinates of an event measured in reference frames S and S′ may 
differ. It now appears that the instant of time recorded in S and S′ may also differ. 
Thus the spacetime coordinates of an event measured by experimenters in frame S are 
1x, y, z, t2 and the spacetime coordinates of the same event measured by experimenters 
in frame S′ are 1x′, y′, z′, t′2.

u′

u′

S

y

x
Final t = ∆t

∆x

Final t = ∆t
S′

y′

x′

S

y

x

Initial t = 0

S′

y′

x′

Initial t = 0

Measurements made in frame S, in 
which the tree and lamppost are at rest.
The bicycle’s velocity is u = ∆x /∆t.

Measurements made in frame S′, which 
moves to the right relative to frame S.
The bicycle’s velocity is u′ = ∆x′/∆t.

u

u

∆x′
∆x and ∆x′ are not the same.

The tree and lamppost
are moving to the left
in frame S′.

FIGURE 36.10 Measuring the velocity of an object by appealing to the basic definition u = ∆x/∆t.

S

y

x S′

y′

x′

v

An event has spacetime coordinates (x, y, z, t) 
in frame S and different spacetime coordinates
(x′, y′, z′, t′) in frame S′.

FIGURE 36.11 The location and time of 
an event are described by its spacetime 
coordinates.
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The motion of a particle can be described as a sequence of two or more events. We 
introduced this idea in the preceding section when we agreed to measure the velocity 
of a bicycle and then of a light wave by making measurements when the object passed 
the tree (first event) and when the object passed the lamppost (second event).

Measurements
Events are what “really happen,” but how do we learn about an event? That is, how 
do the experimenters in a reference frame determine the spacetime coordinates of an 
event? This is a problem of measurement.

We defined a reference frame to be a coordinate system in which experimenters can 
make position and time measurements. That’s a good start, but now we need to be more 
precise as to how the measurements are made. Imagine that a reference frame is filled 
with a cubic lattice of meter sticks, as shown in FIGURE 36.12. At every intersection is a 
clock, and all the clocks in a reference frame are synchronized. We’ll return in a moment  
to consider how to synchronize the clocks, but assume for the moment it can be done.

Now, with our meter sticks and clocks in place, we can use a two-part measurement 
scheme:

■■ The 1x, y, z2 coordinates of an event are determined by the intersection of the meter 
sticks closest to the event.

■■ The event’s time t is the time displayed on the clock nearest the event.

You can imagine, if you wish, that each event is accompanied by a flash of light to 
illuminate the face of the nearest clock and make its reading known.

Several important issues need to be noted:

1. The clocks and meter sticks in each reference frame are imaginary, so they have 
no difficulty passing through each other.

2. Measurements of position and time made in one reference frame must use only 
the clocks and meter sticks in that reference frame.

3. There’s nothing special about the sticks being 1 m long and the clocks 1 m apart. 
The lattice spacing can be altered to achieve whatever level of measurement 
accuracy is desired.

4. We’ll assume that the experimenters in each reference frame have assistants sit-
ting beside every clock to record the position and time of nearby events.

5. Perhaps most important, t is the time at which the event actually happens, not 
the time at which an experimenter sees the event or at which information about 
the event reaches an experimenter.

6. All experimenters in one reference frame agree on the spacetime coordinates of 
an event. In other words, an event has a unique set of spacetime coordinates 
in each reference frame.

S′

y′

x′

S

y

x

Reference frame S′

Reference frame S

Meter sticks

Synchronized
clocks

v

The spacetime coordinates of this event
are measured by the nearest meter stick 
intersection and the nearest clock.

Reference frame S′ has its own 
meter sticks and its own clocks.

FIGURE 36.12 The spacetime coordinates 
of an event are measured by a lattice of 
meter sticks and clocks.

STOP TO THINK 36.3 A carpenter is working on a house two blocks away. You notice 
a slight delay between seeing the carpenter’s hammer hit the nail and hearing the blow.  
At what time does the event “hammer hits nail” occur?

a. At the instant you hear the blow
b. At the instant you see the hammer hit
c. Very slightly before you see the hammer hit
d. Very slightly after you see the hammer hit

Clock Synchronization
It’s important that all the clocks in a reference frame be synchronized, meaning 
that all clocks in the reference frame have the same reading at any one instant of 
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36.4 Events and Measurements 1083

time. Thus we need a method of synchronization. One idea that comes to mind is to 
designate the clock at the origin as the master clock. We could then carry this clock 
around to every clock in the lattice, adjust that clock to match the master clock, and 
finally return the master clock to the origin.

This would be a perfectly good method of clock synchronization in Newtonian 
mechanics, where time flows along smoothly, the same for everyone. But we’ve been 
driven to reexamine the nature of time by the possibility that time is different in 
reference frames moving relative to each other. Because the master clock would move, 
we cannot assume that the moving master clock would keep time in the same way as 
the stationary clocks.

We need a synchronization method that does not require moving the clocks. 
Fortunately, such a method is easy to devise. Each clock is resting at the  intersection 
of meter sticks, so by looking at the meter sticks, the assistant knows, or can 
calculate, exactly how far each clock is from the origin. Once the distance is known, 
the assistant can calculate exactly how long a light wave will take to travel from 
the origin to each clock. For example, light will take 1.00 ms to travel to a clock  
300 m from the origin.

   NOTE    It’s handy for many relativity problems to know that the speed of light is 
c = 300 m/ms.

To synchronize the clocks, the assistants begin by setting each clock to display the 
light travel time from the origin, but they don’t start the clocks. Next, as FIGURE 36.13 
shows, a light flashes at the origin and, simultaneously, the clock at the origin starts 
running from t = 0 s. The light wave spreads out in all directions at speed c. A 
photodetector on each clock recognizes the arrival of the light wave and, without 
delay, starts the clock. The clock had been preset with the light travel time, so each 
clock as it starts reads exactly the same as the clock at the origin. Thus all the clocks 
will be synchronized after the light wave has passed by.

Events and Observations
We noted above that t is the time the event actually happens. This is an important 
point, one that bears further discussion. Light waves take time to travel. Messages, 
whether they’re transmitted by light pulses, telephone, or courier on horseback,  
take time to be delivered. An experimenter observes an event, such as an exploding 
firecracker, only at a later time when light waves reach his or her eyes. But our interest 
is in the event itself, not the experimenter’s observation of the event. The time at which 
the experimenter sees the event or receives information about the event is not when the  
event actually occurred.

Suppose at t = 0 s a firecracker explodes at x = 300 m. The flash of light from 
the firecracker will reach an experimenter at the origin at t1 = 1.0 ms. The sound 
of the explosion will reach a sightless experimenter at the origin at t2 = 0.88 s. 
Neither of these is the time tevent of the explosion, although the experimenter  
can work backward from these times, using known wave speeds, to determine tevent.  
In this example, the spacetime coordinates of the event—the explosion—are 
(300 m, 0 m, 0 m, 0 s).

300 m

Clock at origin

1. This clock is preset to 1.00 ms, the
 time it takes light to travel 300 m.

Wave front

2. At t = 0 s, a light flashes at the origin
 and the origin clock starts running.
 A very short time later, seen here, a
 light wave has begun to move outward.

3. The clock starts when the light wave
 reaches it. It is now synchronized with
 the origin clock.

FIGURE 36.13 Synchronizing clocks.

Experimenter A in reference frame S stands at the origin looking in 
the positive x-direction. Experimenter B stands at x = 900 m look-
ing in the negative x-direction. A firecracker explodes somewhere 
between them. Experimenter B sees the light flash at t = 3.0 ms. 

Experimenter A sees the light flash at t = 4.0 ms. What are the 
spacetime coordinates of the explosion?

MODEL Experimenters A and B are in the same reference frame  
and have synchronized clocks.

EXAMPLE 36.2 ■ Finding the time of an event

Continued

M36B_KNIG8221_05_GE_C36.indd   1083 01/06/2022   15:35



1084 CHAPTER 36 Relativity

Simultaneity
Two events 1 and 2 that take place at different positions x1 and x2 but at the same time 
t1 = t2, as measured in some reference frame, are said to be simultaneous in that ref-
erence frame. Simultaneity is determined by when the events actually happen, not when 
they are seen or observed. In general, simultaneous events are not seen at the same time 
because of the difference in light travel times from the events to an experimenter.

VISUALIZE FIGURE  36.14 shows the two experimenters and the 
explosion at unknown position x.

SOLVE The two experimenters observe light flashes at two  
different instants, but there’s only one event. Light travels at 
300 m/ms, so the additional 1.0 ms needed for the light to reach 
experimenter A implies that distance 1x - 0 m2 is 300 m longer 
than distance 1900 m - x2. That is,

1x - 0 m2 = 1900 m - x2 + 300 m

This is easily solved to give x = 600 m as the position coordinate of 
the explosion. The light takes 1.0 ms to travel 300 m to experimenter 
B, 2.0 ms to travel 600 m to experimenter A. The light is received 
at 3.0 ms and 4.0 ms, respectively; hence it was emitted by the 
explosion at t = 2.0 ms. The spacetime coordinates of the explosion  
are 1600 m, 0 m, 0 m, 2.0 ms2.

REVIEW Although the experimenters see the explosion at dif-
ferent times, they agree that the explosion actually happened at 
t = 2.0 ms.

FIGURE 36.14 The light wave reaches the experimenters at 
different times. Neither of these is the time at which the event 
actually happened.

An experimenter in reference frame S stands at the origin looking 
in the positive x-direction. At t = 3.0 ms she sees firecracker 1 
explode at x = 600 m. A short time later, at t = 5.0 ms, she sees 
firecracker 2 explode at x = 1200 m. Are the two explosions 
simultaneous? If not, which firecracker exploded first?

MODEL Light from both explosions travels toward the experi - 
menter at 300 m/ms.

SOLVE The experimenter sees two different explosions, but 
perceptions of the events are not the events themselves. When did 
the explosions actually occur? Using the fact that light travels at 
300 m/ms, we can see that firecracker 1 exploded at t1 = 1.0 ms 
and firecracker 2 also exploded at t2 = 1.0 ms. The events are 
simultaneous.

EXAMPLE 36.3 ■ Are the explosions simultaneous?

36.5 The Relativity of Simultaneity
We’ve now established a means for measuring the time of an event in a reference frame, 
so let’s begin to investigate the nature of time. The following “thought experiment” is  
very similar to one suggested by Einstein.

FIGURE 36.15 shows a long railroad car traveling to the right with a velocity v that may 
be an appreciable fraction of the speed of light. A firecracker is tied to each end of the 
car, just above the ground. Each firecracker is powerful enough so that, when it explodes,  
it will make a burn mark on the ground at the position of the explosion.

STOP TO THINK 36.4 A tree and a pole are 3000 m apart. Each is suddenly hit by a 
bolt of lightning. Mark, who is standing at rest midway between the two, sees the two 
lightning bolts at the same instant of time. Nancy is at rest under the tree. Define event 
1 to be “lightning strikes tree” and event 2 to be “lightning strikes pole.” For Nancy, 
does event 1 occur before, after, or at the same time as event 2?

M36B_KNIG8221_05_GE_C36.indd   1084 01/06/2022   15:35



36.5 The Relativity of Simultaneity 1085

Ryan is standing on the ground, watching the railroad car go by. Priya is standing 
in the exact center of the car with a special box at her feet. This box has two light 
detectors, one facing each way, and a signal light on top. The box works as follows:

1. If a flash of light is received at the detector facing right, as seen by Ryan, before a 
flash is received at the left detector, then the light on top of the box will turn green.

2.  If a flash of light is received at the left detector before a flash is received at the 
right detector, or if two flashes arrive simultaneously, the light on top will turn red.

The firecrackers explode as the railroad car passes Ryan, and he sees the two light 
flashes from the explosions simultaneously. He then measures the distances to the 
two burn marks and finds that he was standing exactly halfway between the marks. 
Because light travels equal distances in equal times, Ryan concludes that the two 
explosions were simultaneous in his reference frame, the reference frame of the 
ground. Further, because he was midway between the two ends of the car, he was 
directly opposite Priya when the explosions occurred.

FIGURE 36.16a shows the sequence of events in Ryan’s reference frame. Light travels 
at speed c in all inertial reference frames, so, although the firecrackers were moving, 
the light waves are spheres centered on the burn marks. Ryan determines that the 
light wave coming from the right reaches Priya and the box before the light wave 
coming from the left. Thus, according to Ryan, the signal light on top of the box 
turns green.

Signal light

Priya

Ryan

v

The firecrackers will make burn marks on the
ground at the positions where they explode.

Light detector

FIGURE 36.15 A railroad car traveling to  
the right with velocity v.

Explosions are at the ends of the car
at the instant Ryan passes Priya.

The waves are spheres centered
on the ends of the car because
the light speed of both is c.

The waves reach Priya and the 
light detectors simultaneously.

P

P

P

-v

-v

-v
R

R

R

(b) Are these the events in Priya’s frame?

r = ct′ r = ct′

v

Explosions are simultaneous.
Burn marks are equal distances
from Ryan.

The waves are spheres centered
on the burn marks because the
light speed of both is c.

The waves reach Ryan 
simultaneously. The right 
wave has already passed 
Priya and been detected. 
The left wave has not arrived.

P

R

v
P

R

v
P

R

Priya is moving to the right.

(a) The events in Ryan’s frame

r = ct

r = ct

FIGURE 36.16 Exploding firecrackers seen in two different reference frames.
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How do things look in Priya’s reference frame, a reference frame moving to the 
right at velocity v relative to the ground? As FIGURE 36.16b shows, Priya sees Ryan 
moving to the left with speed v. Light travels at speed c in all inertial reference frames, 
so the light waves are spheres centered on the ends of the car. If the explosions are 
simultaneous, as Ryan has determined, the two light waves reach her and the box 
simultaneously. Thus, according to Priya, the signal light on top of the box turns red!

Now the light on top must be either green or red. It can’t be both! Later, after the 
railroad car has stopped, Ryan and Priya can place the box in front of them. Either it 
has a red light or a green light. Ryan can’t see one color while Priya sees the other. 
Hence we have a paradox. It’s impossible for Priya and Ryan both to be right. But who 
is wrong, and why?

What do we know with absolute certainty?

1. Ryan detected the flashes simultaneously.
2. Ryan was halfway between the firecrackers when they exploded.
3. The light from the two explosions traveled toward Ryan at equal speeds.

The conclusion that the explosions were simultaneous in Ryan’s reference frame is 
unassailable. The light is green.

 Resolving the Paradox
Priya, however, made an assumption. It’s a perfectly ordinary assumption, one that  
seems sufficiently obvious that you probably didn’t notice, but an assumption none-
theless. Priya assumed that the explosions were simultaneous.

Didn’t Ryan find them to be simultaneous? Indeed, he did. Suppose we call Ryan’s 
reference frame S, the explosion on the right event R, and the explosion on the left event 
L. Ryan found that tR = tL. But Priya has to use a different set of clocks, the clocks in 
her reference frame S′, to measure the times t =R and t =L at which the explosions occurred. 
The fact that tR = tL in frame S does not allow us to conclude that t =R = t =L in frame S′.

In fact, in frame S′ the right firecracker must explode before the left firecracker. 
Figure  36.16b, with its assumption about simultaneity, was incorrect. FIGURE  36.17 
shows the situation in Priya’s reference frame, with the right firecracker exploding 
first. Now the wave from the right reaches Priya and the box first, as Ryan had 
concluded, and the light on top turns green.

One of the most disconcerting conclusions of relativity is that two events occurring 
simultaneously in reference frame S are not simultaneous in any reference frame S′  
moving relative to S. This is called the relativity of simultaneity.

The two firecrackers really explode at the same instant of time in Ryan’s reference 
frame. And the right firecracker really explodes first in Priya’s reference frame. It’s 
not a matter of when they see the flashes. Our conclusion refers to the times at which 
the explosions actually occur.

The paradox of Priya and Ryan contains the essence of relativity, and it’s worth 
careful thought. First, review the logic until you’re certain that there is a paradox, a 
logical impossibility. Then convince yourself that the only way to resolve the paradox 
is to abandon the assumption that the explosions are simultaneous in Priya’s reference  
frame. If you understand the paradox and its resolution, you’ve made a big step toward 
understanding what relativity is all about.

STOP TO THINK 36.5 A tree and a pole are 3000 m apart. Each is hit by a bolt of  
lightning. Mark, who is standing at rest midway between the two, sees the two 
lightning bolts at the same instant of time. Nancy is flying her rocket at v = 0.5c in the 
direction from the tree toward the pole. The lightning hits the tree just as she passes 
by it. Define event 1 to be “lightning strikes tree” and event 2 to be “lightning strikes 
pole.” For Nancy, does event 1 occur before, after, or at the same time as event 2?

The right firecracker explodes first.

The right wave reaches
Priya first.

The left firecracker
explodes later.

The waves reach Ryan simultaneously.
The left wave has not reached Priya.

P

P

P

-v

-v

-v
R

R

R

FIGURE 36.17 The real sequence of events 
in Priya’s reference frame.
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36.6 Time Dilation
The principle of relativity has driven us to the logical conclusion that time is not the 
same for two reference frames moving relative to each other. Our analysis thus far has 
been mostly qualitative. It’s time to start developing some quantitative tools that will 
allow us to compare measurements in one reference frame to measurements in another  
reference frame.

FIGURE 36.18a shows a special clock called a light clock. The light clock is a box with 
a light source at the bottom and a mirror at the top, separated by distance h. The light 
source emits a very short pulse of light that travels to the mirror and reflects back to a 
light detector beside the source. The clock advances one “tick” each time the detector 
receives a light pulse, and it immediately, with no delay, causes the light source to emit  
the next light pulse.

Our goal is to compare two measurements of the interval between two ticks of the 
clock: one taken by an experimenter standing next to the clock and the other by an 
experimenter moving with respect to the clock. To be specific, FIGURE 36.18b shows 
the clock at rest in reference frame S′. We call this the rest frame of the clock. 
Reference frame S′, with the clock, moves to the right with velocity v relative to 
reference frame S.

Relativity requires us to measure events, so let’s define event 1 to be the emission 
of a light pulse and event 2 to be the detection of that light pulse. Experimenters in 
both reference frames are able to measure where and when these events occur in their 
frame. In frame S, the time interval ∆t = t2 - t1 is one tick of the clock. Similarly, one  
tick in frame S′ is ∆t′ = t =2 - t =1.

To be sure we have a clear understanding of the relativity result, let’s first do a 
classical analysis. In frame S′, the clock’s rest frame, the light travels straight up and 
down, a total distance 2h, at speed c. The time interval is ∆t′ = 2h/c.

FIGURE 36.19a shows the operation of the light clock as seen in frame S. The clock 
is moving to the right at speed v in S, thus the mirror moves distance 12 v 1∆t2 during 
the time 1

2 (∆t) in which the light pulse moves from the source to the mirror. The 
distance traveled by the light during this interval is 1

2 ulight 1∆t2, where ulight is the 
speed of light in frame S. You can see from the vector addition in FIGURE 36.19b that 
the speed of light in frame S is ulight = 1c2 + v221/2. (Remember, this is a classical 
analysis in which the speed of light does depend on the motion of the reference  
frame relative to the light source.)

The Pythagorean theorem applied to the right triangle in Figure 36.19a is

   h2 + 1  

1
2 v ∆t 2   

2 = 1  

1
2 u light ∆t 22 = 1  

1
2 2c2 + v2 ∆t  2   

2  

    = 1  

1
2 c ∆t 2   

2 + 1  

1
2 v ∆t 2   

2 (36.4)

The term 11
2 v ∆t22 is common to both sides and cancels. Solving for ∆t gives ∆t = 2h/c, 

identical to ∆t′. In other words, a classical analysis finds that the clock ticks at exactly 
the same rate in both frame S and frame S′. This shouldn’t be surprising. There’s 
only one kind of time in classical physics, measured the same by all experimenters  
independent of their motion.

The principle of relativity changes only one thing, but that change has profound 
consequences. According to the principle of relativity, light travels at the same speed 
in all inertial reference frames. In frame S′, the rest frame of the clock, the light 
simply goes straight up and back. The time of one tick,

 ∆t′ =
2h
c

 (36.5)

is unchanged from the classical analysis.

S

y

x S′

y′

x′

(b) The clock is at rest in frame S′.
Frame S′ is
the rest frame
of the clock.

v

h

(a) A light clock

h

Light detectorLight source

Time display

Mirror

FIGURE 36.18 The ticking of a light clock  
can be measured by experimenters in  
two different reference frames.

Light
velocity
in clock

Clock velocity relative to frame S

v

c

(b)

ulight = 
light speed in frame S.

2c2 + v2 is the

Emission

Mirror

Mirror when
light was emitted

Mirror when
light is detected
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FIGURE 36.19 A classical analysis of the 
light clock.
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1088 CHAPTER 36 Relativity

FIGURE 36.20 shows the light clock as seen in frame S. The difference from  Fig - 
ure 36.19a is that the light now travels along the hypotenuse at speed c. We can again  
use the Pythagorean theorem to write

 h2 + 11
2 v ∆t2   

2 = 11
2 c ∆t2   

2 (36.6)

Solving for ∆t gives

 ∆t =
2h/c21 - v2/c2

=
∆t′21 - v2/c2

 (36.7)

The time interval between two ticks in frame S is not the same as in frame S′.
It’s useful to define b = v/c, the velocity as a fraction of the speed of light. For 

example, a reference frame moving with v = 2.4 * 108 m/s has b = 0.80. In terms of 
b, Equation 36.7 is

 ∆t =
∆t′21 - b2

 (36.8)

   NOTE    The expression 11 - v2/c221/2 = 11 - b221/2 occurs frequently in relativity. 
The value of the expression is 1 when v = 0, and it steadily decreases to 0 as v S c 
(or b S 1). The square root is an imaginary number if v 7 c, which would make 
∆t imaginary in Equation 36.8. Time intervals certainly have to be real numbers, 
suggesting that v 7 c is not physically possible. One of the predictions of the theory 
of relativity, as you’ve undoubtedly heard, is that nothing can travel faster than the 
speed of light. Now you can begin to see why. We’ll examine this topic more closely 
in Section 36.9. In the meantime, we’ll require v to be less than c.

Proper Time
Frame S′ has one important distinction. It is the one and only inertial reference frame 
in which the light clock is at rest. Consequently, it is the one and only inertial reference 
frame in which the times of both events—the emission of the light and the detection of 
the light—are measured by the same reference-frame clock. You can see that the light 
pulse in Figure 36.18a starts and ends at the same position. In Figure 36.20, the emis-
sion and detection take place at different positions in frame S and must be measured  
by different reference-frame clocks, one at each position.

The time interval between two events that occur at the same position is called 
the proper time ∆t. Only one inertial reference frame measures the proper time, 
and it does so with a single clock that is present at both events. An inertial reference 
frame moving with velocity v = bc relative to the proper-time frame must use two 
clocks to measure the time interval: one at the position of the first event, the other 
at the position of the second event. The time interval in the frame where two clocks 
are required is

 ∆t =
∆t21 - b2

Ú ∆t  (time dilation) (36.9)

The “stretching out” of the time interval implied by Equation 36.9 is called time 
dilation. Time dilation is sometimes described by saying that “moving clocks run 
slow,” but this statement has to be interpreted carefully. The whole point of relativity is 
that all inertial frames are equally valid, so there’s no absolute sense in which a clock 
is “moving” or “at rest.”

To illustrate, FIGURE  36.21 shows two firecracker explosions—two events—that 
occur at different positions in the ground reference frame. Experimenters on the 
ground need two clocks to measure the time interval ∆t. In the train reference frame, 

Emission

Mirror v

h

Detection

c∆t

v∆t

Light path
through
frame S

Light speed is the same
in both frames.

Clock moves distance v∆t.

1
2

1
2

FIGURE 36.20 A light clock analysis in 
which the speed of light is the same in all 
reference frames.

B

B

The ground reference frame needs two
clocks, A and B, to measure the time
interval ∆t between events 1 and 2.

The train reference frame measures
the proper time ∆t because one
clock is present at both events.

Event 2

A

A

Event 1

FIGURE 36.21 The time interval between 
two events is measured in two different 
reference frames.
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36.6 Time Dilation 1089

however, a single clock is present at both events; hence the time interval measured in 
the train reference frame is the proper time ∆t. You can see that ∆t 6 ∆t, so less time  
has elapsed in the train reference frame.

In this sense, the “moving clock,” the one that is present at both events, “runs 
slower” than clocks that are stationary with respect to the events. More generally, the 
time interval between two events is smallest in the reference frame in which the 
two events occur at the same position.

   NOTE    Equation 36.9 was derived using a light clock because the operation of a light 
clock is clear and easy to analyze. But the conclusion is really about time itself. Any 
clock, regardless of how it operates, behaves the same.

Saturn is 1.43 * 1012 m from the sun. A rocket travels along a 
line from the sun to Saturn at a constant speed of 0.9c relative to 
the solar system. How long does the journey take as measured by  
an experimenter on earth? As measured by an astronaut on the 
rocket?

MODEL Let the solar system be in reference frame S and the  
rocket be in reference frame S′ that travels with velocity v =  0.9c 
relative to S. Relativity problems must be stated in terms of events. 
Let event 1 be “the rocket and the sun coincide” (the experimenter  
on earth says that the rocket passes the sun; the astronaut on the 
rocket says that the sun passes the rocket) and event 2 be “the  
rocket and Saturn coincide.”

VISUALIZE FIGURE  36.22 shows the two events as seen from the 
two reference frames. Notice that the two events occur at the same 
position in S′, the position of the rocket, and consequently can be 
measured by one clock carried on board the rocket.

SOLVE The time interval measured in the solar system reference 
frame, which includes the earth, is simply

∆t =
∆x
v

=
1.43 * 1012 m

0.9 * 13.00 * 108 m/s2 = 5300 s

Relativity hasn’t abandoned the basic definition v = ∆x/∆t, although  
we do have to be sure that ∆x and ∆t are measured in just one  
reference frame and refer to the same two events.

How are things in the rocket’s reference frame? The two events 
occur at the same position in S′ and can be measured by one clock, 
the clock at the origin. Thus the time measured by the astronauts  
is the proper time ∆t between the two events. We can use  
Equation 36.9 with b = 0.9 to find

∆t = 21 - b2 ∆t = 21 - 0.92 15300 s2 = 2310 s

REVIEW The time interval measured between these two events 
by the astronauts is less than half the time interval measured by 
experimenters on earth. The difference has nothing to do with when 
earthbound astronomers see the rocket pass the sun and Saturn. ∆t 
is the time interval from when the rocket actually passes the sun, 
as measured by a clock at the sun, until it actually passes Saturn, as 
measured by a synchronized clock at Saturn. The interval between 
seeing the events from earth, which would have to allow for light 
travel times, would be something other than 5300 s. ∆t and ∆t are 
different because time is different in two reference frames moving 
relative to each other.

EXAMPLE 36.4 ■ From the sun to Saturn

S

y

x S′

y′

x′

S

y

x S′

y′

x′

Rocket journey in frame S

Event 1

v

v

-v

-v -v

Rocket journey in frame S′

The time between 
these two events is ∆t.

The time between these two 
events is the proper time ∆t.

Event 1

Event 2 Event 2

∆x = v∆t ∆x′ = 0

FIGURE 36.22 Pictorial representation of the trip as seen in 
frames S and S′.

STOP TO THINK 36.6 Molly flies her rocket past Nick at constant velocity v. Molly 
and Nick both measure the time it takes the rocket, from nose to tail, to pass Nick. 
Which of the following is true?

a. Both Molly and Nick measure the same amount of time.
b. Molly measures a shorter time interval than Nick.
c. Nick measures a shorter time interval than Molly.
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1090 CHAPTER 36 Relativity

Experimental Evidence
Is there any evidence for the crazy idea that clocks moving relative to each other tell time 
differently? Indeed, there’s plenty. An experiment in 1971 sent an atomic clock around 
the world on a jet plane while an identical clock remained in the laboratory. This was a 
difficult experiment because the traveling clock’s speed was so small compared to c, but 
measuring the small differences between the time intervals was just barely within the 
capabilities of atomic clocks. It was also a more complex experiment than we’ve analyzed 
because the clock accelerated as it moved around a circle. The scientists found that, upon 
its return, the eastbound clock, traveling faster than the laboratory on a rotating earth, was  
60 ns behind the stay-at-home clock, which was exactly as predicted by relativity.

Very detailed studies have been done on unstable particles called muons that are 
created at the top of the atmosphere, at a height of about 60 km, when high-energy cosmic 
rays collide with air molecules. It is well known, from laboratory studies, that stationary 
muons decay with a half-life of 1.5 ms. That is, half the muons decay within 1.5 ms, half 
of those remaining decay in the next 1.5 ms, and so on. The decays can be used as a clock.

The muons travel down through the atmosphere at very nearly the speed of 
light. The time needed to reach the ground, assuming v ≈ c, is ∆t ≈ 160,000 m2/ 
13 * 108 m/s2 = 200 ms. This is 133 half-lives, so the fraction of muons reaching the 
ground should be ≈11

22133 = 10-40. That is, only 1 out of every 1040 muons should 
reach the ground. In fact, experiments find that about 1 in 10 muons reach the ground, 
an experimental result that differs by a factor of 1039 from our prediction!

The discrepancy is due to time dilation. In FIGURE  36.23, the two events “muon  
is created” and “muon hits ground” take place at two different places in the earth’s 
ref erence frame. However, these two events occur at the same position in the muon’s 
reference frame. (The muon is like the rocket in Example 36.4.) Thus the muon’s 
internal clock measures the proper time. The time-dilated interval ∆t = 200 ms in 
the earth’s reference frame corresponds to a proper time ∆t ≈ 5 ms in the muon’s 
reference frame. That is, in the muon’s reference frame it takes only 5 ms from creation 
at the top of the atmosphere until the ground runs into it. This is 3.3 half-lives, so the 
fraction of muons reaching the ground is 11

223.3 = 0.1, or 1 out of 10. We wouldn’t 
detect muons at the ground at all if not for time dilation.

The details are beyond the scope of this textbook, but dozens of high-energy 
particle accelerators around the world that study quarks and other elementary particles 
have been designed and built on the basis of Einstein’s theory of relativity. The fact 
that they work exactly as planned is strong testimony to the reality of time dilation.

The Twin Paradox
The most well-known relativity paradox is the twin paradox. George and Helen are 
twins. On their 25th birthday, Helen departs on a starship voyage to a distant star. 
Let’s imagine, to be specific, that her starship accelerates almost instantly to a speed 
of 0.95c and that she travels to a star that is 9.5 light years (9.5 ly) from earth. Upon 
arriving, she discovers that the planets circling the star are inhabited by fierce aliens, 
so she immediately turns around and heads home at 0.95c.

A light year, abbreviated ly, is the distance that light travels in one year. A light 
year is vastly larger than the diameter of the solar system. The distance between two 
neighboring stars is typically a few light years. For our purpose, we can write the 
speed of light as c = 1 ly/year. That is, light travels 1 light year per year.

This value for c allows us to determine how long, according to George and his fellow 
earthlings, it takes Helen to travel out and back. Her total distance is 19 ly and, due to 
her rapid acceleration and rapid turnaround, she travels essentially the entire distance at 
speed v = 0.95c = 0.95 ly/year. Thus the time she’s away, as measured by George, is

 ∆tG =
19 ly

0.95 ly/year
= 20 years (36.10)

George will be 45 years old when his sister Helen returns with tales of adventure.

Muon hits ground.

Muon is
created.

A muon travels ≈450 m in 1.5 ms. 
We would not detect muons at
ground level if the half-life of a
moving muon were 1.5 ms.

Because of time dilation,
the half-life of a muon is
long enough in the earth’s
reference frame for 1 in 10
muons to reach the ground.

FIGURE 36.23 We wouldn’t detect muons  
at the ground if not for time dilation.

The global positioning system (GPS), 
which allows you to pinpoint your location 
anywhere in the world to within a few 
meters, uses a set of orbiting satellites. 
Because of their motion, the atomic clocks 
on these satellites keep time differently 
from clocks on the ground. To determine 
an accurate position, the software in your 
GPS receiver must carefully correct for  
time-dilation effects.
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While she’s away, George takes a physics class and studies Einstein’s theory of 
relativity. He realizes that time dilation will make Helen’s clocks run more slowly 
than his clocks, which are at rest relative to him. Her heart—a clock—will beat fewer 
times and the minute hand on her watch will go around fewer times. In other words, 
she’s aging more slowly than he is. Although she is his twin, she will be younger than 
he is when she returns.

Calculating Helen’s age is not hard. We simply have to identify Helen’s clock, 
because it’s always with Helen as she travels, as the clock that measures proper time 
∆t. From Equation 36.9,

 ∆tH = ∆t = 21 - b2  ∆tG = 21 - 0.952  120 years2 = 6.25 years (36.11)

George will have just celebrated his 45th birthday as he welcomes home his 31-year-
and-3-month-old twin sister.

This may be unsettling because it violates our commonsense notion of time, but 
it’s not a paradox. There’s no logical inconsistency in this outcome. So why is it called 
“the twin paradox”?

Helen, knowing that she had quite of bit of time to kill on her journey, brought 
along several physics books to read. As she learns about relativity, she begins to think 
about George and her friends back on earth. Relative to her, they are all moving away 
at 0.95c. Later they’ll come rushing toward her at 0.95c. Time dilation will cause their 
clocks to run more slowly than her clocks, which are at rest relative to her. In other 
words, as FIGURE 36.24 shows, Helen concludes that people on earth are aging more 
slowly than she is. Alas, she will be much older than they when she returns.

Finally, the big day arrives. Helen lands back on earth and steps out of the starship. 
George is expecting Helen to be younger than he is. Helen is expecting George to be 
younger than she is.

Here’s the paradox! It’s logically impossible for each to be younger than the other 
at the time they are reunited. Where, then, is the flaw in our reasoning? It seems to be 
a symmetrical situation—Helen moves relative to George and George moves relative 
to Helen—but symmetrical reasoning has led to a conundrum.

But are the situations really symmetrical? George goes about his business day after 
day without noticing anything unusual. Helen, on the other hand, experiences three 
distinct periods during which the starship engines fire, she’s crushed into her seat, 
and free dust particles that had been floating inside the starship are no longer, in the 
starship’s reference frame, at rest or traveling in a straight line at constant speed. In 
other words, George spends the entire time in an inertial reference frame, but Helen 
does not. The situation is not symmetrical.

The principle of relativity applies only to inertial reference frames. Our dis-
cussion of time dilation was for inertial reference frames. Thus George’s analysis and 
calculations are correct. Helen’s analysis and calculations are not correct because she 
was trying to apply an inertial reference frame result while traveling in a noninertial 
reference frame. (Or, alternatively, Helen was in two different inertial frames while 
George was only in one, and thus the situation is not symmetrical.)

Helen is younger than George when she returns. This is strange, but not a paradox. 
It is a consequence of the fact that time flows differently in two reference frames 
moving relative to each other.

36.7 Length Contraction
We’ve seen that relativity requires us to rethink our idea of time. Now let’s turn our atten-
tion to the concepts of space and distance. Consider the rocket that traveled from the sun 
to Saturn in Example 36.4. FIGURE 36.25a on the next page shows the rocket moving with 
velocity v through the solar system reference frame S. We define L = ∆x = xSaturn - xsun 
as the distance between the sun and Saturn in frame S or, more generally, the length of the  
spatial interval between two points. The rocket’s speed is v = L /∆t, where ∆t is the time 
measured in frame S for the journey from the sun to Saturn.

0.95c
9.5 ly

Helen is moving relative
to me at 0.95c. Her clocks 
are running more slowly than 
mine, and when she returns 
she’ll be younger than I am.

George is moving relative
to me at 0.95c. His clocks 
are running more slowly than 
mine, and when I return he’ll 
be younger than I am.

FIGURE 36.24 The twin paradox.
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1092 CHAPTER 36 Relativity

FIGURE  36.25b shows the situation in reference frame S′, where the rocket is at 
rest. The sun and Saturn move to the left at speed v = L′/∆t′, where ∆t′ is the time 
measured in frame S′ for Saturn to travel distance L′.

Speed v is the relative speed between S and S′ and is the same for experimenters in 
both reference frames. That is,

 v =
L
∆t

=
L′
∆t′

 (36.12)

The time interval ∆t′ measured in frame S′ is the proper time ∆t because both events 
occur at the same position in frame S′ and can be measured by one clock. We can use 
the time-dilation result, Equation 36.9, to relate ∆t measured by the astronauts to ∆t 
measured by the earthbound scientists. Then Equation 36.12 becomes

 
L
∆t

=
L′
∆t

=
L′21 - b2 ∆t

 (36.13)

The ∆t cancels, and the distance L′ in frame S′ is

 L′ = 21 - b2 L (36.14)

Surprisingly, we find that the distance between two objects in reference frame  
S′ is not the same as the distance between the same two objects in reference 
frame S.

Frame S, in which the distance is L, has one important distinction. It is the one and 
only inertial reference frame in which the objects are at rest. Experimenters in frame 
S can take all the time they need to measure L because the two objects aren’t going 
anywhere. The distance L between two objects, or two points on one object, measured 
in the reference frame in which the objects are at rest is called the proper length /. 
Only one inertial reference frame can measure the proper length.

We can use the proper length / to write Equation 36.14 as

 L′ = 21 - b2 / … / (36.15)

This “shrinking” of the distance between two objects, as measured by an experimenter  
moving with respect to the objects, is called length contraction. Although we 
derived length contraction for the distance between two distinct objects, it applies 
equally well to the length of any physical object that stretches between two points  
along the x- and x′@axes. The length of an object is greatest in the reference 
frame in which the object is at rest. The object’s length is less (i.e., the length 
is contracted) when it is measured in any reference frame in which the object is 
moving.

-v

Saturn moves distance L′ in
time ∆t′ = ∆t. This is the distance
between the sun and Saturn in S′.

(b) Reference frame S′: The rocket is stationary.

x′

y′

S′

L′

-v

The rocket moves distance
L in time ∆t. This is the
distance between the sun 
and Saturn in S.

(a) Reference frame S: The solar system is stationary.

x

y

v
L

v

xsun xSaturn

S

 FIGURE 36.25 L and L′ are the distances between the sun and Saturn in frames S and S′.

The Stanford Linear Accelerator (SLAC)  
is a 2-mi-long electron accelerator. The 
accelerator’s length is less than 1 m in 
the reference frame of the electrons.
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The conclusion that space is different in reference frames moving relative to 
each other is a direct consequence of the fact that time is different. Experimenters 
in both reference frames agree on the relative velocity v, leading to Equation 36.12: 
v = L/∆t = L′/∆t′. We had already learned that ∆t′ 6 ∆t because of time dilation. 
Thus L′ has to be less than L. That is the only way experimenters in the two reference 
frames can reconcile their measurements.

To be specific, the earthly experimenters in Examples 36.4 and 36.5 find that the 
rocket takes 5300 s to travel the 1.43 * 1012 m between the sun and Saturn. The rocket’s 
speed is v = L  /∆t = 2.7 * 108 m /s = 0.9c. The astronauts in the rocket find that it 
takes only 2310 s for Saturn to reach them after the sun has passed by. But there’s no 
conflict, because they also find that the distance is only 0.62 * 1012 m. Thus Saturn’s 
speed toward them is v = L′/∆t′ = 10.62 * 1012 m2/12310 s2 = 2.7 * 108 m /s = 0.9c.

 Another Paradox?
Carmen and Dan are in their physics lab room. They each select a meter stick, lay the 
two side by side, and agree that the meter sticks are exactly the same length. Then, for 
an extra-credit project, they go outside and run past each other, in opposite directions, 
at a relative speed v = 0.9c. FIGURE 36.26 shows their experiment and a portion of their 
conversation.

Now, Dan’s meter stick can’t be both longer and shorter than Carmen’s meter stick. 
Is this another paradox? No! Relativity allows us to compare the same events as they’re 
measured in two different reference frames. This did lead to a real paradox when Priya 
rolled past Ryan on the train. There the signal light on the box turns green (a single event) 
or it doesn’t, and Priya and Ryan have to agree about it. But the events by which Dan 
measures the length (in Dan’s frame) of Carmen’s meter stick are not the same events as 
those by which Carmen measures the length (in Carmen’s frame) of Dan’s meter stick.

There’s no conflict between their measurements. In Dan’s reference frame, 
Carmen’s meter stick has been length contracted and is less than 1 m in length. In 
Carmen’s reference frame, Dan’s meter stick has been length contracted and is less 
than 1 m in length. If this weren’t the case, if both agreed that one of the meter sticks 
was shorter than the other, then we could tell which reference frame was “really” 
moving and which was “really” at rest. But the principle of relativity doesn’t allow us 
to make that distinction. Each is moving relative to the other, so each should make the 
same measurement for the length of the other’s meter stick.

The Spacetime Interval
Forget relativity for a minute and think about ordinary geometry. FIGURE 36.27 shows 
two ordinary coordinate systems. They are identical except for the fact that one has 
been rotated relative to the other. A student using the xy-system would measure 
coordinates 1x1, y12 for point 1 and 1x2, y22 for point 2. A second student, using the 
x′y′@system, would measure 1x=

1, y
=
12 and 1x=

2, y
=
22.

In Example 36.4 a rocket traveled along a line from the sun to 
Saturn at a constant speed of 0.9c relative to the solar system. 
The Saturn-to-sun distance was given as 1.43 * 1012 m. What is 
the distance between the sun and Saturn in the rocket’s reference 
frame?

MODEL Saturn and the sun are, at least approximately, at rest in 
the solar system reference frame S. Thus the given distance is the 
proper length /.

SOLVE We can use Equation 36.15 to find the distance in the rock-
et’s frame S′:

  L′ = 21 - b2 / = 21 - 0.92 11.43 * 1012 m2
  = 0.62 * 1012 m

REVIEW The sun-to-Saturn distance measured by the astronauts 
is less than half the distance measured by experimenters on earth. 
L′ and / are different because space is different in two reference 
frames moving relative to each other.

EXAMPLE 36.5 ■ The distance from the sun to Saturn

Your meter stick is shorter
than mine. It’s length
contracted because you’re
moving relative to me.  

That can’t be. Your meter
stick is the one whose length
is contracted. Your meter stick
is the shorter one.

Carmen

Meter sticks

Dan

FIGURE 36.26 Carmen and Dan each 
measure the length of the other’s meter 
stick as they move relative to each other.

x

x

x′

x′

y′

y′

y

y y′2

∆y

∆y′

∆x

x1 x2

x′1
x′2∆x′

d

y′1

y2

y1

d

Coordinate values and
intervals are different.

1

1

2

Measurements in
the xy-system:

2

Distance d
is the same.

Measurements in
the x′y′-system:

FIGURE 36.27 Distance d is the same in 
both coordinate systems.
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1094 CHAPTER 36 Relativity

The students soon find that none of their measurements agree. That is, x1 ≠ x=
1 and 

so on. Even the intervals are different: ∆x ≠ ∆x′ and ∆y ≠ ∆y′. Each is a perfectly 
valid coordinate system, giving no reason to prefer one over the other, but each yields 
different measurements.

Is there anything on which the two students can agree? Yes, there is. The distance 
d between points 1 and 2 is independent of the coordinates. We can state this 
mathematically as

 d2 = 1∆ x22 + 1∆y22 = 1∆ x′22 + 1∆y′22 (36.16)

The quantity 1∆x22 + 1∆y22 is called an invariant in geometry because it has the 
same value in any Cartesian coordinate system.

Returning to relativity, is there an invariant in the spacetime coordinates, some 
quantity that has the same value in all inertial reference frames? There is, and to find 
it let’s return to the light clock of Figure 36.20. FIGURE 36.28 shows the light clock as 
seen in reference frames S′ and S″. The speed of light is the same in both frames, 
even though both are moving with respect to each other and with respect to the clock.

Notice that the clock’s height h is common to both reference frames. Thus

 h2 = 1  

1
2 c ∆t′  2   

2 - 1  

1
2 ∆x′   2   

2 = 1  

1
2 c ∆t″  2   

2 - 1  

1
2 ∆ x″ 2   

2 (36.17)

The factor 12 cancels, allowing us to write

 c21∆t′22 - 1∆x′22 = c21∆t″22 - 1∆x″22 (36.18)

Let us define the spacetime interval s between two events to be

 s2 = c2(∆t)2 - (∆x)2 (36.19)

What we’ve shown in Equation 36.18 is that the spacetime interval s has the same 
value in all inertial reference frames. That is, the spacetime interval between two 
events is an invariant. It is a value that all experimenters, in all reference frames, can 
agree upon.

c∆t′

h
h

h is the same in
both frames.

Mirror
in S′

Light path
in S′

Emission

Mirror
in S″

c∆t″

∆x′
 S′ detection

∆x″

∆x′

∆x″

Light
path
in S″

S″ detection

1
2

1
2

1
2

1
2

 FIGURE 36.28 The light clock seen by 
experimenters in reference frames S′  
and S″.

A firecracker explodes at the origin of an inertial reference frame. 
Then, 2.0 ms later, a second firecracker explodes 300 m away. 
Astronauts in a passing rocket measure the distance between the 
explosions to be 200 m. According to the astronauts, how much 
time elapses between the two explosions?

MODEL The spacetime coordinates of two events are measured in 
two different inertial reference frames. Call the reference frame of the 
ground S and the reference frame of the rocket S′. The spacetime in-
terval between these two events is the same in both reference frames.

SOLVE The spacetime interval (or, rather, its square) in frame S is

s2 = c21∆t22 - 1∆x22 = 1600 m22 - 1300 m22 = 270,000 m2

where we used c = 300 m/ms to determine that c ∆t = 600 m. The 
spacetime interval has the same value in frame S′. Thus

  s2 = 270,000 m2 = c21∆t′22 - 1∆x′22

  = c21∆t′22 - 1200 m22

This is easily solved to give ∆t′ = 1.85 ms.

REVIEW The two events are closer together in both space and time 
in the rocket’s reference frame than in the reference frame of the 
ground.

EXAMPLE 36.6 ■ Using the spacetime interval

Einstein’s legacy, according to popular culture, was the discovery that “everything 
is relative.” But it’s not so. Time intervals and space intervals may be relative, as were 
the intervals ∆x and ∆y in the purely geometric analogy with which we opened this 
section, but some things are not relative. In particular, the spacetime interval s between  
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36.8 The Lorentz Transformations 1095

two events is not relative. It is a well-defined number, agreed on by experimenters in 
each and every inertial reference frame.

STOP TO THINK 36.7 Beth and Charles 
are at rest relative to each other. Anjay runs 
past at velocity v while holding a long pole 
parallel to his motion. Anjay, Beth, and 
Charles each measure the length of the pole 
at the instant Anjay passes Beth. Rank in 
order, from largest to smallest, the three 
lengths LA, LB, and LC.

v

Beth

Anjay

Charles

36.8 The Lorentz Transformations
The Galilean transformation x′   = x - vt of classical relativity lets us calculate the 
position x′ of an event in frame S′ if we know its position x in frame S. Classical 
relativity, of course, assumes that t′   = t. Is there a similar transformation in relativity 
that would allow us to calculate an event’s spacetime coordinates 1x′, t′2 in frame S′ 
if we know their values 1x, t2 in frame S? Such a transformation would need to satisfy 
three conditions:

1. Agree with the Galilean transformations in the low-speed limit v V c.
2. Transform not only spatial coordinates but also time coordinates.
3. Ensure that the speed of light is the same in all reference frames.

We’ll continue to use reference frames in the standard orientation of FIGURE 36.29. The 
motion is parallel to the x- and x′@axes, and we define t = 0 and t′ = 0 as the instant 
when the origins of S and S′ coincide.

The requirement that a new transformation agree with the Galilean transformation 
when v V c suggests that we look for a transformation of the form

 x′ = g1x - vt2 and x = g1x′ + vt′2 (36.20)

where g is a dimensionless function of velocity that satisfies g S 1 as v S 0.
To determine g, we consider the following two events:

Event 1:  A flash of light is emitted from the origin of both reference frames 
1x = x′ = 02 at the instant they coincide 1t = t′ = 02.

Event 2:  The light strikes a light detector. The spacetime coordinates of this  
event are 1x, t2 in frame S and 1x′, t′2 in frame S′.

Light travels at speed c in both reference frames, so the positions of event 2 are 
x = ct in S and x′ = ct′ in S′. Substituting these expressions for x and x′ into Equation  
36.20 gives

  ct′ = g1ct - vt2 = g1c - v2t 

   ct = g1ct′ + vt′2 = g1c + v2t′ 
(36.21)

We solve the first equation for t′, by dividing by c, then substitute this result for t′ into 
the second:

ct = g1c + v2 
g1c - v2t

c
= g21c2 - v2 2 

t
c

An event has spacetime coordinates
(x, t) in frame S, (x′, t′) in frame S′.

Event

Origins coincide
at t = t′ = 0.

x

y

x′

y′

v

S S′

FIGURE 36.29 The spacetime coordinates 
of an event are measured in inertial 
reference frames S and S′.

M36B_KNIG8221_05_GE_C36.indd   1095 01/06/2022   15:36



1096 CHAPTER 36 Relativity

The t cancels, leading to

g2 =
c2

c2 - v2 =
1

1 - v2/c2

Thus the g that “works” in the proposed transformation of Equation 36.20 is

 g =
121 - v2/c2

=
121 - b2

 (36.22)

You can see that g S 1 as v S 0, as expected.
The transformation between t and t′ is found by requiring that x = x if you use Equ a-

tion 36.20 to transform a position from S to S′ and then back to S. The details will be left  
for a homework problem. Another homework problem will let you demonstrate that the 
y and z measurements made perpendicular to the relative motion are not affected by the 
motion. We tacitly assumed this condition in our analysis of the light clock.

The full set of equations is called the Lorentz transformations. They are

 

x′ = g1x - vt2 x = g1x′ + vt′2
y′ = y y = y′
z′ = z z = z′
t′ = g1t - vx/c22 t = g1t′ + vx′/c22

 (36.23)

The Lorentz transformations transform the spacetime coordinates of one event. 
Compare these to the Galilean transformation equations in Equations 36.1.

   NOTE    These transformations are named after the Dutch physicist H. A. Lorentz, who 
derived them prior to Einstein. Lorentz was close to discovering special relativity, but 
he didn’t recognize that our concepts of space and time have to be changed before these  
equations can be properly interpreted.

Using Relativity
Relativity is phrased in terms of events; hence relativity problems are solved by inter-
preting the problem statement in terms of specific events.

PROBLEM-SOLVING STRATEGY 36.1

Relativity

MODEL Frame the problem in terms of events, things that happen at a specific  
place and time.

VISUALIZE A pictorial representation defines the reference frames.
■■ Sketch the reference frames, showing their motion relative to each other.
■■ Show events. Identify objects that are moving with respect to the reference 
frames.

■■ Identify any proper time intervals and proper lengths. These are measured  
in an object’s rest frame.

SOLVE The mathematical representation is based on the Lorentz transformations, 
but not every problem requires the full transformation equations.

■■  Problems about time intervals can often be solved using time dilation:  
∆t = g ∆t.

■■ Problems about distances can often be solved using length contraction:  
L = //g.

REVIEW Are the results consistent with Galilean relativity when v V c?
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36.8 The Lorentz Transformations 1097

Priya is standing in the center of a long, flat railroad car that  
has firecrackers tied to both ends. The car moves past Ryan, 
who is standing on the ground, with velocity v = 0.8c. Flashes 
from the exploding firecrackers reach him simultaneously 
1.0 ms after the instant that Priya passes him, and he later finds 
burn marks on the track 300 m to either side of where he had  
been standing.

a. According to Ryan, what is the distance between the two 
explosions, and at what times do the explosions occur relative to the  
time that Priya passes him?

b. According to Priya, what is the distance between the two 
explosions, and at what times do the explosions occur relative to the  
time that Ryan passes her?

MODEL Let the explosion on Ryan’s right, the direction in which 
Priya is moving, be event R. The explosion on his left is event L.

VISUALIZE Priya and Ryan are in inertial reference frames. As 
FIGURE  36.30 shows, Priya’s frame S′ is moving with v = 0.8c 
relative to Ryan’s frame S. We’ve defined the reference frames 
such that Priya and Ryan are at the origins. The instant they pass, 
by definition, is t = t′ = 0 s. The two events are shown in Ryan’s 
reference frame.

SOLVE a. The two burn marks tell Ryan that the distance between 
the explosions was L = 600 m. Light travels at c = 300 m/ms,  
and the burn marks are 300 m on either side of him, so Ryan can 
determine that each explosion took place 1.0 ms before he saw the 
flash. But this was the instant of time that Priya passed him, so 
Ryan concludes that the explosions were simultaneous with each 
other and with Priya’s passing him. The spacetime coordinates 
of the two events in frame S are 1xR, tR2 = 1300 m, 0 ms2 and 
1xL, tL2 = 1-300 m, 0 ms2.

b. We already know, from our qualitative analysis in Section 36.5, 
that the explosions are not simultaneous in Priya’s reference frame. 
Event R happens before event L in S′, but we don’t know how they  
compare to the time at which Ryan passes Priya. We can now use 
the Lorentz transformations to relate the spacetime coordinates  
of these events as measured by Ryan to the spacetime coordinates 
as measured by Priya. Using v = 0.8c, we find that g is

g =
121 - v2/c2

=
121 - 0.82

= 1.667

For event L, the Lorentz transformations are

 x=
L = 1.6671    1-300 m2 - 10.8c210 ms2   2 = -500 m

 t =L = 1.6671    10 ms2 - 10.8c21-300 m2/c2
 2 = 1.33 ms

And for event R,

 x=
R = 1.6671    1300 m2 - 10.8c210 ms2   2 = 500 m

 t =R = 1.6671    10 ms2 - 10.8c21300 m2/c2 2 = -1.33 ms

According to Priya, the two explosions occur 1000 m apart. 
Furthermore, the first explosion, on the right, occurs 1.33 ms before 
Ryan passes her at t′ = 0 s. The second, on the left, occurs 1.33 ms 
after Ryan goes by.

REVIEW Events that are simultaneous in frame S are not simul-
taneous in frame S′. The results of the Lorentz transformations 
agree with our earlier qualitative analysis.

EXAMPLE 36.7 ■ Ryan and Priya revisited

x
-300 m 0

(xL, tL) = (-300 m, 0 s)
300 m

(xR, tR) = (300 m, 0 s)

Priya passes
Ryan at t = t′ = 0.  

Priya

Ryan

Frame S′

Frame S

Event L Event R

v

FIGURE 36.30 A pictorial representation of the reference frames 
and events.

A follow-up discussion of Example 36.7 is worthwhile. Because Ryan moves at 
speed v = 0.8c = 240 m/ms relative to Priya, he moves 320 m during the 1.33 ms 
between the first explosion and the instant he passes Priya, then another 320 m before 
the second explosion. Gathering this information together, FIGURE 36.31 on the next 
page shows the sequence of events in Priya’s reference frame.

The firecrackers define the ends of the railroad car, so the 1000 m distance between 
the explosions in Priya’s frame is the car’s length L′ in frame S′. The car is at rest 
in frame S′, hence length L′ is the proper length: / = 1000 m. Ryan is measuring the 
length of a moving object, so he should see the car length contracted to

L = 21 - b2 / =
/
g

=
1000 m
1.667

= 600 m

And, indeed, that is exactly the distance Ryan measured between the burn marks.
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Finally, we can calculate the spacetime interval s between the two events. Accord-
ing to Ryan,

s2 = c21∆t22 - 1∆ x22 = c210 ms22 - 1600 m22 = -1600 m22

Priya computes the spacetime interval to be

s2 = c21∆t′22 - 1∆ x′22 = c212.67 ms22 - 11000 m22 = -1600 m22

Their calculations of the spacetime interval agree, showing that s really is an invariant, 
but notice that s itself is an imaginary number.

Length
We’ve already introduced the idea of length contraction, but we didn’t precisely define 
just what we mean by the length of a moving object. The length of an object at rest 
is clear because we can take all the time we need to measure it with meter sticks, 
surveying tools, or whatever we need. But how can we give clear meaning to the 
length of a moving object?

A reasonable definition of an object’s length is the distance L = ∆ x = xR - xL 
between the right and left ends when the positions xR and xL are measured at the 
same time t. In other words, length is the distance spanned by the object at one instant 
of time. Measuring an object’s length requires simultaneous measurements of two 
positions (i.e., two events are required); hence the result won’t be known until the 
information from two spatially separated measurements can be brought together.

FIGURE 36.32 shows an object traveling through reference frame S with velocity v. 
The object is at rest in reference frame S′ that travels with the object at velocity v; 
hence the length in frame S′ is the proper length /. That is, ∆x′ =x=

R - x=
L = / in 

frame S′.
At time t, an experimenter (and his or her assistants) in frame S makes simultane - 

ous measurements of the positions xR and xL of the ends of the object. The difference 
∆x = xR - xL = L is the length in frame S. The Lorentz transformations of xR and  
xL are

  x=
R = g1xR - vt2 

  x=
L = g1xL - vt2 

(36.24)

where, it is important to note, t is the same for both because the measurements are 
simultaneous.

Subtracting the second equation from the first, we find

x=
R - x=

L = / = g1xR - xL2 = gL =
L21 - b2

Solving for L, we find, in agreement with Equation 36.15, that

 L = 21 - b2 / (36.25)

This analysis has accomplished two things. First, by giving a precise definition of 
length, we’ve put our length-contraction result on a firmer footing. Second, we’ve had 
good practice at relativistic reasoning using the Lorentz transformation.

   NOTE    Length contraction does not tell us how an object would look. The visual 
appearance of an object is determined by light waves that arrive simultaneously at the 
eye. These waves left points on the object at different times (i.e., not simultaneously) 
because they had to travel different distances to the eye. The analysis needed to 
determine an object’s visual appearance is considerably more complex. Length and 
length contraction are concerned only with the actual length of the object at one 
instant of time.

-v

L′ = ℓ = 1000 m

t′ = -1.33 ms Event R
500 m

-v

t′ = 0 s

320 m

-v

t′ = 1.33 msEvent L
500 m

320 m

Ryan passes
Priya at t = t′ = 0.  

P

P

P

R

R

R

FIGURE 36.31 The sequence of events as  
seen in Priya’s reference frame.

The object is at rest in frame S′.
Its length is L′ = ℓ, which can
be measured at any time.

Because the object is moving in frame S,
simultaneous measurements of its ends
must be made to find its length L in frame S.

L
xR

x

y
v

xL
S

L′ = ℓ
x′

y′

S′

FIGURE 36.32 The length of an object 
is the distance between simultaneous 
measurements of the positions of the end 
points.
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The Binomial Approximation
You’ve met the binomial approximation earlier in this text and in your calculus class. 
The binomial approximation is useful when we need to calculate a relativistic expression 
for a nonrelativistic velocity v V c. Because v2/c2 V 1 in these cases, we can write

 If v V c: d
21 - b2 = 11 -

v2

c2 21/2

≈ 1 -
1
2

 
v2

c2

g =
121 - b2

= 11 -
v2

c2 2-1/2

≈ 1 +
1
2

 
v2

c2

 (36.26)

The following example illustrates the use of the binomial approximation.

The binomial approximation

If x V 1, then 11 + x2n ≈ 1 + nx.

An 8.0-m-long school bus drives past at 30 m/s. By how much is 
its length contracted?

MODEL The school bus is at rest in an inertial reference frame S′ 
moving at velocity v = 30 m/s relative to the ground frame S. The 
given length, 8.0 m, is the proper length / in frame S′.

SOLVE In frame S, the school bus is length contracted to

L = 21 - b2 /

The bus’s velocity v is much less than c, so we can use the binomial 
approximation to write

L ≈ 11 -
1
2

 
v2

c2 2/ = / -
1
2

 
v2

c2  /

The amount of the length contraction is

  / - L =
1
2

 
v2

c2  / =
1
2

 1 30 m/s

3.0 * 108 m/s22

 18.0 m2

  = 4.0 * 10-14 m = 40 fm

where 1 fm = 1 femtometer = 10-15 m.

REVIEW The bus “shrinks” by only slightly more than the diame-
ter of the nucleus of an atom. It’s no wonder that we’re not aware of 
length contraction in our everyday lives. If you had tried to calculate 
this number exactly, your calculator would have shown / - L = 0 
because the difference between / and L shows up only in the 14th 
decimal place. A scientific calculator determines numbers to 10 or  
12 decimal places, but that isn’t sufficient to show the difference. The 
binomial approximation provides an invaluable tool for finding the 
very tiny difference between two numbers that are nearly identical.

EXAMPLE 36.8 ■ The shrinking school bus

The Lorentz Velocity Transformations
FIGURE 36.33 shows an object that is moving in both reference frame S and reference 
frame S′. Experimenters in frame S determine that the object’s velocity is u, while 
experimenters in frame S′ find it to be u′. For simplicity, we’ll assume that the object 
moves parallel to the x- and x′@axes.

The Galilean velocity transformation u′ = u - v was found by taking the time deriv-
ative of the position transformation. We can do the same with the Lorentz transformation 
if we take the derivative with respect to the time in each frame. Velocity u′ in frame S′ is

 u′ =
dx′
dt′

=
d3    g1x - vt2   4

d3    g1t - vx/c22   4  (36.27)

where we’ve used the Lorentz transformations for position x′ and time t′.
Carrying out the differentiation gives

 u′ =
g1dx - v dt2

g1dt - v dx/c22 =
dx/dt - v

1 - v1dx/dt2/c2 (36.28)

But dx/dt is u, the object’s velocity in frame S, leading to

 u′ =
u - v

1 - uv/c2 (36.29)

You can see that Equation 36.29 reduces to the Galilean transformation u′ = u - v 
when v V c, as expected.

Velocity of frame S′
relative to frame S

u in frame S

x

v

-v

S

x′

y′y

S′

Velocity of frame S
relative to frame S′

u′ in frame S′

xS

x′

y′y

S′

FIGURE 36.33 The velocity of a moving 
object is measured to be u in frame S and 
u′ in frame S′.
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1100 CHAPTER 36 Relativity

Suppose the rocket in Example 36.9 fired a laser beam in the forward direction as it 
traveled past the earth at velocity v. The laser beam would travel away from the rocket 
at speed u′ = c in the rocket’s reference frame S′. What is the laser beam’s speed in 
the earth’s frame S? According to the Lorentz velocity transformation, it must be

 u =
u′ + v

1 + u′v/c2 =
c + v

1 + cv/c2 =
c + v

1 + v/c
=

c + v
1c + v2/c

= c (36.31)

Light travels at speed c in both frame S and frame S′. This important consequence of 
the principle of relativity is “built into” the Lorentz transformations.

36.9 Relativistic Momentum
In Newtonian mechanics, the total momentum of a system is a conserved quantity. 
Further, as we’ve seen, the law of conservation of momentum, Pf = Pi, is true in all 
inertial reference frames if the particle velocities in different reference frames are 
related by the Galilean velocity transformations.

The difficulty, of course, is that the Galilean transformations are not consistent 
with the principle of relativity. It is a reasonable approximation when all velocities are 
very much less than c, but the Galilean transformations fail dramatically as velocities 
approach c. We’ll leave it as a homework problem to show that P =

f ≠ P =
i if the particle 

velocities in frame S′ are related to the particle velocities in frame S by the Lorentz 
transformations.

There are two possibilities:

1. The so-called law of conservation of momentum is not really a law of physics. It 
is approximately true at low velocities but fails as velocities approach the speed 
of light.

2. The law of conservation of momentum really is a law of physics, but the expres-
sion p = mu is not the correct way to calculate momentum when the particle 
velocity u becomes a significant fraction of c.

The transformation from S′ to S is found by reversing the sign of v. Altogether,

 u′ =
u - v

1 - uv/c2 and u =
u′ + v

1 + u′v/c2 (36.30)

Equations 36.30 are the Lorentz velocity transformation equations.

   NOTE    It is important to distinguish carefully between v, which is the relative veloc-
ity between two reference frames, and u and u′, which are the velocities of an object  
as measured in the two different reference frames.

A rocket flies past the earth at 0.90c. As it goes by, the rocket fires 
a bullet in the forward direction at 0.95c with respect to the rocket. 
What is the bullet’s speed with respect to the earth?

MODEL The rocket and the earth are inertial reference frames. Let 
the earth be frame S and the rocket be frame S′. The velocity of 
frame S′ relative to frame S is v = 0.90c. The bullet’s velocity in 
frame S′ is u′ = 0.95c.

SOLVE We can use the Lorentz velocity transformation to find

u =
u′ + v

1 + u′v/c2 =
0.95c + 0.90c

1 + 10.95c210.90c2/c2 = 0.997c

The bullet’s speed with respect to the earth is 99.7% of the speed 
of light.

   NOTE    Many relativistic calculations are much easier when  ve- 
 locities are specified as a fraction of c.

REVIEW In Newtonian mechanics, the Galilean transformation of 
velocity would give u = 1.85c. Now, despite the very high speed of 
the rocket and of the bullet with respect to the rocket, the bullet’s  
speed with respect to the earth remains less than c. This is yet 
another indication that objects cannot travel faster than the speed 
of light.

EXAMPLE 36.9 ■ A really fast bullet
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36.9 Relativistic Momentum 1101

Momentum conservation is such a central and important feature of mechanics that it 
seems unlikely to fail in relativity.

The classical momentum, for one-dimensional motion, is p = mu = m1∆x/∆t2. 
∆t is the time to move distance ∆ x. That seemed clear enough within a Newtonian 
framework, but now we’ve learned that experimenters in different reference frames 
disagree about the amount of time needed. So whose ∆t should we use?

One possibility is to use the time measured by the particle. This is the proper time 
∆t because the particle is at rest in its own reference frame and needs only one clock. 
With this in mind, let’s redefine the momentum of a particle of mass m moving with 
velocity u = ∆x/∆t to be

 p = m 
∆ x
∆t

 (36.32)

We can relate this new expression for p to the familiar Newtonian expression by using 
the time-dilation result ∆t = 11 - u2/c221/2∆t to relate the proper time interval mea-
sured by the particle to the more practical time interval ∆t measured by experimenters 
in frame S. With this substitution, Equation 36.32 becomes

 p = m 
∆x
∆t

= m 
∆x21 - u2/c2 ∆t

=
mu21 - u2/c2

 (36.33)

You can see that Equation 36.33 reduces to the classical expression p = mu when  
the particle’s speed u V c. That is an important requirement, but whether this is the 
“correct” expression for p depends on whether the total momentum P is conserved when 
the velocities of a system of particles are transformed with the Lorentz velocity transfor-
mation equations. The proof is rather long and tedious, so we will assert, without actual 
proof, that the momentum defined in Equation 36.33 does, indeed, transform correctly. 
The law of conservation of momentum is still valid in all inertial reference frames if  
the momentum of each particle is calculated with Equation 36.33.

The factor that multiplies mu in Equation 36.33 looks much like the factor g in the 
Lorentz transformation equations for x and t, but there’s one very important difference. 
The v in the Lorentz transformation equations is the velocity of a reference frame. The 
u in Equation 36.33 is the velocity of a particle moving in a reference frame.

With this distinction in mind, let’s define the quantity

 gp =
121 - u2/c2

 (36.34)

where the subscript p indicates that this is g for a particle, not for a reference frame. 
In frame S′, where the particle moves with velocity u′, the corresponding expression 
would be called g=

p . With this definition of gp, the momentum of a particle is

  p = gpmu (36.35)

Electrons in a particle accelerator reach a speed of 0.999c relative 
to the laboratory. One collision of an electron with a target  
produces a muon that moves forward with a speed of 0.95c relative 
to the laboratory. The muon mass is 1.90 * 10-28 kg. What is the 
muon’s momentum in the laboratory frame and in the frame of the 
electron beam?

MODEL Let the laboratory be reference frame S. The reference 
frame S′ of the electron beam (i.e., a reference frame in which 
the electrons are at rest) moves in the direction of the electrons at 
v = 0.999c. The muon velocity in frame S is u = 0.95c.

SOLVE gp for the muon in the laboratory reference frame is

gp =
121 - u2/c2

=
121 - 0.952

= 3.20

Thus the muon’s momentum in the laboratory is

  p = gpmu = 13.20211.90 * 10-28 kg210.95 * 3.00 * 108 m/s2
  = 1.73 * 10-19 kg m/s

The momentum is a factor of 3.2 larger than the Newtonian 
momentum mu. To find the momentum in the electron-beam 

EXAMPLE 36.10 ■ Momentum of a subatomic particle

Continued
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The Cosmic Speed Limit
FIGURE  36.34a is a graph of momentum versus velocity. For a Newtonian particle, 
with p = mu, the momentum is directly proportional to the velocity. The relativistic 
expression for momentum agrees with the Newtonian value if u V c, but p approaches 
∞  as u S c.

The implications of this graph become clear when we relate momentum to force. 
Consider a particle subjected to a constant force, such as a rocket that never runs out 
of fuel. If F is constant, we can see from F = dp/dt that the momentum is p = Ft. If 
Newtonian physics were correct, a particle would go faster and faster as its velocity 
u = p/m = 1F/m2t increased without limit. But the relativistic result, shown in 
FIGURE 36.34b, is that the particle’s velocity asymptotically approaches the speed of light 
1u S c2 as p approaches ∞   

. Relativity gives a very different outcome than Newtonian  
mechanics.

The speed c is a “cosmic speed limit” for material particles. A force cannot accel-
erate a particle to a speed higher than c because the particle’s momentum becomes 
infinitely large as the speed approaches c. The amount of effort required for each 
additional increment of velocity becomes larger and larger until no amount of effort 
can raise the velocity any higher.

Actually, at a more fundamental level, c is a speed limit for any kind of causal 
influence. If I throw a rock and break a window, my throw is the cause of the 
breaking window and the rock is the causal influence. If I shoot a laser beam at a light 
detector that is wired to a firecracker, the light wave is the causal influence that leads 
to the explosion. A causal influence can be any kind of particle, wave, or information 
that travels from A to B and allows A to be the cause of B.

For two unrelated events—a firecracker explodes in Tokyo and a balloon bursts 
in Paris—the relativity of simultaneity tells us that they may be simultaneous in one 
reference frame but not in others. Or in one reference frame the firecracker may 
explode before the balloon bursts but in some other reference frame the balloon may 
burst first. These possibilities violate our commonsense view of time, but they’re not 
in conflict with the principle of relativity.

For two causally related events—A causes B—it would be nonsense for an  
experimenter in any reference frame to find that B occurs before A. No experimenter in  
any reference frame, no matter how it is moving, will find that you are born before your  
mother is born. If A causes B, then it must be the case that tA 6 tB in all reference 
frames.

Suppose there exists some kind of causal influence that can travel at speed u 7 c. 
FIGURE 36.35 shows a reference frame S in which event A occurs at position xA = 0. 
The faster-than-light causal influence—perhaps some yet-to-be-discovered “z ray”—
leaves A at tA = 0 and travels to the point at which it will cause event B. It arrives at 
xB at time tB = xB /u.

How do events A and B appear in a reference frame S′ that travels at an ordinary  
speed v 6 c relative to frame S? We can use the Lorentz transformations to find out.  

S x

v 6 c

S′ x′

tA = 0 Causal influence arrives
at tB = xB/u.

A B

xB

A causal influence is assumed
to travel from A to B at u 7 c.y y′

FIGURE 36.35 Assume that a causal  
influence can travel from A to B at a  
speed u 7 c.

The Newtonian momentum
expression is valid when u V c.

The relativistic momentum
approaches ∞ as u S c.

0.5c

Newtonian
momentum

0 c
u

p
(a)

The speed of a
particle cannot
exceed c.

c

0

(b)

t

u
Newtonian
velocity

FIGURE 36.34 The speed of a particle 
cannot reach the speed of light.

reference frame, we must first use the velocity transformation 
equation to find the muon’s velocity in frame S′:

u′ =
u - v

1 - uv/c2 =
0.95c - 0.999c

1 - 10.95c210.999c2/c2 = -0.962c

In the laboratory frame, the faster electrons are overtaking the 
slower muon. Hence the muon’s velocity in the electron-beam 
frame is negative. g=

p for the muon in frame S′ is

g=
p =

121 - u=2/c2
=

121 - 0.9622
= 3.66

The muon’s momentum in the electron-beam reference frame is

  p′ = g=
pmu′

  = 13.66211.90 * 10-28 kg21-0.962 * 3.00 * 108 m/s2
  = -2.01 * 10-19 kg m/s

REVIEW From the laboratory perspective, the muon moves only 
slightly slower than the electron beam. But it turns out that the 
muon moves faster with respect to the electrons, although in the 
opposite direction, than it does with respect to the laboratory.
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36.10 Relativistic Energy 1103

Because xA = 0 and tA = 0, it’s easy to see that x=
A = 0 and t =A = 0. That is, the  

origins of S and S′ overlap at the instant the causal influence leaves event A. More 
interesting is the time at which this influence reaches B in frame S′. The Lorentz time 
transformation for event B is

 t =B = g1tB -
vxB

c2 2 = gtB11 -
v1xB/tB2

c2 2 = gtB11 -
vu

c2 2 (36.36)

where we first factored out tB, then made use of the fact that u = xB/tB in frame S.
We’re assuming that u 7 c, so there exist ordinary reference frames, with v 6 c, 

for which vu/c2 7 1. In that case, the term (1 - vu/c2) is negative and t =B 6 0. But if 
t =B 6 0, then event B happens before event A in reference frame S′. In other words, if 
a causal influence can travel faster than c, then there exist reference frames in which 
the effect happens before the cause. We know this can’t happen, so our assumption 
u 7 c must be wrong. No causal influence of any kind—particle, wave, or yet-to-
be-discovered z rays—can travel faster than c.

The existence of a cosmic speed limit is one of the most interesting consequences 
of the theory of relativity. “Warp drive,” in which a spaceship suddenly leaps to  
faster-than-light velocities, is simply incompatible with the theory of relativity. Rapid 
travel to the stars will remain in the realm of science fiction unless future scientific 
discoveries find flaws in Einstein’s theory and open the doors to yet-undreamed- 
of theories. While we can’t say with certainty that a scientific theory will never  
be overturned, there is currently not even a hint of evidence that disagrees with  
the special theory of relativity.

36.10 Relativistic Energy
Energy is our final topic in this chapter on relativity. Space, time, velocity, and 
momentum are changed by relativity, so it seems inevitable that we’ll need a new view 
of energy.

In Newtonian mechanics, a particle’s kinetic energy K = 1
2 mu2 can be written 

in terms of its momentum p = mu as K = p2/2m. This suggests that a relativistic 
expression for energy will likely involve both the square of p and the particle’s mass. 
We also hope that energy will be conserved in relativity, so a reasonable starting point 
is with the one quantity we’ve found that is the same in all inertial reference frames: 
the spacetime interval s.

Let a particle of mass m move through distance ∆x during a time interval ∆t, as 
measured in reference frame S. The spacetime interval is

s2 = c21∆t22 - 1∆x22 = invariant

We can turn this into an expression involving momentum if we multiply by 1m/∆t22, 
where ∆t is the proper time (i.e., the time measured by the particle). Doing so gives

 1mc22 1 ∆t
∆t22

- 1m ∆x
∆t 22

= 1mc221 ∆t
∆t22

- p2 = invariant (36.37)

where we used p = m1∆x/∆t2 from Equation 36.32.
Now ∆t, the time interval in frame S, is related to the proper time by the time- 

dilation result ∆t = gp ∆t. With this change, Equation 36.37 becomes

1gpmc22 - p2 = invariant

Finally, for reasons that will be clear in a minute, we multiply by c2, to get

 1gpmc222 - 1pc22 = invariant (36.38)

Mercury is a metal, so why is it a liquid 
down to temperatures of nearly –40°C? 
Surprisingly, because of relativity. Many 
of the heaviest elements in the peri-
odic table have unexpected properties 
because their electrons are moving at 
a substantial fraction of the speed of 
light and thus exhibit relativistic effects. 
Chemical theories that include relativity 
are needed to explain the properties 
of the heaviest elements. In the case of 
mercury, relativistic effects alter the elec-
tron shells so that the outer electrons are 
much less capable of establishing bonds 
than is predicted by classical chemistry. 
Consequently, the bonds between mer-
cury atoms are too weak for it to form a 
solid at room temperature.
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1104 CHAPTER 36 Relativity

To say that the right side is an invariant means it has the same value in all inertial 
reference frames. We can easily determine the constant by evaluating it in the reference 
frame in which the particle is at rest. In that frame, where p = 0 and gp = 1, we find that

 1gpmc222 - 1pc22 = 1mc222 (36.39)

Let’s reflect on what this means before taking the next step. The spacetime interval 
s has the same value in all inertial reference frames. Equation 36.39 was derived from 
the definition of the spacetime interval; hence the quantity mc2 is also an invariant hav-
ing the same value in all inertial reference frames. In other words, if experimenters in 
frames S and S′ both make measurements on this particle of mass m, they will find that

 1gpmc222 - 1pc22 = 1g=
pmc222 - 1p′c22 (36.40)

Experimenters in different reference frames measure different values for the 
momentum, but experimenters in all reference frames agree that momentum is a 
conserved quantity. Equations 36.39 and 36.40 suggest that the quantity gpmc2 is also 
an important property of the particle, a property that changes along with p in just the 
right way to satisfy Equation 36.39. But what is this property?

The first clue comes from checking the units. gp is dimensionless and c is a velocity, 
so gpmc2 has the same units as the classical expression 12 mv2—namely, units of energy. 
For a second clue, let’s examine how gpmc2 behaves in the low-velocity limit u V c.  
We can use the binomial approximation expression for gp to find

 gpmc2 =
mc221 - u2/c2

≈ 11 +
1
2

 
u2

c2 2mc2 = mc2 + 1
2 mu2 (36.41)

The second term, 1
2 mu2, is the low-velocity expression for the kinetic energy K. This 

is an energy associated with motion. But the first term suggests that the concept of en-
ergy is more complex than we originally thought. It appears that there is an inherent 
energy associated with mass itself.

Rest Energy and Total Energy
With that as a possibility, subject to experimental verification, let’s define the total 
energy E of a particle to be

  E = gpmc2 = E0 + K = rest energy + kinetic energy (36.42)

This total energy consists of a rest energy

 E0 = mc2 (36.43)

and a relativistic expression for the kinetic energy

 K = 1gp - 12mc2 = 1gp - 12E0 (36.44)

This expression for the kinetic energy is very nearly 1
2 mu2 when u V c but, as 

FIGURE 36.36 shows, differs significantly from the classical value for very high velocities.
Equation 36.43 is, of course, Einstein’s famous E = mc2, perhaps the most famous 

equation in all of physics. Before discussing its significance, we need to tie up some 
loose ends. First, we can use Equations 36.42 and 36.43 to rewrite Equation 36.39 as 
E2 - 1pc22 = E0 

2. This is easily rearranged to give the useful result

 E = 2E0 

2 + 1pc22 (36.45)

The quantity E0 is an invariant with the same value mc2 in all inertial reference frames.
Second, notice that we can write

pc = 1gpmu2c =
u
c

 1gpmc22
u

K

1.5cc0.5c0

The relativistic kinetic energy
approaches ∞ as u S c.

The Newtonian kinetic-energy
expression is valid when u V c.

Newtonian
kinetic
energy

FIGURE 36.36 The relativistic kinetic 
energy.
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36.10 Relativistic Energy 1105

But gpmc2 is the total energy E and u/c = bp, where the subscript p, as on gp, indicates 
that we’re referring to the motion of a particle within a reference frame, not the motion 
of two reference frames relative to each other. Thus

 pc = bpE (36.46)

FIGURE 36.37 shows the “velocity-energy-momentum triangle,” a convenient way to re-
member the relationships among the three quantities.

pc = bpE

E2 - (pc)2 = E0
2

p = gpmuE = gpmc2

Energy, E Momentum, p

Velocity, u

FIGURE 36.37 The velocity-energy-momentum triangle.

STOP TO THINK 36.8 An electron moves through the lab at 99% the speed of light. 
The lab reference frame is S and the electron’s reference frame is S′. In which reference  
frame is the electron’s rest mass larger?

a. In frame S, the lab frame
b. In frame S′, the electron’s frame
c. It is the same in both frames.

Calculate the rest energy and the kinetic energy of (a) a 100 g ball 
moving with a speed of 100 m/s and (b) an electron with a speed 
of 0.999c.

MODEL The ball, with u V c, is a classical particle. We don’t  
need to use the relativistic expression for its kinetic energy. The 
electron is highly relativistic.

SOLVE a. For the ball, with m = 0.10 kg,

 E0 = mc2 = 9.0 * 1015 J

 K = 1
2 mu2 = 500 J

b. For the electron, we start by calculating

gp =
1

11 - u2/c221/2 = 22.4

Then, using me = 9.11 * 10-31 kg, we find

  E0 = mc2 = 8.2 * 10-14 J

 K = 1gp - 12E0 = 170 * 10-14 J

REVIEW The ball’s kinetic energy is a typical kinetic energy.  
Its rest energy, by contrast, is a staggeringly large number. For a 
relativistic electron, on the other hand, the kinetic energy is more 
important than the rest energy.

EXAMPLE 36.11 ■ Kinetic energy and total energy

Mass-Energy Equivalence
Now we’re ready to explore the significance of Einstein’s famous equation E = mc2. 
FIGURE 36.38 shows two balls of clay approaching each other. They have equal masses 
and equal kinetic energies, and they slam together in a perfectly inelastic collision to 
form one large ball of clay at rest. In Newtonian mechanics, we would say that the 
initial energy 2K is dissipated by being transformed into an equal amount of thermal  
energy, raising the temperature of the coalesced ball of clay. But Equation 36.42, 
E = E0 + K, doesn’t say anything about thermal energy. The total energy before the 

m m

KK
Ei = 2mc2 + 2K

Ef = 2mc2 ?

FIGURE 36.38 An inelastic collision 
between two balls of clay does not seem  
to conserve the total energy E.
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1106 CHAPTER 36 Relativity

collision is Ei = 2mc2 + 2K, with the factor of 2 appearing because there are two 
masses. It seems like the total energy after the collision, when the clay is at rest, 
should be 2mc2, but this value doesn’t conserve total energy.

There’s ample experimental evidence that energy is conserved, so there must be a 
flaw in our reasoning. The statement of energy conservation is

 Ef = Mc2 = Ei = 2mc2 + 2K (36.47)

where M is the mass of clay after the collision. But, remarkably, this requires

 M = 2m +
2K

c2  (36.48)

In other words, mass is not conserved. The mass of clay after the collision is larger 
than the mass of clay before the collision. Total energy can be conserved only if kinetic  
energy is transformed into an “equivalent” amount of mass.

The mass increase in a collision between two balls of clay is incredibly small, far 
beyond any scientist’s ability to detect. So how do we know if such a crazy idea is true?

FIGURE 36.39 shows an experiment that has been done countless times in the last  
50 years at particle accelerators around the world. An electron that has been accelerated  
to u ≈ c is aimed at a target material. When a high-energy electron collides with an 
atom in the target, it can easily knock one of the electrons out of the atom. Thus we 
would expect to see two electrons leaving the target: the incident electron and the 
ejected electron. Instead, four particles emerge from the target: three electrons and 
a positron. A positron, or positive electron, is the antimatter version of an electron, 
identical to an electron in all respects other than having charge q = +e.

In chemical-reaction notation, the collision is

e- 1fast2 + e- 1at rest2 S e- + e- + e- + e+

An electron and a positron have been created, apparently out of nothing. Mass 2me 
before the collision has become mass 4me after the collision. (Notice that charge has 
been conserved in this collision.)

Although the mass has increased, it wasn’t created “out of nothing.” This is an 
inelastic collision, just like the collision of the balls of clay, because the kinetic energy 
after the collision is less than before. In fact, if you measured the energies before and 
after the collision, you would find that the decrease in kinetic energy is exactly equal 
to the energy equivalent of the two particles that have been created: ∆K = -2mec2. 
The new particles have been created out of energy!

Particles can be created from energy, and particles can return to energy. FIGURE 36.40 
shows an electron colliding with a positron, its antimatter partner. When a particle and 
its antiparticle meet, they annihilate each other. The mass disappears, and the energy 
equivalent of the mass is transformed into light. In Chapter 38, you’ll learn that light 
is quantized, meaning that light is emitted and absorbed in discrete chunks of energy 
called photons. For light with wavelength l, the energy of a photon is Ephoton = hc/l, 
where h = 6.63 * 10-34 J s is called Planck’s constant. Photons carry momentum as 
well as energy. Conserving both energy and momentum in the annihilation of an elec-
tron and a positron requires the emission in opposite directions of two photons of  
equal energy.

If the electron and positron are fairly slow, so that K V mc2, then Ei ≈ E0 = mc2. 
In that case, energy conservation requires

 Ef = 2Ephoton = Ei ≈ 2mec
2 (36.49)

Hence the wavelength of the emitted photons is

 l =
hc

mec2 ≈ 0.0024 nm (36.50)

High-speed electronBefore:

After:

Thin target
material

Target electron e-
e-

e-

e+

e-

e-

An electron-positron
pair has been created.

FIGURE 36.39 An inelastic collision 
between electrons can create an  
electron-positron pair.

The tracks of elementary particles in a 
bubble chamber show the creation of an 
electron-positron pair. The negative elec-
tron and positive positron spiral in oppo-
site directions in the magnetic field.

Photon Photon

An electron and
a positron meet.

They annihilate.

The energy equivalent
of the mass is trans-
formed into two
gamma-ray photons.

e- e+

FIGURE 36.40 The annihilation of an 
electron-positron pair.

M36B_KNIG8221_05_GE_C36.indd   1106 01/06/2022   15:37



36.10 Relativistic Energy 1107

This is an extremely short wavelength, even shorter than the wavelengths of x rays. 
Photons in this wavelength range are called gamma rays. And, indeed, the emission of 
0.0024 nm gamma rays is observed in many laboratory experiments in which positrons 
are able to collide with electrons and thus annihilate. In recent years, with the advent 
of gamma-ray telescopes on satellites, astronomers have found 0.0024 nm photons 
coming from many places in the universe, especially galactic centers—evidence that  
positrons are abundant throughout the universe.

Positron-electron annihilation is also the basis of the medical procedure known as 
positron-emission tomography, or a PET scan. A patient ingests a very small amount 
of a radioactive substance that decays by the emission of positrons. This substance is 
taken up by certain tissues in the body, especially those tissues with a high metabolic 
rate. As the substance decays, the positrons immediately collide with electrons, 
annihilate, and create two gamma-ray photons that are emitted back to back. The 
gamma rays, which easily leave the body, are detected, and their trajectories are 
traced backward into the body. The overlap of many such trajectories shows quite 
clearly the tissue in which the positron emission is occurring. The results are usually 
shown as false-color photographs, with redder areas indicating regions of higher 
positron emission.

Conservation of Energy
The creation and annihilation of particles with mass, processes strictly forbidden in 
Newtonian mechanics, are vivid proof that neither mass nor the Newtonian definition 
of energy is conserved. Even so, the total energy—the kinetic energy and the energy 
equivalent of mass—remains a conserved quantity.

Positron-electron annihilation (a PET 
scan) provides a noninvasive look into  
the brain.

Law of conservation of total energy The energy E = gEi of an isolated 
system is conserved, where Ei = 1gp2imic

2 is the total energy of particle i.

Mass and energy are not the same thing, but, as the last few examples have shown, 
they are equivalent in the sense that mass can be transformed into energy and energy 
can be transformed into mass as long as the total energy is conserved.

Probably the most well-known application of the conservation of total energy is 
nuclear fission. The uranium isotope 236U, containing 236 protons and neutrons, does 
not exist in nature. It can be created when a 235U nucleus absorbs a neutron, increasing 
its atomic mass from 235 to 236. The 236U nucleus quickly fragments into two smaller 
nuclei and several extra neutrons, a process known as nuclear fission. The nucleus 
can fragment in several ways, but one is

n +  235U S  236U S  144Ba +  89Kr + 3n

Ba and Kr are the atomic symbols for barium and krypton.
This reaction seems like an ordinary chemical reaction—until you check the 

masses. The masses of atomic isotopes are known with great precision from many 
decades of measurement in instruments called mass spectrometers. If you add up the 
masses on both sides, you find that the mass of the products is 0.185 u smaller than  
the mass of the initial neutron and 235U, where, you will recall, 1 u = 1.66 *  10-27 kg 
is the atomic mass unit. In kilograms the mass loss is 3.07 * 10-28 kg.

Mass has been lost, but the energy equivalent of the mass has not. As FIGURE 36.41 
shows, the mass has been converted to kinetic energy, causing the two product nuclei 
and three neutrons to be ejected at very high speeds. The kinetic energy is easily 
calculated: ∆K = mlostc

2 = 2.8 * 10-11 J.
This is a very tiny amount of energy, but it is the energy released from one fission. The 

number of nuclei in a macroscopic sample of uranium is on the order of NA, Avogadro’s 
number. Hence the energy available if all the nuclei fission is enormous. This energy, of  
course, is the basis for both nuclear power reactors and nuclear weapons.

Neutron absorbed

Fission

The mass of the reactants is 0.185 u
more than the mass of the products.

0.185 u of mass has been
converted into kinetic energy.

235U

236U

89Kr

n

144Ba

FIGURE 36.41 In nuclear fission, the 
energy equivalent of lost mass is 
converted into kinetic energy.
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1108 CHAPTER 36 Relativity

We started this chapter with an expectation that relativity would challenge our 
basic notions of space and time. We end by finding that relativity changes our un-
derstanding of mass and energy. Most remarkable of all is that each and every one of 
these new ideas flows from one simple statement: The laws of physics are the same in 
all inertial reference frames.

The rockets of the Goths and the Huns are each 1000 m long in 
their rest frame. The rockets pass each other, virtually touching, at 
a relative speed of 0.8c. The Huns have a laser cannon at the rear of 
their rocket that fires a deadly laser beam perpendicular to the rock-
et’s motion. The captain of the Huns wants to send a threatening 
message to the Goths by “firing a shot across their bow.” He tells 
his first mate, “The Goths’ rocket is length contracted to 600 m.  
Fire the laser cannon at the instant the tail of their rocket passes the 
nose of ours. The laser beam will cross 400 m in front of them.”

But things are different in the Goths’ reference frame. The Goth 
captain muses, “The Huns’ rocket is length contracted to 600 m, 
400 m shorter than our rocket. If they fire as the nose of their ship 
passes the tail of ours, the lethal laser beam will pass right through  
our side.”

The first mate on the Huns’ rocket fires as ordered. Does the 
laser beam blast the Goths or not?

MODEL Both rockets are inertial reference frames. Let the Huns’ 
rocket be frame S and the Goths’ rocket be frame S′. S′ moves  
with velocity v = 0.8c relative to S. We need to describe the situa-
tion in terms of events.

VISUALIZE Begin by considering the situation from the Huns’  
reference frame, as shown in FIGURE 36.42.

SOLVE The key to resolving the paradox is that two events simul-
taneous in one reference frame are not simultaneous in a different 
 reference frame. The Huns do, indeed, see the Goths’ rocket length 
contracted to LGoths = 11 - 10.82221/211000 m2 = 600 m. Let event 
1 be the tail of the Goths’ rocket passing the nose of the Huns’  
rocket. Since we’re free to define the origin of our coordinate system, 
we define this event to be at time t1 = 0 ms and at position x1 = 0 m. 
Then, in the Huns’ reference frame, the spacetime coordinates of 
event 2, the firing of the laser cannon, are 1x2, t22 = 11000 m, 0 ms2. 
The nose of the Goths’ rocket is at x = 600 m at t = 0 ms; thus the 
laser cannon misses the Goths by 400 m.

Now we can use the Lorentz transformations to find the space-
time coordinates of the events in the Goths’ reference frame. The 
nose of the Huns’ rocket passes the tail of the Goths’ rocket at 
1x=

1, t
=
12 = 10 m, 0 ms2. The Huns fire their laser cannon at

 x=
2 = g1x2 - vt22 = 5

3 11000 m - 0 m2 = 1667 m

t=2 = g1t2 -
vx2

c2 2 = 5
3 10 ms - 10.82 

1000 m
300 m/ms2 = -4.444 ms

where we calculated g = 5/3 for v = 0.8c. Events 1 and 2 are not 
simultaneous in S′. The Huns fire the laser cannon 4.444 ms before 
the nose of their rocket reaches the tail of the Goths’ rocket. The 
laser is fired at x=

2 = 1667 m, missing the nose of the Goths’ rocket 
by 667 m. FIGURE 36.43 shows how the Goths see things.

In fact, since the Huns’ rocket is length contracted to 600 m, 
the nose of the Huns’ rocket is at x′ = 1667 m - 600 m =  1067 m 
at the instant they fire the laser cannon. At a speed of v = 0.8c =  
240 m/ms, in 4.444 ms the nose of the Huns’ rocket travels ∆x′ =  
1240 m/ms214.444 ms2 = 1067 m—exactly the right distance to be 
at the tail of the Goths’ rocket at t′1 = 0 ms. We could also note 
that the 667 m “miss distance” in the Goths’ frame is length con-
tracted to 11 - 10.82221/21667 m2 = 400 m in the Huns’ frame— 
exactly the amount by which the Huns think they miss the Goths’  
rocket.

REVIEW Thus we end up with a consistent explanation. The Huns 
miss the Goths’ rocket because, to them, the Goths’ rocket is length 
contracted. The Goths find that the Huns miss because event 2 (the 
firing of the laser cannon) occurs before event 1 (the nose of one 
rocket passing the tail of the other). The 400 m distance of the miss 
in the Huns’ reference frame is the length-contracted miss distance 
of 667 m in the Goths’ reference frame.

   CHAPTER 36 CHALLENGE EXAMPLE    Goths and Huns

FIGURE 36.42 The situation seen by the Huns.

FIGURE 36.43 The situation seen by the Goths.
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Solving Relativity Problems
• Base the analysis on events.

• Time intervals can often be found using time dilation.

• Distances can often be found using length contraction.

• Use the Lorentz transformations for general problems.

A reference frame is a coordinate system with meter sticks and 
clocks for measuring events.

Time  

Time measurements depend on the motion of the experimenter rela-
tive to the events. Events that are simultaneous in reference frame S 
are not simultaneous in frame S′ moving relative to S.

Proper time ∆t is the time interval between two events measured in a 
reference frame in which the events occur at the same position. The time 
interval between the events in a frame moving with relative velocity v is

∆t = ∆t/21 - b2 Ú ∆t

This is called time dilation.

Momentum  

The law of conservation of momentum is 
valid in all inertial reference frames if the 
momentum of a particle with velocity u is 
p = gpmu, where

gp = 1/21 - u2/c2

The momentum approaches ∞ as u S c.

Energy  

The law of conservation of energy is 
valid in all inertial reference frames if 
the energy of a particle with velocity u is 
E = gpmc2 = E0 + K.

Rest energy E0 = mc2

Kinetic energy K = 1gp - 12mc2

Invariants are quantities that have the same value in all inertial 
reference frames.

Spacetime interval: s2 = 1c ∆t22 - 1∆x22

Particle rest energy: E0 

2 = 1mc222 = E2 - 1pc22

Mass-energy equivalence  

Mass m can be transformed into energy ∆E = mc2.

Energy can be transformed into mass m = ∆E/c2.

Principle of Relativity
The laws of physics are the same in all inertial reference frames.
• The speed of light c is the same in all inertial reference frames.

• No particle or causal influence can travel at a speed greater 
than c.

An event happens at a specific place in space and time. Spacetime 
coordinates are 1x, t2 in frame S and 1x′, t′2 in frame S′.

The Lorentz transformations transform spacetime coordinates and velocities between reference frames S and S′.

Space  

Spatial measurements depend on the motion of the experimenter 
relative to the events. An object’s length is the difference between 
simultaneous measurements of the positions of both ends.

Proper length / is the length of an object measured in a reference 
frame in which the object is at rest. The object’s length in a frame 
in which the object moves with velocity v is

L = 21 - b2 / … /

This is called length contraction.

General Principles

Applications

Important Concepts

The goal of Chapter 36 has been to learn how relativity changes 
our concepts of space and time.

Summary

 

p

c
u

0

K

c0
u

x′ = g 1x - vt2 x = g 1x′ + vt′2
y′ = y y = y′
z′ = z z = z′
t′ = g 1t - vx/c22 t = g 1t′ + vx′/c22
 u′ =

u - v

1 - uv/c2 u =
u′ + v

1 + u′v/c2

where u and u′ are the x- and x′-components of an object’s velocity.

b = v/c and g = 1/21 - v2/c2 = 1/21 - b2

y

xS

y′

x′

(x, t) in S
(x′, t′) in S′

Motion

Event

u in S
u′ in S′

v

S′

M36B_KNIG8221_05_GE_C36.indd   1109 01/06/2022   15:37



1110 CHAPTER 36 Relativity

CONCEPTUAL QUESTIONS

special relativity
reference frame
inertial reference frame
Galilean principle of  
 relativity
principle of relativity
event

spacetime coordinates,  
 1x, y, z, t2
synchronized
simultaneous
relativity of simultaneity
rest frame
proper time, ∆t

time dilation
light year, ly
proper length, /
length contraction
invariant
spacetime interval, s
Lorentz transformations

causal influence
total energy, E
rest energy, E0

law of conservation of total  
 energy
nuclear fission

Terms and Notation

1. FIGURE Q36.1 shows two balls. What are the speed and direction 
of each (a) in a reference frame that moves with ball 1 and (b) in 
a reference frame that moves with ball 2?

a. Do the light flashes reach the rocket pilot simultaneously? If 
not, which reaches her first? Explain.

b. A student was sitting on the ground halfway between the trees 
as the rocket passed overhead. According to the student, were 
the lightning strikes simultaneous? If not, which tree was hit  
first? Explain.

Laser
beam

0.95c0.95c

Earth

Sam Tom

FIGURE Q36.2

3 m/s6 m/s
1 2

FIGURE Q36.1

FIGURE Q36.6

2. Teenagers Sam and Tom are playing chicken in their rockets. As 
FIGURE Q36.2 shows, an experimenter on earth sees that each is 
traveling at 0.95c as he approaches the other. Sam fires a laser 
beam toward Tom.
a. What is the speed of the laser beam relative to Sam?
b. What is the speed of the laser beam relative to Tom?

3. Firecracker A is 150 m from you. Firecracker B is 300 m from 
you in the same direction. You see both explode at the same 
time. Define event 1 to be “firecracker A explodes” and event 2 
to be “firecracker B explodes.” Does event 1 occur before, after, 
or at the same time as event 2? Explain.

4. Firecrackers A and B are 300 m apart. You are standing exactly 
halfway between them. Your lab partner is 150 m on the other 
side of firecracker A. You see two flashes of light, from the two 
explosions, at exactly the same instant of time. Define event 1 
to be “firecracker A explodes” and event 2 to be “firecracker B 
explodes.” According to your lab partner, based on the measure-
ment she makes, does event 1 occur before, after, or at the same 
time as event 2? Explain.

5. FIGURE Q36.5 shows Priya 
standing at the center of her 
railroad car as it passes Ryan 
on the ground. Firecrackers 
attached to the ends of the car 
explode. A short time later, the 
flashes from the two explosions arrive at Priya at the same time.
a. Were the explosions simultaneous in Priya’s reference frame? 

If not, which exploded first? Explain.
b. Were the explosions simultaneous in Ryan’s reference frame? 

If not, which exploded first? Explain.
6. FIGURE Q36.6 shows a rocket traveling from left to right. At the 

instant it is halfway between two trees, lightning simultaneously 
(in the rocket’s frame) hits both trees.

P

R

FIGURE Q36.5

7. Your friend flies from Los Angeles to New York. She carries an 
accurate stopwatch with her to measure the flight time. You and 
your assistants on the ground also measure the flight time.
a. Identify the two events associated with this measurement.
b. Who, if anyone, measures the proper time?
c. Who, if anyone, measures the shorter flight time?

8. As the meter stick in FIGURE Q36.8 flies 
past you, you simultaneously measure 
the positions of both ends and determine  
that L 6 1 m.
a. To an experimenter in frame S′, the meter stick’s frame, did 

you make your two measurements simultaneously? If not, 
which end did you measure first? Explain.

b. Can experimenters in frame S′ give an explanation for why 
your measurement is less than 1 m?

9. A 100-m-long train is heading for an 80-m-long tunnel. If the 
train moves sufficiently fast, is it possible, according to experi-
menters on the ground, for the entire train to be inside the tunnel 
at one instant of time? Explain.

10. Particle A has one-third the mass and three times the speed of 
Particle B. Is the momentum pA less than, greater than, or equal 
to pB? Explain.

11. Event A occurs at spacetime coordinates 1300 m, 2 ms2.
a. Event B occurs at spacetime coordinates 11200 m, 6 ms2. 

Could A possibly be the cause of B? Explain.
b. Event C occurs at spacetime coordinates 12400 m, 8 ms2. 

Could A possibly be the cause of C? Explain.

Meter stick

v

FIGURE Q36.8
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EXERCISES AND PROBLEMS

Problems labeled  integrate material from earlier chapters.

Exercises

Section 36.2 Galilean Relativity

1. | At t = 1.0 s, a firecracker explodes at x = 10 m in reference 
frame S. Four seconds later, a second firecracker explodes at 
x = 20 m. Reference frame S′ moves in the x-direction at a speed 
of 5.0 m/s. What are the positions and times of these two events  
in frame S′?

2.  || A firecracker explodes in reference frame S at t = 1.0 s. A 
second firecracker explodes at the same position at t = 3.0 s. In 
reference frame S′, which moves in the x-direction at speed v, 
the first explosion is detected at x′ = 4.0 m and the second at 
x′ = -4.0 m.
a. What is the speed of frame S′ relative to frame S?
b. What is the position of the two explosions in frame S?

3. | A newspaper delivery boy is riding his bicycle down the street 
at 5.0 m/s. He can throw a paper at a speed of 8.0 m/s. What  
is the paper’s speed relative to the ground if he throws the paper 
(a) forward, (b) backward, and (c) to the side?

4. | A baseball pitcher can throw a ball with a speed of 40 m/s. 
He is in the back of a pickup truck that is driving away from you. 
He throws the ball in your direction, and it floats toward you at a 
lazy 10 m/s. What is the speed of the truck?

Section 36.3 Einstein’s Principle of Relativity

5. | An out-of-control alien spacecraft is diving into a star at a 
speed of 1.5 * 108 m/s. At what speed, relative to the spacecraft, 
is the starlight approaching?

6. | A starship blasts past the earth at 2.5 * 108 m/s. Just after 
passing the earth, it fires a laser beam out the back of the starship. 
With what speed does the laser beam approach the earth?

Section 36.4 Events and Measurements

Section 36.5 The Relativity of Simultaneity

7. | Your job is to synchronize the clocks in a reference frame. You 
are going to do so by flashing a light at the origin at t = 0 s. To what 
time should the clock at 1x, y, z2 = 130 m, 40 m, 0 m2 be preset?

8. || Bianca is standing at x = 600 m. Firecracker 1, at the origin, 
and firecracker 2, at x = 900 m, explode simultaneously. The 
flash from firecracker 1 reaches Bianca’s eye at t = 3.0 ms. At 
what time does she see the flash from firecracker 2?

9. || Bjorn is standing at x = 600 m. Firecracker 1 explodes at  
the origin and firecracker 2 explodes at x = 1500 m. The flashes 
from both explosions reach Bjorn’s eye at t = 4 ms. At what time 
did each firecracker explode?

10. || You are standing at x = 9.0 km. Lightning bolt 1 strikes at 
x = 0 km and lightning bolt 2 strikes at x = 12.0 km. Both 
flashes reach your eye at the same time. Your assistant is stand-
ing at x = 3.0 km. Does your assistant see the flashes at the same 
time? If not, which does she see first, and what is the time differ-
ence between the two?

11. || You are flying your personal rocketcraft at 0.90c from Star A 
toward Star B. The distance between the stars, in the stars’ refer-
ence frame, is 1.0 ly. Both stars happen to explode simultaneously 

in your reference frame at the instant you are exactly halfway 
between them. Do you see the flashes simultaneously? If not, 
which do you see first, and what is the time difference between 
the two?

12. ||| You are standing at x = 9.0 km and your assistant is standing at 
x = 3.0 km. Lightning bolt 1 strikes at x = 0 km and lightning bolt 
2 strikes at x = 12.0 km. You see the flash from bolt 2 at t = 10 ms 
and the flash from bolt 1 at t = 50 ms. According to your assistant, 
were the lightning strikes simultaneous? If not, which occurred 
first, and what was the time difference between the two?

Section 36.6 Time Dilation

13. | An astronaut travels to a star system 6.4 ly away at a speed of 
0.80c. Assume that the time needed to accelerate and decelerate 
is negligible.
a. How long does the journey take according to Mission Control 

on earth?
b. How long does the journey take according to the astronaut?
c. How much time elapses between the launch and the arrival 

of the first radio message from the astronaut saying that she 
has arrived?

14. || A cosmic ray travels 60 km through the earth’s atmosphere in 
400 ms, as measured by experimenters on the ground. How long 
does the journey take according to the cosmic ray?

15.  || At what speed, as a fraction of c, does a moving clock tick at 
half the rate of an identical clock at rest?

16. || a. At what speed, as a fraction of c, must a rocket travel on a 
journey to and from a distant star so that the astronauts age 
10 years while the Mission Control workers on earth age  
120 years?

b. As measured by Mission Control, how far away is the  
distant star?

17. || At what speed, in m/s, would a moving clock lose 1.0 ns in 1.0 
day according to experimenters on the ground?
Hint: Use the binomial approximation.

18. || At what speed, as a fraction of c, would an astronaut on a 
round-trip “lose” half of the time elapsed as shown on her watch?

19. || You fly 5000 km across the United States on an airliner at 
250 m/s. You return two days later at the same speed.
a. Have you aged more or less than your friends at home?
b. By how much?
Hint: Use the binomial approximation.

Section 36.7 Length Contraction

20. | At what speed, as a fraction of c, will a moving rod have a 
length 60% that of an identical rod at rest?

21. || Jill claims that her new rocket is 120 m long. As she flies past 
your house, you measure the rocket’s length and find that it is 
only 100 m. What is Jill’s speed, as a fraction of c?

22. || A muon travels 60 km through the atmosphere at a speed of 
0.9997c. According to the muon, how thick is the atmosphere?

23. || A cube has a density of 1500 kg/m3 while at rest in the labora-
tory. What is the cube’s density as measured by an experimenter 
in the laboratory as the cube moves through the laboratory at 
80% of the speed of light in a direction perpendicular to one of 
its faces?
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38. | At what speed, as a fraction of c, must an electron move so 
that its total energy is 10% more than its rest mass energy?

39. | At what speed, as a fraction of c, is a particle’s kinetic energy 
twice its rest energy?

40. || At what speed, as a fraction of c, is a particle’s total energy 
twice its rest energy?

41. | A modest supernova (the explosion of a massive star at the 
end of its life cycle) releases 1.5 * 1044 J of energy in a few  
seconds. This is enough to outshine the entire galaxy in which 
it occurs. Suppose a star with the mass of our sun collides with 
an antimatter star of equal mass, causing complete annihilation.  
What is the ratio of the energy released in this star-antistar  
collision to the energy released in the supernova?

42. || One of the important ways in which the Higgs boson was 
detected at the Large Hadron Collider was by observing a 
type of decay in which the Higgs—which decays too quickly 
to be observed directly—is immediately transformed into two 
photons emitted back to back. Two photons, with momenta 
3.31 * 10-17 kg m/s, were detected. What is the mass of the 
Higgs boson? Give your answer as a multiple of the proton mass.
Hint: The relationship between energy and momentum applies 
to photons if you treat a photon as a massless particle.

Problems
43. | The diameter of the solar system is 10 light hours. A spaceship 

crosses the solar system in 15 hours, as measured on earth. How 
long, in hours, does the passage take according to passengers on 
the spaceship?
Hint: c = 1 light hour per hour.

44. || A 30-m-long rocket train car is traveling from Los Angeles to 
New York at 0.50c when a light at the center of the car flashes. 
When the light reaches the front of the car, it immediately rings a 
bell. Light reaching the back of the car immediately sounds a siren.
a. Are the bell and siren simultaneous events for a passenger seated 

in the car? If not, which occurs first and by how much time?
b. Are the bell and siren simultaneous events for a bicyclist 

waiting to cross the tracks? If not, which occurs first and by 
how much time?

45. || Two events in reference frame S occur 10 ms apart at the same 
point in space. The distance between the two events is 2400 m in 
reference frame S′.
a. What is the time interval between the events in reference 

frame S′?
b. What is the velocity of S′ relative to S?

46. || The star Alpha goes supernova. Ten years later and 100 ly away, 
as measured by astronomers in the galaxy, star Beta explodes.
a. Is it possible that the explosion of Alpha is in any way respon-

sible for the explosion of Beta? Explain.
b. An alien spacecraft passing through the galaxy finds that the 

distance between the two explosions is 120 ly. According to 
the aliens, what is the time between the explosions?

47. || A starship voyages to a distant planet 10 ly away. The explor-
ers stay 1 year, return at the same speed, and arrive back on earth 
26 years, as measured on earth, after they left. Assume that the 
time needed to accelerate and decelerate is negligible.
a. What is the speed of the starship?
b.  How much time has elapsed on the astronauts’ chronometers?

48. | The Stanford Linear Accelerator (SLAC) accelerates elec-
trons to v = 0.99999997c in a 3.2-km-long tube. If they travel the 
length of the tube at full speed (they don’t, because they are accel-
erating), how long is the tube in the electrons’ reference frame?

24. | Our Milky Way galaxy is 100,000 ly in diameter. A spaceship 
crossing the galaxy measures the galaxy’s diameter to be a mere 1.0 ly.
a. What is the spacecraft’s speed, as a fraction of c, relative to 

the galaxy?
b. How long is the crossing time as measured in the galaxy’s 

reference frame?
25. || A human hair is about 50 mm in diameter. At what speed, in 

m/s, would a meter stick “shrink by a hair”?
Hint: Use the binomial approximation.

Section 36.8 The Lorentz Transformations

26. || A rocket travels in the x-direction at speed 0.60c with respect to 
the earth. An experimenter on the rocket observes a collision be-
tween two comets and determines that the spacetime coordinates 
of the collision are 1x′, t′2 = 13.0 * 1010 m, 200 s2. What are the 
spacetime coordinates of the collision in earth’s reference frame?

27. || An event has spacetime coordinates 1x, t2 = 11200 m, 2.0 ms2 
in reference frame S. What are the event’s spacetime coordinates 
(a) in reference frame S′ that moves in the positive x-direction 
at 0.80c and (b) in reference frame S″ that moves in the negative 
x-direction at 0.80c?

28. || In the earth’s reference frame, a tree is at the origin and a pole 
is at x = 30 km. Lightning strikes both the tree and the pole at 
t = 10 ms. The lightning strikes are observed by a rocket travel-
ing in the x-direction at 0.50c.
a. What are the spacetime coordinates for these two events in 

the rocket’s reference frame?
b. Are the events simultaneous in the rocket’s frame? If not, 

which occurs first?
29. || A distant quasar is found to be moving away from the earth 

at 0.80c. A galaxy closer to the earth and along the same line of 
sight is moving away from us at 0.20c. What is the recessional 
speed of the quasar, as a fraction of c, as measured by astrono-
mers in the other galaxy?

30. || A rocket cruising past earth at 0.80c shoots a bullet out the back 
door, opposite the rocket’s motion, at 0.90c relative to the rocket. 
What is the bullet’s speed, as a fraction of c, relative to the earth?

31. || A laboratory experiment shoots an electron to the left at 0.90c. 
What is the electron’s speed, as a fraction of c, relative to a proton  
moving to the right at 0.90c?

 Section 36.9 Relativistic Momentum

32. | A proton is accelerated to 0.999c.
a. What is the proton’s momentum?
b. By what factor does the proton’s momentum exceed its 

Newtonian momentum?
33. | At what speed, as a fraction of c, is a particle’s momentum 

twice its Newtonian value?
34. | What is the speed, as a fraction of c, of a particle whose  

momentum is mc?
35. ||| A 1.0 g particle has momentum 400,000 kg m/s. What is the 

particle’s speed in m/s?

Section 36.10 Relativistic Energy

36. | What are the rest energy, the kinetic energy, and the total 
energy of a 1.0 g particle with a speed of 0.80c?

37. | A quarter-pound hamburger with all the fixings has a mass of  
200 g. The food energy of the hamburger (480 food calories) is 2 MJ.
a. What is the energy equivalent of the mass of the hamburger?
b. By what factor does the energy equivalent exceed the food 

energy?
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59. || The half-life of a muon at rest is 1.5 ms. Muons that have been 
accelerated to a very high speed and are then held in a circular 
storage ring have a half-life of 7.5 ms.
a. What is the speed, as a fraction of c, of the muons in the stor-

age ring?
b. What is the total energy of a muon in the storage ring? The 

mass of a muon is 207 times the mass of an electron.
60. || This chapter has assumed that lengths perpendicular to the  

direction of motion are not affected by the motion. That is, motion 
in the x-direction does not cause length contraction along the y- or z- 
axes. To find out if this is really true, consider two spray-paint nozzles  
attached to rods perpendicular to the x-axis. It has been confirmed 
that, when both rods are at rest, both nozzles are exactly 1 m above 
the base of the rod. One rod is placed in the S reference frame with its 
base on the x-axis; the other is placed in the S′ reference frame with 
its base on the x′@axis. The rods then swoop past each other and, as 
FIGURE P36.60 shows, each paints a stripe across the other rod.

We will use proof by contradiction. Assume that objects  
perpendicular to the motion are contracted. An experimenter in 
frame S finds that the S′ nozzle, as it goes past, is less than 1 m 
above the x-axis. The principle 
of relativity says that an exper-
iment carried out in two differ-
ent inertial reference frames will 
have the same outcome in both.
a. Pursue this line of reasoning 

and show that you end up 
with a logical contradiction, 
two mutually incompatible 
situations.

b. What can you conclude 
from this contradiction?

61. || Derive the Lorentz transformations for t and t′.
Hint: See the comment following Equation 36.22.

62. || a. Derive a velocity transformation equation for uy and u=
y. 

Assume that the reference frames are in the standard  
orientation with motion parallel to the x- and x′@axes.

b. A rocket passes the earth at 0.80c. As it goes by, it launches 
a projectile at 0.60c perpendicular to the direction of  
motion. What is the particle’s speed, as a fraction of c, in 
the earth’s reference frame?

63. || A rocket is fired from the earth to the moon at a speed of 0.990c. 
Let two events be “rocket leaves earth” and “rocket hits moon.”
a. In the earth’s reference frame, calculate ∆x, ∆t, and the 

spacetime interval s for these events.
b. In the rocket’s reference frame, calculate ∆x′, ∆t′, and the 

spacetime interval s′ for these events.
c. Repeat your calculations of part a if the rocket is replaced 

with a laser beam.
64. || Let’s examine whether or not the law of conservation of mo-

mentum is true in all reference frames if we use the Newtonian 
definition of momentum: px = mux. Consider an object A of mass 
3m at rest in reference frame S. Object A explodes into two pieces: 
object B, of mass m, that is shot to the left at a speed of c/2 and 
object C, of mass 2m, that, to conserve momentum, is shot to the 
right at a speed of c/4. Suppose this explosion is observed in refer-
ence frame S′ that is moving to the right at half the speed of light.
a. Use the Lorentz velocity transformation to find the velocity 

and the Newtonian momentum of A in S′.
b. Use the Lorentz velocity transformation to find the velocities 

and the Newtonian momenta of B and C in S′.
c. What is the total final momentum in S′?
d. Newtonian momentum was conserved in frame S. Is it con-

served in frame S′?

49. || On a futuristic highway, a 15-m-long rocket travels so fast that 
a red stoplight, with a wavelength of 700 nm, appears to the pilot 
to be a green light with a wavelength of 520 nm. What is the 
length of the rocket to an observer standing at the intersection as 
the rocket speeds through?
Hint: The Doppler effect for light was covered in Chapter 16.

