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Preface

This monograph is devoted to construction of novel theoretical approaches of mod-

eling non-homogeneous structural members as well as to development of new and

economically efficient (simultaneously keeping the required high engineering accu-

racy) computational algorithms of nonlinear dynamics (statics) of strongly nonlinear

behavior of either purely continuous mechanical objects (beams, plates, shells) or

hybrid continuous/lumped interacting mechanical systems.

In general, the results presented in this monograph cannot be found in the ex-

isting literature even with the published papers of the authors and their coauthors.

We take a challenging and originally developed approach based on the integrated

mathematical–numerical treatment of various continuous and lumped/continuous

mechanical structural members, putting emphasis on mathematical and physical

modeling as well as on the carefully prepared and applied novel numerical al-

gorithms used to solve the derived nonlinear partial differential equations (PDEs)

mainly via Bubnov-Galerkin type approaches.

The presented material draws on the fields of bifurcation, chaos, control, and sta-

bility of the objects governed by strongly nonlinear PDEs and ordinary differential

equations (ODEs), and may have a positive impact on interdisciplinary fields of non-

linear mechanics, physics, and applied mathematics. We show, for the first time in

a book, the complexity and fascinating nonlinear behavior of continual mechanical

objects, which cannot be found in widely reported bifurcational and chaotic dynam-

ics of lumped mechanical systems, i.e., those governed by nonlinear ODEs. On the

other hand, we illustrate also how the strongly nonlinear PDEs modeled by chains

of many (infinitely many) coupled nonlinear oscillators may also exhibit nonlinear

behavior well known and studied via simple systems, usually in one or two degrees-

of-freedom mechanical objects.

In the Introduction an overview of both Ritz and Bubnov-Galerkin methods with

emphasis on achievements of Eastern countries is given. A historical origin of both

the Bubnov-Galerkin and Galerkin procedures is described and their status versus

that of other projection approaches is addressed.

In Chap. 1 a general theory of non-homogeneous shells is introduced. First,

fundamental relations and assumptions are given, shells’ non-homogeneities are

v
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introduced, and then the governing variational equations and equations of motion are

derived. After the boundary and initial conditions are introduced, the equations are

cast to non-dimensional form and the so-called variable parameters of a shell stiffness

are defined. In addition, a flexural stiffness coefficient of a shell element is formally

introduced. The section devoted to generalized functions completes this chapter.

Chapter 2 deals with the static instability problems of rectangular plates. First,

fundamental concepts of the theory of elastic stability are illustrated and

discussed. Second, two fundamental formulas of the energy-based criterion of bi-

furcational stability loss of an elastic continuous mechanical system are derived. In

addition, advantages and disadvantages of today’s stability investigation approaches

are critically revisited, placing emphasis on problems not yet satisfactorily solved.

In the next section various methods devoted to stability investigations are briefly

addressed, exhibiting their strong and weak points regarding applications with par-

ticular attention to computational advantages of the Galerkin methods. In Sect. 2.4

the Bubnov-Galerkin method of high-order approximations and the associated nu-

merical algorithm are presented. The rectangular form additions of other materials

to a shell are described in Sect. 2.5, whereas the next section deals with static shell

stability problems. Finally, the central square element, cross addition element, and

perforation-type non-homogeneities are introduced.

In Chap. 3 vibrations of rectangular shells are studied. Linear and weakly

nonlinear vibrations are revisited in Sect. 3.1, and then natural vibrations of non-

homogeneous shells applying the Bubnov-Galerkin method of higher order approx-

imations are analyzed. Section 3.3 is devoted to investigation of free nonlinear

vibrations of homogeneous plates and shells regarding any choice of control pa-

rameters. The relatively extensive Sect. 3.4 addresses the spectral analysis of a

stress–strain problem of any plate/shell approximated by systems of n degrees of

freedom. A harmonic process convergence and spectral analysis of free nonlinear

vibrations are illustrated and discussed in Sects. 3.5 and 3.6, respectively.

In Chap. 4 dynamic stability loss of rectangular shells is addressed. A back-

ground containing types of dynamic buckling exhibited by perfect constructions, as

well as the concept of finite-time stability, is given in Sects. 4.1–4.3. Mathematical

modeling of dynamical systems, problems of synchronization, chaos, and quasi-

periodicity are also briefly revisited. Sections 4.6–4.10 refer to both static and dy-

namic bifurcations and their numerical estimations. Stability loss of homogeneous

shells subjected to an action of transversal loads is rigorously studied in Sect. 4.11.

Chapter 5 concerns stability of closed cylindrical shells subjected to an axially

non-symmetrical load action. In the beginning (Sect. 5.1), equations of motion

are derived, and then the influence of imperfections on shell stability is stud-

ied. Both static and dynamic problems of buckling with the use of the Bubnov-

Galerkin method of higher approximations are analyzed and many computational

results are reported.

Composite shells are studied in Chap. 6. First, equations governing behavior of

composite shells are derived, and then both static and dynamic problems of stability

loss of composite shells are addressed.

In Chap. 7 the problem of interaction between flexible construction and a moving

lumped body is reduced to that of essentially simpler ones, i.e., that of vibrations
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subject to moving force P0 and that of displacement in the domain of the mov-

ing masses under the action of the mentioned force. Advantages of the proposed

method are illustrated and discussed. It is characteristic for the modeling of interac-

tion between a construction and moving bodies that the impact on the construction

is expressed by the weight and inertial forces of the objects moving on the studied

construction. This crucial feature of the applied approach constitutes also the es-

sential difficulty in the mathematical analysis of the problem. Let us note that most

publications in this field and related to the analysis of the interaction between a shell

and a moving mass are based on the application of a geometrically linear model or

on the assumption that a movable mass does not tear off the leading construction.

Apart from that, calculations were usually conducted with the use of approximated

methods with only a few first approximations taken into account. This chapter deals

with this problem in a complex and detailed way and it provides the methods leading

to the proper and accepted solution in engineering.

Chapter 8 deals with a novel approach to study chaotic vibrations of deterministic

mechanical systems represented by shallow sector-type spherical shells. Scales of

vibration character of such shells being transversally and harmonically excited vs.

control parameters are constructed. Scenarios to chaos are illustrated and discussed.

Control of chaotic state applying synchronous action of harmonic loading torque is

proposed. Investigations are carried out using the qualitative theory of differential

equations and nonlinear dynamics.

In Chap. 9 scenarios of transition from harmonic to chaotic motions are illus-

trated and discussed. First, a historical background of the problem is described. The

Landau-Hopf scenario; the Ruelle, Takens, and Newhouse scenario; the Feigenbaum

scenario; and the Pomeau-Manneville scenario are addressed, among others.

In Chap. 10 complex vibrations of closed cylindrical shells of infinite length and

circular cross section subjected to transversal local load in the frame of the classical

nonlinear theory are studied. A transition from PDEs to ODEs is carried out using

the higher order Bubnov-Galerkin approach and Fourier representation. On the other

hand, the Cauchy problem is solved using the fourth-order Runge-Kutta method. In

the first part of this work static problems of the theory of closed cylindrical shells are

studied. Reliability of the obtained results is verified by comparing them with the re-

sults taken from the literature. The second part is devoted to the analysis of stability,

bifurcation, and chaos of closed cylindrical shells. In particular, an influence of sign-

changeable external pressure and the control parameters such as magnitude of pres-

sure measured by ϕ0, relative linear shell dimension λ = L
R

, frequency ωp, and am-

plitude q0 of external transversal load on the shell’s nonlinear dynamics are studied.

Chapter 11 is devoted to control of temporal-spatial chaos exhibited by cylin-

drical shells. Process of controlling chaos is understood as the transformation of

chaotic dynamics into regular, or the other chaotic ones, but of different character-

istics, with the use of small external periodic input functions and by the influence of

transverse load applied in anti-phase.

In Chap. 12 chaotic vibrations of flexible rectangular shells forced by transversal

harmonic load are analyzed via application of the qualitative theory of differential

equations and nonlinear dynamics. An infinitely dimensional problem is reduced

to a finitely dimensional one with the application of the Bubnov-Galerkin method



viii Preface

with higher approximations and the method of finite differences with approximation

O(Δ2). An initial problem is solved with the use of Runge-Kutta method of the

fourth order. It is shown that within the range of harmonic vibrations, the results

obtained from both methods are fully convergent, whereas in the range of chaos

such convergence can be obtained only in relation to the character of vibrations, i.e.,

in relation to the frequency spectra. The increase in the number of element partitions

in the method of finite differences and the number of approximations in the Bubnov-

Galerkin method leads to better results, but there is some threshold value beyond

which further calculations are impossible.

Chapter 13 deals with both regular and chaotic vibrations, various bifurcations,

and scenarios exhibited by three-layered nonlinear uncoupled beams with con-

straints. The finite difference approximation is applied and the reliability of the

numerical results is first rigorously discussed. New scenarios of transition to chaos

and synchronization phenomena are reported, and the essential influence of four

boundary conditions on various nonlinear behaviors is outlined.

In Chap. 14 dynamics of physically dissipative nonlinear multi-layer sandwich

of three beams is analyzed. The boundary conditions are arbitrary. The transversal

load can be applied either simultaneously to all beams or separately to each of the

beams. The finite difference method is used to solve the governing equations. Dif-

ferent types of beam material are considered: ideally elastic-plastic, elastic-plastic

with linear straightness, and pure aluminum. Some new bifurcation and chaotic phe-

nomena of the system are reported and discussed.

Chapter 15 deals with complex vibrations of a flexible Euler-Bernoulli type beam

driven by a dynamic load, and the various type of inputs on its edge are studied. The

governing equations include damping terms with damping coefficients ε1, ε2 as-

sociated with deflection w and displacement u, respectively. Damping coefficients

ε1, ε2 and the transversal load coefficients (q0, ωp) serve as control parameters.

The formulated infinite dimensional problem is reduced to that of finite dimen-

sion applying the finite difference method with approximation O(h2) with regard

to spatial coordinates and it is solved via the fourth-order Runge-Kutta method.

This approach enabled identification of damping coefficients ε1 and ε2, as well as

investigation of elastic waves generated by an impact introduced through a mass

(lumped body) moving at constant velocity. The introduced analysis is supported by

applied achievements of the qualitative theory of differential equations and nonlin-

ear dynamics.

Finally, this book is accessible to readers with a fundamental knowledge of

applied mathematics, differential equations, and modern theory of nonlinear dy-

namical systems. One of the co-authors (J. Awrejcewicz) acknowledges the finan-

cial suppport by the Polish Ministry of Science and Higher Education for years

2005–2008 (grant No. 4 07A 03128) regarding the book part devoted to im-

pact phenomena.

We deeply thank P. Olejnik, M. Kaźmierczak, and A. Dȩbska for their help in the

preparation of this book.

Łódź, Poland Jan Awrejcewicz

Saratov, Russia Vadim A. Krysko



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Theory of Non-homogeneous Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Preliminary Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Fundamental Relations and Assumptions . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Non-homogeneity of a Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Variational Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Boundary and Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.7 Non-dimensional Form of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.8 Variable Parameters of Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.9 Flexural Stiffness Coefficient of a Shell Element . . . . . . . . . . . . . . . . 34

1.10 Generalized Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Static Instability of Rectangular Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1 Fundamental Concepts of the Theory of Elastic Stability . . . . . . . . . . 41

2.2 Two Fundamental Forms of the Energetic Criterion

of Bifurcational Stability Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Bubnov-Galerkin Methods Devoted to Shell Stability Investigations 54

2.3.1 Subdomains Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.2 Colocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.3.3 Least-Squares Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.4 Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3.5 Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.3.6 A Comparison of the Weighting Error Methods . . . . . . . . . . . 63

2.3.7 Relations to Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.3.8 Theoretical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.3.9 Computational Advantages of Galerkin Methods . . . . . . . . . . 73

2.3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.4 Bubnov-Galerkin Method of High-Order Approximations and the

Numerical Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



x Contents

2.5 Shells with Additions of Other Materials . . . . . . . . . . . . . . . . . . . . . . . 84

2.6 Static Stability of a Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.7 Central Square Element of Non-homogeneity . . . . . . . . . . . . . . . . . . . 88

2.8 Central Cross Addition of Non-homogeneity . . . . . . . . . . . . . . . . . . . . 90

2.9 “Perforation”-Type Non-homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 92

3 Vibrations of Rectangular Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.1 Linear and Weakly Nonlinear Vibrations of Mechanical Systems . . . 95

3.2 Natural Vibrations of Non-homogeneous Shells . . . . . . . . . . . . . . . . . 96

3.2.1 The Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.2.2 Description of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.3 Free Nonlinear Vibrations of Plates and Shells . . . . . . . . . . . . . . . . . . 106

3.3.1 The Solution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4 Spectral Analysis of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.5 Method Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.6 Spectral Analysis of Free Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4 Dynamic Loss of Stability of Rectangular Shells . . . . . . . . . . . . . . . . . . . 123

4.1 Types of Dynamic Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 Perfect Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 The Concept of Finite-time Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4 Mathematical Models of Vibrating and Dynamic Systems . . . . . . . . . 128

4.5 Synchronization, Chaos, and Quasi-Periodicity . . . . . . . . . . . . . . . . . . 132

4.6 Static Bifurcations and Catastrophe Theory . . . . . . . . . . . . . . . . . . . . . 135

4.7 “Wrinkle-Type” Catastrophe or a Limit Point . . . . . . . . . . . . . . . . . . . 137

4.8 A “Fold-Type” Catastrophe or Symmetric Bifurcation . . . . . . . . . . . . 138

4.9 Dynamic Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.10 Criteria for Practical Computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.11 Stability Loss of Homogeneous Shells under Transverse Loads . . . . 141

4.11.1 Feasibility of the Obtained Results . . . . . . . . . . . . . . . . . . . . . . 141

4.11.2 Buckling Load and Parameter kx = ky

of a Homogeneous Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.12 Stability Loss of Heterogeneous Shells Under Transverse Load . . . . 144

4.12.1 Relation Between Buckling Load and the Surface

of an Extra Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.12.2 Relation Between the Buckling Load and Stiffness

Coefficient of an Extra Element . . . . . . . . . . . . . . . . . . . . . . . . 146

4.12.3 Relation Between Buckling Load and the Number

of Reinforcement Elements Situated Along One Side

of a Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.12.4 Relation Between Buckling Load and the Width of a Rib

(Cross-Type Heterogeneity, Fig. 2.8b) . . . . . . . . . . . . . . . . . . . 147



Contents xi

5 Stability of a Closed Cylindrical Shell Subjected to an Axially

Non-symmetrical Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2 The Influence of Imperfection on the Stability of Shells . . . . . . . . . . . 152

5.3 The Load Resulting from a Wind-Type Flow . . . . . . . . . . . . . . . . . . . . 156

5.4 The Problem of Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.5 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6 Composite Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Static Stability of Composite Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2.1 Three-Layered Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 Dynamic Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7 Interaction of Elastic Shells and a Moving Body . . . . . . . . . . . . . . . . . . . 171

7.1 Vibration of Construction and Moving Lumped Body (One-Sided

Constraint Case) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2 Moving Load Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3 Non-dimensional Form of Lumped Body Equations . . . . . . . . . . . . . . 177

7.4 Boundary and Initial Problem for a Shell . . . . . . . . . . . . . . . . . . . . . . . 178

7.5 Shell Rise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.6 Shell Vibrations with Two-Sided Moving Lumped

Body Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

7.7 Shell Subjected to Transversal Rigid Body Impact . . . . . . . . . . . . . . . 190

7.8 Shells with Constant Velocity Moving Load . . . . . . . . . . . . . . . . . . . . 193

7.9 Shell and Load Moving with Constant Acceleration . . . . . . . . . . . . . . 198

7.10 Shell and Load Moving with Constant

Negative Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8 Chaotic Vibrations of Sectorial Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.3 Static Problems and Reliability of Results . . . . . . . . . . . . . . . . . . . . . . 209

8.4 Convergence of a Finite Difference Method . . . . . . . . . . . . . . . . . . . . . 210

8.5 Investigation of Chaotic Vibrations of Spherical Sector-Type Shells . 216

8.5.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.5.2 The Influence of Sector Angle . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.5.3 Vibrations of Sector-Type Shells Versus Sloping Parameter . 217

8.6 Transitions from Harmonic to Chaotic Vibrations . . . . . . . . . . . . . . . . 218

8.7 Control of Chaotic Vibrations of Flexible Spherical Sector-Type

Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220



xii Contents

9 Scenarios of Transition from Harmonic to Chaotic Motion . . . . . . . . . . 225

9.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

9.2 Landau-Hopf Scenario (LH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

9.3 Scenario by Ruelle, Takens, and Newhouse . . . . . . . . . . . . . . . . . . . . . 228

9.4 Scenario by Feigenbaum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

9.5 Scenario by Pomeau-Manneville . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

9.6 Synchronization of Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

10 Dynamics of Closed Flexible Cylindrical Shells . . . . . . . . . . . . . . . . . . . . 235

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

10.2 Fundamental Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

10.3 Bubnov-Galerkin Method and Fourier Representation . . . . . . . . . . . . 240

10.4 Static Problems of Closed Cylindrical Shell Theory . . . . . . . . . . . . . . 245

10.5 Dynamics of Closed Cylindrical Shells . . . . . . . . . . . . . . . . . . . . . . . . 248

10.5.1 Convergence of the Fourier Representation for a Non-

stationary Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

10.5.2 Vibrations of Closed Cylindrical Shells Subjected

to Transversal Sinusoidal Load . . . . . . . . . . . . . . . . . . . . . . . . . 254

10.5.3 Dependence of Vibration Character on Width

of the Pressure Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

10.5.4 Dependence of Vibration Character on the Linear

Shell Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

10.5.5 Scenarios of Shell Vibration Transition into Chaos Versus λ 262

10.5.6 Feigenbaum Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

10.5.7 The Ruelle-Takens-Feigenbaum Scenarios . . . . . . . . . . . . . . . 269

10.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

11 Controlling Time-Spatial Chaos of Cylindrical Shells . . . . . . . . . . . . . . . 271

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

11.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

11.3 Bubnov-Galerkin Method and Fourier Transformation . . . . . . . . . . . . 273

11.4 Control of Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

11.4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

12 Chaotic Vibrations of Flexible Rectangular Shells . . . . . . . . . . . . . . . . . . 281

12.1 Fundamental Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

12.2 Bubnov-Galerkin Method with Higher Approximations . . . . . . . . . . . 283

12.3 Method of Finite Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

12.4 Comparison of Results Obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

12.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

13 Determination of Three-layered Nonlinear Uncoupled Beam

Dynamics with Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

13.2 Fundamental Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

13.3 Formulation of the Problem and Computational Algorithm . . . . . . . . 300



Contents xiii

13.4 Structurally Nonlinear Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

13.5 Structurally and Physically Nonlinear Problems . . . . . . . . . . . . . . . . . 313

13.6 Special Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

13.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

14 Bifurcation and Chaos of Sandwich Beams . . . . . . . . . . . . . . . . . . . . . . . . 319

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

14.2 Problem Formulation and Computational Algorithm . . . . . . . . . . . . . 320

14.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

14.4 All Three Beams are Linearly Elastic . . . . . . . . . . . . . . . . . . . . . . . . . . 325

14.5 All Three Beams are Nonlinearly Elastic . . . . . . . . . . . . . . . . . . . . . . . 349

14.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

15 Nonlinear Vibrations of the Euler-Bernoulli Beam . . . . . . . . . . . . . . . . . 357

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

15.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

15.3 Finite Differences Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

15.4 Influence of Damping Coefficients on the Frequency Characteristics 361

15.4.1 Power Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

15.5 Waves Generated by a Longitudinal Impact . . . . . . . . . . . . . . . . . . . . . 369

15.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391



Introduction

An overview of both Ritz and Bubnov-Galerkin methods, with an emphasis on the

achievements of Eastern European countries, is provided here. The historical origin

of the Bubnov-Galerkin procedure is described and its approach versus that of other

projection approaches is addressed.

We begin our considerations with a definition of non-homogeneity. There exist

many different definitions concerning non-homogeneity but in this book the term is

understood as a dependence of Young modulus E(x, y, z) and the density ρ(x, y, z)
of the analyzed constructions on the three spatial coordinates x, y, z.

The Ritz (MR) and Bubnov-Galerkin (MBG) methods belong to the class of pro-

jection methods. The origin of the Ritz method is exhibited mainly via singularity of

a functional whose extremes are achieved at some stationary points. The main idea

of both MR and MBG methods relies on the basis of a state-space approximation of

the investigated system by a subspace belonging to the space at hand, in which any

stationary points of the considered functional should be determined.

In such a situation the transition from a system of input partial differential equa-

tions (PDEs) to the system of algebraic equations (static problem) or ordinary

differential equations (ODEs; dynamic problem) is realized.

Note that the MBG projection method can be formally applied to the solution to

differential equations not necessarily belonging to the class of Euler equations and

for the arbitrarily chosen functional (an existing functional can be indefinite as well).

In the last case, an application of the MBG method consists of the projection of

output equations on a subspace of the analyzed functional space where a solution to

the problem is included. Assuming that an approximated solution is satisfied in the

subspace, the searching process can be realized by introduction of some important

relations.

The MR and MBG methods began with the pioneering works of Ritz [246]

and Bubnov [62]. Development and application of MR and MBG methods in

the problems concerning mechanics were introduced in works of Galerkin [102],

Leibenson [184, 185], Papkovich [239, 240], Galimov [104], and many others.

A deep mathematical background of MR for self-coupled linear problems has

been given in a series of fundamental works by Krylov [153, 155, 156, 158]. In

J. Awrejcewicz, V.A. Krysko, Chaos in Structural Mechanics, 1
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2 Introduction

Krylov’s work [154] the MR method was applied to the analysis of Theodore von

Kármán’s equation; in addition, thanks to the application of a uniform norm, a di-

rection of error estimation has been provided by the use of this method. In the work

of Kieldysh [134], MBG convergence in linear problems for the even-order ODEs

and for a class of partial equations of elliptic type has been demonstrated as well.

Mikhlin [210] extended Kieldysh’s results to the linear case of operational

equation with the non-self-coupled operator and generalized the approach to the

wide class of boundary problems for elliptic-type equations. In Krasnoselskiy’s

work [150] some basic theorems referred to the MBG convergence for nonlinear

operational equations were given. Furthermore, by the best possible approximation

of the function sought through linear combinations of coordinate elements an error

estimation for that method has been proposed.

In works of Liashko [189, 190] and Martyniuk [199, 200] (linear equations with

a non-self-coupled operator), a quadratic functional construction was introduced.

Analogously, the functional has been used in the Ritz method for solving self-

coupled problems and the convergence of the variational method has been proved. In

Liashko [191] and Nashed’s [227] works the obtained results have been generalized

to the form of a nonlinear equation with a non-potential operator.

Contrary to MR, the MBG can be effectively applied to the solution of not only

any stationary problems (boundary problems for the elliptic-type equations), but

also to the problems of evolution (initial-boundary problems for the parabolic- and

hyperbolic-type equations). Since for the first time in 1949 MBG was applied in

analysis of non-stationary problems by Faedo, in the mathematical literature the

term Faedo-Galerkin method [107] is often used.

However, in 1931, in the work by Krylov-Bogolubov [157], MBG was used in a

broad investigation of Cauchy-Dirichlet problems for the second-order hyperbolic

equation, and the scheme considered is very close to the one used today. It seems

that, in spite of this, Faedo’s impact in the field of MBG application to evolutional

problems is not as strong as it had been thought, though there is no doubt that in

the field [113] belongs to the first ones publications even if it is not necessarily a

fundamental one.

From the earlier works devoted to the problem it is appropriate to enumerate

publications of Hopf [122], in which MBG was adequately applied to parabolic

linear equations and to the nonlinear Navier-Stokes equations.

The level of development and utilization of MR and MBG methods in nonlinear

problems of the theory of plates and shells were sufficiently well illustrated in 1956

in the monographs of Volmir [303] and Mushtari and Galimov [219]. Taking into

consideration only first and second approximations, the mentioned methods were

successfully used there.

Successively the development of computational numerical techniques has al-

lowed the application of both of the discussed methods by means of higher order

approximations. Let us enumerate at this stage some of the work devoted to the

direction of investigations. Some interesting results were given in Kornishin’s

monograph [143] devoted to analysis of large rectangular deflections of shells using

third-order approximation. Kantor [130] applied MR to the solution of problems of
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the theory of axially symmetric shallow shells regarding geometrical and physical

nonlinearities (sufficiency of application of fourth- or fifth-order approximations has

been proved). In a survey work by Vorovich and Minakova [309], the wide spectrum

of literature devoted to MBG applications with higher order approximations is ex-

tensively presented. In works of Amielchenko and Krysko [10], Krysko [159], and

Potash [242], as many as 36 parameters subjected to some variation have been taken

into consideration during approximation in a search for a solution.

Some results of various MR and MBG applications based on the theory of shell

stability were presented in Grigoliuk and Kabanov’s monograph [114]. During de-

termination of the form of stability loss in systems with high non-homogeneity many

series terms are required (using information a priori). Furthermore, an appropriate

selection of a number of base functions has to be indicated also.

A particular MBG presentation for the geometrically nonlinear dynamical prob-

lems devoted to the theory of plates and shells was reported in monographs

[304, 305], where stability of constructions together with any gas–fluid interactions

have been particularly investigated.

A wide class of problems of the theory of shallow shells with geometrical and

physical nonlinearities, as well as the cyclic load problems (in particular, some

problems such as an estimation of influence of impulse action on the stability of

shells, or influence of damping on the value of dynamic critical loading, etc.) can

be solved using MBG as shown in Krysko’s monograph [159]. The work indicates

a purposefulness of MBG application in comparison to the traditional finite differ-

ences method (mainly owing to the shorter time for numerical computations).

The Ph.D. thesis of Kutsemako [171] focused on MBG applications in compu-

tations of dynamic problems of the theory of shells within a framework of both

Kirchhoff-Love and Timoshenko models.

Computations of the dynamic stability loss of a cylindrical shell under a band

loading and with the application of the MBG method were carried out in [140].

The paper by Kirichenko et al. [135] presents an interesting application of MBG

to the analysis of dynamical stability of a stiffly clamped shallow shell with as well

as without any coupling between both temperature and deformation fields.

Miscellaneous MBG problems devoted to numerical schemes of theory of shells

have been given in the following works: Svirsky [286], Krotkova [151], Bacinov

[49], Yakushev [322], Tcherniak [287], Mukhopadhyay [218], Mioduhovsky et al.

[213], Chen and Hwang [71], Gelos et al. [110], and others.

In the beginning, the Bubnov-Galerkin method was established as a typical com-

putational method, but today it is one of the strong tools for investigations of

solvability problems of a wide class of either stationary and evolutional or linear

and nonlinear problems of mathematical physics.

The significant development of mathematically exact schemes of the proofs of

the existence of solutions based on both MBG and the fundamental theorems of

mathematical analysis became possible after Sobolev’s [279] discovery of the gen-

eralized derivatives of the Lebesque-class measurable functions. In the next stage,

an approach to the generalized solution of mathematical problems of physics could

be successfully formulated.
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Mikhlin [206, 207, 209] and Ladyzhenskaya’s work [175], in which a history

of the problem is presented, are devoted to convergence investigations of MR and

MBG for linear problems including plate and shell analysis, and to the formal exhi-

bition of solvability of problems of that type in Sobolev space.

The principal results regarding the mathematical validation of application of

various approximated methods (including MBG) are presented in monographs

[149, 194].

Regarding the solvability of nonlinear problems of plates and shells, it is worth

mentioning Vorovich’s work [310], which often served as an inspiration for other

fruitful ideas in this field. Some fundamental results in the field of mechanics were

also obtained by Morozow, and presented in [214, 215] devoted to nonlinear prob-

lems of the theory of thin plates. Note that [214] focuses on vibrations of a prismatic

rod, where by means of the Sobolev theorem as well as because of curiosity regard-

ing the considered problem, Morozov managed to prove not only the existence, but

also the uniqueness of the solution obtained.

Using MBG Lebedev [182, 183], Skrypnik [276] and other authors investigated

problems related to solvability of miscellaneous mechanical tasks of thin-walled

constructions. The comprehensive basics of MBG and MR focused on the static

problems of nonlinear theory of the shallow shells were introduced in Vorovich’s

monograph [308].

The existence and uniqueness of solutions to the linear and nonlinear thermal-

elasticity problems of plates and shells within a framework of Kirchhoff-Love’s and

Timoshenko-type kinematic theories, and with the application of three-dimensional

heat transfer equation were widely investigated by Kirichenko and Krysko [136].

The solvability of the problems formulated is confirmed on the basis of MBG

method in Sobolev space. In Wenk’s work [311], with assumption of the temper-

ature linear law distribution along the thickness of a plate, the nonlinear problem of

thermal-elasticity of plates was examined.

In the capacity of boundary conditions some sub-differential inclusions lead-

ing to problem generalization in the form of variational inequalities have been

considered. Applying MBG, it was possible to define a large number of the-

orems concerning existence, uniqueness, regularity, and the continuous solution

dependence on the data assumed. ChrzAszczyk obtained some results related to

uniqueness and smoothness of the problem solution, whose solvability was proved

in the previously mentioned work [136].

In a series of works of Kowalski and Piskorek [148], Gawinecki et al. [106, 107,

108, 109], Kowalski et al. [147], but with the use of MBG method a number of

theorems devoted to the existence, uniqueness, and regularity of solutions to many

spatial linear problems of the theory of thermal-elasticity for both isotropic and

anisotropic solid bodies, including heat transfer equation of both parabolic and hy-

perbolic type, were formulated and proved as well.

In a large majority of the previously specified works the convergence of MBG

and MR methods appears as a by-product formed after the existence of a solution

for a considered problem has been proved. In the case of problems of statics, the

classical result (selection of a base is made arbitrarily) is then exposed as the conver-

gence in the sense of energetic norm and the weak convergence in some “energetic”
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spaces of dynamical problems. When a proper rational selection of the basic system

is done, the convergence results can be gained. Of course, some effective velocity

estimations of the convergence rate should be formulated as well.

The direction of MBG development brings another fundamental achievement of

Mikhlin [211], who introduced a concept of convergent operators. Furthermore, if

as the base a system of eigenvalues for an auxiliary operator convergent to the op-

erator of the equation at hand is chosen adequately, then the estimation of MR error

convergence to the zero value is possible to obtain almost exactly. In [206] the re-

sult obtained was corrected, and additional inequality conditions (the so-called acute

angle conditions) were imposed on both the auxiliary and output operator.

The principal results related to the convergent operators satisfying the type of

acute angle inequalities have been given in Sobolevskiy [280] and Ladyzhenskaya’s

[176] works. On the basis of those results and for a series of specific cases,

Mikhlin [206] derived some special fundamentals guaranteeing convergence of the

MR error to zero.

Mikhlin’s results for the MBG case have been propagated by Bogarian [60].

Dzishkariani’s publication [89] takes into consideration some linear problems of

error estimation of MR in a form of energetic norm. He used eigenvalues of the

auxiliary operator that was convergent to the operator of an output problem.

Vainikko [302] and Dzishkariani’s [89] works are essentially close to each other,

showing similar results of MBG applications. In Vainikko’s work [301] in the case

of the auxiliary operator the spectrum of which does not purely consist of a point,

the MBG error estimation for stationary problems has been achieved.

Dzishkariani’s work [88] extends the error estimation of MR to the case of a

quasi-linear equation containing as a nonlinear operator the continuous potential

operator possessing a positive Frechet differential.

Some general velocity convergence estimations of the Galerkin-Pietrov method

for linear and quasi-linear stationary problems have been proposed. Continuing, they

result in error estimations of MBG when a system of elements of the self-coupled

convergent operator is chosen as the base and, in particular, when the operator un-

der investigation makes an acute angle with the main part operator of the problem

analyzed. A wide overview of works devoted to the theory of numerical methods

including MBG and for the stationary problems has been presented in Mikhlin’s

monograph [208].

Among the works related to evolutional problems of convergence investiga-

tions of MBG it is necessary to mention Sobolevskiy’s publication [281], in which

for a quasi-linear parabolic equation and for an arbitrarily chosen base some

theorems related to the strong convergence of approximated solutions to the ex-

act one and other zero convergence estimations have been given. Zarubin and

Tiunchik [329] applied MBG to the nonlinear operator parabolic equation. It was

assumed there that a system of eigenelements of the auxiliary operator satisfying

the acute angle type inequality is taken as a base. Conditions of the zero error

convergence of MBG as well as a quite different one constituting a strong con-

vergence of a series of approximated solutions adequate to their exact one were

provided.
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In a series of Zarubin’s works [327, 328] with reference to the notions of eigen-

values of the convergent operator making an acute angle with the self-coupled output

operator being placed in the original problem formulation, some various kinds of es-

timation of MBG error for parabolic equations equipped with an appended operator

have been provided.

A problem associated with MBG rate convergence for some hyperbolic equations

and the coupled problems of thermoelasticity-type equations have been analyzed by

Zhelozovskiy [333, 334].

Modern analysis of the theory of plates and shells as well as convergence in-

vestigations of MBG have led to the following observations. MBG is one of the

most effective and widely used numerical methods for the solution of static and

dynamic problems in the theory of plates and shells. Present capabilities of com-

putational techniques and the well-established mathematical knowledge concerning

MBG allow for finding of solutions to many complex problems of the theory of

non-homogeneous shells after their finite deflections.

The monograph does not aim for the full and multilateral presentation of the

problem under investigation, but it does attempt to show the simplicity of realization

and effectiveness of MBG applications to the theoretical problems of plates and

shells.

Beams belong to structural members widely described in the recent bibliography

from the aspect of their chaotic dynamics.

Pezeshki and Dowell [245] determined fractal basin boundaries for two types of

basins of attractions of a buckled beam dynamics using the forced Holmes-Duffing

equation. Shaw [265] studied the transverse vibrations of a slender beam exhibiting

free rotation around its longitudinal axis. It was shown using the Melnikov-type

approach that chaotic motions exist for both first mode approximation and the full

beam equation.

Higuchi and Dowell [121] investigated chaotic vibrations of a buckled beam un-

der sinusoidally varying and static constant transverse external forces, and onset

of chaos was predicted. Moorthy et al. [216] applied the finite element method to

solve the chaotic vibration problem of beams with nonlinear boundary conditions. It

was shown that a temporally discrete solution of the spatially discrete model could

capture the phenomenon of chaos.

The Galerkin approach was applied to convert PDEs to ODEs during investi-

gation of bifurcational behavior of a pre-buckled beam in [263]. Both pre-buckled

amplitude and external loading were used as control parameters in the bifurcational

plane, and the existence of a chaotic attractor was shown.

Yagasaki [320] investigated nonlinear vibrations of a straight beam clamped at

both ends and forced with two frequencies near the first beam mode frequency. The

Galerkin approximation and the averaging and Melnikov techniques were applied to

predict chaos occurrence. Numerical simulations and experiments were compared

with the theoretical prediction.

Lenci and Tarantino [186] studied chaotic dynamics by means of the Melnikov

method. Qualitatively different chaotic zone diagrams were reported, and the phys-

ical interpretation of the applied mathematical tools was also addressed.
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The generalized Melnikov method for predicting the onset of chaos of buckled

beams was applied in references [277, 278]. Direct computation of stable and un-

stable perturbed manifolds allowed prediction of a chaotic threshold. Necessary and

sufficient conditions for steady-state chaos were obtained.

Moorthy et al. [217] showed that the direct integration and mode superposition

schemes are efficient for problems of chaos in structural mechanics systems. The

solution scheme was built in algorithms for equilibrium interaction of the nonlinear

forces of the temporal solution trajectory.

In reference [119] a magneto-elastic beam governed by the Duffing equation with

delay was analyzed. A necessary and sufficient condition for the solution stabiliza-

tion regarding control parameters and initial constants was formulated. A control of

chaos was proposed.

Dwivedy and Kar [85] studied the second-order differential equation of a slender

beam with an attached mass at an arbitrary position under vertical base excitation.

The normal forms method was applied and bifurcation set, mixed-mode vibration,

period-doubling, quasi-periodic orbits, and different routes to chaos were addressed.

A T-shaped beam-mass structure was studied experimentally and theoretically

for the case of one-to-two internal and parametric resonances of the lower mode

in [129]. Multiple scales method yielded four first-order amplitude- and phase-

modulation equations, where the Melnikov approach allowed prediction of a Smale

horseshoe type of chaos.

Yagasaki [321] studied an infinite degrees-of-freedom Hamiltonian system repre-

senting a mathematical model for an undamped buckled beam. Orbits transversally

homoclinic to periodic orbits and orbits transversally homoclinic and heteroclinic

to invariant tori consisting of quasi-periodic orbits were detected. The occurrence

of chaotic dynamics via and beyond the Smale-Birkhoff homoclinic theorem was

addressed.

Tunnel-shaped chaotic orbits, fractal orbits, cascade of period-doubling, torus

doubling, and intermittency routes to chaos were reported by Dwivedy and Kar [86]

with reference to dynamics of a slender beam carrying a lumped mass under princi-

pal parametric resonance with three-mode interactions. This study was extended in

reference [87], where also two distinct zones of trivial stability, blue sky catastro-

phe phenomena, jump down phenomena, and boundary and attractor merging crises

were illustrated and discussed.

A rotating viscoelastic beam with variable pitch angle was investigated by

Abolghasemi and Jalali [1]. Both perturbation technique and Galerkin projection were

used to obtain a non-autonomous ODE, and a bifurcation analysis was carried out.

The existence of chaotic responses for certain weakly damped linear beam equa-

tions with slowly periodic perturbations resting on weakly nonlinear elastic bearings

was illustrated by Battelli and Fečkan [51].

Bifurcation and chaos in transverse motion of axially accelerating viscoelastic

beams were studied in reference [72]. The Galerkin method was applied to reduce

the PDE to a set of ODEs. Various bifurcation diagrams were reported.

Bifurcations and possible chaotic motions of a cantilever system excited by a

periodic force with impacts were studied in reference [193]. One- and two-sided

impact models were considered.
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Optimizationof theelectromechanical controlofbeamsdynamicswas investigated

in reference [174]. The snap-through instability and horseshoe chaos was controlled

and the analytical investigation was validated by numerical simulation.

El-Bassiouny [90] proposed a nonlinear control law to suppress vibrations of the

first mode of a cantilever beam subjected to both primary and principal parametric

excitations. Numerical simulations confirmed the analytical predictions of chaos and

unbounded motions.

Control with delay of an undamped buckled beam subjected to parametric exci-

tations to suppress chaos was applied in [230]. In addition, the threshold condition

for the inhibition of Smale horseshoes chaos was reported.

It should be emphasized that chaotic dynamics of plates is investigated less than

chaotic dynamics of beams.

Paidoussis and Li [237] studied chaotic dynamics of heat exchanger tubes im-

pacting on the generally loose baffle plates. It was shown that for a sufficient flow

velocity chaos was born, and a negatively damped impact oscillator was used to

understand the system behavior.

Yang and Sethna [324] studied nonlinear flexural vibrations of a nearly square

plate periodically excited with forces normal to the mid-plane of the plate. Dy-

namics consisting of anti-symmetric or mixed modes occurred. The Hopf bifurca-

tion yielded the amplitude-modulated traveling waves with jerky motions. Global

chaotic phenomena were observed.

A homogeneous fully clamped rectangular plate subject to spatially thermal loads

and narrow-band acoustic excitation was studied in reference [221]. Time series

power spectra, autocorrelation functions, spatial dimension, and temporal complex-

ity were applied to characterize the occurred chaotic orbits.

Subharmonic resonance of a rectangular plate with uniform stretching when two

distinct linear modes are near one-to-one internal resonance was studied in ref-

erence [68]. It was shown via an averaging procedure that the plate can exhibit

harmonic and subharmonic motions in the directly excited spatial mode or subhar-

monic motions in which both internally resonant modes appeared. Period-doubling

route to chaos was shown.

Chaos and fractal theories were applied to study dynamics buckling of viscoelas-

tic plates in reference [285]. The nonlinear integral-differential dynamic equation

was reduced to an autonomic four-dimensional dynamical system. The Lyapunov

spectra and fractal dimensions of strange attractors were reported.

The nonlinear mathematical theory of perforated viscoelastic thin plates using

both Kármán hypotheses and Boltzmann’s constitutive law of linear viscoelastic

materials was derived in [73]. In particular, the nonlinear dynamic stability of a

viscoelastic angular plate was studied, and a novel method of Lyapunov exponent

spectrum estimation was proposed.

In reference [177] fractal dimension and the maximum Lyapunov exponent were

applied to study large deflections of a simply supported rectangular plate. Fourier

spectra, state-space plots, Poincaré maps, and bifurcation diagrams were computed.

Various bifurcations were detected and their links to chaotic orbits occurrence were

discussed.
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Nonlinear equations governing dynamics of Timoshenko’s viscoelastic thick

plates with damage were derived and studied in [269]. The influences of load, ge-

ometry, and material parameters on the dynamical plate behavior were investigated

via the Galerkin approach.

In reference [318] nonlinear equations of motion for the rectangular moderately

thick plates with transverse surface penetrating crack on an elastic foundation sub-

ject to periodic load action were derived. Bifurcational and chaotic behavior of such

plates were studied using the Galerkin and Runge-Kutta integration methods.

Ribeiro and Duarte [258] studied geometrically nonlinear, linear elastic dynamics

of composite laminated plates. The existence of chaos was confirmed by calculating

the largest Lyapunov exponent.

In reference [117] it was shown how the use of aeroelastic modes can drastically

reduce the number of coupled nonlinear modal equations for the large-amplitude

nonlinear panel flutter study at an arbitrary yawed supersonic flow angle and ele-

vated temperatures. Periodic and chaotic dynamics of the panel were reported.

Ribeiro [257] studied chaotic behavior of geometrically nonlinear vibrations of

linear elastic and isotropic plates under the combined effect of thermal fields and

mechanical excitations. The Newmark implicit time integration method was applied

to solve the governing equations in a time domain.

Finally, let us briefly review the state-of-art of irregular dynamics of shells. It is

rather less investigated in comparison to other structural members, i.e., beams and

plates.

In reference [259] the numerical-perturbation approach was applied to study the

axisymmetric dynamic vibrations of closed spherical shells subject to external har-

monic excitation having a frequency near one of the natural frequencies of a flexural

mode in the presence of a two-to-one auto-parametric resonance between the excited

mode and a lower flexural mode. The limit cycles born after Hopf bifurcation expe-

rienced pitchfork bifurcation and a cascade of period-doubling bifurcations leading

to chaos. The subcritical Hopf bifurcation was also illustrated, and a cyclic-fold

bifurcation yielding chaos was reported, among others.

Popov et al. [250] studied numerically internal auto-parametric instabilities in

the free nonlinear vibrations of a cylindrical shell. Regular and chaotic behavior

of two-mode interaction was analyzed, with emphasis on energy transfer between

the modes.

Soliman and Gonçalves [282] investigated the axisymmetric chaotic dynamic

behaviour and snap-through buckling of thin elastic shallow spherical shells under

harmonic excitation. Both Galerkin and Fourier-Bessel approaches were applied

to reduce the PDEs to a finite degrees-of-freedom system. Steady-state and tran-

sient stability boundaries were presented and the vertical load conditions were

determined.

A shallow cylindrical shell under gravity and periodic acceleration and possess-

ing concentrated mass was studied in reference [222]. The Galerkin method was

used to reduce the problem of investigation of ODEs and the mass value influence

on the system’s chaotic dynamics was investigated as well.

Amabili [5] studied large vibrations of doubly curved shallow shells with rectan-

gular base, simply supported at the four edges and subjected to harmonic excitation
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normal to the surface in the spectral neighborhood of the fundamental mode.

Donnell’s and Novozhilov’s shell theories were used to compute the elastic strain

energy. Shell stability under static and dynamic loads was studied, both Lyapunov

exponents and dimensions were computed, and snap-through instability, subhar-

monic resonance, as well as the period-doubling routes to chaos were illustrated

and discussed.

Pellicano and Amabili [243] studied dynamic stability of circular cylindrical

shells subjected to static and dynamic axial loads. Chaotic dynamics of pre-

compressed shell within Donnell’s and Sanders-Koiter’s theorems was illustrated.

Readers can supplement the knowledge devoted to the considered problems by

studying our other work devoted to this branch of science such as [23, 24, 25, 26,

27, 28, 39, 46] and papers [21, 22, 29, 30, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 160,

161, 162, 163, 164, 165]. Furthermore, the collective work, of Cz. Woźniak [328] is

recommended, in which a large bibliography devoted to mechanics of elastic plates

and shells with the special attention paid to the contribution of Polish researchers

has been included.

Finally, let us emphasize that from the variety of methods based on MBG we will

use in this monograph its variant associated with the Fourier series.

On the Bubnov-Galerkin Method

Historical Perspective

The origin of the Bubnov-Galerkin method is strictly connected with the name of

the Russian ship designer Bubnov (1872–1919). At the same time, together with

Krylov he was one of the creators of the Russian navy and designed 48 ships and

submarines. He is known as the author of the scientific discipline called mechanics

of ship construction.

In 1907 Timoshenko published a work [295] in which on the basis of an ex-

ample of axially compressed rod he considered the problem of stability using the

minimization principle for the rod’s potential energy. Successively, Timoshenko

generalized his own work and wrote the monograph titled About Stability of Elas-

tic Systems, which appeared between 1910 and 1911. Furthermore, in 1910 it

was published in Works of the Kiev Polytechnic Institute (see [294]). He was

awarded for this work, receiving The Zhuravskiy Gold Medal and 2500 gold

rubles. In 1913 The French Engineering Association published the aforementioned

work in a French journal that was dedicated to the construction of roads and

bridges [292].

It was the first and at the same time the last Zhuravskiy grant. Professors

Bielelubski, Bielecki, Bubnov, and Kolosov reviewed the discussed work, and in

1913 their reviews were published in Works of Engineers Institute [254]. The year

1913 is considered the year of birth of the Bubnov method, which was recognized

as the generalized method to the solution of differential equations.
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As a matter of fact the method was formulated two years earlier (the end of May

of 1911), but one can begin the exploration of its source at Timoshenko’s work. The

last one was awarded in 1911 and the publication considering that topic appeared

in press on June 15, 1911 (in the newspaper Rech). Later, on June 25th of the same

year a press notice appeared also in Vestnik Putey Soobshcheniya [125].

I.G. Bubnov proposed two variants of the method of reduction of PDEs or their

systems to the algebraic and ODEs.

The Western literature indicates work with the B.G. Galerkin article [101] pub-

lished in 1915, in which an analysis of equilibrium states of rods and thin shells

was studied. However, the previously given overview of the real events confirms

Bubnov’s brilliant idea, which he had mentally formulated while writing the review

of Timoshenko’s work. Right at the same time, and for the first time, Bubnov ob-

served an identity between the Rayleigh-Ritz-Timoshenko energetic method and his

approach (the Bubnov-Galerkin method). Later, Bubnov rarely used that method

himself.

Mainly thanks to Galerkin and the work of his co-workers the MBG was pop-

ularized in the Russian literature. In the West the method became known together

with Duncan’s work [84], which was devoted to the dynamics of flying objects.

Bickey applied MBG to the solution of the problem of non-stationary heat transfer

and with the application of an equivalent electrical circuit. He compared Duncan’s

results with the solutions obtained by means of the colocation and the least-squares

methods.

After that eventful time a large development and propagation of MBG applica-

tions began. Various modifications of the method appeared. As mentioned, after the

review of Timoshenko’s work Bubnov was still aware of the relation between the

Bubnov-Galerkin method and other variational ones (such as the Rayleigh-Galerkin

method), which was formally proved in [133]. The relation played a crucial role in

the second half of the 1960s, being strongly connected with the elaboration of the

finite elements method.

Bubnov-Galerkin Method Against the Background

of Other Projection Methods

A scheme of the application of the Bubnov-Galerkin method will be shown below

(Fig. 1). Let the example be an abstractive two-dimensional problem that is gov-

erned by a linear differential equation of the form

L(u) = 0, (1)

which is considered in region D(−→x ), and having the following boundary conditions:

S(u) = 0 (2)

given on a curve ∂D being the boundary of region D.
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Fig. 1 MBG versus other projection methods

In agreement with the MBG method a function will be sought in the form

ua = u0(
−→x )+

N

∑
j=1

a jϕ j(
−→x ), (3)

where ϕ j(
−→x ) are the known analytical functions, and a j are the coefficients to be

found during the problem solution. In order to satisfy boundary conditions the form

of the uu(x1,x2) function has been introduced. Substituting Eq. (3) in Eq. (1) yields

the error R �= 0

R(a0,a1,a2, . . .aN ,−→x ) = L(ua) = L(u0)+
N

∑
j=1

a jL(ϕ j). (4)

Let us introduce the following definition of inner product:

( f ,g) =

∫ ∫

D

f gdx1 dx2. (5)

In the case of the Bubnov-Galerkin method the appearance in Eq. (3) of unknown

coefficients should be determined through the solution to the following system of

algebraic functions:

(R,ϕk) = 0, k = 1,2, . . . ,N, (6)
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where the error R is defined by Eq. (1), and ϕk are the same analytical functions

appearing in Eq. (3). Our problem has been brought to a linear one (compare with

Eq. (1)); therefore Eq. (6) can be written as the following form of a matrix equation:

N

∑
j=1

a j(L(ϕ j),ϕk) = −L(u0,ϕk). (7)

Solving the above equation with respect to a j, and then substituting the result in

Eq. (3), one obtains the approximated solution ua.

In the literature the notion of weighting function wk(
−→x ) is often used. The

functions ϕ j(
−→x ) in Eq. (3) are sometimes referred to any test functions. Some

requirements should be met after the application of MBG and the selection of

weighting and test functions ϕ j(
−→x ). It is recommended to select them from the set

of first N functions of the complete system of functions (see [133]). It constitutes the

necessary condition of convergence of the approximate solution to the accurate one

when N → ∞. A theoretical background and MBG applications in theory of shells

can be found in the classical Vorovich monograph [316].

The necessary conditions for the application of the classical version of the

Bubnov-Galerkin method follow.

Weighting and test functions wk(
−→x ) should belong to the same family of func-

tions ϕ j(
−→x ):

1. wk(
−→x ) and ϕ j(

−→x ) should be linearly independent;

2. wk(
−→x ) and ϕ j(

−→x ) should be the first N components of the complete system of

functions;

3. ϕ j(
−→x ) should satisfy boundary conditions (or any initial conditions, if they ap-

pear).

To summarize, the first condition defines the Bubnov-Galerkin method; the

second condition should be satisfied when some independent equations for the es-

timation of unknown a j coefficients are going to be found; the third one has the

decisive influence on the effectiveness of the MBG which can be significantly de-

creased owing to their violation.



Chapter 1

Theory of Non-homogeneous Shells

In this chapter a general theory of non-homogeneous shells is introduced. First,

fundamental relations and assumptions are given, non-homogeneities of shells are

introduced, and then the governing variational equations and equations of motion

are derived. After the boundary and initial conditions are introduced, the equations

are cast into non-dimensional form and the so-called variable parameters of a shell

stiffness are defined. In addition, a flexural stiffness coefficient of a shell element

is formally introduced. The chapter concludes with a consideration of generalized

functions.

1.1 Preliminary Remarks

It is generally agreed that after creation of a shell’s model, which should as closely

as possible describe the real existing objects (shells), many simplifications are nec-

essary, especially regarding the construction of a shell and the material of which it is

made. Shell constructions that are observed in many technical applications can be of

various types, for instance, one- or multiple-layered, reinforced by ribs, waffled, etc.

A shell material can be either isotropic or anisotropic. Analysis of the shell dy-

namics is usually problematic. On the other hand, proper introduction of a model

simplification decreases the computational time, which leads to growth of the prac-

tical applications. The investigations that were made result in a conclusion that the

selection of a shell model should be made with particular respect to the economics

of computations and the sufficiently exact model of the shell.

In this book, the shells that are mainly considered are made of isotropic and

elastic material. Hook’s law satisfies a static and dynamic behavior of those shells.

Plastic and adhesive-plastic deformations of shells are not analyzed here, because

they are usually associated with the class of problems associated with other con-

structive non-homogeneities.

The main characteristic attribute connected with the analysis of dynamics and

statics of thin shells is recognized in the theory of elasticity as a reduction of the

J. Awrejcewicz, V.A. Krysko, Chaos in Structural Mechanics, 15
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three-dimensional problem to the two-dimensional one. If only one shell is inves-

tigated the coordinate system has to be joined with the central surface of a shell.

One of the possibilities of reduction of the three-dimensional problem to a two-

dimensional one is the consideration of a hypothesis devoted to the lack of straight

perpendicular lines to the shell, that is, to the conservation of the Kirchhoff-Love

hypothesis. According to the hypothesis, any fiber that is perpendicular to the cen-

tral surface before a deformation remains perpendicular until the whole deformation

process is finished. Furthermore, the length of that fiber measured along the shell’s

thickness remains constant. Additional assumptions are based on the observation

that the stresses perpendicular to the shell can be neglected because of their negligi-

ble smallness in comparison to the basic ones. In the theory of shells, basic stresses

are understood as the stresses occurring in some parallel layers that are perpendicu-

lar and tangent to the central surface of these shells.

1.2 Fundamental Relations and Assumptions

Let us consider a rectangular shell (Fig. 1.1) the central surface of which is bounded

by a closed curve Γ and let us assign to it a rectangular coordinate system x,y.

Let an axis perpendicular to the central surface be denoted by z, and the positive

aspect of the axis be directed to the curvature’s center. Moreover, assume in our

investigations a right-handed coordinate system. From the considerations assumed

the shell coordinates meet the following inequalities:

0 ≤ x ≤ a, 0 ≤ y ≤ b, −h ≤ z ≤ h. (1.1)

The displacement of points of the shell’s center surface in directions x,y,z are

denoted by u,v,w, respectively.

According to the classical theory of shells, the displacement of an arbitrarily

selected point of a shell in direction z is not dependent on z and is moreover identical

for all points of the considered element, which are located on the straight line that

is perpendicular to the shell’s central surface. Indeed, we have assumed that the

shell’s material is isotropic, but we will always allow the element made of a material

of another elasticity modulus to be included with the analyzed isotropic shell. In

addition, the shell’s shape variations are possible if its thickness varies in time. In

other words, the changes can be described by coordinate-dependent functions.

Fig. 1.1 Scheme of the

analyzed shell
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Deformations are mainly expected to be in agreement with Hook’s law. Following

the assumptions we have made, the central surface deformations for an isotropic

shell material, which is characterized by elasticity modulus E, of the first type,

elasticity modulus G of the second type (compression modulus), and a Poisson’s

coefficient µ are connected with deformations σxx, σyy, and σxy using the following

relations:

exx =
q

E
(σxx −µσyy) ,

eyy =
q

E
(σyy −µσxx) ,

exy =
2(1+ µ)

E
σxy. (1.2)

Solving Eq. (1.1) with respect to the deformations that have occurred, we obtain

σxx =
E

1−µ2
(exx + µeyy) ,

σyy =
E

1−µ2
(eyy + µexx) ,

σxy =
E

2(1+ µ)
exy. (1.3)

Corresponding to the Kirchhoff-Love model, the displacement of the central

shell’s layer points along the considered coordinates depends on x,y coordinates

and on time t : u = u(x,y, t), v = v(x,y, t) (displacements w = w(x,y, t) are involved

in a similar way).

Displacement of any point of the coordinate z before deformation is

uz = u− z
∂w

∂x
,

vz = v− z
∂w

∂y
,

wz = w. (1.4)

Fully described deformations that occurred in a layer during both extension and

rotation of a shell placed at a distance from the central surface and in accordance

with the nonlinear theory of shells are given below [234]:

εxx =
∂uz

∂x
− kxw+

1

2

(

∂uz

∂x

)2

+
1

2

(

∂vz

∂x

)2

+
1

2

(

∂w

∂x

)2

,

εyy =
∂vz

∂y
− kyw+

1

2

(

∂uz

∂y

)2

+
1

2

(

∂vz

∂y

)2

+
1

2

(

∂w

∂y

)2

,

εxy =
∂uz

∂y
+

∂vz

∂x
+

∂w

∂x

∂w

∂y
. (1.5)
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In the case of thin flexible plates and shells it is assumed that the deflec-

tion angles ∂wz/∂x, ∂wz/∂y are significantly larger than the values of derivatives

∂u/∂x, ∂u/∂y, etc. that are connected with the volume of material. Furthermore,

squares of derivatives (∂w/∂x)2 will be of the same order as components ∂uz/∂x,

etc., which means the terms such as (∂u/∂x)2 can be neglected.

Satisfying the above assumptions, expressions (1.5) are simplified:

εxx =
∂uz

∂x
− kxw+

1

2

(

∂w

∂x

)2

,

εyy =
∂vz

∂y
− kyw+

1

2

(

∂w

∂y

)2

,

εxy =
∂uz

∂y
+

∂vz

∂x
+

∂w

∂x

∂w

∂y
. (1.6)

Taking into consideration Eq. (1.4), we obtain

εxx =
∂u

∂x
− kxw+

1

2

(

∂w

∂x

)2

− z
∂ 2w

∂x2
,

εyy =
∂v

∂y
− kyw+

1

2

(

∂w

∂y

)2

− z
∂ 2w

∂y2
,

εxy =
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y
−2z

∂ 2w

∂x∂y
, (1.7)

or equivalently

εxx = ε11 − z
∂ 2w

∂x2
,

εyy = ε22 − z
∂ 2w

∂y2
,

εxy = ε12 −2z
∂ 2w

∂x∂y
, (1.8)

where the central surface deformations are governed by the following relations:

ε11 =
∂u

∂x
− kxw+

1

2

(

∂w

∂x

)2

,

ε22 =
∂v

∂y
− kyw+

1

2

(

∂w

∂y

)2

,

ε12 =
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y
. (1.9)

By putting the variables given in Eq. (1.2) into the following expressions, which

define static equivalent deformations in a section of shell
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T11 =

h
∫

−h

σxx dz, T22 =

h
∫

−h

σyydz,

T12 =

h
∫

−h

σxy dz, (1.10)

we obtain the final relations that define stresses and deformations of a mean surface

of the form

T11 =
2hE

1−µ2
(ε11 + µε22) ,

T22 =
2hE

1−µ2
(ε22 + µε11) ,

T12 =
2hE

2(1+ µ)
ε12. (1.11)

Solving Eq. (1.11) with respect to εi j, we obtain

ε11 =
a1

2h
(T11 + µT22) ,

ε22 =
a1

2h
(T22 + µT11) ,

ε12 =
2(1+ µ)a1

2h
T12. (1.12)

1.3 Non-homogeneity of a Shell

Flexural stiffness and the density of the selected part of a non-homogeneous shell

can vary according to either the adjoining new material characterized by another

elasticity modulus, or as a result of local change in thickness of the shell. For fur-

ther considerations of all cases investigated, we will assume that toward the central

shell surface the shell’s shape is symmetric. Such an assumption allows for intro-

duction of 2h1, a thicker additional element. As a result, the flexural stiffness D of

the shell’s part will change, leading as a consequence to modification of the param-

eter E through the contractual “rarefaction (compaction)” of its thickness between

2h1 and 2h.

This procedure is used if and only if the shells of either step-variable thickness

or parts of those shells made of different elasticity modulus materials are treated in

the same manner (see [251]).

Such shell regions are characterized later by time-variable parameters of stiff-

ness. Let us assume that in addition the shell can be composed of any number of

rectangular parts described by different flexural stiffnesses, which are oriented in

such a way that the lines bounding them are parallel to the appropriate shell edges.
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Using that approach one can assume that the shell is of constant thickness, and its

non-homogeneity is fully characterized by changes in its elasticity modulus E (a

similar assumption is made for the density ρ of a shell material). Finally, it is con-

sidered, that E = E(x,y), ρ = ρ(x,y).

1.4 Variational Equations

Using energetic considerations one can obtain equations of motion for a shell, which

contain some rectangular elements of the flexural being different from the basic of

shells. As pointed out in Sect. 1.3, conditions E = E(x,y), ρ = ρ(x,y) are assumed.

A method similar to that analyzed in Volomir’s monograph [304] is used for

further considerations; i.e., a motion occurring in a time interval [t0, t1] is examined.

For this reason, some different trajectories of motion of the system characteristic

points between any starting and final states will be compared. The true trajectories

will be slightly different than the other ones, because the following condition, which

is satisfied for the true trajectories, has to be met:

t1
∫

t0

(

δK −δV +δ ′W
)

dt = 0, (1.13)

where K is the kinetic energy, V is the system potential energy, δ ′W is the sum of

elementary works done by all external forces.

When all forces acting on a system have a potential Π, then Eq. (1.13) takes

the form

δS = δ

t1
∫

t0

(K −V −Π) dt = 0, (1.14)

where S =
t1
∫

t0

(K −V −Π)dt denotes an action in Hamilton sense, and t ∈ [0, T ].

The last equation expresses the known Hamilton principle.

Elasticity properties of various bodies can be characterized by the energy of their

deformation. Applying the most comprehensive formula of the theory of elasticity

describing unity incrementation of the mechanical work of deformations and taking

into consideration the lack of normal (perpendicular) deformations hypothesis, the

potential energy of deformation can be estimated by means of the following rule:

V =
1

2

∫ ∫

Ω

h
∫

−h

(σxxεxx +σyyεyy +σxyεxy) dz ds, (1.15)

for which it was assumed that ds = dx dy, and Ω is the integration region bounded

by Γ (see Fig. 1.1).
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Substituting (1.2) and (1.3) into Eq. (1.15) and carrying out an integration we

obtain

V = V1 +V2, (1.16)

where

V1 =
1

2

∫ ∫

Ω

2hE

1−µ2

[

ε2
11 + ε2

22 +2µε11ε22 +
1−µ

2
ε2

12

]

ds,

V2 =
1

2

∫ ∫

Ω

2h3E

3(1−µ2)

[

(

∂ 2w

∂x2

)2

+

(

∂ 2w

∂y2

)2

+2(1−µ)

(

∂ 2w

∂x∂y

)2

+ 2µ
∂ 2w

∂x2

∂ 2w

∂y2

]

ds.

Let us now investigate Eq. (1.16) and rewrite its first component in the form:

V1 =
1

2

∫ ∫

Ω

2hE

1−µ2

(

ε2
11 + ε2

22 +2µε11ε22 +
1−µ

2
ε2

12

)

ds. (1.17)

Making a step of variation of the expression (1.17) we have:

δV1 =
∫ ∫

Ω

2hE

1−µ2
[ε11δ (ε11)+ ε22δ (ε11)+ µ (ε11δ (ε22)+ ε22δ (ε11))

+
1−µ

2
ε12δ (ε12)

]

ds

=

∫ ∫

Ω

2hE

1−µ2

[

(ε11 + µε22)δ (ε11)+(ε22+µε11)δ (ε22)+
1−µ

2
ε12δ (ε12)

]

ds.