50. || In an attempt to reduce the extraordinarily long travel times 
for voyaging to distant stars, some people have suggested travel-
ing at close to the speed of light. Suppose you wish to visit the 
red giant star Betelgeuse, which is 430 ly away, and that you want 
your 20,000 kg rocket to move so fast that you age only 20 years  
during the round trip.
a. How fast, as a fraction of c, must the rocket travel relative to 

earth?
b. How much energy is needed to accelerate the rocket to this 

speed?
c. Compare this amount of energy to the total energy used 

by the United States in the year 2020, which was roughly 
1.0 * 1020 J.

51. || The star Delta goes supernova. One year later and 2.0 ly 
away, as measured by astronomers in the galaxy, star Epsilon 
explodes. Let the explosion of Delta be at xD = 0 and tD = 0. The 
explosions are observed by three spaceships cruising through 
the galaxy in the direction from Delta to Epsilon at velocities 
v1 = 0.30c, v2 = 0.50c, and v3 = 0.70c. All three spaceships, 
each at the origin of its reference frame, happen to pass Delta as 
it explodes.
a. What are the times of the two explosions as measured by sci-

entists on each of the three spaceships?
b. Does one spaceship find that the explosions are simultaneous?  

If so, which one?
c. Does one spaceship find that Epsilon explodes before Delta? 

If so, which one?
d. Do your answers to parts b and c violate the idea of causality? 

Explain.
52. || The quantity dE/dv, the rate of increase of energy with speed, 

is the amount of additional energy a moving object needs per  
1 m/s increase in speed.
a. A 25,000 kg truck is traveling at 30 m/s. How much additional  

energy is needed to increase its speed by 1 m/s?
b. A 25,000 kg rocket is traveling at 0.90c. How much additional  

energy is needed to increase its speed by 1 m/s?
53. ||| A rocket traveling at 0.50c sets out for the nearest star, 

Alpha Centauri, which is 4.3 ly away from earth. It will re-
turn to earth immediately after reaching Alpha Centauri. What 
distance will the rocket travel and how long will the journey 
last according to (a) stay-at-home earthlings and (b) the rocket 
crew? (c) Which answers are the correct ones, those in part a or 
those in part b?

54. | Two rockets approach each other. Each is traveling at 0.75c in 
the earth’s reference frame. What is the speed, as a fraction of c, 
of one rocket relative to the other?

55. || Two rockets, A and B, approach the earth from opposite di-
rections at speed 0.80c. The length of each rocket measured in its 
rest frame is 100 m. What is the length of rocket A as measured  
by the crew of rocket B?

56. || A rocket fires a projectile at a speed of 0.95c while traveling 
past the earth. An earthbound scientist measures the projectile’s 
speed to be 0.90c. What was the rocket’s speed as a fraction of c?

57. || Through what potential difference must an electron be accel-
erated, starting from rest, to acquire a speed of 0.99c?

58. || What is the speed, in m/s, of a proton after being accelerated 
from rest through a 50 * 106 V potential difference?

Red paint
nozzle

1.00 m
in S

1.00 m
in S′

Blue paint
nozzle

FIGURE P36.60
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Challenge Problems
73. ||| An electron moving to the right at 0.90c collides with a posi-

tron moving to the left at 0.90c. The two particles annihilate and 
produce two gamma-ray photons. What is the wavelength of the 
photons?

74. ||| Two rockets are each 1000 m long in their rest frame. Rocket 
Orion, traveling at 0.80c relative to the earth, is overtaking rocket 
Sirius, which is poking along at a mere 0.60c. According to the 
crew on Sirius, how long does Orion take to completely pass? 
That is, how long is it from the instant the nose of Orion is at the  
tail of Sirius until the tail of Orion is at the nose of Sirius?

75. ||| Some particle accelerators allow protons 1p+2 and antiprotons 
1p-2 to circulate at equal speeds in opposite directions in a de-
vice called a storage ring. The particle beams cross each other 
at various points to cause p+ + p- collisions. In one collision, 
the outcome is p+ + p- S e+ + e- + g + g, where g represents 
a high-energy gamma-ray photon. The electron and positron 
are ejected from the collision at 0.9999995c and the gamma-ray 
photon wavelengths are found to be 1.0 * 10-6 nm. What were 
the proton and antiproton speeds, as a fraction of c, prior to the 
collision?

76. ||| A ball of mass m traveling at a speed of 0.80c has a perfect- 
 ly inelastic collision with an identical ball at rest. If Newtonian 
physics were correct for these speeds, momentum conservation 
would tell us that a ball of mass 2m departs the collision with a 
speed of 0.40c. Let’s do a relativistic collision analysis to deter-
mine the mass and speed of the ball after the collision.
a. What is gp, written as a fraction like a/b?
b. What is the initial total momentum? Give your answer as a 

fraction times mc.
c. What is the initial total energy? Give your answer as a fraction  

times mc2. Don’t forget that there are two balls.
d.  Because energy can be transformed into mass, and vice versa, 

you cannot assume that the final mass is 2m. Instead, let the 
final state of the system be an unknown mass M traveling at 
the unknown speed uf. You have two conservation laws. Find 
M and uf.

77. ||| A very fast pole vaulter lives in the country. One day, while 
practicing, he notices a 10.0-m-long barn with the doors open at 
both ends. He decides to run through the barn at 0.866c while 
carrying his 16.0-m-long pole. The farmer, who sees him coming, 
says, “Aha! This guy’s pole is length contracted to 8.0 m. There 
will be a short interval of time when the pole is entirely inside 
the barn. If I’m quick, I can simultaneously close both barn doors 
while the pole vaulter and his pole are inside.” The pole vaulter, 
who sees the farmer beside the barn, thinks to himself, “That 
farmer is crazy. The barn is length contracted and is only 5.0 m 
long. My 16.0-m-long pole cannot fit into a 5.0-m-long barn. If the 
farmer closes the doors just as the tip of my pole reaches the back 
door, the front door will break off the last 11.0 m of my pole.”

Can the farmer close the 
doors without breaking the 
pole? Show that, when prop-
erly analyzed, the farmer 
and the pole vaulter agree on 
the outcome. Your analysis 
should contain both quantita-
tive calculations and written 
explanation.

 

65. || a. What are the momentum and total energy of a proton with 
speed 0.99c?

b. What is the proton’s momentum in a different reference 
frame in which E′ = 5.0 * 10-10 J?

66. || At what speed, as a fraction of c, is the kinetic energy of a 
particle twice its Newtonian value?

67. | A typical nuclear power plant generates electricity at the rate 
of 1000 MW. The efficiency of transforming thermal energy into 
electric energy is 1

3 and the plant runs at full capacity for 80%  
of the year. (Nuclear power plants are down about 20% of the 
time for maintenance and refueling.)
a. How much thermal energy does the plant generate in one year?
b. What mass of uranium is transformed into energy in one year?

68. || Many science fiction spaceships are powered by antimatter re-
actors. Suppose a 20-m-long spaceship, with a mass of 15,000 kg  
when empty, carries 2000 kg of fuel: 1000 kg each of matter 
and antimatter. The matter and antimatter are slowly combined, 
and the energy of their total annihilation is used to propel the 
ship. After consuming all the fuel and reaching top speed,  
the spaceship flies past a space station that is stationary with 
respect to the planet from which the ship was launched. What 
is the length of the spaceship as measured by astronauts on the 
space station?

69. || The sun radiates energy at the rate 3.8 * 1026 W. The source 
of this energy is fusion, a nuclear reaction in which mass is trans-
formed into energy. The mass of the sun is 2.0 * 1030 kg.
a. How much mass does the sun lose each year?
b. What percent is this of the sun’s total mass?
c. Fusion takes place in the core of a star, where the temperature 

and pressure are highest. A star like the sun can sustain fusion 
until it has transformed about 0.10% of its total mass into 
energy, then fusion ceases and the star slowly dies. Estimate 
the sun’s lifetime, giving your answer in billions of years.

70. || The radioactive element radium (Ra) decays by a process 
known as alpha decay, in which the nucleus emits a helium 
nucleus. (These high-speed helium nuclei were named alpha 
particles when radioactivity was first discovered, long before 
the identity of the particles was established.) The reaction is 
226Ra S 222Rn + 4He, where Rn is the element radon. The accu-
rately measured atomic masses of the three atoms are 226.0254 u,  
222.0176 u, and 4.0026 u. How much energy is released in each 
decay? (The energy released in radioactive decay is what makes 
nuclear waste “hot.”)

71. || The nuclear reaction that powers the sun is the fusion of four 
protons into a helium nucleus. The process involves several steps, 
but the net reaction is simply 4p S 4He + energy. The mass of  
a proton, to four significant figures, is 1.673 * 10-27 kg, and the 
mass of a helium nucleus is known to be 6.644 * 10-27 kg.
a. How much energy is released in each fusion?
b. What fraction of the initial rest mass energy is this energy?

72. || Consider the inelastic collision e- + e- S e- + e- + e- + e+ 
in which an electron-positron pair is produced in a head-on  
collision between two electrons moving in opposite directions at 
the same speed. This is similar to Figure 36.39, but both of the 
initial electrons are moving.
a. What is the threshold kinetic energy? That is, what minimum 

kinetic energy must each electron have to allow this process 
to occur?

b. What is the speed of an electron with this kinetic energy? FIGURE CP36.77

Farmer

0.866c 10.0-m-long barn

16.0-m-long pole
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1115

The Foundations of Modern 
Physics

How do we learn about light and matter?
Except for relativity, everything you have studied until now was 
known by 1900. But within the span of just a few years, around 
1900, investigations into the structure of matter and the properties 
of light led to new discoveries at odds with classical physics.

Our ultimate goal is to understand the new theories of matter and 
light that arose in the 20th century. But there’s a problem: We can’t see 
atoms. Thus the goal of this chapter is to establish the experimental 
evidence for how we know about atoms and their structure.

How is light emitted and absorbed?
Scientists use spectroscopy, with  
diffraction gratings, to study how light is  
emitted and absorbed.

■■ Solids emit a continuous spectrum  
known as blackbody radiation.

■■ Atoms emit and absorb many distinct  
wavelengths, called a discrete spectrum.

How do we know that atoms have smaller parts?
Experiments to study electricity in gases  
found that unknown “rays” travel outward  
from the cathode—the negative electrode.  
J. J. Thomson discovered that these cathode  
rays are subatomic particles—electrons— 
that exist within atoms. The electrons of all  
atoms were found to be identical.

What is Rutherford’s model of the atom?
Ernest Rutherford discovered that  
the positive charge within an atom is  
concentrated in a small, dense nucleus. This  
led Rutherford to propose a solar-system  
model of the atom with light, negative  
electrons orbiting a tiny, positive nucleus.

❮❮ LOOKING BACK Chapter 25 Electric  
potential and potential energy

What is inside the atomic nucleus?
The nucleus consists of positive protons  
and neutral neutrons.

■■ The number of protons is the atomic  
number. Every element has a different  
atomic number.

■■ Neutrons provide additional “glue” to  
hold the nucleus together.

❮❮ LOOKING BACK Section 18.2 Atomic masses

Why are atoms important?
Modern technology, from lasers to semiconductors, is based on 
the properties of atoms. The worldwide system of timekeeping 
utilizes atomic clocks. Much of what we know about the cosmos 
comes from studying the atomic spectra of stars and galaxies. And 
quantum computers, when they become available, will require the 
careful manipulation of atomic states. It’s an atomic world!

 IN THIS CHAPTER, you will learn about the structure and properties of atoms.

37

Studies of the light emitted 
by gas discharge tubes 
helped lay the foundations 
of modern physics.

500 nm 600 nm 700 nm

Cathode

Cathode rays

Proton

Neutron
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1116 CHAPTER 37 The Foundations of Modern Physics

37.1 Matter and Light
The idea that matter consists of small, indivisible particles can be traced to the Greek 
philosophers Leucippus and Democritus in the 5th century bce. They called these 
particles atoms, Greek for “not divisible.” Atomism was not widely accepted, due in 
no small part to the complete lack of evidence, but atomic ideas never died.

Things began to change in the early years of the 19th century. The English chemist 
John Dalton argued that chemical reactions could be understood if each chemical  
element consisted of identical atoms. The evidence for atoms grew stronger as  
thermodynamics and the kinetic theory of gases developed in the mid-19th century. 
Slight deviations from the ideal-gas law at high pressures, which could be understood 
if the atoms were beginning to come into close proximity to one another, led to a rough 
estimate of atomic sizes. By 1890, it was widely accepted that atoms exist and have  
diameters of approximately 10-10 m.

Other scientists of the 19th century were trying to understand what light is. Newton, 
as we have seen, favored a corpuscular theory whereby small particles of light travel 
in straight lines. However, the situation changed when, in 1801, Thomas Young 
demonstrated the interference of light with his celebrated double-slit experiment. But 
if light is a wave, what is waving? Work by Maxwell and others led to the realization  
that light is an electromagnetic wave.

This was the situation at the end of the 19th century, when a series of discoveries  
began to reveal that the theories of Newton and Maxwell were not sufficient to  
explain the properties of atoms. New theories of matter and light at the atomic level, 
collectively called modern physics, arose in the early decades of the 20th century.

A difficulty, however, is that we cannot directly see, feel, or manipulate atoms. To 
know what the theories of modern physics are attempting to explain, and whether they 
are successful, we must start with experimental evidence about the behavior of atoms 
and light. That is the primary purpose of this chapter and the next.

37.2 The Emission and Absorption of Light
The interference and diffraction of light, discovered early in the 19th century, soon led 
to practical tools for measuring the wavelengths of light. The most important tool, still  
widely used today, is the spectrometer, such as the one shown in FIGURE 37.1. The 
heart of a spectrometer is a diffraction grating that diffracts different wavelengths of 
light at different angles. Making the grating slightly curved, like a spherical mirror, 
focuses the interference fringes onto a photographic plate or (more likely today) an 
electronic array detector. Each wavelength in the light is focused to a different position  
on the detector, producing a distinctive pattern called the spectrum of the light. 
Spectroscopists discovered very early that there are two distinct types of spectra.

Continuous Spectra and Blackbody Radiation
Cool lava is black, but lava heated to a high temperature glows red and, if hot enough, 
yellow. A tungsten wire, dark gray at room temperature, emits bright white light when 
heated by a current—thus becoming the bright filament in an incandescent lightbulb. 
Hot, self-luminous objects, such as the lava or the lightbulb, form a rainbow-like  
continuous spectrum in which light is emitted at every possible wavelength. 
FIGURE 37.2 is a continuous spectrum.

This temperature-dependent emission of electromagnetic waves was called thermal  
radiation when we studied it as the mechanism of heat transfer in ❮❮  SECTION  19.8.  
Recall that an object with surface area A and absolute temperature T radiates heat 
energy at the rate

 
dQ

dt
= esAT 4 (37.1)

l1 l2

Lens Slit

Diffraction grating

Film or
photodetector

Light source

FIGURE 37.1 A grating spectrometer is 
used to study the emission of light.

400 nm 500 nm 600 nm 700 nm

Violet Orange RedYellowGreenBlue

FIGURE 37.2 The continuous spectrum of 
an incandescent lightbulb.
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37.2 The Emission and Absorption of Light 1117

where s = 5.67 * 10-8 W/m2 K4 is the Stefan-Boltzmann constant. Notice the very 
strong fourth-power dependence on temperature.

The parameter e in Equation 37.1 is the emissivity of the surface, a measure of  
how effectively it radiates. A perfectly absorbing—and thus perfectly emitting— 
object with e = 1 is called a blackbody, and the thermal radiation emitted by a  
blackbody is called blackbody radiation. Charcoal is an excellent approximation  
of a blackbody.

Our interest in Chapter 19 was the amount of energy radiated. Now we want to 
examine the spectrum of that radiation. If we measure the spectrum of a blackbody 
at three temperatures, 3500 K, 4500 K, and 5500 K, the data appear as in FIGURE 37.3. 
These continuous curves are called blackbody spectra. There are four important fea-
tures of the spectra:

■■  All blackbodies at the same temperature emit exactly the same spectrum. The 
spectrum depends on only an object’s temperature, not the material of which 
it is made.

■■ Increasing the temperature increases the radiated intensity at all wavelengths. 
Making the object hotter causes it to emit more radiation across the entire 
spectrum.

■■ Increasing the temperature causes the peak intensity to shift toward shorter  
wavelengths. The higher the temperature, the shorter the wavelength of the peak  
of the spectrum.

■■ The visible light that we see is only a small portion of the continuous blackbody 
spectrum. Much of the emission is infrared. Extremely hot objects, such as stars, 
emit a significant fraction of their radiation at ultraviolet wavelengths.

The wavelength corresponding to the peak of the intensity graph is given by

 lpeak 1in nm2 =
2.90 * 106 nm K

T
 (37.2)

where T must be in kelvin. Equation 37.2 is known as Wien’s law.

Black lava glows brightly when hot.

What are the peak wavelengths and the corresponding spectral re - 
gions for thermal radiation from the sun, a glowing ball of gas  
with a surface temperature of 5800 K, and from the earth, whose 
average surface temperature is 15°C?

MODEL The sun and the earth are well approximated as blackbodies.

SOLVE The sun’s wavelength of peak intensity is given by Wien’s 
law:

lpeak =
2.90 * 106 nm K

5800 K
= 500 nm

This is right in the middle of the visible spectrum. The earth’s wave- 
length of peak intensity is

lpeak =
2.90 * 106 nm K

288 K
= 10,000 nm

where we converted the surface temperature to kelvin before  
computing. This is rather far into the infrared portion of the spectrum, 
which is not surprising because we don’t “see” the earth glowing.

REVIEW The difference between these two wavelengths is quite  
important for understanding the earth’s greenhouse effect.  
Most of the energy from the sun—its spectrum is much like the 
highest curve in Figure 37.3—arrives as visible light. The earth’s 
atmosphere is transparent to visible wavelengths, so this energy  
reaches the ground and is absorbed. The earth must radiate an 
equal amount of energy back to space, but it does so with long- 
wavelength infrared radiation. These wavelengths are strongly  
absorbed by some gases in the atmosphere, so the atmosphere  
acts as a blanket to keep the earth’s surface warmer than it would 
be otherwise.

EXAMPLE 37.1 ■ Finding peak wavelengths

That all blackbodies at the same temperature emit the same spectrum was an  
unexpected discovery. Why should this be? It seemed that a combination of  
thermodynamics and Maxwell’s new theory of electromagnetic waves ought to provide  
a convincing explanation, but scientists of the late 19th century failed to come up with 
a theoretical justification for the curves seen in Figure 37.3.

In
te

ns
ity

A hotter object has a much greater
intensity, peaked at shorter wavelengths.

Wavelength (nm)

15001000 20005000
0

T = 5500 K

4500 K

3500 K

FIGURE 37.3 Blackbody radiation spectra.
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1118 CHAPTER 37 The Foundations of Modern Physics

Discrete Spectra
Michael Faraday wanted to know whether an electric current could pass through a 
gas. To find out, he sealed metal electrodes into a glass tube, lowered the pressure 
with a primitive vacuum pump, and then attached an electrostatic generator. When he 
started the generator, the gas inside the tube began to glow with a bright purple color! 
Faraday’s device, called a gas discharge tube, is shown in FIGURE 37.4.

The purple color Faraday saw is characteristic of nitrogen, the primary component 
of air. You are more likely familiar with the reddish-orange color of a neon discharge 
tube. If light from a neon discharge tube is sent through a spectrometer, it produces 
the spectrum seen in FIGURE  37.5. This is called a discrete spectrum because it  
contains only discrete, individual wavelengths. Further, each kind of gas emits a 
unique spectrum—a spectral fingerprint—that distinguishes it from every other gas.

The discrete emission spectrum of a hot, low-density gas stands in sharp contrast  
to the continuous blackbody spectrum of a glowing solid. Not only do gases emit 
discrete wavelengths, but it was soon discovered that they also absorb discrete  
wavelengths. FIGURE 37.6a shows an absorption experiment in which white light passes 
through a sample of gas. Without the gas, the white light would expose the film with 
a continuous rainbow spectrum. Any wavelengths absorbed by the gas are missing, 
and the film is dark at that wavelength. FIGURE 37.6b shows, for sodium vapor, that only 
certain discrete wavelengths are absorbed.

Cathode
glow

Cathode Anode

Bright color
of gas

 FIGURE 37.4 Faraday’s gas discharge tube.

400 nm 500 nm 600 nm 700 nm

FIGURE 37.5 The discrete spectrum of a 
neon discharge tube.
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The spectral lines extend
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FIGURE 37.7 The hydrogen emission 
spectrum.
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FIGURE 37.6 Measuring an absorption spectrum.

300 nm

Ultraviolet Visible

Emission

Absorption

(b) Absorption and emission spectra of sodium
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Although the emission and absorption spectra of a gas are both discrete, Figure 37.6b 
shows an important difference: Every wavelength absorbed by the gas is also emitted, 
but not every emitted wavelength is absorbed. All the absorption wavelengths are 
prominent in the emission spectrum, but there are many emission wavelengths for which  
no absorption occurs.

What causes atoms to emit or absorb light? Why a discrete spectrum? Why are some 
wavelengths emitted but not absorbed? Why is each element different? Nineteenth-
century physicists struggled with these questions but could not answer them. Classical  
physics was incapable of providing an understanding of atoms.

The only encouraging sign came from an unlikely source. While the spectra of 
other atoms have dozens or even hundreds of wavelengths, the emission spectrum 
of hydrogen, seen in FIGURE 37.7, is very simple and regular. If any spectrum could  
be understood, it should be that of the first element in the periodic table. The  
breakthrough came in 1885, not by an established and recognized scientist but by  
a Swiss schoolteacher, Johann Balmer. Balmer showed that the wavelengths in the 
hydrogen spectrum could be represented by the simple formula

 l =
91.18 nm

1 1

22 -
1

n22    n = 3, 4, 5,   c (37.3)
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37.3 Cathode Rays and X Rays 1119

This formula predicts a series of spectral lines of gradually decreasing wavelength, 
converging to the series limit wavelength of 364.7 nm as n S ∞ . This series of  
spectral lines is now called the Balmer series.

Later experimental evidence, as ultraviolet and infrared spectroscopy developed, 
showed that Balmer’s result could be generalized to

  l =
91.18 nm

1 1

m2 -
1

n22  
m = 1, 2, 3,   c
n = any integer greater than m

 (37.4)

We now refer to Equation 37.4 as the Balmer formula, although Balmer himself 
suggested only the original version of Equation 37.3 in which m = 2. Other than at 
the highest levels of resolution, where new details appear that need not concern us in 
this text, the Balmer formula accurately describes every wavelength in the emission 
spectrum of hydrogen.

The Balmer formula is what we call empirical knowledge. It is an accurate mathe-
matical representation found empirically—that is, through experimental evidence—
but it does not rest on any physical principles or physical laws. Yet the formula was 
so simple that it must, everyone agreed, have a simple explanation. It would take  
30 years to find it.

STOP TO THINK 37.1 These spectra are due to the 
same element. Which one is an emission spectrum 
and which is an absorption spectrum?

(a)

(b)

l

l

37.3 Cathode Rays and X Rays
Faraday’s invention of the gas discharge tube had two major repercussions. One set of 
investigations, as we’ve seen, led to the development of spectroscopy. Another set led 
to the discovery of the electron.

In addition to the bright color of the gas in a discharge tube, Figure 37.4 shows a 
separate, constant glow around the negative electrode (i.e., the cathode) called the 
cathode glow. As vacuum technology improved, scientists made two discoveries:

1. At lower pressures, the cathode glow became more extended.
2. If the cathode glow extended to the wall of the glass tube, the glass itself emitted 

a greenish glow—fluorescence—at that point.

In fact, a solid object sealed inside a low-pressure tube casts a shadow on the glass 
wall, as shown in FIGURE 37.8. This suggests that the cathode emits rays of some form 
that travel in straight lines but are easily blocked. These rays, which are invisible but 
cause the glass to glow where they strike it, were quickly dubbed cathode rays.  
This name lives on today in the cathode-ray tube that forms the picture tube in older 
televisions and computer-display terminals. But naming the rays did nothing to explain  
them. What were they?

Crookes Tubes
The most systematic studies on the new cathode rays were carried out during the 
1870s by the English scientist Sir William Crookes. Crookes devised a set of glass 
tubes, such as the one shown in FIGURE 37.9, that could be used to make careful studies 
of cathode rays. These tubes, today called Crookes tubes, generate a small glowing 
spot where the cathode rays strike the face of the tube.

Solid object Shadow of object

Cathode glow

Cathode Glass tube
glows green.

FIGURE 37.8 A solid object in the cathode 
glow casts a shadow.

Collimating
hole

Face of tube

Green spotAnode
Cathode

Beam of
cathode rays

 FIGURE 37.9 A Crookes tube.
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1120 CHAPTER 37 The Foundations of Modern Physics

The work of Crookes and others demonstrated that

1. There is an electric current in a tube in which cathode rays are emitted.
2. The rays are deflected by a magnetic field as if they are negative charges.
3. Cathodes made of any metal produce cathode rays. Furthermore, the ray properties  

are independent of the cathode material.

Crookes’s experiments led to more questions than they answered. Were the 
cathode rays some sort of particles? Or a wave? Were the rays themselves the  
carriers of the electric current, or were they something else that happened to be 
emitted whenever there was a current? Item 3 is worthy of note because it suggests 
that the cathode rays are a fundamental entity, not a part of the element from which  
they are emitted.

It is important to realize how difficult these questions were at the time and how 
experimental evidence was used to answer them. Crookes suggested that molecules 
in the gas collided with the cathode, somehow acquired a negative charge (i.e.,  
became negative ions), and then “rebounded” with great speed as they were repelled 
by the negative cathode. These “charged molecules” would travel in a straight line, 
be deflected by a magnetic field, and cause the tube to glow where they struck  
the glass.

However, Crookes’s hypothesis was immediately attacked. Critics noted that the 
cathode rays could travel the length of a 90-cm-long tube with no discernible deviation  
from a straight line. But the mean free path for molecules, due to collisions with 
other molecules, is only about 6 mm at the pressure in Crookes’s tubes. There was no 
chance at all that molecules could travel in a straight line for 150 times their mean 
free path!

But if cathode rays were not particles, what were they? An alternative theory was that 
the cathode rays were electromagnetic waves. After all, light travels in straight lines, 
casts shadows, and can, under the right circumstances, cause materials to fluoresce. 
It was known that hot metals emit light—incandescence—so it seemed plausible that  
the cathode could be emitting waves. The major obstacle for the wave theory was 
the deflection of cathode rays by a magnetic field. But the theory of electromagnetic 
waves was quite new at the time, and many characteristics of these waves were still 
unknown. Visible light was not deflected by a magnetic field, but perhaps some other  
form of electromagnetic waves might be so influenced.

The controversy over particles versus waves was intense. British scientists  
generally favored particles, but their continental counterparts preferred waves. Such 
controversies are an integral part of science, for they stimulate the best minds to come 
forward with new ideas and new experiments.

X Rays
The German physicist Wilhelm Röntgen, also studying cathode rays, made a remark-
able discovery in 1895. He had sealed a cathode and a metal target electrode into a 
vacuum tube, as shown in FIGURE 37.10, and then applied a much higher voltage than 
normally used to produce cathode rays. He happened, by chance, to leave a sealed 
envelope containing photographic film near the vacuum tube, and was later surprised 
to discover that the film had been exposed. This serendipitous discovery was the  
beginning of the study of x rays.

Röntgen quickly found that the vacuum tube was the source of whatever was  
exposing the film. Not having any idea what was coming from the tube, he called 
them x rays, using the algebraic symbol x as meaning “unknown.” X rays were unlike  
anything, particle or wave, ever discovered. Röntgen was not successful at reflecting 
the rays or at focusing the rays with a lens. He showed that they travel in straight lines, 
like particles, but they also pass right through most solid materials, something no 
known particle could do.

Cathode rays

X rays

Vacuum
tube

Cathode Target
electrodeHigh

voltage

FIGURE 37.10 Röntgen’s x-ray tube.
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37.4 The Discovery of the Electron 1121

Scientists soon began to suspect that x rays were an electromagnetic wave with a 
wavelength much shorter than that of visible light. However, it wasn’t until 20 years 
after their discovery that this was verified by the diffraction of x rays, showing that 
they have wavelengths in the range 0.01 nm to 10 nm. At the time, the properties of 
x rays seemed far outside the scope of Maxwell’s theory of electromagnetic waves.

37.4 The Discovery of the Electron
Shortly after Röntgen’s discovery of x rays, the young English physicist J. J. Thomson 
began using them to study electrical conduction in gases. He found that x rays could 
discharge an electroscope and concluded that they must be ionizing the air molecules, 
thereby making the air conductive.

This simple observation was of profound significance. Until then, the only form of 
ionization known was the creation of positive and negative ions in solutions where, for 
example, a molecule such as NaCl splits into two smaller charged pieces. Although 
the underlying process was not yet understood, the fact that two atoms could acquire 
charge as a molecule splits apart did not jeopardize the idea that the atoms themselves 
were indivisible. But after observing that even monatomic gases, such as helium, 
could be ionized by x rays, Thomson realized that the atom itself must have charged 
constituents that could be separated! This was the first direct evidence that the atom 
is a complex structure, not a fundamental, indivisible unit of matter.

Thomson was also investigating the nature of cathode rays. Other scientists, using 
a Crookes tube like the one shown in FIGURE 37.11a, had measured an electric current 
in a cathode-ray beam. Although its presence seemed to demonstrate that the rays are 
charged particles, proponents of the wave model argued that the current might be a 
separate, independent event that just happened to be following the same straight line 
as the cathode rays.

Thomson realized that he could use magnetic deflection of the cathode rays to settle  
the issue. He built a modified tube, shown in FIGURE 37.11b, in which the collecting  
electrode was off to the side. With no magnetic field, the cathode rays struck the center  
of the tube face and created a greenish spot on the glass. No current was measured 
under these circumstances. Thomson then placed the tube in a magnetic field to deflect 
the cathode rays to the side. He could determine their trajectory by the location of the 
green spot as it moved across the face of the tube. Just at the point when the field was 
strong enough to deflect the cathode rays onto the electrode, a current was detected! 
At an even stronger field, when the cathode rays were deflected completely to the  
other side of the electrode, the current ceased.

This was the first conclusive demonstration that cathode rays really are negatively 
charged particles. But why were they not deflected by an electric field? Thomson’s  
experience with the x-ray ionization of gases soon led him to recognize that the rapidly  
moving cathode-ray particles must be colliding with the few remaining gas molecules 
in the tube with sufficient energy to ionize them. The electric field created by these 
charges neutralized the field of the electrodes, hence there was no deflection.

Fortunately, vacuum technology was getting ever better. By using the most sophis-
ticated techniques of his day, Thomson was able to lower the pressure to a point where 
ionization of the gas was not a problem. Then, just as he had expected, the cathode 
rays were deflected by an electric field!

Thomson’s experiment was a decisive victory for the charged-particle model, but it 
still did not indicate anything about the nature of the particles. What were they?

Thomson’s Crossed-Field Experiment
Thomson could measure the deflection of cathode-ray particles for various strengths of 
the magnetic field, but magnetic deflection depends both on the particle’s charge-to-mass  

J. J. Thomson.

B
u
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trajectory

(b)
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field
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when the cathode-ray spot
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electrode.
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Collecting
electrode
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FIGURE 37.11 Experiments to measure the 
electric current in a cathode-ray tube.
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1122 CHAPTER 37 The Foundations of Modern Physics

ratio q/m and on its speed. Measuring the charge-to-mass ratio, and thus learning some-
thing about the particles themselves, requires some means of determining their speed.  
To do so, Thomson devised the experiment for which he is most remembered.

Thomson built a tube containing the parallel-plate electrodes visible in the photo in 
FIGURE 37.12a. He then placed the tube in a magnetic field. FIGURE 37.12b shows that the 
electric and magnetic fields were perpendicular to each other, thus creating what came  
to be known as a crossed-field experiment.

The magnetic field, which is perpendicular to the particle’s velocity v 

u, exerts a 
magnetic force on the charged particle of magnitude

 FB = qvB (37.5)

The magnetic field alone would cause a negatively charged particle to move along an 
upward circular arc. As you learned in ❮❮ SECTION 29.7, the radius of the arc is

 r =
mv
qB

 (37.6)

It is a straightforward geometry problem to determine the radius of curvature r from 
the measured deflection of the green spot.

Thomson’s new idea was to create an electric field between the parallel-plate elec-
trodes that would exert a downward force on the negative charges, pushing them back 
toward the center of the tube. The magnitude of the electric force on each particle is

 FE = qE (37.7)

Thomson adjusted the electric field strength until the cathode-ray beam, in the pres-
ence of both electric and magnetic fields, had no deflection and was seen exactly in 
the center of the tube.

Zero deflection occurs when the magnetic and electric forces exactly balance each 
other, as FIGURE 37.12c shows. The force vectors point in opposite directions, and their 
magnitudes are equal when

FB = qvB = FE = qE

Notice that the charge q cancels. Once E and B are set, a charged particle can pass 
undeflected through the crossed fields only if its speed is

 v =
E
B

 (37.8)

By balancing the magnetic force against the electric force, Thomson could de-
termine the speed of the charged-particle beam. Once he knew v, he could use Equa-
tion  37.6 to find the charge-to-mass ratio:

 
q
m

=
v

rB
 (37.9)

Thomson found that the charge-to-mass ratio of cathode rays is q/m ≈ 1 *
1011 C/kg. This seems not terribly accurate in comparison to the modern value of 
1.76 * 1011 C/kg, but keep in mind both the experimental limitations of his day and 
the fact that, prior to his work, no one had any idea of the charge-to-mass ratio.

(b) Electrodes

Magnetic
field

Green spot
with B only

u

The green spot is
undeflected with
both B and E.

u u

v
u

B
u

E
u

(c)

The charged particle
moves in a straight line
when the electric and
magnetic forces are
balanced.

u
FB

FE

u

(a)

FIGURE 37.12 Thomson’s crossed-field 
experiment to measure the velocity of 
cathode rays. The photograph shows his 
original tube.

An electron is fired between two parallel-plate electrodes that 
are 5.0 mm apart and 3.0 cm long. A potential difference ∆V   
between the electrodes establishes an electric field between them. 
A 3.0-cm-wide, 1.0 mT magnetic field overlaps the electrodes and 
is perpendicular to the electric field. When ∆V = 0 V, the electron 

is deflected by 2.0 mm as it passes between the plates. What value 
of ∆V  will allow the electron to pass through the plates without 
deflection?

MODEL Assume that the fields between the electrodes are uniform 
and that they are zero outside the electrodes.

EXAMPLE 37.2 ■ A crossed-field experiment
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The Electron
Thomson next measured q/m for different cathode materials. Finding them all to be the 
same, he concluded that all metals emit the same cathode rays. Thomson then compared 
his result to the charge-to-mass ratio of the hydrogen ion, known from electrolysis to 
have a value of ≈1 * 108 C/kg. This value was roughly 1000 times smaller than for the 
cathode-ray particles, which could imply that a cathode-ray particle has a much larger 
charge than a hydrogen ion, or a much smaller mass, or some combination of these.

Electrolysis experiments suggested the existence of a basic unit of charge, so it  
was tempting to assume that the cathode-ray charge was the same as the charge of a 
hydrogen ion. However, cathode rays were so different from the hydrogen ion that such  
an assumption could not be justified without some other evidence. To provide that  
evidence, Thomson called attention to previous experiments showing that cathode rays 
can penetrate thin metal foils but atoms cannot. This can be true, Thomson argued,  
only if cathode-ray particles are vastly smaller and thus much less massive than atoms.

In a paper published in 1897, Thomson assembled all of the evidence to announce 
the discovery that cathode rays are negatively charged particles, that they are much 
less massive 1≈0.1%2 than atoms, and that they are identical when generated by  
different elements. In other words, Thomson had discovered a subatomic particle, 
one of the constituents of which atoms themselves are constructed. In recognition of 
the role this particle plays in electricity, it was later named the electron.

VISUALIZE FIGURE  37.13 shows an electron passing through the 
magnetic field between the plates when ∆V = 0 V. The curvature 
has been exaggerated to make the geometry clear.

SOLVE We can find the needed electric field, and thus ∆V, if  
we know the electron’s speed. We can find the electron’s speed 
from the radius of curvature of its circular arc in a magnetic field. 
Figure 37.13 shows a right triangle with hypotenuse r and width L. 
We can use the Pythagorean theorem to write

1r - ∆y22 + L2 = r2

where ∆y is the electron’s deflection in the magnetic field. This is 
easily solved to find the radius of the arc:

r =
1∆y22 + L2

2 ∆y
=

10.0020 m22 + 10.030 m22

210.0020 m2 = 0.226 m

The speed of an electron traveling along an arc with this radius is 
found from Equation 37.6:

v =
erB
m

= 4.0 * 107 m/s

Thus the electric field allowing the electron to pass through without 
deflection is

E = vB = 40,000 V/m

The electric field of a parallel-plate capacitor of spacing d is related 
to the potential difference by E = ∆V/d, so the necessary potential 
difference is

∆V = Ed = 140,000 V/m210.0050 m2 = 200 V

REVIEW A fairly small potential difference is sufficient to counter-
act the magnetic deflection.

B
u Circular arc

Center of circle

L = 3.0 cm

∆y

L

r
r - ∆y

FIGURE 37.13 The electron’s trajectory in Example 37.2.

STOP TO THINK 37.2 Thomson’s conclusion that cathode-ray particles are funda-
mental constituents of atoms was based primarily on which observation?

a. They have a negative charge.
b. They are the same from all cathode materials.
c. Their mass is much less than that of hydrogen.
d. They penetrate very thin metal foils.
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1124 CHAPTER 37 The Foundations of Modern Physics

37.5 The Fundamental Unit of Charge
Thomson measured the electron’s charge-to-mass ratio, but clearly it was desirable 
to measure the charge q directly. This was done in 1906 by the American scientist 
Robert Millikan. The Millikan oil-drop experiment is illustrated in FIGURE 37.14. 
A squeeze-bulb atomizer sprayed out a very fine mist of oil droplets. Millikan  
found that some of these droplets were charged from friction in the sprayer. The 
charged droplets slowly settled toward a horizontal pair of parallel-plate electrodes, 
where a few droplets passed through a small hole in the top plate. Millikan observed 
the drops by shining a bright light between the plates and using an eyepiece to see  
the droplets’ reflections. He then established an electric field by applying a voltage  
to the plates.

A drop will remain suspended between the plates, moving neither up nor down, if 
the electric field exerts an upward force on a charged drop that exactly balances the 
downward gravitational force. The forces balance when

 mdropg = qdropE (37.10)

and thus the charge on the drop is measured to be

 qdrop =
mdropg

E
 (37.11)

Notice that m and q are the mass and charge of the oil droplet, not of an electron. But  
because the droplet is charged by acquiring (or losing) electrons, the charge of the 
droplet should be related to the electron’s charge.

The field strength E could be determined accurately from the voltage applied to  
the plates, so the limiting factor in measuring qdrop was Millikan’s ability to determine 
the mass of these small drops. Ideally, the mass could be found by measuring a drop’s 
diameter and using the known density of the oil. However, the drops were too small 
1≈1 mm2 to measure accurately by viewing through the eyepiece.

Instead, Millikan devised an ingenious method to find the size of the droplets. Ob- 
jects this small are not in free fall. The air resistance forces are so large that the drops  
fall with a very small but constant speed. The motion of a sphere through a viscous 
medium is a problem that had been solved in the 19th century, and it was known that 
the sphere’s terminal speed depends on its radius and on the viscosity of air. By timing 
the droplets’ fall, then using the known viscosity of air, Millikan could calculate their 
radii, compute their masses, and, finally, arrive at a value for their charge. Although it 
was a somewhat roundabout procedure, Millikan was able to measure the charge on a  
droplet with an accuracy of {0.1%.

Millikan measured many hundreds of droplets under a wide variety of con-
ditions. He found that some of his droplets were positively charged and some 
negatively charged, but all had charges that were integer multiples of a certain 
minimum charge value. Millikan concluded that “the electric charges found on 
ions all have either exactly the same value or else some small exact multiple of that 
value.” That value, the fundamental unit of charge that we now call e, is measured  
to be

e = 1.60 * 10-19 C

We can then combine the measured e with the measured charge-to-mass ratio e/m to 
find that the mass of the electron is

melec = 9.11 * 10-31 kg

Taken together, the experiments of Thomson, Millikan, and others provided over-
whelming evidence that electric charge comes in discrete units and that all charges 
found in nature are multiples of a fundamental unit of charge we call e.

E
u

Light Eyepiece

Battery

Oil drops

Parallel-plate
electrodes

Atomizer

The upward electric force
on a negatively charged
droplet balances the
downward gravitational force.

FIGURE 37.14 Millikan’s oil-drop apparatus 
to measure the fundamental unit of  
charge.
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37.6 The Discovery of the Nucleus 1125

37.6 The Discovery of the Nucleus
By 1900, it was clear that atoms are not indivisible but, instead, are constructed of 
charged particles. Atomic sizes were known to be ≈10-10 m, but the electrons common 
to all atoms are much smaller and much less massive than the smallest atom. How do 
they “fit” into the larger atom? What is the positive charge of the atom? Where are the  
charges located inside the atoms?

Thomson proposed the first model of an atom. Because the electrons are very 
small and light compared to the whole atom, it seemed reasonable to think that the 
positively charged part would take up most of the space. Thomson suggested that the 
atom consists of a spherical “cloud” of positive charge, roughly 10-10 m in diameter, 
in which the smaller negative electrons are embedded. The positive charge exactly 
balances the negative, so the atom as a whole has no net charge. This model of the 
atom has often been called the “plum-pudding model” or the “raisin-cake model” for 
reasons that should be clear from FIGURE 37.15.

Thomson was never able to make any predictions that would enable his model to be 
tested, and the Thomson atom did not stand the test of time. His model is of interest 
today primarily to remind us that our current models of the atom are by no means 
obvious. Science has many sidesteps and dead ends as it progresses.

One of Thomson’s students was a New Zealander named Ernest Rutherford.  
While Rutherford and Thomson were studying the ionizing effects of x rays, in 1896, 
the French physicist Antoine Henri Becquerel announced the discovery that some 
new form of “rays” were emitted by crystals of uranium. These rays, like x rays,  
could expose film, pass through objects, and ionize the air. Yet they were emitted 
continuously from the uranium without having to “do” anything to it. This was the 
discovery of radioactivity, a topic we’ll study in Chapter 42.

With x rays only a year old and cathode rays not yet completely understood, it  
was not known whether all these various kinds of rays were truly different or merely 
variations of a single type. Rutherford immediately began a study of these new rays. 
He quickly discovered that at least two different rays are emitted by a uranium crystal. 
The first, which he called alpha rays, were easily absorbed by a piece of paper. The 
second, beta rays, could penetrate through at least 0.1 inch of metal.

Thomson soon found that beta rays are high-speed electrons emitted by the  
uranium crystal. Rutherford then showed that alpha rays are positively charged  
particles. By 1906 he had measured their charge-to-mass ratio to be

q
m

=
1
2

 
e

mH

where mH is the mass of a hydrogen atom. This value could indicate either a singly 
ionized hydrogen molecule H2 

+ 1q = e, m = 2mH2 or a doubly ionized helium atom 
He++ 1q = 2e, m = 4mH2.

Oil has a density of 860 kg/m3. A 1.0@mm@diameter oil droplet  
acquires 10 extra electrons as it is sprayed. What potential difference 
between two parallel plates 1.0 cm apart will cause the droplet to be  
suspended in air?

MODEL Assume a uniform electric field E = ∆V/d between the 
plates.

SOLVE The magnitude of the charge on the drop is qdrop = 10e.  
The mass of the charge is related to its density r and volume V by

mdrop = rV = 4
3 pR3r = 4.50 * 10-16 kg

where the droplet’s radius is R = 5.0 * 10-7 m. The electric field 
that will suspend this droplet against the force of gravity is

E =
mdropg

qdrop
= 2760 V/m

Establishing this electric field between two plates spaced by 
d = 0.010 m requires a potential difference

∆V = Ed = 27.6 V

REVIEW Experimentally, this is a very convenient voltage.

EXAMPLE 37.3 ■ Suspending an oil drop

Sphere of
positive
charge

Thomson proposed that small,
negative electrons are embedded
in a sphere of positive charge.

≈10-10 m

FIGURE 37.15 Thomson’s raisin-cake 
model of the atom.
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1126 CHAPTER 37 The Foundations of Modern Physics

In an ingenious experiment, Rutherford sealed a sample of radium—an emitter of 
alpha radiation—into a glass tube. Alpha rays could not penetrate the glass, so the  
particles were contained within the tube. Several days later, Rutherford used electrodes  
in the tube to create a discharge and observed the spectrum of the emitted light. He 
found the characteristic wavelengths of helium. Alpha rays (or alpha particles, as we 
now call them) consist of doubly ionized helium atoms (bare helium nuclei) emitted at  
high speed 1≈3 * 107 m/s2 from the sample.

The First Nuclear Physics Experiment
Rutherford realized that he could use these high-speed particles to probe inside other 
atoms. In 1909, Rutherford and his students set up the experiment shown in FIGURE 37.16 
to shoot alpha particles through very thin metal foils. It was observed that some alpha 
particles were slightly deflected, but this was not surprising. The positive and negative 
charges of the atoms exert forces on the positively charged alpha particles as they pass 
through the foil, but Thomson’s raisin-cake model of the atom suggested that repulsive  
and attractive forces should be roughly balanced, causing only small deflections.

At Rutherford’s suggestion, his students then set up the apparatus to see if any 
alpha particles were deflected at large angles. It took only a few days to find the 
answer. Not only were alpha particles deflected at large angles, but a very few were 
reflected almost straight backward toward the source!

How can we understand this result? FIGURE 37.17a shows that only a small deflection 
is expected for an alpha particle passing through a Thomson atom. But if an atom has 
a small, positive core, such as the one in FIGURE 37.17b, a few of the alpha particles can 
come very close to the core. Because the electric force varies with the inverse square 
of the distance, the very large force of this very close approach can cause a large-angle  
scattering or a backward deflection of the alpha particle.

Lead blocks

The alpha particles make
little flashes of light where
they hit the screen.

Radioactive
source of
alpha particles

Gold
foil

Zinc
sulfide
screen 

Small
deflection

Large
deflection

FIGURE 37.16 Rutherford’s experiment to 
shoot high-speed alpha particles through  
a thin gold foil.

Alpha

The alpha particle is only slightly deflected
by a Thomson atom because forces from the
spread-out positive and negative charges
nearly cancel.

If the atom has a concentrated positive
nucleus, some alpha particles will be able to
come very close to the nucleus and thus feel
a very strong repulsive force.

Alpha

(b)(a)

FIGURE 37.17 Alpha particles interact differently with a concentrated positive nucleus than 
they would with the spread-out charge in Thomson’s model.

Thus the discovery of large-angle scattering of alpha particles led Rutherford to 
envision an atom in which negative electrons orbit an unbelievably small, massive, 
positive nucleus, rather like a miniature solar system. This is the nuclear model of 
the atom. Notice that nearly all of the atom is empty space—the void!

An alpha particle is shot with a speed of 2.0 * 107 m/s directly  
toward the nucleus of a gold atom. What is the distance of closest 
approach to the nucleus?

MODEL Energy is conserved in electric interactions. Assume that 
the gold nucleus, which is much more massive than the alpha 

particle, does not move. Also recall that the exterior electric field  
and potential of a sphere of charge can be found by treating the  
total charge as a point charge at the center.

VISUALIZE FIGURE 37.18 is a pictorial representation. The motion  
is in and out along a straight line.

EXAMPLE 37.4 ■ A nuclear physics experiment
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37.6 The Discovery of the Nucleus 1127

Rutherford went on to make careful experiments of how the alpha particles  
scattered at different angles. From these experiments he deduced that the diameter  
of the atomic nucleus is ≈1 * 10-14 m = 10 fm 11 fm = 1 femtometer = 10-15 m2, 
in creasing a little for elements of higher atomic number and atomic mass.

It may seem surprising to you that the Rutherford model of the atom, with its  
solar-system analogy, was not Thomson’s original choice. However, scientists at the 
time could not imagine matter having the extraordinarily high density implied by a 
small nucleus. Neither could they understand what holds the nucleus together, why the 
positive charges do not push each other apart. Thomson’s model, in which the positive 
charge was spread out and balanced by the negative electrons, actually made more 
sense. It would be several decades before the forces holding the nucleus together began 
to be understood, but Rutherford’s evidence for a very small nucleus was indisputable.

SOLVE We are not interested in how long the collision takes  
or any of the details of the trajectory, so using conservation of 
energy rather than Newton’s laws is appropriate. Initially, when 
the alpha particle is very far away, the system has only kinetic 
energy. At the moment of closest approach, just before the alpha 
particle is reflected, the charges are at rest and the system has  
only potential energy. The conservation of energy statement 

Kf + Uf = Ki + Ui is

0 +
1

4pP0
 
qa  qAu

rmin
= 1

2 mvi 

2 + 0

where qa is the alpha-particle charge and we’ve treated the gold  
nucleus as a point charge qAu. The mass m is that of the alpha particle.  
The solution for rmin is

rmin =
1

4pP0
 
2qa  qAu

mvi 

2

The alpha particle is a helium nucleus, so m = 4 u = 6.64 *
10-27 kg and qa = 2e = 3.20 * 10-19 C. Gold has atomic number 
79, so qAu = 79e = 1.26 * 10-17 C. We can then calculate

rmin = 2.7 * 10-14 m

This is only about 1/10,000 the size of the atom itself!

REVIEW We ignored the atom’s electrons in this example. In fact, 
they make almost no contribution to the alpha particle’s trajectory. 
The alpha particle is exceedingly massive compared to the electrons, 
and the electrons are spread out over a distance very large compared 
to the size of the nucleus. Hence the alpha particle easily pushes  
them aside without any noticeable change in its velocity.

When the a particle is at its 
closest approach to the gold 
nucleus, its speed is zero.

FIGURE 37.18 A before-and-after pictorial representation of an 
alpha particle colliding with a nucleus.

STOP TO THINK 37.3 A radioactive nucleus undergoes alpha decay. Between leaving  
the nucleus and reaching the detector, the alpha particle

a. Speeds up.
b. Slows down.
c. First speeds up, then slows down.
d. Travels at constant speed.

The Electron Volt
The joule is a unit of appropriate size in mechanics and thermodynamics, where we 
dealt with macroscopic objects, but it is poorly matched to the needs of atomic physics. 
It will be very useful to have an energy unit appropriate to atomic and nuclear events.

FIGURE 37.19 on the next page shows an electron accelerating (in a vacuum) from 
rest across a parallel-plate capacitor with a 1.0 V potential difference. What is the 
electron’s kinetic energy when it reaches the positive plate? We know from energy 
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1128 CHAPTER 37 The Foundations of Modern Physics

conservation that Kf + qVf = Ki + qVi, where U = qV is the electric potential energy. 
Ki = 0 because the electron starts from rest, and the electron’s charge is q = -e. Thus

  Kf = -q1Vf - Vi2 = -q ∆V = e ∆V = 11.60 * 10-19 C211.0 V2
  = 1.60 * 10-19 J

Let us define a new unit of energy, called the electron volt, as

1 electron volt = 1 eV K 1.60 * 10-19 J

With this definition, the kinetic energy gained by the electron in our example is

Kf = 1 eV

In other words, 1 electron volt is the kinetic energy gained by an electron (or proton)  
if it accelerates through a potential difference of 1 volt.

   NOTE    The abbreviation eV uses a lowercase e but an uppercase V. Units of keV 
1103 eV2, MeV 1106 eV2, and GeV 1109 eV2 are common.

The electron volt can be a troublesome unit. One difficulty is its unusual name, which  
looks less like a unit than, say, “meter” or “second.” A more significant difficulty is that 
the name suggests a relationship to volts. But volts are units of electric potential, whereas  
this new unit is a unit of energy! It is crucial to distinguish between the potential V, 
measured in volts, and an energy that can be measured either in joules or in electron  
volts.

   NOTE    To reiterate, the electron volt is a unit of energy, convertible to joules, and 
not a unit of potential. Potential is always measured in volts. However, the joule 
remains the SI unit of energy. It will be useful to express energies in eV, but you must 
convert this energy to joules before doing most calculations.

E
u

Electron starts
from rest.

Electron arrives
with K = 1 eV.

1.0 V

FIGURE 37.19 An electron accelerating 
across a 1 V potential difference gains  
1 eV of kinetic energy.

Alpha particles are usually characterized by their kinetic energy in 
MeV. What is the speed of an 8.3 MeV alpha particle?

SOLVE Alpha particles are helium nuclei, having m = 4 u =
6.64 * 10-27 kg. The kinetic energy of this alpha particle is 
8.3 * 106 eV. First, we convert the energy to joules:

K = 8.3 * 106 eV *
1.60 * 10-19 J

1.00 eV
= 1.33 * 10-12 J

Now we can find the speed:

 K = 1
2 mv2 = 1.33 * 10-12 J

 v = B 2K
m

= 2.0 * 107 m/s

This was the speed of the alpha particle in Example 37.4.

EXAMPLE 37.5 ■ The speed of an alpha particle

In a simple model of the hydrogen atom, the electron orbits the 
proton at 2.19 * 106 m/s in a circle with radius 5.29 * 10-11 m. 
What is the atom’s energy in eV?

MODEL The electron has a kinetic energy of motion, and the 
electron + proton system has an electric potential energy.

SOLVE The potential energy is that of two point charges, with 
qproton = +e and qelec = -e. Thus

E = K + U = 1
2 melecv

2 +
1

4pP0
 
1e21-e2

r
= -2.17 * 10-18 J

Conversion to eV gives

E = -2.17 * 10-18 J *
1 eV

1.60 * 10-19 J
= -13.6 eV

REVIEW The negative energy reflects the fact that the electron is 
bound to the proton. You would need to add energy to remove the 
electron.

EXAMPLE 37.6 ■ Energy of an electron
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37.7 Into the Nucleus 1129

Using the Nuclear Model
The nuclear model of the atom makes it easy to understand and picture such processes 
as ionization. Because electrons orbit a positive nucleus, an x-ray photon or a rapidly 
moving particle, such as another electron, can knock one of the orbiting electrons 
away, creating a positive ion. Removing one electron makes a singly charged ion,  
with q = +e. Removing two electrons creates a doubly charged ion, with q = +2e. 
This is shown for lithium (atomic number 3) in FIGURE 37.20.

What is the minimum energy required to ionize a hydrogen atom?

SOLVE In Example 37.6 we found that the atom’s energy is 
Ei = -13.6 eV. Ionizing the atom means removing the elec-
tron and taking it very far away. As r S ∞   , the potential energy 
becomes zero. Further, using the least possible energy to ion-
ize the atom will leave the electron, when it is very far away, 
very nearly at rest. Thus the atom’s energy after ionization is 

Ef = Kf + Uf = 0 + 0 = 0 eV. This is larger than Ei by 13.6 eV, 
so the minimum energy that is required to ionize a hydrogen 
atom is 13.6 eV. This is called the atom’s ionization energy.  
If the electron receives Ú13.6 eV 12.17 * 10-18 J2 of energy from 
a photon, or in a collision with another electron, or by any other 
means, it will be knocked out of the atom and leave a H+ ion 
behind.

EXAMPLE 37.7 ■ The ionization energy of hydrogen

Neutral Li

Nucleus has
charge +3e.

Singly charged Li+ Doubly charged Li++

FIGURE 37.20 Different ionization stages of the lithium atom 1Z = 32.

The nuclear model also allows us to understand why, during chemical reactions 
and when an object is charged by rubbing, electrons are easily transferred but protons 
are not. The protons are tightly bound in the nucleus, shielded by all the electrons, but 
outer electrons are easily stripped away.

STOP TO THINK 37.4 Carbon is the sixth element in the periodic table. How many 
electrons are in a C++ ion?

37.7 Into the Nucleus
Chapter 42 will discuss nuclear physics in more detail, but it will be helpful to give  
a brief overview. The relative masses of many of the elements were known from 
chemistry experiments by the mid-19th century. By arranging the elements in order 
of ascending mass, and noting recurring regularities in their chemical properties, the 
Russian chemist Dmitri Mendeleev first proposed the periodic table of the elements in 
1869. But what did it mean to say that hydrogen was atomic number 1, helium number 2,  
lithium number 3, and so on?

It soon became known that hydrogen atoms can be only singly ionized, producing 
H+. A doubly ionized H++ is never observed. Helium, by contrast, can be both singly 
and doubly ionized, creating He+ and He++, but He+++ is not observed. It seemed 
fairly clear, after the work of Thomson and Millikan, that a hydrogen atom contains 
only one electron and one unit of positive charge, helium has two electrons and two 
units of positive charge, and so on. Thus the atomic number of an element, which 
is always an integer, describes the number of electrons (of a neutral atom) and the 
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1130 CHAPTER 37 The Foundations of Modern Physics

number of units of positive charge in the nucleus. The atomic number is represented 
by Z, so hydrogen is Z = 1, helium Z = 2, and lithium Z = 3. Elements are listed in 
the periodic table by their atomic number.

Rutherford’s discovery of the nucleus soon led to the recognition that the positive 
charge is associated with a positive subatomic particle called the proton. The proton’s 
charge is +e, equal in magnitude but opposite in sign to the electron’s charge. Further, 
because nearly all the atomic mass is associated with the nucleus, the proton is much 
more massive than the electron. According to Rutherford’s nuclear model, atoms  
with atomic number Z consist of Z negative electrons, with net charge -Ze, orbiting a 
massive nucleus that contains protons and has net charge +Ze. The Rutherford atom 
went a long way toward explaining the periodic table.

But there was a problem. Helium, with atomic number 2, has twice as many  
electrons as hydrogen. Lithium, Z = 3, has three electrons. But it was known from 
chemistry measurements that helium is four times as massive as hydrogen and lithium 
is seven times as massive. If a nucleus contains Z protons to balance the Z orbiting 
electrons, and if nearly all the atomic mass is contained in the nucleus, then helium 
should be simply twice as massive as hydrogen and lithium three times as massive.

 The Neutron
About 1910, Thomson and his student Francis Aston developed a device called a  
mass spectrometer for measuring the charge-to-mass ratios of atomic ions. As  
Aston and others began collecting data, they soon found that many elements consist 
of atoms of differing mass! Neon, for example, had been assigned an atomic mass of 
20. But Aston found, as the data of FIGURE 37.21 show, that while 91% of neon atoms 
have mass m = 20 u, 9% have m = 22 u and a very small percentage have m = 21 u. 
Chlorine was found to be a mixture of 75% chlorine atoms with m = 35 u and 25% 
chlorine atoms with m = 37 u, both having atomic number Z = 17.

The reason for the different masses was not understood until the discovery, in 1932, 
of a third subatomic particle. This particle has essentially the same mass as a proton but  
no electric charge. It is called the neutron. Neutrons reside in the nucleus, with the 
protons, where they contribute to the mass of the atom but not to its charge. You’ll learn 
in Chapter 42 that neutrons help provide the “glue” that holds the nucleus together.

The neutron was the missing link needed to explain why atoms of the same element 
can have different masses. We now know that every atom with atomic number Z has a 
nucleus containing Z protons with charge +Ze. In addition, as shown in FIGURE 37.22, 
the nucleus contains N neutrons. There are a range of neutron numbers that happily 
form a nucleus with Z protons, creating a series of nuclei having the same Z-value  
(i.e., they are all the same chemical element) but different masses. Such a series of 
nuclei are called isotopes.

Chemical behavior is determined by the orbiting electrons. All isotopes of one 
element have the same number Z of orbiting electrons and have the same chemical 
properties. But the different isotopes can have quite different nuclear properties.

An atom’s mass number A is defined to be A = Z + N. It is the total number of 
protons and neutrons in a nucleus. The mass number, which is dimensionless, is not 
the same thing as the atomic mass m. By definition, A is an integer. But because the 
proton and neutron masses are both ≈1 u, the mass number A is approximately the 
mass in atomic mass units.

The notation used to label isotopes is AZ, where the mass number A is given as a 
leading superscript. The proton number Z is not specified by an actual number but, 
equivalently, by the chemical symbol for that element. The most common isotope of 
neon has Z = 10 protons and N = 10 neutrons. Thus it has mass number A = 20 and it 
is labeled 20Ne. The neon isotope 22Ne has Z = 10 protons (that’s what makes it neon) 
and N = 12 neutrons. Helium has the two isotopes shown in FIGURE 37.23. The rare 3He 
is only 0.0001% abundant, but it can be isolated and has important uses in scientific 
research.

22Ne

1245 V 1305 V
Accelerating voltage

1370 V

21Ne (*10)

20Ne

Ion current

Ions with different
charge-to-mass
ratios are detected at
different accelerating
voltages.

FIGURE 37.21 The mass spectrum of neon.

Proton

Neutron

FIGURE 37.22 The nucleus of an atom 
contains protons and neutrons.

4He
Z = 2       N = 2
A = 4
99.9999% abundance

p n
pn

3He
Z = 2       N = 1
A = 3
0.0001% abundance

p
pn

FIGURE 37.23 The two isotopes of helium. 
3He is only 0.0001% abundant.
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37.8 Classical Physics at the Limit
Rutherford’s nuclear model of the atom matched the experimental evidence about the 
structure of atoms, but it had one serious shortcoming. According to Maxwell’s theory 
of electricity and magnetism, the orbiting electrons in a Rutherford atom should act as 
small antennas and radiate electromagnetic waves. That sounds encouraging, because 
we know that atoms can emit light, but the radiation of electromagnetic waves means 
the atoms would continuously lose energy. As FIGURE 37.24 shows, this would cause the 
electrons to spiral into the nucleus! Calculations showed that a Rutherford atom can 
last no more than about a microsecond. This clearly does not happen.

The experimental efforts of the late 19th and early 20th centuries had been  
impressive, and there could be no doubt about the existence of electrons, about the 
small positive nucleus, and about the unique discrete spectrum emitted by each atom.  
But the theoretical framework for understanding such observations had lagged behind.  
As the new century dawned, physicists could not explain the structure of atoms, could 
not explain the stability of matter, could not explain discrete spectra or blackbody 
radiation, and could not explain the origin of x rays or radioactivity.

Classical physics had reached its limit, and a whole new generation of brilliant 
young physicists, with new ideas, was about to take the stage. Among the first was  
an unassuming young man in Bern, Switzerland. His scholastic record had been  
mediocre, and the best job he could find upon graduation was as a clerk in the patent 
office, examining patent applications. His name was Albert Einstein.

STOP TO THINK 37.5 Carbon is the sixth element in the periodic table. How many 
protons and how many neutrons are there in a nucleus of the isotope 14C?

According to classical physics, an electron
would spiral into the nucleus while radiating
energy as an electromagnetic wave.

Electron

Nucleus

FIGURE 37.24 The fate of a Rutherford 
atom.

   CHAPTER 37 CHALLENGE EXAMPLE     Radioactive decay

The cesium isotope 137Cs, with Z = 55, is radioactive and decays 
by beta decay. A beta particle is observed in the laboratory with a 
kinetic energy of 300 keV. With what kinetic energy was the beta 
particle ejected from the 12.4-fm-diameter nucleus?

MODEL A beta particle is an electron that is ejected from the  
nucleus of an atom during a radioactive decay. Because the negative 
electron is attracted to the positive nucleus, it must be ejected at a 
speed greater than the escape speed in order to reach the detector 
rather than fall back to the nucleus. Energy is conserved in the decay.

VISUALIZE FIGURE  37.25 shows a before-and-after pictorial rep-
resentation. The electron starts by being ejected from the nucleus 
with kinetic energy Ki. It has electric potential energy Ui due to its  

interaction with the nucleus. The potential energy due to the atom’s 
orbiting electrons is negligible because they are so far away in com-
parison to a nuclear radius. The detected electron is very far from 
the nucleus, so Uf = 0.

SOLVE The conservation of energy statement is Kf + Uf = Ki + Ui. 
The electron starts outside the nucleus, even though at the surface, 
so the spherical nucleus can be treated as a point charge with 
q1 = 55e. The electron has q2 = -e, so the initial electron-nucleus 
potential energy is

  Ui =
Kq1q2

ri

  =
19.0 * 109 N m2/C22155 * 1.60 * 10-19 C21-1.60 * 10-19 C2

6.20 * 10-15 m

  = 1-2.04 * 10-12 J2 *
1 eV

1.60 * 10-19 J
= -12.8 MeV

To be detected in the laboratory with Kf = 300 keV = 0.3 MeV,  
the electron had to be ejected from the nucleus with

  Ki = Kf + Uf - Ui = 0.3 MeV + 0 MeV + 12.8 MeV

  = 13.1 MeV

 REVIEW A negative electron is very strongly attracted to the nucleus. 
It’s not surprising that it has to be ejected from the nucleus with an  
enormous amount of kinetic energy to be able to escape at all.

FIGURE 37.25 A before-and-after pictorial representation of the 
beta decay.
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Summary The goal of Chapter 37 has been to learn about the structure 
and properties of atoms.

Nineteenth-Century Science
Faraday’s invention of the gas discharge tube launched two 
important avenues of inquiry:

• Atomic structure.

• Atomic spectra.

Cathode Rays and Atomic Structure
Thomson found that cathode rays are negative subatomic 
particles. These were soon named electrons. Electrons are
• Constituents of atoms.

• The fundamental units of negative charge.

Rutherford discovered the atomic nucleus.
His nuclear model of the atom proposes

• A very small, dense positive nucleus.

• Orbiting negative electrons.

Later, different isotopes were  
recognized to contain different  
numbers of neutrons in a nucleus  
with the same number of protons.

Blackbody Radiation
• The spectrum is continuous.

• The spectrum depends only on an object’s temperature.

• Wien’s law: The peak intensity occurs at l 1in nm2 = 12.90 * 106 nm K2/T.

The End of Classical Physics . . .
Atomic spectra had to be related to atomic structure, but no one could  
understand how. Classical physics could not explain

• The stability of matter.

• Discrete atomic spectra.

• Continuous blackbody spectra.

Atomic Spectra and the Nature of Light
The spectra emitted by the gas in a discharge tube consist of discrete 
wavelengths.
• Every element has a unique spectrum.

• Every spectral line in an element’s  
absorption spectrum is present in its 
emission spectrum, but not all emis-
sion lines are seen in the absorption 
spectrum.

The wavelengths of the hydrogen emission spectrum are

l =
91.18 nm

1 1

m2 -
1

n22  

Important Concepts/Experiments

Emission

Absorption

m = 1, 2, 3, c
n = any integer greater than m

Wavelength

Millikan’s oil-drop experiment measured the fundamen - 
tal unit of charge:

e = 1.60 * 10-19 C

One electron volt (1 eV) is the energy an electron or proton (charge 
{e) gains by accelerating through a potential difference of 1 V:

1 eV = 1.60 * 10-19 J

Applications

spectrometer
spectrum
continuous spectrum
blackbody radiation
Wien’s law
gas discharge tube
discrete spectrum
Balmer series

Balmer formula
cathode glow
cathode rays
Crookes tube
x rays
crossed-field experiment
subatomic particle
electron

Millikan oil-drop experiment
radioactivity
alpha rays
beta rays
nucleus
nuclear model of the atom
electron volt, eV
atomic number, Z

 proton
mass spectrometer
neutron
isotope
mass number, A

Terms and Notation
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CONCEPTUAL QUESTIONS

1. A brass plate at room temperature radiates 10 W of blackbody 
radiation. If the plate is cooled to –10°C, does the peak of the 
maximum-radiated intensity shift toward shorter wavelengths, 
longer wavelengths, or remain the same? Explain.

2. a. Summarize the experimental evidence prior to the research 
of Thomson by which you might conclude that cathode rays 
are some kind of particle.

b. Summarize the experimental evidence prior to the research 
of Thomson by which you might conclude that cathode rays 
are some kind of wave.

3. Thomson observed deflection of the cathode-ray particles due to 
magnetic and electric fields, but there was no observed deflection  
due to gravity. Why not?

4. What was the realization of Thomson when he found that the charge 
to mass ratio of an electron is a huge number? Why did he perform 
the same experiment to determine this ratio using different gases?

5. What is the evidence by which we know that an electron from an 
iron atom is identical to an electron from a copper atom?

6. FIGURE Q37.6 shows a magnetic field between 
two parallel, charged electrodes. An electron 
with speed v0 passes between the plates, from 
left to right, with no deflection. If a proton is 
fired toward the plates with the same speed v0, 
will it be deflected up, deflected down, or pass 
through with no deflection? Explain.

7. a. Describe the experimental evidence by which we know that 
the nucleus is made up not just of protons.

b. The neutron is not easy to isolate or control because it has 
no charge that would allow scientists to manipulate it. What 
evidence allowed scientists to determine that the mass of the 
neutron is almost the same as the mass of a proton?

8. Rutherford studied alpha particles using the crossed-field tech-
nique Thomson had invented to study cathode rays. Assuming that 
valpha ≈ vcathode ray (which turns out to be true), would the deflection 
of an alpha particle by a magnetic field be larger than, smaller than, 
or the same as the deflection of a cathode-ray particle by the same  
field? Explain.

9. Once Thomson showed that atoms consist of very light negative 
electrons and a much more massive positive charge, why didn’t 
physicists immediately consider a solar-system model of elec-
trons orbiting a positive nucleus? Why would physicists in 1900 
object to such a model?

10. Explain why the observation of alpha particles scattered at very 
large angles led Rutherford to reject Thomson’s model of the 
atom and to propose a nuclear model.

11. An alpha particle (a bare helium nucleus with q = +2e) acceler-
ates across a 10 V potential difference, starting from rest. What 
is the particle’s kinetic energy (in eV) when it reaches the neg-
ative electrode? This question requires no mathematics beyond 
what you can do in your head.

12. Identify the element, the isotope, and the charge state of each 
atom in FIGURE Q37.12. Give your answer in symbolic form, such 
as 4He+ or 8Be-.

p pp n
p n n

nnn p
p

n
(b)

pn
pn

n

p

(a)

FIGURE Q37.12

EXERCISES AND PROBLEMS
Problems labeled  integrate material from earlier chapters.

Exercises

Section 37.2 The Emission and Absorption of Light

1. | What are the wavelengths of spectral lines in the Balmer  
series with n = 3, 4, and 5?

2. | Figure  37.7 identified the wavelengths of four lines in the 
Balmer series of hydrogen.
a. Determine the Balmer formula n and m values for these 

wavelengths.
b. Predict the wavelength of the fifth line in the spectrum.

3. | Two of the wavelengths emitted by a hydrogen atom are  
656.4 nm and 121 nm.
a. What are the m and n values for each of these wavelengths?
b. For each of these wavelengths, is the light infrared, visible, 

or ultraviolet?

4. || The wavelengths in the hydrogen spectrum with m = 1 form 
a series of spectral lines called the Lyman series. Calculate the 
wavelengths of the first two members of the Lyman series.

5. | What temperature, in °C, is a blackbody whose emission spec-
trum peaks at (a) 300 nm and (b) 3.00 mm?

6. || A 2.0-cm-diameter metal sphere is glowing red, but a spectrum  
shows that its emission spectrum peaks at an infrared wave-
length of 2.0 mm. How much power does the sphere radiate? 
Assume e = 1.

7. || A ceramic cube 3.0 cm on each side radiates heat at 630 W. 
At what wavelength, in mm, does its emission spectrum peak? 
Assume e = 1.

Section 37.3 Cathode Rays and X Rays

Section 37.4 The Discovery of the Electron

8. | The current in a Crookes tube is 5 nA. How many electrons 
strike the face of the glass tube each second?

FIGURE Q37.6
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17. || Express in eV (or keV or MeV if more appropriate):
a. The kinetic energy of a Li++ ion that has accelerated from rest 

through a potential difference of 5000 V.
b. The potential energy of two protons 10 fm apart.
c. The kinetic energy, just before impact, of a 200 g ball dropped 

from a height of 1.0 m.
18. | A parallel-plate capacitor with a 1.0 mm plate separation is 

charged to 75 V. With what kinetic energy, in eV, must a proton 
be launched from the negative plate if it is just barely able to 
reach the positive plate?

19. || How many electrons, protons, and neutrons are contained in 
the following atoms or ions: (a) 10B, (b) 13N+, and (c) 17O+++?

20. || Identify the isotope that is 11 times as heavy as 12C and has 18 
times as many protons as 6Li. Give your answer in the form AS, 
where S is the symbol for the element. See Appendix C: Atomic 
and Nuclear Data.

21. | Write the symbol for an atom or ion with:
a. one electron, one proton, and two neutrons.
b. seven electrons, eight protons, and ten neutrons.

22. | Write the symbol for an atom or ion with:
a. five electrons, five protons, and six neutrons.
b. five electrons, six protons, and eight neutrons.

23. | Consider the gold isotope 197Au.
a. How many electrons, protons, and neutrons are in a neutral 

197Au atom?
b. The gold nucleus has a diameter of 14.0 fm. What is the  

density of matter in a gold nucleus?
c. The density of lead is 11,400 kg/m3. How many times the 

density of lead is your answer to part b?
24. | Consider the lead isotope 207Pb.

a. How many electrons, protons, and neutrons are in a neutral 
207Pb atom?

b. The lead nucleus has a diameter of 14.2 fm. What is the 
electric field strength at the surface of a lead nucleus?

25. || a. A 238U nucleus has a radius of 7.4 fm. What is the density, 
in kg/m3, of the nucleus?

b. A neutron star consists almost entirely of neutrons, created 
when electrons and protons are squeezed together under 
immense gravitational pressure, and it has the density of 
an atomic nucleus. What is the radius, in km, of a neutron  
star with the mass of the sun?

Problems
26. || What is the total energy, in MeV, of

a.  A proton traveling at 99% of the speed of light?
b. An electron traveling at 99% of the speed of light?
Hint: This problem uses relativity.

27. || What is the velocity, as a fraction of c, of
a. A proton with 500 GeV total energy?
b. An electron with 2.0 GeV total energy?
Hint: This problem uses relativity.

28. ||| The Large Hadron Collider accelerates two beams of protons, 
which travel around the collider in opposite directions, to a total 
energy of 6.5 TeV per proton. 11 TeV = 1 teraelectron volt =  
1012 eV.2 The beams cross at several points, and a few protons un-
dergo head-on collisions. Such collisions usually produce many sub-
atomic particles, but in principle the colliding protons could produce 
a single subatomic particle at rest. (It would be unstable and would 
almost instantly decay into other subatomic particles.) What would 
be the mass, as a multiple of the proton’s mass, of such a particle?
Hint: This problem uses relativity.

9. | Electrons pass through the parallel electrodes shown in 
FIGURE EX37.9 with a speed of 5.0 * 106 m/s. What magnetic 
field strength and direction will allow the electrons to pass 
through without being deflected? Assume that the magnetic field 
is confined to the region between the electrodes.

200 V

4.0 cm

8.0 mm

FIGURE EX37.9

10. || An electron in a cathode-ray beam passes between 2.5-cm-
long parallel-plate electrodes that are 5.0 mm apart. A 2.0 mT, 
2.5-cm-wide magnetic field is perpendicular to the electric field 
between the plates. The electron passes through the electrodes 
without being deflected if the potential difference between the 
plates is 600 V.
a. What is the electron’s speed?
b. If the potential difference between the plates is set to zero, 

what is the electron’s radius of curvature in the magnetic field?

Section 37.5 The Fundamental Unit of Charge

11. || A 0.80@mm@diameter oil droplet is observed between two  
parallel electrodes spaced 11 mm apart. The droplet hangs  
motionless if the upper electrode is 20 V more positive than the 
lower electrode. The density of the oil is 885 kg/m3.
a. What is the droplet’s mass?
b. What is the droplet’s charge?
c. Does the droplet have a surplus or a deficit of electrons? How 

many?
12. || An oil droplet with 10 excess electrons is observed between 

two parallel electrodes spaced 10 mm apart. The droplet hangs 
motionless if the upper electrode is 20 V more positive than the 
lower electrode. The density of the oil is 860 kg/m3. What is the 
radius of the droplet?

13. || Suppose that in a hypothetical oil-drop experiment you  
measure the following values for the charges on the drops: 3.99 *
10-19 C, 6.65 * 10-19 C, 2.66 * 10-19 C, 10.64 *  10-19 C, and 
9.31 * 10-19 C. What is the largest value of the fundamental unit 
of charge that is consistent with your measurements?

 Section 37.6 The Discovery of the Nucleus

Section 37.7 Into the Nucleus

14. | Determine:
a. The speed of a 7.0 MeV neutron.
b. The speed of a 15 MeV helium atom.
c. The specific type of particle that has 1.14 keV of kinetic  

energy when moving with a speed of 2.0 * 107 m/s.
15. | Determine:

a. The speed of a 300 eV electron.
b. The speed of a 3.5 MeV H + ion.
c. The specific type of particle that has 2.09 MeV of kinetic  

energy when moving with a speed of 1.0 * 107 m/s.
16. | Express in eV (or keV or MeV if more appropriate):

a. The kinetic energy of an electron moving with a speed of 
5.0 * 106 m/s.

b. The potential energy of an electron and a proton 0.10 nm apart.
c. The kinetic energy of a proton that has accelerated from rest 

through a potential difference of 5000 V.
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38. || A hydrogen atom 1H with 200 eV of kinetic energy has a 
head-on, perfectly elastic collision with a 12C atom at rest. 
Afterward, what is the kinetic energy, in eV, of each atom?

39. || The diameter of an atom is 1.2 * 10-10 m and the diameter of 
its nucleus is 1.0 * 10-14 m. What percent of the atom’s volume 
is occupied by mass and what percent is empty space?

40. ||| The diameter of an aluminum atom of mass 27 u is approxi-
mately 1.2 * 10-10 m. The diameter of the nucleus of an alumi-
num atom is approximately 8 * 10-15 m. The density of solid 
aluminum is 2700 kg/m3.
a. What is the average density of an aluminum atom?
b. Your answer to part a was larger than the density of solid 

aluminum. This suggests that the atoms in solid aluminum 
have spaces between them rather than being tightly packed 
together. What is the average volume per atom in solid 
aluminum? If this volume is a sphere, what is the radius?
Hint: The volume per atom is not the same as the volume of 
an atom.

c. What is the density of the aluminum nucleus? By what factor is 
the nuclear density larger than the density of solid aluminum?

41. || A 222Rn atom (radon) in a 0.75 T magnetic field undergoes 
radioactive decay, emitting an alpha particle in a direction per-
pendicular to B

u
. The alpha particle begins cyclotron motion with 

a radius of 45 cm. With what energy, in MeV, was the alpha par-
ticle emitted?

42. || In a head-on collision, the closest approach of a 6.24 MeV 
alpha particle to the center of a nucleus is 6.00 fm. The nucleus is 
in an atom of what element? Assume the nucleus remains at rest.

43. || Through what potential difference would you need to acceler-
ate an alpha particle, starting from rest, so that it will just reach 
the surface of a 15-fm-diameter 238U nucleus?

44. || The oxygen nucleus 16O has a radius of 3.0 fm.
a. With what speed must a proton be fired toward an oxygen nu-

cleus to have a turning point 1.0 fm from the surface? Assume 
the nucleus remains at rest.

b. What is the proton’s kinetic energy in MeV?
45. || To initiate a nuclear reaction, an experimental nuclear physi-

cist wants to shoot a proton into a 5.50-fm-diameter 12C nucleus. 
The proton must impact the nucleus with a kinetic energy of 
3.00 MeV. Assume the nucleus remains at rest.
a. With what speed must the proton be fired toward the target?
b. Through what potential difference must the proton be acceler-

ated from rest to acquire this speed?
46. || A classical atom that has an electron orbiting at frequency f 

would emit electromagnetic waves of frequency f because the elec-
tron’s orbit, seen edge-on, looks like an oscillating electric dipole.
a. At what radius, in nm, would the electron orbiting the proton 

in a hydrogen atom emit light with a wavelength of 600 nm?
b. What is the total mechanical energy of this atom?

Challenge Problems
47. ||| An alpha particle approaches a 197Au nucleus with a speed of 

1.50 * 107 m/s. As FIGURE CP37.47 shows, the alpha particle is 
scattered at a 49° angle at the slower speed of 1.49 * 107 m/s. In 
what direction does the nucleus recoil, and with what speed?

29. || The Large Hadron Collider accelerates protons to a total energy 
of 6.5 TeV per proton. 11 TeV = 1 teraelectron volt = 1012 eV.2 
What is the speed of a proton that has this energy? Give your answer 
as a fraction of c, using as many significant figures as needed.
Hint: This problem uses relativity.

30. | You learned in Chapter 36 that mass has an equivalent amount 
of energy. What are the energy equivalents in MeV of the rest 
masses of an electron and a proton?

31. || The factor g appears in many relativistic expressions. A value 
g = 1.01 implies that relativity changes the Newtonian values by 
approximately 1% and that relativistic effects can no longer be 
ignored. At what kinetic energy, in MeV, is g = 1.01 for (a) an 
electron, (b) a proton, and (c) an alpha particle?

32. | The fission process n + 235U S 236U S 144Ba + 89Kr + 3n 
converts 0.185 u of mass into the kinetic energy of the fission 
products. What is the total kinetic energy in MeV?

33. || An electron in a cathode-ray beam passes between 2.5-cm-
long parallel-plate electrodes that are 5.0 mm apart. A 1.0 mT, 
2.5-cm-wide magnetic field is perpendicular to the electric field 
between the plates. If the potential difference between the plates 
is 150 V, the electron passes through the electrodes without be-
ing deflected. If the potential difference across the plates is set 
to zero, through what angle is the electron deflected as it passes 
through the magnetic field?

34. | The two 5.0-cm-long parallel electrodes in FIGURE P37.34 are 
spaced 1.0 cm apart. A proton enters the plates from one end, 
an equal distance from both electrodes. A potential difference 
∆V = 500 V across the electrodes deflects the proton so that 
it strikes the outer end of the lower electrode. What magnetic 
field strength and direction will allow the proton to pass through 
undeflected while the 500 V potential difference is applied? As-
sume that both the electric and magnetic fields are confined to 
the space between the electrodes.

5.0 cm

Trajectory at ∆V = 500 V

1.0 cm

FIGURE P37.34

a 197Au
nucleus

49°

FIGURE CP37.47

35. || An unknown charged particle passes without deflection 
through crossed electric and magnetic fields of strengths 
187,500 V/m and 0.1250 T, respectively. The particle passes out 
of the electric field, but the magnetic field continues, and the 
particle makes a semicircle of diameter 25.05 cm. What is the 
particle’s charge-to-mass ratio? Can you identify the particle?

36. || In one of Thomson’s experiments he placed a thin metal foil 
in the electron beam and measured its temperature rise. Consider 
a cathode-ray tube in which electrons are accelerated through 
a 2000 V potential difference, then strike a 10 mg copper foil. 
What is the electron-beam current if the foil temperature rises 
6.0°C in 10 s? Assume no loss of energy by radiation or other 
means. The specific heat of copper is 385 J/kg K.

37. || A neutral lithium atom has three electrons. As you will dis-
cover in Chapter 41, two of these electrons form an “inner core,” 
but the third—the valence electron—orbits at much larger radius. 
From the valence electron’s perspective, it is orbiting a spherical 
ball of charge having net charge +1e (i.e., the three protons in the 
nucleus and the two inner-core electrons). The energy required 
to ionize a lithium atom is 5.14 eV. According to Rutherford’s 
nuclear model of the atom, what are the orbital radius and speed  
of the valence electron?
Hint: Consider the energy needed to remove the electron and the 
force needed to give the electron a circular orbit.
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48. ||| Physicists first attempted to understand the hydrogen atom by 
applying the laws of classical physics. Consider an electron of 
mass m and charge -e in a circular orbit of radius r around a 
proton of charge +e.
a. Use Newtonian physics to show that the total energy of the 

atom is E = -e2/8pP0r.
b. Show that the potential energy is -2 times the electron’s 

kinetic energy. This result is called the virial theorem.
c.  The minimum energy needed to ionize a hydrogen atom (i.e., 

to remove the electron) is found experimentally to be 13.6 eV. 
From this information, what are the electron’s speed and the 
radius of its orbit?

49. ||| Consider an oil droplet of mass m and charge q. We want to 
determine the charge on the droplet in a Millikan-type experi-
ment. We will do this in several steps. Assume, for simplicity, 
that the charge is positive and that the electric field between the 
plates points upward.
a. An electric field is established by applying a potential dif-

ference to the plates. It is found that a field of strength E0 
will cause the droplet to be suspended motionless. Write an 
expression for the droplet’s charge in terms of the suspending 
field E0 and the droplet’s weight mg.

b. The field E0 is easily determined by knowing the plate spac-
ing and measuring the potential difference applied to them. 
The larger problem is to determine the mass of a microscopic 
droplet. Consider a mass m falling through a viscous medium 
in which there is a retarding or drag force. For very small par-
ticles, the retarding force is given by Fdrag = -bv where b is a 

constant and v the droplet’s velocity. The sign recognizes that 
the drag force vector points upward when the droplet is fall-
ing (negative v). A falling droplet quickly reaches a constant 
speed, called the terminal speed. Write an expression for the 
terminal speed vterm in terms of m, g, and b.

c. A spherical object of radius r moving slowly through the air 
is known to experience a retarding force Fdrag=  -6phr  v 
where h is the viscosity of the air. Use this and your answer 
to part b to show that a spherical droplet of density r falling 
with a terminal velocity vterm has a radius

r = B 9hvterm

2rg

d. Oil has a density 860 kg/m3. An oil droplet is suspended 
between two plates 1.0 cm apart by adjusting the potential dif-
ference between them to 1177 V. When the voltage is removed, 
the droplet falls and quickly reaches constant speed. It is timed 
with a stopwatch, and falls 3.00 mm in 7.33 s. The viscosity of 
air is 1.83 * 10-5 Pa s. What is the droplet’s charge?

e. How many units of the fundamental electric charge does this 
droplet possess?

50. ||| The polonium isotope 211Po is radioactive and undergoes 
alpha decay. In the decay process, a 211Po nucleus at rest explodes 
into an alpha particle (a 4He nucleus) and a 207Pb lead nucleus. 
The lead nucleus is found to have 0.14 MeV of kinetic energy. 
The energy released in a nuclear decay is the total kinetic energy 
of all the decay products. How much energy is released, in MeV,  
in a 211Po decay?
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IN THIS CHAPTER, you will learn about the quantization of energy for light and matter.

Quantization

 What is quantization?
Quantization is the process of changing a continuous variable into 
a variable that has only discrete values. Energy, in classical physics, 
can have any value. But things are different at the atomic level.

 ■ The energy of a light wave is divided into discrete “chunks,” or 
quanta, called photons.

 ■ The electrons of an atom can exist only in certain states with 
discrete energies. These are the quantum states of the atom.

What are photons?
The photon model of light says that light 
consists of particle-like units called  
photons.

 ■ The energy of a photon of frequency f  
is quantized: Ephoton = hf, where h is 
Planck’s constant.

 ■ At very low intensity, light is detected as 
discrete particle-like events.

❮❮ LOOKING BACK Section 33.2 Interference

What are the consequences of photons?
 ■ Photons explain the photoelectric  

effect, where short-wavelength light  
ejects electrons from a metal surface but  
long-wavelength light does not.

 ■ Photons also explain Compton scattering,  
where the wavelength of x rays is shifted  
when the x rays scatter from a target.

What are matter waves?
You’ll learn that particles of matter, such  
as electrons and neutrons, have wave- 
like properties and can even undergo  
interference. The de Broglie wavelength of a  
particle of mass m and speed v is l = h/mv,  
where, again, h is Planck’s constant.

What are the consequences of matter waves?
 ■ A wave-like particle confined to a box 

sets up standing waves as it reflects back 
and forth. You’ll see that this leads to 
quantized energy levels.

 ■ The quantum theory of matter, beginning  
with Bohr and continuing with quantum  
mechanics (see Chapter 40) is based on  
matter’s wave-like properties.

What is the Bohr model of the atom?
The Bohr model adds quantum ideas to  
Rutherford’s solar-system atom.

 ■ Electrons can orbit with only certain  
discrete radii and energies.

 ■ Photons are emitted and absorbed when  
electrons jump between energy levels.

❮❮ LOOKING BACK Section 37.6 Rutherford’s  
model

38

Individual atoms are seen 
in this scanning tunneling 
microscope image of the 
surface of a silicon wafer.

Photon interference

Light

Photoelectrons

Electron interference

Particle in a box

E1

E2

E3

Emission

Absorption

Energy-level diagram
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1138 CHAPTER 38 Quantization

38.1 The Photoelectric Effect
In 1886, Heinrich Hertz, who was the first to demonstrate that electromagnetic waves 
can be artificially generated, noticed that a negatively charged electroscope could be 
discharged by shining ultraviolet light on it. Hertz’s observation caught the attention 
of J. J. Thomson, who inferred that the ultraviolet light was causing the electrode to 
emit electrons, thus restoring itself to electric neutrality. The emission of electrons 
from a substance due to light striking its surface came to be called the photoelectric 
effect. The emitted electrons are often called photoelectrons to indicate their origin, 
but they are identical in every respect to all other electrons.

This discovery might seem to be a minor footnote in the history of science, but it 
soon became a, or maybe the, pivotal event that opened the door to new ideas.

Characteristics of the Photoelectric Effect
It was not the discovery itself that dealt the fatal blow to classical physics, but the spe-
cific characteristics of the photoelectric effect found around 1900 by one of Hertz’s 
students, Phillip Lenard. Lenard built a glass tube, shown in FIGURE 38.1, with two  
facing electrodes and a window. After removing the air from the tube, he allowed light  
to shine on the cathode.

Lenard found a counterclockwise current (clockwise flow of electrons) through the 
ammeter whenever ultraviolet light was shining on the cathode. There are no junctions  
in this circuit, so the current must be the same all the way around the loop. The current 
in the space between the cathode and the anode consists of electrons moving freely 
through the evacuated space between the electrodes (i.e., not inside a wire) at the  
same rate (same number of electrons per second) as the current in the wire. There is 
no current if the electrodes are in the dark, so electrons don’t spontaneously leap off 
the cathode. Instead, the light causes electrons to be ejected from the cathode at a 
steady rate.

Lenard established an adjustable potential difference ∆V  between the two elec-
trodes. He then studied how the current I varied as the potential difference and the 
light’s frequency and intensity were changed. Lenard made the following observations:

1. The current I is directly proportional to the light intensity. If the light intensity is 
doubled, the current also doubles.

2. The current appears without delay when the light is applied. To Lenard, this 
meant within the ≈0.1 s with which his equipment could respond. Later exper-
iments showed that the current begins in less than 1 ns.

3. Photoelectrons are emitted only if the light frequency f = c /l exceeds a thresh-
old frequency f0. This is shown in the graph of FIGURE 38.2. That is, the pho-
toelectron emission is observed for higher-frequency electromagnetic waves 
(shorter wavelengths) but not for lower-frequency waves (longer wavelengths).

4. The value of the threshold frequency f0 depends on the type of metal from 
which the cathode is made.

5. If the potential difference ∆V  is more than about 1 V positive (anode positive 
with respect to the cathode), the current does not change as ∆V  is increased. If 
∆V  is made negative (anode negative with respect to the cathode), by reversing 
the battery, the current decreases until, at some voltage ∆V = -Vstop the current 
reaches zero. The value of Vstop is called the stopping potential. This behavior  
is shown in FIGURE 38.3.

6. The value of Vstop is the same for both weak light and intense light. A more in-
tense light causes a larger current, as Figure 38.3 shows, but in both cases the 
current ceases when ∆V = -Vstop.

   NOTE    We’re defining Vstop to be a positive number. The potential difference that 
stops the electrons is ∆V = -Vstop, with an explicit minus sign.

Light

Cathode Anode

∆V I

Ammeter

A

The potential 
difference can 
be changed or 
reversed.

The current can be measured
while the potential difference, 
the light frequency, and the
light intensity are varied.

The photoelectrons 
form a current 
between the cathode 
and the anode.

Ultraviolet light causes the metal 
cathode to emit electrons.

FIGURE 38.1 Lenard’s experimental device 
to study the photoelectric effect.

f

I

0 f0

No matter how intense the light, 
there is no current if f 6 f0.

Threshold frequency

No matter how weak 
the light, there is a 
current if f 7 f0.

FIGURE 38.2 The photoelectric current as 
a function of the light frequency f for light 
of constant intensity.

∆V

I

0-Vstop

Intense light

Weaker light

No current flows
if ∆V 6 -Vstop.

The current becomes inde-
pendent of ∆V for ∆V 7 0.

A more intense light
causes a larger current.

FIGURE 38.3 The photoelectric current as 
a function of the battery potential for light 
with frequency f 7 f0.
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38.1 The Photoelectric Effect 1139

 Classical Interpretation of the Photoelectric Effect
The mere existence of the photoelectric effect is not, as is sometimes assumed, a  
difficulty for classical physics. You learned in Chapter 22 that electrons are the charge 
carriers in a metal. The electrons move freely but are bound inside the metal and  
do not spontaneously spill out of an electrode at room temperature. But a piece of 
metal heated to a sufficiently high temperature does emit electrons in a process called 
thermal emission. The electron gun in an older television or computer display  
terminal starts with the thermal emission of electrons from a hot tungsten filament.

A useful analogy, shown in FIGURE 38.4, is the water in a swimming pool. Water 
molecules do not spontaneously leap out of the pool if the water is calm. To remove a 
water molecule, you must do work on it to lift it upward, against the force of gravity. 
A minimum energy is needed to extract a water molecule, namely the energy needed 
to lift a molecule that is right at the surface. Removing a water molecule that is deeper 
requires more than the minimum energy. People playing in the pool add energy to the 
water, causing waves. If sufficient energy is added, a few water molecules will gain 
enough energy to splash over the edge and leave the pool.

Similarly, a minimum energy is needed to free an electron from a metal. To extract 
an electron, you would need to exert a force on it and pull it (i.e., do work on it) until its 
speed is large enough to escape. The minimum energy E0 needed to free an electron  
is called the work function of the metal. Some electrons, like the deeper water  
molecules, may require more energy than E0 to escape, but all will require at least E0. 
Different metals have different work functions; TABLE 38.1 provides a short list. Notice 
that work functions are given in electron volts.

Heating a metal, like splashing in the pool, increases the thermal energy of the 
electrons. At a sufficiently high temperature, the kinetic energy of a small percentage 
of the electrons may exceed the work function. These electrons can “make it out of the 
pool” and leave the metal. In practice, there are only a few elements, such as tungsten, 
for which thermal emission can become significant before the metal melts!

Suppose we could raise the temperature of only the electrons, not the crystal  
lattice. One possible way to do this is to shine a light wave on the surface. Because 
electromagnetic waves are absorbed by the conduction electrons, not by the positive  
ions, the light wave heats only the electrons. Eventually the electrons’ energy is  
transferred to the crystal lattice, via collisions, but if the light is sufficiently intense, 
the electron temperature may be significantly higher than the temperature of the 
metal. In 1900, it was plausible to think that an intense light source might be able to 
cause the thermal emission of electrons without melting the metal.

The Stopping Potential
Photoelectrons leave the cathode with kinetic energy. An electron with energy Eelec 
inside the metal loses energy ∆E as it escapes, so it emerges as a photoelectron with 
K = Eelec - ∆E. The work function energy E0 is the minimum energy needed to  
remove an electron, so the maximum possible kinetic energy of a photoelectron is

  Kmax = Eelec - E0 (38.1)

Some photoelectrons reach the anode, creating a measurable current, but many do not. 
However, as FIGURE 38.5 shows:

 ■ A positive anode attracts the photoelectrons. Once all electrons reach the anode, 
which happens for ∆V  greater than about 1 V, a further increase in ∆V  does not  
cause any further increase in the current I. That is why the graph lines become  
horizontal on the right side of Figure 38.3.

 ■ A negative anode repels the electrons. However, photoelectrons leaving the cath-
ode with sufficient kinetic energy can still reach the anode. The current steadily 
decreases as the anode voltage becomes increasingly negative until, at the stopping 
potential, all electrons are turned back and the current ceases. This was the behavior  
observed on the left side of Figure 38.3.

Water

h

The minimum energy to remove a 
drop of water from the pool is mgh.

Removing this drop
takes more than the
minimum energy.

Adding energy to 
the water and making 
waves can cause a few 
of the most energetic 
drops to escape.

FIGURE 38.4 A swimming pool analogy of 
electrons in a metal.

TABLE 38.1 The work function 
for some of the elements

Element E0 (eV)

Potassium 2.30

Sodium 2.36

Aluminum 4.28

Tungsten 4.55

Copper 4.65

Iron 4.70

Gold 5.10

Cathode Anode

UV

∆V = 0: The photoelectrons leave the cathode
in all directions. Only a few reach the anode.

∆V 7 0: A positive anode attracts the
photoelectrons to the anode.

∆V 6 0: A negative anode repels the electrons.
Only the very fastest make it to the anode.

FIGURE 38.5 The photoelectron current 
depends on the anode potential.
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1140 CHAPTER 38 Quantization

Let the cathode be the point of zero potential energy, as shown in FIGURE 38.6. An 
electron emitted from the cathode with kinetic energy Ki has initial total energy

Ei = Ki + Ui = Ki + 0 = Ki

When the electron reaches the anode, which is at potential ∆V  relative to the cathode, 
it has potential energy U = q ∆V = -e ∆V  and final total energy

Ef = Kf + Uf = Kf - e ∆V

From conservation of energy, Ef = Ei, the electron’s final kinetic energy is

 Kf = Ki + e ∆V  (38.2)

The electron speeds up 1Kf 7 Ki2 if ∆V  is positive. The electron slows down if ∆V  is 
negative, but it still reaches the anode 1Kf 7 02 if Ki is large enough.

An electron with initial kinetic energy Ki will stop just as it reaches the anode if the 
potential difference is ∆V = -Ki  

/e. The potential difference that turns back the very 
fastest electrons, those with K = Kmax, and thus stops the current is

∆Vstop fastest electrons = -  
Kmax

e

By definition, the potential difference that causes the electron current to cease is 
∆V = -Vstop, where Vstop is the stopping potential. The stopping potential is

 Vstop =
Kmax

e
 (38.3)

Thus the stopping potential tells us the maximum kinetic energy of the photoelectrons.

A photoelectric-effect experiment is performed with an alu-
minum cathode. An electron inside the cathode has a speed of 
1.5 * 106 m/s. If the potential difference between the anode and 
cathode is -2.00 V, what is the highest possible speed with which 
this electron could reach the anode?

MODEL Energy is conserved.

SOLVE If the electron escapes with the maximum possible kinetic 
energy, its kinetic energy at the anode will be given by Equation 
38.2 with ∆V = -2.00 V. The electron’s initial kinetic energy is

  Eelec = 1
2 mv2 = 1

2 19.11 * 10-31 kg211.5 * 106 m/s22

  = 1.025 * 10-18 J = 6.41 eV

Its maximum possible kinetic energy as it leaves the cathode is

Ki = Kmax = Eelec - E0 = 2.13 eV

where E0 = 4.28 eV is the work function of aluminum. Thus the 
kinetic energy at the anode, given by Equation 38.2, is

Kf = Ki + e ∆V = 2.13 eV - 1e212.00 V2 = 0.13 eV

Notice that the electron loses 2.00 eV of kinetic energy as it moves 
through the potential difference of -2.00 V, so we can compute 
the final kinetic energy in eV without having to convert to joules. 
However, we do need joules to find the final speed:

 Kf = 1
2 mvf 

2 = 0.13 eV = 2.1 * 10-20 J

 vf = B 2Kf

m
= 2.1 * 105 m/s

EXAMPLE 38.1 ■ The classical photoelectric effect

Limits of the Classical Interpretation
A classical analysis might explain observations 1 and 5 above. But nothing in this 
analysis suggests that there should be a threshold frequency, as Lenard found. If a 
weak intensity at a frequency just slightly above f0 can generate a current, why can’t a 
strong intensity at a frequency just slightly below f0 do so?

What about Lenard’s observation that the current starts instantly? If the  
photoelectrons are due to thermal emission, it should take some time for the light to 
raise the electron temperature sufficiently high for some to escape. The experimental 

Cathode Anode

Ki

Ui = 0

Before: Kf

Uf = q∆V = -e∆V

After:

∆V
An electron’s kinetic and potential energy
change as it moves from cathode to anode.

FIGURE 38.6 Energy is conserved.
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38.2 Einstein’s Explanation 1141

evidence was in sharp disagreement. And more intense light would be expected to 
heat the electrons to a higher temperature. Doing so should increase the maximum 
kinetic energy of the photoelectrons and thus should increase the stopping potential 
Vstop. But the stopping potential is the same for strong light as it is for weak light.

Although the mere presence of photoelectrons did not seem surprising, classical 
physics was unable to explain the observed behavior of the photoelectrons. The thresh-
old frequency and the instant current seemed particularly anomalous.

38.2 Einstein’s Explanation
In 1905, Einstein published his initial paper on the theory of relativity, the subject for 
which he is most well known to the general public. He also published another paper, 
on the nature of light. In it Einstein offered an exceedingly simple but amazingly bold 
idea to explain Lenard’s photoelectric-effect data.

A few years earlier, in 1900, the German physicist Max Planck had been trying 
to understand the details of the rainbow-like blackbody spectrum of light emitted 
by a glowing hot object. As we noted in the preceding chapter, this problem didn’t 
yield to a classical physics analysis, but Planck found that he could calculate the 
spectrum perfectly if he made an unusual assumption. The atoms in a solid vibrate 
back and forth around their equilibrium positions with frequency f. You learned  
in Chapter  15 that the energy of a simple harmonic oscillator depends on its  
amplitude and can have any possible value. But to predict the spectrum correctly, 
Planck had to assume that the oscillating atoms are not free to have any possible 
energy. Instead, the energy of an atom vibrating with frequency f has to be one of 
the specific energies E = 0, hf, 2hf, 3hf, c  , where h is a constant. That is, the 
vibration energies are quantized.

Planck was able to determine the value of the constant h by comparing his calcula-
tions of the spectrum to experimental measurements. The constant that he introduced 
into physics is now called Planck’s constant. Its contemporary value is

h = 6.63 * 10-34 J s = 4.14 * 10-15 eV s

The first value, with SI units, is the proper one for most calculations, but you will find 
the second to be useful when energies are expressed in eV.

Einstein was the first to take Planck’s quantization idea seriously. He went even 
further and suggested that electromagnetic radiation itself is quantized! That is, 
light is not really a continuous wave but, instead, arrives in small packets or bundles 
of energy. Einstein called each packet of energy a light quantum, and he postulated 
that the energy of one light quantum is directly proportional to the frequency of the 
light. That is, each quantum of light has energy

 E = hf  (38.4)

where h is Planck’s constant and f is the frequency of the light.
The idea of light quanta is subtle, so let’s look at an analogy with raindrops. A 

downpour has a torrent of raindrops, but in a light shower the drops are few. The  
difference between “intense” rain and “weak” rain is the rate at which the drops  
arrive. An intense rain makes a continuous noise on the roof, so you are not aware  
of the individual drops, but the individual drops become apparent during a light rain.

Similarly, intense light has so many quanta arriving per second that the light  
seems continuous, but very weak light consists of only a few quanta per second.  
And just as raindrops come in different sizes, with larger-mass drops having larger  
kinetic energy, higher-frequency light quanta have a larger amount of energy. 
Although this analogy is not perfect, it does provide a useful mental picture of light 
quanta arriving at a surface.

A young Einstein.
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Einstein’s Postulates
Einstein framed three postulates about light quanta and their interaction with matter:

1. Light of frequency f consists of discrete quanta, each of energy E = hf. Each 
photon travels at the speed of light c.

2. Light quanta are emitted or absorbed on an all-or-nothing basis. A substance can 
emit 1 or 2 or 3 quanta, but not 1.5. Similarly, an electron in a metal must absorb 
an entire quantum of light at once; it cannot absorb half a quantum.

3. A light quantum, when absorbed by a metal, delivers its entire energy to one 
electron.

   NOTE    These three postulates—that light comes in chunks, that the chunks cannot 
be divided, and that the energy of one chunk is delivered to one electron—are 
crucial for understanding the new ideas that will lead to quantum physics. They 
are completely at odds with the concepts of classical physics, where energy can be 
continuously divided and shared, so they deserve careful thought.

Let’s look at how Einstein’s postulates apply to the photoelectric effect. If Einstein 
is correct, the light of frequency f shining on the metal is a flow of light quanta, each 
of energy h f. Each quantum is absorbed by one electron, giving that electron an energy  
Eelec = h f. This leads us to several interesting conclusions:

1. An electron that has just absorbed a quantum of light energy has Eelec = h f. (The 
electron’s thermal energy at room temperature is so much less than h f  that we 
can neglect it.) FIGURE 38.7 shows that this electron can escape from the metal, 
becoming a photoelectron, if

 Eelec = h f =
hc
l

Ú E0 (38.5)

where, you will recall, the work function E0 is the minimum energy needed to 
free an electron from the metal. As a result, there is a threshold frequency

 f0 =
E0

h
 (38.6)

for the ejection of photoelectrons. If f is less than f0, even by just a small 
amount, none of the electrons will have sufficient energy to escape no matter 
how intense the light. But even very weak light with f Ú f0 will give a few 
electrons sufficient energy to escape because each light quantum delivers all 
of its energy to one electron. This threshold behavior is exactly what Lenard 
observed.

The retina of your eye has three types of color photoreceptors, 
called cones, with maximum sensitivities at 437 nm, 533 nm, and  
575 nm. For each, what is the energy of one quantum of light  
having that wavelength?

MODEL The energy of light is quantized.

SOLVE Light with wavelength l has frequency f = c/l. The energy 
of one quantum of light at this wavelength is

E = hf =
hc
l

The calculation requires l to be in m, but it is useful to have 

Planck’s constant in eV s. At 437 nm, we have

E =
14.14 * 10-15 eV s213.00 * 108 m/s2

437 * 10-9 m
= 2.84 eV

Carrying out the same calculation for the other two wavelengths 
gives E = 2.33 eV at 533 nm and E = 2.16 eV at 575 nm.

REVIEW The electron volt turns out to be more convenient than  
the joule for describing the energy of light quanta. Because these 
wavelengths span a good fraction of the visible spectrum of  
400–700 nm, you can see that visible light corresponds to light 
quanta having energy of roughly 2–3 eV.

EXAMPLE 38.2 ■ Light quanta

Work function E0

Before:

After:

One quantum of light with
energy E = hf Ú E0

A single electron has absorbed
the entire energy of the light 
quantum and has escaped.

FIGURE 38.7 The creation of a 
photoelectron.
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38.2 Einstein’s Explanation 1143

   NOTE    The threshold frequency is directly proportional to the work function. Metals 
with large work functions, such as iron, copper, and gold, exhibit the photoelectric 
effect only when illuminated by high-frequency ultraviolet light. Photoemission 
occurs with lower-frequency visible light for metals with smaller values of E0, such 
as sodium and potassium.

2. A more intense light means more quanta of the same energy, not more energetic 
quanta. These quanta eject a larger number of photoelectrons and cause a larger 
current, exactly as observed.

3. There is a distribution of kinetic energies, because different photoelectrons  
require different amounts of energy to escape, but the maximum kinetic energy is

 Kmax = Eelec - E0 = h f - E0 (38.7)

As we noted in Equation 38.3, the stopping potential Vstop is directly proportional  
to Kmax. Einstein’s theory predicts that the stopping potential is related to the 
light frequency by

 Vstop =
Kmax

e
=

h f - E0

e
 (38.8)

The stopping potential does not depend on the intensity of the light. Both weak 
light and intense light will have the same stopping potential, which Lenard had 
observed but which could not previously be explained.

4. If each light quantum transfers its energy h f  to just one electron, that electron 
immediately has enough energy to escape. The current should begin instantly, 
with no delay, exactly as Lenard had observed.

Using the swimming pool analogy again, FIGURE 38.8 shows a pebble being thrown 
into the pool. The pebble increases the energy of the water, but the increase is shared 
among all the molecules in the pool. The increase in the water’s energy is barely 
enough to make ripples, not nearly enough to splash water out of the pool. But suppose 
all the pebble’s energy could go to one drop of water that didn’t have to share it. That 
one drop of water could easily have enough energy to leap out of the pool. Einstein’s 
hypothesis that a light quantum transfers all its energy to one electron is equivalent to  
the pebble transferring all its energy to one drop of water.

A Prediction
Not only do Einstein’s hypotheses explain all of Lenard’s observations, they also make 
a new prediction. According to Equation 38.8, the stopping potential should be a lin-
early increasing function of the light’s frequency f. We can rewrite Equation 38.8 in  
terms of the threshold frequency f0 = E0/h as

 Vstop =
h
e

 1 f - f02 (38.9)

A graph of the stopping potential V
 stop versus the light frequency f should start from 

zero at f = f0, then rise linearly with a slope of h/e. In fact, the slope of the graph  
provides a way to measure Planck’s constant h.

Lenard had not measured the stopping potential for different frequencies, so 
Einstein offered this as an untested prediction of his postulates. Robert Millikan, 
known for his oil-drop experiment to measure e, took up the challenge. Some of 
Millikan’s data for a cesium cathode are shown in FIGURE 38.9. As you can see, Einstein’s  
prediction of a linear relationship between f and V

 stop was confirmed.
Millikan measured the slope of his graph and multiplied it by the value of e (which 

he had measured a few years earlier in the oil-drop experiment) to find h. His value 
agreed with the value that Planck had determined in 1900 from an entirely different 
experiment. Light quanta, whether physicists liked the idea or not, were real.

Water

Pebble

Classically, the energy of the pebble is
shared by all the water molecules. One
pebble causes only very small waves.

If the pebble could give all its energy to
one drop, that drop could easily splash
out of the pool.  

FIGURE 38.8 A pebble transfers energy to 
the water.

f (* 1014 Hz)

Vstop (V)

20

1

0
4 6 8 10 12

2

3

f0 = 4.39 * 1014 Hz

Slope = 4.12 * 10-15 V/Hz

FIGURE 38.9 A graph of Millikan’s data  
for the stopping potential as the light 
frequency is varied.
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38.3 Photons
Einstein was awarded the Nobel Prize in 1921 not for his theory of relativity, as many 
suppose, but for his explanation of the photoelectric effect. Although Planck had made 
the first suggestion, it was Einstein who showed convincingly that energy is quantized.  
Quanta of light energy were later given the name photons.

But just what are photons? To begin our explanation, let’s return to the experiment 
that showed most dramatically the wave nature of light—Young’s double-slit interfe r-
ence experiment. We will make a change, though: We will dramatically lower the light 
intensity by inserting filters between the light source and the slits. The fringes will be 
too dim to see by eye, so we will replace the viewing screen with a detector that can  
build up an image over time.

What would we predict for the outcome of this experiment? If light is a wave, there 
is no reason to think that the nature of the interference fringes will change. The detec-
tor should continue to show alternating light and dark bands.

FIGURE 38.10 shows the actual outcome at four different times. At early times, con-
trary to our prediction, the detector shows not dim interference fringes but discrete, 
bright dots. If we didn’t know that light is a wave, we would interpret the dots as 
evidence that light is a stream of some type of particle-like objects. They arrive one 
by one, seemingly randomly, and each is localized at a specific point on the detector. 
(Waves, you will recall, are not localized at a specific point in space.)

As the detector builds up the image for a longer period of time, we see that 
these dots are not entirely random. They are grouped into bands at exactly the 

What are the threshold frequencies and wavelengths for photo- 
emission from sodium and from aluminum?

SOLVE Table 38.1 gives the sodium work function as E0 =  2.36 eV. 
Aluminum has E0 = 4.28 eV. We can use Equation 38.6, with h in 
units of eV s, to calculate

f0 =
E0

h
= b 5.70 * 1014 Hz sodium

10.34 * 1014 Hz aluminum

These frequencies are converted to wavelengths with l = c/f, giving

l = b526 nm sodium
290 nm aluminum

REVIEW The photoelectric effect can be observed with sodium for 
l 6 526 nm. This includes blue and violet visible light but not red, 
orange, yellow, or green. Aluminum, with a larger work function, 
needs ultraviolet wavelengths l 6 290 nm.

EXAMPLE 38.3 ■ The photoelectric threshold frequency

What is the maximum photoelectron speed if sodium is illumi-
nated with light of 300 nm?

SOLVE The light frequency is f = c/l = 1.00 * 1015 Hz, so each 
light quantum has energy h f = 4.14 eV. The maximum kinetic  
energy of a photoelectron is

  Kmax = h f - E0 = 4.14 eV - 2.36 eV = 1.78 eV

  = 2.85 * 10-19 J

Because K = 1
2 mv2, where m is the electron’s mass, not the mass of 

the sodium atom, the maximum speed of a photoelectron leaving 
the cathode is

vmax = B 2Kmax

m
= 7.91 * 105 m/s

Note that we had to convert Kmax to SI units of J before cal-
culating a speed in m/s.

EXAMPLE 38.4 ■ Maximum photoelectron speed

STOP TO THINK 38.1 The work function of metal A is 3.0 eV. Metals B and C have 
work functions of 4.0 eV and 5.0 eV, respectively. Ultraviolet light shines on all three 
metals, creating photoelectrons. Rank in order, from largest to smallest, the stopping 
potentials for A, B, and C.
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38.3 Photons 1145

positions where we expected to see bright constructive-interference fringes. No 
dot ever appears at points of destructive interference. After a long time, the in-
dividual dots overlap and the image looks like the photographs of interference 
fringes in Chapter 33.

We’re detecting individual photons! Most light sources—even very dim sources—
emit such vast numbers of photons that you are aware of only their wave-like  
superposition, just as you notice only the roar of a heavy rain on your roof and not  
the individual raindrops. But at extremely low intensities the light begins to appear  
as a stream of individual photons, like the random patter of raindrops when it is 
barely sprinkling. Each dot on the detector in Figure 38.10 signifies a point where one  
particle-like photon delivered its energy and caused a measurable signal.

But photons are certainly not classical particles. Classical particles, such as 
Newton’s corpuscles of light, would travel in straight lines through the two slits of 
a double-slit experiment and make just two bright areas on the detector. Instead, as 
Figure 38.10 shows, the particle-like photons seem to be landing at places where a 
wave undergoes constructive interference, thus forming the bands of dots.

Today, it is quite feasible to do this experiment with a light intensity so low that 
only one photon at a time is passing through the double-slit apparatus. But if one 
photon at a time can build up a wave-like interference pattern, what is the photon 
 interfering with? The only possible answer is that the photon is interfering with itself.  
Nothing else is present. But if each photon interferes with itself, rather than with 
other photons, then each photon, despite the fact that it is a particle-like object, must 
somehow go through both slits! Photons seem to be both wave-like and particle-like 
at the same time.

This all seems pretty crazy, but it’s the way light actually behaves. Sometimes 
light exhibits particle-like behavior and sometimes it exhibits wave-like 
 behavior. The thing we call light is stranger and more complex than it first appeared.  
Furthermore, as we will see, this half-wave/half-particle behavior is not restricted 
to light.

The Photon Model of Light
The photon model of light is based on the idea that light comes in discrete “chunks” of 
energy. We say that the energy is quantized.

(a) Image after a very short time

(b) Image after a slightly longer time

(c) Continuing to build up the image

(d) Image after a very long time

FIGURE 38.10 A double-slit experiment 
with light of very low intensity.

MODEL 38.1

Photon model of light
For use when quantum effects are significant.

 ■ Light consists of discrete, massless units 
called photons. A photon travels in vacuum at 
the speed of light.

 ■ Each photon has energy

Ephoton = h f

where f is the frequency of the light and h is 
Planck’s constant.

 ■ The superposition of a sufficiently large number of photons has the character-
istics of a classical light wave.

 ■ Limitations: Use the photon model for light that is extremely weak or to ana-
lyze how light and matter interact at the atomic level. The classical wave and 
ray models are more appropriate for our everyday experience with light.