(1.18)

Formula (1.11) yields

δV1 =
∫ ∫

Ω

[T11δ (ε11)+T22δ (ε11)+T12δ (ε12)] ds, (1.19)

δV1 =
∫ ∫

Ω

a1

2h
[T11δ (T11 −µT22)+T22δ (T22 −µT11)

+ 2(1+ µ)T12δ (T12)] ds

=
∫ ∫

Ω

a1

2h
[(T11 −µT22)δ (T11)+(T22 −µT11)δ (T22)

+ 2(1+ µ)T12δ (T12)] ds, where a1 = 1/E. (1.20)
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Let F be a function of deformations; then one obtains

T11 =
∂ 2F

∂y2
, T22 =

∂ 2F

∂x2
, T12 = − ∂ 2F

∂x∂y
. (1.21)

Applying the above to Eq. (1.20) gives

δFV1 =
∫ ∫

Ω

a1

2h

[(

∂ 2F

∂y2
−µ

∂ 2F

∂x2

)

∂ 2

∂y2
δ (F)+

(

∂ 2F

∂x2
−µ

∂ 2F

∂y2

)

∂ 2

∂x2
δ (F)

+ 2(1+ µ)
∂ 2F

∂x∂y

∂ 2

∂x∂y
δ (F)

]

ds. (1.22)

Taking into consideration expressions (1.12) and (1.20), we will have found a

transition from stresses to deformations, and then the following variational function

of stresses is formulated:

δFV1 =
∫ ∫

Ω

[ε11δ (T11)+ ε22δ (T22)+ ε12δ (T12)] ds

=
∫ ∫

Ω

[

ε11
∂ 2

∂y2
δ (F)+ ε22

∂ 2

∂x2
δ (F)− ε12

∂ 2

∂x∂y
δ (F)

]

ds. (1.23)

Double integration by parts (without writing of any boundary integrals) yields

δFV1 =
∫ ∫

Ω

[

∂ 2ε11

∂y2
+

∂ 2ε22

∂x2
+

∂ 2ε12

∂x∂y

]

δ (F) ds. (1.24)

Substitution of formula (1.9) into Eq. (1.24) gives

δFV1 =
∫ ∫

Ω

[

−ky

∂ 2w

∂x2
− kx

∂ 2w

∂y2
− ∂ 2w

∂x2

∂ 2w

∂y2
−
(

∂ 2w

∂x∂y

)2
]

δ (F)ds

=
∫ ∫

Ω

[

−∇2
kw− 1

2
L(w,w)

]

δ (F) ds. (1.25)

Boundary integrals adequate to Eq. (1.24) have the following form:

a
∫

0

[

ε11
∂

∂y
(δF)|b0 −

∂ε11

∂y
(δF)|b0 +

∂ε12

∂x
(δF)|b0

]

dx

+

b
∫

0

[

ε22
∂

∂x
(δF)|a0 −

∂ε22

∂x
(δF)|a0 − ε12

∂

∂y
(δF)|a0

]

dy. (1.26)
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Since Eqs. (1.22) and (1.25) are formally equal to each other, then

δFV1 =
∫ ∫

Ω

a1

2h

[(

∂ 2F

∂y2
−µ

∂ 2F

∂x2

)

∂ 2

∂y2
δ (F)+

(

∂ 2F

∂x2
−µ

∂ 2F

∂y2

)

∂ 2

∂x2
δ (F)

+ 2 (1+ µ)
∂ 2F

∂x∂y

∂ 2

∂x∂y
δ (F)+

(

∇2
kw+

1

2
L(w,w)

)

δ (F)

]

ds, (1.27)

δFV1 =
∫ ∫

Ω

a1

2h

[(

∂ 2F

∂y2
−µ

∂ 2F

∂x2

)

∂ 2 (·)
∂y2

+

(

∂ 2F

∂x2
−µ

∂ 2F

∂y2

)

∂ 2 (·)
∂x2

+ 2(1+ µ)
∂ 2F

∂x∂y

∂ 2 (·)
∂x∂y

+∇2
kw+

1

2
L(w,w)

]

δ (F) ds. (1.28)

The sign (·) means that the derivative comes from the variation of function F ,

and hence

L(w,F) =
∂ 2w

∂x2

∂ 2F

∂y2
+

∂ 2w

∂y2

∂ 2F

∂x2
−2

∂ 2w

∂x∂y

∂ 2F

∂x∂y
,

L(w,w) = 2

[

∂ 2w

∂x2

∂ 2w

∂y2
−
(

∂ 2w

∂x∂y

)2
]

,

∇2
k = ky

∂ 2

∂x2
+ kx

∂ 2

∂y2
.

Taking into account Eq. (1.19), and according to the central surface deformations

(1.9), a conversion of parameters ε11,ε22,ε12 separating all variations with respect

to u, v, and w is introduced, and the following relations are obtained:

δuV1 =

b
∫

0

[T11δ (u)]|a0 dy+

a
∫

0

[T12δ (u)]|b0 dx

−
∫ ∫

Ω

[

∂T11

∂x
+

∂T12

∂y

]

δ (u) ds, (1.29)

δvV1 =

a
∫

0

[T22δ (v)]|b0 dx+

b
∫

0

[T12δ (v)]|a0 dy

−
∫ ∫

Ω

[

∂T22

∂y
+

∂T12

∂x

]

δ (v) ds, (1.30)

δwV1 =
∫ ∫

Ω

{

T11δ

[

−kxw+
1

2

(

∂w

∂x

)2
]

+T22δ

[

−kyw+
1

2

(

∂w

∂y

)2
]

+ T12δ

[

∂w

∂x

∂w

∂y

]}

ds =
∫ ∫

Ω

{

(−kyT22 − kxT11)δ (w)
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+ T11δ

[

1

2

(

∂w

∂x

)2
]

+T22δ

[

1

2

(

∂w

∂y

)2
]

+T12δ

[

∂w

∂x

∂w

∂y

]

}

ds

=
∫ ∫

Ω

{

(−kyT22 − kxT11)δ (w)+T11
∂w

∂x

∂

∂x
δ (w)+T22

∂w

∂y

∂

∂y
δ (w)

+ T12

[

∂w

∂y

∂

∂x
δ (w)+

∂w

∂x

∂

∂y
δ (w)

]}

ds. (1.31)

Integration by parts yields

δwV1 =
∫ ∫

Ω

{

−ky

∂ 2F

∂x2
− ky

∂ 2F

∂x2
− ∂ 2w

∂x2

∂ 2F

∂y2
− ∂ 2w

∂y2

∂ 2F

∂x2

+ 2
∂ 2w

∂x∂y

∂ 2F

∂x∂y

}

δ (w) ds

=

∫ ∫

Ω

{

−∇2
kF −L(w,F)

}

δ (w) ds. (1.32)

Boundary integrals counterpart to Eq. (1.31) have the form

a
∫

0

(

T22
∂w

∂y
+T12

∂w

∂x

)

δ (w)|b0 dx

+

b
∫

0

(

T11
∂w

∂x
+T12

∂w

∂y

)

δ (w)|a0 dy. (1.33)

Let us examine the second component of (1.16) of the form

V2 =
∫ ∫

Ω

{

2h3E

6(1−µ2)

[

(

∂ 2w

∂x2

)2

+

(

∂ 2w

∂y2

)2

+2(1−µ)

(

∂ 2w

∂x∂y

)2

+ 2µ
∂ 2w

∂x2

∂ 2w

∂y2

]}

ds, (1.34)

and let us separate some variations with respect to w:

δwV2 =
∫ ∫

Ω

2h3E

3(1−µ2)

{

∂ 2w

∂x2

∂ 2 (·)
∂x2

+
∂ 2w

∂y2

∂ 2 (·)
∂y2

+2(1−µ)
∂ 2w

∂x∂y

∂ 2 (·)
∂x∂y

+ µ

[

∂ 2w

∂x2

∂ 2 (·)
∂y2

+
∂ 2w

∂y2

∂ 2 (·)
∂x2

]}

δ (w) ds. (1.35)

The symbol (·) denotes the derivative coming from the variation of function w.
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The kinetic energy of the shell with the exception of the shell element rotational

inertia is

K =
1

2

∫ ∫

Ω

2hρ

g

{

(

∂ u

∂ t

)2

+

(

∂v

∂ t

)2

+

(

∂w

∂ t

)2
}

ds. (1.36)

Let us now invoke the time integral of the shell kinetic energy variation. We will

assume a case of variation of function u.

In the time interval (t0 − t1) the following relation holds:

t1
∫

t0

δuKdt =

t1
∫

t0

∫ ∫

Ω

2hρ

g

∂u

∂ t
δ

(

∂u

∂ t

)

ds dt. (1.37)

As a result of integration by parts one obtains

t1
∫

t0

δuKdt =
∫ ∫

Ω

2hρ

g

[

∂u

∂ t
δ (u)

]∣

∣

∣

∣

t1

t0

ds

−
t1
∫

t0

∫ ∫

Ω

2hρ

g

∂ 2u

∂ t2
δ (u) ds dt. (1.38)

Any partial variations with respect to v and w are found analogously:

t1
∫

t0

δvKdt =
∫ ∫

Ω

2hρ

g

[

∂v

∂ t
δ (v)

]∣

∣

∣

∣

t1

t0

ds

−
t1
∫

t0

∫ ∫

Ω

2hρ

g

∂ 2v

∂ t2
δ (v) ds dt, (1.39)

t1
∫

t0

δwKdt =
∫ ∫

Ω

2hρ

g

[

∂w

∂ t
δ (w)

]∣

∣

∣

∣

t1

t0

ds

−
t1
∫

t0

∫ ∫

Ω

2hρ

g

∂ 2w

∂ t2
δ (w) ds dt. (1.40)

The elementary work of any external forces is expressed as follows:

δ ′W =

∫ ∫

Ω

[

pxδ (u)+ pyδ (v)+

(

q− ε
2hρ

g

∂w

∂ t

)

δ (w)

]

ds, (1.41)

where ε denotes the damping coefficient of a surrounding medium.

Substituting all formulae previous to Eq. (1.43), which states the counterpart to

the Hamilton principle, the following variational equations are obtained:
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t1
∫

t0

∫ ∫

Ω

{[

∂T11

∂x
+

∂T12

∂y
+ px −

2hρ

g

∂ 2u

∂ t2

]

δ (u)

+

[

∂T22

∂y
+

∂T12

∂x
+ py −

2hρ

g

∂ 2v

∂ t2

]

δ (v)

+

[

2h3E

3(1−µ2)

(

∂ 2w

∂x2

∂ 2 (·)
∂x2

+
∂ 2w

∂y2

∂ 2 (·)
∂y2

)

+2(1−µ)
∂ 2w

∂x∂y

∂ 2 (·)
∂x∂y

+ µ

(

∂ 2w

∂x2

∂ 2 (·)
∂y2

+
∂ 2w

∂y2

∂ 2 (·)
∂x2

)

−∇2
kF −L(w,F)

+ q− 2hρ

g

(

∂ 2w

∂ t2
+ ε

∂w

∂ t

)]

δ (w)

+

[

a1

2h

((

∂ 2F

∂y2
−µ

∂ 2F

∂x2

)

∂ 2 (·)
∂y2

+

(

∂ 2F

∂x2
−µ

∂ 2F

∂y2

)

∂ 2 (·)
∂ x2

+ 2(1+ µ)
∂ 2F

∂x∂y

∂ 2 (·)
∂x∂y

)

+∇2
kw+

1

2
L(w,w)

]

δ (F)

}

ds dt

−
t1
∫

t0

a
∫

0

{[

ε11
∂

∂y
(δF)− ∂ε11

∂y
(δF)+

∂ε12

∂y
(δF)+T22 (δv)+T12 (δu)

+

(

T22
∂w

∂y
+T12

∂w

∂x

)

δ (w)

]∣

∣

∣

∣

b

0

}

dx dt

−
t1
∫

t0

b
∫

0

{[

ε22
∂

∂x
(δF)− ∂ε22

∂x
(δF)+ ε12

∂

∂y
(δF)+T11 (δu)+T12 (δv)

+

(

T11
∂w

∂x
+T12

∂w

∂y

)

δ (w)

]∣

∣

∣

∣

a

0

}

dy dt

+
∫ ∫

Ω

2hρ

g

[

∂u

∂ t
δ (u)+

∂v

∂ t
δ (v)+

∂w

∂ t
δ (w)

]∣

∣

∣

∣

t1

t0

ds = 0. (1.42)

1.5 Equations of Motion

Similarly as in Eq. (1.42), variations δu, δv, δw, δF taken as a functions of

time t are arbitrarily chosen, and therefore multipliers preceding all variations of

the first integral should equal zero. As a result of variational equation the follow-

ing equations of motion and only one equation of deformation compatibility are

presented:

[

∂T11

∂x
+

∂T12

∂y
+ px −

2hρ

g

∂ 2u

∂ t2

]

= 0, (1.43)
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[

∂T22

∂y
+

∂T12

∂x
+ py −

2hρ

g

∂ 2v

∂ t2

]

= 0, (1.44)

2h3E

3(1−µ2)

[

∂ 2w

∂ x2

∂ 2 (·)
∂ x2

+
∂ 2w

∂ y2

∂ 2 (·)
∂ y2

+2(1−µ)
∂ 2w

∂ x∂ y

∂ 2 (·)
∂ x∂ y

+µ

(

∂ 2w

∂ x2

∂ 2 (·)
∂ y2

+
∂ 2w

∂ y2

∂ 2 (·)
∂x2

)]

−∇2
kF −L(w,F)+q− 2hρ

g

(

∂ 2w

∂ t2
+ ε

∂ w

∂ t

)

= 0,

(1.45)

a1

2h

[(

∂ 2F

∂ y2
−µ

∂ 2F

∂ x2

)

∂ 2 (·)
∂ y2

+

(

∂ 2F

∂ x2
−µ

∂ 2F

∂ y2

)

∂ 2 (·)
∂ x2

+ 2(1+ µ)
∂ 2F

∂ x∂ y

∂ 2 (·)
∂ x∂ y

]

+∇2
kw+

1

2
L(w,w) = 0. (1.46)

If there is a need to write only a variational form of the equation, then during

creation of the variational Eq. (1.42) the following steps should be introduced:

(i) Only some of terms including δ (F) variations must be considered in the

equation;

(ii) Equation (1.31) should be introduced instead of Eq. (1.32).

Keeping in mind the last mathematical transformations, three equations of mo-

tion of the shell at hand will be derived. The first two, i.e., (1.43) and (1.44), remain

unchanged, but instead of Eq. (1.45) the following one appears:

2h3E

3(1−µ2)

[

∂ 2w

∂ x2

∂ 2 (·)
∂ x2

+
∂ 2w

∂ y2

∂ 2 (·)
∂ y2

+2(1−µ)
∂ 2w

∂ x∂ y

∂ 2 (·)
∂ x∂ y

+ µ

(

∂ 2w

∂ x2

∂ 2 (·)
∂ y2

+
∂ 2w

∂ y2

∂ 2 (·)
∂ x2

)]

+T11kx +T22ky +
∂

∂x

(

T11
∂w

∂x
+T12

∂w

∂y

)

+
∂

∂y

(

T22
∂w

∂y
+T12

∂w

∂x

)

+q− 2hρ

g

(

∂ 2w

∂ t2
+ ε

∂ w

∂ t

)

= 0. (1.47)

If there is a possibility of analyzing the dynamic process omitting any elastic

wave distributions, then because the inertial terms of the first two equations, are

disregarded, the set of Eqs. (1.43)–(1.46) can be significantly simplified. These con-

ditioning equations will be met if in accordance with the variables of Eq. (1.21), a

function of stresses is introduced (px and py).

In this situation the equation of motion of a shell element takes the form

2h3E

3(1−µ2)

[

∂ 2w

∂x2

∂ 2 (·)
∂x2

+
∂ 2w

∂y2

∂ 2 (·)
∂y2

+2(1−µ)
∂ 2w

∂x∂y

∂ 2 (·)
∂x∂y

+ µ

(

∂ 2w

∂x2

∂ 2 (·)
∂y2

+
∂ 2w

∂y2

∂ 2 (·)
∂x2

)]

−∇2
kF −L(w,F)+q− 2hρ

g

(

∂ 2w

∂ t2
+ε

∂w

∂ t

)

=0,

(1.48)
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and the equation of deformations compatibility is

a1

2h

[(

∂ 2F

∂y2
−µ

∂ 2F

∂x2

)

∂ 2 (·)
∂y2

+

(

∂ 2F

∂x2
−µ

∂ 2F

∂y2

)

∂ 2 (·)
∂x2

+ 2(1+ µ)
∂ 2F

∂x∂y

∂ 2(·)
∂x∂y

]

+∇2
kw+

1

2
L(w,w) = 0. (1.49)

When a circle section cylindrical shell is analyzed, then the pair of parameters

kx = 0 and ky = 1/R, where R is the curvature radius of the mean surface of a shell,

should be taken into account in Eqs. (1.48)–(1.49).

Equations of a homogeneous shell, which were obtained during our analysis, are

in good agreement with those contained in [304]. In the case of E = const, the den-

sity ρ = const should be assumed and during integration by parts the computational

process of variational differentiation has to be transferred to a proper function. If the

functional dependence of E and ρ on the spatial coordinates relates to any perpen-

dicular cutouts of material (snippets), then after the analogous routines are carried

out, the equations will be identical, as in reference [251].

1.6 Boundary and Initial Conditions

An integration of equations of motion needs to be supported by a properly defined

boundary and initial conditions. On the basis of the behavioral (dynamic) hypothesis

of straight lines, which are perpendicular to a surface, each bounding point should

satisfy four boundary conditions. In the case in which the displacements u, v, and

w of any boundary points of a shell are known, then after deformations they suit-

ably determine the space-located arbitrary curve. A perpendicular straight line led

through a boundary point can dislocate together with that point as well as rotate

about an angle in a plane that is perpendicular to the boundary line. Correspond-

ingly, normal line placement to the surface resulting in a shell’s deformation can be

determined with the use of any four values. These integrals of a variational equation

calculated along boundaries allow for the formulation of any appropriate additional

conditions [159]. Some of them are given below for the bound of a shell at x = const

(y = const boundary condition could be obtained following the replacement of x

with y)

1. Simply supported edge:

w = M11 = T11 = T12 = 0 if x = 0,a. (1.50)

2. Ball-type support on the flexible but not compressed (stretched) ribs:

w = M11 = T11 = ε22 = 0 if x = 0,a. (1.51)
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The second condition can be also given in the form

w =
∂ 2w

∂x2
= F =

∂ 2F

∂x2
= 0 if x = 0,a. (1.52)

Displacement boundary conditions are called the geometric, whereas any condi-

tions formulated for the stresses and moments of forces are called dynamic.

Some initial conditions should also be satisfied, which simultaneously with the

integration of fundamental equations are related to the velocities of points belonging

to the mean surface of the shell

w |t=t0
= ζ1(x,y),

∂w

∂ t
|t=t0

= ζ2(x,y). (1.53)

1.7 Non-dimensional Form of Equations

Let us introduce the following non-dimensional parameters:

w = 2hw̄, x = ax̄, y = bȳ, F = E0 (2h)3
F̄ ,

kx =
2h

a2
kx, ky =

2h

b2
ky, q =

E0(2h)4

a2b2
q,

t =
ab

2h

√

ρ0

gE0
t̄, ε =

2h

ab

√

gE0

ρ0
ε̄,

λ = a/b, E = E0E, ρ = ρ0ρ̄. (1.54)

Non-dimensional Eqs. (1.48)–(1.49) at the very beginning of this section are as

follows (bars above the non-dimensional quantities are omitted):

E

12(1−µ2)

[

1

λ 2

∂ 2w

∂x2

∂ 2 (·)
∂x2

+λ 2 ∂ 2w

∂y2

∂ 2 (·)
∂y2

+2(1−µ)
∂ 2w

∂x∂y

∂ 2 (·)
∂x∂y

+ µ

(

∂ 2w

∂x2

∂ 2 (·)
∂y2

+
∂ 2w

∂y2

∂ 2 (·)
∂x2

)]

−∇2
kF −L(w,F)+q−ρ

(

∂ 2w

∂ t2
+ ε

∂w

∂ t

)

= 0,

(1.55)

a1

[(

λ 2 ∂ 2F

∂y2
−µ

∂ 2F

∂x2

)

∂ 2 (·)
∂y2

+

(

1

λ 2

∂ 2F

∂x2
−µ

∂ 2F

∂y2

)

∂ 2 (·)
∂x2

+ 2(1+ µ)
∂ 2F

∂x∂y

∂ 2 (·)
∂x∂y

]

+∇2
kw+

1

2
L(w,w) = 0. (1.56)

On the basis of both Kirchhoff-Love kinematic model and the non-homogeneity

of a shell one can obtain from (1.55)–(1.56) some starting equations concerning
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static stability of a perpendicular shell but with an assumption that any time-

dependent terms are neglected. It allows one to write them in the non-dimensional

form:

E

12(1−µ2)

[

1

λ 2

∂ 2w

∂x2

∂ 2 (·)
∂x2

+λ 2 ∂ 2w

∂y2

∂ 2 (·)
∂y2

+2(1−µ)
∂ 2w

∂x∂y

∂ 2 (·)
∂x∂y

+ µ

(

∂ 2w

∂x2

∂ 2 (·)
∂y2

+
∂ 2w

∂y2

∂ 2 (·)
∂x2

)]

−∇2
kF −L(w,F)+q = 0, (1.57)

a1

[(

λ 2 ∂ 2F

∂y2
−µ

∂ 2F

∂x2

)

∂ 2 (·)
∂y2

+

(

1

λ 2

∂ 2F

∂x2
−µ

∂ 2F

∂y2

)

∂ 2 (·)
∂x2

+ 2(1+ µ)
∂ 2F

∂x∂y

∂ 2 (·)
∂x∂y

]

+∇2
kw+

1

2
L(w,w) = 0. (1.58)

1.8 Variable Parameters of Stiffness

The aim of application of the method used in monograph [251] is to introduce some

variable parameters of stiffness of a shell. The method that is proposed for appli-

cations is suitable for determination of equations of motion of a shell element with

either any cutouts or other modifications of its thickness. There is a possibility of

simplifying the problem, but with the assumption that there is only one full paral-

lelepiped cutout, which is oriented in the investigated shell in a way securing its

edges to be parallel to the appropriate external edges of the shell. Similarly as in

Eq. (1.16), the integrated function depends on displacements; therefore it can be

rewritten as

V =
1

2

∫ ∫

Ω

f (u,v,w) ds =
1

2

∫ ∫

Ω

f (x,y) ds. (1.59)

Let us assume that Ω denotes the region of integration that is bounded by both

internal and external edges of the deformable system under investigation

Ω = S−S1, (1.60)

in which S is the shell’s lateral surface without any cutout and S1 is the cutout’s sur-

face. The double integral calculated on Ω surface is transformed to the two double

integrals of the form

V =
1

2

∫ ∫

S

f (x,y) ds− 1

2

∫ ∫

S1

f (x,y) ds. (1.61)

Let us now take a shell element bounded by coordinates x = a1, x = a2, y =
b1, y = b2. Assume that the element includes a cutout defined by the lines x = x1,
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x = x2, y = y1, y = y2. In association with this, the cutout belongs to the interior of

the analyzed region, so we can write

a1 < x1 < a2, a1 < x2 < a2,

b1 < y1 < b2, b1 < y2 < b2. (1.62)

Equation (1.61) is composed of the difference of any two double integrals, which

are calculated along S and S1, but the region S1 is included in S. Moreover, regions

S and S1 are rectangular and with mutually parallel boundaries (Fig. 1.2).

For further considerations, we will use a unity Heaviside function dependent on

two variables Γ0(x− x1, y− y1) of the form

Γ0 (x− x1;y− y1) = Γ0 (x− x1)Γ0 (y− y1) , (1.63)

where

Γ0 (x− x1) =

{

0 for x < x1;

1 for x > x1.
(1.64)

The filtering property of the unity function mentioned is defined by means of the

following expression:

a2
∫

a1

b2
∫

b1

f (x,y)Γ0 (x− x1;y− y1) dx dy =

a2
∫

x1

b2
∫

y1

f (x,y) dx dy, (1.65)

and occurs if a1 < x1 < a2 and b1 < y1 < b2.

The quoted property of the function allows for introduction in Eq. (1.61) of only

one double integral instead of any two others. The reduction procedure will be ex-

amined more carefully.

The expression

V ′ =
∫ ∫

S

f (x,y)ds =

a2
∫

a1

b2
∫

b1

f (x,y) dx dy (1.66)

Fig. 1.2 Placement of regions

S and S1
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Fig. 1.3 Placement of

region S

introduces an integral calculated on the S surface (Fig. 1.3). Note that

V ′ =

a2
∫

a1

b2
∫

b1

[1−Γ0 (x− x1;y− y1)] f (x,y) dx dy, (1.67)

but the above integral is calculated on the S surface excluding any separated shell

element (Fig. 1.4).

The integral

V ′ =

a2
∫

a1

b2
∫

b1

[1−Γ0 (x− x1;y− y1)+Γ0 (x− x2;y− y1)] f (x,y) dx dy (1.68)

is also calculated on this surface as in the previous case, but the element excluded

there has been now added (Fig. 1.5).

The expression

V ′ =

a2
∫

a1

b2
∫

b1

[ 1−Γ0 (x− x1;y− y1)+Γ0 (x− x2;y− y1)

+ Γ0 (x− x1;y− y2) ] f (x,y) dx dy (1.69)

Fig. 1.4 A scheme based on

calculation of integral (1.67)
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Fig. 1.5 A scheme based on

calculation of integral (1.68)

is related to the integration on this surface, as is clearly visible in Eq. (1.69) when

the separated part pictured in Fig. 1.6 has been considered.

Finally, the integral

V ′ =

a2
∫

a1

b2
∫

b1

[1−Γ0 (x− x1;y− y1)+Γ0 (x− x2;y− y1)

+ Γ0(x− x1;y− y2)−Γ0(x− x1;y− y2)] f (x,y) dx dy, (1.70)

corresponds to the integration in S with exclusion of S1. It means that it is equal to

the quantity V defined by Eq. (1.61).

Introduction of the unity function has allowed for replacement of the two double

integrals by one integral calculated on the surface solely bounded by the loaded

edge:

V1 =
1

2

∫ ∫

S

2hE0 (1− γ0)

1−µ2

(

ε2
11 + ε2

22 +2µε11ε22 +
1−µ

2
ε2

12

)

ds, (1.71)

where

γ0 = Γ0 (x− x1;y− y1)−Γ0 (x− x2;y− y1)

− Γ0 (x− x1;y− y2)+Γ0 (x− x2;y− y2) . (1.72)

Fig. 1.6 A scheme based on

calculation of integral (1.69)
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Referring to Sect. 1.3, it is possible to write

E = E (x,y) = E0 (1− γ0) ,

ρ = ρ (x,y) = ρ0 (1− γ0) . (1.73)

This type of formula for E and ρ expresses a transition from a cutout of shell to

the adequate continuous model, which has also been presented in [251].

1.9 Flexural Stiffness Coefficient of a Shell Element

Let the function f (x) be as follows:

f (x) = ϕ (x)λ (x) , (1.74)

where ϕ(x) is a stepping function changing from a to b, and λ(x) it is an impulse

function.

The function visible in Fig. 1.7 can be represented here by means of the unity

Heaviside function as follows:

f (x) = a [1−Γ0 (x− x0)]+bΓ0 (x− x0)

= a−aΓ0 (x− x0)+bΓ0 (x− x0)

= a−aΓ0 (x− x0)+bΓ0 (x− x0)

= a− (a−b)Γ0 (x− x0)

= a [ 1−
(a−b

a

)

Γ0 (x− x0) ]

= a [ 1−
(

1− b

a

)

Γ0 (x− x0) ] , (1.75)

and in comparison to the above we have

f (x) = a

[

1−
(

1− b

a

)

Γ0 (x− x0)

]

. (1.76)

Fig. 1.7 A function f (x)
related to the function (1.75)
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Fig. 1.8 A function f (x)
related to the function (1.77)

In an analogous manner, an inverse function takes the form (Fig. 1.8):

1

f (x)
=

1

a
[1−Γ0 (x− x0)]+

1

b
Γ0 (x− x0)

=
1

a
+

(

1

b
− 1

a

)

Γ0 (x− x0)

=
1

a
+

(

a−b

ab

)

Γ0 (x− x0)

=
1

a

[

1+
(a

b
−1

)

Γ0 (x− x0)
]

. (1.77)

If we assume that a = E0 is the value of the modulus for a homogeneous shell,

whereas b
a

is the coefficient of its changes along the shell’s cutout, then the coeffi-

cient of that cutout is expressed by

γ1 =
b

a
. (1.78)

The quantity γ1 = 1 corresponds to homogeneous shells because flexural stiff-

nesses of both the separated cutout of the shell and the homogeneous shell are

practically the same (equal), whereas γ1 < 1 corresponds to the cutout of a smaller

stiffness (or greater for γ1 > 1) than the stiffness of the homogeneous shell. Accord-

ing to the previous derivations

E(x,y) = E0

[

1−∑
j

(

1− γ1 j

)

γ0 j

]

1

E(x,y)
=

1

E0

[

1+∑
j

(

1

γ1 j

−1

)

γ0 j

]

, (1.79)

where j denotes the number of such cutouts.
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Analogously, one can obtain an expression for the density of a shell’s material:

ρ(x,y) = ρ0

[

1−∑
j

(

1− γ2 j

)

γ0 j

]

, (1.80)

where γ2 j is the density coefficient of jth cutout.

On the basis of relation (1.79) a conclusion can be drawn: if any equation con-

tains an expression that is the inverse of the E modulus, then γ1 j cannot be equal to

zero. It is equivalent to stating that a shell cannot possess any cutouts. Otherwise, if

there is a need to consider those cutouts, the appropriate equation needs to be mul-

tiplied by E. Therefore, the general function has to be moved to the right-hand side

of equation. For this case, any calculations connected with the described algorithm

are rather complicated.

1.10 Generalized Functions

The term generalized function arises from the generalization of the classic function

definition [172]. The term originated during analysis of some physical problems and

has quickly appeared as a purely mathematical notion.

Thanks to introduction of the notion, a Fourier transform could be formally ap-

plied to a much wider class of functions, not only those integrated absolutely or in

quadratures. Moreover, it allows for mathematical formulation of some idealized no-

tions, such like density of point explosion, the material point density, a momentary

impulse, etc.

We will explain it more carefully. Using a mathematical apparatus for physical

phenomena investigations it is often desired to use various mathematical abstrac-

tions, in particular the term material point. For example, we can speak of a mass

reduced to a space point, a force applied in a given moment of time, a point source

of many various fields, etc., but after all they are the idealized formulations. Such

a simplified approach to the analysis of physical phenomena turns out to be insuffi-

cient. New mathematical notions or apparatus are often required.

The first notions of generalized functions were formed in the work of Dirac and

other physicist’s as a type of symbolic description of the physical phenomena. To

achieve a systematic method of application of the above functions it was necessary

to introduce some important bases of the theory of generalized functions, which was

done by Sobolev and Schwartz [267, 279], respectively.

The theory of generalized functions is a very convenient mathematical tool,

which permits the solution of many problems that could not be solved in the clas-

sical way. The theory of generalized functions is currently popular in many applied

sciences, as well as in pure theoretical studies.

Let us begin our present considerations from the definition of the basic term of

linear space D of a function. For that reason, functions defined in R and that take

complex values will be consequently considered.
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We are interested in a space D that consists of an unlimited set of finite and

differentiable functions. A property of all finite functions is observed, that their

forms of combination and multiplication by numbers are still included in a linear

space, but infinitely differentiable finite functions create its subspace.

The set of infinitely differentiable functions together with the formulated defini-

tion of boundary transition creates the convergent linear space, which can be directly

observed.

Definition 1.1 A space of infinitely differentiable finite functions along with the

invoked notion of convergence is called a space D of basic functions.

Definition 1.2 An arbitrarily chosen functional f defined in D is called the general-

ized function.

Definition 1.3 The function f that is defined along the whole real axis is called

locally integrable if it is absolutely integrable on any finite interval.

If f is a locally integrated function and ϕ ∈ D, then the product f ϕ is absolutely

integrable on the whole considered axis.

Let the locally integrable function f be defined for a functional ( f ,ϕ) in D as

follows:

( f ,ϕ) =

+∞
∫

−∞

f (x)ϕ(x) dx. (1.81)

The above function is both linear and continuous.

A conclusion can be made that for an arbitrary and locally integrable function

f (x) there exists a generalized function ( f ,ϕ). An arbitrary and locally integrable

function can be considered in that sense as a generalized function (a suitable thesis

can be proposed: any generalized function ( f ,ϕ) is generated by function f ).

Generalized functions are in some situations denoted by f (x). The symbolic no-

tation does not denote the value of a generalized function at a point x ∈ R, but

emphasizes that generalized functions are the generalization of normal (locally in-

tegrable) functions and no other value of a generalized function at the point x is

assigned.

For an estimation of the value of the generalized function f at the point ϕ = ϕ(x)
of a space D and with the exception of the notation ( f ,ϕ) the following equivalent

can be used:

+∞
∫

−∞

f (x)ϕ(x) dx. (1.82)

It leads to the comprehensive definition:

+∞
∫

−∞

f (x)ϕ(x) dx = ( f ,ϕ). (1.83)
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Equation (1.83) is a definition of the symbol (1.82), which should be formally un-

derstood in the following way: all generalized functions constitute a generalization

of functionals given by definition (1.81), where f is the locally integrable function.

Let us now define the derivative of a generalized function. Most of all, a step-

by-step explanation is necessary, bringing the meaning of the derivative of normal

continuous and along the whole real axis differentiable function f treated as a func-

tional ( f ′,ϕ) in D. Let us note, moreover, that the derivative f ′ being continuous on

the whole real axis is the locally differentiable function. Integrating by parts as well

as taking into consideration the finiteness of the function ϕ ∈ D, we obtain

( f ′,ϕ) =

+∞
∫

−∞

f ′(x)ϕ(x)dx = −
+∞
∫

−∞

f (x)ϕ ′(x)dx = −( f ,ϕ ′), (1.84)

but ϕ ′ ∈ D. The conclusion is that the derivative f ′ is a functional in D and its values

are precisely expressed by both the values of function f (considered as a functional)

and the Eq. (1.84). This observation makes it possible to construct the following

definition.

Definition 1.4 The derivative of a generalized function f will be called the func-

tional defined in D denoted by f ′ and defined by the following equality:

( f ′,ϕ) = −( f ,ϕ ′), ϕ ∈ D. (1.85)

In other words, all values of the functional f ′ in any point ϕ of the space D equal

the values of the functional f with the opposite sign at point ϕ ′ ∈ D.

Previous studies allow drawing some conclusions, that any generalized function

or any locally integrable function possesses a derivative in agreement with Defini-

tion 1.4.

On the basis of (1.84), the normal derivative of a continuous differentiable func-

tion on the whole real axis, treated as a functional in D, coincides with its derivative

in the sense of generalized functions.

The procedure for calculating the derivative of a generalized function is called

differentiation (analogously to the case of normal functions).

Higher-order derivatives of generalized functions can be calculated in an analo-

gous manner as for normal functions:

f ′′ = ( f ′)′, f ′′′ = ( f ′′)′, . . . ,

in general

f (k) = ( f (k−1))′, k = 1,2, . . . , f (0) = f . (1.86)

Corresponding to the above definition, a generalized function can have any

derivatives of arbitrary high orders. It is often substituted with another statement

claiming that they are differentiable anywhere up to infinity.

In 1933, the impulse functions of the theory of elasticity were for the first time

applied in Gersevanov’s work and, subsequently, in the work of Nazarov [229]
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and Radtsig [253]. Nevertheless, Novitskog [233], Vainberg, and Rajtfarb’s [312]

achievements have indicated a wide range of applicable prospects of functions

in situations within the large class of mechanical problems (mainly in building

engineering).

The zero-order unity function makes the fundamental concept of understanding

of the zero-order impulse functions, defined as follows:

Γ0(x− x0) =

{

0 for x < x0,

1 for x ≥ x0.
(1.87)

Traditionally, the above function remains in contrast to the nth order impulse

function of the form Γn(x− x0), called either the unity Heaviside function or the

zero-order impulse function. The function at hand is locally integrable so it can be

assumed officially as the generalized function.

It is worth noting that the two-variable impulse function is equal to multiplication

of two other analogous variable functions of different arguments:

Γ0(x− x0;y− y0) = Γ0(x− x0)Γ0(y− y0). (1.88)

One of the more important merits of searching for solutions to many miscella-

neous problems is the filtrate property of the nth derivative of delta function. It has

led to an enormous popularization of that useful function. The filtrate property is

characterized by the following expression:

b
∫

a

f (x)Γ
(n)
1 (x−ξ )dx =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, ξ < a,

(−1)n f (n)(ξ ), a < ξ < b,

0, ξ > b.

(1.89)

The often used mathematical dependencies arise from Eqs. (1.88) and (1.89):

a
∫

0

b
∫

0

Γ
(x,y)
1 (x− x1;y− y1) f (x,y) dx dy = f (x1,y1),

a
∫

0

b
∫

0

Γ
(y)
1 (x− x1;y− y1) f (x,y) dx dy =

a
∫

x1

f (x,y1) dx,

a
∫

0

b
∫

0

Γ
(y)
2 (x− x1;y− y1) f (x,y) dx dy = −

a
∫

x1

{

∂

∂y
[ f (x,y)]

}∣

∣

∣

∣

y1

dx,

a
∫

0

b
∫

0

Γ
(x)
2 (x− x1;y− y1) f (x,y) dx dy = −

b
∫

y1

{

∂

∂x
[ f (x,y)]

}∣

∣

∣

∣

x1

dy,
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a
∫

0

b
∫

0

Γ0(x− x1;y− y1) f (x,y) dx dy =

a
∫

x1

b
∫

y1

f (x,y) dx dy,

a
∫

0

b
∫

0

Γ
(x)
1 (x− x1;y− y1) f (x,y) dx dy =

b
∫

y1

f (x1,y) dy. (1.90)

The terms Γ
()
j denote the derivatives of impulse functions calculated in the deter-

mined coordinates.



Chapter 2

Static Instability of Rectangular Plates

This chapter deals with the static instability problems of rectangular plates. First,

fundamental concepts of the theory of elastic stability are illustrated and discussed.

Second, two fundamental formulas of the energy-based criterion of bifurcational

stability loss of an elastic continuous mechanical system are derived. In addi-

tion, advantages and disadvantages of today’s stability investigation approaches

are critically revisited, with emphasis on problems not yet satisfactorily solved.

In the next section various methods devoted to stability investigations are briefly

addressed, exhibiting their strong and weak points regarding applications with par-

ticular attention to computational advantages of Galerkin’s methods. In Sect. 2.4

the Bubnov-Galerkin method of high-order approximations and the associated nu-

merical algorithm are presented. Rectangular form additions of other materials to

a shell are described in Sect. 2.5, whereas the next section deals with static shell

stability problems. Finally, the central square element, cross addition element, and

perforation-type non-homogeneities are introduced.

2.1 Fundamental Concepts of the Theory of Elastic Stability

Increasing strength properties of the traditional material characteristics that are ap-

plied for various kinds of constructions as well as the use of new composite mediums

characterized by extremely high-resistance features have led in the contemporary

machines and building industry to a widespread application of light and economical

constructions.

In the case of such constructions the role of strength estimations has significantly

expanded. The main reason is the destruction of thin-walled structures closely con-

nected with local or global loss of stability of their particular elements.

Within the last two to three decades opposing views in the theory of construc-

tion stability have emerged. Moreover, theories that were not comprehensive and

trustworthy and many incorrect practically applied ideas were seen as well. For

instance, we can remember the view in the scientific literature and consequently

J. Awrejcewicz, V.A. Krysko, Chaos in Structural Mechanics, 41
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recommended by many specialists concerning the estimation of construction stabil-

ity that was based on the so-called approximation of low values of critical loading.

It is necessary to stress that quite recently some general theoretical basics have been

worked out by the foremost mechanical engineers in the world, providing a possibil-

ity for finding suitable explanations of many problems of the theory of construction

stability.

Modern construction engineers have, in spite of access to the data file of stability

computations for a particular construction’s elements, also quite easily accessible

universal commercial numerical packages allowing for analyses of constructions

that have in practice an unlimited complexity. It turns out, however, that in spite of

wide range of computational techniques the present-day engineer has to understand

the phenomenon of the loss of stability of thin-walled structures as well as to have

a full comprehension of the series of implemented hypotheses and simplifications

being made after each mathematical modeling of a problem.

The loss of stability of a deformable system is the time-dependent process ex-

pected to be investigated dynamically. Most questions of a construction’s stability

“allow” for application of such a static approach, in which any equilibrium con-

ditions are formulated with the omission of inertial forces that have, after all, a

significant influence on the quantity of deformations of the analyzed system.

In our further considerations the problem will be reduced to the analysis of sta-

bility of conservative systems, for which the static approach brings about the same

results as the analysis of a complete and more complex dynamical approach [335].

The conservative system will be understood as a system composed of a deformable

body being both fixed in space by means of ideal constraints and loaded by con-

servative forces. Let us also define, that to the conservative forces we will refer any

other potential forces, the work done, that depends only on an initial and final system

configuration but does not depend on the shape through which the system passed in

the time between initial and final state. Reaction forces of ideal constraints do not

do any work through all the possible movements of the system points in which they

are attached.

To paraphrase from Lev Tolstoy’s novel Anna Karenina, all stable mechanical

systems are similar to each other, while some particular properties characterize the

unstable ones. The observation refers not only to stability problems but also affects

the significant question of motion stability and can also be adopted in a much narrow

class of problems, for example, locus of equilibrium conception as found in [238].

The locus of equilibrium of a spring system can be expressed in many cases by

two parameters, i.e., a characteristic movement v and a loading parameter P. For all

existing positions of equilibrium there corresponds a curve in the v–P coordinate

system. It permits prediction of the system’s behavior after monotonically increas-

ing loading or a displacement parameter, to estimate any instability regions and, in

general, the critical values of parameters. Graphical presentations of these relation-

ships are called graphs (or curves) of equilibrium positions of a system.

A graphical curve of equilibrium positions of a linear deformable system is

represented then in the form of straight line. It turns out that the behavior of struc-

turally nonlinear objects after deformations causes in many situations very complex
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relationships, but graphs of equilibrium positions of such systems can be miscella-

neous and of high complexity as well.

A subclass of systems can be excluded from the main class of various spring

systems in which behavior is qualitatively characterized by common features of the

previously indicated P–v curve.

The most frequently encountered problems of engineering are considered below

(see [238]). We will assume, when carrying out a behavioral analysis of systems,

that a loading parameter (the case of soft loading) increases monotonically. Fur-

thermore, there will be taken into consideration a regime of work in an environment

of kinematic loading that is described by a monotonic increase of v parameter (hard

loading).

1. For an arbitrary loading parameter P < Pcr, there exists one and completely stable

configuration of an equilibrium locus. For any loadings exceeding Pcr, there exist

several equilibrium positions and also with inclusion of unstable equilibrium po-

sitions (Fig. 2.1; on the drawing and in subsequent study, the unstable positions

have been matched on P–v curves by crosses).

2. Up to a certain loading value P∗
cr there exists a single and, in addition, a stable

equilibrium state. In the loading interval (P∗
cr, Pcr) we deal with three different

equilibrium positions: a) stable; b) unstable; c) stable, but now different from the

locus type (a). For the locus of equilibrium at P > Pcr cases a) and b) are invalid,

and then just one stable equilibrium locus remains (c) (Fig. 2.2).

3. Up to some loadings Pcr there exists a single locus of stable equilibrium (Fig. 2.3a),

but in some situations any two equilibrium positions can coexist, concurrently,

stable and unstable (Fig. 2.3b). There is no equilibrium locus for P > Pcr.

4. The starting point of the equilibrium locus is the only one for each parameter

value of loading, but setting P < Pcr the locus becomes stable, whereas for P > Pcr

it becomes the unstable locus of equilibrium (Fig. 2.4).

Let us underline the fact that when we speak of stability of any equilibrium po-

sitions, we really have in mind the stability in a “little” sense, i.e., that after a small

disturbance the system gets back to the starting position.

The next study focuses on four cases.

The first one introduces a typical conditional branch (bifurcation) of equilibrium

positions corresponding to the critical loading values P = Pcr. In the process of a

monotonic increase of loading parameter P there will appear at P = Pcr a transition

to a new equilibrium state.

Fig. 2.1 The curve of

equilibrium states (systems

of first type)
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Fig. 2.2 The curve of

equilibrium states (systems

of the second type)

The second one introduces a monotonic increase of loading parameter the value

of which achieves Pcr. A rapid transition (a kind of skipping) of the system to a new

locus of equilibrium is observed at the time. When the skipping is done, then the v

parameter is going to rise slightly. If we suppose that the parameter P decreases in

time, then at P = P∗
cr the system will skip to the initial state of equilibrium. During a

successive decrease of loading the characteristic point of our curve will slide down,

all the time being located in its starting section.

The equilibrium positions described by the depressing parts of the curve at hand

are unstable and have no physical realization for the considered character of loading.

Each locus of equilibrium belonging to the increasing parts in (P∗
cr, Pcr) are locally

stable, because for sufficiently large excitations the qualitative change of the form

of equilibrium state (skipping) can transform to the so-called loss of stability in the

“large” sense. Of necessity, values for the realization of excitations skipping are

defined by x-axis values of points of the depressing part of the P–v curve.

In a similar way we deal with two critical loadings: upper Pcr and lower P∗
cr,

defining skippings after loading and unloading. In some systems the lower critical

value equals zero or can take a negative sign.

In the third case the lack of locus of an equilibrium for P > Pcr is the most charac-

teristic feature. Therefore, as critical loading value is approached, a loss of stability

cannot be observed but rather loss of the system’s equilibrium state. The equilib-

rium state is not sustainable and the system goes to a movement state. Equilibrium

positions that are possible at P < Pcr can be either unstable without any restric-

tions (see Fig. 2.3b) or locally stable if a depressing part of the P–v curve can be

PP

0 v v0

PcrPcr

(a) (b)

Fig. 2.3 Equilibrium position curves (systems of third type): (a) one locus of equilibrium at P <
Pcr; (b) two positions of equilibrium at P < Pcr
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Fig. 2.4 Equilibrium

position curves (systems

of fourth type)

P

Pcr

0 v

distinguished. In the second alternative case some larger excitations should force

our system, which is sufficiently determined by x-axis coordinates of the depressing

part of the characteristic.

Despite the existence of an initial state of equilibrium locus for P > Pcr, in the

last case the position of the state of interest cannot be realized.

In some peculiar cases the curve of equilibrium locations can be represented in

the form shown in Fig. 2.5, where a few values of forces can correspond to a sin-

gle displacement, but no skippings are observed during a monotonically increasing

parameter of loading.

Miscellaneous properties of mechanical systems and curves of the P–v type are

very helpful in explanations of various existing methods, which are used to deter-

mine some particular critical states. If there is a need for long-term investigations of

critical states, then the three main variants of stability methods can be applied quite

successfully.

From a historical scientific perspective, the first variant of the analysis was pro-

posed by Euler. In his conception, a system’s instability was characterized by an

equilibrium form that is closely similar to the initial one of the system. The problem

of examining the initial form of the system’s equilibrium is replaced by the problem

of bifurcational determination of the form of initial equilibrium. A critical loading

is by definition the smallest of all acting loadings that are associated with any newly

created forms of equilibrium. In practical terms, an application of the stability cri-

terion reduces to a problem that is solved by estimation of eigenvalues as well as

of the corresponding eigenvectors being, in addition, connected with the analysis of

any linearized differential equations. In this situation, the equations are derived from

nonlinear equations, but the method of their estimation uses a variational approach

or an analysis of two post-buckled equilibrium states. As opposed to a dynamic cri-

terion, the static one is more restrictive with respect to its application possibilities.

The loss of stability static criteria are used principally for conservative systems.

Fig. 2.5 One of the possible

forms of equilibrium positions

P

0 v
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Of course, an energetic criterion states a viable alternative of its static coun-

terpart. The energetic criterion is based on the two fundamental principles of

mechanics of a physical continuum: the principle of virtual displacements and the

principle of virtual modifications (changes) of a stress state of the analyzed system.

A condition of stationarity of the total potential energy of a system δΠ = 0 can be

directly found from the principle of virtual displacements. On the basis of that con-

dition, from all the displacements satisfying boundary conditions the displacements

satisfying equilibrium conditions are the only ones contributing to the quantity of

stationary energy. A condition of stationarity of an extra energy can be drawn from

the principle of stress state virtual changes. On the basis of that condition from all of

options of virtual stresses satisfying equilibrium equations and boundary conditions,

the stresses that satisfy strain continuity conditions are the only ones contributing in

addition to the quantity of stationary energy.

The condition δΠ = 0 allows for a definition of the system’s equilibrium locus.

The stability of the equilibrium state can be estimated by means of the Lagrange-

Dirichlet theorem. If the analyzed equilibrium locus is stable then the total potential

energy reaches a maximal value (δΠ = 0, δ 2Π < 0); there is a constant level of

potential energy that is assigned to the locus of an equilibrium (δΠ = 0, δ 2Π = 0),
where δΠ, δ 2Π denote the first and second variation of the system’s entire energy,

respectively. Lagrange was the first to formulate the mentioned theorem, and its

proof for systems of finite degrees of freedom was worked out by Dirichlet. The

theorem can also be expressed another way [335]: for a continuous total energy of a

system the locus of the system’s equilibrium together with inclusion of any conser-

vative and non-conservative forces is stable when the potential energy is positively

defined. In practice, the second variation’s investigations of all possible virtual dis-

placements turn out to be very difficult.

Linear problems of stability usually consider the following necessary condition

that is decisive for conservation of an equilibrium locus:

δ 2Π = 0 (2.1)

Let us write the system’s total energy for the mentioned equilibrium locus in the

form of a sum of two components, the total energy and its incremented term that

has appeared during analysis of a post-buckled equilibrium state:

Π = Π0 +δΠ+δ 2Π+ · · · , (2.2)

where δΠ, δ 2Π are the components of energy, in which first and second elements

of any additional conditions that are relevant to a displacement in the post-buckled

system have been included. The value δΠ = 0 is the first variation of energy of

the initial equilibrium state. Making a variation of (2.2) and assuming Π0 = 0,

we have

δ (δ 2Π) = 0. (2.3)
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The above condition is a kind of variational formulation of the criterion of static

stability because some adequate differential equations of the criterion of static sta-

bility directly result from it. It can be noted that when an investigation of stability

states the aim, conditions like (2.1) or (2.3) can be fully used. The mentioned criteria

indicate that the energy increasing in a point of bifurcation is either the positively or

zero defined function. A condition of existence of the second variation’s minimum

can be written as follows:

δ 2Π = min, (2.4)

that in accordance with an energy incrementation can be simply deduced from a

similar positive or zero value function. Let us observe, however, that if in a point of

bifurcation the following condition δ 2Π = 0 holds, then in the neighborhood of that

point a half-positive defined function will take values greater than zero.

The described method is called the Euler method and serves for the purpose of

investigation of systems for which the characteristic curve, shown in Fig. 2.1, has

P–v dependence. It is possible then to determine Pcr value, but the curve defin-

ing the new equilibrium positions remains uninspected for P > Pcr. The essential

feature of the Euler problem formulation is the introduction of an ideal system re-

alization. For instance, after analysis of deflection a starting straight line of a rod is

assumed and a compressing force should then be perfectly imposed along that rod’s

axis.

In the second variant of the analysis, i.e., by applying a static method, some

real features (imperfections, inaccuracies, perturbations) such as initial deflections,

initial non-ideal application of loads or any other additional external forces are in-

troduced at the very beginning. The linearized forms of the equations are then used

for the solution of the problem. For example, during post-buckling analysis of a rod

the P–v curve can be found and drawn as well, and similar to the one in Fig. 2.3a.

The curves of interest will differ from that in the figure, especially with respect to

the lack of an assumed ideal interpretation of the problem, but the location of a

horizontal asymptote will not be dependent on initial perturbations, which in the

final stage leads to estimation of the same value of critical loading as in the pre-

viously described Euler method. Some inaccuracies of the considered method are

certainly linked to a linearization process because the examined displacements are

not small.

In many cases the P–v dependence has to be determined with a consideration

of nonlinearities appearing during any large displacements. In particular, such an

assumption could be observed during analysis of systems with skippings (Fig. 2.2),

where geometrical nonlinearities play a crucial role.

We remember that in mechanical problems of a solid deformable body three types

of nonlinearities can be distinguished:

1. Geometrical nonlinearity that basically appears during any large displacements

that causes, as a consequence, elimination of the possibility of using any tradi-

tional simplifications like sinϕ ≈ tanϕ ≈ ϕ;

2. Physical nonlinearity that is linked with a deviation of linear material

deformations;
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3. Constructional nonlinearity that results from the existence of any constructively

superposed restrictions (for example, detachment of a beam from an elastic base,

variation of a contact surface, etc.).

The third variant of the static method is based on the Lagrange theorem focusing

on the conservation principle of minimums of the total potential energy of a system:

Being in an equilibrium position, the total potential energy of a conservative system has

some stationary value, but the position will be stable if and only if a minimum energy can

be assigned for it [335].

A well known pictorial illustration of such an approach is the behavioral analysis

of a ball lying on a smooth surface (Fig. 2.6).

Such a ball’s potential energy experiences some fluctuations that are proportional

to that ball’s vertical movement: the energy decreases as the ball moves down and

is increasing as it moves up. All three of the surfaces in Fig. 2.6 include stationary

points in which the ball can remain in balance. The bottom point of the deflected

surface (Fig. 2.6a) relates to the ball’s minimal potential energy and the position of

equilibrium will be stable.

The top of the convex surface (Fig. 2.6b) refers to a stationary point having max-

imal potential energy and the equilibrium locus is unstable at this point. An intuitive

approach as well as a simple experiment support the above assumption because the

ball will roll down after any small displacement of it from that point.

A stationary point situated on the saddle surface (Fig. 2.6c) is called a transi-

tional point (placed anywhere between extremal values). Because of the absence of

a minimal potential energy at this point, the appropriate equilibrium locus will not

be stable. The equilibrium locus of a conservative system will be unstable for all

cases in which the total potential energy of a system takes some constant but not

minimal value.

The total energy of the deformable conservative system is composed of both the

energy U of an elastic deformation and the potential Π of external forces:

E = U +Π. (2.5)

In the equilibrium (not necessarily stable!) condition, the total potential energy

does not change. The necessary condition for obtaining a minimal value yields the

following:

Fig. 2.6 Stable and unstable equilibrium positions
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δE = δU +δΠ = 0, (2.6)

which is called the variational Lagrange equation.

Let a total energy gain be denoted by ΔE when any small deflections from the

considered equilibrium position of the system occur. If the equilibrium position

needs to be stable, then the following necessary and sufficient condition

δE > 0 (2.7)

must hold for any optional but sufficiently small system deflections from an equi-

librium position. If we assume that for a predefined loadings and system fixing

conditions there exist such system deflections from an equilibrium position, which

results in satisfying (2.7), then even the equilibrium position will be unstable.

Despite both stable and unstable equilibrium position terms, another term of in-

different equilibrium position is introduced.

The increase of total energy ΔE is most often estimated to an accuracy of the

second power of small deflections from an equilibrium position leading as a conse-

quence to the condition ΔE = 0.

Nevertheless, by finding ΔE with a higher accuracy the sign of the value can be

determined, explaining thereby the real features of the analyzed “indifferent equi-

librium” position.

2.2 Two Fundamental Forms of the Energetic Criterion

of Bifurcational Stability Loss

Let us analyze a deformation of a conservative system and assume that fixation re-

duces displacement of the system being investigated as a solid body. All external

loadings increase proportionally to P. The total system energy is governed by (2.5),

but the potential energy found in an equilibrium position reaches a stationary value.

Because displacement of the whole system is not possible and the potential energy

of an elastic system’s deformation is always greater than zero, the equilibrium po-

sition of the non loaded system is stable. Let us assume that for P = 0 condition

ΔE = ΔU > 0 is satisfied for a system’s deviations from a non-loading state. Let us

investigate thereafter stability of the system’s stress-deformation state, which is de-

scribed in the theory of elasticity by linear equations. Such a position will be called

the initial equilibrium state. It can be shown that in the neighborhood of point P = 0

the state is unstable. An initial equilibrium state can lose stability only if the loading

parameter P will cross some critical value Pcr.

In other words, until P < Pcr is valid, a sufficiently small deviation produces the

inequality ΔE > 0. In addition, if P > Pcr then deviations are also possible for which

ΔE ≤ 0. Accordingly, the following definition can derived.

Definition 2.1 The critical loading parameter Pcr will be called the lower loadings

value P for which small system deviations are possible from an initial equilibrium

state leading to the condition ΔE = 0.
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The definition provides an opportunity to obtain the energetic criterion of loss

of stability of the conservative system’s equilibrium state. The basic steps of its

derivation are given below.

We will take into consideration a known initial equilibrium position being de-

scribed in two ways: via linear equations of the theory of elasticity and via first-order

displacements measured from an initial equilibrium state. The gain of the system’s

total potential energy ΔE will be estimated with the accuracy of the value of square

displacements and it will be written in the form (2.8) of two components with the

first one not dependent on external loadings and the second one proportional to the

P parameter:

ΔE = W +PV. (2.8)

In these cases, when studying a secondary (buckled) equilibrium state the condi-

tion ΔE = 0 is satisfied in the following form:

P = −W

V
. (2.9)

In agreement with the earlier definition, the smallest value of P of all the possible

ones that are defined by the last equation equals the critical value Pcr. In the general

case, ΔE, W, V are the functionals dependent on the first-order displacements forc-

ing the system to achieve a new secondary position. Using the necessary condition

of minimum of the ratio of two functionals, one obtains

δ

(

W

V

)

=
1

V

(

δW − W

V
δV

)

=
1

V
(δW +PδV ) = 0, (2.10)

and hence

δ (ΔE) = 0. (2.11)

The obtained condition possesses a relatively simple mechanical interpretation.

Observe that

E1 = E+ΔE, (2.12)

where E and E1 denote total potential energy in both initial and secondary equilib-

rium states. Making a variation to the above and then considering the initial position

at δE = 0, we obtain δE1 = δ (ΔE). Therefore, condition (2.11) takes the form

δE1 = 0, (2.13)

i.e., as the equilibrium condition for a post-buckled system in relation to an initial

equilibrium position. The points of the graph representing the initial equilibrium

position in the neighborhood of another equilibrium positions associated with the

initial equilibrium position are called bifurcational points of the initial equilib-

rium state. Condition (2.13) defines some bifurcations of initial location points, but

the lowest bifurcational loading parameter P is assigned to the critical bifurca-

tion point.
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For further analysis, first-order displacements bringing our systems from initial

states to new equilibrium ones and present in the bifurcation point’s neighborhood

will be called bifurcational displacements. Condition (2.11), in which gain of the

total potential energy ΔE is determined with an accuracy of square bifurcational

displacements, will be called the energetic criterion of bifurcational loss of stability,

or simply the energetic criterion (energetic principle) of elastic stability.

Singularities related to calculation of ΔE after the practical solution of problems

will be examined on the basis of simple exemplary analysis of stability of a rectilin-

ear equilibrium form of a thin rod [4]. Miscellaneous methods of estimation of the

system’s total potential energy variations ΔE will be applied after calculation of the

rod’s stability via the energetic method. It is confirmed in mechanics of materials

that a rod’s longitudinal axis is not stretched and according to the assumption the

close-up of its ends produced only by flexing is estimated. It gives the following

variational estimation of total potential energy:

ΔE =
1

2

ℓ
∫

0

EJ

(

∂ 2v

∂x2

)2

dx−Pλ; λ =
1

2

ℓ
∫

0

(

∂v

∂x

)2

dx, (2.14)

where the first component is the potential energy of the deflected rod that has been

expressed by twisting of its axis. The second component exhibits a variation of the

external force potential.

Different expressions are also used in building engineering and in addition are

designated to any variational calculations of the rod’s total potential energy of

the form

ΔE =
1

2

ℓ
∫

0

EJ

(

∂ 2v

∂x2

)2

dx+

ℓ
∫

0

N0ε2dx; ε2 =
1

2

(

∂v

∂x

)2

. (2.15)

In the above, the second component describes the work of initial axial forces N0 that

is done during any additional extensions ε2 created by the transversal displacements

v. In relation to the starting position, both the secondary and buckled rod’s positions

will be measured from an initial state and predetermined by the displacements v1

and u2. The change of the total potential energy during the rod’s transition to a

different equilibrium position characterized by axial twisting will be represented by

three successive components:

ΔE =
1

2

ℓ
∫

0

EJ

(

∂ 2v1

∂x2

)2

dx+
1

2

ℓ
∫

0

N0

(

∂v1

∂x

)2

dx

+

⎧

⎨

⎩

ℓ
∫

0

N0
∂u2

∂x
dx−Pu2(0)−

ℓ
∫

0

qu2dx

⎫

⎬

⎭

. (2.16)
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Additional displacements u2 should meet the geometrical boundary conditions

precisely fixed on the rod’s boundaries. Therefore, the displacement u2 can be

analyzed at some variables associated with the rod’s initial state. In general, the

expression included in braces can be treated as the sum of shifting work done by the

internal and external forces. As the rod’s equilibrium position has been achieved, so

with respect to the principle of possible displacements, the sum under consideration

equals zero. For any arbitrary displacements restricted by constraints and with the

inclusion of those additional u2 the change of the total potential energy ΔE does not

depend on these displacements, so the following expression holds:

ΔE =
1

2

ℓ
∫

0

EJ

(

∂ 2v1

∂x2

)2

dx+
1

2

ℓ
∫

0

N0

(

∂v1

∂x

)2

dx, (2.17)

i.e., it is exactly defined by (2.15). The dependence found after solutions to some

specific problems allows one to use any arbitrary functions u2, which are usually

selected with respect to their beneficial properties (with a simultaneously fulfilled

geometrical boundary conditions).

If the geometrical equilibrium conditions are fixed only on the first border of the

rod, then referring to u0, i.e., if the problem of definition of the initial axial force is

statically determinable, then the displacement u2 can be chosen in a way such that

an extra extension of the rod’s axis ε2 equals zero. The displacement is for that case

estimated from the condition ε2 = 0, i.e., from the following equation:

∂u2

∂x
= −1

2

(

∂v1

∂x

)2

. (2.18)

When during a longitudinal movements the second right rod’s border is fixed, then

on the basis of Eq. (2.18) one finds

u2 =
1

2

ℓ
∫

0

(

∂v1

∂x

)2

dx− 1

2

x
∫

0

(

∂v1

∂x

)2

dx. (2.19)

Expression (2.16) takes the form

ΔE =
1

2

ℓ
∫

0

EJ

(

∂ 2v1

∂x2

)2

dx−P
1

2

ℓ
∫

0

(

∂v1

∂x

)2

dx−
ℓ
∫

0

qu2 dx. (2.20)

One can exclude an initial force N0 from (2.16) even in this case if with respect to

u0 the geometrical boundary conditions have been fixed on both borders of the rod

and it is no longer possible to keep the condition ε2. Let, for example, the following

boundary conditions u0(0) = u0 i u0(ℓ) = 0 be analyzed, where u0 is a proposi-

tion of the initial axial displacement of the first border of the rod. The additional

displacement u2 should meet the two boundary conditions: u2(0) = 0 i u2(ℓ) = 0.
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It is worth noting that the form of mathematical representation of the total energy

changes (2.15) remains valid also for the considered problem, though in the ana-

lyzed situation an initial axial force N0 should be determined for all.

For the purpose of elimination of the initial axial force from (2.16), the following

mathematical transformation is performed:

ℓ
∫

0

N0ε2 dx =

ℓ
∫

0

EFε0ε2 dx =

ℓ
∫

0

N2ε0 dx =

ℓ
∫

0

N2
∂u0

∂x
dx, (2.21)

where EFε2 = N2.

One can treat the quantity N2 as an extra axial force that appears in the rod during

its deflections from the rectilinear form of equilibrium.

Integrating the last expression by parts, one can obtain

ℓ
∫

0

N2
∂u0

∂x
dx = N2u0

∣

∣

∣

∣

ℓ

0

−
ℓ
∫

0

∂N2

∂x
u0 dx =

0− ∂ 2u0

∂x2
N2(0)−

ℓ
∫

0

∂N2

∂x
u0 dx . (2.22)

For the purpose of eliminating the initial displacements u0 that appear in the

last integral, the condition ∂N2/∂x = 0 has to be met. The previously given condi-

tion results in the equation used for definition of any extra displacements u2 as the

boundary conditions u2(0) = 0 and u2(ℓ) = 0 are fulfilled.

Assuming EJ = const, we obtain

u2 =
1

2

⎡

⎣

x

ℓ

ℓ
∫

0

(

∂v1

∂x

)2

dx−
x
∫

0

(

∂v1

∂x

)2

dx

⎤

⎦ ,

N2 =
1

2

EF

ℓ

ℓ
∫

0

(

∂v1

∂x

)2

dx . (2.23)

Finally, Eq. (2.16) leads to an expression that does not explicitly contain the initial

force N0:

ΔE =
1

2

ℓ
∫

0

EJ

(

∂ 2v1

∂x2

)2

dx− ū0
1

2
EF

ℓ
∫

0

(

∂v1

∂x

)2

dx−
ℓ
∫

0

qu2dx, (2.24)

where u2(x) is the function defined by Eq. (2.23).

It is assumed that the Timoshenko form of energetic criterion is understood as

the form of the energetic criterion of the bifurcational loss of stability that is ex-

pressed by (2.14) as well as one that does not directly contain any initial stresses.
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By agreement, the Bryan form of energetic criterion describes notation of the crite-

rion by means of expressions like (2.15) including the initial stresses.

The aforementioned energetic method turned out to be very convenient in the

rough solution of many problems focused on the stability of complex systems, but

even this method cannot be treated as a universal one. It turns out that the Lagrange

theorem applies solely to conservative systems whereas any true loadings are not

always connected with a potential.

Although all static methods often lead to the same critical values of loading pa-

rameters, they are not completely equivalent, because they do not reflect the direct

natural response to the following questions:

(i) Euler method: at which loading do any appear secondary equilibrium states?

(ii) Imperfection method (in linearized form): at which loading does a system’s

displacement approach infinity?

(iii) Static method: at which value of loading does the system’s potential energy

maintain the “minimal values” in an equilibrium position?

These questions remain unanswered.

The main flaw of the methods described is that in a sense they do not provide any

general results allowing for their direct application. The dynamic method of stability

investigation is characterized only by a full generality, which is basically reduced

to the qualitative analysis of a perturbed motion resulting from changes in nature of

the investigated equilibrium state. If during that motion the system still remains in

the neighborhood of the equilibrium position, then such a position is called stable,

and unstable for the opposite case. The dynamic method was in the past, as well

as present, commonly used in the theory of stability of elastic systems, but during

that long time it was considered a composite analytical object, whose results should

confirm those obtained with the use of any of the static methods.

Only in the last two decades, when some abnormalities of the application of

static methods have been indicated for a class of slightly different problems, has

more attention been paid to the universality and applicability of the dynamic

method.

2.3 Bubnov-Galerkin Methods Devoted to Shell

Stability Investigations

The task of investigating shell stability naturally comprises a definition of both their

forms of stability loss and their critical loadings. Integration of the stability equa-

tion in the closed form is successful only for the simpler cases of one-dimensional

dynamic problems for which an initial homogeneous state is maintained when any

differential equations of fixed factors come into the investigations. For the overall

case any initial non-homogeneous states are reflected in the analysis of stability

equations by variable coefficients, which leads to the necessity of applying various

approximate methods for the solution of the discussed problems.
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The partially reversible methods. The function w satisfying an equation’s solu-

tion is approximated by the analytical expression that contains a finite quantity of

arbitrary parameters. The series most often used has the following form:

w = ∑
i

Ai fi, (2.25)

where fi are the coordinate functions satisfying any superposed boundary as well

as the internal region’s conditions. The special functions are usually chosen accord-

ing to the condition of the most accurate series (2.25) approximating the predicted

form of the stability loss. The most advantageous ones turn out to be the complete

systems of functions fi. The coefficients Ai are determined by means of one of the

approximate methods.

The most often applied methods of function approximation are the uniform ap-

proximation method, the least-squares deviation method, the collocation method,

etc. However, most of the approximate methods mentioned have a significant se-

ries of drawbacks that make their application difficult. The methods of stability

investigations like Rayleigh-Ritz, Bubnov, Timoshenko, Galerkin, etc. are the most

popular ones.

Rayleigh-Ritz method. The method was proposed by Rayleigh to determine any

vibration frequencies of elastic systems. The theoretical backgrounds of the method

were worked out by Ritz but it was applied for the first time by Bryan for investiga-

tions of stability.

To approximate a function the method introduces the variational equation (2.3)

and, in addition, the functions fi should meet the geometrical boundary conditions.

If, for example, the energetic criterion is used in a mixed form, then one can obtain

the term δ 2Π of the second variation during an analysis of the two infinite closely

located equilibrium positions that are specified by components (w0, F0, q) i (w0 +
w, F0 +F, q+0). After a linearization the energy variation with respect to constants

Ai yields the following algebraic equations:

∂
(

δ 2Π
)

∂Ai

= 0, (i = 1,2, . . .), (2.26)

whose olvability predetermines the critical state of a shell. If the energetic criterion

is used in a mixed form, then the function F can be defined by the solution of defor-

mations compatibility or Eq. (2.25) with an estimated quantity of free parameters.

The function F should then simultaneously satisfy the static boundary conditions.

The method was used in such variant by Papkovich [240].

Bubnov method. The key to this method is utilization of the term of a function

orthogonality in a predetermined region. We recall that the orthogonal functions in

a predetermined region C will be called a function for which an integral of their

multiplication that is fully calculated with respect to the region equals zero. A zero

function, i.e., an identity function that equals zero, will be similarly orthogonal to ei-

ther all fi functions, their derivatives, or the other transformed forms connected with

acting on an fi functional operator. If the expression given in (2.25) is substituted
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in the equation L(w) = 0, then its left-hand side will not be equal to zero, but will

equal some function L(w j), which is called the error function. The requirement for

the function w j to be an exact solution, i.e., to have the zero-valued error function,

forces the orthogonality of L(w j) with respect to either all the functions or to any

operators of those functions.

The above task is usually replaced with a much weaker one, for example, by

saving in the series (2.25) only a finite number of components. In a simple variant

the conditions of orthogonality are as follows:

∫

S

L(w j) fi ds = 0. (2.27)

Those conditions, after integration, yield the system of equations allowing esti-

mation of Ai from (2.25).

Bubnov [62] was the first to use conditions (2.27). A short time later his method

was used by Galerkin for calculation of any rod and plate deformations and for

various boundary conditions [102]. Bubnov’s work was unknown for a long period

of time; therefore the crucial value of the cited work is the unquestionable fact that

many scientists could be acquainted with his orthogonalization method.

Galerkin and Bubnov understood that the orthogonalization procedure should be

conducted in a broader meaning. From the point of virtual displacement analysis

the interpretation of the Bubnov method has been formulated considerably late. If

L(w j) is considered as the left-hand side of the equilibrium equation and from its

formal definition does exhibit the equilibrium of all internal and external forces

acting on a shell element, then the components fi successively express all of the

possible displacements.

In this manner the condition (2.27) approximately defines the zero equality of the

work of all internal and external forces on the virtual displacements. It is assumed

that the dependence (2.27) has a complex character inclusively with a calculation of

boundary integrals. In relation to the orthogonalization the Bubnov method is not

concerned with any variational problems and can be with much success applied for

any differential equations.

Timoshenko method. The modification of the Rayleigh-Ritz method is based on

a direct application of the Dirichlet theorem [335] (see Timoshenko [293]). When

the linearized equation δ 2Π = 0 (2.1) is considered, then it implies the dependence

N = N(Ai) of loading on the parameters Ai. From the condition of minimal loading

∂N

∂Ai

= 0, i = 1,2, . . . , (2.28)

we obtain some algebraic linear equations. In contrast, the critical loadings can be

determined from the condition of existence of a nontrivial solution. In any case of

conservative problems, this method leads to the same conclusions as the Rayleigh-

Ritz method. The efficiency of such methods depends mainly on a proper selection

of approximate functions for a predicted solution. In other words, the accuracy of

any solution increases with the quantity of approximate functions. Since any upper
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function values are taken at the very beginning, the real critical loading can be ap-

proached. By increasing the quantity of free parameters of the unknown functions

the shell is delivered with extra degrees of freedom to obtain more accurate results.

It is actually possible, since a shell is a system of infinite degrees of freedom.

Galerkin methods. The description of Galerkin methods is further based on

Fletcher’s work [100]. Up to now, Galerkin methods were applied in solving many

problems of construction mechanics, machine dynamics, fluid mechanics, etc. Ap-

plying Galerkin’s projection, ordinary partial and integral differential equations have

been successively analyzed. Solution of stationary and non-stationary problems as

well as problems in procedures of searching for eigenvalues have also turned out to

be possible with the use of Galerkin methods. In other words, a problem that can

also be described by some equations can be solved by means of one of the Galerkin

method variants.

The main characteristic features of the Galerkin method can be formulated in the

following compact form. Let a two-dimensional problem be governed by the linear

differential equation

L(u) = 0 (2.29)

in the region D(x,y) and when the conditions

S(u) = 0 (2.30)

are assumed on the curve δD, which constitutes that region’s boundary D. It is

considered in the Galerkin method that the unknown variable u can be sufficiently

well approximated by the solution

ua = u0(x,y)+
N

∑
j=1

a jϕ j(x,y), (2.31)

where ϕ j are the known analytical functions and the aim of introducing the u0 func-

tion is to satisfy any boundary conditions; a j are the coefficients that need to be

determined. Substitution of (2.3.7) in (2.3.5) yields a nonzero error R of the form:

R(a0,a1, . . . ,aN ,x,y) = L(ua) = L(u0)+
N

∑
j=1

a jL(ϕ j). (2.32)

Let us define an inner product as follows:

( f ,g) =
∫ ∫

D

f g dx dy. (2.33)

In application of the Galerkin method some unknown coefficients a j that appeared

in (2.31) are estimated in accordance with the system of equations:

(R,ϕk) = 0, k = 1, . . . ,N, (2.34)
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where R defines the analyzed equation’s error, and ϕk are the same as in Eq. (2.31).

Because of the strong connection of the analyzed example with a linear solution’s

differential equation, Eq. (2.34) can be directly written in a matrix form with respect

to coefficients a j:
N

∑
j=1

a j (L(ϕ j) ,ϕk) = −(L(u0) ,ϕk) . (2.35)

Substituting the values a j (found by solution to Eq. (2.35)) into Eq. (2.31), the re-

quired approximate solution ua may be determined.

The weighting errors method. Evaluation of the role of the Galerkin method

against the background of other computational methods emphasizes the connections

of the method with the others.

Galerkin’s method belongs to a wider class of methods that are recognized as the

weighting error methods (WEM). It can be briefly described in the following way.

Let us assume that solution of the differential equation

L(u) = 0 (2.36)

requires initial I(u) = 0 and boundary S(u) = 0 conditions.

Let us then introduce a rough solution ua satisfying the following equations:

L(ua) = R, I(ua) = RI , S(ua) = Rb. (2.37)

Constructing the approximate equation for ua, selection of one of the following

possibilities is allowed:

(i) The differential equation is exactly satisfied, i.e., R = 0. In this variant the so-

called limiting method is taken into consideration.

(ii) Boundary conditions are exactly satisfied, i.e., Rb = 0. In this variant the inner

method is taken into consideration.

(iii) Both any differential equations and the boundary conditions assumed for them

are not exactly satisfied. In this variant the so-called hybrid method is taken

into consideration.

The WEM method will be described below for the inner variant example, but

the considered equations can be applied in accordance with either the inner or the

hybrid variant. When the inner method is followed the approximate solution ua can

be represented in the form

ua(
−→x , t) = u0(

−→x , t)+
N

∑
j=1

a j(t)ϕ j(
−→x ), (2.38)

where all of ϕ j are the known analytical functions. They are often called test func-

tions, and the expression (2.38) is called a test solution (coefficients a j need to be

found). The function u0(
−→x , t) is chosen possibly in an exact way to satisfy both

initial and boundary conditions. As seen from the solution (2.38), our aim is to

bring (2.36) to the form of a t-dependent differential equation. If we assume that
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ϕ j = ϕ j(t) and a j = a j(
−→x ), then a partial differential equation will be found with

elements −→x representing its arguments. However, if either ϕ j = ϕ j(
−→x , t) or a sta-

tionary problem is analyzed, then a j are constant, causing reduction of Eq. (2.36) to

a system of algebraic equations. To obtain an equation for the determination of a j

the inner product of the weighting errors is taken to equal zero:

(R,wk(
−→x )) = 0, k = 1, . . . ,N, (2.39)

so the above expression defines the introduced name of the method as the com-

plete method. The function wk will be called the weighting function. Estimating the

unknown coefficients a j requires having an appropriate amount of independent re-

lations. Therefore, if the functions wk(
−→x ) are represented in an analytical form then

they should be independent as well. If wk are the parts of the absolute system of

functions, then at N → ∞ Eq. (2.39) allows drawing a conclusion that the R equa-

tion’s error should be orthogonal to all elements of the absolute system of functions.

This conclusion manages an observation showing that R converges to zero (in the

interval N → ∞) in the average sense. If such convergence holds and if (2.38) pre-

cisely defines the satisfaction of boundary conditions, then the convergence of the

approximate solution ua to the exact one (2.36) can be expected in the average sense,

i.e., satisfying limN→∞ ‖ua −ue‖2 = 0.

The introduced convergence can be with luck compared to a uniform conver-

gence that is defined by the condition limN→∞ ‖ua −ue‖∞ = 0, where

‖ua −ue ‖∞ = max |ua −uℓ| .

Equation (2.39) is analogous to its weaker counterpart (2.36):

(L(u),w) = 0, (2.40)

where w represents a general form of the weighting function.

Owing to the definition given in (2.33), the inner product used in (2.39) is con-

tinuous in the region of our interest.

Note that the inner product can be also used in a discrete form:

( f ,g) =
N

∑
i=1

figi. (2.41)

Analogously derived considerations provide the weighting error discrete method.

In practice, putting into the use the calculative quadratures for solving Eq. (2.39),

the problem is reduced to the application of the discrete method.

Equation (2.39) is much more specific, especially with respect to a very impor-

tant feature that allows joining into a single integrity many, to all appearances, not

connectable methods. The difference between any separate methods is reduced to

the proper choice of miscellaneous weighting functions.
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2.3.1 Subdomains Method

The region in hand is now split into the n subdomains D j that are supposed to cover

each other, and one obtains

wk =

{

1 in the region Dk,

0 out of the region Dk.
(2.42)

The main specific property of the method is that it reduces to an application

of the classical approach using (conservation method) derivation of some partial

differential equations. In fact, this method overlaps with the method of finite volumes

commonly adopted to the problems of mechanics of gases and fluids, as well as in

the theory of heat conduction. For example, during an application of the law of

conservation of a mass located in some finite volume of a compressible liquid, the

whole mass flow running through a surface corresponds to the diminishing rate of

that flow’s volume mass.

A mathematical formulation corresponding to the method of finite volume can

be written as follows:
∫

s

ρunds = − ∂

∂ t

∫ ∫

v

ρ dv. (2.43)

Using the Green formula, we have

∂

∂ t

∫ ∫

v

[

∂ρ

∂ t
+div(ρ−→u )

]

I dv = 0, (2.44)

which corresponds to the subdomain method applied to the finite volume v. As the

representation of finite differences is analyzed a solution to the equation (2.38) is

given in an implicit form.

2.3.2 Colocation Method

If the weighting function is proposed as

wk(
−→x ) = δ (−→x −−→x k), (2.45)

where δ represents the Dirac delta function, then a solution to Eq. (2.39) is reduced

to the condition R(−→x k) = 0. A similar property can be matched for most finite dif-

ferences methods: collocation method in an extremal point, methods of low order or

orthogonal collocations, and many others.
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2.3.3 Least-Squares Method

In this method a weighting function is expressed in the following form:

wk =
∂R

∂ak

, (2.46)

where the coefficients ak appearing in (2.38) are quite unknown. Assuming that all

of wk are in agreement with (2.46), which is equivalent to the condition of choosing

ak, the inner product possesses a minimum. The proposed method is particularly

useful in the solution to many stationary problems. Moreover, it is usually expected

there that the minimal square representation of an equation’s solution error implies a

smallness of the expression ‖ua −ue‖2. An application of the least-squares method

to the non-stationary problems represented by two forms visible in (2.36) and (2.37)

does not have any deeper justification.

For the aim of right strengthening of the method under consideration, it is manda-

tory to introduce two kinds of test functions for approximation either of a time or a

spatial behaviour. Coefficients a j in (2.38) are in such an approach constant and, in

addition, the inner product (2.39) extends on integration in the time space. If the in-

tegration takes place in an infinite time space, then a negligible meaning is assigned

for the earliest times, so at this stage the solution is becoming slightly significant.

In principle, the least-squares methods with weights could be constructed in a

way to introduce an extra weight for the improvement of a solution’s behavior in the

much earlier time interval. However, the exact criterion connected with realization

of that procedure is not obvious.

2.3.4 Method of Moments

In this case, the weighting function takes the following form:

wk(x) = xk, k = 0, . . . ,N. (2.47)

This method has been (for the first time) applied to find a solution to the prob-

lem of a non-linear diffusion. It has recovered a valuable effectiveness also in

an application of the method to solve equations of a laminar thin-walled layer,

where it was utilized to find an analytical representation of variations of the liq-

uid molecules’ velocity in a specific diagonal direction to the thin-walled layer.

Consequently, a momentum-impulse method has been elaborated that was succes-

sively exploited in various computations of laminar as well as turbulent thin-walled

layers.
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2.3.5 Galerkin Method

In this case, the analyzed weighting function is selected from the examined family

of functions in the following way:

wk(
−→x ) = ϕk(

−→x ), k = 1, . . . ,N. (2.48)

It is worth noting that in spite of the application of the Galerkin method, Mich-

lin also mentioned in his work [209] the famous Bubnov name. On the basis of a

variational analytical approach, Bubnov expanded the idea of his own solution on

the eigenvalues, and even proposed a principle of the weighting functions orthog-

onalization. Taking into consideration the fact that the Galerkin method does not

require the above principle, and besides is not connected with a variational problem

formulation, then it can be satisfactorily treated completely independent from the

Bubnov one.

Both weighting and test functions ϕ j(x) should be selected from a number of first

N functions of the complete system of functions. In essence, it states the necessary

convergence condition for an exact solution but assuming that N → ∞.

We need to underline once more the conditions that must be satisfied when deal-

ing with the traditional Galerkin method.

The weighting functions wk are selectable from the same family of functions as

the test functions ϕ j.

(i) The weighting and test functions should be linearly independent.

(ii) The weighting and test functions should be composed of the first N components

of the complete system of functions.

(iii) The test function should satisfy boundary conditions (as well as some initial

conditions, if they exist) in an exact way.

Condition (i) specifies the Galerkin method, and to ensure the possibility of ob-

taining any independent equations for the determination of the unknown coefficients

a j the condition (ii) should be comprehensively satisfied. Conditions (iii) and (iv)

are joined by the method’s effectiveness, but lack of their satisfaction reduces the

effectiveness of this method.

At the very beginning, the application of the classical Galerkin method was based

on either manual calculations or an electronic calculator. Therefore, a small number

of any unknown coefficients a j was usually used to ensure an acceptable calcula-

tion’s accuracy.

It is enough to assume that conditions (i)–(iv) are satisfied and a naturally derived

question appears: is it possible to increase the effectiveness of the Galerkin method

used?

First of all, one could predict that a selection of some test functions will signifi-

cantly influence the accuracy of the results. As observed in practice, in comparison

to the application of the higher order global functions, the use of both test and

weighting local functions gives some less accurate eigenvalues.
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Observe that an application of the test functions being orthogonal in a consid-

ered region significantly reduces the entire effort needed to find a solution for a

sufficiently high N. One can predict that a selection of either weighting or test func-

tions based on information concerning forms of exact solutions may increase the

method’s effectiveness.

Nevertheless, it is obvious that there is no need to introduce any errors to the

Galerkin solution below a level where the desired calculation’s accuracy would be

conditioned by other errors. Continuing to make an allowance for taking any nonlin-

ear terms gives the possibility of finding the more accurate solutions as N is chosen

extremely small. Today, the Galerkin method variants, i.e., a combination of the

Galerkin and spectral methods, are characterized by a high accuracy of the obtained

solutions with respect, to a unity computational time of the computer-assisted calcu-

lations. Some values of the required solution’s accuracy are, for instance, 0.1–1% for

the modern Galerkin methods and approximately 1–10% for the traditional Galerkin

methods. At present, the number of unknowns usually subjected to determination

ranges from 10,000 to 20,000. At this level of computation, the concrete choice

of any test functions seems to be less important especially to the application of

the Galerkin method being connected with the finite differences method. The right

choice of test functions is very important in the spectral method, essentially influ-

encing the convergence rate of that method.

There also exists a modification of Galerkin method called the generalized

Galerkin method. In this variant of the discussed method the weighting function

appearing in Eq. (2.39) is defined by the following expression:

wk(
−→x ) = Pk(

−→x ), (2.49)

where Pk(
−→x ) is the analytical function analogous to the weighting function ϕk. It

contains some additional terms or multipliers, which are necessary for any other

requirements connected with the searched estimated solution. Introduction of the

generalized Galerkin method has induced a cancellation of many imperfections of

the classical Galerkin method. This method has taken into account linear finite el-

ements that were applied in investigations of the convective flows, for which any

estimated algebraic equations have some disadvantageous features pertaining to the

solution’s instability.

2.3.6 A Comparison of the Weighting Error Methods

Let us analyze further the ordinary differential equation

dy

dx
− y = 0 (2.50)

with a boundary condition y = 1 at x = 0. We are searching for the approximate

solution in the region 0 ≤ x ≤ 1, but the exact solution has the form y = ex.
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The exact solution (often called the test solution) is of the form

ya = 1+
N

∑
j=1

a jx
j. (2.51)

By using that approach the test functions x j allow one to satisfy any uniform

boundary conditions.

A conscious presentation of the solutions that meet the imposed boundary con-

ditions can be used as an exemplary realization of the traditional Galerkin method.

The described method permits one to obtain as much as possible an exact solution

at the settled upon number of unknowns N. Equation (2.51) can be also written in

the form

ya =
N

∑
j=0

a jx
j, (2.52)

where the coefficient a0 has been selected in a way to satisfy the boundary condition,

i.e., a0 = 1.

To find a solution to the considered problem various types of the weighting er-

rors method were applied. An answer to the question was found regarding variants

of the method, which provides a high accuracy and is besides easy to use in a prac-

tical realization. In the sense of this selection criterion the test functions method is

equivalent to the Galerkin method.

Applying the least-squares method (2.46) with a solution consisting of any three

terms and using formulas (2.51) and (2.50) has led to the following system of

equations:
⎛

⎜

⎜

⎝

1
3

1
4

1
5

1
4

8
15

2
3

1
5

2
3

33
35

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

a1

a2

a3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1
2

2
3

3
4

⎞

⎟

⎟

⎠

. (2.53)

An application of the Galerkin method represented by (2.51) produces the fol-

lowing system of equations:

⎛

⎜

⎜

⎝

1
2

2
3

3
4

1
6

5
12

11
20

1
12

3
10

13
30

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

a1

a2

a3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1
1

1
2

1
3

⎞

⎟

⎟

⎠

. (2.54)

An application of the method of a subregions zoning onto the parts included

between 0–1/3, 1/3–2/3, and 2/3–1 gives the system of equations:

⎛

⎜

⎜

⎝

5
18

8
81

11
324

3
18

20
81

69
324

1
18

26
81

163
324

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

a1

a2

a3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

1
3

1
3

1
3

⎞

⎟

⎟

⎠

. (2.55)
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An application of the collocation method, on the assumption that the error is

estimated in points 0.0, 0.5, and 1.0, leads to the following system of equations:

⎛

⎝

1 0 0

0,5 0,75 0,625

0 1 2

⎞

⎠

⎛

⎝

a1

a2

a3

⎞

⎠=

⎛

⎝

1

1

1

⎞

⎠ . (2.56)

All of the solutions that were possible to find by means of the described methods

have been there supplemented with “an optimal L2,d ,” which was incorporated by

a selection of the parameters a1, a2, a3, which in a turn guarantee a minimal error

of the discrete value L2 defining a norm between the exact and the approximate

solution, i.e., the minimization of y = ex has to be kept. In this case, the solution

with optimal L2,d describes the best one of all the possible solutions (with the use

of the discrete norm L2), when an approximate solution (2.51) contains only three

fixed constants. It seems more logical to compare various weighting error methods

with the analyzed solution than with its exact counterpart.

Performing an analysis of errors ‖ya − y‖2,d a conclusion can be drawn that

both Galerkin least squares and subregions methods drive to nearly optimal results.

Furthermore, the collocation method brings a solution’s estimation of a bit lower

accuracy, though its exactness depends on the proper choice of control points.

If one takes as the control points the Gauss type points like x = 0, 0.1127, 0.5,

0.8873, then an equation as well as the coherent Galerkin method’s solution can be

found. The result includes then a solution that was obtained with the application of

Taylor series and comprising the condition of an exact solution only at point x = 0.

As shown in Fig. 2.7, with respect to magnitude and error distribution, the

Galerkin solution is located very close to the optimal one. These solutions, which

were found by means of both Taylor series and the collocation method, have in this

manner all errors negative.

If a choice must be made between one of the weighting error methods and with a re-

striction in our considerations only to the problems of a small number of unknowns (in

the case of manual computations), then the following two aspects should be respected.

First of all, it should be determined which one of the methods will be the most ad-

vantageous in accomplishing the concrete task. Table 2.1 could be very useful here.

Second, the exactness of the recovered results frequently depends on the choice

of test functions. The following direction can be used here: the test functions should

exactly satisfy any boundary and initial conditions and, simultaneously, should be the

simplest ones to use for the adequate function selection. If a special situation occurs,

then it is recommended to use the problem’s symmetry. Any exact solutions of other

similar problems can make easier estimation of the correct choice of the test solution.

Orthonormal functions fit very well in applications of the Galerkin method. Their

most popular application of a test function is realized for polynomials.

If one assumes that even at small values of N the problem’s solution is found via

a computer, then adoption of the Chebyshev polynomials is recommended none the

less. The right choice of the class of test functions becomes quite a creative process.

Because of computer power, it presently does not have as much importance as it had

earlier.
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Fig. 2.7 An error distribution

for the three-dimensional

solution to the equation

dy/dx− y = 0
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2.3.7 Relations to Other Methods

We will now be concerned with situations when the Galerkin method relates to

methods other than the weighting error methods discussed earlier. First of all, rela-

tions of the type can appear in the class of problems that are solvable with the use

of the splitting variables procedure. We can meet this problem if the test functions

that are used in the Galerkin method are replaced with any eigenfunctions of the an-

alyzed problem; those obtainable by means of the splitting variables procedure are

an example. Practically, such a solution is realized in the problem of N unknowns,

Table 2.1 A subjective comparison of the results received from the application of various weight-

ing errors methods

METHODS

Features Galerkin Least squares Subregions Collocation

Accuracy very high very high high temperate

Simplicity temperate low high very high

Remarks Equivalent to the

Ritz method

Not to apply in

eigenvalues

and

evolutional

problems

Equivalent to

finite volumes

methods

Orthogonal

collocation

leads to a high

accuracy
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so the application of the Galerkin method with N-termed approximations will guide

the solutions coinciding with those found by means of the splitting variables proce-

dure. In the case of the orthogonal collocation, the test functions are extracted in a

way to meet the following condition of orthogonality:

b
∫

a

w(x)Pi(x)Pj(x) dx =

{

1 for i = j,

0 for i �= j,
(2.57)

at which zeros of the function PN(x) are taken as the collocation points. If the

Galerkin method for weighting functions w(x) and the test functions Pj(x) could

be applied in finding a solution of the linear differential equation L(u) = 0, then the

inner product (2.39) takes the form

b
∫

a

w(x)Pk(x)L(u) dx = 0. (2.58)

It seems that a scheme of numerical integration could be elaborated. By means of

the scheme the function’s zero values PN(x) would be taken in the capacity of some

node points and the integral in (2.58) then would be calculated in an exact way. It

means that instead of (2.58) one can use the following finite sum:

∑
i

Hiw(xi)Pk(xi)L(u(xi)) = 0, (2.59)

where the coefficients Hi are weights in the quadrature scheme. It must be pointed

out that the solution to equation L(u) = 0 with application of the orthogonal collo-

cation method can be represented in the form

L(u(xi)) = 0. (2.60)

It goes without saying that a solution found by means of the orthogonal colloca-

tion method coincides with its Galerkin method equivalent.

The most crucial relation occurs between the Galerkin and Rayleigh-Ritz meth-

ods. It has been shown in a work [98] by Finlyson that there always exists a

possibility to fit a Galerkin method correspondingly to a Rayleigh-Ritz variational

method, though the inverse rule is not true. There are many examples of problems

for which an appropriate variational principle does not exist even for cases when the

Galerkin method can be successfully applied. For the purpose of a deep explanation

of the equivalence of both the Galerkin and a variational method, more attention

should be paid to the following principal observation. The approximate solution

to a variational problem that has been estimated with the use of the Rayleigh-

Ritz method agrees with the exact ones in a lower or upper interval, which is also

obligatory for the Galerkin method. The property mentioned is useful in any error

estimation procedures.
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A solution of the differential equation

A(u) = f , (2.61)

in which A denotes the positively defined operator, is equivalent to a task of finding

of the minimum being defined by the functional

F(u) = (A(u),u)−2(u, f ). (2.62)

An approximated solution to the above functional is found by means of the Rayleigh-

Ritz method in the form

ua(
−→x ) =

N

∑
j=1

a jϕ j(
−→x ). (2.63)

The test functions ϕ j(
−→x ) should belong to the class of the possibly low-order com-

plete system of functions and should be linearly independent as well. Substitution

of (2.63) into (2.62) provides a relation on N of the function F . The unknown coef-

ficients of N, means a1, a2, . . . , av have the form

F(ua) =

{

N

∑
j=1

a jA(ϕ j),
N

∑
j=1

akϕk

}

−2

{

N

∑
j=1

a jϕ j, f

}

=

{

N

∑
j=1

N

∑
k=1

(A(ϕ j),ϕk)a jak −2
N

∑
j=1

(ϕk, f )a j . (2.64)

Minimization condition for F(ua) requires meeting

∂F(ua)

∂ak

= 0, k = 1,2, . . . ,N. (2.65)

Using (2.64), which can be rewritten as

F(ua) = (A(ϕk),ϕk)a
2
k +2 ∑

j �=i

(A(ϕ j),ϕk)a jak −2(ϕk, f )ak,

we obtain
∂F(ua)

∂ak

= 2
N

∑
j=1

(A(ϕ j),ϕk)a j −2(ϕk, f ) = 0

or
N

∑
j=1

(A(ϕ j),ϕk)a j = (ϕk, f ), k = 1,2, . . . ,N,

which with respect to the coefficients a j reduces our problem to a linear system of

equations. If the Galerkin method is applied to Eq. (2.61) and the second expres-

sion (2.63) could be treated as the testing solution, then as a consequence the last

equation results directly. It means that the Galerkin and Rayleigh-Ritz methods are
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equivalent to each other. On the other hand, the convergence of the solution ob-

tained by means of the Rayleigh-Ritz method to the exact solution with an infinite

increase of N in (2.63) is commonly known [132], if only ϕ j in the expression are

the elements of the complete system of functions.

It is also worth discussing the connection of the Rayleigh method with the Fourier

transform. Let us examine the equation

A(u) = f , (2.66)

where A is a symmetric and positively defined operator. A test solution regarded to

the Galerkin method is as follows:

ua =
N

∑
j=1

a jϕ j(x). (2.67)

This solution is based on test functions being orthogonal in the energetic sense

[200], i.e., functions

(A(ϕ j),ϕk) =

{

0 for j �= k,

1 for j = k.
(2.68)

Application of the Galerkin method to Eq. (2.66) produces

N

∑
j=1

(A(ϕ j),ϕk)a j = ( f ,ϕk), (2.69)

or after using conditions (2.68), where ak = ( f ,ϕk), the solution (2.67) takes

the form

ua =
N

∑
j=1

( f ,ϕ j)ϕ j(x). (2.70)

If with respect to energy an energetically orthonormal system of functions ϕk devel-

ops a complete system, then for an arbitrary function u (i.e., for an arbitrary solution

to Eq. (2.66)), the Fourier series has the form

u f =
∞

∑
k=1

(A(u),ϕk)ϕk(x), (2.71)

and are convergent with respect to the energy to u. Convergence in an energetic

sense indicates that

(A(u−u f ),(u−u f )) −−−→
N→∞

ε, (2.72)

where ε is an arbitrarily chosen positive constant value. Condition (2.68) yields

that the Galerkin solution (2.70) is the Fourier solution (2.71) truncated at some

finite value N. As a result, the equivalence with a truncated Fourier series causes

an energetic convergence of the Galerkin solution. Instead of the fully advantageous

decomposition of the energetic orthonormal functions any constructional difficulties

of such functions appear.
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2.3.8 Theoretical Properties

After solution of problems that can be formulated in an equivalent variational form,

those referred to the Rayleigh-Ritz convergence properties can be transferred to the

Galerkin method. Let us suppose that our task is focused on the solution of the

following operational equation:

A(u) = f , (2.73)

where an operator A is symmetrical and positively defined. One can demonstrate

[200] that Eq. (2.73) has only one solution. Moreover, the problem of the solution

to the equation can be substituted by the problem of searching for the function that

minimizes the following functional:

F(u) = (A(u),u)−2(uu, f ). (2.74)

Using any energetic product’s similarities, the energetic product connected to the A

operator can be presented in the form

[u,v] ≡ (A(u),v). (2.75)

Subsequently, if ue represents an exact solution to Eq. (2.73), then (2.74) can be

written as

F(u) = [u,u]−2[ue,u], (2.76)

or

F(u) = [u−ue,u−ue]− [ue,ue], (2.77)

or

F(u) = ‖ u−ue ‖2
A −‖ ue ‖2

A , (2.78)

where the symbol ‖‖A denotes the energetic norm defined by

‖u‖A = (A(u),u)1/2. (2.79)

If u = ue, then the functional F(u) reaches the minimum, but, in fact, this minimal

value is proportional to energy. The energetic norm ‖u‖A is said to be finite if the

operator A is positive and limited from below, as well as if the free term f has a

finite norm. If A is the positive and limited from below the operator

(Au,u) ≥ γ2 ‖ u ‖2
2 , (2.80)

where γ is positive and constant, then the series of functions uk, k = 1,2, . . ., repre-

sents the minimizing series if

lim
k→∞

F(uk) = d, (2.81)

where d denotes infF(u), i.e., defines as low as possible the situated set F . Any

sequence uk satisfying condition (2.81) is with respect to energy convergent to the
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solution of Eq. (2.73). The term of an energetic convergence means, that uk(x) con-

verges to ue if

‖ uk −ue ‖A → ε at k → ∞, (2.82)

where ε is the arbitrarily chosen small positive constant. It could be shown that the

Rayleigh-Ritz method allows one to obtain the series of functions uk(x) convergent

in the energetic sense to ue within the condition that ue is the finite energy solution.

Making the proof of convergence of the Rayleigh-Ritz method, the test functions in

(2.63) should satisfy these two conditions:

(i) The functional series ϕ1, ϕ2, . . . , ϕ j, . . . , ϕN(x) is the complete system with

respect to energy.

(ii) The functions ϕ j are linearly independent. Condition (i) is strong in a mathe-

matical sense but, as Michlin proves, it can be also partially weaken.

It was shown earlier that the Rayleigh-Ritz solution that minimizes functional

(2.74) coincides with the Galerkin solution to Eq. (2.73). It results from the observa-

tion that a class of problems described by Eq. (2.73) is characterized by convergence

properties of both Rayleigh-Ritz and Galerkin solutions.

In the case of the Rayleigh-Ritz method and resulting from the Galerkin method,

Kantorowich and Krylov [132] estimated an maximal error of the N element solu-

tion to the ordinary differential equation:

d

dx

(

p
dy

dx

)

−qy = f (2.83)

in region 0≤ x≤ 1 with boundary and additional conditions y(0) = y(1) = 0; p(x) >
0, q(x) ≥ 0, respectively. According to Kantorovich and Krylov, the solution to the

problem is equivalent to the following functional’s minimization:

I(y) =

1
∫

0

[

p

(

dy

dx

)2

+qy2 +2 f y

]

. (2.84)

Solutions obtained by the Rayleigh and Ritz method (and that of Galerkin also)

in the case of Eq. (2.83) will be convergent, as shown by Kantorovich and Krylov

[132] to an exact solution if and only if the test solution

ya =
N

∑
k=1

akϕk(x) (2.85)

consists of any test functions belonging to a complete system of functions. The

choice of function ϕk for the considered problem should satisfy the following in-

equalities:

∣

∣

∣

∣

∣

y(x)−
N

∑
k=1

akϕk(x)

∣

∣

∣

∣

∣

N→ε

< ε,



72 2 Static Instability of Rectangular Plates

∣

∣

∣

∣

∣

dy

dx
(x)−

N

∑
k=1

ak

dϕk

dx
(x)

∣

∣

∣

∣

∣

N→ε

< ε, (2.86)

where ε is arbitrarily small positive constant. Kantorovich and Krylov analyzed the

following test functions:

ϕk = sin kπx ϕk = (1− x)xk, k = 1,2, . . . ,N. (2.87)

If we assume that sine functions are the ones we are testing, then we obtain the

following estimation of the error’s overfilled interval:

‖ya(x)− y(x)‖∞ ≤ L

N +1
, (2.88)

where

L =

{‖p‖∞ +‖q‖∞

(N +1)2π2

}1/2 [∥
∥

∥

∥

d p

dx

∥

∥

∥

∥

∞

+
‖q‖∞

π
+π pmin

]

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
∫

0

f 2dx

2π4 pmin

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

1/2

and

‖‖∞ ≡ max || .
A more accurate estimation of the error interval is made for the particular case

p(x) = 1, so we have

‖ ya(x)− y(x) ‖∞ ≤ { 1−0,25‖ q ‖∞ [6π(N +1)]−1/2×
[

1+
4
√

2

N3/2π2

]

[

1− ‖ q ‖∞

π2(N +1)2

]−1

}A1/2,

where

A =
2‖ q ‖∞

π3(N +1)3

⎡

⎣

1
∫

0

f 2

q
dx

⎤

⎦ . (2.89)

Michlin [209] considered an equation generally overlapping with a set of test

functions defined by Eq. (2.83). However, with slightly smaller requirements de-

voted to the test functions, they are generally precised by expression (2.85). We set

a condition to secure that the system ϕk is the complete one, which confirms that

Eq. (2.85) should be sufficiently convenient to model any continuous functions and

its derivatives to achieve the mean convergence on the interval 0 ≤ x ≤ 1 satisfying

the condition

lim
N→∞

1
∫

0

∣

∣

∣

∣

dya

dx
− dy

dx

∣

∣

∣

∣

2

dx < ε, (2.90)



2.3 Bubnov-Galerkin Methods Devoted to Shell Stability Investigations 73

where ε is arbitrarily small positive constant. Michlin showed by an application

of the Galerkin method that y is uniformly convergent to y. In the next step he

considered the more general differential equation

(−1)mu(2m) −λK(u) = f (x), (2.91)

in which K(u) is the linear differential operator of order 2m−1, and u(2m) denotes

a short notation for d2m/du2m.

The solution is searched in region a≤ x≤ b at the following boundary conditions:

u(a) = u′(a) = . . . = u(m−1)(a) = 0,

u(b) = u′(b) = . . . = u(m−1)(b) = 0. (2.92)

The operator A0 is defined in the following manner:

A0(u) = (−1)mu(2m). (2.93)

A Galerkin type solution is sought because the test functions are a main part of

the complete system in H0, i.e., in the Hilbert space with a finite energetic norm. In

other words, we predict that the Galerkin solution is convergent along the operator’s

A0 energy. According to Michlin, the Galerkin solution is uniformly convergent to

the derivatives of order m−1, as well as for the derivative of order m the mentioned

convergence results, in the mean sense, in the positiveness and limiting from below

of the operator A0.

2.3.9 Computational Advantages of Galerkin Methods

The methods that have mainly changed the traditional Galerkin method developed

in two independent branches, although the common feature of both cases was to

secure maximal effectiveness of computations.

The first direction is relevant to the Galerkin and finite elements methods and

has developed around an idea of local functions, i.e., weighting and test functions of

low orders. In this field, the most often used mathematical types of functions were

established by polynomials.

In advance, the entire effort made on the ground of construction of the combined

polynomial-type solutions related from somewhere else to Fourier series were not

entirely successful. When these piecewise linear polynomials were chosen as the

weighting or test functions, then the obtained algebraic equations resulting from

calculations of first- and second-order derivatives coincided with any adequate finite

difference expressions.

If all the weighting functions could be referred to any well precised geometrical

point, then a linear dependence of the required algebraical equations can be found.
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If we restrict our study to the introduction of weighting functions of which region of

specification is closed by a given mesh node, then we obtain a system of algebraical

equations in matrix form. The main feature of the system is that the number of

operations required for its matrix factorization as well as during evaluation of any

nonlinear terms will be of the order O(N).
By introduction of a test solution defined by finite elements and with the use

of the isoparametric approach a direct solution of problems for the objects (any

regions) of complex shapes is possible, particularly for other objects having bound-

aries that are not coincident with coordinate axes.

The second direction is connected with spectral methods, which similarly to the

traditional Galerkin method belong to the global methods. It means that both our

selected weighting and test functions comprise the whole solution region.

If we consider that the weighting and test functions are orthogonal, then with

regard to a definition, the weighting functions will be linearly independent equally to

the obtained algebraical equations. Except where terms of the matrix are calculated

as any products of both weighting and test functions, then in the case of orthogonal

functions we obtain some diagonal matrix elements.

Owing to the above, an economical aspect of the method is apparent, consisting

in a reduction of dimensions of the manipulated matrices. In the case of computa-

tion of any nonlinear terms, it in addition introduces a transformation allowing in a

physical surface calculation of the nonlinear factors.

2.3.10 Summary

In conclusion, some essential remarks on the Bubnov–Galerkin type method are

formulated below:

1. From the point of view of the normalization procedure the Bubnov method is

not connected to any variational problem and can be applied to any differential

equations (see discussion on p. 56).

2. We wrote about the role of Galerkin in the application and propagation of the

Bubnov’s method on p. 56.

3. In 1941 when Galerkin (1871–1945) was alive Papkovich had written [239,

p. 838] “It demands to point out that this often used method assigned to the

Galerkin’s name was for the considered problem applied a bit earlier by Bub-

nov and some other authors. It was long before manifesting of Galerkin’s work

in 1915.”

4. In the Collection of Galerkin’s Scientific Works [103, p. 12] this sentence could be

found: “Two years before publication of Galerkin’s work Bubnov has proposed

a similar approach.”

5. Grigoluk [116] noted that Bubnov in his original work indicated some differ-

ences between the two orthogonalization and energetic methods. In a sense he
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proposed an alternative method. It should not be strange that on this background

Bubnov did not merge his method with any variational task. The Bubnov method

was originally formulated as the method of pure orthogonalization. It consti-

tutes the great achievement that ended the existing domination of Rayleigh and

Ritz’s views and their influence on a wide circle of mathematicians and mechan-

ical engineers, because the studied problems had been treated only in the range

of behavioral analysis of conservative systems. Thanks to Bubnov’s approach it

was possible to provide a solution to the non-coupled differential equations and

to analyze the non-conservative systems described by differential equations. In

other words, for the first time Bubnov formulated an algorithm of solving such

systems that could not been solved within the range of the concept proposed by

Rayleigh.

6. It is clear on the basis of the performed considerations that the method known in

the former Soviet Union literature as the Bubnov-Galerkin method and, in con-

trast, in the West as the Galerkin method, should be called the Bubnov method,

which would be fully fair.

Today we are dealing with a huge number of particular aspects of application of

the Bubnov orthogonalization method. To apply the Bubnov method correctly it is

mandatory to follow some important laws and rules. Disregarding them can produce

incorrect results. For instance, identical transformations of differential equations

cannot be made and, in the same sense, division or multiplication of these equations

by a number argument is not permitted as well. Formally, either an increase or de-

cline of any equation’s order causes a flaw in the character of an orthogonalization

and with respect to any functions or their derivatives the process must be also taken

into consideration.

It is assumed in the original formulation of the Bubnov method that boundary

conditions of an approximated function are met. However, it is presently known that

Bubnov’s algorithm can be used in a slightly different modification. For example,

after the post-buckled rod problem is solved the algorithm under investigation di-

rectly results from the Lagrange principle of possible displacements, where at an

equilibrium point a variation of potential of the internal or external forces equals

zero and after integration by parts the term regarded to the problem’s boundary

conditions appears. It suggests a possibility of allowance of those up-to-now not

satisfied boundary conditions, which are contained in the expression describing any

approximate functions, but the analyzed orthogonal differential equation being in

connection with a definite boundary integral needs to be equalized to zero, and

where boundary conditions are not met.

The Bubnov method is now popular and many works have been devoted to either

its generalization or improvements (see [115]).

On the basis of the Bubnov method we will describe in the next part of this

section an algorithm of investigation of the stability of shells.

However, respecting existing tradition, we will henceforth call the method the

Bubnov-Galerkin method.
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2.4 Bubnov-Galerkin Method of High-Order Approximations

and the Numerical Algorithm

During solution of problems of static stability we make use of the so-called third

variant of the static method. Using a direct solution to some nonlinear equations we

will principally focus here on presentation of another alternative method leading to

the determination of critical loadings. In this case, there is no need to partition the

problem at hand onto the first concerning analysis of the shell’s initial state and the

second corresponding to the analysis of the problem’s stability as it takes place after

using the classical method of static analysis. Critical loadings are determined on the

basis of some critical points simultaneously with the use of q–v characteristics or

in some bifurcational points of a nonlinear solution. This variant of the solution of-

ten turns out to be more difficult during any realizations of numerical calculations,

but allows one to obtain more information about that shell’s behavior. Applying this

method, one can find either lower or upper values of critical loading. First low crit-

ical loading is determined by the loading leading to a post-buckling that is directed

to outside and that appears there from the first over-critical equilibrium position.

The loading, in comparison to the traditionally estimated low critical loading as the

smallest one from all possible lower loadings, can be assumed as a characteristic

value that is useful in estimations of the stability of shells.

For the purpose of finding a solution to nonlinear equations, one can use the

methods of numerical integration, various modifications of the Newton method,

methods of reducing boundary problems to the Cauchy problems, methods of suc-

cessive approximations, finite differences methods, Rayleigh-Ritz methods, Bubnov

method, etc.

To investigate the influence of non-homogeneity of a shell on its behavior, we

will assume a similar kind of problem for which boundary conditions take the form

w = 0,
∂ 2w

∂x2
= 0, F = 0,

∂ 2F

∂x2
= 0 at x = 0;1,

w = 0,
∂ 2w

∂y2
= 0, F = 0,

∂ 2F

∂y2
= 0 at y = 0;1. (2.94)

For convenience, let us denote the left-hand side of Eqs. (1.57)–(1.58) by Φ1,

and Φ2, respectively. It allows us to rewrite these equations as follows:

Φ1

(

w,F,
∂ 2w

∂ 2x
,

∂ 2F

∂ 2x
,q, . . .

)

= 0,

Φ2

(

w,F,
∂ 2w

∂ 2x
,

∂ 2F

∂ 2x
, . . .

)

= 0. (2.95)

The above equations should be supplemented with the appropriate boundary con-

ditions. An exact solution of such defined boundary problem is not possible.
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Some miscellaneous approximate methods are applied to find a solution for

this kind of problem formulation such as the Ritz-Timoshenko variational method,

Bubnov-Galerkin method, the finite differences method, and many others.

It has been depicted in monograph [159] that for the case of investigations of the

statical stability of a shell some satisfactory results are generated by the Bubnov-

Galerkin variational methods and the ujeduolicic-Vlasov methods. However, with

respect to the simplicity of realization, the Bubnov-Galerkin method turns out to

be much more convenient. In our further investigations we will solve the initial

equations by means of the higher order Bubnov-Galerkin methods. In connection

with that, the functions w and F imposing any boundary conditions will be sought

in the following form:

w = ∑
i, j

Ai jϕi j (x,y)

F = ∑
i, j

Bi jψi j (x,y) (2.96)

i = 1,2, . . . ,Mx; j = 1,2, . . . ,My.

Applying the Bubnov-Galerkin procedure to (2.95) we obtain

1
∫

0

1
∫

0

Φ1ϕvz (x,y)dx dy = 0,

1
∫

0

1
∫

0

Φ2ψvz (x,y)dx dy = 0, (2.97)

v = 1,2, . . . ,Mx; z = 1,2, . . . ,My,

or when respecting (2.96) we have

∑
vz

[

∑
i j

Ai jI1,vz i j −∑
i j

Bi jI2,vz i j +∑
i j

qI3,vz i j

−∑
i j

Ai j ]∑
kl

BklI4,vz i j kl

]

= 0,

∑
vz

[

∑
i j

Ai jI7,vz i j +∑
i j

Bi jI5,vz i j +∑
i j

Ai j ∑
kl

AklI6,vz i j kl

]

= 0, (2.98)

v, i,k = 1,2, . . . ,Mx; z, j, l = 1,2, . . . ,My.

The sign ∑
vz
[∗] at each system’s Eq. (2.98) indicates that one of these equations

represents a system that is composed of vz of such types of equations and the inte-

grals of Bubnov-Galerkin method will take the form:
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I1,vz i j =

1
∫

0

1
∫

0

E

12(1−µ2)

[

1

λ2

∂ 2ϕi j

∂x2

∂ 2ϕvz

∂x2
+λ2 ∂ 2ϕi j

∂y2

∂ 2ϕvz

∂y2

]

+2(1−µ)
∂ 2ϕi j

∂x∂y

∂ 2ϕvz

∂x∂y
+ µ

([

∂ 2ϕi j

∂x2

∂ 2ϕvz

∂y2
+

∂ 2w

∂y2

∂ 2ϕvz

∂x2

])

dx dy,

I2,vz i j =

1
∫

0

1
∫

0

−
(

ky

∂ 2ψi j

∂x2
+ kx

∂ 2ψi j

∂y2

)

ϕvz dx dy,

I3,vz i j =

1
∫

0

1
∫

0

ϕvz dx dy,

I4,vz i j kl =

1
∫

0

1
∫

0

L(ϕi j,ψkl)ϕvz dx dy,

I5,vz i j =

1
∫

0

1
∫

0

a1

[(

λ2 ∂ 2ψi j

∂y2
−µ

∂ 2ψi j

∂x2

)

∂ 2ψvz

∂y2

+

(

1

λ2

∂ 2ψi j

∂x2
−µ

∂ 2ψi j

∂y2

)

∂ 2ψvz

∂x2
+2(1+ µ)

∂ 2ψi j

∂x∂y

∂ 2ψvz

∂x∂y

]

dx dy,

I6,vz i j kl =

1
∫

0

1
∫

0

1

2
L(ϕi j,ϕkl)ψvz dx dy,

I7,vz i j =

1
∫

0

1
∫

0

−
(

ky

∂ 2ϕi j

∂x2
+ kx

∂ 2ϕi j

∂y2

)

ψvz dx dy. (2.99)

If a transversal loading is imposed on a part of shell surface, then for some cases

the integrals (2.99) with exclusion of I3,vzi j are calculated with respect to the whole

mean surface of the shell.

Finally, we find from Eq. (2.98) the system of algebraic equations of order 2(Mx ∗
My), but the first half of those equations is nonlinear with respect to Ai j, while the

second one is linear with respect to Bi j.

Imposing a load q and then solving the system of equations (2.98) using a numer-

ical method, the Ai j and Bi j found could be substituted in (2.96), making possible

the determination of the unknown functions w, F .

It is necessary to consider a crucial factor in our further considerations, which

determines, in a general case, that the deflection-loading dependence becomes an

equivocal function, i.e., a few values of deflection correspond to the one and the same

value of loading and vice versa. There appear on the “deflection-loading” graph some

characteristic loops proving the deflectional ambiguity of characteristics. Loading

then must be understood in the system (2.98) as an unknown function and the de-

flection has to be assumed as the set value. Nevertheless, the deflection appears in

the system as a composite function providing any relatively difficult analyses.
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Another approach is based on the step-by-step argument presented below of

taking into account an application of the approximated function of deflection to

Eq. (2.96). It is assumed that in (2.98) either loading and the function of deflec-

tion, i.e., q and all of Ai j and Bi j are the unknowns, but we add to Eq. (2.98) just

one equation, which defines the deflection in the earlier selected characteristic point

(x0,y0) of the shell:

w0 (x0,y0) = ∑
i j

Ai j ϕi j (x0,y0). (2.100)

In this way, by applying w0(x0,y0) to (2.100) and treating loading q as well as all

of Ai j and Bi j as the unknowns, we solve the system (2.98) together with (2.100).

As the undefined loading q, Ai j, and Bi j are found, the substitution of these last two

to (2.96) causes a final estimation of the function of deflection, which in the shell’s

point (x0,y0) coincides with the deflection in point w0(x0,y0).
Let us analyze the procedure in a more specific way. For that purpose, let ϕi j, ψi j

from (2.96) be represented in the form of the two functions, where all of them de-

pend only on a single argument and can be given in a linear combination of functions

explicitly satisfying any boundary conditions of the compacted form

ϕi j (x,y) = ϕ1i j (x)ϕ2i j (y) ,

ψi j (x,y) = ψ1i j (x)ψ2i j (y) . (2.101)

Putting (2.99) in (2.101) we have:

ϕ1i (x) = ψ1i (x) = sin(iπx) , i = 1,2, . . . ,Mx,

ϕ2 j (y) = ψ2 j (y) = sin( jπy) , j = 1,2, . . . ,My. (2.102)

Substituting (2.102) to (2.96) we obtain

w = ∑
i, j

Ai j sin(iπx) sin( jπy).

F = ∑
i, j

Bi j sin(iπx) sin( jπy). (2.103)

The subscripts i, j take all the possible values.

By application of the Bubnov-Galerkin method we find a system of 2(Mx ∗My)
algebraic equations of the form:

1
∫

0

1
∫

0

Φ1 sin(vπx) sin(zπy) dx dy = 0,

1
∫

0

1
∫

0

Φ2 sin(vπx) sin(zπy)dx dy = 0, (2.104)

v = 1,2, . . . ,Mx, z = 1,2, . . . ,My.
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The integrals of the Bubnov-Galerkin procedure can be estimated according to the

equations:

I1,v =

x0+Δx
∫

x0−Δx

sin(vπx) dx =
2

vπ
sin(vπx0) sin(vπ Δx) , (2.105)

I2,z =

y0+Δy
∫

y0−Δy

sin(zπy) dy =
2

zπ
sin(zπy0) sin(zπ Δy) , (2.106)

in which x0, y0 denote coordinates of origin of the rectangular part of a loading

imposing, and Δx, Δy are with respect to x and y of this region’s half widths and

lengths. In addition, one obtains

I3,vi =

1
∫

0

sin(iπx) sin(vπx) dx =

{

1
2
, i = v,

0, i �= v,
(2.107)

I4,z j =

1
∫

0

sin( jπy) sin(zπy) dy =

{

1
2
, j = z,

0, j �= z,
(2.108)

I5,vik =

1
∫

0

sin(iπx) sin(kπx) sin(vπx) dx

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
4π [− cosα1π

α1
− cosα2π

α2
− cosα3π

α3
+ cosα4π

α4

+ 1
α1

+ 1
α2

+ 1
α3

− 1
α4

]

, αl �= 0;
[

cosαlπ
αl

= 0, 1
αl

= 0
]

, l = 1,2,3; αl = 0;

(2.109)

where

α1 = i+ k− v, α2 = k + v− i,

α3 = v+ i− k, α4 = i+ k + v. (2.110)

I6,z jl =

1
∫

0

sin( jπx) sin(lπx) sin(zπx) dy

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
4π [− cosβ1π

β1
− cosβ2π

β2
− cosβ3π

β3
+ cosβ4π

β4

+ 1
β1

+ 1
β2

+ 1
β3

− 1
β4

]

, βl �= 0;
[

cosβlπ
β = 0, 1

βl
= 0

]

, l = 1,2,3; βl = 0;

(2.111)
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where

β1 = j + l − z, β2 = l + z− j,

β3 = z+ j− l, β4 = j + l + z. (2.112)

I7,vik =

1
∫

0

cos(iπx) cos(kπx) sin(vπx) dx

=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1
4π

[

cosα1π
α1

− cosα2π
α2

− cosα3π
α3

− cosα4π
α4

−

− 1
α1

+ 1
α2

+ 1
α3

+ 1
α4

]

, αl �= 0;
[

cosαlπ
αl

= 0, 1
αl

= 0
]

, l = 1,2,3; αl = 0;

(2.113)

I8,z jl =

1
∫

0

cos( jπx) cos(lπx) sin(zπx) dy

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
4π

[

cosβ1π
β1

− cosβ2π
β2

− cos β3π
β3

− cosβ4π
β4

−

− 1
β1

+ 1
β2

+ 1
β3

+ 1
β4

]

, βl �= 0;
[

cosβlπ
βl

= 0, 1
βl

= 0
]

, l = 1,2,3; βl = 0;

(2.114)

IQ,vz = I1,vI2,z; IAB,vz =
(

z2kx+ v2ky

)

π2I3,viI4,z j (2.115)

Ivzi jkl = π4
[(

i2l2 + j2k2
)

I5,vik I6,z jl −2i jkl I7,vikI8,z jl

]

(2.116)

Taking into account (1.86) one obtains

I11,vi =

1
∫

0

γ0 sin(iπx) sin(vπx) dx

=

x2
∫

x1

sin(iπx) sin(vπx) dx

=

⎧

⎨

⎩

[

sin(i−v)πx2−sin(i−v)πx1

2π(i−v) − sin(i+v)πx2−sin(i+v)πx1

2π(i+v)

]

, i �= v,
[

x2−x1
2

− sin(2iπx2)−sin(2iπx1)
4iπ

]

, i = v,
, (2.117)

I12,z j =

1
∫

0

γ0 sin( jπy) sin(zπy) dy

=

y2
∫

y1

sin( jπy) sin(zπy) dy
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=

⎧

⎨

⎩

[

sin( j−z)πy2−sin( j−z)πy1

2π( j−z) − sin( j+z)πy2−sin( j+z)πy1

2π( j+z)

]

, j �= z,
[

y2−y1
2

− sin(2 jπy2)−sin(2 jπy1)
4 jπ

]

, j = z,
(2.118)

I13,vi =

1
∫

0

γ0 cos(iπx) cos(vπx) dx

=

x2
∫

x1

cos(iπx) cos(vπx) dx

=

⎧

⎨

⎩

[

sin(i−v)πx2−sin(i−v)πx1

2π(i−v) + sin(i+v)πx2−sin(i+v)πx1

2π(i+v)

]

, i �= v,
[

x2−x1
2

+ sin(2iπx2)−sin(2iπx1)
4iπ

]

, i = v,
(2.119)

I14,z j =

1
∫

0

γ0 cos( jπy) cos(zπy) dy

=

y2
∫

y1

cos( jπy) cos(zπy) dy

=

⎧

⎨

⎩

[

sin( j−z)πy2−sin( j−z)πy1

2π( j−z) + sin( j+z)πy2−sin( j+z)πy1

2π( j+z)

]

, j �= z,
[

y2−y1
2

+ sin(2 jπy2)−sin(2 jπy1)
4 jπ

]

, j = z,
(2.120)

Let us introduce the following notations:

J1,vzi j = − π4

12(1−µ2)

N

∑
k=1

(1− γ1k)

{[(

i2

λ2
+ µ j2

)

v2

+
(

j2λ2 + µ i2
)

z2

]

I11,viI12,z j +2(1−µ) i jvzI13,xiI14,z j

}

. (2.121)

Jvz
1,vzi j

= J
1,vzi j

+
π4

12(1−µ2)

[

v4

λ2
+2v2z2 +λ2z4

]

I3,vi I4,z j. (2.122)

J2,vzi j = −π4
N

∑
k=1

(
1

γ1k

−1)

{[(

i2

λ2
−µ j2

)

v2 +
(

j2λ2 −µ i2
)

z2

]

I11,vi I12,z j

+2 (1+ µ) i jvzI13,viI14,z j

}

. (2.123)

Jvz
2,vzi j

= J
2,vzi j

+

[

v4

λ2
+2v2z2 +λ2z4

]

π4I3,vi I4,z j. (2.124)

As the provided integrals are assumed and (2.102) holds, the system (2.97) takes

the form
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∑
vz

{

∑
i j,kl

[

Jvz
1,vzi jAi j + IABBvz − IQq−Ai jBklIvzi jkl

]

}

= 0,

∑
vz

{

∑
i j,kl

[

Jvz
2,vzi jBi j + IABAvz +

1

2
Ai jAklIvzi jkl

]

}

= 0. (2.125)

The summation sign ∑
vz
[∗] placed at each equation of system (2.125) denotes that the

assigned equation vz is actually composed of two equations of such a type. The con-

stant N denotes the number of elements whose flexural stiffness differs significantly

from the basic one. The coefficient of stiffness of a shell element is γ1 j.