Exercises 16–18 

Oscillation of the
electromagnetic field

0

E

c

x
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1146 CHAPTER 38 Quantization

Photons are sometimes visualized as wave packets, as illustrated in the photon 
model box. This electromagnetic wave has a wavelength and a frequency, yet it is also 
discrete and fairly localized. But this cannot be exactly what a photon is because a 
wave packet would take a finite amount of time to be emitted or absorbed. This is 
contrary to much evidence that the entire photon is emitted or absorbed in a single 
instant; there is no point in time at which the photon is “half absorbed.” The wave 
packet idea, although useful, is still too classical to represent a photon.

In fact, there simply is no “true” mental representation of a photon. Analogies such 
as raindrops or wave packets can be useful, but none is perfectly accurate.

The Photon Rate
Light, in the raindrop analogy, consists of a stream of photons. For monochromatic 
light of frequency f, N photons have a total energy Elight = Nh f. We are usually more 
interested in the power of the light, or the rate (in joules per second, or watts) at which 
the light energy is delivered. The power is

 P =
dElight

dt
=

dN
dt

 h f = Rh f  (38.10)

where R = dN/dt is the rate at which photons arrive or, equivalently, the number of 
photons per second.

The 2.0 mW light beam of a red laser pointer (l = 650 nm) shines on a screen. How 
many photons strike the screen each second?

MODEL Use the photon model of light.

SOLVE The light-beam power, or energy delivered per second, is P = 2.0 mW =  
0.0020 J/s. The frequency of the light is f = c/l = 4.61 * 1014 Hz. The number of  
photons striking the screen per second, which is the rate of arrival of photons, is

R =
P
h  f

= 6.5 * 1015 photons per second

REVIEW That is a lot of photons per second. No wonder we are not aware of individual 
photons!

 EXAMPLE 38.5 ■ The photon rate in a laser beam

STOP TO THINK 38.2 The intensity of a beam of light is increased but the light’s  
frequency is unchanged. Which one (or perhaps more than one) of the following is true?

a. The photons travel faster. b. Each photon has more energy.
c. The photons are larger. d. There are more photons per second.

 ADVANCED TOPIC  Compton Scattering
If you shine a green laser beam on a mirror, it reflects as a green laser beam. 
Neither the wavelength nor the color of visible light is changed by reflection  
or by scattering. But in 1922, the American physicist Arthur Compton made 
the remarkable discovery that x rays scattered from a solid target have a longer  
wavelength than the incident x rays. It is as if a green laser beam were to reflect 
as a red laser beam.
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Compton was soon able to show that what we now call Compton scattering,  
the shifted wavelength of scattered x rays, is exactly what the photon model of light—
but not the wave model—predicts. His experiment was perhaps the most convincing 
demonstration of the reality of photons.

FIGURE 38.11a shows Compton’s experiment: A collimated beam of x rays of known 
wavelength li is incident on a target, and the wavelength ls is measured of x rays  
that are scattered at the scattering angle u. X rays, like visible light, interact with 
the electrons of the target atoms. If x rays are photons, rather than classical waves, 
then, Compton reasoned, scattering is really an elastic collision of a photon with an 
electron, not unlike the collision of two billiard balls.

Elastic collisions conserve both energy and momentum. We’ve seen that photons 
have energy, but what about momentum? You learned in Chapter 31 that light beams 
do carry momentum, and thus the photons that make up the light beam must have  
momentum. Specifically, we found that an object that absorbs electromagnetic wave 
energy ∆E gains momentum ∆p = ∆E/c. If the energy absorbed is that of one photon, 
h f, and if the photon vanishes, then momentum conservation dictates that the photon  
had momentum

 pphoton =
hf
c

=
h
l

 (38.11)

Compton’s recognition that photons have momentum was key to his analysis of the 
experiment.

FIGURE 38.11b is a before-and-after representation of a scattering event in which an 
x-ray photon is incident along the x-axis. Scattering sends the photon at angle u and 
the electron at angle f. (X-ray energies are much greater than the ionization energies 
of atoms, so the influence of the nucleus is small and the electron acts very much 
like a free electron.) We need to write equations for both momentum and energy 
conservation.

Momentum is a vector, and both its x- and y-components are conserved. This gives, 
respectively, the two equations

 

h
li

=
h
ls

 cos u + pe cos f

0 =
h
ls

 sin u - pe sin f
 (38.12)

where pe is the momentum of the scattered electron. The scattered electron is  
moving at very high speed, so we need to use the Chapter  36 relativistic equation 
for energy. Initially the electron has only rest energy, mc2, where m is the electron 
mass. The scattered electron’s energy, from Equation 36.45, is 11mc222 + 1pec2221/2. 
Consequently, the energy-conservation equation is

 
hc
li

+ mc2 =
hc
ls

+ 21mc222 + 1pec22 (38.13)

where we used f = c/l to write the photon energies in terms of wavelength rather than 
frequency.

Equations 38.12 and 38.13 are three simultaneous equations. After a lot of algebra, 
which we’ll skip, they lead to the quite simple result that x rays scattered at angle u 
have a wavelength shift

 ∆l = ls - li =
h

mc
 11 -  cos u2  (Compton scattering) (38.14)

This result is in perfect agreement with Compton’s measurements.

(a)

(b) Before:

After:

x
m

x

Detector
Scattered x rays ls

Incident x rays li

pi = h/li

ps = h/ls

pe

Target

u

u

f

FIGURE 38.11 Compton’s x-ray scattering 
experiment.
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1148 CHAPTER 38 Quantization

 38.4  Matter Waves and Energy 
Quantization

Prince Louis-Victor de Broglie was a French graduate student in 1924. It had been 
19 years since Einstein had blurred the distinction between a particle and a wave. 
As de Broglie thought about these issues, it seemed that nature should have some 
kind of symmetry. If light waves could have a particle-like nature, why shouldn’t 
material particles have some kind of wave-like nature? In other words, could  
matter waves exist?

With no experimental evidence to go on, de Broglie reasoned by analogy with 
Einstein’s equation E = h  f  for the photon and with some of the ideas of his theory of 
relativity. The details need not concern us, but they led de Broglie to postulate that if 
a material particle of momentum p = mv has a wave-like nature, then its wavelength 
must be given by

 l =
h
p

=
h

mv
 (38.15)

where h is Planck’s constant. This is called the de Broglie wavelength.
For example, an electron with 1.0 eV = 1.6 * 10-19 J of kinetic energy has a speed 

of 5.9 * 105 m/s. Although fast by macroscopic standards, this is a slow electron be-
cause it gains this speed by accelerating through a potential difference of a mere 1 V.  
At this speed, its de Broglie wavelength is found to be l = h/mv = 1.2 nm. This is  
a small wavelength, but comparable to the wavelengths of x rays and a factor of  
10 larger than the spacing of atoms in a crystal.

What does it mean for matter—an electron or a proton or a baseball—to have 
a wavelength? Would it obey the principle of superposition? Would it exhibit  
interference and diffraction? The classic test of “waviness” is Young’s double-slit 
experiment. FIGURE  38.12 shows the intensity pattern recorded after 50 keV electrons 
passed through two slits separated by 1.0 mm. The pattern is clearly a double-slit  
interference pattern, and the spacing of the fringes is exactly as predicted for a 
wavelength given by de Broglie’s formula. And because the electron beam was 
weak, with one electron at a time passing through the apparatus, it would appear 
that each electron—like photons—somehow went through both slits, then interfered  
with itself before striking the detector!

Surprisingly, electrons—also neutrons—exhibit all the behavior we associate 
with waves. But electrons and neutrons are subatomic particles. What about entire 

An x-ray scattering experiment uses 22.0 keV photons. By what 
percent is the wavelength increased for x rays scattered at 90°?

MODEL Use the photon model of light.

SOLVE The photon energy is Ephoton = hf, and the wavelength and 
frequency are related by f = c/l. Thus the incident wavelength is

li =
hc

Ephoton
= 0.0565 nm

where we converted 22.0 keV to joules before calculating. At 

u = 90°, where  cos u = 0, the scattered x-ray wavelength is

ls = li +
h

mc
= 0.0589 nm

The wavelength increase of 0.0024 nm is an increase of 4.2%.

REVIEW Notice that the wavelength increase of 0.0024 nm is inde-
pendent of the incident wavelength. Scattered visible light would 
have its wavelength increased by the same amount, but an increase 
of 0.0024 nm is completely unnoticed when wavelengths are sever-
al hundred nm. The increase is significant—and easily measured—
for short-wavelength x rays.

EXAMPLE 38.6 ■ X-ray scattering

FIGURE 38.12 A double-slit interference 
pattern created with electrons.
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atoms, aggregates of many fundamental particles? Amazing as it seems, research 
during the 1980s demonstrated that whole atoms, and even molecules, can produce 
interference patterns.

FIGURE  38.13 shows an atom interferometer. You learned in Chapter  33 that an 
interferometer, such as the Michelson interferometer, works by dividing a wave 
front into two waves, sending the two waves along separate paths, then recombining 
them. For light waves, wave division can be accomplished by sending light through 
the periodic slits in a diffraction grating. In an atom interferometer, the atom’s  
matter wave is divided by sending atoms through the periodic intensity of a standing  
light wave.

Laser

Atoms A

B

C

Beam splitter

Mirror

D Detector

Detector output

Standing light wave

The atom wave is divided at A by diffracting 
through the standing light wave.

Portions of the wave travel 
along different paths.

The waves are
recombined at D.

FIGURE 38.13 An atom interferometer.

You can see in the figure that a laser creates three parallel standing waves of light, 
each with nodes spaced a distance l/2 apart. The wavelength is chosen so that the light 
waves exert small forces on an atom in the laser beam. Because the intensity along a 
standing wave alternates between maximum at the antinodes and zero intensity at the 
nodes, an atom crossing the laser beam experiences a periodic force field. A particle- 
like atom would be deflected by this periodic force, but a wave is diffracted. After 
being diffracted by the first standing wave at A, an atom is, in some sense, traveling  
toward both point B and point C.

The second standing wave diffracts the atom waves again at points B and C,  
directing some of them toward D where, with a third diffraction, they are recombined 
after having traveled along different paths. The detector image shows interference 
fringes, exactly as would be expected for a wave but completely at odds with the  
expectation for particles.

The atom interferometer is fascinating because it completely inverts everything 
we previously learned about interference and diffraction. The scientists who studied 
the wave nature of light during the 19th century aimed light (a wave) at a diffraction 
grating (a periodic structure of matter) and found that it diffracted. Now we aim atoms 
(matter) at a standing wave (a periodic structure of light) and find that the atoms  
diffract. The roles of light and matter have been reversed!

Quantization of Energy
The fact that matter has wave-like properties is not merely a laboratory curiosity; the 
implications are profound. Foremost among them is that the energy of matter, like that 
of light, is quantized.

We’ll illustrate quantization with a simple system that physicists call “a particle 
in a box.” FIGURE 38.14a on the next page shows a particle of mass m moving in one 
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dimension as it bounces back and forth with speed v between the ends of a box of 
length L. The width of the box is irrelevant, so we’ll call this a one-dimensional box. 
We’ll assume that the collisions at the ends are perfectly elastic, so the particle’s  
energy—entirely kinetic—never changes. According to classical physics, there are no 
restrictions on the particle’s speed or energy.

But if matter has wave-like properties, perhaps we should consider the particle in 
a box to be a wave reflecting back and forth between the ends of the box, as shown 
in FIGURE 38.14b. These are the conditions that create standing waves. You learned in  
❮❮ SECTION  17.3 that a standing wave of length L must have one of the wavelengths 
given by

 ln =
2L
n
  n = 1, 2, 3, c (38.16)

If the confined particle has wave-like properties, it should satisfy both Equation  
38.16 and the de Broglie relationship l = h/mv. That is, a particle in a box should 
obey the relationship

ln =
h

mv
=

2L
n

Thus the particle’s speed must be

 vn = n 1 h
2Lm2  n = 1, 2, 3, c (38.17)

In other words, the particle cannot bounce back and forth with just any speed. Rather, 
it can have only those specific speeds vn, given by Equation 38.17, for which the de 
Broglie wavelength creates a standing wave in the box.

Thus the particle’s energy, which is purely kinetic energy, is

 En = 1
2 mvn 

2 = n2 
h2

8mL2  n = 1, 2, 3, c (38.18)

De Broglie’s hypothesis about the wave-like properties of matter leads us to the  
remarkable conclusion that a particle confined in a box can have only certain  
energies. We say that its energy is quantized. The energy of the particle in the  
box can be 11h2/8mL22, or 41h2/8mL22, or 91h2/8mL22, but it cannot have an energy 
between these values.

The possible values of the particle’s energy are called energy levels, and the 
integer n that characterizes the energy levels is called the quantum number. The 
quantum number can be found by counting the antinodes, just as you learned to do for 
standing waves on a string. The standing wave shown in Figure 38.14 is n = 3, thus 
its energy is E3.

We can rewrite Equation 38.18 in the useful form

 En = n2E1 (38.19)

where

 E1 =
h2

8mL2 (38.20)

is the fundamental quantum of energy for a particle in a one-dimensional box. It 
is analogous to the fundamental frequency f1 of a standing wave on a string.

(a) A classical particle bounces back and forth.

(b) A reflected wave creates a standing wave.

Matter waves travel in both directions.

L

vm

L

FIGURE 38.14 A particle confined in a box 
of length L.
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It is the confinement of the particle in a box that leads to standing matter waves and 
thus energy quantization. Our goal is to extend this idea to atoms. An atom is certainly 
more complicated than a one-dimensional box, but an electron is “confined” within an 
atom. Thus an electron in an atom must be some kind of three-dimensional standing 
wave and, like the particle in a box, must have quantized energies. De Broglie’s idea is  
steering us toward a new theory of matter.

A 30-nm-diameter virus is about the smallest imaginable macro-
scopic particle. What is the fundamental quantum of energy for this 
virus if confined in a one-dimensional cell of length 1.0 mm? The 
density of a virus is very close to that of water.

MODEL Model the virus as a particle in a box.

SOLVE The mass of a virus is m = rV, where the volume is 4
3 pr3. 

A quick calculation shows that a 30-nm-diameter virus has mass 
m = 1.4 * 10-20 kg. The confinement length is L = 1.0 * 10-6 m. 
From Equation 38.20, the fundamental quantum of energy is

  E1 =
h2

8mL2 =
16.63 * 10-34 J s22

811.4 * 10-20 kg211.0 * 10-6 m22

  = 3.9 * 10-36 J = 2.5 * 10-17 eV

REVIEW This is such an incredibly small amount of energy that 
there is no hope of distinguishing between energies of E1 or 4E1 or 
9E1. For any macroscopic particle, even one this tiny, the allowed 
energies will seem to be perfectly continuous. We will not observe 
the quantization.

EXAMPLE 38.7 ■ The energy levels of a virus

As a very simple model of a hydrogen atom, consider an electron 
confined in a one-dimensional box of length 0.10 nm, about the 
size of an atom. What are the first three allowed energy levels?

MODEL Model the electron as a particle in a box.

SOLVE We can use Equation 38.20, with melec = 9.11 * 10-31 kg 
and L = 1.0 * 10-10 m, to find that the fundamental quantum of 
energy is E1 = 6.0 * 10-18 J = 38 eV. Thus the first three allowed 
energies of an electron in a 0.10 nm box are

 E1 = 38 eV

 E2 = 4E1 = 152 eV

 E3 = 9E1 = 342 eV

REVIEW You’ll soon see that the results are way off. This model 
of a hydrogen atom is too simple to capture essential details. Even 
so, this model correctly hints that atomic energy levels are in the 
eV range.

EXAMPLE 38.8 ■ The energy levels of an electron

STOP TO THINK 38.3 What is the quantum number 
of this particle confined in a box?

38.5 Bohr’s Model of Atomic Quantization
Thomson’s electron and Rutherford’s nucleus made it clear that the atom has a 
structure of some sort. The challenge at the beginning of the 20th century was to  
deduce, from experimental evidence, the correct structure. The difficulty of this task  
cannot be exaggerated. The evidence about atoms, such as observations of atomic 
spectra, was very indirect, and experiments were carried out with only the simplest 
measuring devices.

Rutherford’s nuclear model was the most successful of various proposals, but 
Rutherford’s model failed to explain why atoms are stable or why their spectra are  
discrete. A missing piece of the puzzle, although not recognized as such for a few 
years, was Einstein’s 1905 introduction of light quanta. If light comes in discrete 
packets of energy, which we now call photons, and if atoms emit and absorb light, 
what does that imply about the structure of the atoms?
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This was the question posed by the Danish physicist Niels Bohr. In 1913, Bohr 
proposed a new model of the atom in which he added quantization to Rutherford’s 
nuclear atom. The basic assumptions of the Bohr model of the atom are as follows:

MODEL 38.2

The Bohr model of the atom

This is one 
stationary
state.

This is another 
stationary
state.

An electron cannot exist
here, where there is no
allowed orbit.

Electrons can exist in only
certain allowed orbits.

These other
states are
excited states.

This state, with the lowest energy
E1, is the ground state. It is
stable and can persist indefinitely.

Stationary
states

Photon emission

Photon absorption

Excited-state electron

Approaching photon
The electron absorbs the photon
and jumps to a higher energy 
stationary state.

The electron jumps to a lower
energy stationary state and 
emits a photon.

Collisional excitation

Approaching
particle

Particle loses
energy.

An electron in an excited state
jumps to lower states, emitting
a photon at each jump.

The particle transfers energy
to the atom in the collision
and excites the atom.

1. The electrons in an  
atom can exist in only  
certain allowed orbits.  
A particular arrange-
ment of electrons in  
these orbits is called a  
stationary state.

2. Each stationary state 
has a discrete, well-defined 
energy En. That is, atomic 
energies are quantized. The 
stationary states are labeled 
by the quantum number n in 
order of increasing energy: 
E1 6 E2 6 E3 6 g    .

3. An atom can undergo a 
transition or quantum 
jump from one stationary 
state to another by emitting 
or absorbing a photon  
whose energy is exactly 
equal to the energy difference 
between the two stationary 
states.

 Atoms can also move from a 
lower energy state to a higher  
energy state by absorbing  
energy in a collision with an  
electron or other atom in a 
process called collisional 
excitation.

The excited atoms soon transition 
to lower states, eventually  
ending in the stable ground state.

Bohr’s model builds upon Rutherford’s model, but it adds two new ideas that are  
derived from Einstein’s ideas of quanta. The first, expressed in assumption 1, is that  
only certain electron orbits are “allowed” or can exist. The second, expressed in  
assumption 3, is that the atom can undergo a transition from one state to another—a 
quantum jump—by emitting or absorbing a photon of just the right frequency to 
conserve energy.

According to Einstein, a photon of frequency f has energy Ephoton = h  f. If an atom 
jumps from an initial state with energy Ei to a final state with energy Ef, energy will 
be conserved if the atom emits or absorbs a photon with Ephoton = ∆Eatom = 0Ef - Ei 0 . 
This photon must have frequency

 fphoton =
∆Eatom

h
 (38.21)

if it is to add or carry away exactly the right amount of energy. The total energy of the 
atom-plus-light system is conserved.

   NOTE    When an atom is excited to a higher energy level by absorbing a photon, the 
photon vanishes. Thus energy conservation requires Ephoton = ∆Eatom. When an atom 
is excited to a higher energy level in a collision with a particle, such as an electron 
or another atom, the particle still exists after the collision and still has energy. Thus 
energy conservation requires the less stringent condition Eparticle Ú ∆Eatom.
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The implications of Bohr’s model are profound. In particular:

1. Matter is stable. An atom in its ground state has no states of any lower energy 
to which it can jump. It can remain in the ground state forever.

2. Atoms emit and absorb a discrete spectrum. Only those photons whose  
frequencies match the energy intervals between the stationary states can be 
emitted or absorbed. Photons of other frequencies cannot be emitted or absorbed 
without violating energy conservation.

3. Emission spectra can be produced by collisions. In a gas discharge tube, 
the current-carrying electrons moving through the tube occasionally collide 
with the atoms. A collision transfers energy to an atom and can kick the atom 
to an excited state. Once the atom is in an excited state, it can emit photons 
of light—a discrete emission spectrum—as it jumps back down to lower-  
energy states.

4. Absorption wavelengths are a subset of the wavelengths in the emis-
sion spectrum. Recall that all the lines seen in an absorption spectrum are 
also seen in emission, but many emission lines are not seen in absorption. 
According to Bohr’s model, most atoms, most of the time, are in their lowest 
energy state, the n = 1 ground state. Thus the absorption spectrum consists 
of only those transitions such as 1 S 2, 1 S 3, cin which the atom jumps 
from n = 1 to a higher value of n by absorbing a photon. Transitions such 
as 2 S 3 are not observed because there are essentially no atoms in n = 2 at  
any instant of time. On the other hand, atoms that have been excited to the 
n = 3 state by collisions can emit photons corresponding to transitions 3 S 1 
and 3 S 2. Thus the wavelength corresponding to ∆Eatom = E3 - E1 is seen 
in both emission and absorption, but transitions with ∆Eatom = E3 - E2 occur  
in emission only.

5. Each element in the periodic table has a unique spectrum. The energies of the 
stationary states are the energies of the orbiting electrons. Different elements, 
with different numbers of electrons, have different stable orbits and thus differ-
ent stationary states. States with different energies emit and absorb photons of  
different wavelengths.

An atom has stationary states with energies Ej = 4.00 eV and 
Ek = 6.00 eV. What is the wavelength of a photon emitted in a 
transition from state k to state j?

MODEL To conserve energy, the emitted photon must have exactly 
the energy lost by the atom in the transition.

SOLVE The atom can jump from the higher energy state k to the 
lower energy state j by emitting a photon. The atom’s change in  
energy is ∆Eatom = 0Ej - Ek 0 = 2.00 eV, so the photon energy must  
be Ephoton = 2.00 eV.

The photon frequency is

f =
Ephoton

h
=

2.00 eV

4.14 * 10-15 eV s
= 4.83 * 1014 Hz

The wavelength of this photon is

l =
c
f

= 621 nm

REVIEW 621 nm is a visible-light wavelength. Notice that the 
wavelength depends on the difference between the atom’s energy 
levels, not the values of the energies.

EXAMPLE 38.9 ■ The wavelength of an emitted photon

Energy-Level Diagrams
An energy-level diagram, such as the one shown in FIGURE 38.15 on the next page, 
is a useful pictorial representation of the stationary-state energies. An energy-level 
diagram is less a graph than it is a picture. The vertical axis represents energy, but  
the horizontal axis is not a scale. Think of this as a picture of a ladder in which the 
energies are the rungs of the ladder. The lowest rung, with energy E1, is the ground 
state. Higher rungs are labeled by their quantum numbers, n = 2, 3, 4, c.
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Energy-level diagrams are especially useful for showing transitions, or quantum 
jumps, in which a photon of light is emitted or absorbed. As examples, Figure 38.15 
shows upward transitions in which a photon is absorbed by a ground-state atom 1n = 12 
and downward transitions in which a photon is emitted from an n = 4 excited state.

Increasing
energy

Ground state

Excited
states

n = 1

n = 2

n = 3
n = 4

n = 5

E1

E2

E3

E4

E5

These are allowed energies.
The atom cannot have an
energy between these.

These transitions
from n = 4 emit 
photons.

These are the
transitions of 
the absorption
spectrum.

FIGURE 38.15 An energy-level diagram.

An atom has stationary states E1 = 0.00 eV, E2 = 3.00 eV, and 
E3 = 5.00 eV. What wavelengths are observed in the absorption 
spectrum and in the emission spectrum of this atom?

MODEL Photons are emitted when an atom undergoes a transition 
from a higher energy level to a lower energy level. Photons are 
absorbed in a transition from a lower energy level to a higher en-
ergy level. But most of the atoms are in the n = 1 ground state, so 
the only transitions seen in the absorption spectrum start from the 
n = 1 state.

 VISUALIZE FIGURE 38.16 shows an energy-level diagram for the atom.

SOLVE This atom will absorb photons on the 1 S 2 and 1 S 3 
transitions, with ∆E1S2 = 3.00 eV and ∆E1S3 = 5.00 eV. From 
f = ∆Eatom/h and l = c/f, we find that the wavelengths in the  
absorption spectrum are

  1 S 2  f = 3.00 eV/h = 7.25 * 1014 Hz

  l = 414 nm (blue)

  1 S 3  f = 5.00 eV/h = 1.21 * 1015 Hz

  l = 248 nm (ultraviolet)

The emission spectrum will also have the 414 nm and 248 nm 
wavelengths due to the 2 S 1 and 3 S 1 transitions from excited 
states 2 and 3 to the ground state. In addition, the emission spec-
trum will contain the 3 S 2 transition with ∆E3S2 = -2.00 eV 
that is not seen in absorption because there are too few atoms in 
the n = 2 state to absorb. We found in Example 38.9 that a 2.00 eV 
transition corresponds to a wavelength of 621 nm. Thus the emis-
sion wavelengths are

 2 S 1  l = 414 nm (blue)

 3 S 1  l = 248 nm (ultraviolet)

 3 S 2  l = 621 nm (orange)

EXAMPLE 38.10 ■ Emission and absorption

n = 1

n = 2

n = 3

0.00 eV

3.00 eV

5.00 eV

Absorption transitions 
must start from n = 1.

Emission transitions 
can start and end 
at any level.

FIGURE 38.16 The atom’s energy-level diagram.

n = 1

n = 3

0.00 eV

n = 2 2.00 eV

5.00 eV

n = 4 6.00 eVSTOP TO THINK 38.4 A photon with a wave-
length of 414 nm has energy Ephoton =  3.00 eV. 
Do you expect to see a spectral line with 
l = 414 nm in the emission spectrum of the  
atom represented by this energy-level diagram? 
If so, what transition or transitions will emit 
it? Do you expect to see a spectral line with 
l = 414 nm in the absorption spectrum? If so, 
what transition or transitions will absorb it?
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38.6 The Bohr Hydrogen Atom 1155

38.6 The Bohr Hydrogen Atom
Bohr’s hypothesis was a bold new idea, yet there was still one enormous stumbling 
block: What are the stationary states of an atom? Everything in Bohr’s model hinges 
on the existence of these stationary states, of there being only certain electron orbits  
that are allowed. But nothing in classical physics provides any basis for such orbits. 
And Bohr’s model describes only the consequences of having stationary states, not 
how to find them. If such states really exist, we will have to go beyond classical  
physics to find them.

To address this problem, Bohr did an explicit analysis of the hydrogen atom. The 
hydrogen atom, with only a single electron, was known to be the simplest atom. 
Furthermore, as we discussed in Chapter 37, Balmer had discovered a fairly simple  
formula that characterized the wavelengths in the hydrogen emission spectrum. 
Anyone with a successful model of an atom was going to have to predict, from theory, 
Balmer’s formula for the hydrogen atom.

Bohr’s paper followed a rather circuitous line of reasoning. That is not surprising 
because he had little to go on at the time. But our goal is a clear explanation of the 
ideas, not a historical study of Bohr’s methods, so we are going to follow a different 
analysis using de Broglie’s matter waves. De Broglie did not propose matter waves 
until 1924, 11 years after Bohr’s paper, but with the clarity of hindsight we can see 
that treating the electron as a wave provides a more straightforward analysis of the 
hydrogen atom. Although our route will be different from Bohr’s, we will arrive at  
the same point, and, in addition, we will be in a much better position to understand the 
work that came after Bohr.

   NOTE    Bohr’s analysis of the hydrogen atom is sometimes called the Bohr atom. It’s 
important not to confuse this analysis, which applies only to hydrogen, with the more 
general postulates of the Bohr model of the atom. Those postulates, which we looked 
at in Section 38.5, apply to any atom. To make the distinction clear, we’ll call Bohr’s  
analysis of hydrogen the Bohr hydrogen atom.

The Stationary States of the Hydrogen Atom
FIGURE 38.17 shows a Rutherford hydrogen atom, with a single electron orbiting a nucleus 
that consists of a single proton. We will assume a circular orbit of radius r and speed v. 
We will also assume, to keep the analysis manageable, that the proton remains stationary 
while the electron revolves around it. This is a reasonable assumption because the pro-
ton is roughly 1800 times as massive as the electron. With these assumptions, the atom’s  
energy is the kinetic energy of the electron plus the potential energy of the electron- 
proton interaction. This is

 E = K + U = 1
2 mv2 +

1
4pP0

 
qelecqproton

r
= 1

2 mv2 -
e2

4pP0r
 (38.22)

where we used qelec = -e and qproton = +e.

   NOTE    m is the mass of the electron, not the mass of the entire atom.

Now, the electron, as we are coming to understand it, has both particle-like and 
wave-like properties. First, let us treat the electron as a charged particle. The proton 
exerts a Coulomb electric force on the electron:

 F
u

elec = 1 1
4pP0

 
e2

r2 , toward center2 (38.23)

This force gives the electron an acceleration auelec = F
u

elec/m that also points to the  
center. This is a centripetal acceleration, causing the particle to move in its circular 

v
u

r

Felec

u

FIGURE 38.17 A Rutherford hydrogen 
atom. The size of the nucleus is greatly 
exaggerated.

M38_KNIG8221_05_GE_C38.indd   1155 25/06/22   2:26 PM



1156 CHAPTER 38 Quantization

orbit. The centripetal acceleration of a particle moving in a circle of radius r at speed 
v must be v2/r, thus

 aelec =
Felec

m
=

e2

4pP0mr2 =
v2

r
 (38.24)

Rearranging, we find

  v2 =
e2

4pP0mr
 (38.25)

Equation 38.25 is a constraint on the motion. The speed v and radius r must satisfy 
Equation 38.25 if the electron is to move in a circular orbit. This constraint is not unique 
to atoms; we earlier found a similar relationship between v and r for orbiting satellites.

Now let’s treat the electron as a de Broglie wave. In Section 38.4 we found that a 
particle confined to a one-dimensional box sets up a standing wave as it reflects back 
and forth. A standing wave, you will recall, consists of two traveling waves moving 
in opposite directions. When the round-trip distance in the box is equal to an integer 
number of wavelengths 12L = nl2, the two oppositely traveling waves interfere con-
structively to set up the standing wave.

Suppose that, instead of traveling back and forth along a line, our wave-like particle 
travels around the circumference of a circle. The particle will set up a standing wave, 
just like the particle in the box, if there are waves traveling in both directions and if 
the round-trip distance is an integer number of wavelengths. This is the idea we want 
to carry over from the particle in a box. As an example, FIGURE 38.18 shows a standing  
wave around a circle with n = 10 wavelengths.

The mathematical condition for a circular standing wave is found by replacing the 
round-trip distance 2L in a box with the round-trip distance 2pr on a circle. Thus a 
circular standing wave will occur when

 2pr = nl  n = 1, 2, 3, c (38.26)

But the de Broglie wavelength for a particle has to be l = h/p = h/mv. Thus the  
standing-wave condition for a de Broglie wave is

2pr = n 
h

mv

This condition is true only if the electron’s speed is

 vn =
nh

2pmr
  n = 1, 2, 3, c (38.27)

The quantity h/2p occurs so often in quantum physics that it is customary to give it 
a special name. We define the quantity U, pronounced “h bar,” as

U K
h

2p
= 1.055 * 10-34 J s = 6.58 * 10-16 eV s

With this definition, we can write Equation 38.27 as

 vn =
nU
mr
  n = 1, 2, 3, c (38.28)

This, like Equation 38.25, is another relationship between v and r. This is the constraint 
that arises from treating the electron as a wave.

Now if the electron can act as both a particle and a wave, then both the Equation 
38.25 and Equation 38.28 constraints have to be obeyed. That is, v2 as given by  
the Equation 38.25 particle constraint has to equal v2 of the Equation 38.28 wave 
constraint. Equating these gives

v2 =
e2

4pP0mr
=

n2U2

m2r2

Proton

Electron standing wave

Classical orbit

FIGURE 38.18 An n = 10 electron standing 
wave around the orbit’s circumference.
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We can solve this equation to find that the radius r is

 rn = n2 
4pP0 U2

me2   n = 1, 2, 3, c (38.29)

where we have added a subscript n to the radius r to indicate that it depends on the 
integer n.

The right-hand side of Equation 38.29, except for the n2, is just a collection of  
constants. Let’s group them all together and define the Bohr radius aB as

aB = Bohr radius K
4pP0 U2

me2 = 5.29 * 10-11 m = 0.0529 nm

With this definition, Equation 38.29 for the radius of the electron’s orbit becomes

 rn = n2aB  n = 1, 2, 3, c (38.30)

For example, r1 = 0.053 nm, r2 = 0.212 nm, and r3 = 0.476 nm.
We have discovered stationary states! That is, a hydrogen atom can exist only 

if the radius of the electron’s orbit is one of the values given by Equation 38.30. 
Intermediate values of the radius, such as r = 0.100 nm, cannot exist because the 
electron cannot set up a standing wave around the circumference. The possible orbits 
are quantized, with only certain orbits allowed.

The key step leading to Equation 38.30 was the requirement that the electron have 
wave-like properties in addition to particle-like properties. This requirement leads  
to quantized orbits, or what Bohr called stationary states. The integer n is thus the 
quantum number that numbers the various stationary states.

Hydrogen Atom Energy Levels
Now we can make progress quickly. Knowing the possible radii, we can return to 
Equation 38.28 and find the possible electron speeds to be

 vn =
n U
mrn

=
1
n

 
U

maB
=

v1

n
  n = 1, 2, 3, c (38.31)

where v1 = U/maB = 2.19 * 106 m/s is the electron’s speed in the n = 1 orbit. The 
speed decreases as n increases.

Finally, we can determine the energies of the stationary states. From Equation 38.22  
for the energy, with Equations 38.30 and 38.31 for r and v, we have

 En = 1
2 mvn 

2 -
e2

4pP0rn
= 1

2 m1 U2

m2aB 

2n22 -
e2

4pP0n
2aB

 (38.32)

As a homework problem, you can show that this rather messy expression simplifies to

 En = -
1

n2 1 1
4pP0

 
e2

2aB
2 (38.33)

The expression in parentheses is easily evaluated, giving

1
4pP0

 
e2

2aB
= 13.60 eV
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We can then write the energy levels of the stationary states of the hydrogen atom as

 En = -
13.60 eV

n2   n = 1, 2, 3, c (38.34)

This has been a lot of math, so we need to see where we are and what we have 
learned. TABLE 38.2 shows values of rn, vn, and En evaluated for quantum number values 
n = 1 to 5. We do indeed seem to have discovered stationary states of the hydrogen 
atom. Each state, characterized by its quantum number n, has a unique radius, speed, 
and energy. These are displayed graphically in FIGURE 38.19, in which the orbits are 
drawn to scale. Notice how the atom’s diameter increases very rapidly as n increases. 
At the same time, the electron’s speed decreases.

n = 1

n = 2

n = 3

n = 4
r4 = 16aB

v4 = 0.5 * 106 m/s
E4 = -0.8 eV

r3 = 9aB

v3 = 0.7 * 106 m/s
E3 = -1.5 eV

r2 = 4aB

v2 = 1.1 * 106 m/s
E2 = -3.4 eV

r1 = aB

v1 = 2.2 * 106 m/s
E1 = -13.6 eV

FIGURE 38.19 The first four stationary states, or allowed 
orbits, of the Bohr hydrogen atom drawn to scale.

TABLE 38.2 Radii, speeds, and energies for the first five 
states of the Bohr hydrogen atom

n rn 1nm2 vn 1m/s2 En 1eV2
1 0.053 2.19 * 106 -13.60

2 0.212 1.09 * 106 -3.40

3 0.476 0.73 * 106 -1.51

4 0.846 0.55 * 106 -0.85

5 1.322 0.44 * 106 -0.54

Can an electron in a hydrogen atom have a speed of 3.60 *105 m/s? 
If so, what are its energy and the radius of its orbit? What about a 
speed of 3.65 * 105 m/s?

SOLVE To be in a stationary state, the electron must have speed

vn =
v1

n
=

2.19 * 106 m/s
n

where n is an integer. A speed of 3.60 * 105 m/s would require 
quantum number

n =
2.19 * 106 m/s

3.60 * 105 m/s
= 6.08

This is not an integer, so the electron can not have this speed. But if 
v = 3.65 * 105 m/s, then

n =
2.19 * 106 m/s

3.65 * 105 m/s
= 6

This is the speed of an electron in the n = 6 excited state. An elec-
tron in this state has energy

E6 = -  
13.60 eV

62 = -0.38 eV

and the radius of its orbit is

r6 = 6215.29 * 10-11 m2 = 1.90 * 10-9 m = 1.90 nm

EXAMPLE 38.11 ■ Stationary states of the hydrogen atom

Binding Energy and Ionization Energy
It is important to understand why the energies of the stationary states are negative. 
Because the potential energy of two charged particles is U = q1q2  /4pP0r, the zero of 
potential energy occurs at r = ∞  where the particles are infinitely far apart. The state 
of zero total energy corresponds to having the electron at rest 1K = 02 and infinitely 
far from the proton 1U = 02. This situation, which is the case of two “free particles,” 
occurs in the limit n S ∞   , for which rn S ∞  and vn S 0.
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An electron and a proton bound into an atom have less energy than two free par-
ticles. We know this because we would have to do work (i.e., add energy) to pull the 
electron and proton apart. If the bound atom’s energy is lower than that of two free 
particles, and if the total energy of two free particles is zero, then it must be the case 
that the atom has a negative amount of energy.

Thus 0En 0  is the binding energy of the electron in stationary state n. In the ground 
state, where E1 = -13.60 eV, we would have to add 13.60 eV to the electron to free it 
from the proton and reach the zero energy state of two free particles. We can say that 
the electron in the ground state is “bound by 13.60 eV.” An electron in an n = 3 orbit, 
where it is farther from the proton and moving more slowly, is bound by only 1.51 eV. 
That is the amount of energy you would have to supply to remove the electron from 
an n = 3 orbit.

Removing the electron entirely leaves behind a positive ion, H+ in the case of a 
hydrogen atom. (The fact that H+ happens to be a proton does not alter the fact that it 
is also an atomic ion.) Because nearly all atoms are in their ground state, the binding 
energy 0E1 0  of the ground state is called the ionization energy of an atom. Bohr’s 
analysis predicts that the ionization energy of hydrogen is 13.60 eV. FIGURE  38.20  
illustrates the ideas of binding energy and ionization energy.

We can test this prediction by shooting a beam of electrons at hydrogen atoms. A 
projectile electron can knock out an atomic electron if its kinetic energy K is greater 
than the atom’s ionization energy, leaving an ion behind. But a projectile electron will 
be unable to cause ionization if its kinetic energy is less than the atom’s ionization  
energy. This is a fairly straightforward experiment to carry out, and the evidence 
shows that the ionization energy of hydrogen is, indeed, 13.60 eV.

Quantization of Angular Momentum
The magnitude of the angular momentum of a particle in circular motion, whether it 
is a planet or an electron, is

L = mvr

You will recall that angular momentum is conserved in orbital motion because  
a central force exerts no torque on the particle. Bohr used conservation of energy 
explicitly in his analysis of the hydrogen atom, but what role does conservation of 
angular momentum play?

The condition that a de Broglie wave for the electron set up a standing wave around 
the circumference was given, in Equation 38.26, as

2pr = nl = n 
h

mv

Multiplying by mv and dividing by 2p, we can rewrite this equation as

 mvr = n 
h

2p
= n U (38.35)

But mvr is the angular momentum L for a particle in a circular orbit. It appears that 
the angular momentum of an orbiting electron cannot have just any value. Instead, it 
must satisfy

 L = n U  n = 1, 2, 3, c (38.36)

Thus angular momentum also is quantized! The electron’s angular momentum must be  
an integer multiple of Planck’s constant U.

The quantization of angular momentum is a direct consequence of this wave-like 
nature of the electron. We will find that the quantization of angular momentum plays 

The binding energy is the energy
needed to remove an electron from
its orbit.

The ionization energy is the energy
needed to create an ion by removing
a ground-state electron.

FIGURE 38.20 Binding energy and 
ionization energy.
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38.7 The Hydrogen Spectrum
Our analysis of the hydrogen atom has revealed stationary states, but how do we know 
whether the results make any sense? The most important experimental evidence that 
we have about the hydrogen atom is its spectrum, so the primary test of the Bohr  
hydrogen atom is whether it correctly predicts the spectrum.

The Hydrogen Energy-Level Diagram
FIGURE 38.21 is an energy-level diagram for the hydrogen atom. As we noted earlier, 
the energies are like the rungs of a ladder. The lowest rung is the ground state, with 
E1 = -13.60 eV. The top rung, with E = 0 eV, corresponds to a hydrogen ion in the 
limit n S ∞   . This top rung is called the ionization limit. In principle there are an 
infinite number of rungs, but only the lowest few are shown. The higher values of n 
are all crowded together just below the ionization limit at n = ∞   .

The figure shows a 1 S 4 transition in which a photon is absorbed and a 4 S 2 
transition in which a photon is emitted. For two quantum states m and n, where n 7 m 
and En is the higher energy state, an atom can emit a photon in an n S m transition or 
absorb a photon in an m S n transition.

The Emission Spectrum
According to the third assumption of Bohr’s model of atomic quantization, the  
frequency of the photon emitted in an n S m transition is

 f =
∆Eatom

h
=

En - Em

h
 (38.37)

We can use Equation 38.33 for the energies En and Em to predict that the emitted  
photon has frequency

  f =
1
h
e c -  

1

n2 1 1
4pP0

 
e2

2aB
2 d - c -  

1

m2 1 1
4pP0

 
e2

2aB
2 d f  

  =
1

4pP0
 

e2

2haB
 1 1

m2 -
1

n22 (38.38)

The frequency is a positive number because m 6 n and thus 1/m2 7 1/n2.
We are more interested in wavelength than frequency, because wavelengths are the 

quantity measured by experiment. The wavelength of the photon emitted in an n S m 
transition is

  lnSm =
c
f

=
8pP0hcaB/e2

1 1

m2 -
1

n22  (38.39)

n = ∞

4 S  2 emission

1 S 4 absorption

Ground state

5
4
3 2

1

-1.51 eV

-3.40 eV

-13.60 eV

Ionization limit

Many energy levels
crowded close together

0 eV

FIGURE 38.21 The energy-level diagram of 
the hydrogen atom.

a major role in the behavior of more complex atoms, leading to the idea of electron 
shells that you likely have studied in chemistry.

STOP TO THINK 38.5 What is the quantum number of this hydrogen 
atom?
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This looks rather gruesome, but notice that the numerator is simply a collection of 
various constants. The value of the numerator, which we can call l0, is

l0 =
8pP0hcaB

e2 = 9.112 * 10-8 m = 91.12 nm

With this definition, our prediction for the wavelengths in the hydrogen emission 
spectrum is

 lnSm =
l0

1 1

m2 -
1

n22  (38.40)

This should look familiar. It is the Balmer formula from Chapter  37! However, 
there is one slight difference: Bohr’s analysis of the hydrogen atom has predicted 
l0 = 91.12 nm, whereas Balmer found, from experiment, that l0 =  91.18 nm. Could 
Bohr have come this close but then fail to predict the Balmer formula correctly?

The problem, it turns out, is in our assumption that the proton remains at rest while 
the electron orbits it. In fact, both particles rotate about their common center of mass, 
rather like a dumbbell with a big end and a small end. The center of mass is very 
close to the proton, which is far more massive than the electron, but the proton is not 
entirely motionless. The good news is that a more advanced analysis can account for 
the proton’s motion. It changes the energies of the stationary states ever so slightly—
about 1 part in 2000—but that is precisely what is needed to give a revised value:

l0 = 91.18 nm when corrected for the nuclear motion

It works! Unlike all previous atomic models, the Bohr hydrogen atom correctly 
predicts the discrete spectrum of the hydrogen atom. FIGURE 38.22 shows the Balmer 
series and the Lyman series transitions on an energy-level diagram. Only the Balmer 
series, consisting of transitions ending on the m = 2 state, gives visible wavelengths, 
and this is the series that Balmer initially analyzed. The Lyman series, ending on the 
m = 1 ground state, is in the ultraviolet region of the spectrum and was not measured 
until later. These series, as well as others in the infrared, are observed in a discharge 
tube where collisions with electrons excite the atoms upward from the ground state 
to state n. They then decay downward by emitting photons. Only the Lyman series is 
observed in the absorption spectrum because, as noted previously, essentially all the 
atoms in a quiescent gas are in the ground state.

m =  1, 2, 3, c
n = any integer greater than m

Whenever astronomers look at distant galaxies, they find that the 
light has been strongly absorbed at the wavelength of the 1 S 2 
transition in the Lyman series of hydrogen. This absorption tells 
us that interstellar space is filled with vast clouds of hydrogen  
left over from the Big Bang. What is the wavelength of the 1 S 2 
absorption in hydrogen?

SOLVE Equation 38.40 predicts the absorption spectrum of  
hydrogen if we let m = 1. The absorption seen by astronomers is 
from the ground state of hydrogen 1m = 12 to its first excited state 
1n = 22. The wavelength is

l1S2 =
91.18 nm

1 1

12 -
1

222 = 121.6 nm

 REVIEW This wavelength is far into the ultraviolet. Ground-based 
astronomy cannot observe this region of the spectrum because  
the wavelengths are strongly absorbed by the atmosphere, but  
with space-based telescopes, first widely used in the 1970s,  
astronomers see 121.6 nm absorption in nearly every direction  
they look.

EXAMPLE 38.12 ■ Hydrogen absorption

Hydrogen-Like Ions
An ion with a single electron orbiting Z protons in the nucleus is called a hydrogen- 
like ion. Z is the atomic number and describes the number of protons in the nucleus. 
He+, with one electron circling a Z = 2 nucleus, and Li++, with one electron and a 

n = ∞

Balmer series
n S 2
visible

Lyman series
n S 1
ultraviolet

Ground state

5
4
3 2

1

Ionization limit

FIGURE 38.22 Transitions producing the 
Lyman series and the Balmer series of 
lines in the hydrogen spectrum.
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1162 CHAPTER 38 Quantization

TABLE 38.3 Comparison of hydrogen-like ions with Z = 1, 2, and 3

Ion Diameter 2r1

Ionization  
energy 0E1 0

Wavelength  
of 3 S 2

H 1Z = 12 0.106 nm 13.6 eV 656 nm

He+ 1Z = 22 0.053 nm 54.4 eV 164 nm

Li++ 1Z = 32 0.035 nm 122.4 eV 73 nm

Z = 3 nucleus, are hydrogen-like ions. So is U+91, with one lonely electron orbiting a 
Z = 92 uranium nucleus.

Any hydrogen-like ion is simply a variation on the Bohr hydrogen atom. The only 
difference between a hydrogen-like ion and neutral hydrogen is that the potential  
energy -e2/4pP0r becomes, instead, -Ze2/4pP0r. Hydrogen itself is the Z = 1 case.  
If we repeat the analysis of the previous sections with this one change, we find:

  rn =
n2aB

Z
     En = -  

13.60 Z2 eV

n2  

   vn = Z 
v1

n
      l0 =

91.18 nm

Z2  
(38.41)

As the nuclear charge increases, the electron moves into a smaller-diameter, higher- 
speed orbit. Its ionization energy 0E1 0  increases significantly, and its spectrum shifts 
to shorter wavelengths. Table 38.3 compares the ground-state atomic diameter 2r1,  
the ionization energy 0E1 0 , and the first wavelength 3 S 2 in the Balmer series for  
hydrogen and the first two hydrogen-like ions.

Success and Failure
Bohr’s analysis of the hydrogen atom seemed to be a resounding success. By introducing 
Einstein’s ideas about light quanta, Bohr was able to provide the first understanding of 
discrete spectra and to predict the Balmer formula for the wavelengths in the hydrogen 
spectrum. And the Bohr hydrogen atom, unlike Rutherford’s model, was stable. There  
was clearly some validity to the idea of stationary states.

But Bohr was completely unsuccessful at explaining the spectra of any other neutral  
atom. His method did not work even for helium, the second element in the periodic 
table with a mere two electrons. Something inherent in Bohr’s assumptions seemed to 
work correctly for a single electron but not in situations with two or more electrons.

It is important to make a distinction between the Bohr model of atomic quan-
tization, described in Section  38.5, and the Bohr hydrogen atom. The Bohr model 
assumes that stationary states exist, but it does not say how to find them. We found 
the stationary states of a hydrogen atom by requiring that an integer number of  
de Broglie waves fit around the circumference of the orbit, setting up standing waves. 
The difficulty with more complex atoms is not the Bohr model but the method of 
finding the stationary states. Bohr’s model of the atomic quantization remains valid, 
and we will continue to use it, but the procedure of fitting standing waves to a circle 
is just too simple to find the stationary states of complex atoms. We need to find a 
better procedure.

Einstein, de Broglie, and Bohr carried physics into uncharted waters. Their  
successes made it clear that the microscopic realm of light and atoms is governed 
by quantization, discreteness, and a blurring of the distinction between particles and  
waves. Although Bohr was clearly on the right track, his inability to extend the  
Bohr hydrogen atom to more complex atoms made it equally clear that the complete 
and correct theory remained to be discovered. Bohr’s theory was what we now call 
“semiclassical,” a hybrid of classical Newtonian mechanics with the new ideas of 
quanta. Still missing was a complete theory of motion and dynamics in a quantized 
universe—a quantum mechanics.
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   CHAPTER 38 CHALLENGE EXAMPLE     Hydrogen fluorescence

Fluorescence is the absorption of light at one wavelength followed 
by emission at a longer wavelength. Suppose a hydrogen atom in 
its ground state absorbs an ultraviolet photon with a wavelength of 
95.10 nm. Immediately after the absorption, the atom undergoes 
a transition with ∆n = 3. What is the wavelength of the photon 
emitted in this transition?

MODEL Photons are emitted and absorbed as an atom undergoes 
transitions from one energy level to another. The Bohr model gives 
the energy levels of the hydrogen atom.

VISUALIZE FIGURE  38.23 shows the process. To be absorbed, the 
photon energy has to match exactly the energy difference between 
the ground state of hydrogen and an excited state with quantum 
number n. After excitation, the atom emits a photon as it jumps 
downward in a n S n - 3 transition.

SOLVE The energy of the absorbed photon is

E = hf =
hc
l

=
14.14 * 10-15 eV s213.00 * 108 m/s2

95.10 * 10-9 m
= 13.06 eV

The atom’s initial energy is E1 = -13.60 eV, the energy of the 
ground state of hydrogen. Absorbing a 13.06 eV photon raises the 

atom’s energy to En = E1 + 13.06 eV = -0.54 eV. The energy  
levels of hydrogen are given by

En = -
13.60 eV

n2

The quantum number of the energy level with -0.54 eV is

n = B -
13.60 eV

 1-0.54 eV2 = 5

We see that the absorption is a 1 S 5 transition; thus the emission, with 
∆n = 3, must be a 5 S 2 transition. The energy of the n = 2 state is

E2 = -
13.60 eV

22 = -3.40 eV

Consequently, the energy of the emitted photon is

Ephoton = ∆Eatom = 1-0.54 eV2 - 1-3.40 eV2 = 2.86 eV

Inverting the energy-wavelength relationship that we started with, 
we find

l =
hc

Ephoton
=

14.14 * 10-15 eV s213.00 * 108 m/s2
2.86 eV

= 434 nm

When atomic hydrogen gas is irradiated with ultraviolet light  
having a wavelength of 95.10 nm, it fluoresces at the visible  
wavelength of 434 nm. (It also fluoresces at infrared and ultraviolet 
wavelengths in downward transitions with other values of ∆n.)

 REVIEW The 5 S 2 transition is a member of the Balmer series, 
and a 434 nm spectral line was shown in the hydrogen spectrum  
of Figure 37.7. It is important to notice that the 13.06 eV photon en-
ergy does not match any energy level of the hydrogen atom. Instead, 
it matches the difference between two levels because that conserves 
energy in a transition between those two levels. Photons with nearby 
wavelengths, such as 94 nm or 96 nm, would not be absorbed at all 
because their energy does not match the difference of any two energy  
levels in hydrogen.

FIGURE 38.23 The process of fluorescence in hydrogen. Energy 
levels are not drawn to scale.
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Matter Has Wave-like Properties
• The de Broglie wavelength of a “particle” of mass m is l = h/mv.

• The wave-like nature of matter is seen in the interference patterns of electrons, 
neutrons, and entire atoms.

• When a particle is confined, it sets up a de 
Broglie standing wave. The fact that standing 
waves have only certain allowed wavelengths 
leads to the conclusion that a confined particle  
has only certain allowed energies. That  
is, energy is quantized.

Bohr’s Model of the Atom
• An atom can exist in only certain stationary states. The  

allowed energies are quantized. State n has energy En.

• An atom can transition from one stationary state to another by 
emitting or absorbing a photon with Ephoton = hf = ∆Eatom.

• Atoms can be excited in inelastic collisions.

• Atoms seek the n = 1 ground state. Most atoms, most of the 
time, are in the ground state.

Light Has Particle-like Properties
• The energy of a light wave 

comes in discrete packets  
called light quanta or 
photons.

• For light of frequency f, the energy of each photon 
is E = hf, where h is Planck’s constant.

• For a light wave that delivers power P, photons 
arrive at rate R such that P = Rhf.

• Photons are “particle-like” but are not classical 
particles.

The Photon Model of Light
• Light consists of quanta of energy 

E = hf  and momentum p = h/l.

• Quanta are emitted and absorbed  
on an all-or-nothing basis.

• When a light quantum is absorbed, 
it delivers all its energy to one 
electron.

General Principles

Important Concepts

The goal of Chapter 38 has been to learn about the 
quantization of energy for light and matter.

Summary

c

E1

E2

E3

Emission

Absorption

Photoelectric effect  

Light can eject electrons from a metal  
only if f Ú f0 = E0/h, where E0 is the  
metal’s work function.
The stopping potential that stops  
even the fastest electrons is

Vstop =
h
e

 1f - f02

Particle in a box  

A particle confined to a one-dimensional box of length L sets up 
de Broglie standing waves. The allowed energies are

En = 1
2 mvn 

2 = n2 
h2

8mL2  n = 1, 2, 3, c

Compton scattering
When x rays scatter from atoms at angle u, their wavelength  
increases by

∆l = ls - li =
h

mc
 11 -  cos u2

The Bohr hydrogen atom  

An integer number of de Broglie wave-
lengths must fit around the circumference 
of the electron’s orbit: 2pr = nl.

This leads to energy quantization with

rn = n2aB  vn =
v1

n
  En = -

13.60 eV

n2

where aB = 0.0529 nm is the Bohr radius.

Applications

∆V

I

0-Vstop
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CONCEPTUAL QUESTIONS

photoelectric effect
threshold frequency, f0
stopping potential, Vstop

thermal emission
work function, E0

Planck’s constant, h or U
light quantum
photon

photon model
wave packet
Compton scattering
scattering angle
matter wave
de Broglie wavelength
quantized
energy level

quantum number, n
fundamental quantum of 
 energy, E1

Bohr model of the atom
stationary state
 excited state
ground state
transition

quantum jump
collisional excitation
energy-level diagram
Bohr radius, aB

binding energy
ionization energy
ionization limit
hydrogen-like ion

Terms and Notation

1. Calcium has the work function of 2.71 eV, which corresponds 
to a threshold wavelength of 459 nm (blue light). You have an 
optical detector based on the photoelectric effect, where the 
sensing material is calcium. Can you detect all of the following 
laser lines: an ultraviolet source (of wavelength 420 nm), Argon-
ion laser (a green light of wavelength 514 nm), He–Ne laser (a 
red light of wavelength 632 nm), and Ti:Sapphire laser (infrared 
light of wavelength 800 nm)? Why?

2. a. Explain why the graphs of Figure 38.3 are mostly horizontal 
for ∆V 7 0.

b. Explain why photoelectrons are ejected from the cathode 
with a range of kinetic energies, rather than all electrons hav-
ing the same kinetic energy.

c. Explain the reasoning by which we claim that the stopping 
potential Vstop indicates the maximum kinetic energy of the 
electrons.

3. How would the graph of Figure 38.2 look if classical physics pro-
vided the correct description of the photoelectric effect? Draw the 
graph and explain your reasoning. Assume that the light intensity 
remains constant as its frequency and wavelength are varied.

4. How would the graphs of Figure  38.3 look if classical physics 
provided the correct description of the photoelectric effect? 
Draw the graph and explain your reasoning. Include curves for 
both weak light and intense light.

5. FIGURE Q38.5 is the current-versus-potential-difference graph 
for a photoelectric-effect experiment with an unknown metal. 
How might the graph look if:
a. The light is replaced by a more intense light with the same 

wavelength. Draw it.
b. The metal is replaced by a different metal with a smaller 

work function? Draw it.

∆V (V)

I (mA)

10

10

2 3-1-2-3FIGURE Q38.5

6. Metal 1 has a larger work function than metal 2. Both are il-
luminated with the same short-wavelength ultraviolet light. Do 
photoelectrons from metal 1 have a higher speed, a lower speed, 
or the same speed as photoelectrons from metal 2? Explain.

7. Electron 1 is accelerated from rest through a potential difference 
of 50 V. Electron 2 is accelerated from rest through a potential 

difference of 100 V. Afterward, which electron has the larger de 
Broglie wavelength? Explain.

8. An electron and a proton are each accelerated from rest through 
a potential difference of 1000 V. Afterward, which particle has 
the larger de Broglie wavelength? Explain.

9. FIGURE Q38.9 is a simulation of the electrons detected behind 
two closely spaced slits. Each bright dot represents one electron. 
How will this pattern change if
a. The electron-beam intensity is increased?
b. The electron speed is reduced?
c. The electrons are replaced by neutrons traveling at the same 

speed?
d. The left slit is closed?
Your answers should consider the number of dots on the screen 
and the spacing, width, and positions of the fringes.

FIGURE Q38.9

0.0

 E (eV)

n = 3

n = 2

n = 1

-1.0

-2.0

-4.0

1240 nm

FIGURE Q38.12

10. Imagine that the horizontal box of Figure 38.14 is instead ori-
ented vertically. Also imagine the box to be on a neutron star 
where the gravitational field is so strong that the particle in the 
box slows significantly, nearly stopping, before it hits the top of 
the box. Make a qualitative sketch of the n = 3 de Broglie stand-
ing wave of a particle in this box.
Hint: The nodes are not uniformly spaced.

11.  If an electron is in a stationary state of an atom, is the electron at 
rest? If not, what does the term mean?

12. FIGURE Q38.12 shows the energy-level diagram of Element X.
a. What is the ionization energy of Element X?
b. An atom in the ground state absorbs a photon, then emits a 

photon with a wavelength of 1240 nm. What was the energy 
of the photon that was absorbed?

c. An atom in the ground state has a collision with an electron, then 
emits a photon with a wavelength of 1240 nm. What conclusion 
can you draw about the initial kinetic energy of the electron?
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EXERCISES AND PROBLEMS

Problems labeled  integrate material from earlier chapters.

Exercises

Section 38.1 The Photoelectric Effect

Section 38.2 Einstein’s Explanation

1. | Which metals in Table  38.1 exhibit the photoelectric effect  
for (a) light with l = 400 nm and (b) light with l = 250 nm?

2. | How many photoelectrons are ejected per second in the 
experiment represented by the graph of FIGURE EX38.2?

∆V (V)

I (mA)

10

10

2 3-1-2-3FIGURE EX38.2

3. || Electrons in a photoelectric-effect experiment emerge from 
an aluminum surface with a maximum kinetic energy of 1.00 eV. 
What is the wavelength of the light?

4. | Photoelectrons are observed when a metal is illuminated by 
light with a wavelength less than 400 nm. What is the metal’s 
work function?

5. | You need to design a photodetector that can respond to the 
entire range of visible light. What is the maximum possible work 
function of the cathode?

6. || A photoelectric-effect experiment finds a stopping potential 
of 1.66 V when light of 400 nm is used to illuminate the cathode.
a. From what metal is the cathode made?
b. What is the stopping potential if the intensity of the light is 

doubled?

Section 38.3 Photons

7. | a. Determine the energy, in eV, of a photon with a 550 nm 
wavelength.

b. Determine the wavelength of a 7.5 keV x-ray photon.
8. | What is the wavelength, in nm, of a photon with energy (a) 

0.15 eV, (b) 1.5 eV, and (c) 15.0 eV? For each, is this wavelength 
visible, ultraviolet, or infrared light?

9. | An FM radio station broadcasts with a power of 10 kW at a 
frequency of 101 MHz.
a. How many photons does the antenna emit each second?
b. Should the broadcast be treated as an electromagnetic wave 

or discrete photons? Explain.
10. | What is the energy, in eV, of (a) a 450 MHz radio-frequency 

photon, (b) a visible-light photon with a wavelength of 450 nm, 
and (c) an x-ray photon with a wavelength of 0.045 nm?

11. | A red laser with a wavelength of 650 nm and a blue laser with 
a wavelength of 450 nm emit laser beams with the same light 
power. How do their rates of photon emission compare? Answer 
this by computing Rred 

/Rblue.
12. | For what wavelength of light does a 100 mW laser deliver 

2.50 * 1017 photons per second?
13. | A 100 W incandescent lightbulb emits about 5 W of visible 

light. (The other 95 W are emitted as infrared radiation or lost as 
heat to the surroundings.) The average wavelength of the visible 

light is about 600 nm, so make the simplifying assumption that 
all the light has this wavelength. How many visible-light photons 
does the bulb emit per second?

14.  || What is the energy, in keV, of 75 keV x-ray photons that are 
backscattered (i.e., scattered directly back toward the source) by 
the electrons in a target?

15. || 55 keV x-ray photons are incident on a target. At what scatter-
ing angle do the scattered photons have an energy of 50 keV?

Section 38.4 Matter Waves and Energy Quantization

16. | At what speed is an electron’s de Broglie wavelength  
(a) 1.0 nm, (b) 1.0 mm, and (c) 1.0 mm?

17. || Through what potential difference must an electron be accel-
erated from rest to have a de Broglie wavelength of 500 nm?

18. || What is the de Broglie wavelength of a neutron that has fallen 
1.0 m in a vacuum chamber, starting from rest?

19. | a. What is the de Broglie wavelength of a 200 g baseball with 
a speed of 30 m/s?

b. What is the speed of a 200 g baseball with a de Broglie 
wavelength of 0.20 nm?

20. || The diameter of a nucleus is about 15 fm. What is the ki-
netic energy (in MeV) of a proton with a de Broglie wavelength 
of 5 fm?

21. || What is the quantum number of an electron confined in a 
one-dimensional box 4.5 nm long if the electron’s de Broglie 
wavelength is 1.5 nm?

22. | What is the length of a one-dimensional box in which an 
electron in the n = 1 state has the same energy as a photon with 
a wavelength of 500 nm?

23. | The diameter of the nucleus is about 10 fm. A simple model 
of the nucleus is that protons and neutrons are confined within 
a one-dimensional box of length 10 fm. What are the first three 
energy levels, in MeV, for a proton in such a box?

Section 38.5 Bohr’s Model of Atomic Quantization

24. || FIGURE EX38.24 is an energy-level diagram for a simple atom. 
What wavelengths, in nm, appear in the atom’s (a) emission spec-
trum and (b) absorption spectrum?

n = 2

n = 1 E1 = 0.00 eV

E2 = 1.50 eV

n = 3 E3 = 4.00 eV

FIGURE EX38.24

25. | An electron with 2.00 eV of kinetic energy collides with the 
atom shown in FIGURE EX38.24.
a. Is the electron able to excite the atom? Why or why not?
b. If your answer to part a was yes, what is the electron’s kinetic 

energy after the collision?
26. | The allowed energies of a simple atom are 0.00 eV, 

4.00 eV, and 6.00 eV. An electron traveling with a speed of 
1.30 * 106 m/s collides with the atom. Can the electron excite 
the atom to the n = 2 stationary state? The n = 3 stationary 
state? Explain.
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41. || Potassium and gold cathodes are used in a photoelectric- 
effect experiment. For each cathode, find:
a. The threshold frequency.
b. The threshold wavelength.
c. The maximum photoelectron ejection speed if the light has a 

wavelength of 220 nm.
d. The stopping potential if the wavelength is 220 nm.

42. || The graph in FIGURE P38.42 was measured in a photoelectric- 
effect experiment.
a. What is the work function (in eV) of the cathode?
b. What experimental value of Planck’s constant is obtained 

from these data?

27. || The allowed energies of a simple atom are 0.00 eV, 4.00 eV, 
and 6.00 eV.
a. Draw the atom’s energy-level diagram. Label each level with 

the energy and the quantum number.
b. What wavelengths appear in the atom’s emission spectrum?
c. What wavelengths appear in the atom’s absorption spectrum?

Section 38.6 The Bohr Hydrogen Atom

28. | What is the radius of a hydrogen atom whose electron is bound 
by 0.378 eV?

29. || a. Calculate the de Broglie wavelength of the electron in the 
n = 1, 2, and 3 states of the hydrogen atom. Use the infor-
mation in Table 38.2.

b. Show numerically that the circumference of the orbit for 
each of these stationary states is exactly equal to n de 
Broglie wavelengths.

c. Sketch the de Broglie standing wave for the n = 3 orbit.
30. || What is the radius of a hydrogen atom whose electron moves 

at 7.3 * 105 m/s?
31. ||  a. What quantum number of the hydrogen atom comes  

closest to giving a 100-nm-diameter electron orbit?
b. What are the electron’s speed and energy in this state?

32. || How much energy does it take to ionize a hydrogen atom that 
is in its first excited state?

Section 38.7 The Hydrogen Spectrum

33.  | Determine the wavelengths of all the possible photons that can 
be emitted from the n = 4 state of a hydrogen atom.

34. | Find the radius of the electron’s orbit, the electron’s speed, 
and the energy of the atom for the first three stationary states of 
He+.

35. || What is the third-longest wavelength in the absorption spec-
trum of hydrogen?

Problems
36. | A ruby laser emits an intense pulse of light that lasts a mere  

10 ns. The light has a wavelength of 690 nm, and each pulse has 
an energy of 500 mJ.
a. How many photons are emitted in each pulse?
b. What is the rate of photon emission, in photons per second, 

during the 10 ns that the laser is “on”?
37. || In a photoelectric-effect experiment, the wavelength of light 

shining on an aluminum cathode is decreased from 250 nm to 
200 nm. What is the change in the stopping potential?

38. | The wavelengths of light emitted by a firefly span the  
visible spectrum but have maximum intensity near 550 nm. 
A typical flash lasts for 100 ms and has a power output of  
1.2 mW. How many photons does a firefly emit in one flash if 
we assume that all light is emitted at the peak intensity wave-
length of 550 nm?

39. || Dinoflagellates are single-cell organisms that float in the 
world’s oceans. Many types are bioluminescent. When disturbed, 
a typical bioluminescent dinoflagellate emits 108 photons in a 
0.10-s-long flash of wavelength 460 nm. What is the power of the 
flash?

40. || The maximum kinetic energy of photoelectrons is 2.8 eV. 
When the wavelength of the light is increased by 50%, the max-
imum energy decreases to 1.1 eV. What are (a) the work function 
of the cathode and (b) the initial wavelength of the light?

f (* 1015 Hz)

Vstop (V)

10

4

2 3
0

8
6

2

FIGURE P38.42

43. || In a photoelectric-effect experiment, the stopping potential 
was measured for several different wavelengths of incident light. 
The data are as follows:

Wavelength (nm) Stopping potential (V)

500 0.19

450 0.48

400 0.83

350 1.28

300 1.89

250 2.74

Use an appropriate graph of the data to determine (a) the metal 
used for the cathode and (b) an experimental value for Planck’s 
constant.

44. ||| A 75 kW radio transmitter emits 550 kHz radio waves uni-
formly in all directions. At what rate do photons strike a 
1.5-m-tall, 3.0-mm-diameter antenna that is 15 km away?

45. || The cosmic microwave background radiation is light left over 
from the Big Bang that has been Doppler-shifted to microwave 
frequencies by the expansion of the universe. It now fills the uni-
verse with 450 photons/cm3 at an average frequency of 160 GHz. 
How much energy from the cosmic microwave background, in 
MeV, fills a small apartment that has 95 m2 of floor space and 
2.5-m-high ceilings?

46. ||| Compton scattering is relevant not only to x-ray photons but, 
even more so, to higher energy gamma-ray photons. Suppose a 
350 keV gamma-ray photon backscatters (i.e., is scattered back 
toward the source) from a free electron. Afterward, what is the 
electron’s velocity in m/s?
 Hint: This problem uses relativity.

47. || The electron interference pattern of Figure 38.12 was made 
by shooting electrons with 50 keV of kinetic energy through two 
slits spaced 1.0 mm apart. The fringes were recorded on a detec-
tor 1.0 m behind the slits.
a. What was the speed of the electrons? (The speed is large 

enough to justify using relativity, but for simplicity do this as 
a nonrelativistic calculation.)

b. Figure 38.12 is greatly magnified. What was the actual spac-
ing on the detector between adjacent bright fringes?
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60. || Ultraviolet light with a wavelength of 70.0 nm shines on a gas 
of hydrogen atoms in their ground states. Some of the atoms are 
ionized by the light. What is the kinetic energy of the electrons 
that are freed in this process?

61. || a. What wavelength photon does a hydrogen atom emit in a 
200 S 199 transition?

b. What is the difference in the wavelengths emitted in a 
199 S 2 transition and a 200 S 2 transition?

62. || Consider a hydrogen atom in stationary state n.
a. Show that the orbital period of an electron in quantum state n 

is T = n3T1, and find a numerical value for T1.
b.  On average, an atom stays in the n = 2 state for 1.6 ns  

before undergoing a transition to the n = 1 state. On aver-
age, how many revolutions does the electron make before  
the transition?

63. || Draw an energy-level diagram, similar to Figure 38.21, for the 
He+ ion. On your diagram:
a. Show the first five energy levels. Label each with the values 

of n and En.
b. Show the ionization limit.
c. Show all possible emission transitions from the n = 4 energy 

level.
d. Calculate the wavelengths (in nm) for each of the transitions 

in part c and show them alongside the appropriate arrow.
64. | Very large, hot stars—much hotter than our sun—can be 

identified by the way in which He+ ions in their atmosphere ab-
sorb light. What are the three longest wavelengths, in nm, in the 
Balmer series of He+?

65. | What are the wavelengths of the transitions 3 S 2, 4 S 2, and 
5 S 2 in the hydrogen-like ion O+7? In what spectral range do 
these lie?

66. || The muon is a subatomic particle with the same charge as an 
electron but with a mass that is 207 times greater: mm = 207me. 
Physicists think of muons as “heavy electrons.” However, the 
muon is not a stable particle; it decays with a half-life of 1.5 ms 
into an electron plus two neutrinos. Muons from cosmic rays are 
sometimes “captured” by the nuclei of the atoms in a solid. A 
captured muon orbits this nucleus, like an electron, until it de-
cays. Because the muon is often captured into an excited orbit 
1n 7 12, its presence can be detected by observing the photons 
emitted in transitions such as 2 S 1 and 3 S 1.

Consider a muon captured by a carbon nucleus 1Z = 62. 
Because of its large mass, the muon orbits well inside the elec-
tron cloud and is not affected by the electrons. Thus the muon 
“sees” the full nuclear charge Ze and acts like the electron in a 
hydrogen-like ion.
a. What are the orbital radius and speed of a muon in the n = 1 

ground state? Note that the mass of a muon differs from the 
mass of an electron.

b. What is the wavelength of the 2 S 1 muon transition?
c. Is the photon emitted in the 2 S 1 transition infrared, visible, 

ultraviolet, or x ray?
d. How many orbits will the muon complete during 1.5 ms? Is 

this a sufficiently large number that the Bohr model “makes 
sense,” even though the muon is not stable?

67. || Two hydrogen atoms collide head-on. The collision brings 
both atoms to a halt. Immediately after the collision, both atoms 
emit a 121.6 nm photon. What was the speed of each atom just 
before the collision?

48. ||| Electrons, all with the same speed, pass through a tiny 15-nm-
wide slit and create a diffraction pattern on a detector 50 mm 
behind the slit. What is the electrons’ kinetic energy, in eV, if the 
central maximum has a width of 3.3 mm?

49. ||| An electron confined in a one-dimensional box is observed, 
at different times, to have energies of 12 eV, 27 eV, and 48 eV. 
What is the length of the box?

50. || A muon—a subatomic particle with charge -e and a mass 
207 times that of an electron—is confined in a 15-pm-long, 
one-dimensional box. (1 pm = 1 picometer = 10-12 m.) What is 
the wavelength, in nm, of the photon emitted in a quantum jump 
from n = 2 to n = 1?

51. || A proton confined in a one-dimensional box emits a 2.0 MeV 
gamma-ray photon in a quantum jump from n = 2 to n = 1. 
What is the length of the box?

52. || An electron confined in a one-dimensional box emits a 200 nm  
photon in a quantum jump from n = 2 to n = 1. What is the 
length of the box?

53. || Consider a small virus having a diameter of 10 nm. The atoms 
of the intracellular fluid are confined within the virus. Suppose 
we model the virus as a 10-nm-long “box.” What is the ground-
state energy (in eV) of a sodium ion confined in this box?

54. | The first three energy levels of the fictitious element X are 
shown in FIGURE P38.54.
a. What is the ionization energy of element X?
b. What wavelengths are observed in the absorption spectrum 

of element X? Express your answers in nm.
c. State whether each of your wavelengths in part b corresponds 

to ultraviolet, visible, or infrared light.

n = 2

n = 1 -6.50

-3.00
n = 3 -2.00

0.00
E (eV)

FIGURE P38.54

55. || The absorption spectrum of an atom consists of the wave-
lengths 200 nm, 300 nm, and 500 nm.
a. Draw the atom’s energy-level diagram.
b. What wavelengths are seen in the atom’s emission spectrum?

56. || The first three energy levels of the fictitious element X 
were shown in FIGURE P38.54. An electron with a speed of 
1.4 * 106 m/s collides with an atom of element X. Shortly af-
terward, the atom emits a photon with a wavelength of 1240 nm. 
What was the electron’s speed after the collision? Assume that, 
because the atom is much more massive than the electron, the 
recoil of the atom is negligible.
Hint: The energy of the photon is not the energy transferred to 
the atom in the collision.

57. || Starting from Equation 38.32, derive Equation 38.33.
58. | Calculate all the wavelengths of visible light in the emission 

spectrum of the hydrogen atom.
Hint: There are infinitely many wavelengths in the spectrum, 
so you’ll need to develop a strategy for this problem rather than 
using trial and error.

59. ||| An electron with a speed of 2.1 * 106 m/s collides with a hy-
drogen atom, exciting the atom to the highest possible energy 
level. The atom then undergoes a transition with ∆n = 1. What is 
the wavelength of the photon emitted in the transition?
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b. By treating the laser beam as if it were a diffraction grating, 
calculate the first-order diffraction angle of a sodium atom 
traveling with the rms speed of part a.

c.  How far apart are points B and C if the second standing wave 
is 10 cm from the first?

d. Because interference is observed between the two paths, each 
individual atom is apparently present at both point B and 
point C. Describe, in your own words, what this experiment 
tells you about the nature of matter.

72. ||| Consider an electron undergoing cyclotron motion in a mag-
netic field. According to Bohr, the electron’s angular momentum 
must be quantized in units of U.
a. Show that allowed radii for the electron’s orbit are given by 

rn = 1n U/eB21/2, where n = 1, 2, 3, . . . .
b. Compute the first four allowed radii in a 1.0 T magnetic field.
c. Find an expression for the allowed energy levels En in terms 

of U and the cyclotron frequency fcyc.
73. ||| Suppose the atoms in a gas are moving so slowly that their de 

Broglie wavelengths are larger than the spacing between atoms. 
If this happens, the gas enters a new phase of matter, called a 
Bose-Einstein condensate, in which the entire gas is in a single 
quantum state and atoms can no longer be identified individually. 
This can be achieved in the laboratory by using an atom trap. 
First, laser beams confine approximately 5 * 108 87Rb atoms in 
a 1-mm-diameter spherical volume. Then additional laser beams 
implement a laser cooling technique to lower the temperature 
of this dilute gas to almost absolute zero. Estimate the critical 
temperature Tc at which the gas becomes a Bose-Einstein con-
densate. Give your answer in nK to one significant figure. The 
rms speed of atoms in an ideal gas is a reasonable estimate of 
a typical atomic speed. You can estimate the spacing between 
atoms, a quantity that you’ll need, by imagining that they sit at 
the corners of a cubic lattice. Your estimate of Tc is very much 
in the correct range but, because this model is a bit too simple, 
about a factor of 3 too low.

68. || A beam of electrons is incident upon a gas of hydrogen atoms.
a. What minimum speed must the electrons have to cause 

the emission of 656 nm light from the 3 S 2 transition of 
hydrogen?

b. Through what potential difference must the electrons be  
accelerated to have this speed?

Challenge Problems
69. ||| The electrons in a cathode-ray tube are accelerated through a 

250 V potential difference and then shot through a 33-nm-diameter  
circular aperture. What is the diameter of the bright spot on an 
electron detector 1.5 m behind the aperture?

70. ||| An experiment was performed in which neutrons were shot 
through two slits spaced 0.10 mm apart and detected 3.5 m be-
hind the slits. FIGURE CP38.70 shows the detector output. Notice 
the 100 mm scale on the figure. To one significant figure, what 
was the speed of the neutrons?

100 mm

N
eu

tr
on

 in
te

ns
ity

FIGURE CP38.70

71. ||| In the atom interferometer experiment of Figure 38.13, laser- 
cooling techniques were used to cool a dilute vapor of sodium 
atoms to a temperature of 0.0010 K = 1.0 mK. The ultracold 
atoms passed through a series of collimating apertures to form 
the atomic beam you see entering the figure from the left. The 
standing light waves were created from a laser beam with a 
wavelength of 590 nm.
a. What is the rms speed vrms of a sodium atom 1A = 232 in a 

gas at temperature 1.0 mK?
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Wave Functions and Uncertainty

What is quantum mechanics?
Quantum mechanics is the physics of light and matter at the 
atomic scale. This chapter and the next will introduce the 
essentials of quantum mechanics in one dimension.

■■ Quantum mechanics will allow us to understand important 
properties of atoms and nuclei in Chapters 41 and 42.

■■ Despite the strange and unfamiliar aspects of quantum mechanics, 
its predictions are verified with amazing precision.

What is a wave function?
The probability of finding a particle at  
a particular position x is determined by  
the particle’s wave function c1x2. This is  
a wave-like function that can be used to 
make probabilistic predictions, but nothing 
is actually waving.

■■ The wave function is an oscillatory 
function.

■■ The square of the wave function is the 
particle’s probability density.

■■ The particle is most likely to be found near 
the maxima of the probability density.

This chapter will focus on learning to 
interpret the wave function.

 ❮❮ LOOKING BACK Sections 38.3–38.4 The  
photon model and the de Broglie wavelength

What role does probability play?
Quantum mechanics deals with probabilities. 
We cannot know exactly where an electron  
is or how it’s moving, but we can calculate  
the probability of locating the electron in a  
specified region of space.

■■ In an experiment with N particles, if NA  
are detected in some region A of space, 
then the probability of finding a particle  
in that region is PA = NA/N.

How are waves and particles reconciled?
The wave function reconciles the experimental 
evidence that matter has both particle-like 
and wave-like properties. The probability of 
detecting a particle is governed by a wave-like 
function that can exhibit interference.

What is Heisenberg’s uncertainty principle?
Because matter has wave-like properties, 
a particle does not have a precise position 
or speed. Our knowledge of the particle 
is inherently uncertain. This is reflected 
in the Heisenberg uncertainty principle, 
∆x  ∆p Ú h/2, where ∆x and ∆p are the  
position and momentum uncertainty.

❮❮ LOOKING BACK Section 17.8 Beats

 IN THIS CHAPTER, you will learn to use the wave-function description of matter.

39

The intersecting laser beams and magnetic 
fields coax atoms into a new state of matter, 
a Bose-Einstein condensate, in which many 
atoms are described by a single wave 
function.

Detected particles

0c(x) 0 2

c(x)

x

x

A

c(x)

Wave packet length ∆x

x

v
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39.1 Waves, Particles, and the Double-Slit Experiment  1171

39.1  Waves, Particles, and the  
Double-Slit Experiment

You may feel surprise at how slowly we have been building up to quantum 
mechanics. Why not just write it down and start using it? There are two reasons. 
First, quantum mechanics explains microscopic phenomena that we cannot directly 
sense or experience. It was important to begin by learning how light and atoms 
behave. Otherwise, how would you know if quantum mechanics explains anything? 
Second, the concepts we’ll need in quantum mechanics are rather abstract. Before 
launching into the mathematics, we need to establish a connection between theory 
and experiment.

We will make the connection by returning to the double-slit interference 
 experiment, an experiment that goes right to the heart of wave–particle duality. The  
significance of the double-slit experiment arises from the fact that both light  
and matter exhibit the same interference pattern. Regardless of whether photons, 
electrons, or neutrons pass through the slits, their arrival at a detector is a particle- 
like event. That is, they make a collection of discrete dots on a detector. Yet our 
understanding of how interference “works” is based on the properties of waves. 
Our goal is to find the connection between the wave description and the particle  
description of interference.

A Wave Analysis of Interference
The interference of light can be analyzed from either a wave perspective or a photon 
perspective. Let’s start with a wave analysis. FIGURE 39.1 shows light waves passing 
through a double slit with slit separation d. You should recall that the lines in a wave-
front diagram represent wave crests, spaced one wavelength apart. The bright fringes 
of constructive interference occur where two crests or two troughs overlap. The graphs 
and the picture of the detection screen (notice that they’re aligned vertically) show the 
outcome of the experiment.

You studied interference and the double-slit experiment in ❮❮■CHAPTERS 17 and 33. 
The two waves traveling from the slits to the viewing screen are traveling waves with  
electric fields

  E1 = a sin1kr1 - vt2
  E2 = a sin1kr2 - vt2

where a is the amplitude of each wave, k = 2p/l is the wave number, and r1 and r2 are 
the distances from the two slits.

According to the principle of superposition, these two waves add together where 
they meet at a point on the screen to give a wave with net electric field E = E1 + E2. 
Previously we found that the amplitude of the superposition of two sinusoidal waves is

 A1x2 = 2a cos1pdx
lL 2 (39.1)

where x is the horizontal coordinate on the screen, measured from x = 0 in the center.
The function A1x2, the top graph in Figure 39.1, is called the amplitude function. 

It describes the amplitude A of the light wave as a function of the position x on the 
viewing screen. The amplitude function has maxima where two crests from individ-
ual waves overlap and add constructively to make a larger wave with amplitude 2a. 
A1x2 is zero at points where the two individual waves are out of phase and interfere 
destructively.

If you carry out a double-slit experiment in the lab, what you observe on the screen 
is the light’s intensity, not its amplitude. A wave’s intensity I is proportional to the 
square of the amplitude. That is, I ∝ A2, where ∝ is the “is proportional to” symbol. 

Interference fringes in an optical double- 
slit interference experiment.

Approaching wave fronts

Wave amplitude along the screen

Interference fringes

Photon arrival positions

Double slit

Screen

Crests
overlap

0

0

x

x

A(x)

L

d

l l

l

I

FIGURE 39.1 The double-slit experiment 
with light.
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1172 CHAPTER 39 Wave Functions and Uncertainty

Using Equation 39.1 for the amplitude at each point, we find the intensity I1x2 as a 
function of position x on the screen is

 I1x2 = C cos21pdx
lL 2 (39.2)

where C is a proportionality constant.
The lower graph in Figure 39.1 shows the intensity as a function of position along 

the screen. This graph shows the alternating bright and dark interference fringes that 
you see in the laboratory. In other words, the intensity of the wave is the experimental 
reality that you observe and measure.

Probability
Before discussing photons, we need to introduce some ideas about probability. Ima g-
ine throwing darts at a dart board while blindfolded. FIGURE 39.2 shows how the board 
might look after your first 100 throws. From this information, can you predict where  
your 101st throw is going to land? We’ll assume that all darts hit the board.

No. The position of any individual dart is unpredictable. No matter how hard you 
try to reproduce the previous throw, a second dart will not land at the same place. Yet 
there is clearly an overall pattern to where the darts strike the board. Even blindfolded,  
you had a general sense of where the center of the board was, so each dart was more 
likely to land near the center than at the edge.

Although we can’t predict where any individual dart will land, we can use the 
information in Figure 39.2 to determine the probability that your next throw will land 
in region A or region B or region C. Because 45 out of 100 throws landed in region A, 
we could say that the odds of hitting region A are 45 out of 100, or 45%.

Now, 100 throws isn’t all that many. If you throw another 100 darts, perhaps only 
43 will land in region A. Then maybe 48 of the next 100 throws. Imagine that the 
total number of throws Ntot becomes extremely large. Then the probability that any 
particular throw lands in region A is defined to be

 PA = lim
NtotS ∞

    

NA

Ntot
 (39.3)

In other words, the probability that the outcome will be A is the fraction of outcomes that 
are A in an enormously large number of trials. Similarly, PB = NB/Ntot and PC = NC/Ntot 
as Ntot S ∞  . We can give probabilities as either a decimal fraction or a percentage. In  
this example, PA ≈ 45%, PB ≈ 35%, and PC ≈ 20%. We’ve used ≈  rather than =
because 100 throws isn’t enough to determine the probabilities with great precision.

What is the probability that a dart lands in either region A or region B? The number 
of darts landing in either A or B is NA or B = NA + NB, so we can use the definition of  
probability to learn that

  PA or B = lim
NtotS ∞

    

NA or B

Ntot
= lim

NtotS ∞
    

NA + NB

Ntot
 

  = lim
NtotS ∞

    

NA

Ntot
+ lim

NtotS ∞
    

NB

Ntot
= PA + PB 

(39.4)

That is, the probability that the outcome will be A or B is the sum of PA and PB. 
This important conclusion is a general property of probabilities.

Each dart lands somewhere on the board. Consequently, the probability that a dart 
lands in A or B or C must be 100%. And, in fact,

Psomewhere = PA or B or C = PA + PB + PC = 0.45 + 0.35 + 0.20 = 1.00

Thus another important property of probabilities is that the sum of the probabilities 
of all possible outcomes must equal 1.

45 in region A

35 in region B
20 in region C

C

B

A

FIGURE 39.2 One hundred throws at a 
dart board.
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Suppose exhaustive trials have established that the probability of a dart landing in 
region A is PA. If you throw N darts, how many do you expect to land in A? This value,  
called the expected value, is

  NA expected = NPA (39.5)

The expected value is your best prediction of the outcome of an experiment.
If PA = 0.45, your best prediction is that 27 of 60 throws (45% of 60) will land in 

A. Of course, predicting 27 and actually getting 27 aren’t the same thing. You would 
predict 30 heads in 60 flips of a coin, but you wouldn’t be surprised if the actual num-
ber were 28 or 31. Similarly, the number of darts landing in region A might be 24 or 
29 instead of 27. In general, the agreement between actual values and expected values 
improves as you throw more darts.

A Photon Analysis of Interference
Now let’s look at the double-slit results from a photon perspective. We know, from 
experimental evidence, that the interference pattern is built up photon by photon.  
The bottom portion of Figure  39.1 shows the pattern made on a detector after the 
arrival of the first few dozen photons. It is clearly a double-slit interference pattern, 
but it’s made, rather like a newspaper photograph, by piling up dots in some places 
but not others.

The arrival position of any particular photon is unpredictable. That is, nothing 
about how the experiment is set up or conducted allows us to predict exactly where the 
dot of an individual photon will appear on the detector. Yet there is clearly an overall 
pattern. There are some positions at which a photon is more likely to be detected, other  
positions at which it is less likely to be found.

If we record the arrival positions of many thousands of photons, we will be able 
to determine the probability that a photon will be detected at any given location. 
If 50 out of 50,000 photons land in one small area of the screen, then each photon 
has a probability of 50/50,000 = 0.001 = 0.1% of being detected there. The prob-
ability will be zero at the interference minima because no photons at all arrive 
at those points. Similarly, the probability will be a maximum at the interference  
maxima.

FIGURE 39.3a shows a narrow strip with width dx and height H. (We will assume 
that dx is very small in comparison with the fringe spacing, so the light’s intensity 
over dx is very nearly constant.) Think of this strip as a very narrow detector that 
can detect and count the photons landing on it. Suppose we place the narrow strip at 
position x. We’ll use the notation N1in dx at x2 to indicate the number of photons that 
hit the detector at this position. The value of N1in dx at x2 varies from point to point. 
N1in dx at x2 is large if x happens to be near the center of a bright fringe; N1in dx at x2 
is small if x is in a dark fringe.

Suppose Ntot photons are fired at the slits. The probability that any one photon ends  
up in the strip at position x is

 Prob1in dx at x2 = lim
NtotS ∞

    

N1in dx at x2
Ntot

 (39.6)

As FIGURE 39.3b shows, Equation 39.6 is an empirical method for determining the prob-
ability of the photons hitting a particular spot on the detector.

STOP TO THINK 39.1 Suppose you roll a die 30 times. What is the expected number 
of 1’s and 6’s?

N(in dx at x1) = 12 N(in dx at x2) = 3

Ntot = 84

Prob(in dx at x1)
≈ 12/84
= 4/28

Prob(in dx at x2)
≈ 3/84
= 1/28

(b)

x1

x-axis 
x2

The number of photons in
this narrow strip when it is
at position x is N(in dx at x).

dx

0 Position x 

H

x-axis 

(a)

FIGURE 39.3 A strip of width dx at  
position x.
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1174 CHAPTER 39 Wave Functions and Uncertainty

Alternatively, suppose we can calculate the probabilities from a theory. In that case,  
the expected value for the number of photons landing in the narrow strip when it is at 
position x is

 N1in dx at x2 = N * Prob1in dx at x2 (39.7)

We cannot predict what any individual photon will do, but we can predict the fraction 
of the photons that should land in this little region of space. Prob1in dx at x2 is the 
probability that it will happen.

39.2 Connecting the Wave and Photon Views
The wave model of light describes the interference pattern in terms of the wave’s 
intensity I1x2, a continuous-valued function. The photon model describes the interfer-
ence pattern in terms of the probability Prob1in dx at x2 of detecting a photon. These 
two models are very different, yet Figure 39.1 shows a clear correlation between the 
intensity of the wave and the probability of detecting photons. That is, photons are 
more likely to be detected at those points where the wave intensity is high and less 
likely to be detected at those points where the wave intensity is low.

The intensity of a wave is I = P/A, the ratio of light power P (joules per second) to 
the area A on which the light falls. The narrow strip in Figure 39.3a has area A = H dx. 
If the light intensity at position x is I1x2, the amount of light energy E falling onto this 
narrow strip during each second is

 E1in dx at x2 = I1x2 A = I1x2 H dx = H I1x2 dx (39.8)

The notation E1in dx at x2 refers to the energy landing on this narrow strip if you place 
it at position x.

From the photon perspective, energy E is due to the arrival of N photons, each of 
which has energy h f . The number of photons that arrive in the strip each second is

 N1in dx at x2 =
E1in dx at x2

h f
=

H
h f

 I1x2 dx (39.9)

We can then use Equation 39.6, the definition of probability, to write the probability 
that a photon lands in the narrow strip dx at position x as

 Prob1in dx at x2 =
N1in dx at x2

Ntot
=

H
h f Ntot

 I1x2 dx (39.10)

Equation 39.10 is a critical link between the wave model and the photon model. It tells 
us that the probability of detecting a photon is proportional to the intensity of the light 
at that point and to the width of the detector.

As a final step, recall that the light intensity I1x2 is proportional to 0A1x2 0 2, the 
square of the amplitude function. Consequently,

 Prob1in dx at x2 ∝ 0A1x2 0 2 dx (39.11)

where the various constants in Equation 39.10 have all been incorporated into the 
unspecified proportionality constant of Equation 39.11.

In other words, the probability of detecting a photon at a particular point is 
directly proportional to the square of the light-wave amplitude function at that 
point. If the wave amplitude at point A is twice that at point B, then a photon is four 
times as likely to land in a narrow strip at A as it is to land in an equal-width strip at B.

   NOTE    Equation 39.11 is the connection between the particle perspective and the 
wave perspective. It relates the probability of observing a particle-like event—the 
arrival of a photon—to the amplitude of a continuous, classical wave. This connection 
will become the basis of how we interpret the results of quantum-physics calculations.
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39.2 Connecting the Wave and Photon Views 1175

Probability Density
We need one last definition. Recall that the mass of a wire or string of a length L can 
be expressed in terms of the linear mass density m as m = mL. Similarly, the charge 
along a length L of wire can be expressed in terms of the linear charge density l as 
Q = lL. If the length had been very short—in which case we might have denoted it as 
dx—and if the density varied from point to point, we could have written

mass1in length dx at x2 = m1x2 dx

charge1in length dx at x2 = l1x2 dx

where m1x2 and l1x2 are the linear densities at position x. Writing the mass and charge 
this way separates the role of the density from the role of the small length dx.

Equation 39.11 looks similar. Using the mass and charge densities as analogies, as 
shown in FIGURE 39.4, we can define the probability density P1x2 such that

 Prob1in dx at x2 = P1x2 dx (39.12)

In one dimension, probability density has SI units of m-1. Thus the probability density 
multiplied by a length, as in Equation 39.12, yields a dimensionless probability.

   NOTE    P1x2 itself is not a probability, just as the linear mass density l is not, by 
itself, a mass. You must multiply the probability density by a length, as shown in 
Equation 39.12, to find an actual probability.

By comparing Equation 39.12 to Equation 39.11, you can see that the photon proba-
bility density is directly proportional to the square of the light-wave amplitude:

 P1x2 ∝ 0A1x2 0 2 (39.13)

The probability density, unlike the probability itself, is independent of the width dx and  
depends on only the amplitude function.

Although we were inspired by the double-slit experiment, nothing in our analysis 
actually depends on the double-slit geometry. Consequently, Equation 39.13 is quite 
general. It says that for any experiment in which we detect photons, the probability 
density for detecting a photon is directly proportional to the square of the ampli-
tude function of the corresponding electromagnetic wave. We now have an explicit 
connection between the wave-like and the particle-like properties of the light.

In an experiment, 6000 out of 600,000 photons are detected in a 
1.0-mm-wide strip located at position x = 50 cm. What is the prob-
ability density at x = 50 cm?

SOLVE The probability that a photon arrives at this particular strip is

Prob1in 1.0 mm at x = 50 cm2 =
6000

600,000
= 0.010

Thus the probability density P1x2 = Prob1in dx at x2/dx at this  
position is

  P150 cm2 =
Prob1in 1.0 mm at x = 50 cm2

0.0010 m
=

0.010
0.0010 m

  = 10 m-1

EXAMPLE 39.1 ■ Calculating the probability density

The probability that a photon lands in this
small segment of the screen is:

Prob(in dx at x) = P(x) dx 

The mass of this small segment of string is:
mass(in dx at x) = m(x) dx 

Probability density
at x is P(x).

x

Linear mass density
at x is m(x).

dx

x-axis

x-axis

x

dx

 FIGURE 39.4 The probability density is 
analogous to the linear mass density.

STOP TO THINK 39.2 The figure shows 
the detection of photons in an optical 
 experiment. Rank in order, from largest 
to  smallest, the square of the amplitude 
function of the electromagnetic wave at 
 positions A, B, C, and D.

A B C D
x
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1176 CHAPTER 39 Wave Functions and Uncertainty

39.3 The Wave Function
Now let’s look at the interference of matter. Electrons passing through a double-slit 
apparatus create the same interference patterns as photons. The pattern is built up 
electron by electron, but there is no way to predict where any particular electron will 
be detected. Even so, we can establish the probability of an electron landing in a 
narrow strip of width dx by measuring the positions of many individual electrons.

For light, we were able to relate the photon probability density P1x2 to the  
amplitude of an electromagnetic wave. But there is no wave for electrons like  
electromagnetic waves for light. So how do we find the probability density for 
electrons? We have reached the point where we must make an inspired leap beyond 
classical physics. Let us assume that there is some kind of continuous, wave-like 
function for matter that plays a role analogous to the electromagnetic amplitude 
function A1x2 for light. We will call this function the wave function c1x2, where 
c is a lowercase Greek psi. The wave function is a function of position, which is 
why we write it as c1x2.

To connect the wave function to the real world of experimental measurements, we 
will interpret c1x2 in terms of the probability of detecting a particle at position x. If a 
matter particle, such as an electron, is described by the wave function c1x2, then the 
probability Prob1in dx at x2 of finding the particle within a narrow region of width dx 
at position x is

 Prob1in dx at x2 = 0c1x2 0 2 dx = P1x2 dx (39.14)

That is, the probability density P1x2 for finding the particle is

 P1x2 = 0c1x2 0 2 (39.15)

With Equations 39.14 and 39.15, we are defining the wave function c1x2 to play 
the same role for material particles that the amplitude function A1x2 does for photons. 
The only difference is that P1x2 = 0c1x2 0 2 is for particles, whereas Equation 39.13 for 
photons is P1x2 ∝ 0A1x2 0 2. The difference is that the electromagnetic field amplitude  
A1x2 had previously been defined through the laws of electricity and magnetism. 
0A1x2 0 2 is proportional to the probability density for finding a photon, but it is not 
directly the probability density. In contrast, we do not have any preexisting definition 
for the wave function c1x2. Thus we are free to define c1x2 so that 0c1x2 0 2 is exactly 
the probability density. That is why we used =  rather than ∝ in Equation 39.15.

FIGURE  39.5 shows the double-slit experiment with electrons. This time we will  
work backward. From the observed distribution of electrons, which represents the 
probabilities of their landing in any particular location, we can deduce that 0c1x2 0 2 has  
alternating maxima and zeros. The oscillatory wave function c1x2 is the square root 
at each point of 0c1x2 0 2. Notice the very close analogy with the amplitude function 
A1x2 in Figure 39.1.

   NOTE    0c1x2 0 2 is uniquely determined by the data, but the wave function c1x2 is 
not unique. The alternative wave function c′1x2 = -c1x2—an upside-down version 
of the graph in Figure 39.5—would be equally acceptable.

FIGURE 39.6 is a different example of a wave function. After squaring it at each 
point, as shown in the bottom half of the figure, we see that this wave function 
represents a particle most likely to be detected very near x = -b or x = +b. These 
are the points where 0c1x2 0 2 is a maximum. There is zero likelihood of finding 
the particle right in the center. The particle is more likely to be detected at some 
positions than at others, but we cannot predict what its exact location will be at any 
given time.

   NOTE    One of the difficulties in learning to use the concept of a wave function is 
coming to grips with the fact that there is no “thing” that is waving. There is no 

Electrons create interference fringes.

Electrons

Electron wave function

Interference fringes

Electron arrival positions on detector

Double slit

Detector

de Broglie
wavelength

0

0

x

x

c(x)

l l

0c(x) 0 2

FIGURE 39.5 The double-slit experiment 
with electrons.
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39.3 The Wave Function 1177

disturbance associated with a physical medium. The wave function c1x2 is simply a 
wave-like function (i.e., it oscillates between positive and negative values) that can 
be used to make probabilistic predictions about atomic particles.

A Little Science Methodology
Equation 39.14 defines the wave function c1x2 for a particle in terms of the probability 
of finding the particle at different positions x. But our interests go beyond merely 
characterizing experimental data. We would like to develop a new theory of matter. 
But just what is a theory? Although this is not a book on scientific methodology, we 
can loosely say that a physical theory needs two basic ingredients:

1. A descriptor, a mathematical quantity used to describe our knowledge of a phys-
ical object.

2. One or more laws that govern the behavior of the descriptor.

For example, Newtonian mechanics is a theory of motion. The primary descriptor in 
Newtonian mechanics is a particle’s position x1t2 as a function of time. This describes 
our knowledge of the particle at all times. The position is governed by Newton’s 
laws. These laws, especially the second law, are mathematical statements of how the 
descriptor changes in response to forces. If we predict x1t2 for a known set of forces, 
we feel confident that an experiment carried out at time t will find the particle right  
where predicted.

Newton’s theory of motion assumes that a particle’s position is well defined at 
every instant of time. The difficulty facing physicists early in the 20th century was the 
astounding discovery that the position of an atomic-size particle is not well defined.  
An electron in a double-slit experiment must, in some sense, go through both slits 
to produce an electron interference pattern. It simply does not have a well-defined 
position as it interacts with the slits. But if the position function x1t2 is not a valid 
descriptor for matter at the atomic level, what is?

We will assert that the wave function c1x2 is the descriptor of a particle in quantum 
mechanics. In other words, the wave function tells us everything we can know about 
the particle. The wave function c1x2 plays the same leading role in quantum mechanics  
that the position function x1t2 plays in classical mechanics.

Whether this hypothesis has any merit will not be known until we see if it leads to 
predictions that can be verified. And before we can do that, we need to learn what new 
law of physics determines the wave function c1x2 in a given situation. We will answer 
this question in the next chapter.

It may seem to you, as we go along, that we are simply “making up” ideas. 
Indeed, that is at least partially true. The inventors of entirely new theories use 
their existing knowledge as a guide, but ultimately they have to make an inspired 
guess as to what a new theory should look like. Newton and Einstein both made 
such leaps, and the inventors of quantum mechanics had to make such a leap. We 
can attempt to make the new ideas plausible, but ultimately a new theory is simply  
a bold assertion that must be tested against reality via controlled experiments.  
The wave-function theory of quantum mechanics passed the only test that really 
matters in science—it works!

The particle has zero probability of
being detected where 0c(x) 0 2 = 0.

The particle has the
maximum probability
of being detected where
0c(x) 0 2 is a maximum.

Probability
density

Wave function

P(x) = 0c(x) 0 2

c(x) 

x
0

x

b-b

b-b

FIGURE 39.6 The square of the wave 
function is the probability density for 
detecting the electron at position x.

STOP TO THINK 39.3 This is the wave function 
of a neutron. At what value of x is the neutron most  
likely to be found?

x

c(x)

xA
0

xB xC
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1178 CHAPTER 39 Wave Functions and Uncertainty

39.4 Normalization
In our discussion of probability we noted that the dart has to hit the wall somewhere. 
The mathematical statement of this idea is the requirement that PA + PB + PC = 1. 
That is, the probabilities of all the mutually exclusive outcomes must add up to 1.

Similarly, a photon or electron has to land somewhere on the detector after passing  
through an experimental apparatus. Consequently, the probability that it will be  
detected at some position is 100%. To make use of this requirement, consider an 
experiment in which an electron is detected on the x-axis. As FIGURE 39.7 shows, we 
can divide the region between positions xL and xR into N adjacent narrow strips of 
width dx.

The probability that any particular electron lands in the narrow strip i at position 
xi is

Prob1in dx at xi2 = P1xi2 dx

where P1xi2 = 0c1xi2 0 2 is the probability density at xi. The probability that the electron  
lands in the strip at x1 or x2 or x3 orc is the sum

   Prob1between xLand xR2 = Prob1in dx at x12 

  + Prob1in dx at x2 2 + g (39.16)

    = a
N

i=1
 P1xi2 dx = a

N

i=1
0c1xi2 0 2 dx 

That is, the probability that the electron lands somewhere between xL and xR is the 
sum of the probabilities of landing in each narrow strip.

If we let the strips become narrower and narrower, then dx S dx and the sum be-
comes an integral. Thus the probability of finding the particles in the range xL …
x … xR is

 Prob1in range xL … x … xR2 = 3
xR

xL

P1x2 dx = 3
xR

xL

0c1x2 0 2 dx (39.17)

As FIGURE 39.8a shows, we can interpret Prob1in range xL … x … xR2 as the area under 
the probability density curve between xL and xR.

   NOTE    The integral of Equation 39.17 is needed when the probability density 
changes over the range xL to xR. For sufficiently narrow intervals, over which P1x2 
remains essentially constant, the expression Prob1in dx at x2 = P1x2 dx is still valid 
and is easier to use.

Now let the detector become infinitely wide, so that the probability that the elec-
tron will arrive somewhere on the detector becomes 100%. The statement that the 
electron has to land somewhere on the x-axis is expressed mathematically as

 3
∞

-∞
P1x2 dx = 3

∞

-∞
0c1x2 0 2 dx = 1 (39.18)

Equation 39.18 is called the normalization condition. Any wave function c1x2 
must satisfy this condition; otherwise we would not be able to interpret 0c1x2 0 2 as a 
probability density. As FIGURE 39.8b shows, Equation 39.18 tells us that the total area 
under the probability density curve must be 1.

   NOTE    The normalization condition integrates the square of the wave function. We 
don’t have any information about what the integral of c1x2 might be.

N narrow strips of width dx

x-axis

xL

x1 x2 x3 xNxic c
The probability that a
particle lands in strip i is

xR

Prob(in dx at xi) = P(xi) dx.

dx

FIGURE 39.7 Dividing the entire detector 
into many small strips of width dx.

The total area under
the curve must be 1.

0

(b)

x

P(x) = 0c(x) 0 2

xL 0 xR

x

The area under the curve between
xL and xR is the probability of finding
the particle between xL and xR.

P(x) = 0c(x) 0 2(a)

FIGURE 39.8 The area under the 
probability density curve is a probability.
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39.4 Normalization 1179

FIGURE 39.9 shows the wave function of a particle confined within 
the region between x = 0 nm and x = L = 1.0 nm. The wave func-
tion is zero outside this region.

a. Determine the value of the constant c that makes this a normal-
ized wave function.

b. Draw a graph of the probability density P1x2.

c. Draw a dot picture showing where the first 40 or 50 particles 
might be found.

d. Calculate the probability of finding the particle in a region of 
width dx = 0.01 nm at positions x1 = 0.05 nm, x2 =  0.50 nm, and 
x3 = 0.95 nm.

MODEL The probability of finding the particle is determined by  
the probability density P1x2.

VISUALIZE The wave function is shown in Figure 39.9.

SOLVE a. The wave function is c1x2 = c11 - x/L2 between 0 and 
L, 0 otherwise. This is a function that decreases linearly from 
c = c at x = 0 to c = 0 at x = L. The constant c is the height of 
this wave function. The particle has to be in the region 0 … x … L 
with probability 1, and only one value of c will make it so. We  
can determine c by using Equation 39.18, the normalization con-
dition. The wave function is zero outside the interval from 0 to  
L, so we need to integrate the probability density only from 0 to 
L. Thus

  1 = 3
L

0
0c1x2 0 2 dx = c23

L

0
11 -

x
L22

 dx

  = c2 3
L

0
11 -

2x
L

+
x2

L22  dx

  = c2
  c x -

x2

L
+

x3

3L2 d
L

0
= 1

3 c2L

The solution for c is

c = B 3
L

= B 3
1.0 nm

= 1.732 nm-1/2

Note the unusual units for c. Although these are not SI units, we 
can correctly compute probabilities as long as dx has units of nm. 
A multiplicative constant such as c is often called a normalization 
constant.

b. The wave function is

c1x2 = 11.732 nm-1/2211 -
x

1.0 nm2
Thus the probability density is

P1x2 = 0c1x2 0 2 = 13.0 nm-1211 -
x

1.0 nm22

This probability density is graphed in FIGURE 39.10a.

c. Particles are most likely to be detected at the left edge of the 
interval, where the probability density P1x2 is maximum. The 
probability steadily decreases across the interval, becoming zero 
at x = 1.0 nm. FIGURE 39.10b shows how a group of particles de-
scribed by this wave function might appear on a detection screen.
d. P1x2 is essentially constant over the small interval dx = 0.01 nm, 
so we can use

 Prob1in dx at x2 = P1x2 dx = 0c1x2 0 2  dx

for the probability of finding the particle in a region of width  
dx at the position x. We need to evaluate 0c1x2 0 2 at the three  
positions x1 = 0.05 nm, x2 = 0.50 nm, and x3 = 0.95 nm. Doing  
so gives

  Prob1in 0.01 nm at x1 = 0.05 nm2 = c211 - x1/L22 dx

  = 0.0270 = 2.70%

  Prob1in 0.01 nm at x2 = 0.50 nm2 = c211 - x2/L22 dx

  = 0.0075 = 0.75%

  Prob1in 0.01 nm at x3 = 0.95 nm2 = c211 - x3/L22 dx

  = 0.00008 = 0.008%

 EXAMPLE 39.2 ■ Normalizing and interpreting a wave function

L = 1.0 nm0
0

c

c(x)

c(x) = c(1 - x/L)

x

FIGURE 39.9 The wave function of Example 39.2.

0
0 x (nm)

Screen

P(x) (nm-1)

1

2

3

1.0

(a)

(b)

FIGURE 39.10 The probability density P1x2 and the detected 
positions of particles.
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1180 CHAPTER 39 Wave Functions and Uncertainty

39.5 Wave Packets
The classical physics ideas of particles and waves are mutually exclusive. An object 
can be one or the other, but not both. These classical models fail to describe the wave–
particle duality seen at the atomic level. An alternative model with both particle and 
wave characteristics is a wave packet.

Consider the wave shown in FIGURE  39.11. Unlike the sinusoidal waves we have  
considered previously, which stretch through time and space, this wave is bunched 
up, or localized. The localization is a particle-like characteristic. The oscillations are 
wave-like. Such a localized wave is called a wave packet.

A wave packet travels through space with constant speed v, just like a photon in 
a light wave or an electron in a force-free region. A wave packet has a wavelength, 
hence it will undergo interference and diffraction. But because it is also localized, a 
wave packet has the possibility of making a “dot” when it strikes a detector. We can 
visualize a light wave as consisting of a very large number of these wave packets mov-
ing along together. Similarly, we can think of a beam of electrons as a series of wave 
packets spread out along a line.

Wave packets are not a perfect model of photons or electrons (we need the 
full treatment of quantum physics to get a more accurate description), but 
they do provide a useful way of thinking about photons and electrons in many 
circumstances.

You might have noticed that the wave packet in Figure 39.11 looks very much 
like one cycle of a beat pattern. You will recall that beats occur if we superimpose 
two waves of frequencies f1 and f2 where the two frequencies are very similar: 
f1 ≈ f2. FIGURE 39.12, which is copied from Chapter 17 where we studied beats, shows 
that the loud, soft, loud, soft,cpattern of beats corresponds to a series of wave  
packets.

In Chapter 17, the beat frequency (number of pulses per second) was found to be

 fbeat = � f1 - f2 � = ∆f  (39.19)

where ∆f  is the range of frequencies that are superimposed to form the wave packet. 
Figure 39.12 defines ∆t as the duration of each beat or each wave packet. This interval 
of time is equivalent to the period Tbeat of the beat. Because period and frequency are 
inverses of each other, the duration ∆t is

∆t = Tbeat =
1

fbeat
=

1
∆f

We can rewrite this as

 ∆f ∆t = 1 (39.20)

Equation 39.20 is nothing new; we are simply writing what we already knew in 
a different form. Equation 39.20 is a combination of three things: the relationship 
f = 1/T  between period and frequency, writing Tbeat as ∆t, and the specific knowledge 

STOP TO THINK 39.4 The value of the constant a is

a. a = 2.0 mm-1

b. a = 1.0 mm-1

c. a = 0.5 mm-1

d. a = 2.0 mm-1/2

e. a = 1.0 mm-1/2

f. a = 0.5 mm-1/2

0

The wave packet oscillates,
a wave-like characteristic.

The wave packet is localized,
a particle-like characteristic.

A wave packet can represent either a
matter particle (wave function c) or a
photon (electromagnetic field E).

c or E

Wave packet duration ∆t

t

FIGURE 39.11 History graph of a wave 
packet with duration ∆t.

210

a

P(x) = 0c(x) 0 2

x (mm)

Duration ∆t

LoudSoft Soft Loud Soft Loud

t

Displacement

0

FIGURE 39.12 Beats are a series of wave 
packets.
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39.5 Wave Packets 1181

that the beat frequency fbeat is the difference ∆f  of the two frequencies contributing to 
the wave packet. As the frequency separation gets smaller, the duration of each beat 
gets longer.

When we superimpose two frequencies to create beats, the wave packet repeats 
over and over. A more advanced treatment of waves, called Fourier analysis, reveals 
that a single, nonrepeating wave packet can be created through the superposition of 
many waves of very similar frequency. FIGURE 39.13 illustrates this idea. At one instant 
of time, all the waves interfere constructively to produce the maximum amplitude  
of the wave packet. At other times, the individual waves get out of phase and their 
superposition tends toward zero.

The waves are all in phase
at this instant of time.

The superposition of the
many waves spanning a
range of frequencies is
a wave packet.

Waves to be added span the frequency
range from f0 - ∆ f to f0 + ∆ f.

f = f0 + ∆ f

f = f0

f = f0 - ∆ f
In

cr
ea

si
ng

 f
re

qu
en

cy

1
2

1
2

1
2

1
2

FIGURE 39.13 A single wave packet is the superposition of many component waves of similar 
wavelength and frequency.

Suppose a single nonrepeating wave packet of duration ∆t is created by the super-
position of many waves that span a range of frequencies ∆f. We’ll not prove it, but 
Fourier analysis shows that for any wave packet

 ∆f ∆t ≈ 1 (39.21)

The relationship between ∆f  and ∆t for a general wave packet is not as precise as 
Equation 39.20 for beats. There are two reasons for this:

1. Wave packets come in a variety of shapes. The exact relationship between ∆f  
and ∆t depends somewhat on the shape of the wave packet.

2. We have not given a precise definition of ∆t and ∆f  for a general wave 
packet. The quantity ∆t is “about how long the wave packet lasts,” while ∆f  
is “about the range of frequencies needing to be superimposed to produce 
this wave packet.” For our purposes, we will not need to be any more precise 
than this.

 Equation 39.21 is a purely classical result that applies to waves of any kind. It tells 
you the range of frequencies you need to superimpose to construct a wave packet of 
duration ∆t. Alternatively, Equation 39.21 tells you that a wave packet created as a  
superposition of various frequencies cannot have an arbitrarily short duration but must  
last for a time interval ∆t ≈ 1/∆f.
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1182 CHAPTER 39 Wave Functions and Uncertainty

Bandwidth
Short-duration pulses, like the one in Example 39.3, are used to transmit digital infor-
mation. Digital signals are sent over a phone line by brief tone pulses, over satellite 
links by brief radio pulses like the one in the example, and through optical fibers by 
brief laser-light pulses. Regardless of the type of wave and the medium through which 
it travels, any wave pulse must obey the fundamental relationship ∆f ∆t ≈ 1.

Sending data at a higher rate (i.e., more pulses per second) requires that the pulse  
duration ∆t be shorter. But a shorter-duration pulse must be created by the superposition 
of a larger range of frequencies. Thus the medium through which a shorter-duration  
pulse travels must be physically able to transmit the full range of frequencies.

The range of frequencies that can be transmitted through a medium is called the 
bandwidth ∆fB of the medium. The shortest possible pulse that can be transmitted 
through a medium is

 ∆tmin ≈
1

∆fB
 (39.22)

A pulse shorter than this would require a larger range of frequencies than the medium 
can support.

The concept of bandwidth is extremely important in digital communications. A 
higher bandwidth permits the transmission of shorter pulses and allows a higher data 
rate. A standard telephone line does not have a very high bandwidth; it is limited to 
sending data at the rate of no more than 50,000 pulses per second. A 0.80 ms pulse 
can’t be sent over a phone line simply because the phone line won’t transmit the range 
of frequencies that would be needed.

An optical fiber is a high-bandwidth medium. A fiber has a bandwidth ∆fB 7
1 GHz and thus can transmit laser-light pulses with duration ∆t 6 1 ns. As a result, 
more than 109 pulses per second can be sent along an optical fiber, which is why 
optical-fiber networks now form the backbone of the Internet.

Uncertainty
There is another way of thinking about the time-frequency relationship ∆f ∆t ≈ 1. 
Suppose you want to determine when a wave packet arrives at a specific point in 
space, such as at a detector of some sort. At what instant of time can you say that the 
wave packet is detected? When the front edge arrives? When the maximum amplitude 
arrives? When the back edge arrives? Because a wave packet is spread out in time, 

A short-wave radio station broadcasts at a frequency of 10.000 
MHz. What is the range of frequencies of the waves that must be 
superimposed to broadcast a radio-wave pulse lasting 0.800 ms?