At the end, the estimated system (2.125) is composed of 2n = 2(Mx ∗My)nonlinear

algebraic equations and is still valid with respect to the unknown functions Ai j, Bi j.

Let us attach to the analyzed system (2.125) the following equation:

w0 (x0,y0) = ∑
i j

Ai j sin(iπx0) cos( jy0), (2.126)

where w0(x0,y0) states a deflection that is imposed in the selected point of the shell.

In the resulting system the number of n + 1 equations Ai j, Bi j, and q are the

demanding ones but the parameter w0(x0,y0) states an initial well defined quantity.

It comprises the whole range of deflection and its changes are made with every step

of length h.

Being at each iteration of the numerical scheme of solution to the investigated

system of equations, there are determined those values Ai j, Bi j, and q, that are iter-

atively substituted into Eq. (2.103) giving in the result the unknown functions w, F

having the forms of a trigonometric series. The last one mentioned allows one to

estimate easily with respect to x and y all their counterpart derivatives. Step h of the

numerical scheme is arbitrary, but its restriction can result only from the selected it-

erative scheme of solution of the nonlinear equations. The case becomes much more

constrained when the selected method is sensitive on an initial approximation that

was found in the preceding iteration. The procedure is elastic; therefore any scheme

of corrections of the initial solution’s approximation can be taken into account.

To solve a nonlinear system of equations one can apply various kinds of numer-

ical methods. System equations describing the so-called strong nonlinearity as well

as parameters λ, kx, ky appearing in those equations can vary in a wide range of

values. The mentioned possibilities make worse convergence of the iterative pro-

cess and, in addition, impose some extra restrictions on the method of solution.

Taking into consideration the above remarks, our further analysis of the solution

of nonlinear equations will be focused on the popular Newton (known also as the

Newton-Raphson) method.

The Newton method is used in the form reported in [142]. After selection of the

initial approximation x
[0]
i , we find the successive approximations x

[ j+1]
i by solution

of the following system of linear equations:

fi +
n

∑
k=1

∂ fi

∂xk

(

x
j+1
k − x

j
k

)

= 0, i = 1,2, . . .(2n+1) , j = 0,1,2, . . . (2.127)
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The values of functions fi i ∂ fi/∂xk are determined for xk = x
j
k.

Let equations (2.125)–(2.127) be our representative example, where:

1. fi are equations of the analyzed system.

2. ∂ fi/∂xk denote derivatives with respect to the unknown Ai j, Bi j, q.

It is simplest to choose an approximation of the desired values by using their pre-

vious step values. In order to determine an initial (rough) approximation, a parabolic

extrapolation can be used on the sloped segments of the “loading–deflection” char-

acteristics. For the purpose of qualifying the ith step’s initial approximation in

accordance with deflection, it is mandatory to have knowledge of the successive

values of each function, for which at steps i−3, i−2, i−1 (where i > 3) a rough

approximation has to be imposed. In this way, we are able to estimate fluctuations

of the desired characteristics of the second-order polynomial, in which values of de-

flection in the selected point of a shell for the three mentioned characteristic points

are taken into assumption. Afterwards, values of the ith step’s deflection are sub-

stituted to the determined polynomial and the result is then treated as the initial

ith step’s approximation of the given function. As the resulting calculations exhibit,

this type of approach gives the possibility of reduction of the number of the required

iterations. For example, the number of iterations for h = 0.1 does not exceed three.

Similar problems devoted to a systematic global numerical analysis of strongly

nonlinear systems have been presented earlier in monographs such as [15, 16, 18].

On the basis of the Galerkin method an analysis of bifurcations and stability of

periodic orbits was also successfully made [297, 298, 299].

2.5 Shells with Additions of Other Materials

Let us make a stability analysis of some spherical rectangular shells subjected to a

uniformly distributed transversal loading.

The shell with additions in a rectangular form whose sides are parallel to a shell

made from a different material will be called non-homogeneous. The added element

will be called the stiffness element. The relative stiffness of such an element will be

determined by its coefficient of stiffness γ1 j. The coefficient γ1 j = 1 relates to a

homogeneous shell, i.e., to a shell not containing any additions. On the other hand,

a shell with additions (some extra inclusive elements) of stiffness γ1 j < 1 will be

called the soft shell, while in comparison to the homogeneous shell a shell with

additions satisfying the condition γ1 j > 1 will be called the stiff shell.

A typical geometrical decomposition of rigid elements situated on the shell’s

surface (dark color) is pictured in Fig. 2.8:

(a) The origin of the square addition is relatively translated to the shell’s origin and

the addition at hand is completely defined by its surface.

(b) These extra elements are distributed along the axis of symmetry of the shell

concurrently creating a cross shape, but that addition’s parameter is expressed

by the width of the cross element.



2.6 Static Stability of a Shell 85

Fig. 2.8 Scheme of rigid elements situated on the shell’s surface: (a) in the middle of the shell, (b)

“cross”-type, (c) perforation-type

(c) The shell is regularly covered by some extra square elements, creating a per-

forated construction and its parameter is expressed by the quantity of additions

distributed along one of the shell’s sides.

2.6 Static Stability of a Shell

In order to define the static stability of a shell we will use system (2.125) and a

methodology of progression described in Sect. 2.4. To begin, we will deal with the

analysis of homogeneous shells.

Toward that aim we will assume in our analysis the scheme of a geometrical

decomposition of the stiffness elements shown in Fig. 2.8a. Moreover, we will con-

sider any surfaces of an extra element S = 0 and γ1î, or γ1 j = 1 for an arbitrary S.

Both approaches are respected in the computational process as equivalent methods

of a homogeneous shell’s representation.

Figure 2.9 provides a typical q−w relationship between the static loading of

a square homogeneous shell and the deflection at the shell’s origin. Computations

have been carried out for Mx = My = 5 and for the parameter kx = ky = 12; 18; 24

(curves 1, 2, 3, respectively). It can be concluded that a homogeneous shell charac-

terized by high values of that parameters possesses relatively high critical upper and

lower loadings.

By increasing the value of parameter kx = ky and starting from a certain value, the

character of the shell’s deformation undergoes some changes. During a monotoni-

cally increasing loading of a shell and starting from the deflection of order 0.2–0.3,

the highest value of the responding deflection experiences translation from the mid-

dle of the shell to its quarters and, what is the most sensible, a local stability loss

appears. In the next stage, a “hard” stability loss is observed after the critical values

of deflections are achieved.

If we realize a normalization of the shell’s deflection with respect to the deflec-

tion of its origin, i.e., by an introduction of a w/wc parameter, and then draw a
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Fig. 2.9 The statical loading–deflection at origin relationship for a homogeneous shell

dependence of that parameter on the shell’s origin deflection, then it could be easily

seen that the obtained results confirm those of the earlier observations.

Such relationships are shown in Fig. 2.10, with curves 1, 2, 3, 4, 5 determined

for the coordinates x = y = 0.1; 0.2; 0.25; 0.3; 0.4, which are the points belonging

to the shell’s surface.

It is concluded from these graphs that for a shell defined by the kx = ky = 24

parameter the biggest deflection is always achievable in the middle of the shell

i.e., local loss of stability does not exist. Alternatively, for a shell defined by the

kx = ky = 36 parameter the biggest deflection (see the third curve) is achieved at

point x = y = 0.25 of the shell, i.e., the phenomenon of local loss of stability ob-

served at the beginning.

To evaluate some qualitative properties of the shell’s loss of stability it is conve-

nient to follow fundamental changes in the shell’s surface shape corresponding to

variations of its loading times.

Fig. 2.10 Development of the relational deflection during imposition of a loading at the shell

points: (a) kx = ky = 24; (b) kx = ky = 36
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Table 2.2 Normalized loading surface of a homogeneous shell for some selected values of the

loadings at the shell’s origin

Table 2.2 refers to the middle point normalized surfaces of loading for the pre-

scribed values of loading imposed in the middle of the shell of the parameter

kx = ky = 24; 30; 36.

The given forms of the shell deformation fully and graphically confirm observa-

tions that are based on the graphs in Fig. 2.10. In the case of the shell described by

kx = ky = 24, the shape of the loading surface in the entire range of loading param-

eters is such that the biggest loading is found at the shell’s origin, and for the option

kx = ky = 36 the maximum loading appears in a quarter of the shell. In the case of

the shell described by kx = ky = 30 a medial value is achieved.

Figure 2.11 shows typical q−w relationships for both homogeneous and non-

homogeneous shells (curve 1 corresponds to curve 3 in Fig. 2.9). The shell is

characterized by the non-homogeneity of the type (2.8a), and its surface S = 0.04.

The element’s stiffness coefficients γ1 j = 0.5; 1.5 correspond to curves 2, 3.

In Fig. 2.12 some dependencies of a static loadings (a, upper; b, lower) on the

kx = ky parameter of a non-homogeneous shell when the shell contains a central



88 2 Static Instability of Rectangular Plates

Fig. 2.11 Static loading of a non-homogeneous shell’s dependence upon deflection of its center

Fig. 2.12 Static critical loading of a shell’s dependence on the kx = ky parameter: (a) upper,

(b) lower

element of stiffness for which surface S = 0.1 are shown. The element’s stiffness

coefficients defined by (1.79) and with γ1 j = 0.5, 1, 1.5 correspond to curves 1, 2, 3.

The upper critical value of loading is monotonically conservative during changes

of the kx = ky shell parameter but the soft shell is more sensitive to the stiffness

parameter of the element of non-homogeneity.

The dependence of lower statical loading is represented in an analogous manner.

For kx = ky (20, for instance) such a type of non-homogeneity does not influence the

critical loading. For values less than 20 the dependence is qualitatively convergent

to the a case, but for the values greater than 20 it gets an inverse form, i.e., a soft

shell, in contrast to its stiff equivalent characterized by higher critical loadings.

2.7 Central Square Element of Non-homogeneity

Let us structurally analyze the influence of a shell’s non-homogeneity presented in

Fig. 2.8a on an upper critical loading. First of all let us explain how the size of an

extra element’s surface at a fixed value of its stiffness can influence the significance
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of critical loading. It would be more convenient to consider a relative loading of

a non-homogeneous shell, i.e., to split our study on these aspects related to vari-

ous values q/q0 of an homogeneous shell. Introduction of such a parameter offers

the possibility of making comparisons of behavior of the non-homogeneous shells

described by different kx = ky parameters.

Figure 2.13 depicts relationships between the relative critical loading and a sur-

face of the central element of stiffness. Curves 1, 2, 3, 4 correspond to parameters

kx = ky = 12, 18, 24, 30, respectively.

Obviously, an increase of the element surface causes in the case of soft (hard)

shell a reduction (increase) of the critical loading. The earlier figures confirm this

observation. Therefrom, an increase of loading reaches 50%. Approaching S = 1, all

curves inertially come closer together for various kx = ky and after that they over-

lap each other. This results from the observation that if some shell’s elements of

non-homogeneity cover the larger part of its surface then respectively to the stiff-

ness characteristics the shell becomes transformed into another shell. The basic role

defining that shell’s behavior is played by the flexible (rigid) part of the shell. At

some boundary size of surface of an addition the shell again becomes homogeneous,

but now is characterized by a different stiffness. As kx = ky increases the analyzed

relationship initiates a more complex structure; therefore any extremal points can

be observed on the “deflection-loading” curve, indicating a higher complexity of

Fig. 2.13 Upper critical loading’s dependence of the surface of a middle element of stiffness: (a)

“soft” shell, (b) “stiff” shell
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Fig. 2.14 Critical loading of an non-homogeneous shell’s dependence of the coefficient of its ele-

ment stiffness

interactions of this parameter as well as the shell’s non-homogeneity after loss of

stability.

Let us estimate now the influence of the coefficient of stiffness γ1 j of a non-

homogeneity element on the value of the upper critical loading (Fig. 2.8a). For that

purpose, at a constant surface of the addition we will only change the coefficient of

stiffness.

With reference to the shell’s parameter kx = ky, we will restrict our study to only

two values of kx = ky = 24; 36 (see Fig. 2.14a,b, respectively).

This choice of data is guided by an observation that at assumed values the first

shell loses stability in a large sense, but the second one in a small sense. Curves 1, 2,

3, 4, 5 correspond to the following extra stiffness element’s surfaces S = 0.04, 0.09,

0.16, 0.2025, 0.25, respectively.

On the basis of the above graphs, for a “stiff” shell the “small” loss of stability

does not significantly influence the “deflection-loading” characteristics, because it

remains monotonic for all parameters of the surface’s non-homogeneity element.

Some crucial differences appear when a “soft” nonlinearity is taken into as-

sumption. The first type of shell is characterized by monotonic dependence of the

mentioned curve, and the second one slightly increases during increases of γ1 j for

small parameters of the surface of the addition, while it slightly decreases for large

parameters of the surface. As γ1 j increases, i.e., after approaching the homogeneous

shell, the influence of the addition’s surface becomes less important. A more com-

plex relationship between the parameter of the addition’s surface S, its stiffness γ1 j,

and the parameter kx = ky is reflected in the appearance of a resonance character of

this dependence.

2.8 Central Cross Addition of Non-homogeneity

Let us analyze the influence of the type of a shell’s non-homogeneity (Fig. 2.8b)

on an upper critical loading. By assumption of such a scheme of the shell’s non-
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homogeneity one can model a shell with ribs. Observe that the assumed approach

allows for the consideration of not only the variant related to increase of width of

the shell along the rib’s width, but also to the variants of decreasing thickness of

the shell. It can be realized by assumption of an appropriate coefficient of shell’s

stiffness (see 2.5 – the “soft” and “stiff” shell). In application, ribs are very often

arranged in a way that ensures their parallelism to the symmetry axis of the shell.

This kind of non-homogeneity will be called the cross-type non-homogeneity. Here

we could consider how the critical loading of a shell changes the width of such

a type of cross addition, which in brief will be called the width of the cross. Later

analysis will be focused on the relative loading of a non-homogeneous shell, i.e., we

will divide the shell into some homogeneous parts.

Figure 2.15a,b show some relationships q/q0 – S, where S denotes the width of a

rib (a, “soft”; b, “stiff” shell) for non-homogeneous square shells. Curves 1, 2, 3, 4

correspond to kx = ky = 18; 24; 36; 48, respectively.

In the case of a “soft” shell as seen on the graphs, by increasing the kx = ky shell

parameter to a boundary value of local loss of stability, the dependence “loading-

deflection” is monotonic, i.e., the more the control parameter reaches some high

values the faster the critical loading decreases. This shell is then more sensitive to

the occurrence of non-homogeneity of this type. As the parameter kx = ky exceeds

a boundary value at a local loss of stability, the considered non-homogeneity influ-

ences the shell’s behavior in a quite different way.

First of all, the increase of the kx = ky parameter causes a negligible increase

of critical loading. Second, the shell of such a type is less sensitive to the non-

Fig. 2.15 Critical loading of a non-homogeneous shell’s dependence on the width of a rib of the

“cross”-type middle element (a) “soft” shell, (b) “stiff” shell



92 2 Static Instability of Rectangular Plates

homogeneity occurrence. It can be explained by much stronger interactions between

the kx = ky parameter and the kind of non-homogeneity (in regard to the rib’s width)

that is described by the element coefficient of stiffness.

Similar conclusions can be drawn regarding the “soft” shell. Deviation of crit-

ical loading with respect to the shell’s kx = ky parameter is significantly lower in

comparison to its “soft” counterpart. If the parameter’s values are close to the ap-

propriate boundary ones, then we obtain a resonance interaction of the parameters

discussed.

In all investigated cases for a limiting width of rib at which the shell begins self-

transformation to the homogeneous one (despite another stiffness parameters), all

the curves begin to overlap each other. The highest deviation of critical loading is

for these cases equal to about 50% of loading of the homogeneous shell.

2.9 “Perforation”-Type Non-homogeneity

Let us investigate the influence of the type of non-homogeneity of a shell (Fig. 2.8c)

on the situation of an upper critical loading. For a reminder, by assumption of such

a scheme of non-homogeneity the square additions regularly cover the whole shell,

i.e., both homogeneous and non-homogeneous elements interleave each other.

Although application of the algorithm used allows for any choice of non-

homogeneous element, all of the other elements of non-homogeneity are identi-

cal. Because the scheme of the non-homogeneity resembles a perforation process

of plates and shells has been set externally, we will define this kind of non-

homogeneity as “perforation,” though for our case we formally do not have any

holes (see 1.9).

For suitability we introduce the parameter N defining the number of elements

that are arranged in a way that ensures their parallelism to any side of the shell. The

relationship between the parameter and the surface defining non-homogeneity of

shell has been shown in Fig. 2.16. From this figure, the basic increment of a general

surface of non-homogeneity appears for N < 8.

Figure 2.17 shows the relationship between the upper critical loading for a non-

homogeneous shell (a, “soft”; b, “stiff”) and the number of elements situated along

Fig. 2.16 Dependence of total

surface of the stiffness ele-

ments on their amount along

one of the shell’s sides (the

“perforation”-type scheme)
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Fig. 2.17 Critical loading of a non-homogeneous shell’s dependence on the number of stiffness

elements along any side of a shell: (a) “soft” shell, (b) “stiff” shell

one selected side of a shell. Curves 1, 2, 3, 4, 5 on graphs correspond to the shell’s

parameters kx = ky = 18, 24, 30, 36, 48, respectively.

For the case of both soft and stiff shells, if the number of additions that are sit-

uated along one of the sides of the shell exceeds six, the critical loading’s value is

practically not dependent on the number of these additions. As a negative conse-

quence, some differences in critical loading can be emphasized between a shell for

which a local loss of stability appears and the other one for which the mentioned

phenomenon does not occur. For small parameters N = 1,2 one can distinctly ob-

serve a resonance relation among all the values. An increment of loading becomes

here most important. Extremal values are clearly distinguishable for N = 1 and

N = 2, which one can explain in the following way. First, there is only one ele-

ment situated in the middle of the shell. Second, four additions are symmetrically

situated in relation to the middle of the shell and for this case the non-homogeneity

does not extend over the shell’s origin. One needs to distinguish an even as well

as odd number of additions lying along any side of shell because the global shell’s

behavior does not result from the behavior of its part.



Chapter 3

Vibrations of Rectangular Shells

In this chapter we examine vibrations of rectangular shells. Linear and weakly

nonlinear vibrations are revisited in Sect. 3.1, and then natural vibrations of non-

homogeneous shells applying the Bubnov-Galerkin method of higher order approx-

imations are analyzed. Section 3.3 is devoted to investigation of free nonlinear

vibrations of homogeneous plates and shells with respect to any choice of control

parameters. The relatively extensive Sect. 3.4 addresses the spectral analysis of a

stress–strain problem of any plate/shell approximated by systems of n degrees of

freedom. A harmonic process convergence and spectral analysis of free nonlinear

vibrations are illustrated and discussed in Sects. 3.5 and 3.6, respectively.

3.1 Linear and Weakly Nonlinear Vibrations

of Mechanical Systems

Assuming for mechanical systems a smallness of deflections from an equilibrium

position, we consider in our investigations the hypothesis of linearity of the sys-

tem and then for a mathematical description theory of systems of linear differential

equations is applied [238]. The theory in connection with this approach is usually

called the theory of small vibrations. One can find some original premises devoted

to the similar meaning of both “small vibrations” and “linear vibrations” in the “an-

alytical mechanics” by Lagrange. From the point of view of today’s mechanics these

concepts become rather different.

The theory mentioned relates indeed to “linear vibrations,” i.e., to the vibrations

described by linear differential equations being not always the property of small

vibrations. In some situations small vibrations (even “any small” ones!) have to

be described via nonlinear equations to explain adequately the analyzed process.

Moreover, there even exist in practical engineering applications some clear instances

of a mechanical system’s nonlinearities for the smaller than usual deflections of the

system from an equilibrium point (see [18]).
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One can find in the literature notions like “frequency of free vibrations” or “fre-

quency of natural vibrations.” The latter one can be used only for linear systems

in which the frequency of natural vibrations is expressed by natural characteris-

tic features of a system and is not dependent on any initial conditions. Relative to

the present situation, the word “amplitude” should be used exclusively in the ter-

minology describing harmonic vibrations, because for nonlinear free vibrations the

motion of a system is not harmonic, though periodic. A typical feature of nonlinear

systems is the lack of isohronocity. In contrast, the frequency of free vibrations does

not depend on the system’s deflection.

3.2 Natural Vibrations of Non-homogeneous Shells

Our task at this point is to investigate the natural vibrations of non-homogeneous

shells in comparison to any choice of control parameters.

3.2.1 The Solution Method

As an approach to the solution to the previously formulated problem we will utilize

the linear variant of systems describing the dynamics of the shells expressed by

Eqs. (1.55) and (1.56). We eliminate from the first equation the term of loading and

assume that boundary conditions are (2.94) [38]. Hence, the linear variant of the

system is

E
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1

λ 2
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∂ 2 (·)
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+2(1+ µ)
∂ 2F
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∂ 2 (·)
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]

+∇2
kw = 0. (3.1)

The initial Eq. (3.1) will be solved with the use of the Bubnov-Galerkin method

with higher order approximations. Following the above, the functions w, F satisfy-

ing boundary conditions are sought in the form

w = ∑
i, j

Ai j(t)sin(iπx)sin( jπy),

F = ∑
i, j

Ai j(t)sin(iπx)sin( jπy),
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i = 1,2, . . .Mx; j = 1,2, . . .My; n = Mx ∗My. (3.2)

After application of the Bubnov-Galerkin procedure to Eq. (3.1) the following

systems of differential (with respect to time) and algebraic equations are obtained:

∑
vz

[

∑
i j

Äi j(t)J
vz
2,vzi j = ∑

i j

Ai j(t)J
vz
1,vzi j +Bvz(t)J3,vzi j

]

,

∑
vz

[

∑
i j

Bi j(t)J
vz
4,vzi j = Avz(t)J3,vzi j

]

, (3.3)

where ∑
vz

specifies the number of equations in the system and the dot denotes a

differentiation with respect to time.

Application of the Bubnov-Galerkin method produces the following integrals:
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where
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(3.5)

The integrals (3.5) are calculated on the entire central surface of the shell.

The problem of vibrations frequency estimation of the shell reduces to the cal-

culation of eigenvalues of the appropriate matrix, because after the appearance of

non-homogeneous elements represented by stiff shell additions, the squares of fre-

quency cannot be calculated directly from equations describing vibrations of the

shell. The reason is that the system of equations cannot be decomposed into two
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separate equations describing the vibrations of appropriate harmonics. To solve this

problem, let us number the single direction indices staying at summation symbols

by vz and i j.

Let us introduce the following notations:

A = ‖ A
i j
‖ , Ä = ‖ Ä

i j
‖ , B = ‖ B

i j
‖ , J1 = ‖ J1,vzi j ‖ ,

J2 = ‖ J2,vzi j ‖ , J3 = ‖ J3,vzi j ‖ , J4 = ‖ J4,vzi j ‖ , J5 = ‖ J5,vzi j ‖ . (3.6)

In the above, J1, J2, J3, J4, J5 are the square matrices of order 2n, and A, Ä, B

are column matrices of type 2n×1.

Putting (3.6) in Eq. (3.3) the following matrix representation is obtained:

J2Ä = J1A+ J3B,

J4B = J5A. (3.7)

Carrying out left-hand sided multiplication of the second equation of system (3.7)

by the inverse matrix J−1
4 , one obtains

B = J−1
4 J5A. (3.8)

Substituting condition (3.8) into the first equation of system (3.7) and then mul-

tiplying the resulting equation by the inverse matrix J−1
2 we obtain

Ä = J−1
2

(

J1A+ J3J−1
4 J5A

)

= J−1
2

(

J1 + J3J−1
4 J5

)

A = DA, (3.9)

where

D = J−1
2

(

J1 + J3J−1
4 J5

)

. (3.10)

Matrix D is non-symmetric because of the appearance of some additional stiff-

ness elements described by the coefficient of density γ2k �= 1, which exists when we

have to cope with a non-homogeneity of the shell density. For any stiffness coef-

ficients of additions γ1k the matrix of stiffness becomes symmetric. Its eigenvalues

correspond to the squares of frequency of the natural vibrations of the shell. To

determine these eigenvalues and eigenvectors of the symmetric matrix D a QR algo-

rithm and a direct procedure T QL2 [314, p. 203] will be used. The T QL2 procedure

allows one to calculate all eigenvalues and eigenvectors of a symmetric tridiagonal

matrix. The tridiagonal matrix has been derived from the starting symmetrical ma-

trix D by application of both Housholder transform and a T RED2 procedure [314,

p. 190].

Focusing on the estimation of all eigenvalues and eigenvectors of a real non-

symmetrical matrix D, which would be reduced to the Hessenberg form by means

of the ORT HES procedure [314, p. 298], a HQR2 procedure [314, p. 327] has

been used.

If we want to determine only the eigenvalues of D, then [314] gives an overview

and applications of some more effective procedures dedicated to the solution of the

problem.
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For a homogeneous shell (without any strengthening elements) the described re-

sults of the algorithm’s execution coincide with an analytical solution (see [304]),

because the system of equations modeling the investigated problem splits into equa-

tions for separate harmonics.

3.2.2 Description of Results

The results are valid for Mx = My = 3 and on the basis of Eq. (3.2), i.e., there

were analyzed first nine forms of either homogeneous and non-homogeneous square

shells in the dependency on miscellaneous model parameters, but damping of the

medium has not been taken into account (ε = 0). All analyzed questions were clas-

sified with regard to the form, number, and a relative placement of elements of

stiffness of the shell (see Fig. 2.8a,b,c):

1. A homogeneous shell. Figure 3.1a,b depicts a relationship between the vibration

frequency of a spherical rectangular shell and the control parameters kx = ky =
0 . . .36. The characteristic curves 1,2,4,5,7,9 correspond to the numbers of the

modes of vibration. As the parameters kx = ky of the shell increase, all modes of

vibrations are monotonically increasing but the lower modes are more sensitive

to changes in these parameters.

2. An non-homogeneous shell. During analysis of a non-homogeneous shell vi-

brations for each of its frequencies of natural vibrations we have introduced a

coefficient Kd of amplification, which exhibits a relation between some appro-

priate frequencies of a homogeneous and non-homogeneous shells.

Figures 3.2 and 3.3 present the characteristic dependence of the parameter Kd

of the central element of stiffness for a shell described by kx = ky = 0 and kx =
ky = 36, respectively. The curve number covers with its counterpart number of the

mode of vibration. The curves under 1 correspond to a softer plate and the shell

described by γ1k = 0.5, γ2k = 1, whereas the curves above 1 correspond to a more

stiff plate and the shell described by γ1k = 1.5 γ2k = 1 than the homogeneous plate

adequate to them and shell identified respectively by the coefficients γ1k = 1 and

γ2k = 1.

Fig. 3.1 Relationship between the frequency of shell vibrations and the parameter kx = ky
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Fig. 3.2 Coefficient of dynamism of the mode of shell vibrations in relation to the surface of a

center addition (see Fig. 2.8a)

On the basis of the inserted charts the coefficient of dynamism of either all forms

of vibrations for the plate and the shell for a “stiff (soft)” case increases (decreases)

monotonically with association to the expansion of surface S of non-homogeneity.

In the critical case when a shell becomes non-homogeneous the coefficient of dy-

namism amounts to about 25–30%.

In Figs. 3.4 and 3.5 some dependencies are shown between the coefficient of

dynamism of the mode of vibrations of the shells kx = ky = 0 and kx = ky = 36 and

the coefficient of stiffness of addition γ1k for the case of rib width equal to 0.1 and

γ2k = 1 (see Fig. 2.8b).

Curves are marked in the same way as in the preceding cases.

In the investigated domains of changes of the coefficient of stiffness the discussed

relationships for a plate take practically a linear kind of shape, in contrast to the shell

for which in comparison with its homogeneous adequate for any smaller coefficients

of stiffness the dependence is nonlinear, thereby significantly affecting higher modes

of vibration.

Fig. 3.3 Dependence of the coefficient of amplification of the mode of shell vibrations on the

surface of the central element of stiffness (see Fig. 2.8a)
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Fig. 3.4 Dependence of the coefficient of dynamic amplification of the mode of a plate vibrations

on the coefficient of element stiffness (see Fig. 2.8b, the width of rib equals 0.1)

Fig. 3.5 Dependence of the coefficient of dynamic amplification of the mode of a plate vibrations

on the coefficient of element stiffness (see Fig. 2.8b; the rib width equals 0.2)

The study of a shell with the “perforation”-type non-homogeneity (Fig. 2.8c)

has to take into consideration the fact (see in Sect. 2.8) that all additions cover the

shell in a regular manner but a side of the non-homogeneous surface of a square

element equals the distance between those additional elements. Because of identical

parameters of stiffness of the whole set of additions, the parameter N describing

the quantity of elements that are aligned in accordance with a chosen direction of

one side of a shell can be introduced. The parameter complies with the whole given

non-homogeneous surface of the shell (see Fig. 2.16).

Fig. 3.6 Dependence of the coefficient of dynamic amplification of the mode of vibrations of a

plate on the number N of elements of stiffness lying along one side of the plate (see Fig. 2.8c)
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Fig. 3.7 Dependence of the coefficient of dynamic amplification of the mode of shell vibrations

(kx = ky = 36) on the number N of elements of stiffness lying along one side of the shell (see

Fig. 2.8c)

This results from the condition that by increasing the N parameter values above

8 we do not contribute any radical changes in the behavior of the shell. Therefore,

it has to be predicted for the value a stabilization of characteristics of the analyzed

non-homogeneous shell.

Figures 3.6 and 3.7 depict a dependence of the coefficient of dynamic amplifi-

cation on the number N of additional elements situated along one side of the plate

kx = ky = 0 and the shell kx = ky = 36.

Prior notations of curves are also actual in the case now considered. Analogously,

the curves under 1 describe softer plates and shells (γ1k = 0.5, γ2k = 1), and the

curves above 1 describe stiffer plates and shells (γ1k = 1.5, γ2k = 1) in comparison

to homogeneous ones.

Fig. 3.8 Coefficient of dynamic amplification of the mode of vibrations of a plate versus the coef-

ficient of stiffness of a central addition with coordinates of the element: x1 = 0.4, x2 = 0.6, y1 =
0.4, y2 = 0.6 (see Fig. 2.8a)
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Fig. 3.9 Coefficient of dynamic amplification of the mode of vibrations of a shell versus the coef-

ficient of stiffness of a central addition. Coordinates of the element are: x1 = 0.4, x2 = 0.6, y1 =
0.4, y2 = 0.6 (see the scheme in Fig. 2.8a)

Compared with the previous analogous dependencies, the presently analyzed

case concerns some characteristics of a more intricate character that is visible during

analysis of the regions of both local extremes and stabilization of the coefficient of

dynamism. In the first case, for a certain value of parameter N (1, 2, 3) the total

size of the non-homogeneous surface is critical, and in the second case if N > 4 a

small expansion of the non-homogeneous surface does not practically influence the

analyzed dependence.

Figures 3.8 and 3.9 show some dependencies of the coefficient of dynamism of

the modes of vibrations of a non-homogeneous plate kx = ky = 0 and shell kx = ky =
36 (see Fig. 2.8a) on the coefficient of stiffness of an element γ1k, where γ2k = 1.

Table 3.1 Modes of vibrations of a non-homogeneous shell (kx = ky = 36) versus the coefficient

of stiffness γ1k (γ2k = 1) of a central addition. Coordinates of the element are: x1 = y1 = 0.4, x2 =
y2 = 0.6 (see Fig. 2.8a)
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Prior notations of curves are also actual in the case now considered.

Based on the charts presented, the coefficient of element of stiffness influences

more significantly the coefficient of dynamism of the mode of vibrations for the

shell than for the plate, but in both cases it does not exceed 5%.

Tables 3.1–3.4 present some modes of vibrations of a homogeneous (γ1k =
1, γ2k = 1) and a non-homogeneous (γ1k �= 1, γ2k = 1) plate kx = ky = 0 and shell

kx = ky = 36 for all 9 analyzed modes in relation to the coefficient γ1k of an element

of stiffness.

Table 3.2 Modes of vibrations of a non-homogeneous plate versus the coefficient of stiffness

γ1k (γ2k = 1) of a central addition. Coordinates of the element are: x1 = y1 = 0.4, x2 = y2 = 0.6
(see Fig. 2.8a)

Table 3.3 Modes of vibrations of a non-homogeneous shell (kx = ky = 36) versus the coefficient

of stiffness γ1k (γ2k = 1) for the width of rib equal to 0.1 (see Fig. 2.8b)
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Table 3.4 Modes of vibrations of a non-homogeneous plate (kx = ky = 0) versus the coefficient of

stiffness γ1k (γ2k = 1) for the width of rib equal to 0.1 (see Fig. 2.8b)

3.3 Free Nonlinear Vibrations of Plates and Shells

This section investigates of some free vibrations of homogeneous plates and shells

dependent on any choice of control parameters.

3.3.1 The Solution Method

We will use for solving the problem a nonlinear variant of the equations of dynamics

(1.55) and (1.56) for the parameters q = 0, ε = 0, E = E0 = const, ρ = ρ0 = const,

and the boundary condition (2.94):

1

12(1−µ2)

[

1

λ 2
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∂ 2 (·)
∂x2
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)

∂ 2 (·)
∂x2

+2(1+ µ)
∂ 2F

∂x∂y

∂ 2 (·)
∂x∂y

+∇2
kw+

1

2
L(w,w) = 0. (3.12)

Initial Eqs. (3.11) and (3.12) are solved by means of the higher approximation

Bubnov-Galerkin method. The desired functions w, F , satisfying our boundary con-

ditions are assumed as follows:
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w = ∑
i, j

Ai j(t)sin(iπx)sin( jπy),

F = ∑
i, j

Ai j(t)sin(iπx)sin( jπy),

i = 1,2, . . .Mx; j = 1,2, . . .My; n = Mx ∗My. (3.13)

By utilization of the Bubnov-Galerkin routine to Eqs. (3.11) and (3.12) regarding

some spatial coordinates, we add respectively to them the two resulting descriptors:

time-dependent ordinary differential equations and a system of algebraic equations.

The system of differential equations given in a normal form is then integrated by

means of the fourth-order Runge-Kutta procedure. Simultaneously at each iteration,

the remaining algebraic system of equations is solved with the use of the Gauss

reduction method.

Initial conditions are taken in the form

w

∣

∣

∣

∣

t=0 = w0,
∂w

∂ t

∣

∣

∣

∣

t=0

= 0, (3.14)

where the variable w0 results from the solution of an associated problem of statics

that is obtained by application of the method invoked in Sect. 2.4.

Figure 3.10 presents a time history of motion of a center point of the homoge-

neous square plate for n = Mx ∗My = 25 and w0 = 0.5, 1, 2.

The vibrations observed are nonlinear as well as roughly harmonic for any small

displacements.

Some analogous graphs are given in Fig. 3.11 but the shell is distinguished here

by the following geometrical quantities: kx = ky = 12 at w0 = 1;3;5. A nonlinear

character of vibrations is here observable even for any small initial excitations.

During the search for a solution to the problem of free nonlinear vibrations with

the utilization of higher order approximations one can analyze the frequency (pe-

riod) of the steady-state vibrations. Though, the fundamental question about either

any amplitudes and frequencies of harmonics of that process remains still opened.

In other words, there is a need to create an amplitude-frequency characteristic of

vibrations. For the considered plates and shells we will restrict our attempts to the

construction of first-order characteristics.

Fig. 3.10 Time history of deflection in the center of a square plate for various initial displacements
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Fig. 3.11 Time history of deflection in the center of a square shell for various initial displacements

Subsequent sections of this chapter give particular attention to the method and

the rationale of solving the stated problem.

3.4 Spectral Analysis of Solutions

By carrying out analysis of any plate or shell described by systems of n degrees of

freedom it is possible to find a numerical solution to the stress-deflection problem

of the investigated objects. One of the most primary tasks of this process is an es-

timation of the spectrum of frequency, of the analyzed system. We will propose an

approach for solving such a problem. The approach can be successfully applied for

a particular case in which the problem solution is given in the form of a graph, table,

empirical formulae, or other sets of data that do not efficiently allow for the direct

evaluation of frequencies and amplitudes of harmonics.

We will be concentrating on the exact solution, i.e., a solution that is represented

by the double precision numerical approximation with a sufficient number of dig-

its. In practice, this assumption is always true for any numerical integration of the

problem under investigation. If the above is guaranteed then the solution obtained

includes complete information about amplitudes and frequencies of harmonics.

If the period of vibrations is known then the problem is solved with the use of

analysis of harmonics allowing for determination of all harmonic components of

amplitudes and frequencies of the vibrating process. In general, if we do not have

any prior knowledge about the period of vibrations but indeed the process possesses

some periodic features, then the investigated problem can be mathematically formu-

lated in the following manner.

One can prove that any function can be split into periodic components although

they are not harmonically relevant to each other, i.e., the relation of their periods is

not a rational number. The analysis aims at determination of unknown amplitudes

and frequencies of each component.

Analyzing the problem, a number of function values are found for the same mo-

ment of time. One could make some proper conclusions exactly with the use of

information collected from the numerical data. The problem is sometimes called
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finding of hidden system frequencies. Completing the above, the problem’s solution

can be found via application of Fourier transform [178].

Let us analyze a process with an odd number 2N + 1 of data. A mean value of

our data series of which collection has been finished at τ will now correspond to the

initial time t = 0. As the new variable is introduced, then we can write

t =
1

τ
t1, (3.15)

and the obtained coordinates will correspond to the following points of time:

tk = 0,±1,±2, . . . ,±N.

The coordinates (function values) related to the moments of time are denoted by

fk = f (tk). (3.16)

In general, the function f (t) has the following shape:

f (t) =
j

∑
α=1

(Aα cosθα t +Bα sinθα t) . (3.17)

The number of terms of frequency is unknown a priori and let us denote it by j.

Angular frequencies ωα = θα/τ are found in a similar way. It is known that with

respect to the new non-dimensional time t the angular frequencies θα should be

bounded from above according to the inequality

θα < π. (3.18)

It results from the observation that if θα does not satisfy the above restriction

then the two different frequencies π +β and π −β cannot be distinguished. Let

θα =
π

N
pα , (3.19)

and pα takes values from (0, N).
Let us separate the sine and cosine terms by introduction of summations and

differences in the following form:

f (t)+ f (−t) = 2

j

∑
α=1

Aα cosθα t,

f (t)− f (−t) = 2

j

∑
α=1

Bα sinθα t. (3.20)

Similarly, we split the coordinates into the two groups

uk = fk + f−k,
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vk = fk − f−k, (3.21)

k = 0,1,2, . . . ,N.

For the summation, we apply a more convenient Fourier transform. The initial

series of given uk is now transformed into the N +1 series of amplitudes ak at cosine

terms, and the coefficients vk into the N − 1 series of amplitudes bk at sine terms.

The amplitudes mentioned are obtained from multiplication of the initial data by the

formerly constructed matrix consisting of a proper π/N multiplicity of the sine and

cosine terms

ak =
N

∑ ′

α=0

uα cos
π

N
αk, (3.22)

bk =
N−1

∑
α=1

vα sin
π

N
αk. (3.23)

The sign at ∑′ reflects the fact that the first and last components of the sum,

means u0 and uN , are in the step of summation taken with weight 0.5.

Coefficients ak and bk, which were found according to the above, can be inter-

preted as a linear spectrum of the integer values pα of the continuous parameter

p. The entire further analysis will deal with an application of two series of those

coefficients.

We will primarily investigate an instance in which the frequencies θα given from

the above will satisfy the assumption that all or even some of pα in Eq. (3.19) are

any integer numbers. In this case, there is found a single peak without any collateral

“tails.” The isolated maximum is from both sides surrounded by zeros.

In such a situation the amplitudes of (3.22) and (3.23) determine the solution of

the stated problem. In addition, most of the coefficients ak and bk will equal zero.

Our input data will for nonzero coefficients ak or bk contain the following frequency:

θ =
π

N
k. (3.24)

The cosine function amplitude has the form

A =
1

N
ak, (3.25)

while the sine function amplitude is as follows:

B =
1

N
bk. (3.26)

If a maximum is not any integer, then the maximal amplitude borders from both

sides upon the smaller amplitudes. The lowest inclination is observed in a case when

the maximum is situated exactly in the half length between any two integer values

p. We write at this point the following scheme:
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1

9
,−1

7
,

1

5
,−1

3
,1,1,−1

3
,

1

5
,−1

7
, . . . . (3.27)

The analyzed weak depreciation of amplitudes can be considerably accelerated

if the input differences of amplitudes are considered. Because the signs ± appear

alternately, the mentioned procedure is described as follows:

zk = yk−1 +2yk + yk+1. (3.28)

The preceding scheme expressed by Eq. (3.27) takes the form

− 8

693
,

8

315
,− 8

105
,

8

15
,

8

3
,

8

3
,

8

15
,− 8

105
,

8

315
, . . . . (3.29)

The interference now yields a decrease proportional to the third power of the

distance between any two peaks and finally becomes a negligible small value. The

assumption must hold that the two peaks expected to be separated ones are situated

effectively far from each other.

The exact position of the maximum that is calculated by means of the introduced

differences (in fact, the repeating summations related to the alternate arrangement of

the scheme signs) can be found through the following derivation. We identify the yk

series and verify the correctness of the alternate change of ± signs. It can be noted

that in some points the alternation is disturbed by the appearance of a sequence of

signs like ++ or −−. We estimate these irregularities and then make a conclusion

that the peak should be placed between the two listed values

p = k and p = k +1. (3.30)

In a more general case, an exact value of p related to a frequency θα will be

placed between any two natural numbers k and k +1.

Subsequently, we are consider

p = k + ε (3.31)

and the ε value is estimated by a scheme of interpolation. For that purpose, we will

use the recurrent type of summation.

Let us construct a ratio of the two selected series zp corresponding to p = k and

p = k +1, respectively

qk =
zk

zk+1

. (3.32)

In spite of the above, the series zk is proportional to

− 1

ε −1
+

2

ε
− 1

ε +1
=

2

(ε +1)ε(ε −1)
, (3.33)

while zk+1 is proportional to the following expression:

1

ε
− 2

ε −1
+

1

ε −2
=

2

(ε −2)(ε −1)ε
. (3.34)
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In a result, one finds

qk =
zk

zk+1

=
2− ε

ε +1
, (3.35)

but according to the above

ε = −2−qk

1+qk

. (3.36)

Finally, as the values ε are determined we find the frequency θα in the form

θα =
π

N
(k + ε). (3.37)

The coefficients Aα , Bα corresponding to the frequency depend on the ampli-

tudes ak and bk of Fourier series, respectively as follows:

Aα =
ak

N

πε

sinπε
,

Bα =
bk

N

πε

sinπε
. (3.38)

The depicted methodology of isolation of periodic terms is notably effective if a

total number of 2N +1 observables is sufficiently large, i.e., there is a possibility to

isolate any two neighboring “peak values.” It is required to have the two successively

appearing values pα in Eq. (3.19) separated by at least four units. If they are situated

closer than the above consideration demands, then it is not easy to separate them

with a satisfactorily high accuracy.

The described method of discovering the “hidden frequencies” could be called

the spectroscope method, because from the mathematical point of view it resembles

a spectroscope mechanism. For instance, the spectroscope allows for detection of

the components of radiation frequencies of a stimulated atom.

These important frequencies can be precisely determined by means of finite-

width “spectral lines.” The accuracy of the spectroscope measurements is dependent

on a large number of optical vibrations N. It is of course possible to decrease the

number N, and thereby to sustain a high accuracy by assumption of many significant

digits of numbers. Although the valuable peaks are more condensed now, one can

make a corrective operation by allowing the described approach to introduce an

interference and analyze the influence of the adjacent peaks.

If we do not carry out sufficiently frequent observations, and our peaks lie very

close to each other, then it is mandatory to apply a qualitatively different method.

Understanding of the new concept demands that some crucial historical events con-

stituting foundations of modern harmonical analysis are kept in mind.

The discovery of the acoustic meaning of vibrations as well as of their harmonics

is attributed to the Greek philosopher and mathematician Pythagoras (569–475 BC).

The innovative form of a series was composed of a component functions sinkx and

coskx, where k is a natural number, was introduced (for the first time) in the 18th

century by Euler and Lagrange. At that time, because of the still unknown defini-

tion of the limit, the concept of an infinite series could not been fully understood.
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Lagrange had considered that an arbitrary superposition of any analytical, i.e., in-

finitely differentiable functions should lead to a complete analytical form of the

resulting function. He considered on that basis that the harmonical analysis can be

effectively used only for the functions that besides their continuity also have high-

order derivatives.

In 1882, the brilliant Fourier’s discovery abolished that restriction. A Fourier

function is not given by a strict mathematical formula but, for example, it could com-

prise any number of snippets expressed in different analytical forms. In addition, the

continuity of functions was not required. Fourier prepared and then announced some

examples of harmonic analysis of a functions having a finite number of discontinuity

points in the predetermined interval of time. Usually in the considered interval the

function values were normalized to a new (−π,+π) interval, which was sufficient

for defining a function in the general form y = f (x). The periodicity of function does

not exist as the essential property and merely plays the principal role only outside

of the basic interval of time. The theory of harmonic analysis does not require any

analysis outside of the basic interval.

The second fundamental Fourier’s discovery was his Fourier integral. With the

use of the integral the method of harmonic analysis was generalized on the infi-

nite interval (−∞,+∞), but there was not any requirement for introduction of other

periodicities of the function of decomposition. Later, for the case of a harmonic

series approximation of a function, Dirichlet investigated the subject more care-

fully, stating some conditions to be satisfied by the arbitrarily selected Fourier

function. These conditions, which are presently known as the Dirichlet conditions,

are sufficient to preserve the Fourier series convergence, but they are not always the

necessary ones.

Recently (in 1904), Feyer proposed a new method of summation of the Fourier

series, which in a broad sense expands the domain of their applications. Using the

notion of a mean arithmetic component sums, Feyer successfully realized the sum-

mation of convergent series. The only condition allowing to create this procedure

was the possibility of integration of the investigated series.

The basic theorem connected with the procedure of such decomposition has the

following form.

Let the function y = f (x) satisfy the conditions:

1. f (x) is defined for all points belonging to −π ≤ x ≤ +π;

2. f (x) is unique, finite, and partially continuous. The f (x) function can have a

finite number of discontinuity points, and a finite interval should isolate any two

successive points of the discontinuity;

3. f (x) has a “finite variation,” which means that in the considered interval the func-

tion cannot be characterized by an infinite number of maximums and minimums

as well.

The above conditions imposed on functions like f (x) are called the “Dirichlet

conditions.” A function that meets the Dirichlet conditions can be split into a con-

vergent and infinite Fourier series of the form
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f (x) =
1

2
a0 +a1 cosx+a2 cos2x+ · · ·+

b1 sinx+b2 sin2x+ · · · , (3.39)

where the coefficients ak, bk are called the “Fourier coefficients” and are given by

ak =
1

π

+π
∫

−π

f (x)coskxdx,

bk =
1

π

+π
∫

−π

f (x)sinkxdx. (3.40)

One can define the f (a) particular case in a point of discontinuity x = a being

the arithmetic mean of some boundary coordinates:

f (a) =
1

2
[ f (a+)+ f (a−)] . (3.41)

It is worth mentioning that an infinite Fourier series that is estimated for x = a

converges to the above evaluated value.

If one assumes that the series in Eq. (3.39) is convergent to f (x) for all points of

a given interval, then one can multiply both sides of Eq. (3.39) by coskx or sinkx

and then integrate them from −π to +π . As the result, we obtain the expressions

(3.40) determining the coefficients ak, bk of decomposition. Excluding either coskx

or sinkx, all the terms of the right-hand side of the equation at hand vanish. Formulae

(3.40) are not complicated and were well known before Fourier’s time. The question

arises: Has the decomposition given by expressions (3.39) any sufficiently formal

foundations? To find the answer, Dirichlet used the following consideration. Let us

analyze the finite series

fn(x) =
1

2
a0 +a1 cosx+ · · ·+an cosnx

+b1 sinx+ · · ·+bn sinnx. (3.42)

Assuming that ak and bk are determined by (3.40), investigate what will happen

if the value n were increased to infinity. Summing (3.42), we have

fn(x) =

+π
∫

−π

f (t)Kn(x− t)dt, (3.43)

where Kn(ζ ) is the so-called “Dirichlet kernel”

Kn(ξ ) =
sin(n+ 1

2
)ξ

2π sin( 1
2
ξ )

. (3.44)
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We are going to show that as n reaches infinity then the estimation of fn(x) ap-

proaches f (x), i.e., the difference between the two final function values is any small

real value. To capture the difference as small as possible a strong focusing action

of the Kn(ζ ) is expected. The function isolates a neighborhood of the ζ = 0 point

as well as does “the cancellation of all remainders.” One can assume that the se-

quence of properties particularly constitute some mathematical formulations of the

increasing focusing action of function Kn(ζ ) = Kn(−ζ ):

lim
n→∞

π
∫

ε

|Kn(ξ )|dξ = 0, (3.45)

lim
n→∞

+ε
∫

−ε

|Kn(ξ )|dξ = 1. (3.46)

The first of the conditions mentioned that are imposed on the Kn(ζ ) function pre-

serves the cancellation in Eq. (3.43) of all components excluding the most nearest

neighborhood of the t = x point. The second one guarantees that the t = x point

takes part in integration with an appropriate weight (it is assumed here that the ε is

the previously selected and arbitrarily small positive real number dependent on n).

However, the Dirichlet kernel does not satisfy the first written condition. Second,

some maximal values of the function (3.44) are not sufficiently small to preserve the

required property of the ζ = 0 point. If the condition is met, then as a consequence,

a decomposition of function f (x) into an infinite and convergent Fourier series pro-

vides a restriction of class of the functions satisfying these mentioned requirements.

They should be satisfactorily smooth to be under the adequate focusing action of

the Dirichlet kernel. Dirichlet conditions 2 and 3 preserve the smoothness of the

function under investigation.

Feyer dealt with the crucial as well as a radical change of the summation pro-

cess. Consequently, it amplifies the Dirichlet kernel’s focusing action and thereby

expands the field of application of the Fourier series on a wider class of functions.

This class of functions is restricted by only one condition, that f (x) has to be “ab-

solutely integrable” leading to preservation of existence of the integral

I1 =

+π
∫

−π

| f (x)|dx. (3.47)

The condition (3.47) is really obvious. Otherwise, the ak and bk Fourier coeffi-

cients determined by Eq. (3.40) would not exist.

The results obtained by Feyer come from observations and allow one to define

the following kernel describing function:

Kn(ξ ) =
sin2( nξ

2
)

2πnsin2( ξ
2
)
. (3.48)
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The defined kernel is simply characterized by the strong focusing properties re-

sulting from the study of Eqs. (3.45) and (3.46).

A short historical perspective of the analyzed problem permits drawing a such

conclusion. If we do not dispose of a sufficient information, and any peak values of

investigated data series are strongly condensed lying very close to each other, then

for the purpose of improvement of the obtained results by means of the stroboscope

mechanism approach it is recommended in any known way to correct the focusing

action of the Dirichlet kernel.

It can be achieved most simply by application of a smoothing method, which is

known in theory as the “σ method.” For our case, the method relies on changing

the form of input data series uk and vk, which are visible under the Fourier summa-

tions (3.22) and (3.23), respectively. Until formulation of these sums is made, we

change the input data, simultaneously multiplying them by some properly selected

weighting values and in accordance to the following expressions

ūk = ukσk,

v̄k = vkσk, (3.49)

in which

σk =
sin kπ

N
kπ
N

. (3.50)

The coefficients ak and bk in Eqs. (3.22) and (3.23) are now calculated with the

use of these new values ūα , v̄α .

The function sinπx
πx

is via those changes transformed into the following one:

S(x) =
1

2π
[Si(x+π)−Si(x−π)] . (3.51)

Side peaks of the function appear at the values 4.8, 2.0, 1.1%, . . .. measuring from

the central maximum in comparison to the series of values like 21.7, 12.8, 9.1%,

. . . characterizing the initial function. As seen, the brand new function has a much

stronger filtrate action, and its new maximums practically exhibit no dependence. At

this time, peaks are more scattered in comparison to their counterpart coefficients of

the initial function introduced.

The distribution of coordinates obtained has an ideal merit. In fact, one can intro-

duce a second-order parabolic approximation going through the maximal amplitude

and the two adjacent left and right maximums. As a consequence of the parabolic

interpolation, a real maximum can be found. Continuing, let us examine a maximal

amplitude ak and its adjacent maximums ak−1 and ak+1.

The variable ε in Eqs. (3.31) and (3.37) is expressed by

ε =
1

2

ak+1 −ak−1

2ak − (ak+1 +ak−1)
, (3.52)

and the maximal coordinate aµ is expressed by
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aµ = ak +
ε

4
(ak+1 −ak−1). (3.53)

Finally, we obtain

Aα = 1.6963
aµ

N
(3.54)

(the numerical multiplier is the inverse of S(0)). Similarly, one can derive some

calculations of the Bα amplitude of sine function by replacing ak with bk.

Let us estimate now the length of observation interval T for a continuous signal

and with application of a fixed step of sampling. In a general case, the continuous

signals s(t) are taken with the use of a fixed interval Δ, so the discrete counterparts

selected can be used in our further computations.

A discrete signal can be considered as the result of multiplication of the contin-

uous input signal by the signal i(t) that is composed of either a infinite series of

singular impulses or the delta type functions [128]:

i(t) =
∞

∑
n=−∞

δ (t −nΔ). (3.55)

It leads to the impulse modulated signal

si(t) = s(t)i(t). (3.56)

Consequently, utilizing the convolution theorem, we have

Si( f ) =

+∞
∫

−∞

S( f −g)I(g)dg, (3.57)

where I(g) is a Fourier transform of i(t).
Using

S( f ) =
1

Δ

+∞

∑
n=−∞

δ ( f − n

Δ
), (3.58)

and performing some transformations, one obtains

Si( f ) =

+∞
∫

−∞

S( f −g)
1

Δ

+∞

∑
n=−∞

δ (g− n

Δ
)dg =

1

Δ

+∞

∑
n=−∞

S( f − n

Δ
). (3.59)

The last equality confirms that a discrete or an impulse-modulated signal si(t)
has a periodic 1

Δ -period Fourier transform. If S( f ) zeroes for | f | ≥ 1
2Δ , then Si( f )

is simply a periodically repeating function S( f ). It means that one could reproduce

S( f ) by means of Si( f ) just multiplying the Si( f ) by a H( f ):

H( f ) =

{

Δ, | f | ≤ 1
2Δ

0, | f | > 1
2Δ

(3.60)
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Concerning the region of frequency, the operation of multiplication of functions

is relevant to a convolution of these functions in the time domain, therefore

s(t) =

∞
∫

−∞

sin(πu/Δ)

πu/Δ
si(t −u)du. (3.61)

The function
sin(πu/Δ)

πu/Δ can be understood as the perfect filter used for seeking the

continuous signal s(t) resulting from its discrete adequate si(t). In other words, the

function
sin(πu/Δ)

πu/Δ is for any uniformly distributed coordinates a good example of an

ideal interpolating function. The observation time T determines the degree of peak

distinction for the Fourier transform, and the interval of sampling Δ is estimated by

a maximal value of the corresponding frequency.

The frequency

fN =
1

2Δ
(3.62)

is sometimes called the Nyquist frequency. It is identified in the theory as the most

important frequency, which can be estimated on the basis of a series of numerical

data that was found during application of a transient sampling period Δ.

Finally, to distinguish any two peaks with respect to the two frequencies f1 and

f2, it is necessary for a non-rectangular window [128] to investigate the interval T

of the length

T ≥ 1

f2 − f1
. (3.63)

Width of the non-rectangular windows is estimated by the inequality

T ≥ 2

f2 − f1
. (3.64)

3.5 Method Convergence

It has been theoretically proved in previous sections of this chapter that any input

data like the length of observation and the interval of data handling are the decisive

ones when we want to distinguish maximums (peaks) and determine the so-called

Nyquist constant.

We next try to explain the convergence of the analyzed method with respect to

frequency and amplitude of an isolated harmonic. Therefore, we formulate and then

solve the following modelization problem.

Let a table form periodic function of a constant step be given that has only one

harmonic component. The step in the table is sensitive and varies, but in contrast

the length of observation is constant.

Using the table data as an input set of initial values, the following needs to

be done:
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(i) Isolation of the harmonic component, i.e., to determine numerically its fre-

quency and amplitude;

(ii) Numerical estimation of the error of accuracy of such approximation.

As an example the following function is considered:

y = 5cos
(π

7
t
)

, (3.65)

where the frequency of harmonic can be widely applied to our fundamental objects

under investigation (plates and shells), i.e., it has to be the component of a low

frequency as well as cosine functions in the basic interval (−π,+π).
Starting from zero, the variable t takes some values with the following step of

data handling:
π

N
. (3.66)

To solve such a problem we will use a variant of the formerly proposed method.

It utilizes the feasibility of peaks division by the use of the method of side-sums.

One needs to find an exact solution for such a defined problem, if N will be taken as

the multiplicity of 7, i.e. N = 7, 14, . . ., which exactly holds.

In a general case, if we do not know or cannot satisfy the required multiplicity

condition, we will use a fixed step incrementation of N arbitrarily.

In our task, there is no sense in assumption for N any number that is less than 7,

because the fundamental condition then will not be met to have any two neighboring

peaks separated by at least four ones.

The results of this analysis are illustrated in Figs. 3.12 and 3.13. In Fig. 3.12a is

shown the dependence of a harmonical frequency in the whole region of variations

of the parameter N. The same graph has been enlarged in Fig. 3.12b, but with the

exclusion of small values of the N parameter.

It could be concluded from the graphs that the process convergence is in respect

to the frequency quite rapid. If one considers a scale of variations that is adequate

to N, then it explodes on the 2N length intervals. In the middle of each interval the

value of the harmonical frequency is extremal. The increase of number of the inter-

val is associated with a decrease of extremes and the curves take some stationary

Fig. 3.12 The dependence of harmonic frequency on the number N of observations made in dif-

ferent intervals of time
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Fig. 3.13 The dependence of harmonic amplitude on the number N of observations made in dif-

ferent intervals of time

values, i.e., in terms of precision of numerical computations it approaches the exact

value arbitrarily close.

If the analysis of harmonic process convergence with respect to an amplitude

is taken into account, then it is mandatory to separate some singularities occurring

here. A process of this kind is a bit slower concurrent, but in turn, from both sides,

one notes a symmetrical convergence. The shape of the amplitude characteristics in

each interval of length 2N is a transient mapping of the graph of a sin(x) function

with damped amplitude. This advantage, as well as some symmetrical properties of

the graph, allow for a more precise computation of the harmonic amplitude by using

either average values, the whole interval, or a part of the interval.

3.6 Spectral Analysis of Free Vibrations

Nonlinear free vibrations were the subject of our study in Sect. 3.3. Let us return

there and now spectrally analyze the solution obtained. Omitting the fact that any

plate or shell regarded as a dynamical system has infinite degrees of freedom, we

are not able to solve the problem of estimation of the entire spectrum of frequency.

Instead of solving the task with higher order approximations, the concept of finite

(sectioned) series for approximations of basic functions has to be realized. Possibly,

any high modes of system vibrations are neglected a priori. During the Runge-Kutta

scheme integration of a system of differential equations and with respect to the

time variable the step of integration is chosen on the basis of the Runge principle.

The interval of data handling constitutes the main parameter defining the Nyquist

frequency.

The boundary problem given by (3.11)–(3.13) has been solved at n = Mx ∗My =
25, and the associated Cauchy problem in a time with the step Δt = 0.001. Keeping

in mind that any two neighboring peaks should be isolated in (3.19) by at least

four ones, then the data of our analyzed case will be separated for the frequencies

included in 80–100.

To secure in Fourier transform the desired degree of peak distinction, the time of

data (coordinates) monitoring should be sufficiently long, i.e., include a few periods

of behavior of the investigated process of dynamical vibrations.
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Fig. 3.14 Amplitude-frequency characteristics of free non-harmonical vibrations (kx = ky = 12)

Following the above directions, there some calculations were executed in a time

for a non-dimensional form of data between 6 and 10.

Getting acquainted before with a spectrum of linear vibrations of the vibrating

systems analyzed, one should predict to obtain the entire low and mean value of the

demanded spectrum.

In Fig. 3.14 are shown the amplitude-frequency characteristics for a square ho-

mogeneous plate and shell (kx = ky = 12), respectively.

Summarizing, the above results provide an opportunity to draw the following

conclusions:

1. The frequency of all detected harmonics for a plate and shell depends on the

amplitude of free vibrations of the system.

2. At low amplitudes of free vibrations the frequency of the lower harmonical com-

ponent coincides with the first frequency of linear vibrations of the system.

3. A plate can be qualitatively treated as a system described by some stiff charac-

teristics, and any shell as a system described by some soft characteristics.

4. No harmonics of small amplitudes of free vibrations were detected, but with an

increase of the amplitude some of them are easily detectable.

5. The amplitude of the first harmonic (for all of them in the analyzed problems) sig-

nificantly exceeds the amplitudes of other harmonics, which at increasing number

of the harmonics rapidly decrease.



Chapter 4

Dynamic Loss of Stability of Rectangular Shells

In this chapter dynamic stability loss of rectangular shells is addressed. A back-

ground containing types of dynamic buckling and prefect constructions, as well

as the concept of finite-time stability, is given in Sects. 4.1–4.3. Mathematical

modeling of dynamical systems, problems of synchronization, chaos, and quasi-

periodicity are also briefly revisited. Sections. 4.6–4.10 refer to both static and dy-

namic bifurcations and their numerical estimations. Stability loss of homogeneous

shells subjected to an action of transversal loads is rigorously studied in Sect. 4.11.

4.1 Types of Dynamic Buckling

Lavrientiev and Ishlinski [181] were the first to notice that the type of buckling of a

construction under dynamic load can be qualitatively different from static buckling.

This difference can be explained by the influence of inertial forces on the disloca-

tions related to buckling. The construction does not “catch up” with taking the strain

caused by a sudden change of environment. While solving the problem of buckling,

the form that is usually determined is the one that reflects the quickest pace of dis-

placements for a set impulse.

We conventionally distinguish the dynamic and impulse (impact) load [305]. The

load will be called dynamic if during the analysis of the process of construction de-

formation only inertial forces representing ordinary displacements (deflections) of

plates and shells can be taken into consideration. The mechanism of force transition

in the central part of a construction is not the subject of our interest here. In other

words, we shall assume that those changes take place in a way right in a given mo-

ment. In case of a clear impulse load, apart from the aforementioned inertial forces,

the impact of inertial forces in some directions on the central surface of a shell or a

plate should be taken into account.

Let us investigate the basic diagram of the relation between w — the displace-

ment characterizing buckling process and q — a load parameter shown in Fig. 4.1.

First, assume that the dynamic load increases monotonically in time. We shall begin

J. Awrejcewicz, V.A. Krysko, Chaos in Structural Mechanics, 123
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Fig. 4.1 Example of dynamic

buckling

our considerations with the model of a non-perfect shell, i.e., initially buckled in

relation to the set form of balance. Research in this field has shown that actual con-

structions or experimental stands are always characterized by certain imperfections

of shape, whose size significantly depends on the technology of production. Re-

viewing the literature on this problem, one can reach a conclusion that for carefully

prepared shells, the amplitude of initial buckling can be taken for further calcula-

tions as 0.001 of the shell’s thickness.

We shall assume that the shell with initial imperfections undergoes the load

quickly increasing in time, in compliance with some law, e.g., the law of linearity.

The process of shell motion that is observed here can be divided into three steps.

The first step is connected with small vibrations occurring around the initial static

balance point (OAB curve), and those vibrations lead mainly to the concentration of

stresses in the central surface.

The following step is characterized by a relatively sudden leap of the construction

to a new point of balance and is connected with significant deflections (BC curve).

Eventually, the third step (CD) involves the occurrence of nonlinear vibrations

around the new point of balance or around both static points of balance.

From the practical point of view, the most important step is the second one,

i.e., the transition process involving dynamic buckling. Analyzing it allows one to

establish a certain conventional dynamic quantity, the so-called “buckling load” rep-

resented by q0 in Fig. 4.1.

Unlike in the problems of statics, where the concept of upper and bottom buck-

ling load is relatively easy to establish, in dynamics, there is no such possibility.

Various researchers dealing with dynamic stability use various criteria of shell

stability, emphasizing some characteristics of the analyzed problem. Usually, the

quantity of deflection equal to the thickness of an analyzed shell is taken as the cri-

terion of stability loss in a dynamic sense. The half or other part of the thickness

of an analyzed shell can be assumed as a basic parameter identifying the loss of

dynamic stability. Other researchers describe “buckling” load by using the position

of a central point K of a curve connected with this transition step or the position of

the inflection point on this curve.

If the buckling is sudden enough, then all the aforementioned points correspond

to the same value of stresses on the middle surface, for instance.

The other possibility of evaluating the stability loss of a construction involves

establishing certain parameters used for estimating possible danger. The moment of

obtaining stress on the central surface of a shell that corresponds with the moment

of flow can be taken as this parameter.

Let us emphasize here that all the examples introduce the notion of “dynamic

buckling load” only conventionally. It is because in this case there is no point related
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to the occurrence of any bifurcation, dividing, e.g., static and non-static branches

of construction or showing the transition from one static branch to the other, non-

static, one. If one tried (on the basis of existing criteria) to determine the character

of motion of the system, it could be observed that the whole part of the motion

trajectory of a point characterizing the motion of a system on surface q–w or q–t,

which is beyond the range of the upper buckling load, can be dynamically stable.

However, if the buckling process proceeds quickly, it practically defines the dynamic

stability loss in a general sense, as a certain unexpected process of leaving a static

point of balance and motion toward another state of equilibrium.

4.2 Perfect Constructions

Let us now analyze the model of a perfect construction. The literature presents much

research on the problem of analyzing such constructions [305].

One of the dominant directions in the research on stability is the analysis, in a

Lyapunov sense, of the stability of a “basic” motion of a system. Some researchers

conclude that the basic state turns out to be non-static if the load parameter exceeds

the value of the upper buckling load.

The other approach suggests taking into account only those construction parts

where, or around where, there is some influence of the load, whereas the remain-

ing part of a construction is free from stress. The area of the dynamic buckling is

determined from the condition that the critical value of a load equals the value of

the upper buckling load. Both approaches mentioned above in fact conclude that

the pre-critical stresses are described on the basis of dynamic relations, whereas the

very process of buckling is connected with a static load.

Many researchers used parametric resonance theory in their studies of the phe-

nomenon of buckling. It is well known that when the construction is parametrically

loaded, in some conditions it will start to produce vibrations of certain amplitude

and the balance point of a system will lose stability, which will consequently allow

one to determine the boundaries of the system stability loss.

Parametric resonance theory can in fact be used for the description of the process

of “pumping” energy from the basic motion to the energy connected with a dynamic

buckling. It turns out, however, that due to the character of the very transition of a

system to another state, the phenomenon of parametric resonance is different from

the dynamic stability loss for a single load.

4.3 The Concept of Finite-time Stability

Let us start with the analysis conducted by Feldstein and presented in [305]. So far

we have discussed possible criteria of the stability loss of an elastic system with

an aperiodic load. One of the approaches to this problem involves analyzing the
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phenomenon of shell buckling with the transition to vibrations around the other

balance point. This way of solving the problem uses certain set condition in the

form of limitation to some parameter characteristic for deformation, e.g., maximal

buckling as a criterion of stability loss. It must be emphasized that nowadays the

concept of stability is analyzed in much deeper sense than in the case of Lyapunov

theory. Limitation to the buckling size is related to fulfilling certain requirements

that the construction should comply with. Stability here means rather adjusting the

construction to perform certain functions under the influence of outer loads. Such a

concept of stability is close to the notion of finite-time stability, according to which

the system will be stable if forcing its motion does not manage to exceed a certain

set quantity in an earlier established range of time.

The purposefulness of this approach will be presented using the following con-

siderations. Let us consider an elastic system, whose motion is described by the

equation

Λu+p = ü+αu̇, (4.1)

where u = displacement vector, Λ = differential operator matrix, p = outer force

vector, and a dot stands for differentiating in relation to time.

Energy dissipation was taken into account in the aforementioned model on the

basis of the model of viscous linear damping. We shall consider the solutions ful-

filling certain boundary conditions:

Γ(u) = 0, u(0) = u0, u̇(0) = u̇0. (4.2)

Let the system move in the way described by vector U, different than the solution

u of the problem of Eqs. (4.1)–(4.2) under some undefined external forces. We shall

present it as

U = u+v, (4.3)

where v is the perturbation, whose analysis is described by the problem of analyzing

the motion stability of solution u.

Let operator Λ be presented as the following sum of a linear part Λ1 and a non-

linear part Λ2:

Λ = Λ1 +Λ2. (4.4)

After substituting Eq. (4.3) into (4.1), one obtains

(Λ1 +Λ2)u+p− ü−αu̇

= v̈+α v̇−Λ1v−Λ2v− [Λ3(u)]v, (4.5)

where

[Λ3(u)]v = Λ2(u+v)−Λ2(u)−Λ2(v) .

Since u is the solution of Eq. (4.1) with some additional conditions of Eq. (4.2),

the left-hand side of expression (4.5) equals zero. Assuming that the perturbations

are minor, we shall linearize the right side of Eq. (4.5) and present the equation of

perturbation motion as

[Λ1 +Λ∗
3(u)]v = v̈+α v̇. (4.6)
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Solution v of this equation should satisfy uniform boundary conditions and

certain initial conditions. If dynamic effects are omitted in a perturbation equation,

then it describes a balance point, and from the condition of the existence of some

non-trivial solutions of this equation bifurcation points are determined. In dynam-

ics, solving the problem of motion stability u is reduced, in a Lyapunov sense, to

analyzing the behavior of solution v of the disturbed equation around the zero point

(a trivial point of balance).

Let us present solution v as the sum of some complete set of function vk:

v = ∑
k

fkvk. (4.7)

Substituting Eq. (4.7) into (4.6) and requiring orthogonality of the result of sub-

stitution to all the selected functions, we obtain:

∑
k

∫

S

[

f̈kvk +α ḟkvk − fkΛ1vk − fkΛ∗
3(u)vk

]

vn dS = 0. (4.8)

If vk are the eigenfunctions of operator Λ1, the last expression will be simplified:

f̈n +α ḟn +ω2
n fn = ∑

k

fkϕkn, (4.9)

where

ϕkn =

∫

S

[Λ∗
3(u)vk] vn dS

∫

S

vk vn dS
.

If p is not time-dependent, the coefficients of equations are constant. Should this

quantity periodically change in time, then the Eqs. (4.9) will be Mathieu-Hill type.

Let us pay attention to a certain important quality. During the influence of a

momentary impulse load, free vibration occurs in a shell and u will be a periodic

function of time. Sometimes researchers relate the occurrence of axially asymmetric

vibration of rotary shells loaded with impulse outer pressure to parametric resonance

and to the vibrating ground stress state, and then they use the methods applied in

analyzing periodic external load in the analysis. We should remember, however, that

as a result of damping, in actual shells the axially symmetric vibration is damped,

and harmonic vibration cannot significantly increase although it formally is in an

unstable area. Let us also remember that the source of energy working long enough

is an indispensable factor exciting parametric vibrations.

Let us come back now to Eq. (4.9) and consider finite-time loads for t → ∞:

limp(t) = p0. (4.10)

In this case, the coefficients ϕkn also have boundaries:

lim ϕkn(t) = ϕ0
kn, (4.11)
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and for high enough t we can consider the following boundary system:

f̈n +α ḟn +ω2
n fn = ∑

k

fkϕ0
kn. (4.12)

On the basis of the Chetayev theorem [74] the zero solution of the system of

Eqs. (4.9) will be asymptotically stable if the solution of a “boundary system” is

stable. Therefore, it is necessary that the roots of a characteristic equation have

negative real parts.

The characteristic equation will have the following form:

D(λ ) =

∣

∣

∣

∣

∣

∣

∣

∣

ϕ0
11 −ω2

1 ϕ0
21 . . . ϕ0

m1

ϕ0
12 ϕ0

22 −ω2
2 . . . ϕ0

m1

. . . . . . . . . . . .
ϕ0

1m ϕ0
2m . . . ϕ0

mm −ω2
m

∣

∣

∣

∣

∣

∣

∣

∣

−Tr(λ (α +λ )) = 0. (4.13)

In the above we have reduced our considerations to a finite system of equations.

In this case, if p0 = 0 and u(∞) = 0, ϕkn = 0, the characteristic equation will have

the following form:
m

∏
i=1

[

λ (α +λ )+ω2
i

]

= 0. (4.14)

Real parts of the above equation are negative. We can conclude that for the loads

disappearing in time, non-disturbed motion is asymptotically stable, since all per-

turbations vanish for t → ∞.

Nevertheless, it does not mean that those perturbations are small in any time

instant. In some conditions they can be relatively large, which is proved by ex-

perimental data connected with axially asymmetric buckling of cylindrical shells

under external impulse pressure. A shell may lose its capacity both under the in-

fluence of a load in finite time and because of the following loads connected with

the development of the process of non-stationary perturbations. It this case it seems

reasonable to determine the requirements related to the parameters characterizing

stress or strain states, even though in a classical approach, the shell remains sta-

ble. In order to solve the problem of choosing a stability limit, the stability limit for

solving practical problems with regard to the kind of work the construction performs

and operating conditions should be taken into account. Data related to experimental

research should also be considered.

4.4 Mathematical Models of Vibrating and Dynamic Systems

General laws of vibration processes in physical systems are the subject of a science

called the theory of vibration. Vibration means either vibration established around

a certain point of balance or the transition process between one fixed state and an-

other. Established vibrations are usually repeatable, limited, and stable. Transition
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processes may be characterized by certain established (steady state) motions that

they approach. The set of transitory processes related to a given established motion

describes its area of attraction. A qualitative change of established vibrations, a re-

sult of the change of any parameter of a vibrating system, describes the system’s

bifurcation. If the change of vibrations is a sudden snap-through, we observe the

“hard” formation of a new vibration regime of a system. Otherwise, the formation

of a new vibration regime is called “soft” [65].

The notion of a dynamic system was introduced as the generalization of the

notion of a material system, whose motion is described by Newton differential

equations. Currently, the concept of a dynamic system is discussed in a wide range

of fields, including physical, chemical, biological, economic, and other systems,

both deterministic and stochastic. A mathematical description of dynamic systems

is equally wide: it can be realized through differential equations, functions, graphs,

Markov chains, etc.

At present, two approaches dominate analysis of dynamic systems. One is based

on the concept of state x, characterizing system S in a certain time instant and on the

notion of operator T , describing the change of this state x in time. Operator T defines

the procedure that if used allows to describe x(t) in a time instant t and to determine

the state x(t +Δ t) of this system in a certain following time step t +Δt. If operator

T does not overtly depend on time, the system S is referred to as autonomous, and

otherwise as non-autonomous.

State x of system S can be regarded as a point of certain space Φ, called the

phase-space of system S. A change of state x is represented in phase space Φ by

the motion of a point called a representative point of a system. During this motion,

a representative point describes a certain curve called a phase trajectory. The phase

space Φ and operator T form a mathematical model of a dynamic system. Analyzing

the behavior of a dynamic system in this approach is reduced to analyzing the divi-

sion of a phase space Φ into trajectories and explaining the structure of this division

in relation to physical parameters of a system.

An other approach to the analysis of dynamic systems involves analyzing the

functional aspect of a studied system. Application of this approach may be the result

of a lack of possibilities of understanding all inner details of the studied dynamic

system. Therefore, in this case, a system is treated as a sort of “black box” for

known input and output signals. A black box realizes the relation between those

signals through a certain operator.

In this approach, a mathematical model is described by input and output spacer,

and by the operator that clearly realizes the transition between input and output

variables.

Mathematical models of dynamical systems can be classified according to the

structure of their phase space Φ and the form of operator T . We distinguish between

constant and discrete phase spaces, depending on the values that variables x, charac-

terizing the state of a constant or discrete dynamical system can take. The operators

T are conventionally distinguished in relation to their qualities and a set form. If the

operator T has the quality of superposition, it is referred to as linear. If the operator

T is nonlinear, a corresponding dynamic system is called nonlinear as well.
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Among nonlinear systems, self-excited ones have a special role. The notions of

“self-excited vibration” and “self-excited systems” were first introduced 50 years

ago by Andronov [13]. Characteristic qualities of self-excited systems result from

their nonlinearity. The right sides of differential equations that model them include

nonlinear functions of phase variables x.

Studies on the behavior of a dynamic system are reduced to the analysis of its

trajectory in phase space Φ. The structure of division of phase space Φ into phase

trajectories is called a phase portrait of a dynamic system. From a geometric point

of view, the structure of division of phase space into phase trajectories means a geo-

metric image of phase trajectories in space Φ. It must be emphasized that a complete

description of a phase portrait for an arbitrary dynamic system is a complex prob-

lem and so far has not been solved. Nevertheless, a range of basic qualities of such a

structure has been studied, and for some classes of dynamic systems a full descrip-

tion of their phase portraits has been achieved.

One of the basic tasks in describing a phase space of a dynamical system is dis-

tinguishing between ordinary and singular phase trajectories. The flatter ones are the

singular points corresponding to balance points of a system or their stationary mo-

tion, insulated closed trajectories called limit cycles and corresponding to periodic

motion, separating curves, and the surfaces that are the boundaries of attraction areas

to various stable singular orbits. Singular elements of phase space Φ can form inte-

gral manifolds. They can, in turn, be divided into stable, unstable, and saddle. Stable

balance points and periodic solutions are simple examples of established motion.

The notion of motion stability is one of the most important ones in the theory

of nonlinear vibrations. Among many existing definitions of stability, stability in

a Lyapunov sense and orbital stability are most frequently applied. In the analysis

of balance point stability, both concepts overlap. The point of balance x = x∗ is

regarded as stable if for any number ε > 0 it is possible to find a number δ (ε) small

enough for the following inequality to be satisfied for all the consecutive values of

x = x(t) for a different motion x∗ with initial conditions different from δ , by less

than t:

ρ(x(t),x∗) < ε, (4.15)

where ρ(x(t),x∗) is the distance between phase points with coordinates x(t),x∗. The

state of equilibrium will be regarded as asymptotically stable if the quantity ρ ad-

ditionally approaches zero during an unlimited increase of time. A type of singular

point is determined by the behavior of phase trajectories in its close environment

(see [17, 18]).

If autonomous dynamical systems with one degree of freedom are analyzed, then

equations of their motion are generally described by two differential equations of

first order:

ẋ = P(x,y), ẏ = Q(x,y), (4.16)

whose right sides are nonlinear functions x, y. Equations (4.16) have been thor-

oughly analyzed with the use of the qualitative theory of differential equations.

According to Eqs. (4.16), the state of a system of the second order is described

by values x, y, and therefore the phase space of such system is two-dimensional,
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i.e., it is a certain plane. The basic problem related to the analysis of a dynami-

cal system is presenting a complete division of phase plane into trajectories, or in

other words, determining the topological structure of this division. The concept of

topological structure involves the qualities that remain invariant during topological

(i.e., mutually interchangeable and constant) transition of a plane into itself.

It turns out that in order to explain the qualitative image of a second-order system,

one must have knowledge not of all the trajectories, but only of those regarded as

singular. These are balance points, limit cycles, and some non-closed trajectories to

which at least one half-trajectory (i.e., a curve described by a representative point

for t → +∞ or t →−∞ from the initial position of the point in time instant t = t0) is

related that is separating (a separating curve) at some balance point. If the mutual

position of these singular trajectories is known and we also know the stability of

balance points and limit cycles, then we know the complete division of plane x,y

into trajectories.

Physical intuition suggests that for differential Eqs. (4.16), describing the motion

of a real physical system, none of the factors that we have taken into account can

stay absolutely invariable in time. Therefore, the right sides of Eqs. (4.16) hang with

the parameters they include. However, if these changes are small enough, as practice

suggests, the physical system will not “notice” them and the qualitative characteris-

tics of dynamics will not change. Therefore, if we want differential equations (4.16)

to show this singularity, we should require their perturbation resistance (robust):

for small parameter values, qualitative structure of plane division into trajectories

does not change. In this way, we have distinguished a subclass of resistant dynamic

systems. The resistance of a dynamic system can be understood as the stability of

a structure of the corresponding phase plane on trajectories in relation to small

changes introduced to differential equations.

Andronov and Pontriagin [12] formulated a mathematical description of the

notion of resistance (robustness) for a second-order system. According to their sug-

gestion, a dynamic system described by Eqs. (4.16) will be referred to as resistant if

there is a small number δ > 0 for which all the dynamic systems are described by

the following differential equations:

ẋ = P(x,y)+ p(x,y), ẏ = Q(x,y)+q(x,y) (4.17)

in which analytical functions p(x,y), q(x,y) occur, satisfying the following

inequality:

|p(x,y)|+ |q(x,y)|+
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< δ , (4.18)

and have the same structure of phase plane division into trajectories.

Let the right sides of the analyzed system of differential Eqs. (4.17) depend on a

certain parameter λ, i.e., let them have the following form:

ẋ = P(x,y,λ ), ẏ = Q(x,y,λ ), (4.19)

where P(x,y,λ) and Q(x,y,λ) are analytic functions of their own arguments.
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If for a certain value λ a system is resistant, then, according to what was said

before, for minor changes, a qualitative image on a phase plane will not change.

However, this condition cannot be satisfied for all values of parameter λ. Hence, the

notion of a bifurcational value of a parameter is introduced. According to definition

[18], the value of parameter λ = λ0 is called bifurcational if for any of its close

values in relation to λ0, i.e., for λ > λ0 and λ > λ0, the topological structure of a

phase plane is different. The very definition of the bifurcational value of a parameter

implies that for λ = λ0 a dynamic system is not resistant.

As the qualitative image of a trajectory on a phase plane is determined by its sin-

gular elements (singular trajectories), only those values of parameter λ that involve

non-resistant singular elements will be regarded as bifurcational.

4.5 Synchronization, Chaos, and Quasi-Periodicity

The subject of discussion of this section does not lie within the conventional field

of interest of the theory of vibrations [65]. The theory of vibrations studies tradi-

tional random vibrations as a result of some stochastic disturbance. It does not take

into consideration the possibility of deterministic dynamic system random (chaotic)

vibrations, perhaps without stochastic waves and turbulence. One can assume that

this is so because the researchers focus rather on analyzing simple instances of mo-

tion, i.e., balance (singular) points, periodic motion, and quasi-periodic motion to

some extent. More complex types of motion were treated as impossible to analyze

and having little importance in relation to real objects. A way of thinking result-

ing from the considerations connected with a phase plane did not allow discovery

of such possibilities of motion, and the only premise for the existence of random

motion was connected with analyzing the systems with many degrees of freedom,

where everything becomes complex and confusing. The phenomenon of randomness

(stochasticity) in physics and mechanics was related to many degrees of freedom

and hence to many possible waves and vibrations.

It turns out, however, that this approach is not the right one. Randomness can

occur in dynamic systems with only a few degrees of freedom. It is enough for the

phase space to be larger than the two-dimensional one. The occurrence of such a

motion is just as well-founded as the occurrence of periodic motion or the existence

of balance points.

Depending on the parameter values, the same dynamic system may or may not

have some qualities of randomness. For some parameter values, there is no ran-

domness and the dynamic system is characterized by balance (equilibrium) points

or periodic motion, and for other sets of parameters we have chaotic motion. For a

constant transition from some parameter values to other ones, complex changes of

the vibration process occur. They can be realized in a constant or sudden way. In

the former case, the occurrence of chaotic vibrations can be regarded as soft; in the

latter case it can be referred to as tough stiff (hard). It is in full analogy with soft and

stiff excitation of self-excited vibrations for a static form of balance (equilibrium).
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Let us clarify here what we mean by a general mechanism of the occurrence

of chaotic vibrations. It is best to recall self-excited vibrations, with which we are

already familiar. What is the mechanism and the reason for the occurrence of self-

excited vibrations? In the case of soft excitement, we observe the existence of an

unstable point of balance, and it is around this point that the vibrations begin, but

up to a certain level only. Self-excited vibrations are the result of a compromise

between instability and damping of the vibrations with higher amplitudes, which

results in a periodic motion [18]. It is not the only mechanism of the occurrence

of such vibrations, but it is very frequently observed. In some cases, it is possible

to identify certain physical reasons and force interactions leading to instability and

self-excited vibrations.

Let us proceed now to the description of one of the mechanisms of occurrence

of chaotic vibration that can be presented as simultaneous lack of synchronization

in the movements of particular parts of an analyzed system. It is the prolongation

of changes resulting from the fact that the obtained periodic solution loses stability,

and a two-dimensional integral manifold is isolated from it, consisting of two-period

movements. At the same time, it is assumed that the Poincaré rotation number for

such a track is rational or irrational for a high enough numerator or denominator.

Next, this integral manifold loses stability and a three-dimensional integral mani-

fold is isolated, consisting of three-periodic movements, etc., until a stable toroidal

manifold consisting of m-periodic incommensurable movements is obtained.

During m-periodic motion, the law of change of each of phase variables can be

presented in the following way:

x = ψ(ω1t +ϕ1, . . . ,ωmt +ϕm), (4.20)

where ψ(u1,u2, . . . ,um) is a periodic function with period 2π with relation to the

variables u1,u2, . . . ,um. The process described by Eq. (4.20) is not chaotic. It is ei-

ther a periodic process with a high period growing with the increase of m, or it is

a quasi-periodic process. It is characterized by the quality of approximate repeata-

bility for long enough monitor time T (ε) (ε describes the accuracy of repetitions).

Only for time ranges smaller than T (ε) does it resemble chaotic motion. After long

observation, the “chaos” of such a process can be explained by revealing its quasi-

periodicity. It is yet very difficult to realize, because a kind of overlapping of small

changes (fluctuations) that usually occur in a real process is very disturbing. Time

T (ε) is generally much higher than particular periods 2π/ω1, . . . ,2π/ωm and the

increase of number m does not cause the increase of such period times, and there-

fore small phase changes Δϕ1, . . . ,Δϕm can result in such a set of phase dislocations

in time T (ε) that the process repeatability is disturbed and chaos occurs.

The system with many harmonic oscillators with a weak influence on one another

can be discussed as a model describing the phenomenon of chaos. The oscillators

are described by the following differential equations:

ẍi +ω2
i xi = µ fi (x1, . . . ,xn, ẋ1, . . . , ẋn,µ) , (4.21)

i = 1,2, . . . ,n,
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that after the introduction of new variables ρi, ϕi and replacement of

xi = ρi sin(ϕi) (4.22)

are reduced to the following system with quick-changing phases:

ϕ̇i = ωi + µΦi (ϕ1, . . . ,ϕn,ρ1, . . . ,ρn,µ) ,

ρ̇i = µRi (ϕ1, . . . ,ϕn,ρ1, . . . ,ρn,µ) . (4.23)

In such a system, multi-periodic movements are possible that form stable mani-

folds on the torus. During periodic motion, all the component oscillators vibrate with

an established frequency and established phase differences. Periodic motion may be

treated as a toroidal manifolds of size one. Increasing the size of a toroidal mani-

folds makes the vibrations of component oscillators less and less consistent with the

increase of the size of a toroidal manifolds, and eventually there is no relationship

whatsoever between them for the maximal size. Reducing synchronization between

the oscillators results in an increase of the randomness of vibrations (chaos). The

size of a formed toroidal manifold depends on the relationship between frequencies

ω1,ω2, . . . ,ωn. The occurrence of simple resonance relations between frequencies

causes the reduction of the size of a toroidal manifold until synchronized vibration

occurs. The concept of simple resonance relations denotes the case when for some

relatively small integers k1, k2, . . . ,kn, the following inequality is satisfied:

k1ω1 + k2ω2 + . . .+ knωn = 0. (4.24)

The more such simple resonance relations we observe, the smaller is the size of

a possible toroidal manifold, and hence the higher is the degree of synchronization

between oscillators. On the other hand, the lack of such simple resonance relations

results in the occurrence of multifrequent vibrations, for which if the influence of

fluctuations is taken into account by adding to the right sides of Eq. (4.20) minor

random extortions ζi and ηi random phase dislocations ϕ1,ϕ2, . . . ,ϕn, take place

that are proportional to the dispersion of disturbances ζi and that increase in time t

with velocity
√

t.

If we add here that the forms of low-frequency vibrations become unstable, and

the mechanism of limiting them is connected with high-frequency energy dissipa-

tion, we see how weak turbulence is formed.

It means that in the case of a model governed by Eq. (4.23), the equilibrium

position at x1 = x2 = . . . = xm = 0 of the truncated system

ẍi +ω2
i xi = µ fi (x1, . . . ,xm,0, . . . ,0, ẋ1, . . . , ẋm,0, . . . ,0,µ) ,

i = 1,2, . . . ,m, (4.25)

which is equivalent to a low part of spectrum of the possible frequencies of vi-

brations is unstable (one assumes that Eq. (4.23) take into account increasing of

frequencies in a way, that ω1 < ω2 < .. . < ωn), while the following system:
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ẍi +ω2
i xi = µ fi (0, . . . ,0,xm+1, . . . ,xn,0, . . . ,0, ẋm+1, . . . , ẋn,µ) , (4.26)

i = m+1, . . . ,n,

equivalent to high frequencies of vibrations, is dissipative and possesses a global

stable position of equilibrium.

During the process of interaction between the unstable and dissipative parts of

a system, the “pumping” of energy from the low-frequency to the high-frequency

forms takes place, and, as a result, a certain spectrum of vibrations is formed that

is related to the distribution of amplitudes of particular oscillators with frequencies

close to ω1,ω2, . . . ,ωn.

Such a distribution of amplitudes can be found if average relations describing

interactions between particular oscillators (vibration forms) of a system are known.

Above, certain assumptions and premises of the “theory of quasi-periodic chaos”

are given. Minor fluctuations and the unique mechanism of gathering them, a kind

of “chaos enhances” are essential here. From the point of view of our considera-

tions, the phenomena of chaos and synchronization were opposite. The occurrence

of synchronization results in damping the symptoms of chaos, and the development

of chaos, in turn, leads to the reduction of the importance of synchronization of

particular elements (oscillators) of an entire analyzed system.

4.6 Static Bifurcations and Catastrophe Theory

In the introduction to Thompson’s monograph entitled Instabilities and Catastro-

phes in Science and Engineering [290] Lighthill pointed to some basic and unique

feature of nonlinear systems that is familiar to the researchers working in engineer-

ing, physics, mechanics, astronomy, and biology. What is so unique and singular is

that a certain equilibrium point can become unstable during a constant parameter

change, and the so far continuous process can also become discontinuous. Recently,

active collaboration between mathematicians and the researchers representing the

aforementioned branches of science has led to the formulation of a new bifurca-

tion theory that has allowed us to understand many phenomena in different fields of

science from a certain single point of view [173].

The mathematical theory of bifurcation and instability is historically rooted in

mechanics and astronomy, and thanks to the efforts of many topology researchers, it

has become an independent branch of science. Two important achievements should

be emphasized here: a complete catastrophe theory by Thom [289] and Zeeman

[330, 331], based on a topological concept of structural stability, and the impli-

cations of the discovery of strange attractors responsible for chaotic motion (see

also [18]).

What should be also noted is the difference between static stability that is the

subject of catastrophe theory, and dynamic stability occurring, e.g., in flatter-type

self-excited vibrations caused by wind in planes or suspension bridges.



136 4 Dynamic Loss of Stability of Rectangular Shells

Rapid developments in science, especially in applied mechanics, have led to

specialization and to the formulation of various versions of initially general solutions.

What should be especially emphasized is the essential role of the theory of elastic

stability. It is connected with the reaction of elastic bodies and constructions on me-

chanical loads, and it has important technological applications for estimating critical

force causing the stability and carrying capacity loss of constructions in engineer-

ing. Let us recall here that there are two different kinds of mechanical systems,

namely conservative systems (this category also includes systems with low-energy

dissipation that are conservative without it), and nonconservative systems, usually

associated with an unlimited source of energy. As far as conservative systems are

concerned, it is important to pay attention to the classical research on bifurcation

conducted by Koiter [137], that are based on continual formulation. After eliminat-

ing passive deformations, the system’s energy is expressed by an algebraic function

depending on the amplitudes of vibration forms that are responsible for the stabil-

ity loss. A modern explanation of nonlinear bifurcation phenomena of continuous

systems under conservative load was proposed by Budiansky [63]. In the case of

nonconservative systems, some important elements of a linear classification were

also introduced by Ziegler [335].

The basic relationship between modern research and the research conducted by

Euler and Lagrange is connected with the contribution of such researchers as Thom

[288] and Zeeman [332]. A catastrophe theory is essential in the classification of

static instabilities. Some basic results obtained in the catastrophe theory are given

in Table. 4.1 (see [249]).

In order to find these relationships in conservative discrete systems described

by potential functions, Thom applied the topological concept of structural stability.

Catastrophe theory allowed an experimental explanation of the observable forms of

instability occurring with the change of control parameters. Therefore, if there is

only one control parameter λ, in a general case only the catastrophe of composition

type can be observed, whose local potential energy is given in a table.

If there is independent control over two parameters λ1 and λ2, which can rep-

resent transverse and axial load on, e.g., a rod, then “fold-type” bifurcations can

Table 4.1 Characteristics of seven elementary bifurcations

Wrinkle q3 +λ1q

Fold q4 +λ2q2 +λ1q

Dovetail q5 +λ3q3 +λ2q2 +λ1q

Butterfly q6 +λ4q4 +λ3q3 +λ2q2 +λ1q

Hyperbolic umbilical q3
2 +q3

1 +λ1q2q1 −λ2q2 −λ3q1

Elliptic umbilical q3
2 −3q2q2

1 +λ1(q2
2 +q2

1)−λ2q2 −λ3q1

Parabolic umbilical q3
2q1 +q4

1 +λ1q2
2 +λ2q2

1 −λ3q2 −λ4q1
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be additionally observed. In the case of independent control over three parameters

λ1, λ2, and λ3, one can additionally observe a “dovetail” and hyperbolic and elliptic

catastrophes. For four control parameters, any catastrophe given in a table can be

observed.

The examples mentioned above include all the structurally stable singularities

that can be observed in the surrounding world with the use of one to four control

parameters. The first four catastrophes from the list have only one active generalized

coordinate q, just as for a simple stability loss, whereas the last three catastrophes are

characterized by two active coordinates q1 and q2, just as in the case of simultaneous

stability loss in relation to two forms.

A more detailed classification is possible only for bifurcation analysis with only

one bifurcation parameter. Thom’s prediction that pathological phenomena can be

observed only for a high enough order of equation should not be forgotten.

4.7 “Wrinkle-Type” Catastrophe or a Limit Point

In the case of a “wrinkle-type” catastrophe, there is only one coordinate, so it is easy

to illustrate Thom’s ideas [249] in Fig. 4.2. In this figure, the letters Q and Λ denote

standard variables, (V means full potential energy).

If the shape V was drawn as the shape of function Q, then the minimum and max-

imum values will be in the points where ∂V/∂Q equals zero. However, in this case,

there will be no inflection point in which the first and second derivatives will equal

zero at the same time. The occurrence of such a critical point should be treated as

pathology and the probability of its occurrence would be zero. The only possibility

for observing the inflection point would be drawing the family of curves parameter-

ized by curve Λ, which is shown in the picture. In order to observe the critical state

of equilibrium in which the two first derivatives equal zero, parameter Λ has to be

changed, which exactly reflects the process of loading the construction until it loses

stability.

Fig. 4.2 Change of energy

value for a “wrinkle-type”
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The simplest energy transformation involving overlapping and disappearing of

the minimum and maximum parameter under one control is called the “wrinkle-

type” catastrophe. It is represented by the balance trajectory XCY (see Fig. 4.2),

that bends in point C, changing the character of stability at the same time.

4.8 A “Fold-Type” Catastrophe or Symmetric Bifurcation

If in the analysis of an unstable symmetric point of bifurcation an additional im-

perfection parameter ε , was introduced, the image presented in Fig. 4.3 would be

obtained. The balance trajectory of a perfect (without imperfections) system is sur-

rounded by the balance trajectories of the system with imperfections [249].

It is obvious that while loading a real, and hence always having imperfections,

construction, the balance trajectory will not directly cross the branch point and it will

represent one of the trajectories close to the balance trajectories of a perfect system.

This means that during a one-parameter load the instability will be realized in the

same way as in the case of “wrinkle-type” bifurcation. It will be possible to observe

the very branch point experimentally only when load and imperfection parameters

are changed simultaneously. In fact, this branch point represents the occurrence of a

“fold-type” catastrophe, and the need for a two-parameter analysis confirms Thom’s

intuition. A stable symmetric branch point occurs, e.g., in the problem related to the

analysis of stability of the Euler rod. Such a symmetric point can also be classified

on the basis of terminology introduced by Thom as a “wrinkle,” because of their

topological similarity.

A fold of a form of symmetric bifurcations is formed in all the sciences based on

mathematics. Thanks to the catastrophe theory, structural “fold-type” stability with

the use of only two control parameters can be demonstrated.

Fig. 4.3 Sensitivity for

imperfection in an unstable
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Using Table 4.1, is easy to notice that the hyperbolic umbilici catastrophe is a

symptom of one of the higher order catastrophes from Thom’s list. This catastrophe

involves applying three control parameters and two active coordinates, and hence the

surfaces of balance lie in a five-dimensional space and it is impossible to physically

present them.

As far as higher order bifurcations that are not listed in the list of seven elemen-

tary catastrophes are concerned, they often appear in the problems of optimization

of constructions connected with symmetry unique to these problems. The increase

in the number of forms results in generating complex secondary bifurcations.

4.9 Dynamic Bifurcations

Unlike static bifurcations related to equilibrium points, dynamic bifurcations are

usually connected with trajectory changes in the form of limit cycles. If we take into

account wind blowing at a uniform rate flowing around a given elastic construction,

it can evoke and maintain high-amplitude vibrations, even causing the destruction

of this construction. Three different mechanisms of aerodynamic instability are

distinguished: one mode vibrations, resonance, and two-modes flatter.

We shall assume that all the mechanical systems analyzed below have inertial,

elastic, and additionally determined dissipation forces. Taking dissipation into ac-

count allows one to construct approximate models of actual phenomena. With such

an assumption concerning dissipation, the minimum of general potential energy of

a discrete system is an indispensable and sufficient condition of the stability of con-

servative systems. The theory of dynamical systems allows one to understand the

notion of structural stability and it clarifies the necessity for maintaining the nonlin-

earity of an accepted model (in a bifurcation point) as well as for taking damping

into consideration.

Taking damping into account allows one to eliminate numerous famous para-

doxes in engineering, e.g., finite destabilization for infinitely small damping. The

theory of dynamical systems shows that Hopf bifurcation and saddle-node point bi-

furcation (or “wrinkle-type”) catastrophe are possible with the change of only one

control parameter.

One of the most interesting results obtained in dynamics over the last few-years

is the notion of a strange attractor and the occurrence of chaos observed already in

the system described by simple ordinary differential equations. Chaotic phase por-

traits of strange attractors can be observed already in case of very simple nonlinear

dynamical systems in a three-dimensional space.

Already Rössler [261] noted: “If periodic vibration is typical of the behavior of a

two-dimensional dynamical system, then chaos is typical of three-dimensional dy-

namical systems.” Here, chaos will be understood as “an infinite number of unstable

periodic random trajectories.”
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4.10 Criteria for Practical Computations

The considerations above allow one to calculate dynamic coefficients directly used

in practical calculations. In the case of rods and plates, the coefficient of dy-

namical amplification is determined as the relation of dynamic buckling load to

Euler load.

Let us recall here that in the case of a rod or a plate, the values of buckling load

determined experimentally are close to those determined theoretically.

Many more difficulties appear when one tries to determine similar criteria related

to thin shells. In this case, as already mentioned, buckling is caused by the process of

the shell’s snap. This process is related to the stability loss of a system in a “large”

sense.

Let us focus for a while on some criteria of dynamic stability proposed by various

researchers and used by them in their calculations.

Volmir [304] took the rapid bend increase with a minor change of load as a dy-

namic criterion.

Shian et al. [270] showed that the load reflecting the change of direction and al-

lowing to obtain the first maximum on the load-time characteristics can be regarded

as critical.

Kantor [130] analyzed axially symmetrical spherical shells with the use of the

Ritz method with higher approximations and he established the condition of the

bend in the middle of the shell to be larger than the shell’s thickness as a dynamic

criterion, which is expressed by the following formula:

K =
2 f

2h
, (4.27)

where f is the height of a shell’s lift.

In spherical rectangular shells, the dynamic buckling loads obtained according

to Kantor criterion practically overlap with those obtained according to the Volmir

criterion.

In spherical shells, a non-dimensional curvature is expressed by the geometry of

a shell as follows:

kx =
a2

Rx |2h| , ky =
b2

Ry |2h| , (4.28)

i.e., it is a complex parameter involving all the geometrical dimensions of a shell.

In work [13] a criterion of Lyapunov stability connected with the application of

the notion of the phase plane of a system is formulated. Krysko et al. [74] applied

this criterion to determine the stability of a rectangular spherical shell by setting the

initial imperfection on the basis of theoretical considerations or on the basis of the

conditions of a technological process.

Work [76] offers the possibility to describe dynamic buckling loads in nonlinear

problems of the theory of shells. The idea of this approach involves adding small

perturbations to the solutions of the equations of motion. The sign before the squares

of perturbation frequencies determines the system’s stability.
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4.11 Stability Loss of Homogeneous Shells

under Transverse Loads

4.11.1 Feasibility of the Obtained Results

In order to check the feasibility of the obtained results, let us analyze the example

of the problem of the stability loss of a homogeneous shell under transverse load

q = const, whose solution will be searched for on the basis of the following tools:

1. The Bubnov-Galerkin method with higher approximation

2. The finite differences method.

In order to solve a problem formulated in this way, we shall use Eqs. (1.55)

and (1.56), apply the boundary conditions of Eq. (2.94), and set the following initial

conditions:

w = 0,
∂w

∂ t
= 0, dla t = 0. (4.29)

While solving the problem with the use of Bubnov-Galerkin method, we shall

search for functions w, F (satisfying the boundary conditions) of the following form:

w = ∑
i, j

Ai j(t) sin(iπx)sin( jπy),

F = ∑
i, j

Bi j(t) sin(iπx)sin( jπy), (4.30)

i = 1,2, . . .Mx; j = 1,2, . . .My; n = Mx ∗My.

Substituting Eq. (4.30) into (1.55) and (1.56) and applying the Bubnov-Galerkin

procedure with higher approximations in relation to spatial coordinates, we will

obtain a system of second-order differential equations that is next reduced to an

ordinary form and the system of algebraic equations in relation to Bi j(t).
We solve the system of differential equations with the use of the fourth-order

Runge-Kutta method [140] i-th the constant step of integration, whose value is cho-

sen on the basis of the Runge law. During each step of integrating the ordinary

system, we simultaneously solve the system of algebraic equations on the basis of

the Gauss method [115].

Let us first apply the method of finite differences, and hence let us present a

system of Eqs. (1.55) and (1.56) in the form of finite differences. Let us use the

square mesh with step h = 1/n, where n denotes the number of the division of

segment [0; 1].

Let us apply a thirteen-point difference diagram (Fig. 4.4). By replacing the dif-

ferential operators from Eqs. (1.55) and (1.56) by approximating them as finite

differences with error O(h2), we will obtain an analogical system of equations which

we will solve also using Runge-Kutta and Gauss methods.
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Fig. 4.4 Applied difference

diagram

We will give the equations for node ( j, i) as an example:

d2w j,i

dt2
+ ε

dw j,i

dt
= q− λ 2

12h4
w j−2,i

−
[

1

6h4
+

1

8h4

(

Fj+1,i+1 −Fj+1,i−1 −Fj−1,i+1 −Fj−1,i−1

)

]

w j−1,i

+

[

1

3h4
+

λ 2

3h4
+

1

h4

(

Fj,i+1 −2Fj,i +Fj,i−1

)

]

w j−1,i

−
[

1

6h4
− 1

8h4

(

Fj+1,i+1 −Fj+1,i−1 −Fj−1,i+1 −Fj−1,i−1

)

]

w j−1,i+1

− 1

12λ 2h4
w j,i+2 +

[

1

3λ 2h4
+

1

3h4
+

1

h4

(

Fj−1,i −2Fj,i +Fj+1,i

)

]

w j,i−1

−
[

1

2λ 2h4
+

2

3h4
+

λ 2

2h4
+

2

h4

(

Fj−1,i −2Fj,i +Fj+1,i

)

+
2

h4

(

Fj,i+1 −2Fj,i +Fj,i−1

)

]

w j,i −
1

12λ 2h4
w j,i+2

+

[

1

3λ 2h4
+

1

3h4
+

1

h4

(

Fj−1,i −2Fj,i +Fj+1,i

)

]

w j,i+1

−
[

1

6h2
− 1

8h4

(

Fj+1,i+1 −Fj+1,i −Fj−1,i+1 +Fj−1,i−1

)

]

w j+1,i+1

−
[

1

3h4
+

λ 2

3h4
+

1

h4

(

Fj,i+1 −2Fj,i +Fj,i−1

)

]

w j+1,i

−
[

1

6h4
+

1

8h4

(

Fj+1,i+1 −Fj+1,i−1 −Fj−1,i+1 +Fj−1,i−1

)

]

w j+1,i+1

− λ 2

12h4
w j+2,i−1 +

kx

h2

(

Fj−1,i −2Fj,i +Fj+1,i

)

+
ky

h2

(

Fj,i+1 −2Fj,i +Fj,i−1

)

;

(4.31)



4.11 Stability Loss of Homogeneous Shells under Transverse Loads 143

λ 2Fj+2,i +2Fj+1,i−1 −4
(

1+λ 2
)

Fj+1,i +2Fj+1,i+1 +
1

λ 2
Fj,i−2

−4

(

1

λ 2
+1

)

Fj,i−1 +

(

6λ 2 +
6

λ 2
+8

)

Fj,i −4

(

1

λ 2
+1

)

Fj,i+1

+
1

λ 2
Fj,i+2 +2Fj−1,i−1 −4

(

λ 2 +1
)

Fj−1,i +2Fj−1,i+1 +λ 2Fj−2,i

=
(

1−µ2
)

[

1

16

(

w j+1,i+1 −w j+1,i−1 −w j−1,i+1 +w j−1,i−1

)2

−
(

w j,i+1 −2w j,i +w j,i−1

)(

w j+1,i −2w j,i +w j+1,i

)

−h2kx

(

w j+1,i −2w j,i +w j−1,i

)

−h2ky

(

w j,i+1 −2w j,i +w j,i−1

)

]

. (4.32)

While solving this problem with the use of the Bubnov-Galerkin method (BG),

we shall assume in Eq. (4.30) n = 25. While applying the method of finite differ-

ences, we divide the shell into 6∗6 and 12∗12 parts.

Figure 4.5 presents the relations between the bending in the center of a shell

and time w− t or the shell with parameters kx = ky = 24 and for the load intensity

q = 150; 220; 250 (respectively, curves 1, 2, 3), and for medium damping ε = 3.

Curve 4 represents q = 250 division of a shell into 6∗6 parts.

While integrating the differential equations with the use of the Runge-Kutta

method, the step in time was chosen on the basis of maintaining the solution stabil-

ity by complying with the Runge law. Continuous curves represent the solution with

the use of the Bubnov-Galerkin method, and the point curves characterize the solu-

tions basing on the method of finite differences. For pre-critical loads (curves 1, 2)

both methods give overlapping results, and, what is more, the solutions obtained

Fig. 4.5 Dynamic buckling of a homogeneous shell
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Fig. 4.6 The relation of the

dynamic buckling load of a

shell and parameter kx = ky

with the use of finite differences with the division into 6 ∗ 6 and 12 ∗ 12 parts also

partially overlap. In the case of post-critical loads (curves 3, 4) the division into 6∗6

parts (curve 4) is not sufficient, and only the division into 12 ∗ 12 parts makes the

results overlap with those obtained with the use of the BG method. The solution

obtained on the basis of the finite difference method with the division of a shell into

12∗12 parts oscillates around the solution obtained with the use of the BG method.

The buckling load obtained with the use of both methods is practically the same, but

the time of calculations is much longer for the finite difference method. Therefore,

the BG method is much more economical.

4.11.2 Buckling Load and Parameter kx = ky

of a Homogeneous Shell

Let us analyze the relation of a dynamic buckling load of a homogeneous shell and

parameter kx = ky. In order to solve the boundary problem of Eqs. (1.55), (1.56),

(2.94) we shall apply the method basing on the Bubnov-Galerkin approach. We

shall solve the obtained Cauchy problem with the initial conditions of Eq. (4.29)

on the basis of the Runge-Kutta method. In order to determine the buckling load,

we will use Volmir criterion for the stability loss of a shell. The obtained results of

calculations are given in Fig. 4.6. Curve 2 was obtained by taking into account the

medium’s damping ε = 3.

The diagrams presented here show a certain monotonic relation between the

buckling load and parameter kx = ky of a shell that can be also observed in the static

case. The increase of this parameter results in the increase of the buckling load.

Medium damping in the analyzed case for the value kx = ky < 24 has practically no

influence on the quantity of the buckling load, and in the case of large differences

of this parameter value, it causes a significant increase of the buckling load.

4.12 Stability Loss of Heterogeneous Shells

Under Transverse Load

Let the shell be characterized by certain heterogeneity (Fig. 2.8a), in which one

element is situated in the center of the shell. Let us remember that the degree of
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heterogeneity is characterized by the value of the stiffness coefficient γ1 j and density

coefficient γ2 j of the element, where o denotes the number of an element. In the case

of a homogeneous shell, both those coefficients equal one. The value of a coefficient

γ1 j smaller than one represents a softer shell, and the other way around. The same

refers to coefficient γ2 j.

Let the shell undergo a load with value q that is constant in time and uniformly

distributed. In such problems, the choice of the criterion of stability loss is very

important. In this case, we shall comply with the concept of system stability in a

finite time range for the realization of a dynamic stability loss in a “large” sense,

i.e., we will be interested in this load value for which the shell undergoes buckling

in an established time range. Since the shell is homogeneous, it is easier for our

further considerations to introduce the notion of relative load, i.e., the load of a

heterogeneous shell related to the analogous load of a homogeneous shell
q
q0

where

q0 is the load of a homogeneous shell

4.12.1 Relation Between Buckling Load and the Surface

of an Extra Element

Let us explain now the way in which dynamic buckling load of a heterogeneous

shell depends on the central surface of a square extra element for an established

value of coefficients of stiffness γ1 j and density γ2 j of an extra element.

Figure 4.7 presents the relations between dynamic buckling load of a heteroge-

neous shell as related to the corresponding buckling load of a homogeneous shell

Fig. 4.7 Relation between dynamic buckling load of a heterogeneous shell and the surface of the

central stiffness element: (a) “soft” shell, (b) “stiff” shell
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and the surface of a central element for the cases of soft and stiff shells. γ2 j = 1 was

assumed, and curves 1, 2, 3, 4 correspond with parameter values of a square shell

with curvatures kx = ky = 12; 18; 24; 30.

The analysis of the diagrams shows that the relation of the buckling load for soft

and stiff shells with parameter kx = ky = 12; 18 is practically monotonic. A further

increase of this parameter results in the occurrence of bifurcations. One load value

can correspond to several values of an added element surface. Vibration energy is

distributed between homogeneous and heterogeneous parts of a shell, depending on

the qualities of its stiffness parameters.

4.12.2 Relation Between the Buckling Load and Stiffness

Coefficient of an Extra Element

In this case the value of parameter S denoting the surface of a square central el-

ement and the density coefficient is determined, and the stiffness coefficient is

replaced.

Figure 4.8a,b,c shows the diagrams of the relation between the relative buckling

load and the element stiffness coefficient γ1 j. S = 0.4 and γ2 j = 1 were assumed,

and a shell parameter was assumed as kx = ky = 18; 24; 30.

One may conclude on the basis of the given diagrams that for small values of

parameter kx = ky the relation is monotonic and close to linear. For further increase

of this parameter, two values of stiffness parameters γ1 j = 0.9; 1.1 (0.9, “soft”; 1.1,

“stiff” shell) are important. Beginning with these values, the analyzed relation is

significantly nonlinear, i.e., it has a significant role in energy distribution between

homogeneous and heterogeneous parts of a shell. The values of buckling loads for

the analyzed parameters changed by 20–25%.

Fig. 4.8 Relation between dynamic buckling load of a heterogeneous shell and stiffness coefficient

of an element
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4.12.3 Relation Between Buckling Load and the Number

of Reinforcement Elements Situated Along One Side

of a Shell

For such a pattern of heterogeneity (“perforation-type,” Fig. 2.8c) the shell is uni-

formly covered with square extra elements. In this case it is easier to use not the

total number of extra elements covering the shell, but to use the number N of el-

ements along only one side of the shell. The relation between the total surface of

extra elements and number N is presented in Fig. 2.16.

Figure 4.9a,b shows the relation between the relative dynamic buckling load and

the number of extra elements situated along one side of a “soft” shell, i.e., the stiff-

ness coefficient of elements is γ1 j = 0.5; γ2 j = 1. Curves 1–6 correspond with the

values of surface parameter kx = ky = 12; 18; 24; 30; 36; 48, respectively.

In Fig. 4.10a,b similar diagrams represent a “stiff” shell (γ1 j = 1.5; γ2 j = 1).
All curves have a clear resonance and stationary part, where load does not prac-

tically depend on the parameter characterizing the number of stiffness elements.

If we conform the above discussion with Fig. 2.16, then it will be seen that in this

range of changes of the parameter N a weak increase of the total surface of extra ele-

ments is observed. With increase of the parameter kx = ky both for the “soft” and for

the “stiff” shell, the area of the resonance part of a curve expands a little and it moves

toward the increase of parameter N. The load parameter may be changed by 20%.

4.12.4 Relation Between Buckling Load and the Width of a Rib

(Cross-Type Heterogeneity, Fig. 2.8b)

For such a pattern of heterogeneity, in the center of a shell there are two perpen-

dicular “ribs” with a set width, whose stiffness coefficient can characterize a soft or

stiff shell.

Fig. 4.9 Relation between buckling load of a “soft” heterogeneous shell and the number of stiffness

elements situated along one side of a shell
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Fig. 4.10 Relation between buckling load of a “stiff” heterogeneous shell and the number of stiff-

ness elements situated along one side of a shell

Let us establish stiffness and density coefficients (γ1 j = 0.5; 1.5 and γ2 j = 1),

and we will change the width of the rib of an extra element.

Figure 4.11a,b presents the relations between the relative dynamic buckling load

of a heterogeneous shell and S, the width of the rib of a stiffness element (cross-type)

for the shell with parameters kx = ky = 18; 24; 30; 36 (curves 1–4, respectively).

As one can see in the diagrams, curves 1–3 practically overlap both for “soft” and

“stiff” ribs, and the kx = ky that characterizes them does not exceed 30. This leads

us to the conclusion that the occurrence of heterogeneity in this kind of shell results

in the influence of geometric and stiffness parameters of heterogeneity elements on

each other work as the averaging influence on the shell in a qualitative sense with

the influence of uniformly distributed transverse load constant in time.

Fig. 4.11 Relation between dynamic buckling load of a heterogeneous shell and the width of the

rib of a central stiffness element (cross-type): (a) “soft” rib, (b) “stiff” rib
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For further increase of parameter kx = ky geometric parameters of a shell have

greater importance for the qualitative behavior of a shell.

What is important here is the occurrence of soft stability loss, i.e., local stability

loss in the shell’s quarters. Let us remember that for a homogeneous shell, this

phenomenon occurs when the parameter kx = ky reaches the value of 24. Then, the

load can change within the range of 40–50%.



Chapter 5

Stability of a Closed Cylindrical Shell Subjected

to an Axially Non-symmetrical Load

This chapter concerns stability of closed cylindrical shells subjected to an axially

non-symmetrical load action. In the beginning (Sect. 5.1), equations of motion are

derived, and then the influence of imperfection on the shell stability is studied.

Both static and dynamic problems of buckling with the use of the Bubnov-Galerkin

method of higher approximations are analyzed and many computational results are

reported.

5.1 Equations of Motion

While designing the thin shell constructions, it is important to make provision for

their capacity under compressing loads. From this point of view, the analysis of the

stability of a cylindrical shell under axially asymmetric load is of crucial practical

importance.

Based on the classical nonlinear theory of shells, we shall consider a closed cylin-

drical shell with a circular section and a finite length, whose stiffness and density

variables undergo non-uniform outer pressure.

Equations (1.48), and (1.49) of the theory of heterogeneous shells with finite

deflections of a mixed form will be the initial equations for further analysis. It

should be assumed that kx = 0, ky = 1/R, and R is the radius of an average

curvature.

The non-dimensional form of this equation is as follows

E

12(1−µ2)

[(

1

λ 2

∂ 2w

∂x2
+ µ

∂ 2w

∂y2

)

∂ 2(·)
∂x2

+

(

λ 2 ∂ 2w

∂y2
+ µ

∂ 2w

∂x2

)

∂ 2(·)
∂y2

+2(1−µ)
∂ 2w

∂x∂y

∂ 2(·)
∂x∂y

]

− ky

∂ 2F

∂x2
−L(w,F)+ k2

yq−ρ
∂ 2w

∂ t2
= 0,
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a1

[(

λ 2 ∂ 2F

∂y2
−µ

∂ 2F

∂x2

)

∂ 2(·)
∂y2

+

(

1

λ 2

∂ 2F
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−µ

∂ 2F

∂y2

)

∂ 2(·)
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∂ 2F
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∂ 2(·)
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]
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∂ 2w

∂x2
+

1

2
L(w,w) = 0. (5.1)

(·) means that the derivative is calculated correspondingly as the variation of

function w and F, a1 = 1
E

.

The non-dimensional values are given below:

w = 2hw̄; x = lx̄; y = Rȳ; F = E0 (2h)3
F̄ ; λ = l/R; ky =

2h

R2
ky;

q = k
2

y

E0(2h)4

l2R2
q; E = E0E; t =

Rl

2h

√

ρ0

gE0
t̄; ρ = ρ0ρ̄; (5.2)

whereas the boundary conditions are:

w = 0,
∂ 2w

∂x2
= 0, F = 0,

∂ 2F

∂x2
= 0, dla x = 0;1. (5.3)

5.2 The Influence of Imperfection on the Stability of Shells

In order to significantly correct the solution of the problem of cylindrical shell sta-

bility, one needs to consider aberration of the actual cylindrical shell surface from

the perfect shape of a model shell, i.e., the initial irregularities, or the so-called im-

perfection should be taken into account. The influence of imperfection on the shell

behavior was first analyzed by Flügge [99], who explained the physical sense of

his phenomenon and formulated the problem linearly. New terms characterizing the

change of surface curvature resulting from the initial deflection were introduced to

linear equations of stability.

In 1934, Donnell [77] took the initial imperfections into consideration by intro-

ducing them into nonlinear equations. Nevertheless, the solution Donnel obtained

for the first time was not precise.

In 1945, Koiter [137] made a detailed analysis of the behavior of various elas-

tic systems near the bifurcation point. For the simple and axially symmetric form

of a deflection, with the wavelength equal to the length of a wave during the loss

of the actual shell stability, the dependence for buckling stress was obtained, ac-

cording to which even a minor axially symmetric imperfection leads to a significant

buckling load.

In 1950, Donnell and Wan [78], basing on the earlier approach (of 1934), even-

tually proposed the method allowing one to take imperfection into account. Their

method was often used by other researchers as well. It gives consideration to all

the initial imperfections (geometrical, physical, etc.) by introducing certain initial

deflection w0, similar to the deflection w responsible for the stability loss.
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If the shell has initial and axially symmetric imperfections, the state of stress

occurs already at the load moment. The qualitative picture of the influence of ini-

tial imperfections can be best seen in the example of the analysis of cylindrical

shell stability during axial compression. It is important to notice here that certain

axially symmetric initial irregularities [4] occur. While solving this numeric prob-

lem, one can evaluate the buckling load qcr in relation to the amplitude of initial

deflection.

The results obtained by many researchers [4, 114, 138, 304] have shown that qcr

is very sensitive to the form of the initial axially symmetric shell imperfection.

Figure 5.1 shows the area in which the curves characterizing the buckling load

depreciation as related to the non-dimensional amplitude of initial deflection fin/h,

with various win(x) relations, are situated. In the case of a shell with the initial shape

imperfection qcr it can turn out to be several times smaller than the classical criti-

cal state.

In an actual shell, initial imperfections have different forms, and for thin shells

the amplitudes and forms of initial imperfections are difficult to control. In the case

of a shell with axially asymmetric initial imperfections, apart from the bifurcation

points which can be found on the basis of linearized differential equations, there

exists a range of boundary critical points, the determination of which is possible

only on the basis of nonlinear theory.

If the way in which the edges of the shell are attached allows for its purely flex-

ural deformation, then this shell presents a purely flexural form of the first kind of

deflection, i.e., the one in whose surroundings there is a new equilibrium point.

While the load is approaching the critical value, additional deflections grow in

time so quickly that the buckling loads determined with linearized equations for a

perfectly shaped shell will be the boundary values for every actual shell (just as is the

case with compressed elastic rod). The behavior of a long cylindrical shell (a pipe)

under the influence of outer pressure could serve here as an illustrative example.

If the way in which the edges of the shell are attached exclude purely flexural

strains, as is usually the case with real constructions, then the behavior of thin shells

during stability loss is qualitatively different.

Fig. 5.1 The relation between

the area of buckling load

depreciation and the initial

deflection amplitude
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Fig. 5.2 Load-deflection

characteristics

Let us analyze now the qualitative behavior of an elastic thin shell with initial

imperfections, loaded with outer pressure. For the perfectly shaped shell, the

load-deflection relation is characterized as presented by curve B1B2B shown in

Fig. 5.2, where p is outer pressure (load) and wmax is the radial displacement of

a point arranged on the wave of an additional deflection directed into the inside of

a shell.

The critical point of bifurcation B1 can be determined on the basis of linearized

equations. The construction of the whole B1B2B curve requires a linear approach.

Again, let us pay attention to a qualitative difference between the B1B2B curve

and the diagram for the deflections of perfect rods and plates. First, there are no

new static equilibrium points around the critical point of bifurcation 1. The distance

between new static equilibrium points (the segment of B2B curve) and the initial

equilibrium point (the segment of OB1 curve) has finite values.

Therefore, the shell transition into a new state of equilibrium cannot be smooth

such a transition proceeds in steps and it takes the form of shell buckling (a complete

description of this phenomenon is not a subject of this study; a shell will get a new

state of equilibrium after transitional vibrations die out).

Second, it is possible for the static equilibrium point to occur even before the

critical pressure state is established on the basis of linearized stability equations.

There is a certain energetic barrier between these new equations describing the state

of equilibrium and the initial state, and this barrier becomes weaker as the load

approaches critical value.

The bottom actual shell begins to deflect from its original value (OC1 curve) as

soon as a load is applied. On achieving the limit point C1 the shell loses its stability

and, by buckling, passes into a new state of equilibrium (from C1 point to C2C

curve). If there are only elastic strains in the shell material, the further reduction of

pressure makes the shell come back to the initial state of equilibrium (from the limit

point C2 to OC1 curve), by another buckling. Let us notice that with a certain shape

and size of amplitude, initial irregularities can transform the diagram of perfect shell

strains OB1B2B into monotonic curve OD, without a limit point.

The loss of shell stability is similar in the case of other kinds of load as well.

When the problem of cylindrical shell stability axially compressed is analyzed, the
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Fig. 5.3 A cylindrical shell

compressed axially

diagram of strains is conventionally constructed with coordinates q, λ, where q is

a compressing load; λ is the proximity of shell edges. This diagram, just as the

diagram of a shell strain under outer pressure, is qualitatively different from the

diagrams of rod and plate strains (Fig. 5.3) [4].

OB1 line represents uniform compression of a perfect shell; when the value of a

buckling load q is reached, this initial form is no longer static. The critical point for

bifurcation B1 turns out to be the bifurcation point around which there are no new

static equilibrium points of a shell, just as is the case with the shell losing its stability

under the influence of outer pressure. Initial imperfections, which often occur in

actual shells, transform the diagram of a perfect shell strain, and the bifurcation

point B1 is transformed into the critical limit point C1. When C1 is reached, a shell

loses stability with a sudden snap.

The theory of thin shell stability isolates two basic load values in a diagram.

Pcr is a buckling load, and when it is obtained, the initial stress–strain state of a

perfect shell ceases to be static; Pj is a snap load, and when it is obtained, the snap

of an actual shell with geometrical imperfections takes place.

The buckling load Pcr, corresponding to the bifurcation point B1, is often called

the upper buckling load P1cr. The load corresponding to the limit point B2, after

which it is possible (in a perfect shell) to obtain a new state of equilibrium different

from the initial one, is called the lower buckling load P2cr. During unloading (unless

the snap caused plastic strains), obtaining B2 point means the occurrence of the

next snap, which causes the return to the initial stress–strain state. For calculations

and analysis of thin shells, the P2cr value has no practical significance, since the

possibility of work of actual constructions is described by the Pj value.

The value of a buckling load Pcr of perfect shells is evaluated on the basis of

linearized equations, during axially symmetric loading of any rotary shell. Solving

such an equation with or without taking the initial stress–strain state of a shell into

consideration does not pose any significant difficulties. Even more complex axially

asymmetric problems of shell stability can be analyzed with the use of modern pos-

sibilities of calculation.