MODEL A pulse of radio waves is an electromagnetic wave packet, 
hence it must satisfy the relationship ∆f ∆t ≈ 1.

VISUALIZE FIGURE 39.14 shows the pulse.

SOLVE The period of a 10.000 MHz oscillation is 0.100 ms. A 
pulse 0.800 ms in duration is 8 oscillations of the wave. Although 
the station broadcasts at a nominal frequency of 10.000 MHz, this 
pulse is not a pure 10.000 MHz oscillation. Instead, the pulse has 
been created by the superposition of many waves whose frequen-
cies span

∆f ≈
1
∆t

=
1

0.800 * 10-6 s
= 1.250 * 106 Hz = 1.250 MHz

This range of frequencies will be centered at the 10.000 MHz 
broadcast frequency, so the waves that must be superimposed to 
create this pulse span the frequency range

9.375 MHz … f … 10.625 MHz

EXAMPLE 39.3 ■ Creating radio-frequency pulses

∆t = 0.800 ms

t

T = 0.100 ms
E

0

FIGURE 39.14 A pulse of radio waves.
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39..6 The  eisenberg Uncertainty Principle 1183

there is not a unique and well-defined time t at which the packet arrives. All we can 
say is that it arrives within some interval of time ∆t. We are uncertain about the exact 
arrival time.

Similarly, suppose you would like to know the oscillation frequency of a wave 
packet. There is no precise value for f because the wave packet is constructed from 
many waves within a range of frequencies ∆f. All we can say is that the frequency is 
within this range. We are uncertain about the exact frequency.

The time-frequency relationship ∆f ∆t ≈ 1 tells us that the uncertainty in our 
knowledge about the arrival time of the wave packet is related to our uncertainty about  
the packet’s frequency. The more precisely and accurately we know one quantity, the 
less precisely we will be able to know the other.

FIGURE 39.15 shows two different wave packets. The wave packet of Figure 39.15a is 
very narrow and thus very localized in time. As it travels, our knowledge of when it 
will arrive at a specified point is fairly precise. But a very wide range of frequencies 
∆f  is required to create a wave packet with a very small ∆t. The price we pay for 
being fairly certain about the time is a very large uncertainty ∆f  about the frequency 
of this wave packet.

Figure 39.15b shows the opposite situation: The wave packet oscillates many times 
and the frequency of these oscillations is pretty clear. Our knowledge of the frequency 
is good, with minimal uncertainty ∆f. But such a wave packet is so spread out that 
there is a very large uncertainty ∆t as to its time of arrival.

In practice, ∆f ∆t ≈ 1 is really a lower limit. Technical limitations may cause  
the uncertainties in our knowledge of f and t to be even larger than this relationship 
implies. Consequently, a better statement about our knowledge of a wave packet is

 ∆f ∆t Ú 1 (39.23)

The fact that waves are spread out makes it meaningless to specify an exact frequency 
and an exact arrival time simultaneously. This is an inherent feature of waviness that 
applies to all waves.

∆t

∆t

(a)

(b)

This wave packet has a large
frequency uncertainty ∆ f.

This wave packet has a small
frequency uncertainty ∆ f.

FIGURE 39.15 Two wave packets with 
different ∆t.

STOP TO THINK 39.5 What minimum bandwidth must a medium have to transmit a  
100-ns-long pulse?

a. 1 MHz  b.  10 MHz  c.  100 MHz  d.  1000 MHz

 39.6 The Heisenberg Uncertainty Principle
If matter has wave-like aspects and a de Broglie wavelength, then the expression 
∆f ∆t Ú 1 must somehow apply to matter. How? And what are the implications?

Consider a particle with velocity vx as it travels along the x-axis with de Broglie 
wavelength l = h/px. Figure  39.11 showed a history graph 1c versus t2 of a wave 
packet that might represent the particle as it passes a point on the x-axis. It will be more 
useful to have a snapshot graph 1c versus x2 of the wave packet traveling along the  
x-axis.

The time interval ∆t is the duration of the wave packet as the particle passes a point  
in space. During this interval, the packet moves forward

 ∆x = vx ∆t =
px

m
 ∆t (39.24)

where px = mvx is the x-component of the particle’s momentum. The quantity ∆x, 
shown in FIGURE 39.16, is the length or spatial extent of the wave packet. Conversely, 
we can write the wave packet’s duration in terms of its length as

 ∆t =
m
px

 ∆x (39.25)

0

c(x)

Wave packet length ∆x

x

vx or px

FIGURE 39.16 A snapshot graph of a wave 
packet.
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1184 CHAPTER 39 Wave Functions and Uncertainty

You will recall that any wave with sinusoidal oscillations must satisfy the wave 
condition l f = v. For a material particle, where l is the de Broglie wavelength, the 
frequency f is

f =
v
l

=
px /m

h/px
=

px 

2

hm

If the momentum px should vary by the small amount ∆px, the frequency will vary by 
the small amount ∆f. Assuming that ∆f V f  and ∆px V px (reasonable assumptions), 
we can treat ∆f  and ∆px as if they were differentials df  and dpx. Taking the derivative, 
we find

 ∆f =
2px ∆px

hm
 (39.26)

Multiplying together these expressions for ∆t and ∆f, we find that

 ∆f ∆t =
2px ∆px

hm
 
m ∆x

px
=

2
h

 ∆x ∆px (39.27)

Because ∆f ∆t Ú 1 for any wave, one last rearrangement of Equation 39.27 shows that 
a matter wave must obey the condition

 ∆x ∆px Ú
h
2
  1Heisenberg uncertainty principle2 (39.28)

This statement about the relationship between the position and momentum of a parti-
cle was proposed by Werner Heisenberg, creator of one of the first successful quantum 
theories. Physicists often just call it the uncertainty principle.

   NOTE    In statements of the uncertainty principle, the right side is sometimes h/2, as 
we have it, but other times it is just h or contains various factors of p. The specific 
number is not especially important because it depends on exactly how ∆x and ∆p 
are defined. The important idea is that the product of ∆x and ∆px for a particle 
cannot be significantly less than Planck’s constant h. A similar relationship for 
∆y ∆py applies along the y-axis.

 What Does It Mean?
Heisenberg’s uncertainty principle is a statement about our knowledge of the prop-
erties of a particle. If we want to know where a particle is located, we measure its 
position x. That measurement is not absolutely perfect but has some uncertainty ∆x. 
Likewise, if we want to know how fast the particle is going, we need to measure  
its velocity vx or, equivalently, its momentum px. This measurement also has some 
uncertainty ∆px.

Uncertainties are associated with all experimental measurements, but better pro-
cedures and techniques can reduce those uncertainties. Newtonian physics places no 
limits on how small the uncertainties can be. A Newtonian particle at any instant of 
time has an exact position x and an exact momentum px, and with sufficient care we 
can measure both x and px with such precision that the product ∆x ∆px S 0. There are 
no inherent limits to our knowledge about a classical, or Newtonian, particle.

Heisenberg, however, made the bold and original statement that our knowledge has 
real limitations. No matter how clever you are, and no matter how good your exper-
iment, you cannot measure both x and px simultaneously with arbitrarily good pre-
cision. Any measurements you make are limited by the condition that ∆x ∆px Ú h/2. 
Our knowledge about a particle is inherently uncertain.

Why? Because of the wave-like nature of matter. The “particle” is spread out in 
space, so there simply is not a precise value of its position x. Similarly, the de Broglie 
relationship between momentum and wavelength implies that we cannot know the 
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39..6 The  eisenberg Uncertainty Principle 1185

of the particle’s momentum will be ∆px ≈ h/(2 ∆x) = h/2L. We’ve 
assumed the most accurate measurements possible so that the Ú   
in Heisenberg’s uncertainty principle becomes ≈ . Consequently, 
the range of possible velocities is

∆vx =
∆px

m
≈

h
2mL

≈ 4 * 10-14 m/s

This range of possible velocities will be centered on vx = 0 m/s if 
we have done our best to have the particle be at rest. Thus all we 
can know with certainty is that the particle’s velocity is somewhere 
within the interval -2 * 10-14 m/s … vx … 2 * 10-14 m/s.

REVIEW For practical purposes you might consider this to be a 
satisfactory definition of “at rest.” After all, a particle moving with 
a speed of 2 * 10-14 m/s would need 5 * 1010 s to move a mere  
1 mm. That is about 2000 years! Nonetheless, we can’t know if the 
particle is “really” at rest.

momentum of a wave packet any more exactly than we can know its wavelength or 
frequency. Our belief that position and momentum have precise values is tied to our 
classical concept of a particle. As we revise our ideas of what atomic particles are like, 
we will also have to revise our old ideas about position and momentum.

A 1@mm@diameter dust particle 1m ≈ 10-15 kg2 is confined with-  
in an 8@mm@long box. Can we know with certainty if the particle is 
at rest? If not, within what range is its velocity likely to be found?

MODEL All matter is subject to the Heisenberg uncertainty 
 principle.

SOLVE If we know for sure that the particle is at rest, then px = 0 
with no uncertainty. That is, ∆px = 0. But then, according to the 
uncertainty principle, the uncertainty in our knowledge of the  
particle’s position would have to be ∆x S ∞   . In other words, we 
would have no knowledge at all about the particle’s position—it 
could be anywhere! But that is not the case. We know the parti - 
cle is somewhere in the box, so the uncertainty in our knowledge 
of its position is ∆x = L = 8 mm. With a finite ∆x, the momentum 
uncertainty ∆px cannot be zero. We cannot know with certainty  
if the particle is at rest inside the box. No matter how hard we 
try to bring the particle to rest, the uncertainty in our knowledge  

EXAMPLE 39.4 ■ The uncertainty of a dust particle

What range of velocities might an electron have if confined to a 
0.1-nm-wide region, about the size of an atom?

MODEL Electrons are subject to the Heisenberg uncertainty principle.

SOLVE The analysis is the same as in Example 39.4. If we know that 
the electron’s position is located within an interval ∆x ≈ 0.1 nm, 
then the best we can know is that its velocity is within the range

∆vx =
∆px

m
≈

h
2mL

≈ 4 * 106 m/s

Because the average velocity is zero, the best we can say 
is that the electron’s velocity is somewhere in the interval 
-2 * 106 m/s … vx … 2 * 106 m/s. It is simply not possible to know  
the electron’s velocity any more precisely than this.

REVIEW Unlike the situation in Example 39.4, where ∆vx was  
so small as to be of no practical consequence, our uncertainty 
about the electron’s velocity is enormous—about 1% of the 
speed of light!

EXAMPLE 39.5 ■ The uncertainty of an electron

   NOTE    One-significant-figure calculations are appropriate to use with uncertainties.

Once again, we see that even the smallest of macroscopic objects behaves very 
much like a classical Newtonian particle. Perhaps a 1@mm@diameter particle is slightly 
fuzzy and has a slightly uncertain velocity, but it is far beyond the measuring capabili-
ties of even the very best instruments to detect this wave-like behavior. In contrast, the 
effects of the uncertainty principle at the atomic scale are stupendous. We are unable 
to determine the velocity of an electron in an atom-size container to any better accu-
racy than about 1% of the speed of light.

STOP TO THINK 39.6 Which of these particles, A or B, can you locate more precisely?

0 x

c(x)

A   

0 x

c(x)

B

M39_KNIG8221_05_GE_C39.indd   1185 31/05/2022   14:54



1186 CHAPTER 39 Wave Functions and Uncertainty

   CHAPTER 39 CHALLENGE EXAMPLE     The probability of finding a particle

A particle is described by the wave function

c1x2 = b0 x 6 0
ce-x/L x Ú 0

where L = 1 nm.

a.  Determine the value of the constant c.
b. Draw graphs of c1x2 and the probability density P1x2.
c. If 106 particles are detected, how many are expected to be found 
in the region x Ú 1 nm?

MODEL The probability of finding a particle is determined by the 
probability density P1x2.

SOLVE a. The wave function is an exponential c1x2 = ce-x/L that 
extends from x = 0 to x = + ∞   . Equation 39.18, the normalization 
condition, is

1 = 3
∞

-∞
0c1x2 0 2 dx = c23

∞

0
e-2x/L dx = -  

c2L
2

 e-2x/L `
∞

0
=

c2L
2

We can solve this for the normalization constant c:

c = B 2
L

= B 2
1 nm

= 1.414 nm-1/2

b. The probability density is

P1x2 = 0c1x2 0 2 = 12.0 nm-12e-2x/11.0 nm2

The wave function and the probability density are graphed in 
 FIGURE 39.17.

c. The probability of finding a particle in the region x Ú 1 nm is the 
shaded area under the probability density curve in Figure 39.17. We 
must use Equation 39.17 and integrate to find a numerical value. 
The probability is

  Prob1x Ú 1 nm2 = 3
∞

1 nm
0c1x2 0 2 dx

  = 12.0 nm-123
∞

1 nm
 e-2x/11.0 nm2 dx

  = 12.0 nm-121-  
1.0 nm

2 2e-2x/11.0 nm2 2
∞

1 nm

  = e-2 = 0.135 = 13.5%

The number of particles expected to be found at x Ú 1 nm is

Ndetected = N * Prob1x Ú 1 nm2 = 1106210.1352 = 135,000

REVIEW There is a 13.5% chance of detecting a particle beyond 
1 nm and thus an 86.5% chance of finding it within the interval 
0 … x … 1 nm. Unlike classical physics, we cannot make an exact 
prediction of a particle’s position.

0

0
x (nm)

P(x) (nm-1)

c(x) = (1.414 nm-1/2)e-x/(1.0 nm)

c(x) (nm-1/2)

The area under
the curve is
Prob(x Ú 1 nm).

1 2

1

2

3

0
x (nm)

1 2

1.414

0

FIGURE 39.17 The wave function and probability density.
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Wave Functions and the Probability Density
We cannot predict the exact trajectory of an atomic particle such as an electron. The  
best we can do is to predict the probability that a particle will be found in some region  
of space. The probability is determined by the particle’s wave function c1x2.

• c1x2 is a continuous, wave-like (i.e., oscillatory) function.

• The probability that a particle will be found in the narrow interval dx at position x is

Prob1in dx at x2 = 0c1x2 0 2  dx

• 0c1x2 0 2 is the probability density P1x2.

• For the probability interpretation of c1x2 to make sense, the wave function must  
satisfy the normalization condition:

3
∞

-∞
P1x2 dx = 3

∞

-∞
0c1x2 0 2 dx = 1

That is, it is certain that the particle is somewhere on the x-axis.

• For an extended interval

Prob1xL … x … xR2 = 3
xR

xL

0c1x2 0 2  dx = area under the curve

Heisenberg Uncertainty Principle
A particle with wave-like characteristics does not have a precise value  
of position x or a precise value of momentum px. Both are uncertain.  
The position uncertainty ∆x and momentum uncertainty ∆px are related  
by ∆x ∆px Ú h/2. The more you try to pin down the value of one, the  
less precisely the other can be known.

 General Principles

The goal of Chapter 39 has been to learn to use  
the wave-function description of matter.

Summary

0c(x) 0 2

c(x)

x

x
xL xR

dx at x

c(x)

Wave packet length ∆x

x

v

0

The probability that a particle is 
found in region A is

 PA = lim
NtotS ∞

  
NA

Ntot

If the probability is known, the  
expected number of A outcomes  
in N trials is NA = NPA.

A wave packet of duration  
∆t can be created by the  
superposition of many waves 
spanning the frequency range  
∆f. These are related by

∆f ∆t ≈ 1

Important Concepts

Region A

c or E

Wave packet duration ∆t

t0

probability
expected value

probability density, P1x2
wave function, c1x2

normalization condition
wave packet

bandwidth, ∆fB
uncertainty principle

Terms and Notation
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1188 CHAPTER 39 Wave Functions and Uncertainty

1. FIGURE Q39.1 shows the probability density for photons to be de-
tected on the x-axis.
a. Is a photon more likely to be detected at x = 0 m or at x =

0.5 m? Explain.
b. One thousand photons are detected. What is the expected 

number of photons in a 1-mm-wide interval at x = 0.5 m?

1

2

0

P(x) (m-1)

1.00.50.0
x (m)

FIGURE Q39.1

x (nm)

c(x)

-4 -2 2 4

FIGURE Q39.3

CONCEPTUAL QUESTIONS

2. What is the difference between the probability and the probabil-
ity density?

3. For the electron wave function shown in FIGURE Q39.3, at what 
position or positions is the electron most likely to be found? Least  
likely to be found? Explain.

4. FIGURE Q39.4 shows the dot pattern of electrons landing on a 
screen.
a. At what value or values of x is the electron probability density 

at maximum? Explain.
b. Can you tell at what value or values of x the electron wave 

function c1x2 is most positive? If so, where? If not, why not?

0-2 2-4 4
x (mm)

FIGURE Q39.4

x (mm)

a

P(x) = 0c(x) 0 2

31 20
0

 FIGURE Q39.5

x x x

c(x) c(x) c(x)

Particle 3Particle 2Particle 1

FIGURE Q39.6

5. What is the value of the constant a in FIGURE Q39.5?

6. FIGURE Q39.6 shows wave packets for particles 1, 2, and 3. Which 
particle can have its velocity known most precisely? Explain.

EXERCISES AND PROBLEMS

Problems labeled  integrate material from earlier chapters.

Exercises

Section 39.1 Waves, Particles, and the Double-Slit Experiment

1. | An experiment has four possible outcomes, labeled A to D. The 
probability of A is PA = 40% and of B is PB = 30%. Outcome C 
is twice as probable as outcome D. What are the probabilities PC  
and PD?

2. | Suppose you toss three coins into the air and let them fall on 
the floor. Each coin shows either a head or a tail.
a. Make a table in which you list all the possible outcomes of 

this experiment. Call the coins A, B, and C.
b. What is the probability of getting two heads and one tail?
c. What is the probability of getting at least two heads?

3. | Suppose you draw a card from a regular deck of 52 cards.
a. What is the probability that you draw an ace?
b. What is the probability that you draw a spade?

4. | You are dealt 1 card each from 1000 decks of cards. What is 
the expected number of picture cards (jacks, queens, and kings)?

5. || Make a table in which you list all possible outcomes of rolling 
two dice. Call the dice A and B. What is the probability of rolling  
(a) a 7, (b) any double, and (c) a 6 or an 8? You can give the 
probabilities as fractions, such as 3/36.

Section 39.2 Connecting the Wave and Photon Views

6. | 2.0 * 1010 photons pass through an experimental apparatus. 
How many of them land in a 0.20-mm-wide strip where the prob-
ability density is 20 m-1?

7. || In one experiment, 4000 photons are detected in a 0.10-mm-
wide strip where the amplitude of the electromagnetic wave is 
200 V/m. What is the wave amplitude at a nearby 0.20-mm-wide 
strip where 1000 photons are detected?

8. || In one experiment, 1000 photons are detected in a 0.10-mm-
wide strip where the amplitude of the electromagnetic wave is  
10 V/m. How many photons are detected in a nearby 0.10-mm-
wide strip where the amplitude is 20 V/m?

9. || When 5 * 1010 photons pass through an experimental appara-
tus, 2.0 * 107 land in a 0.20-mm-wide strip. What is the proba-
bility density at this point?
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Exercises and Problems 1189

16. || FIGURE EX39.16 shows the wave function of an electron.
a. What is the value of c?
b. Draw a graph of 0c1x2 0 2.
c. What is the probability that the electron is located between 

x = -1.0 nm and x = 1.0 nm?

Section 39.3 The Wave Function

10. | What are the units of c? Explain.
11. || In an interference experiment with electrons, you find the 

most intense fringe is at x = 7.0 cm. There are slightly weaker 
fringes at x = 6.0 and 8.0 cm, still weaker fringes at x = 4.0 and 
10.0 cm, and two very weak fringes at x = 1.0 and 13.0 cm. No 
electrons are detected at x 6 0 cm or x 7 14 cm.
a. Sketch a graph of 0c1x2 0 2 for these electrons.
b. Sketch a possible graph of c1x2.
c. Are there other possible graphs for c1x2? If so, draw one.

12. || FIGURE EX39.12 shows the probability density for an electron 
that has passed through an experimental apparatus. If 1.0 * 106 
electrons are used, what is the expected number that will land in 
a 0.010-mm-wide strip at (a) x = 0.000 mm and (b) 2.000 mm?

x (mm)
0 21 3-3 -1-2

0.333

P(x) = 0c(x) 0 2 (mm-1)

FIGURE EX39.12

13.  | FIGURE EX39.13 shows the probability density for an electron 
that has passed through an experimental apparatus. What is the 
probability that the electron will land in a 0.010-mm-wide strip 
at (a) x = 0.000 mm, (b) x = 0.500 mm, (c) x = 1.000 mm, and 
(d) x = 2.000 mm?

x (mm)
0 21 3-3 -1-2

0.50

P(x) = 0c(x) 0 2 (mm-1)

FIGURE EX39.13

x (nm)
0 21-1-2

a
0c(x) 0 2

FIGURE EX39.14

x (fm)
0 42-2-4

a
0c(x) 0 2

FIGURE EX39.15

1
2

1
2

x (nm)

c

c

c

-c

c(x)

-
21-1-2

FIGURE EX39.16

Section 39.4 Normalization

14. || FIGURE EX39.14 is a graph of 0c1x2 0 2 for an electron.
a. What is the value of a?
b. Draw a graph of the wave function c1x2. (There is more than 

one acceptable answer.)
c. What is the probability that the electron is located between 

x = 1.0 nm and x = 2.0 nm?

15. || FIGURE EX39.15 is a graph of 0c1x2 0 2 for a neutron.
a. What is the value of a?
b. Draw a graph of the wave function c1x2. (There is more than 

one acceptable answer.)
c. What is the probability that the neutron is located at a position 

with 0 x 0 Ú 2 fm?

x (mm)

c

-c

c(x)

42-2-4

FIGURE EX39.17

17. || FIGURE EX39.17 shows the wave function of a neutron.
a. What is the value of c?
b. Draw a graph of 0c1x2 0 2.
c. What is the probability that the neutron is located between 

x = -1.0 mm and x = 1.0 mm?

Section 39.5 Wave Packets

18. | Sound waves of 490 Hz and 500 Hz are superimposed at a 
temperature where the speed of sound in air is 340 m/s. What is 
the length ∆x of one wave packet?

19. | A 1.5@mm@wavelength laser pulse is transmitted through a 
2.0-GHz-bandwidth optical fiber. How many oscillations are in 
the shortest-duration laser pulse that can travel through the fiber?

20. || A radio-frequency amplifier is designed to amplify signals in 
the frequency range 80 MHz to 120 MHz. What is the shortest- 
duration radio-frequency pulse that can be amplified without 
distortion?

21. || What minimum bandwidth is needed to transmit a pulse that 
consists of 100 cycles of a 1.0 MHz oscillation?

Section 39.6 The Heisenberg Uncertainty Principle

22. || A thin solid barrier in the xy-plane has a 10@mm@diameter  
circular hole. An electron traveling in the z-direction with 
vx = 0 m/s passes through the hole. Afterward, is it certain that  
vx is still zero? If not, within what range is vx likely to be? Give 
your answer to one significant figure.

23. || Andrea, whose mass is 50 kg, thinks she’s sitting at rest in 
her 5-m-long dorm room as she does her physics homework.  
Can Andrea be sure she’s at rest? If not, within what range is her 
velocity likely to be? Give your answer to one significant figure.

24. || A proton is confined within an atomic nucleus of diameter  
4 fm. Use a one-dimensional model to estimate the smallest 
range of speeds you might find for a proton in the nucleus. Give 
your answer to one significant figure.

25. || What is the minimum uncertainty in position, in nm, of an 
electron whose velocity is known to be between 3 * 105 m/s and 
4 *  105 m/s? Give your answer to one significant figure.
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1190 CHAPTER 39 Wave Functions and Uncertainty

32. || FIGURE P39.32 shows 0c1x2 0 2 for the electrons in an experiment.
a. Is the electron wave function normalized? Explain.
b. Draw a graph of c1x2 over this same interval. Provide a  

numerical scale on both axes. (There may be more than one 
acceptable answer.)

c. What is the probability that an electron will be detected in a 
0.0010-cm-wide region at x = 0.00 cm? At x = 0.50 cm? At 
x = 0.999 cm?

d. If 104 electrons are detected, how many are expected to land 
in the interval -0.30 cm … x … 0.30 cm?

33. || FIGURE P39.33 shows the probability density for finding a 
particle at position x.
a. Determine the value of the constant a, as defined in the figure.
b. At what value of x are you most likely to find the particle? 

Explain.
c. Within what range of positions centered on your answer to 

part b are you 75% certain of finding the particle?
d. Interpret your answer to part c by drawing the probability 

density graph and shading the appropriate region.

Problems
26.  | A 1.0-mm-diameter sphere bounces back and forth between 

two walls at x = 0 mm and x = 100 mm. The collisions are per-
fectly elastic, and the sphere repeats this motion over and over 
with no loss of speed. At a random instant of time, what is the 
probability that the center of the sphere is
a. At exactly x = 50.0 mm?
b. Between x = 49.0 mm and x = 51.0 mm?
c. At x Ú 75 mm?

27. || Ultrasound pulses with a frequency of 1.000 MHz are trans-
mitted into water, where the speed of sound is 1500 m/s. The 
spatial length of each pulse is 12 mm.
a. How many complete cycles are contained in one pulse?
b. What range of frequencies must be superimposed to create 

each pulse?
28. || FIGURE P39.28 shows a pulse train. The period of the pulse 

train is T = 2 ∆t, where ∆t is the duration of each pulse. What 
is the maximum pulse-transmission rate (pulses per second) 
through an electronics system with a 200 kHz bandwidth? (This 
is the bandwidth allotted to each FM radio station.)

t

∆t

Period T = 2∆tFIGURE P39.28

x (nm)
0 1

c

c(x)

FIGURE P39.31

x (cm)
0 1-1

1

0c(x) 0 2 (cm-1)

FIGURE P39.32

x (cm)
0 2 4-2-4

a

P(x)

FIGURE P39.33

x (mm)
2 4-4

c

c(x)

-2

-c

FIGURE P39.34

29. || Consider a single-slit diffraction experiment using electrons. 
(Single-slit diffraction was described in Section  33.4.) Using 
Figure 39.5 as a model, draw
a. A dot picture showing the arrival positions of the first 40 or 

50 electrons.
b. A graph of 0c1x2 0 2 for the electrons on the detection screen.
c. A graph of c1x2 for the electrons. Keep in mind that c, as a 

wave-like function, oscillates between positive and negative.
30. || An experiment finds electrons to be uniformly distributed 

over the interval 0 cm … x … 2 cm, with no electrons falling out-
side this interval.
a. Draw a graph of 0c1x2 0 2 for these electrons.
b. What is the probability that an electron will land within the 

interval 0.79 to 0.81 cm?
c. If 106 electrons are detected, how many will be detected in 

the interval 0.79 to 0.81 cm?
d. What is the probability density at x = 0.80 cm?

31. || FIGURE P39.31 shows the wave function of a particle confined 
between x = 0 nm and x = 1.0 nm. The wave function is zero 
outside this region.
a. Determine the value of the constant c, as defined in the figure.
b. Draw a graph of the probability density P1x2 = 0c1x2 0 2.
c. Draw a dot picture showing where the first 40 or 50 particles 

might be found.
d. Calculate the probability of finding the particle in the interval  

0 nm … x … 0.25 nm.

34. ||| FIGURE P39.34 shows the wave function of a particle confined 
between x = -4.0 mm and x = 4.0 mm. The wave function is 
zero outside this region.
a. Determine the value of the constant c, as defined in the figure.
b.  Draw a graph of the probability density P1x2 = 0c1x2 0 2.
c. Draw a dot picture showing where the first 40 or 50 particles 

might be found.
d. Calculate the probability of finding the particle in the interval  

-2.0 mm … x … 2.0 mm.
35. ||| An electron that is confined to x Ú 0 nm has the normalized 

wave function

c1x2 = b0 x 6 0 nm
11.414 nm-1/2 2e-x/11.0 nm2 x Ú 0 nm

where x is in nm.
a. What is the probability of finding the electron in a 0.010-nm-

wide region at x = 1.0 nm?
b. What is the probability of finding the electron in the interval 

0.50 nm … x … 1.50 nm?
36. || Consider the electron wave function

c1x2 = b c 21 - x2 0 x 0 … 1 cm
0 0 x 0 Ú 1 cm

where x is in cm.
a. Determine the normalization constant c.
b. Draw a graph of c1x2 over the interval -2 cm … x …  2 cm. 

Provide numerical scales on both axes.
c. Draw a graph of 0c1x2 0 2 over the interval -2 cm … x … 2 cm. 

Provide numerical scales.
d. If 104 electrons are detected, how many will be in the interval 

0.00 cm … x … 0.50 cm?
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a. We know that the diameter of a nucleus is approximately 
10 fm. Model the nucleus as a one-dimensional box and find 
the minimum range of speeds that an electron would have in 
such a box. Give your answer to one significant figure. Use a 
classical analysis, even though a relativistic analysis would be 
more appropriate.

b. What does your answer imply about the possibility that the 
nucleus contains electrons? Explain.

43. ||| Heavy nuclei often undergo alpha decay in which they emit 
an alpha particle (i.e., a helium nucleus). Alpha particles are so 
tightly bound together that it’s reasonable to think of an alpha 
particle as a single unit within the nucleus from which it is  
emitted.
a. A 238U nucleus, which decays by alpha emission, is 15 fm in 

diameter. Model an alpha particle within a 238U nucleus as 
being in a one-dimensional box. What is the maximum speed 
an alpha particle is likely to have?

b. The probability that a nucleus will undergo alpha decay is 
proportional to the frequency with which the alpha particle 
reflects from the walls of the nucleus. What is that frequency 
(reflections/s) for a maximum-speed alpha particle within a 
238U nucleus?

44. || Physicists use laser beams to create an atom trap in which 
atoms are confined within a spherical region of space with a  
diameter of about 1 mm. The scientists have been able to cool 
the atoms in an atom trap to a temperature of approximately  
1 nK, which is extremely close to absolute zero, but it would  
be interesting to know if this temperature is close to any limit 
set by quantum physics. We can explore this issue with a one- 
dimensional model of a sodium atoms in a 1-mm-long box.
a. Estimate the smallest range of speeds you might find for a 

sodium atom in this box. The mass of a sodium atom is 23 u.
b. Even if we do our best to bring a group of sodium atoms  

to rest, individual atoms will have speeds within the range 
you found in part a. Because there’s a distribution of speeds, 
suppose we estimate that the root-mean-square speed vrms 
of the atoms in the trap is half the value you found in part 
a. Use this vrms to estimate the temperature of the atoms 
when they’ve been cooled to the limit set by the uncertainty 
principle.

45. || A small speck of dust with mass 1 * 10-13 g has fallen into the 
hole shown in FIGURE P39.45 and appears to be at rest. According 
to the uncertainty principle, could this particle have enough en-
ergy to get out of the hole? If not, what is the deepest hole of this 
width from which it would have a good chance to escape?

37. || Consider the electron wave function

c1x2 = c c sin12px
L 2 0 … x … L

0 x 6 0 or x 7 L

a. Determine the normalization constant c. Your answer will be 
in terms of L.

b. Draw a graph of c1x2 over the interval -L … x … 2L.
c. Draw a graph of 0c1x2 0 2 over the interval -L … x … 2L.
d. What is the probability that an electron is in the interval 

0 … x … L/3?
38. ||| A particle is described by the wave function

c1x2 = b cex/L x … 0 mm
ce-x/L x Ú 0 mm

where L = 2.0 mm.
a. Sketch graphs of both the wave function and the probability 

density as functions of x.
b. Determine the normalization constant c.
c. Calculate the probability of finding the particle within 1.0 mm  

of the origin.
d. Interpret your answer to part b by shading the region repre-

senting this probability on the appropriate graph in part a.
39. || The probability density for finding a particle at position x is

P1x2 = •
a

11 - x2 -1 mm … x 6 0 mm

b11 - x2    0 mm … x … 1 mm

and zero elsewhere.
a. You will learn in Chapter 40 that the wave function must be a 

continuous function. Assuming that to be the case, what can 
you conclude about the relationship between a and b?

b. Determine values for a and b.
c. Draw a graph of the probability density over the interval 

-2 mm … x … 2 mm.
d. What is the probability that the particle will be found to the 

left of the origin?
40. || A pulse of light is created by the superposition of many  

waves that span the frequency range f0 - 1
2 ∆f … f …  f0 + 1

2 ∆f, 
where f0 = c/l is called the center frequency of the pulse. Laser 
technology can generate a pulse of light that has a wavelength of 
600 nm and lasts a mere 6.0 fs 11 fs = 1 femtosecond =10-15 s2.
a. What is the center frequency of this pulse of light?
b. How many cycles, or oscillations, of the light wave are com-

pleted during the 6.0 fs pulse?
c. What range of frequencies must be superimposed to create 

this pulse?
d. What is the spatial length of the laser pulse as it travels 

through space?
e. Draw a snapshot graph of this wave packet.

41. ||| What is the smallest one-dimensional box in which you can 
confine an electron if you want to know for certain that the elec-
tron’s speed is no more than 10 m/s? Give your answer to one 
significant figure, in mm.

42. || You learned in Chapter 37 that, except for hydrogen, the mass 
of a nucleus with atomic number Z is larger than the mass of the 
Z protons. The additional mass was ultimately discovered to be 
due to neutrons, but prior to the discovery of the neutron it was 
suggested that a nucleus with mass number A might contain A 
protons and 1A - Z2 electrons. Such a nucleus would have the 
mass of A protons, but its net charge would be only Ze.

Frictionless
surface

1 mm

10 mmFIGURE P39.45

46. || a. Starting with the expression ∆f ∆t ≈ 1 for a wave packet, 
find an expression for the product ∆E ∆t for a photon.

b. Interpret your expression. What does it tell you?
c. The Bohr model of atomic quantization says that an atom 

in an excited state can jump to a lower-energy state by 
emitting a photon. The Bohr model says nothing about 
how long this process takes. You’ll learn in Chapter 41 that 
the time any particular atom spends in the excited state 
before emitting a photon is unpredictable, but the average 

M39_KNIG8221_05_GE_C39.indd   1191 31/05/2022   14:55



1192 CHAPTER 39 Wave Functions and Uncertainty

50. ||| Consider the electron wave function

c1x2 = c
cx 0 x 0 … 1 nm
c
x

0 x 0 Ú 1 nm

where x is in nm.
a. Determine the normalization constant c.
b. Draw a graph of c1x2 over the interval -5 nm … x … 5 nm. 

Provide numerical scales on both axes.
c. Draw a graph of 0c1x2 0 2 over the interval -5 nm … x … 5 nm.  

Provide numerical scales.
d. If 106 electrons are detected, how many will be in the interval 

-1.0 nm … x … 1.0 nm?
51. ||| Soot particles, from incomplete combustion in diesel engines, 

are typically 15 nm in diameter and have a density of 1200 kg/m3.  
FIGURE CP39.51 shows soot particles released from rest, in 
vacuum, just above a thin plate with a 0.5@mm@diameter hole—
roughly the wavelength of visible light. After passing through 
the hole, the particles fall distance d and land on a detector. If 
soot particles were purely classical, they would fall straight down 
and, ideally, all land in a 0.5@mm@diameter circle. Allowing for 
some experimental imperfections, any quantum effects would  
be noticeable if the circle diameter were 2 mm. How far  
would the particles have to fall to fill a circle of this diameter?

lifetime ∆t of many atoms can be determined. You can 
think of ∆t as being the uncertainty in your knowledge of 
how long the atom spends in the excited state. A typical 
value is ∆t ≈ 10 ns. Consider an atom that emits a pho-
ton with a 500 nm wavelength as it jumps down from an 
excited state. What is the uncertainty in the energy of the 
photon? Give your answer in eV.

d. What is the fractional uncertainty ∆E/E in the photon’s 
energy?

Challenge Problems
47. ||| The probability density of finding a particle somewhere along 

the x-axis is 0 for x 6 1 mm. At x = 1 mm, the probability den-
sity is c. For x Ú 1 mm, the probability density decreases by a 
factor of 8 each time the distance from the origin is doubled. 
What is the probability that the particle will be found in the inter-
val 2 mm … x … 4 mm?

48. ||| The wave function of a particle is

c1x2 = B b

p1x2 + b22
where b is a positive constant. Find the probability that the particle  
is located in the interval -b … x … b.

49. ||| The wave function of a particle is

c1x2 = c
b

11 + x22 -1 mm … x 6 0 mm

c11 + x22 0 mm … x … 1 mm

and zero elsewhere.
a. You will learn in Chapter 40 that the wave function must be a 

continuous function. Assuming that to be the case, what can 
you conclude about the relationship between b and c?

b. Draw graphs of the wave function and the probability density 
over the interval -2 mm … x … 2 mm.

c. What is the probability that the particle will be found to the 
right of the origin?

d

Detection circle

Soot particle

0.5 mm hole

FIGURE CP39.51
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1193

One-Dimensional Quantum 
Mechanics 

What is the Schrödinger equation?
The Schrödinger equation is the basic  
law of quantum mechanics. It plays a role  
analogous to Newton’s second law in  
classical mechanics.

■■ The solutions to Schrödinger’s equation  
are the stationary states of the system.

■■ The Schrödinger equation predicts the  
quantized energy levels of the system.

■■ Photons are emitted or absorbed in  
quantum jumps between energy levels.

❮❮ LOOKING BACK Sections 39.3–39.4 Wave  
functions and normalization

How can we model quantum systems?
Classical systems respond to forces.  
In contrast, a quantum system is  
described by a potential-energy  
function U1x2. You’ll learn to use  
potential wells to model quantum  
systems. Systems that we’ll model in  
this chapter include

■■ The rigid box (an infinite potential well).
■■ The nucleus (a finite potential well).
■■ The quantum harmonic oscillator.
■■ The covalent bond.

❮❮ LOOKING BACK Section 10.5 Energy  
diagrams

What are the properties of a wave function?
Wave-function shapes are determined by  
the potential-energy function U1x2.

■■ The wave function oscillates in the region  
between the classical turning points.

■■ A particle can penetrate into classically  
forbidden regions of space, where E 6 U,  
with an exponentially decaying wave  
function.

What is tunneling?
A surprising finding of quantum mechanics 
is that a particle can pass through an  
energy barrier that would reflect a classical 
particle, emerging with no energy loss on 
the other side. This is called tunneling. This 
totally nonclassical behavior is the basis of 
the scanning tunneling microscope.

How is quantum mechanics used?
Much of modern technology, including  
semiconductors, rests on the quantum  
properties of atoms and solids. Examples  
we’ll look at in this chapter include

■■ Quantum-well lasers.
■■ Molecular bonds.
■■ Nuclear energy levels and radiation.
■■ The scanning tunneling microscope.

IN THIS CHAPTER, you will learn how to apply the essential ideas of quantum mechanics.

40

Seventy cobalt atoms have been 
manipulated with a scanning 
tunneling microscope in this 
example of atomic engineering.

E3

E2

E1

n = 3

n = 2

n = 1

U(x)

U0

E

x
A finite potential well

Particle energy

Potential
well

0

Wave function

Energy

E

0 x

U(x)

Classically
forbidden
region

Wave function

Energy barrier

U0

E

0

I

Quantum-well laser
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40.1 The Schrödinger Equation
In the winter of 1925, just before Christmas, the Austrian physicist Erwin Schrödinger 
gathered together a few books and headed off to a villa in the Swiss Alps. He had 
recently learned of de Broglie’s 1924 suggestion that matter has wave-like properties, 
and he wanted some time free from distractions to think about it. Before the trip was 
over, Schrödinger had discovered the law of quantum mechanics.

Schrödinger’s goal was to predict the outcome of atomic experiments, a goal that 
had eluded classical physics. The mathematical equation that he developed is now 
called the Schrödinger equation. It is the law of quantum mechanics in the same 
way that Newton’s laws are the laws of classical mechanics. It would make sense to 
call it Schrödinger’s law, but by tradition it is called simply the Schrödinger equation.

You learned in Chapter 39 that a matter particle is characterized in quantum physics 
by its wave function c1x2. If you know a particle’s wave function, you can predict the 
probability of detecting it in some region of space. That’s all well and good, but Chapter 39 
didn’t provide any method for determining wave functions. The Schrödinger equation is the 
missing piece of the puzzle. It is an equation for finding a particle’s wave function c1x2.

Consider a particle with mass m and mechanical energy E whose interactions with 
the environment can be characterized by a one-dimensional potential-energy function 
U1x2. The Schrödinger equation for the particle’s wave function is

 
d2c

dx2 = -
2m

U2  3   E - U1x2    4c1x2 (the Schrödinger equation) (40.1)

This is a differential equation whose solution is the wave function c1x2 that we seek. 
Our first goal is to learn what this equation means and how it is used.

Justifying the Schrödinger Equation
The Schrödinger equation can be neither derived nor proved. It is not an outgrowth 
of any previous theory. Its success depended on its ability to explain the various 
 phenomena that had refused to yield to a classical-physics analysis and to make new 
predictions that were subsequently verified.

Although the Schrödinger equation cannot be derived, the reasoning behind it can 
at least be made plausible. De Broglie had postulated a wave-like nature for matter in 
which a particle of mass m, velocity v, and momentum p = mv has a wavelength

 l =
h
p

=
h

mv
 (40.2)

Schrödinger’s goal was to find a wave equation for which the solution would be a wave  
function having the de Broglie wavelength.

An oscillatory wave-like function with wavelength l is

 c1x2 = c0 sin12px
l 2 (40.3)

where c0 is the amplitude of the wave function. Suppose we take a second derivative 
of c1x2:

d2c

dx2 =
d
dx

 
dc

dx
=

d
dx

 c 2p
l

 c0 cos12px
l 2 d = -

12p22

l2  c0 sin12px
l 2

We can use Equation 40.3 to write this as

 
d2c

dx2 = -
12p22

l 2  c1x2 (40.4)

 Equation 40.4 relates the wavelength l to a combination of the wave function c1x2 
and its second derivative.

   NOTE    These manipulations are not specific to quantum mechanics. Equation 40.4 
is well known for classical waves, such as sound waves and waves on a string.

Erwin Schrödinger.
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Schrödinger’s insight was to identify l with the de Broglie wavelength of a particle. 
We can write the de Broglie wavelength in terms of the particle’s kinetic energy K as

 l =
h

mv
=

h32m11
2 mv22

=
h22mK

 (40.5)

Notice that the de Broglie wavelength increases as the particle’s kinetic energy 
decreases. This observation will play a key role.

If we square this expression for l and substitute it into Equation 40.4, we find

 
d2c

dx2 = -
12p22 2mK

h2  c1x2 = -
2m

U2  Kc1x2 (40.6)

where U = h/2p. Equation 40.6 is a differential equation for the function c1x2. The 
solution to this equation is the sinusoidal wave function of Equation 40.3, where l is 
the de Broglie wavelength for a particle with kinetic energy K.

Our derivation of Equation 40.6 assumed that the particle’s kinetic energy K is con-
stant. The energy diagram of FIGURE 40.1a reminds you that a particle’s kinetic energy 
remains constant as it moves along the x-axis only if its potential energy U is constant.  
In this case, the de Broglie wavelength is the same at all positions.

Total energy

Potential energy

0

0

x

x

Energy

c(x)

K

U

The kinetic energy
K = E - U is constant.

The de Broglie
wavelength is constant.

l

(a)

FIGURE 40.1 The de Broglie wavelength changes as a particle’s kinetic energy changes.

Total energy

x

x

Energy

0

0

c(x)

K

U

The kinetic energy
decreases as x increases.

The potential energy U(x)
is a function of position.

The de Broglie wavelength
increases as K decreases.

(b)

In contrast, FIGURE  40.1b shows the energy diagram for a particle whose kinetic 
energy is not constant. This particle speeds up or slows down as it moves along the 
x-axis, transforming potential energy into kinetic energy or vice versa. Consequently, 
its de Broglie wavelength changes with position.

Suppose a particle’s potential energy—gravitational or electric or any other kind of 
potential energy—is described by the function U1x2. That is, the potential energy is a 
function of position along the axis of motion. For example, the potential energy of a 
mass on a spring is 12 kx2.

If E is the particle’s total mechanical energy, its kinetic energy at position x is

  K = E - U1x2 (40.7)

If we use this expression for K in Equation 40.6, that equation becomes

d2c

dx2 = -
2m

U2  3E - U1x24c1x2
This is Equation 40.1, the Schrödinger equation for the particle’s wave function c1x2.
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1196 CHAPTER 40 One-Dimensional Quantum Mechanics 

   NOTE    This has not been a derivation of the Schrödinger equation. We’ve made a 
plausibility argument, based on de Broglie’s hypothesis about matter waves, but only  
experimental evidence will show if this equation has merit.

STOP TO THINK 40.1 Three de Broglie waves are shown for particles of equal 
mass. Rank in order, from fastest to slowest, the speeds of particles A, B, and C.

x

A

x

B

x

C

Quantum-Mechanical Models
Throughout this text, we’ve emphasized the importance of models. To understand the 
motion of an object, we made simplifying assumptions: that the object could be repre-
sented by a particle, that friction could be described in a simple way, that air resistance 
could be neglected, and so on. Models allowed us to understand the primary features  
of an object’s motion without getting lost in the details.

The same holds true in quantum mechanics. The exact description of a microscopic  
atom or a solid is extremely complicated. Our only hope for using quantum mechanics 
effectively is to make a number of simplifying assumptions—that is, to make a 
quantum-mechanical model of the situation. Much of this chapter will be about 
building and using quantum-mechanical models.

The test of a model’s success is its agreement with experimental measurement. 
Laboratory experiments cannot measure c1x2, and they rarely make direct measure-
ments of probabilities. Thus it will be important to tie our models to measurable quan-
tities such as wavelengths, charges, currents, times, and temperatures.

There’s one very important difference between models in classical mechanics and 
quantum mechanics. Classical models are described in terms of forces, and Newton’s 
laws are a connection between force and motion. The Schrödinger equation for the 
wave function is written in terms of energies. Consequently, quantum-mechanical 
modeling involves finding a potential-energy function U1x2 that describes a particle’s 
interactions with its environment.

FIGURE 40.2 reminds you how to interpret an energy diagram. We will use energy 
diagrams extensively in this and the remaining chapters to portray quantum-mechanical 
models. A review of ❮❮  SECTION  10.5, where energy diagrams were introduced, is 
highly recommended.

Energy

Total energy line

x
xRxL

x 6 xL is a
classically
forbidden
region.

x 7 xR is a
classically
forbidden
region.

The potential-energy
curve U(x) is a
function of position.

Kinetic energy
is K = E - U.

Potential
energy at
this point

Point of maximum speed

Turning points

FIGURE 40.2 Interpreting an energy diagram.
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40.2 Solving the Schrödinger Equation
The Schrödinger equation is a second-order differential equation, meaning that it is a 
differential equation for c1x2 involving its second derivative. However, this textbook 
does not assume that you know how to solve differential equations. As we did with 
Newton’s laws, we will restrict ourselves to situations for which you already have the 
mathematical skills from your calculus class.

The solution to an algebraic equation is simply a number. For example, x = 3 is  
the solution to the equation 2x = 6. In contrast, the solution to a differential equation 
is a function. You saw this idea in the preceding section, where Equation 40.6 was 
constructed so that the function c1x2 = c0 sin12px/l2 is a solution.

The Schrödinger equation can’t be solved until the potential-energy function U1x2 
has been specified. Different potential-energy functions result in different wave  
functions, just as different forces lead to different trajectories in classical mechanics. 
Once U1x2 has been specified, the solution of the differential equation is a function 
c1x2. We will usually display the solution as a graph of c1x2 versus x.

Restrictions and Boundary Conditions
Not all functions c1x2 make acceptable solutions to the Schrödinger equation. That is, 
some functions may satisfy the Schrödinger equation but not be physically meaningful. 
We have previously encountered restrictions in our solutions of algebraic equations. 
We insist, for physical reasons, that masses be positive rather than negative numbers,  
that positions be real rather than imaginary numbers, and so on. Mathematical 
solutions not meeting these restrictions are rejected as being unphysical.

Because we want to interpret 0c1x2 0 2 as a probability density, we have to insist  
that the function c1x2 be one for which this interpretation is possible. The conditions 
or restrictions on acceptable solutions are called the boundary conditions. You 
will see, in later examples, how the boundary conditions help us choose the correct  
solution for c1x2. The primary conditions the wave function must obey are:

1. c1x2 is a continuous function.
2. c1x2 = 0 if x is in a region where it is physically impossible for the particle to be.
3. c1x2 S 0 as x S + ∞  and x S - ∞   .
4. c1x2 is a normalized function.

The last is not, strictly speaking, a boundary condition but is an auxiliary condition we 
require for the wave function to have a useful interpretation. Boundary condition 3 is  
needed to enable the normalization integral 1 0c1x2 0 2 dx to converge.

Once boundary conditions have been established, there are several approaches to 
solving the Schrödinger equation: Use general mathematical techniques for solving 
second-order differential equations, solve the equation numerically on a computer, or 
make a physically informed guess.

More advanced courses make extensive use of the first and second approaches. 
However, we are not assuming a knowledge of differential equations, so you will not 
be asked to use these methods. The third, although it sounds almost like cheating, is 
widely used in simple situations where we can use physical arguments to infer the 
form of the wave function. The upcoming examples will illustrate this third approach.

A quadratic algebraic equation has two different solutions. Similarly, a second-order 
differential equation has two independent solutions c11x2 and c21x2. By “independent 
solutions” we mean that c21x2 is not just a constant multiple of c11x2, such as 3c11x2,  
but that c11x2 and c21x2 are totally different functions.

Suppose that c11x2 and c21x2 are known to be two independent solutions of the 
Schrödinger equation. A theorem you will learn in differential equations states that a 
general solution of the equation can be written as

 c1x2 = Ac11x2 + Bc21x2 (40.8)

where A and B are constants whose values are determined by the boundary conditions. 
Equation 40.8 is a powerful statement, although one that will make more sense after 
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you see it applied in upcoming examples. The main point is that if we can find two 
independent solutions C1(x) and C2(x) by guessing, then Equation 40.8 is the gen-
eral solution to the Schrödinger equation.

Quantization
We’ve asserted that the Schrödinger equation is the law of quantum mechanics, but 
thus far we’ve not said anything about quantization. Although the particle’s total energy 
E appears in the Schrödinger equation, it is treated in the equation as an unspecified  
constant. However, it will turn out that there are no acceptable solutions for most  
values of E. That is, there are no functions c1x2 that satisfy both the Schrödinger 
equation and the boundary conditions. Acceptable solutions exist only for discrete 
values of E. The energies for which solutions exist are the quantized energies of the 
system. Thus, as you’ll see, the Schrödinger equation has quantization built in.

Problem Solving in Quantum Mechanics
Our problem-solving strategy for classical mechanics focused on identifying and 
using forces. In quantum mechanics we’re interested in energy rather than forces. The 
critical step in solving a problem in quantum mechanics is to determine the particle’s 
potential-energy function U1x2. Identifying the interactions that cause a potential  
energy is the physics of the problem. Once the potential-energy function is known, it 
is “just mathematics” to solve for the wave function.

PROBLEM-SOLVING STRATEGY 40.1

Quantum-mechanics problems

MODEL Determine a potential-energy function that describes the particle’s inter-
actions. Make simplifying assumptions.

VISUALIZE The potential-energy curve is the pictorial representation.
■■ Draw the potential-energy curve.
■■ Identify known information.
■■ Establish the boundary conditions that the wave function must satisfy.

SOLVE The Schrödinger equation is the mathematical representation.
■■ Utilize the boundary conditions.
■■ Normalize the wave functions.
■■ Draw graphs of c1x2 and 0c1x2 0 2.
■■ Determine the allowed energy levels.
■■ Calculate probabilities, wavelengths, or other specific quantities.

REVIEW Check that your result has the correct units, is reasonable, and answers 
the question.

The solutions to the Schrödinger equation are the stationary states of the system. 
Bohr had postulated the existence of stationary states, but he didn’t know how to find 
them. Now we have a strategy for finding them.

Bohr’s idea of transitions, or quantum jumps, between stationary states remains 
very important in Schrödinger’s quantum mechanics. The system can jump from one 
stationary state, characterized by wave function ci1x2 and energy Ei, to another state, 
characterized by cf1x2 and Ef, by emitting or absorbing a photon of frequency

f =
∆E
h

=
0Ef - Ei 0

h
Thus the solutions to the Schrödinger equation will allow us to predict the emission 
and absorption spectra of a quantum system. These predictions will test the validity of 
Schrödinger’s theory.
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40.3  A Particle in a Rigid Box:  
Energies and Wave Functions

FIGURE 40.3 shows a particle of mass m confined in a rigid, one-dimensional box of 
length L. The walls of the box are assumed to be perfectly rigid, and the particle  
undergoes perfectly elastic reflections from the ends. This situation, which we looked 
at in Chapter 38, is known as a “particle in a box.”

A classical particle bounces back and forth between the walls of the box. There 
are no restrictions on the speed or kinetic energy of a classical particle. In contrast, a 
wave-like particle characterized by a de Broglie wavelength sets up a standing wave 
as it reflects back and forth. In Chapter 38, we found that a standing de Broglie wave 
automatically leads to energy quantization. That is, only certain discrete energies are 
allowed. However, our hypothesis of a de Broglie standing wave was just a guess, with 
no real justification, because we had no theory about how a wave-like particle ought 
to behave.

We will now revisit this problem from the new perspective of quantum mechanics. 
The basic questions we want to answer in this, and any quantum-mechanics prob- 
lem, are:

■■ What are the allowed energies of the particle?
■■ What is the wave function associated with each energy?
■■ In which part of the box is the particle most likely to be found?

We can use Problem-Solving Strategy 40.1 to answer these questions.

Model: Identify a Potential-Energy Function
By a rigid box we mean a box whose walls are so sturdy that they can confine a parti-
cle no matter how fast the particle moves. Furthermore, the walls are so stiff that they 
do not flex or give as the particle bounces. No real container has these attributes, so 
the rigid box is a model of a situation in which a particle is extremely well confined. 
Our first task is to characterize the rigid box in terms of a potential-energy function.

Let’s establish a coordinate axis with the boundaries of the box at x = 0 and x = L. 
The rigid box has three important characteristics:

1. The particle can move freely between 0 and L at constant speed and thus with 
constant kinetic energy.

2. No matter how much kinetic energy the particle has, its turning points are at 
x = 0 and x = L.

3.  The regions x 6 0 and x 7 L are forbidden. The particle cannot leave the box.

A potential-energy function that describes the particle in this situation is

 Urigid box1x2 = b0 0 … x … L
∞ x 6 0 or x 7 L

 (40.9)

Inside the box, the particle has only kinetic energy. The infinitely high potential- 
energy barriers prevent the particle from ever having x 6 0 or x 7 L no matter how 
much kinetic energy it may have. It is this potential energy for which we want to solve 
the Schrödinger equation.

Visualize: Establish Boundary Conditions
FIGURE 40.4 is the energy diagram of a particle in the rigid box. You can see that U = 0 
and E = K inside the box. The upward arrows labeled ∞  indicate that the potential 
energy becomes infinitely large at the walls of the box (x = 0 and x = L).

   NOTE    Figure 40.4 is not a picture of the box. It is a graphical representation of the 
particle’s total, kinetic, and potential energy.

L

vm

Perfectly rigid ends

FIGURE 40.3 A particle in a rigid box of 
length L.

∞ ∞

x

E

Classically
forbidden
region

Classically
forbidden
region

Total energy
of particle

The potential energy becomes
infinitely large at this point.

U(x)

0 L

U = 0 inside
the box.

Outside
the box

Outside
the box

K

FIGURE 40.4 The energy diagram of a 
particle in a rigid box of length L.
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x

c(x)

L
0

Inside the box, c is oscillating in
some way still to be determined.

c = 0 outside
the box.

Continuity of c requires
c(at x = L) = 0.

FIGURE 40.5 Applying boundary 
conditions to the wave function of a 
particle in a box.

Next, we need to establish the boundary conditions that the solution must satisfy. 
Because it is physically impossible for the particle to be outside the box, we require

 c1x2 = 0 for x 6 0 or x 7 L (40.10)

That is, there is zero probability 1i.e., 0c1x2 0 2 = 02 of finding the particle outside the box.
Furthermore, the wave function must be a continuous function. That is, there can 

be no break in the wave function at any point. Because the solution is zero everywhere 
outside the box, continuity requires that the wave function inside the box obey the two 
conditions

 c1at x = 02 = 0 and c1at x = L2 = 0 (40.11)

In other words, as FIGURE 40.5 shows, the oscillating wave function inside the box must 
go to zero at the boundaries to be continuous with the wave function outside the box. 
This requirement of the wave function is equivalent to saying that a standing wave on 
a string must have a node at the ends.

Solve I: Find the Wave Functions
At all points inside the box the potential energy is U1x2 = 0. Thus the Schrödinger 
equation inside the box is

 
d2c

dx2 = -
2mE

U2  c1x2 (40.12)

There are two aspects to solving this equation:

1. For what values of E does Equation 40.12 have physically meaningful solutions?
2. What are the solutions c1x2 for those values of E?

To begin, let’s simplify the notation by defining b2 = 2mE/U2. Equation 40.12 is then

 
d2c

dx2 = -b2c1x2 (40.13)

We’re going to solve this differential equation by guessing! Can you think of any 
functions whose second derivative is a negative constant times the function itself? Two 
such functions are

 c11x2 = sin bx and c21x2 = cos bx (40.14)

Both are solutions to Equation 40.13 because

 
d2c1

dx2 =
d2

dx2 1sin bx2 = -b2 sin bx = -b2c11x2

 
d2c2

dx2 =
d2

dx2 1cos bx2 = -b2 cos bx = -b2c21x2

Furthermore, these are independent solutions because c21x2 is not a multiple or a  
rearrangement of c11x2. Consequently, according to Equation 40.8, the general solu - 
tion to the Schrödinger equation for the particle in a rigid box is

 c1x2 = A sin bx + B cos bx (40.15)

where

 b =
22mE

U
 (40.16)

The constants A and B must be determined by using the boundary conditions of 
Equation 40.11. First, the wave function must go to zero at x = 0. That is,

 c1at x = 02 = A # 0 + B # 1 = 0 (40.17)
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40.3 A Particle in a Rigid Box: Energies and Wave Functions  1201

This boundary condition can be satisfied only if B = 0. The cos bx term may satisfy 
the differential equation in a mathematical sense, but it is not a physically meaningful 
solution for this problem because it does not satisfy the boundary conditions. Thus the 
physically meaningful solution is

c1x2 = A sin bx

The wave function must also go to zero at x = L. That is,

 c1at x = L2 = A sin bL = 0 (40.18)

This condition could be satisfied by A = 0, but then we wouldn’t have a wave function 
at all! Fortunately, that isn’t necessary. This boundary condition is also satisfied if 
sin bL = 0, which requires

 bL = np or bn =
np
L
  n = 1, 2, 3,  c (40.19)

Notice that n starts with 1, not 0. The value n = 0 would give b = 0 and make c = 0 
at all points, a physically meaningless solution.

Thus the solutions to the Schrödinger equation for a particle in a rigid box are

  cn1x2 = A sin bn 

x = A sin1npx
L 2  n = 1, 2, 3,  c (40.20)

We’ve found a whole family of solutions, each corresponding to a different value of 
the integer n. These wave functions represent the stationary states of the particle in the 
box. The constant A remains to be determined.

Solve II: Find the Allowed Energies
Equation 40.16 defined b. The boundary condition of Equation 40.19 then placed 
restrictions on the possible values of b:

 bn =
22mEn

U
=

np
L
  n = 1, 2, 3,  c (40.21)

where the value of b and the energy associated with the integer n have been labeled bn 
and En. We can solve for En by squaring both sides:

 En = n2 
p2U2

2mL2 = n2 
h2

8mL2  n = 1, 2, 3,  c (40.22)

where, in the last step, we used the definition U = h/2p. For a particle in a box, these 
energies are the only values of E for which there are physically meaningful solu-
tions to the Schrödinger equation. That is, the particle’s energy is quantized! It is 
worth emphasizing that quantization is not inherent in the wave function itself but 
arises because the boundary conditions—the physics of the situation—are satisfied by 
only a small subset of the mathematical solutions to the Schrödinger equation.

It is useful to write the energies of the stationary states as

 En = n2E1 (40.23)

where En is the energy of the stationary state with quantum number n. The smallest  
possible energy E1 = h2/8mL2 is the energy of the n = 1 ground state. These allowed 
energies are shown in the energy-level diagram of FIGURE 40.6. Recall, from Chapter  38, 
that an energy-level diagram is not a graph (the horizontal axis doesn’t represent  
anything) but a “ladder” of allowed energies.

Equation 40.22 is identical to the energies we found in Chapter 38 by requiring the 
de Broglie wave of a particle in a box to form a standing wave. Only now we have a 
theory that tells not only the energies but also the wave functions.

E4 = 16E1

n = 1

n = 2

n = 3

n = 4

E3 = 9E1

E2 = 4E1

E1

0

Energy

The ground-state energy E1

is greater than 0.

The allowed energies 
increase with the square 
of the quantum number.

FIGURE 40.6 The energy-level diagram for 
a particle in a box.
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Solve III: Normalize the Wave Functions
We can determine the constant A by requiring the wave functions to be normalized. 
The normalization condition, which we found in Chapter 39, is

3
∞

-∞
 0c1x2 0 2 dx = 1

This is the mathematical statement that the particle must be somewhere on the x-axis. 
The integration limits extend to {   ∞   , but here we need to integrate only from 0 to L 
because the wave function is zero outside the box. Thus

 3
L

0
 0cn1x2 0 2 dx = An 

2 3
L

0
 sin21npx

L 2  dx = 1 (40.24)

or

 An = c 3
L

0
 sin21npx

L 2  dx d
-1/2

 (40.25)

We placed a subscript n on An because it is possible that the normalization constant is 
different for each wave function in the family. This is a standard integral. We will leave  
it as a homework problem for you to show that its value, for any n, is

 An = B 2
L
  n = 1, 2, 3,  c (40.26)

We now have a complete solution to the problem. The normalized wave function for 
the particle in quantum state n is

An electron is confined to a rigid box. What is the length of the 
box if the energy difference between the first and second states is 
3.0 eV?

MODEL Model the electron as a particle in a rigid one-dimensional 
box of length L.

SOLVE The first two quantum states, with n = 1 and n = 2, have 
energies E1 and E2 = 4E1. Thus the energy difference between the 
states is

∆E = 3E1 =
3h2

8mL2 = 3.0 eV = 4.8 * 10-19 J

The length of the box for which ∆E = 3.0 eV is

 L = B 3h2

8m ∆E
= 6.14 * 10-10 m = 0.614 nm

REVIEW The expression for E1 is in SI units, so energies must be 
in J, not eV.

EXAMPLE 40.1 ■ An electron in a box

 cn1x2 = c A 2
L

 sin1npx
L 2 0 … x … L

0 x 6 0 and x 7 L

 (40.27)

40.4  A Particle in a Rigid Box:  
Interpreting the Solution

Our solution to the quantum-mechanical problem of a particle in a box tells us that:

1. The particle must have energy En = n2E1, where n = 1, 2, 3,  cis the quantum 
number. E1 = h2/8mL2 is the energy of the n = 1 ground state.

2. The wave function for a particle in quantum state n is

cn1x2 = c A 2
L

 sin1npx
L 2 0 … x … L

0 x 6 0 and x 7 L

These are the stationary states of the system.
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40.4 A Particle in a Rigid Box: Interpreting the Solution  1203

3. The probability density for finding the particle at position x inside the box is

 Pn1x2 = 0cn1x2 0 2 =
2
L

 sin21npx
L 2 (40.28)

c1(x) c2(x) c3(x)

0c1(x) 0 2 0c2(x) 0 2 0c3(x) 0 2

n = 1

0 L 0 L 0 L

0 L 0 L 0 L

n = 3n = 2

x

x

x

x

x

x

The electron is
never found here.

The electron is most
likely to be here.

FIGURE 40.7 Wave functions and probability densities for a particle in a rigid box of length L.

A graphical presentation will make these results more meaningful. FIGURE  40.7 
shows the wave functions c1x2 and the probability densities P1x2 = 0c1x2 0 2 for quan-
tum states n = 1 to 3. Notice that the wave functions go to zero at the boundaries and 
thus are continuous with c = 0 outside the box.

The wave functions c1x2 for a particle in a rigid box are analogous to standing 
waves on a string that is tied at both ends. You can see that Cn(x) has (n − 1) nodes 
(zeros), excluding the ends, and n antinodes (maxima and minima). This is a gen-
eral result for any wave function, not just for a particle in a rigid box.

FIGURE 40.8 shows another way in which energies and wave functions are shown 
graphically in quantum mechanics. First, the graph shows the potential-energy func-
tion U1x2 of the particle. Second, the allowed energies are shown as horizontal lines 
(total energy lines) across the potential-energy graph. These are labeled with the quan-
tum number n and the energy En. Third—and this is a bit tricky—the wave function  
for each n is drawn as if the energy line were the zero of the y-axis. That is, the 
graph of cn1x2 is drawn on top of the En energy line. This allows energies and wave 
functions to be displayed simultaneously, but it does not imply that c2 is in any sense 
“above” c1. Both oscillate sinusoidally about zero, as Figure 40.7 shows.

A semiconductor device known as a quantum-well device is de-
signed to “trap” electrons in a 1.00-nm-wide region. Treat this as a 
one-dimensional problem.

a. What are the energies of the first three quantum states?

b. What wavelengths of light can these electrons absorb?

MODEL Model an electron in a quantum-well device as a particle 
confined in a rigid box of length L = 1.00 nm.

VISUALIZE FIGURE  40.9 shows the first three energy levels and  
the transitions by which an electron in the ground state can absorb 
a photon.

EXAMPLE 40.2 ■ Energy levels and quantum jumps

Continued

∞ ∞

n = 1E1

n = 2E2 = 4E1

E3 = 9E1 n = 3

0 L
x

U(x)
This is the x-axis
for the c3(x) wave
function.

Wave
functions

Allowed
energies

FIGURE 40.8 An alternative way to show  
the potential-energy diagram, the 
energies, and the wave functions.

n = 1

n = 2

n = 3E3 = 3.393 eV

E2 = 1.508 eV

E1 = 0.377 eV

0

Energy

1 S 3

1 S 2

FIGURE 40.9 Energy levels and quantum jumps for an electron 
in a quantum-well device.
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   NOTE    The wavelengths of light emitted or absorbed by a quantum system are de-
termined by the difference between two allowed energies. Quantum jumps involve 
two stationary states.

Zero-Point Motion
The lowest energy state in Example 40.2, the ground state, has E1 =  0.38 eV. There is 
no stationary state having E = 0. Unlike a classical particle, a quantum particle in a 
box cannot be at rest! No matter how much its energy is reduced, such as by cooling 
it toward absolute zero, it cannot have energy less than E1.

The particle motion associated with energy E1, called the zero-point motion, 
is a consequence of Heisenberg’s uncertainty principle. Because the particle is some-
where in the box, its position uncertainty is ∆x = L. If the particle were at rest in 
the box, we would know that its velocity and momentum are exactly zero with no 
uncertainty: ∆px = 0. But then ∆x ∆px = 0 would violate the Heisenberg uncertainty 
principle. One of the conclusions that follow from the uncertainty principle is that a 
confined particle cannot be at rest.

Although the particle’s position and velocity are uncertain, the particle’s energy in 
each state can be calculated with a high degree of precision. This distinction between 
a precise energy and uncertain position and velocity seems strange, but it is just our 
old friend the standing wave. In order to have a stationary state at all, the de Broglie 
waves have to form standing waves. Only for very precise frequencies, and thus precise  
energies, can the standing-wave pattern appear.

SOLVE a. The particle’s mass is m = me = 9.11 * 10-31 kg. The 
allowed energies, in both J and eV, are

 E1 =
h2

8mL2 = 6.03 * 10-20 J = 0.377 eV

 E2 = 4E1 = 1.508 eV

 E3 = 9E1 = 3.393 eV

b. An electron spends most of its time in the n = 1 ground state. 
According to Bohr’s model of stationary states, the electron can 
absorb a photon of light and undergo a transition, or quantum jump, 
to n = 2 or n = 3 if the light has frequency f = ∆E/h. The wave-
lengths, given by l = c/f = hc/  ∆E, are

 l1S2 =
hc

E2 - E1
= 1098 nm

 l1S3 =
hc

E3 - E1
= 411 nm

 REVIEW In practice, various complications usually make the 1 S 3 
transition unobservable. But quantum-well devices do indeed ex-
hibit strong absorption and emission at the l1S2 wavelength. In  
this example, which is typical of quantum-well devices, the wave-
length is in the near-infrared portion of the spectrum. Devices 
such as these are used to construct the semiconductor lasers used 
in DVD players and laser printers.

Protons and neutrons are tightly bound within the nucleus of an 
atom. If we use a one-dimensional model of a nucleus, what are the 
first three energy levels of a neutron in a 10-fm-diameter nucleus 
11 fm = 10-15 m2?

MODEL Model the nucleus as a one-dimensional box of length 
L = 10 fm. The neutron is confined within the box.

SOLVE The energy levels, with L = 10 fm and m = mn = 1.67 *  
10-27 kg, are

 E1 =
h2

8mL2 = 3.29 * 10-13 J = 2.06 MeV

 E2 = 4E1 = 8.24 MeV

 E3 = 9E1 = 18.54 MeV

REVIEW You’ve seen that an electron confined in an atom-size 
space has energies of a few eV. A neutron confined in a nucleus- 
size space has energies of a few million eV.

EXAMPLE 40.3 ■ Nuclear energies

A particle in a rigid box of length L is in its ground state.

a. Where is the particle most likely to be found?

b. What are the probabilities of finding the particle in an interval of 
width 0.01L at x = 0.00L, 0.25L, and 0.50L?

c. What is the probability of finding the particle between L/4 and 
3L/4?

MODEL The wave functions for a particle in a rigid box have been 
determined.

EXAMPLE 40.4 ■ The probabilities of locating the particle

M40_KNIG8221_05_GE_C40.indd   1204 31/05/2022   15:48



40.5 The Correspondence Principle 1205

This has been a lengthy presentation of the particle-in-a-box problem. However, 
it was important that we explore the method of solution completely. Future examples 
will now go more quickly because many of the issues discussed here will not need to 
be repeated.

VISUALIZE FIGURE  40.10 shows the probability density P11x2 =  
0c11x2 0 2 in the ground state.

SOLVE a. The particle is most likely to be found at the point 
where the probability density P1x2 is a maximum. You can see 
from Figure  40.10 that the point of maximum probability for 
n = 1 is x = L/2.

b. For a small width dx, the probability of finding the particle in  
dx at position x is

Prob1in dx at x2 = P11x2 dx = 0c11x2 0 2 dx =
2
L

 sin21px
L 2  dx

The interval dx = 0.01L is sufficiently small for this to be valid. The  
probabilities of finding the particle are

 Prob1in 0.01L at x = 0.00L2 = 0.000 = 0.0%

 Prob1in 0.01L at x = 0.25L2 = 0.010 = 1.0%

 Prob1in 0.01L at x = 0.50L2 = 0.020 = 2.0%

c. You learned in Chapter 39 that the probability of being in an in-
terval is the area under the probability-density curve. We calculate 
this by integrating:

  Prob1in interval 14 L to 34 L2 = 3
3L/4

L/4
 P11x2 dx

  =
2
L

 3
3L/4

L/4
 sin21px

L 2  dx

  = c x
L

-
1
p

 sin1px
L 2  cos1px

L 2 d 3L/4

L/4

  =
1
2

 +
1
p

= 0.818

The integral of sin2 was taken from the table of integrals in  
Appendix A.

REVIEW If a particle in a box is in the n = 1 ground state, there  
is an 81.8% chance of finding it in the center half of the box. 
The probability is greater than 50% because, as you can see in  
Figure 40.10, the probability density P11x2 is larger near the center 
of the box than near the boundaries.

P1(x) = 0c1(x) 0 2

0 LL/2
x

The probability of being in the interval
from L/4 to 3L/4 is the area under the curve.

Maximum
probability
at x = L/2

FIGURE 40.10 Probability density for a particle in the ground state.

STOP TO THINK 40.2 A particle in a rigid box in the n = 2 stationary state is most 
likely to be found

a. In the center of the box.
b. One-third of the way from either end.
c. One-quarter of the way from either end.
d.  It is equally likely to be found at any point in the box.

40.5 The Correspondence Principle
Suppose we confine an electron in a microscopic box, then allow the box to get bigger 
and bigger. What started out as a quantum-mechanical situation should, when the box 
becomes macroscopic, eventually look like a classical-physics situation. Similarly, a 
classical situation such as two charged particles revolving about each other should 
begin to exhibit quantum behavior as the orbit size becomes smaller and smaller.

These examples suggest that there should be some in-between size, or energy, for 
which the quantum-mechanical solution corresponds in some way to the solution  
of classical mechanics. Niels Bohr put forward the idea that the average behavior  
of a quantum system should begin to look like the classical solution in the limit that 
the quantum number becomes very large—that is, as n S ∞   . Because the radius of the 
Bohr hydrogen atom is r = n2aB, the atom becomes a macroscopic object as n becomes 
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x

Particle in an empty box

Motion diagram

The probability of finding the
particle in dx is the fraction of
time the particle spends in dx.

(a) Uniform speed

dx

dx

x

Particle on a spring

Motion diagram

The particle is more
likely to be found where
it’s moving slowly, c

cless likely to be
found where it’s
moving quickly.

(b) Nonuniform speed

dx

FIGURE 40.11 The classical probability 
density is indicated by the density of  
dots in a motion diagram.

very large. Bohr’s idea, that the quantum world should blend smoothly into the classical 
world for high quantum numbers, is today known as the correspondence principle.

Our quantum knowledge of a particle in a box is given by its probability density

 Pquant1x2 = 0cn1x2 0 2 =
2
L

 sin21npx
L 2 (40.29)

To what classical quantity can the probability density be compared as n S ∞   ?
Interestingly, we can also define a classical probability density Pclass1x2. A classical 

particle follows a well-defined trajectory, but suppose we observe the particle at random  
times. For example, suppose the box containing a classical particle has a viewing 
window. The window is normally closed, but at random times, selected by a random- 
number generator, the window opens for a brief interval dt and you can measure the 
particle’s position. When the window opens, what is the probability that the particle will  
be in a narrow interval dx at position x?

The probability of finding a classical particle within a small interval dx is equal to 
the fraction of its time that it spends passing through dx. That is, you’re more likely to 
find the particle in those intervals dx where it spends lots of time, less likely to find it 
in a dx where it spends very little time.

Consider a classical particle oscillating back and forth between two turning points 
with period T. The time it spends moving from one turning point to the other is 12 T. As 
it moves between the turning points, it passes once through the interval dx at position 
x, taking time dt to do so. Consequently, the probability of finding the particle within 
this interval is

 Probclass1in dx at x2 = fraction of time spent in dx =
dt

1
2 T

 (40.30)

The amount of time needed to pass through dx is dt = dx/v1x2, where v1x2 is the  
particle’s velocity at position x. Thus the probability of finding the particle in the  
interval dx at position x is

 Probclass1in dx at x2 =
dx/v1x2

1
2 T

=
2

Tv1x2  dx (40.31)

You learned in Chapter 39 that the probability is related to the probability density by

 Probclass1in dx at x2 = Pclass1x2 dx

Thus the classical probability density for finding a particle at position x is

 Pclass1x2 =
2

Tv1x2 (40.32)

where the velocity v1x2 is expressed as a function of x. Classically, a particle is more 
likely to be found where it is moving slowly, less likely to be found where it is 
moving quickly.

   NOTE    Our derivation of Equation 40.32 made no assumptions about the particle’s 
motion other than the requirement that it be periodic. This is the classical probability 
density for any oscillatory motion.

FIGURE 40.11a is the motion diagram of a classical particle in a rigid box of length 
L. The particle’s speed is a constant v1x2 = v0 as it bounces back and forth between 
the walls. The particle travels distance 2L during one round trip, so the period is 
T = 2L/v0. Consequently, the classical probability density for a particle in a box is

 Pclass1x2 =
2

12L/v02v0
=

1
L

 (40.33)

Pclass1x2 is independent of x, telling us that the particle is equally likely to be found 
anywhere in the box.
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40.6 Finite Potential Wells 1207

  Prob1in dx at x = 5 cm2 = P1x2dx = 10.10 cm-1210.10 cm2
  = 0.010 = 1.0%

REVIEW The classical probability is 1.0% because 1.0 mm is 1% 
of the 10 cm length. Compare this to Example 40.4, where the prob- 
ability of being within 1.0% of the length of the box at the center 
was 2.0%. Classical and quantum mechanics make different pre-
dictions.

In contrast, FIGURE 40.11b shows a particle with nonuniform speed. A mass on a 
spring slows down near the turning points, so it spends more time near the ends of the 
box than in the middle. Consequently the classical probability density for this particle 
is a maximum at the edges and a minimum at the center. We’ll look at this classical 
probability density again later in the chapter.

A classical particle is in a rigid 10-cm-long box. What is the prob-
ability that, at a random instant of time, the particle is in a 1.0-mm- 
wide interval at the center of the box?

SOLVE The particle’s probability density is

Pclass1x2 =
1
L

=
1

10 cm
= 0.10 cm-1

The probability that the particle is in an interval of width dx =  
1.0 mm = 0.10 cm is

EXAMPLE 40.5 ■ The classical probability of locating the particle

FIGURE 40.12 shows the quantum and the classical probability densities for the n = 1 
and n = 20 quantum states of a particle in a rigid box. Notice that:

■■ The quantum probability density oscillates between a minimum of 0 and a maxi-
mum of 2/L, so it oscillates around the classical probability density 1/L.

■■  For n = 1, the quantum and classical probability densities are quite different. The 
ground state of the quantum system will be very nonclassical.

■■ For n = 20, on average the quantum particle’s behavior looks very much like that 
of the classical particle.

As n gets even bigger and the number of oscillations increases, the probability of 
finding the particle in an interval dx will be the same for both the quantum and the 
classical particles as long as dx is large enough to include several oscillations of the 
wave function. As Bohr predicted, the quantum-mechanical solution “corresponds” to 
the classical solution in the limit n S ∞   .

40.6 Finite Potential Wells
Figure 40.4, the potential-energy diagram for a particle in a rigid box, is an example 
of a potential well, so named because the graph of the potential-energy “hole” looks 
like a well from which you might draw water. The rigid box was an infinite potential 
well. There was no chance that a particle inside could escape the infinitely high walls.

A more realistic model of a confined particle is the finite potential well shown 
in FIGURE 40.13a on the next page. A particle with total energy E 6 U0 is confined within 
the well, bouncing back and forth between turning points at x = 0 and x = L. The  
regions x 6 0 and x 7 L are classically forbidden regions for a particle with E 6 U0. 
However, the particle will escape the well if it manages to acquire energy E 7 U0.

For example, consider an electron confined within a metal or semiconductor. An 
electron with energy less than the work function moves freely until it reaches the edge, 

1
L

2
L

1
L

2
L

xx
0 L 0 L

The quantum and classical probability
densities are very different.0c1(x) 0 2

Pquant for n = 1

Pclass

Pclass

Pquant for n = 20

On average, the quantum probability
density matches the classical value.

FIGURE 40.12 The quantum and classical probability densities for a particle in a box.
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(a) U = 0 inside the well.

U = 0 inside the well.

Turning
points

U0 is the depth of the
potential-energy well.

U(x)

U0

The particle’s
energy is E 6 U0.

E

x

Classically
forbidden
region

Classically
forbidden
region

0 L
0

FIGURE 40.13 A finite potential well of 
width L and depth U0.

where it reflects to stay within the solid. But the electron can escape if it somehow—
such as absorbing energy from a photon—acquires an energy larger than the work 
function. Similarly, a neutron is confined within the nucleus by the nuclear force, but 
it can escape the nucleus if it has enough energy. The electron, the neutron, and many 
other particles that are confined can be modeled as a particle in a finite potential well, 
so it is one of the most important models in quantum mechanics.

FIGURE 40.13b is the same potential well, simply redrawn to place the zero of potential 
energy—which, you will recall, is arbitrary—at the level of the “energy plateau.” Both 
have width L and depth U0 so both have the same wave functions and the same energy 
levels relative to the bottom of the well. Which one we use is a matter of convenience.

Although it is possible to solve the Schrödinger equation exactly for the finite  
potential well, the result is cumbersome and not especially illuminating. Instead, we’ll 
present the results of numerical calculations. The derivation of the wave functions and 
energy levels is not as important as understanding and interpreting the results.

As a first example, consider an electron in a 2.0-nm-wide potential well of depth 
U0 = 1.0 eV. These are reasonable parameters for an electron in a semiconductor 
device. FIGURE  40.14a is a graphical presentation of the allowed energies and wave 
functions. For comparison, FIGURE 40.14b shows the first three energy levels and wave 
functions for a rigid box 1U0 S ∞   2 with the same 2.0 nm width.

(b) U = 0 outside the well.

The zero of energy has
been changed, but this
well still has width L
and depth U0.

U(x)

E

L

x0

U = -U0 inside the well.

-U0 c(x) c(x)

-1 0 1 2 3 0 1 2
x (nm)x (nm)

n = 4

E4 = 0.949 eV
1.0 eV

E3 = 0.585 eV

E2 = 0.263 eV

E1 = 0.068 eV E1 = 0.094 eV

E2 = 0.377 eV

E3 = 0.848 eV

n = 3

n = 2

n = 1

∞ ∞

(a) Finite potential well (b) Particle in a rigid box

0 eV

Wave function extends
into the classically
forbidden region.

Wave function
is zero at the
edge of the box.

FIGURE 40.14 Energy levels and wave functions for a finite potential well. For comparison, 
the energies and wave functions are shown for a rigid box of equal width.

The quantum-mechanical solution for a particle in a finite potential well has some 
important properties:

■■ The particle’s energy is quantized. A particle in the potential well must be in one of 
the stationary states with quantum numbers n = 1, 2, 3,  c  .

■■ There are only a finite number of bound states—four in this example, although 
the number will be different in other examples. These wave functions represent 
electrons confined to, or bound in, the potential well. There are no stationary states 
with E 7 U0 because such a particle would not remain in the well.

■■ The wave functions are qualitatively similar to those of a particle in a rigid box, but 
the energies are somewhat lower. This is because the wave functions are slightly 
more spread out horizontally. A slightly longer de Broglie wavelength corresponds 
to a lower velocity and thus a lower energy.

■■ Most interesting, perhaps, is that the wave functions of Figure 40.14a extend into 
the classically forbidden regions. It is as though a tennis ball penetrated partly 
through the racket’s strings before bouncing back, but without breaking the strings.

M40_KNIG8221_05_GE_C40.indd   1208 31/05/2022   15:48



40.6 Finite Potential Wells 1209

The Classically Forbidden Region
The extension of a particle’s wave functions into the classically forbidden region is an 
important difference between classical and quantum physics. Let’s take a closer look 
at the wave function in the region x Ú L of Figure 40.13a. The potential energy in the 
classically forbidden region is U0; thus the Schrödinger equation for x Ú L is

d2c

dx2 = -
2m

U2  1E - U02c1x2

We’re assuming a confined particle, with E less than U0, so E - U0 is negative. It will 
be useful to reverse the order of the two energies and write

 
d2c

dx2 =
2m

U2  1U0 - E2c1x2 =
1

h2 c1x2 (40.34)

where

 h2 =
U2

2m1U0 - E2 (40.35)

is a positive constant. As a homework problem, you can show that the units of h are meters.
The Schrödinger equation of Equation 40.34 is one we can solve by guessing. We 

simply need to think of two functions whose second derivatives are a positive constant 
times the functions themselves. Two such functions, as you can quickly confirm, are 
ex/h and e-x/h. Thus, according to Equation 40.8, the general solution of the Schrödinger  
equation for x Ú L is

 c1x2 = Aex/h + Be-x/h for x Ú L (40.36)

One requirement of the wave function is that c S 0 as x S ∞   . The function ex/h  
diverges as x S ∞   , so the only way to satisfy this requirement is to set A = 0. Thus

 c1x2 = Be-x/h for x Ú L (40.37)

This is an exponentially decaying function. Notice that all the wave functions in 
Figure 40.14a look like exponential decays for x 7 L.

The wave function must also be continuous. Suppose the oscillating wave function  
within the potential well 1x … L2 has the value cedge when it reaches the classical  
boundary at x = L. To be continuous, the wave function of Equation 40.37 has to  

What wavelengths of light are absorbed by a semiconductor device  
in which electrons are confined in a 2.0-nm-wide region with a  
potential-energy depth of 1.0 eV?

MODEL The electron is in the finite potential well whose energies 
and wave functions were shown in Figure 40.14a.

SOLVE Photons can be absorbed if their energy Ephoton = hf   
exactly matches the energy difference ∆E between two energy 
levels. Because most electrons are in the n = 1 ground state, the  
absorption transitions are 1 S 2, 1 S 3, and 1 S 4.

The absorption wavelengths l = c/f  are

lnSm =
hc
∆E

=
hc

0En - Em 0
For this example, we find

∆E1-2 = 0.195 eV  l1S2 = 6.37 mm
∆E1-3 = 0.517 eV  l1S3 = 2.40 mm
∆E1-4 = 0.881 eV  l1S4 = 1.41 mm

REVIEW These transitions are all infrared wavelengths.

EXAMPLE 40.6 ■ Absorption spectrum of an electron

STOP TO THINK 40.3 This is a wave function for  
a particle in a finite quantum well. What is the  
particle’s quantum number?

x
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1210 CHAPTER 40 One-Dimensional Quantum Mechanics 

match this value at x = L. That is,

 c1at x = L2 = Be-L/h = cedge (40.38)

This boundary condition at x = L is sufficient to determine that the constant B is

 B = cedgee
L/h (40.39)

If we use the Equation 40.39 result for B in Equation 40.37, we find that the wave 
function in the classically forbidden region of a finite potential well is

 c1x2 = cedgee
-1x-L2/h  for x Ú L (40.40)

In other words, the wave function oscillates until it reaches the classical turning  
point at x = L, then it decays exponentially within the classically forbidden  
region. A similar analysis could be done for x … 0.

FIGURE 40.15 shows the wave function in the classically forbidden region. You can 
see that the wave function at x = L + h has decreased to

c1at x = L + h2 = e-1cedge = 0.37cedge

Although an exponential decay does not have a sharp ending point, the parameter h 
measures “about how far” the wave function extends past the classical turning point 
before the probability of finding the particle has decreased nearly to zero. This distance  
is called the penetration distance:

 penetration distance h =
U22m1U0 - E2

 (40.41)

A classical particle reverses direction at the x = L turning point. But atomic particles 
are not classical. Because of wave–particle duality, an atomic particle is “fuzzy” with no 
well-defined edge. Thus an atomic particle can spread a distance of roughly h into the  
classically forbidden region.

The penetration distance is unimaginably small for any macroscopic mass, but it 
can be significant for atomic particles. Notice that the penetration distance depends 
inversely on the quantity U0 - E, the distance of the energy level below the top of the 
potential well. You can see in Figure 40.14a that h is much larger for the n = 4 state, 
near the top of the potential well, than for the n = 1 state.

   NOTE    In making use of Equation 40.41, you must use SI units of J s for U and J for 
the energies. The penetration distance h is then in meters.

An electron is confined in a 2.0-nm-wide region with a potential- 
energy depth of 1.00 eV. What are the penetration distances into 
the classically forbidden region for an electron in the n = 1 and 
n = 4 states?

MODEL The electron is in the finite potential well whose energies 
and wave functions were shown in Figure 40.14a.

SOLVE The ground state has U0 - E1 = 1.000 eV - 0.068 eV =  
0.932 eV. Similarly, U0 - E4 = 0.051 eV in the n = 4 state. We 
can use Equation 40.41 to calculate

h =
U22m1U0 - E2

= b0.20 nm n = 1
0.86 nm n = 4

REVIEW These values are consistent with Figure 40.14a.

EXAMPLE 40.7 ■ Penetration distance of an electron

Quantum-Well Devices
In Part VI we developed a model of electrical conductivity in which the valence elec-
trons of a metal form a loosely bound “sea of electrons.” The typical speed of an 
electron is the rms speed:

vrms = B 3kBT
m

cedge

c(x)

c(x) = cedgee
-(x - L)/h

0.37cedge

0
L L + h L + 2h

x

The oscillating wave function
inside the potential well

The wave functions
match at x = L.

Penetration
distance h

An exponentially decaying
wave function in the
classically forbidden region

Classically
forbidden region

Classical
turning
point

FIGURE 40.15 The wave function in the 
classically forbidden region.
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40.6 Finite Potential Wells 1211

where kB is Boltzmann’s constant. Hence at room temperature, where vrms ≈ 1 *  
105 m/s, the de Broglie wavelength of a typical conduction electron is

l ≈
h

mvrms
≈ 7 nm

There is a range of wavelengths because the electrons have a range of speeds, but this 
is a typical value.

You’ve now seen many times that wave effects are significant only when the sizes 
of physical structures are comparable to or smaller than the wavelength. Because 
the de Broglie wavelength of conduction electrons is only a few nm, quantum effects 
are insignificant in electronic devices whose features are larger than about 100 nm. 
The electrons in macroscopic devices can be treated as classical particles, which is 
how we analyzed electric current in Chapter 27.

However, devices smaller than about 100 nm do exhibit quantum effects. Some 
semiconductor devices, such as the semiconductor lasers used in fiber-optic commu-
nications, now incorporate features only a few nm in size. Quantum effects play an 
important role in these devices.

FIGURE 40.16a shows a semiconductor diode laser through which a current travels 
from left to right. In the center is a very thin layer of the semiconductor gallium arse-
nide (GaAs). It is surrounded on either side by layers of gallium aluminum arsenide 
(GaAlAs), and these in turn are embedded within the larger structure of the diode. 
The electrons within the central GaAs layer begin to emit laser light when the current 
through the diode exceeds a threshold current. The laser beam diverges because of 
diffraction through the “slit” of the GaAs layer, with the wider axis of the laser beam 
corresponding to the narrower portion of the lasing region.

You can learn in a solid-state physics or materials engineering course that the  
electric potential energy of an electron is slightly lower in GaAs than in GaAlAs. 
This makes the GaAs layer a potential well for electrons, with higher-potential-energy 
GaAlAs “walls” on either side. As a result, the electrons become trapped within the 
thin GaAs layer. Such a device is called a quantum-well laser.

As an example, FIGURE 40.16b shows a quantum-well device with a 1.0-nm-thick 
GaAs layer in which the electron’s potential energy is 0.300 eV lower than in the 
surrounding GaAlAs layers. A numerical solution of the Schrödinger equation finds 
that this potential well has only a single quantum state, n = 1 with E1 = 0.125 eV. 
Every electron trapped in this quantum well has the same energy—a very nonclassical 
result! The fact that the electron energies are so well defined, in contrast to the range 
of electron energies in bulk material, is what makes this a useful device. You can also 
see from the probability density 0c 0 2 that the electrons are more likely to be found in 
the center of the layer than at the edges. This concentration of electrons makes it easier  
for the device to begin laser action.

Nuclear Physics
The nucleus of an atom consists of an incredibly dense assembly of protons and  
neutrons. The positively charged protons exert extremely strong electric repulsive 
forces on each other, so you might wonder how the nucleus keeps from exploding. 
During the 1930s, physicists found that protons and neutrons also exert an attractive 
force on each other. This force, one of the fundamental forces of nature, is called the 
strong force. It is the force that holds the nucleus together.

The primary characteristic of the strong force, other than its strength, is that it is 
a short-range force. The attractive strong force between two nucleons (a nucleon is 
either a proton or a neutron; the strong force does not distinguish between them) rap-
idly decreases to zero if they are separated by more than about 2 fm. This is in sharp 
contrast to the long-range nature of the electric force.

A reasonable model of the nucleus is to think of the protons and neutrons as  
particles in a nuclear potential well that is created by the strong force. The diameter 

Laser light Metal contact

Current

GaAlAs GaAs

E1

0.300 eV

0.125 eV

0.000 eV

GaAlAs GaAs GaAlAs

0c1(x) 0 2

(b)

(a) Quantum-well laser

1.0 nm

FIGURE 40.16 A semiconductor diode 
laser with a single quantum well.

M40_KNIG8221_05_GE_C40.indd   1211 31/05/2022   15:48



1212 CHAPTER 40 One-Dimensional Quantum Mechanics 

-13.4 MeV

0 MeV

-28.5 MeV

-40.4 MeV

-47.6 MeV

-50.0 MeV

n = 4

n = 3

n = 2
n = 1

The diameter of the
nucleus is 8.0 fm.

A radioactive decay has left the neutron
in the n = 3 excited state. The neutron
jumps to the n = 1 ground state, emitting
a gamma-ray photon.

Energy levels of a
neutron in the nucleus

Gamma-ray
emission

FIGURE 40.17 There are four allowed 
energy levels for a neutron in this nuclear 
potential well.

of the potential well is equal to the diameter of the nucleus (this varies with atomic 
mass), and nuclear physics experiments have found that the depth of the potential well 
is ≈50 MeV.

The real potential well is three-dimensional, but let’s make a simplified model of 
the nucleus as a one-dimensional potential well. FIGURE 40.17 shows the potential energy 
of a neutron along an x-axis passing through the center of the nucleus. Notice that the 
zero of energy has been chosen such that a “free” neutron, one outside the nucleus, has 
E = 0. Thus the potential energy inside the nucleus is -50 MeV. The 8.0 fm diameter 
shown is appropriate for a nucleus having atomic mass number A ≈ 40, such as argon 
or potassium. Lighter nuclei will be a little smaller, heavier nuclei somewhat larger. 
(The potential-energy diagram for a proton is similar, but is complicated a bit by the  
electric potential energy.)

A numerical solution of the Schrödinger equation finds the four stationary  
states shown in Figure 40.17. The wave functions have been omitted, but they look 
essentially identical to the wave functions in Figure 40.14a. The major point to note is 
that the allowed energies differ by several million electron volts! These are enormous 
energies compared to those of an electron in an atom or a semiconductor. But recall  
that the energies of a particle in a rigid box, En = n2h2/8mL2, are proportional  
to 1/L2. Our previous examples, with nanometer-size boxes, found energies in the 
eV range. When the box size is reduced to femtometers, the energies jump up into 
the MeV range.

It often happens that the nuclear decay of a radioactive atom leaves a neutron in an 
excited state. For example, Figure 40.17 shows a neutron that has been left in the n = 3 
state by a previous radioactive decay. This neutron can now undergo a quantum jump 
to the n = 1 ground state by emitting a photon with energy

Ephoton = E3 - E1 = 19.1 MeV

and wavelength

lphoton =
c
f

=
hc

Ephoton 
= 6.50 * 10-5 nm

This photon is ≈107 times more energetic, and its wavelength ≈107 times smaller, 
than the photons of visible light! These extremely high-energy photons are called 
gamma rays. Gamma-ray emission is, indeed, one of the primary processes in the 
decay of radioactive elements.

Our one-dimensional model cannot be expected to give accurate results for the 
energy levels or gamma-ray energies of any specific nucleus. Nonetheless, this model 
does provide a reasonable understanding of the energy-level structure in nuclei and 
correctly predicts that nuclei can emit photons having energies of several million 
electron volts. This model, when extended to three dimensions, becomes the basis 
for the shell model of the nucleus in which the protons and neutrons are grouped in 
various shells analogous to the electron shells around an atom that you remember 
from chemistry. You can learn more about nuclear physics and the shell model in 
Chapter 42.

40.7 Wave-Function Shapes
Bound-state wave functions are standing de Broglie waves. In addition to boundary 
conditions, two other factors govern the shapes of wave functions:

1. The de Broglie wavelength is inversely dependent on the particle’s speed. 
Consequently, the node spacing is smaller (shorter wavelength) where the kinetic 
energy is larger, and the spacing is larger (longer wavelength) where the kinetic  
energy is smaller.
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40.7 Wave-Function Shapes 1213

2. A classical particle is more likely to be found where it is moving more slowly. 
In quantum mechanics, the probability of finding the particle increases as the 
wave-function amplitude increases. Consequently, the wave-function amplitude 
is larger where the kinetic energy is smaller, and it is smaller where the kinetic 
energy is larger.

We can use this information to draw reasonably accurate wave functions for the 
different allowed energies in a potential-energy well.

TACTICS BOX 40.1

Drawing wave functions
1  Draw a graph of the potential energy U1x2. Show the allowed energy E as a 

horizontal line. Locate the classical turning points.
2  Draw the wave function as a continuous, oscillatory function between the 

turning points. The wave function for quantum state n has n antinodes and 
1n - 12 nodes (excluding the ends).

3  Make the wavelength longer (larger node spacing) and the amplitude  
higher in regions where the kinetic energy is smaller. Make the wavelength 
shorter and the amplitude lower in regions where the kinetic energy is larger.

4  Bring the wave function to zero at the edge of an infinitely high potential- 
energy “wall.”

5  Let the wave function decay exponentially inside a classically forbidden  
region where E 6 U. The penetration distance h increases as E gets closer to  
the top of the potential-energy well.

Exercises 10–13 

FIGURE 40.18 shows a potential-energy well and the allowed ener-
gies for the n = 1 and n = 4 quantum states. Sketch the n = 1 and 
n = 4 wave functions.

VISUALIZE The steps of Tactics Box  40.1 have been followed to 
sketch the wave functions shown in FIGURE 40.19.

EXAMPLE 40.8 ■ Sketching wave functions

Shorter wavelength, lower
amplitude where K is larger

Locate turning
points.

Longer wavelength, higher
amplitude where K is smaller

Exponential decay inside a
classically forbidden region

1 antinode
for n = 1

4 antinodes
for n = 4

c = 0 at an
infinitely
high wall.

1

2

2

3 3

4

5

FIGURE 40.19 The n = 1 and n = 4 wave functions.

∞ ∞
U(x)

E4

E1

x

FIGURE 40.18 A potential-energy well.
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40.8 The Quantum Harmonic Oscillator
Simple harmonic motion is exceptionally important in classical physics, where it 
serves as a prototype for more complex oscillations. As you might expect, a micro-
scopic oscillator—the quantum harmonic oscillator—is equally important as a 
model of oscillations at the atomic level.

The defining characteristic of simple harmonic motion is a linear restoring force: 
F = -kx, where k is the spring constant. The corresponding potential-energy function,  
as you learned in Chapter 10, is

 U1x2 = 1
2 kx2 (40.42)

where we’ll assume that the equilibrium position is xe = 0. The potential energy of a 
harmonic oscillator is shown in FIGURE 40.20. It is a potential-energy well with curved 
sides.

A classical particle of mass m oscillates with angular frequency

 v = B k
m

 (40.43)

between the two turning points where the energy line crosses the parabolic potential- 
energy curve. As you’ve learned, this classical description fails if m represents an 
atomic particle, such as an electron or an atom. In that case, we need to solve the 
Schrödinger equation to find the wave functions.

The Schrödinger equation for a quantum harmonic oscillator is

 
d2c

dx2 = -
2m

U2 1E - 1
2 kx22c1x2 (40.44)

where we used U1x2 = 1
2 kx2. We will assert, without deriving them, that the wave 

functions of the first three states are

  c11x2 = A1e
-x2/2b2

 

  c21x2 = A2 
x
b

 e-x2/2b2
 (40.45)

  c31x2 = A311 -
2x2

b2 2e-x2/2b2
 

where

 b = B U
mv

 (40.46)

STOP TO THINK 40.4 For which potential energy U1x2 is this an 
appropriate n = 4 wave function?

x

E4

U(x) U(x) U(x) U(x)

E4 E4 E4

∞ ∞

x

∞ ∞

x

∞

x

∞

(a) (b) (c) (d)

x

xL xR

x

E

0

Classically
forbidden
region

Classical
turning points

Classically
forbidden
region

Energy

U(x) = kx21
2

FIGURE 40.20 The potential energy of a 
harmonic oscillator.
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40.8 The Quantum Harmonic Oscillator 1215

The constant b has dimensions of length. We will leave it as a homework problem 
for you to show that b is the classical turning point of an oscillator in the n = 1 ground 
state. The constants A1, A2, and A3 are normalization constants. For example, A1 can 
be found by requiring

  3
∞

-∞
 0c11x2 0 2 dx = A1 

23
∞

-∞
 e-x2/b2

 dx = 1 (40.47)

The completion of this calculation also will be left as a homework problem.
As expected, stationary states of a quantum harmonic oscillator exist only for cer-

tain discrete energy levels, the quantum states of the oscillator. The allowed energies 
are given by the simple equation

 En = 1n - 1
22Uv  n = 1, 2, 3,  c (40.48)

where v is the classical angular frequency, Equation 40.43, and n is the quantum 
number.

   NOTE    The ground-state energy of the quantum harmonic oscillator is E1 =  1
2 Uv. 

An atomic mass on a spring can not be brought to rest. This is a consequence of the 
uncertainty principle.

FIGURE 40.21 shows the first three energy levels and wave functions of a quantum 
harmonic oscillator. Notice that the energy levels are equally spaced by ∆E = Uv. 
This result differs from the particle in a box, where the energy levels get increasingly 
farther apart. Also notice that the wave functions, like those of the finite potential 
well, extend beyond the turning points into the classically forbidden region.

E3 = Uv

U(x) = kx2

E2 = Uv

E1 = 

x

Uv

Uv

2Uv

3Uv

4Uv

n = 3

n = 2

n = 1

Energy

0 b-b-2b-3b 2b 3b

c1

c2

c3

Classical turning
point for n = 1

The energy levels
are equally spaced.

1
2

5
2

3
2

1
2

FIGURE 40.21 The first three energy levels and wave functions of a quantum harmonic oscillator.

FIGURE 40.22 shows the probability density 0c1x2 0 2 for the n = 11 state of a quantum 
harmonic oscillator. Notice how the node spacing and the amplitude both increase as 
the particle moves away from the equilibrium position at x = 0. This is consistent with 
item 3 of Tactics Box 40.1. The particle slows down as it moves away from the origin, 
causing its de Broglie wavelength and the probability of finding it to increase.

Section 40.5 introduced the classical probability density Pclass1x2 and noted that a  
classical particle is most likely to be found where it is moving the slowest. Figure 40.22 

x

Pclass

-4b -2b 0 2b 4b

Pquant = 0c(x) 0 2
Classical
turning
point

FIGURE 40.22 The quantum and classical 
probability densities for the n = 11 state 
of a quantum harmonic oscillator.
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shows Pclass1x2 for a classical particle with the same total energy as the n = 11 quantum  
state. You can see that on average the quantum probability density 0c1x2 0 2 mimics 
the classical probability density. This is just what the correspondence principle leads 
us to expect.

An electron in a harmonic-oscillator potential well emits light of 
wavelength 600 nm as it jumps from one level to the next lowest 
level. What is the “spring constant” of the restoring force?

MODEL The electron is a quantum harmonic oscillator.

SOLVE A photon is emitted as the electron undergoes the quantum 
jump n S n - 1. We can use Equation 40.48 for the energy levels 
to find that the electron loses energy

∆E = En - En-1 = 1n - 1
22Uve - 1n - 1 - 1

22Uve = Uve

∆E = Uve for all transitions, independent of n, because the energy 
levels of the quantum harmonic oscillator are equally spaced. We 
need to distinguish the harmonic oscillations of the electron from 
the oscillations of the light wave, hence the subscript e on ve.

The emitted photon has energy Ephoton = hfph = ∆E. Thus

Uve =
h

2p
 ve = hfph =

hc
l

The wavelength of the light is l = 600 nm, so the classical angular 
frequency of the oscillating electron is

ve = 2p 
c
l

= 3.14 * 1015 rad/s

The electron’s angular frequency is related to the spring constant of 
the restoring force by

ve = B k
m

Thus k = mve 

2 = 9.0 N/m.

EXAMPLE 40.9 ■ Light emission by an oscillating electron

Molecular Vibrations
We’ve made many uses of the idea that atoms are held together by spring-like molecular  
bonds. We’ve always assumed that the bonds could be modeled as classical springs. 
The classical model is acceptable for some purposes, but it fails to explain some 
important features of molecular vibrations. Not surprisingly, the quantum harmonic  
oscillator is a better model of a molecular bond.

FIGURE 40.23 shows the potential energy of two atoms connected by a molecular bond. 
Nearby atoms attract each other through a polarization force, much as a charged rod 
picks up small pieces of paper. If the atoms get too close, a repulsive force between the 
negative electrons pushes them apart. The equilibrium separation at which the attractive 
and repulsive forces are balanced is r0, and two classical atoms would be at rest at this  
separation. But quantum particles, even in their lowest energy state, have E 7 0. Conse-
quently, the molecule vibrates as the two atoms oscillate back and forth along the bond.

Udissoc is the energy at which the molecule will dissociate and the two atoms will 
fly apart. Dissociation can occur at very high temperatures or after the molecule has 
absorbed a high-energy (ultraviolet) photon, but under typical conditions a molecule 
has energy E V Udissoc. In other words, the molecule is in an energy level near the 
bottom of the potential well.

You can see that the lower portion of the potential well is very nearly a parabola. 
Consequently, we can model a molecular bond as a quantum harmonic oscillator. The 
energy associated with the molecular vibration is quantized and can have only the values

 Evib ≈ 1n - 1
22Uv  n = 1, 2, 3,  c (40.49)

where v is the angular frequency with which the atoms would vibrate if the bond 
were a classical spring. The molecular potential-energy curve is not exactly that of a 
harmonic oscillator, hence the ≈ sign, but the model is very good for low values of 
the quantum number n. The energy levels calculated by Equation 40.49 are called the 
vibrational energy levels of the molecule. The first few vibrational energy levels 
are shown in Figure 40.23.

At room temperature, most molecules are in the n = 1 vibrational ground state. 
Their vibrational motion can be excited by absorbing photons of frequency f = ∆E/h. 

Udissoc

0
0.0 0.2 0.4

Equilibrium separation

Allowed
energy
levels

r0

r (nm)

U(x)

The 1 S 2 transition
is associated with
infrared absorption.

The lower part of
the potential well
is nearly a parabola.

r

Bond

1
2
3
4
5

FIGURE 40.23 The potential energy of a 
molecular bond and a few of the allowed 
energies.
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This frequency is usually in the infrared region of the spectrum, and these vibrational 
transitions give each molecule a unique and distinctive infrared absorption spectrum.

As an example, FIGURE 40.24 shows the infrared absorption spectrum of acetone. The 
vertical axis is the percentage of the light intensity passing all the way through the sample.  
The sample is essentially transparent at most wavelengths 1transmission ≈  100%2, 
but there are two prominent absorption features. The transmission drops to ≈75% 
at l = 3.3 mm and to a mere 7% at l = 5.8 mm. The 3.3 mm absorption is due to the 
n = 1 to n = 2 transition in the vibration of a C-CH3 carbon-methyl bond. The 5.8 mm 
absorption is the 1 S 2 transition of a vibrating C=O carbon-oxygen double bond.

Absorption spectra are known for thousands of molecules, and chemists routinely 
use absorption spectroscopy to identify the chemicals in a sample. A specific bond 
has the same absorption wavelength regardless of the larger molecule in which it is 
embedded; thus the presence of that absorption wavelength is a “signature” that the 
bond is present within a molecule.

Transmission (%)

l (mm)
3

0

25

50

75

100

4 5 6

1 S 2 transition
of a C–CH3 bond

1 S 2 transition
of a C–O bond–

FIGURE 40.24 The absorption spectrum  
of acetone.

STOP TO THINK 40.5 Which probability density represents a quantum harmonic 
oscillator with E = 5

2 Uv?

(a)

x x x x

(b) (c) (d)

40.9 More Quantum Models
In this section we’ll look at two more examples of quantum-mechanical models.

A Particle in a Capacitor
Many semiconductor devices are designed to confine electrons within a layer only a 
few nanometers thick. If a potential difference is applied across the layer, the electrons  
act very much as if they are trapped within a microscopic capacitor.

FIGURE 40.25a shows two capacitor plates separated by distance L. The left plate is 
positive, so the electric field points to the right with strength E = ∆V0 /L. Because of its 
negative charge, an electron launched from the left plate is slowed by a retarding force. 
The electron makes it across to the right plate if it starts with sufficient kinetic energy; 
otherwise, it reaches a turning point and then is pushed back toward the positive plate.

This classical analysis is a valid model of a macroscopic capacitor. But if L 
becomes sufficiently small, comparable to the de Broglie wavelength of an electron, 
then the wave-like properties of the electron cannot be ignored. We need a quantum- 
mechanical model.

Let’s establish a coordinate system with x = 0 at the left plate and x = L at the 
right plate. We define the electric potential to be zero at the positive plate. The  
potential decreases in the direction of the field, so the potential inside the capacitor 
(see Section 25.5) is

V1x2 = -Ex = -
∆V0

L
 x

The electron, with charge q = -e, has potential energy

  U1x2 = qV1x2 = +  
e ∆V0

L
 x  0 6 x 6 L (40.50)

This potential energy increases linearly for 0 6 x 6 L. If we assume that the capacitor 
plates act like the walls of a rigid box, then U1x2 S ∞  at x = 0 and x = L.

E
u

E
u

Turning point

U(x)

0
0

Linearly
increasing
potential
energy

Right
plate

Left
plate

(b)

(a)

Electron
launched
from the
left plate

E

x
L

e∆V0

∆V0

∞∞

L

FIGURE 40.25 An electron in a capacitor.
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FIGURE 40.25b shows the electron’s potential-energy function. It is the particle-in-
a-rigid-box potential with a sloping “floor” due to the electric field. The figure also 
shows the total energy line E of an electron in the capacitor. The energy is purely 
kinetic at x = 0, where K = E, but it is converted to potential energy as the electron 
moves to the right. The right turning point occurs where the energy line E crosses 
the potential-energy curve U1x2. If the electron is a classical particle, it must reverse 
direction at this point.

   NOTE    This is also the shape of the potential energy for a microscopic bouncing ball  
that is trapped between a floor at y = 0 and a ceiling at y = L.

It is physically impossible for the electron to be outside the capacitor, so the wave 
 function must be zero for x 6 0 and x 7 L. The continuity of c requires the same 
boundary conditions as for a particle in a rigid box: c = 0 at x = 0 and at x = L. The wave 
functions inside the capacitor are too complicated to find by guessing, so we have solved  
the Schrödinger equation numerically and will present the results graphically.

FIGURE 40.26 shows the wave functions and probability densities for the first five 
quantum states of an electron confined in a 5.0-nm-thick layer that has a 0.80 V poten-
tial difference across it. Each allowed energy is represented as a horizontal line, with 
the numerical values shown on the right. They range from E1 = 0.23 eV up to E5 =  
0.81 eV. An electron must have one of the allowed energies shown in the figure. An 
electron cannot have E = 0.30 eV in this capacitor because no de Broglie wave with  
that energy can match the necessary boundary conditions.

Classical turning point
for E = 0.41 eV electron

Classically
forbidden region

x (nm)0.0

n

5

4

3

2

1

U (eV)

0c(x) 0 2

0

(b)

5

0.8

0.4

∞ ∞
U (eV)

E (eV)n

c(x)

0

5 0.81

(a)

x (nm)
5

0.8

4 0.68

3 0.55

0.4 2 0.41

0.0

1 0.23

∞ ∞

FIGURE 40.26 Energy levels, wave functions, and probability densities for an electron in a 
5.0-nm-wide capacitor with a 0.80 V potential difference.

   NOTE    Remember that each wave function and probability density is graphed as if 
its energy line is the zero of the y-axis.

We can make some observations about the Schrödinger equation solutions:

1. The energies En become more closely spaced as n increases, at least to n = 5. 
This contrasts with the particle in a box, for which En became more widely 
spaced.

2. The spacing between the nodes of a wave function is not constant but increases 
toward the right. This is because an electron on the right side of the capacitor has 
less kinetic energy and thus a slower speed and a larger de Broglie wavelength.
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3. The height of the probability density 0c 0 2 increases toward the right. That is, we 
are more likely to find the electron on the right side of the capacitor than on the 
left. But this also makes sense if, classically, the electron is moving more slowly 
when on the right side and thus spending more time there than on the left side.

4. The electron penetrates beyond the classical turning point into the classically 
forbidden region.

What are the wavelengths of photons emitted by electrons in the 
n = 4 state of Figure 40.26?

SOLVE Photon emission occurs as the electrons make 4 S 3, 
4 S 2, and 4 S 1 quantum jumps. In each case, the photon fre-
quency is f = ∆E/h and the wavelength is

l =
c
f

=
hc
∆E

The energies of the quantum jumps, which can be read from 
Figure  40.26a, are ∆E4S3 = 0.13 eV, ∆E4S2 = 0.27 eV, and 

∆E4S1 =  0.45 eV. Thus

 l4S3 = 9500 nm = 9.5 mm

 l4S2 = 4600 nm = 4.6 mm

 l4S1 = 2800 nm = 2.8 mm

REVIEW The n = 4 electrons in this device emit three distinct  
infrared wavelengths.

EXAMPLE 40.10 ■ The emission spectrum of an electron in a capacitor

The Covalent Bond
You probably recall from chemistry that a covalent molecular bond, such as the 
bond between the two atoms in molecules such as H2 and O2, is a bond in which 
the electrons are shared between the atoms. The basic idea of covalent bonding can 
be understood with a one-dimensional quantum-mechanical model.

The simplest molecule, the hydrogen molecular ion H2 

+, consists of two protons and 
one electron. Although it seems surprising that such a system could be stable, the two 
protons form a molecular bond with one electron. This is the simplest covalent bond.

How can we model the H2 

+ ion? To begin, FIGURE 40.27a shows a one-dimensional 
model of a hydrogen atom in which the electron’s Coulomb potential energy, with its 
1/r dependence, has been approximated by a finite potential well of width 0.10 nm 
1≈2aB2 and depth 24.2 eV. You learned in Chapter 38 that an electron in the ground 
state of the Bohr hydrogen atom orbits the proton with radius r1 = aB (the Bohr  
radius) and energy E1 = -13.6 eV. A numerical solution of the Schrödinger equation 
finds that the ground-state energy of this finite potential well is E1 = -13.6 eV. This 
model of a hydrogen atom is very oversimplified, but it does have the correct size and 
ground-state energy.

We can model H2 

+ by bringing two of these potential wells close together. The  
molecular bond length of H2 

+ is known to be ≈0.12 nm, so FIGURE  40.27b shows  
potential wells with 0.12 nm between their centers. This is a model of H2 

+, not a  
complete H2 molecule, because this is the potential energy of a single electron. 
(Modeling H2 is more complex because we would need to consider the repulsion  
between the two electrons.)

FIGURE 40.28 on the next page shows the allowed energies, wave functions, and prob-
ability densities for an electron with this potential energy. The n = 1 wave function 
has a high probability of being found within the classically forbidden region between 
the two protons. In other words, an electron in this quantum state really is “shared” by 
the protons and spends most of its time between them.

In contrast, an electron in the n = 2 energy level has zero probability of being 
found between the two protons because the n = 2 wave function has a node at the 
center. The probability density shows that an n = 2 electron is “owned” by one proton 
or the other rather than being shared.

To learn the consequences of these wave functions we need to calculate the total 
energy of the molecule: Emol = Ep9p + Eelec. The n = 1 and n = 2 energies shown 

0.10 nm

0.12 nm

0.10 nm
0 eV

-24.2 eV

(b) An H2
+ molecule modeled as an electron

      with two protons separated by 0.12 nm

Proton

0.10 nm ≈ 2aB

n = 1

0 eV

-13.6 eV

-24.2 eV

(a) Simple one-dimensional model
      of a hydrogen atom

 FIGURE 40.27 A molecule can be modeled 
as two closely spaced potential wells, one 
representing each atom.
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in Figure 40.28 are the energies Eelec of the electron. At the same time, the protons 
repel each other and have electric potential energy Ep9p. It’s not hard to calculate that 
Ep9p = 12.0 eV for two protons separated by 0.12 nm. Thus

Emol = Ep9p + Eelec = b12.0 eV - 17.5 eV = -5.5 eV n = 1
12.0 eV -  9.0 eV = +3.0 eV n = 2

The n = 1 molecular energy is less than zero, showing that this is a bound state.  
The n = 1 wave function is called a bonding molecular orbital. Although the  
protons repel each other, the shared electron provides sufficient “glue” to hold the 
system together. The n = 2 molecular energy is positive, so this is not a bound state. 
The system would be more stable as a hydrogen atom and a distant proton. The n = 2 
wave function is called an antibonding molecular orbital.