The quantity of the load of an actual shell snap can be represented as Pj = k jPcr,

where in many cases k j can be significantly smaller than 1. The quantity of k j for
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smooth thin shells is very sensitive for the change of a form and size of initial

imperfections, which causes principal difficulties in its evaluation. k j could be surely

evaluated for ever single shell experimentally, but its quantity may change while

passing from one shell to another.

In order to theoretically determine k j the form and size of initial irregularities

should be more detailed, and then k j for a given shell could be evaluated with the use

of complex and expensive calculations. The practical significance of such a solution

is doubtful. First, determining initial irregularities of an actual shell is very difficult;

second, they change in the process of product preparation, transport, and use.

Observe that k j quantities are very sensitive to such random and uncontrollable

factors as initial imperfections (only in the case of thin smooth shells). In ratio-

nally designed thin-walled shell construction transferring loads, their limit capacity

is connected with stability loss, which requires certain k j values. It is achieved with

the use of three-layer, wafer, ribbed composite or other strengthened shells. In such

constructions, it is possible to obtain stable, or even close to 1 values of k j.

To summarize our considerations in this section, let us emphasize that the di-

agrams of shell equilibrium points presented in Figs. 5.2 and 5.3 are significantly

simplified, since only one branch representing the equilibrium point different from

the initial one is given there. In fact, a full nonlinear differential equation allows to

find a certain set of such curves.

5.3 The Load Resulting from a Wind-Type Flow

Let the shell undergo a wind-type load. The distribution of pressure measured in a

circular direction is described by the following formula:

q = q0 (α +β cosy)m
; α +β = 1. (5.4)

The increase in the value of m causes broadening of the spectrum of a load dis-

tribution of Eq. (5.4) into Fourier series q =
m

∑
i=0

Ai cos(iy) and an axially symmetric

component of pressure decreases (Fig. 5.4).

In the analyzed cases q0 = 1 and the coordinates of an applied load are:

0 ≤ x ≤ 1, −π ≤ y ≤ π . For β = 0 we shall obtain the case of uniform pressure

distribution; for larger values of m the load diagrams will have the form of a narrow

band, with a maximum q0 in the point y = 0. A typical example of the pressure

distribution diagram for q0 = 1 is presented in Fig. 5.5.

Certain essential singularity should be taken into account while assessing ca-

pacity of the analyzed constructions. Unlike in the case of symmetric or similar

problems, where the buckling load value was uniquely related to the loss of the

construction capacity, such uniqueness is not observed here [11].

In the cases where a strong deflection dominates, the exhaustion of carrying

qualities of the construction is usually the result of obtaining certain value by
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Fig. 5.4 The distribution of a load into a trigonometric series

Fig. 5.5 The examples of the

load distribution of a shell for

m = 1 (a) and m = 6 (b)

q

m = 1

q

m = 6

(a) (b)

stress or displacement of a certain determined value, although formally, there may

be some other singular point of a nonlinear equation established to describe the

buckling load value. Stresses corresponding to such a load significantly exceed the

elastic limit and the strength limit of material. In this case, calculations should

take not only geometrical, but also the physical model of construction into con-

sideration, and the carrying quality of construction is described by limitations

applied to the basic parameters of the stress–strain state. The analogical criterion

of the assessment of construction capacity is also required when obtaining the crit-

ical value of a load (corresponding to a certain unique point of a solution) and

transition of the construction into a post-critical state takes place without any signif-

icant changes of stress–strain state parameters. In this case, the construction can

maintain its capacity under the influence of loads much larger than the critical

value.

5.4 The Problem of Statics

In order to solve the static problem, one needs to eliminate the term related to time

from the Eq. (5.1).

The boundary problem of Eqs. (5.1), (5.3) is solved with the use of Bubnov-

Galerkin method and the aforementioned approximations. The demanded functions

have the following form:
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w =
Mx

∑
i=1

My

∑
j=0

Ai j sin(iπ x)cos( jy),

F =
Mx

∑
i=1

My

∑
j=0

Bi j sin(iπ x)cos( jy). (5.5)

As the shell load along the x coordinate is uniform [114, 139], in Eq. (5.5) it is

assumed that Mx = 1, My = 12−20. By substituting Eq. (5.5) into Eq. (5.1), we get

the system of algebraic nonlinear equations with parameter q that is complemented

by the following equation:

w(x0,y0) =
Mx

∑
i=1

My

∑
j=0

Ai j sin(iπ x0)cos( jy0). (5.6)

After such an operation, q is treated as an unknown value, whereas w(x0, y0) is a

parameter. This algorithm allows one to construct a full q–w diagram. During each

step of parameter changes, the algebraic system of equations was solved on the basis

of the Newton method with the extrapolation of initial approximation, with the use

of a parabola. The required functions were accurate to 5%.

In Fig. 5.6 the relation of a buckling load q and m-th non-uniformity of a load for

a shell with parameters ky = 112.5, λ = 2.2 is presented. Curves 1–5 represent the

values of a load parameter 0.1–0.9 with a step 0.2.

As the non-uniformity m increases, the buckling load initially grows, obtaining

the maximum, and then gets smaller, and its intensity is significantly lower than

the initial one. This quality of a buckling load is much more noticeable in case of

smaller parameter values α , i.e., while the role of a variable additional element β in

Eq. (5.4) is increasing. For a significant value of a stable part of a load, a maximum

moves into the area of a significant non-uniformity of m load.

For small values of non-uniformity, a deflection corresponding to the value of

a buckling load changes within the range of tenth parts of shell thickness. The

Fig. 5.6 Relation between a buckling load and m-th non-uniformity of the load of a shell with

parameters kx = ky = 112.5, λ = 2.2
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Fig. 5.7 Relation between a buckling load and the participation of outer load for various values of

non-uniformity parameter α

deflection grows with the increase of m and it can reach the order of magnitude

equivalent to several thicknesses of a shell. For a small participation of a variable

part of a load, such a deflection does not exceed the half of shell thickness.

Figure 5.7 shows the relation between the buckling load q and the participation of

a stable part of outer pressure α for various values of non-uniformity parameter m.

For a small non-uniformity m the participation of a variable part of outer pressure

β is essential for the quantity of a buckling load. While his participation is being

reduced, the buckling can fall monotonically.

Increasing the non-uniformity parameter of a load m changes the character of

this relation. During reduction of the variable participation of outer pressure β a

buckling load grows monotonically, approaching the value equivalent to the one

loaded with uniform pressure.

5.5 Dynamics

In order to solve the dynamic problem, we shall use the equations of the system of

Eq. (5.1).

Initial conditions are

w = 0,
∂w

∂ t
= 0 for t = 0, (5.7)

and we search the following form of a solution

w =
Mx

∑
i=1

My

∑
j=0

Ai j(t)sin(iπ x)cos( jy),

F =
Mx

∑
i=1

My

∑
j=0

Bi j(t)sin(iπ x)cos( jy). (5.8)
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Due to spatial coordinates, the boundary problem of Eqs. (5.1) and (5.3) is solved

with the use of the Bubnov-Galerkin method with higher approximations, and the

obtained system of ordinary differential equations is solved with the use of the

fourth-order Runge-Kutta method, due to the time after reducing it to a normal

form.

Let a shell undergo a wind-type load described by the (5.5) type equation. Let this

load have certain periodical component with frequency and have the following form:

q = q0 (α +β cosy)m ( 1+ sinωt ) ; α +β = 1. (5.9)

The form of the coordinates describing load position follows:

0 ≤ x ≤ 1; −π ≤ y ≤ π.

Figure 5.8 shows the relation between the buckling load of a shell with param-

eters ky = 112.5, λ = 2.2 and ω , i.e., the frequency of an exciting force. Curves

1, 2, 3, 4 represent the values of a load non-uniformity parameter m = 1, 2, 3, 5;

α = β = 0.

Those relations are not monotonic. In all cases, there is a maximal minimum

around the value of parameter ω = 1. Then, the area ω = 4–12 appears, where three

local maxima can be observed, and the range reflecting smooth reduction of a load

and its growth follows. Together with the increase of non-uniformity parameter m

certain phenomena similar to those described here occur, but the transition of the

abovementioned phenomena toward larger values of the frequency of an exciting

force is observed ω .

Figure 5.9 shows the relations between a dynamic buckling load and a non-

uniform shell with geometric parameters: ky = 100, λ = 2, depending on the value

of parameter γ2 j, i.e., non-uniformity of an element for α = β = 0.5; the coordinates

Fig. 5.8 Relation between a buckling load and the frequency of an exciting force
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Fig. 5.9 Relation between the dynamic buckling load of a non-uniform shell and the non-

uniformity parameter like element thickness; coordinates of element’s position: (a) x1 = 0, x2 = 1,
y1 = −0.1, y2 = 0.1; (b) x1 = 0, x2 = 1, y1 = −0.2, y2 = 0.2

of load application are: 0 ≤ x ≤ 1, −π ≤ y ≤ π . Curves 1, 2, 3 represent the values

of the parameter of load non-uniformity m = 1, 2, 3.

As the diagram shows, for small load non-uniformity values m = 1, 2, reducing

or increasing the density parameter γ2 j results in reducing the value of a buckling

load of a shell in comparison to a uniform shell. The occurrence of a maximum

value of a buckling load can be observed. The maximum value is best noticeable

with the minima parameter of load non-uniformity m = 1.

For m ≥ 3 this relation is different: reducing (or increasing) the parameter results

in reduction (increase) of the value of a buckling load.

Tables 5.1–5.3 show the forms of shell deflections in relation to a circular coordi-

nate for various time instants t with a critical value of load for a given set of chosen

parameters. Let us notice that γ1 j = 1 and γ2 j = 1 correspond to a uniform shell.

For small values of load non-uniformity m the parameter deviation γ2 j directed

at random direction in relation to a uniform shell essentially influence the form of

a shell deflection. For γ2 j = 0.5 concavity appears in the shell, and for γ2 j = 0.5
there is certain convexity in the area where the load is most intense. For m ≥ 3

this form of a shell deflection along the circular coordinate does not depend on the

Table 5.1 Shell deflection for various time instants (m = 1)
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Table 5.2 Shell deflection for various time instants (m = 2)

Table 5.3 Shell deflection for various time instants (m = 3)

value of density parameter γ2 j. In this sense, a non-uniform shell behaves like a

uniform one.

The results presented in Table 5.1 for m = 1 are qualitatively different from other

results and they confirm the character of the relation described by curve 1 in Fig. 5.9.



Chapter 6

Composite Shells

Composite shells are studied in this chapter. First, equations governing the behav-

ior of composite shells are derived, and then both static and dynamic problems of

stability loss of composite shells are addressed.

6.1 Equations

The earlier used method of taking heterogeneity of shells into account in calcu-

lations can be successfully applied for introducing heterogeneity along the shell’s

width. In this case, heterogeneity covers the whole surface of a shell, i.e., a shell

becomes homogeneous. According to the Kirchhoff-Love model, all the layers of

a shell are made of isotropic material and have the possibility of random choice of

parameters E, µ , and ρ , for E = E(z), ρ = ρ(z).
We shall assume as usual that −h ≤ z ≤ h, i.e., the thickness of the layer packet is

2h and this packet is symmetric in relation to the central surface of a shell. Therefore,

we will set only the coordinate of the top part of the packet of each layer in relation

to direction z. The Young module of an extra element is different from the module of

a central layer and z1 < z2. The shell always has an asymmetrical number of layers.

To make further considerations easier, we shall assume that Poisson coefficient is

the same for all the layers.

The procedure of obtaining the equations governing the behavior of this type of

shells is the same as before, but some corrections must be introduced:

1. In problems where integration in relation to a coordinate z must be performed, it

should be assumed that E = E(z), ρ = ρ(z).
2. In steps of solving the problem where integration in relation to the surface of

shell parameters E, ρ does not depend on x and y, they can be drawn before the

integration sign.

Taking these remarks into account, we shall give only those expressions below

that undergo changes.
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1. Equations of forces

T11 =

h
∫

−h

E (z)

1−µ2
(εxx + µεyy)dz

=
2hE0

1−µ2

[

1−∑
i

(1− γ1i)
z2i − z1i

h

]

(ε11 + µε22) ,

T22 =

h
∫

−h

E (z)

1−µ2
(εyy + µεxx) dz

=
2hE0

1−µ2

[

1−∑
i

(1− γ1i)
z2i − z1i

h

]

(ε22 + µε11) ,

T12 =

h
∫

−h

E (z)

2(1+ µ)
εxydz =

2hE0

2(1+ µ)

[

1−∑
i

(1− γ1i)
z2i − z1i

h

]

ε12, (6.1)

where z1i, z2i are the coordinates, respectively for the beginning and end of i-th

layer along axis z.

2. Equations of elementary potential energy:

V =
1

2

∫ ∫

Ω

h
∫

−h

(σxxεxx +σyyεyy +σxyεxy) dz ds = V1 +V2,

where

V1 =
1

2

∫ ∫

Ω

h
∫

−h

E (z)

1−µ2

[

ε2
11 + ε2

22 +2µε11ε22 +
1−µ

2
ε2

12

]

dsdz,

V2 =
1

2

∫ ∫

Ω

h
∫

−h

E (z)z2

1−µ2

[

(

∂ 2w

∂x2

)2

+

(

∂ 2w

∂y2

)2

+2(1−µ)

(

∂ 2w

∂x∂y

)2

+2µ
∂ 2w

∂x2

∂ 2w

∂y2

]

dsdz. (6.2)

3. Equation of elementary kinetic energy without taking into account inertia related

to the element’s rotation:

K =
1

2

∫ ∫

Ω

h
∫

−h

ρ (z)

g

[

(

∂ u

∂ t

)2

+

(

∂v

∂ t

)2

+

(

∂w

∂ t

)2
]

dsdz. (6.3)
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After integration along z we obtain

V1 =
1

2

∫ ∫

Ω

2hE0

1−µ2

[

1−∑
i

(1− γ1i)
z2i − z1i

h

]

×
[

ε2
11 + ε2

22 +2µε11ε22 +
1−µ

2
ε2

12

]

ds, (6.4)

V2 =
1

6

∫ ∫

Ω

2h3E0

1−µ2

[

1−∑
i

(1− γ1i)
z3

2i − z3
1i

h3

]

×
[

(

∂ 2w

∂x2

)2

+

(

∂ 2w

∂y2

)2

+2(1−µ)

(

∂ 2w

∂x∂y

)2

+2µ
∂ 2w

∂x2

∂ 2w

∂y2

]

ds,

(6.5)

K =
1

2

∫ ∫

Ω

2hρ0

g

[

1−∑
i

(1− γ2i)
z2i − z1i

h

]

×
[

(

∂ u

∂ t

)2

+

(

∂v

∂ t

)2

+

(

∂w

∂ t

)2
]

ds. (6.6)

Non-dimensional equations in a hybrid form for a homogeneous shell with con-

sideration to Eqs. (6.1)–(6.6) will have the following form:

1

12(1−µ2)

[

1−∑
i

(1− γ1i)
(

z3
2i − z3

1i

)

]

[

1

λ 2

∂ 2w

∂x2

∂ 2 (·)
∂x2

+λ 2 ∂ 2w

∂y2

∂ 2 (·)
∂y2

+ 2(1−µ)
∂ 2w

∂x∂y

∂ 2 (·)
∂x∂y

+ µ

(

∂ 2w

∂x2

∂ 2 (·)
∂y2

+
∂ 2w

∂y2

∂ 2 (·)
∂x2

)]

− ∇2
kF −L(w,F)+q =

[

1−∑
i

(1− γ2i)(z2i − z1i)

]

(

∂ 2w

∂ t2
+ ε

∂w

∂ t

)

,

(6.7)
[

1−∑
i

(

1

γ1i

−1

)

(z2i − z1i)

]

[(

λ 2 ∂ 2F

∂y2
−µ

∂ 2F

∂x2

)

∂ 2 (·)
∂y2

+

(

1

λ 2

∂ 2F

∂x2
−µ

∂ 2F

∂y2

)

∂ 2 (·)
∂x2

+2(1+ µ)
∂ 2F

∂x∂y

∂ 2 (·)
∂x∂y

]

+ ∇2
kw+

1

2
L(w,w) = 0. (6.8)

6.2 Static Stability of Composite Shells

We add boundary conditions of Eq. (2.94) to Eqs. (6.7)–(6.8) and we solve them

with the use of high-approximation Bubnov-Galerkin methods.
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6.2.1 Three-Layered Shell

The packet consists of three layers of equal thickness. Each layer is made of

isotropic material of the same thickness. If we assume the Young module of the

inner layer as equal to 1 then for the layers above and below this layer it is easy to

respectively use the relation of these parameters Ei/E0.

Figure 6.1 shows a typical q–w relation for shells with parameter kx = ky = 24,

where curves 1, 3 correspond to the following relations of Young modules 0.9; 1.

Curve 1 is also presented that corresponds to a homogeneous shell. Let us remember

that the thickness of the packet is the same for all analyzed cases and is 2h. All three

curves are qualitatively similar and they are dislocated along the deflection axis. For

a shell whose layers have a higher (or lower) Young module, a curve is situated

above (or below) the curve for a homogeneous shell.

Figure 6.2 presents the relation between a static buckling load of the top layer of a

trilayered shell kx = ky = 24 and the Young modules of shell material, for E0 being

a parameter of the central (basic) layer. In the whole range of control parameter

changes, this relation is close to linear.

The elementary question concerning the analysis of a trilayered shell follows:

how does such a shell behave when the number of layers is increased? In our case,

this question has some results. If the shell’s layers have the same mechanical pa-

rameters, then this example is equivalent to the case of a homogeneous shell whose

thickness is equal to the sum of thicknesses of all its layers. The situation becomes

different when we analyze a multilayered shell consisting of layers that are made of

different materials.

Figure 6.3 shows the relation of the static top buckling load and the number of

layers of a shell with kx = ky = 24, for a relative Young module of each layer that

increases by 0.1. Curve 1 corresponds with a negative value of this increase, and

curve 2 corresponds with its positive value.

It is obvious that for a negative increase with step 0.1 that the number of layers

cannot exceed 19. In both analyzed cases we observe a relation close to linear.

Fig. 6.1 Diagram of “load-buckling” for a trilayered shell



6.2 Static Stability of Composite Shells 167

Fig. 6.2 Relation between static buckling load of a trilayered shell vs. and the Young modules of

material

Fig. 6.3 Relation between static buckling load of a homogeneous shell vs. the number of layers

Figure 6.4 presents the same relations as shown in Fig. 6.3, but the alloys of

titanium and aluminum were chosen as layer material. Curve Ti–Al reflects the case

when the central layer is made of titanium, and then the materials alternate. The

Al–Ti case is similar, but the central layer is made of Al alloy.

Taking into account the fact that the actual thickness of a packet is 2h, and the

number of layers increases, the value of the buckling load initially waves and then

it approaches the stationary value characteristic of a given type of shell.

Fig. 6.4 Relation of static load of multilayered shell with parameters kx = ky = 24 vs. the number

of layers
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6.3 Dynamic Stability

Let us analyze the previously considered problem in terms of dynamics. In order

to solve it, we shall use Eqs. (1.55,1.56), boundary conditions of (2.94), and the

following initial conditions:

w = 0,
∂w

∂ t
= 0 for t = 0. (6.9)

Medium damping shall not be taken into account, i.e., we will take coefficient

ε = 0 in Eqs. (1.55). Let a trilayered shell with parameter kx = ky = 24 undergo

a transverse and uniformly distributed load independent of time. Let us remember

that in this case the Young module of a central layer is assumed to equal 1. We shall

solve this problem using a higher-approximation Bubnov-Galerkin method and the

previous methodology. We will assume the Volmir criterion as the dynamic criterion

of stability loss here.

Figure 6.5 presents diagrams of the relation “shell center deflection–time” for the

following values of buckling load q = 226, 210, 241 (respectively, curves 1, 2, 3),

where curve 1 was formed for a homogeneous shell, and curves 2, 3 for a trilayered

shell. For curves 2, 3 it was assumed that E/E0 = 0.9, 1.1. Since all the analyzed

curves correspond with critical states, all of them are qualitatively and quantitatively

close to each other. In other words, shell buckling occurs in the same way in all of

Fig. 6.5 Changes in time of the deflection of the center of a shell for kx = ky = 24

Fig. 6.6 Relation of dynamical buckling load of a trilayered shell vs. the Young modules of shell

material
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them, i.e., critical deflections practically overlap, and critical time is slightly shorter

(longer) for a softer (stiffer) shell as a result of the dislocation of shell vibration.

Figure 6.6 presents the same relation as in Fig. 6.2, but formulated in terms of

dynamics.

The diagrams practically overlap qualitatively and quantitatively, which means

that the shell’s three layers influences the quantity of relative buckling load in a way

analogous to the one analyzed above.



Chapter 7

Interaction of Elastic Shells and a Moving Body

In this chapter the problem of interaction between flexible construction and a

moving lumped body is reduced to that of essentially simpler ones, i.e., that of

vibrations subject to moving force P0 and that of displacement in the domain of the

moving masses under the action of the mentioned force. Advantages of the proposed

method are illustrated and discussed.

It is characteristic for the modeling of interaction between a construction and

moving bodies that the impact on the construction is expressed by the weight and

inertial forces of the objects moving on the studied construction. This crucial feature

of the applied approach constitutes also the essential difficulty in the mathematical

analysis of the problem.

Let us note that most publications in this field related to the analysis of the

interaction between a shell and a moving mass are based on the application of a

geometrically linear model or on the assumption that a movable mass does not tear

off the leading construction. Apart from that, calculations were usually conducted

with the use of approximated methods with only few first approximations taken into

account. This chapter deals with this problem in a complex and detailed way and it

provides the methods leading to the solution.

7.1 Vibration of Construction and Moving Lumped Body

(One-Sided Constraint Case)

In general, the problem of interaction between moving objects and engineering con-

structions belongs to important tasks of engineering dynamics. The term “moving

load” is frequently used in technology today. Movable objects can be either rigid or

deformable bodies, fluids, impacting waves, heat or electromagnetic field sources,

etc. However, in this contribution, a “moving load” or a “moving body” is meant to

be a load acting either on a plate or a shell created through a weight or an inertial

force, or/and moving medium (or bodies).
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Dynamic problems of plates and circled cylindrical shells subject to an action of

moving objects have already a long history in mechanics. It is mainly motivated by

an enormous application of cylindrical shells in the rocket and aircraft industry, as

well as the industry of shipbuilding.

Without doubt, a study of the interaction between a landing (starting) airplane

and an air strip plays a key role in estimating the quality of the plane and the pas-

sengers’ safety.

Furthermore, in many cases the interaction between ship elements and waves is

modeled through interaction of a thin-walled structure with a fast moving lumped

body.

Another important field where dynamic behavior of constructions influenced by

movable bodies is involved has recently been revealed due to the use of nuclear

plants. In view of the safety requirements imposed on exploitation of nuclear power

plants, design of constructions housing nuclear reactors must obey high standard

norms. It is obvious that among other things, the probability of destruction of such

objects is expected to be extremely low, and consequently, the nuclear plants sit-

uated, for instance, in the vicinity of airports must be studied with respect to the

airplane impact. In fact, an isolated construction can be often modeled either as a

plate or a shell, while an airplane is usually modeled as a system of coupled lumped

oscillators.

A mass moving with constant velocity along a surface is subject to the load PD(t)
action, which is nowhere zero in spite of the contact point between the interacting

bodies, where the mass load M is [96]

PD(t) = P−M
d2zDM

dt2
. (7.1)

In the above, zDM denotes dynamical transversal mass (lumped body) displace-

ment as well as simultaneous vibrations of the mass and the associated surface; P is

the normal component of the weighting force of the body with mass M.

With the origin of the relative coordinate system fixed on the neutral surface of

the associated vibrating construction at the point under the body, the introduced

coordinate axes are directed along a tangent and a normal to the neutral surface.

Assuming that the mass moves while in contact with the associated surface, the

studied motion can be treated as a complex one, i.e., consisting of both the associ-

ated surface motion and the relative motion with velocity v measured with respect

to the surface. In this case one may derive both the mass acceleration in the vertical

direction and the vertical component of the mass trajectory using partial derivatives

of the dynamical deflection of the associated surface, i.e.:

d2zD,M(x, t)

dt2
=

d2zD(x, t)

dt2
=

∂ 2zD

∂ t2
+2v

∂ 2zD

∂x∂ t
+ v2 ∂ 2zD

∂x2
. (7.2)

The transversal acceleration
d2zD,M(x,t)

dt2 of the point mass measured in the funda-

mental coordinates x, y (Fig. 7.1a) consists of the transitional acceleration ∂ 2zD/∂ t2

(where zD denotes deflection of the associated surface under the mass), the Coriolis
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Fig. 7.1 Scheme of the investigated system: moving lumped body and the associated surface

treated as one (a) or two separated (b) systems

acceleration 2v∂ 2zD/(∂x∂ t) generated by a rotation of the relative system during

vibrations of the elastic surface, and the relative (oriented into the centre) accelera-

tion v2∂ 2zD/∂x2.

Since during a contact the body movement zD(x, t)|x=vt = zD,M(t), and since for

each time instant the mass and the point of the associated surface (situated under

the mass) vibrate transversally as one body (Fig. 7.1a), the mass pressure in rela-

tion (7.1) can be expressed through the function of transversal deflections of the

associated surface, i.e.:

PD(t) = P−M

(

∂ 2zD

∂ t2
+2v

∂ 2zD

∂x∂ t
+ v2 ∂ 2zD

∂x2

)∣

∣

∣

∣

x=vt

. (7.3)

Note that the beam vibrations subject to the action of the moving force (7.3) can

be reduced through the Englis-Bolotin method to the system of differential equations

yielding the values of transversal beam vibrations zD [61].

On the other hand, the equation of beam vibrations with the load (7.3) can be

reduced to integral-differential, integral, or algebraic equations [97]. During the

mentioned reduction process the occurrence of two-sided constraints applied to the

mass moving along a smooth surface guarantees the continuous contact between

two objects.

However, experimental investigations indicate a possibility of the contact lack

between the body and the associated beam (surface). In view of the latter observation

our mechanical system consisting of the mass and the associated elastic surface is

divided into two components (Fig. 7.1). In what follows two different problems will

be studied.

First, the problem of transversal mass displacement subject to the forces of ex-

ternal and dynamical reaction PD is examined. The second problem analyzed is that

transversal vibrations of the interacting construction subject to an action of unknown

moving force PD.

The values of the pressure generated by the moving lumped body and dynamical

reaction are equal, since they play the roles of action and reaction.
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Comparison of the mass displacement in the direction normal to the surface and

the transversal displacement of the construction under the force action allows deriva-

tion of the condition of intersection of the moving mass trajectory and the deformed

surface of the associated construction.

When the mentioned interaction is realized, i.e., the mass lies on the associated

surface, one gets a positive value of force PD applying the conditions of equal dis-

placements (force directions associated with the mass moving on the surface are

shown in Fig. 7.1).

Under a one-sided constraint, the mass loses contact with the surface for PD ≤ 0

and exhibits its own independent motion. In this case PD = 0 is taken for further

consideration. Then, an impact occurs when the sign of PD changes.

It is worth noting that the mass moving along the deformable surface can

be treated as a mechanical system with non-stationary holonomic constraints of

the form

f (x,y,z, t) = 0, (7.4)

and hence it has two degrees of freedom. Virtual mass displacements (allowed by

the constraint) will be denoted by δx, δy, δ z, whereas the dynamical constraint

reaction is denoted by PD (PDx, PDy, PDz).
Note that relation (7.4) holds also for virtual displacements, i.e.:

f (x+δx,y+δy,z+δ z, t) = 0. (7.5)

Since the constraint is holonomic, formulas (7.3) and (7.4) yield

δ f =
∂ f

∂x
δx+

∂ f

∂y
δy+

∂ f

∂ z
δ z = 0. (7.6)

Note that time has not been variated while deriving (7.6) because the virtual dis-

placements are not matched with the mass motion. Since in our mechanical system

the virtual work of reaction is equal to zero, one obtains

PDxδx+PDyδy+PDzδ z = 0. (7.7)

Both relations (7.7) and (7.6), are linear. Furthermore, the linear form of (7.7) is

a linear combination of (7.6), and therefore

PDx = λ
∂ f

∂x
; PDy = λ

∂ f

∂y
; PDz = λ

∂ f

∂ z
, (7.8)

where λ is the positive Lagrange multiplier (it characterizes normal reaction

force) [336].

The d’Alembert principle yields

(X −Mẍ)δx+(Y −Mÿ)δy+(Z−Mz̈)δ z = 0, (7.9)

where X ,Y,Z are components of active forces acting on mass M.

Multiplying in (7.6) δ f by λ i and extracting λδ f from (7.9), one obtains
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(

X −Mẍ−λ
∂ f

∂x

)

δx+

(

Y −Mÿ−λ
∂ f

∂y

)

δy+

(

Z −Mz̈−λ
∂ f

∂ z

)

δ z = 0.

(7.10)

Since from the three possible displacements only two are independent, λ can be

taken arbitrarily. Let us take λ satisfying the relation

X −Mẍ−λ
∂ f

∂x
= 0, (7.11)

and assume that δy and δ z are arbitrary and independent quantities.

Formula (7.10) yields

Y −Mÿ−λ
∂ f

∂y
= 0, (7.12)

Z −Mz̈−λ
∂ f

∂ z
= 0. (7.13)

The latter two dependences and conditions (7.11) create the first-order Lagrange

equations.

In a general case, when the mass moves along the deformable surface, equa-

tion (7.4) takes the form

z(t)− zn(x,y, t)− znier(x,y, t)−αc(x,y, t) = 0, (7.14)

where z is the vertical mass displacement; zn is displacement of the surface under

the mass; znier stands for the distribution of local surface irregularities of contacting

bodies; and αc denotes the bodies contact close-up.

Assuming that a rule for the mass motion on the associated surface in plane x,y
is given, only Eq. (7.13) will be further studied.

For small construction deflection and for small surface irregularities, the follow-

ing estimation holds PDz ≈ PD; Z = P0 = Mg, where g is Earth gravity acceleration.

Owing to relation (7.8) vertical mass displacement (7.13) takes the follow-

ing form:

P0 −
P0

g

d2z

dt2
−PD = 0. (7.15)

Observe that if zDM = z, and for P = P0; M = P0/g, Eq. (7.15) overlaps with (7.1).

In what follows the analyzed problem of dynamic interaction of movable mass

on the deformable associated surface is reduced to determination of the unknown

dynamical reaction PD from Eq. (7.14).

Note that the proposed method improves the dynamic model, allows for the con-

tact lack between the mass and surface, and predicts the next contact associated with

an impact, but allows also for the introduction of new dynamic factors. Namely, it

enables the accounting for local deformations in the contact bodies as well as irreg-

ularities of the surface.
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On the other hand, Eq. (7.14) generalizes the Timoshenko equation for the sim-

ple impact [96], since the mass approaching the interacting surface may have both

vertical and horizontal components.

Furthermore, the case of a two-sided constraint can be also derived from

Eq. (7.14). In the latter case, the change of sign of PD does not yield lack of the

contact between the lumped body and the surface.

There is one more advantage of the presented approach. A solution to the problem

of dynamic impact of the moving masses on machines and construction elements is

essentially simplified. It is reduced to an independent analysis of much simpler prob-

lems of construction vibrations driven by movable force PD, and of displacement of

the moving lumped body.

7.2 Moving Load Equations

Let us consider a shell with coordinate z directed to the Earth center, assuming that

the body moving in the gravity field possesses the point mass MT . In what follows

both sloping vΓ �= 0 and transversal vB �= 0 impacts will be considered.

It is further assumed that the body may move on the shell only after a sloping

impact, and its velocity is parallel either to axis x or y. In order to define the mass

displacement in directions z, through Eq. (7.15) one obtains

MT

d2z

dt2
= GT −PT , (7.16)

where GT is the body weight, whereas PT is the reaction of the interaction between

the lumped body and the shell.

Let the body move with constant acceleration ω on the shell with initial velocity

vx, parallel to the shell’s side with diameter a. The position η of the body is defined

through the relation

η =
ωt2

2
+ vxt. (7.17)

We are going to use the variable η instead of t in Eq. (7.16). Making use of the

formula
dz

dt
=

dz

dη

dη

dt
, (7.18)

one obtains

dz

dt
=

dz

dη

dη

dt
=

dz

dη
(ωt + vx),

d2z

dt2
=

d

dt

[

dz

dη
(ωt + vx)

]
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=
d2z

dη2

dη

dt
(ωt + vx)+

dz

dη
ω =

d2z

dη2
(ωt + vx)

2 +
dz

dη
. (7.19)

Owing to (7.17) one obtains

2η = ωt2 +2vxt,

ωt2 +2vxt −2η = 0,

or

t2 +
2vx

ω
t − 2η

ω
= 0. (7.20)

Equation (7.17) can be rewritten in the following way:

(

t +
vx

ω

)2

− 2η

ω
− v2

x

ω2
= 0,

or

(ωt + vx)
2 = v2

x +2ωη .

Finally, we obtain

d2z

dt2
=

d2z

dη2
(2ωη + vx)+

dz

dη
ω. (7.21)

Equation (7.16) expressed in terms of variable η reads

d2z

dη2
(2ωη + vx)+

dz

dη
ω =

GT −PT

MT

. (7.22)

7.3 Non-dimensional Form of Lumped Body Equations

Since variable t and normal load parameter q occurring in the shell motion equation

are transformed to the non-dimensional form (bars) owing to (1.54), and since reac-

tion PT of the interaction between the body and the shell is equivalent to shell load,

the new non-dimensional parameters are as follows:

η = aη , z = ( 2h )z, vx =
( 2h )

b

√

Eg

ρ
vx, ω =

( 2h )2

ab2

Eg

ρ
ω,

P =
( 2h )4

E

a2b2
P, MT =

2hρ

g
MT , λ1 =

a

2h
, λ2 =

b

2h
. (7.23)

Equation (7.16) takes the form

d2z

dt
2

=
ρa2b2

(2h)3E
− PT

MT

, (7.24)
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and let us introduce a new non-dimensional quantity

ρa2b2

(2h)3E
= α. (7.25)

Since α is a non-dimensional parameter MT describing the ratio of the mass body

and the mass shell per unit surface, the equation can be transformed to the following

non-dimensional form (index “T” and bars are omitted for simplicity):

d2z

dt2
= α − P

M
, (7.26)

where P is reaction force of interaction between load and shell, and M is the ratio of

the lumped body and shell masses.

A solution to Eq. (7.26) in the interval [t0, t] has the following form:

z(t) = z1(t)+ z2(t)(t − t0)+

t
∫

t0

[

α − P

M

]

(t −η)dη , (7.27)

where z1, z2 are constants defined through the initial conditions.

The continuous function P is approximated by the piecewise continuous func-

tion P(n)(t) with constant values within small step in time. The introduced approach

enables easy computation of integral (7.27) and hence z and dz
dt

on each integration

step are computed:

z(t) = z(t0)+

(

α − P

M

)

(t − t0)
2

2
+

dz

dt
(t0)(t − t0), (7.28)

dz

dt
(t) =

dz

dt
(t0)+

(

α − P

M

)

(t − t0). (7.29)

It is obvious that the values of z(t0) and dz
dt

(t0) computed in a previous step serve

as initial conditions for the next step.

7.4 Boundary and Initial Problem for a Shell

Consider a rectangular plate cylindrical panel or a spherical shell as the construction

interacting with a moving load (see Fig. 7.2).

Owing to a geometrically nonlinear theory and the Kirchhoff-Love kinematical

model, the associated equations of the dynamical hybrid form read [168]:

∂ 2w

∂ t2
+ ε

∂w

∂ t
= ∇2

kF +L(w,F)+q
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Fig. 7.2 Rectangular plate (a), cylindrical panel (b), and spherical shell (c) associated with a mov-

ing lumped body construction

− 1

12(1−µ2)

[

1

λ2

∂ 4w

∂x4
+λ2 ∂ 4w

∂y4
+2

∂ 4w

∂x2∂y2

]

, (7.30)

1

λ2

∂ 4F

∂x4
+λ2 ∂ 4F

∂y4
+2

∂ 4F

∂x2∂y2
= −∇2

kw− 1

2
L(w,w) , (7.31)

where the operators in (7.30) and (7.31) have the form

∇2
k = ky

∂ 2

∂x2
+ kx

∂ 2

∂y2
,

L(w,F) =
∂ 2w

∂x2

∂ 2F

∂y2
+

∂ 2w

∂y2

∂ 2F

∂x2
−2

∂ 2w

∂x∂y

∂ 2F

∂x∂y
.

Note that for the sake of simplicity the bars are again omitted in the men-

tioned non-dimensional equation, and the relations between the dimensional and

non-dimensional parameters are as follows:

w = 2hw, x = ax, y = by, F = E (2h)3
F ,

kx =
2h

a2
kx, ky =

2h

b2
ky, q =

E(2h)4

a2b2
q,

t =
ab

2h

√

ρ0

gE0
t, ε =

2h

ab

√

gE0

ρ0
ε, λ =

a

b
. (7.32)

In order to integrate Eqs. (7.30) and (7.31), one has to define boundary and initial

conditions.

If the Kirchhoff-Love hypothesis of straight normals is applied, than each con-

tour point should satisfy four boundary conditions. Namely, knowing displacements

u, v, w of the curve of contour points, it is possible to define the position of the curve
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after deformation. Note that a normal associated with a contour point may be shifted

together with this point and rotated by the value of a certain angle in the plane nor-

mal to the contour curve. To conclude, the normal position after shell deformation

is fixed with the help of four quantities.

It is obvious that in a real shell-type construction various support types can be

found, which gives a wide spectrum of their mathematical models.

Below, only some of the boundary conditions frequently met in real construc-

tions are reported for x = 0, x = a, and y = 0, y = b:

1. Hinged support on flexible ribs non-compressed (non-stretched) in the tangential

plane:

w = M1 = T1 = ε2 = 0 for x = 0; a,

w = M2 = T2 = ε1 = 0 for y = 0; b. (7.33)

The above condition can be rewritten in the following form:

w =
∂ 2w

∂ 2
= F =

∂ 2F

∂y2
= 0 for x = 0; a,

w =
∂ 2w

∂y2
= F =

∂ 2F

∂x2
= 0 for y = 0; b. (7.34)

2. Free edge:

w = M1 = T1 = S = 0 for x = 0; a,

w = M2 = T2 = S = 0 for y = 0; b. (7.35)

3. Movable clamping:

a)

w = 0;
∂w

∂x
= 0; T1 = ε2 = 0 for x = 0; a,

w = 0;
∂w

∂y
= 0; T1 = ε2 = 0 for y = 0; b. (7.36)

b)

w = 0;
∂w

∂x
= 0; T1 = S = 0 for x = 0; a,

w = 0;
∂w

∂y
= 0; T2 = S = 0 for y = 0; b. (7.37)

More examples of boundary conditions within the Kirchhoff-Love model are

given in monographs [143].
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Integration of the fundamental equation requires satisfaction of initial conditions

associated with deflections and velocities of the mean surface points, i.e.:

w
∣

∣

t=t0 = ζ1(x,y),

∂w

∂ t

∣

∣

∣

∣

t=t0

= ζ2(x,y). (7.38)

7.5 Shell Rise

Let us begin with panel rise. Introduce rotations in Fig. 7.3, where OD = OF = R is

the main curvature radius of the mean panel surface; AD = a is the panel dimension

in the x direction. Then, H(x0) = KM = (OB−OC) is the sought quantity, which

is the panel rise measured at point x0 in direction x. From triangles OCF and OBD

(see Fig. 7.3):

OC =

√

R2 − a2

4
,

OB =
√

R2 −BD2 =
√

R2 −BK2 =

√

R2 − (
a

2
− x0 )2, (7.39)

and hence the rise at point x0 reads

H(x0) = BC =

√

R2 − (
a

2
− x0 )2 −

√

R2 − a2

4
. (7.40)

In order to obtain the rise H(x0,y0) at the point with coordinates (x0,y0), a coef-

ficient of rise variation for H(y0) should be introduced, i.e., the ratio of the rise at a

Fig. 7.3 Panel rise height
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point moving along y and the largest rise associated with axis y. It reads

√

R2
y −

(

b
2
− y0

)2 −
√

R2
y − b2

4

Ry −
√

R2
y − b2

4

. (7.41)

Finally, the shell rise at point (x0,y0) follows:

H(x0,y0) =

⎡

⎣

√

R2
x −

(a

2
− x0

)2

−

√

R2
x −

a2

4

⎤

⎦

×

[

√

R2
y −

(

b
2
− y0

)2 −
√

R2
y − b2

4

]

Ry −
√

R2
y − b2

4

(7.42)

and the same holds in the non-dimensional form:

H(x0,y0) = λ1

⎡

⎣

√

λ2
1

k2
x

−
(

1

2
− x0

)2

−

√

λ2
1

k2
x

− 1

4

⎤

⎦

×

[
√

λ2
2

k2
y

−
(

1

2
− y0

)2

−
√

λ2
2

k2
y

− 1

4

]

λ2

ky

−
√

λ2
2

k2
y

− 1

4

, (7.43)

where again bars are omitted for the sake of simplicity.

7.6 Shell Vibrations with Two-Sided Moving Lumped

Body Constraints

Let us transform the terms of Eqs. (7.30)–(7.31) into their left-hand sides and

denote them by Φ1, Φ2, respectively. Owing to this transformation, Eqs. (7.30),

(7.31) [168]:

Φ1

(

w,F,
∂ 2w

∂ t2
,

∂w

∂ t
,

∂ 2w

∂x2
,

∂ 2F

∂x2
,q, . . .

)

= 0,

Φ2

(

w,F,
∂ 2w

∂x2
,

∂ 2F

∂x2
, . . .

)

= 0. (7.44)
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In general, it is impossible to attain an exact solution to these equations with the

associated boundary conditions.

Recall that in order to solve the derived equations one may use the Ritz-

Timoshenko variational method, the Bubnov-Galerkin approach, the finite differ-

ences method, the finite element method, etc.

Owing to the simplification, introduced earlier, of the interaction between the

shell and the load moving on it, the Bubnov-Galerkin method can be further used,

i.e., the governing Eqs. (7.30)–(7.31) will be solved using the Bubnov-Galerkin

method with higher approximations. For this purpose, functions w, F , satisfying

the boundary conditions, are sought in the form

w = ∑
i, j

Ai j(t)ϕi j (x,y),

F = ∑
i, j

Bi j(t)ψi j (x,y), i = 1,2, . . . ,Mx; j = 1,2, . . . ,My. (7.45)

Applying the Bubnov-Galerkin procedure to (7.44), one arrives at

1
∫

0

1
∫

0

Φ1ϕvz (x,y)dx dy = 0,

1
∫

0

1
∫

0

Φ2ψvz (x,y)dx dy = 0, v = 1,2, . . . ,Mx; z = 1,2, . . . ,My, (7.46)

and owing to (7.45) we obtain

∑
vz

[

∑
i j

[

(

d2Ai j

dt2
+ ε

dAi j

dt

)

I8,vzi j +Ai jI1,vzi j −Bi jI2,vzi j −qI3,vzi j

−Ai j ∑
kl

BklI4,vzi jkl

]]

= 0,

∑
vz

[

∑
i j

[

Ai jI7,vzi j +Bi jI5,vzi j +Ai j ∑
kl

AklI6,vzi jkl

]]

= 0,

v, i,k = 1,2, . . . ,Mx; z, j, l = 1,2, . . . ,My. (7.47)

Note that the summation sign ∑
vz
[∗] standing before each of the equations of (7.47)

means that each of these equations is understood as a system of vz equations, and

the associated integrals follow:

I1,vzi j =

1
∫

0

1
∫

0

E

12(1−µ2)

[

1

λ2

∂ 2ϕi j

∂x2

∂ 2ϕvz

∂x2
+λ2 ∂ 2ϕi j

∂y2

∂ 2ϕvz

∂y2
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+2(1−µ)
∂ 2ϕi j

∂x∂y

∂ 2ϕvz

∂x∂y
+ µ

(

∂ 2ϕi j

∂x2

∂ 2ϕvz

∂y2
+

∂ 2w

∂y2

∂ 2ϕvz

∂x2

)]

dx dy,

I2,vzi j =

1
∫

0

1
∫

0

−
(

ky

∂ 2ψi j

∂x2
+ kx

∂ 2ψi j

∂y2

)

ϕvz dx dy,

I3,vzi j =

1
∫

0

1
∫

0

ϕvz dx dy,

I4,vzi jkl =

1
∫

0

1
∫

0

L(ϕi j, ψkl) ϕvz dx dy, (7.48)

I5,vzi j =

1
∫

0

1
∫

0

a1

[(

λ2 ∂ 2ψi j

∂y2
−µ

∂ 2ψi j

∂x2

)

∂ 2ψvz

∂y2

+

(

1

λ2

∂ 2ψi j

∂x2
−µ

∂ 2ψi j

∂y2

)

∂ 2ψvz

∂x2
++2(1+ µ)

∂ 2ψi j

∂x∂y

∂ 2ψvz

∂x∂y

]

dx dy,

I6,vzi jkl =

1
∫

0

1
∫

0

1

2
L(ϕi j,ϕkl) ψvz dx dy,

I7,vzi j =

1
∫

0

1
∫

0

−
(

ky

∂ 2ϕi j

∂x2
+ kx

∂ 2ϕi j

∂y2

)

ψvzdx dy,

I8,vzi j =

1
∫

0

1
∫

0

ϕi jϕvz dx dy. (7.49)

Integrals (7.48), perhaps apart from I3,vzi j, where the transversal load acts only

on part of the shell, are computed with respect to the whole mean shell surface.

To sum up, system (7.47) consists of Mx∗My nonlinear second-order differential

equations with respect to time, and Mx∗My algebraic equations which are linear with

respect to Bi j.

Let us describe the mentioned procedure in more detail. For this purpose ϕi j, ψi j

from (7.45) are presented in the product form of two functions, where each of them

depends only on one argument and can be presented as a linear combination of func-

tions satisfying the boundary conditions:

ϕi j (x,y) = ϕ1i j (x) ϕ2i j (y) ,

ψi j (x,y) = ψ1i j (x) ψ2i j (y) . (7.50)

In order to trace the influence of the load parameters on the interaction with the

shell, the following boundary conditions are further applied:



7.6 Shell Vibrations with Two-Sided Moving LumpedBody Constraints 185

w = 0,
∂ 2w

∂x2
= 0, F = 0,

∂ 2F

∂x2
= 0 for x = 0,1,

w = 0,
∂ 2w

∂y2
= 0, F = 0,

∂ 2F

∂y2
= 0 for y = 0,1. (7.51)

Owing to (7.48)–(7.50) one obtains

ϕ1i (x) = ψ1i (x) = sin(iπx) , i = 1,2, . . . ,Mx,

ϕ2 j (y) = ψ2 j (y) = sin( jπy) , j = 1,2, . . . ,My. (7.52)

Putting (7.52) into (7.45), one obtains

w = ∑
i, j

Ai j(t) sin(iπx) sin( jπy),

F = ∑
i, j

Bi j(t) sin(iπx) sin( jπy), (7.53)

where the indices i, j may take all values.

After application of the Bubnov-Galerkin procedure, system (7.46) is recast into

the following form:

1
∫

0

1
∫

0

Φ1 sin(vπx) sin(zπy) dx dy = 0,

1
∫

0

1
∫

0

Φ2 sin(vπx) sin(zπy) dx dy = 0, (7.54)

v = 1,2, . . . ,Mx, z = 1,2, . . . ,My.

The integrals of the Bubnov-Galerkin procedure read

I1,v =

x0+Δx
∫

x0−Δx

sin(vπx) dx =
2

vπ
sin(vπx0) sin(vπ Δx) , (7.55)

I2,z =

y0+Δy
∫

y0−Δy

sin(zπy) dy =
2

zπ
sin(zπy0) sin(zπ Δy) , (7.56)

where x0,y0 are coordinates of the center of a rectangular contact surface point,

Δx, Δy denote half-width of this part with respect to x and y, respectively, and

I3,vi =

1
∫

0

sin(iπx) sin(vπx) dx =

{

1
2
, i = v,

0, i �= v,
(7.57)
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I4,z j =

1
∫

0

sin( jπy) sin(zπy) dy =

{

1
2
, j = z,

0, j �= z,
(7.58)

I5,vik =

1
∫

0

sin(iπx) sin(kπx) sin(vπx) dx

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
4π

[

−cosα1π

α1
− cosα2π

α2
− cosα3π

α3
+

cosα4π

α4

+
1

α1
+

1

α2
+

1

α3
− 1

α4

]

, αl �= 0;

[

cosαlπ

αl

= 0,
1

αl

= 0

]

, l = 1,2,3; αl = 0,

(7.59)

where

α1 = i+ k− v, α2 = k + v− i,

α3 = v+ i− k, α4 = i+ k + v. (7.60)

I6,z jl =

1
∫

0

sin( jπx) sin(lπx) sin(zπx) dy

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

4π

[

−cosβ1π

β1
− cosβ2π

β2
− cosβ3π

β3
+

cosβ4π

β4

+
1

β1
+

1

β2
+

1

β3
− 1

β4

]

, βl �= 0;

[

cosβlπ

β
= 0,

1

βl

= 0

]

, l = 1,2,3; βl = 0,

(7.61)

where

β1 = j + l − z, β2 = l + z− j,

β3 = z+ j− l, β4 = j + l + z. (7.62)

I7,vik =

1
∫

0

cos(iπx) cos(kπx) sin(vπx) dx

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

4π

[

cosα1π

α1
− cosα2π

α2
− cosα3π

α3
− cosα4π

α4

− 1

α1
+

1

α2
+

1

α3
+

1

α4

]

, αl �= 0;

[

cosαlπ

αl

= 0,
1

αl

= 0

]

, l = 1,2,3; αl = 0,

(7.63)
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I8,z jl =

1
∫

0

cos( jπx) cos(lπx) sin(zπx)dy

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

4π

[

cosβ1π

β1
− cosβ2π

β2
− cos β3π

β3
− cosβ4π

β4

− 1

β1
+

1

β2
+

1

β3
+

1

β4

]

, βl �= 0;

[

cosβlπ

βl

= 0,
1

βl

= 0

]

, l = 1,2,3; βl = 0,

(7.64)

Iq,vz = I1,vI2,z; IAB,vz =
(

z2kx+v2ky

)

π2I3,viI4,z j

Itt,vz = I3,viI4,z j; It,vz = εI3,viI4,z j (7.65)

Iw,vz =
π4

12(1−µ2)
(

v4

λ2
+2v2z2 +λ2z4)I3,vzI4,vz (7.66)

IB,vz = (
v4

λ2
+2v2z2 +λ2z4)π4I3,vzI4,vz (7.67)

Ivzi jkl = π4
[(

i2l2 + j2k2
)

I5,vikI6,z jl −2i jkl I7,vikI8,z jl

]

. (7.68)

Owing to the introduced integrals, system (7.47) takes the following form:

∑
vz

{

..
A
vz

Itt,vz +
.

A
vz

It,vz +AvzIw,vz +BvzIAB,vz

−Iq,vzq−∑
i j

Ai j ∑
kl

BklIvzi jkl

}

= 0, (7.69)

∑
vz

{

Bi jIB,vz −AvzIAB,vz +
1

2
∑
i j

Ai j ∑
kl

AklIvzi jkl

}

= 0. (7.70)

Again ∑
vx

[∗] means that instead of each of the equations of system (7.69) and (7.70)

the system of vz equations is taken.

The obtained system of differential equations is reduced to the normal form,

and is then solved using the fourth-order Runge-Kutta method. Solving the Cauchy

problem at each time step, the Gauss method is applied to solve the algebraic sys-

tem (7.70).

In the case of continuous contact load movement, the pressure occurring at the

place of contact between the shell and the lumped body consists of the mass weight

and inertial forces generated by transversal mass vibrations together with the shell.

Owing to (7.26), one obtains

P = M

(

α − d2z

dt2

)

. (7.71)



188 7 Interaction of Elastic Shells and a Moving Body

Let the contact space between the shell and the mass be approximated by

rectangle S(x,y) with the sides parallel to the shell sides, where

x0 −Δx ≤ x ≤ x0 +Δx,

y0 −Δy ≤ y ≤ y0 +Δy. (7.72)

Then the integrals associated with the application of the Bubnov-Galerkin method

are computed through formulas (7.55)–(7.56), where x0,y0 describe the rectangular

center, and Δx, Δy are the half-widths with respect to x, y, respectively.

Formula (7.71) may be rewritten to give P = Mα −M d2z
dt2 . The inertial term M d2z

dt2

is then added into the inertial shell term, and P = Mα is substituted in Eq. (7.69) for

the normal load parameter q. Note that if the mass is concentrated to a point, then

one may use the transition Δx → 0, Δy → 0, which gives

Iq,vx = I1,vI2,z = ΔxΔysin(vπx0)sin(zπy0), (7.73)

and the product ΔxΔy should be included in the reaction between the mass and

the shell.

Recall that in practice the so-called dynamic coefficients are often introduced.

For rods and plates, a dynamic coefficient is defined by dividing the dynamic “crit-

ical” loading by the Euler-type static quantity. Furthermore, in the case of rods and

plates, the critical load values estimated experimentally are close to those found

theoretically.

However, in the case of thin-walled shells, derivation of a similar criterion does

not belong to simple tasks, since a shell buckling is realized through a sudden jump.

The latter process is associated with stability loss “in large.”

Let us briefly describe some of the dynamic stability loss criterion, proposed by

various authors.

Volmir defined the dynamical stability loss when a fast deflection increase cor-

responds to small load variations. Shian et al. proposed the first maximum of the

load-time dependence as the critical one. In the Lyapunov stability criterion is ap-

plied, which is associated with the use of the phase plane of the considered system.

This criterion is used for stability investigation in a rectangular spherical shell.

All the mentioned criterions are in good numerical agreement, i.e., the critical

loads derived with their help are close to each other. In our further investigations the

Volmir criterion is used.

In order to determine the shell stability loss of the shell-mass system, as well as

to obtain some values of the critical parameters governing the interaction between

the shell and the mass moving on it, a series of computation is carried out.

It has been found that the influence of the non-dimensional parameter of mass

M on the shell behavior is similar to that of the normal load. There are values that

can be called critical and before critical ones, i.e., the shell exhibits a stability loss.

It has been observed that owing to the increase of the contact area, the change of

configuration instants of shells 2, 3 in Fig. 7.4b corresponds to shell stability loss.
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Fig. 7.4 Variation of the shell center deflection for different contacting surface areas under the

lumped body (a) Δx = Δy = 0.05, (b) Δx = Δy = 0.1

In Fig. 7.4, deflection variation at the shell center with parameters λ = 1, kx =
ky = 24, is reported when the center of the rectangular contact area 2Δx and 2Δy

between shell and mass overlaps with the shell center. The applied approximation

Mx∗My reads: 5∗5 . . .9∗9. Curves 1,2,3 are associated with the following parame-

ters: α = 500, M = 2,4,10.

In Fig. 7.5 shell deflection in the cross section y = 0.5 for the case corresponding

to Fig. 7.4b (curves 1,2) is shown. Curves 1,2,3,4 correspond to time instants t =
0.2,0.4,0.6,0.8, respectively.

For all reported curves the time step of 0.2 has been used. For the cases when

mass parameters are chosen so that the shell configuration does not change suddenly

(jump), its deflection is rather small (Fig. 7.5a). It essentially grows (Fig. 7.5b),

when the mentioned jumps (changes of shell configuration) occur.

On the other hand, the non-dimensional parameter α , occurring in the mass equa-

tion, may essentially influence the shell stability loss.

Figure 7.6 illustrates the dependence of critical parameter α versus the contact

dimension of both bodies (Δx = Δy). Curves 1,2,3 correspond to lumped body mass

values M = 2,5,10, respectively.

Observe that Δx = Δy = 0.2 is the limiting value. For Δx = Δy > 0.2 there is no

significant influence of α , whereas for Δx = Δy < 0.2 this influence is important and

increases with the increase of M. Owing to the mass velocity increase, the largest

deflection appears almost suddenly in a zone behind the mass. The same observation

Fig. 7.5 Diagrams of deflection w in cross section y = 0.5: a) M = 2, b) M = 4
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Fig. 7.6 Critical value of parameter α vs different contact areas under the lumped body

holds for the shell, although the shell-mass system is stiffer in comparison with the

previously studied one.

7.7 Shell Subjected to Transversal Rigid Body Impact

In this section the dynamics of rectangular elastic shells during the impact with a

rigid body are studied. Again axis z associated with a shell is directed into the Earth

center. It is assumed that while interacting, a lumped body moves on the shell along

a line parallel to x.

Therefore, coordinates x0, y0 of the first point of the impact remain constant, and

only coordinate z0 is variated. The latter is found using the motion equation for the

rigid body (7.26), i.e., it is assumed that during an impact the body may have the

vertical velocity component vB.

In what follows, the process of interaction of the body and shell is considered,

with the contact between them, which is either kept for a certain time, i.e.:

z0 = w(x0,y0)+H(x0,y0), (7.74)

or it is violated, i.e.:

z0 < w(x0,y0)+H(x0,y0), (7.75)

where H(x0,y0) is the shell rise height at a chosen point.

Conditions (7.74), (7.75) governing the occurrence of one-sided constraint z0 ≤
w(x0, y0)+H(x0, y0) may interleave many times. However, for a given coordinate

system the interaction reaction P ≥ 0.

To solve the defined problem it will be assumed that the shell dynamics are gov-

erned by Eqs. (7.30)–(7.31).

The Bubnov-Galerkin method of higher approximations is applied to solve the

shell dynamics [168].

The system of approximating functions satisfying boundary conditions (7.33) reads

w = ∑
i, j

Ai j(t) sin(iπx) sin( jπy),
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F = ∑
i, j

Bi j(t) sin(iπx) sin( jπy), (7.76)

i = 1,2,3, . . .Mx; j = 1,2,3, . . .My.

The obtained system of the second-order differential equations in time is first

reduced to the normal form, and then integrated using the fourth-order Runge-Kutta

method.

The following initial conditions are applied:

w

∣

∣

∣

∣

t=t0 = 0;
∂w

∂ t

∣

∣

∣

∣

t=t0

= 0. (7.77)

The lumped body dynamics is solved exactly to yield

z

∣

∣

∣

∣

t=t0 = H(x0,y0);
dz

dt

∣

∣

∣

∣

t=t0

= vB. (7.78)

The unknown reaction P is estimated at each integration step solving constraint

Eq. (7.74), and using the Newton method. Since the sought quantity P cannot be

smaller than zero, P = 0 (see (7.75)) is taken when a contact loss occurs.

With known P all other quantities required for the computations are found, and

then taken as the initial ones for the next computation step.

Owing to the introduced assumption that the load is either concentrated into a

point or is uniformly distributed on a small surface, one has to use a large number

of the series terms in (7.76) and the integration step should be taken satisfactorily

small. Satisfaction of the mentioned requirements yields a good convergence of the

Newton method.

To consider the problem of the dynamic shell stability loss during interaction

of the shell with the lumped body, the dynamics are separated into three stages, as

reported in [145].

In the first stage, the construction vibrates around an initial equilibrium state. The

second stage is associated with a relatively sudden transition of the shell configura-

tion into a new state. Finally, the third stage deals with nonlinear vibrations around

the new configuration (equilibrium) position.

The second and the third stages are realized for P > Pcr, where Pcr is a certain

critical value.

In order to investigate the influence of the mass and velocity of the impacting

body on the mass-shell interaction, the series of computations are carried out. The

following values are taken: kx = ky = 24, λ = 1, x0 = y0 = 0.5, vB = 0, ht = 0.001.

The time history of the shell center deflection for different contact surfaces (a:

Δx = Δy = 0.05, α = 1200; b: Δx = Δy = 0.1, α = 400) is shown in Fig. 7.7.

Curves 1,2,3 correspond to mass M = 2,5,10, respectively.

A change in action between the shell and a rigid body is reported in Fig. 7.8.

From the reported figures one may conclude that the largest shell deflection de-

pends essentially on mass M. One may also introduce a threshold (critical value)

of this parameter responsible for stability loss. Increase of the shell-mass contact
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Fig. 7.7 Variation of shell center deflection for different contacting surface area under a lumped

body: (a) Δx = Δy = 0.05, (b) Δx = Δy = 0.1

Fig. 7.8 Variation of shell center deflection for different contacting surface area under a lumped

body for kx = ky = 24: (a) Δx = Δy = 0.05, (b) Δx = Δy = 0.1

decreases the values of parameter α required to achieve the same deflections. The

shell-mass contact area has a negligible influence on the reaction force.

Observe that the influence of the mass value is important. For the considered

parameter set, no lack of mass-shell contact is observed.

If the mass (while impacting) possesses the vertical velocity component vb �= 0,

then its interaction with the shell is qualitatively different, i.e., it may lose its contact

with the shell multiple times.

For M = 2,5,8,10 (curves 1,2,3,4) the shell center deflection for vB = 80 is

shown in Fig. 7.9.

For the aforementioned parameters, in all cases considered, lack of contact be-

tween the mass and the shell (dotted curve) is exhibited at the beginning of the

contact at the time instants at which the shell configuration is changed.

Fig. 7.9 Shell center time

history
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Fig. 7.10 Shell reaction time

history

The time history of reaction P is shown in Fig. 7.10. Recall that for the absence

of the contact zone, P = 0.

7.8 Shells with Constant Velocity Moving Load

The system of the Bernoulli beam with a mass moving on it belongs to those ex-

tensively studied at present. As shown in [96], inertia of the moving mass affects

dynamic coefficients in an essential way. For example, the dynamic coefficient for

the stress measure is introduced as the ratio of the dynamic stress and static stresses

at a beam center.

Computations show that an increase of mass velocity maxima of dynamic co-

efficients are shifted along a mass displacement, whereas dynamic coefficients

associated with deflection and stresses first increase in time, and then (after achiev-

ing their maxima) start to decrease.

Our further investigation will focus on the interaction between a load moving

with constant velocity along coordinate x and with the mass uniformly distributed

on a rectangular area with sides Δx, Δy, and a plate, a panel, or a spherical shell

serving as the interacting structure.

Note that a moving mass trajectory is identical with the mean curve of an inter-

acting structure, although the input point on the construction can be arbitrary, and

the vertical mass velocity component is equal to zero.

Since in this case the mass moves on the shell, it is convenient to use the dis-

placement coordinate along one of the sides of the shell, say x with η = vxt, instead

of time t (vx is the mass velocity horizontal component). The mass dynamics is gov-

erned by Eq. (7.26), and it reads

v2
x

d2z

dη2
= α. (7.79)

where now α is equal to a− P
M

.



194 7 Interaction of Elastic Shells and a Moving Body

Fig. 7.11 Dynamic plate

deflection caused by a moving

load

In order to solve the second-order linear differential equation, the method of

variation of constants will be further applied to yield the following solution (7.79)

z(η) = z(b)+
α

2v2
x

(η −b)2 +
dz

dη
(b)(η −b), (7.80)

dz

dη
(η) =

dz

dη
(b)+

α

v2
x

(η −b), (7.81)

where h1 = (η −b) is the integration interval (see (7.29)).

In Fig. 7.11 the squared shell deflections under the load with mass M = 5,

α = 500 and vx = 0.1,0.5,1,2,5,8 (for curves 1–6 respectively) are shown. For

small motion velocities (curves 1,2) the interacting system vibrates with frequency

strongly dependent on the mass velocity.

With the increase of mass velocity the vibrational process is damped and vanishes

(curve 3), and the function that describes the process attains its maximum when the

mass goes through the plate center.

Further increase of the mass velocity shifts the maximal plate deflection to its

right side and simultaneously the maximal plate deflection is seriously decreased

(curves 4,5,6).

In the interaction process between the mass and the plate a lack of contact can be

observed. It occurs for small (large) velocities in the case of heavy (light) loading

body. Zones of stable and unstable mass–shell contacts in the parameter plane M–vx

are reported in Fig. 7.12. The zone corresponding to the continuous contact between

the two analyzed objects is located on the left-hand side.

Fig. 7.12 Stable and unstable

contact zones between plate

and lumped body
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Fig. 7.13 Dynamic deflection

under a lumped body (1-plate,

2-panel)

Fig. 7.14 Reaction (1-plate,

2-panel)

For parameters M = 5, α = 150, vx = 5 for the plate (kx = ky = 0), and the panel

(kx = 0, ky = 30) with λ = 2 dependencies of deflection under the mass, reaction

of self-interaction, forces T1 = ∂ 2F
∂y2 , T2 = ∂ 2F

∂x2 , and the moments on the interacting

surface M1, M2 are shown in Figs. 7.13–7.16.

Although the dependencies for the panel correspond to other values, the consid-

ered systems are qualitatively similar in character.

Fig. 7.15 Forces generated by

moving load (1-plate, 2-panel)

Fig. 7.16 Moments generated

by moving load (1-plate,

2-panel)
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Fig. 7.17 Largest deflection

plate coordinate for a moving

load

In view of the computation performed, the largest plate (or panel) deflection may

occur either before or behind the moving mass.

Functions of the largest deflection coordinate of the squared plate kx = ky = 0

(Fig. 7.17) and the shell (Fig. 7.18) with parameters kx = ky = 24 on a coordinate η
describe the position of the uniformly moving lumped body.

The straight line 1 corresponds to the moving coordinate, whereas curves 2,3,4,5

correspond to the largest deflection coordinate in given time instants for mass ve-

locities vx = 0.5,2,5,10, respectively.

An analysis of the reported figures yields the following conclusions for low-mass

velocities the largest plate deflection occurs first either before or under the mass, and

after crossing the plate center, it moves in a zone behind the mass.

Fig. 7.18 Largest deflection

shell coordinate for a moving

load
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Fig. 7.19 Plate deflection for

various lumped body input

points

The developed algorithm allows computation of the cases for arbitrary mass point

input on the interacting surface, as well as for the mass velocity with horizontal and

vertical components.

Deflection variations under the mass for different input points η = 0.25,0.5; 0.75

on the plate and panel with parameters kx = 0, ky = 30, λ = 2 (a: vx = 1, b: vx = 5)

are shown in Figs. 7.19 and 7.20.

Note that the mass moves along an axial curve of the interacting surface, and

its vertical velocity component is equal to 0. The graphs show that if the mass ap-

proaches the surface on the right of its center, then the dynamical deflections are

essentially decreased.

In order to compare vibration regimes of the plate and the shell with a moving

mass, appropriate computations have been carried out and the results are reported in

the tables below.

In order to obtain the values of the investigated parameters included in the tables,

which characterize the dynamical processes qualitatively, parameters α and vx are

chosen to be different for the plate and for the shell.

Table 7.1 displays w—surface deflection forms; T1, T2—forces, M1,
M2—movements, of the squared plate during transition through the mass along its

axial curve (M = 5, α = 150) with constant velocity vx = 5 for time instants corre-

sponding to η = 0.3,0.5,0.7,0.9.

In Table 7.2 the same is shown for the shell (kx = ky = 24, λ = 1, M = 5, α =
300, vx = 2). In both cases the mass pressure is uniformly distributed on the area

Δx = Δy = 0.1.

Although there are peculiar similarities reported for plates and shells, they differ

in stiffness which is decisive for the mass–shell (–plate) interaction.

Fig. 7.20 Panel deflection for

various lumped body input

points
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Table 7.1 Plate deflection w, forces T1, T2 and moments M1, M2 for different η

7.9 Shell and Load Moving with Constant Acceleration

When analyzing mass motion with constant acceleration (positive or negative) in-

stead of time t, it is convenient to use a η-coordinate characterizing the load

displacement along one of the shell edges (here x). Namely, let η = ωt2

2
+ vxt,

where vx is the mass velocity projection on x for t = 0, and ω is the mass

acceleration.

In this case the solution of the mass dynamics governing equation reads
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Table 7.2 Shell deflection w, forces T1, T2 and moments M1, M2 for different η

z(η) = z(b)+
α

2ω2

[

√

2ωη + v2
x −

√

2ωb+ v2
x

]2

+
dz

dη
(b)

√

2ωb+ v2
x

ω

[

√

2ωη + v2
x −

√

2ωb+ v2
x

]

, (7.82)

dz

dη
(η) =

dz

dη
(b)

√

2ωb+ v2
x

2ωη + v2
x

+
α

ω

[

1−
√

2ωb+ v2
x

2ωη + v2
x

]

. (7.83)
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Fig. 7.21 Plate deflection

under the lumped body

movement with constant

acceleration

Fig. 7.22 Shell deflection un-

der the lumped body moving

with constant acceleration

The deflection development under the load for α = 150, M = 5; vx = 1, Δx =
Δy = 0.1, and ω = 0,1,5,10,15,20,25 (curves 1–7, respectively, correspond to mass

movement with constant velocity) is shown for the plate in Fig. 7.21.

The same is done for the shell with the parameters kx = ky = 24, λ = 1 for

α = 300 (see Fig. 7.22).

A study of the figures allows the conclusion that for small values of positive

acceleration the deflection under the mass (either for plate or shell) does not differ

practically from the mass motion with constant velocity (curves 1,2).

Since acceleration increase causes mass velocity increase, deflections of either

plate or shell decrease (curves 2–7). It is expected to occur since the velocity in-

crease does not allow for sudden reaction of the interacting surface.

Furthermore, certain acceleration values may be encountered at which the mass

moves with such velocity that the shell does not change its configuration at all

(curves 5–7).

7.10 Shell and Load Moving with Constant

Negative Acceleration

During load movement with constant negative acceleration ω , its velocity decreases

to achieve the zero value for some time instant, i.e., the mass finally stops. Observe

that the mass may stop at an arbitrary point of the interacting surface or out of it;

the latter case means that when leaving the surface the mass has non-zero velocity.
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The analysis to follow will concern the behavior of both of the interacting mass

moving with negative instant acceleration and the construction, under the assump-

tion that the mass stop is given a priori.

Development of deflection under the mass moving on a squared plate, when

the mass (α = 150, M = 5, Δx = Δy = 0.1) begins to move on the plane with

the velocity and acceleration such that stops at time instants corresponding to

η = 0.5,0.75,1,1.5, is reported in Figs. 7.23, 7.24.

Note that for η = 1.5 the mass leaves the construction with non-zero velocity.

The same is done for the panel with parameters kx = 0, ky = 30, λ = 2 (see

Figs. 7.25 and 7.26). Curves 1–6 correspond to velocity values vx = 1,2,3,4,5,6 of

the mass motion beginning on the plate, and for various series of negative accelera-

tion, i.e., ω =−1,−4,−9,−16,−25,−36; ω =−0.66,−2.66,−6,−10.66,−16.66,
−24; ω =−0.5,−2,−4.5,−8,−12.5,−18; ω =−0.33,−1.33,−3, −5.33,−8.33,
−12 (see Figs. 7.23a,b, 7.24a,b, respectively).

One may conclude from these figures that when the mass stops in the center of the

interacted construction, the deflection of the construction increases monotonically

until the stop of the mass is achieved.

In the case when the mass stops behind the center of the construction, an essential

role is played by the velocity of the mass at its first contact with the plate. Namely,

Fig. 7.23 Plate deflection under the lumped body moving with constant negative acceleration (stop

of the lumped body takes place for (a) η = 0.5, (b) and η = 0.75

Fig. 7.24 Plate deflection under the lumped body moving with constant negative acceleration (stop

of the lumped body takes place for (a) η = 1 and (b) η = 1.5)
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Fig. 7.25 Panel deflection under the lumped body moving with constant negative acceleration (stop

of the lumped body takes place for (a) η = 0.5, and (b) η = 0.75)

Fig. 7.26 Panel deflection under the lumped body moving with constant negative acceleration (stop

of the lumped body takes place for (a) η = 1, and (b) η = 1.5)

for small mass velocities, the deflections can be relatively large, but they decrease

with the increase of the velocity.

Since for the same parameter selection the panel is stiffer than the plate, the

deflection does not achieve the values causing changes in the panel configurations.

Such changes may occur for low mass velocities or other choices of parameters

(α, M).

7.11 Conclusions

The main results reported in this chapter are briefly described below.

A solution to the problem of interaction between moving bodies and machines

or construction elements is essentially simplified owing to separation of the two

objects. Namely, the problem is reduced to independent solutions of considerably

simpler problems of an interacting construction, i.e., the problem of vibrations sub-

ject to moving force PD and that of displacement in the domain of the moving masses

under the action of the mentioned force.

The proposed method of solution enables improvement of the dynamics model-

ing accuracy; account of the contact lack between interacting objects; account of
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successive impacts on interacting surface; and introduction of new dynamic factors

useful for engineering application. The fundamental role in the method is played by

Eq. (7.14) governing coupling between two bodies. It may allow for local deforma-

tions in contacting body lumped system motion on conical surface roughness with

an arbitrary profile, springing support of the moving body, etc.

Since the proposed method of computation of dynamic interaction between a

moving body and an associated surface assumes independent integration of the mo-

tion equations (in the case of a one-sided constraint), the choice of solution methods

for the separated equations becomes simplified.

Furthermore, if the motion equations for the interacting surface are solved via

the Runge-Kutta numerical method, then one may link the corresponding equation

of the vertical displacement of the rigid body (7.16) to allow for the simultaneous

interaction of the obtained system equation.

The integration interval of the obtained system is divided into a sufficiently large

number of equal parts (usually 1000), where the reaction of interaction between ob-

jects is assumed to be unchanged within small step durations, which yield practically

the exact solution to the problem.

In addition, the proposed partition of the integration interval while the dynamic

reaction PD of the interacting objects is sought from the coupling equation allows

achievement of good convergence of the Newton method.

It should be emphasized that the proposed approach to the computations of dy-

namics of the considered objects does not require any additional restrictions. For

example, in the equations governing dynamics of an interacting construction one

may include new terms, involving either damping, or nonlinearity, or other kine-

matic models of the interacting surface.



Chapter 8

Chaotic Vibrations of Sectorial Shells

In this chapter a novel approach to study chaotic vibrations of deterministic mechan-

ical systems represented by shallow sector-type spherical shells is proposed. Scales

of vibration character of such shells being transversally and harmonically excited vs.

control parameters are constructed. Scenarios to chaos are illustrated and discussed.

Control of the chaotic state applying synchronous action of harmonic loading torque

is proposed. Investigations are carried out using the qualitative theory of differential

equations and nonlinear dynamics.

8.1 Introduction

Mathematical models of sector-type shells can be directly applied in computation of

reinforced membranes which are very often sensitive elements of pressure sensors

in various measuring devices. They can also be used in machine construction, etc.

(see references [21, 25, 31, 32, 33, 36, 40, 46, 160, 165, 167]). However, this chapter

is devoted to the analysis of chaotic dynamics of sector-type shells and its control.

This problem has been investigated rather marginally, hence the work is intended to

fulfill the existing gap in the research devoted to this problem.

8.2 Statement of the Problem

We consider a non-axially symmetric shallow spherical shell as a two-dimensional

object in R2 in polar coordinates bounded by the contour Γ and defined as follows:

Ω = Ω+Γ = {(r,θ ,z), r ∈ [0;rn], θ ∈ [0;θk], z∈ [− h
2
; h

2
]}. The governing equations

are given in the following form:

w′′ + εw′ = −∇2∇2w+N(w,F)+∇2F +4q,

∇2∇2F = −∇2w−N(w,w), (8.1)
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where

∇2(·) =
∂ 2(·)
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1

r

∂ (·)
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+
1
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∂ 2(·)
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.

Next, the non-dimensional parameters are introduced: t = ω0t, ω0 =
√

Eg

γR2 , ε =
√

g
γE

R
h

ε, F = η F
Eh3 , w =

√
η w

h
, r = b r

c
, q = q3 =

√
η

4
q3
E

(

R
h

)2
, η = 12(1−ν2), b =

4
√

η c√
Rh

, where t denotes time; ε is the damping coefficient of surrounding medium,

F is the stress function, w denotes the displacement function, R and c are the main

curvature radius of shell resistance contour and the radius of resistance contour in

circled direction, respectively; h is shell thickness, b is sloping parameter, ν is the

Poisson coefficient, r is the distance between a rotation axis and a point on the shell

middle surface, q is the external load parameter, and ω0 is the frequency of linear

vibrations. In Eq. (8.1) bars are omitted. Differentiation with respect to time t is

denoted by a dash. The following boundary and initial conditions are associated

with system (8.1).

1. Ball-type clamping of an arc slice:

w = 0,
∂ 2w

∂ r2
+

ν

r

∂w

∂ r
= 0, F = 0,

∂F

∂ r
= 0. (8.2)

2. Ball-type clamping of radial slices:

w = 0,
∂ 2w

∂θ 2
= 0, F = 0,

∂ 2F

∂θ 2
= 0. (8.3)

3. Sliding clamping of an arc slice:

w = 0,
∂w

∂ r
= 0, F = 0,

∂F

∂ r
= 0. (8.4)
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4. Sliding clamping of radial slices:

w = 0,
∂w

∂θ
= 0, F = 0,

∂ 2F

∂θ 2
= 0. (8.5)

The initial conditions are as follows:

w = f1(r,θ) = 0, w′ = f2(r,θ) = 0, (8.6)

for time instant t = 0.

In order to reduce our continual system of Eqs. (8.1)–(8.6) to that of lumped pa-

rameters, a finite difference method of approximation O(Δ2) with respect to spatial

variables r and θ (see Fig. 8.1) is used. The difference form of Eqs. (8.1)–(8.6) is:

−Λ(Λw)+Λrrw(ΛF +ΛrrF)+ΛrrF(Λw+Λrrw)

−2Λrθ wΛrθ F +ΛF +4qi = (wtt + εwt)i, j,

Λ(ΛF) = −Λrrw(Λw+Λrrw)+(Λrθ w)2 −Λw,

where:

Λ(·) = Λrr(·)+Λr(·), Λr(·) =
1

r2
i

(·)r, Λrr(·) = (·)rr,

Λrθ (·) = − 1

r2
i

(·)θ +
1

ri

(·)rθ , Λrr(·) =
1

Δ2
r

[(·)i+1, j −2(·)i, j +(·)i−1, j],

Λr(·) =
1

2Δrr
2
i

[(·)i+1, j − (·)i−1, j], Δr =
b

n
, Δθ =

θk

m
. (8.7)

Fig. 8.1 Finite difference

approximation of the investi-

gated shell
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The boundary conditions are as follows:

1. Ball-type clamping of an arc slice:

wn, j = 0, Λrrw− ν

b
Λrw = 0, Fn, j = 0, Λrw = 0, j = 1,m−1. (8.8)

2. Ball-type clamping of radial slices:

wn, j = 0, Λθθ w = 0, Fi, j = 0, Λθθ F = 0, j = 0,m, i = 0,n. (8.9)

3. Sliding clamping of an arc slice:

wn, j = 0, Λrw = 0, Fn, j = 0, ΛrF = 0, j = 1,m−1. (8.10)

4. Sliding clamping of radial slices:

wi, j = 0, Λθθ w = 0, Fi, j = 0, Λθθ F = 0, j = 0,m, i = 0,n. (8.11)

Two supplementary conditions are required for system of Eqs. (8.7)–(8.11),

i.e., in the shell top and the so-called compatibility conditions. In majority of cases

solved by numerical methods, it is assumed that a shell has a central hole of small

diameter, which has a minor influence on the obtained results at a sufficient distance

from the shell vertex. In our approach, while solving non-axially symmetric prob-

lems θ = 2π , the sought functions in point r = 0 are defined by an interpolation of

second-order Lagrange formula. As a result one obtains

f0, j = 3 f1, j −3 f2, j + f3, j, (8.12)

where fi, j = f (ri) j, ri = ih for i = (0, 1, 2, 3), 0 ≤ j ≤ m− 1, and h denotes the

distance between interpolating nodes.

For an out-contour point the following symmetry condition holds:

f−1, j = f1, j for 0 ≤ j ≤ m−1. (8.13)

Compatibility conditions for non-axially symmetric problems of θ = 2π
read:

wi, j = wi,m+ j, Fi, j = Fi,m+ j for j = 0,1, 0 ≤ i ≤ n−1. (8.14)

Then, the Cauchy problem (8.7)–(8.14) is solved applying the fourth-order

Runge-Kutta method. The computational step is yielded by the Runge rule.

Although in the developed algorithm the applied load can be taken in an arbitrary

manner, further harmonic excitation of the form q = q0 sin(ωpt) is used, where ωp

denotes the excitation frequency.
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8.3 Static Problems and Reliability of Results

The developed numerical algorithm provides a solution to various static and dynamic

problems. In order to solve static problems, the so-called “set-up” method is applied

[25, 166].

In relations q0(wmax) for a shell characterized by the angle sector of θk = 3
2
π

(Fig. 8.2), that of θk = π (Fig. 8.3), and that of θk = π
2

(Fig. 8.4) for various sloping

parameters: for θk = 3
2
π and θk = π we take b = 5–10, whereas for θk = π

2
sloping

b = 7–12 (for smaller sloping values the sector shell behaves like a plate) are in

Figs. 8.2–8.4.

As shown in the graphs, beginning from a certain parameter b, the limiting points

occur on the curves. Owing to the computations carried out for the shell character-

ized by θk = π
2
, π, 3π

2
, the sloping values of b = 8, 9, 11 refer to critical ones,

i.e., they are associated with a “shell jump occurrence.”

Table 8.1 gives curves of equal deflections (isoclines) for all considered angles

θ = π
2
, π, 3π

2
. Let us compare the curves for critical and post-critical loads q0 for

different θ and b. For θ = π
2

and θ = π and for an arbitrary sloping parameter

Fig. 8.2 Dependence

q0(wmax) for θk = 3
2

π

Fig. 8.3 Dependence

q0(wmax) for θk = π
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Fig. 8.4 Dependence

q0(wmax) for θk = π
2

the analyzed pictures coincide. A maximum deflection is achieved in the point of

intersection of the angle θ bisectrix and central shell radius. For θ = 3π
2

and for

b = 7 the occurrence of a “jump” is not observed and an increasing load does not

change qualitatively the analyzed pictures. For the latter sector angle and for sloping

b = 9, 10 the “jump” phenomenon is shown in Fig. 8.2, and the curves of equal

deflections for critical and post-critical loads are clearly different. In the case of a

critical load, the maximum shell deflection occurs in the middle of the bisectrix. In

the case of the post-critical load, two zones of maximum deflections appear. They

are symmetric with respect to the angle bisectrix.

Since the developed algorithm allows a wide class of problems without an exact

solution, checking its reliability is highly required. The reliability of the obtained

results depends on their comparison with numerical solutions obtained in [166].

Fig. 8.5 shows the relation q(wmax) for a sector shell with movable resistance con-

tour clamped along radial and arc directions for θk = 3π
2

(sloping parameter b = 5–8,

numbers of partition with respect to a radius and angle are n = m = 10, respectively

and ν = 0.3). Curves denoted by points correspond to results given in reference

[166], whereas solid curves correspond to our results. Good coincidence of the re-

sults is clearly indicated.

8.4 Convergence of a Finite Difference Method Along Spatial

Coordinates for Non-stationary Problems

In order to trace the behavior of spatial systems from a common point of view

a concept of phase space is applied. Partial differential equations governing dy-

namics of the analyzed objects, Eqs. (8.1)–(8.6), are substituted by equations

governing dynamics of lumped systems applying the finite difference method (see

Eqs. (8.7)–(8.14)). Below, we outline one of the most dangerous points during a

transition from PDEs to ODEs. In other words, instead of infinite dimensional sys-

tems we are going to consider finite dimensional ones. It is assumed that beginning

from a certain approximation a further increase of the number of equations does

not introduce anything new to the obtained results and the system behaves similarly.
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Table 8.1 Shell deflection isoclines for various θ , b, and q0

A crucial role plays here the dimension of an analyzed attractor. However, if the

dimension of the studied attractors is bounded, truncation procedures applied to

Eqs. (8.7)–(8.14) may play an important role. For instance, in the case of an unsuit-

able choice of radius and arc partition into m and n parts, while applying the finite

difference scheme, the truncated system obtained may exhibit attractors that have

properties qualitatively different than the real system attractors.

In order to trace the behavior of shells harmonically excited by q = q0 sin(ωpt),
a package of routines has been developed allowing for construction of scales of

vibration characters depending on the control parameters {q0,ωp}, where ωp is
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Fig. 8.5 Dependence

q0(wmax) for θk = 3
2

π

fixed. We have ωp = ω0, which stands for the frequency of linear vibrations. In

order to construct a scale with respect to amplitude values of more than 200 points,

i.e., 2 · 102 problems of dynamics must be considered, and power spectra should

be studied for each choice of the control parameters {q0,ω0}. The algorithm al-

lows us to distinguish the zones of harmonic vibrations, the Feigenbaum type zones,

chaotic zones, as well as the zones of modified Ruelle-Takens-Newhouse scenarios.

The latter one is detected and illustrated further in this chapter. Below, we discuss

the mentioned modified Ruelle-Takens-Newhouse scenario. After harmonic vibra-

tions with external forcing frequency and moving along the parameter q0, a new

independent frequency appears, and a transition to chaos is realized owing to the

series of combinations of two frequencies. This scenario will be analyzed in more

detail.

Consider vibrations of a sector-type shell movable clamped along radial and arc

slice that depend on a number of partitions of integration interval with respect to

coordinates r ∈ [0;rn] and θ ∈ [0;θk] using the finite difference method with ap-

proximation O(h2). Intervals [0;rn] and [0;θk] have been divided into 5; 10; 15; 20;

25 parts, i.e., the number of degrees of freedom is increased. The load is uniformly

distributed along the shell surface and has the following form: q = q0 sin(ωpt). Both

relations wmax(q0) and scales of vibration character {q0,ω0} are constructed owing

to monitoring of frequency spectra and Lyapunov exponents. Power spectra S(ωp)
are depicted for bisectrix of the sector-type shell. Since vibrations in all points of

intervals [0;rn] and [0;θk] have been synchronized, a further analysis is carried out

for one point only. Relations wmax(q0) are constructed for two sector-type shells:

θk = π, b = 9 (Fig. 8.6) and θk = π
2
, b = 10 (Fig. 8.7). Scales of vibration character

versus a number of partition n = m are included under the graphs. The notation ap-

plied now and used further is given in Fig. 8.6. All drawings refer to free vibration

frequency of the system. Already for n = m = 15 the character of vibrations does

not change with the variation of shell radius and angle partition. Only a small shift

of the bifurcation zone is observed on vibration type scales. In Fig. 8.6, relations

wmax(q0) practically coincide.
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Fig. 8.6 Dependence wmax(q0) and scales of vibration character for b = 9 and θk = π

On the vibration scales (Fig. 8.6) some points taken for further study are de-

picted, and the associated graphs S(ωp) versus the number of partition n = m

are given in Table. 8.2. Let us consider a point on the vibration scale, which

for n = m = 20 is in the bifurcation zone for the corresponding load parameters:

Fig. 8.7 Dependence wmax(q0) and scales of vibration character for b = 9 and θk = π
2
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Table 8.2 Shell deflection isoclines for various θ , b, and q0

ω0 = 0.8; θk = π; b = 9; q0 = 0.25; (Fig. 8.8) and q0 = 0.76 (Fig. 8.9). In Fig. 8.8

signals w
(

rn
2

;
θk
2

; t
)

, 320 ≤ t ≤ 360 are reported, whereas Table 8.2 gives power

spectra S(ω0) for a chosen point. For n = m = 5 chaotic vibrations are observed:

for n = m = 10 harmonic vibrations appear; for n = m = 15; 20 first period dou-

bling bifurcation occurs. Relations w
(

rn
2

;
θk
2

; t
)

shown in Fig. 8.8 coincide well.

Owing to the reported results one may conclude that beginning from n = m ≤ 15

the real process is approximated adequately and hence in further consideration we

take n = m = 15, i.e., on each computational step 450 first-order ordinary differen-

tial and 225 linear algebraic equations are solved. Table 8.2 gives analogous results

for a sector-type shell with the same parameters and amplitude of excitation q0 =
0.76. The corresponding time history versus partition number n = m is shown in

Fig. 8.9.

Fig. 8.8 Time histories for different partition numbers n = m and q0 = 0.25
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Fig. 8.9 Time histories for different partition numbers n = m and q0 = 0.76

In the above, the convergence of the proposed approach depending on n (number

of partitions of r and θk) has been studied, but a problem related to N (partition

number of the set {q0;ω0}) remains open. The mentioned problem becomes ex-

tremely important, since chaotic dynamics depends significantly on the amplitude

q0 and frequency ωp of excitation. A correct choice of N yields reliable construction

of scales of vibration character of the investigated system. Initially, the following

problem has been analyzed. How does the character of vibrations and the function

{q0;ω0} change with respect to the number N of interval (0;q0) partition? Fig. 8.10

shows relations wmax(q0) for scale “1”: N = 100; scale “2”: N = 200; scale “3”:

N = 400.

Comparing first and second scales, one may observe that an increasing number

of partitions of the amplitude of exciting force causes small bifurcation zones. At

increasing number of partitions up to N = 400, the character of vibrations does not

change; hence further investigations are carried out for N = 200.

Fig. 8.10 Dependence wmax(q0) and vibration scales for different partition numbers N
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8.5 Investigation of Chaotic Vibrations of Spherical

Sector-Type Shells

8.5.1 Boundary Conditions

A sector-type shell characterized by both the angle θ = 3π
2

and the space Ω is di-

vided into n = m = 15 points and the sloping parameter b = 8. Next, we investigate

how the shell’s vibrations change depending on the boundary conditions movable

free contour (8.8, 8.9) and movable clamping (8.10, 8.11). Relations wmax(q0) are

illustrated in Fig. 8.11. Scales of vibration character are shown in the graphs. Con-

sider the graph wmax(q0), constructed for sector-type shell harmonically loaded and

with ball-type resistance contour (8.8, 8.9). For q− 0 ≤ 0.1 the relation wmax(q0)
(see Fig. 8.11a) is linear, whereas for q0 = 0.1 a first-order discontinuity associated

with the Andronov-Hopf bifurcation occurs.

Graph wmax(q0) (see Fig. 8.11b) for a movable clamped shell (8.10, 8.11) in-

creases uniformly, i.e., shell vibrations are harmonic ones. Analysis of the results

given in Figs. 8.11a and 8.11b yields the following conclusion boundary conditions

essentially modify the character of vibrations.

A movable clamped contour is associated with complex vibrations, i.e., bifurca-

tions and chaos interlace and also jump phenomena are observed. In the case of the

clamped contour, vibrations are harmonic, and therefore a modification of bound-

ary conditions may cancel the zones of bifurcation and chaos (compare Figs. 8.11a

and 8.11b).

8.5.2 The Influence of Sector Angle

Let us investigate the influence of the opening sector angle of the sector-type shell

on vibrations. For this purpose one type of boundary conditions will be analyzed,

i.e., movable ball-type supported contour (8.8, 8.9). Let us fix the sloping parameter

b = 15, and for n = m = 15 we increase the angle θ = π
4

; π
2

; π; 3π
2

(Fig. 8.12a–d,

Fig. 8.11 Dependence wmax(q0) for movable free (a) and clamped (b) shell contour



8.5 Investigation of Chaotic Vibrations of Spherical Sector-Type Shells 217

Fig. 8.12 Dependence wmax(q0) for various θk = π
4

(a); π
2

(b); π (c) and 3π
2

(d)

respectively). In the graph wmax(q0) describing the system behavior for θ = π
4

,

large zones of independent frequencies and their linear combinations may be ob-

served. Already for a small amplitude of excitation the investigated system exhibits

vibrations of two frequencies. In the graph wmax(q0), there are a few first-order dis-

continuities, where vibration type changes. With an increase of the angle θ = π
2

,

the zone of harmonic vibrations increases, and chaos vanishes. Let us study the

graph wmax(q0) for angle θ = π . Zones of chaotic vibrations reappear, the num-

ber of first-order discontinuities increases, but also the zone of harmonic vibrations

increases owing to a decrease of the bifurcation zone. Due to an increase of the sec-

tor angle θ = 3π
2

, again the zone of harmonic vibrations increases, and then in the

chaotic zone a series of first-order discontinuities appears and vibration character

changes.

An increase of the sector angle causes an increase of the first-order discontinu-

ities, and a difference between pre-critical and post-critical states also increases.

8.5.3 Vibrations of Sector-Type Shells Versus Sloping Parameter

Further on, we consider vibrations of slice of the shell movable clamped on a ra-

dial and arc sector with θk = π versus sloping b. Both relations of wmax(q0) and

scales of vibration character were monitored (Fig. 8.13a–d). The shell associated

with b = 10 works in the regime of harmonic vibrations. An increase of sloping up
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Fig. 8.13 Dependencies wmax(q0) for different values of b: 10 (a); 12 (b); 15 (c); 20 (d) and

vibration scales

to b = 12 produces a zone of independent frequencies and bifurcations. For b = 15;

20 a zone of chaotic vibrations on the scales of vibration types and first-order dis-

continuities are observed in the relation wmax(q0), and a zone of bifurcations and

harmonic vibrations decreases.

It is rather expected that an increase of the sloping parameter yields the system

to a less stable state, which is manifested by a large number of stiff stability losses

and an increase of the chaotic zone.

8.6 Transitions from Harmonic to Chaotic Vibrations

Four models of transition from harmonic to chaotic vibrations are known: the

Feigenbaum scenario [93], the Ruelle-Takens-Newhouse scenarios [262], and the

Pomeau-Manneville [248] and the Landau scenarios [180]. However, none of the

mentioned scenarios has been detected during analysis of our sector-type shell sub-

jected to uniformly distributed sign changing load for either an arbitrary angle or

sloping parameter. As already illustrated, the magnitude of sloping and sector-angle

has an important influence on the system evolution. For movable clamped sector-

type shell with sloping parameter b = 12; 15; 20, the novel scenario of transition
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from harmonic to chaotic vibrations has been discovered, which was named the

modified Ruelle-Takens-Newhouse scenario [167]. The latter one is characterized

in the following manner. First harmonic vibrations with the excitation frequency

appear, and then increasing the control parameter q0 yields a new independent fre-

quency, and transition to chaos is realized by a series of linear combinations of two

frequencies.

Investigating the sector-type shell subject to the action of sign changeable dis-

tributed load with a movable resistance contour, and characterized by the sector

angle θk = π and the sloping parameter b = 17, the Feigenbaum scenario is mani-

fested (see Tables 8.3 and 8.4). An Andronov-Hopf bifurcation cascade (five period

doubling bifurcations) is observed after a periodic window occurred, beginning from

q0 = 0.11785 (see five points in the Poincaré map). At increasing q0, a cascade of

period doubling bifurcations is observed. In the Poincaré map, five groups of points

are created, and every new bifurcation that causes one more point occurs in each

group.

Note that for all initial inputs the modified Ruelle-Takens-Newhouse scenario

has been found.

A more detailed analysis follows (see Table 8.5):

1. q0 = 0.1. The system exhibits one-frequency harmonic vibrations with exciting

frequency equal to a free system frequency. The phase portrait consists of a peri-

odic orbit and the Poincaré map is represented by a point.

2. At an increasing amplitude of excitation q0 = 0.105, the first independent fre-

quency occurs, and the ratio of exciting to independent frequency is equal to
ωp

ω1
= 0.9231 . . .. An increase of the part of phase portrait exhibits seven times

rotating cycle, and the Poincaré section is composed of seven arbitrarily located

points.

3. At q0 = 0.108 a new linearly independent frequency equal to ωp −ω1 is born.

4. An increase of the load q0 = 0.113 yields first a Hopf bifurcation. The Poincaré

map is composed of three groups of points and four points arbitrarily located, and

in the power spectrum the local maximum associated with frequency ωp = ω0
2

is

observed.

5. For the amplitude of excitation equal to q0 = 0.118, the second frequency ω2

occurs, where
ωp

ω1
= ω1

ω2
= 0.9231 . . ..

6. While increasing the control parameter further up to q0 = 0.119, the third fre-

quency ω3 appears, and the ratio of second to third frequencies is again equal to

that of two earlier cases, i.e.,
ωp

ω1
= ω1

ω2
= ω2

ω3
= 0.9231 . . ..

Table 8.3 Bifurcation sequence

No. of.

bifurcation

1st 2nd 3rd 4th 5th

q0,n 0.1179 0.11794 0.117949 0.11795 0.1179513

dn – 4.66977 . . . 4.669175 . . . 4.669165 . . . –
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Table 8.4 Power spectra, time histories and phase portraits for different q0

8.7 Control of Chaotic Vibrations of Flexible Spherical

Sector-Type Shells

It is well known that a chaotic attractor is composed of a countable set of saddle-type

cycles with different periods, and that during time evolution a phase point stays in

vicinity of each of them. When a saddle-type cycle begins to stabilize, the trajectory

remains in its neighborhood and the system starts to move in a periodic manner. In

this perspective a control is understood as a stabilization of orbits embedded into a

chaotic attractor. On the other hand, the system interaction is associated with prob-

lems of synchronization control. Applying target-oriented excitations on chaotic
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Table 8.5 Bifurcation sequence

subsets associated with synchronized motions of identical systems, some of them

may be transformed into stable ones, keeping the rest as unstable and vice versa. As

a result, a controlled transition from non-synchronized chaotic vibrations into the

regime of full synchronization of chaos is achieved.

In this work, the control is realized with a help of a target-oriented excitation of

the sector-type shell uniformly loaded by both harmonic excitation q = q0 sinωpt

and resistance time-dependent torque. This type of excitation is realized during the

synchronization of frequencies.

Analysis of the system behavior is carried out on the basis of numerical exper-

iments presented in a graphical form, i.e., maximum shell deflection versus the

amplitude of excitation and scales of vibration type using colors. The working

regime is identified using both power spectra and Lyapunov exponents.
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Fig. 8.14 Dependencies wmax(q0) for vibration scales (see text for more details)

Consider a sector-type spherical shell with ball-type movable resistance con-

tour, the sloping parameter b = 15 and shell angle θ = π
2

; π; 3π
2

; 35π
18

. Fig. 8.14

shows relations wmax(q0) and scales of vibration character of the shell subjected to

uniformly distributed load q = q0 sinω0t, where ω0 is the frequency of free vibra-

tions (Fig. 8.14, scales 1, 3, 5, 7). It illustrates also the graphs presenting dynamics

under the action of distributed load and time-dependent moment with a free sys-

tem vibration frequency excitation (scales 2, 4, 6, 8). The dashed curves denote

graphs associated with the action of distributed time-changeable load (the exci-

tation frequency is equal to the free vibration frequency), whereas solid curves

correspond to the mentioned cases but with an additional action of the resistance

torque M = M0 sinω0t, where ω0 is the frequency of free vibrations. All the loads

are given in Table 8.6, and the corresponding number of curves in Fig. 8.14.

Table 8.6 Shell parameters related to results given in Fig. 8.14

No. of. problem Shell

angle

Sloping

parameter

Distributed load Resistance torque

1 θ = π
2

b = 15 q = q0 sin(0.43t) –

2 θ = π
2

b = 15 q = q0 sin(0.43t) M = 0.3sin(0.43t)

3 θ = π b = 15 q = q0 sin(0.33t) –

4 θ = π b = 15 q = q0 sin(0.33t) M = 0.5sin(0.33t)

5 θ = 3π
2

b = 15 q = q0 sin(0.3t) –

6 θ = 3π
2

b = 15 q = q0 sin(0.3t) M = 4sin(0.3t)

7 θ = 35π
18

b = 15 q = q0 sin(0.29t) –

8 θ = 35π
18

b = 15 q = q0 sin(0.29t) M = 5sin(0.29t)
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Analyzing graphs 1, 3, 5, 7, first-order discontinuities are visible in the zone of

chaotic vibrations, which is also indicated by the vibration scale. Additional excita-

tion of sign-changeable moment (Fig. 8.14, scales 2, 4, 6, 8) causes smoothing of

drawings, vibrations are harmonic with the excitation frequency, and the amplitude

of shell vibrations decreases. Note that graphs 2, 4, 6, 8 indicate the most important

control of chaos results through the use of harmonic torque in the case, when the

minimum deflection in the relation wmax(q0) is achieved in the vicinity of q0 = q0max
2

.

Recall that by the control of chaos we mean a transformation of the chaotic be-

havior of our analyzed system into another harmonic or into chaotic motions but

with other properties using synchronization of frequencies.



Chapter 9

Scenarios of Transition from Harmonic

to Chaotic Motion

In this chapter scenarios of transition from harmonic to chaotic motions are illus-

trated and discussed. First, a historical background of the problem is described. The

Landau-Hopf scenario; the Ruelle, Takens, and Newhouse scenario; the Feigenbaum

scenario; and the Pomeau-Manneville scenario are addressed, among others.

9.1 Historical Background

The problem of turbulence has been of a great interest for researchers for several

centuries. A famous hydromechanic, Sir G. Lamb, in 1932 expressed his pessimistic

opinion about the thorough solution to this problem: “I am old now, and I hope to

shed more light on two problems as soon as I reach Heaven. The first one involves

quantum mechanics, whereas the second one is about the phenomena of turbulence

in liquids. I feel optimistic about the first one only.”

Although these words were uttered during the meeting of the British Association

a long time ago, they had been valid for nonlinear mechanics until 2005. Chaos is the

result of a complex self-dynamics of a system (and it is not caused by random noise

or other random disturbance), which in some sense can be treated as the process

of formation of turbulence. It is widely known that there are enough “scenarios” of

transformation into turbulence that are usually related to Navier-Stokes equations

describing the motion of incompressible fluids and whose form is

∂ u

∂ t
+(u ·∇)u−ν∇2 u = − 1

ρ
∇ p+ f , (9.1)

divu = 0, (9.2)

u = 0 in D, (9.3)

where D is the boundary of the space in which the fluid is, u = u(xi, t), (i = 1,2,3), p

denotes pressure, ρ the density of fluid, f denotes external forces, if there are such,

and ν is kinematic viscosity. The possibility of energy dissipation is expressed in

the existence of the element ν∇2u.
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Equation (9.1) describes a three-dimensional differential equation with partial

derivatives for velocity u as related to a fixed system of coordinates (Euler ap-

proach), Eq. (9.2) describes the condition for the lack of compressibility, and

Eq. (9.3) define the boundary condition.

It must be emphasized here that in case of Eqs. (9.1)–(9.3) not only do we

not know any turbulent solution, but there is no theorem stating the existence of

such a solution either. Such proof exists for a two-dimensional case. The physical

possibility of existence of such solutions of Navier-Stokes equations is well ana-

lyzed. The first important work in this field was conducted in 1880 by Reynolds,

who introduced the following parameters: Reynolds number R = UL
ν , u/ux non-

dimensional velocities, x/L nondimensional coordinates, t = L/u nondimensional

time, −→p = p/ρU2 nondimensional pressure, and he also introduced the following

differential equation:

∂ u

∂ t
+(u ·∇)u− 1

R
∇2 u = −∇ p . (9.4)

Reynolds showed that together with the increase of R the character of a flow can

change from a regular (laminar) flow to a chaotic (turbulent) flow.

In hydrodynamics, the notions of turbulence were included in the description

of the state of time-spatial chaos. This means that chaos in fluid can occur in all

possible scales, both in space and in time. A mathematical description of this process

is one of the most complex tasks of modern mathematics.

What a chaotic attractor of a turbulent flow should look like has not been made

clear so far. It is in the analysis of simple dynamic systems described by a limited

number of ordinary differential equations of low order and differential mappings

(cascades) that has been the achievement in chaos analysis over the last few years.

However, it should be emphasized that in such simple systems only time chaos is

observed, which allows for the analysis of the occurrence of turbulence in some

approximation when the velocity field begins to change in time in an irregular way,

leaving an ordered space behind.

Our aim here will be to formulate the criteria (scenarios) of transformation of

spatial constructions such as beams, plates, and shells into time-spatial chaos.

The following scenarios of transformation of vibration of dynamic systems

from harmonic to chaotic has been obtained for simple systems. We recommend

the following references to complete the material described in this chapter:

[15, 16, 17, 18, 19, 47, 48].

9.2 Landau-Hopf Scenario (LH)

This scenario was first presented by Landau [179] in 1944 and independently of that

by Hopf in 1948. The idea of this scenario is that during the crossing of Reynolds

number (or some other parameter characterizing the flow) through the critical value

of R laminar motion loses its stability (Fig. 9.1). For R → ∞ the space of occurrence
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Fig. 9.1 The scheme of the

Landau-Hopf (LH) scenario

of new frequencies increases (Pn = 0,1), i.e., the solution can be presented as:

u(x, t) =
∞

∑
n=1

Am(x)ℓim(ωt+δ ),

where

ω = {ω1,ω2, ....,ωn} ;n → ∞;R → ∞.

The frequency relationship is irrational, but the spectrum becomes practically

continuous and similar to chaotic, i.e., the process of infinite quasi-period turbu-

lence takes place that unfortunately has never been proved in experimental research

(Couette flow [235] and Rayleigh-Bénard convection [59]).

The Landau-Hopf scenario is the basis for Hopf bifurcation theory. This idea

is based on the following reasoning. Let us analyze the system of differential

equations

d x

dt
= Fp(x), x ε Rk, (9.5)

where p denotes a certain parameter of a dynamic system (e.g., p the input ampli-

tude). Points x = xx are critical points of Eq. (9.1) and in these points

d−→x x

dt
= 0, tj. Fp(

−→x x) = 0, (9.6)

are linearized equations near the beginning of the coordinate system.

The stability of (9.6) is described by the analysis of characteristic values λ = λ(p)
(see also [308]).

For the condition that all λ are situated on the left side of a complex half-plane,

i.e., all of them have a negative value, the critical point is the simple point of equi-

librium (Fig. 9.2a).

A Hopf bifurcation occurs for the condition that the couple of conjugated char-

acteristic values moves with non-zero velocity from the left complex half-plane into

the right one, i.e., real parts of characteristic values become positive. For the critical

value p = p+ (value p, for which λ moves into the right half-plane) and when addi-

tional conditions assigned to the second and third derivatives of Fp(x
x) are satisfied,

as a result of bifurcation, a limit point transforms into a stable periodic orbit (limit

cycle, Fig. 9.2b).

The transition from stable limit point (unstable limit cycle) to stable limit cycle

(unstable limit point) is presented in Fig. 9.3 (Fig. 9.4) with the use of visualization

of molecule motion within potential field where together with the increase of p the

second minimum occurs.
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Fig. 9.2 Stable singular point

(a) vs. stable periodic orbit (b)

Fig. 9.3 The scheme of

ordinary Hopf bifurcation

during the motion of a

molecule within a potential

field from stable limit point to

stable limit cycle

Fig. 9.4 The scheme of

reversed Hopf bifurcation

during the motion of a

molecule within a potential

field from unstable limit cycle

to unstable limit point

Figures 9.2, 9.3, and 9.4 complement each another.

9.3 Scenario by Ruelle, Takens, and Newhouse

The scenario by Ruelle, Takens and Newhouse (RTN) is scientifically vital because

it was the first one to view and criticize the LH scenario.

In 1971 Ruelle and Takens [262] showed that unlike the LH scenario shows,

in order to obtain chaotic motion, an infinite number of Hopf bifurcations is not

necessary because a few are enough. Initially, they presented the way in which after

three Hopf bifurcations track T 3 can become unstable and transform into a strange

chaotic attractor.

Then (in 1978) Ruelle, Takens, and Newhouse [232] proved the theorem accord-

ing to which a strange attractor can occur after two bifurcations (Fig. 9.5).



9.3 Scenario by Ruelle, Takens, and Newhouse 229

Fig. 9.5 Ruell-Takens-Newhouse (RTN) scenario

In fact, they assumed that after two Hopf bifurcations the motion is limited

by manifolds having complex topology. Such manifolds have been called strange

attractors. They present manifolds that do not have an integer dimension, i.e., man-

ifolds located between plane and space. The notion of fractional dimensions was

analyzed by Mandelbrot [195] within the analysis of fractals. The attractor obtained

according to the RTN scenario should satisfy certain conditions, i.e., it should be-

long to the category of “axiom A” attractors (practice has shown that this hardly ever

happens), and then the motion is chaotic. For such a motion, a strong sensitivity to

the changes of initial conditions is observed.

Two group of researchers—Feigenbaum, Kadanoff, Shenker in 1982 [94] and

Rand et al. in 1982 [256]—independently analyzed the problem of how quasi-

periodic motion with two independent frequencies ω1 and ω2 on the torus becomes

periodic after adding a perturbation (Fig. 9.6).

For rational values of ω1/ω2 = p/q the trajectory closes after q cycles (state of

synchronization); see also [20]. For the irrational relation ω1/ω2 motion is quasi-

periodic, the trajectory does not close anywhere, and it covers the whole torus.

The RTN scenario was confirmed in experiments (Rayleigh-Bénard instability and

Rayleigh-Taylor instability) [325]. For hydrodynamic turbulence, RTN scenario be-

comes very “soft,” i.e., it is related to high harmonic resonance.

In this case, two basic processes are realized:

(i) Stretching that guarantees sensitivity to initial conditions;

(ii) Composing, thanks to which attraction is possible. The example of such a com-

plex system is the mapping of the Smale horseshoe.

Fig. 9.6 Motion on a

two-dimensional torus
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9.4 Scenario by Feigenbaum

In 1978 Feigenbaum [92] presented a universal mechanism of transformation into

chaos during an infinite series of doubling the period of initial motion. Such a com-

plex behavior is displayed even by one-dimensional mappings such as

xn+1 = f (xn) . (9.7)

It should be emphasized that f (x) should satisfy certain conditions. An example

of such a mapping follows:

xn+1 = 4λxn(1− xn) 0 < x < 1, (9.8)

where λ is a certain control parameter.

The above equation was at first used mainly in biology as a simple model de-

scribing the dynamics of population growth.

Feigenbaum showed geometrical convergence of the order of period doubling

defining the quantity of

lim
n→∞

δn = lim
n→∞

λn+1 −λn

λn+2 −λn+1
= 4.6692016... , (9.9)

i.e., he obtained a certain “universal number” that was confirmed in models by

Lorenz and Hénon and in many real experiments.

We shall illustrate the dynamics of mapping of (9.8) for the order of value of λ.

For every value of λ the integration of the mapping is conducted until all the “trans-

formation processes” disappear and the trajectory changes its “asymptotic location”

(i.e., 2-periodic cycle; 4-periodic cycle, 2n-periodic cycle, . . ., 3-periodic cycle or

aperiodic attractor). Let us emphasize the following characteristics of this mapping:

(i) 2n periodic cycles (n = 1,2, . . .) in space λ undergo the growing process of

compression;

(ii) For λ > λ∞ chaotic areas appear;

(iii) 3-periodic cycles, or odd-order cycles appear in chaotic regime, (In the study

by Li-Yorke [188] there is an example showing that an orbit with period three

can also lead to chaos);

(iv) For λ = 1 chaotic dynamics is not fully recognized.

This problem is analyzed more thoroughly later, for ordinary differential

equations.

The value λ, in which new limit cycles appear, is given in Table 9.1. Beyond the

area of doubling of period λ∞ the structure of manifold is very rich. Grebogi and

his colleagous [113] introduced new terminology, namely, they called the narrow

areas of the occurrence of chaos subduction, and the corresponding widened areas

an internal crisis, and the final widening of the area for λ = 1 was called a crisis.
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Table 9.1 Limit cycles

Type λn (occurrence of

limit cycle)

1 2. limit cycle 0.75

2 4. limit cycle 0.86237

3 8. limit cycle 0.88602

4 16. limit cycle 0.89218

5 32. limit cycle 0.8924728

. . . . . . . . .
∞ aperiodic attractor 0.892486418

9.5 Scenario by Pomeau-Manneville

The fourth scenario of transition into chaos was presented by Pomeau and Man-

neville in 1979 [197]. There were many materials concerning chaos at that time and

it was shown for many dynamic systems that the transition from periodic motion to

chaos can take place by a stroke as a result of one bifurcation. Such a transition is

called hard and it is connected with the phenomenon of intermittency. Intermittency

is the process in which regular vibrations and relatively short irregular extras inter-

lace in a random way. The increase of a control parameter leads to the increase in

the number of chaotic extras until the signal is totally chaotic.

This phenomenon was discovered by Pomeau and Manneville while solving dif-

ferential equations describing the Lorenz model [196] and it was explained in the

following way. For the value of a control parameter smaller than the critical one we

observe a stable critical point. After a control parameter crosses its critical value,

this point becomes unstable. The transition to an unstable state can take place ac-

cording to one of three scenarios, the so-called intermittency of 1st, 2nd, and 3rd

type. For all types of intermittencies, the modules of characteristics of a linearized

Poincaré transformation are higher than one.

Table 9.2 presents the following characteristics for the three types of intermitten-

cies: the character of motion and type of mapping, characteristic (eigenvalue), the

form of a signal. In Table 9.2 parameter ε represents the parameter characterizing

the overcritical state of a system.

In the case of the first type of intermittency, for ε = 0 we can observe the

occurrence of contact bifurcation. Vertical and horizontal lines in the Poincaré

diagram show the construction on a Lamerey diagram of double asymptotic tra-

jectory of saddle-node point. For ε > 0 around the previous fixed point there is a

so-called canal along which the point of trajectory moves relatively long, which cor-

responds to the laminar phase of intermittency. Leaving the canal by the point evokes

turbulence.

In case of the second type of intermittency, for ε = 0 a subcritical Andronov-Hopf

bifurcation occurs in the mapping, and in the case of the third type of bifurcation, for

ε = 0 a one-dimensional mapping shows a subcritical bifurcation of period doubling

of the first limit cycle.
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Table 9.2 Characteristics of selected one-dimensional mappings

The third type of intermittency was initially observed in experiments with Bérnárd

convection in a small cubical cell. In 1984, the measurement of horizontal gradient

of temperature was taken in relation to the modulation of the intensity of a light

beam crossing this cell [198]. The Belousov-Zhabotinsky reaction is an example of

the second-type of intermittency [2].

9.6 Synchronization of Frequencies

It is known from Rayleigh-Bénard’s experiments that the transition from quasi-

periodicity to chaos can take place also in the case of the loss of synchronization

of frequencies ω1, ω2 (Fig. 9.7).

Fig. 9.7 Synchronization of

frequencies observed during

Bénard’s experiment [112]
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The transition from the state of synchronization of frequencies is a very important

problem of chaos dynamics. There are several possible types of synchronization-

chaos or synchronization-intermittency-chaos transition.

We shall present a few definitions of chaos for dynamic systems described by

integrable mappings.

Basic characteristics of chaos are:

(i) High sensitivity to changes of initial conditions;

(ii) Intermittency (transitivity);

(iii) Regularity condition, measured by the density of periodic points.

Mapping f : x → x will be referred to as chaotic if the following conditions are

satisfied:

(i) f is sensitive to initial conditions;

(ii) f is transitive;

(iii) Periodic points are densely distributed in X .

Below, we shall provide the definition for these characteristics.

1. Let x ∈ X , and let U be an open set including x. Mapping f is sensitive to initial

conditions if (∀δ > 0), (∃n > 0) : d( f (n)(x), f (n)(y)) > δ .

2. If f is transitive, then ∀(u,v) of open sets (∃n > 0) f (n)(u)Πv �= 0.

3. The characteristic of the density of periodic points means that in any surround-

ings of any point in X there is at least one periodic point.

In practice, we deal with chaos when there is an easily observable sensitivity to

initial conditions or there is at least one positive Lyapunov exponent.



Chapter 10

Dynamics of Closed Flexible Cylindrical Shells

Complex vibrations of closed cylindrical shells of infinite length and circular cross

section subjected to transversal local load in the frame of the classical non-linear the-

ory are studied. A transition from partial differential equations (PDEs) to ordinary

differential equations (ODEs) is carried out using a higher order Bubnov-Galerkin

approach and Fourier representation. On the other hand, the Cauchy problem is

solved using the fourth-order Runge-Kutta method.

In the first part of this work static problems of the theory of closed cylindrical

shells are studied. The reliability of the obtained results is verified by comparing

them with the results taken from the literature. The second part is devoted to the

analysis of stability, bifurcation, and chaos of closed cylindrical shells. In particular,

an influence of sign-changeable external pressure and the control parameters such

as magnitude of pressure measured by ϕ0, relative linear shell dimension λ = L
R

,

frequency ωp, and amplitude q0 of external transversal load, on the shell’s non-

linear dynamics is studied.

10.1 Introduction

Problems related to vibration of shell-type structures are encountered in many

branches of industry, including aeronautical engineering, ocean engineering, and

civil engineering [192, 260]. Nonlinear vibrations of thin circular cylindrical shells

are of special interest in aerospace (design of rocket and launch vehicle structures)

[212, 284], in which the structures must have a weight as low as possible and

a strength as high as possible, and hence may exhibit large amplitudes of vibra-

tions. According to the linear theory of vibrations, the natural frequencies and mode

shapes are independent of the amplitude of vibration. However, in many cases, if the

amplitude of vibration is large, such an assumption will not be justified due to one

or another nonlinear effect. In general, the interest in vibration of nonlinear systems

is focused on geometrical nonlinearities occurring at large displacement amplitudes,

which yields nonlinear strain-displacement relationships.
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One of the most fascinating features encountered in the study of nonlinear vi-

brations in general is the occurrence of new and totally unexpected phenomena in

the sense that they are not predicted or even hinted by a linear theory. On the other

hand, an explanation of many experimental observations cannot be understood with-

out taking into account nonlinear behavior. This is why nonlinear dynamics of plates

and shells is still largely unresolved by researchers working in the fields of mathe-

matics, mechanics and physics [6, 7, 8, 52, 70, 123, 228, 291, 312]. Many important

specific topics of vibrations of plates and shells have been already addressed and

some of them are listed below:

(i) Problems related to variation of the resonant frequencies depending on the

amplitude of vibration [53, 284, 312];

(ii) Amplitude dependence on the mode shapes [53, 312];

(iii) Jump phenomenon and its corresponding multi-values region in the nonlinear

frequency response curve [70, 228, 291];

(iv) Harmonic distortion of the nonlinear response to harmonic excitation, and its

spatial distribution [6, 7, 52];

(v) Shift to the right of the nonlinear random frequency response curves [9, 313];

(vi) Study of internal resonances [8, 9, 14, 123];

(vii) Occurrence of sub- or super-harmonic response phenomena [228];

(viii) Occurrence of chaotic vibration [9, 228, 291];

(ix) Existence of bifurcation points [123, 228, 291];

(x) Coupling, due to the nonlinearity, between transverse and in-plane displace-

ments (see reference [118] for a plate case, and reference [220] for a shell case);

(xi) Participation of the companion mode, in addition to the driven and axisym-

metric modes, in the nonlinear forced response of shells [6, 8, 70].

Modeling and simulation of the behavior of complex aerospace structures are per-

haps the more challenging shell analysis tasks to date. Following the accident of the

space shuttle Challenger, the definition of large-scale nonlinear analysis changed as

a result the classical approaches performed on the solid rocket boosters. A new de-

sign for the space shuttle external tank and other cryogenic fuel tanks for hypersonic

vehicles has also challenged shell analysts [231].

The mode shapes are of particular interest in the dynamic behavior of a struc-

ture since the axial and bending strains are dependent upon the first and second

derivatives of the mode shapes. Therefore, accurate prediction methods are needed

to determine, at large vibration amplitudes, the nonlinear mode shapes and the corre-

sponding resonance frequencies of shell-type structures. Moreover, the investigation

of the geometrically nonlinear vibrations of shells is intended to give not only use-

ful information about the nonlinear frequencies and mode shapes, but also to lead

to important indications on the dangerous zones where the stresses (axial and bend-

ing) are concentrated. This is due to the fact that the distribution of these stresses

at large vibration amplitudes may be completely different quantitatively as well as

qualitatively from that obtained within a frame of the linear theory. On the other

hand, in view of the increasing recourse in engineering to modal testing techniques,

it can be noticed that qualitative description of the nonlinear behavior can be very

useful in understanding data provided by modal testing, and can open the way to
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the development of more appropriate modal testing models, taking into account the

nonlinear effects.

In the first investigations dedicated to shell stability under the influence of a non-

symmetric external time-independent load, small inhomogeneities have been taken

into account, and (in order to describe a pre-critical state) a so-called momentous-

less model has been analyzed. The mentioned investigations led to a conclusion that

an amplitude of critical uniform pressure exceeds its level in a way proportional to

that of non-uniformity increase. It is clear that a further improvement of the model

is associated with inclusion of the momentous-type pre-critical state. It has been

shown that one of the most important factors characterizing the level of critical

static load is that associated with an order of distance between pre-critical and crit-

ical state variations and a buckling form. This effect is extremely well exhibited by

a dependence of critical static loads on non-homogeneities under the influence of

discontinuous loads.

It occurs also that the most dangerous cases of loading stability loss of a construc-

tion are manifested by a strong pre-critical bending state. In addition, this behavior

is associated with an occurrence of nonlinear deformation. Therefore, the problem

related to the estimation of errors introduced via the application of linear model-

ing of a pre-critical state plays an important role. The linearization of pre-critical

bending causes a decrease of the level of maximum displacements and excludes the

non-linear effects from consideration. Analysis of the examples of full nonlinear

computations of the static problems indicates an importance of divergence of the

obtained results from the corresponding data obtained using the linear model. The

application of nonlinear computation enables an essential improvement of monitor-

ing of a construction behavior subject to external loading. A remarkable contribution

to the development of shell stability investigation in the case of non-symmetric de-

formation was introduced by Andreev et al. [11], among others.

In reference [105] an investigation of the nonlinear free flexural vibrations of a

circular cylindrical shell was carried out including the effects of anisotropy, thick-

ness, and various shell geometries using the Wilson-Θ numerical integration method

coupled with a modified Newton-Raphson technique.

Chaotic vibrations of flexible shells are analyzed in references [21, 31]. On the

other hand, problems related to dynamic stability investigations with inclusion of

geometric nonlinearities under the influence of non-axially symmetric deformations

of cylindrical shells have been discussed in a few studies. The aim of this chapter is

to fill the existing gap, particularly in the class of problems devoted to the analysis

of complex nonlinear vibrations of cylindrical shells subject to a sign-changeable

transversal pressure.

10.2 Fundamental Equations

Below, a closed cylindrical shell of circular cross section and finite length subjected

to non-uniform sign-changeable external pressure in the frame of the classical non-

linear theory is studied. The following coordinates are introduced: axis x is directed
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Fig. 10.1 Computational

scheme

along a longitudinal coordinate; axis y goes along a circled coordinate; axis z is

associated with a mean surface normal to the shell (see Fig. 10.1).

The cylindrical shell treated as the three-dimensional space Ω in the given coor-

dinate system is defined as follows:

Ω = {x,y,z|(x,y) ∈ [0;L]× [0;2π],−h ≤ z ≤ h}.

The following differential equations in the non-dimensional form are studied:

1

12(1−µ2)

(

1

λ2

∂ 4w

∂x4
+λ2 ∂ 4w

∂y4
+2

∂ 4w

∂x2∂y2

)

− ky

∂ 2F

∂x2
−L(w,F)

−∂ 2w

∂ t2
− ε

∂w

∂ t
+ k2

yq(x,y, t) = 0,

1

λ2

∂ 4F

∂x4
+λ2 ∂ 4F

∂y4
+2

∂ 4F

∂x2∂y2
+ ky

∂ 2w

∂x2
+

1

2
L(w,w) = 0, (10.1)

where:

L(w,F) =
∂ 2w

∂x2

∂ 2F

∂y2
+

∂ 2w

∂y2

∂ 2F

∂x2
−2

∂ 2w

∂x∂y

∂ 2F

∂x∂y

is the known nonlinear operator.

The system of Eq. (10.1) has already been reduced to a non-dimensional form

with the use of the following non-dimensional parameters (bars over non-dimen-

sional quantities are omitted for simplicity):

ky =
2h

R2
k̄y, q = k̄2

y

E0(2h)4

L2R2
q̄, t =

RL

2h
√

gE0

t̄ ,

w = 2hw̄, x = Lx̄, y = Rȳ, F = E0(2h)3F̄ .

The following boundary conditions with their geometrical schemes are applied

(see Table 10.1):
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Table 10.1 Applied boundary conditions

1. Moving clamping along shell end faces:

w = 0;
∂w

∂x
= 0; F = 0;

∂F

∂x
= 0 for x = 0;1. (10.2)

2. Free support along shell faces:

w = 0;
∂ 2w

∂x2
= 0; F = 0;

∂F

∂x
= 0 dla x = 0;1. (10.3)

3. Movable clamping along shell end faces with additional ribs

w = 0;
∂w

∂x
= 0; F = 0;

∂ 2F

∂x2
= 0 dla x = 0;1. (10.4)

4. Ball-type support along shell end faces with additional flexible ribs:

w = 0;
∂ 2w

∂x2
= 0; F = 0;

∂ 2F

∂x2
= 0 for x = 0;1. (10.5)

It should be emphasized that the physical interpretation and mathematical mode

of the boundary condition (10.5) were first introduced in monograph [144].
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The following initial conditions are attached:

w(x,y)|t=0 = ϕ1(x,y),
∂w

∂ t
= ϕ2(x,y). (10.6)

In the above the following notation is used: µ is the Poisson coefficient, λ = L/R

where L and R = Ry is the length and radius of a cylindrical shell with a circular

intersection; ky = 1/Ry is the curvature of a shell along y (shell curvature in relation

to x is kx = 1/Rx = 0), q(x,y, t) is the outer pressure, ε is the damping coefficient of

a medium.