Both Eelec and Ep9p depend on the separation between the protons, which we assumed 
to be 0.12 nm in this calculation. If we were to calculate and graph Emol for many different  
values of the proton separation, the graph would look like the molecular-bond energy 
curve shown in Figure 40.23. In other words, a molecular bond has an equilibrium length 
where the bond energy is a minimum because of the interplay between Ep9p and Eelec.

Although real molecular wave functions are more complex than this one-dimensional 
model, the n = 1 wave function captures the essential idea of a covalent bond. Notice 
that a “classical” molecule cannot have a covalent bond because the electron would not 
be able to exist in the classically forbidden region. Covalent bonds can be understood 
only within the context of quantum mechanics. In fact, the explanation of molecular  
bonds was one of the earliest successes of quantum mechanics.

40.10 Quantum-Mechanical Tunneling
FIGURE 40.29a shows a ball rolling toward a hill. A ball with sufficient kinetic energy 
can go over the top of the hill, slowing down as it ascends and speeding up as it rolls 
down the other side. A ball with insufficient energy rolls partway up the hill, then 
reverses direction and rolls back down.

The electron is
with one proton
or the other.

0c2(x) 0 2

0 eV

-24.2 eV

-9.0 eV
n = 2

n = 2

(b) Antibonding orbital

c2(x)

0 eV

-24.2 eV

-9.0 eV 

The electron is
shared between
the protons.

0 eV

-24.2 eV

-17.5 eV
n = 1

(a) Bonding orbital

c1(x)

0 eV

-24.2 eV

-17.5 eV
n = 1

0c1(x) 0 2

FIGURE 40.28 The wave functions and probability densities of the electron in H2
+. 
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We can think of the hill as an “energy barrier” of height U0 = mgymax. As 
FIGURE 40.29b shows, a ball incident from the left with energy E 7 U0 can go over the 
barrier (i.e., roll over the hill), but a ball with E 6 U0 will reflect from the energy barrier 
at the turning point. According to the laws of classical physics, a ball that is incident on the 
energy barrier from the left with E 6 U0 will never be found on the right side of the barrier.

   NOTE    Figure 40.29b is not a “picture” of the energy barrier. And when we say that 
a ball with energy E 7 U0 can go “over” the barrier, we don’t mean that the ball is 
thrown from a higher elevation in order to go over the top of the hill. The ball rolls on 
the ground the entire time, as Figure 40.29a shows, and Figure 40.29b describes the 
kinetic and potential energy of the ball as it rolls. A higher total energy line means a  
larger initial kinetic energy, not a higher elevation.

FIGURE 40.30 shows the situation from the perspective of quantum mechanics. As 
you’ve learned, quantum particles can penetrate with an exponentially decreasing 
wave function into the classically forbidden region of an energy barrier. Suppose that 
the barrier is very narrow. Although the wave function decreases within the barrier, 
starting at the classical turning point, it hasn’t vanished when it reaches the other side. 
In other words, there is some probability that a quantum particle will pass through the 
barrier and emerge on the other side!

It is very much as if the ball of Figure 40.29a gets to the turning point and then, 
instead of reversing direction and rolling back down, tunnels its way through the hill 
and emerges on the other side. Although this feat is strictly forbidden in classical 
mechanics, it is apparently acceptable behavior for quantum particles. The process is 
called quantum-mechanical tunneling.

The process of tunneling through a potential-energy barrier is one of the strangest 
and most unexpected predictions of quantum mechanics. Yet it does happen, and you 
will see that it even has many practical applications.

   NOTE    The word “tunneling” is used as a metaphor. If a classical particle really 
did tunnel, it would expend energy doing so and emerge on the other side with less 
energy. Quantum-mechanical tunneling requires no expenditure of energy. The total 
energy line is at the same height on both sides of the barrier. A particle that tunnels 
through a barrier emerges with no loss of energy. That is why the de Broglie wave-
length is the same on both sides of the potential barrier in Figure 40.30.

To simplify our analysis of tunneling, FIGURE 40.31 shows an idealized energy barrier 
of height U0 and width w. We’ve superimposed the wave function on top of the energy 
diagram so that you can see how it aligns with the potential energy. The wave function 
to the left of the barrier is a sinusoidal oscillation with amplitude AL. The wave function  
within the barrier is the decaying exponential we found in Equation 40.40:

 cin10 … x … w2 = cedgee
-x/h = ALe-x/h (40.51)

Turning point

0

(b)

A ball with this energy slows down
while going over the hill, but it
makes it over.

A ball with this energy 
reverses direction at
the turning point.

x
U0 = mgymax

U(x)

U0

E 7 U0

E 6 U0

The ball has
kinetic energy K.

(a)

ymax

FIGURE 40.29 A hill is an energy barrier to a rolling ball.

The particle approaches from
the left with energy E 6 U0.

c decays exponentially
in the classically
forbidden region.

The particle emerges with the same
de Broglie wavelength after tunneling
through the energy barrier.

x

x

U(x)

U0

c(x)

0

0

E 6 U0

FIGURE 40.30 A quantum particle can 
penetrate through the energy barrier.
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FIGURE 40.31 Tunneling through an ideal-
ized energy barrier.
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where we’ve assumed cedge = AL. The penetration distance h was given in Equa-
tion 40.41 as

h =
U22m1U0 - E2

   NOTE    You must use SI units when calculating values of h. Energies must be in J 
and U in J s. The penetration distance h has units of meters.

The wave function decreases exponentially within the barrier, but before it can  
decay to zero, it emerges again on the right side 1x 7 w2 as an oscillation with amplitude

  AR = cin1at x = w2 = ALe-w/h (40.52)

The probability that the particle is to the left of the barrier is proportional to 0AL 0 2, and 
the probability of finding it to the right of the barrier is proportional to 0AR 0 2. Thus the 
probability that a particle striking the barrier from the left will emerge on the right is

 Ptunnel =
0AR 0 2
0AL 0 2 = 1e-w/h22 = e-2w/h (40.53)

This is the probability that a particle will tunnel through the energy barrier.
Now, our analysis, we have to say, has not been terribly rigorous. For example, we 

assumed that the oscillatory wave functions on the left and the right were exactly at 
a maximum where they reached the barrier at x = 0 and x = w. There is no reason 
this has to be the case. We have taken other liberties, which experts will spot, but— 
fortunately—it really makes no difference. Our result, Equation 40.53, turns out to be 
perfectly adequate for most applications of tunneling.

Because the tunneling probability is an exponential function, it is very sensitive  
to  the values of w and h. The tunneling probability can be substantially reduced  
by even a small increase in the thickness of the barrier. The parameter h, which  
measures how far the particle can penetrate into the barrier, depends both on the  
particle’s mass and on U0 - E. A particle with E only slightly less than U0 will have  
a larger value of h and thus a larger tunneling probability than will an identical  
particle with less energy.

a. Find the probability that an electron will tunnel through a 
1.0-nm-wide energy barrier if the electron’s energy is 0.10 eV less  
than the height of the barrier.

b. Find the tunneling probability if the barrier in part a is widened 
to 3.0 nm.

c. Find the tunneling probability if the electron in part a is replaced 
by a proton with the same energy.

SOLVE a. An electron with energy 0.10 eV less than the height of 
the barrier has U0 - E = 0.10 eV = 1.60 * 10-20 J. Thus its pene-
tration distance is

  h =
U22m1U0 - E2

  =
1.05 * 10-34 J s2219.11 * 10-31 kg211.60 * 10-20 J2

  = 6.18 * 10-10 m = 0.618 nm

The probability that this electron will tunnel through a barrier of 
width w = 1.0 nm is

Ptunnel = e-2w/h = e-211.0 nm2/10.618 nm2 = 0.039 = 3.9%

b. Changing the width to w = 3.0 nm has no effect on h. The new 
tunneling probability is

  Ptunnel = e-2w/h = e-213.0 nm2/10.618 nm2 = 6.0 * 10-5

  = 0.006%

Increasing the width by a factor of 3 decreases the tunneling prob-
ability by a factor of 650!

c. A proton is more massive than an electron. Thus a proton with 
U0 - E = 0.10 eV has h = 0.014 nm. Its probability of tunneling 
through a 1.0-nm-wide barrier is

Ptunnel = e-2w/h = e-211.0 nm2/10.014 nm2 ≈ 1 * 10-64

For practical purposes, the probability that a proton will tunnel 
through this barrier is zero.

REVIEW If the probability of a proton tunneling through a mere  
1 nm is only 10-64, you can see that a macroscopic object will  
“never” tunnel through a macroscopic distance!

EXAMPLE 40.11 ■ Electron tunneling
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Quantum-mechanical tunneling seems so obscure that it is hard to imagine practical  
applications. Surprisingly, it is the physics behind one of today’s most important  
technical tools, as we describe in the next section.

The Scanning Tunneling Microscope
Diffraction limits the resolution of an optical microscope to objects no smaller than 
about a wavelength of light—roughly 500 nm. This is more than 1000 times the size 
of an atom, so there is no hope of resolving atoms or molecules via traditional optical 
microscopy. Electron microscopes are similarly limited by the de Broglie wavelength 
of the electrons. Their resolution is much better than that of an optical microscope, but 
still not quite at the level of resolving individual atoms.

This situation changed dramatically in 1981 with the invention of the scanning 
tunneling microscope, or STM as it is usually called. The STM allowed scientists,  
for the first time, to “see” surfaces literally atom by atom. The atomic-resolution  
photos at the beginning of Chapter 38 and this chapter demonstrate the power of an 
STM. These pictures and many others you have likely seen (but may not have known 
where they came from) are stupendous, but how are they made?

FIGURE 40.32a shows how the scanning tunneling microscope works. A conducting 
probe with a very sharp tip, just a few atoms wide, is brought to within a few tenths of a 
nanometer of a surface. Preparing the tips and controlling the spacing are both difficult 
technical challenges, but scientists have learned how to do both. Once positioned, the  
probe can mechanically scan back and forth across the surface.

When we analyzed the photoelectric effect, you learned that electrons are bound  
inside metals by an amount of energy called the work function E0. A typical work  
function is 4 or 5 eV. This is the energy that must be supplied—by a photon or  
otherwise—to remove an electron from the metal. In other words, the electron’s 
energy in the metal is E0 less than its energy outside the metal.

This fact is the basis for the potential-energy diagram of FIGURE 40.32b. The small 
air gap between the sample and the probe tip is a potential-energy barrier. The energy 
of an electron in the metal of the sample or the probe tip is lower than the energy of 
an electron in the air by ≈4 eV, the work function. The absorption of a photon with 
Ephoton 7 4 eV would lift the electron over the barrier, from the sample to the probe. 
This is just the photoelectric effect. Alternatively, electrons can tunnel through the 
barrier if it is sufficiently narrow. This creates a tunneling current from the sample 
into the probe.

In operation, the tunneling current is recorded as the probe tip scans across the 
surface. You saw above that the tunneling current is extremely sensitive to the barrier 
thickness. As the tip scans over the position of an atom, the gap decreases by ≈0.1 nm 
and the current increases. The gap is larger when the tip is between atoms, so the 
current drops. Today’s STMs can sense changes in the gap of as little as 0.001 nm, or 
about 1% of an atomic diameter! The images you see are computer-generated from the  
current measurements at each position.

The STM has revolutionized the science and engineering of microscopic objects. 
STMs are now used to study everything from how surfaces corrode and oxidize, a 
topic of great practical importance in engineering, to how biological molecules are 
structured. Another example of quantum mechanics working for you!
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Energy level of
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≈ 0.5 nm

Current
monitor

Imaging
system

1. The sample
can be modeled
as positive ion
cores in an 
electron “sea.”

3. The current is
monitored as the
probe is moved
back and forth
across the sample.

4. An image shows the
current as a function of
the position of the probe
tip, giving a profile of
the surface.

2. The small positive
voltage causes electrons
to tunnel across the narrow
air gap between the probe
tip and the sample.

FIGURE 40.32 A scanning tunneling 
microscope.

STOP TO THINK 40.6 A particle with energy E approaches an energy barrier with 
height U0 7 E. If U0 is slowly decreased, the probability that the particle reflects from 
the barrier

a. Increases.
b. Decreases.
c. Does not change.
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   CHAPTER 40 CHALLENGE EXAMPLE     Tunneling in semiconductors

Quantum-mechanical tunneling can be important in semiconduc-
tors. Consider a 1.0-nm-thick layer of GaAs sandwiched between 
4.0-nm-thick layers of GaAlAs. This is the situation explored 
in Figure  40.16, where we learned that the electron’s potential  
energy is 0.300 eV lower in GaAs than in GaAlAs. An electron in 
the GaAs layer can tunnel through the GaAlAs to escape, but this 
doesn’t happen instantly. In quantum mechanics, we can’t predict 
exactly when tunneling will occur, only the probability of it hap-
pening. Estimate the time at which the probability of escape has 
reached 50%.

MODEL We can model this problem by thinking of the electron 
as a particle bouncing back and forth between the walls of the 
potential well. Each time it hits a wall, it has probability Ptunnel of  
tunneling and probability Preflect = 1 - Ptunnel of reflecting. The 
tunneling probability depends on the height and thickness of a 
potential barrier.

VISUALIZE FIGURE  40.33 shows the potential well. An electron 
in a 0.300-eV-deep,  1.0-nm-wide well is exactly the situation  
of Figure  40.16, so we know that the electron has a single  
quantum state with E1 = 0.125 eV. The wave function decreases 
exponentially with distance into the potential barriers, but a very 
tiny amplitude—too small to see here—still exists at the far edge 
of the barrier.

SOLVE Each time the electron collides with a wall of the poten-
tial well, its probability of tunneling through is Ptunnel = e-2w/h. The 
penetration distance h depends on U0 - E, the “distance” from the 
energy level to the top of the barrier, which in this case is

U0 - E = 0.300 eV - 0.125 eV = 0.175 eV = 2.8 * 10-20 J

Using this value, we can calculate the penetration distance to be

h =
U22m1U0 - E2

= 0.465 nm

We then find the probability of tunneling through a 4.0-nm-wide 
barrier to be

Ptunnel = e-2w/h = 3.4 * 10-8

It’s a very small probability, as expected. The probability of not 
tunneling, of reflecting back into the well, is then

Preflect = 1 - Ptunnel = 0.999999966

You’ve seen that the probability of A or B happening is PA + PB. 
Similarly, the probability of A and B happening, assuming they  
are independent events, is PA * PB. The probability of a head in a 
coin toss is 12. If you toss two coins, the probability that A is a head 
and B is a head is 12 * 1

2 = 1
4. If you toss three coins, the probability 

that all three are heads is 11
223 = 1

8. If the electron is still in the poten-
tial well after N bounces, it had to reflect N times. The probability  
of this happening is

Pin well = Preflect * Preflect * Preflect * g * Preflect = 1Preflect2N

Because Preflect 6 1, the probability of still being in the potential 
well decreases as N increases.

We’ve focused not on Pescape but on Pin well = 1 - Pescape because  
staying in the well requires N specific events to happen. Escape,  
on the other hand, could have occurred on any of N attempts, so a 
direct calculation of Pescape is much more complicated. If the proba-
bility of escape is 50%, then it’s also 50% probable that the electron 
is still in the potential well. We can find the number of reflections 
needed to get to the 50% probability by taking the logarithm of both  
sides of the equation:

log1Pin well2 = log1     1Preflect2N2 = N log1Preflect2

N =
log1Pin well2
log1Preflect2 =

log10.502
log10.9999999662 = 2.0 * 107

After 20  million reflections, the electron is 50% likely to 
have escaped. Although that’s a large number of reflections, it 
doesn’t take long because the electron is moving only a very 
small distance between reflections at a fairly high speed. The 
electron’s energy inside the potential well is entirely kinetic, 
K = E = 0.125 eV = 2.0 * 10-20 J, so its speed is

v = B 2K
m

= 2.1 * 105 m/s

The time between reflections is the time needed to travel across the 
1.0-nm-wide GaAs layer:

∆t =
1.0 * 10-9 m

2.1 * 105 m/s
= 4.8 * 10-15 s

Thus the time needed for 2.0 * 107 reflections is

t50% = N ∆t = 9.6 * 10-8 s = 96 ns

Because we’re making only an estimate, we can say that an electron 
has a 50% probability of tunneling out of the GaAs layer within 
about 100 ns.

REVIEW Even though the tunneling probability is very tiny, tun-
neling takes place very rapidly on a human time scale. An increas-
ing number of semiconductor devices make practical use of this 
tunneling current. Note that no energy is lost in the tunneling  
process; “tunneling” is a metaphor, not a process that requires 
work. The electron emerges with 0.125 eV of kinetic energy.

FIGURE 40.33 The potential energy of an electron in a layer of 
GaAs sandwiched between layers of GaAlAs.
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The Schrödinger Equation

d2c

dx2 = -
2m

U2 3E - U1x24c1x2

This equation determines the wave function 
c1x2 and, through c1x2, the probabilities of 
finding a particle of mass m with potential 
energy U1x2.

Boundary conditions

• c1x2 is a continuous function.

• c1x2 S 0 as x S { ∞   .

• c1x2 = 0 in a region where it is 
physically impossible for the particle 
to be.

• c1x2 is normalized.

Quantum-mechanical models are characterized by the particle’s potential-energy  
function U1x2.
• Wave-function solutions exist for only certain values of E. Thus energy is quantized.

• Photons are emitted or absorbed in quantum jumps.

Solving Quantum-Mechanics Problems
MODEL Determine an appropriate potential-energy function U1x2.

VISUALIZE Draw the potential-energy curve.

• Establish boundary conditions.

SOLVE Draw graphs of c1x2 and �c1x2 �2.

• Determine the allowed energy levels.
• Calculate probabilities, wavelengths, and other quantities.

REVIEW Does the result have correct units and answer the question?

The correspondence principle says that 
the quantum world blends smoothly into the 
classical world for high quantum numbers. 
This is seen by comparing 0c1x2 0 2 to the 
classical probability density

Pclass =
2

Tv1x2
Pclass expresses the idea that a classi -cal 
particle is more likely to be found where it 
is moving slowly.

Shapes of wave functions

• The wave function oscillates in the region between the 
classical turning points.

• State n has n antinodes.

• Node spacing and amplitude increase as kinetic energy K 
decreases.

• c1x2 decays exponentially in a classically forbidden region.

Quantum-mechanical tunneling

A wave function can penetrate into a classically  
forbidden region with

c1x2 = cedgee
-1x-L2/h

where the penetration distance is

h =
U22m1U0 - E2

The probability of tunneling through a barrier of  
width w is

Ptunnel = e-2w/h

Particle in a rigid box:  En = n2 
h2

8mL2     n = 1, 2, 3,c

Quantum harmonic oscillator:  En = 1n - 1
22 Uv   n = 1, 2, 3,c

 General Principles

Important Concepts

Applications

The goal of Chapter 40 has been to learn how to apply 
the essential ideas of quantum mechanics.

Summary

E

x0

U(x)
∞

Classically
forbidden
region

E3

E2

E1

n = 3

n = 2

n = 1

U0

E

L
0

U0

E

0
w

Other applications were studied through 
numerical solution of the Schrödinger 
equation.
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x

1

x

2

x

3

FIGURE Q40.1

1. FIGURE Q40.1 shows the de Broglie waves of three equal-mass 
particles. Which one is moving most slowly? Explain.

Schrödinger equation
quantum-mechanical model
boundary conditions
zero-point motion
correspondence principle

potential well
classically forbidden regions
bound state
penetration distance, h
quantum-well laser

gamma rays
quantum harmonic oscillator
vibrational energy levels
covalent molecular bond
bonding molecular orbital

antibonding molecular orbital
quantum-mechanical tunneling
scanning tunneling microscope 
 (STM)

Terms and Notation

CONCEPTUAL QUESTIONS

6. Consider a quantum harmonic oscillator.
a. What happens to the spacing between the nodes of the wave 

function as 0 x 0  increases? Why?
b. What happens to the heights of the antinodes of the wave 

function as 0 x 0  increases? Why?
c. Sketch a reasonably accurate graph of the n = 8 wave function  

of a quantum harmonic oscillator.
7. FIGURE Q40.7 shows two possible wave functions for an electron  

in a linear triatomic molecule. Which of these is a bonding 
orbital and which is an antibonding orbital? Explain how you can 
distinguish them.2. The correspondence principle says that the average behavior of 

a quantum system should begin to look like the Newtonian solu-
tion in the limit that the quantum number becomes very large. 
What is meant by “the average behavior” of a quantum system?

3. A particle in a potential well is in the n = 5 quantum state. How 
many peaks are in the probability density P1x2 = 0c1x2 0 2?

4. What is the quantum number of the particle in FIGURE Q40.4? 
How can you tell?

E

 FIGURE Q40.4

10 eV

5 eV

0 eV
A

10 eV

5 eV

0 eV
B

16 eV

10 eV

0 eV
C

FIGURE Q40.5

5. Rank in order, from largest to smallest, the penetration distances 
hA to hC of the wave functions corresponding to the three energy 
levels in FIGURE Q40.5.

xx

c1(x) c2(x)

FIGURE Q40.7

E

w

1 eV

Barrier A

E

w

2 eV

Barrier B

E

0.5w

2 eV

Barrier D

E

2w

1 eV

Barrier C

FIGURE Q40.8

8. Four quantum particles, each with energy E, approach the 
potential-energy barriers seen in FIGURE Q40.8 from the 
left. Rank in order, from largest to smallest, the tunneling 
probabilities 1Ptunnel2A to 1Ptunnel2D.

9. An electron has a 0.0100 probability (a 1.00% chance) of tunneling 
through a potential barrier. If the width of the barrier is halved, will 
the tunneling probability become 0.1, 0.01, or 0.001? Explain.

EXERCISES AND PROBLEMS

Problems labeled   integrate material from earlier chapters.

Exercises

Sections 40.3–40.4 A Particle in a Rigid Box

1. | The electrons in a rigid box emit photons of wavelength  
1484 nm during the 3 S 2 transition.
a. What kind of photons are they—infrared, visible, or ultraviolet?
b. How long is the box in which the electrons are confined?

2. || An electron in a rigid box absorbs light. The longest wavelength 
in the absorption spectrum is 600 nm. How long is the box?

3. || FIGURE EX40.3 shows the wave function of an electron in a 
rigid box. The electron energy is 12.0 eV. What is the energy, in 
eV, of the next higher state?

4. || FIGURE EX40.4 shows the wave function of an electron in a 
rigid box. The electron energy is 25 eV. How long is the box?

x

c(x)

FIGURE EX40.3

x

c(x)

FIGURE EX40.4
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5. || FIGURE EX40.5 is the probability density for an electron in a 
rigid box. What is the electron’s energy, in eV?

0c(x) 0 2

0 nm 0.45 nm
x

FIGURE EX40.5

6. || A 16-nm-long box has a thin partition that divides the box 
into a 4-nm-long section and a 12-nm-long section. An electron 
confined in the shorter section is in the n = 2 state. The partition 
is briefly withdrawn, then reinserted, leaving the electron in the 
longer section of the box. What is the electron’s quantum state 
after the partition is back in place?

Section 40.6 Finite Potential Wells

7. | Show that the penetration distance h has units of m.
8. | a. Sketch graphs of the probability density 0c1x2 0 2 for the 

four states in the finite potential well of Figure  40.14a. 
Stack them vertically, similar to the Figure 40.14a graphs 
of c1x2.

b. What is the probability that a particle in the n = 2 state of 
the finite potential well will be found at the center of the 
well? Explain.

c.  Is your answer to part b consistent with what you know 
about standing waves? Explain.

9. | A finite potential well has depth U0 = 2.00 eV. What is 
the penetration distance for an electron with energy (a) 0.50 eV, 
(b) 1.00 eV, and (c) 1.50 eV?

10. || An electron in a finite potential well has a 2.0 nm penetration 
distance into the classically forbidden region. How far below U0 
is the electron’s energy?

11. || A helium atom is in a finite potential well. The atom’s energy 
is 2.0 eV below U0. What is the atom’s penetration distance into 
the classically forbidden region?

12. ||| The energy of an electron in a potential well 3.00-eV deep is 
2.00 eV. At what distance into the classically forbidden region 
has the amplitude of the wave function decreased to 25% of its 
value at the edge of the potential well?

Section 40.7 Wave-Function Shapes

13. | Sketch the n = 8 wave function for the potential energy shown 
in FIGURE EX40.13.

∞ ∞

E8

U(x)

x
L0

0

FIGURE EX40.13

∞ ∞

E4

U(x)

x
L0

0

FIGURE EX40.14

14. | Sketch the n = 4 wave function for the potential energy 
shown in FIGURE EX40.14.

15. | The graph in FIGURE EX40.15 shows the potential-energy 
function U1x2 of a particle. Solution of the Schrödinger equation 
finds that the n = 3 level has E3 = 0.5 eV and that the n = 6 level 
has E6 = 2.0 eV.

∞ ∞

E7

U(x)

E1 x0

FIGURE EX40.16

∞ ∞
U (eV)

2

1

0
0 1 2 3

x (nm)

FIGURE EX40.15

16. | Sketch the n = 1 and n = 7 wave functions for the potential 
energy shown in FIGURE EX40.16.

Section 40.8 The Quantum Harmonic Oscillator

Section 40.9 More Quantum Models

17. | An electron is confined in a harmonic potential well that has 
a spring constant of 2.0 N/m.
a. What are the first three energy levels of the electron?
b. What wavelength photon is emitted if the electron undergoes 

a 3 S 1 quantum jump?
18. | An electron confined in a harmonic potential well emits a 

1200 nm photon as it undergoes a 3 S 2 quantum jump. What is 
the spring constant of the potential well?

19. || Two adjacent energy levels of an electron in a harmonic 
potential well are known to be 2.0 eV and 2.8 eV. What is the 
spring constant of the potential well?

20. || An electron in a harmonic potential well absorbs a photon 
with a wavelength of 400 nm as it undergoes a 1 S 2 quantum 
jump. What wavelength is absorbed in a 1 S 3 quantum jump?

21. || An electron is confined in a harmonic potential well that has 
a spring constant of 12.0 N/m. What is the longest wavelength of 
light that the electron can absorb?

22. || Use the data from Figure  40.24 to calculate the first three 
vibrational energy levels of a C=O carbon-oxygen double bond.

23. || Verify that the n = 1 wave function c11x2 of the quantum 
harmonic oscillator really is a solution of the Schrödinger equa-
tion. That is, show that the right and left sides of the Schrödinger 
equation are equal if you use the c11x2 wave function.

Section 40.10 Quantum-Mechanical Tunneling

24. || An electron approaches a 2.0-nm-wide potential energy bar-
rier of height 5 eV. What energy electron has a tunneling proba-
bility of (a) 10%, (b) 1.0%, and (c) 0.10%?

25. ||| What is the probability that an electron will tunnel through a 
gap of 0.5 nm from a metal to an STM probe if the work function 
is 5 eV?

Problems
26. || Suppose that c11x2 and c21x2 are both solutions to the 

Schrödinger equation for the same potential energy U1x2. Prove 
that the superposition c1x2 = Ac11x2 + Bc21x2 is also a solution 
to the Schrödinger equation.

a. Redraw this figure and add to it the energy lines for the n = 3 
and n = 6 states.

b. Sketch the n = 3 and n = 6 wave functions. Show them as 
oscillating about the appropriate energy line.

Exercises and Problems 1227
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33. || Consider a particle in a rigid box of length L. For each of the 
states n = 1, n = 2, and n = 3:
a. Sketch graphs of 0c1x2 0 2. Label the points x = 0 and x = L.
b. Where, in terms of L, are the positions at which the particle is 

most likely to be found?
c. Where, in terms of L, are the positions at which the particle is 

least likely to be found?
d. Determine, by examining your 0c1x2 0 2 graphs, if the prob-

ability of finding the particle in the left one-third of the  
box is less than, equal to, or greater than 1

3. Explain your 
reasoning.

e. Calculate the probability that the particle will be found in the 
left one-third of the box.

34.  || In most metals, the atomic ions form a regular arrangement 
called a crystal lattice. The conduction electrons in the sea of 
electrons move through this lattice. FIGURE P40.34 is a one- 
dimensional model of a crystal lattice. The ions have mass m, 
charge e, and an equilibrium separation b.
a. Suppose the middle charge is displaced a very small distance  

1x V b2 from its equilibrium position while the outer charges 
remain fixed. Show that the net electric force on the middle 
charge is given approximately by

F = -  
e2

b3pP0
 x

In other words, the charge experiences a linear restoring force.
b. Suppose this crystal consists of aluminum ions with an 

equilibrium spacing of 0.30 nm. What are the energies of the 
four lowest vibrational states of these ions?

c. What wavelength photons are emitted during quantum jumps 
between adjacent energy levels? Is this wavelength in the in-
frared, visible, or ultraviolet portion of the spectrum?

27. || A 2.0@mm@diameter water droplet is moving with a speed of 
1.0 mm/s in a 20@mm@long box.
a. Estimate the particle’s quantum number.
b. Use the correspondence principle to determine whether quan-

tum mechanics is needed to understand the particle’s motion 
or if it is “safe” to use classical physics.

28. || Figure 40.27a modeled a hydrogen atom as a finite potential 
well with rectangular edges. A more realistic model of a hy-
drogen atom, although still a one-dimensional model, would 
be the electron + proton electrostatic potential energy in one 
dimension:

U1x2 = -  
e2

4pP0 0 x 0
a. Draw a graph of U1x2 versus x. Center your graph at x = 0.
b. Despite the divergence at x = 0, the Schrödinger equation can  

be solved to find energy levels and wave functions for the 
electron in this potential. Draw a horizontal line across your 
graph of part a about one-third of the way from the bottom to 
the top. Label this line E2, then, on this line, sketch a plausible  
graph of the n = 2 wave function.

c. Redraw your graph of part a and add a horizontal line about 
two-thirds of the way from the bottom to the top. Label this 
line E3, then, on this line, sketch a plausible graph of the 
n = 3 wave function.

29. || Model an atom as an electron in a rigid box of length 
0.100 nm, roughly twice the Bohr radius.
a. What are the four lowest energy levels of the electron?
b. Calculate all the wavelengths that would be seen in the 

emission spectrum of this atom due to quantum jumps be-
tween these four energy levels. Give each wavelength a label 
lnSm to indicate the transition.

c. Are these wavelengths in the infrared, visible, or ultraviolet 
portion of the spectrum?

d. The stationary states of the Bohr hydrogen atom have negative  
energies. The stationary states of this model of the atom have 
positive energies. Is this a physically significant difference? 
Explain.

e. Compare this model of an atom to the Bohr hydrogen atom. In  
what ways are the two models similar? Other than the signs 
of the energy levels, in what ways are they different?

30. || a. Derive an expression for l2S1, the wavelength of light 
emitted by a particle in a rigid box during a quantum jump 
from n = 2 to n = 1.

b. In what length rigid box will an electron undergoing a 
2 S 1 transition emit light with a wavelength of 694 nm? 
This is the wavelength of a ruby laser.

31. || Show that the normalization constant An for the wave  
functions of a particle in a rigid box has the value given in 
Equation 40.26.

32. || A particle confined in a rigid one-dimensional box of length 
10 fm has an energy level En = 32.9 MeV and an adjacent energy 
level En+1 = 51.4 MeV.
a. Determine the values of n and n + 1.
b. Draw an energy-level diagram showing all energy levels from 1 

through n + 1. Label each level and write the energy beside it.
c. Sketch the n + 1 wave function on the n + 1 energy level.
d. What is the wavelength of a photon emitted in the n + 1 S n 

transition? Compare this to a typical visible-light wavelength.
e. What is the mass of the particle? Can you identify it?

b bFIGURE P40.34

35. || For the quantum-well laser of Figure  40.16, estimate  
the probability that an electron will be found within one of the 
GaAlAs layers rather than in the GaAs layer. Explain your reasoning.

36. ||| For a particle in a finite potential well of width L and depth 
U0, what is the ratio of the probability Prob1in dx at x = L + h2 
to the probability Prob1in dx at x = L2?

37. || A typical electron in a piece of metallic sodium has energy 
-E0 compared to a free electron, where E0 is the 2.36 eV work 
function of sodium.
a. At what distance beyond the surface of the metal is the 

electron’s probability density 10% of its value at the surface?
b. How does this distance compare to the size of an atom?

38. || Show that the constant b used in the quantum-harmonic- 
oscillator wave functions (a) has units of length and (b) is the 
classical turning point of an oscillator in the n = 1 ground state.

39. || a. Determine the normalization constant A1 for the n = 1 
ground-state wave function of the quantum harmonic 
oscillator. Your answer will be in terms of b.

b. Write an expression for the probability that a quantum 
harmonic oscillator in its n = 1 ground state will be found 
in the classically forbidden region.

c. (Optional) Use a numerical integration program to evaluate  
your probability expression of part b.

Hint: It helps to simplify the integral by making a change of 
variables to u = x/b.
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45. || A proton’s energy is 1.0 MeV below the top of a 10-fm-wide 
energy barrier. What is the probability that the proton will tunnel 
through the barrier?

Challenge Problems
46. ||| In a nuclear physics experiment, a proton is fired toward a 

Z = 13 nucleus with the diameter and neutron energy levels shown 
in Figure 40.17. The nucleus, which was initially in its ground state, 
subsequently emits a gamma ray with wavelength 1.73 * 10-4 nm. 
What was the minimum initial speed of the proton?
Hint: Don’t neglect the proton-nucleus collision.

47. ||| A neutron is confined in a 10-fm-diameter nucleus. If the 
nucleus is modeled as a one-dimensional rigid box, what is the 
probability that a neutron in the ground state is less than 2.0 fm 
from the edge of the nucleus?

48. ||| a. What is the probability that an electron will tunnel  
through a 0.50 nm air gap from a metal to a STM probe if 
the work function is 4.0 eV?

b. The probe passes over an atom that is 0.050 nm “tall.” By 
what factor does the tunneling current increase?

c. If a 10% current change is reliably detectable, what is the 
smallest height change the STM can detect?

||| Tennis balls traveling faster than 100 mph routinely bounce 
off tennis rackets. At some sufficiently high speed, however, the 
ball will break through the strings and keep going. The racket is a  
potential-energy barrier whose height is the energy of the slowest  
string-breaking ball. Suppose that a 100 g tennis ball traveling 
at 200 mph is just sufficient to break the 2.0-mm-thick strings. 
Estimate the probability that a 120 mph ball will tunnel through 
the strings without breaking them. Give your answer as a power 
of 10 rather than a power of e.

40. || a. Derive an expression for the classical probability density 
Pclass1x2 for a simple harmonic oscillator with amplitude A.

b. Graph your expression between x = -A and x = +A.
c. Interpret your graph. Why is it shaped as it is?

41. ||  a. Derive an expression for the classical probability density 
Pclass1y2 for a ball that bounces between the ground and 
height h. The collisions with the ground are perfectly elastic.

b. Graph your expression between y = 0 and y = h.
c. Interpret your graph. Why is it shaped as it is?

42. || A particle of mass m has the wave function

c1x2 =Ax exp1-x2/a22
when it is in an allowed energy level with E = 0.

a. Draw a graph of c1x2 versus x.
b. At what value or values of x is the particle most likely to be 

found?
c. Find and graph the potential-energy function U1x2.

43. || Figure 40.17 showed that a typical nuclear radius is 4.0 fm. As 
you’ll learn in Chapter 42, a typical energy of a neutron bound 
inside the nuclear potential well is En = -20 MeV. To find out 
how “fuzzy” the edge of the nucleus is, what is the neutron’s 
penetration distance into the classically forbidden region as a 
fraction of the nuclear radius?

44.  || Even the smoothest mirror finishes are “rough” when viewed 
at a scale of 100 nm. When two very smooth metals are placed in 
contact with each other, the actual distance between the surfaces 
varies from 0 nm at a few points of real contact to ≈100 nm. The 
average distance between the surfaces is ≈50 nm. The work func-
tion of aluminum is 4.3 eV. What is the probability that an electron 
will tunnel between two pieces of aluminum that are 50 nm apart? 
Give your answer as a power of 10 rather than a power of e.
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Atomic Physics 

What is the quantum model of hydrogen?
A hydrogen atom has a three-dimensional  
wave function that gives the probability of  
locating the electron in a region of space.

 ■ Three quantum numbers are needed.
 ■ Both energy and angular momentum are  

quantized.
 ■ The probability density shows electron  

clouds rather than well-defined orbits.
 ■ A fourth quantum number describes the  

electron’s spin, an inherent magnetic  
moment that can point up or down.

❮❮ LOOKING BACK Chapter 39 Wave functions

How do multielectron atoms differ?
Quantum mechanics also explains the  
properties of multielectron atoms,  
including their energy levels, ionization  
energies, and spectra.

 ■ We’ll use energy-level diagrams to  
understand which states are occupied  
and how spectra are produced.

 ■ The Pauli exclusion principle—that only  
one electron can occupy each quantum  
state—is the key to understanding the  
periodic table of the elements.

❮❮ LOOKING BACK Chapter 38 The Bohr model

What determines an atom’s spectrum?
You’ll learn to interpret atomic spectra in 
terms of excitation followed by emission.

 ■ Excitation can be by collision with a 
particle or the absorption of a photon.

 ■ An excited state has a lifetime of typically 
a few nanoseconds.

 ■ Emission obeys selection rules that allow  
some quantum jumps but not others.

How does a laser work?
Lasers work because of stimulated emission  
of light, where an incoming photon causes an  
excited state to emit an identical photon.

 ■ A laser requires a population inversion,  
with more atoms in an excited state than  
in a lower energy level.

 ■ Lasers can be continuous or pulsed.

Why is atomic physics important?
Matter consists of atoms. A quantum understanding of atoms is  
the basis for modern chemistry and material science. Lasers depend 
on the quantum properties of atoms. Atomic clocks provide the  
precise timekeeping needed for GPS measurements and the World 
Wide Web. Optical techniques with atoms have revolutionized our 
ability to image the details of cells. And the new field of quantum 
computing relies on a precise manipulation of atomic energy levels.

IN THIS CHAPTER, you will learn about the structure and properties of atoms.

41

An optical clock is created by  
tuning a laser beam to exactly  
match the difference between two  
energy levels of a strontium ion  
that is held between the electrodes  
at the center of this photo.
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41.1 The Hydrogen Atom: Angular Momentum and Energy 1231

41.1  The Hydrogen Atom: Angular 
Momentum and Energy

Bohr’s concept of stationary states provided a means of understanding both the  
stability of atoms and the quantum jumps that lead to discrete spectra. Yet, as we have 
seen, the Bohr model was not successful for any neutral atom other than hydrogen. 
This chapter is an overview of how quantum mechanics finally provides us with an 
understanding of atomic structure and atomic properties.

Let’s begin with a quantum-mechanical model of the hydrogen atom. As you 
learned in Chapter 40, the problem-solving procedure in quantum mechanics consists 
of two basic steps:

1. Specify a potential-energy function.
2. Solve the Schrödinger equation to find the wave functions, allowed energy  

levels, and other quantum properties.

The first step is easy. The proton and electron are charged particles with q = {e, so 
the potential energy of a hydrogen atom as a function of the electron distance r is

 U1r2 = -  
1

4pP0
 
e2

r
 (41.1)

The difficulty arises with the second step. The Schrödinger equation of Chapter 40 
was for one-dimensional problems. Atoms are three-dimensional, and the three- 
dimensional Schrödinger equation turns out to be a partial differential equation whose 
solution is outside the scope of this textbook. Consequently, we’ll present results  
without derivation or proof. The good news is that you have learned enough quantum 
mechanics to interpret and use the results.

 Stationary States of Hydrogen
In one dimension, energy quantization appeared as a consequence of boundary condi-
tions on the wave function. That is, only for certain discrete energies, characterized by 
the quantum number n, did solutions to the Schrödinger equation satisfy the boundary 
conditions. In three dimensions, the wave function must satisfy three different boundary 
conditions. Consequently, solutions to the three-dimensional Schrödinger equation have  
three quantum numbers and three quantized parameters.

Solutions to the Schrödinger equation for the hydrogen atom potential energy exist 
only if three conditions are satisfied:

1. The atom’s energy must be one of the values

 En = -  
1

n2 1 1
4pP0

 
e2

2aB
2 = -  

13.60 eV

n2   n = 1, 2, 3,  c (41.2)

where aB = 4pP0 U2/me2 = 0.0529 nm is the Bohr radius. The integer n is called 
the principal quantum number. These energies are the same as those predicted  
by the Bohr model of the hydrogen atom.

2. The orbital angular momentum L of the electron’s orbit must have magnitude

 L = 2l1l + 12 U  l = 0, 1, 2, 3,  c, n - 1 (41.3)

The integer l is called the orbital quantum number.
3. The z-component of the angular momentum Lz must be one of the values

 Lz = m U  m = - l, - l + 1,  c, 0,  c, l - 1, l (41.4)

The integer m is called the magnetic quantum number.
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In other words, each stationary state of the hydrogen atom is identified by a triplet 
of quantum numbers 1n, l, m2. Each quantum number is associated with a physical 
property of the atom.

   NOTE    The energy of the stationary state depends only on the principal quantum 
number n, not on l or m.

List all possible states of a hydrogen atom that have energy 
E = -3.40 eV.

SOLVE Energy depends only on the principal quantum number n. 
States with E = -3.40 eV have

n = B -13.60 eV
-3.40 eV

= 2

An atom with principal quantum number n = 2 could have either  
l = 0 or l = 1, but l Ú 2 is excluded by the rule l … n - 1. If  

l = 0, the only possible value for the magnetic quantum number 
m is m = 0. If l = 1, then the atom could have m = -1,  m = 0, or 
m = +1. Thus the possible quantum numbers are

n l m
2 0 0
2 1 1
2 1 0
2 -1 -1

These four states all have the same energy.

EXAMPLE 41.1 ■ Listing quantum numbers

Hydrogen turns out to be unique. For all other elements, the allowed energies depend  
on both n and l (but not m). Consequently, it is useful to label the stationary states 
by their values of n and l. The lowercase letters shown in TABLE 41.1 are customarily 
used to represent the various values of quantum number l. These symbols come from 
spectroscopic notation used in prequantum-mechanics days, when some spectral lines  
were classified as sharp, others as principal, and so on.

Using these symbols, we call the ground state of the hydrogen atom, with n = 1 
and l = 0, the 1s state. The 3d state has n = 3, l = 2. In Example 41.1, we found one 2s 
state (with l = 0) and three 2p states (with l = 1), all with the same energy.

Angular Momentum Is Quantized
A planet orbiting the sun has two different angular momenta: orbital angular  
momentum due to its orbit around the sun (a 365-day period for the earth) and rotational 
angular momentum as it rotates on its axis (a 24-hour period for the earth). We intro-
duced angular momentum in Chapter 12, and a brief review of « SECTION 12.11 is highly  
recommended.

A classical model of the hydrogen atom would be similar. Although a circular 
orbit is possible, it’s more likely that the electron would follow an elliptical orbit with 
the proton at one focus of the ellipse. Further, the orbit need not lie in the xy-plane. 
FIGURE  41.1 shows a classical orbit tilted at angle u below the xy-plane. The electron, 
like a planet, has orbital angular momentum, and Figure 41.1 reminds you that the 
orbital angular momentum vector L

u
 is perpendicular to the plane of the orbit. (The 

electron also has a quantum version of rotational angular momentum, called spin, that 
we’ll introduce in Section 41.3.) The orbital angular momentum vector has component 
Lz = L cos u along the z-axis.

Classically, L and Lz can have any values. Not so in quantum mechanics. Quantum 
conditions 2 and 3 tell us that the electron’s orbital angular momentum is quantized. 
The magnitude of the orbital angular momentum must be one of the discrete values

L = 2l1l + 12 U = 0, 22 U, 26 U, 212 U,  c

where l is an integer. Simultaneously, the z-component Lz must have one of the values 
Lz = mU, where m is an integer between - l and l. No other values of L or Lz allow the 
wave function to satisfy the boundary conditions.

TABLE 41.1 Symbols 
used to represent 
quantum number l

l Symbol

0 s

1 p

2 d

3 f

z

y

x
u

uLz = L  cos u

Electron

L
u

The angular momentum
vector L is tilted from
the z-axis by the same
angle u that the orbital
plane is tilted below
the xy-plane.

u

FIGURE 41.1 The angular momentum of 
an elliptical orbit.
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What is the angle between L
u

 and the z-axis for a hydrogen atom in 
the stationary state 1n, l, m2 = 14, 2, 12?

SOLVE The angle u21 is labeled in Figure 41.2. The state 14, 2, 12 
has l = 2 and m = 1, thus

u21 = cos-1 1 126
2 = 66°

REVIEW This quantum state corresponds to a classical orbit tilted 
66° away from the xy-plane.

EXAMPLE 41.2 ■ The angle of the angular momentum vector

The quantization of angular momentum places restrictions on the shape and orientation  
of the electron’s orbit. To see this, consider a hydrogen atom with orbital quantum num-
ber l = 2. In this state, the magnitude of the electron’s angular momentum must be 
L = 16 U = 2.45U. Furthermore, the angular momentum vector must point in a direction  
such that Lz = mU, where m is one of only five integers in the range -2 … m … 2.

The combination of these two requirements allows L
u

 to point only in certain direc-
tions in space, as shown in FIGURE 41.2. This is a rather unusual figure that requires a little 
thought to understand. Suppose m = 0 and thus Lz = 0. With no z-component, the angular 
momentum vector L

u
 must lie somewhere in the xy-plane. Furthermore, because the length  

of L
u

 is constrained to be 2.45U, the tip of L
u

 must lie somewhere on the circle labeled 
m = 0. These values of L

u
 correspond to classical orbits tipped into a vertical plane.

Similarly, m = 2 requires L
u

 to lie along the surface of the cone whose height is 2U 
and whose side has length 2.45U. These values of L

u
 correspond to classical orbits tilted 

slightly out of the xy-plane. Notice that L
u

 cannot point directly along the z-axis. The 
maximum possible value of Lz, when m = l, is 1Lz2max = lU. But l 6 1l1l + 12, so 
1Lz2max 6  L. The angular momentum vector must have either an x- or a y-component 
(or both). In other words, the corresponding classical orbit cannot lie in the xy-plane.

An angular momentum vector L
u

 tilted at angle u from the z-axis corresponds to an  
orbit tilted at angle u out of the xy-plane. The quantization of angular momentum  
restricts the orbital planes to only a few discrete angles. For quantum state 1n, l, m2, 
the angle of the angular momentum vector is

 ulm = cos-11Lz

L 2 = cos-11 mU2l1l + 12U
2 = cos-11 m2l1l + 122 (41.5)

Angles u22, u21, and u20 are labeled in Figure 41.2. Orbital planes at other angles are not 
allowed because they don’t satisfy the quantization conditions for angular momentum.

   NOTE    The ground state of hydrogen, with l = 0, has zero angular momentum.  
A classical particle cannot orbit unless it has angular momentum, but apparently a 
quantum particle does not have this requirement.

Energy Levels of the Hydrogen Atom
The energy of the hydrogen atom is quantized. Only those energies given by Equa-
tion  41.2 allow the wave function to satisfy the boundary conditions. The allowed  
energies of hydrogen depend only on the principal quantum number n, but for other 
atoms the energies will depend on both n and l. In anticipation of using both quantum 
numbers, FIGURE 41.3 is an energy-level diagram for the hydrogen atom in which the 
rows are labeled by n and the columns by l. The left column contains all of the l = 0 s 
states, the next column is the l = 1 p states, and so on.

Because the quantum condition of Equation 41.3 requires n 7 l, the s states begin with 
n = 1, the p states begin with n = 2, and the d states with n = 3. That is, the lowest-energy 
d state is 3d because states with n = 1 or n = 2 cannot have l = 2. For hydrogen, where 
the energy levels do not depend on l, the energy-level diagram shows that the 3s, 3p, and 3d 
states have equal energy. Figure 41.3 shows only the first few energy levels for each value 
of l, but there really are an infinite number of levels, as n S ∞   , crowding together beneath 
E = 0. The dashed line at E = 0 is the atom’s ionization limit, the energy of a hydrogen 
atom in which the electron has been moved infinitely far away to form an H+ ion.

L
u

L
u

L
u

u20

If m = 2, L lies somewhere on the
surface of this cone with Lz = 2U.

Lz

2U

-2U

U

-U

0

z

m = 0

m = -1

m = -2

u22
u21

m = 2

m = 1

If m = 0, L lies somewhere on 
this disk in the xy-plane. The 
corresponding classical electron 
orbit would be in a vertical plane.

u

u

FIGURE 41.2 The five possible orientations 
of the angular momentum vector for l = 2.

Quantum number l

Symbol

E = 0 eV
Ionization limit

-0.85 eV

-1.51 eV

-3.40 eV

-13.60 eV

4

3

2

1
Ground state

n

0 1 2 3

s p d f

4s 4p 4d 4f

3s 3p 3d

2s 2p

1s

FIGURE 41.3 Energy-level diagram for the 
hydrogen atom.
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The lowest energy state, the 1s state with E1 = -13.60 eV, is the ground state  
of hydrogen. The value 0E1 0 = 13.60 eV is the ionization energy, the minimum  
energy that would be needed to form a hydrogen ion by removing the electron from 
the ground state. All of the states with n 7 1 (i.e., the states with energy higher than 
the ground state) are excited states.

The red color of this nebula is due to the 
emission of light from hydrogen atoms. 
The atoms are excited by intense ultra-
violet light from the star in the center. 
They then emit red light 1l = 656 nm2 
in a 3 S 2 transition, part of the Balmer 
series of spectral lines emitted by 
hydrogen.

STOP TO THINK 41.1 What are the quantum numbers n and l for a hydrogen atom 
with E = -113.60/92 eV and L = 12 U?

41.2  The Hydrogen Atom: Wave  
Functions and Probabilities

You learned in Chapter 40 that the probability of finding a particle in a small interval 
of width dx at the position x is given by

Prob1in dx at x2 = 0c1x2 0 2 dx = P1x2 dx

where P1x2 = 0c1x2 0 2 is the probability density. This interpretation of 0c1x2 0 2 as a 
probability density lies at the heart of quantum mechanics. However, P1x2 was for a 
one-dimensional wave function.

For a three-dimensional atom, the wave function is c1x, y, z2, a function of three  
variables. We now want to consider the probability of finding a particle in a small volume 
of space dV at the position described by the three coordinates 1x, y, z2. This probability is

 Prob1in dV at x, y, z2 = 0c1x, y, z2 0 2 dV (41.6)

We can still interpret the square of the wave function as a probability density.
In one-dimensional quantum mechanics we could simply graph P1x2 versus x. 

Portraying the probability density of a three-dimensional wave function is more of a 
challenge. One way to do so, shown in FIGURE 41.4, is to use denser shading to indicate 
regions of larger probability density. That is, the amplitude of c is larger and the elec-
tron is more likely to be found in regions where the shading is darker. These figures 
show the probability densities of the 1s, 2s, and 2p states of hydrogen. As you can see, 
the probability density in three dimensions creates what is often called an electron 
cloud around the nucleus.

z

y
x

z z z

y
y

yx

xx

An electron in the 1s
state is most likely to
be found at the origin.

An electron in a 2s state is
likely to be found either at the
origin or in a surrounding shell.

The p electrons are more likely to be
found in some directions than in others.

1s
m = 0

2s
m = 0

2p
m = 0

2p
m = {1

FIGURE 41.4 The probability densities of the electron in the 1s, 2s, and 2p states of hydrogen.

These figures contain a lot of information. For example, notice how the p electrons 
have directional properties. These directional properties allow p electrons to “reach 
out” toward nearby atoms, forming molecular bonds. The quantum mechanics of 
bonding goes beyond what we can study in this text, but the electron-cloud pictures of  
the p electrons begin to suggest how bonds could form.
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Radial Wave Functions
In practice, the probability of finding the electron at a certain point in space is often 
less useful than the probability of finding the electron at a certain distance from the 
nucleus. That is, what is the probability that the electron is to be found within the 
small range of distances dr at the distance r?

It turns out that the solutions to the three-dimensional Schrödinger equation, the 
wave functions c1x, y, z2, can be written in a form that focuses on the electron’s radial 
distance r from the proton. The portion of the wave function that depends only on r 
is called the radial wave function. These functions, which depend on the quantum 
numbers n and l, are designated Rnl1r2. The first three radial wave functions are

  R1s1r2 =
12paB 

3
  e-r/aB  

  R2s1r2 =
128paB 

3
 11 -

r
2aB

2e-r/2aB 

  R2p1r2 =
1224paB 

3
 1 r

2aB
2e-r/2aB  

(41.7)

where aB is the Bohr radius.
The radial wave functions may seem mysterious, because we haven’t shown where 

they come from, but they are essentially the same as the one-dimensional wave functions  
c1x2 you learned to work with in Chapter 40. In fact, these radial wave functions 
are mathematically similar to the one-dimensional wave functions of the simple  
harmonic oscillator. One important difference, however, is that r ranges from 0 to ∞   . 
For one-dimensional wave functions, x ranged from - ∞  to ∞   .

   NOTE    Don’t be confused by the notation. R is not a radius but, like c, is the symbol 
for a wave function, the radial wave function. It is a function of the distance r from 
the proton.

FIGURE 41.5 shows the radial wave functions for the 1s and 2s states. Notice that the 
radial wave function is nonzero at r = 0, the position of the nucleus. This is surprising, 
but it is consistent with our observation in Figure 41.4 that the 1s and 2s electrons have  
a strong probability of being found at the origin.

Our purpose for introducing the radial wave functions was to determine the  
probability of finding the electron a certain distance from the nucleus. FIGURE  41.6 
shows a shell of radius r and thickness dr centered on the nucleus. The probability of 
finding the electron at distance r from the nucleus is equivalent to the probability that 
the electron is located somewhere within this shell. The volume of a thin shell is its 
surface area multiplied by its thickness dr. The surface area of a sphere is 4pr2, so the 
volume of this thin shell is

dV = 4pr2 dr

Just as 0c1x2 0 2 is the probability in one dimension of finding a particle within an 
interval dx, the probability of locating the electron within this spherical shell can be 
written in terms of the radial wave function Rnl1r2 as

 Prob1in dr at r2 = 0Rnl1r2 0 2 dV = 4pr2 0Rnl1r2 0 2 dr (41.8)

If we define the radial probability density Pr1r2 for state nl as

 Pr1r2 = 4pr2 0Rnl1r2 0 2 (41.9)

then, exactly analogous to the one-dimensional quantum mechanics of Chapter 40, we 
can write the probability of finding the electron within a small interval dr at distance r as

 Prob1in dr at r2 = Pr1r2 dr (41.10)

r

Rnl(r)

(paB
3)-1/2

(8paB
3)-1/2

0
2aB 4aB 6aB 8aB

1s radial wave function

2s radial wave function

FIGURE 41.5 The 1s and 2s radial wave 
functions of hydrogen.

z

y

x

r

Thickness
dr

Surface area
4pr2

FIGURE 41.6 The radial probability 
density gives the probability of finding 
the electron in a spherical shell of 
thickness dr at radius r.
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The radial probability density tells us the relative likelihood of finding the electron 
at distance r from the nucleus. The volume factor 4pr2 reflects the fact that more space 
is available in a shell of larger r, and this additional space increases the probability  
of finding the electron at that distance.

The probability of finding the electron between rmin and rmax is

 Prob1rmin … r … rmax2 = 3
rmax

rmin

Pr1r2 dr = 4p3
rmax

rmin

r2 0Rnl1r2 0 2 dr (41.11)

The electron must be somewhere between r = 0 and r = ∞   , so the integral of Pr1r2 
between 0 and ∞  must equal 1. This normalization condition was used to determine 
the constants in front of the radial wave functions of Equations 41.7.

FIGURE 41.7 shows the radial probability densities for the n = 1, 2, and 3 states of the  
hydrogen atom. You can see that the 1s, 2p, and 3d states, with maxima at aB, 4aB, and 
9aB, respectively, are following the pattern rpeak = n2aB of the radii of the orbits in the  
Bohr hydrogen atom. There we simply bent a one-dimensional de Broglie wave into a circle 
of that radius. Now we have a three-dimensional wave function for which the electron is  
most likely to be this distance from the nucleus, although it could be found at other values  
of r. Quantum mechanics reproduces some aspects of the Bohr hydrogen atom.

 Angular Momentum and Orbit Shapes
But why is it the 3d state that agrees with the Bohr atom rather than 3s or 3p? All 
states with the same value of n form a collection of “orbits” having the same energy. 
In FIGURE 41.8, the state with l = n - 1 has the largest angular momentum of the group. 
Consequently, the maximum-l state corresponds to a circular classical orbit and 
matches the circular orbits of the Bohr atom.

States with smaller l correspond to elliptical classical orbits. You can see in Figure  41.7 
that the radial probability density of a 3s electron has a peak close to the nucleus. The  
3s electron also has a good chance of being found farther from the nucleus than a 3d  
electron, suggesting an orbit that alternately swings in near the nucleus, then moves  
out past the circular orbit. This distinction between circular and elliptical orbits will be 
important when we discuss the energy levels in multielectron atoms.

   NOTE    In quantum mechanics, nothing is really orbiting. However, the probability 
densities for the electron to be, or not to be, any given distance from the nucleus 
mimic certain aspects of classical orbits. They provide a useful analogy.

You can see in Figure 41.7 that the most likely distance from the nucleus of an n = 1 
electron is approximately aB. The distance of an n = 2 electron is most likely to be be-
tween about 3aB and 7aB. An n = 3 electron is most likely to be found between about 8aB 
and 15aB. In other words, the radial probability densities give the clear impression that 
each value of n has a fairly well-defined range of radii where the electron is most likely 
to be found. This is the basis of the shell model of the atom that is used in chemistry.

However, there’s one significant puzzle. In Figure 41.4, the fuzzy sphere represent-
ing the 1s ground state is densest at the center, where the electron is most likely to 
be found. This maximum density at r = 0 agrees with the 1s radial wave function of 
Figure 41.5, which is a maximum at r = 0, but it seems to be in sharp disagreement 
with the 1s graph of Figure 41.7, which is zero at the nucleus and peaks at r = aB.

To resolve this puzzle, we must distinguish between the probability density 
0c1x, y, z2 0 2 and the radial probability density Pr1r2. The 1s wave function, and thus the 
1s probability density, really does peak at the nucleus. But 0c1x, y, z2 0 2 is the probability 
of being in a small volume dV, such as a small box with sides dx, dy, and dz, whereas 
Pr1r2 is the probability of being in a spherical shell of thickness dr. Compared to r = 0, 
the probability density 0c1x, y, z2 0 2 is smaller at any one point having r = aB. But the 
volume of all points with r ≈ aB (i.e., the volume of the spherical shell at r = aB) is so 
large that the radial probability density Pr peaks at this distance.

0.40
0.20
0.00

0.40
0.20
0.00

0.40
0.20
0.00

0 5aB 10aB 15aB 20aB 25aB

0 5aB 10aB 15aB 20aB 25aB

0 5aB 10aB 15aB 20aB 25aB

Pr(r)

Pr(r)

Pr(r)

r

r

r

1s

2s
2p

3s 3p3d

FIGURE 41.7 The radial probability  
densities for n = 1,  2, and 3.

Both orbits have
the same total
energy E.

The circular orbit has the
largest angular momentum.
The electron stays at a constant
distance from the nucleus.

The elliptical orbit has a smaller
angular momentum. Compared to the
circular orbit, the electron gets both
closer to and farther from the nucleus.

FIGURE 41.8 More circular orbits have 
larger angular momenta.
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To use a mass analogy, consider a fuzzy ball that is densest at the center. Even 
though the density away from the center has decreased, a spherical shell of modest 
radius r can have more total mass than a small-radius spherical shell of the same 
thickness simply because it has so much more volume.

Show that an electron in the 2p state is most likely to be found at 
r = 4aB.

SOLVE We can use the 2p radial wave function from Equations  41.7 
to write the radial probability density

   Pr1r2 = 4pr2 0R2p1r2 0 2 = 4pr2 c 1224paB 

3
 1 r

2aB
2e-r/2aB d

2

  = Cr4e-r/aB

where C = 124aB 

52-1 is a constant. This expression for Pr1r2 was 
graphed in Figure 41.7.

Maximum probability occurs at the point where the first deriva-
tive of Pr1r2 is zero:

  
dPr

dr
= C14r321e-r/aB2 + C1r421 -1

aB
 e-r/aB2

  = Cr314 -
r

aB
2e-r/aB = 0

This expression is zero only if r = 4aB, so Pr1r2 is maximum at 
r = 4aB. An electron in the 2p state is most likely to be found at this 
distance from the nucleus.

EXAMPLE 41.3 ■ Maximum probability

STOP TO THINK 41.2 How many maxima will there be in a graph of the radial prob-
ability density for the 4s state of hydrogen?

41.3 The Electron’s Spin
Recall, from Chapter 29, that an orbiting electron generates a microscopic magnetic  
moment mu . (In this chapter we will use mu  for the magnetic dipole moment rather 
than the mu  of Chapter  29 to avoid confusion with quantum numbers m and ms.)  
FIGURE  41.9 reminds you that a magnetic moment, like a compass needle,  
has north and south poles. Consequently, a magnetic moment in an external magnetic 
field experiences forces and torques. In the early 1920s, the German physicists Otto 
Stern and Walter Gerlach developed a technique to measure the magnetic moments of 
atoms. Their apparatus, shown in FIGURE 41.10, prepares an atomic beam by evaporating  
atoms out of a hole in an “oven.” These atoms, traveling in a vacuum, pass through 
a nonuniform magnetic field. Reducing the size of the upper pole tip makes the field 
stronger toward the top of the magnet, weaker toward the bottom.

An electron current loop generates a magnetic
moment with north and south magnetic poles.

N

I
S

m
u

FIGURE 41.9 An orbiting electron 
generates a magnetic moment.

N

S

Magnet

Oven

Collector plate

Collimator

The nonuniform magnetic field is
stronger closer to the south pole of the
magnet. The end of the dipole closer to
the south pole experiences a larger force.

A collimated atomic beam

S N

Increasing B

S

z

N

Atoms with the north pole
upward are deflected up.

Atoms with the south pole
upward are deflected down.

S

N

F
u

F
uF

u

F
u

F
u

F
u

FIGURE 41.10 The Stern-Gerlach experiment.

A magnetic moment experiences a net force in the nonuniform magnetic field  
because the field exerts forces of different strengths on the moment’s north and south 
poles. If we define a z-axis to point upward, then an atom whose magnetic moment 

M41_KNIG8221_05_GE_C41.indd   1237 25/06/22   2:41 PM



1238 CHAPTER 41 Atomic Physics 

vector mu  is tilted upward 1mz 7 02 has an upward force on its north pole that is larger 
than the downward force on its south pole. As the figure shows, this atom is de-
flected upward as it passes through the magnet. A downward-tilted magnetic moment 
1mz 6 02 experiences a net downward force and is deflected downward. A magnetic 
moment perpendicular to the field 1mz = 02 feels no net force and passes through the 
magnet without deflection. In other words, an atom’s deflection as it passes through 
the magnet is proportional to mz, the z-component of its magnetic moment.

It’s not hard to show that an atom’s magnetic moment is proportional to the electron’s 
orbital angular momentum: mu ∝ L

u
. Because the deflection of an atom depends on mz, 

measuring the deflections in a nonuniform field provides information about the Lz  
values of the atoms. The measurements are made by allowing the atoms to stick on a  
collector plate at the end of the apparatus. After the experiment, the collector plate is  
removed and examined to learn how the atoms were deflected.

With the magnet off, the atoms pass through without deflection and land along  
a narrow line at the center, as shown in FIGURE  41.11a. If the orbiting electrons are 
classical particles, they should have a continuous range of angular momenta. Turning 
on the magnet should produce a continuous range of vertical deflections, and the  
distribution of atoms collected on the plate should look like FIGURE  41.11b. But  
if angular momentum is quantized, as Bohr had suggested several years earlier, the 
atoms should be deflected to discrete positions on the collector plate.

For example, an atom with l = 1 has three distinct values of Lz corresponding to 
quantum numbers m = -1, 0, and 1. This leads to a prediction of the three distinct 
groups of atoms shown in FIGURE 41.11c. There should always be an odd number of 
groups because there are 2l + 1 values of Lz.

The Discovery of Spin
In 1927, with Schrödinger’s quantum theory brand new, the Stern-Gerlach technique 
was used to measure the magnetic moment of hydrogen atoms. The ground state of 
hydrogen is 1s, with l = 0, so the atoms should have no magnetic moment and there 
should be no deflection at all. Instead, the experiment produced the two-peaked  
distribution shown in FIGURE 41.12.

Because the hydrogen atoms were deflected, they must have a magnetic moment. 
But where does it come from if L = 0? Even stranger was the deflection into two  
groupings, rather than an odd number. The deflection is proportional to Lz, and  
Lz = mU where m ranges in integer steps from - l to + l. The experimental results 
would make sense only if l = 1

2, allowing m to take the two possible values -  12 and +  12. 
But according to Schrödinger’s theory, the quantum numbers l and m must be integers.

An explanation for these observations was soon suggested, then confirmed: The 
electron has an inherent magnetic moment. After all, the electron has an inherent grav-
itational character, its mass me, and an inherent electric character, its charge qe = -e. 
These are simply part of what an electron is. Thus it is plausible that an electron should 
also have an inherent magnetic character described by a built-in magnetic moment mue. 
A classical electron, if thought of as a little ball of charge, could spin on its axis as it 
orbits the nucleus. A spinning ball of charge would have a magnetic moment associ-
ated with its angular momentum. This inherent magnetic moment of the electron is  
what caused the unexpected deflection in the Stern-Gerlach experiment.

If the electron has an inherent magnetic moment, it must have an inherent angular 
momentum. This angular momentum is called the electron’s spin, which is designated 
S
u
. The outcome of the Stern-Gerlach experiment tells us that the z-component of this  

spin angular momentum is

 Sz = msU where ms = +  12 or -  12 (41.12)

The quantity ms is called the spin quantum number.
The z-component of the spin angular momentum vector is determined by the  

electron’s orientation. The ms = +  12 state, with Sz = +  12 U, is called the spin-up state, 

(c)

Quantum atoms with
l = 1: There are three
values of Lz, hence
three groups of atoms.

m = 1

m = 0

m = -1

(b)

Classical atoms: Lz has a
continuous range of values,
so there is a continuous
range of deflections.

Collector plate(a)

Magnet off: No deflection,
all atoms land at the center.

FIGURE 41.11 Distribution of the atoms  
on the collector plate.

m = +

m = -

Center of plate

1
2

1
2

FIGURE 41.12 The outcome of the Stern-
Gerlach experiment for hydrogen atoms.
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and the ms = -  12 state is called the spin-down state. It is convenient to picture a lit-
tle angular momentum vector that can be drawn c  for an ms = +  12 state and T  for 
an ms = -  12 state. We will use this notation in the next section. Because the electron 
must be either spin-up or spin-down, a hydrogen atom in the Stern-Gerlach experi-
ment will be deflected either up or down. This causes the two groups of atoms seen in 
Figure 41.12. No atoms have Sz = 0, so there are no undeflected atoms in the center.

   NOTE    The atom has spin angular momentum in addition to any orbital angular 
momentum that the electrons may have. Only in s states, for which L = 0, can we see 
the effects of “pure spin.”

The spin angular momentum S is analogous to Equation 41.3 for L:

 S = 2s1s + 12 U =
23
2

 U (41.13)

where s is a quantum number with the single value s = 1
2. S is the inherent angular  

momentum of the electron. Because of the single value of s, physicists usually say that  
the electron has “spin one-half.” FIGURE 41.13, which should be compared to Figure 41.2, 
shows that the terms “spin-up” and “spin-down” refer to Sz, not the full spin angular 
momentum. As was the case with L

u
, it’s not possible for S

u
 to point along the z-axis.

   NOTE    The term “spin” must be used with caution. Although a classical charged 
particle could generate a magnetic moment by spinning, the electron most assuredly is 
not a classical particle. It is not spinning in any literal sense. It simply has an inherent 
magnetic moment, just as it has an inherent mass and charge, and that magnetic 
moment makes it look as if the electron is spinning. It is a convenient figure of speech, 
not a factual statement. The electron has a spin, but it is not a spinning electron!

The electron’s spin has significant implications for atomic structure. The solutions 
to the Schrödinger equation could be described by the three quantum numbers n, l, and 
m, but the Stern-Gerlach experiment implies that this is not a complete description of an 
atom. Knowing that a ground-state atom has quantum numbers n = 1, l = 0, and m = 0 
is not sufficient to predict whether the atom will be deflected up or down in a nonuniform 
magnetic field. We need to add the spin quantum number ms to make our description 
complete. (Strictly speaking, we also need to add the quantum number s, but it provides 
no additional information because its value never changes.) So we really need four quan-
tum numbers 1n, l, m, ms2 to characterize the stationary states of the atom. The spin  
orientation does not affect the atom’s energy, so a ground-state electron in hydrogen 
could be in either the 11, 0, 0, +  122 spin-up state or the 11, 0, 0, -  122 spin-down state.

The fact that s has the single value s = 1
2 has other interesting implications. The 

correspondence principle tells us that a quantum particle begins to “act classical” in 
the limit of large quantum numbers. But s cannot become large! The electron’s spin 
is an intrinsic quantum property of the electron that has no classical counterpart.

STOP TO THINK 41.3 Can the spin angular momentum vector lie in the xy-plane? 
Why or why not?

 41.4 Multielectron Atoms
The Schrödinger-equation solution for the hydrogen atom matches the experimental 
evidence, but so did the Bohr hydrogen atom. The real test of Schrödinger’s theory  
is how well it works for multielectron atoms. A neutral multielectron atom consists 
of Z electrons surrounding a nucleus with Z protons and charge +Ze. Z, the atomic  
number, is the order in which elements are listed in the periodic table. Hydrogen is 
Z = 1, helium Z = 2, lithium Z = 3, and so on.

S
u

S
u

z

For a spin-up state, S is
somewhere on the surface
of this cone. Sz = 

For a spin-down state, S is
somewhere on the surface
of this cone. Sz = 

Sz

u

u

U+ 1
2

U- 1
2

+ 1
2 U.

U.- 1
2

u
Length of S is 2

13 U.

FIGURE 41.13 The spin angular momentum 
has two possible orientations.

M41_KNIG8221_05_GE_C41.indd   1239 25/06/22   2:41 PM



1240 CHAPTER 41 Atomic Physics 

The potential-energy function of a multielectron atom is that of Z electrons  
interacting with the nucleus and Z electrons interacting with each other. The electron- 
electron interaction makes the atomic-structure problem more difficult than the  
solar-system problem, and it proved to be the downfall of the simple Bohr model. The 
planets in the solar system do exert attractive gravitational forces on each other, but 
their masses are so much less than that of the sun that these planet-planet forces are 
insignificant for all but the most precise calculations. Not so in an atom. The electron 
charge is the same as the proton charge, so the electron-electron repulsion is just as 
important to atomic structure as is the electron-nucleus attraction.

The potential energy due to electron-electron interactions fluctuates rapidly in 
value as the electrons move and the distances between them change. Rather than treat 
this interaction in detail, we can reasonably consider each electron to be moving in an 
average potential due to all the other electrons. That is, electron i has potential energy

 U1ri2 = -  
Ze2

4pP0ri
+ Uelec1ri2 (41.14)

where the first term is the electron’s interaction with the Z protons in the nucleus 
and Uelec is the average potential energy due to all the other electrons. Because each 
electron is treated independently of the other electrons, this approach is called the 
independent particle approximation, or IPA. This approximation allows the 
Schrödinger equation for the atom to be broken into Z separate equations, one for each 
electron.

A major consequence of the IPA is that each electron can be described by a wave 
function having the same four quantum numbers n, l, m, and ms used to describe 
the single electron of hydrogen. Because m and ms do not affect the energy, we can 
still refer to electrons by their n and l quantum numbers, using the same labeling 
scheme that we used for hydrogen.

A major difference, however, is that the energy of an electron in a multielectron 
atom depends on both n and l. Whereas the 2s and 2p states in hydrogen had the same 
energy, their energies are different in a multielectron atom. The difference arises from 
the electron-electron interactions that do not exist in a single-electron hydrogen atom.

FIGURE 41.14 shows an energy-level diagram for the electrons in a multielectron atom. 
For comparison, the hydrogen-atom energies are shown on the right edge of the figure. 
The comparison is quite interesting. States in a multielectron atom that have small val-
ues of l are significantly lower in energy than the corresponding state in hydrogen. For 
each n, the energy increases as l increases until the maximum-l state has an energy  
very nearly that of the same n in hydrogen. Can we understand this pattern?

Indeed we can. Recall that states of lower l correspond to elliptical classical orbits 
and the highest-l state corresponds to a circular orbit. Except for the smallest values 
of n, an electron in a circular orbit spends most of its time outside the electron cloud 
of the remaining electrons. This is illustrated in FIGURE 41.15. The outer electron is 
orbiting a ball of charge consisting of Z protons and 1Z - 12 electrons. This ball of 
charge has net charge qnet = +e, so the outer electron “thinks” it is orbiting a proton. 
An electron in a maximum-l state is nearly indistinguishable from an electron in the 
hydrogen atom; thus its energy is very nearly that of hydrogen.

The low-l states correspond to elliptical orbits. A low-l electron penetrates in very 
close to the nucleus, which is no longer shielded by the other electrons. The electron’s 
interaction with the Z protons in the nucleus is much stronger than the interaction  
it would have with the single proton in a hydrogen nucleus. This strong interaction 
lowers its energy in comparison to the same state in hydrogen.

As we noted earlier, a quantum electron does not really orbit. Even so, the probability  
density of a 3s electron has in-close peaks that are missing in the probability density 
of a 3d electron, as you should confirm by looking back at Figure 41.7. Thus a low-l 
electron really does have a likelihood of being at small r, where its interaction with 
the Z protons is strong, whereas a high-l electron is most likely to be farther from the  
nucleus.

4f n = 4
n = 3

n = 2

n = 1

4d
3d

4p

3p

2p

5s

4s

3s

2s

1s

In
cr

ea
si

ng
 e

ne
rg

y

0 eV

Multielectron atom

Ionization limit

Hydrogen

FIGURE 41.14 An energy-level diagram for 
electrons in a multielectron atom.

High-l electron: An electron in a circular orbit
stays outside the core, sees a net charge of +e,
and acts like an electron in a hydrogen atom.

Low-l electron: An electron in an elliptical
orbit penetrates the core and interacts strongly
with the nucleus. This is an attractive force, so
the interaction lowers the electron’s energy.

Core of inner
electrons

FIGURE 41.15 High-l and low-l orbitals in a 
multielectron atom.
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The Pauli Exclusion Principle
By definition, the ground state of a quantum system is the state of lowest energy. 
What is the ground state of an atom in which Z electrons orbit a nucleus with  
Z protons? Because the 1s state is the lowest energy state in the independent  
particle approximation, it seems that the ground state should be one in which all Z 
electrons are in the 1s state. However, this idea is not consistent with the experimental  
evidence.

In 1925, the young Austrian physicist Wolfgang Pauli hypothesized that no two 
electrons in a quantum system can be in the same quantum state. That is, no two 
electrons can have exactly the same set of quantum numbers 1n, l, n, ms2. If one 
electron is present in a state, it excludes all others. This statement, which is called the 
Pauli exclusion principle, turns out to be an extremely profound statement about 
the nature of matter.

The exclusion principle is not applicable to the hydrogen atom, which has only a 
single electron. But in helium, with Z = 2 electrons, we must make sure that the two 
electrons are in different quantum states. This is not difficult. For a 1s state, with 
l = 0, the only possible value of the magnetic quantum number is m = 0. But there are 
two possible values of ms, namely +  12 and -  12. If a first electron is in the spin-up 1s 
state 11, 0, 0, +  122, a second 1s electron can still be added to the atom as long as it 
is in the spin-down state 11, 0, 0, -  122. This is shown schematically in FIGURE 41.16a, 
where the dots represent electrons on the rungs of the “energy ladder” and the arrows 
represent spin-up or spin-down.

The Pauli exclusion principle does not prevent both electrons of helium from being 
in the 1s state as long as they have opposite values of ms, so we predict this to be 
the ground state. A list of an atom’s occupied energy levels is called its electron 
configuration. The electron configuration of the helium ground state is written 1s2, 
where the superscript 2 indicates two electrons in the 1s energy level. An excited state 
of the helium atom might be the electron configuration 1s2s. This state is shown in 
FIGURE 41.16b. Here, because the two electrons have different values of n, there is no 
restriction on their values of ms.

The states 11, 0, 0, +  122 and 11, 0, 0,-  122 are the only two states with n = 1. 
The ground state of helium has one electron in each of these states, so all the 
possible n = 1 states are filled. Consequently, the electron configuration 1s2 
is called a closed shell. Because the two electron magnetic moments point in  
opposite directions, we can predict that helium has no net magnetic moment and 
will be undeflected in a Stern-Gerlach apparatus. This prediction is confirmed  
by experiment.

The next element, lithium, has Z = 3 electrons. The first two electrons can go 
into 1s states, with opposite values of ms, but what about the third electron? The 
1s2 shell is closed, and there are no additional quantum states having n = 1. The 
only option for the third electron is the next energy state, n = 2. The 2s and 2p 
states had equal energies in the hydrogen atom, but they do not in a multielectron 
atom. As Figure 41.14 showed, a lower-l state has lower energy than a higher-l state 
with the same n. The 2s state of lithium is lower in energy than 2p, so lithium’s 
third ground-state electron will be 2s. This requires l = 0 and m = 0 for the third 
electron, but the value of ms is not relevant because there is only a single electron 
in 2s. FIGURE  41.17a shows the electron configuration with the 2s electron being 
spin-up, but it could equally well be spin-down. The electron configuration for the 
lithium ground state is written 1s22s. This indicates two 1s electrons and a single 
2s electron.

FIGURE 41.18a shows the probability density of electrons in the 1s22s ground state 
of lithium. You can see the 2s electron shell surrounding the inner 1s2 core. For 
comparison, FIGURE 41.18b shows the first excited state of lithium, in which the 2s 
electron has been excited to the 2p energy level. This forms the 1s22p configuration, 
also shown in FIGURE 41.17b.

(b) He excited state

2s

1s

The arrow indicates
whether the electron’s
spin is up or down.

(a) He ground state

2s

1s

Horizontal lines
are allowed energies.

Each circle represents
an electron in that
energy level.

FIGURE 41.16 The ground state and the 
first excited state of helium.

(b) Li excited state

2s

2p

1s

(a) Li ground state

2s

2p

1s

FIGURE 41.17 The ground state and the 
first excited state of lithium.

Inner core of two 1s electrons

(a) Li ground state
    1s22s

(b) Li excited state
    1s22p

FIGURE 41.18 Electron clouds for two 
lithium electron configurations.
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The Schrödinger equation accurately predicts the energies of the 1s22s and the 
1s22p configurations of lithium, but the Schrödinger equation does not tell us which 
states the electrons actually occupy. The electron spin and the Pauli exclusion principle 
were the final pieces of the puzzle. Once these were added to Schrödinger’s theory, the 
initial phase of quantum mechanics was complete. Physicists finally had a successful  
theory for understanding the structure of atoms.

41.5 The Periodic Table of the Elements
The 19th century was a time when scientists were discovering new elements and 
studying their chemical properties. Several chemists in the 1860s began to point 
out the regular recurrence of chemical properties. For example, there are obvious 
similarities among the alkali metals lithium, sodium, potassium, and cesium. But 
attempts at organization were hampered by the fact that many elements had yet to 
be discovered.

The Russian chemist Dmitri Mendeléev was the first to propose, in 1869, a  
periodic arrangement of the elements. He did so by explicitly pointing out “gaps” 
where, according to his hypothesis, undiscovered elements should exist. He could then  
predict the expected properties of the missing elements. The subsequent discovery of 
these elements verified Mendeléev’s organizational scheme, which came to be known 
as the periodic table of the elements.

FIGURE 41.19 shows a modern periodic table. (A larger and more detailed version can 
be found in Appendix B.) The significance of the periodic table to a physicist is the 
implication that there is a basic regularity or periodicity to the structure of atoms. Any  
successful theory of the atom needs to explain why the periodic table looks the way 
it does.
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Actinides
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FIGURE 41.19 The modern periodic table of the elements, showing the atomic number Z of each. A more detailed 
periodic table is provided in Appendix B.
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The First Two Rows
Quantum mechanics successfully explains the structure of the periodic table. We need 
three basic ideas to see how this works:

1. The energy levels of an atom are found by solving the Schrödinger equation for 
multielectron atoms. Figure 41.14, a very important figure for understanding the 
periodic table, showed that the energy depends on the quantum numbers n and l.

2. For each value l of the orbital quantum number, there are 2l + 1 possible values 
of the magnetic quantum number m and, for each of these, two possible values 
of the spin quantum number ms. Consequently, each energy level in Figure 41.14 
is actually 212l + 12 different states. Each of these states has the same energy.

3. The ground state of the atom is the lowest-energy electron configuration that is 
consistent with the Pauli exclusion principle.

We used these ideas in the last section to look at the elements helium 1Z = 22 and 
lithium 1Z = 32. Four-electron beryllium 1Z = 42 comes next. The first two electrons 
go into 1s states, forming a closed shell, and the third goes into 2s. There is room in the 
2s level for a second electron as long as its spin is opposite that of the first 2s electron.  
Thus the third and fourth electrons occupy states 12, 0, 0, +  122 and 12, 0, 0, -  122. 
These are the only two possible 2s states. All the states with the same values of n and 
l are called a subshell, so the fourth electron closes the 2s subshell. (The outer two 
electrons are called a subshell, rather than a shell, because they complete only the 2s 
possibilities. There are still spaces for 2p electrons.) The ground state of beryllium, 
shown in FIGURE 41.20, is 1s22s2.

These principles can continue to be applied as we work our way through the  
elements. There are 2l + 1 values of m associated with each value of l, and each of 
these can have ms = {1

2. This gives, altogether, 212l + 12 distinct quantum states in 
each nl subshell. TABLE 41.2 lists the number of states in each subshell.

Boron 11s22s22p2 opens the 2p subshell. The remaining possible 2p states are 
filled as we continue across the second row of the periodic table. These elements are 
shown in FIGURE 41.21. With neon 11s22s22p62, which has six 2p electrons, the n = 2 
shell is complete, and we have another closed shell. The second row of the periodic 
table is eight elements wide because of the two 2s electrons plus the six 2p electrons 
needed to fill the n = 2 shell.

2s

2p

1s

Be ground state

FIGURE 41.20 The ground state of 
beryllium 1Z = 42.

TABLE 41.2 Number of states in each 
subshell of an atom

Subshell l Number of states

s 0  2

p 1  6

d 2 10

f 3 14

Z = 5 B
1s22s22p

Z = 6 C
1s22s22p2

Z = 7 N
1s22s22p3

Z = 8 O
1s22s22p4

Z = 9 F
1s22s22p5

Z = 10 Ne
1s22s22p6

2p

2s

1s

FIGURE 41.21 Filling the 2p subshell with the elements boron through neon.

 Elements with Z + 10
The third row of the periodic table is similar to the second. The two 3s states are filled 
in sodium and magnesium. The two columns on the left of the periodic table repre-
sent the two electrons that can go into an s subshell. Then the six 3p states are filled,  
one by one, in aluminum through argon. The six columns on the right represent the 
six electrons of the p subshell. Argon 1Z = 18, 1s22s22p63s23p62 is another inert gas, 
although this may seem surprising because the 3d subshell is still open.
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The fourth row is where the periodic table begins to get complicated. You might 
expect the closure of the 3p subshell in argon to be followed, starting with potassium 
1Z = 192, by filling the 3d subshell. But if you look back at Figure 41.14, where the 
energies of the different nl states are shown, you will see that the 3d state is slightly 
higher in energy than the 4s state. Because the ground state is the lowest energy state 
consistent with the Pauli exclusion principle, potassium finds it more favorable to fill 
a 4s state than to fill a 3d state. Thus the ground-state configuration of potassium is 
1s22s22p63s23p64s rather than the expected 1s22s22p63s23p63d.

At this point, we begin to see a competition between increasing n and decreasing l. 
The highly elliptical characteristic of the 4s state brings part of its orbit in so close to 
the nucleus that its energy is less than that of the more circular 3d state. The 4p state, 
though, reverts to the “expected” pattern. We find that

E4s 6 E3d 6 E4p

so the states across the fourth row are filled in the order 4s, then 3d, and finally 4p.
Because there had been no previous d states, the 3d subshell “splits open” the  

periodic table to form the 10-element-wide group of transition elements. Most  
commonly occurring metals are transition elements, and their metallic properties  
are determined by their partially filled d subshell. The 3d subshell closes with  
zinc, at Z = 30, then the next six elements fill the 4p subshell up to krypton, at Z = 36.

Things get even more complex starting in the sixth row, but the ideas are  
familiar. The l = 3 subshell ( f electrons) becomes a possibility with n = 4, but 
it turns out that the 5s, 5p, and 6s states are all lower in energy than 4f. Not until  
barium 1Z = 562 fills the 6s subshell (and lanthanum 1Z = 572 adds a 5d electron)  
is it energetically favorable to add a 4f electron. Immediately after barium you 
have to switch down to the lanthanides at the bottom of the table. The lanthanides  
fill in the 4f states.

The 4f subshell is complete with Z = 70 ytterbium. Then Z = 71 lutetium through 
Z = 80 mercury complete the transition-element 5d subshell, followed by the 6p  
subshell in the six elements thallium through radon at the end of the sixth row. Radon, 
the last inert gas, has Z = 86 electrons and the ground-state configuration

1s22s22p63s23p64s23d104p65s24d105p66s24f 145d106p6

This is frightening to behold, but we can now understand it!

Predict the ground-state electron configuration of arsenic.

SOLVE The periodic table shows that arsenic (As) has Z = 33, so we must identify  
the states of 33 electrons. Arsenic is in the fourth row, following the first group of  
transition elements. Argon 1Z = 182 filled the 3p subshell, then calcium 1Z = 202 filled  
the 4s subshell. The next 10 elements, through zinc 1Z = 302, filled the 3d subshell. 
The 4p subshell starts filling with gallium 1Z = 312, and arsenic is the third element 
in this group, so it will have three 4p electrons. Thus the ground-state configuration 
of arsenic is

1s22s22p63s23p64s23d104p3

EXAMPLE 41.4 ■ The ground state of arsenic

The white lettering on the periodic table of Figure 41.19 summarizes the results, 
showing the subshells as they are filled. It is especially important to note how the 
electron’s spin is absolutely essential for understanding the periodic table. Explaining 
the periodic table of the elements is a remarkable success of the quantum model of 
the atom.
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Ionization Energies
Ionization energy is the minimum energy needed to remove a ground-state electron 
from an atom and leave a positive ion behind. The ionization energy of hydrogen 
is 13.60 eV because the ground-state energy is E1 = -13.60 eV. FIGURE 41.22 shows 
the experimentally measured ionization energies of the first 60 elements in the 
periodic table.
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25

20

15

10

5

0
0 10 20 30 40 50 60

H

He

Li

Be

Ne

Na

Mg

A

K

Zn

Kr

Rb

Cd
Xe

Cs
Z

FIGURE 41.22 Ionization energies of the elements up to Z = 60.

The ionization energy is different for each element, but there’s a clear pattern to 
the values. Ionization energies are ≈5 eV for the alkali metals, on the left edge of the 
periodic table, then increase steadily to Ú15 eV for the inert gases before plunging 
back to ≈5 eV. Can the quantum theory of atoms explain this recurring pattern in the 
ionization energies?

Indeed it can. The inert-gas elements (helium, neon, argon, . . .) in the right column 
of the periodic table have closed shells. A closed shell is a very stable structure, and 
that is why these elements are chemically nonreactive (i.e., inert). It takes a large 
amount of energy to pull an electron out of a stable closed shell; thus the inert gases 
have the largest ionization energies.

The alkali metals, in the left column of the periodic table, have a single s-electron 
outside a closed shell. This electron is easily disrupted, which is why these elements 
are highly reactive and have the lowest ionization energies. Between the edges of the 
periodic table are elements such as beryllium 11s22s22 with a closed 2s subshell. You 
can see in Figure 41.22 that the closed subshell gives beryllium a larger ionization 
energy than its neighbors lithium 11s22s2 or boron 11s22s22p2. However, a closed 
subshell is not nearly as tightly bound as a closed shell, so the ionization energy of 
beryllium is much less than that of helium or neon.

All in all, you can see that the basic idea of shells and subshells, which follows 
from the Schrödinger-equation energy levels and the Pauli principle, provides a good 
understanding of the recurring features in the ionization energies.

STOP TO THINK 41.4 Is the electron configuration 1s22s22p43s a ground-state con-
figuration or an excited-state configuration?

a. Ground-state

41.6 Excited States and Spectra
The periodic table organizes information about the ground states of the elements. These 
states are chemically most important because most atoms spend most of the time in 
their ground states. All the chemical ideas of valence, bonding, reactivity, and so on are 
consequences of these ground-state atomic structures. But the periodic table does not 
tell us anything about the excited states of atoms. It is the excited states that hold the key 
to understanding atomic spectra, and that is the topic to which we turn next.

b. Excited-state
c. It’s not possible to tell without knowing which element it is.
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Sodium 1Z = 112 is a multielectron atom that we will use as a prototypical atom. 
The ground-state electron configuration of sodium is 1s22s22p63s. The first 10 elec-
trons completely fill the n = 1 and n = 2 shells, creating a neon core, while the 3s 
electron is a valence electron. It is customary to represent this configuration as [Ne]3s 
or, more simply, as just 3s.

The excited states of sodium are produced by raising the valence electron to a higher 
energy level. The electrons in the neon core are unchanged. Thus the excited states 
can be labeled [Ne]nl or, more simply, just nl. FIGURE 41.23 is an energy-level diagram 
showing the ground state and some of the excited states of sodium. Notice that the 1s, 
2s, and 2p states of the neon core are not shown on the diagram. These states are filled  
and unchanging, so only the states available to the valence electron are shown.

Figure 41.23 has a new feature: The zero of energy has been shifted to the ground 
state. As we have discovered many times, the zero of energy can be located where it 
is most convenient. For analyzing spectra it is convenient to let the ground state have 
E = 0. With this choice, the excited-state energies tell us how far each state is above 
the ground state. The ionization limit now occurs at the value of the atom’s ionization 
energy, which is 5.14 eV for sodium.

The first energy level above 3s is 3p, so the first excited state of sodium is 
1s22s22p63p, written as [Ne]3p or, more simply, 3p. The valence electron is excited, 
while the core electrons are unchanged. This state is followed, in order of increasing 
energy, by [Ne]4s, [Ne]3d, and [Ne]4p. Notice that the order of excited states is exactly 
the same order (3p–4s–3d–4p) that explained the fourth row of the periodic table.

Other atoms with a single valence electron have energy-level diagrams similar to 
that of sodium. Things get more complicated when there is more than one valence 
electron, so we’ll defer those details to more advanced courses. Nevertheless, you 
already can utilize the information shown on an energy-level diagram without having 
to understand precisely why each level is where it is.

Excitation by Absorption
Left to itself, an atom will be in its lowest-energy ground state. How does an atom get  
into an excited state? The process of getting an atom into an excited state is called  
excitation, and there are two basic mechanisms: absorption and collision. We’ll 
begin by looking at excitation by absorption.

One postulate of the Bohr model is that an atom can jump from one stationary 
state, of energy E1, to a higher-energy state E2 by absorbing a photon of frequency

 f =
∆Eatom

h
=

E2 - E1

h
 (41.15)

Because we are interested in spectra, it is more useful to write Equation 41.15 in terms 
of the wavelength:

 l =
c
f

=
hc

∆Eatom
=

1240 eV nm
∆E 1in eV2  (41.16)

The final expression, which uses the value hc = 1240 eV nm, gives the wavelength in 
nanometers if ∆Eatom is in electron volts.

Bohr’s idea of quantum jumps remains an integral part of our interpretation of the 
results of quantum mechanics. By absorbing a photon, an atom jumps from its ground 
state to one of its excited states. However, a careful analysis of how the electrons in 
an atom interact with a light wave shows that not every conceivable transition can 
occur. The allowed transitions must satisfy a selection rule: A transition (either 
absorption or emission) from a state in which the valence electron has orbital quantum 
number l1 to another with orbital quantum number l2 is allowed only if

 ∆l = 0 l2 - l1 0 = 1 (selection rule for emission and absorption) (41.17)

 The dots of light are being emitted by 
two beryllium ions held in a device called 
an ion trap. Each ion, which is excited by 
an invisible ultraviolet laser, emits about 
106 visible-light photons per second.

4.51
4.11

3.19

0.00

2.104

3.75

4.34 4.28

3.62

4.296s 5p 4d

3d

4f

4p

3p

5s

4s

3s

5

4

3

2

1

0

Energy (eV)
l = 0 l = 2

Ionization limit 5.14 eV
l = 1 l = 3

Ground state at E = 0

First excited state

Filled 1s, 2s, and 2p levels

Energies for each
level are in eV.

FIGURE 41.23 The [Ne]3s ground state  
of the sodium atom and some of the  
excited states.
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That is, the electron’s orbital quantum number must change by exactly 1. Thus an atom 
in an s state 1l = 02 can absorb a photon and be excited to a p state 1l = 12 but not to 
another s state or to a d state. An atom in a p state 1l = 12 can emit a photon by dropping 
to a lower-energy s state or to a lower-energy d state but not to another p state.

What is the longest wavelength in the absorption spectrum of  
hydrogen? What is the transition?

SOLVE The longest wavelength corresponds to the smallest energy 
change ∆Eatom. Because the atom starts from the 1s ground state, 
the smallest energy change occurs for absorption to the first n = 2 
excited state. The energy change is

∆Eatom = E2 - E1 =
-13.6 eV

22 -
-13.6 eV

12 = 10.2 eV

The wavelength of this transition is

l =
1240 eV nm

10.2 eV
= 122 nm

This is an ultraviolet wavelength. Because of the selection rule, the 
transition is 1s S 2p, not 1s S 2s.

EXAMPLE 41.5 ■ Absorption in hydrogen

What is the longest wavelength in the absorption spectrum of  
sodium? What is the transition?

SOLVE The sodium ground state is [Ne]3s. The lowest excited state 
is the 3p state. 3s S 3p is an allowed transition 1∆l = 12, so this is 
the longest wavelength. You can see from the data in Figure 41.23 
that ∆Eatom = 2.104 eV for this transition.

The corresponding wavelength is

l =
1240 eV nm

2.104 eV
= 589 nm

 REVIEW This wavelength (yellow color) is a prominent feature in 
the spectrum of sodium. Because the ground state has l = 0, absor p-
tion must be to a p state. The s states and d states of sodium cannot 
be excited by absorption.

EXAMPLE 41.6 ■ Absorption in sodium

Collisional Excitation
If a particle, such as an electron, with more than 2.10 eV of kinetic energy collides with 
a ground-state sodium atom, a portion of its energy can be used to excite the atom to  
its 3p state. This process is called collisional excitation of the atom.

Collisional excitation differs from excitation by absorption in one very fundamental 
way. In absorption, the photon disappears. Consequently, all of the photon’s energy must 
be transferred to the atom. Conservation of energy requires Ephoton = ∆Eatom. In contrast, 
the particle is still present after collisional excitation and can carry away some kinetic 
 energy. That is, the particle does not have to transfer its entire energy to the atom. If the 
particle has, say, an incident energy of 2.85 eV, it could transfer 2.10 eV to the sodium atom,  
thereby exciting it to the 3p state, and depart the collision with an energy of 0.75 eV.

To excite the atom, the incident energy of the particle merely has to exceed ∆Eatom. 
That is, Eparticle Ú ∆Eatom. There’s a threshold energy for exciting the atom, but no upper 
limit. It is all a matter of energy conservation. FIGURE 41.24 shows the idea graphically.

Collisional excitation by electrons is the predominant method of excitation in 
electrical discharges such as fluorescent lights, street lights, and neon signs. A gas 
is placed in a tube at reduced pressure 1≈1 mm of Hg2, then a fairly high voltage 
1≈1000 V2 between electrodes at the ends of the tube causes the gas to ionize,  
creating a current in which both ions and electrons are charge carriers. The mean free  
path of electrons between collisions is large enough for the electrons to gain several eV  
of kinetic energy as they accelerate in the electric field. This energy is then transferred  
to the gas atoms upon collision. The process does not work at atmospheric pressure 
because the mean free path between collisions is too short for the electrons to gain 
enough kinetic energy to excite the atoms.

   NOTE    There are no selection rules for collisional excitation. Any state can be excited 
if the colliding particle has sufficient energy.

Absorption

Photon

Particle

The photon disappears. Energy
conservation requires Ephoton = E2 - E1.

The particle carries away energy.
Energy conservation requires Eparticle Ú E2 - E1.

Collisional
excitation

E2

E1

E2

E1

E2

E1

E2

E1

FIGURE 41.24 Excitation by photon 
absorption and electron collision.
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 Emission Spectra
The absorption of light is an important process, but it is the emission of light that 
really gets our attention. The overwhelming bulk of sensory information that we  
perceive comes to us in the form of light. With the small exception of cosmic rays,  
all of our knowledge about the cosmos comes to us in the form of light and other  
electromagnetic waves emitted in various processes.

Understanding emission hinges on the three ideas shown in FIGURE 41.25. Once we 
have determined the energy levels of an atom, by solving the Schrödinger equation, we 
can immediately predict its emission spectrum. Conversely, we can use the measured  
emission spectrum to determine an atom’s energy levels.

As an example, FIGURE  41.26a shows some of the transitions and wavelengths  
observed in the emission spectrum of sodium. This diagram makes the point that 
each wavelength represents a quantum jump between two well-defined energy levels. 
Notice that the selection rule ∆l = 1 is being obeyed in the sodium spectrum. The 5p 
levels can undergo quantum jumps to 3s, 4s, or 3d but not to 3p or 4p.

FIGURE 41.26b shows the emission spectrum of sodium as it would be recorded in  
a spectrometer. (Many of the lines seen in this spectrum start from higher excited 
states that are not seen in the rather limited energy-level diagram of Figure 41.26a.) By  
comparing the spectrum to the energy-level diagram, you can recognize that the spectral  
lines at 589 nm, 330 nm, 286 nm, and 268 nm form a series of lines due to all the  
possible np S 3s transitions. They are the dominant features in the sodium spectrum.

The most obvious visual feature of sodium emission is its bright yellow color,  
produced by the emission wavelength of 589 nm. This is the basis of the flame test 
used in chemistry to test for sodium: A sample is held in a Bunsen burner, and a bright 
yellow glow indicates the presence of sodium. The 589 nm emission is also prominent 
in the pinkish-yellow glow of the common sodium-vapor street lights. These operate 
by creating an electrical discharge in sodium vapor. Most sodium-vapor lights use 
high-pressure lamps to increase their light output. The high pressure, however, causes 
the formation of Na2 molecules, and these molecules, which have a different spectral 
fingerprint, emit the pinkish portion of the light.

Some cities close to astronomical observatories use low-pressure sodium lights, and 
these emit the distinctive yellow 589 nm light of sodium. The glow of city lights is a severe 
problem for astronomers, but the very specific 589 nm emission from sodium is easily  
removed with a sodium filter. The light from the telescope is passed through a container of 
sodium vapor, and the sodium atoms absorb only the unwanted 589 nm photons without  
disturbing any other wavelengths! However, this cute trick does not work for the other  
wavelengths emitted by high-pressure sodium lamps or light from other sources.

Color in Solids
It is worth concluding this section with a few remarks about color in solids. Whether it 
is the intense multihued colors of a stained glass window, the bright colors of flowers 
or paint, or the deep luminescent red of a ruby, most of the colors we perceive in our 

Can an electron traveling at 2.0 * 106 m/s cause a hydrogen atom 
to emit the prominent red spectral line 1l = 656 nm2 in the Balmer 
series?

MODEL The electron must have sufficient energy to excite the  
upper state of the transition.

SOLVE The electron’s energy is Eelec = 1
2 mv2 = 11.4 eV. This  

is significantly larger than the 1.89 eV energy of a photon with 
wavelength 656 nm, but don’t confuse the energy of the pho-
ton with the energy of the excitation. The red spectral line in the 

Balmer series is emitted by an n = 3 to n = 2 quantum jump with 
∆Eatom = 1.89 eV. But to cause this emission, the electron must 
excite an atom from its ground state, with n = 1, up to the n = 3 
level. The necessary excitation energy is

  ∆Eatom = E3 - E1 = 1-1.51 eV2 - 1-13.60 eV2
  = 12.09 eV

The electron does not have sufficient energy to excite the atom to 
the state from which the emission would occur.

EXAMPLE 41.7 ■ Excitation of hydrogen

1. The atom has dis-
 crete energy levels.

Ground state

2. The atom is excited
    from the ground state
    to an excited state
    by absorption or  
    collision.

3. The excited atom emits
    a photon in a quantum
    jump to a lower level.
    More than one transition
    may be possible.

FIGURE 41.25 Generation of an emission 
spectrum.
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FIGURE 41.26 The emission spectrum of 
sodium.
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lives come from solids rather than free atoms. The basic principles are the same, but 
the details are different for solids.

An excited atom in a gas has little choice but to give up its energy by emitting a 
photon. Its only other option, which is rare for gas atoms, is to collide with another 
atom and transfer its energy into the kinetic energy of recoil. But the atoms in a solid 
are in intimate contact with each other at all times. Although an excited atom in a 
solid has the option of emitting a photon, it is often more likely that the energy will be 
converted, via interactions with neighboring atoms, to the thermal energy of the solid. 
A process in which an atom is de-excited without radiating is called a nonradiative 
transition.

This is what happens in pigments, such as those in paints, plants, and dyes. Pigment 
molecules absorb certain wavelengths of light but not other wavelengths. The energy- 
level structure of a molecule is complex, so the absorption consists of “bands” of  
wavelengths rather than discrete spectral lines. But instead of re-radiating the energy 
by photon emission, as a free atom would, the pigment molecules undergo nonradiative 
transitions and convert the energy into increased thermal energy. That is why darker  
objects get hotter in the sun than lighter objects.

When light falls on an object, it can be either absorbed or reflected. If all wave-
lengths are reflected, the object is perceived as white. Any wavelengths absorbed by 
the pigments are removed from the reflected light. A pigment with blue-absorbing 
properties converts the energy of blue-wavelength photons into thermal energy, but 
photons of other wavelengths are reflected without change. A blue-absorbing pigment 
reflects the red and yellow wavelengths, causing the object to be perceived as the 
color orange!

Some solids, though, are a little different. The color of many minerals and crystals 
is due to so-called impurity atoms embedded in them. For example, the gemstone 
ruby is a very simple and common crystal of aluminum oxide, called corundum, that 
happens to have chromium atoms present at the concentration of about one part in a 
thousand. Pure corundum is transparent, so all of a ruby’s color comes from these 
chromium impurity atoms.

FIGURE  41.27 shows what happens when ruby is illuminated by white light. The  
chromium atoms have a group of excited states that absorb all wavelengths shorter 
than about 600 nm—that is, everything except orange and red. Unlike the pigments in 
red glass, which convert all the absorbed energy into thermal energy, the chromium 
atoms dissipate only a small amount of heat as they undergo a nonradiative transition to  
another excited state. From there they emit a photon with l = hc/1E2 - E12 ≈ 690 nm 
(dark red color) as they jump back to the ground state.

The net effect is that short-wavelength photons, rather than being completely  
absorbed, are re-radiated as longer-wavelength photons. This is why rubies sparkle 
and have such intense color, whereas red glass is a dull red color. The color of other 
minerals and gems is due to different impurity atoms, but the principle is the same.

The colors in a stained glass window are 
due to the selective absorption of light.

E2

E1

Absorption for
l 6 600 nm

690 nm
emission

Nonradiative
transition

Many excited
levels

Ground state of
chromium atoms

FIGURE 41.27 Absorption and emission in 
a crystal of ruby.

STOP TO THINK 41.5 In this hypothetical atom, 
what is the photon energy Ephoton of the longest- 
wavelength photons emitted by atoms in the 5p 
state?

a. 1.0 eV
b. 2.0 eV
c. 3.0 eV
d. 4.0 eV

Energy (eV)

0

1

2

5s

3

4

5

4s

4p

5p

4d

3d
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41.7 Lifetimes of Excited States
Excitation of an atom, by either absorption or collision, leaves it in an excited state. 
From there it jumps back to a lower energy level by emitting a photon. How long 
does this process take? There are actually two questions here. First, how long does an 
atom remain in an excited state before undergoing a quantum jump to a lower state? 
Second, how long does the transition last as the quantum jump is occurring?

Our best understanding of the quantum physics of atoms is that quantum jumps are 
instantaneous. The absorption or emission of a photon is an all-or-nothing event, so 
there is not a time when a photon is “half emitted.” The prediction that quantum jumps 
are instantaneous has troubled many physicists, but careful experimental tests have 
never revealed any evidence that the jump itself takes a measurable amount of time.

The time spent in the excited state, waiting to make a quantum jump, is another 
story. FIGURE 41.28 shows experimental data for the length of time that doubly charged 
xenon ions Xe++ spend in a certain excited state. In this experiment, a pulse of electrons 
was used to excite the atoms to the excited state. The number of excited-state atoms 
was then monitored by detecting the photons emitted—one by one!—as the excited 
atoms jumped back to the ground state. The number of photons emitted at time t is  
directly proportional to the number of excited-state atoms present at time t. As the 
figure shows, the number of atoms in the excited state decreases exponentially with 
time, and virtually all have decayed within 25 ms of their creation.

Figure 41.28 has two important implications. First, atoms spend time in the excited state 
before undergoing a quantum jump back to a lower state. Second, the length of time spent 
in the excited state is not a constant value but varies from atom to atom. If every excited 
xenon ion lived for 5 ms in the excited state, then we would detect no photons for 5 ms, a 
big burst right at 5 ms as they all decay, then no photons after that. Instead, the data tell us 
that there is a range of times spent in the excited state. Some undergo a quantum jump and 
emit a photon after 1 ms, others after 5 ms or 10 ms, and a few wait as long as 20 or 25 ms.

Consider an experiment in which N0 excited atoms are created at time t = 0. As the 
curve in Figure 41.28 shows, the number of excited atoms remaining at time t is well 
described by the exponential function

 Nexc = N0e
-t/t (41.18)

where t is the point in time at which e-1 = 0.368 = 36.8% of the original atoms  
remain in the excited state. Thus 63.2% of the atoms, nearly two-thirds, have emitted 
a photon and jumped to the lower state by time t = t. The interval of time t is called 
the lifetime of the excited state. From Figure 41.28 we can deduce that the lifetime 
of this state in Xe++ is ≈4 ms because that is the point in time at which the curve has 
decayed to 36.8% of its initial value.

This lifetime in Xe++ is abnormally long, which is why the state was studied. More 
typical excited-state lifetimes are a few nanoseconds. TABLE 41.3 gives some measured 
values of excited-state lifetimes. Whatever the value of t, the number of excited-state 
atoms decreases exponentially. Why is this?

The Decay Equation
Quantum mechanics is about probabilities. We cannot say exactly where the electron 
is located, but we can use quantum mechanics to calculate the probability that the 
electron is located in a small interval dx at position x. Similarly, we cannot say exactly 
when an excited electron will undergo a quantum jump and emit a photon. However, 
we can use quantum mechanics to find the probability that the electron will undergo  
a quantum jump during a small time interval dt at time t.

Let us assume that the probability of an excited atom emitting a photon during time 
interval dt is independent of how long the atom has been waiting in the excited state. For 
example, a newly excited atom may have a 10% probability of emitting a photon within the 
1 ns interval from 0 ns to 1 ns. If it survives until t = 7 ns, our assumption is that it still has 
a 10% probability of emitting a photon during the 1 ns interval from 7 ns to 8 ns.

The solid line is an
exponential-decay
“fit” to the data.

0
0 t (ms)

Photon counts
(thousands)

5 10 15 20 25

30

10

20

FIGURE 41.28 Experimental data for the 
photon emission rate from an excited 
state in Xe++.

TABLE 41.3 Some excited-state lifetimes

Atom State Lifetime (ns)

Hydrogen 2p 1.6

Sodium 3p 17

Neon 3p 20

Potassium 4p 26
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This assumption, which can be justified with a detailed analysis, is similar to flip-
ping coins. The probability of a head on your first flip is 50%. If you flip seven heads 
in a row, the probability of a head on your eighth flip is still 50%. It is unlikely that 
you will flip seven heads in a row, but doing so does not influence the eighth flip. 
Likewise, it may be unlikely for an excited atom to live for 7 ns, but doing so does not 
affect its probability of emitting a photon during the next 1 ns.

If dt is small, the probability of photon emission during time interval dt is directly 
proportional to dt. That is, if the emission probability in 1 ns is 1%, it will be 2% in 2 
ns and 0.5% in 0.5 ns. (This logic fails if dt gets too big. If the probability is 70% in 20 
ns, we can not say that the probability would be 140% in 40 ns because a probability 
71 is meaningless.) We will be interested in the limit dt S dt, so the concept is valid 
and we can write

  Prob1emission in dt at time t2 = r dt (41.19)

where r is called the decay rate because the number of excited atoms decays with time. 
It is a probability per second, with units of s-1, and thus is a rate. For example, if an atom 
has a 5% probability of emitting a photon during a 2 ns interval, its decay rate is

r =
P
dt

=
0.05
2 ns

= 0.025 ns-1 = 2.5 * 107 s-1

   NOTE    Equation 41.19 is directly analogous to Prob1found in dx at x2 = P dx, where 
P, which had units of m-1, was the probability density.

FIGURE  41.29 shows Nexc atoms in an excited state. During a small time interval  
dt, the number of these atoms that we expect to undergo a quantum jump and emit a 
photon is Nexc multiplied by the probability of decay. That is,

  number of photons in dt at time t = Nexc * Prob1emission in dt at t2 

  = rNexcdt  
(41.20)

Now the change in Nexc is the negative of Equation 41.20. For example, suppose 1000 
excited atoms are present at time t and each has a 5% probability of emitting a photon  
in the next 1 ns. On average, the number of photons emitted during the next 1 ns 
will be 1000 * 0.05 = 50. Consequently, the number of excited atoms changes by 
∆Nexc = -50, with the minus sign indicating a decrease.

Thus the change in the number of atoms in the excited state is

 ∆Nexc1in dt at t2 = -Nexc * Prob1decay in dt at t2 = -rNexc dt (41.21)

Now let dt S dt. Then ∆Nexc S dNexc and Equation 41.21 becomes

 
dNexc

dt
= -rNexc (41.22)

Equation 41.22 is a rate equation because it describes the rate at which the excited- 
state population changes. If r is large, the population will decay at a rapid rate and will 
have a short lifetime. Conversely, a small value of r implies that the population will 
decay slowly and will live a long time.

The rate equation is a differential equation, but we solved a similar equation for RC 
circuits in Chapter 28. First, we rewrite Equation 41.22 as

dNexc

Nexc
= -r dt

Then we integrate both sides from t = 0, when the initial excited-state population is 
N0, to an arbitrary time t when the population is Nexc. That is,

  3
Nexc

N0

 
dNexc

Nexc
= -r3

t

0
dt (41.23)

Nexc atoms are in an excited state.

The number of photons emitted
during ∆t is rNexc ∆t.

Each photon emitted represents
the loss of 1 excited atom.
Thus ∆Nexc = -rNexc ∆t.

FIGURE 41.29 The number of atoms 
that emit photons during ∆t is directly 
proportional to the number of excited 
atoms.
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Both are well-known integrals, giving

ln Nexc `
Nexc

N0

= ln Nexc - ln N0 = ln1Nexc

N0
2 = -rt

We can solve for the number of excited atoms at time t by taking the exponential of 
both sides, then multiplying by N0. Doing so gives

 Nexc = N0e
-rt (41.24)

Notice that Nexc = N0 at t = 0, as expected. Equation 41.24, the decay equation, shows 
that the excited-state population decays exponentially with time, as we saw in the  
experimental data of Figure 41.28.

It will be more convenient to write Equation 41.24 as

 Nexc = N0e
-t/t (41.25)

where

 t =
1
r

= the lifetime of the excited state (41.26)

This is the definition of the lifetime we used in Equation 41.18 to describe the experi-
mental results. The lifetime is the inverse of the decay rate r.

The mercury atom has two valence electrons. One is always in the 
6s state, the other is in a state with quantum numbers n and l. One 
of the excited states in mercury is the state designated 6s6p. The 
decay rate of this state is 7.7 * 108 s-1.

a. What is the lifetime of this state?

b. If 1.0 * 1010 mercury atoms are created in the 6s6p state at 
t = 0, how many photons will be emitted during the first 1.0 ns?

SOLVE a. The lifetime is

t =
1
r

=
1

7.7 * 108 s-1 = 1.3 * 10-9 s = 1.3 ns

b. If there are N0 = 1.0 * 1010 excited atoms at t = 0, the number 
still remaining at t = 1.0 ns is

Nexc = N0e
-t/t = 11.0 * 10102e-11.0 ns2/11.3 ns2 = 4.6 * 109

This result implies that 5.4 * 109 atoms undergo quantum jumps 
during the first 1.0 ns. Each of these atoms emits one photon, so the 
number of photons emitted during the first 1.0 ns is 5.4 * 109.

EXAMPLE 41.8 ■ The lifetime of an excited state in mercury

STOP TO THINK 41.6 An equal number of excited A atoms and excited B atoms 
are created at t = 0. The decay rate of B atoms is twice that of A atoms: rB = 2rA. At 
t = tA (i.e., after one lifetime of A atoms has elapsed), the ratio NB/NA of the number 
of excited B atoms to the number of excited A atoms is

a. 72   b. 2   c. 1   d. 1
2    e. 6  12

41.8 Stimulated Emission and Lasers
We have seen that an atom can jump from a lower-energy level E1 to a higher-energy 
level E2 by absorbing a photon. FIGURE 41.30a illustrates the basic absorption process, 
with a photon of frequency f = ∆Eatom/h disappearing as the atom jumps from level 
1 to level 2. Once in level 2, as shown in FIGURE 41.30b, the atom can emit a photon of 
the same frequency as it jumps back to level 1. This transition is called spontaneous 
emission.
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In 1917, four years after Bohr’s proposal of stationary states in atoms but still  
prior to de Broglie and Schrödinger, Einstein was puzzled by how quantized atoms 
reach thermodynamic equilibrium in the presence of electromagnetic radiation. 
Einstein found that absorption and spontaneous emission were not sufficient to allow 
a collection of atoms to reach thermodynamic equilibrium. To resolve this difficulty, 
Einstein proposed a third mechanism for the interaction of atoms with light.

The left half of FIGURE  41.30c shows a photon with frequency f = ∆Eatom/h ap-
proaching an excited atom. If a photon can induce the 1 S 2 transition of absorption, 
then Einstein proposed that it should also be able to induce a 2 S 1 transition. In a 
sense, this transition is a reverse absorption. But to undergo a reverse absorption, the 
atom must emit a photon of frequency f = ∆Eatom/h. The end result, as seen in the 
right half of Figure 41.30c, is an atom in level 1 plus two photons! Because the first 
photon induced the atom to emit the second photon, this process is called stimulated 
emission.

Stimulated emission occurs only if the first photon’s frequency exactly matches  
the E2 - E1 energy difference of the atom. This is precisely the same condition that 
absorption has to satisfy. More interesting, the emitted photon is identical to the  
incident photon. This means that as the two photons leave the atom they have exactly 
the same frequency and wavelength, are traveling in exactly the same direction, and are  
exactly in phase with each other. In other words, stimulated emission produces a 
second photon that is an exact clone of the first.

Stimulated emission is of no importance in most practical situations. Atoms 
typically spend only a few nanoseconds in an excited state before undergoing spon-
taneous emission, so the atom would need to be in an extremely intense light wave 
for stimulated emission to occur prior to spontaneous emission. Ordinary light 
sources are not nearly intense enough for stimulated emission to be more than a 
minor effect; hence it was many years before Einstein’s prediction was confirmed. 
No one had doubted Einstein because he had clearly demonstrated that stimulated 
emission was necessary to make the energy equations balance, but it seemed no 
more important than would pennies to a millionaire balancing her checkbook. At 
least, that is, until 1960, when a revolutionary invention appeared that made explicit  
use of stimulated emission: the laser.

Lasers
The word laser is an acronym for light amplification by the stimulated emission of 
radiation. The first laser, a ruby laser, was demonstrated in 1960, and several other 
kinds of lasers appeared within a few months. The driving force behind much of the 
research was the American physicist Charles Townes. Townes was awarded the Nobel 
Prize in 1964 for the invention of the maser, an earlier device using microwaves, and 
his theoretical work leading to the laser.

Today, lasers do everything from being the light source in fiber-optic communica-
tions to measuring the distance to the moon and from playing your DVD to performing  
delicate eye surgery. But what is a laser? Basically it is a device that produces a beam 
of highly coherent and essentially monochromatic (single-color) light as a result of 
stimulated emission. Coherent light is light in which all the electromagnetic waves 
have the same phase, direction, and amplitude. It is the coherence of a laser beam that 
allows it to be very tightly focused or to be rapidly modulated for communications.

Let’s take a brief look at how a laser works. FIGURE 41.31 represents a system of 
atoms that have a lower energy level E1 and a higher energy level E2. Suppose there 
are N1 atoms in level 1 and N2 atoms in level 2. Left to themselves, all the atoms would 
soon end up in level 1 because of the spontaneous emission 2 S 1. To prevent this, we 
can imagine that some type of excitation mechanism, perhaps an electrical discharge,  
is continuing to produce new excited atoms in level 2.

Let a photon of frequency f = 1E2 - E12/h be incident on this group of atoms. 
Because it has the correct frequency, it could be absorbed by one of the atoms in level 1. 

E2

E1

Photon

E2

E1

Photon

(a) Absorption

(b) Spontaneous emission

(c) Stimulated emission

E2

E1

Photon Two identical
photons

FIGURE 41.30 Three types of radiative 
transitions.

Absorption Stimulated
emission

Level 2

Level 1

E2

E1

N2 atoms in level 2. Photons of energy  
Ephoton = E2 - E1 can cause these atoms 
to undergo stimulated emission.

N1 atoms in level 1. These atoms can absorb
photons of energy Ephoton = E2 - E1.

FIGURE 41.31 Energy levels 1 and 2, with 
populations N1 and N2.
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1254 CHAPTER 41 Atomic Physics 

Another possibility is that it could cause stimulated emission from one of the level 2 
atoms. Ordinarily N2 V N1, so absorption events far outnumber stimulated emission 
events. Even if a few photons were generated by stimulated emission, they would quickly 
be absorbed by the vastly larger group of atoms in level 1.

But what if we could somehow arrange to place every atom in level 2, making 
N1 = 0? Then the incident photon, upon encountering its first atom, will cause stim-
ulated emission. Where there was initially one photon of frequency f, now there are 
two. These will strike two additional excited-state atoms, again causing stimulated 
emission. Then there will be four photons. As FIGURE 41.32 shows, there will be a chain 
reaction of stimulated emission until all N2 atoms emit a photon of frequency f.

Charles Townes.

Stage 2 Stage 3

Output of many
identical photons

Stage 1

Incident
photon

FIGURE 41.32 Stimulated emission creates a chain reaction of photon production in a 
population of excited atoms.

In stimulated emission, each emitted photon is identical to the incident photon. The 
chain reaction of Figure 41.32 will lead not just to N2 photons of frequency f, but to 
N2 identical photons, all traveling together in the same direction with the same phase. 
If N2 is a large number, as would be the case in any practical device, the one initial 
photon will have been amplified into a gigantic coherent pulse of light! A collection of  
excited-state atoms is called an optical amplifier.

As FIGURE 41.33 shows, the stimulated emission is sustained by placing the lasing 
medium—the sample of atoms that emits the light—in an optical cavity consisting 
of two facing mirrors. One of the mirrors will be partially transmitting so that some 
of the light emerges as the laser beam.

Although the chain reaction of Figure 41.32 illustrates the idea most clearly, it is not 
necessary for every atom to be in level 2 for amplification to occur. All that is needed 
is to have N2 7 N1 so that stimulated emission exceeds absorption. Such a situation  
is called a population inversion. The process of obtaining a population inversion  
is called pumping, and we will look at two specific examples. Pumping is the technically 
difficult part of designing and building a laser because normal excitation mechanisms do 
not create population inversions. In fact, lasers would likely have been discovered acciden-
tally long before 1960 if population inversions were easy to create.

The Ruby Laser
The first laser to be developed was a ruby laser. FIGURE 41.34a shows the energy-level 
structure of the chromium atoms that gives ruby its optical properties. Normally, the 
number of atoms in the ground-state level E1 far exceeds the number of excited-state 
atoms with energy E2. That is, N2 V N1. Under these circumstances 690 nm light is 
absorbed rather than amplified. But suppose that we could rapidly excite more than 
half the chromium atoms to level E2. Then we would have a population inversion 
1N2 7 N12 between levels E1 and E2.

This can be accomplished by optically pumping the ruby with a very intense pulse 
of white light from a flashlamp. A flashlamp is like a camera flash, only vastly more 

Laser medium

Total
reflector

Partial
reflectorExcited atoms

Laser
beam

The counterpropagating waves
interact repeatedly with the atoms,
allowing the light intensity to build
up to a high level.

FIGURE 41.33 Lasing takes place in an 
optical cavity.
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41.8 Stimulated Emission and Lasers 1255

intense. In the basic arrangement of FIGURE 41.34b, a helical flashlamp is coiled around 
a ruby rod that has mirrors bonded to its end faces. The lamp is fired by discharging 
a high-voltage capacitor through it, creating a very intense light pulse lasting just a 
few microseconds. This intense light excites nearly all the chromium atoms from the 
ground state to the upper energy levels. From there, they quickly 1≈10-8 s2 decay 
nonradiatively to level 2. With N2 7 N1, a population inversion has been created.

Once a photon initiates the laser pulse, the light intensity builds quickly into a  
brief but incredibly intense burst of light. A typical output pulse lasts 10 ns and has an 
energy of 1 J. This gives a peak power of

P =
∆E
∆t

=
1 J

10-8 s
= 108 W = 100 MW

One hundred megawatts of light power! That is more than the electric power  
used by a small city. The difference, of course, is that a city consumes that power 
continuously but the laser pulse lasts a mere 10 ns. The laser cannot fire again until 
the capacitor is recharged and the laser rod cooled. A typical firing rate is a few pulses 
per second, so the laser is “on” only a few billionths of a second out of each second.

Ruby lasers have been replaced by other pulsed lasers that, for various practical 
reasons, are easier to operate. However, they all operate with the same basic idea of 
rapid optical pumping to upper states, rapid nonradiative decay to level 2 where the 
population inversion is formed, then rapid buildup of an intense optical pulse.

The Helium-Neon Laser
The familiar red laser used in lecture demonstrations, laboratories, and supermarket 
checkout scanners is the helium-neon laser, often called a HeNe laser. Its output is a 
continuous, rather than pulsed, wavelength of 632.8 nm. The medium of a HeNe laser 
is a mixture of ≈90% helium and ≈10% neon gases. As FIGURE 41.35a shows, the gases 
are sealed in a glass tube, then an electrical discharge is established along the bore of the 
tube. Two mirrors are bonded to the ends of the discharge tube, one a total reflector and 
the other having ≈2% transmission so that the laser beam can be extracted.

The atoms that lase are the neon atoms, but the pumping method involves the helium 
atoms. The electrons in the discharge collisionally excite the 1s2s state of helium. This 
state has a very low spontaneous decay rate (i.e., a very long lifetime) because a decay 
back to the 1s2 state would violate the ∆l selection rule, so it is possible to build up a 
fairly large population (but not an inversion) of excited helium atoms in the 1s2s state. 
The energy of the 1s2s state is 20.6 eV.

Interestingly, an excited state of neon, the 5s state, also has an energy of 20.6 eV. 
If a 1s2s excited helium atom collides with a ground-state neon atom, as frequently 
happens, the excitation energy can be transferred from one atom to the other! Written 
as a chemical reaction, the process is

He* + Ne S He + Ne*

where the asterisk indicates the atom is in an excited state. This process, excitation 
transfer, is very efficient for the 5s state because the process is resonant—a perfect 
energy match. Thus the two-step process of collisional excitation of helium, followed 
by excitation transfer between helium and neon, pumps the neon atoms into the excited  
5s state. This is shown in FIGURE 41.35b.

The 5s energy level in neon is ≈1.95 eV above the 3p state. The 3p state is very 
nearly empty of population, both because it is not efficiently populated in the discharge 
and because it undergoes very rapid spontaneous emission to the 3s states. Thus the 
large number of atoms pumped into the 5s state creates a population inversion with 
respect to the lower 3p state. These are the necessary conditions for laser action.

Because the lower level of the laser transition is normally empty of population, plac-
ing only a small fraction of the neon atoms in the 5s state creates a population inversion. 
Thus a fairly modest pumping action is sufficient to create the inversion and start the 
laser. Furthermore, a HeNe laser can maintain a continuous inversion and thus sustain 
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FIGURE 41.34 A flashlamp-pumped ruby 
laser.
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FIGURE 41.35 A HeNe laser.
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continuous lasing. The electrical discharge continuously creates 5s excited atoms in the 
upper level, via excitation transfer, and the rapid spontaneous decay of the 3p atoms 
from the lower level keeps its population low enough to sustain the inversion.

A typical helium-neon laser has a power output of 1 mW = 10-3 J/s at 632.8 nm in 
a 1-mm-diameter laser beam. As you can show in a homework problem, this output 
corresponds to the emission of 3.2 * 1015 photons per second. Other continuous lasers 
operate by similar principles, but can produce much more power. The argon laser, 
which is widely used in scientific research, can produce up to 20 W of power at green 
and blue wavelengths. The carbon dioxide laser produces output power in excess of 
1000 W at the infrared wavelength of 10.6 mm. It is used in industrial applications for 
cutting and welding.

An ultraviolet laser generates a 10 MW, 5.0-ns-long light pulse at a 
wavelength of 355 nm. How many photons are in each pulse?

SOLVE The energy of each light pulse is the power multiplied by 
the duration:

Epulse = P ∆t = 11.0 * 107 W215.0 * 10-9 s2 = 0.050 J

Each photon in the pulse has energy

Ephoton = hf =
hc
l

= 3.50 eV = 5.60 * 10-19 J

Because Epulse = NEphoton, the number of photons is

N = Epulse/Ephoton = 8.9 * 1016 photons

EXAMPLE 41.9 ■ An ultraviolet laser

   CHAPTER 41 CHALLENGE EXAMPLE     Electron probability in hydrogen

What is the probability that a 1s hydrogen electron is found at a 
distance from the proton that is less than half the Bohr radius?

MODEL The Schrödinger model of the hydrogen atom represents 
the electron as a wave function. We can’t say exactly where the 
electron is, but we can calculate the probability of finding it in a 
specified region of space.

SOLVE We’re interested in finding the electron not at a certain point 
in space but within a certain distance from the nucleus. For this we 
use the radial probability density

Pr1r2 = 4pr2 0Rnl1r2 0 2
where Rnl1r2 is the radial wave function, rather than the square of 
the wave function c1x, y, z2. The probability of finding the electron 
at a distance between rmin and rmax is

  Prob1rmin … r … rmax2 = 3
rmax

rmin

Pr1r2 dr

  = 4p3
rmax

rmin

r2 0Rnl1r2 0 2 dr

The 1s radial wave function was given in Equations 41.7:

R1s1r2 =
12paB 

3
 e-r/aB

where aB is the Bohr radius. We specify that the electron is less 
than half the Bohr radius from the proton by setting rmin = 0 and 
rmax = 1

2 aB. Thus the probability we seek is

  Prob1r … 1
2 aB2 = 4p3

aB/2

0
r2 0R1s1r2 0 2 dr

  =
4p

paB 

3 3
aB/2

0
r2e-2r/aB dr

To evaluate this integral, it will be useful to change variables. 
Let u = 2r/aB, so that the exponential can be written more simply 
as e-u. Turning this around, we have r = 1

2 aBu and thus

r2 dr = 11
2 aBu2211

2 aB du2 = 1
8 aB 

3u2 du

A change of variables requires a corresponding change of limits: 
When r = 0, u = 0 also; when r = 1

2 aB, u = 1. With these substitu-
tions, the probability calculation becomes

Prob1r … 1
2 aB2 = 1

2 3
1

0
u2e-u du

This looks much nicer! Notice that all the aB have disappeared, so 
our answer will be a numerical value.

This is not an easy integral, but it is a common one. It can be 
found in integral tables, such as in Appendix A, or evaluated with 
mathematical software. The result is

  Prob1r … 1
2 aB2 = 1

2 3 -1u2 + 2u + 22e-u41

0

  = 1
212 - 5e-12 = 0.080

The probability that a 1s hydrogen electron is less than half the 
Bohr radius from the proton is 0.080, or 8.0%.

REVIEW The probability is small, but that is not unexpected. The 
graph of the radial probability density in Figure 41.7 shows that the 
probability peaks at r = aB and then decreases rapidly as r S 0. We 
can see that the area under that curve from r = 0 to r = 1

2 aB is not 
large. The electron can be found much closer to the proton than one 
Bohr radius, but not with a large probability.
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Multielectron Atoms
The potential energy is electron-nucleus plus 
electron -electron. In the independent particle 
approximation, each  
electron is described by the 
same quantum numbers 
1n, l, m, ms2 used for the  
hydrogen atom. The energy 
of a state depends on n  
and l. For each n, energy  
increases as l increases.
• High-l states correspond  

to circular orbits. These  
stay outside the core.

• Low-l states correspond  
to elliptical orbits. These  
penetrate the core to  
interact more strongly  
with the nucleus. This  
interaction lowers their  
energy.

The Pauli exclusion principle says that no more 
than one electron can occupy each quantum state. 
The periodic table of the elements is based on 
the fact that the ground state is the lowest-energy 
electron configuration compatible with the Pauli 
principle.

Hydrogen Atom
The three-dimensional Schrödinger equation has stationary-state solutions for the 
hydrogen atom potential energy only if three conditions are satisfied:
• Energy En = -13.60 eV/n2  n = 1, 2, 3,  c
• Angular momentum L = 2l1l + 12 U  l = 0, 1, 2, 3,  c, n - 1

• z-component of angular momentum
Lz = mU  m = - l, - l + 1,  c, 0,  c, l - 1, l

Each state is characterized by quantum  
numbers 1n, l, m2, but the energy depends  
only on n.

The probability of finding the electron within  
a small distance interval dr at distance r is

Prob1in dr at r2 = Pr1r2 dr

where Pr1r2 = 4pr2 0Rnl1r2 0 2 is the radial  
probability density.
Graphs of Pr1r2 suggest that the electrons  
are arranged in shells.

Atomic spectra are generated by excitation  
followed by a photon-emitting quantum  
jump.
• Excitation by absorption or collision
• Quantum-jump selection rule ∆l = {1

Excitation

Emission

Electron spin  

The electron has an inherent angular momentum S
u
 and magnetic moment mu  

as if it were spinning. The spin angular momentum has a fixed magnitude 
S = 1s1s + 12 U, where s = 1

2. The z-component is Sz = ms U, where ms = {1
2. 

These two states are called spin-up and spin-down. Each atomic state is fully 
characterized by the four quantum numbers 1n, l, m, ms2.

Lifetimes of excited states  

The excited-state population decreases exponentially as

Nexc = N0 e
-t/t

where t = 1/r is the lifetime and r is the decay rate. 
It’s not possible to predict when a particular atom will 
decay, but the probability is

Prob1in dt at t) = r dt

Stimulated emission of an excited state can be  
caused by a photon with Ephoton = E2 - E1.  
Laser action can occur if N2 7 N1, a condition  
called a population inversion.

Important Concepts

Applications

The goal of Chapter 41 has been to learn about the structure 
and properties of atoms.

Summary
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 CONCEPTUAL QUESTIONS
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principal quantum number, n
orbital quantum number, l
magnetic quantum number, m
ionization energy
electron cloud
radial wave function, Rnl1r2
radial probability density, Pr1r2
shell model
spin

spin quantum number, ms

spin-up
spin-down
independent particle 
 approximation (IPA)
Pauli exclusion principle
electron configuration
closed shell

subshell
excitation
allowed transition
selection rule
collisional excitation
nonradiative transition
lifetime, t
decay rate, r

spontaneous emission
stimulated emission
laser
coherent
optical cavity
population inversion
pumping
excitation transfer

Terms and Notation

1. Consider the three hydrogen-atom states, 5p, 4d, and 3d. Which 
has the lowest energy?

2. What is the difference between the probability density and the 
radial probability density?

3. What is the difference between l and L?
4. What is the difference between s and S?
5. FIGURE Q41.5 shows the outcome of a 

Stern-Gerlach experiment with atoms 
of element X.
a. Do the peaks represent different 

values of the atom’s total angular 
momentum or different values of the 
z-component of its angular momen-
tum? Explain.

b. What angular momentum quantum 
numbers characterize these four peaks?

6. Does each of the configurations in FIGURE Q41.6 represent a  
possible electron configuration of an element? If so, (i) identify 
the element and (ii) determine whether this is the ground state or 
an excited state. If not, why not?

7. What is an atom’s ionization energy? In other words, if you know 
the ionization energy of an atom, what is it that you know about 
the atom?

8. Figure  41.22 shows that the ionization energy of cadmium 
1Z = 482 is larger than that of its neighbors. Why is this?

9. A neon discharge tube emits a bright reddish-orange spectrum, 
but a glass tube filled with neon is completely transparent.  
Why doesn’t the neon in the tube absorb orange and red 
wavelengths?

10. The hydrogen atom 1s wave function is a maximum at r = 0. But 
the 1s radial probability density, shown in Figure 41.7, peaks at 
r = aB and is zero at r = 0. Explain this paradox.

11. In a multielectron atom, the lowest-l state for each n (2s, 3s, 4s, 
etc.) is significantly lower in energy than the hydrogen state 
having the same n. But the highest-l state for each n (2p, 3d, 4f, 
etc.) is very nearly equal in energy to the hydrogen state with the 
same n. Explain.

12. In FIGURE Q41.12, a photon with energy 2.0 eV is incident on an 
atom in the p state. Does the atom undergo an absorption transi-
tion, a stimulated emission transition, or neither? Explain.

s state

E (eV)

Photon

3.0

2.0

0.0 s state

p state

FIGURE Q41.12

EXERCISES AND PROBLEMS

Problems labeled  integrate material from earlier chapters.

Exercises

Sections 41.1–41.2  The Hydrogen Atom

1. | List the quantum numbers, excluding spin, of (a) all possible 
3p states and (b) all possible 3d states.

2. | What is the angular momentum of a hydrogen atom in (a) a 6s 
state and (b) a 4f state? Give your answers as a multiple of U.

3. | What is the maximum possible angular momentum L (as a 
multiple of U) of a hydrogen atom with energy -0.544 eV?

4. | What are E and L (as a multiple of U) of a hydrogen atom in the  
6f state?

5. || A hydrogen atom has orbital angular momentum 3.65 *  
10-34 J s.
a. What letter 1s, p, d, or f 2 describes the electron?
b. What is the atom’s minimum possible energy? Explain.
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Exercises and Problems 1259

21. || 1.00 * 106 neon atoms are excited to the 3p state at t = 0 s. At 
what time have 8 * 105 photons been emitted?

22. ||| A sodium atom is in the 3p state. How much time must elapse 
for there to be a 4.0% chance that this atom will undergo a quan-
tum jump to the ground state?

Section 41.8 Stimulated Emission and Lasers

23. | A laser emits 2.0 * 1019 photons per second from an excited 
state with an energy E2 = 1.3  eV. The lower energy level is 
E1 = 0 eV.
a. What is the wavelength of this laser?
b. What is the power output of this laser?

24. || A 10.0 mW helium–neon laser emits a visible laser beam with 
a wavelength of 633 nm. How many photons are emitted per 
second?

25. || In LASIK surgery, a laser is used to reshape the cornea of the 
eye to improve vision. The laser produces extremely short pulses 
of light, each containing 1.0 mJ of energy.
a. There are 9.7 * 1014 photons in each pulse. What is the wave-

length of the laser?
b. Each pulse lasts a mere 20 ns. What is the average power de-

livered to the cornea during a pulse?

 Problems
26. || a. Draw a diagram similar to Figure  41.2 to show all the 

possible orientations of the angular momentum vector 
L
u

 for the case l = 3. Label each L
u

 with the appropriate 
value of m.

b. What is the minimum angle between L
u

 and the z-axis?
27. | There exist subatomic particles whose spin is characterized 

by s = 1, rather than the s = 1
2 of electrons. These particles are 

said to have a spin of one.
a. What is the magnitude (as a multiple of U) of the spin angular 

momentum S for a particle with a spin of one?
b. What are the possible values of the spin quantum number?
c. Draw a vector diagram similar to Figure 41.13 to show the 

possible orientations of S
u
.

28. || A hydrogen atom has l = 3. What are the (a) minimum (as a mul-
tiple of ℏ) and (b) maximum values of the quantity 1Lx

2 + Ly
221/2?

29. | A hydrogen atom in its fourth excited state emits a photon 
with a wavelength of 1875 nm. What is the atom’s maximum 
possible orbital angular momentum (as a multiple of ℏ) after the 
emission?

30. || Calculate (a) the radial wave function and (b) the radial prob-
ability density at r = 1

2 aB for an electron in the 1s state of hydro-
gen. Give your answers in terms of aB.

31. || For an electron in the 1s state of hydrogen, what is the prob-
ability of being in a spherical shell of thickness 0.010aB at dis-
tance (a) 12 aB, (b) aB, and (c) 2aB from the proton?

32. || Prove that the normalization constant of the 1s radial wave func-
tion of the hydrogen atom is 1paB 

32-1/2, as given in Equations 41.7.
Hint: A useful definite integral is

3
∞

0
xne-ax dx =

n!

an+1

33. || Prove that the normalization constant of the 2p radial wave 
function of the hydrogen atom is 124paB 

32-1/2, as shown in 
Equations 41.7.
Hint: See the hint in Problem 32.

Section 41.3 The Electron’s Spin

6. | How many lines of atoms would you expect to see on the  
collector plate of a Stern-Gerlach apparatus if the experiment is 
done with (a) lithium and (b) beryllium? Explain.

7. | When all quantum numbers are considered, how many  
different quantum states are there for a hydrogen atom with 
n = 1? With n = 2? With n = 3? List the quantum numbers of 
each state.

 Section 41.4 Multielectron Atoms

Section 41.5 The Periodic Table of the Elements

8. | Predict the ground-state electron configurations of Mg, Sr,  
and Ba.

9. | Predict the ground-state electron configurations of Al, Ga, 
and In.

10. | Identify the element for each of these electron configurations. 
Then determine whether this configuration is the ground state or 
an excited state.
a. 1s22s22p5

b. 1s22s22p63s23p64s23d104p
11. | Identify the element for each of these electron configurations. 

Then determine whether this configuration is the ground state or 
an excited state.
a. 1s22s22p53s
b. 1s22s22p63s23p64s23d2

12. | Draw a series of pictures, similar to Figure  41.21, for the 
ground states of K, Sc, Co, and Ge.

13. | Draw a series of pictures, similar to Figure  41.21, for the 
ground states of Ca, Ni, As, and Kr.

Section 41.6 Excited States and Spectra

14. | Show that hc = 1240 eV nm.
15. || What is the electron configuration of the second excited state 

of lithium?
16. || a. Is a 4p S 4s transition allowed in sodium? If so, what is 

its wavelength (in nm)? If not, why not?
b. Is a 3d S 4s transition allowed in sodium? If so, what is 

its wavelength (in nm)? If not, why not?
17. || An electron accelerates through a 12.5 V potential dif-

ference, starting from rest, and then collides with a hydrogen 
atom, exciting the atom to the highest energy level allowed.  
List all the possible quantum-jump transitions by which the 
excited atom could emit a photon and the wavelength (in nm)  
of each.

Section 41.7 Lifetimes of Excited States

18. | 1.0 * 106 sodium atoms are excited to the 3p state at t = 0 s. 
How many of these atoms remain in the 3p state at (a)  t = 10 ns, 
(b) t = 30 ns, and (c) t = 100 ns?

19. | An excited state of an atom has a 25 ns lifetime. What is the 
probability that an excited atom will emit a photon during a 
0.50 ns interval?

20. || 1.0 * 106 atoms are excited to an upper energy level at  
t = 0 s. At the end of 20 ns, 90% of these atoms have undergone 
a quantum jump to the ground state.
a. How many photons have been emitted?
b. What is the lifetime of the excited state?
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42. | FIGURE P41.42 shows the first few energy levels of the lithium 
atom. Make a table showing all the allowed transitions in the emis-
sion spectrum. For each transition, indicate
a. The wavelength, in nm.
b. Whether the transition is in the infrared, the visible, or the 

ultraviolet spectral region.
c. Whether or not the transition would be observed in the lith-

ium absorption spectrum.

34. || a. Calculate and graph the hydrogen radial wave function 
R2p1r2 over the interval 0 … r … 8aB.

b. Determine the value of r (in terms of aB) for which R2p1r2 
is a maximum.

c. Example 41.3 and Figure 41.7 showed that the radial prob-
ability density for the 2p state is a maximum at r = 4aB. 
Explain why this differs from your answer to part b.

35. || Prove that the radial probability density peaks at r = aB for 
the 1s state of hydrogen.

36. || Suppose you have a machine that gives you pieces of candy 
when you push a button. Eighty percent of the time, pushing 
the button gets you two pieces of candy. Twenty percent of the 
time, pushing the button yields 10 pieces. The average number 
of pieces per push is Navg = 2 * 0.80 + 10 *  0.20 = 3.6. That is, 
10 pushes should get you, on average, 36 pieces. Mathematically, 
the average value when the probabilities differ is Navg =g1Ni * Probability of i2. We can do the same thing in quantum 
mechanics, with the difference that the sum becomes an integral. 
If you measured the distance of the electron from the proton in 
many hydrogen atoms, you would get many values, as indicated by 
the radial probability density. But the average value of r would be

ravg = 3
∞

0
rPr1r2 dr

Calculate the average value of r in terms of aB for the electron in 
the 1s and the 2p states of hydrogen.

37.  || In general, an atom can have both orbital angular momentum  
and spin angular momentum. The total angular momentum is de-
fined to be J

u
= L

u
+ S

u
. The total angular momentum is quantized 

in the same way as L
u

 and S
u
. That is, J = 1j1j + 12 U, where j is 

the total angular momentum quantum number. The z-component 
of J

u
 is Jz = Lz + Sz = mj U, where mj goes in integer steps from - j 

to + j. Consider a hydrogen atom in a p state, with l = 1.
a. Lz has three possible values and Sz has two. List all possible 

combinations of Lz and Sz. For each, compute Jz and deter-
mine the quantum number mj. Put your results in a table.

b. The number of values of Jz that you found in part a is too 
many to go with a single value of j. But you should be able to 
divide the values of Jz into two groups that correspond to two 
values of j. What are the allowed values of j? Explain. In a 
classical atom, there would be no restrictions on how the two 
angular momenta L

u
 and S

u
 can combine. Quantum mechanics 

is different. You’ve now shown that there are only two al-
lowed ways to add these two angular momenta.

38. | a. What downward transitions are possible for a sodium 
atom in the 6s state? (See Figure 41.23.)

b. What are the wavelengths of the photons emitted in each 
of these transitions?

39. || The 5d S 3p transition in the emission spectrum of sodium 
has a wavelength of 499 nm. What is the energy of the 5d state?

40. || A sodium atom emits a photon with wavelength 818 nm 
shortly after being struck by an electron. What minimum speed 
did the electron have before the collision?

41. || The ionization energy of an atom is known to be 5.5 eV. The 
emission spectrum of this atom contains only the four wave-
lengths 310.0 nm, 354.3 nm, 826.7 nm, and 1240.0 nm. Draw an 
energy-level diagram with the fewest possible energy levels that 
agrees with these experimental data. Label each level with an 
appropriate l quantum number.
Hint: Don’t forget about the ∆l selection rule.

43. || FIGURE P41.43 shows a few energy levels of the mercury 
atom.
a. Make a table showing all the allowed transitions in the emis-

sion spectrum. For each transition, indicate the photon wave-
length, in nm.

b. What minimum speed must an electron have to excite the 
492-nm-wavelength blue emission line in the Hg spectrum?

FIGURE P41.42
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44. || Suppose you put five electrons into a 0.50-nm-wide one-di-
mensional rigid box (i.e., an infinite potential well).
a. Use an energy-level diagram to show the electron configura-

tion of the ground state.
b. What is the ground-state energy—that is, the total energy of 

all five electrons in the ground-state configuration?
45. || Three electrons are in a one-dimensional rigid box (i.e., an 

infinite potential well) of length 0.50 nm. Two are in the n = 1 
state and one is in the n = 6 state. The selection rule for the rigid 
box allows only those transitions for which ∆n is odd.
a. Draw an energy-level diagram. On it, show the filled levels 

and show all transitions that could emit a photon.
b. What are all the possible wavelengths that could be emitted 

by this system?
46. || An atom in an excited state has a 1.0% chance of emitting a 

photon in 0.10 ns. What is the lifetime of the excited state?
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Challenge Problems
52. ||| In fluorescence microscopy, an important tool in biology, a 

laser beam is absorbed by target molecules in a sample. These 
molecules are then imaged by a microscope as they emit lon-
ger-wavelength photons in quantum jumps back to lower energy 
levels, a process known as fluorescence. A variation on this tech-
nique is two-photon excitation. If two photons are absorbed si-
multaneously, their energies add. Consequently, a molecule that 
is normally excited by a photon of energy Ephoton can be excited 
by the simultaneous absorption of two photons having half as 
much energy. For this process to be useful, the sample must be 
irradiated at the very high intensity of at least 1032 photons/m2 s. 
This is achieved by concentrating the laser power into very short 
pulses (100 fs pulse length) and then focusing the laser beam to 
a small spot. The laser is fired at the rate of 108 pulses each sec-
ond. Suppose a biologist wants to use two-photon excitation to 
excite a molecule that in normal fluorescence microscopy would 
be excited by a laser with a wavelength of 420 nm. If she focuses 
the laser beam to a 2.0-mm-diameter spot, what minimum energy 
must each pulse have?

53. ||| Two excited energy levels are separated by the very small 
energy difference ∆E. As atoms in these levels undergo quan-
tum jumps to the ground state, the photons they emit have nearly 
identical wavelengths l.
a. Show that the wavelengths differ by

∆l =
l2

hc
 ∆E

b.  In the Lyman series of hydrogen, what is the wavelength dif-
ference between photons emitted in the n = 20 to n = 1 tran-
sition and photons emitted in the n = 21 to n = 1 transition?

54. ||| What is the probability of finding a 1s hydrogen electron at 
distance r 7 aB from the proton?

55. ||| Prove that the most probable distance from the proton of an 
electron in the 2s state of hydrogen is 5.236aB.

56. ||| Find the distance, in terms of aB, between the two peaks in 
the radial probability density of the 2s state of hydrogen.
Hint: This problem requires a numerical solution.

57. ||| An atom in an excited state has a 1.0% chance of emitting a 
photon in 0.20 ns. How long will it take for 25% of a sample of 
excited atoms to decay?

47. || a. What is the decay rate for the 2p state of hydrogen?
b. During what interval of time will 10% of a sample of 2p 

hydrogen atoms decay?
48. || a.  Find an expression in terms of t for the half-life t1/2 of a 

sample of excited atoms. The half-life is the time at which 
half of the excited atoms have undergone a quantum jump 
and emitted a photon.

b. What is the half-life of the 3p state of sodium?
49. || A ruby laser emits a 100 MW, 10-ns-long pulse of light with 

a wavelength of 690 nm. How many chromium atoms undergo 
stimulated emission to generate this pulse?

50. | An electrical discharge in a neon-filled tube maintains a 
steady population of 1.0 * 109 atoms in an excited state with 
t = 20 ns. How many photons are emitted per second from 
atoms in this state?

51. || The 1997 Nobel Prize in physics went to Steven Chu, Claude 
Cohen-Tannoudji, and William Phillips for their development 
of techniques to slow, stop, and “trap” atoms with laser light. 
To see how this works, consider a beam of rubidium atoms 
1mass 1.4 * 10-25 kg2 traveling at 500 m/s after being evaporated  
out of an oven. A laser beam with a wavelength of 780 nm  
is directed against the atoms. This is the wavelength of the 
5s S 5p transition in rubidium, with 5s being the ground state, 
so the photons in the laser beam are easily absorbed by the 
atoms. After an average time of 15 ns, an excited atom sponta-
neously emits a 780-nm-wavelength photon and returns to the 
ground state.
a. The energy-momentum-mass relationship of Einstein’s the-

ory of relativity is E2 = p2c2 + m2c4. A photon is massless, so 
the momentum of a photon is p = Ephoton/c. Assume that the 
atoms are traveling in the positive x-direction and the laser 
beam in the negative x-direction. What is the initial momen-
tum of an atom leaving the oven? What is the momentum of 
a photon of light?

b. The total momentum of the atom and the photon must be con-
served in the absorption processes. As a consequence, how 
many photons must be absorbed to bring the atom to a halt?

   NOTE    Momentum is also conserved in the emission 
processes. However, spontaneously emitted photons are 
emitted in random directions. Averaged over many absorption/
emission cycles, the net recoil of the atom due to emission is 
zero and can be ignored.

c. Assume that the laser beam is so intense that a ground-state 
atom absorbs a photon instantly. How much time is required 
to stop the atoms?

d. Use Newton’s second law in the form F = ∆p/∆t to calculate 
the force exerted on the atoms by the photons. From this, cal-
culate the atoms’ acceleration as they slow.

e. Over what distance is the beam of atoms brought to a halt?
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Nuclear Physics

What is the structure of an atomic nucleus?
You will learn how the nucleus is  
constructed and what holds it together.

■■ The nucleus consists of protons and  
neutrons. Both are known as nucleons.

■■ The diameter of the nucleus is only a  
few femtometers.

❮❮ LOOKING BACK Sections 37.6–37.7   
The nucleus

Can quantum mechanics explain the nucleus?
The nucleus is held together by a new force  
of nature, the strong force.

■■ The strong force is a short-range force.
■■ A quantum shell model for nucleons,  

analogous to the electron shells in  
atoms, explains many nuclear properties.

 ❮❮ LOOKING BACK Section 40.6 Potential wells

Which isotopes are stable?
More than 3000 isotopes are known, but  
only 252 have a stable nucleus.

■■ In a graph of neutron number versus 
proton number, the stable nuclei all cluster 
near a well-defined line of stability.

■■ We also see that the number of  
neutrons grows faster than the number  
of protons.

ProtonsNeutrons

12C

Line of stability

Stable

Unstable

Neutrons

Protons

What is radioactivity?
Radioactivity is the emission of high-energy  
particles when unstable nuclei decay.

■■ Alpha decay: Emission of a 4He nucleus.
■■ Beta decay: Emission of an electron or  

positron.
■■ Gamma decay: Emission of a high-energy  

photon.

What is a half-life?
The number of unstable nuclei in a sample  
decreases exponentially with time.

■■ The time in which half the nuclei decay  
is called the half-life of the isotope.

■■ Decayed nuclei don’t vanish. They  
become a different nucleus called the  
daughter nucleus.

How is nuclear physics useful?
The atomic nucleus is surprisingly useful. Nuclear medicine uses 
weak radioactive isotopes to image the body and strong beams 
of nuclear radiation to kill tumors. Engineers trace the motions 
of gases and liquids with radioactive isotopes. Archeologists and 
geologists date artifacts and lava flows by observing the decay of  
radiation. Nuclear energy is a significant source of carbon-free 
electricity. And all the atoms in our bodies other than hydrogen 
were created billions of years ago by nuclear fusion reactions in 
a supernova.

 IN THIS CHAPTER, you will learn about the nucleus and some applications of nuclear physics.

42
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This detector at the Large Hadron 
Collider probes the structure of 
protons and searches for the ultimate 
building blocks of matter.
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42.1 Nuclear Structure
The 1890s was a decade of mysterious rays. Cathode rays were being studied in  
several laboratories, and, in 1895, Röntgen discovered x rays. In 1896, after hearing  
of Röntgen’s discovery, the French scientist A. H. Becquerel wondered if mineral 
crystals that fluoresce after exposure to sunlight were emitting x rays. He put a piece 
of film in an opaque envelope, then placed a crystal on top and left it in the sun. To his 
delight, the film in the envelope was exposed.

Becquerel thought he had discovered x rays coming from crystals, but his joy was 
short lived. He soon found that the film could be exposed equally well simply by 
being stored in a closed drawer with the crystals. Further investigation showed that 
the crystal, which happened to be a mineral containing uranium, was spontaneously 
emitting some new kind of ray. Rather than finding x rays, as he had hoped, Becquerel 
had discovered what became known as radioactivity.

Ernest Rutherford soon took up the investigation and found not one but three  
distinct kinds of rays emitted from crystals containing uranium. Not knowing what 
they were, he named them for their ability to penetrate matter and ionize air. The first, 
which caused the most ionization and penetrated the least, he called alpha rays. The 
second, with intermediate penetration and ionization, were beta rays, and the third, 
with the least ionization but the largest penetration, became gamma rays.

Within a few years, Rutherford was able to show that alpha rays are helium nuclei 
emitted from the crystal at very high velocities. These became the projectiles that he 
used in 1909 to probe the structure of the atom. The outcome of that experiment, as 
you learned in Chapter 37, was Rutherford’s discovery that atoms have a very small, 
dense nucleus at the center.

Rutherford’s discovery of the nucleus may have settled the question of atomic 
structure, but it raised many new issues for scientific research. Foremost among them 
were:

■■ What is nuclear matter? What are its properties?
■■ What holds the nucleus together? Why doesn’t the repulsive electrostatic force 

blow it apart?
■■ What is the connection between the nucleus and radioactivity?

These questions marked the beginnings of nuclear physics, the study of the properties 
of the atomic nucleus.

Nucleons
The nucleus is a tiny speck in the center of a vastly larger atom. As FIGURE 42.1 shows, 
the nuclear diameter of roughly 10-14 m is only about 1/10,000 the diameter of the 
atom. Even so, the nucleus is more than 99.9% of the atom’s mass. What we call matter  
is overwhelmingly empty space!

The nucleus is composed of two types of particles: protons and neutrons, which  
together are referred to as nucleons. The role of the neutrons, which have nothing 
to do with keeping electrons in orbit, is an important issue that we’ll address in this 
chapter. TABLE 42.1 summarizes the basic properties of protons and neutrons.

As you can see, protons and neutrons are virtually identical other than that the  
proton has one unit of the fundamental charge e whereas the neutron is electrically 
neutral. The neutron is slightly more massive than the proton, but the difference  
is very small, only about 0.1%. Notice that the proton and neutron, like the electron, have  
an inherent angular momentum and magnetic moment with spin quantum number 
s = 1

2. As a consequence, protons and neutrons obey the Pauli exclusion principle.
The number of protons Z is the element’s atomic number. In fact, an element 

is identified by the number of protons in the nucleus, not by the number of orbiting  
electrons. Electrons are easily added and removed, forming negative and positive 
ions, but doing so doesn’t change the element. The mass number A is defined to be 

≈ 10-10 m

≈ 10-14 m

Nucleus
≈ 10-14 m

Atom

Nucleons
(protons and neutrons)

The nucleus has a fairly
sharp boundary.

This picture of an atom would need to be 10 m
in diameter if it were drawn to the same scale as
the dot representing the nucleus.

FIGURE 42.1 The nucleus is a tiny speck 
within an atom.

TABLE 42.1 Protons and neutrons

Proton Neutron

Number Z N

Charge q +e 0

Spin s 1
2

1
2

Mass, in u 1.00728 1.00866
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A = Z + N, where N is the neutron number. The mass number is the total number 
of nucleons in a nucleus.

   NOTE    The mass number, which is dimensionless, is not the same thing as the 
atomic mass m. We’ll look at actual atomic masses later.

 Isotopes and Isobars
It was discovered early in the 20th century that not all atoms of the same element 
(same Z) have the same mass. There are a range of neutron numbers that happily form 
a nucleus with Z protons, creating a group of nuclei having the same Z-value (i.e., they 
are all the same chemical element) but different A-values. The atoms of an element 
with different values of A are called isotopes of that element.

Chemical behavior is determined by the orbiting electrons. All isotopes of one 
element have the same number of orbiting electrons (if the atoms are electrically  
neutral) and thus have the same chemical properties, but different isotopes of the same  
element can have quite different nuclear properties.

The notation used to label isotopes is AZ, where the mass number A is given as a 
leading superscript. The proton number Z is not specified by an actual number but, 
equivalently, by the chemical symbol for that element. Hence ordinary carbon, which 
has six protons and six neutrons in the nucleus, is written 12C and pronounced “carbon 
twelve.” The radioactive form of carbon used in carbon dating is 14C. It has six protons,  
making it carbon, and eight neutrons.

More than 3000 isotopes are known. The majority of these are radioactive,  
meaning that the nucleus is not stable but, after some period of time, will either fragment  
or emit some kind of subatomic particle in an effort to reach a more stable state. Most 
of these radioactive isotopes are created by nuclear reactions in the laboratory and 
have only a fleeting existence. Only 252 isotopes are stable (i.e., nonradioactive) and 
occur in nature. We’ll begin to look at the issue of nuclear stability in the next section.

The naturally occurring nuclei include the 252 stable isotopes and a handful of 
radioactive isotopes with such long half-lives, measured in billions of years, that  
they also occur naturally. The most well-known example of a naturally occurring 
radioactive isotope is the uranium isotope 238U. For each element, the fraction of  
naturally occurring nuclei represented by one particular isotope is called the natural 
abundance of that isotope.

Although there are many radioactive isotopes of the element iodine, iodine occurs 
naturally only as 127I. Consequently, we say that the natural abundance of 127I is 100%. 
Most elements have multiple naturally occurring isotopes. The natural abundance of 
14N is 99.6%, meaning that 996 out of every 1000 naturally occurring nitrogen atoms 
are the isotope 14N. The remaining 0.4% of naturally occurring nitrogen is the isotope  
15N, with one extra neutron.

Series of nuclei having the same A-value (the same mass number) but different  
values of Z and N are called isobars. For example, the three nuclei 14C, 14N, and 14O 
are isobars with A = 14. Only 14N is stable; the other two are radioactive.

Atomic Mass
You learned in Chapter 18 that atomic masses are specified in terms of the atomic 
mass unit u, defined such that the atomic mass of the isotope 12C is exactly 12 u. The 
conversion to SI units is

1 u = 1.6605 * 10-27 kg

Alternatively, we can use Einstein’s E0 = mc2 to express masses in terms of their  
energy equivalent. The energy equivalent of 1 u of mass is

  E0 = 11.6605 * 10-27 kg212.9979 * 108 m/s22 

  = 1.4924 * 10-10 J = 931.49 Me  V 
(42.1)
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When water freezes to make snow  
crystals, the fraction of molecules  
containing 18O is greater for snow  
that forms at higher atmospheric  
temperatures. Snow accumulating over 
tens of thousands of years has built up 
a thick ice sheet in Greenland. A core 
sample of this ice gives a record of the 
isotopic composition of the snow that fell 
over this time period. Higher numbers on 
the graph correspond to higher average 
temperatures. Broad trends, such as the 
increase in temperature at the end of the 
last ice age, are clearly seen.
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42.1 Nuclear Structure 1265

Thus the atomic mass unit can be written

1 u = 931.49 Me  V/c2

It may seem unusual, but the units Me  V/c2 are units of mass.

   NOTE    We’re using more significant figures than usual. Many nuclear calculations 
look for the small difference between two masses that are almost the same. Those 
two masses must be calculated or specified to four or five significant figures if their 
difference is to be meaningful.

TABLE 42.2 shows the atomic masses of the electron, the nucleons, and three important  
light elements. Appendix C contains a more complete list. Notice that the mass of 
a hydrogen atom is the sum of the masses of a proton and an electron. But a quick  
calculation shows that the mass of a helium atom (2 protons, 2 neutrons, and 2 electrons) 
is 0.03038 u less than the sum of the masses of its constituents. The difference is due to  
the binding energy of the nucleus, a topic we’ll look at in Section 42.2.

The isotope 2H is a hydrogen atom in which the nucleus is not simply a proton 
but a proton and a neutron. Although the isotope is a form of hydrogen, it is called 
deuterium. The natural abundance of deuterium is 0.015%, or about 1 out of every 
6700 hydrogen atoms. Water made with deuterium (sometimes written D2O rather 
than H2O) is called heavy water.

   NOTE    Don’t let the name “deuterium” cause you to think this is a different element. 
Deuterium is an isotope of hydrogen. Chemically, it behaves just like ordinary hydrogen.

The chemical atomic mass shown on the periodic table of the elements is the 
weighted average of the atomic masses of all naturally occurring isotopes. For  
example, chlorine has two stable isotopes: 35Cl, with m = 34.97 u, is 75.8% abundant  
and 37Cl, at 36.97 u, is 24.2% abundant. The average, weighted by abundance, is 
0.758 * 34.97 + 0.242 * 36.97 = 35.45. This is the value shown on the periodic table 
and is the correct value for most chemical calculations, but it is not the mass of any 
particular isotope of chlorine.

   NOTE    The atomic masses of the proton and the neutron are both ≈1 u. Conse-
quently, the value of the mass number A is approximately the atomic mass in u.  
The approximation m ≈ A u is sufficient in many contexts, such as when we’re 
calculating the masses of atoms in the kinetic theory of gases, but in nuclear physics 
calculations, we almost always need the more accurate mass values that you find in 
Table 42.2 or Appendix C.

Nuclear Size and Density
Unlike the atom’s electron cloud, which is quite diffuse, the nucleus has a fairly sharp 
boundary. Experimentally, the radius of a nucleus with mass number A is found to be

 R = r0 A
1/3 (42.2)

where r0 = 1.2 fm. Recall that 1 fm = 1 femtometer = 10-15 m.
As FIGURE 42.2 shows, the radius is proportional to A1/3. Consequently, the volume of 

the nucleus (proportional to R3) is directly proportional to A, the number of nucleons.  
A nucleus with twice as many nucleons will occupy twice as much volume. This find-
ing has three implications:

■■ Nucleons are incompressible. Adding more nucleons doesn’t squeeze the inner  
nucleons into a smaller volume.

■■ The nucleons are tightly packed, looking much like the drawing in Figure 42.1.
■■ Nuclear matter has a constant density.

TABLE 42.2 Some atomic masses

Particle Symbol Mass (u)
Mass  

(MeV/c 

2)

Electron e 0.00055 0.51

Proton p 1.00728 938.28

Neutron n 1.00866 939.57

Hydrogen 1H 1.00783 938.79

Deuterium 2H 2.01410 1876.12

Helium 4He 4.00260 3728.40
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R is proportional to A1/3.

V is proportional to A.

4
3

FIGURE 42.2 The nuclear radius and 
volume as a function of A.
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In fact, we can use Equation 42.2 to calculate the density of nuclear matter. Con-
sider a nucleus with mass number A. Its mass, within 1%, is A atomic mass units. Thus

   rnuc ≈
A u

4
3 pR3

=
A u

4
3 pr0 

3A
=

1 u
4
3 pr0 

3
=

1.66 * 10-27 kg
4
3 p11.2 * 10-15 m23

 

   = 2.3 * 1017 kg/m3  

(42.3)

The fact that A cancels means that all nuclei have this density. It is a staggeringly 
large density, roughly 1014 times larger than the density of familiar liquids and solids. 
One early objection to Rutherford’s model of a nuclear atom was that matter simply 
couldn’t have a density this high. Although we have no direct experience with such 
matter, nuclear matter really is this dense.

 FIGURE 42.3 shows the density profiles of three nuclei. The constant density right 
to the edge is analogous to that of a drop of incompressible liquid, and, indeed, one  
successful model of many nuclear properties is called the liquid-drop model. 
Notice that the range of nuclear radii, from small helium to large uranium, is not 
quite a factor of 4. The fact that 56Fe is a fairly typical atom in the middle of the peri-
odic table is the basis for our earlier assertion that the nuclear diameter is roughly  
10-14 m, or 10 fm.

r (fm)

rnuc (kg/m3)

1.90
0

4.6 7.4

2.3 * 1017

4He
nucleus

56Fe
nucleus

4He 56Fe 238U

238U
nucleus

r

All nuclei have the same
density up to the “edge.”

Imagine the nucleus is a drop of liquid. Its
density is the same up to the edge of the drop.

FIGURE 42.3 Density profiles of three 
nuclei.

STOP TO THINK 42.1 Three electrons orbit a neutral 6Li atom. How many electrons 
orbit a neutral 7Li atom?

42.2 Nuclear Stability
We’ve noted that fewer than 10% of the known nuclei are stable (i.e., not radioactive). 
Because nuclei are characterized by two independent numbers, N and Z, it is useful  
to show the known nuclei on a plot of neutron number N versus proton number Z. 
FIGURE 42.4 shows such a plot. Stable nuclei are represented by blue diamonds and 
unstable, radioactive nuclei by red dots.
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FIGURE 42.4 Stable and unstable nuclei shown on a plot of neutron number N versus 
proton number Z.
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We can make several observations from this graph:

■■ The stable nuclei cluster very close to the curve called the line of stability.
■■ There are no stable nuclei with Z 7 82 (lead).
■■ Unstable nuclei are in bands along both sides of the line of stability.
■■ The lightest elements, with Z 6 16, are stable when N ≈ Z. The familiar elements 

4He, 12C, and 16O all have equal numbers of protons and neutrons.
■■ As Z increases, the number of neutrons needed for stability grows increasingly 

larger than the number of protons. The N/Z ratio is ≈1.2 at Z = 40 but has grown 
to ≈1.5 at Z = 80.

STOP TO THINK 42.2 The isobars corresponding to one specific value of A are found  
on the plot of Figure 42.4 along

a. A vertical line. b. A horizontal line.
c. A diagonal line that goes  

up and to the left.
d. A diagonal line that goes up  

and to the right.

Binding Energy
A nucleus is a bound system. That is, you would need to supply energy to disperse 
the nucleons by breaking the nuclear bonds between them. FIGURE 42.5 shows this idea 
schematically.

You learned a similar idea in atomic physics. The energy levels of the hydrogen 
atom are negative numbers because the bound system has less energy than a free 
proton and electron. The energy you must supply to an atom to remove an electron is 
called the ionization energy.

In much the same way, the energy you would need to supply to a nucleus to  
disassemble it into individual protons and neutrons is called the binding energy. 
Whereas ionization energies of atoms are only a few eV, the binding energies of  
nuclei are tens or hundreds of MeV, energies large enough that their mass equivalent 
is not negligible.

Consider a nucleus with mass mnuc. It is found experimentally that mnuc is less than  
the total mass Zmp + Nmn of the Z protons and N neutrons that form the nucleus,  
where mp and mn are the masses of the proton and neutron. That is, the energy  
equivalent mnucc

2 of the nucleus is less than the energy equivalent 1Zmp + Nmn2c2 of 
the individual nucleons. The binding energy B of the nucleus (not the entire atom) is 
defined as

 B = 1Zmp + Nmn - mnuc2c2 (42.4)

This is the energy you would need to supply to disassemble the nucleus into its 
pieces.

The practical difficulty is that laboratory scientists use mass spectroscopy to mea-
sure atomic masses, not nuclear masses. The atomic mass matom is mnuc plus the mass 
Zme of Z orbiting electrons. (Strictly speaking, we should allow for the binding energy 
of the electrons, but these binding energies are roughly a factor of 106 smaller than the 
nuclear binding energies and can be neglected in all but the most precise measurements  
and calculations.)

Fortunately, we can switch from the nuclear mass to the atomic mass by the simple 
trick of both adding and subtracting Z electron masses. We begin by writing Equation 
42.4 in the equivalent form

 B = 1Zmp + Zme + Nmn - mnuc - Zme2c2 (42.5)

Nucleus Disassembled
nucleus

Energy

mnucc
2 (Zmp + Nmn)c

2B + =

The binding energy is the energy 
that would be needed to disassemble 
a nucleus into individual nucleons.

FIGURE 42.5 The nuclear binding energy.
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1268 CHAPTER 42 Nuclear Physics

Now mnuc + Zme = matom, the atomic mass, and Zmp + Zme = Z1mp + me2 =  ZmH, 
where mH is the mass of a hydrogen atom. Finally, we use the conversion factor 
1 u = 931.49 Me  V/c2 to write c2 = 931.49 Me  V/u. The binding energy is then

 
B = 1ZmH + Nmn - matom2 * 1931.49 Me  V/u2

1binding energy2  (42.6)

where all three masses are in atomic mass units.

What is the binding energy of the 56Fe nucleus?

SOLVE The isotope 56Fe has Z = 26 and N = 30. The atomic mass 
of 56Fe, found in Appendix C, is 55.9349 u. Thus the mass differ-
ence between the 56Fe nucleus and its constituents is

∆m = 2611.0078 u2 + 3011.0087 u2 - 55.9349 u = 0.529 u

where, from Table 42.2, 1.0078 u is the mass of the hydrogen atom. 
Thus the binding energy of 56Fe is

B = 10.529 u2 * 1931.49 Me  V/u2 = 493 Me  V

 REVIEW The binding energy is extremely large, the energy equiva-
lent of more than half the mass of a proton or a neutron.

EXAMPLE 42.1  ■ The binding energy of iron

The nuclear binding energy increases as A increases simply because there are more 
nuclear bonds. A more useful measure for comparing one nucleus to another is the 
quantity B/A, called the binding energy per nucleon. Iron, with B =  493 Me  V and 
A = 56, has 8.80 MeV per nucleon. This is the amount of energy, on average, you 
would need to supply in order to remove one nucleon from the nucleus. Nuclei with 
larger values of B/A are more tightly held together than nuclei with smaller values  
of B/A.

4He

Maximum ≈ 8.8 MeV per nucleon

12C

16O

4

5

6

7

8

0 4 8 12 16 20

B
in

di
ng

 e
ne

rg
y 

(M
eV

) 
pe

r 
nu

cl
eo

n

500
0

100

Mass number A

150 200 250

10

9

8

7

6

5

4

3

2

1

FIGURE 42.6 The curve of binding energy.

FIGURE 42.6 is a graph of the binding energy per nucleon versus mass number A. The 
line connecting the points is often called the curve of binding energy. This curve 
has three important features:

■■ There are peaks in the binding energy curve at A = 4, 12, and 16. The one at A = 4, 
corresponding to 4He, is especially pronounced. As you’ll see, these peaks, which 
represent nuclei more tightly bound than their neighbors, are due to closed shells in 
much the same way that the graph of atomic ionization energies (see Figure 41.22) 
peaked for closed electron shells.

■■ The binding energy per nucleon is roughly constant at ≈8 Me  V per nucleon for 
A 7 20. This suggests that, as a nucleus grows, there comes a point where the  
nuclear bonds are saturated. Each nucleon interacts only with its nearest neighbors, 
the ones it’s actually touching. This, in turn, implies that the nuclear force is a 
short-range force.
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42.3 The Strong Force 1269

■■ The curve has a broad maximum at A ≈ 60. This will be important for our under-
standing of radioactivity. In principle, heavier nuclei could become more stable 
(more binding energy per nucleon) by breaking into smaller pieces. Lighter nuclei 
could become more stable by fusing together into larger nuclei. There may not  
always be a mechanism for such nuclear transformations to take place, but if there 
is a mechanism, it is energetically favorable for it to occur.

42.3 The Strong Force
Rutherford’s discovery of the atomic nucleus was not immediately accepted by all  
scientists. Their primary objection was that the protons would blow themselves apart at 
tremendously high speeds due to the extremely large electrostatic forces between them 
at a separation of a few femtometers. No known force could hold the nucleus together.

It soon became clear that a previously unknown force of nature operates within 
the nucleus to hold the nucleons together. This new force had to be stronger than the 
repulsive electrostatic force; hence it was named the strong force. It is also called 
the nuclear force.

The strong force has four important properties:

1. It is an attractive force between any two nucleons.
2. It does not act on electrons.
3. It is a short-range force, acting only over nuclear distances.
4. Over the range where it acts, it is stronger than the electrostatic force that tries 

to push two protons apart.

The fact that the strong force is short-range, in contrast to the long-range 1/r2 electric, 
magnetic, and gravitational forces, is apparent from the fact that we see no evidence 
for nuclear forces outside the nucleus.

FIGURE 42.7 summarizes the three interactions that take place within the nucleus. 
Whether the strong force between two protons is the same strength as the force  
between two neutrons or between a proton and a neutron is an important question that 
can be answered experimentally. The primary means of investigating the strong force 
is to accelerate a proton to very high speed, using a cyclotron or some other particle 
accelerator, then to study how the proton is scattered by various target materials.

The conclusion of many decades of research is that the strong force between two 
nucleons is independent of whether they are protons or neutrons. Charge is the basis 
for electromagnetic interactions, but it is of no relevance to the strong force. Protons 
and neutrons are identical as far as nuclear forces are concerned.

Potential Energy
Unfortunately, there’s no simple formula to calculate the strong force or the potential 
energy of two nucleons interacting via the strong force. FIGURE 42.8 is an experimen-
tally determined potential-energy diagram for two interacting nucleons, with r the 
distance between their centers. The potential-energy minimum at r ≈ 1 fm is a point 
of stable equilibrium.

Recall that the force is the negative of the slope of a potential-energy diagram. The 
steeply rising potential for r 6 1 fm represents a strongly repulsive force. That is, the 
nucleon “cores” strongly repel each other if they get too close together. The force is 
attractive for r 7 1 fm, where the slope is positive, and it is strongest where the slope 
is steepest, at r ≈ 1.5 fm. The strength of the force quickly decreases for r 7 1.5 fm 
and is zero for r 7 3 fm. That is, the strong force represented by this potential energy 
is effective only over a very short range of distances.

Notice how small the electrostatic energy of two protons is in comparison to the 
potential energy of the strong force. At r ≈ 1.0 fm, the point of stable equilibrium, the 
magnitude of the nuclear potential energy is ≈100 times larger than the electrostatic 
potential energy.

p

n

n

p

p

n
The attractive
strong force 
is the same 
for any two 
nucleons.

Two protons also experience a smaller 
electrostatic repulsive force.

FIGURE 42.7 The strong force is the same 
between any two nucleons.

r (fm)

U (MeV)

1

10

0
2 3 4

-10

-20

-30

-40

-50

20

Point of stable equilibrium

Potential energy of two nucleons

Electrostatic potential 
energy of two protons

The strong force has 
vanished by r ≈ 3 fm.

The maximum force 
occurs at r ≈ 1.5 fm, 
where the slope is 
maximum.

FIGURE 42.8 The potential-energy 
diagram for two nucleons interacting via 
the strong force.
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1270 CHAPTER 42 Nuclear Physics

We earlier asked what role neutrons play. Why does a nucleus need neutrons? The 
answer is related to the short range of the strong force. All protons in the nucleus exert 
repulsive electrostatic forces on each other, but, because of the short range of the 
strong force, a proton feels an attractive force only from the very few other nucleons 
with which it is in close contact. Even though the strong force at its maximum is much 
larger than the electrostatic force, there wouldn’t be enough attractive nuclear bonds 
for an all-proton nucleus to be stable. Because neutrons participate in the strong force 
but exert no repulsive forces, the neutrons provide the extra “glue” that holds the 
nucleus together. In small nuclei, where most nucleons are in contact, one neutron per 
proton is sufficient for stability. Hence small nuclei have N ≈ Z. But as the nucleus 
grows, the repulsive force increases faster than the binding energy. More neutrons are 
needed for stability, causing heavy nuclei to have N 7 Z.

42.4 The Shell Model
Figure 42.8 showed the potential energy of two interacting nucleons. To solve 
Schrödinger’s equation for the nucleus, we would need to know the total potential 
energy of all interacting nucleon pairs within the nucleus, including both the strong 
force and the electrostatic force. This is far too complex to be a tractable problem.

We faced a similar situation with multielectron atoms. Calculating an atom’s exact 
potential energy is exceedingly complicated. To simplify the problem, we made a 
model of the atom in which each electron moves independently with an average poten-
tial energy due to the nucleus and all other electrons. That model, although not perfect, 
correctly predicted electron shells and explained the periodic table of the elements.

The shell model of the nucleus, using multielectron atoms as an analogy, was 
proposed in 1949 by Maria Goeppert-Mayer. The shell model considers each nucleon 
to move independently with an average potential energy due to the strong force of all 
the other nucleons. For the protons, we also have to include the electrostatic potential 
energy due to the other protons.

FIGURE 42.9 shows the average potential energy of a neutron and a proton. Here r 
is the distance from the center of the nucleus, not the nucleon–nucleon distance as it 
was in Figure 42.8. On average, a nucleon’s interactions with neighboring nucleons 
are independent of the nucleon’s position inside the nucleus; hence the constant poten-
tial energy inside the nucleus. You can see that, to a good approximation, a nucleon 
appears to be a particle in a finite potential well, a quantum-mechanics problem you 
studied in Chapter 40.

Maria Goeppert-Mayer received the 1963 
Nobel Prize in physics for her work in  
nuclear physics.
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The average neutron potential energy is due to
the strong force.

The average proton potential energy is due to
the strong force and the electric force. This
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Finite potential-
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FIGURE 42.9 The average potential energy of a neutron and a proton.

Three observations are worthwhile:

1. The depth of the neutron’s potential-energy well is ≈50 Me  V for all nuclei. The 
radius of the potential-energy well is the nuclear radius R = r0 A

1/3.
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42.4 The Shell Model 1271

2. For protons, the positive electrostatic potential energy “lifts” the potential-  
energy well. The lift varies from essentially none for very light elements to a  
significant fraction of the well depth for very heavy elements. The potential  
energy shown in the figure would be appropriate for a nucleus with Z ≈ 30.

3. Outside the nucleus, where the strong force has vanished, a proton’s potential en-
ergy is U = 1Z - 12e2/4pP0r due to its electrostatic interaction with the 1Z - 12 
other protons within the nucleus. This positive potential energy decreases slowly  
with increasing distance.

The task of quantum mechanics is to solve for the energy levels and wave functions 
of the nucleons in these potential-energy wells. Once the energy levels are found, we 
build up the nuclear state, just as we did with atoms, by placing all the nucleons in the 
lowest energy levels consistent with the Pauli principle. The Pauli principle affects  
nucleons, just as it did electrons, because they are spin@12 particles. Each energy level 
can hold only a certain number of spin-up particles and spin-down particles, depending  
on the quantum numbers. Additional nucleons have to go into higher energy levels.

Low-Z Nuclei
As an example, we’ll consider the energy levels of low-Z nuclei 1Z 6 82. Because  
these nuclei have so few protons, we can use a reasonable approximation that neglects 
the electrostatic potential energy due to proton-proton repulsion and considers only the 
much larger nuclear potential energy. In that case, the proton and neutron potential- 
energy wells and energy levels are the same.

FIGURE 42.10 shows the three lowest energy levels and the maximum number of  
nucleons that the Pauli principle allows in each. Energy values vary from nucleus to 
nucleus, but the spacing between these levels is several MeV. It’s customary to draw 
the proton and neutron potential-energy diagrams and energy levels back to back. 
Notice that the radial axis for the proton potential-energy well points to the right, 
while the radial axis for the neutron potential-energy well points to the left.

Let’s apply this model to the A = 12 isobar. Recall that an isobar is a series  
of nuclei with the same total number of neutrons and protons. FIGURE 42.11 shows the 
energy-level diagrams of 12B, 12C, and 12N. Look first at 12C, a nucleus with six protons  
and six neutrons. You can see that exactly six protons are allowed in the n = 1 and  
n = 2 energy levels. Likewise for the six neutrons. Thus 12C has a closed n = 2 proton 
shell and a closed n = 2 neutron shell.

   NOTE    Protons and neutrons are different particles, so the Pauli principle is not 
violated if a proton and a neutron have the same quantum numbers.
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FIGURE 42.10 The three lowest energy 
levels of a low-Z nucleus. The neutron 
energy levels are on the left, the proton 
energy levels on the right.
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FIGURE 42.11 The A = 12 isobar has to place 12 nucleons in the lowest available energy levels.

12N has seven protons and five neutrons. The sixth proton fills the n = 2 proton 
shell, so the seventh proton has to go into the n = 3 energy level. The n = 2 neutron 
shell has one vacancy because there are only five neutrons. 12B is just the opposite, 
with the seventh neutron in the n = 3 energy level. You can see from the diagrams that 
the 12B and 12N nuclei have significantly more energy—by several MeV—than 12C.
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1272 CHAPTER 42 Nuclear Physics

In atoms, electrons in higher energy levels decay to lower energy levels by emitting 
a photon as the electron undergoes a quantum jump. That can’t happen here because 
the higher-energy nucleon in 12B is a neutron whereas the vacant lower energy level 
is that of a proton. But an analogous process could occur if a neutron could some-
how turn into a proton. And that’s exactly what happens! We’ll explore the details in 
Section 42.6, but both 12B and 12N decay into 12C in the process known as beta decay.

12C is just one of three low-Z nuclei in which both the proton and neutron shells  
are full. The other two are 4He (filling both n = 1 shells with Z = 2, N = 22 and 16O  
(filling both n = 3 shells with Z = 8, N = 8). If the analogy with closed electron  
shells is valid, these nuclei should be more tightly bound than nuclei with neigh-
boring  values of A. And indeed, we’ve already noted that the curve of binding  
energy (Figure 42.6) has peaks at A = 4, 12, and 16. The shell model of the nucleus 
satisfactorily explains these peaks. Unfortunately, the shell model quickly becomes 
much more complex as we go beyond n = 3. Heavier nuclei do have closed shells, but 
there’s no evidence for them in the curve of binding energy.

 High-Z Nuclei
We can use the shell model to give a qualitative explanation for one more observation, 
although the details are beyond the scope of this text. FIGURE 42.12 shows the neutron 
and proton potential-energy wells of a high-Z nucleus. In a nucleus with many protons, 
the electrostatic potential energy lifts the proton potential-energy well higher than the 
neutron potential-energy well. Protons and neutrons now have a different set of energy  
levels.

As a nucleus is “built,” by the addition of protons and neutrons, the proton energy 
well and the neutron energy well must fill to just about the same height. If there  
were neutrons in energy levels above vacant proton levels, the nucleus would lower  
its energy by using beta decay to change the neutron into a proton. Similarly, beta 
decay would change a proton into a neutron if there were a vacant neutron energy level  
beneath a filled proton level. The net result of beta decay is to keep the levels on 
both sides filled to just about the same energy.

Because the neutron potential-energy well starts at a lower energy, more neutron 
states are available than proton states. Consequently, a high-Z nucleus will have more 
neutrons than protons. This conclusion is consistent with our observation in Figure 42.4  
that N 7 Z for heavy nuclei.

42.5 Radiation and Radioactivity
Becquerel’s 1896 discovery of “rays” from crystals of uranium prompted a burst of 
activity. In England, J. J. Thomson and, especially, his student and protégé Ernest 
Rutherford worked to identify the unknown rays. Using combinations of electric and 
magnetic fields, much as Thomson had done in his investigations of cathode rays, 
they found three distinct types of radiation. FIGURE 42.13 shows the basic experimental 
procedure, and TABLE 42.3 on the next page summarizes the results.
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Neutrons and protons 
fill energy levels to 
the same height. This 
takes more neutrons 
than protons.

FIGURE 42.12 The proton energy levels  
are displaced upward in a high-Z nucleus.
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FIGURE 42.13 Identifying radiation by its deflection in a magnetic field.
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Within a few years, as Rutherford and others deduced the basic structure of the 
atom, it became clear that these emissions of radiation were coming from the atomic 
nucleus. We now define radioactivity or radioactive decay to be the spontaneous 
emission of particles or high-energy photons from unstable nuclei as they decay from 
higher-energy to lower-energy states. Radioactivity has nothing to do with the orbiting  
valence electrons.

   NOTE    The term “radiation” merely means something that is radiated outward, 
similar to the word “radial.” Electromagnetic waves are often called “electromagnetic 
radiation.” Infrared waves from a hot object are referred to as “thermal radiation.” 
Thus it was no surprise that these new “rays” were also called radiation. Unfortunately, 
the general public has come to associate the word “radiation” with nuclear radiation, 
something to be feared. It is important, when you use the term, to be sure you’re not  
conveying a wrong impression to a listener or a reader.

 Ionizing Radiation
Electromagnetic waves, from microwaves through ultraviolet radiation, are absorbed 
by matter. The absorbed energy increases an object’s thermal energy and its tempera-
ture, which is why objects sitting in the sun get warm.

In contrast to visible-light photon energies of a few eV, the energies of the alpha 
and beta particles and the gamma-ray photons of nuclear decay are typically in the 
range 0.1–10 MeV, a factor of roughly 106 larger. These energies are much larger than 
the ionization energies of atoms and molecules. Rather than simply being absorbed 
and increasing an object’s thermal energy, nuclear radiation ionizes matter and breaks 
molecular bonds. Nuclear radiation (and also x rays, which behave much the same in 
matter) is called ionizing radiation.

An alpha or beta particle traveling through matter creates a trail of ionization,  
as shown in FIGURE 42.14. Because the ionization energy of an atom is ≈10 e  V, a  
particle with 1 MeV of kinetic energy can ionize ≈100,000 atoms or molecules before  
finally stopping. The low-mass electrons are kicked sideways, but the much more  
massive positive ions barely move and form the trail. This ionization is the basis for  
the Geiger counter, one of the most well-known detectors of nuclear radiation. 
FIGURE 42.15 shows how a Geiger counter works. The important thing to remember is 
that a Geiger counter detects only ionizing radiation.

Ionizing radiation damages materials. Ions drive chemical reactions that wouldn’t 
otherwise occur. Broken molecular bonds alter the workings of molecular machinery, 
especially in large biological molecules. It is through these mechanisms—ionization 
and bond breaking—that nuclear radiation can cause mutations or tumors. We’ll look 
at the biological issues in Section 42.7.

   NOTE    Ionizing radiation causes structural damage to materials, but irradiated 
objects do not become radioactive. Ionization drives chemical processes involving 
the electrons. An object could become radioactive only if its nuclei were somehow 
changed, and that does not happen.

TABLE 42.3 Three types of radiation

Radiation Identification Charge Stopped by

Alpha, a 4He nucleus +2e Sheet of paper

Beta, b Electron -e Few mm of aluminum

Gamma, G High-energy photon 0 Many cm of lead

a or b

Ejected
electron

Trail of
ionization

FIGURE 42.14 Alpha and beta particles 
create a trail of ionization as they pass 
through matter.

STOP TO THINK 42.3 A very bright spotlight shines on a Geiger counter. Does it click? Trail of several
hundred ions

+1000 VRadiation

Neon or
argon gas

Stiff wire
through middle

Point of ionization

Ejected
electrons

Gas
molecule

Thin window

1. Ejected electrons cause a chain reaction
 of ionization of the gas as they accelerate
 toward the positive wire.

2. Thousands of 
 electrons reach the 
 wire, causing a 
 surge of current.

3. The negative 
 current pulse in 
 the wire causes the 
 “click” of the 
 Geiger counter.

FIGURE 42.15 A Geiger counter.
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Nuclear Decay and Half-Lives
Rutherford discovered experimentally that for all types of radiation the number of 
radioactive atoms in a sample decreases exponentially with time. The reason is that 
radioactive decay—in which an unstable nucleus emits a form of radiation—is a ran-
dom process. That is, we can predict only the probability that a nucleus will decay, 
not the exact moment. We encountered exactly this situation when we investigated the 
lifetimes of excited states of atoms in Section 41.7.

As we did with atoms, let r be the decay rate, the probability of decay within the 
next second by the emission of an alpha or beta particle or a gamma-ray photon. Then 
the probability of decay within a small time interval dt is

 Prob1decay in time interval dt2 = r dt (42.7)

This equation was also the starting point in our analysis of the spontaneous emission of  
photons by atoms. The mathematical analysis is exactly the same as in « SECTION 41.7, 
to which you should refer, leading to the exponential-decay equation

 N = N0e
-t/t (42.8)

where t = 1/r is the lifetime of the nucleus.
FIGURE 42.16 shows the decrease of N with time. The number of radioactive nuclei 

decreases from N0 at t = 0 to e-1N0 = 0.368N0 at time t = t. In practical terms, the 
number decreases by roughly two-thirds during one lifetime.

   NOTE    An important aspect of exponential decay is that you can choose any instant 
you wish to be t = 0. The number of radioactive nuclei present at that instant is N0. 
If at one instant you have 10,000 radioactive nuclei whose lifetime is t = 10 min, 
you’ll have roughly 3680 nuclei 10 min later. The fact that you may have had more 
than 10,000 nuclei earlier isn’t relevant.

In practice, it’s much easier to measure the time at which half of a sample has  
decayed than the time at which 36.8% has decayed. Let’s define the half-life t1/2 as 
the time interval in which half of a sample of radioactive atoms decays. The half-life 
is shown in Figure 42.16.

The half-life is easily related to the lifetime t because we know, by definition, that 
N = 1

2 N0 at t = t1/2. Thus, according to Equation 42.8,

 
N0

2
= N0 e-t1/2/t (42.9)

The N0 cancels, and we can then take the natural logarithm of both sides to find

 ln11
22 = - ln 2 = -  

t1/2

t
 (42.10)

With one final rearrangement we have

 t1/2 = t ln 2 = 0.693t (42.11)

Equation 42.8 can be written in terms of the half-life as

 N = N011
22t/t1/2

 (42.12)

Thus N = N0 /2 at t = t1/2, N = N0 /4 at t = 2t1/2, N = N0 /8 at t = 3t1/2, and so on. No 
matter how many nuclei there are, the number decays by half during the next 
half-life.

   NOTE    Half the nuclei decay during one half-life, but don’t fall into the trap of 
thinking that all will have decayed after two half-lives.

The half-life is the
time in which half
the nuclei decay.

The lifetime is the time
at which the number
of nuclei is e-1, or 37%, 
of the initial number.

t

Number of nuclei remaining

t1/20

0.13N0

0
t 2t

0.37N0

0.50N0

N0

FIGURE 42.16 The number of radioactive 
atoms decreases exponentially with time.
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FIGURE 42.17 shows the half-life graphically. This figure also conveys two other im-
portant ideas:

1. Nuclei don’t vanish when they decay. The decayed nuclei have merely become 
some other kind of nuclei, called the daughter nuclei.

2. The decay process is random. We can predict that half the nuclei will decay in 
one half-life, but we can’t predict which ones.

Each radioactive isotope, such as 14C, has its own half-life. That half-life doesn’t 
change with time as a sample decays. If you’ve flipped a coin 10 times and, against 
all odds, seen 10 heads, you may feel that a tail is overdue. Nonetheless, the proba-
bility that the next flip will be a head is still 50%. After 10 half-lives have gone by, 
11/2210 = 1/1024 of a radioactive sample is still there. There was nothing special or 
distinctive about these nuclei, and, despite their longevity, each remaining nucleus has 
exactly a 50% chance of decay during the next half-life. t

t1/20
0

N0

N0

2t1/2 3t1/2

N0

N0

N0

N0 /2

Undecayed nucleus

Daughter nucleus

N0 /4
N0 /8

N0 nuclei at t = 0

1
2

1
4
1
8

FIGURE 42.17 Half the nuclei decay during 
each half-life.

The iodine isotope 131I, which has an eight-day half-life, is used in 
nuclear medicine. A sample of 131I containing 2.00 * 1012 atoms is 
created in a nuclear reactor.

a. How many 131I atoms remain 36 hours later when the sample is  
delivered to a hospital?

b. The sample is constantly getting weaker, but it remains usable 
as long as the number of 131I atoms exceeds 5.0 * 1011. What is the 
maximum delay before the sample is no longer usable?

MODEL The number of 131I atoms decays exponentially.

SOLVE a. The half-life is t1/2 = 8 days = 192 h. After 36 h have 
elapsed,

N = 12.00 * 1012211
22(36 h)/(192 h)

= 1.76 * 1012 nuclei

b. The time after creation at which 5.0 * 1011 131I atoms remain is  
given by

5.0 * 1011 = 0.50 * 1012 = 12.0 * 1012211
22t/8 days

To solve for t, we first write this as

0.50
2.00

= 0.25 = 11
22t/8 days

Now we take the logarithm of both sides. Either natural loga-
rithms or base-10 logarithms can be used, but we’ll use natural 
logarithms:

ln10.252 = -1.39 =
t

t1/2
 ln10.52 = -0.693 

t
t1/2

Solving for t gives

t = 2.00t1/2 = 16 days

REVIEW The weakest usable sample is one-quarter of the initial 
sample. You saw in Figure 42.17 that a radioactive sample decays 
to one-quarter of its initial number in 2 half-lives.

EXAMPLE 42.2  ■ The decay of iodine

Activity
The activity R of a radioactive sample is the number of decays per second. This is 
simply the absolute value of dN/dt, or

 R = ` dN
dt

` =
N
t

=
N0

t
 e-t/t = R0e-t/t = R011

22t/t1/2

 (42.13)

where R0 = N0 /t is the activity at t = 0. The activity of a sample decreases exponentially 
along with the number of remaining nuclei.

The SI unit of activity is the becquerel, defined as

1 becquerel = 1 Bq K 1 decay/s or 1 s-1

An older unit of activity, but one that continues in widespread use, is the curie. The 
curie was originally defined as the activity of 1 g of radium. Today, the conversion 
factor is

1 curie = 1 Ci K 3.7 * 1010 Bq
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One curie is a substantial activity. The radioactive samples used in laboratory 
experiments are typically ≈1 mCi or, equivalently, ≈40,000 Bq. These samples 
can be handled with only minor precautions. Larger sources of radioactivity  
require lead shielding and special precautions to prevent exposure to high levels 
of radiation.

The isotope 137Cs is a standard laboratory source of gamma rays. 
The half-life of 137Cs is 30 years.

a. How many 137Cs atoms are in a 5.0 mCi source?

b. What is the activity of the source 10 years later?

MODEL The number of 137Cs atoms decays exponentially.

SOLVE a. The number of atoms can be found from N0 = tR0. The 
initial activity in SI units is

R0 = 5.0 * 10-6 Ci *
3.7 * 1010 Bq

1 Ci
= 1.85 * 105 Bq

To find the lifetime, first convert the half-life to seconds:

t1/2 = 30 years *
3.15 * 107 s

1 year
= 9.45 * 108 s

Then

t =
t1/2

ln 2
= 1.36 * 109 s

Thus the number of 137Cs atoms is

N0 = tR0 = (1.36 * 109 s)(1.85 * 105 Bq)

= 2.5 * 1014 atoms

b. The activity decreases exponentially, just like the number of  
nuclei. After 10 years,

R = R011
22t/t1/2

= 15.0 mCi211
22(10 yr)/(30 yr)

= 4.0 mCi

REVIEW Although N0 is a very large number, it is a very small frac-
tion 1≈10-102 of a mole. The sample is about 60 ng of 137Cs.

EXAMPLE 42.3  ■ A laboratory source

Radioactive Dating
Many geological and archeological samples can be dated by measuring the decays  
of naturally occurring radioactive isotopes. Because we have no way to know  
N0, the initial number of radioactive nuclei, radioactive dating depends on the use 
of ratios.

The most well-known dating technique is carbon dating. The carbon isotope 14C 
has a half-life of 5730 years, so any 14C present when the earth formed 4.5 billion years 
ago would long since have decayed away. Nonetheless, 14C is present in atmospheric 
carbon dioxide because high-energy cosmic rays collide with gas molecules high in 
the atmosphere. These cosmic rays are energetic enough to create 14C nuclei from 
nuclear reactions with nitrogen and oxygen nuclei. The creation and decay of 14C have 
reached a steady state in which the 14C/12C ratio is 1.3 * 10-12. That is, atmospheric 
carbon dioxide has 14C at the concentration of 1.3 parts per trillion. As small as this is,  
it’s easily measured by modern chemical techniques.

All living organisms constantly exchange carbon dioxide with the atmosphere,  
so the 14C/12C ratio in living organisms is also 1.3 * 10-12. When an organism dies, 
the 14C in its tissue begins to decay and no new 14C is added. Objects are dated by 
comparing the measured 14C/12C ratio to the 1.3 * 10-12 value of living material.

Carbon dating is used to date skeletons, wood, paper, fur, food material, and  
anything else made of organic matter. It is quite accurate for ages to about 15,000 
years, roughly three half-lives of 14C. Beyond that, the difficulty of measuring such 
a small ratio and some uncertainties about the cosmic ray flux in the past combine 
to decrease the accuracy. Even so, items are dated to about 50,000 years with a fair 
degree of reliability.

Other isotopes with longer half-lives are used to date geological samples. Potassium-
argon dating, using 40K with a half-life of 1.25 billion years, is especially useful for  
dating rocks of volcanic origin.

A researcher is extracting a small sample 
of an ancient bone. She will determine 
the age of the bone by measuring the 
ratio of 14C to 12C.
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42.6 Nuclear Decay Mechanisms
This section will look in more detail at the mechanisms of the three types of radioac-
tive decay.

Alpha Decay
An alpha particle, symbolized as a, is a 4He nucleus, a strongly bound system of two 
protons and two neutrons. An unstable nucleus that ejects an alpha particle will lose 
two protons and two neutrons, so we can write the decay as

 AXZ S A-4YZ-2 + a + energy (42.14)

FIGURE 42.18 shows the alpha-decay process. The original nucleus X is called the  
parent nucleus, and the decay-product nucleus Y is the daughter nucleus. This 
reaction can occur only when the mass of the parent nucleus is greater than the mass 
of the daughter nucleus plus the mass of an alpha particle. This requirement is met for 

Archeologists excavating an ancient hunters’ camp have recovered 
a 5.0 g piece of charcoal from a fireplace. Measurements on the 
sample find that the 14C activity is 0.35 Bq. What is the approxi-
mate age of the camp?

MODEL Charcoal, from burning wood, is almost pure carbon. The 
number of 14C atoms in the wood has decayed exponentially since 
the branch fell off a tree. Because wood rots, it is reasonable to as-
sume that there was no significant delay between when the branch 
fell off the tree and the hunters burned it.

SOLVE The 14C/12C ratio was 1.3 * 10-12 when the branch fell 
from the tree. We first need to determine the present ratio, then  
use the known 14C half-life t1/2 = 5730 years to calculate the time 
needed to reach the present ratio. The number of ordinary 12C  
nuclei in the sample is

  N112C2 = 1 5.0 g

12 g/mol216.02 * 1023 atoms/mol2

  = 2.5 * 1023 nuclei

The number of 14C nuclei can be found from the activity to be 
N114C2 = R/r, but we need to determine the 14C decay rate r. 
After converting the half-life to seconds, t1/2 = 5730 years =
1.807 * 1011 s, we can compute

r =
1
t

=
1

t1/2 /ln 2
= 3.84 * 10-12 s-1

Thus

N114C2 =
R
r

=
0.35 Bq

3.84 * 10-12 s-1 = 9.1 * 1010 nuclei

and the present 14C/12C ratio is N114C2/N112C2 = 0.36 * 10-12. Be-
cause this ratio has been decaying with a half-life of 5730 years, the 
time needed to reach the present ratio is found from

0.36 * 10-12 = 11.3 * 10-12211
22t/t1/2

To solve for t, we first write this as

0.36
1.3

= 0.277 = 11
22t/t1/2

Now we take the logarithm of both sides:

ln10.2772 = -1.28 =
t

t1/2
 ln10.52 = -0.693 

t
t1/2

Thus the age of the hunters’ camp is

t = 1.85t1/2 = 11,000 years

REVIEW This is a realistic example of how radioactive dating is 
done.

EXAMPLE 42.4  ■ Carbon dating

STOP TO THINK 42.4 A sample starts with 1000 radioactive atoms. How many 
half-lives have elapsed when 750 atoms have decayed?

a. 0.25
b. 1.5
c. 2.0
d. 2.5

Parent nucleusBefore:

After:

The daughter nucleus has two fewer protons
and four fewer nucleons. It has a small recoil.

The alpha particle, a fast 
helium nucleus, carries 
away most of the energy 
released in the decay.

AXZ

A-4YZ-2

FIGURE 42.18 Alpha decay.

M42_KNIG8221_05_GE_C42.indd   1277 01/06/2022   11:45



1278 CHAPTER 42 Nuclear Physics

heavy, high-Z nuclei well above the maximum on the Figure 42.6 curve of binding 
energy. It is energetically favorable for these nuclei to eject an alpha particle because 
the daughter nucleus is more tightly bound than the parent nucleus.

Although the mass requirement is based on the nuclear masses, we can express  
it—as we did the binding energy equation—in terms of atomic masses. The energy  
released in an alpha decay, essentially all of which goes into the alpha particle’s kinetic  
energy, is

 ∆E ≈ Ka = 1mX - mY - mHe2c2 (42.15)

The uranium isotope 238U undergoes alpha decay to 234Th. The 
atomic masses are 238.0508 u for 238U and 234.0436 u for 234Th. 
What is the kinetic energy, in MeV, of the alpha particle?

MODEL Essentially all of the energy release ∆E goes into the alpha 
particle’s kinetic energy.

SOLVE The atomic mass of helium is 4.0026 u. Thus

  Ka = 1238.0508 u - 234.0436 u - 4.0026 u2c2

  = 10.0046 u *
931.5 Me  V/c2

1 u 2c2 = 4.3 Me  V

REVIEW This is a typical alpha-particle energy. Notice how the c2 
canceled from the calculation so that we never had to evaluate c2.

EXAMPLE 42.5  ■ Alpha decay of uranium

Alpha decay is a purely quantum-mechanical effect. FIGURE 42.19 shows the poten-
tial energy of an alpha particle, where the 4He nucleus of an alpha particle is so tightly 
bound that we can think of it as existing “prepackaged” inside the parent nucleus. Both 
the depth of the energy well and the height of the Coulomb barrier are twice those of  
a proton because the charge of an a particle is 2e.

Because of the high Coulomb barrier (alpha decay occurs only in high-Z nuclei), 
there may be one or more allowed energy levels with E 7 0. Energy levels with E 6 0 
are completely bound, but an alpha particle in an energy level with E 7 0 can tunnel 
through the Coulomb barrier and escape. That is exactly how alpha decay occurs.

Energy must be conserved, so the kinetic energy of the escaping a particle is the 
height of the energy level above E = 0. That is, potential energy is transformed into 
kinetic energy as the particle escapes. Notice that the width of the barrier decreases as 
E increases. The tunneling probability depends very sensitively on the barrier width, 
as you learned in conjunction with the scanning tunneling microscope. Thus an alpha 
particle in a higher energy level should have a shorter half-life and escape with more 
kinetic energy. The full analysis is beyond the scope of this text, but this prediction is 
in excellent agreement with measured energies and half-lives.

Beta Decay
Beta decay was initially associated with the emission of an electron e-, the beta par-
ticle. It was later discovered that some nuclei can undergo beta decay by emitting a 
positron e+, the antiparticle of the electron, although this decay mode is not as com-
mon. A positron is identical to an electron except that it has a positive charge. To be 
precise, the emission of an electron is called beta-minus decay and the emission of a 
positron is beta-plus decay.

A typical example of beta-minus decay occurs in the carbon isotope 14C, which 
undergoes the beta-decay process 14C S 14N + e-. Carbon has Z = 6 and nitrogen 
has Z = 7. Because Z increases by 1 but A doesn’t change, it appears that a neutron 
within the nucleus has changed itself into a proton and an electron. That is, the basic 
beta-minus decay process appears to be

 n S p+ + e- (42.16)

Indeed, a free neutron turns out not to be a stable particle. It decays with a half-life 
of approximately 10 min into a proton and an electron. This decay is energetically 
allowed because mn 7 mp + me. Furthermore, it conserves charge.

r
R

30

0

-60

U (MeV)

An alpha particle in this energy level can tunnel
through the Coulomb barrier and escape.

This is the kinetic 
energy of the escaping 
alpha particle.

Coulomb barrier

Bound energy levels

FIGURE 42.19 The potential-energy 
diagram of an alpha particle in the 
parent nucleus.
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Whether a neutron within a nucleus can decay depends on the masses of the parent 
and daughter nuclei. The electron is ejected from the nucleus in beta-minus decay, but 
the proton is not. Thus the decay process shown in FIGURE 42.20a is

 AXZ S AYZ + 1 + e- + energy  (beta@minus decay) (42.17)

Energy is released because the mass decreases in this process, but we have to be care-
ful when calculating the mass loss. Although not explicitly shown in Equation 42.17, 
the daughter AY is actually the ionized atom AY+ because it gained a proton but didn’t 
gain an orbital electron. Its mass is the atomic mass of AY minus the mass of an elec-
tron. But the full right-hand side of the reaction includes an additional electron, the 
beta particle, so the total mass of the decay products is simply the atomic mass of AY.

Consequently, the energy released in beta-minus decay, based on the mass loss, is

 ∆E = 1mX - mY2c2 (42.18)

The energy release has to be positive, so we see that beta-minus decay occurs only if 
mX + mY. 14C can undergo beta-minus decay to 14N because m114C2 7 m114N2. But 
m112C2  6  m112N2, so 12C is stable and its neutrons cannot decay.

   NOTE    The electron emitted in beta-minus decay has nothing to do with the atom’s 
orbital electrons. The beta particle is created in the nucleus and ejected directly from 
the nucleus when a neutron is transformed into a proton and an electron.

Beta-plus decay is the conversion of a proton into a neutron and a positron:

 p+ S n + e+ (42.19)

The full decay process, shown in FIGURE 42.20b, is

 AXZ S AYZ - 1 + e+ + energy  (beta@plus decay) (42.20)

Beta-plus decay does not happen for a free proton because mp 6 mn. It can happen 
within a nucleus as long as energy is conserved for the entire nuclear system.

In our earlier discussion of Figure 42.11 we noted that the 12B and 12N nuclei could 
reach a lower energy state if a proton could change into a neutron, and vice versa. 
Now we see that such a change can occur if the energy conditions are favorable. And, 
indeed, 12B undergoes beta-minus decay to 12C while 12N undergoes beta-plus decay 
to 12C.

In general, beta decay is a process used by nuclei with too many neutrons or too 
many protons in order to move closer to the line of stability in Figure 42.4.

A third form of beta decay occurs in some nuclei that have too many protons but not 
enough mass to undergo beta-plus decay. In this case, a proton changes into a neutron 
by “capturing” an electron from the innermost shell of orbiting electrons (an n = 1  
electron). The process is

 p+ + orbital e- S n (42.21)

This form of beta decay is called electron capture, abbreviated EC. The net result, 
AXZ S AYZ - 1, is the same as beta-plus decay but without the emission of a positron.  
Electron capture is the only nuclear decay mechanism that involves the orbital 
electrons.

The Weak Interaction
We’ve presented beta decay as if it were perfectly normal for one kind of matter  
to change spontaneously into a completely different kind of matter. For example, it 
would be energetically favorable for a large truck to spontaneously turn into a Cadillac 
and a VW Beetle, ejecting the Beetle at high speed. But it doesn’t happen.

Before:

After:

A proton changes into a 
neutron and a positron. 
The positron is ejected 
from the nucleus.

AXZ

AYZ-1

(b) Beta-plus decay

e+

Before:

After:

A neutron changes into a 
proton and an electron. 
The electron is ejected 
from the nucleus.

AXZ

AYZ+1

(a) Beta-minus decay

e-

FIGURE 42.20 Beta decay.
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Once you stop to think of it, the process n S p+ + e- seems ludicrous, not because  
it violates mass-energy conservation but because we have no idea how a neutron  
could turn into a proton. Alpha decay may be a strange process because tunneling in 
general goes against our commonsense notions, but it is a perfectly ordinary quantum- 
mechanical process. Now we’re suggesting that one of the basic building blocks of 
matter can somehow morph into a different basic building block.

To make matters more confusing, measurements in the 1930s found that beta decay 
didn’t seem to conserve either energy or momentum. Faced with these difficulties, the 
Italian physicist Enrico Fermi made two bold suggestions:

1. A previously unknown fundamental force of nature is responsible for beta decay. 
This force, which has come to be known as the weak interaction, has the  
ability to turn a neutron into a proton, and vice versa.

2.  The beta-decay process emits a particle that, at that time, had not been detected. 
This new particle has to be electrically neutral, in order to conserve charge, and 
it has to be much less massive than an electron. Fermi called it the neutrino, 
meaning “little neutral one.” Energy and momentum really are conserved, but the 
neutrino carries away some of the energy and momentum of the decaying nucleus. 
Thus experiments that detect only the electron seem to violate conservation laws.

The neutrino is represented by the symbol n, a lowercase Greek nu. The beta-decay 
processes that Fermi proposed are

  n S p+ + e- + n 

  p+ S n + e+ + n 
(42.22)

The symbol n is an antineutrino, although the reason one is a neutrino and the other 
an antineutrino need not concern us here. FIGURE 42.21 shows that the electron and anti-
neutrino (or positron and neutrino) share the energy released in the decay.

The neutrino interacts with matter so weakly that a neutrino can pass straight 
through the earth with only a very slight chance of a collision. Trillions of neutrinos 
created by nuclear fusion reactions in the core of the sun are passing through your 
body every second. Neutrino interactions are so rare that the first laboratory detection 
did not occur until 1956, over 20 years after Fermi’s proposal.

It was initially thought that the neutrino had not only zero charge but also zero 
mass. However, experiments in the 1990s showed that the neutrino mass, although 
very tiny, is not zero. The best current evidence suggests a mass about one-millionth 
the mass of an electron. Experiments now under way will attempt to determine a more 
accurate value.

The Super-Kamiokande neutrino detector 
in Japan looks for the neutrinos emitted 
from nuclear fusion reactions in the core 
of the sun.

How much energy is released in the beta-minus decay of 14C?

MODEL The decay is 14C S 14N + e- + n.

SOLVE In Appendix C we find m114C2 = 14.003 242 u and m114N2 = 14.003 074 u.  
The mass difference is a mere 0.000 168 u, but this is the mass that is converted into the 
kinetic energy of the escaping particles. The energy released is

E = 1∆m2c2 = 10.000 168 u2 * 1931.5 Me  V/u2 = 0.156 Me  V

REVIEW This energy is shared between the electron and the antineutrino.

EXAMPLE 42.6  ■ Beta decay of 14C

Gamma Decay
Gamma decay is the easiest form of nuclear decay to understand. You learned that an 
atomic system can emit a photon with Ephoton = ∆Eatom when an electron undergoes 
a quantum jump from an excited energy level to a lower energy level. Nuclei are no 

Before:

After:

If only the electron and the daughter nucleus 
are measured, energy and momentum appear 
not to be conserved. The “missing” energy and
momentum are carried away by the undetected
antineutrino.

AXZ

AYZ+1

e-

–n

FIGURE 42.21 A more accurate picture of 
beta decay includes neutrinos.
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different. A proton or a neutron in an excited nuclear state, such as the one shown 
in FIGURE 42.22, can undergo a quantum jump to a lower-energy state by emitting a 
high-energy photon. This is the gamma-decay process.

The spacing between atomic energy levels is only a few eV. Nuclear energy 
levels, by contrast, are typically 1 MeV apart. Hence gamma-ray photons have 
Egamma ≈ 1 Me  V. Photons with this much energy have tremendous penetrating  
power and deposit an extremely large amount of energy at the point where they are 
finally absorbed.

Nuclei left to themselves are usually in their ground states and thus cannot emit 
gamma-ray photons. However, alpha and beta decay often leave the daughter nucleus 
in an excited nuclear state, so gamma emission is usually found to accompany alpha 
and beta emission.

The cesium isotope 137Cs is a good example. We noted earlier that 137Cs is used 
as a laboratory source of gamma rays. Actually, 137Cs undergoes beta-minus decay 
to 137Ba. FIGURE 42.23 shows the full process. A 137Cs nucleus undergoes beta-minus 
decay by emitting an electron and an antineutrino, which share between them a  
total energy of 0.51 MeV. The half-life for this process is 30 years. This leaves 
the daughter 137Ba nucleus in an excited state 0.66 MeV above the ground state.  
The excited Ba nucleus then decays within a few seconds to the ground state  
by emitting a 0.66 MeV gamma-ray photon. Thus a 137Cs sample is a source of 
gamma-ray photons, but the photons are actually emitted by barium nuclei rather 
than cesium nuclei.

r0

U

A nucleon makes a 
quantum jump to a 
lower energy level.

The jump is accompanied
by the emission of a photon 
with Ephoton ≈ 1 MeV.

Gamma-ray
photon

Excited
level

Lower
level

FIGURE 42.22 Gamma decay.

Excited
state

1.17
MeV

0.51
MeV

0.66
MeV

Ground
state

Gamma decay

Beta decay

g

e-

137Cs

137Ba

FIGURE 42.23 The decay of 137Cs involves both beta and gamma decay.
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Alpha decay reduces A by 4 and Z by 2.

Beta decay increases Z by 1.

Some nuclei can
undergo either
a or b decay.

235U

207Pb is stable.

FIGURE 42.24 The decay series of 235U.

Decay Series
A radioactive nucleus decays into a daughter nucleus. In many cases, the daughter  
nucleus is also radioactive and decays to produce its own daughter nucleus. The  
process continues until reaching a daughter nucleus that is stable. The sequence of  
isotopes, starting with the original unstable isotope and ending with the stable isotope,  
is called a decay series.

Decay series are especially important for very heavy nuclei. As an example, FIGURE 

42.24 shows the decay series of 235U, an isotope of uranium with a 700-million-year 
half-life. This is a very long time, but it is only about 15% the age of the earth, thus 
most (but not all) of the 235U nuclei present when the earth was formed have now 
decayed. There are many unstable nuclei along the way, but all 235U nuclei eventually 
end as the 207Pb isotope of lead, a stable nucleus.

Notice that some nuclei can decay by either alpha or beta decay. Thus there are a 
variety of paths that a decay can follow, but they all end at the same point.

STOP TO THINK 42.5 The cobalt isotope 60Co 1Z = 272 decays to the nickel isotope 
60Ni 1Z = 282. The decay process is

a. Alpha decay. b. Beta-minus decay. c. Beta-plus decay.
d. Electron capture. e. Gamma decay.
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42.7  Biological Applications  
of Nuclear Physics

Nuclear physics has brought both peril and promise to society. Radiation can cause 
tumors, but it also can be used to cure some cancers. This section is a brief survey of 
medical and biological applications of nuclear physics.

 Radiation Dose
Nuclear radiation, which is ionizing radiation, disrupts a cell’s machinery by altering 
and damaging the biological molecules. The consequences of this disruption vary 
from genetic mutations to uncontrolled cell multiplication (i.e., tumors) to cell death.

Beta and gamma radiation can penetrate the entire body and damage internal  
organs. Alpha radiation has less penetrating ability, but it deposits all its energy in a 
very small, localized volume. Internal organs are usually safe from alpha radiation, 
but the skin is very susceptible, as are the lungs if radioactive dust is inhaled.

Biological effects of radiation depend on two factors. The first is the physical factor  
of how much energy is absorbed by the body. The second is the biological factor of 
how tissue reacts to different forms of radiation.

The absorbed dose of radiation is the energy of ionizing radiation absorbed per  
kilogram of tissue. The SI unit of absorbed dose is the gray, abbreviated Gy. It is defined as

1 gray = 1 Gy K 1.00 J/kg of absorbed energy

The absorbed dose depends only on the energy absorbed, not at all on the type of radia-
tion or on what the absorbing material is.

Biologists and biophysicists have found that a 1 Gy dose of gamma rays and a 1 Gy 
dose of alpha particles have different biological consequences. To account for such  
differences, the relative biological effectiveness (RBE) is defined as the biological  
effect of a given dose relative to the biological effect of an equal dose of x rays.

TABLE 42.4 shows the relative biological effectiveness of radiation. Larger values corre-
spond to larger biological effects. Neutrons have a range of values because the biological 
effect varies with the energy of the particle and with the type of cell. Alpha radiation has 
the largest RBE because the energy is deposited in the smallest volume.

The product of the absorbed dose with the RBE is called the dose equivalent. 
Dose equivalent is measured in sieverts, abbreviated Sv. To be precise,

dose equivalent in Sv = absorbed dose in Gy * RBE

1 Sv of radiation produces the same biological damage regardless of the type of  
radiation. An older but still widely used unit for dose equivalent is the rem, defined 
as 1 rem = 0.010 Sv. Small radiation doses are measured in millisievert (mSv) or  
millirem (mrem).

TABLE 42.4 Relative biological 
effectiveness of radiation

Radiation type RBE

X rays 1

Gamma rays 1

Beta particles 1

Neutrons 5–20

Protons 10

Alpha particles 20

A 75 kg laboratory technician working with the radioactive isotope 
137Cs receives an accidental 1.0 mSv exposure. 137Cs produces 
0.66 MeV gamma-ray photons. How many gamma-ray photons are 
absorbed in the technician’s body?

MODEL The radiation dose is a combination of deposited energy 
and biological effectiveness. The RBE for gamma rays is 1. Gamma  
rays are penetrating, so this is a whole-body exposure.

SOLVE The absorbed dose is the dose in Sv divided by the RBE. In 
this case, because RBE = 1, the dose is 0.0010 Gy = 0.0010 J/kg. 
This is a whole-body exposure, so the total energy deposited in the 

technician’s body is 0.075 J. The energy of each absorbed photon is 
0.66 MeV, but this value must be converted into joules. The number 
of photons in 0.075 J is

  N =
0.075 J

16.6 * 105 e  V/photon211.60 * 10-19 J/e  V2
  = 7.1 * 1011 photons

REVIEW The energy deposited, 0.075 J, is very small. Radiation 
does its damage not by thermal effects, which would require sub-
stantially more energy, but by ionization.

EXAMPLE 42.7 ■ Radiation exposure
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TABLE 42.5 gives some basic information about radiation exposure. We are all exposed 
to a continuous natural background of radiation from cosmic rays and from naturally 
occurring radioactive atoms (uranium and other atoms in the uranium decay series) in 
the ground, the atmosphere, and even the food we eat. This background averages about  
3 mSv per year, although there are wide regional variations depending on the soil type 
and the elevation. (Higher elevations have a larger exposure to cosmic rays.)

Medical x rays vary significantly. The average person in the United States receives 
approximately 0.6 mSv per year from all medical sources. All other sources, such as 
fallout from atmospheric nuclear tests many decades ago, nuclear power plants, and 
industrial uses of radioactivity, add up to less than 0.1 mSv per year.

The question inevitably arises: What is a safe dose? This remains a controversial 
topic and the subject of ongoing research. The effects of large doses of radiation are 
easily observed. The effects of small doses are hard to distinguish from other natural 
and environmental causes. Thus there’s no simple or clear definition of a safe dose. 
A prudent policy is to avoid unnecessary exposure to radiation but not to worry over 
exposures less than the natural background. It’s worth noting that the mCi radioactive 
sources used in laboratory experiments provide exposures much less than the natural 
background, even if used on a regular basis.

Medical Uses of Radiation
Radiation can be put to good use killing cancer cells. This area of medicine is called 
radiation therapy. Gamma rays are the most common form of radiation, often from the 
isotope 60Co. As FIGURE 42.25 shows, the gamma rays are directed along many different 
lines, all of which intersect the tumor. The goal is to provide a lethal dose to the cancer 
cells without overexposing nearby tissue. The patient and the radiation source are rotated  
around each other under careful computer control to deliver the proper dose.

Other tumors are treated by surgically implanting radioactive “seeds” within or 
next to the tumor. Alpha particles, which are very damaging locally but don’t pene-
trate far, can be used in this fashion.

Radioactive isotopes are also used as tracers in diagnostic procedures. This  
technique is based on the fact that all isotopes of an element have identical chemical 
behavior. As an example, a radioactive isotope of iodine is used in the diagnosis of  
certain thyroid conditions. Iodine is an essential element in the body, and it concentrates  
in the thyroid gland. A doctor who suspects a malfunctioning thyroid gland gives the 
patient a small dose of sodium iodide in which some of the normal 127I atoms have 
been replaced with 131I. (Sodium iodide, which is harmless, dissolves in water and can 
simply be drunk.) The 131I isotope, with a half-life of eight days, undergoes beta decay  
and subsequently emits a gamma-ray photon that can be detected.

The radioactive iodine concentrates inside the thyroid gland within a few hours. 
The doctor then monitors the gamma-ray photon emissions over the next few days  
to see how the iodine is being processed within the thyroid and how quickly it is  
eliminated from the body.

Other important radioactive tracers include the chromium isotope 51Cr, which is 
taken up by red blood cells and can be used to monitor blood flow, and the xenon  
isotope 133Xe, which is inhaled to reveal lung functioning. Radioactive tracers are non-
invasive, meaning that the doctor can monitor the inside of the body without surgery.

Magnetic Resonance Imaging
The proton, like the electron, has an inherent angular momentum (spin) and an inherent 
magnetic moment. You can think of the proton as being like a little compass needle that  
can be in one of two positions, the positions we call spin-up and spin-down.

A compass needle aligns itself with an external magnetic field. This is the needle’s 
lowest-energy position. Turning a compass needle by hand is like rolling a ball uphill; 
you’re giving it energy, but, like the ball rolling downhill, it will realign itself with the 

Radiation therapy is a beneficial use of 
nuclear physics.

TABLE 42.5  Radiation exposure

Radiation source
Typical exposure  

(mSv)

CT abdominal scan 10

Natural background (1 year) 3

Mammogram x ray 0.4

Chest x ray 0.3

Dental x ray 0.01

g

g

g

g

g

Gamma radiation is incident along many 
lines, all of which intersect the tumor.

Tumor

FIGURE 42.25 Radiation therapy is 
designed to deliver a lethal dose to the 
tumor without damaging nearby tissue.
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1284 CHAPTER 42 Nuclear Physics

lowest-energy position when you remove your finger. There is, however, an unstable 
equilibrium position, like a ball at the top of a hill, in which the needle is anti-aligned 
with the field. The slightest jostle will cause it to flip around, but the needle will be 
steady in its upside-down configuration if you can balance it perfectly.

A proton in a magnetic field behaves similarly, but with a major difference: Because 
the proton’s energy is quantized, the proton cannot assume an intermediate position. 
It’s either aligned with the magnetic field (the spin-up orientation) or anti-aligned 
(spin-down). FIGURE 42.26a shows these two quantum states. Turning on a magnetic 
field lowers the energy of a spin-up proton and increases the energy of an anti-aligned, 
spin-down proton. In other words, the magnetic field creates an energy difference  
between these states.

f

Absorption

nmr resonance
frequency

Magnet

Sample

Coil

N

f

S Oscillator

(b)

(a)

Radio-frequency photons 
drive protons back and forth
between these two energy levels.

The magnetic field is off. 
Spin-up and spin-down 
protons have the same energy.

These are the energy levels
with the magnetic field on.

m = -

m = 

Increasing
energy Spin down, anti-aligned with field

Spin up, aligned with field

1
2

1
2

FIGURE 42.26 Nuclear magnetic resonance is possible because spin-up and spin-down 
protons have slightly different energies in a magnetic field.

The energy difference is very tiny, only about 10-7 e  V. Nonetheless, photons whose 
energy matches the energy difference cause the protons to move back and forth be-
tween these two energy levels as the photons are absorbed and emitted. In effect, the 
photons are causing the protons’ spins to flip back and forth rapidly. The photon fre-
quency, which depends on the magnetic field strength, is typically about 100 MHz, 
similar to FM radio frequencies.

FIGURE 42.26b shows how this behavior is put to use. A sample containing protons 
is placed in a magnetic field. A coil is wrapped around the sample, and a variable- 
frequency AC source drives a current through this coil. The protons absorb power 
from the coil when its frequency is just right to flip the spin back and forth; otherwise, 
no power is absorbed. A resonance is seen by scanning the coil through a small range 
of frequencies.

This technique of observing the spin flip of nuclei (the technique also works  
for nuclei other than hydrogen) in a magnetic field is called nuclear magnetic  
resonance, or nmr. It has many applications in physics, chemistry, and materials 
science. Its medical use exploits the fact that tissue is mostly water, and two out of 
the three nuclei in a water molecule are protons. Thus the human body is basically a 
sample of protons, with the proton density varying as the tissue density varies.

The medical procedure known as magnetic resonance imaging, or MRI,  
places the patient in a spatially varying magnetic field. The variations in the field 
cause the proton absorption frequency to vary from point to point. From the known 
shape of the field and measurements of the frequencies that are absorbed, and how 
strongly, sophisticated computer software can transform the raw data into detailed 
images such as the one shown in FIGURE 42.27.

FIGURE 42.27 Magnetic resonance imaging 
shows internal organs in exquisite detail.
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As an interesting footnote, the technique was still being called nuclear magnetic 
resonance when it was first introduced into medicine. Unfortunately, doctors soon 
found that many patients were afraid of it because of the word “nuclear.” Hence the 
alternative term “magnetic resonance imaging” was coined. It is true that the public 
perception of nuclear technology is not always positive, but equally true that nuclear 
physics has made many important and beneficial contributions to society.

  CHAPTER 42 CHALLENGE EXAMPLE    A radioactive tracer

An 85 kg patient swallows a 30 mCi beta emitter that is to be used 
as a tracer. The isotope’s half-life is 5.0 days. The average energy 
of the beta particles is 0.35 MeV, and they have an RBE (relative 
biological effectiveness) of 1. Ninety percent of the beta particles 
are stopped inside the patient’s body and 10% escape. What total 
dose equivalent does this patient receive?

MODEL Beta radiation penetrates the body—enough that 10% of 
the particles escape—so this is a whole-body exposure. Even the 
escaping particles probably deposit some energy in the body, but 
we’ll assume that the dose is from only those particles that stop 
inside the body.

SOLVE The dose equivalent is the absorbed dose in Gy multiplied 
by the RBE of 1. The absorbed dose is the energy absorbed per  
kilogram of tissue, so we need to find the total energy absorbed 
from the time the patient swallows the emitter until it has all  
decayed. The sample’s initial activity R0 is related to the nuclear  
lifetime t and the initial number of radioactive atoms N0 by 
R0 = N0 /t. Thus the number of radioactive atoms in the sample, all 
of which are going to decay and emit a beta particle, is

N0 = tR0 =
t1/2

ln 2
 R0

In developing this relationship, we used the connection between the 
lifetime and the half-life.

The initial activity is given in microcuries. Converting to bec-
querels, we have

  R0 = 130 * 10-6 Ci2 *
3.7 * 1010 Bq

1 Ci

  = 1.1 * 106 Bq = 1.1 * 106 decays/s

The half-life in seconds is

 t1/2 = 5.0 days *
86,400 s

1 day
= 4.3 * 105 s

Thus the total number of beta decays over the course of several 
weeks, as the sample completely decays, is

N0 =
t1/2

ln 2
 R0 =

14.3 * 105 s211.1 * 106 decays/s2
ln 2

= 6.8 * 1011

Ninety percent of these decays deposit, on average, 0.35 Me  V in the 
body, so the absorbed energy is

  Eabs = 10.90216.8 * 10112113.5 * 105 e  V2 *
1.60 * 10-19 J

1 e  V 2
  = 0.034 J

This is not a lot of energy in an absolute sense, but it is all damag-
ing, ionizing radiation. The absorbed dose is

absorbed dose =
0.034 J
85 kg

= 4.0 * 10-4 Gy

and thus the dose equivalent is

dose equivalent = 1 * 14.0 * 10-4 Gy2 = 0.40 mSv

REVIEW This dose, typical of many medical uses of radiation, is 
about 15% of the yearly radiation dose from the natural background. 
Although one should always avoid unnecessary radiation, this dose 
would not cause concern if there were a medical reason for it.
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The goal of Chapter 42 has been to learn about the nucleus  
and some applications of nuclear physics.

The Nucleus
The nucleus is a small, dense,  
positive core at the center of  
an atom.
Z protons: charge +e, spin 12
N neutrons: charge 0, spin 12
The mass number is A = Z + N.

The nuclear radius is R = r0 A
1/3, where r0 = 1.2 fm. 

Typical radii are a few fm.

Nuclear forces

Nuclear Stability
Most nuclei are not stable.  
Unstable nuclei undergo  
radioactive decay. Stable  
nuclei cluster along the line  
of stability in a plot of  
the isotopes.

Three mechanisms by which unstable nuclei decay:

Decay Particle Mechanism Energy Penetration

a 4He nucleus tunneling few MeV low

b e- n S p+ + e- ≈  1 Me  V medium

e+ p+ S n + e+ ≈  1 Me  V medium

g photon quantum jump ≈  1 Me  V high

General Principles

Summary

Neutron

Proton

Attractive strong force
• Acts between any two 

nucleons

• Is short range, 6 3 fm

• Is felt between nearest 
neighbors

Repulsive electric force
• Acts between two 

protons

• Is long range

• Is felt across the nucleus

 

Line of stabilityN

Z

Alpha decay is
energetically
favorable for
high-Z nuclei.

Low-Z nuclei
move closer to
the line of
stability by
beta decay.

Shell model  

Each nucleon  
moves with an  
average potential  
energy due to all  
other nucleons.

Radioactive decay  

The number of undecayed nuclei  
decreases exponentially with  
time t:

  N = N0 exp 1- t/t2
  = N011/22t/t1/2

The lifetime t is 1/r, where r is  
the decay rate.

The half-life

t1/2 = t  ln 2 = 0.693t

is the time in which half of any sample decays.

Curve of binding  
energy  

The average  
binding energy  
per nucleon has a  
broad maximum  
at A ≈ 60.

Measuring radiation  

The activity R = N/t of a radioactive sample, measured in  
becquerels or curies, is the number of decays per second.

The absorbed dose is measured in grays, where

1 Gy K 1.00 J/kg of absorbed energy

The relative biological effectiveness (RBE) is the biological effect 
of a dose relative to the biological effects of x rays.

The dose equivalent is measured in Sv, where Sv = Gy * RBE. 
One Sv of radiation produces the same biological effect regardless 
of the type of radiation. Dose equivalent is also measured in rem, 
where 1 rem = 0.010 Sv.

Important Concepts

Applications

rprn 0

U

Protons

Neutrons

Protons and neutrons
fill to equal heights,
thus N 7 Z.

Coulomb energy

Proton energy levels

Neutron energy levels
A

MeV per nucleon

1200

4

240
0

8

t

N

t1/20 t

0.37N0

0

0.50N0

N0
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CONCEPTUAL QUESTIONS

nuclear physics
nucleon
atomic number, Z
mass number, A
neutron number, N
isotope
radioactive
stable
natural abundance
isobar

deuterium
liquid-drop model
line of stability
binding energy, B
curve of binding energy
strong force
shell model
alpha decay
beta decay
gamma decay

ionizing radiation
Geiger counter
half-life, t1/2

activity, R
becquerel, Bq
curie, Ci
parent nucleus
daughter nucleus
electron capture
weak interaction

neutrino
decay series
absorbed dose
gray, Gy
relative biological effectiveness (RBE)
dose equivalent
sievert, Sv
rem
nuclear magnetic resonance (nmr)
 magnetic resonance imaging (MRI)

Terms and Notation

1. Consider the atoms 16O, 18O, 18F, 18Ne, and 20Ne. Some of the 
following questions may have more than one answer. Give all 
answers that apply.
a. Which are isotopes?
b. Which are isobars?
c. Which have the same chemical properties?
d. Which have the same number of neutrons?

2. a. Is the binding energy of a nucleus with A = 200 more than, 
less than, or equal to the binding energy of a nucleus with 
A = 60? Explain.

b. Is a nucleus with A = 200 more tightly bound, less tightly 
bound, or bound equally tightly as a nucleus with A = 60? 
Explain.

3. a. How do we know the strong force exists?
b. How do we know the strong force is short range?

4. Does each nuclear energy-level diagram in FIGURE Q42.4 repre-
sent a nuclear ground state, an excited nuclear state, or an impos-
sible nucleus? Explain.

6. Nucleus A decays into nucleus B with a half-life of 5 s. At t = 0 
s, there are 500 A nuclei and no B nuclei. At what time will there 
be 250 B nuclei?

7. What kind of decay, if any, can occur for the nuclei in  
FIGURE Q42.7?

(a)

Neutrons Protons Neutrons Protons Neutrons Protons

(b) (c)

FIGURE Q42.4

Neutrons Protons Neutrons Protons Neutrons Protons

(a) (b) (c)

FIGURE Q42.7

A

B
FIGURE Q42.85. Are the following decays possible? If not, why not?

a. 232Th 1Z = 902 S 236U 1Z = 922 + a

b. 238Pu 1Z = 942 S 236U 1Z = 922 + a

c. 11B 1Z = 52 S 11B 1Z = 52 + g

d. 33P 1Z = 152 S 32S 1Z = 162 + e-

8. Apple A in FIGURE Q42.8 is strongly irradiated by nuclear radi-
ation for 1 hour. Apple B is not irradiated. Afterward, in what 
ways are apples A and B different?

9. The three isotopes 238U, 137Cs, and 218Po, decay as 238U S 234Th +   
a; 137Cs S 137Ba + e- + g; and 218Po S 218At + e-. Which of 
these isotopes would be most useful as a biological tracer? Why?
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EXERCISES AND PROBLEMS
See Appendix C for data on atomic masses, isotopic abundance, 
radioactive decay modes, and half-lives.

Problems labeled  integrate material from earlier chapters.

Exercises

Section 42.1 Nuclear Structure

1. | How many protons and how many neutrons are in (a) 6Li,  
(b) 54Cr, (c) 54Fe, and (d) 220Rn?

2. | How many protons and how many neutrons are in (a) 3He,  
(b) 32P, (c) 32S, and (d) 238U?

3.  | Calculate the nuclear diameters of (a) 4He, (b) 56Fe, and  
(c) 238U.

4. | Calculate the mass, radius, and density of the nucleus of  
(a) 7Li and (b) 207Pb. Give all answers in SI units.

5. | Which stable nuclei have a diameter of 7.46 fm?
6. | Calculate the chemical atomic mass of silicon.

Section 42.2 Nuclear Stability

7. | Use data in Appendix C to make your own chart of stable and 
unstable nuclei, similar to Figure 42.4, for all nuclei with Z … 8. 
Use a blue or black dot to represent stable isotopes, a red dot 
to represent isotopes that undergo beta-minus decay, and a green 
dot to represent isotopes that undergo beta-plus decay or elec-
tron-capture decay.

8. || a. What is the smallest value of A for which there are two 
stable nuclei? What are they?

b. For which values of A less than this are there no stable 
nuclei?

9. || Calculate (in MeV) the total binding energy and the binding 
energy per nucleon for 2H and 4He.

10. || Calculate (in MeV) the total binding energy and the binding 
energy per nucleon for 54Cr and for 54Fe.

11. || Calculate (in MeV) the binding energy per nucleon for 3H and 
2H. Which is more tightly bound?

12. || Calculate (in MeV) the binding energy per nucleon for 12C 
and 14C. Which is more tightly bound?

Section 42.3 The Strong Force

13. | Use the potential-energy diagram in Figure 42.8 to estimate 
the strength of the strong force between two nucleons separated 
by 1.5 fm.

14. || Use the potential-energy diagram in Figure 42.8 to sketch an 
approximate graph of the strong force between two nucleons ver-
sus the distance r between their centers.

15. || Use the potential-energy diagram in Figure 42.8 to estimate 
the ratio of the gravitational potential energy to the nuclear  
potential energy for two neutrons separated by 1.0 fm.

Section 42.4 The Shell Model

16. | a. Draw energy-level diagrams, similar to Figure 42.11, for 
all A = 10 nuclei listed in Appendix C. Show all the occu-
pied neutron and proton levels.

b. Which of these nuclei are stable? What is the decay mode 
of any that are radioactive?

17. | a. Draw energy-level diagrams, similar to Figure 42.11, for 
all A = 14 nuclei listed in Appendix C. Show all the occu-
pied neutron and proton levels.

b. Which of these nuclei are stable? What is the decay mode 
of any that are radioactive?

Section 42.5 Radiation and Radioactivity

18. | The barium isotope 131Ba has a half-life of 12 days. A 250 mg 
sample of 131Ba is prepared. What is the mass of 131Ba after  
(a) 1 day, (b) 10 days, and (c) 100 days?

19. || A Geiger counter is used to measure the decay of a radioactive 
isotope produced in a nuclear reactor. Initially, when the sample 
is first removed from the reactor, the Geiger counter registers 
15,000 decays/s. 15 h later the count is down to 5500 decays/s.
a. What is the isotope’s half-life in h?
b. At what time after the sample’s removal from the reactor is 

the count 1200 decays/s?
20. | The radium isotope 226Ra has a half-life of 1600 years. A 

sample begins with 1.00 * 1010 226Ra atoms. How many are left 
after (a) 200 years, (b) 2000 years, and (c) 20,000 years?

21. || A sample of 1.0 * 1010 atoms that decay by alpha emission 
has a half-life of 100 min. How many alpha particles are emitted 
between t = 50 min and t = 200 min?

22. || The radioactive hydrogen isotope 3H, called tritium, has a 
half-life of 12 years.
a. What are the decay mode and the daughter nucleus of tritium?
b. What are the lifetime and the decay rate of tritium?

23.  | What is the half-life in days of a radioactive sample with 
5.0 * 1015 atoms and an activity of 5.0 * 108 Bq?

24. || The half-life of 60Co is 5.27 years. The activity of a 60Co 
 sample is 3.50 * 109 Bq. What is the mass of the sample?

25. || The radioactive isotope 230Th has a density of 11,700 kg/m3 
and a half-life of 75,000 yr. What is the radius of a 230Th sphere 
that has an activity of 1.0 Ci?

Section 42.6 Nuclear Decay Mechanisms

26. | Identify the unknown isotope X in the following decays.
a. X S 224Ra + a

b. X S 207Pb + e- + n

c. 7Be + e- S X + n

d. X S 60Ni + g

27. | Identify the unknown isotope X in the following decays.
a. 230Th S X + a

b. 35S S X + e- + n

c. X S 40K + e+ + n

d. 24Na S 24Mg + e- + n S X + g

28. | a. What are the isotopic symbols of all A = 17 isobars?
b. Which of these are stable nuclei?
c. For those that are not stable, identify both the decay mode 

and the daughter nucleus.
29. | a. What are the isotopic symbols of all A = 19 isobars?

b. Which of these are stable nuclei?
c. For those that are not stable, identify both the decay mode 

and the daughter nucleus.
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b. By how much does the mass decrease when a helium nucleus 
is formed from two protons and two neutrons? Give your an-
swer both in atomic mass units and as a percentage of the 
mass of the helium nucleus.

c. Compare your answers to parts a and b. Why do you hear it 
said that mass is “lost” in nuclear reactions but not in chem-
ical reactions?

44. || Use the graph of binding energy to estimate the total energy 
released if three 4He nuclei fuse together to form a 12C nucleus.

45. || Use the graph of binding energy to estimate the total energy 
released if a nucleus with mass number 240 fissions into two nu-
clei with mass number 120.

46. || Could a 56Fe nucleus fission into two 28Al nuclei? Your an-
swer, which should include some calculations, should be based 
on the curve of binding energy.

47. || What energy (in MeV) alpha particle has a de Broglie wave-
length equal to the diameter of a 238U nucleus?

48. || The activity of a sample of the cesium isotope 137Cs, with a 
half-life of 30 years, is 2.0 * 108 Bq. Many years later, after the 
sample has fully decayed, how many beta particles will have 
been emitted?

49. || What is the age in years of a bone in which the 14C/12C ratio is 
measured to be 1.65 * 10-13?

50. || A 1 Ci source of radiation is a significant source. 238U is an 
alpha emitter. What mass of 238U has an activity of 1 Ci?

51. | 137Cs is a common product of nuclear fission. Suppose an  
accident spills 550 mCi of 137Cs in a lab room.
a. What mass of 137Cs is spilled?
b. If the spill is not cleaned up, how long will it take until the 

radiation level drops to an acceptable level, for a room this 
size, of 25 mCi?

52. || A 115 mCi radioactive tracer is made in a nuclear reactor. 
When it is delivered to a hospital 16 hours later its activity is  
95 mCi. The lowest usable level of activity is 10 mCi.
a. What is the tracer’s half-life?
b. For how long after delivery is the sample usable?

53. || Beta-plus decay is AXZ S AYZ-1 + e+ + n.
a. Determine the mass threshold for beta-plus decay. That is, 

what is the minimum atomic mass mX for which this decay 
is energetically possible? Your answer will be in terms of the 
atomic mass mY and the electron mass me.

b. Can 13N undergo beta-plus decay into 13C? If so, how much 
energy is released in the decay?

54. ||| The radium isotope 223Ra, an alpha emitter, has a half-life of 
11.43 days. You happen to have a 1.0 g cube of 223Ra, so you 
decide to use it to boil water for tea. You fill a well-insulated 
container with 100 mL of water at 18°C and drop in the cube of 
radium. How long will it take the water to boil?

55.  || How many half-lives must elapse until (a) 90% and (b) 99% of 
a radioactive sample of atoms has decayed?

56. || A sample contains radioactive atoms of two types, A and B. 
Initially there are five times as many A atoms as there are B 
atoms. Two hours later, the numbers of the two atoms are equal. 
The half-life of A is 0.50 hour. What is the half-life of B?

57. | The half-life of the uranium isotope 235U is 700 million years. 
The earth is approximately 4.5 billion years old. How much 
more 235U was there when the earth formed than there is today? 
Give your answer as the then-to-now ratio.

30. || An unstable nucleus undergoes alpha decay with the release 
of 5.52 MeV of energy. The combined mass of the parent and 
daughter nuclei is 452 u. What was the mass number of the par-
ent nucleus?

31. || What is the energy (in MeV) released in the alpha decay of 
233U?

32. || What is the total energy (in MeV) released in the beta-minus 
decay of 14C?

33. || What is the total energy (in MeV) released in the beta-minus 
decay of 3H?

34. || What is the total energy (in MeV) released in the beta decay 
of a neutron?

Section 42.7 Biological Applications of Nuclear Physics

35. | The doctors planning a radiation therapy treatment have de-
termined that a 100 g tumor needs to receive 0.20 J of gamma 
radiation. What is the dose in grays?

36. | 1.5 Gy of gamma radiation are directed into a 150 g tumor 
during radiation therapy. How much energy does the tumor 
absorb?

37. | How many grays of gamma-ray photons cause the same bio-
logical damage as 0.30 Gy of alpha radiation?

38. || A 50 kg laboratory worker is exposed to 20 mJ of beta radia-
tion. What is the dose equivalent in mrem?

Problems
39. || a. What initial speed must an alpha particle have to just 

touch the surface of a 197Au gold nucleus before being 
turned back? Assume the nucleus stays at rest.

Hint: The alpha particle is not a point particle.
b. What is the initial energy (in MeV) of the alpha particle?

40. ||| Particle accelerators fire protons at target nuclei so that in-
vestigators can study the nuclear reactions that occur. In one ex-
periment, the proton needs to have 20 MeV of kinetic energy as 
it impacts a 207Pb nucleus. With what initial kinetic energy (in 
MeV) must the proton be fired toward the lead target? Assume 
the nucleus stays at rest.
Hint: The proton is not a point particle.

41. || Stars are powered by nuclear reactions that fuse hydrogen 
into helium. The fate of many stars, once most of the hydrogen 
is used up, is to collapse, under gravitational pull, into a neutron 
star. The force of gravity becomes so large that protons and elec-
trons are fused into neutrons in the reaction p+ + e- S n + n. 
The entire star is then a tightly packed ball of neutrons with the 
density of nuclear matter.
a. Suppose the sun collapses into a neutron star. What will its 

radius be? Give your answer in km.
b. The sun’s rotation period is now 27 days. What will its rota-

tion period be after it collapses?
Rapidly rotating neutron stars emit pulses of radio waves at the 
rotation frequency and are known as pulsars.

42. || The element gallium has two stable isotopes: 69Ga with an 
atomic mass of 68.92 u and 71Ga with an atomic mass of 70.92 u. 
A periodic table shows that the chemical atomic mass of gallium 
is 69.72 u. What is the percent abundance of 69Ga?

43. || You learned in Chapter 41 that the binding energy of the  
electron in a hydrogen atom is 13.6 eV.
a. By how much does the mass decrease when a hydrogen atom 

is formed from a proton and an electron? Give your answer 
both in atomic mass units and as a percentage of the mass of 
the hydrogen atom.
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1290 CHAPTER 42 Nuclear Physics

235U and 238U should have been created in roughly equal num-
bers. Today, 99.28% of uranium is 238U and only 0.72% is 235U. 
How long ago did the supernova occur?

Challenge Problems
64. ||| The technique known as potassium-argon dating is used to 

date old lava flows. The potassium isotope 40K has a 1.28-billion- 
year half-life and is naturally present at very low levels. 40K  
decays by two routes: 89% undergo beta-minus decay into 40Ca 
while 11% undergo electron capture to become 40Ar. Argon is 
a gas, and there is no argon in flowing lava because the gas es-
capes. Once the lava solidifies, any argon produced in the decay 
of 40K is trapped inside and cannot escape. A geologist brings 
you a piece of solidified lava in which you find the 40Ar/40K ratio 
to be 0.013. What is the age of the rock?

65. ||| Alpha decay occurs when an alpha particle tunnels through 
the Coulomb barrier. FIGURE CP42.65 shows a simple one- 
dimensional model of the potential-energy well of an alpha 
particle in a nucleus with A ≈ 235. The 15 fm width of this 
one-dimensional potential-energy well is the diameter of the 
nucleus. Further, to keep the model simple, the Coulomb bar-
rier has been modeled as a 20-fm-wide, 30-MeV-high rectan-
gular potential-energy barrier. The goal of this problem is to 
calculate the half-life of an alpha particle in the energy level 
E = 5.0 Me  V.
a. What is the kinetic energy of the alpha particle while inside 

the nucleus? What is its kinetic energy after it escapes from 
the nucleus?

b. Consider the alpha particle within the nucleus to be a point 
particle bouncing back and forth with the kinetic energy you 
found in part a. What is the particle’s collision rate, the num-
ber of times per second it collides with a wall of the potential?

c. What is the tunneling probability Ptunnel?
d. Ptunnel is the probability that on any one collision with a wall 

the alpha particle tunnels through instead of reflecting. The 
probability of not tunneling is 1 - Ptunnel. Hence the proba-
bility that the alpha particle is still inside the nucleus after 
N collisions is 11 - Ptunnel2N ≈ 1 - NPtunnel, where we’ve 
used the binomial approximation because Ptunnel V 1. The 
half-life is the time at which half the nuclei have not yet 
decayed. Use this to determine (in years) the half-life of 
the nucleus.

58. || Radioactive isotopes often occur together in mixtures. 
Suppose a 100 g sample contains 131Ba, with a half-life of 12 
days, and 47Ca, with a half-life of 4.5 days. If there are initially 
twice as many calcium atoms as there are barium atoms, what 
will be the ratio of calcium atoms to barium atoms 2.5 weeks 
later?

59. || There is evidence that low-energy x rays have an RBE slightly 
greater than 1. Suppose that 10 keV photons with an RBE of 
1.2 are used to make a chest x ray. A 60 kg person receives a 
0.30  mSv dose from a chest x ray that exposes 25% of the 
patient’s body. How many x ray photons are absorbed in the 
patient’s body?

60. || The uranium isotope 238U is naturally present at low levels in 
many soils. One of the nuclei in the decay series of 238U is the 
radon isotope 222Rn, which decays by emitting a 5.50 MeV alpha 
particle with t1/2 = 3.82 days. Radon is a gas, and it tends to seep 
from soil into basements. The Environmental Protection Agency 
recommends that homeowners take steps to remove radon, by 
pumping in fresh air, if the radon activity exceeds 4 pCi per liter 
of air.
a. How many 222Rn atoms are there in 1 m3 of air if the activity 

is 4 pCi/L?
b. The range of alpha particles in air is ≈3 cm. Suppose we 

model a person as a 180-cm-tall, 25-cm-diameter cylinder 
with a mass of 65 kg. Only decays within 3 cm of the cylinder 
can cause exposure, and only ≈50% of the decays direct the 
alpha particle toward the person. Determine the dose in mSv 
per year for a person who spends the entire year in a room 
where the activity is 4 pCi/L.

c. Does the EPA recommendation seem appropriate? Why?
61. || The plutonium isotope 239Pu has a half-life of 24,000 

years and decays by the emission of a 5.2 MeV alpha particle. 
Plutonium is not especially dangerous if handled because the ac-
tivity is low and the alpha radiation doesn’t penetrate the skin. 
However, there are serious health concerns if even the tiniest 
particles of plutonium are inhaled and lodge deep in the lungs. 
This could happen following any kind of fire or explosion that 
disperses plutonium as dust.
a. Soot particles are roughly 1 mm in diameter. What is the ac-

tivity of a 1.0@mm@diameter particle of 239Pu? The density of 
plutonium is 19,800 kg/m3.

b. How many decays occur in 1.0 yr?
62. ||| The rate at which a radioactive tracer is lost from a patient’s 

body is the rate at which the isotope decays plus the rate at which 
the element is excreted from the body. Medical experiments have 
shown that stable isotopes of a particular element are excreted 
with a 6.0 day half-life. A radioactive isotope of the same ele-
ment has a half-life of 9.0 days. What is the effective half-life of 
the isotope, in days, in a patient’s body?

63. || All the very heavy atoms found in the earth were created long 
ago by nuclear fusion reactions in a supernova, an exploding star. 
The debris spewed out by the supernova later coalesced into the 
gases from which the sun and the planets of our solar system 
were formed. Nuclear physics suggests that the uranium isotopes 

x

U (MeV)

30

-60

20 fm 15 fm 20 fm

E = 5.0 MeV

FIGURE CP42.65
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Exercises and Problems 1291

c. Write the equation that expresses the conservation of relativ-
istic momentum for this decay. Let v represent speed, rather 
than velocity, then write any minus signs explicitly.

d. You have two simultaneous equations in the two un-
knowns vp and ve. To help in solving these, first prove that 
gv =  1g2 - 121/2c.

e. Solve for vp and ve. (It’s easiest to solve for gp and ge, then 
find v from g.) First get an algebraic expression for each, in 
terms of the masses. Then evaluate each, giving v as a frac-
tion of c.

f. Calculate the kinetic energy in MeV of the proton and the 
electron. Verify that their sum matches your answer to part a.

g. Now explain why the electron is ejected in beta decay while 
the proton remains in the nucleus.

66. ||| It might seem strange that in beta decay the positive proton, 
which is repelled by the positive nucleus, remains in the nucleus 
while the negative electron, which is attracted to the nucleus, 
is ejected. To understand beta decay, let’s analyze the decay of 
a free neutron that is at rest in the laboratory. We’ll ignore the 
antineu trino and consider the decay n S p+ + e-. The analy-
sis requires the use of relativistic energy and momentum, from 
Chapter 36.
a. What is the total kinetic energy, in MeV, of the proton and 

electron?
b. Write the equation that expresses the conservation of relativ-

istic energy for this decay. Your equation will be in terms of 
the three masses mn, mp, and me and the relativistic factors 
gp and ge .
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Relativity and quantum physics are the cornerstones of modern physics.
■■ Relativity:

■❚ Light speed is the same in all inertial reference frames.
■❚ Space and time are relative.
■❚ Energy and mass are interchangeable.

■■  Quantum physics:
■❚ Light has particle-like properties.
■❚ Matter has wave-like properties.
■❚ Quantum systems are described by wave functions.

Key Findings What are the overarching findings of Part VIII?

Relativity and Quantum Physics
PART  

VIII 
 KNOWLEDGE STRUCTURE

Principle of relativity All the laws of physics are the same in all inertial reference frames.

Schrödinger equation
d2c

dx2 = -
2m

U2 3E - U1x2    4c1x2

Pauli exclusion principle No more than one electron or nucleon can occupy the same quantum state.

Laws What laws and principles of physics govern relativity and quantum physics?

Atomic model
■■ A tiny, dense, positive nucleus is  

surrounded by negative electrons.
■■ The electrons can occupy only certain  

stationary states. The lowest-energy  
stationary state is the ground state.

■■ The nucleus consists of protons and  
neutrons—called nucleons—held  
together by the strong force.

Models What are the most important models used in quantum physics?

Other models
■■ In quantum mechanics, a stationary state  

is described by a wave function. The square  
of the wave function is the probability  
density for finding the particle in a specific  
region of space. Energy is quantized and  
shown on an energy-level diagram. E1

E2

E3

Emission

Absorption

■■ Quantum models we analyzed:
■❚ A particle in a rigid box
■❚ A particle in a finite well
■❚ A quantum harmonic oscillator
■❚ A covalent bond

Photon model
■■ Light consists of discrete, massless  

photons that travel in vacuum at the  
speed of light.

■■ A photon has energy E = hf.
■■ Photons are emitted and absorbed on  

an all-or-nothing basis when a quantum  
system jumps from one energy level to  
another.

Tools What are the most important tools introduced in Part VIII?
Relativity

■■ Space and time depend on the motion  
of experimenters relative to events.
■❚ Time dilation: ∆t = ∆t/21 - b2

■❚ Length contraction: L = 21 - b2/

■■ Mass and energy are interchangeable.
■❚ Total energy: E = gp  

mc2 = E0 + K
■❚ Rest energy: E0 = mc2

Light and matter
■■ Photon energy is E = hf = hc/l.
■■ The de Broglie wavelength is  
l = h/mv.

■■ The particle-in-a-box energy levels are

En = n2 
h2

8mL2

Quantum mechanics
■■ A particle is described by its wave  

function c1x2.
■❚ P1x2 = �c1x2  �2 is the probability  

density for finding the particle.
■❚ The probability of finding a particle in the 

interval xL … x … xR is

Prob = 3
xR

xL

�c1x2  �2dx

■■ The probability of  
tunneling through a  
barrier of width w is

Ptunnel = e-2w/h

where the penetration distance is

h = U/22m1U0 - E2
■■ Heisenberg uncertainty is ∆x ∆px

Ú h/2.

U0

E

0
w

Atoms and nuclei
■■ Atomic energies (except for hydrogen)  

depend on quantum numbers n and l.
■❚ Hydrogen energies: En = -13.60/n2 e  V.
■❚ The Pauli exclusion principle predicts the 

ground-state electron configuration.
■❚ A photon with Ephoton = ∆Eatom is  

absorbed or emitted in a quantum jump.
■■ Excited-state and unstable-nuclei popula-

tions decrease exponentially with time:

N = N0e
-t/t = N011

22 t/t1/2

 t is the lifetime and t1/2 = t ln 2 is the half-life.
■■ Nuclear decay modes are:

■❚ Alpha: Emission of a 4He nucleus.
■❚ Beta: Emission of an electron or positron.
■❚ Gamma: Emission of a photon.
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Mathematics Review

Algebra

Using exponents: a-x =
1
ax axay = a1x +  y2 ax

ay = a1x -  y2
   

a0 = 1 a1 = a a1/n = 2n
a

Fractions: 1a
b21c

d2 =
ac
bd

a/b
c/d

=
ad
bc

1
1/a

= a

Logarithms: If a = ex, then ln1a2 = x ln1ex2 = x eln 1x2 = x

ln1ab2 = ln1a2 + ln1b2 ln1a
b2 = ln1a2 - ln1b2 ln1an2 = n ln1a2

The expression ln(a + b) cannot be simplified.

Quadratic equation: The quadratic equation ax2 + bx + c = 0 has the two solutions x =
-b { 2b2 - 4ac

2a
.

Linear equations: The graph of the equation y = ax + b is a straight line. a is 
the slope of the graph. b is the y-intercept.

Proportionality: To say that y is proportional to x, written y ∝ x, means 
that y = ax, where a is a constant. Proportionality is a 
special case of linearity. A graph of a proportional rela-
tionship is a straight line that passes through the origin.  
If y ∝ x, then

y1

y2
=

x1

x2

Distance: The distance between points with coordinates (x1, y1) and (x2, y2) is

d = 21x2 - x122 + 1y2 - y122

Geometry and Trigonometry
Area and volume: Rectangle

A = ab
a

b Rectangular box

V = abc a
b

c

Triangle

A = 1
2 ab b

a

Right circular cylinder

V = pr2l
r

l

Circle

C = 2pr
A = pr2

r

Sphere 

A = 4pr2

V = 4
3 pr3

r

1ax2y = ax y

∆y

y

x
b

∆x

y-intercept = b

Slope a =  = rise
run

∆y
∆x
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A-2

Arc length and angle: The angle u in radians is defined as u = s/r.
The arc length that spans angle u is s = ru.

2p rad = 360°

sr

r
u

Right triangle: Pythagorean theorem c = 2a2 + b2 or a2 + b2 = c2
c

a

b
u

sin u =
b
c

=
far side

hypotenuse
       u =  sin -11b

c 2
cos u =

a
c

=
adjacent side

hypotenuse
      u =  cos -11a

c 2
tan u =

b
a

=
far side

adjacent side
       u =  tan -11b

a2
General triangle: a + b + g = 180° = p rad

Law of cosines c2 = a2 + b2 - 2ab cos g

Identities: tan a =
sin a
cos a

sin2 a +  cos2 a = 1

sin1-a2 = -sin a cos1-a2 = cos a

sin1a { b2 = sin a  cos b { cos a  sin b cos1a { b2 = cos a  cos b | sin a  sin b

sin12a2 = 2 sin a  cos a cos12a2 = cos2 a - sin2 a

sin1a { p/22 = {cos a cos1a { p/22 = |sin a

sin1a { p2 = -sin a cos1a { p2 = -cos a

Trigonometric  
functions:

sin u and cos u are the functions of the angle u  with period 2p rad.

sin u

1

0

-1

u (rad)
2pp

cos u

1

0

-1

u (rad)
2pp

Expansions and Approximations

Binomial expansion: 11 + x2n = 1 + nx +
n1n - 12

2
 x2 + g

Binomial approximation: 11 + x2n ≈ 1 + nx if x V 1

Trigonometric expansions: sin a = a -
a3

3!
+
a5

5!
-
a7

7!
+ g for a in rad

cos a = 1 -
a2

2!
+
a4

4!
-
a6

6!
+ g for a in rad

Small-angle approximation: If a V 1 rad, then sin a ≈  tan a ≈ a and cos a ≈ 1.

The small-angle approximation is excellent for a 6 5° (≈  0.1 rad) and generally 
acceptable up to a ≈ 10°.

b g

ac

a

b
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A-3

Calculus
The letters a and n represent constants in the following derivatives and integrals.

Derivatives

d
dx

 1a2 = 0
d
dx

 1 ln1ax2   2 =
1
x

d
dx

 1ax2 = a
d
dx

 1eax2 = aeax

d
dx1a

x 2 = -
a

x2

d
dx

1  sin1ax2   2 = a cos1ax2

d
dx

 1axn2 = anxn-1 d
dx

1   cos1ax2    2 = -a sin1ax2

Integrals

3x dx =
1
2

 x2

3x2 dx =
1
3

 x3

3 1

x2 dx = -
1
x

3xn dx =
xn +1

n + 1
  n ≠ -1

3 dx
x

= ln x

3 dx
a + x

= ln1a + x2

3 x dx
a + x

= x - a ln1a + x2

3 dx2x2 { a2
= ln  1x + 2x2 { a22

3 x dx2x2 { a2
= 2x2 { a2

3 dx

x2 + a2 =
1
a

  tan-11x
a2

3 dx

1x2 + a222 =
1

2a3  tan-11x
a2 +

x

2a21x2 + a22

3 dx

1x2 { a223/2 =
{x

a22x2 { a2

3 x dx

1x2 { a223/2 = -
12x2 { a2

3eax dx =
1
a

 eax

3xe-x dx = -1x + 12e-x

3x2e-x dx = -1x2 + 2x + 22e-x

3sin1ax2 dx = -
1
a

  cos1ax2

3cos1ax2 dx =
1
a

  sin1ax2

3sin21ax2 dx =
x
2

-
sin12ax2

4a

3cos21ax2 dx =
x
2

+
sin12ax2

4a

3
∞

0
xne-ax dx =

n!

an+1

3
∞

0
e-ax2

 dx =
1
2

 Ap

a
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A-5

C

A
P

P
E

N
D

IX

Atomic and Nuclear Data

Atomic  
Number (Z) Element Symbol

Mass  
Number (A)

Atomic  
Mass (u)

Percent 
Abundance

Decay 
Mode

Half-Life  
t1/2

 0 (Neutron) n 1 1.008 665 b- 10.4 min

 1 Hydrogen H 1 1.007 825 99.985 stable

Deuterium D 2 2.014 102 0.015 stable

Tritium T 3 3.016 049 b- 12.33 yr

 2 Helium He 3 3.016 029 0.000 1 stable

4 4.002 602 99.999 9 stable

6 6.018 886 b- 0.81 s

 3 Lithium Li 6 6.015 121 7.50 stable

7 7.016 003 92.50 stable

8 8.022 486 b- 0.84 s

 4 Beryllium Be 7 7.016 928 EC 53.3 days

9 9.012 174 100 stable

10 10.013 534 b-
1.5 * 106 yr

 5 Boron B 10 10.012 936 19.90 stable

11 11.009 305 80.10 stable

12 12.014 352 b- 0.020 2 s

 6 Carbon C 10 10.016 854 b+ 19.3 s

11 11.011 433 b+ 20.4 min

12 12.000 000 98.90 stable

13 13.003 355 1.10 stable

14 14.003 242 b- 5 730 yr

15 15.010 599 b- 2.45 s

 7 Nitrogen N 12 12.018 613 b+ 0.011 0 s

13 13.005 738 b+ 9.96 min

14 14.003 074 99.63 stable

15 15.000 108 0.37 stable

16 16.006 100 b- 7.13 s

17 17.008 450 b- 4.17 s

 8 Oxygen O 14 14.008 595 EC 70.6 s

15 15.003 065 b+ 122 s

16 15.994 915 99.76 stable

17 16.999 132 0.04 stable

18 17.999 160 0.20 stable

19 19.003 577 b- 26.9 s

 9 Fluorine F 17 17.002 094 EC 64.5 s

18 18.000 937 b+ 109.8 min

19 18.998 404 100 stable

20 19.999 982 b- 11.0 s

10 Neon Ne 19 19.001 880 b+ 17.2 s

20 19.992 435 90.48 stable

21 20.993 841 0.27 stable

22 21.991 383 9.25 stable

Z03_KNIG8221_05_GE_APPC.indd   5 31/05/2022   21:44



C

A
P

P
E

N
D

IX

A-6

Atomic  
Number (Z) Element Symbol

Mass  
Number (A)

Atomic  
Mass (u)

Percent 
Abundance

Decay 
Mode

Half-Life  
t1/2

11 Sodium Na 22 21.994 434 b+ 2.61 yr

23 22.989 770 100 stable

24 23.990 961 b- 14.96 h

12 Magnesium Mg 24 23.985 042 78.99 stable

25 24.985 838 10.00 stable

26 25.982 594 11.01 stable

13 Aluminum Al 27 26.981 538 100 stable

28 27.981 910 b- 2.24 min

14 Silicon Si 28 27.976 927 92.23 stable

29 28.976 495 4.67 stable

30 29.973 770 3.10 stable

31 30.975 362 b- 2.62 h

15 Phosphorus P 30 29.978 307 b+ 2.50 min

31 30.973 762 100 stable

32 31.973 908 b- 14.26 days

16 Sulfur S 32 31.972 071 95.02 stable

33 32.971 459 0.75 stable

34 33.967 867 4.21 stable

35 34.969 033 b- 87.5 days

36 35.967 081 0.02 stable

17 Chlorine Cl 35 34.968 853 75.77 stable

36 35.968 307 b-
3.0 * 105 yr

37 36.965 903 24.23 stable

18 Argon Ar 36 35.967 547 0.34 stable

38 37.962 732 0.06 stable

39 38.964 314 b- 269 yr

40 39.962 384 99.60 stable

42 41.963 049 b- 33 yr

19 Potassium K 39 38.963 708 93.26 stable

40 39.964 000 0.01 b+ 1.28 * 109 yr

41 40.961 827 6.73 stable

20 Calcium Ca 40 39.962 591 96.94 stable

42 41.958 618 0.64 stable

43 42.958 767 0.13 stable

44 43.955 481 2.08 stable

47 46.954 547 b- 4.5 days

48 47.952 534 0.18 stable

24 Chromium Cr 50 49.946 047 4.34 stable

52 51.940 511 83.79 stable

53 52.940 652 9.50 stable

54 53.938 883 2.36 stable

26 Iron Fe 54 53.939 613 5.9 stable

55 54.938 297 EC 2.7 yr

56 55.934 940 91.72 stable

57 56.935 396 2.1 stable

58 57.933 278 0.28 stable
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C

A
P

P
E

N
D

IX

A-7

Atomic  
Number (Z) Element Symbol

Mass  
Number (A)

Atomic  
Mass (u)

Percent 
Abundance

Decay 
Mode

Half-Life  
t1/2

27 Cobalt Co 59 58.933 198 100 stable

60 59.933 820 b- 5.27 yr

28 Nickel Ni 58 57.935 346 68.08 stable

60 59.930 789 26.22 stable

61 60.931 058 1.14 stable

62 61.928 346 3.63 stable

64 63.927 967 0.92 stable

29 Copper Cu 63 62.929 599 69.17 stable

65 64.927 791 30.83 stable

47 Silver Ag 107 106.905 091 51.84 stable

109 108.904 754 48.16 stable

48 Cadmium Cd 106 105.906 457 1.25 stable

109 108.904 984 EC 462 days

110 109.903 004 12.49 stable

111 110.904 182 12.80 stable

112 111.902 760 24.13 stable

113 112.904 401 12.22 stable

114 113.903 359 28.73 stable

116 115.904 755 7.49 stable

53 Iodine I 127 126.904 474 100 stable

129 128.904 984 b-
1.6 * 107 yr

131 130.906 124 b- 8 days

54 Xenon Xe 128 127.903 531 1.9 stable

129 128.904 779 26.4 stable

130 129.903 509 4.1 stable

131 130.905 069 21.2 stable

132 131.904 141 26.9 stable

133 132.905 906 b- 5.4 days

134 133.905 394 10.4 stable

136 135.907 215 8.9 stable

55 Cesium Cs 133 132.905 436 100 stable

137 136.907 078 b- 30 yr

56 Barium Ba 131 130.906 931 EC 12 days

133 132.905 990 EC 10.5 yr

134 133.904 492 2.42 stable

135 134.905 671 6.59 stable

136 135.904 559 7.85 stable

137 136.905 816 11.23 stable

138 137.905 236 71.70 stable

79 Gold Au 197 196.966 543 100 stable

81 Thallium Tl 203 202.972 320 29.524 stable

205 204.974 400 70.476 stable

207 206.977 403 b- 4.77 min

82 Lead Pb 204 203.973 020 1.4 stable

205 204.974 457 EC 1.5 * 107 yr

206 205.974 440 24.1 stable

207 206.975 871 22.1 stable
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C

A
P

P
E

N
D

IX

A-8

Atomic  
Number (Z) Element Symbol

Mass  
Number (A)

Atomic  
Mass (u)

Percent 
Abundance

Decay 
Mode

Half-Life  
t1/2

208 207.976 627 52.4 stable

210 209.984 163 a, b- 22.3 yr

211 210.988 734 b- 36.1 min

83 Bismuth Bi 208 207.979 717 EC 3.7 * 105 yr

209 208.980 374 100 a 2 * 1019 yr

211 210.987 254 a 2.14 min

215 215.001 836 b- 7.4 min

84 Polonium Po 209 208.982 405 a 102 yr

210 209.982 848 a 138.38 days

215 214.999 418 a 0.001 8 s

218 218.008 965 a, b- 3.10 min

85 Astatine At 218 218.008 685 a, b- 1.6 s

219 219.011 294 a, b- 0.9 min

86 Radon Rn 219 219.009 477 a 3.96 s

220 220.011 369 a 55.6 s

222 222.017 571 a, b- 3.823 days

87 Francium Fr 223 223.019 733 a, b- 22 min

88 Radium Ra 223 223.018 499 a 11.43 days

224 224.020 187 a 3.66 days

226 226.025 402 a 1 600 yr

228 228.031 064 b- 5.75 yr

89 Actinium Ac 227 227.027 749 a, b- 21.77 yr

228 228.031 015 b- 6.15 h

90 Thorium Th 227 227.027 701 a 18.72 days

228 228.028 716 a 1.913 yr

229 229.031 757 a 7 300 yr

230 230.033 127 a 75 000 yr

231 231.036 299 a, b- 25.52 h

232 232.038 051 100 a 1.40 * 1010 yr

234 234.043 593 b- 24.1 days

91 Protactinium Pa 231 231.035 880 a 32.760 yr

234 234.043 300 b- 6.7 h

92 Uranium U 233 233.039 630 a 1.59 * 105 yr

234 234.040 946 a 2.45 * 105 yr

235 235.043 924 0.72 a 7.04 * 108 yr

236 236.045 562 a 2.34 * 107 yr

238 238.050 784 99.28 a 4.47 * 109 yr

93 Neptunium Np 236 236.046 560 EC 1.15 * 105 yr

237 237.048 168 a 2.14 * 106 yr

94 Plutonium Pu 238 238.049 555 a 87.7 yr

239 239.052 157 a 2.412 * 104 yr

240 240.053 808 a 6 560 yr

242 242.058 737 a 3.73 * 106 yr
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A-9

Answers
Answers to Stop to Think Questions and Odd-Numbered Exercises  
and Problems

Chapter 1
Stop to Think Questions

 1. B. The images of B are farther apart, so it travels a larger distance than 
does A during the same intervals of time.

 2. a.  Dropped ball. b. Dust particle. c. Descending rocket.
 3. e.   The average velocity vector is found by connecting one dot in the 

motion diagram to the next.
 4. b.  v  

u
2 = v  

u
1 + ∆ v  

u
, and ∆v  

u
 points in the direction of a

u
.

v1
u

v2
u∆v

u

 5. d 7 c 7 b = a

Exercises and Problems

 1. 

Lands Stops
x

 3. 
500 m

u
v0

u
v1

u
v2

u
v3

0 m

u
a

u
a

u
a

 5.

 Start

u
v

 7. 

0 1 2 3 4

u
v3

u
v2

u
v1

u
v0

 11. a. 

u
v1

u
v2

1

2 a
u

 b. 

u
v1

u
v2

1

2 a
u

 13. 

Start Constant
speed

u
a

u
a

u
a

a = 0 a = 0 a = 0u
a

u u u u u u

 15. 

Highest point

Wad released

y

Wad loses contact
with rubber band

 9. 

0 1 2 3 4
v
u

v0
u

v1
u

v2
u

v3
u

a1
u

a3
u

a2 = 0
u u

 17. 

a
u

a
u

a
u

a
u

a
u

a
u

a
u

a
u

a
u

v
u

v
u

Starts

Same point shown twice
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A-10 Answers

 21. 

y1, v1y, t1

y0, v0y, t0

y0 = 0 m    v0y = 0 m/s    t0 = 0 s
y1 = 1.0 km
v1y = 200 m/s

y

u
a

Known

Find
a0y

 35. 
Pictorial representation

Motion diagram

u
v

x0 , v0 , t0 x1, v1, t1 x2, v2, t2

u
a0

Known

x2

x0 = 0
v0 =  0                  t2 = 8 s

t1 = 5 s

t0 = 0

a1 = 0
a0 =  5.0 m/s2

Find

u
a0

u u
a1= 0

u u
a1= 0

Start Coasting
begins

 23. a. 4 b. 3 c. 3 d. 1
 25. a. 2.2 m b. 2.49 * 1014 s c. 1.7 * 10-4 m/s d. 4.4 * 109 m2

 27. a. 20 in b. 70 mph c. 9 mi d. 9 ft
 29. a. 846 b. 7.9 c. 5.77 d. 13.1
 31. a. 15 m
 33. 32 ms

 37. v0
u

v1
u

v2
u

v3
u

v4
u

v5
u

v6
u

a
u

a
u

a
u

a
u

a
u

a
u

0

v12
u

a
u

12

v9
u

a
u

9
v10
u

a
u

10
v11
u

a
u

11

v13
u

a
u

13
v14
u

a
u

14
v15
u

a
u

15
v16
u

a
u

16
v17
u

a
u

17
v18
u

a
u

18
v19
u

a
u

19
v20
u

v21
u

a
u

20

a
u

21

1 2 3 4 5 6

v7
u

v8
u

0
u

0
u

7 8

 39. 

Rough
patch

Pictorial representation

Motion diagram

Rough patch begins Rough patch ends

u
v

a0
u

a
u

a1 = 0
u u

a = 0
u u

a = 0
u u

x0 = 0 m    v0y = 0 m/s    t0 = 0 s
x1 = 5.0 km    v1x = 6.0 m/s

Known

Find
a0x

x
x0, x0x, t0 x1, x1x, t1

 41. Pictorial representation

Motion diagram

Stops

x0 , v0 x , t0

x1, v1x , t1

Known

x1

x0 = 0 m
t0 = 0 s
v0x = 30 m/s

v1x = 0 m/s

Find

10°

a
u

a
u

v
u

 43. 

Known
xT1xD0 = 0 m

tD0 = 0 s
vD0 x = 30 m/s
aD0 x = 0 m/s2

aT = 2.0 m/s2

xT0 = 0 m
tT0 = 0 s
vT0 x = 0 m/s

Find

Pictorial representation

Motion diagram

xD0 , tD0 , vD0 x

David

Tina

xT0 , tT0 , vT0 x xT1, tT1, vT1x

xD1, tD1, vD1x

aD = 0
uu

aT
u

aD = 0
uu

aT
u

vD
u

vT
u
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Answers A-11

 49. a.

Coasting
begins

Stop

v
u

a
u

 51. a. 

a
u

v
u

a
u

v
u

 53. Smallest: 9800 cm2, largest: 11,000 cm2

 55. 4.1 * 10-4 m3

 57. a. 64.9 kg/m3 b. 7200 kg/m3

Chapter 2
Stop to Think Questions

 1. d. The particle starts with positive x and moves to negative x.
 2. c. The velocity is the slope of the position graph. The slope is positive 

and constant until the position graph crosses the axis, then positive but 
decreasing, and finally zero when the position graph is horizontal.

 3. b. A constant positive vx corresponds to a linearly increasing x, starting 
from xi = -10 m. The constant negative vx then corresponds to a linearly 
decreasing x.

 4. a and b. The velocity is constant while a = 0; it decreases linearly while 
a is negative. Graphs a, b, and c all have the same acceleration, but only 
graphs a and b have a positive initial velocity that represents a particle 
moving to the right.

 5. d. The acceleration vector points downhill (negative s-direction) and has 
the constant value -g sin u throughout the motion.

 6. c. Acceleration is the slope of the graph. The slope is zero at 2. Although 
the graph is steepest at 1, the slope at that point is negative, and so a1 6 a2.  
Only 3 has a positive slope, so a3 6 a2.

Exercises and Problems

 1. a. 48 mph b.  50 mph
 3. a. Alan b. 5 min
 5. a. vx (m/s)

t (s)

20

10

0
0 1 2 3 4

-10

-20  

b. None

 7. t = 6 s, t = 10 s
 9. 

 11. Speeding up: 16 m/s2; slowing down: -5.3 m/s2

 13. a. 5.5 m/s2 b. 66 m, 2.2 * 102 ft 

 15. a. vmax/tpush b. 
1

2
 vmaxtpush c. 0.95 m/s2 d. 4.7 * 1014 m

 17. 3.3 m/s2

 19. a. 10 m/s2 b. ≈36  m
 21. a. 24 m/s b. 4.5 s
 23. -80 m/s
 25. 73 m
 27. a. 64 m b. 7.1 s
 29. 5.4 m/s
 31. 16 m/s
 33. a. 23 m b. 33 m/s c. 36 m/s2

 35. a. 2.0 s b. -2.0 m
 37. a. -10 m/s b. -20 m/s c. 95 m/s
 39. a. t =  3s, 7s b. -4 m/s2, 4 m/s2

 41. a. 20 s b. 667 m
 43. 

ax (m/s)

t (s)

2

1

0
0 2 4

t0

s

t

t

0

0

vs

as

 45. v0 = 0

Steeper than
first part

 47. -2 m/s
 49. a. 5 m b. 22 m/s
 51. 216 m

 53. a. d = v0Treact +
1

2
 
v 2

0

a
 b. 100 m

 55. 27 m/s2

 57. 19.7 m
 59. 29 m
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A-12 Answers

 61. a. 2.0 h b. 73 m

c. 

t (h)

x (mi)

73

2.4

0 0.5 1.0 1.5 2.0

Car
ol

A
nn

 63. vf = 22gh
 65. 0.82 m
 67. 14 m/s
 69. a. 2.3 s b. 1.2g
 71. 7.5 m/s2

 73. b. 25 mph, 50 mph c. 2 .7 m/s2, 1 .2 m/s2

 75. c. 8 m/s2

 77. c. 7.3 m
 79. 3.2 m
 81. c. 45 s
 83. 12.5 m/s
 85. 4500 m/s2

Chapter 3
Stop to Think Questions

 1. c. The graphical construction of A
u

1 + A
u

2 + A
u

3 is shown in the figure.

A1

u

A3

u

A2

u

A1 + A2

u u

Parallelogram
of A1 and A2

u u

A1 + A2 + A3

u u u

Parallelogram of (A1 + A2) and A3

u u u

 2. b. The graphical construction of 2 A
u

- B
u

 is shown in the figure.

2A - B

-B

2A
u

u

u u

 3. Cx = −4 cm, Cy = 2 cm
 4. c. Vector C

u
 points to the left and down, so both Cx and Cy are negative. 

Cx is in the numerator because it is the side opposite f.

Exercises and Problems
 1. a. 

A
u

u u
A + B B

u

 
b. A

u

A - B
u u

-B
u

 3. a. E sin u, -E cos u b. E cos f, -E sin f
 5. 6.6 m
 7. a. 3.8 m/s, 6.5 m/s b. 1.3 m/s2, 0 .80 m/s2 c. -30 N, 40 N
 9. 100 m, west
 11. a. 5.7, 45° b. 2.2 cm, 27° c. 100 m/s, 84° d. 22 m/s2, 27°
 13. a. 4 in - jn

b. 

x

-1

y

1 2 3 4

C

u

u

c. 14° below the +x@axis

 15. a. 7 in - 7jn 
b. 

x
-4 -2

-2

-4

-6

-8

4

y

6

2

20 4 6

B

D

A
C = A + B
C and u 

Known

Find

u

8

^

^ ^

^
u u

u

u u u

u

u

A = 4i – 2j 
B = –3i + 5j 

c. 9.9, 45°

 17. a. 6.4 and 3.6 b. 6.3 c. 8.1
 19. -0.071 in + 4.6jn
 21. Bx = -2.5 m, By = 4.3 m; Bx = 0.0 m, By = 5.0 m
 23. a. 0 m, 34 m, and 210 m b. v  

u = 16.0 in + 16jn2t m/s  
c. 0 m/s, 4 m/s, and 85 m/s

 25. C
u

= 0.8 in - 4.5jn

 27. B
u

=
122

 in +
122

 jn

 29. a. 100 m lower b. 5.0 km
 31. 90 m, 46° south of west
 33. 49°
 35. a. 29° b. 1.9 m/s
 37. a. -3.4 m/s b. -9.4 m/s
 39. Tx = 450 N, Ty = 310 N
 41. 25° west of north, 385 paces
 43. 4.4 units at 83° below the negative x-axis
 45. a. 12.9 N2jn b. 1-1.6 N2 in

Chapter 4

Stop to Think Questions

 1. c. v = 0 requires both vx = 0 and vy = 0. Neither x nor y can be changing.
 2. d. The parallel component of a

u
 is opposite v  

u
 and will cause the particle to 

slow down. The perpendicular component of a
u

 will cause the particle to 
change direction downward.
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Answers A-13

 3. d. A projectile’s acceleration a
u = -gjn does not depend on its mass. The 

second marble has the same initial velocity and the same acceleration, so 
it follows the same trajectory and lands at the same position.

 4. f. The plane’s velocity relative to the helicopter is v  

u
PH = 

v  

u
PH = v  

u
PG + v  

u
GH = v  

u
PG - v  

u
HG, where G is the ground. The vector addi-

tion shows that v  

u
PH is to the right and down with a magnitude greater than 

the 100 m/s of v  

u
PG.

u
vPG of plane relative to ground

u-vHG
vPH = vPG - vHG of 
plane relative to helicopter

u u u

 5. b. An initial cw rotation causes the particle’s angular position to become 
increasingly negative. The speed drops to half after reversing direction, so 
the slope becomes positive and is half as steep as the initial slope. Turning 
through the same angle returns the particle to u = 0°.

 6. aB + aE + aA = aC + aD. Centripetal acceleration is v2/r. Doubling r 
decreases ar by a factor of 2. Doubling v increases ar by a factor of 4. 
Reversing direction doesn’t change ar.

 7. c. v is negative because the rotation is cw. Because v is negative but be-
coming less negative, the change ∆v is positive. So a is positive.

Exercises and Problems

 3. C
 5. a. Slowing b. Curving downward
 7. 2.2 m/s2

 9. a. 0 m, 1 m/s; 0 m, 6.1 m/s
b. 90° south of the +x@axis, 9.5 north of the +x@axis 

 11. 20 m
 13. a. v  

u
0 = (2.0 in + 4.0jn) m/s, v  

u
2 = (2.0 in + 0.0jn) m/s,  

v  

u
3 = (2.0 in + 2.0jn) m/s

b. -2.0 m/s2 c. 63° above the +x@axis
 15. a. 0.045 s b. 890 m/s
 17. a. 276 m farther b. 12.75 s longer
 19. a. 50 m east (downstream) b. 4.47 m/s
 21. a. 49° west of north b. 31 s
 23. 8.8 rev
 25.

t (s)

u (rad)
80

60

40

20

0
20 4 6 8

 43. 38 rev
 45. 11

2 bt2 + v0x2 in + 1e-ct + v0y2jn
 47. 15°, 75°
 49. a. 12 m/s b. 0.90 m
 51. 13°
 53. 7.6 m
 55. a. 13 m/s b. 48°
 57. 470 m/s2

 59. b. 3.9 * 102 m c. 7.4° below the horizontal
 61. 25 m/s, 23°
 63. a. 32 rad/s b. 1.7 * 102 rad/s2 c. 28 rev
 65. a. 1.75 * 104 m/s2 b. 4.4 * 103 m/s2

 67. a. v = 22a∆uR b. a = 2a∆uR
 69. a. 12 m/s b. 36 rev
 71. a. 1.0 km/s b. 1.4 * 102 rad/s c. 40,000 rev
 73. a. 6.3 s b. 84 rad
 75. 2.1 * 102 rad/s2

 77. 550 rpm
 79. b. 30 m west
 81. 3.8 m

 83. u =
p

2
-
f

2 85. 10°

Chapter 5
Stop to Think Questions

 1. c. 

F1

u

F2

u

F3

u

The y-component of F3

cancels the y-component of F1.
u

u

The x-component of F3 is
to the left and larger than
the x-component of F2.

u

u

 2. a, b, and d. Friction and the normal force are the only contact forces. 
Nothing is touching the rock to provide a “force of the kick.”

 3. b. Acceleration is proportional to force, so doubling the number of 
rubber bands doubles the acceleration of the original object from 
2 m/s2 to 4 m/s2. But acceleration is also inversely proportional to 
mass. Doubling the mass cuts the acceleration in half, back to 2 m/s2.

 4. d.

       

a
u

F1

u

F3

u
F3

u

F2

u

u
This is Fnet.

u
Fnet

First add
F1 and F2.
u u

Then add F3.
u u

a is in the same
direction as Fnet.

u

F1 + F2

u u

 5. c. The acceleration vector points downward as the elevator slows. F
u

net 
points in the same direction as a

u
, so F

u

net also points down. This will be 
true if the tension is less than the gravitational force: T 6 FG.

Exercises and Problems

 1. Gravity, tension
 3. Gravity, normal force, kinetic friction
 5. Gravity, normal force, thrust, drag
 7. 3
 9. 18 N
 11. -6 * 1033 J
 13. a. 3 b. 6
 15. 1.8 N

 27. 8°/h
 29. 46 cm/s
 31. 43 m
 33. a. 3.0 * 104 m/s b. 2.0 * 10-7 rad/s c. 6.0 * 10-3 m/s2

 35. v = 8.8 m/s, ar = 221 m/s2

 37. a. 30 rad/s b. 20 rad/s
 39. 98 rpm
 41. a. 53 rpm b. 12.3 rev
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 17. 

F2
u

F1
u

u
F2

F1

u

F2

u

F3

u

F1

u
+

 19. 

F3
u

F1
u

F2
u

 21. y

x

Fnet

u
FG

u

fk

u n
u

 23. 

y

x
Fnet = 0

FG

Free-body diagram

Normal force n

Gravity FG

Force identification

n
u

u

u

u

u

u

 25. 

fk

u

y

x

Normal force n
Kinetic friction fk

Free-body diagramForce identification

Fnet

Gravity FG FG

n
u

u
u

u

u

u

 27. 
 Force identification Free-body diagram

y

x

Normal force n
u

Thrust Fthrust

u

Gravity FG

u

n
u

Fthrust

u

FG

u

Fnet

u

Fdrag

u

Drag Fdrag

u

 29. 

t (s)

6

4

2

0

Fx (N)

2 41 3

-2

 31. ax (m/s2)

t (s)0
1 2 3 4

1

-1

2

3

 33. a. 12 m/s2 b. 3 .0 m/s2 c. 6 .0 m/s2 d. 24 m/s2

 35. 

u

Fnet

u
a

u
v

y

x

u

fk

u
n

u

FG

u

T

 37. 

u

FG

u

Fdrag
u
v

u
a

y

x
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 39. 

u

FG

y

x

u

fk

u
n

u

Fnet
u
au

v

 41. a. 

0.6

0.4

0.2

0.0

0.8

0.50.0 1.0
Acceleration (m/s2)

Fo
rc

e 
(N

)

1.5

1.0

F = (0.57 { 0.03 kg) a

b. Yes. 0 m/s2, 0 N c. 57 kg

 43. 

 49. 

u

FG

u

T

y

x

u

Fnet

u
a

u
v

Tension T
u

Gravity FG

u

 45. 

u
n  

0 1 2 3u
v0

u
v1

u
v2

a = 0u u

0
u

u

Gravity FG u

FG 

u

Push force Fpush

u

Fpush

u u

Fnet = 0

u

Friction f k

u

f k

u
Normal force n 

 47. 

u

FG

y

x

u
n

u

Fnet

u
a

u

f

u
v

Normal force n
u

Friction f
u

   k

   kGravity FG

u

a
u

v
u

x

FG

u

Fnet

u

T
uTension T

u

Gravity FG

u

y

 51. 

Loop-the-loop ride

Gravity FG

u

Normal force n
u

u
a

u
v

y

x
u

FG

u
n

Motion diagram Pictorial representation

Free-body diagram

 53. y

x

n
u

FG

u

 55. 44.1 m/s2, 3300 N
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c. y

x

u

Fnet = 0

u

FG

u
n

Normal force n
uGravity FG

u

f. y

x

Normal force n
Static friction fs

u

u

Fnet = 0

u

FG

u
n

u

fs

u
Gravity FG

u

Chapter 6

Stop to Think Questions

 1. a. The lander is descending and slowing. The acceleration vector points 
upward, and so F

u

net points upward. This can be true only if the thrust has 
a larger magnitude than the weight.

 2. a. You are descending and slowing, so your acceleration vector points  
upward and there is a net upward force on you. The floor pushes up 
against your feet harder than gravity pulls down.

 3. fB + fC = fD = fE + fA. Situations C, D, and E are all kinetic friction, 
which does not depend on either velocity or acceleration. Kinetic friction 
is smaller than the maximum static friction that is exerted in B. fA = 0 
because no friction is needed to keep the object at rest.

 4. d. The ball is shot down at 30 m/s, so v0y = -30 m/s. This exceeds the 
terminal speed, so the upward drag force is larger than the downward 
weight force. Thus the ball slows down even though it is “falling.” It 
will slow until vy = -15 m/s, the terminal velocity, then maintain that 
velocity.

Exercises and Problems

 1. 94 N, 58° below the horizontal
 3. 73.68 N
 5. 1015 N
 7. 736 N

 57. a. 

Normal force n
uGravity FG

u

y

x

u

Fnet = 0

u

FG

u
n

b.  9. ax = 1.5 m/s2, ay = 0 m/s2

 11. 12 N in, 0 N in, -6 N in 
 13. a. 170 N b. 170 N c. 340 N d. 56 N
 15. 40 s
 17. a. 680 N b. m = 69 kg; mg = 260 N
 19. 0135 N, 740 N, 590 N
 21. a. 5.2 m/s2 b. 1.0 * 103 kg
 23. 0.024 m/s2

 25. 0.350
 27. 200 N
 29. a. 4.9 m/s2 b. 4.9(1-√3k) m/s2

 31. 25 m/s
 33. a. 0.33 m/s b. 5.0 mm/s
 35. a. 32 s b. 7.7 h
 37. 21 mm/s
 39. 6400 N, 4380 N
 41. -1.3 m/s
 43. 59 N
 45. a. 6700 N b. 600 ms

 47. a. v1h2 = A21Fthrust

m 2h b. 54 m/s

 49. a. 16.9 m/s b. 229 m
 51. a. 4.5 m b. 8.8 m/s
 53. 0.49

 55. dmin =
v   2

0

21mSg2
 57. Stay at rest
 59. a. 0 N b. 220 N

 61. a. 
F0

m
 
T

2
 b. 

F0

m
 
T2

3
 63. a. -5g b. 3g
 65. 69 g
 67. 13 m/s
 71. c. 102 m
 73. c. 2.8 m/s2

 75. b. v1 = A k

m
 L

 77. a. v_x (t) = v0e
-6phrt/m b. 0.10 s

 79. b. 160 s, 480 s

Chapter 7

Stop to Think Questions

 1. The crate’s gravitational force and the normal force are incorrectly 
identified as an action/reaction pair. The normal force should be paired 
with a downward force of the crate on the ground. Gravity is the pull of the 
entire earth, so F

u

G should be paired with a force pulling up on the entire 
earth.

 2. c. Newton’s third law says that the force of A on B is equal and opposite to 
the force of B on A. This is always true. The mass of the objects isn’t 
relevant.

 3. b. FB on H = FH on B and FA on B = FB on A because these are action/reaction 
pairs. Box B is slowing down and therefore must have a net force to the 
left. So from Newton’s second law we also know that FH on B 7 FA on B.

 4. Equal to. Each block is hanging in equilibrium, with no net force, so the 
upward tension force is mg.

 5. Less than. Block B is accelerating downward, so the net force on B 
must point down. The only forces acting on B are the tension and gravity,  
so TS on B 6 1FG2B.
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Exercises and Problems

 1. a. and b. 
     

E

BR

P

Interaction diagram

System

Push

Push GravityGravity

  
b. The system is the racket and the ball.

c. Free-body diagrams

Ball

Racket

(FG)R

u
(FG)B

u

FB on R

u
FP on R

u

FR on B

u

 3. a. Interaction diagram

C

G

EE

System

Tension

GravityGravity

  
b. The system is the cable and the girder.

c. Free-body diagrams

(FC)EE on C

u
x

y

x

y

Girder Cable

TG on C

u

TC on G

u

(FG)EE on G

u

 5. a. 

 

b. The system is block A and block B.

c. 

 

 7. a. 5.88 * 102 N b. 1.2 * 103 N
 9. a. 5 N b. 8 N
 11. 3.33 kg
 13. 70.086 m
 15. 270 N
 17. a. 32 N b. 19 N c. 16 N d. 3.2 N
 19. 2.9 kN
 21. 67 N, 36°
 23. a. 3.9 N b. 2 .2 m/s2

 25. 1.4 kg
 27. a. 

  b. 4.0 N
 29. a. 155 kg b. 165 kg
 31. 99 m
 33. 1.7 s
 35. 1.8 s
 37. 1 .3 m/s2

 39. a. 1.8 kg b. 1.3 m/s2

 41. a. 20 N b. Down the slope c. 21 N
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 43. a. 8.2 * 103 N b. 4.8 * 102 N
 45. 5.0 * 102 N
 47. 920 g
 49. F = 1m1 + m22g tan u
 53. 1.8 m/s2

 55. 2.8 m/s2

 57. 2.4 * 10-6 N

 59. t1/2 =
ln122

b1 1

m
+

1

M2
Chapter 8
Stop to Think Questions

 1. d. The parallel component of F
u
 is opposite v  

u
 and will cause the particle 

to slow down. The perpendicular component of F
u
 will cause the particle 

to change directions in a downward direction.
 2. TD + TB = TE + TC + TA. The center-directed force is mv2r. Changing 

r by a factor of 2 changes the tension by a factor of 2, but changing v by 
a factor of 2 changes the tension by a factor of 4.

 3. b. The car is moving in a circle, so there must be a net force toward the 
center of the circle. The circle is below the car, so the net force must point 
downward. This can be true only if FG 7 n.

 4. c. The ball does not have a “memory” of its previous motion. The veloc-
ity v  

u
 is straight up at the instant the string breaks. The only force on the 

ball after the string breaks is the gravitational force, straight down. This 
is just like tossing a ball straight up.

Exercises and Problems

 1. 39 m
 3. 4.6 m/s
 5. 0.089 N radially inward
 7. 6.6 * 1015 rev/s
 9. 2.01 * 1020 N
 11. No

 13. v = Am2rg
m1

 15. 6.0 * 10-3 m/s2

 17. a. 24.0 h b. 0.223 m/s2 c. 0 N
 19. n /FG = 3
 21. 20 m/s
 23. a. v = 3.8 m/s, a = 0.95 m/s2 b. 7.0 * 102 N c. 8.6 * 102 N
 25. 4.7 m/s
 27. 1.6 s
 29. 4.4 m/s2

 33. 0.85 N
 35. 8.6 m
 37. 42 km/h
 39. North Pole scale, 2.5 N
 41. 34 m/s
 43. 0.79 N
 45. a. 2.9 m/s b. 14 N
 47. a. 2.5 m/s2 b. 1.1 m/s2 c. 21 N
 49. 64 N
 51. a. 320 N, 1400 N b. 5.7 s
 53. 0.50 N
 55. a. 2gL b. 10 km/h
 57. 1.4 m to the right
 59. 150 m
 61. a. 1 .90 m/s2 at 21° b. 15.7 m/s
 63. 1.1 * 102 rpm 
 65. b. 191 rpm
 67. 105 m
 69. a. 130 rpm b. 140 rpm

 71. 2gL

Chapter 9
Stop to Think Questions

 1. a. Kinetic energy depends linearly on the mass but on the square of the 
velocity. A factor of 2 change in velocity is more significant than a factor 
of 2 change in mass.

 2. Positive. The force (gravity) and the displacement are in the same direc-
tion. The rock gains kinetic energy.

 3. Positive. Each puck experiences a force in the direction of motion, which 
is a positive amount of work. The net force is zero, but the total work is 
not zero because the pucks have different displacements.

 4. c. The upward tension force is opposite the displacement, so it does neg-
ative work. The downward gravitational force is parallel to the displace-
ment, so it does positive work.

 5. c. W = F1∆r2cos u. The 10 N force at 90° does no work at all. Because 
cos 60° = 1

2, the 8 N force does less work than the 6 N force.
 6. Zero. The road does exert a forward force on the car, but the point of 

application does not move because the tires are not skidding on the 
road. The car’s increasing kinetic energy is a transformation of chem-
ical energy to kinetic energy, not a transfer of energy from the road to 
the car.

 7. k1 + k2 + k3. The spring constant is the slope of the force-versus- 
displacement-graph.

 8. Positive. At each end, the spring exerts a force in the direction of the 
block’s displacement and thus does positive work. This is also seen from 
the fact that both blocks gain kinetic energy.

 9. PB + PA = PC + PD. The work done is mg∆y, so the power output is 
mg∆y/∆t . Runner B does the same work as runner A, but in less time. 
The ratio m/∆t is the same for runners A and C. Runner D does twice the 
work of A but takes more than twice as long.

Exercises and Problems

 1. 109.5 km/h
 3. √3
 5. a. 3 J b. 0 J
 7. 0 J
 9. a. -3.5 * 104 J b. 3.6 * 104 J
 11. a. 6 b. 0
 13. 125°
 15. a. -7.7 b. -20 c. -13
 17. -390 J
 19. W = 1.25 * 104 J, T 

u

1 = -7.92 * 103 J, T 
u

2 = -4.58 * 103 J
 21. 8.0 m/s, 10 m/s, 11 m/s
 23. 1

3 qd3

 25. 380 N/m
 27. a. 3.9 * 102 N/m b. 17.5 cm
 29. 0.28 m
 31. a. 6.9 * 105 J b. No
 33. 0.037
 35. a. 0.57 kJ, -0.20 kJ, 0.0 J b. 39 J
 37. a. 9.80 * 105 J b. 1.96 * 104 W
 39. a. 10 * 101 N b. 0.42 kW, 0.83 kW, 1.3 kW
 41. Runner: Pavg = 1.2 kW; greyhound: Pavg = 2.0 kW
 43. a. -9.8 * 104 J b. 1.1 * 105 J c. 1.1 * 104 J
 45. 3.27 m/s
 47. 13 kN
 49. a. 2.2 m/s b. 0.0058
 51. a. 2.9 J b. 3.6%

 53. a. Gm1m2 1x2 - x1

x1x2
2g b. 2.1 * 105 m/s

 55. 21 N/m
 57. a. mg cos1u2 b. mgR

 59. L1 + L2 + 1m1 + m2

k1
+

m2

k2
2g 

 61. 2.5 * 105 kg/s
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 63. a. 95 W b. 3.8 * 102 W c. 3.2 * 102 cal
 65. 1.2 * 108 ly
 71. 24 W

Chapter 10
Stop to Think Questions

 1. 1UG2C + 1UG2B = 1UG2D + 1UG2A. Gravitational potential energy 
depends only on height, not on speed. 

 2. b. Potential energy depends only on the vertical displacement. At the 
elevation of the dashed line, both have gained the same gravitational po-
tential energy, so both have lost the same kinetic energy.

 3. vA = vB = vC = vD. Her increase in kinetic energy depends only on the 
vertical distance through which she falls, not on the shape of the slide.

 4. c. Constant speed means no change of kinetic energy. But for motion on 
a slope, constant speed requires friction. All the gravitational potential 
energy is being transformed into thermal energy. 

 5. c. USp depends on d2. Doubling the compression increases USp by a fac-
tor of 4. All potential energy is transformed into kinetic energy, so K 
increases by a factor of 4. But K depends on v2, so v increases by only a 
factor of 2.

 6. x = 6 m. From the graph, the system’s potential energy when the particle 
is at x = 1 m is U = 3 J. Its total energy is thus E = K + U = 4 J. A TE 
line at 4 J crosses the PE curve at x = 6 m. 

 7. d. The system is losing potential energy as the weight falls. It’s gaining 
speed, so some U is transformed into K. Energy is also being transferred 
out of the system to the environment via negative work done by the rope 
tension. The system is not isolated, so neither Emech nor Esys is conserved.

Exercises and Problems

 1. a. 5 J b. 7 J
 3. ∆U = 1.3 * 106 J
 5. a. 13 m/s b. 14 m/s
 7. 106 m
 9. 3.8 m/s
 11. 1.4 m/s
 13. 72 m/s 
 15. 0.18 J
 17. 18 J
 19. 60 m/s
 21. 0.71 m/s
 23. 9.7 J
 25. a. Right b. 17 m/s at x = 4 m c. x = 1 m, x = 6 m
 27. 63 m/s
 29. 6.3 m/s
 31. 100 N at x = 5 cm, 0 N at x = 15 cm, -50 N at x = 25 cm
 33. 4.5 N, 4.5 N
 35. a. Yes b. 20 J

 37. 

0

+

-
Ki Ui Wext Uf+ =+ + +Kf ∆Eth

+ =+ + +

 39. -1 J of work is done to the environment.
 41. 6.1 m/s
 43. a. 2.2 * 104 N/m b. 19 m/s
 45. 43 m
 47. 65 g

 49. a. vf = A2gh1mB - mA2
1mB + mA2

 b. 0.50 m

 51. a. vf = A 2gh

M + m
 (m - mkM ) b. vf = A 2gmh

M + m

 53. a. 0.51 m b. 0.38 m
 55. a. 3 * 103 m/s b. 2 * 101 THz
 57. 3.3 m/s
 59. a. 0.5 m, 1.5 m, 2.5 m b. Stable, unstable, stable
 61. a. 2A

B  b. Both are stable. 
 63. a. -pB/L b. -AL c. -2AL + pB/L
 65. a. a2b b. a2b c. Yes
 67. 15 m/s
 69. 2.6 m/s
 71. 20 N/m
 73. a. 1.5 m b. 20 cm
 75. 1.37 * 108 m/s

Chapter 11
Stop to Think Questions

 1. f. The cart is initially moving in the negative x-direction, so pix =  
-20 kg m/s. After it bounces, pfx = -10 kg m/s. Thus ∆p = 110 kg m/s2-
1-20 kg m/s2 = 30 kg m/s.

 2. b. The clay ball goes from vix = v to vfx = 0, so Jclay = ∆px = -mv. The 
rubber ball rebounds, going from vix = v to vfx = -v (same speed, oppo-
site direction). Thus Jrubber = ∆px = -2mv. The rubber ball has a larger 
momentum change, and this requires a larger impulse.

 3. Less than. The ball’s momentum mBvB is the same in both cases. Mo-
mentum is conserved, so the total momentum is the same after both colli-
sions. The ball that rebounds from C has negative momentum, so C must 
have a larger momentum than A.

 4. c. Momentum conservation requires 1m1 + m22 * vf = m1v1 + m2v2.  
Because v1 7 v2, it must be that 1m1 + m22 * vf = m1v1 + m2v2

7 m1v2 + m2v2 = 1m1 + m22v2. Thus vf 7 v2. Similarly, v2 6 v1, so 
1m1 + m22vf = m1v1 + m2v2 6 m1v1 + m2v1 = 1m1 + m22v1. Thus vf 6 v1 .  
The collision causes m1 to slow down and m2 to speed up

 5. Right end. The pieces started at rest, so the total momentum of the  
system is zero. It’s an isolated system, so the total momentum after the 
explosion is still zero. The 6 g piece has momentum 6v. The 4 g piece, 
with speed -2v, has momentum -8v. The combined momentum of these 
two pieces is -2v. In order for P to be zero, the third piece must have a 
positive momentum 1+2v2 and thus a positive velocity.

 6. e. Momentum is conserved, so the total momentum of the two pieces must 
be the initial 2 in kg m/s. p

u
1 = 2jn kg m/s, so p

u
2 has to be 12 in - 2jn2 kg m/s.

Exercises and Problems

 1. 50 m/s
 3. 3 kg m/s in
 5. 1.0 * 103 N
 7. 80 m/s to the left
 9. -0.50 m/s in
 11. a. 4000 N b. 2.4 * 104 N s in c. 2.4 * 104 kg m/s in d. 20 m/s
 13. 0.2 s
 15. 7.5 m/s
 17. v0

 19. 5 m/s in the direction opposite to that of the bullet
 21. 7.2 cm in the direction Brutus was running
 23. 2.14 m/s, 7.14 m/s
 25. a. 0.048v0 b. 95%
 27. 0.20 m/s
 29. 13 s
 31. -3 kg m/s in + 6 kg m/s jn
 33. a. 12 s b. 42° north of west
 35. 1800 m/s
 37. 1000 m/s
 39. a. 6.4 m/s b. Favg = 612(FG)B

 41. 9.3 * 102 N
 43. 24t2 N
 45. a. 6.7 * 10-8 m/s b. 2.2 * 10-10,
 47. 31.5 m/s

 49. a. vbullet =
m + M

m
22mkgd b. 4.4 * 102 m/s
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 51. 3.0 * 102 m
 53. 99.98 m/s, downward
 55. 1.5 m/s

 57. a. vm =
m + M

m
24gL b. vm =

m + M

2m
24gL

 59. 20 m/s downward
 61. 75 m/s
 63. 1.2 km/s
 65. 0.54 m/s
 67. Ball A: 5.0 m/s, ball B: 13 m/s, both to the right
 69. a. -1.4 * 10-22 kg m/s b. and c. -1.4 * 10-22 kg m/s in the  

direction of the electron
 71. a. 0.90 m/s, 45° opposite the initial direction b. 23%
 73. 4.2 m/s, 17° above the +x@axis
 75. a. 3200 m/s b. 4200 m/s
 81. 5.7 m/s
 83. 7.9 m/s

 85.  a. vmax = vexln1mR + mF0

mR
2 -

g

R
 (m0 - mR) = vexln1mR + mF0

mR
2 -

g

R
 (mF0)

b. 6900 m/s, 4500 m/s

Chapter 12
Stop to Think Questions

 1. b. The center of the hitting end is closer to the center of mass, so it must 
have more mass.

 2. b. Rotational kinetic energy depends on the angular velocity and the  
moment of inertia. Both have the same angular velocity, but a cylindrical 
shell has a larger moment of inertia than a solid cylinder with the same 
mass and radius.

 3. IA + ID + IB + IC. The moment of inertia is smaller when the mass is 
more concentrated near the rotation axis.

 4. tE + tA = tD + tB + tC. The tangential component in E is larger than 2 N.
 5. aB + aA + aC = aD. Angular acceleration is proportional to torque and 

inversely proportional to the moment of inertia. Torque is proportional 
to the radius but moment of inertia is proportional to the square of the 
radius. Thus angular momentum is proportional to F/mr.

 6. c. The scale exerts an upward force at half the distance from the pivot as 
the weight’s downward force. To exert an equal but opposite torque for 
static equilibrium requires twice the force.

 7. b. The velocity at the dot is the vector sum of v  

u
cm to the right and an 

upward velocity vector v  

u
i, rel of equal magnitude due to rotation about the 

center of mass. 
 8. d. There is no net torque on the bucket +  rain system, so the angular 

momentum is conserved. The addition of mass on the outer edge of the 
circle increases I, so v must decrease. Mechanical energy is not con-
served because the raindrop collisions are inelastic.

Exercises and Problems

 1. a. 3.35 * 102 rad/s2 b. 15 rev
 3. a. 1.0 m/s b. 20 rev
 5. 36 g
 7. 11.7 cm, 4 .7 cm2
 9. 2.57 * 1029 J
 11. a. 0.032 kg m2 b. 16 J
 13. a. 0.063 m, 0.050 m b. 0.0082 kg m2

 15. a. 10.060 m, 0 .040 m2 b. 0.0020 kg m2 c. 0.0013 kg m2

 17. a. 2.9 * 10-5 kg m2 b. 8.64 * 10-5 kg m2

 19. 8.0 cm
 21. 0.56 N m
 23. a. t = 31.0 N m b. t = 21.9 N m
 25. 0.75 rad/s
 27. 1.7 * 10-3 N m
 29. F1 = 120 N, F2 = 80 N

 31. F1 = 0.75 kN, F2 = 1.0 kN
 33. a. 5.3 * 102 rpm b. 50 m/s c. 0 m/s
 35. 0.43 J
 37. a. A

u
* B

u
= 121, into the page2 b. C

u
* D

u
= 124, out of the page2

 39. a. D
u

= n in, where n could be any real number b. E
u

= 2jn c. F
u

= 1kn

 41. -0.53 N m kn

 43. -0.025 in kg m/s2

 45. 75 rpm
 47. 93 rpm
 49. a. 15 cm b. 1.9 J
 51. xcm = 20 cm, ycm = 0 cm

 53. 
M

3L
 c 1L - d23 + d3 d

 55. I = 3r2dm

 57. 51°
 59. 15,300 N
 61. 1.0 m
 63. a. 25 N b. 25 N
 65. 1.4 N
 67. 0.52 N
 69. Disk: 67 cm, ring: 89 cm
 71. a. 22 rad/s b. 6.6 rad/s
 73. a. v1 = 23g/L b. vtip = (v1)L = 23gL

 75. a =
t

I
=

Tr

(13MR2/20)
=

20Tr

13MR2

 77. a. No b. 2000 m/s c. 4000 m/s
 79. 60 rpm
 81. 22 rpm
 83. a. 137 km b. 8.6 * 106 m/s

 85. tdrag =
rv2CDaL4

64
 87. 5.8 rev/s
 89. 4.0 rpm
 91. a. 2.9 * 10-5 N m b. 7.0 m/s

Chapter 13
Stop to Think Questions

 1. e. The acceleration decreases inversely with the square of the distance. At 
height Re, the distance from the center of the earth is 2Re.

 2. c. Newton’s third law requires F1 on 2 = F2 on 1.
 3. b. gsurface = GM/R2. Because of the square, a radius twice as large bal-

ances a mass four times as large.
 4. In absolute value, UE + UA = UB = UD + UC. ∙UG∙ is proportional to 

m1m2/r.
 5. a. T 2 is proportional to r3, or T is proportional to r3/2. 43/2 = 8.

Exercises and Problems

 1. 
Fs on m

Fe on m
= 2.18

 3. a. 8.0 * 10-8 N b. 5.4 * 10-8 N
 5. 3.6 * 10-7 N
 7. 19 cm
 9. a. 274 m/s2 b. 5.90 * 10-3 m/s2

 11. 39.3 m/s2

 13. a. 3.0 * 1024 kg b. 0.89 m/s2

 15. 59.5 km/s
 17. 10 km/s
 19. 2.4 * 1030 kg
 21. 14.7 km
 23. a. 11 km/s b. 8.9 km/s
 25. Mp = 1.5 * 1025 kg, Ms = 5.2 * 1030 kg
 27. 2.9 * 109 m
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 29. 3.2 h
 31. a. 9.9 Rs b. 2.4 * 104 m/s
 33. 8.67 * 107 m
 35. a. 1.3 * 10-6 N, 83° cw from the +y@axis  

b. 2.3 * 1027 N, 7 .5° ccw from the -y@axis
 37. -1.48 * 10-7 J
 39. 66 kg and 184 kg

 41. v = A 2GMh

R(R + h)
 43. 4.1 * 1024 kg
 45. 4.7 km
 47. Asteroid 1: 1.032(GM/R)1/2, asteroid 2: 0.516(GM/R)1/2

 49. 0.732R
 51. 1.2 * 1011 J
 53. 5.0 * 106 m
 55. a. 0.0066c b. 4.5 * 106 Ms

 57. T = c 4p2r3

G
 

1

M + m/4
d

1/2

 59. a. 2.36 * 1020 m b. 24 c. 1.9 * 1041 kg d. 9.4 * 1010 
 61. 4.49 km/s
 63. c. 6.21 * 107 m
 65. c. 1680 m/s
 67. Each has a speed of 3.0 * 104 m/s.
 69. a. 5.8 * 1022 kg b. 1.3 * 106 m

Chapter 14
Stop to Think Questions

 1. rA = rB = rC. Density depends only on what the object is made of, not 
how big the pieces are.

 2. c. These are all open tubes, so the liquid rises to the same height in all 
three despite their different shapes.

 3. a. The pressure from the weight of the column of mercury balances the 
air pressure pushing on the surface of mercury in the beaker. The air 
pressure is zero after the air is pumped out, so a mercury column of any 
height would not be in balance.

 4. b. The weight of the displaced water equals the weight of the ice cube. 
When the ice cube melts and turns into water, that amount of water will 
exactly fill the volume that the ice cube is now displacing.

 5. 1 cm3/s out. The fluid is incompressible, so the sum of what flows in 
must match the sum of what flows out. 13 cm3/s is known to be flowing 
in, while 12 cm3/s flows out. An additional 1 cm3/s must flow out to 
achieve balance.

 6. h2 + h4 + h3 + h1. The liquid level is higher where the pressure is 
lower. The pressure is lower where the flow speed is higher. The flow 
speed is highest in the narrowest tube, zero in the open air.

Exercises and Problems

 1. 50 mL
 3. 6 .4 * 104 kg
 5. 997 atm
 7. a. 1.0 m3 b. 1 .1 * 105 Pa
 9. 0.7 km
 11. a. 106 kPa b. 4.4 kPa, 4.4 kPa
 13. 3.6 m
 15. Ethyl alcohol
 17. 750 kg/m3

 19. 1.9 N
 21. 2 .49 * 103 kg/m3

 23. 55.6 kg
 25. a. 1.0 m/s, 16 m/s b. 3.1 * 10-4 m3/s
 27. 2.12 m/s
 29. a. 0.38 N b. 20 m/s
 31. 3.1 * 102 Pa
 33. 0.53 atm
 35. 5.5 * 109 N/m2

 37. a. 5 .1 * 107 Pa b. -0.025 c. 1056 kg/m3

 39. 2.4 mm
 41. 87 mm Hg
 43. a. 0.48 m b. 58 kg
 45. 3.7 mm
 47. a. F = rgDWL b. F = 1

2rgD2L c. 0.78 kN, 1.4 kN
 49. 8.01%
 51. 8 .9 * 102 kg/m3

 53. 18 cm
 55. 5.2 cm

 57. a. p1 = p0 + 1
2 rv0

  2 11 -
d0

  4

d1
  42 b. 94 kPa

 59. a. p2 = patmos b. 4.6 m
 61. a. Lower b. 0.83 kPa c. Blow out
 63. a. v1 = 1.4 * 102 m/s, v2 = 5.8 m/s b. 4.5 * 10-3 m3/s

 65. a. vhole Ahole = pr22 2gd

1 - 1r/R24
 b. 1.1 mm/min

 67. 480 kPa
 69. 0.043 L/min
 71. 76 cm

 73. a. p0 = patmos b. d =
1
2 p0h + 1

6 rgh2

p0 + 1
2 rgh

 75. 53 kPa

Chapter 15

Stop to Think Questions

 1. c. vmax = 2pA/T . Doubling A and T leaves vmax unchanged.
 2. d. Think of circular motion. At 45°, the particle is in the first quadrant 

(positive x) and moving to the left (negative vx).
 3. 1vmax 2C + 1vmax 2B + 1vmax 2A = 1vmax 2D. Energy conservation 

1
2 kA2 = 1

2 m1vmax22 gives vmax = 2k /mA. K or m has to be increased 
or decreased by a factor of 4 to have the same effect as increasing or  
decreasing A by a factor of 2.

 4. c. vx = 0 because the slope of the position graph is zero. The negative 
value of x shows that the particle is left of the equilibrium position, so the 
restoring force is to the right.

 5. c. The period of a pendulum does not depend on its mass.
 6. tD + tB = tC + tA. The time constant is the time to decay to 37% of the 

initial height. The time constant is independent of the initial height.

Exercises and Problems

 1. a. 3.2 cm b. -0.032 m
 3. 0.064 s
 5. a. 20 cm b. 0.13 Hz c. +120°
 7. a. 5p/6  b. -14 cm/s c. 16 cm/s

 9. 

 11. x(t) = (4.0 cm)cos3 (2p rad/s)t - p rad4
 13. a. f  0 = -2

3 p rad, or (-120°) b. f = -2
3 p rad, 0 rad, 23 p rad, 43 p rad

 15. a. 2.8 s b. 1.41 s c. 2.0 s d. 1.41 s
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 17. a. 2.0 cm b. 0.63 s c. 5.0 N/m d. -1
4 p rad e. 14 cm/s

f. 20 cm/s g. 1.00 * 10-3 J h. 1.5 cm/s
 19. a. 2.2 N/m b. 0.24 m
 21. a. 25 N/m b. 0.90 s c. 0.70 m/s
 23. a. 135 g b. 0.377 m/s
 25. 7 times
 27. 33 cm
 29. 0.67 s
 31. 54 cm
 33. 1850, 0.78 m
 35. 250 N/m
 37. 4.2 N/m
 39. 1.7%

 41. a. 34, 14 b. 
A22

 43. a. 6.4 cm b. 160 cm/s2 c. x = -6.4 cm d. 28 cm/s
 45. a. 10.1 mm b. 64 m/s
 49. a. 1.125 Hz b. 23 cm c. 4.1 cm below
 51. 9.2 m/s
 53. 66 rpm
 55. 0.72
 57. 8.7 * 10-2 kg m2

 59. 0.65 m/s
 61. a. 0.84 s b. 7.1°
 63. a. 0.11 m, 1.7 s

 65. f =
1

2pA 2T

mL

 67. a. Highest b. 2.5 Hz
 69. 0.66 s
 71. 6.0 cm
 73. 236

 75. f = A f   2
1   f   2

2

f   2
1 + f   2

2

 77. 
1

2pA5

7
 
g

R
 79. 1.8 Hz
 81. 0.58 s

Chapter 16
Stop to Think Questions

 1. d and e. The wave speed depends on properties of the medium, not on 
how you generate the wave. For a string, v = 2Ts/m. Increasing the 
tension or decreasing the linear density (lighter string) will increase the 
wave speed.

 2. b. The wave is traveling to the right at 2.0 m/s, so each point on the wave 
passes x = 0 m, the point of interest, 2.0 s before reaching x = 4.0 m. 
The graph has the same shape, but everything happens 2.0 s earlier.

 3. d. The wavelength—the distance between two crests—is seen to be 10 m.  
The frequency is f = v /l = 150 m/s2/110 m2 = 5 Hz.

 4. nC + nA + nB. l = lvac/n, so a shorter wavelength corresponds to a 
larger index of refraction.

 5. e. A crest and an adjacent trough are separated by l/2. This is a phase 
difference of p rad.

 6. c. Any factor-of-2 change in intensity changes the sound intensity level  
by 3 dB. One trumpet is 1

4 the original number, so the intensity has 
decreased by two factors of 2.

 7. c. Zack hears a higher frequency as he and the source approach. Amy is 
moving with the source, so fAmy = f0.

Exercises and Problems

 1. 110 N
 3. 2.0 m

 5. D (cm)

t (s)
1-1-2 2 3 4 65

-1

1

 7. 

 9. 

 11. a. 3.14 b. 100 Hz
 13. a. 10.5 Hz b. 3.49 m c. 36.65 m/s
 15. v = 2d /c
 17. 510 MHz
 19. a. 2.96 m b. 116 Hz
 21. a. 10 GHz b. 0.17 ms
 23. 2.99 mm
 25. a. 1.5 * 10-11 s b. 3.4 mm
 27. a. 311 m/s b. 361 m/s
 29. 40 cm
 31. a. -2.0 m b. 4.6 m
 33. 6.0 * 105 J
 35. 110 dB
 37. 2700 W/m2, 1400 W/m2, 610 W/m2

 39. 50 m
 41. a. 650 Hz b. 560 Hz
 43. 38.1 m/s
 45. a. 10 m/s b. 5p6  rad c. D(x, t = 0) = A sin12px

l
+ f02

 47. 2.3 m, 1.7 m
 49. 459 nm
 51. 410 ms
 53. 987 m/s
 55. a. -x@direction b. 23 m/s, 5.0 Hz, 2.6 rad/m c. -1.5 cm
 57. -19 m/s, 0 m/s, 19 m/s

 59. v = 2TS

m
= 2Mg sin u

m

 61. 0.07°C
 63. 1.8 mm
 65. 1.2 * 102 mm /s
 67. 2.0 * 10-5 W/m2

 69. a. 250 mW/m2 b. 16 km
 71. a. 1.1 kHz b. 78 dB
 73. 41 Hz
 75. 620 Hz, 580 Hz
 79. Receding at 1.5 * 106 m/s

1 m/s

At t = 1.0 s

D (cm)

x (m)
1-1-2-3 2 3 4 6 75

-1

1
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 3. 4 s
 5. 40 Hz
 7. a. 8 b. 200 Hz
 9. a. 12 Hz, 24 m/s 

b. l4

1.0 m

 11. 12 kg
 13. 10 mm, 3.0 * 1013 Hz
 15. a. 2.42 m, 1.21 m, 0.807 m b. 4.84 m, 1.61 m, 0.968 m
 17. 1024 N
 19. Increase by 5 Hz
 21. 0.34 m, 1.0 m, 1.7 m
 23. a. 25 cm b. 25 cm
 25. 4.2 ms
 27. a. In phase 

b.

 81. 19 m/s
 85. 29 s

Chapter 17
Stop to Think Questions

 1. c. The figure shows the two waves t = 6 s and their superposition. The 
superposition is the point-by-point addition of the displacements of the 
two individual waves.

20 4 6 8 10 12 14 16 18 20
x (m)

 2. a. The allowed standing-wave frequencies are fm = m1v /2L2, so the 
mode number of a standing wave of frequency f is m = 2Lf/v. Quadru-
pling Ts increases the wave speed v by a factor of 2. The initial mode 
number was 2, so the new mode number is 1.

 3. b. 300 Hz and 400 Hz are allowed standing waves, but they are not 
f1 and f2 because 400 Hz ≠ 2 * 300 Hz. Because there’s a 100 Hz differ-
ence between them, these must be f3 = 3 * 100 Hz and f4 = 4 * 100 Hz,  
with a fundamental frequency f1 = 100 Hz. Thus the second harmonic is 
f2 = 2 * 100 Hz = 200 Hz.

 4. c. Shifting the top wave 0.5 m to the left aligns crest with crest and trough 
with trough.

 5. a. r1 = 0.5l and r2 = 2.5l, so ∆r = 2.0l. This is the condition for max-
imum constructive interference.

 6. Maximum constructive. The path-length difference is ∆r = 1.0 m = l.  
For identical sources, interference is constructive when ∆r is an integer 
multiple of l.

 7. f. The beat frequency is the difference between the two frequencies.

Exercises and Problems

 1. 

m r1 r2 𝚫r C/D

P 3l 4l l C

Q 7
2l

2l 5
2l

D

R 5
2l

7
2l

l C

 29. Perfect destructive interference
 31. Maximum destructive interference
 33. 203 Hz
 35. 10
 37. 0.62 cm, 1.2 cm, 1.6 cm, 1.9 cm, 2.0 cm
 39. 2.4 * 10-4 N
 41. 28.4 cm
 43. 8.50 m/s2

 45. 6.1 cm
 47. 54 Hz
 49. 13 Hz
 51. a. 212 2 b. 466 Hz
 53. 328 m/s
 55. 4.0 cm, 35 cm, 65 cm
 57. 450 N
 59. 85 cm
 61. a. 80 cm b. 3p4  c. 0.77a
 63. a. 473 nm b. 406 nm, 568 nm c. Reflected light is blue;  

transmitted light is yellowish green.
 65. 1.4
 67. 679 nm, 428 nm
 69. 3.0 m, 5.6 m, 18 m
 71. a. a b. 1.0 m c. 9
 73. a. 5 b. 4.6 mm
 75. 7.0 m/s
 77. 24
 79. 2.0 kg
 81. c. 2.09 cm/s d. 2.2 mm

Chapter 18
Stop to Think Questions

 1. d. The pressure decreases by 20 kPa.
 2. a. The number of atoms depends only on the number of moles, not the 

substance.
 3. a. The step size on the Kelvin scale is the same as the step size on the 

Celsius scale. A change of 10°C is a change of 10 K.
 4. Increase. When an object undergoes thermal expansion, all dimensions 

increase by the same percentage.
 5. a. On the water phase diagram, you can see that for a pressure just slightly  

below the triple-point pressure, the solid/gas transition occurs at a higher 
temperature than does the solid/liquid transition at high pressures. This is 
not true for carbon dioxide.
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 6. c. T = pV/nR. Pressure and volume are the same, but n differs. The num-
ber of moles in mass M is M = M/Mmol. Helium, with the smaller molar 
mass, has a larger number of moles and thus a lower temperature.

 7. b. The pressure is determined entirely by the weight of the piston press-
ing down. Changing the temperature changes the volume of the gas, but 
not its pressure.

 8. b. The temperature decreases by a factor of 4 during the isochoric pro-
cess, where pf /pi = 1

4. The temperature then increases by a factor of 2 
during the isobaric expansion, where Vf /Vi = 2.

Exercises and Problems

 1. 154.4 cm3

 3. 44.48 cm
 5. 4 .8 * 1023 atoms
 7. 24
 9. 1.5 cm
 11. -40°
 13. a. 171°Z b. 671°C = 944 K
 15. 0.059 mm
 17. 12 mm
 19. 19 atm
 21. a. 1.27V0 b. 2V0

 23. 2 .5 * 1024 molecules
 25. a. 1.6 mol b. 9.4 * 1023 molecules c. 7.5 * 1025 m-3 d. 200 kPa

 27. a. V2 = V1 b. 
T1

3 29. 2.6 atm
 31. a. 105,600 Pa b. 42 cm
 33. a. 48 atm
 35. a. Isobaric b. 3200°C c. 4.1 * 10-3 mol
 37. a. -29°C b. 4.0 atm c. 500 cm3

 39. 

 41. 3.3 * 1026 protons
 43. 333°C
 45. 107°C
 47. 17.2 m
 49. 2.4 m
 51. a. 82 L b. 79 m3

 53. 29 cm
 55. 9.8 * 102 m3

 57. a. 23 cm b. 7.5 cm
 59. 1.8 cm
 61. a. 889 kPa b. 323°C, -49°C, 398°C
 63. -152°C
 65. a. 4.0 atm, -73°C 

b. p (atm)

V

4

1

12

3
Isothermal

Isobaric

V1 V1 V1
V1

3
2

0 1

4

1

2

3

4

 67. b. p (atm)

V (cm3)

6

2

0

4

300200100

Isotherm

c. 6 atm
 69. b. p

V (cm3)

400°C

5004003002001000

50°C

Isobaric

c. 417 cm3

 71. 5.06 kN
 73. 1.0 cm

Chapter 19

Stop to Think Questions

 1. a. The piston does work W on the gas. There’s no heat because of the  
insulation, and ∆Emech = 0 because the gas as a whole doesn’t move. 
Thus ∆Eth = W 7 0. The work increases the system’s thermal energy 
and thus raises its temperature.

 2. d. WA = 0 because A is an isochoric process. WB = W1 to 2 + W2 to 3. 
W2 to 3 7 W1 to 2 because there’s more area under the curve, and W2 to 3 is 
positive whereas W1 to 2 is negative. Thus WB is positive.

 3. b and e. The temperature rises in d from doing work on the gas 
1∆Eth = W2, not from heat. e involves heat because there is a tempera-
ture difference. The temperature of the gas doesn’t change because the 
heat is used to do the work of lifting a weight.

 4. c. The temperature increases so Eth must increase. W is negative in an 
expansion, so Q must be positive and larger than ∙W ∙.

 5. a. A has a smaller specific heat and thus less thermal inertia. The tem-
perature of A will change more than the temperature of B.

 6. a. WA + QA = WB + QB. The area under process A is larger than the area 
under B, so WA is more negative than WB. QA has to be more positive 
than QB to maintain the equality.

 7. c. Conduction, convection, and evaporation require matter. Only radia-
tion transfers energy through the vacuum of space.

Exercises and Problems

 1. 60 J
 3. 200 cm3

 5. a. 240 J b. 330 J

 7. 

0

+

-

Eth i W Q+ =+ Eth f

+ =+

Z04_KNIG6297_05_SE_ANS.indd   24 25/06/22   4:31 PM



Answers A-25

 9. 

 11. 500 kPa
 13. 184.8 kJ
 15. 5.5 kJ
 17. 1200 W
 19. 0.55°C
 21. 522°F
 23. 72.82°C
 25. 40° C
 27. A:  -1000 J, B:  1400 J
 29. a. 31 J b. 60°  C

 31. a. g =
ln(2.5)

ln(2.0)
= 1.3 b. 1.3

 33. 16 kW
 35. 5.8 s
 37. 26 W
 39. 33.7 kJ
 41. 12 J/s
 43. Aluminum
 45. 2.8 atm
 47. a. 140 J b. 0.4 L
 49. a. 3500 Pa b. 4.9 * 1020 molecules c. 110°C d. 26 cm

e. -0.57 J
 51. 4.5 * 102 J
 53. a. 250° C b. 33 cm
 55. a. 3.1 atm b. 9.7 L

c. p (atm)

V (L)
2 4 6 8 100

3

2

1

Isobaric
f

f

i

Isobaric

 57. a. 4300 cm3, 610° C b. 3000 J c. 1.0 atm d. -2200 J
e. 

 59. 2.3 mm
 61. a. TAf = 300 K, VAf = 2.5 * 10-3 m3, TBf = 220 K, VBf = 1.8 * 10-3 m3 

b. 

 63. 28° C
 65. a. 5500 K b. 0 J c. 54 kJ d. 20

e. 

10

20

p (atm)

V (L)
0 5 10

Isochoric

f

i

 67. a. 0.75 kg b. 23 h
 69. -18° C
 71. 83° C
 73. 1100 K, 24 cm3

 75. b. 0 .0156 mol
 77. b. Vmax/Vmin = 5.18
 79. 1.1 * 105 L
 81. -41° C
 83. 39 J

Chapter 20
Stop to Think Questions

 1. lB + lA = lC + lD. Increasing the volume makes the gas less dense, so 
l increases. Increasing the radius makes the targets larger, so l decreases.  
The mean free path doesn’t depend on the atomic mass.

 2. c. Each v2 increases by a factor of 16 but, after averaging, vrms takes the 
square root.

 3. e. Temperature is proportional to the average energy. The energy of a gas 
molecule is kinetic, proportional to v2. The average energy, and thus T, 
increases by 42.

 4. b. The bead can slide along the wire (one degree of translational motion) 
and rotate around the wire (one degree of rotational motion).

 5. a. Temperature measures the average translational kinetic energy per 
molecule, not the thermal energy of the entire system.

 6. b. In this case, kinetic energy is transformed into potential energy; there 
is no entropy change. In the other cases, energy is transformed into ther-
mal energy, meaning entropy increases.

 7. b. The multiplicity increases by the factor c(2V)N/cV N = 2N.
 8. c. Box B, with nearly equal numbers of molecules on both sides, is like 

a coin toss with nearly equal numbers of heads and tails. This is a very 
likely outcome with a high multiplicity. Box A is a very unlikely situation 
with a low multiplicity. Thus SA 6 SB.
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 9. 9. a. The entropy change of an ideal gas is the sum of two terms. In an 
expansion, with Vf 7 Vi, the volume term is positive. For ∆S to be zero, 
the temperature term must be negative. Because the temperature ratio 
appears in a logarithm, this term is negative if Tf 6 Ti.

Exercises and Problems

 1. a. 200 nm b. 100 nm
 3. 5 .5 * 1024

 5. a. 5.85 * 1012 m-3 b. 9.62 * 105 m
 7. 600 nm
 9. a. 0

u
 in + 0

u
 jn b. 57 m/s c. 60 m/s

 11. 6.5 * 1025 s-1

 13. Nitrogen
 15. 283 m/s
 17. 2.5 mK
 19. 2.12
 21. -24°C
 23. a. Yes b. Yes, 22 c. No
 25. 2.5 mK
 27. 580 m/s
 29. a. 0.080°C b. 0.048°C c. 0.040°C
 31. a. 3.80 * 105 J b. 2.25 * 10-9 m c. 0 J
 33. a. 62 J b. 100 J c. 150 J
 35. 5000 J
 37. a. 1 b. 220 c. 924
 39. a. 0.3 J b. 3 J c. 30 J
 41. 8.0 * 102 J/K
 43. 1.2 * 103 K
 45. 61
 47. 510
 49. a. 310 m b. 2900 m

 51. a. vrms = 2 3p

(N/V)m
= 23pV

M
 b. vrms =

vrmsvpiston

2L
 c. 75 m/s2

 53. 1.0043
 55. 1.9 * 104 Pa
 57. 29 J/mol K
 59. 482 K
 61. a. 2.5 kJ b. 5.4 * 1012 rad/s
 63. 22 kJ
 65. a. Increases by 2 b. Decreases by 18 c. Increases by 4 d. No change
 67. 2R

 69. a. CV =
(3n1 + 5n2)

2(n1 + n2)
 R

 71. ∆Smix = -nR1fAln1fA2 + fBln1fB22
 73. a. 436 K, 850 J from oxygen to helium
 75. a. -20 J/K b. 26 J/K

Chapter 21
Stop to Think Questions

 1. WD + WA = WB + WC. Wout = QH - QC.
 2. b. Energy conservation requires QH = QC + Win. The refrigerator will 

exhaust more heat out the back than it removes from the front. A refrig-
erator with an open door will heat the room rather than cool it.

 3. c. Wout =  area inside triangle = 1000 J. h = Wout/QH = 11000 J2/
14000 J2 = 0.25.

 4. To conserve energy, the heat QH exhausted to the hot reservoir needs to 
be QH = QC + Win = 40 J + 10 J = 50 J, not 30 J.

 5. b. The efficiency of this engine would be h = Wout/QH = 0.6. That 
exceeds the Carnot efficiency hCarnot = 1 - TC/TH = 0.5, so it is not 
possible.

Exercises and Problems

 1. 0.375
 3. 6.4 kg/s
 5. a. 200 J b. 300 J
 7. a. 13 kJ/cycle b. 50 kJ

𝚫Eth Ws Q

A - + 0

B + 0 +
C 0 - -

 11. 800 cm3

 13. a. 30 J, 145 J b. 21%
 15. 285 J
 17. 0.24
 19. a. 5.0 kW b. 1.7
 21. a. 64 J b. 1.6
 23. a. Engine c violates the first law. b. Engine b violates the second law.
 25. a. 40% b. 215°C
 27. 175°C
 29. 5.0 kJ
 31. a. 6.3 b. 32 W c. 0.23 kW
 33. a. 0 J/K b. -1.3 J/K c. 1.3 J/K
 37. a. p (atm)

V (cm3)
10050

2

3

1

0
0

41

32

b. 10 J c. 0.13
 39. 83 W
 41. a. 3.6 * 106 J b. 3.0 * 105 J
 43. 8.3%
 45. 6.4 J
 47. a. 2.5 kW b. $45
 49. 57 g
 51. a. 48 m b. 32%
 53. 37%
 55. a. 𝚫Eth 1J 2 Ws 1J 2 Q 1J2

1S2 13.93 3.04 16.97

2S3 –10.13 0 –10.13

3S1 –3.80 –1.52 –5.32

Net 0 1.52 1.52

b. 9.0% c. 13 W
 57. a.  1.10 kW b.  9.01%
 59. a. 1000 cm3, 696 kPc, 522 K

b. 𝚫Eth 1J 2 Ws 1J 2 Q 1J2
1S2 741.1 0 741.1

2S3 –741.1 741.1 0

3S1 0 –554.5 –554.5

Net 0 186.6 186.6

c. 25%
 61. a. 4S3, 3S2 b. QH c. QH = 22.28 * 105 J, QC = 26.33 * 105 J

d. Win = 4.05 * 105 J e. No
 63. a. T1 = 1.6 kK, T2 = 2.4 kK, T3 = 6.5 kK

b. 𝚫Eth 1J 2 Ws 1J 2 Q 1J2
1S2 327 –327 0

2S3 1692 677 2369

3S1 –2019 0 –2019

Net 0 350 350
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 65. b. 1.1 * 103°C
 67. b. QC = 80 J
 69. 5.3 * 104 J
 71. a. 1.19 b. 227 W
 73. c. h

r

0.5

0

1.0

302010

Chapter 22
Stop to Think Questions

 1. b. Charged objects are attracted to neutral objects, so an attractive force 
is inconclusive. Repulsion is the only sure test.

 2. qE 1+3e 2 + qA 1+1e 2 + qD 10 2 + qB 1−1e 2 + qC 1−2e 2 .
 3. a. The negative plastic rod will polarize the electroscope by pushing 

electrons down toward the leaves. This will partially neutralize the posi-
tive charge the leaves had acquired from the glass rod.

 4. b. The two forces are an action/reaction pair, opposite in direction but 
equal in magnitude.

 5. c. There’s an electric field at all points, whether an E
u

 vector is shown or 
not. The electric field at the dot is to the right. But an electron is a nega-
tive charge, so the force of the electric field on the electron is to the left.

 6. E2 + E1 + E4 + E3.

Exercises and Problems
 1. 4.0 * 10-9 C or 4.0 nC
 3. a. Electrons transferred to the sphere b. 5 * 1010

 5. -1.1 * 107 C
 7. 5.1 * 1013 
 13. a. 9 * 10-3 N b. 0.45 m/s2

 15. a. 230.4 N b. 1.86 * 10-36 c. 
FE

FG
= 1.23 * 10-36

 17. 0 N
 19. 1.8 * 10-4 N 1- in2, downward
 21. a. 11.3 * 1014 m/s2, toward bead2

b. 12.4 * 1017 m/s2, away from bead2
 23. 4

9q, negative, x =
L

3
 

 25. -440 nC
 27. a. (1.4 * 10-3 N/C, away from proton) 

b. (1.4 * 10-3 N/C, toward electron)
 29. a. 16.4 in + 1.6jn2 * 10-17 N b. 16.4 in + 1.6jn2 * 10-17 N

c. 4.0 * 1010 m/s2 d. 7.3 * 1013 m/s2

 31. 1-2.5 cm, -2.5 cm2
 33.  4.3 * 104 in N/C, 1-1.5 * 104 in + 1.5 * 104 jn2 N/C, 1-1.5 * 104 in

- 1.5 * 104 jn2 N/C
 35. -1.0 * 105jn N/C, 1-2.9 * 104 in - 2.2 * 104 in2 N/C, - 5.6 * 104 in N/C
 37. 82 nC
 39. 0.92 N/m
 41. 8.4 * 1021

 43. 4.6 * 10-3 N, 81° ccw from -x-axis
 45. 1.0 * 10-3 in N
 47. 1.1 * 10-5 in N
 49. a. -2.4 cm b. Yes
 51. 0.68 nC

 53. 12 - 122KQq

L2

 55. 6.6 * 1015 rev/s
 57. 8.1 nC
 59. 7.2 * 10-4 N/s

 61. t = Eqs = pE
 63. 4.4°
 65. a. 1-1.0 cm, 2.0 cm2 b. 13.0 cm, 3.0 cm2 c. 14.0 cm, - 2.0 cm2
 67. 0.18 mC
 69. 19 mm
 71. 0.32 N
 73. b. {22 nC
 75. b.  5.1 nC
 77. 7.3 m/s
 79. 1.7 * 10-4 N

Chapter 23
Stop to Think Questions

 1. c. From symmetry, the fields of the positive charges cancel. The net field 
is that of the negative charge, which is toward the charge.

 2. HC = HB = HA. All pieces of a uniformly charged surface have the same 
surface charge density.

 3. b, e, and h. b and e both increase the linear charge density l.
 4. E1 = E2 = E3 = E4 = E5. The field strength of a charged plane is the 

same at all distances from the plane. An electric field diagram shows the 
electric field vectors at only a few points; the field exists at all points.

 5. E1 = E2 = E3 = E4 = E5. The electric field strength between the plates 
of a capacitor is the same at all points.

 6. c. Parabolic trajectories require constant acceleration and thus a uniform 
electric field. The proton has an initial velocity component to the left, but 
it’s being pushed back to the right.

Exercises and Problems

 1. 7.6 * 103 N/C vertical, 0° from vertical
 3. 5.4 * 102 N/C, 90° cw from horizontal
 5. a. 1.1 * 10-11 Cm b. 5.6 nC c. 2.2 nC
 7. 2.9 * 10-3 N
 9. 2.0 * 104 N/C
 11. 2.3 * 105 N/C, 1.67 * 105 N/C, 2.3 * 105 N/C
 13. 44 nC
 15. a. 12.6 * 104 N/C, left2 b. 12.6 * 10-5 N, right2
 17. 54 nC

 19. -
h0

P0
 in, -12h0 /P02 in, + 1h0 /P02 in 

 21. 0.16 pC
 23. 1.2 cm
 25. 6.7 nC
 27. a. 3.6 * 106 N/C b. 8.3 * 105 m/s
 29. 0.18 m
 31. a. 0.040 s b. 1.6 * 104 N/C

 33. a. 
1

4pP0
 
qQs

r3
 b. 

1

4pP0
 
qQs

r2

 35. 1.8 * 10-21 N m
 37. a. 1.2 * 104 N/C in + 2.4 * 105 N/C jn b. 2.5 * 105 N/C, 

87° ccw from +x@axis

 39. 
1

4pP0
 
Q

L2
 112 - 121in +  jn2

 41. 
1

4pP0
 

16ly

4y2 + d2

 45. Ez =
zQ

4pP0(z
2 + R2)3/2

 47. a. { R22
 b. 

2

323
 

Q

4pP0 R
2

 49. a. (Ei)x =
1

4pP0
1 2Q

pR22∆u cos  ui, (Ei)y =
1

4pP0
1 2Q

pR22∆u sin  ui

b. Ex =
1

4pP0
1 2Q

pR223p/2

0
cos  u du, Ey =

1

4pP0
1 2Q

pR223p/2

0
sin  u du

c. E
u

net =
1

4pP0
 

2Q

pR2
 ( in + jn)
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 51. 3.8 * 106 m/s
 53. 1.19 * 107 m/s
 55. a. Negative b. 3.8 * 104 N/C c. 2.5 mm
 57. 4.2 * 10-4 N
 59. 6.56 * 1015 Hz

 61. a. 
C2s2

kg
 b. F

u

ion on dipole = 11 1

4pP0
22

 
2q2a

r5
, toward ion2

 63. 0.74 GHz
 65. b. 14 cm
 67. b. 7.4 * 10-11 C

 69. c. 

P

P

P

P

P

P

 71. 
h

2P0
c1 -

R2L2 + R2
d

 73. -2.3 nC/m

Chapter 24

Stop to Think Questions

 1. a and d. Symmetry requires the electric field to be unchanged if front 
and back are reversed, if left and right are reversed, or if the field is rotat-
ed about the wire’s axis. Fields a and d both have the proper symmetry. 
Other factors would now need to be considered to determine the correct 
field.

 2. e. The net flux is into the box.
 3. c. There’s no f lux through the four sides. The f lux is positive 

1 N m2/C through both the top and bottom because E
u

 and A
u

 both 
point outward.

 4. ΦB = ΦE + ΦA = ΦC = ΦD. The flux through a closed surface de-
pends only on the amount of enclosed charge, not the size or shape of the 
surface.

 5. d. A cube doesn’t have enough symmetry to use Gauss’s law. The electric 
field of a charged cube is not constant over the face of a cubic Gaussian 
surface, so we can’t evaluate the surface integral for the flux.

Exercises and Problems

 1. 

 3. 

E = 0 N/C
u u

 5. Negative
 7. Inward, ∙ E ∙ 7 10 N/C
 9. -2.0 N m2/C
 11. a. 1.0 N/C b. 1.0 N/C
 13. -1.3 N m2/C
 15. 5 * 10-4 N m2/C
 19. +2q, +q, -3q
 21. 0.11 kN m2/C
 23. 21 nC
 25. a. 2.5 * 104 N/C, downward b. 0 N/C c. 2.5 * 104 N/C, upward
 27. 0.90 kN/C, 0, 0
 29. Φ1 = -3.2 kN m2/C, Φ2 = Φ3 = Φ5 = 0.0 N m2/C, Φ4 = 3.2 kN m2/C
 31. 9.4 * 105 Nm 2/C
 33. a. -100 nC b. {50 nC

 35. a. 
1

4pP0
 
Q

r2
 rn, 0.0 N/C, 

1

4pP0
13Q

r2 2rn b. -Q, +3Q

 37. a. -1 * 10-8 C b. +1 * 10-8 C c. 4.8 * 10-8 C

 39. 

 41. 700 nC/m2

 43. 0 N/C, 
1

4pP0
 
Q

r2
 rn

 45. a. E
u
( ∙ z ∙ … z0) =

rz

P0
 kn b. E

u
(z Ú z0) =

rz0

P0
 kn

 c.

P

 47. a. 3Q/(2P0A), 0, Q/(2P0A), 0, 3Q/(2P0A)

b. +
3

2

Q

A
, -

1

2

Q

A
, +Q/(2A), +3Q/(2A)

 49. a. 1 l

2pP0
 
1

r 2rn b. 
1

2pP0
 
lr

R2
 rn

 51. 6.2 * 10-11 C2/N m2

 53. 
r

6P0
 r

 55. b. 0, because this is a neutral atom c. 4.6 * 1013 N/C

 57. a.  
lL2dy

4pP03y2 + 1L /2224  b. lL /14P02Qin/P0

 59. a. C =
Q

4pR
 b. 

1

4pP0
 
Q

Rr
 rn c. Yes

 61. a. 
Q

4pP0 R2
 b. 

3Qr3

2pR6

Chapter 25
Stop to Think Questions

 1. Zero. The motion is always perpendicular to the electric force.
 2. UB = UD + UA = UC. The potential energy depends inversely on r. The 

effects of doubling the charge and doubling the distance cancel each other.
 3. The proton gains speed by losing potential energy. It loses potential en-

ergy by moving in the direction of decreasing electric potential.
 4. V1 = V2 + V3 + V4 = V5.
 5. ∆V13 = ∆V23 + ∆V12. The potential depends only on the distance from 

the charge, not the direction. ∆V12 = 0 because these points are at the 
same distance.
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Exercises and Problems

 1. 9.8 * 104 m/s
 3. 1.7 * 106 m/s
 5. 0 J
 7 1.5 * 10-3 N
 9. 1.4 * 109 N/C
 11. 2 .1 * 106 m/s
 13. 33 V
 15. a. Higher potential b. 0.21 kV
 17. 10 nC
 19. 1.5 * 105 m/s
 23. a. 200 V b. 400 V
 25. 1.4 * 103 V
 27. a. 1800 V, 1800 V, 900 V b. 0 V, 900 V
 29. a. 27 V b. -4.3 * 10-18 J
 31. 8.7 * 102 V
 33. 1.1 * 106 m/s
 35. 0 V
 37. -10 nC, 40 nC
 39. 3.0 cm, 6.0 cm
 41. y = {12 cm
 43. 1.0 * 105 m/s
 45. 2.5 cm/s
 47. a. 9.8 * 105 m/s b. 1.4 * 106 m/s
 49. 1.5 kV
 51. 8.0 * 107 m/s
 53. -5.1 * 10-19 J
 55. 4.2 * 10-10 C
 57. 4.1 * 107 m/s
 59. 3.3 * 105 m/s
 61. a. 15 V, 3.0 kV/m, 2.1 * 10-10 C b. 15 V, 1.5 kV/m, 1.0 * 10-10 C

c. 15 V, 3.0 kV/m, 8 .3 * 10-10 C
 63. 1.8 * 102 N/C
 65. 0.47 kV
 67. 5447 V, point 2

 69. Vnet =
1

4pP0
 
(2qs2)

y3
=

1

4pP0
 
Q

y3

 71. V =
Q

2pP0 L
 ln3 1 L

2z2 + 21 + 1 L

2z224
 73. V =

Q

2pP0 R
     2
out

 c2R     2
out + z2 - z d

 75. b. 10 nC, 30 nC
 77. b. 6.0 cm
 79. 1.9 * 10-14 m
 81. -9.8 cm/s, 4.9 cm/s

 83. 
2Q/L

4pP0
 c ln1z + 2R2 + z22 d L/2

0
  

Chapter 26
Stop to Think Questions

 1. Ey is the negative of the slope of the V-versus-y graph. Ey is positive 
because E

u
 points up, so the graph has a negative slope. Ey has constant 

magnitude, so the slope has a constant value.
 2. b. E

u
 points “downhill,” so the potential must decrease from right to left. 

The field is everywhere perpendicular to equipotential surfaces, which 
rules out d. The field is stronger at the ends, where the field lines are 
closer together, so the contour lines at the ends must be closer together 
than in the middle.

 3. b. Because of the connecting wire, the three spheres form a single con-
ductor in electrostatic equilibrium. Thus all points are at the same poten-
tial. The electric field of a sphere is related to the sphere’s potential by 
E = V/R, so a smaller-radius sphere has a larger E.

 4. 5.0 V. The potentials add, but ∆V = -1.0 V because the charge escalator 
goes down by 1.0 V.

 5. 1Ceq 2B + 1Ceq 2A = 1Ceq 2D + 1Ceq 2C. 1Ceq2B = 3 mF + 3 mF = 6 mF. The  
equivalent capacitance of series capacitors is less than any capacitor in  
the group, so 1Ceq2C 6 3 mF. Only d requires any real calculation. The 
 two 4 mF capacitors are in series and are equivalent to a single 2 mF 
capacitor. The 2 mF equivalent capacitor is in parallel with 3 mF, so 
1Ceq2D = 5 mF

Exercises and Problems

 1. 380 V
 3. -400 V
 5. E1 7 E2

 7. 2.0 * 104 V/m 45° ccw from the -x-axis
 9. 13750 V/m, down2, 17500 V/m, up2
 11. 

2.0 * 104

Ex (V/m)

x (cm)
10 20 30

-2.0 * 104

 13. 3.3 kV/m
 15. a. -70 V/m b. -1.10 kV/m
 17. 3.0 C
 19. 1.5 V
 21. a. 7.4 pF b. 0.89 nC
 23. 4.8 cm
 25. 3.0 mF
 27. 1.5 mF
 29. 150 mF, in series
 31. 1.4 kV
 33. 4.75 kV/m
 35. a. 0.15 nF b. 12 kV
 37. 89 pF
 39. a. Ex (V/m)

x (m)
-1.0 -0.5 0.5 1.00

-1000

b. 12V
 41. a. -11.4 * 107 in2 V/m, 7 * 104 V b. 0.0 V/m, 1 .4 * 105 V

c. 1.4 * 107 in V/m, 7 * 104 V

 43. 
Q

4pP0z
2

 45. 1000 V/m, 127° ccw from + x@axis
 47. 
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 49. a. V =
2kq2a2 + x2

 b. 
2kq

a 11 -
x2

2a22 c. 
2kqx

a3
 

d. Fx = -
2kqex

a3
 e. 8.9 GHz

 51. Q1f = 2 nC, Q2f = 4 nC
 53. 5.0 cm
 55. a. {32 pC b. {16.0 pC
 57. V1 = 12 V, V2 = 7.2  V, V3 = 4.8  V; Q1 = 190 mC, Q2 = 290 mC, 

Q3 = 290 mC
 59. a. 3

2 pC b. 0
 61. 12 V
 63. Q′1 = 33 mC, Q′2 = 67 mC, ∆V′1 = ∆V′2 = 3.3 V 
 65. 11 mF
 67. 5.0 mF
 69. a. 8.0 kV b. 4.3 * 107 V/m

 71. C0 
2k

1 + k

 73. 6.1 * 107 ions
 75. b. 110 - az22 V, with z in m
 77. b. 2 mF

 79. 
rR2

2P0

 81. a. C =
Q

∆VC
 4pP01 1

R1
-

1

R2
2-1

 b. 5.9 cm, 6.1 cm

 83. 2 C

Chapter 27

Stop to Think Questions

 1. iC + iB + iA + iD. The electron current is proportional to r2vD Changing 
r by a factor of 2 has more influence than changing vD by a factor of 2.

 2. The electrons don’t have to move from the switch to the bulb, which 
could take hours. Because the wire between the switch and the bulb is 
already full of electrons, a flow of electrons from the switch into the wire 
immediately causes electrons to flow from the other end of the wire into 
the lightbulb. 

 3. ED + EB + EE + EA = EC. The electric field strength depends on the  
difference in the charge on the two wires. The electric fields of the rings 
in A and C are opposed to each other, so the net field is zero. The rings in 
D have the largest charge difference.

 4. 1 A into the junction. The total current entering the junction must equal 
the total current leaving the junction.

 5. JB + JA = JD + JC. The current density J = I/pr2 is independent of the 
conductivity s, so A and D are the same. Changing r by a factor of 2 has 
more influence than changing I by a factor of 2.

 6. I1 = I2 = I3 = I4. Conservation of charge requires I1 = I2. The current in 
each wire is I = ∆Vwire/R. All the wires have the same resistance because 
they are identical, and they all have the same potential difference because 
each is connected directly to the battery, which is a source of potential.

Exercises and Problems

 1. 3.0 d
 3. 2.2 * 1025 electrons
 5. a. 4.6 * 1021 electrons b. 4.3 * 10-12 m
 7. 66 mV/m
 9. a. 1.7 * 107 A/m2 b. 5.3 * 1018 s-1

 11. 0.161 C
 13. 1.8 mA
 15. 5.1 * 106 A/m2

 17. 5.7 A
 19. 0.16 V/M

 21. 5.0 * 10-8 Ω  m
 23. 1.7 * 10-5 V/m
 25. a. 1 b. 0.33 Ω 
 27. Silver
 29. 1.5 mV
 31. 2.3 mA
 33. 0.87 V
 35. 50 Ω 
 37. 380
 39. 6.2 * 106

 41. a. 3.1 * 1014  b. 4.0 * 102 A/m2 c. 9.1 * 105 V/m d. 0.23 W
 43. a. 75 nA b. 130 s
 45. Yes, 2.2 * 105 Ω-1 m-1

 47. 6.1 * 1010 Ω-1m-1, 1000 times greater
 49. 71°C
 51. 100 V
 53. a. ∆V = IR 1 ∆V = I/G b. 5.9 Ω-1 c. 0.25 V
 55. 0.60 kA

 57. a. 
1∆V2A31 - a1T - T024

r0L
 b. 4.4 A c. -0.017 A/°C

 59. a. 
1

4psr2
 b. Einner = 3.3 * 10-4 V/m, Eouter = 5.3 * 10-5 V/m

c. 

5

5

10

100
t (s)

I (A)

 61. 1.01 * 1023

 63. a. 2.0 A b. 5.0 * 10-5 m/s
 65. a. 2.5 C b. 1.8 cm
 67. 36 A
 69. 1.80 * 103 C
 71. 4R

 73. 
3

2
 

I

pR3

 75. 1.0 s

Chapter 28
Stop to Think Questions

 1. a, b, and d. These three are the same circuit because the logic of the 
connections is the same. In c, the functioning of the circuit is changed by 
the extra wire connecting the two sides of the capacitor.

 2. ∆V increases by 2 V in the direction of I. Kirchhoff’s loop law, starting 
on the left side of the battery, is then +12 V + 2 V - 8 V - 6 V = 0.

 3. PB + PD + PA + PC. The power dissipated by a resistor is PR = 1∆VR22/R.  
Increasing R decreases PR; increasing ∆V  increases PR. But the potential 
has a larger effect because PR depends on the square of ∆VR.

 4. I = 2 A for all. V1 = 20 V, V2 = 16 V, V3 = 10 V, V4 = 8 V, V5 = 0 V. 
The potential is 0 V on the right and increases by IR for each resistor going 
to the left.

 5. A + B + C = D. All the current from the battery goes through A, so it 
is brightest. The current divides at the junction, but not equally. Because 
B is in parallel with C + D but has half the resistance, twice as much 
current travels through B as through C + D. So B is dimmer than A but 
brighter than C and D. C and D are equal because current is the same 
through bulbs in series.

 6. b. The two 2 Ω resistors are in series and equivalent to a 4 Ω resistor. 
Thus t = RC = 4 s.
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Exercises and Problems

 1. 

 3. 2A, to the left
 5. 13 V, 27 V
 7. 3,600,000 J
 9. a. 60 W b. 23 W, 14 W
 11. P 7 S = T 7 Q = R
 13. 12 mm
 15. $2800
 17. 0.9 Ω
 19. 2.0 A
 21. 9.0 V, 0.50 Ω
 23. 240 Ω
 25. 183 Ω
 27. 24 Ω
 29. 20 W, 45 W
 31. Point 1
 33. 2.0 ms
 35. 6.9 ms
 37. 14 mF
 39. Incandescent: $140, LED: $28
 41. 19 W
 43. 

6.0 Ω3.0 Ω

2.0 Ω

6.0 V

 45. a. Points 2, 3 b. 9.3 W
 47. a. 0.84 kW b. 6.6 s
 49. 9.5
 51. a. R = r b. 20 W
 53. I1 = 5.0 A, I2 = 8.0 A, E = 14 V
 55. a. 8 V b. 0 V
 57. 

e. 

0

0.2

1 2 3 4 5

0.4

0.6

0.8

1.0

t/t

I/(E/R)

 75. a. 1.2 ms b. 4.2 kW c. 2.9 J
 77. 0.69 ms
 79. 2.0 m, 0.49 mm
 81. a. 80 mC b. 0.23 ms
 83. 5.1 kΩ

Chapter 29
Stop to Think Questions

 1. Not at all. The charge exerts weak, attractive polarization forces on both 
ends of the compass needle, but in this configuration the forces will bal-
ance and have no net effect.

 2. d. Point your right thumb in the direction of the current and curl your 
fingers around the wire.

 3. b. Point your right thumb out of the page, in the direction of v  

u
 .Your 

fingers are pointing down as they curl around the left side.
 4. b. The right-hand rule gives a downward B

u
 for a clockwise current. The 

north pole is on the side from which the field emerges.
 5. c. For a field pointing into the figure, v  

u * B
u

 is to the right. But the elec-
tron is negative, so the force is in the direction of -1v

u * B
u2.

 6. b. Repulsion indicates that the south pole of the loop is on the right, 
facing the bar magnet; the north pole is on the left. Then the right-hand 
rule gives the current direction.

 7. a or c. Any magnetic field to the right, whether leaving a north pole or 
entering a south pole, will align the magnetic domains as shown.

Exercises and Problems

 1. B2 = 40 mT, B3 = 0 T, B4 = 40 mT
 3. a. 0 T b. 0.8 * 10-15kn T c. -3.2 * 10-15kn T
 5. (-2.8 * 10-16 T) kn

 7. 2.5 A, 250 A, 5000 A to 50,000 A, 500,000 A
 9. 0.06 mA
 11. a. 23 A b. 2.4 * 10-3 m
 13. B

u

a = 2.0 * 10-4 in T, B
u

b = 4.0 * 10-4 in T, B
u

c = 2.0 * 10-4 in T
 15. 11 A
 17. a. 1.7 A m2 b. 3.4 * 10-4 T
 19. 0
 21. 23.0 A, into the page
 23. 1.26 * 10-6 T m
 25. 2.4 kA
 27. a. 8.0 * 10-13 N in - jn  b. 5.7 * 10-13 N in jn
 29. a. 1.4442 MHz b. 1.6450 MHz c. 1.6457 MHz
 31. a. 86 mT b. 1.62 * 10-14 J

R (Ohms) I (A) V (V)

4 2.4 9.6

5 1.6 8

6 2.4 14.4

10 1.6 16

 59. 2.0 A
 61. 0.12 A, left to right
 63. 150 V, bottom
 65. 0.3 W
 67. a. 35 ms b. 17 ms
 69. 79 Ω
 71. 48 mJ
 73. a. E b. CE c. I = +dQ/dt d. I =

E
R

 e-t/t
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 33. 3.0 Ω
 35. F

u

on 1 = (2.5 * 10-4 N, up), F
u

on 2 = 0 N, F
u

on 3 = (2.5 * 10-4 N, down) 
 37. 240 A
 39. a. 1.26 * 10-11 N m b. 0° or 180°
 41. a. x = 0.50 cm b. x = 8.0 cm
 43. 4.1 * 10-4 T, into the page

 45. 
m0Iu

4pR
 47. 5.0 * 10-3 T
 49. Wire 1, I =  4.8 A
 51. 1.1 mA

 53. 
m0I

4R

 55. a. Ithrough =
Ir2

R 2
1

; Ithrough = I, Ithrough = 0 A

  b. 

 57. 0; 
m0I

2pr1 r2 - R1
2

R2
2 - R1

22; m0I

2pr
 59. 2.0 mT, into the page
 61. 2.4 * 1010 m/s2, up
 63. a. 2.7 * 10-16 J b. 1400 rev
 65. 0.82 mm, 3.0 mm
 67. 0.69 T
 69. 2.10 T
 71. 2.0 A
 73. 

 75. a. B =
mgtan u

I
 b. B

u
= (11 mT, down)

 77. a. 

         b. 1
2 ILB0jn c. 1

3 IL
2B0

 79. 0.16 T

 81. a. 
m0IL

4pd2(L/2)2 + d2
 b. 

22m0I

pR
 83. a. Horizontal and to the left above the sheet; horizontal and to the right 

below the sheet  b. 1
2 m0 js

Chapter 30
Stop to Think Questions

 1. d. According to the right-hand rule, the magnetic force on a positive 
charge carrier is to the right.

 2. No. The charge carriers in the wire move parallel to B
u

. There’s no mag-
netic force on a charge moving parallel to a magnetic field. 

 3. F2 = F4 + F1 = F3. F
u

1 is zero because there’s no field. F
u

3 is also zero 
because there’s no current around the loop. The charge carriers in both 
the right and left edges are pushed to the bottom of the loop, creating 
a motional emf but no current. The currents at 2 and 4 are in opposite 
directions, but the forces on the segments in the field are both to the left 
and of equal magnitude.

 4. Clockwise. The wire’s magnetic field as it passes through the loop is into 
the page. The flux through the loop decreases into the page as the wire 
moves away. To oppose this decrease, the induced magnetic field needs 
to point into the page.

 5. d. The flux is increasing into the loop. To oppose this increase, the in-
duced magnetic field needs to point out of the figure. This requires a 
ccw induced current. Using the right-hand rule, the magnetic force on 
the current in the left edge of the loop is to the right, away from the 
field. The magnetic forces on the top and bottom segments of the loop 
are in opposite directions and cancel each other.

 6. b or f. The potential decreases in the direction of increasing current and 
increases in the direction of decreasing current. 

 7.  tC + tA + tB. t = L /R, so smaller total resistance gives a larger time 
constant. The parallel resistors have total resistance R/2. The series resis-
tors have total resistance 2R.

Exercises and Problems

 1. 2.67 * 104 m/s
 3. 0.10 T, into the page
 5. 0 T m2

 7. 3.8 * 10-4 T m2

 9. a. Yes, right to left b. No
 11. a. 8.7 * 10-4 Wb b. Clockwise
 13. a. 20 mA, ccw b. 20 mA, ccw c. 0 A
 15. Decreasing, 7.0 T/s
 17. a. E =  12.5 +  2.0t2 mV and I(t) =  (8.4 +  6.7t)  mA 

b. 22 mA and 35 mA
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 19. 

 21. 1.3 T
 23. 508 * 103  turns
 25. 1.5 ms
 27. 0.20 J
 29. 250 kHz to 360 kHz
 31. 3.8 * 10-18 F
 33. 30 nF
 35. 1.7 * 10-4 s
 37. 1.6 A, 0.0 A, -1.6 A
 39. 8.7 T/s
 41. E = 2bpr 2

0 Be-2bt

 43. a. 32 A b. 1.3 m/s
 45. 44 mA
 47. -15 mA
 49. 0.15 T
 51. 4.0 nA
 53. a. Ccw b. 15 A
 55. a. 0.20 A b. 4.0 mN c. 11 K
 57.  a. (4.9 * 10-3) f sin(2pft) A b. 4.1 * 102 Hz, no

 59. a. 
Ebat

Bl
 b. 0.98 m/s

 61. 3.9 V
 63. 1R2/2r21dB/dt2
 65. 3.0 s
 67. 0.75 A
 69. a. 1.9 * 10-4 T b. 92 Ω
 71. a. 6.3 * 10-7 s b. 0.050 mA
 73. 2.0 mH, 0 .13 mF
 75. a.  50 V b. Close S1 at t = 0 s, open S1 and close S2 at t = 0.0625 s, 

then open S2 at t = 0.1875 s
 77. a. I0 = ∆Vbat/R b. I = I011 - e-t/1L/R22
 79. 0.72 mH
 81. 1.0 mA
 83. a. v0e

-bt, where b = l2B2/1mR2
b. 

12

10

8

6

2

4

0.005 0.015 0.025 0.035 0.0450.01 0.02 0.03 0.040
t (s)

v (m/s)

 85. 1.6 * 102 A/s

Chapter 31
Stop to Think Questions

 1. b. v  

u
AB is parallel to B

u

A hence v  

u
AB * B

u

A is zero. E
u

B = E
u

A and points in the 
positive z-direction. v  

u
AB * E

u

A points down, in the negative y-direction, 
so -v  

u
AB * E

u

A/c2 points in the positive y-direction and causes B
u

B to be 
angled upward.

 2. B C + B A + B D + B B . The induced magnetic field strength depends 
on the rate dE/dt at which the electric field is changing. Steeper slopes 
on the graph correspond to larger magnetic fields.

 3. e. E
u

 is perpendicular to B
u

 and to v  

u
, so it can only be along the z-axis. 

According to the Ampère-Maxwell law, dΦe/dt has the same sign as the 
line integral of B

u # ds
u
 around the closed curve. The integral is positive 

for a cw integration. Thus, from the right-hand rule, E
u

 is either into the 
page (negative z-direction) and increasing, or out of the page (positive 
z-direction) and decreasing. We can see from the figure that B is decreas-
ing in strength as the wave moves from left to right, so E must also be 
decreasing. Thus E

u
 points along the positive z-axis.

 4. a. The Poynting vector S
u

= 1E
u

* B
u2/m0 points in the direction of travel, 

which is the positive y-direction. B
u

 must point in the positive x-direction 
in order for E

u
* B

u
 to point upward.

 5. b. The intensity along a line from the antenna decreases inversely with 
the square of the distance, so the intensity at 20 km is 14 that at 10 km. But the  
intensity depends on the square of the electric field amplitude, or, conversely,  
E0 is proportional to I1/2. Thus E0 at 20 km is 12 that at 10 km.

 6. ID + IA + IB = IC. The intensity depends on cos2 u where u is the angle 
between the axes of the two filters. The filters in D have u = 0°. The two 
filters in both B and C are crossed 1u = 90°2 and transmit no light at all.

Exercises and Problems

 1. a. Along the -x@axis  b. Along the y-axis 1+  or -2
  c. Along the +x@axis

 3. -1.11 * 10-5 jn  T
 5. 11 T, inward
 7. 7.5 mA
 11. 6.0 * 105 V/m
 13. a. 314 nm  b. 9.55 * 1014 Hz c. 1200 V/m
 15. -z@direction
 17. 980 V/M, 3.3 T
 19. a. 2.2 * 10-6 W/m2 b. 0.041 V/m
 21. 4.6 * 10-7 T
 23. 3.3 * 10-6 T, 1-1.7 * 10-6 T2 in
 25. 66 mW
 27. (-1.73 * 106 in + 2.0 * 106 jn ) V/m
 29. a. 10.10 T, into page2 b. 0 V/m, 10.10 T, into page2
 31. (-3.2 * 10-14 in - 4.8 * 10-14 jn) N 
 33. a. 0.94 V/m b. 10.0 T
 37. a. 1.0 mT b. 0.160 mT
 39. a. 5.4 * 1015 N/C s b. Opposite
 41. a. -14.6, 6.8 * 10-2 b. -260 in + 140jn - 200kn W/m2

 43. a. 3.85 * 1026 W b. 589 W/m2

 45. 1.3 m
 47. 0.092 V/m
 49. 1.8 * 107 V/m
 51. 1.3 m
 53. 4.9 * 107 W/m2

 55. 0.41 m/s
 57. 63°
 59. a. 7.9 * 104 m/s b. 0.81 m/s2 c. 27 h d. 1.2 GW
 61. 16°
 63. 8.8 h
 65. 5.2 mV/m
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Chapter 32
Stop to Think Questions

 1. a. The instantaneous emf value is the projection down onto the horizon-
tal axis. The emf is negative but increasing in magnitude as the phasor, 
which rotates ccw, approaches the horizontal axis.

 2. c. Voltage and current are measured using different scales and units. You 
can’t compare the length of a voltage phasor to the length of a current 
phasor.

 3. a. There is “no capacitor” when the separation between the two capaci-
tor plates becomes zero and the plates touch. Capacitance C is inversely 
proportional to the plate spacing d, hence CS ∞ as d  S  0. The capacitive 
reactance is inversely proportional to C, so XC S  0 as C S ∞.

 4. 1VC 2D + 1VC 2C = 1VC 2A + 1VC 2B. The crossover frequency is 1/RC.
 5. Above. VL 7 VC tells us that XL 7 XC. This is the condition above res-

onance, where XL is increasing with v while XC is decreasing.
 6. a, b, and c. You can always increase power by turning up the voltage. 

Power is maximum at resonance when the power factor is zero. The cur-
rent leads the emf, telling us that the resonance frequency is higher than 
the emf frequency. We need to lower the resonance frequency to match 
the emf frequency, which can be done by increasing either L or C.

Exercises and Problems

 1. a. 2.0 * 103 rad/s b. 71 V

 3.  

 5. a. 50 mA b. 50 mA
 7. a. 1.25 mA b. 1.25 A
 9. a. 50 Hz b. 4.8 mF
 11. a. 80 kHz b. 0 V

 13. b. 

 15. 6.37 mF

 17. a. ≈ 8 Hz

  b. f Vc (V)
1
2 fc 8.9

fc 7.1

2fc 4.5

 19. a. 3.0 V, 9.5 V b. 10 V, 3.2 V
 21. a. 0.9770 b. 0.9998
 23. a. 0.80 A b. 0.80 mA
 25. a. 24 mH b. 165 mA
 27. a. 200 kHz b. 141 kHz
 29. a. Z = 70 Ω, I = 0.072 A, f = -44°
  b. Z = 50 Ω, I = 0.10 A, f = 0.0°
  c. Z = 62 Ω, I = 0.080 A, f = 37°
 31. 1.0 Ω
 33. a. 5 * 103 Hz b. 10 V, 32 V
 35. 30
 37. 44 Ω
 39. 0.75

 43. a. v =
123RC

 b. 
23

2
 E0

 45. 0.50 mm

 47. a. IR =
E0

R
, IC =

E0

1vC2-1
 b. E0A1vC22 +

1

R2

 49. a. E0/2R2 + v2L2, E0R/2R2 + v2L2, E0vL /2R2 + v2L2

  b. VR SE0, VR S0 c. Low pass d. R/L
 51. a. 2.0 A b. -30° c. 150 W
 53. 10 mT
 55. a. 64 mA b. 48 mA
 57. a. 3.6 V b. 3.5 V c. -3.6 V
 61. a. 0.49 mH b. 10.3 Ω
 63. a. 1.25 * 106 A b. 300 A
 65. a. 0.44 kA b. 1.8 * 10-4 F c. 7.4 MW
 67. a. 0.83 b. 100 V c. 13 Ω d. 3.2 * 10-4 F
 71. b. I = E0/R in both cases c. 0

Chapter 33
Stop to Think Questions

 1. b. The antinodal lines seen in Figure 33.4b are diverging.
 2. Smaller. Shorter-wavelength light doesn’t spread as rapidly as longer- 

wavelength light. The fringe spacing ∆y is directly proportional to the 
wavelength l.

 3. d. Larger wavelengths have larger diffraction angles. Red light has a  
larger wavelength than violet light, so red light is diffracted farther from 
the center.

 4. b or c. The width of the central maximum, which is proportional to l/a,  
has increased. This could occur either because the wavelength has in-
creased or because the slit width has decreased.

 5. d. Moving M1 in by l decreases r1 by 2l. Moving M2 out by l increases 
r2 by 2l. These two actions together change the path length by ∆r = 4l.

Exercises and Problems

 1. 378 nm
 3. 3.2 cm
 5. 1.3 m
 7. 0.286°
 9. 167 cm
 11. 530
 13. 43.2°
 15. 14.5 cm
 17. 500 nm
 19. 0.20 mm
 21. 4.0 mm
 23. 633 nm
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 25. 2.9°
 27. 1.3 m
 29. 9
 31. 1.6
 33. 0 .015 rad, 0 .87°
 35. 78 cm
 37. 30,467
 39. a. Double slit b. 0.16 mm
 41. 0.40 mm
 43. 6.0 GHz
 45. 667.8 nm
 47. 1.3 m
 49. 43 cm
 51. a. Ll/d b. 1L /d2∆l c. 0.250 nm
 53. 16°
 55. 1.8 mm

 57. 
22

2
 d

 59. b. 50 mm
 61. 0.88 mm
 63. a. 550 nm b. 0.40 nm
 65. 50 cm
 67. a. 3.0 mm b. 1

4 T  c. 1
2 prad d. 0.75 mm toward slit with glass

 69. a. Dark b. 1.597
 71. 3

 73. a. ∆y =
∆lL

d
 b. ∆ymin =

l

N
 c. 3646 lines

 75. a. 0.52 mm b. 0.074° c. 1.3 m

Chapter 34
Stop to Think Questions

 1. c. The light spreads vertically as it goes through the vertical aperture. The 
light spreads horizontally due to different points on the horizontal lightbulb.

 2. c. There’s one image behind the vertical mirror and a second behind the 
horizontal mirror. A third image in the corner arises from rays that reflect 
twice, once off each mirror.

 3. a. The ray travels closer to the normal in both media 1 and 3 than in 
medium 2, so n1 and n3 are both larger than n2. The angle is smaller in 
medium 3 than in medium 1, so n3 7 n1.

 4. e. The rays from the object are diverging. Without a lens, the rays cannot 
converge to form any kind of image on the screen.

 5. a, e, or f. Any of these will increase the angle of refraction u2.
 6. Away from. You need to decrease s′ to bring the image plane onto the 

screen. s′ is decreased by increasing s.
 7. c. A concave mirror forms a real image in front of the mirror. Because the 

object distance is s ≈ ∞ , the image distance is s′ ≈ f . 

Exercises and Problems

 1. a. 6.66 * 10-9 s b. 1.5 m, 1.34 m, 0.92 m
 3. 3.6 m
 5. 30°
 7. 9.0 cm
 9. 433 cm
 11. 1.414
 13. 23.3°
 15. 76.7°
 17. 3.2 cm
 19. 1.52
 21. Inverted
 23. 15 cm in front of lens, upright
 25. -68 cm
 27. 2.0 m
 29. 2.0 cm
 31. 30 cm, 0.50 cm
 33. b. 40 cm, 2.0 cm, agree
 35. a. 47 cm, same side b. 6.3 cm, inverted

 37. b. -8.6 cm, 1 .1 cm, agree
 39. Inverted
 41. Upright
 43. 6.4 cm
 45. 1.7

 47. a. 2cos-11 n

2nair
2 b. 82.8°

 49. a. 87 cm b. 65 cm c. 43 cm
 51. 4.7 m
 53. 1.46
 55. 30°
 57. 35°
 59. 2.7 m/s
 61. 15.1 cm
 63. 17 cm
 65. 2; 0.50 cm, inverted; 8.0 cm, inverted
 67. a. 5.9 cm b. 6.0 cm
 69. 4 f
 71. 16 cm
 73. 20 mm/s away from the lens
 75. 13 cm
 77. 1.2 m
 79. 2.8 cm

 81. a. 
n1

c
 2x2 + a2 +  

n2

c
 2(w - x)2 + b2

   b. 
dt

dx
= 0 =

n1x

c2x2 + a2
-

n2(w - x)

c2(w - x)2 + b2

Chapter 35
Stop to Think Questions

 1. b. A diverging lens refracts rays away from the optical axis, so the rays 
will travel farther down the axis before converging.

 2. a. Because the shutter speed doesn’t change, the f-number must remain 
unchanged. The f-number is f/D, so increasing f requires increasing D.

 3. a. A magnifier is a converging lens. Converging lenses are used to correct 
hyperopia.

 4. b. The objective forms a real image, but the image of the eyepiece—a 
magnifier—is a virtual image inside the microscope that the eye can 
view.

 5. wA + wD + wB = wC. The spot size is proportional to f/D.

Exercises and Problems

 1. b. s′2 = ≈ 73 cm, h′2 = 6.85 cm
 3. b. s′2 = -15 cm, h′2 = 3 cm
 5. 10 cm
 7. 3.0 mm
 9. 1/250 s
 11. a. Myopia b. 100 cm
 13. 3.0
 15. 5.0 cm
 17. 13 mm
 19. 6.0 mm
 21. 0.4°
 23. 1600 nm
 25. 102 km
 27. 2.0 cm, right; 6.0 cm, right

 29. a. f2 + f1 b. 
f2

∙ f1 ∙
 w1

 31. 16 cm placed 80 cm from screen
 33. 23 cm
 35. 3.5 m
 37. a. +4.5 D lens b. 1.5 c. 0.56 m
 39. a. 0.225 mm b. 480 mm
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 41. 1.0°
 43. 15 km
 45. a. 1.0 * 1011 km b. 130
 47. b. 1.574
 49. b. ∆n2 = 1

2∆n1 c. Crown converging, flint diverging d. 4.18 cm

Chapter 36
Stop to Think Questions

 1. a, c, and f. These move at constant velocity, or very nearly so. The others 
are accelerating.

 2. a. u′ = u - v = -10 m/s - 6 m/s = -16 m/s. The speed is 16 m/s.
 3. c. Even the light has a slight travel time. The event is the hammer hitting 

the nail, not your seeing the hammer hit the nail.
 4. At the same time. Mark is halfway between the tree and the pole, so 

the fact that he sees the lightning bolts at the same time means they hap-
pened at the same time. It’s true that Nancy sees event 1 before event 2, 
but the events actually occurred before she sees them. Mark and Nancy 
share a reference frame, because they are at rest relative to each other, 
and all experimenters in a reference frame, after correcting for any signal 
delays, agree on the spacetime coordinates of an event.

 5. After. This is the same as the case of Priya and Ryan. In Mark’s reference 
frame, as in Ryan’s, the events are simultaneous. Nancy sees event 1 first, 
but the time when an event is seen is not when the event actually hap-
pens. Because all experimenters in a reference frame agree on the space-
time coordinates of an event, Nancy’s position in her reference frame 
cannot affect the order of the events. If Nancy had been passing Mark at 
the instant the lightning strikes occur in Mark’s frame, then Nancy would 
be equivalent to Priya. Event 2, like the firecracker at the front of Priya’s 
railroad car, occurs first in Nancy’s reference frame.

 6. c. Nick measures proper time because Nick’s clock is present at both the 
“nose passes Nick” event and the “tail passes Nick” event. Proper time is 
the smallest measured time interval between two events.

 7. LA + LB = LC. Anjay measures the pole’s proper length because it is at 
rest in his reference frame. Proper length is the longest measured length. 
Beth and Charles may see the pole differently, but they share the same 
reference frame and their measurements of the length agree.

 8. c. The rest energy E0 is an invariant, the same in all inertial reference 
frames. Thus m = E0/c2 is independent of speed.

Exercises and Problems

 1. -5.0 m, 1 .0 s; -5.0 m, 5 .0 s
 3. a. 13 m/s b. 3.0 m/s c. 9.4 m/s
 5. 3.0 * 108 m/s
 7. 167 ns
 9. 2 ms, 1 ms
 11. Simultaneously
 13. a. 8 y b. 4.8 y c. 14.4 y
 15. 0.866c
 17. 46 m/s
 19. a. Aged less b. 14 ns
 21. 0.55c
 23. 2500 kg/m3

 25. 3.0 * 106 m/s
 27. a. 1200 m, -2.0 ms b. 2800 m, 8.7 ms
 29. 0.71c
 31. 0.9944c
 33. 0.80c
 35. 240,000,000 m/s
 37. a. 1.8 * 1016 J b. 9.0 * 109

 39. 0.943c
 41. 2400
 43. 11.2 h
 45. a. 12.8 ms b. 0.625c
 47. a. 0.80c b. 16 y
 49. 14 m
 51. a. t′D = t″D = t‴D = 0 y, t′E = 0.42 y, t″E = 0 y, t‴E = -0.56 y
  b. Yes, spaceship 2 c. Yes, spaceship 3 d. No

 53. a. 8.5 ly, 17 y b. 7.4 ly, 15 y c. Both
 55. 22 m
 57. 3.1 * 106 V
 59. a. 0.980c b. 8.5 * 10-11 J
 63. a. 3.84 * 108 m, 1.29 s, 5.47 * 107 m
  b. 0.00 m, 0.182 s, 5.47 * 107 m
  c. 3.84 * 108 m, 1.28 s, 0 .00 m
 65. a. 3.5 * 10-18 k/g ms, 1.1 * 10-9 J
  b. 1.6 * 10-18 k/g ms
 67. a. 7.6 * 1016 J b. 0.84 kg
 69. a. 1.3 * 1017 kg b. 6.7 * 10-12% c. 15 billion years
 71. a. 4.3 * 10-12 J b. 0.72%
 73. 1.1 pm
 75. 0.85c

Chapter 37
Stop to Think Questions

 1. a is emission, b is absorption. All wavelengths in the absorption spec-
trum are seen in the emission spectrum, but not all wavelengths in the  
emission spectrum are seen in the absorption spectrum.

 2. b. This observation says that all electrons are the same.
 3. a. The alpha particle speeds up because the positive alpha particle is re-

pelled by the positive nucleus.
 4. Neutral carbon would have six electrons. C+ + is missing two.
 5. 6 protons and 8 neutrons. The number of protons is the atomic number, 

which is 6. That leaves 14 - 6 = 8 neutrons.

Exercises and Problems

 1. 656.9 nm, 486.2 nm, 434.1 nm
 3. a. m = 2, n = 3; m = 1, n = 2 b. Ultraviolet, visible
 5. a. 9.39 * 103°C b. 694°C
 7. 2.4 mm
 9. 5.0 * 10-3 T, out of page
 11. a. 2.4 * 10-16 kg b. 1.3 * 10-18 C c. Surplus of 8 electrons
 13. 1.33 * 10-19 C
 15. a. 1.03 * 107 m/s b. 2.6 * 107 m/s c. Alpha particle
 17. a. 10 keV b. 0.14 MeV c. 1.2 * 1019 eV
 19. a. 5 electrons, 5 protons, 5 neutrons
  b. 6 electrons, 7 protons, 6 neutrons
  c. 5 electrons, 8 protons, 9 neutrons
 21. a. 3H b. 18O+

 23. a. 82 electrons, 79 protons, 118 neutrons
  b. 2.29 * 1017 kg/m3

  c. 2.01 * 1013

 25. a. 2.29 * 1017 kg/m3 b. 13 km
 27. a. 0.999998c b. 0.99999997c
 29. 0.9999999896c
 31. a. 0.00512 MeV b. 9.39 MeV c. 37.6 MeV
 33. 8.4°
 35. 9.581 * 107 C/kg, proton
 37. 0.1040 nm, 1.34 * 106 m/s
 39. 0.000000000058% contains mass, 99.999999999942% empty space
 41. 5.5 MeV
 43. 1.8 * 107 V
 45. a. 3.43 * 107 m/s b. 6.14 * 106 V
 47. 2.3 * 107 m/s, 65.1° below +x@axis
 49. a. mg /E0 b. mg /b d. 2.4 * 10-18 C e. 15

Chapter 38
Stop to Think Questions

 1. VA + VB + VC. For a given wavelength of light, electrons are ejected 
with more kinetic energy for metals with smaller work functions because 
it takes less energy to remove an electron. Faster electrons need a larger 
negative voltage to stop them.
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 55. a. 

Absorption
transitions

Emission
transitions

0 eV

2.49 eV

4.14 eV

6.21 eV

l42

l43

l32

l12 = 500 nm

l13 = 300 nm

l14 = 200 nm

l31

l21l41

n = 1

n = 2

n = 3

n = 4

  b. 200 nm, 300 nm, 334 nm, 500 nm, 601 nm, 753 nm

 59. 657 nm
 61. a. 0.362 m b. 0.000368 nm
 63. a. 

 65. 3 S  2: 10 .28 nm, 4 S  2: 7 .62 nm, 5 S  2: 6 .80 nm; all ultraviolet
 67. 44,200 m/s
 69. 8.6 mm
 71. a. 1.0 m/s b. 3.2° c. 1.1 cm
 73. 70 nK

Chapter 39
Stop to Think Questions

 1. 10. The probability of a 1 is P1 = 1
6. Similarly, P6 = 1

6. The probability of a 
1 or a 6 is P1 or 6 = 1

6 + 1
6 = 1

3. Thus the expected number is 3011
32 = 10.

 2. A + B = D + C. ∙A1x2∙2 is proportional to the density of dots.
 3. xC. The probability is largest at the point where the square of c1x2 is largest.
 4. b. The area 12 a 12 mm2 must equal 1.
 5. b. ∆t = 1.0 * 10-7 s. The bandwidth is ∆fB = 1/ ∆t = 1.0 * 107 Hz =
  10 MHz.
 6. A. Wave packet A has a smaller spatial extent ∆x. The wavelength isn’t 

relevant.

 2. d. Photons always travel at c, and a photon’s energy depends only on the 
light’s frequency, not its intensity.

 3. n = 4. There are four antinodes.
 4. Not in absorption. In emission from the n = 3 to n = 2 transition. 

The photon energy has to match the energy difference between two ener-
gy levels. Absorption is from the ground state, at E1 = 0.00 eV. There’s 
no energy level at 3.00 eV to which the atom could jump.

 5. n = 3. Each antinode is half a wavelength, so this standing wave has 
three full wavelengths in one circumference.

Exercises and Problems

 1. a. Sodium, potassium b. All metals except gold
 3. 235 nm
 5. 1.78 eV
 7. a. 2.26 eV b. 0.166 nm
 9. a. 1.5 * 1029 photon/s b. Electromagnetic wave
 11. 1.44
 13. 1. * 1019 photon/s
 15. 86°
 17. 6.0 * 10-6 V
 19. a. 1.1 * 10-34 m b. 1.7 * 10-23 m/s
 21. 6
 23. 2.1 MeV, 8.2 MeV, 19 MeV
 25. a. Yes b. 0.50 eV
 27. a. 

  b. 311 nm, 207 nm, 622 nm c. 311 nm, 207 nm
 29. a. 0.332 nm, 0.665 nm, 0.997 nm
  c. 

 31. a. 31 b. 7.06 * 104 m/s, -0.0142 eV
 33. 97.26 nm, 486.3 nm, 4876 nm
 35. 97.26 nm
 37. 1.24 V
 39. 4.3 * 10-10 W
 41. a. 5.56 * 1014 Hz, 1.23 * 1015 Hz b. 540 nm, 244 nm
  c. 10.8 * 105 m/s d. 4.4 * 105 m/s e. 3.35 V, 0.55 V
 43. a. Potassium b. 4.24 * 10-15 eVs
 45. 71 MeV
 47. a. 1.3 * 108 m/s b. 5.5 mm
 49. 0.35 nm
 51. 18 fm
 53. 9.0 * 10-8 eV
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Exercises and Problems

 1. PC = 20%, PD = 10%
 3. a. 7.7% b. 25%
 5. a. 1/6 b. 1/6 c. 5/18
 7. 70.7 V/m
 9. 2.0 m-1

 11. a. 

  b. 

  c. 

 13. a. 5.0 * 10-3 b. 2.5 * 10-3

  c. 2.5 * 10-3

 15. a. 0.25 fm-1

  b. 

2-2 0-4 4

0.5

-0.5

x (fm)

c(x)

  c. 0.75

 17. a. A3

8
  mm-3/2

  b. 

-4 -3 -2 -1 1 2 3 4

c(x)  2 (mm-1)

c2

(mm)x

  c. 6.3%
 19. 1.0 * 105

 21. 10.0 kHz
 23. -0.65 * 10-36 m/s … vx … 0.65 * 10-36 m/s
 25. 4 nm
 27. a. 8 cycles b. 0.938 MHz to 1.063 MHz

 29. a. 

  b. 

  c. 

 31. a. 23 nm-1
2

  b. 
3.0

2.5

2.0

1.5

1.0

0.5

0.0
0.0 0.2

x (nm)

0.4 0.6 0.8 1.0
0c(

x)
02

  c. 

x (nm)

 33. a. 4 nm b. 0.0 cm c. -2.0 cm … x … 2.0 cm

  d. 

 35. a. 0.27% b. 32%

 37. a. A 2

L
 

  b. 

Z04_KNIG6297_05_SE_ANS.indd   38 25/06/22   4:32 PM



Answers A-39

  c. 

  d. 40%
 39. a. a = b b. a = b = 0.84

  c. 

0 1 2

0.5a

a

x (mm)

P (x)

-1-2

  d. 58.1%
 41. 18 mm
 43. a. 1.7 * 106 m/s b. 1.1 * 1020 reflections/s
 45. No, 1.4 * 10-27 m
 47. 19%
 49. a. b = c
  b. 

  c. 91%
 51. 200 m

Chapter 40
Stop to Think Questions

 1. vA = vB + vC. The de Broglie wavelength is l = h /mv, so slower parti-
cles have longer wavelengths. The wave amplitude is not relevant.

 2. c. The n = 2 state has a node in the middle of the box. The antinodes are 
centered in the left and right halves of the box.

 3. n = 5. There are five antinodes and four nodes (excluding the ends).
 4. d. The wave function reaches zero abruptly on the right, indicating an 

infinitely high potential-energy wall. The exponential decay on the left 
shows that the left wall of the potential energy is not infinitely high. The 
node spacing and the amplitude increase steadily in going from right to 
left, indicating a steadily decreasing kinetic energy and thus a steadily 
increasing potential energy.

 5. c. E = 1n - 1
22Uv, so 52 Uv is the energy of the n = 3 state. An n = 3 state 

has 3 antinodes.

 6. b. The probability of tunneling through the barrier increases as the differ-
ence between E and U0 decreases. If the tunneling probability increases, 
the reflection probability must decrease.

Exercises and Problems

 1. a. Infrared b. 1.5 nm
 3. 21 eV
 5. 17 eV
 9. a. 0.159 nm b. 0.195 nm c. 0.275 nm
 11. 1.14 * 10-12m
 13. 

U(x)

E8

q q

0 L
x

 15. a. 

  b. 

 17. a. 0.49 eV, 1.5 eV, 2.4 eV b. 640 nm
 19. 1.4 N/m
 21. 519 nm
 25. 0.0006%
 27. a. 250,000,000
 29. a. 37.7 eV, 151 eV, 339 eV, 603 eV
  b. 11.0 nm, 4.12 nm, 6.59 nm, 2.20 nm, 2.75 nm, 4.71 nm
  c. Ultraviolet
 33. 

x
L0

0c1(x) 0 2

x
L0

0c2(x) 0 2

x
L0

0c3(x) 0 2

n = 1 2 3

b. Most likely 1
2L 1

4L, 34L 1
6L, 36L, 56L

c. Least likely 0, L 0, 12L, L 0, 13L, 23L, L

d. Prob in left 13 from graph 6 1
3 7 1

3
1
3

e. Prob in left 13 calculated 0.195 0.402 0.333

 35. 10%
 37. a. 0.15 nm b. One atomic diameter
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 39. a. A1 =
1

1pb221/4

  b. Prob1x 6 -b or x 7 b2 =
22pb23

∞

b
e-x2/b2dx c. 15.7%

 41. a. Pclass1y2 = 1 1

2h2 121 - 1y /h2
  b. Pclass (y)

0.2

4/h

5/h

3/h

2/h

1/h

0 0.4 0.6 0.8 1.0
y/h

 43. 1
4 of the radius

 45. 0.012
 47. 9.7%
 49. 10-1.17*1032

Chapter 41
Stop to Think Questions

 1. n = 3, l = 1, or a 3p state.
 2. You can see in Figure 41.7 that the ns state has n maxima.
 3. No. ms = {1

2, so the z-component Sz cannot be zero.
 4. b. The atom would have less energy if the 3s electron were in a 2p state.
 5. c. Emission is a quantum jump to a lower-energy state. The 5p S  4p transi-

tion is not allowed because ∆l = 0 violates the selection rule. The lowest- 
energy allowed transition is 5p S  3d, with Ephoton = ∆Eatom = 3.0 eV.

 6. b. Because rB = 2rA, the ratio is e-2/e-1 = e-1 6 1
2.

Exercises and Problems

 1. a. 13, 1, 12, 13, 1, 02, 13, 1, -12 
  b. 13, 2, 22, 13, 2, 12, 13, 2, 02, 13, 2,-12, 13, 2, -22 

 3. 220U
 5. a. f b. -0.850 eV

 7. For n = 1, 2 states: 11, 0, 0, {1

22;
 for n = 2, 8 states: 12, 0, 0, {1

22,
 12, 1, -1, {1

22, 12, 1, 0, {1

22, 12, 1, 1, {1

22;
for n = 3, 18 states: 13, 0, 0, {1

22, 13, 1, -1, {1

22,
 13, 1, 0, {1

22, 13, 1, 1, {1

22, 13, 2, 2, {1

22,
 13, 2, 1, {1

22, 13, 2, 0, {1

22, 13, 2, -1, {1

22, 13, 2, -2, {1

22

 9. 1s22s22p63s23p, 1s22s22p63s23p64s23d104p, 

1s22s22p63s23p64s23d104p65s24d105p
 11. a. Excited state of Ne b. Ground state of Ti
 13. 

 15. 1s23s

 17. Transition Ephoton 1eV 2 L  1nm 2
3 S  2 1.89 656

3 S  1 12.09 102

2 S  1 10.20 122

 19. 2.0%
 21. 32 ns
 23. a. 953 nm b. 4.16 W
 25. a. 190 nm b. 50 kW
 27. a. 22 U b. -1, 0, or 1
  c. 

0

Sz = U

- U

z-axis Circle of radius
S = 1 U2

 29. 26 U
 31. a. 3.7 * 10-3 b. 5.4 * 10-3 c. 2.9 * 10-3

 37. a. Lz Sz Jz mj

U +1
2 U 3

2 U 3
2

U -1
2 U 1

2 U 1
2

0 +1
2 U 1

2 U 1
2

0 -1
2 U -1

2 U -1
2

-U +1
2 U -1

2 U -1
2

-U -1
2 U -3

2 U -3
2

  b. j = 1
2: 11

2 U, -1
2 U2, j = 3

2: 13
2 U, 12 U, -1

2 U, -3
2 U2

 39. 4.59 eV
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 41. 

 43. a. Transition 𝚫E 1eV 2 L 1nm 2
6p S  6s 6.70 185

6d S  6p 2.14 579

7s S  6p 1.22 1016

7p S  6s 8.84 140

7p S  7s 0.92 1350

8s S  6p 2.52 492

8s S  7p 0.38 3260

8p S  6s 9.53 130

8p S  7s 1.61 770

8p S  8s 0.31 4000

8p S  6d 0.69 1800

  b. 1.80 * 106 m/s

 45. a. 

  b. 28.7 eV

 47. a. 6.3 * 108 s-1 b. 0.17 ns
 49. 3.5 * 1018 atoms

 51. a. patom = 7.0 * 10-23 kg m/s; pphoton = -8.50 * 10-28 kg m/s
  b. 82 * 103 photons c. 1.2 ms
  d. -5.7 * 10-20 N, -4/0 * 105 m/s2 e. 31 cm
 53. b. 0.021 nm
 57. 5.7 ns

Chapter 42
Stop to Think Questions

 1. 3. Different isotopes of an element have different numbers of neutrons 
but the same number of protons. The number of electrons in a neutral 
atom matches the number of protons.

 2. c. To keep A constant, increasing N by 1 (going up) requires decreasing 
Z  by 1 (going left).

 3. No. A Geiger counter responds only to ionizing radiation. Visible light is 
not ionizing radiation.

 4. c. One-quarter of the atoms are left. This is one-half of one-half, or 
11/222.

 5. b. An increase of Z with no change in A occurs when a neutron changes 
to a proton and an electron, ejecting the electron.

Exercises and Problems

 1. Protons Neutrons

a. 6Li 3 3

b. 54Cr 24 30

c. 54Fe 26 28

d. 220Rn 86 134

 3. a. 3.8 fm b. 9.2 fm c. 14.9 fm
 5. Silicon

 7. 

 9. 2H: 2.224 MeV, 1.11 MeV; 4He: 28.29 MeV, 7.07 MeV
 11. 2He: 2.224 MeV, 1.11 MeV; 3He: 8.48 MeV, 2.83 MeV
 13. 8000 N
 15. 2.3 * 10-38
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 17. a. 

2

4

2

2

4

2

ProtonsNeutrons

14C

2

4

2

2

4

2

ProtonsNeutrons

14N

2

4

2

2

4

2

ProtonsNeutrons

14O

 19. a. 10 h b. 38 h
 21. 4 .6 * 109

 23. 80 d
 25. 9.9 mm
 27. a. 226Ra b. 35Cl c. 40Ca d. 24Mg
 29. a. 19O, 19F, 19Ne b. 17O 
  c. 19O decays by b- to 19F; 19Ne decays by b+ to 19F
 31. 4.91 MeV
 33. 0.0186 MeV
 35. 2.0 Gy
 37. 6.0 Gy
 39. a. 3.5 * 107 m/s b. 26 MeV
 41. a. 12.7 km b. 780 ms
 43. a. 1.46 * 10-8 u, 1.45 * 10-6% b. 0.0304 u, 76%
 45. 170 MeV
 47. 0.93 MeV
 49. 17,100 y
 51. a. 6.12 * 10-6 kg b. 130 y
 53. a. m1AXZ2 7 m1AYZ-12 + 2me b. 120 MeV
 55. a. 3.32 b. 6.64

 57. 
1NU20

NU
= 86

 59. 2.3 * 1012

 61. a. 24 mBq b. 7.5 * 105

 63. 6 billion years
 65. a. Kin = 65.0 MeV; Kout = 5.0 MeV b. 3.7 * 1021 collisions/s
  c. 6.6 * 10-39 d. 650 million years

  b. 14N: stable, 14C: beta-minus decay, 14O: beta-plus decay
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Index
A
Absolute temperature scale, 533
Absolute zero, 533
Absorbed dose, 1282
Absorption

excitation by, 1246–1247
in hydrogen atoms, 1161, 1247
of light, 1248–1249
of photons, 1250
in sodium, 1247

Absorption spectra, 1209, 1217, 1,247
Accelerating reference frames, 144
Acceleration

angular, 120
average, 33, 66
centripetal, 118–119
changing velocity, 36
constant, 65–71, 106
force and, 140–141
free fall, 71–72
in a plane, 103–107
instantaneous, 76–79, 106
measuring, 74
radial, 122
sign of, 37–38, 66–67
tangential, 122
units, 66–67

Acceleration constraints, 192
Acceleration vector, 33–34, 36, 93–94, 

105–106
Accelerometer, 68
AC circuits, 958–973

AC sources, 958–960
capacitor circuits, 960–964
impedance, 967
inductor circuits, 965–966
phase angle, 968
phasors, 958
power in, 970–973
RC filter circuits, 962–963
resistor circuits, 958–960
series RLC circuits, 966–969, 972–973

Accommodation, 1053–1054
Action/reaction pair, 184–188, 190–191, 

193–200. See also Newton’s third law 
of motion

Activity of radioactive sample, 1275–1276
Adiabatic processes, 572–574
Adiabat, 573
Agent of force, 133, 145
Airplanes, lift in, 408
Air resistance, 69, 71, 137, 143–144, 162, 

167, 169
Allowed transitions, 1246

Alpha decay, 1277–1278
Alpha rays, 1125, 1263
Alternating current, 958. See also AC 

circuits
Ammeters, 827
Ampère-Maxwell law, 937–939, 943
Amperes (A), 802
Ampère’s law, 861–864, 935–936
Amplitude

in damped systems, 443–444
of oscillations, 425–427, 445–446
of traveling waves, 464, 468–469, 472, 

480, 482
Amplitude function, 496–497
Angle of incidence, 1015
Angle of reflection, 1015
Angle of refraction, 1018
Angular acceleration, 335, 701
Angular displacement, 116
Angular frequency, 426, 428
Angular magnification, 1057
Angular momentum

angular velocity and, 350–351
conservation of, 350
defining, 348
of hydrogen atom, 1232–1233
orbit shapes and, 1236–1237
quantization of, 1159–1160, 1232–1233
of a rigid body, 349–350

Angular momentum vector, 348–349
Angular position, 115–116
Angular resolution, 1065
Angular size, 1056
Angular velocity, 116–118, 350–351
Angular velocity vector, 346
Antennas, 947–948
Antibonding molecular orbital, 1220
Antimatter, 1106
Antinodal lines, 514, 985
Antinodes, 496
Antireflection coating, 511–512
Apertures, 1014–1015, 1051
Archimedes’ principle, 399, 412
Arc length, 115
Area vector, 716, 895
Assessing answers to problems, 46–48
Atmospheric pressure, 390–392, 395
Atomic clock, 43
Atomic magnets, 876–877
Atomic mass, 530–531, 1264–1265
Atomic mass number, 530–531
Atomic mass unit, 531
Atomic number, 531, 1129–1130,  

1239, 1263

Atomic physics, 1231–1261
electron spin, 1237–1239
emission spectra, 1248–1249
excited states, 1245–1252
hydrogen atoms and, 1231–1237
lasers and, 1253–1256
multielectron atoms, 1239–1242
periodic table of the elements, 1242–

1245
Atom interferometers, 1149
Atoms. See also Electrons; Hydrogen 

atom; Nuclear physics; Protons
Bohr model of, 1151–1154, 1236
electricity and, 657
ideal gas and, 537–538
mass number, 1130
multielectron, 1239–1242
nuclear model of, 1126, 1129
Rutherford model of, 1127, 1160
shell model of, 1236–1237

Automatic windshield wipers, 1026
Avogadro’s number, 531–532

B
Balance and stability, 342
Ball-and-spring model of solids, 135–136
Ballistic pendulum, 301, 354–355
Balmer formula, 1119
Balmer series, 1119, 1161
Bandwidth, 1182
Bar charts, 263–264, 280, 293
Barometers, 394–395
Basic energy model, 234–235
Batteries

charge escalator model of, 775
current and, 808–809, 811
electric potential and, 748, 752
emf and, 775, 826
ideal, 775, 828–829
real, 827–829
in series, 775–776
short circuit of, 829

Beam splitter, 1002
Beats, 515–517
Becquerel (Bq), 1275
Before-and-after representation, 235
Bernoulli’s equation, 404–408, 412
Beta decay, 1278–1279
Beta rays, 1125, 1263
Binding energy, 1158–1159, 1267–1269
Binomial approximation, 1099
Biot-Savart law, 852–855, 861
Black body, 577
Blackbody radiation, 577, 1116–1117
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Blood pressure, 396
Bohr hydrogen atom, 1155–1162
Bohr radius, 1157
Bohr’s model of atomic quantization, 

1151–1154
Boiling point, 536
Boltzmann’s constant, 540
Bonding molecular orbital, 1220
Boundary conditions

Schrödinger equation, 1197–1200
for standing sound waves, 501–503
for standing waves on a string, 498–499

Bound states, 1208, 1212
Bound systems, 378
Breakdown field strength, 683, 784–785
Brayton cycle, 630–632, 640
Bulk modulus, 412, 414–415
Buoyancy, 398–402, 412
Buoyant force, 398–401

C
Calorie, 561
Calorimetry, 567–570
Camera obscura, 1014
Cameras, 1050–1052

controlling exposure, 1051–1052
detectors and, 1052
f-number, 1051–1052
focusing, 1050–1051
zoom lens, 1050–1051

Capacitance, 776–780, 837
Capacitive devices, 826
Capacitive reactance, 961
Capacitor circuits, 960–964
Capacitor current, 962
Capacitors. See also Parallel-plate  

capacitor
charging, 777–778, 838
combinations of, 778
current and voltage in AC circuits, 

960–964, 971–973
dielectric-filled, 782–783
discharging, 797, 839
electric field of, 696
energy stored in, 781–782
voltage of, 751, 784

Capacitor voltage, 776
Carbon dating, 1276–1277
Carnot cycle, 637–638, 640
Carnot engine, 634, 637–638
Cathode rays, 699, 1119–1120
Cathode-ray tube (CRT), 699–700
Causal influence, 1102–1103
Cell phones, 914, 946
Celsius scale, 533
Center of gravity, 334
Center of mass, 324–327
Central-force model, 212
Central maximum, 986, 992, 999

Centrifugal force, 217
Centripetal acceleration, 118–119
Charge carriers, 658,–795
Charge density, 687–688
Charge diagram, 659
Charge escalator model, 775
Charge model, 653–656
Charge polarization, 660–662
Charge quantization, 657
Charges

and atoms, 657
common distributions, 691–695
conservation of, 658, 803–804
continuous distribution of, 687–689, 757
electric potential of, 749, 756–758
experimenting with, 653–656
fundamental unit of, 657, 1124–1125
like, 654
neutral, 653–654, 657, 660
opposite, 654
point, 663–667, 670, 682–684
positive and negative, 656
units of, 663–664

Charge-to-mass ratio, 698, 869
Charging

capacitors and, 777–778, 838
by friction, 658
by induction, 662
insulators, 653, 659
parallel-plate capacitors, 777–778

Charging pads, 905
Chromatic aberration, 1063
Circuit diagrams, 819
Circuits, 819–839. See also AC circuits

basic, 821
capacitor, 960–964
complete, 821
DC circuits, 958
elements of, 819
energy and power in, 823–825
grounded, 834–836
inductor, 965–966
Kirchhoff’s laws and, 820–823, 829
LC, 913–915
LR, 915–917
parallel resistors, 829–832
RC, 836–838
resistor, 832, 958–960
series resistors, 825–827, 831
series RLC, 966–969, 972–973

Circular-aperture diffraction, 999–1000
Circular motion. See also Uniform  

circular motion; Rotational motion
angular acceleration, 120
angular velocity, 116
nonuniform, 120–122, 220–221
orbits, 215–217, 365
period of, 375–376
problem-solving strategy, 221

simple harmonic motion and, 428–429
uniform. See Uniform circular motion

Circular waves, 479
Classically forbidden regions, 1207–1210
Classical physics, 939, 983, 1131
Clocks

atomic, 43
light, 1087–1088
synchronizing, 1082–1083
time dilation and, 1087–1090

Closed-cycle devices, 623, 626
Closed shell, 1241
Coefficient of friction, 163–164
Coefficient of linear expansion, 534
Coefficient of performance, 626–627
Coefficient of volume expansion, 534
Coherent light, 1253
Cold reservoir, 622–627
Collisional excitation, 1152, 1246–1247
Collisions

elastic, 302–304
force due to, 589–590
inelastic, 300–301
mean free path between, 588
mean time between, 593, 801
molecular, 587–588
pressure and, 589–590

Color
human color vision, 1053
dispersion and, 1060–1062
in solids, 1248–1249

Compasses, 849–851
Components of vectors, 92–93
Component vectors, 91–93
Compression, 412–414

adiabatic, 572–573
in sound waves, 472

Compton scattering, 1146–1147
Concave mirrors, 1035–1038
Condensation point, 536
Condenser microphones, 777
Conduction

electrical, 795–797
heat, 575–576
model of, 800–801

Conductivity
electrical, 805–806
thermal, 575–576

Conductors
charge carriers, 795
electric charges and forces, 656, 

658–662
in electrostatic equilibrium, 659, 

728–730, 772–773
Conservative forces, 277–278
Conservation of angular momentum, 350, 

356
Conservation of charge, 658, 803–804
Conservation of energy
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in charge interactions, 749
isolated systems, 270
law of, 233, 270
problem-solving strategy, 271
in relativity, 1107–1108
in simple harmonic motion, 432

Conservation of mass, 306
Conservation of mechanical energy, 

278–279
Conservation of momentum, 294–300, 

1100–1101
Conservative forces, 277–278, 745
Constant-acceleration model, 68–69
Constant angular acceleration model, 121, 

123
Constant force, 139–140, 239–241, 740
Constant-force model, 157–158
Constant-pressure (isobaric) process, 

542–544
Constant-temperature (isothermal) pro-

cess, 544–545
Constant-torque model, 338
Constant-volume (isochoric) process, 542
Constant-volume gas thermometer, 533, 

542
Constructive interference, 494, 506, 

512–513, 984
Contact force, 132–133
Continuity, equation of, 403–404
Continuous spectra, 1116–1117
Contour map, 752, 755–756
Convection, 576
Converging lenses, 1024–1027
Convex mirrors, 1036–1037
Coordinate systems, 91–92

right-handed, 347
rtz, for circular dynamics, 210
tilted axes, 96

Cornea (human eye), 1053
Correspondence principle, 1205–1207
Cosmology, 365
Coulomb (C), 663
Coulomb electric field, 904
Coulomb’s law, 662–664, 721–722, 724, 

935
Coupled oscillations, 446–449
Covalent bond, 1219–1220
Critical angle, 1021–1022
Critical point, 537
Crookes tubes, 1119–1120
Crossed-field experiment, 1121–1123
Crossover frequency, 963
Cross product, 241, 347, 853–854
Curie (Ci), 1275–1276
Current

batteries and, 808–809
conventional, 802–803
creating, 797–801
current density and, 801–802

displacement, 935–938, 940
electron, 795–797
and magnetism, 850–851
as motion of charges, 658
root-mean-square, 970

Current density, 801–802
Current loops

forces and torques on, 875–876
as magnetic dipole, 859–860
magnetic field of, 854, 857–859, 865

Curve of binding energy, 1268–1269
Cyclotron, 870–871
Cyclotron frequency, 869
Cyclotron motion, 868–870

D
Daltons (Da), 531
Damped oscillation, 442–444
Damping constant, 442
Daughter nuclei, 1275, 1277
DC circuits, 958
de Broglie wavelength, 1148, 1194–1195
Decay, nuclear, 1274–1281
Decay equation, 1250–1252
Decay rate, 1251
Decay series, 1281
Decibels (dB), 482–483
Defibrillator, 781, 785
Degrees of freedom, 594–595
Density

average, 399–400
linear charge density, 687
linear mass density, 460
mass density, 387–388
number density, 530
surface charge density, 687

Derivatives, 60–61
Destructive interference, 494, 506–508, 

511–513, 984–985
Deuterium, 1265
Diatomic gas, 531, 538, 629
Diatomic molecules, 595–596
Dielectric constant, 784
Dielectrics, 782–785
Dielectric strength, 785
Diesel cycle, 630
Diffraction

circular-aperture, 999–1000, 1063–1064
of electrons, 1148, 1176
order of, 990
single-slit, 992–998

Diffraction grating, 989–991
Diffraction-limited lens, 1064
Diffuse reflection, 1016
Diopter (D), 1050
Dipole moment, 685
Dipoles. See Electric dipole; Magnetic 

dipoles
Discrete spectra, 1118–1119, 1161

Disk of charge, 692–694, 758
Dispersion, 1060–1062
Displaced fluid, 399
Displacement, 28–30

angular, 116
of waves, 463–464
work and, 237–238

Displacement current, 935–938, 940
Displacement vectors, 28–31, 88–89, 96
Dissipative forces, 247–249
Diverging lenses, 1024, 1029–1030
Doppler effect, 483–486
Dose, absorbed, 23
Dose equivalent, 1282
Dot product, 241–243
Double-slit experiment, 985–986, 1171, 

1176
Double-slit interference

analyzing, 986–988
intensity of, 988–989
interference fringes, 986–987

Drag coefficients, 168–169
Drag force

at high Reynolds number, 168–170
linear, 170
at low Reynolds number, 170–171
quadratic, 169
Stokes’ law, 171
terminal speed, 169–170
viscous, 170–171

Drift speed, 795–797, 803
Driven oscillations, 445–446
Driving frequency, 445
Dynamics

fluid, 402–404
in one dimension, 154–184
problem-solving strategy, 156
rotational, 335–337
of simple harmonic motion (SHM), 

433–435
in two dimensions, 209–222

E
Earthquakes, 246
Eddy currents, 894
Effective focal length, 1049
Efficiency

Carnot engines, 637–638
entropy and, 639–641
thermal, 623–624

Einstein, Albert
explanation of photoelectric effect, 

1141–1144
principle of relativity, 1078–1081

Elastic collisions, 302–304
Elasticity

tensile stress, 412–413
volume stress, 414
Young’s modulus, 412–414
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Elastic potential energy, 267–270
Electric charge. See Charges
Electric dipole

electric field of, 685–686
electric potential energy of, 746–747, 756
motion of, 700–702

Electric field, 667–672, 682–702
of capacitors, 696
of common charge distributions, 

691–695
concept of, 668
of a continuous charge distribution, 

687–689
Coulomb and non-Coulomb, 904
of a dipole, 685–686
of disk of charge, 692–694
electric potential and, 767–768
electrostatic equilibrium and, 772
energy in, 782, 912–913
field model, 668–669
geometry of potential and, 770–771
induced, 761904–906
of line of charge, 682, 690–691
motion of a charged particle in, 

697–698
motion of a dipole in, 700–702
of multiple point charges, 683–684
outside a sphere of charge, 725
of parallel-plate capacitors, 695–697, 

776–777
of plane of charge, 682, 694–695, 

727–728
of a point charge, 670, 682–684
problem-solving strategy, 689
of a ring of charge, 691–692, 769
symmetry and, 711–712
transformation of, 930–932
typical strengths, 683
uniform, 697

Electric field lines, 686–687
Electric field strength, 669
Electric flux, 713–720

inside a parallel-plate capacitor, 717
of a nonuniform electric field, 717–718
through a closed surface, 719–720

Electric force, 662, 664–665, 669, 745
Electricity

charge model, 653–656
Coulomb’s law, 662
generating, 640

Electric potential, 747–765
batteries and, 748, 752
of a charged disk, 758
of a charged sphere, 755–756
of continuous distribution of charge, 

757
electric field and, 767–768
versus electric potential energy, 748
geometry of field and, 770–771

of multiple point charges, 756
of a parallel-plate capacitor, 750–754, 768
of a point charge, 754–755
problem-solving strategy, 749
sources of, 774–776

Electric potential energy, 740–747
of charge in uniform electric field, 

741–742
of a dipole, 746–747
versus electric potential, 748
of point charges, 743–744

Electrocardiogram, 756
Electrodes, 694, 698–699
Electromagnetic fields

induced, 907
Maxwell’s equations, 938–940
transformation of, 930–933

Electromagnetic induction, 889–918
Faraday’s law and, 889, 900–901, 903
induced currents, 889, 892–901, 903, 

907–909
induced fields, 904–906
Lenz’s law and, 897–900

Electromagnetic spectrum, 474
Electromagnetic waves

antennas, 947–948
energy and intensity, 945–946
Maxwell’s theory of, 907, 940
polarization of, 948–950
properties of, 945–946
radiation pressure, 946–947
speed of light and, 473–474
structure of, 940–941

Electromagnets, 859, 866, 894
Electron capture, 1279
Electron cloud, 657, 661, 1234
Electron configuration, 1241
Electron current, 795–797
Electron gun, 699
Electrons

beams, 699
cathode rays and, 1121–1123
as charge carriers, 795–796
charge of, 656–658
diffraction of, 1148
discovery of, 1121–1123
sea of, 658, 795–797
spin of, 877, 1237–1239

Electron spin, 877, 1237–1239
Electron volt (eV), 1127–1128
Electroscope, 659–662
Electrostatic constant, 663
Electrostatic equilibrium, 659, 728–730, 

772–773
Electrostatic force, 664
Elements, 1129, 1242–1245
emf

of batteries, 775, 826
induced, 900

motional, 890–891, 934
Emission spectra, 1118–1119, 1160–1161, 

1248
Emissivity, 577
Endoscope, 1039
Energy, 233–235. See also Conservation 

of energy; Electric potential energy; 
Kinetic energy; Potential energy; 
Thermal energy; Work

bar charts, 263–264, 280
basic energy model, 234–235
binding energy, 1158–1159, 1267–1269
in circuits, 823–825
in the electric field, 782, 912
of electromagnetic waves, 945–946
forms of, 233
heat and, 234
ionization energy, 1129, 1158–1159, 

1234, 1245
law of conservation of, 233, 270–271
in magnetic fields, 912–913
mechanical, 266
of photons, 1141, 1145
problem-solving strategy, 271
quantization of, 1149–1151, 1198
relativistic, 1103–1108
rotational, 327–329
simple harmonic motion and, 431–432
total, 1104–1105

Energy bar charts, 263–264, 280–281
Energy density, 782, 785
Energy diagrams, 272–274
Energy equation, 555
Energy-level diagrams

hydrogen atoms, 1160
Energy levels

hydrogen atoms, 1157–1158, 1233–
1234

quantization and, 1150
vibrational, 1216–1217

Energy principle, 233–234, 243, 279–280, 
292, 554

Energy reservoir, 621–627
Energy transfer

heat and, 555
rate of (power), 250–251

Energy-transfer diagrams, 621–622, 626
Energy transformation, 234
Entropy

disorder and, 602–603
heat engines and, 639–641
of heating, 608–609
of an ideal gas, 609
interactions and, 610–611
irreversible processes, 611–612
isothermal processes, 607–608
life and, 612–613
second law of thermodynamics and, 

601–602
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Environment, 186, 233–234
Equation of continuity, 403–404
Equation of motion, 434–435, 438–440
Equilibrium

electrostatic, 659, 728–730
hydrostatic, 392–393
mechanical, 143, 154
phase, 535
stable and unstable, 274
static, 339–342
thermal, 529

Equilibrium model, 154–156
Equipartition theorem, 594
Equipotential surface, 752, 755–756, 771
Equivalence principle, 368
Equivalent capacitance, 778–779
Equivalent resistance, 826, 830
Escape speed, 373
Estimates, order of magnitude, 47–48
Events, 1081–1083, 1096
Excitation, 1246–1248
Excited states, 1245–1252
Explosion, 305–308
Exponential decay, 173, 443
Extended objects, 248
External forces, 187
Eyepiece, 1057
Eyes, 1053–1055, 1066

F
Fahrenheit scale, 533
Farad (F), 776
Faraday’s law

electromagnetic fields and, 934, 939
electromagnetic waves and, 942–943
induced currents and, 900–901, 903

Far point of eye, 1054
Farsightedness, 1054–1055
Ferromagnetism, 877–878
Fiber optics, 1022, 1039
Field diagram, 670
Field model, 668–669
Fields, 668. See also Electric field; Elec-

tromagnetic fields; Magnetic field
Finite potential wells, 1207–1212
First law of thermodynamics, 562–563, 

601, 621
Fission, 1107
Flat-earth approximation, 160, 261–262, 

373–374
Floating, 399–401
Fluid dynamics, 402–404
Fluids

Archimedes’ principle, 399
Bernoulli’s equation, 404–407
buoyant force, 398–399
density, 168
equation of continuity, 403–404
flow of, 387, 404–412

ideal, 402
laminar flow, 402–403, 411
Poiseuille’s equation, 410–412
viscous, 168, 402, 408–412
wave equation in, 476–477

Fluorescence, 1163
Flux. See Electric flux; Magnetic flux
f-number, 1051–1052
Focal length, 1025, 1034, 1049
Focal point, 1024
Force, 133–152. See also Gravitational 

force
acceleration and, 140–141
agent of, 133, 145
buoyant, 398–401
central, 212–215
centrifugal, 217
combining, 134
conservative, 277–278
constant, 139–140, 157–158
contact, 133, 145
dissipative, 247–249
drag, 137, 167–170
electric, 137, 662, 664
external, 187
friction, 136–137, 163–165, 188–190
identifying, 137–139
impulsive, 290
as interactions, 142–143, 145, 186
long-range, 133, 668
magnetic, 137
net force, 134, 144
nonconservative, 277–279
normal, 136
potential energy and, 276–277
restoring, 245–246
superposition of, 134
tension, 135–136, 195–196
thrust, 137
unit of, 141

Force sensors, 142
Free-body diagrams, 145–147,  

188, 192
Free fall, 71–73
Freezing point, 535
Frequency

angular, 426, 428
beat, 516
crossover, 963, 965
cyclotron, 869
driving, 445
fundamental, 499
of mass on spring, 432
natural, 445
of pendulum, 439, 441
resonance, 445–446, 968

Friction
causes of, 167
coefficients of, 163–164

kinetic, 137, 163–164
model of, 164–165
rolling, 164
static, 137, 163

Fringe field, 696
Fringe spacing, 987–988
Fundamental frequency, 499
Fundamental quantum of energy, 1150
Fundamental unit of charge, 657, 1124–

1125

G
Galilean relativity, 933, 1075–1078
Galilean transformations

of electromagnetic fields, 932–933
of position, 1076–1077
of velocity, 113, 929, 1077

Gamma decay, 1280–1281
Gamma rays, 1212, 1263
Gas discharge tube, 1118
Gases. See also Ideal gas; Ideal-gas 

processes
ideal, 537–540
molecules and, 538
monatomic and diatomic, 538,  

593–594
pressure in, 390, 394–395, 589–591
specific heats of, 569–571

Gas turbine engine, 630
Gauge pressure, 394
Gaussian surface

electric field and, 714–715, 934–935
electric flux and, 714–715
symmetry of, 714, 721

Gauss’s law, 711–731
versus Coulomb’s law, 721–722, 724
electric flux and, 723–724
Gauss’s law for magnetism, 934–935, 

939
Geiger counter, 786, 1273
Generators, 893, 907–908
Geomagnetism, 849–851
Geosynchronous orbits, 376–377
Global warming, 578
GPS systems, 1090
Graphical addition of vectors, 89
Gravitational constant (G), 160, 367
Gravitational field, 668, 741
Gravitational force

Newton’s law of gravity and, 160–161, 
367–368

weight and, 162, 367–368
Gravitational mass, 141, 368
Gravitational potential energy

flat-earth approximation, 261–262, 
373–374

of masses, 371–372
zero of, 263

Gravitational torque, 334–335
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I-6 Index

Gravity
center of, 334
little g and big G, 369–370
Newton’s law of, 160–161, 367–368
on rotating earth, 218

Gray (Gy), 1282
Greenhouse effect, 578
Grounded, 660
Grounded circuit, 834–836
Ground state, 1152, 1160–1161, 1245
Gyroscope, 352–354

H
Half-life, 444, 1274–1275
Hall effect, 871–872
Hall voltage, 872
Harmonics, 499
Hearing, threshold of, 482
Heat, 559–561

defining, 234, 560
specific heat of solids and liquids, 564
temperature and thermal energy versus, 

561
thermal interactions, 555, 560
transfer of, 575–578
units of, 561
work and, 560, 621–623

Heat engines, 621–641
Brayton cycle, 630–632, 640
Carnot cycle, 637–638, 640
ideal-gas, 628–632
perfect, 624, 627
perfectly reversible, 634–638
problem-solving strategy, 629
second law of thermodynamics and, 

639–640
thermal efficiency of, 623–624

Heat exchangers, 631
Heat of fusion, 566
Heat of transformation, 565–566
Heat of vaporization, 566
Heat transfer, 597–599
Heat-transfer mechanisms, 575–578
Heisenberg uncertainty principle, 

1183–1185
Helicopters, 335
Helium-neon lasers, 1255–1256
Henry (H), 909
Hertz (Hz), 425
Histogram, 587
History graph, 461–462, 1183
Holography, 1003–1004
Hooke’s law, 245
Horsepower, 250
Hot reservoir, 622–627
Huygens’ principle, 993
Hydraulic lift, 396–398
Hydrogen atom

angular momentum, 1231–1234

Bohr’s analysis of, 1155–1162
energy levels of, 1157–1158, 1233–1234
excitation of, 1248
spectrum, 1160–1163
stationary states of, 1155–1158, 

1231–1232
wave functions and probabilities, 

1234–1237
Hydrogen-like ions, 1161–1162
Hydrostatic equilibrium, 392–393
Hydrostatic pressure, 392–394
Hyperopia, 1054–1055

I
Ideal batteries, 775, 828–829
Ideal fluid, 402
Ideal gas, 537–540, 609
Ideal-gas heat engines, 628–632
Ideal-gas law, 538–541
Ideal-gas processes

adiabatic process, 572–573, 609
constant-pressure (isobaric) process, 

542–544
constant-temperature (isothermal) 

 process, 544–545
constant-volume (isochoric) process, 

542
first law of thermodynamics and, 

562–563
pV diagram, 541–544
quasi-static processes, 541
work in, 555–559

Ideal-gas refrigerators, 632–633
Ideal insulator, 810
Ideal spring, 245
Ideal wire, 810
Image distance, 1017, 1023
Image formation

by refraction, 1023–1024
with spherical mirrors, 1035–1038
by spherical surfaces, 1030–1032
with thin lenses, 1025, 1034–1035

Image plane, 1026
Impedance, 967
Impulse approximation, 294
Impulse, 290–294
Impulsive force, 290
Inclined plane, motion on, 73–76
Independent particle approximation (IPA), 

1240
Index of refraction, 474–475, 1004, 

1018–1019, 1021
Induced currents

applications of, 907–909
in a circuit, 892–893
eddy currents, 894
Faraday’s law and, 889, 900–901, 903
Lenz’s law and, 897–900
magnetic flux and, 894–901

motional emf and, 892
Induced electric dipole, 685
Induced electric field, 783, 904–906
Induced emf, 900
Induced magnetic dipoles, 878
Induced magnetic field, 907, 937–938
Inductance, 909
Induction, 662
Induction, charging by 905
Inductive reactance, 965
Inductor circuits, 965–966
Inductors, 909–912, 966, 971–972
Inelastic collisions, 300–301
Inertia, 141, 143
Inertial mass, 141, 368
Inertial reference frames, 144–145, 

929–930, 1076, 1091
Instantaneous acceleration, 76–79, 106
Instantaneous velocity, 59–62
Insulators

dielectrics, 782–783
electric charges and forces, 658–662

Integrals, 64–65
Intensity

of double-slit interference, 998–999
of electromagnetic waves, 945–946
of sound, 481–482

Interacting objects
action/reaction pair, 186–187, 191
analyzing, 187–188
Newton’s third law and, 142–143, 190
problem-solving strategy, 193–194

Interaction diagram, 186–188
Interaction energy, 260, 740
Interference. See also Constructive inter-

ference, Destructive interference
of light, 983–989
mathematics of, 509–510
in one dimension, 505–508
and phase difference, 507–508
photon analysis of, 1173–1174
problem-solving strategy, 514–515
in two and three dimensions, 512–515
wave analysis of, 1171–1172

Interference fringes, 986–987
Interferometers, 1002–1004
Invariant, 1094
Inverse-square law, 367, 662
Inverted image, 1026
Ionization, 657–658
Ionization energy, 1129, 1158–1159, 

1234, 1245
Ionization limit, 1160
Ionizing radiation, 1273
Ions, 657, 1129
Iris (human eye), 1053
Irreversible processes, 599–603, 611–612
Isentropic process, 609
Isobaric process, 542–544, 558
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Index I-7

Isobars, 1264
Isochoric process, 542, 558
Isolated systems

conservation of energy, 270
conservation of momentum, 296

Isothermal process, 544–545, 558–559, 
607–608

Isotherms, 545
Isotopes, 1130, 1264

J
Jet engines, 571
Joules (J), 560

K
Kelvin scale, 533–534
Kelvin (K), 533–534
Kepler’s laws of planetary motion, 365, 

375–378
Kilogram (kg), 44
Kilowatt hours, 825
Kinematics

in one dimension, 54–86
rotational, 323–324
of simple harmonic motion, 425–427
in two dimensions, 103–131

Kinetic energy, 236
relativistic, 1104
of a rolling object, 344
rotational, 327–329
temperature and, 591–593
work and, 235–238

Kinetic friction, 137, 163–164
Kirchhoff’s junction law, 804, 820, 829
Kirchhoff’s loop law, 772, 820–821

L
Laminar flow, 402–403, 411
Laser printers, 664
Lasers

created using stimulated emission, 
1253–1254

helium-neon, 1255–1256
population inversion, 1254
quantum-well, 1211
ruby laser, 1254–1255

Lateral magnification, 1028
Launch angle, 108
LC circuits, 913–915
Length contraction, 1091–1095
Lenses

aberrations, 1063
angular resolution, 1065
in combination, 1048–1050
converging, 1024–1027
diffraction-limited, 1064
diverging, 1024, 1029–1030
focal lengths of, 1025, 1034
magnifying, 1035, 1056–1057

power of, 1049–1050
ray tracing and, 1024–1027
thin lenses, 1024–1030
zoom, 1050–1051

Lens maker’s equation, 1033
Lens plane, 1025
Lenz’s law, 897–900
Lever arm, 333
Lifetime (of excited states), 1250–1252
Lift, 408
Light. See also Electromagnetic waves; 

Photons
absorption of, 1248–1249
coherent, 1253
as electromagnetic wave, 907, 983
emission and absorption of, 1116–1119
interference and, 983–989
photon model of, 984, 1145–1146
ray model of, 984, 1013–1016
speed of, 473–474, 1079–1080
wave model of, 984, 1000–1001

Light clock, 1087–1088
Light rays, 1013–1014, 1023
Light year, 1090
LIGO (Laser Interferometer Gravitational- 

Wave Observatory), 1002
Linear acceleration, 32–34, 36
Linear charge density, 687
Linear density, 460
Linear drag, 170
Linear restoring force, 440
Line integrals, 861–862
Line of action, 333
Line of charge, 682, 690–691
Line of nuclear stability, 1267
Liquid crystal displays (LCDs), 948
Liquid-drop model, 1266
Liquids. See also Fluids

characteristics of, 529
phase changes, 535–536
pressure in, 392–393, 398

Longitudinal waves, 459, 463, 476
Long-range force, 133
Lorentz force law, 939
Lorentz transformations, 1095–1096, 

1099–1100
Loschmidt number, 615
LR circuits, 915–917
Lyman series, 1161

M
Macroscopic systems, 529–546

atoms and moles, 530–532
ideal gas, 537–540
phases of matter and, 529
state variables, 529
temperature, 532–534
thermal expansion, 534–535

Macrostates, 603–604

Magnetic dipole moment, 860, 877, 879
Magnetic dipoles

current loop and, 858–860
induced, 878
magnetic poles of 849, 859

Magnetic domains, 877–878
Magnetic field lines, 851
Magnetic fields, 849–879

Ampère’s law, 861–864
Biot-Savart law, 852–855, 861
of current, 850, 854–858, 864
of current loop, 854, 857–859, 865
discovery of, 850
of the earth, 858
energy in, 912–913
Gauss’s law for, 861, 934–935
induced, 907, 937–938
of moving charge, 852–853
of solenoids, 854, 865–866
unit of, 852
transformation of, 930–931
typical strengths, 852

Magnetic flux, 894–896
Faraday’s law and, 900–901
induced currents and, 894–901
Lenz’s law and, 897–900

Magnetic force
on current-carrying wire, 872–873
on moving charge, 867–872
right-hand rule for, 867
between two parallel wires, 873–874

Magnetic materials, 849
Magnetic poles, 849
Magnetic quantum number, 1231
Magnetic resonance imaging (MRI), 860, 

866, 902–903, 1283–1284
Magnetism

atomic, 876–877
experimenting with, 849
ferromagnetism, 877–878
geomagnetism, 849–851
properties of matter and, 876–879

Magnification, 1056–1058
angular, 1057
lateral, 1028

Magnifier/magnifying glass, 1056
Magnifying lens, 1035, 1048
Magnitude of force, 141
Magnitude of vectors, 88
Malus’s law, 949–950
Manometers, 394–395
Mass

atomic, 531
center of, 324–325
gravitational, 141, 368
inertial, 141, 368
mass-energy equivalence, 1105–1107
measurement of, 159, 171
weight versus, 159–162
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I-8 Index

Mass density, 387
Mass-energy equivalence, 1105–1106
Massless string approximation, 196–197
Mass number (atomic), 1130, 1263
Mass spectrometer, 1130
Matter waves, 1148–1149
Maxwell’s equations, 938–940
Mean free path, 588
Mechanical energy, 266
Mechanical equilibrium, 143, 154, 555
Mechanical interaction, 555
Mechanical waves, 459, 476
Medium, 459

light rays in, 1018–1019
of mechanical wave, 459
speed of sound in, 472
wave speed in, 460

Melting/boiling temperatures, 566–567
Melting point, 535
Metal detector, 909
Metals, 655, 658, 795–796
Meter (m), 44
Michelson interferometer, 1002–1004
Micro/macro connection, 585–613

entropy, 601–603, 606–611
heat transfer and thermal equilibrium, 

597–599
microstates, 603–604
molecular speeds and collisions, 

587–588
multiplicity, 603–606, 608
pressure in a gas, 589–591
second law of thermodynamics and, 

599–603
temperature and, 591–593
thermal energy and specific heat, 

593–596
Microphones, 777
Microscopes, 1057–1058
Microstates, 603–604
Millikan oil-drop experiment, 1124
Minimum spot size of focused light, 1064
Mirror equation, 1038
Mirrors

plane, 1016–1017
spherical, 1035–1038

Missing order, 999
Models and modeling, 26–27

basic energy model, 234–235, 280
Bohr's model of the atom, 1151–1154
charge escalator model, 775
charge model, 653–656
electric field models, 662
ideal-wire, 810
nuclear model of atoms, 1126, 1129
particle model, 26–27
photon model of light, 984
quantum-mechanical models, 1196, 

1217–1220
ray model of light, 984, 1013–1016

Rutherford model of the atom, 1127, 
1160

shell model of atoms, 1236–1237
thermodynamic energy model, 562
wave model of light, 984, 1000–1001

Modes, 499
Modulation, 516
Molar mass, 531–532
Molar specific heat, 564–565, 569, 596
Molecular bonds, 135, 272, 275–276
Molecular mass, 531
Molecular vibration, 276, 1216–1217
Moles, 530–532
Moment arm, 333
Moment of inertia, 328–330
Momentum. See also Angular 

 momentum
conservation of, 294–300
defining, 290
impulse and, 290–294
law of conservation of, 297
momentum principle, 291
problem-solving strategy, 293–294, 

298–300
relativistic, 1100–1102
total, 295–296
in two dimensions, 307–308

Momentum bar chart, 293
Momentum principle, 291–292
Monatomic gas, 531, 538, 593–594, 629
Motion. See also Acceleration; Circular 

motion; Kinematics; Newton’s laws 
of motion; Oscillations; Projectile 
motion; Rotational motion; Simple 
harmonic motion (SHM); Uniform 
circular motion; Velocity

along a line, 154–184
of a charged particle in electric field, 

697–698
with constant acceleration, 65–71
cyclotron, 868–870
free fall, 71–73
on an inclined plane, 73–76
in one dimension, 37–39
in a plane, 209–222
relative, 112
rolling, 342–345
in two dimensions, 103–107
uniform, 55–58

Motional emf, 890–891, 934
Motion diagrams, 25–26

acceleration vectors, 33–34, 36
displacement vectors, 29
examples, 25–27, 34–35
velocity vectors, 30–31

Motion graphs, 75–76
Motor, 875–876
MRIs. See Magnetic resonance imaging 

(MRI)
Multiplicity, 603–606, 608

Musical acoustics, 501–502, 504–505
Myopia, 1054–1055

N
Natural abundance, 1264
Natural frequency, 445
Near point of eye, 1054
Nearsightedness, 1054–1055
Net force, 97, 134, 144
Neutral buoyancy, 400
Neutrino, 1280
Neutron number, 1264
Neutrons, 1130
Newtons (N), 141
Newton’s first law of motion, 143–145
Newton’s law of gravity, 367–369
Newton’s second law of motion, 142–143

examples of, 174–177
momentum and, 291
problem-solving, 156–157
for rotational motion, 335–336

Newton’s theory of gravity, 368
Newton’s third law of motion, 186–207

conservation of momentum and, 294, 
297, 299

interacting-object problem-solving 
strategy, 193–194

reasoning with, 190–191
Newton’s zeroth law, 142
Nodal lines, 514, 985
Nodes, 496–497
Noise-canceling headphones, 506
Nonconservative forces, 277–279
Non-Coulomb electric field, 904
Normal force, 136
Normalization of wave functions, 1179
Normal mode, 446–448
North pole, 849–851, 859
Nuclear decay, 1274–1275
Nuclear energy, 1204
Nuclear fission, 1107
Nuclear magnetic resonance (nmr), 1284
Nuclear model of the atom, 1126, 1129
Nuclear physics, 1211–1212, 1263–1285

biological applications of, 1282–1285
decay mechanisms, 1277–1281
nuclear size and density, 1265–1266
nuclear stability, 1266–1269
nuclear structure, 1263–1266
nucleons and, 1211–1212, 1263–1264
radiation and radioactivity, 1272–1277
shell model, 1270–1272
strong force and, 1269–1270

Nucleons, 1211–1212, 1263–1264, 1268
Nucleus. See also Nuclear physics

daughter, 1275, 1277
discovery of, 1125–1127
shell model of, 1270–1272
size and density, 1265–1266

Number density, 530
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Index I-9

O
Object distance, 1023
Objective, 1057
Object plane, 1026
Object (in optics), 1013–1014, 1023, 1026
Ohm (Ω), 807
Ohmic materials, 809–810
Ohm’s law, 807–811, 820, 830
Optical axis, 1023
Optical cavity, 1254
Optical instruments, 1048–1066

cameras, 1050–1052
human vision, 1053–1055, 1066
magnifying lenses, 1056–1059
microscopes, 1057–1058
resolution of, 1062–1065
telescopes, 1058–1059

Optics, 983, 1013. See also Light; Optical 
instruments; Ray optics; Wave optics

Orbital quantum number, 1231
Orbits

circular, 216–217, 365
elliptical, 365, 375, 377–378
geosynchronous, 376–377
Kepler’s laws, 365

Order of diffraction, 990
Order-of-magnitude estimate, 47–48
Oscillating emf, 958
Oscillations, 425–457. See also Simple 

harmonic motion (SHM)
coupled, 446–448
damped, 442–444
driven, 445–446
period of, 425
phase of, 429
vertical, 436–437

Oscillators
analyzing, 435–436
coupled, 446–448
electrical, 913–915
lightly damped, 442–444
natural frequency of, 445–446
quantum harmonic, 1214–1216

Otto cycle, 630

P
Parabolic trajectory, 107, 125, 210
Parallel-axis theorem, 331
Parallel bundle of rays, 1014
Parallel capacitors, 778
Parallel-plate capacitor

capacitance of, 776–777
electric field of, 695–697, 776–777
electric flux inside, 717
electric potential of, 750–754, 768

Parallel resistors, 829–832
Paraxial rays, 1024
Parent nucleus, 1277
“Particle in a box”

de Broglie standing waves, 1150

energies and wave functions, 1199–1202
energy-level diagram, 1201
interpreting the solution, 1202–1205
potential-energy function, 1199

Particle model, 26–27
Pascal (Pa), 389
Pascal’s principle, 393, 396
Path-length difference, 507, 513, 984–985
Pauli exclusion principle, 1241–1242
Pendulum

ballistic, 301, 354–355
damped, 444
physical, 441
simple, 441

Penetration distance, 1210
Perfect destructive interference, 985
Perfectly elastic collision, 302–303
Perfectly inelastic collision, 300–301
Perfectly reversible engines, 634–638
Period, 114

of oscillations, 425
of orbit, 375–376
of wave, 464

Periodic table of the elements, 1242–1245
Permanent magnet, 859, 878
Permeability constant, 852
Permittivity constant, 663
Phase (oscillation), 429
Phase (wave), 480
Phase angle (AC circuit), 968
Phase changes of matter, 529, 535–537, 

565–566
Phase constant, 429–430
Phase diagram, 536
Phase difference, 480, 507–508
Phase equilibrium, 535
Phasor diagrams, 996
Phasors, 958, 996
Photoconductors, 664
Photocopiers, 664
Photoelectric effect, 1138–1144
Photolithography, 1064
Photons, 1144–1148. See also Light

analysis of interference, 1173–1174
connecting wave and photon views of 

interference, 1174
energy of, 1144–1145
photon model of light, 984, 1145–1146

Physical pendulum, 441
Pictorial representations, 40–41, 1014
Piezoelectric material, 426
Pinhole camera, 1014
Pivot point, 332
Pixel, 1052
Planck’s constant, 1141, 1156
Plane mirror, 1016–1017
Plane of charge, 682, 694–695, 727–728
Plane of incidence, 1015
Plane of polarization, 948
Planets, 365, 375–377. See also Orbits

Plane wave, 479
Point charges, 663

electric field of, 670, 682–684
electric potential energy of, 743–744
electric potential of, 754–755

Poiseuille’s equation, 410–412
Polarization

charge polarization, 660–661
of electromagnetic waves, 948–950
plane of, 948

Polarization force, 661
Polarizer axis, 949
Polarizing filter, 949–950
Population inversion, 1254
Position vector, 27
Position-versus-time graphs, 38–39, 56, 

58, 60–61
Positron, 1106, 1278
Potassium-argon dating, 1276
Potential difference, 749, 774, 807, 809, 

830, 910–911
Potential energy, 260–261

elastic, 267–270
electric, 741–746
force and, 276–277
gravitational, 261–262, 264–266, 

269–270
inside the nucleus, 1269–1270
stored in fields, 272
zero of, 263

Potential-energy curve, 272–273
Potential-energy function, 1214, 1218
Potential graph, 752, 755
Potential wells,1207–1208
Power

in AC circuits, 970–973
in DC circuits, 823–825
of a lens, 1049–1050
mechanical, 250–251
of waves, 481–482
unit of, 250

Power factor, 972
Poynting vector, 945
Precession, 352–354
Precession frequency, 352
Prefixes, 44
Presbyopia, 1054
Pressure

atmospheric, 390–392, 395
blood, 396
causes of, 389–390
in gases, 390, 394–395, 539, 589–591
gauge, 394
hydrostatic, 392–394
measurement of, 394–395
unit of, 389

Pressure gauge, 394
Pressure gradient, 410
Pressure wave, 502
Primary coil, 908
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Principal quantum number, 1231
Principle of equivalence, 368
Principle of relativity, 1078–1081
Principle of superposition, 494, 756
Prism, 1060–1061
Probability, 1172–1173

of detecting photons, 1174
of detecting a particle, 1186

Probability density, 1175, 1235–1236
Problem-solving strategies, 42–43
Projectile motion, 25, 107–111
Proper length, 1092
Proper time, 1088–1089
Proportionality, 140
Proportionality constant, 140
Propulsion, 188–190
Protons, 657, 1130, 1263
Pulleys, 197–199. See also Ropes and 

pulleys
Pupil (human eye), 1053
pV diagram, 541–544

Q
Quadrants of coordinate system, 92
Quadratic drag, 169
Quanta of light, 1141–1144
Quantization, 1138–1163

of angular momentum, 1159–1160, 
1232–1233

Bohr’s model of atomic, 1151–1154
of charge, 657
of energy, 1149–1151
Schrödinger equation and, 1198

Quantum harmonic oscillator, 1214–1216
Quantum jump, 1152, 1198, 1203–1204
Quantum mechanics, 1194–1224

correspondence principle, 1205–1207
finite potential wells, 1207–1208
particle in a box, 1199–1205
potential wells, 1207–1208
problem-solving strategy, 1198
quantum-mechanical models, 1196, 

1217–1220
quantum-mechanical tunneling, 

1220–1224
Schrödinger equation, 1194–1198
wave functions, 1171, 1176–1177, 

1212–1213
Quantum number

in hydrogen atoms, 1231–1232
Pauli exclusion principle and, 1241–1242
symbols representing, 1232

Quantum-well devices, 1210–1211
Quasi-static processes, 541
Quasistellar objects, 486

R
Radial acceleration, 122
Radial axis, 211

Radial probability density, 1235–1236
Radial wave functions, 1235–1236
Radians, 115
Radiation, 1273–1277

absorbed dose, 1282
blackbody, 577, 1116–1117
ionizing, 1273
medical uses of, 1283–1285
radioactivity, 306, 1125, 1264, 1272–

1277
thermal, 576–578, 1116

Radiation pressure, 946–947
Radioactive decay, 1131, 1273
Rainbow, 1061
Rarefactions, 472
Rate equation, 1251
Ray diagrams, 1014
Rayleigh scattering, 1062
Rayleigh’s criterion, 1065
Ray model of light, 1013–1016
Ray optics, 1013–1039

ray model of light, 1013–1016
reflection, 1015–1017
refraction, 1018–1024
spherical mirrors, 1035–1038
thin lenses: ray tracing, 1024–1035

Ray tracing, 1024–1030, 1037
RC circuits, 836–838
RC filter circuits, 962–963
Real images, 1026, 1036
Red shift, 485
Reference frames

accelerating, 144
in Galilean relativity, 1075–1076
inertial, 144–145, 929–930, 1076, 1091
in special relativity, 1078–1081

Reflecting telescopes, 1059
Reflection, 1015–1017, 1021
Reflection gratings, 992
Refracting telescopes, 1059
Refraction

angle of, 1018
image formation by, 1023–1024
index of, 474–475, 1004, 1018–1019, 

1021, 1060
ray optics and, 1030–1035
sign convention for, 1031
Snell’s law of, 1019, 1024

Refrigerators, 626–627, 632–634
Relative biological effectiveness (RBE), 

1282
Relative motion, 112
Relativity, 1075–1108

causal influence and, 1102–1103
clock synchronization, 1082–1083
Einstein’s principle of, 1078–1081
energy and, 1103–1108
events and, 1081–1084, 1096
Galilean, 933, 1075–1078

general, 1075
length contraction, 1091–1095
Lorentz transformations, 1095–1096
measurements and, 1082
momentum and, 1100–1102
problem-solving strategy, 1096–1098
proper time, 1088–1089
simultaneity and, 1084–1086
special, 1075
time dilation and, 1087–1091

rem, 1282
Resistance, 807–808

equivalent, 826, 830
internal, 827–828

Resistivity, 805, 807–808, 811
Resistor circuits, 832, 958–960
Resistors, 809–810

combination of, 831
energy dissipation in, 823–824, 

970–971
Ohm’s law and, 820
parallel, 829–832
series, 825–827, 831

Resolution
angular, 1065
of optical instruments, 1062–1066

Resonance
oscillation and, 445–446
series RLC circuits, 968–969
standing-wave resonance, 505

Resonance frequency, 445–446, 968
Rest energy, 1104–1105
Rest frame, 1087
Restoring force, 245–246, 370, 434
Resultant vectors, 89
Retina (human eye), 1053
Reynolds number, 169

drag and, 168
motion at low, 171–172

Right-hand rule, 346, 850–851, 867
Rigid body

angular momentum of, 349–350
equilibrium of, 339–342
rotation of, 323–355

Rigid-body model, 323
Ring of charge, 691–692, 769
RLC circuits, 966–969, 972–973
Rocket propulsion, 309–311
Rolling constraint, 343
Rolling friction, 164
Rolling motion, 342–345
Root-mean-square (rms) current, 970
Root-mean-square (rms) speed, 590–591
Ropes and pulleys, 195–198

constraints due to, 338
massless string approximation, 196–197
tension forces, 195–196

Rotational dynamics, 335–337
Rotational kinematics, 323–324
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Rotational kinetic energy, 327–328
Rotational motion

about a fixed axis, 337–339
about the center of mass, 324–327
angular momentum, 348–352
Newton’s second law for rotational 

motion, 335–336
rolling motion, 342–345
rotational dynamics, 335–337
torque, 331–335, 347–348
vector description of, 345–348, 356

rtz-coordinates, 210–211
Ruby laser, 1254–1255
Rutherford model of the atom, 1127, 1155

S
Satellites

geosynchronous orbits, 376–377
orbital energetics, 378–379
orbits, 217, 370, 375–377

Scalar product, 241
Scalars, 28, 88
Scanning tunneling microscope (STM), 1223
Scattering angle, 1147
Schrödinger equation, 1194–1198
Screening, 730
Sea of electrons, 658, 795–797
Second (s), 44
Secondary coil, 908
Secondary maxima, 992
Second law of thermodynamics, 599–603, 

607, 621
Selection rule, 1246
Self-inductance, 909
Semiconductors, 1224
Series capacitors, 778–779
Series resistors, 825–827, 831
Shell model of atoms, 1236–1237
Shell model of the nucleus, 1270–1272
Short circuit, 829
Sieverts (Sv), 1282
Sign conventions

for acceleration, 66
for electric and magnetic flux, 935
for motion in one dimension, 37–38
for refraction, 1031
for rotational motion, 324
for spherical mirrors, 1038
for thin lenses, 1033

Significant figures, 45–47
Simple harmonic motion (SHM)

circular motion and, 428–429
dynamics of, 433–435
energy in, 431–432
kinematics of, 425–427
phase of, 429–430

Simple-harmonic-motion model, 440
Simultaneity, 1084–1086
Single-slit diffraction, 992–998

Sinusoidal waves, 464–468
fundamental relationship for, 465
generating, 472
phase of, 480
wavelength, 464–465
wave number, 466

SI units, 43–45
Small-angle approximation, 438–439
Snapshot graph, 461–462, 1183
Snell’s law, 1019, 1024
Sodium, 1247–1248
Solenoids, 854, 865–866, 901–902
Solids

ball-and-spring model of, 135–136
color in, 1248–1249
degrees of freedom, 595
specific heats and molar specific heats, 

564
Sound intensity level, 482–483, 486
Sound waves, 472–473

beats and, 515–517
Doppler effect, 483–486
interference of, 505–508
speed of, 472–473, 477–479
standing waves and musical acoustics, 

501–505
wave equation for, 476–479

Source charges, 669, 748
South pole, 849–851, 859
Spacetime coordinates, 1081–1082, 

1095–1096
Spacetime interval, 1093–1095
Special relativity, 1075
Specific heat

of gases, 569–571
molar, 565
of solids and liquids, 564
thermal energy and, 593–596

Specific heat ratio, 573
Spectrometer, 1116
Spectroscopy, 991, 1116–1119
Spectrum

blackbody radiation, 1117
continuous, 1116–1117
discrete, 1118–1119, 1161
emission, 1118–1119, 1160–1161, 1248

Specular reflection, 1015
Speed, 55

average, 30
escape, 373
of light, 473–474, 1079–1080
molecular, 587–588
root-mean-square, 590–591
of sound, 477–479, 1077
terminal, 169–170
velocity versus, 30

Sphere of charge, 682, 695, 725–726, 
730–731, 745, 755–756

Spherical aberration, 1063

Spherical mirrors, 1035–1038
Spherical symmetry, 713–714
Spherical waves, 479
Spin, of electrons, 877, 1237–1239
Spin quantum number, 1238
Spontaneous emission, 1252–1253
Spring constant, 245, 251–252
Spring force, 135
Springs. See also Simple harmonic motion 

(SHM)
elastic potential energy, 268–270
force law, 245
ideal, 245
work done by, 246–247

Spring scale, 161
Stability and balance, 342
Stable equilibrium, 274
Stable isotopes, 1264
Standard atmosphere (atm), 391
Standing waves, 495–505

boundary conditions, 498
creating, 498–500
electromagnetic, 500–501
mathematics of, 496–497
musical acoustics, 501–502, 504–505
nodes and antinodes, 496–497
sound waves, 501–505
on a string, 497–501

State variables, 529, 538
Static equilibrium, 339–342, 672
Static equilibrium model, 339
Static friction, 137, 163
Stationary state

Bohr’s model of the atom, 1152–1154
hydrogen atoms, 1155–1158, 1231–1232
Schrödinger equation, 1198

Stern-Gerlach experiment, 1238–1239
Stick-slip motion, 246
Stimulated emission, 1252–1253
Stokes’ law, 171
Stopping potential, 1138–1140
STP (standard temperature and pressure), 

540
Strain, 413
Streamlines, 403
Stress, 412–414
Strong force, 1211, 1269–1270
Subatomic particles, 1123
Sublimation, 536
Sublimation temperature, 537
Superconductivity, 806
Superposition, 494–518. See also  

Standing waves
beats, 515–517
of electric fields, 683
of forces, 134
of magnetic fields, 853
principle of, 494
and wave packets, 1181
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Surface charge, 799
Surface charge density, 687
Surface integral, 715, 717–719
Symmetry

of electric fields, 711–712
reasoning with, 712

Synchronization, clock, 1082–1083
System

bound, 378
isolated, 270, 296
multiplicity of, 604–606
of particles, 186, 295–296
total energy of, 554

System energy, 233

T
Tangential acceleration, 122
Telescopes, 1048, 1058–1059
Temperature, 532–534

absolute temperature, 533
Celsius scale, 533
Kelvin scale, 533–534
molecular kinetic energy and, 591–593
specific heat and change in, 564–565
thermal energy and, 532–533

Tensile stress, 412–413
Tension force, 135–136, 195–196, 251
Terminal speed, 169–170
Terminal voltage, 775, 827
Tesla (T), 852
Thermal conductivity, 575
Thermal efficiency, 623–624
Thermal emission, 1139
Thermal energy, 247–249

dissipative forces and, 247–249
heat and temperature versus, 561
specific heat and, 593–596

Thermal equilibrium, 529, 541, 560, 
597–599

Thermal expansion, 532, 534–535
Thermal inertia, 565
Thermal interactions, 560
Thermal properties of matter, 564
Thermal radiation, 1116
Thermodynamic energy model, 562
Thermodynamics

first law of, 562–563, 601, 621
micro/macro connection, 587
second law of, 599–603, 607, 621

Thin-film optical coatings, 510–512
Thin-lens equation, 1033
Thin lenses

focal length of, 1024–1025, 1033
image formation by, 1025, 1034–1035
ray tracing and, 1024–1030
refraction theory, 1030–1035
sign convention for, 1033

Threshold frequency, 1138, 1144
Threshold of hearing, 482

Thrust, 137
Time

arrow of, 601
proper, 1088–1089
spacetime coordinates, 1081–1082, 

1095–1096
Time constant

of damped oscillation, 443–444
LR circuits and, 916–917
RC circuits and, 837

Time dilation, 1087–1091
Time interval, 30
Torque, 331–334

constant-torque model, 338
on current loops, 875–876
gravitational, 334–335
net, 334
torque vector, 347–348

Total energy, 1104–1105
Total internal reflection (TIR), 1021–

1022, 1026
Touchscreens, 826
Trajectory, 25, 103–106
Transformers, 908–909
Transition

allowed, 1246
nonradiative, 1249, 1255
radiative, 1253

Translational motion, 25, 323
Transmission grating, 992
Transverse waves, 459, 476
Traveling waves, 459–486

amplitude of, 464
displacement of, 463–464
Doppler effect, 483–486
longitudinal, 463
medium of, 459
power of, 481–482
sinusoidal waves, 464–468, 472
sound and light waves, 472–476
types of, 459

Triple point, 537
Tunneling, quantum-mechanical,  

1220–1224
Turbulence, 411–412
Turbulent flow, 403
Turning point, 62, 273
Twin paradox, 1090–1091

U
Ultrasound, 473
Uncertainty, 1182–1183
Uncertainty principle, 1183–1185
Uniform circular motion, 114–118

centripetal acceleration, 118–119
dynamics of, 210–212
speed and period of, 114

Uniform electric field, 697–698, 700–701, 
741–742

Uniform magnetic field, 865, 869
Uniform motion, 55–58
Unit vector notation, 670–671
Unit vectors, 94–95
Unit volume, 388
Universal gas constant, 538
Unstable equilibrium, 274
Upright images, 1029

V
Vacuum, 390
Van Allen radiation belt, 870
Van de Graaff generator, 774
Vapor pressure, 390, 395
Vector cross product, 853–854
Vector math

addition, 89
algebraic addition, 96
multiplication, 96
subtraction, 90, 96

Vectors 88–101
acceleration, 33–34, 36, 93–94, 105–106
components, 91–94
cross product of, 346–347
decomposition, 92, 95
displacement, 28–31, 88–89, 96
dot product of, 241–243
force, 134
magnitude, 28, 88
unit 94–95
velocity, 30–32, 88

Velocity, 30–32
Angular, 116–118
average, 30–32, 55
finding from acceleration, 77
finding position from, 62–63
Galilean transformations of, 1077
instantaneous, 59–62
Lorentz transformation of, 1099–1100
relative, 112–114
sign of, 37–38

Velocity-energy-momentum triangle, 1105
Velocity selector, 587
Velocity-versus-time graphs, 56, 60–61
Venturi tube, 407–408
Vibrational energy levels, 1216
Virtual images, 1017, 1026, 1028–1030
Viscosity, 168, 402, 408–410
Viscous drag, 170–171
Viscous fluid flow, 408–412
Visible spectrum, 474, 1060
Vision, human, 1053–1055, 1066
Volt (V), 748
Voltage

capacitor, 776
Hall, 872
inductors, 910–911
instantaneous, 958
peak, 959
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potential difference and, 749
resistor, 959–960
root-mean-square, 962
terminal, 775, 827

Voltmeters, 831–832
Volume

flow rate, 404, 409
in ideal-gas processes, 542

Volume strain, 412, 414
Volume stress, 414

W
Waste heat, 624
Watt (W), 250
Wave equation

electromagnetic waves and, 943–944
in a fluid, 476–477
on a string, 468–470

Wave fronts, 479
Wave functions, 1176–1177

drawing, 1213
finding, 1200–1201
normalizing, 1179, 1202
properties of, 1197
radial, 1235–1236

Wavelength, 464
de Broglie, 1148, 1194–1195
of light, 473–474
of sinusoidal waves, 464–465
of sound waves, 502–503

Wave model
of light, 984, 1000–1001
traveling waves, 459

Wave number, 466
Wave optics, 983–1004

circular-aperture diffraction, 999–1000
diffraction grating, 989–992
interference of light, 984–989
models of light, 983–984
single-slit diffraction, 992–998

Wave packets, 1180–1182
photons as, 1146
uncertainty and, 1182–1183

Waves. See also Electromagnetic waves; 
Light waves; Sinusoidal waves; 
Sound waves; Standing waves;  
Traveling waves

electromagnetic, 459, 476
intensity of, 481
interference of, 423
longitudinal, 459, 476
matter wave, 1148–1151
mechanical, 459, 476
superposition and, 984
transverse, 459, 476

Wave speed, 459–460
Weak interactions, 1279–1280
Weber (Wb), 895
Weight, 161

gravitational force and, 367–368

mass versus, 159–162
Weightlessness, 162
Wien’s law, 1117
Work, 234, 237

calculating work done, 239–244
done by springs, 245–247
as dot product of two vectors, 241–243
energy principle and, 234
heat and, 560, 621–623
in ideal-gas processes, 555–559
kinetic energy and, 235–238
potential energy and, 260–261
sign of, 238
of variable force, 244
zero-work situations, 243–244

Work function, 1139, 1223

X
X rays, 1120–1121
X-ray scattering, 1148

Y
Young’s double-slit experiment, 985–986
Young’s modulus, 412–414

Z
Zero of potential energy, 263
Zero-point motion, 1204–1205
Zero vector, 90
Zoom lens, 1050–1051
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Astronomical Data

Planetary 
body

Mean distance 
from sun (m)

Period 
(years) Mass (kg)

Mean radius 
(m)

Sun — — 1.99 * 1030 6.96 * 108 
Moon 3.84 * 108* 27.3 days 7.36 * 1022 1.74 * 106 
Mercury 5.79 * 1010 0.241 3.18 * 1023 2.43 * 106 
Venus 1.08 * 1011 0.615 4.88 * 1024 6.06 * 106 
Earth 1.50 * 1011 1.00 5.97 * 1024 6.37 * 106 
Mars 2.28 * 1011 1.88 6.42 * 1023 3.37 * 106 
Jupiter 7.78 * 1011 11.9 1.90 * 1027 7.15 * 107 
Saturn 1.43 * 1012 29.5 5.68 * 1026 6.02 * 107 
Uranus 2.87 * 1012 84.0 8.68 * 1025 2.33 * 107 
Neptune 4.50 * 1012 165 1.03 * 1026 2.21 * 107 
*Distance from earth

Typical Coefficients of Friction

Material Static Ms Kinetic Mk Rolling Mr 

Rubber on dry concrete 1.00 0.80 0.02 
Rubber on wet concrete 0.30 0.20 0.002
Steel on steel (dry) 0.80 0.60 0.002
Steel on steel (lubricated) 0.10 0.05
Wood on wood 0.50 0.20
Wood on snow 0.12 0.06
Ice on ice 0.10 0.03

Heats of Transformation

Substance Tm (∙C) Lf (J/kg) Tb (∙C) Lv (J/kg)

Water    0 3.33 * 105 100 22.6 * 105 
Nitrogen (N2) -210 0.26 * 105 -196 1.99 * 105 

Ethyl alcohol -114 1.09 * 105  78 8.79 * 105 

Mercury -39 0.11 * 105 357 2.96 * 105 
Lead  328 0.25 * 105  1750 8.58 * 105 

Properties of Materials

Substance R (kg/m3) c (J/kg K) h  (Pa s)

Air at 0°C and 1 atm 1.29 1.7 * 10-5 

Air at 20°C and 1 atm 1.20 1.8 * 10-5 
Ethyl alcohol 790 2400 1.3 * 10-3 
Glycerin 1260
Mercury 13,600 140
Oil (typical) 900
Olive oil (20°C) 910 8.4 * 10-2 
Seawater 1030

Water (20°C) 1000 4190 1.0 * 10-3 
Water (40°C) 1000 4190 6.5 * 10-4 
Aluminum 2700 900
Copper 8920 385
Gold 19,300 129
Ice 920 2090
Iron 7870 449
Lead 11,300 128

Coefficients of Thermal Expansion

Material A (∙C-1)

Aluminum  2.3 * 10-5

Brass  1.9 * 10-5

Concrete  1.2 * 10-5

Steel  1.1 * 10-5

Invar 0.09 * 10-5

Material B (∙C-1)

Gasoline 9.6 * 10-4

Mercury 1.8 * 10-4

Ethyl alcohol 1.1 * 10-4

Thermal Conductivities

Material k (W/m K)

Diamond 2000
Silver 430
Copper 400
Aluminum 240
Iron 80
Stainless steel 14
Ice 1.7
Concrete 0.8
Glass 0.8
Styrofoam 0.035
Air (20°C, 1 atm) 0.023

Molar Specific Heats of Gases

Gas CP (J/mol K) CV (J/mol K)

Monatomic Gases

He 20.8 12.5
Ne 20.8 12.5
Ar 20.8 12.5

Diatomic Gases

H2 28.7 20.4
N2 29.1 20.8
O2 29.2 20.9
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Indices of Refraction

Material Index of refraction

Vacuum 1 exactly
Air 1.00
Water 1.33
Ethyl alcohol 1.36
Oil 1.46
Glass (typical) 1.50
Polystyrene plastic 1.59
Cubic zirconia 2.18
Diamond 2.42

Resistivity and Conductivity of Conductors

Metal Resistivity (𝛀  m) Conductivity (𝛀-1 m-1)

Aluminum 2.8 * 10-8 3.5 * 107 
Copper 1.7 * 10-8 6.0 * 107 
Gold 2.4 * 10-8 4.1 * 107 
Iron 9.7 * 10-8 1.0 * 107 
Silver 1.6 * 10-8 6.2 * 107 
Tungsten 5.6 * 10-8 1.8 * 107 
Nichrome 1.5 * 10-6 6.7 * 105 
Carbon 3.5 * 10-5 2.9 * 104 

Atomic and Nuclear Data

Atom Z Mass (u) Mass (MeV/c2)

Electron — 0.000  548 0.51
Proton — 1.007  276 938.28
Neutron — 1.008  665 939.57
1H  1 1.007  825 938.79
2H  1 2.014  102
4He  2 4.002  602
12C  6 12.000  000
14C  6 14.003  242
14N  7 14.003  074
16O  8 15.994  915
20Ne 10 19.992  435
27Al 13 26.981  538
40Ar 18 39.962  384
207Pb 82 206.975  871
238U 92 238.050  784

Hydrogen Atom Energies and Radii
n En (eV) rn (nm)

1 -13.60 0.053
2  -3.40 0.212
3  -1.51 0.476
4  -0.85 0.848
5  -0.54 1.322

Work Functions of Metals

Metal E0 (eV)

Potassium 2.30
Sodium 2.36
Aluminum 4.28
Tungsten 4.55
Iron 4.65
Copper 4.70
Gold 5.10
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