We consider the transversal external load action in the zone of 0 ≤ ϕ ≤ ϕ0 and

harmonically changing q(t) = q0 sin(ωpt), where ωp is the frequency of the exciting

force, q0 is the amplitude of the exciting force, µ = 0.3, ε = 9.

10.3 Bubnov-Galerkin Method and Fourier Representation

The sought functions w and F are approximated by an analytical expression consist-

ing of a finite number of arbitrary parameters in the form of products of functions

dependent on time and spatial coordinates of the following forms:

w =
Mx

∑
i=1

My

∑
j=0

Ai j(t)ϕi j(x,y),

F =
Mx

∑
i=1

My

∑
j=0

Bi j(t)ψi j(x,y). (10.7)

The coordinate systems {ϕi j(x,y), ψi j(x,y)} are chosen in such a way as to keep

functions ϕi j(x,y), ψi j(x,y) for ∀i, j: (i) linearly independent assuming their con-

tinuity together with their partial derivatives up to the fourth order in the space Ω;

(ii) satisfying one of the corresponding boundary conditions (10.2)–(10.5); (iii) with

compact properties.

Notice that in some papers (see for instance [82]) a question of neglecting the

homogeneous solution for F is discussed.

We address this question using an example of solutions to a system of partial

differential equations of flexible shells in the following hybrid form:

∇4w = L(w,F)+∇2
kF +q− ∂ 2w

∂ t2
− ε

∂w

∂ t
, (10.8)

∇4F = −1

2
L(w,w)−∇2

kw. (10.9)

In the above w denotes a deflection function, F denotes the Airy function, and

L(w,F) is a known nonlinear operator.



10.3 Bubnov-Galerkin Method and Fourier Representation 241

Now, in order to solve Eqs. (10.8) and (10.9) by the Bubnov-Galerkin method

the following approach is widely applied, sometimes referred to as the Papkovitch

method [241]. Namely, a deflection is assumed in the form w =
N

∑
i, j=1

Ai j(t)wi j(x,y)

and then it is substituted into the right-hand side of deformation compatibility

Eqs. (10.9)

∇4F =− 1

2

(

N

∑
i, j=1

Ai j(t)wi j(x,y),
N

∑
i, j=1

Ai j(t)wi j(x,y)

)

−∇2
k

(

N

∑
i, j=1

Ai j(t)wi j(x,y)

)

= f (Ai j(t),wi j).

As a result one obtains a linear PDE of the fourth order of the form ∇4F =
f (Ai j(t),wi j), which is solved by a method of successive iterations. In general, usu-

ally this equation is solved for N = 1, i.e., applying the first approximation only

and then the function F(x,y, t) is defined with respect to this first approximation.

The value of F obtained so far is substituted into the right-hand side of equilibrium

Eq. (10.8) and then the Bubnov-Galerkin procedure associated with Eq. (10.8) is

applied. It is assumed then that the compatibility Eq. (10.9) is satisfied exactly, but

in the first approximation, and the equilibrium Eq. (10.8) is solved in an averaged

sense applying the Bubnov-Galerkin procedure.

Notice that in our work we apply another approach developed by Vlasov. Namely,

we assume the deflection and Airy functions in the following forms:

w =
N

∑
i, j=1

Ai j(t)wi j(x,y), F =
N

∑
i, j=1

Bi j(t)Fi j(x,y). (10.10)

Then Eq. (10.10) is substituted into Eqs. (10.8), (10.9), and then simultaneously

the Bubnov-Galerkin procedure is applied to both equations. In other words, both

deformation and stress functions of the governing equations are satisfied simulta-

neously in some sense in the averaged meaning, but a solution is sought in higher

order approximations and the solution convergence is studied with respect to N in

(10.10). This approach is expected to have larger accuracy in comparison with the

first one, and in addition is supported by theorems yielding convergence of the ap-

plied numerical procedures.

There exists also a third approach. Namely, the Airy function governed by the

second relation of (iii) is substituted into equilibrium Eq. (10.8), and in the stationary

case a linear fourth-order differential equation with periodic coefficients is obtained.

However, in general finding a solution to this problem is more difficult than to ap-

ply the Papkovitch approach. There exist some exceptional cases, when a solution

can be found. Then the Bubnov-Galerkin procedure is applied for the compatibil-

ity Eq. (10.9). The latter approach can be applied only for stationary problems. In

the case of non-stationary problems like ours governed by Eqs. (10.8), (10.9) this

procedure cannot be applied.
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In other words, the Bubnov-Galerkin procedure applied by us includes a homo-

geneous solution, since both equations are satisfied in an averaged sense for higher

approximations, as it has been explained earlier.

Let us introduce (for simplicity) the left-hand sides of Eqs. (10.1) in the following

way:

Φ1(w,F,
∂ 2w

∂x2
,

∂ 2F

∂x2
, . . .)+Kq(x,y, t) = 0,

Φ2(w,F,
∂ 2w

∂x2
,

∂ 2F

∂x2
, . . .) = 0, K = k2

y . (10.11)

Applying the Bubnov-Galerkin procedure to Eq. (10.2) the following equations

are obtained:

1
∫

0

2π
∫

0

Φ1ϕrs(x,y)dx dy +

1
∫

0

ϕ0
2
∫

− ϕ0
2

Kq(x,y, t)ϕrs(x,y)dx dy = 0,

1
∫

0

2π
∫

0

Φ2ψrs(x,y)dx dy = 0, r = 0,1, . . . ,Mx; s = 0,1, . . .My. (10.12)

Owing to Eqs. (10.3), Eqs. (10.3) are given in the forms

∑
rs

[

∑
i j

Ai j ∑
kl

Hi jklrs +∑
i j

Bi jC1,i jrs +∑
i j

Ai jWi jrs

+ MqQrs +∑
i j

Ai j ∑
kl

BklD1,i jklrs +∑
i j

[

d2Ai j

dt2
+ ε

dAi j

dt

]

Gi jrs

]

= 0,

∑
rs

[

∑
i j

Ai jC2,i jrs +∑
i j

Bi j ∑
kl

Pi jklrs +∑
i j

Ai j ∑
kl

ArsD2,i jklrs

]

= 0. (10.13)

Note that the operator ∑
rs
[∗] before each equation of system (10.13) means that

instead of the given equation the system of rs equations is taken, and integrals of the

Bubnov-Galerkin procedure have the following form:

Hi jklrs =

1
∫

0

2π
∫

0

1

12(1−µ2)

[

1

λ2

∂ 2ϕi j

∂x2

∂ 2ϕkl

∂x2

+ λ2 ∂ 2ϕi j

∂y2

∂ 2ϕkl

∂y2
+2

∂ 2ϕi j

∂x∂y

∂ 2ϕkl

∂x∂x

]

ϕrsdx dy, (10.14)

C1,i jrs =

1
∫

0

2π
∫

0

[

−ky

∂ 2Ψi j

∂x2

]

ϕrsdx dy, C2,i jrs =

1
∫

0

2π
∫

0

[

ky

∂ 2ϕi j

∂x2

]

Ψrsdx dy,
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D1,i jklrs =

1
∫

0

2π
∫

0

[−L(ϕi j,Ψkl)]ϕrsdx dy,

D2,i jklrs =

1
∫

0

2π
∫

0

[

1

2
L(ϕi j,ϕkl)

]

Ψrsdx dy,

Pi jklrs =

1
∫

0

2π
∫

0

[

1

λ2

∂ 2Ψi j

∂x2

∂ 2Ψkl

∂x2
+λ2 ∂ 2Ψi j

∂y2

∂ 2Ψkl

∂y2
+2

∂ 2Ψi j

∂x∂y

∂ 2Ψkl

∂x∂x

]

Ψrsdx dy,

Gi jrs =

1
∫

0

2π
∫

0

[−ϕi jϕrs]dx dy, Qrs =

1
∫

0

ϕ0
2
∫

− ϕ0
2

Kq(x,y, t)ϕrsdx dy.

Integrals (10.14), perhaps in spite of Qrs, and in spite of the case when the

transversal load is only on part of the shell surface, are computed with respect to

the whole mean shell surface.

As a result of the application of the Bubnov-Galerkin procedure and applying

integrals (10.14) the following system of nonlinear second-order ODEs with respect

to the coefficients Ai j and Bi j, and to the system of linear algebraic equations (LE)

also with respect to the coefficients Ai j and Bi j is obtained:

Ḡ( ¨̄A+ ε ˙̄A)+ H̄Ā+W̄ Ā+C̄1B̄+ D̄1ĀB̄ = Q̄q(t), (10.15)

C̄2Ā+ P̄B̄+ D̄2ĀĀ = 0, (10.16)

where H̄ = ‖Hi jrs‖, Ḡ = ‖Gi jrs‖, C̄1 = ‖C1i jrs‖, C̄2 = ‖C2i jrs‖, D̄1 = ‖D1i jklrs‖,
D̄2 = ‖D2i jklrs‖, W̄ = ‖Wi jrs‖, P̄ = ‖Pi jrs‖ are the quadratic matrices with dimen-

sions 2N1N2 ×2N1N2, and Ā = ‖Ai j‖, B̄ = ‖Bi j‖, Q̄ = ‖Qi j‖ are the matrices with

dimensions 2N1N2 ×1.

Equation (10.16) is solved on every time step and yields the matrix

B̄ =
[

−P̄−1D̄2Ā− P̄−1C̄2

]

Ā. (10.17)

Multiplying (10.15) by Ḡ−1, and denoting ¯̇A = R̄ we get the following nonlinear

system of first-order ODEs

⎧

⎪

⎨

⎪

⎩

¯̇A = R̄,
¯̇R = −ε̄R̄−

[

Ḡ−1C̄1 + Ḡ−1D̄1Ā
]

B̄− Ḡ−1H̄Ā

−Ḡ−1W̄ Ā+ Ḡ−1Q̄q(t̄).

(10.18)

Equations (10.18) are supplemented by one of the boundary conditions (10.2)–

(10.5), the initial conditions (10.6), and the obtained Cauchy problem is solved using

the fourth-order Runge-Kutta method.

Let us consider now a ball-type supported cylindrical shell along a curvilinear

circle with homogeneous boundary conditions (10.5) and initial conditions (10.6).
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For this purpose ϕi j, Ψi j in (10.10) are represented by a product of two functions,

and each of them depends only on one argument that satisfies the boundary condi-

tions (10.2) of the form

w =
Mx

∑
i=1

My

∑
j=0

Ai j(t) sin(iπx) cos( jy),

F =
Mx

∑
i=1

My

∑
j=0

Bi j(t) sin(iπx) cos( jy). (10.19)

In the Bubnov-Galerkin procedure (in its Fourier form) the following integral

representation is used:

I1,r =

x2
∫

x1

sin(rπx) dx =
cos(rπx1)− cos(rπx2)

rπ
,

I2,s =

y2
∫

y1

cos(sπy) dy =
sin(sπy2)− sin(sπy1)

sπ
,

I3,ir =

1
∫

0

sin(iπx) sin(rπx) dx =

⎧

⎨

⎩

1

2
, i = r,

0, i �= r,

I4, js =

2π
∫

0

cos( jπy) cos(sπy) dy =

⎧

⎪

⎨

⎪

⎩

2π, j = s = 0,

π, j = s �= 0,

0, j �= s,

I5,ikr =

1
∫

0

sin(iπx) sin(rπx) sin(kπx) dx

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

4π

[

− cos(α1π)

α1
− cos(α2π)

α2
− cos(α3π)

α3
− cos(α4π)

α4

+
1

α1
+

1

α2
+

1

α3
− 1

α4

]

, αν �= 0,

cos(αν π)

αν
≈ 0,

1

αν
≈ 0, ν = 1,2,3, αν = 0,

I7,ikr =

1
∫

0

cos(iπx) cos(kπx) sin(rπx) dx

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

4π

[

cos(α1π)

α1
− cos(α2π)

α2
− cos(α3π)

α3
− cos(α4π)

α4

− 1

α1
+

1

α2
+

1

α3
+

1

α4

]

, αν �= 0,

cos(αν π)

αν
≈ 0,

1

αν
≈ 0, ν = 1,2,3, αν = 0,
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I8, jls =

2π
∫

0

sin( jy) sin(ly) cos(sy) dy

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

4

[

− sin(β1π)

β1
+

sin(β2π)

β2
+

sin(β3π)

β3
+

cos(β4π)

β4

+
1

β1
− 1

β2
− 1

β3
+

1

α4

]

, βν �= 0,

sin(βν π)

βν
≈ 0,

1

βν
≈ 0, ν = 1,2,3,4, βν = 0,

I6, jls =

2π
∫

0

cos( jy) cos(ly) sin(sy) dy = 0.

where:

α1 = j + k− r, α2 = k + r− i, α3 = r + i− k, α4 = i+ k + r,

β1 = j + l − s, β2 = l + s− j, β3 = s+ j− l, β4 = j + l + s.

Irs
Q = MI1rI2s, Irs

P =
(

s2 px(t)+ r2 py(t)
)

π2I3,irI4, js,

Irs
AB =

(

s2kx + r2ky

)

π2I3,irI4, js, It
rs = I3,irI4, js, M = k2

y ,

Ii jklrs = π2
[(

i2l2 + j2k2
)

I5,ikrI6, jls −2i jlkI7, ikrI8, jls

]

,

Jrs
1,i jkl =

π2

12
(

1−µ2
)

[

r4

λ2
+2r2s2 +λ2s4

]

I3,irI4, js,

Jrs
2,i jkl =

[

r4

λ2
+2r2s2 +λ2s4

]

π2I3,irI4, js.

Then in view of the written integrals, system (10.13) is given in the form

∑
rs

{

∑
i j

∑
kl

[

Jrs
1,i jklAi j + Irs

ABBrs + Irs
P Ai j + Irs

Q q(t)

+ Ai jBklIi jklrs +

(

d2Ai j

dt2
+ ε

dAi j

dt

)

It
rs

]}

= 0,

∑
rs

{

∑
i j

∑
kl

[

Jrs
2,i jklBi j + Irs

ABArs +
1

2
Ai jAkl + Ii jklrs

]

}

= 0. (10.20)

10.4 Static Problems of Closed Cylindrical Shell Theory

Consider a static loading of closed cylindrical shell consisting of uniform external

load q = q1 distributed within the zone with central angle ϕ0 shown in Fig. 10.1.

We are going to study the dependence of critical loads on width of a loading

pressure zone. A static solution is obtained from dynamic one with a help of the
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setup method first introduced by Feodosev [95] and associated with critical damp-

ing ε = εcr. In 1963 Feodosev proposed a dynamic approach to solve a problem

related to the stability of shells. From a mathematical point of view, this method is

called the “set-up” method. The main idea of this method is that solution of the non-

linear partial differential equations is reduced to a Cauchy problem of ODEs that is

linear in time. This means that this method linearizes the nonlinear equations and

decreases their dimension.

In what follows, we discuss briefly an advantage of this method. From a mathe-

matical point of view, the “set-up” method can be treated as an iterative method to

solve nonlinear algebraic equations, where each time step provides a new approx-

imation to the exact solution. Like all iterative methods, this one is characterized

by a high accuracy of computation. In addition, is does not have the common

disadvantage of iterative methods of a high sensitivity to the choice of the ini-

tial approximation. In addition, the “set-up” method not only gives a very simple

rule for obtaining nonunique solutions of static problems, but also allows one

to find the stable and unstable branches of the equilibrium position of the sys-

tem under consideration and to capture all process of the jumping behavior of

a shell.

In the process of solution of homogeneous equations via traditional methods, in

order to obtain a nontrivial solution one needs to introduce an artificial excitation (in

the theory of shells this corresponds, for instance, to a small transverse load, a small

curvature or some other initial imperfection). However, this influences (sometimes

significantly) the results obtained. In the case of the “set-up” method, the initial con-

ditions play the role of the initial excitations, and small changes of these conditions

do not influence the static solution obtained. Another advantage of the method is

related to its simple realization, because today there are many effective algorithms

and programs devoted to solution of the Cauchy problem.

In order to obtain q1(ϕ0) one needs to construct for ∀ϕ0 ∈ [0;2π] the set

{q1,i,wi}, due to which q1,cr (critical load) is defined.

Let us discuss the results obtained for different approximations. Since the load

is applied along the whole length of cylindrical shell, the number of series terms

with respect to coordinate x does not play any important role. Let us investigate the

obtained results versus the number of series terms associated with circle coordinate

y−My. The mentioned relations are shown in Fig. 10.2 for My = 4 and My = 5.

One may observe that the relation is non-monotonous. For different values of

My the curves are convergent, but an increase of approximation number of one unit

yields more accurate results (Fig. 10.2). Hence, for a non-homogeneous load the

use of a small number of terms of series (10.10) yields its convergence beginning

from My = 13 (see Fig. 10.3). Note that the mentioned results have been obtained

for large values of the loading angles (ϕ0 = 6).
Below, we investigate the method’s convergence for different loading angles. For

this purpose a dependence of critical load q1,cr on the number of series terms (10.10)

for different angles of loading actions q1,cr(My) (see Fig. 10.4) has been determined.

In a general case, for different angles, the convergence begins with My = 15−20.
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Fig. 10.2 Relation q1,cr(ϕ0)
for different approximations,

My = 4,5

Fig. 10.3 Relation q1,cr(ϕ0) for different approximations, My > 6

In order to verify the reliability of results, let us draw the dependence of q1,cr on

the pressure zone width q̄1,cr(ϕ0) for Mx = 1, My = 13 (Fig. 10.5). In the above,

we have taken q̄1,cr =
q1,cr

q̃cr
, where q̃cr is the classical critical value of the uniform

external pressure computed using the Mizes-Papkovitch formula [241], i.e., q̄cr =

0.92 R
L

(

h
R

)5/2
. Note that the dependence q̄1,cr(ϕ0) has a non-monotonous vibrational

Fig. 10.4 Dependence of critical load on the number of series terms 10.10 for different loading

angles q1,kr(My)
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Fig. 10.5 Critical loads ver-

sus width of the pressure zone

(“1”, curve obtained via “set-

up” method; “2”, curve given

in reference [11])

character. An increase of ϕ0 from zero is associated with a series of maxima and

minima, and beginning from ϕ0 ≈ 4 the critical load oscillates on the level of q̄1,cr ≈
0.75. In order to verify reliability of the results, the data given in reference [11] will

be applied.

On the basis of a comparison of the two graphs shown in Fig. 10.5, one may con-

clude that the results obtained fully coincide with those reported in reference [11].

Although we show only a comparison with the literature concerning static critical

loads, in all further computations we have used the Runge principle to control the

results reliability.

10.5 Dynamics of Closed Cylindrical Shells

In this section we are going to analyze dynamic problems in the case of external

harmonic excitation of the form q(t) = q0 sin(ωpt). Analysis of complex nonlinear

shell vibrations is carried out with respect to two control parameters in both pre-

and post-critical states, i.e., width of the pressure zone ϕ0 and linear dimension of

the shell λ = L
R

are taken into account.

10.5.1 Convergence of the Fourier Representation

for a Non-stationary Problem

We study a convergence of the Bubnov-Galerkin approach versus My in (10.19) for a

cylindrical shell in the case of a non-stationary problem. Following Poincaré’s ideas

[247] that instead of studying one particular orbit it is more convenient to analyze

the entire orbit manifold, various vibrational charts are constructed for the control

parameters {q0,ωp} for L = λ
R

= 2. First, the problem of solution convergence with

an increase of control parameters plane partition is studied (see Table 10.2). The

introduced figure notation is valid also in further considerations.
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Table 10.2 Investigation of a solution convergence

For construction of such maps the grid in which unit identification of vibration

character was made has been imposed on the area of space {q0,ωp}. Hence, it is

necessary to solve a dynamic problem regarding the construction and analysis of a

power spectrum for each unit of a grid, i.e., each set of parameters {q0,ωp}.

Computations have shown that a convergence is realized for N ×N ≥ 350×350

(see Table 10.2). The introduced charts allow us to study the entire manifold of the

shell’s behavior.

Identification of the type of cylindrical shell vibrations during construction of

the chart {q0,ωp} for each signal (time history) w(t) is supported by analysis of the

power spectrum S(ω) and Lyapunov exponents. The chart {q0,ωp} is divided into

350×350 parts.

A convergence of the Bubnov-Galerkin method in higher approximations and

with the application of Fourier transform with respect to My is analyzed in the bi-

furcation zone (point A in chart {q0,ωp}, Fig. 10.6), and in the chaotic zone (point

B in the chart {q0,ωp}).

Note that for small values My ≤ 9 basically harmonic vibrations appear and zones

of chaos are absent at all investigated frequencies (only small bifurcations areas are

visible). At My = 10 the picture of vibrations varies; bifurcation areas at high fre-

quencies also vanish, but they arise at the frequencies close to fundamental (natural)

frequency of vibrations. Furthermore, increasing the parameter My = 11 causes an
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Fig. 10.6 Maps of vibrations character depending on number of My in (10.19)

occurrence of extensive zones of chaotic vibrations at low frequencies being close

to fundamental vibrations frequency (the areas of bifurcations observed previously

vanish at My = 9). A further increase of My, i.e., My = 12, results in changes associ-

ated with high-frequency zones of chaos that at low frequencies remain practically

unchanged. Finally, one may observe that the maps constructed for My = 13 and

My = 14 almost coincide, and hence the converging process begins at My = 13. It

should also be emphasized that convergence at low frequencies is better than that at

high frequencies, being close to the fundamental frequency of vibrations (≈ 26.1).
In Figs. 10.7 and 10.8 signals w(0.5;0; t) and power spectra S(ω) associated

with the mentioned points are reported. Analysis of the obtained results (Fig 10.7)

shows that for My ≥ 12 power spectra completely coincide, and signals are very

close to each other. However, the results obtained for My = 9,10,11 essentially differ

from the case of My ≥ 12. On the basis of this observation one may conclude that

for My ≥ 12, the bifurcation process is truly, described, and a converging sequence

of data is observed. Our computations allowed us also to establish the following

conditions:

[

w−
N1

∑
i=0

N2

∑
j=0

Ai j(t)ϕi j(x,y)

]

= min{t ∈ [15;15.7]},
[

F −
N1

∑
i=0

N2

∑
j=0

Bi j(t)Ψi j(x,y)

]

= min{t ∈ [15;15.7]},

yielding the best approximation for both w and F .
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Fig. 10.7 Time history w(0.5;0; t), t = [15;15.7] and power spectra S(ω) versus My (bifurca-

tion zone)

In Fig. 10.8 the same characteristics as in Fig. 10.7 are reported. Unfortunately,

in this case we do not notice such a uniform convergence as in the previous case.

The value of My = 9 corresponds to a period doubling bifurcation (the birth of orbit

“2”); My = 11 is associated with two bifurcations of doubling of the period and tre-

bling of the period; for My = 10 . . .14 in general chaotic vibrations are observed,

but the character of chaos is essentially various. Namely, for My = 14 chaos at

the basic frequency of excitations occurs; for My = 10,13 chaos at the frequencies

associated with the trebled period takes place, and for My = 12 chaos at the fre-

quencies with a 12-fold increase in the period of vibrations appears. In other words,

each member of the decomposition introduces its own contribution to the picture

of chaos.

In order to investigate the convergence in more detail, it is required to analyze

bending shell forms for fixed loading and width zone pressure action in various

approximations. Table 10.3 gives shell cross sections in defined time instants and
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Fig. 10.8 Time history w(0.5;0; t), t = [15;15.7] and power spectra S(ω) versus My (chaotic zone)

Table 10.3 Shell cross-sections
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Fig. 10.9 Convergence of the Bubnov-Galerkin method in the chaotic zone

for the fixed value of x = 0.5, and 0 ≤ y ≤ 2π of point B in the chart {q0,ωp}, i.e. in

the chaotic zone. Points 1–5 correspond to the values reported in Fig. 10.9. It is clear

that beginning from My = 13 one may observe the same picture as in both forms of

transversal cross section and w(t), i.e., a convergence with respect to signal (time

history) and power spectrum is observed. An increase of the series terms of (10.19)

does not improve the accuracy of the results.

Here it is necessary to note that in the considered class of problems an increase in

the number of degrees of freedom does not result in a simplification of the character

of vibrations as in classical Lorenz model, but leads to their serious complexity.

Furthermore, we have considered one of the most difficult cases by taking Mx = 1

and we have shown that by increasing only My the numerical process is convergent

and hence the obtained results are reliable. However, it should be emphasized that

another problem may appear regarding the accuracy of the Donnell shallow shell

theory for w
h
≫ 1.
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10.5.2 Vibrations of Closed Cylindrical Shells Subjected

to Transversal Sinusoidal Load

In this section we study the cylindrical shell with the attached boundary (10.2) and

initial conditions (10.6) driven by external harmonic load distributed in a zone with

central angle φ0 (Fig. 10.10). The loading coordinates are: 0 ≤ x ≤ 1; 0 ≤ y ≤ ϕ0.

For essentially small loading angles, and when the loading distribution is close

to the loading curve, relatively large deflections are developed. The bending shell

form is not being changed qualitatively during the loading process.

Note that pre-critical deflection is mostly expressed in zones being in the vicinity

of loading part and inside it. For small values of angles ϕ0 one concavity occurs in

the loading zone (Fig. 10.10c).

Fig. 10.10 Deflection forms of the shell for different “opening” angles of the loading zone

An increase of ϕ0 causes the occurrence of two concavities lying on the bound-

aries of the loading zone (Fig. 10.10b). For ϕ0 → 0, and ϕ0 → 2π , the bending

process is slightly manifested (Fig. 10.10a, c). For some discrete values of the

loading angle ϕ0 and during the process of loading increase, a bifurcation of the

deflection form occurs and the number of half-waves increases. For larger loading

angles the mentioned qualitative change is exhibited only locally, and it is visible in

the center of the loading zone (see Fig. 10.11, where q0 is the critical load).

Fig. 10.11 Deflection forms

for different loading bends

A stability loss of the shell is observed for loading angles larger than ϕmin for

which the bifurcation point occurs on the “load-deflection” diagram. Such diagrams

for different loading angles are shown in Fig. 10.12.
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Fig. 10.12 “Maximum deflection–time” relation (a) and dependence of qr vs. maximum deflection

(b) for a variety of loading angles

In order to define the critical load, two earlier described criteria are applied: the

dynamic Volmir [304] criterion (Fig. 10.12b) and the Shian et al. [270] criterion

(Fig. 10.12a). Based on the analysis of the obtained results, one may conclude that

critical loads obtained using the two criteria coincide with accuracy of 10−3. In

order to apply a more detailed analysis, let us consider forms of the shell deflection

and forms of transversal deflection of the shell in both pre-critical and post-critical

states for the series of values ϕ0 (Table 10.4). Forms of transversal cross-section

(x = 0.5, y ∈ [0; 2π]) in the same time instants as well as the characteristic wave

forms correspond to point A in the signal.

Observe that the fast increase of deflection owing to a small change of the load

yields an increase of half-wave number. During transition into the post-critical state

also large deflections are transmitted into shell unloaded zones.

10.5.3 Dependence of Vibration Character on Width

of the Pressure Zone

For some values of the pressure zone ϕ0, the characteristic features of vibrations

versus control parameters {q0,ωp} are specified (Fig. 10.13). Owing to these charts

the whole shell behavior can be monitored.

It is evident that the character of vibrations depends on the loading angle sig-

nificantly. For small values of ϕ0 the sum of chaotic zones is reasonably high and

consists of two subspaces corresponding to frequency values ωp < ω0 and ωp > ω0.

Recall that ω0 is the fundamental (dimensionless) shell natural frequency, whereas

ωp is the dimensionless frequency of excitation. Owing to an increase of loading of

the cylindrical shell, the surface at the chaotic space is decreased into that of low and

average frequencies. For a large surface of external pressure the chaotic windows are

distributed over the whole chart. The largest part of the chaotic zone is concentrated

in the vicinity of ωp < ω0, and the summed chaotic surface zone is relatively high.

Also remarkably large are the zones of Andronov-Hopf bifurcations, which appear

close to ωp > ω0.
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Table 10.4 Pre- and post-critical shell states for various values of q0

10.5.4 Dependence of Vibration Character on the Linear

Shell Dimension

Now, we consider the action of harmonic load in the zone of width ϕ0 = 6 rad = 343◦

(see Fig. 10.1). For each of fixed parameters of λ the following characteristics are

constructed: time history x(t;x0;y0), phase portrait w(w′), power spectrum S(ω),
and Poincaré map wt(wt+T ), where T is the period of excitation subject in the central

shell point (x0,y0) = (0.5;π). In addition, the relation wmax(q0) for fixed values

of the frequency of excitation ωp = ω0 (ω0 is the fundamental natural frequency

of linear vibrations) and vibration character zones (scales) are monitored. In order

to investigate spatial vibrations, both forms of the waving shapes of the shell for
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Fig. 10.13 Charts of the shell vibrations

0 ≤ x ≤ 1; 0 ≤ y ≤ 2π and forms of transversal cross sections x = 0.5; 0 ≤ y ≤ 2π
are studied in pre- and post-critical states.

Owing to the investigation of relations wmax(q0) for each λ, zones of stiff stabil-

ity loss (Fig. 10.14) are detected, i.e., the criterion of stability loss for the studied

types of shells is established. Observation of the scales of shell vibration character

yields a transition of vibrations from harmonic to chaotic ones allowing us to de-
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Fig. 10.14 Relation wmax(q0)
for λ = 0.5

fine the scenarios of such transitions. Let us analyze the occurrence of stability loss

of the cylindrical shell depending on the parameter λ. For this purpose the relation

wmax(q0) is used for each fixed value of λ. In addition, the zones of stiff stability loss

as well as fundamental characteristics in some controlling points that correspond to

the shell state before and after stability loss are constructed. The characteristic rela-

tion wmax(q0) for λ = 0.5 is illustrated in Fig. 10.14. Four control points are marked

corresponding to local (A–B) and global points (C–D) of stability loss (a definition

of the local and global stability follows). The analogous relations for other values

of parameter λ are shown in Figs. 10.15–10.17. Fig. 10.15 shows how wmax in-

creases with an increase of the excitation amplitude q0. Note that the largest value

of deflection in the investigated interval q0 ∈ [0; 0.8] is associated with the shell’s

chaotic motion.

A similar investigation is reported in Fig. 10.16 for λ = 1. However, in this case

two-frequency vibrations (quasi-periodic motion) dominate within the considered

interval q0 ∈ [0; 0.8].

Fig. 10.15 Relations wmax(q0) for λ = 0.5 and the scale of vibration character
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Fig. 10.16 Relations wmax(q0) for control parameter value λ = 1 and scale of vibrational character

Fig. 10.17 Relations wmax(q0) for control values of λ and scale of vibrational character

Finally, in Fig. 10.17 a collection of similar investigations for λ = 2–8 is reported.

It is seen that the largest shell deflection wmax is achieved for λ = 2, with the widest

“length of chaos.” Only harmonic and chaotic vibrations appear for λ = 8. To sum
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up, the reported results shown in Figs. 10.15–10.17 allow us to realize the required

dynamics of the shell (harmonic, quasi-periodic and chaotic) by taking only two

control parameters q0 and λ.

Let us analyze the shell behavior during the transition through (A–B) and (C–D)

for different λ. Determination of local and global stability loss for closed cylindrical

shells subject to local harmonic load action is further carried out.

Local stability loss will be characterized by a qualitative change of vibration

character from harmonic one (associated with Andronov-Hopf bifurcations) and ac-

companied by an increase of deflections by 5–6 shell thicknesses. The following

definition of the local stability loss is applied further: Local stability loss is mani-

fested by the change of vibration character. Harmonic vibrations are substituted by

the vibrations with the frequency associated with the first Andronov-Hopf bifur-

cation ω0, and vibrations with the frequency
ω0
2

are substituted by quasi-periodic

two-frequency vibrations. The number of waves along a circled coordinate is fixed

and does not change in time.

Let us investigate longitudinal waves with respect to the linear shell dimensions

λ = L
R

in chosen time instants corresponding to maximum, minimum, and aver-

aged deflection values. In the point of time history maximum, the number of signal

half-waves for all parameter values λ = L
R

remains constant (Fig. 10.18), whereas

in the minimum and averaged point, the relation is non-monotonous. Minima of

the graphics nmin(λ) correspond to maxima naverage(λ) taken in the averaged sense.

During transition through the point of local stability loss (Fig. 10.19), the relation

n(λ) coincides for all points in time and has one minimum (for λ = 2) and one max-

imum (for λ = 3). Therefore, it may be concluded that the number of half-waves

associated with circled coordinate after the local stability loss is fixed and does not

change in time.

By the global stability loss of a shell we will understand a fast increase of

deflections (up to 15–20 shell thicknesses) corresponding to a small change of

excitation force amplitude. The following definition for global stability loss is ap-

plied: Global stability loss is characterized by a change of vibration character.

Our computations have shown that for an arbitrary value of λ in the frequency

spectrum (after the global stability loss) first Andronov-Hopf bifurcation occurs,

although the vibration character can be either periodic or chaotic. The number of

half-waves is decreased and beginning with λ = 4 it becomes constant in time.

Fig. 10.18 Relation n(λ) in

the pre-critical state
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Fig. 10.19 Relation n(λ) in

the post-critical state

Although in the shell response both longitudinal (number of half waves) and

circumferential (number of modal diameters) wave numbers are important, in this

study we focused only on one of them. During transition through the point of global

stability loss, a change of shell vibration character is obtained, and chaotic behavior

associated with first Andronov-Hopf bifurcation appears. In the pre-critical state

the system can exhibit either harmonic (λ = 0.5, 2, 5, 7) or chaotic (λ = 3, 4, 6)
vibrations. The exceptional case is that of λ = 1, where the system exhibits quasi-

periodic two-frequency vibrations with frequencies
ω0
2

and ω1.

Owing to an increase of the amplitude of external load the stiff stability loss

occurs. Next, we will study the system behavior in the post-critical state.

For all values of the parameter λ the change of vibration character is observed.

The following rule is detected for any λ in the spectrum (after a global stability loss):

first, Andronov-Hopf bifurcation occurs, and then vibrations are either periodic or

chaotic.

Also in the case of local stability loss one may trace the shell’s behavior in

space during transition through the critical point. Let us investigate a dependence

of half-wave numbers with respect to linear shell dimensions in various time in-

stants, corresponding to maximum, minimum and averaged deflection value (global

stability loss).

Therefore, in the point of maximum, minimum, and averaged value of the sig-

nal, the number of half-waves is changing for all values of the parameter λ = L
R

(Fig. 10.20). Although for all relations n(λ) there are local minima and maxima,

but globally the number of half-waves along the circled coordinate decreases for all

naverage(λ), nmin(λ)andnmax(λ).Thesameholds for thepost-critical state (Fig.10.21),

i.e., the number of half-waves along the circled coordinate decreases and beginning

with λ = 4 it becomes constant for all naverage(λ), nmin(λ) and nmax(λ).
To conclude, the number of half-waves along the circled coordinate does not

depend on time instant for all λ ≥ 4, i.e., it holds for all shells for which there is a

lack of local stability loss.

Based on the obtained results, one may construct a graph of dependence of the

critical load on the parameter λ, q+
0 (λ) and q+

0 loc(λ), where q+
0 and q+

0 loc denote

the global and local critical loads, respectively (Fig. 10.22). The relation is non-
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Fig. 10.20 Relation n(λ) in

the pre-critical state

monotonous, and there are two local minima (λ = 3,6), whereas for the last values

of λ this relation increases monotonically.

Therefore, an increase of a relative length of the shell causes an increase of criti-

cal load values. The analogous rule holds also for the local critical loads.

10.5.5 Scenarios of Shell Vibration Transition into Chaos Versus λ

In nonlinear dynamics there are a few scenarios of the transition of mechanical sys-

tems from harmonic to chaotic states (see, for instance, Landau-Hopf scenario [179],

Ruelle-Takens-Newhouse scenario [262], Feigenbaum scenario [92], and Pomeau-

Manneville scenario [197]).

In order to analyze the scenarios of transition into chaotic vibrations of the shell,

the relations wmax(q0) for different λ together with vibrational character scales are

analyzed (they are shown in Figs. 10.15–10.17).

Fig. 10.21 Relation n(λ) in

the post-critical state
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Fig. 10.22 Relation q+
0 loc(λ)

and q+
0 (λ)

For all parameters λ one may find common properties of the dynamic shell be-

havior. A stiff stability loss corresponds to a change of vibration character, shivering

of graphs wmax(q0) corresponds to the chaotic zones in vibration scales. Finally, an

increase of q0 from 0 corresponds to a large zone of harmonic vibrations, i.e., on the

graph of wmax(q0) one observes a smooth increase of deflections.

In order to define these λ values for which the cylindrical shell exhibits slightly

chaotic vibrations, the dependence of chaotic zone length ℓ on the parameter λ,

i.e., the function ℓ(λ) for other conditions being fixed is analyzed further. The men-

tioned dependence is studied together with critical loads for each λ. The length of

chaotic zones is computed using vibration character scales for each fixed value of λ.

The mentioned graphs are shown in Figs. 10.22 and 10.23.

The relation ℓ(λ) has non-monotonous vibrational character. While increasing λ,

two local minima and two local maxima are found. After λ ≥ 4 a monotonously

decreasing relation is observed (Fig. 10.23), which corresponds to monotonously

increasing part in the graph q+
0 (λ). Therefore, one may conclude that owing to

the increase of critical load, chaotic zones are decreased, i.e., low critical load

is associated with a larger surface of chaotic vibrations. Furthermore, for lengthy

Fig. 10.23 Relation ℓ(λ),
where ℓ denotes the length of

chaotic zone for each λ
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shells (λ ≥ 4) the relation (q+
0 (λ)) monotonously increases, whereas it has a non-

monotonous character for short and average shells. Next, we will study how a

relative shell length influences the occurrence or lack of bifurcations in the fre-

quency spectrum, the occurrence of independent frequencies in vibrations with the

frequencies
ω0
2

, ω0
3

, and so on. For this purpose the corresponding relations for vari-

ous values of λ using vibration character scales are studied (see Figs. 10.24–10.26).

Analyzing the obtained relations one may conclude that shells averaged in length

(1 ≥ λ ≥ 3) behave similarly, whereas in the behavior of long shells some differ-

ences are observed.

The following general conclusions can be formulated. The stiff stability loss

(i.e., both local and global) is characterized by the occurrence of the first Andronov-

Hopf bifurcation and transition into vibrations with the frequency
ω0
2

, and they can

be either periodic or chaotic. In other words, the mechanism of transition through

the point of stability loss is the same as in both local and global cases. Exceptional

cases include λ = 1 (owing to stiff stability loss the vibrations are transmitted from

one frequency harmonic to two-frequency quasi-periodic ones) and λ = 6 (vibra-

tions are transmitted from two-frequency to chaotic ones being associated with the

frequency of excitations).

It is worth noting that analyzing the forms of transversal cross sections of the

cylindrical shell (beginning from λ = 4), the number of half-waves along circled

coordinate becomes constant and does not undergo changes in time. Furthermore,

for λ ≥ 4 local stability loss does not appear. When investigating scenarios of the

transition of shell vibrations from harmonic to chaotic ones, it may be concluded

that λ = 4 is responsible for the scenario type definition (see Figs. 10.24–10.26).

To conclude, the scenarios of transition from harmonic to chaotic vibrations es-

sentially depend on the relative shell length and they are different for short (λ < 4)
and long (λ ≥ 4) shells.

Table 10.5 gives charts of vibration character {q0,ωp} depending on control pa-

rameters for different values of shell length λ. Analysis of the mentioned charts

evidently supports our earlier conclusions that vibrational type essentially de-

pends on the length of the cylindrical shell. Therefore, to control vibrations of our

mechanical system it is worth changing the linear dimensions of our shell, keeping

other parameters fixed.

Fig. 10.24 Occurrence of

vibrations at frequencies

ω0/2: (1, yes; 2, no)
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Table 10.5 Vibration types in the plane {q0,ωp} for different λ
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Fig. 10.25 Occurrence of in-

dependent frequencies (1, yes;

2, no)

10.5.6 Feigenbaum Scenario

The chart of vibration character versus control parameters {q0,ωp}, constructed for

a cylindrical shell of circled cross-section for λ = 3 and subject to non-symmetric

external load applied to a zone of width ϕ0 = 343◦ (see Table 10.5), indicates the

existence of a few zones where a transition into a chaotic state has been realized

using the Feigenbaum scenario [92]. Namely, both the so-called Feigenbaum se-

quence and Feigenbaum constant d = 4.6625 have been numerically detected. The

obtained value differs from its theoretical prediction by 0.14%. In this work the pro-

cess of period doubling bifurcations is obtained owing to solution of the system of

partial differential equations (PDEs) governing dynamics of the closed cylindrical

shell using the Kirchhoff-Love kinematic model, and not the one associated with

considerations of the logistic curves behavior.

In order to illustrate the described process of transition into chaos the follow-

ing characteristics are monitored (see Table 10.6) for the Feigenbaum scenario [92]

associated with 2–6 bifurcations: signal, phase portrait, power spectrum, Poincaré

map, and modal portrait (in order to properly analyze space vibrations).

If we consider the deflection of a plate w(x,y) then we have physical interpreta-

tion to the fourth derivative. The first derivatives wx(x,y) and wy(x,y) correspond

to tangents of angles between the deflection slopes and the corresponding axes

at the points where the derivatives are calculated. The second order derivatives

Fig. 10.26 Occurrence of

Hopf bifurcations (1, yes;

2, no)
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Table 10.6 Various indicators of the analysed shell dynamics
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wxx(x,y), wyy(x,y) and wxy(x,y) correspond to the curvatures of the deflection func-

tions at the points where the derivatives are calculated. If they are multiplied by

the corresponding constants and summed up, then the bending and torsion moments

are obtained. Therefore, on analyzing those characteristics in time one can conclude

about a spatial change of a plate surface. We refer further to them as the characteris-

tics of “modal portraits” while solving problems of plates using the method of finite

differences. In a phase portrait the dependence between a deflection and its velocity

is reported for each time moment, whereas in a modal portrait we have a relation

between deflection and a tangent of its slope to the corresponding coordinate axis in

a plane. If we consider the phase portraits in space, then for each time moment we

get a dependence between deflection, velocity and acceleration. If we consider the

modal portraits in space then each plate point gives information about deflection,

tangents of its slope and curvatures. As a result we can get all required information

about the character of deflection of the plate surface (see also [36] for application of

modal portraits).

Note that in Table 10.6 k defines the number of bifurcations.

The detected scenario follows:

1. The second bifurcation yields period doubling and occurrence of two points in

the Poincaré map. A modal portrait also exhibits two orbits.

2. The third bifurcation yields tripling of the phase portrait trajectories, and each of

the previous two points of the Poincaré section bifurcates into three points. In the

modal portrait interlacing of trajectories takes place.

3. The fourth bifurcation yields matching of the trajectories in the phase portrait. In

the Poincaré section each of the three points splits into two points. In the modal

portrait an arc is observed, and with an increase of the scale two loops are formed,

each consisting of two curves.

4. The fifth bifurcation gives rise to a fractal structure in the Poincaré section,

i.e., two arcs appear. In the modal portrait trajectories in each of two fundamental

orbits are matched.

5. After six bifurcations have occurred, the fractal structure collapses into a few

analogous ones. The modal portrait consists of six orbits.

Therefore, the behavior of our mechanical system can be traced with respect to

both power spectrum and modal portraits, which means that in order to study the

spatial chaos one has to apply an analysis in the modal plane.

As a result of the study, also the value of Feigenbaum constant is obtained.

Note that the obtained value differs from its theoretical prediction only by 0.14%

(Table 10.7).

Table 10.7 The Feigenbaum scenario

n 2. 3. 4. 5. 6.

q0,n 0.45605 0.5663 0.58527 0.589 0.5898

dn - 5.811808. . . 5.085791. . . 4.6625. . . -
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10.5.7 The Ruelle-Takens-Feigenbaum Scenarios

As already mentioned, in various zones of the chart of control parameters {q0,ωp}
different scenarios of the transition of our mechanical system into chaotic state are

found. For example, the Ruelle-Takens scenario for the cylindrical shell for λ =
L
R

= 2 has been found. It is worth noting, however, that the detected scenario is

not in full agreement with the classical one proposed by Ruelle and Takens. This

is rather the so-called modified Ruelle-Takens scenario. Namely, as in the classical

Ruelle-Takens scenario, one observes here initially the independent frequency ω1,

and then formation of two-dimensional orbits with two independent frequencies.

An increase of q0 and fixing of ωp results in a sequence of soft Hopf bifurcations,

i.e., the Feigenbaum process is observed and the system dynamics is transmitted

into chaos with the excitation frequency ωp. Note that in this case the novel type of

transition into chaos is illustrated owing to the combined scenarios of Ruelle-Takens

[262] and Feigenbaum [92], which are further referred to as the Ruelle-Takens-

Feigenbaum scenario (Table 10.8).

The occurrence of each of the successive Hopf bifurcations in a two-dimensional

orbit induces essential changes only in the Poincaré section. Note that both modal

and phase portraits remain almost the same when a new Hopf bifurcation appears.

In the Poincaré section a successive doubling of points is observed.

To conclude this section, the series of Hopf bifurcations on the two dimensional

orbit has been detected and the Feigenbaum constant has been found (d = 4.6685),
which differs from its theoretical value by 0.01%.

Table 10.8 Dynamics indicators
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10.6 Conclusions

We have presented both a novel approach to study bifurcation and chaos exhibited

by vibrated flexible cylindrical shells as well as some new results associated with

stability, bifurcation, and chaos of the analyzed shells.

Particular attention has been paid to verification of the result reliability while us-

ing a higher order Bubnov-Galerkin approach and Fourier representation (Sects. 10.4

and 10.5).

Dynamic stability loss of cylindrical shells is widely described with emphasis

on associated and not appropriately solved so far problems related to this important

question for both pure and applied scientists.

In the case of investigation of closed cylindrical shells subjected to transversal

sinusoidal loading it has been found that the character of the investigated shell vi-

brations depends essentially on loading angle ϕ0. For small values of ϕ0 the total

surface of chaos is high, whereas an increase of loading of the cylindrical shell

yields a decrease of the space of chaos which is shifted into low and averaged

frequencies. For a large surface of external pressure the chaotic areas are concen-

trated on the whole chart, but the largest part is located in the vicinity of ωp < ω0.

The corresponding total surface of the chaotic zone is essentially high. Also the

areas associated with Hopf bifurcations located in the vicinity of ωp > ω0 are rela-

tively high.

Both local and global stability losses of the investigated shells have been illus-

trated using numerous figures and tables, and discussed. It has been shown, among

others, that stiff stability loss is associated with occurrence of the first Andronov-

Hopf bifurcation and transition into vibrations with the frequency
ω0
2

, which can be

either harmonic or chaotic. New scenarios of the transition of our shell vibrations

from harmonic to chaotic ones have been detected and illustrated.



Chapter 11

Controlling Time-Spatial Chaos

of Cylindrical Shells

In this chapter an analysis of controlling the chaos occurring in closed cylindrical

shells is presented. The process of controlling chaos is understood as the transfor-

mation of chaotic dynamics into regular, or the other way around, but of different

characteristics with the use of small external periodic input functions and by the

influence of a transverse load applied in antiphase.

11.1 Introduction

Chaotic vibrations are connected with the occurrence of disordered movements in

highly nonlinear physical systems. Such movements were already observed in me-

chanics of fluids, but have also been recently found in the mechanics of plates and

shells [21, 25, 31, 46, 170]. The problems of the existence and uniqueness of the

solutions for Timoshenko shells were analyzed.

A mathematical model of cylindrical shells was constructed on the basis of

Kirchhoff-Love kinematic model with a nonlinear relation between deflection and

dislocations taken into account. The problem is reduced to the analysis of partial

differential equations in relation to the functions of stress and strain. In order to

reduce the continuous system to a discrete one, the Bubnov-Galerkin method with

higher approximations was used, which allows one to consider a cylindrical shell as

a mechanical system with an infinite number of degrees of freedom. The obtained

system of ordinary differential equations is solved with the use of the Runge-Kutta

method of the order of four, and the system of algebraic equations is solved with the

use of one of many numerical procedures available.

Controlling chaos was the subject of works that mostly referred to simple spatial

systems modeled by the chains of mappings. The first remarks about chaos con-

trol appeared in studies Jackson of [126, 127] and Otto et al. [236]. In the review

work [271] are found references to even earlier sources. The problems of controlling

chaos were studied in hydrodynamics [272], chemistry [244], biology, and medicine

[266]. This chapter presents ways of controlling chaos in such complex objects as

cylindrical shells under a nonuniform external load.

J. Awrejcewicz, V.A. Krysko, Chaos in Structural Mechanics, 271

DOI: 10.1007/978-3-540-77676-5 12, c© Springer-Verlag Berlin Heidelberg 2008



272 11 Controlling Time-Spatial Chaos of Cylindrical Shells

11.2 Mathematical Model

Within a classical nonlinear theory of shells, we shall consider a closed cylindrical

shell with a circular intersection and finite length and constant rigidity and density

under nonuniform and variable load.

We shall introduce the coordinate system in the following way: axis x is directed

along the length of a surface, axis y is directed along the circular coordinate, and

axis z is directed along the perpendicular of its central surface (see Fig. 10.1).

A cylindrical shell as a three-dimensional object Ω in a given coordinate system

is characterized in the following way: Ω = {x,y,z|(xy)∈ [0; l]× [0;2π], −h≤ z≤ h}.

The following form of the equations of the theory of shells are the basis for further

analysis [315]:

1

12(1−µ2)

(

∇4w
)

− ky

∂ 2F

∂x2
−L(w,F)− ∂ 2w

∂ t2
− ε

∂w

∂ t

+ k2
y q(x,y, t)− px(x,y, t)

∂ 2w

∂x2
= 0,

∇4F + ky

∂ 2w

∂x2
+

1

2
L(w,w) = 0 , (11.1)

where L(w, F) is a known nonlinear operator.

The system (11.1) has been reduced to a non-dimensional form with the use of

known nondimensional parameters. In Eq. (11.1) µ denotes Poisson coefficient, ε is

the damping coefficient, λ = L/R where L and R = Ry denote the length and radius

of a circular cylindrical shell, ky = 1/Ry is the curvature of a shell in relation to

coordinate y, and q(x,y, t) denotes the external load.

The boundary conditions have the following form:

w =
∂ 2w

∂x2
= 0; F =

∂ 2F

∂x2
= 0 for x = 0,1,

w =
∂ 2w

∂y2
= 0; F =

∂ 2F

∂y2
= 0 for y = 0,2π, (11.2)

and the initial values follow:

w(x,y)|t=0 = 0, for w|t=0 = 0. (11.3)

Let us consider our dissipative system under an external transverse load applied

in the sector of surface characterized by angle 0 ≤ ϕ ≤ ϕ0, 0 ≤ x ≤ 1 and har-

monically changing q(t) = q0 sin (ωpt), where q0 and ωp are, respectively, the

amplitude and frequency of the exciting force. Moreover, the following was as-

sumed: µ = 0.3, ε = 9, λ = L/R = 2.
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11.3 Bubnov-Galerkin Method and Fourier Transformation

Let us analyze the dynamics of a closed cylindrical shell freely supported along the

curved side with uniform boundary conditions (11.2) and initial conditions (11.3).

We are looking for the solutions of Eq. (11.1) in the form of a product of two func-

tions in relation to spatial coordinates, each of which depends on one argument only,

and the Eq. (11.2) are satisfied. Test functions have the following form here:

ϕi j(x,y) = sin(iπx)cos( jy). (11.4)

The solution is based on such test functions that are energetically normalized,

i.e., such that

(∇4(ϕi j),ϕnm) =

{

0, for i, j �= n,m,

1, for i, j = n,m,
(11.5)

and then

w =
Mx

∑
i=1

My

∑
j=0

Ai j(t)sin(iπx)cos( jy),

F =
Mx

∑
i=1

My

∑
j=0

Bi j(t)sin(iπx)cos( jy). (11.6)

After the application of Bubnov-Galerkin method with higher approximations,

we obtain a system of linear algebraic equations in relation to coefficients (that can

be solved by inversion of the matrix) and the system of differential equations of the

order of two in relation to coefficients, which is later reduced to an ordinary form

and solved with the use of the Runge-Kutta method of the order of four:

Ki jBi j = F1(Ai j), (11.7)
{

dAi j

dt
= Xi j,

dXi j

dt
+ εXi j = F2(Ai j,Bi j, t), i = 1,Mx, j = 0,My,

(11.8)

where Ki j in (11.7) is the matrix of coefficients of the system of algebraic equa-

tions in relation to unknown Bi j, F1(Ai j) is the column of elements depending on

parameters Ai j, (11.8) is an ordinary system of differential equations of the order of

1 in relation to unknown Ai j and Xi j. Step in time is selected from the condition of

maintaining the stability of solution (Δt = 1.9531 ·10−3).
The convergence of the Bubnov-Galerkin method was tested earlier in relation to

the number of elements of series (11.6).

As the load is applied along the whole length of a cylindrical shell, the number

of elements of a series in relation to coordinate x is not very significant and in (11.6)

only one element (Mx = 1) was assumed. During numerical tests it occurred that the
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optimal number of elements in series (11.6) along the circular coordinate is My = 15

(more details related to the convergence of this method are given in [169]).

It is important to note that in the case of a stationary problem, the numerical

results obtained in this chapter are fully convergent with the results obtained in

[11], which confirms the feasibility of the Bubnov-Galerkin method with higher

approximations [169].

11.4 Control of Chaos

The process of control of chaos is understood as the transformation of chaotic

dynamics into a regular motion or other chaotic manifold with the use of small lon-

gitudinal periodic input functions with the form of px(x, t) = p0(x)sin(ωp, t), used

on purpose, as well as by the influence of a transverse input function in antiphase.

In our case, steering of chaotic vibrations in a cylindrical shell involved steering

a set {q0, ωp} with the application of a load distributed along the surface of a

shell, in accordance with the equation q(x,y, t) = q0(x,y)sin(ωpt), where q0(x,y)
is an exciting force depending on coordinates (x,y) and ωp is the frequency of this

exciting force.

The analysis is conducted by monitoring phase portraits of spectral power fre-

quency, the spectrum of Lyapunov exponents, and Poincaré maps. This allows for

finding and analyzing multi-frequency and chaotic structures of vibrations, and the

analysis of the mechanism of transition between different vibration regimes and

steering them.

Let us analyze the case of input function with a transverse harmonic force in

antiphase, i.e., q(x,y, t) = q0(x,y)sin(ωpt +2π), where q0(x,y) = const (Fig. 10.1).

The classification of vibrations will be made on the basis of the relation between

wmax(q0) and wmax,1(q0) for two cases of load distribution:

(i) Load influences one area characterized by angle ϕ0 = 180◦;

(ii) Load is applied on two areas, each of which has the width of angle ϕ0,1 = ϕ0,2 =
90◦.

Above, wmax(q0) denotes maximum deflections in relation to amplitude q0 for the

case of q(x,y, t) = q0(x,y)sin(ωpt), and wmax,1(q0) denote maximum deflections in

relation to amplitude q0 for the case of q(x,y, t) = q0(x,y)sin(ωpt +2π).
Let us note that the character of the relation between wmax(q0) and wmax,1(q0) in

both studied cases depends significantly on antiphase, but for the small amplitude

of exciting force (q0 ≤ 0.4 for ϕ0,1 = ϕ0,2 = 90◦ and q0 ≤ 0.52 for ϕ0 = 180◦)

maximum deflections overlap.

To sum up, changing the character of a load enables steering the vibrations of

shells, and it offers the possibility of a significant increase of the area of the occur-

rence of harmonic vibrations.

By applying the influence of a transverse load in antiphase, the possibility oc-

curred of increasing a critical load for which rigid stability loss occurs, and the

value of over-critical deflection was significantly reduced (Table 11.1; ϕ0 = 180◦).
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Table 11.1 Shell load and load values

External load wsubcr q0
cr wpostcr

q(x,y, t) = q0(x,y)sin(ωpt) 1.2671 0.384 12.963

q(x,y, t) = q0(x,y)sin(ωpt +2π) 1.2887 0.415 3.4796

Let us analyze the scale of vibration character distribution for wmax(q0) and

wmax,1(q0) (Fig. 11.1). The identification of the type of vibration of a cylindrical

shell in the process of constructing the aforementioned scales {q0, w0} for every

time course w(t) was conducted with the use of the analysis of power spectrum

S(ω) and Lyapunov exponents. The notation assumed is given in Fig. 11.1. Chaotic

vibrations will be understood as the occurrence of a series of disordered movements

in deterministic systems.

It can be observed that the application of a load in antiphase significantly in-

fluences the type of vibrations of a cylindrical shell, which corresponds with large

values of the amplitude of external input function q0. Research has shown that the

application of a load in antiphase can be treated as an effective way of steering the

chaotic motion.

Fig. 11.1 Relation between wmax(q0) and wmax,1(q0) and the scales of character of vibration
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Our next step will be the analysis of simultaneous harmonic input function

q(x,y, t) = q0 sin(ωpt) and longitudinal harmonic input function px(x, t) =
p0(x)sin(ωpt), where ωp = ω0 is the frequency of linear vibrations of a cylindri-

cal shell.

Fig. 11.2 shows the relations wmax(q0) for the set values of p0.

The analysis of the scales of character of vibrations proves that the application

of a longitudinal load leads to the change of the character of vibrations of a me-

chanical system. Both the transition from chaotic to harmonic (or to the creation

of Andronov-Hopf bifurcations) and from harmonic to chaotic vibration has been

observed.

In this way, for certain load values, we can either lead the system out of chaos,

or cause the occurrence of chaos.

Let us now establish the amplitude of transverse load on the value of q0 = 0.71

(intermittent on the plane of the character of vibrations, Fig. 11.4a). For lack of

longitudinal vibrations, the mechanical system is (for such a value of q0) in the

regime of chaotic vibrations. Here, we will in addition force our cylindrical shell

longitudinally.

Fig. 11.3 presents relation wmax(p0). The analysis of both this relation and of

the scale of vibration character leads us to the conclusion that the analyzed me-

chanical system represented by point {q0, w0} = {0.71, ωp} has left the state of

chaotic vibration and transformed to harmonic vibration with mild Andronov-Hopf

bifurcations.

Let us now discuss the influence of a longitudinal harmonic load with the fre-

quency from the set of {ω0 −ω0/2, ω0 +ω/2} (Fig. 11.4a,b). For further analysis,

Fig. 11.2 Relations wmax(q0) and vibration character scales
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Fig. 11.3 Relation wmax(q0) and a vibration character scale

flat images of the character of vibrations have been constructed for the set of con-

trol parameters {q0, ωp}, where q0 changes within the range of [0.32, 0.8], and the

frequency of exciting force within ωp ∈ [ω0 −ω0/2, ω0 +ω0/2].
It can be observed that a general image of dynamics is maintained also for the

simultaneous influence of transverse and longitudinal load, i.e., we observe the

existence of a relatively large area of harmonic vibrations on all frequencies of in-

put function (q0 ≤ 0.47 under transverse load only and q0 ≤ 0.52 for simultaneous

influence of transverse and longitudinal load), and then small “spots” appear that

consist of the areas of Andronov-Hopf bifurcations, the areas of vibrations with two

incommensurable frequencies, and the areas of chaos.

It can be easily observed that such phenomena resulting from the influence of

longitudinal load occur for a larger amplitude of external transverse input func-

tions. A significant reduction of the areas of mild bifurcations was also noticed in

Fig. 11.4 Control parameter planes {q0, w0}: (a) the influence of a transverse load q = q0 sin(ωpt);
(b) the influence of a transverse q = q0 sin (ωpt) and longitudinal load p = 20sin(ω0t)
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the regime of chaotic vibrations. The points corresponding to the vibration with

two frequencies (see the first control curve), however, transformed into the area of

chaotic vibration after the application of a longitudinal load.

Eventually, we can conclude that the combination of longitudinal and transverse

input functions leads to a change of the character of vibrations of a mechanical

system in the range of all the analyzed frequencies, and the change may take place

both in the direction from chaotic vibration and from periodic to chaotic. In other

words, for some parameters of input functions we have chaos, and for other ones,

regular motion.

Let us now consider the behavior of the system in space. Therefore, we shall

trace the influence of transverse load on various degrees of loading on the behav-

ior of a shell for changes of x and y in the ranges x = 0.5, 0 ≤ y ≤ 2π . Table 11.2

presents such wavy shapes and the corresponding transverse intersections of a cylin-

drical shell.

Together with the increase of the amplitude of longitudinal input function p0 the

number of wave halves does not change and it is 7 (p0 ≤ 5.0), but a dislocation of

maximum deflections takes place.

For such small values of p0 = 0.05, maximum deflections are concentrated within

the area of application of transverse load, and then together with a small increase of

Table 11.2 Shapes of a deflected cylindrical shell
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the amplitude of longitudinal input function p0 maximum values also change to the

areas around the transverse load.

Then, for a certain control value p0 = 7.0 the number of wave halves created

along the circular coordinate is reduced to 5, and significant changes take place

only in the area beyond the point of application of the transverse load, and within

this area the number of wave halves and the character of vibration do not change.

The image of spatial dynamics of a cylindrical shell described in this way remains

the same up to the value of p0 = 50. For such a critical longitudinal load, the number

of wave halves suddenly increases to the value of 12 and their distribution becomes

asymmetrical in relation to the curve of transverse load application.

The above consideration leads to the conclusion that one of the effective ways of

steering time-spatial chaos in mechanical systems represented by closed cylindrical

shells is purposeful application of small longitudinal periodic input functions.

Qualitative change of chaotic dynamics of cylindrical shells can be realized with

the use of small periodic steering input functions. As the regime of chaotic vibra-

tions includes a countable set of regular unstable states, the possibility of realization

of various regimes of the work of a mechanical system increases in an unlim-

ited way.

The approach described here is connected with the problem of controllable syn-

chronization. This enables the determination and isolation of chaotic subsets with

the use of the procedure mentioned, as well as to transform synchronic motion of

identical systems into stable motion along some selected directions, and into a non-

stable one along other directions. In this way it is possible to realize the transition

from asynchronic chaotic vibration to the regime of full chaos synchronization.

11.4.1 Conclusions

The chapter has presented the method of controlling the time-spatial chaos of a

cylindrical shell by transforming chaotic dynamics of a system into regular dynam-

ics with other topological characteristics with the purposeful use of periodic input

functions as well as transverse load in antiphase.

A longitudinal input function leads to the change of vibration character of the

analyzed mechanical system, and these can be connected with the transition from

chaotic to periodic vibration (or to the occurrence of Andronov-Hopf bifurcations),

or the other way around, i.e., with the transition from periodic to chaotic vibration.

It is possible to lead the system out of one state of chaos and at the same time

into a topologically different state of chaos. In the latter case, we managed to reduce

critical loads for the analyzed shell and reduce the state of over-critical deflection,

as well as to reduce the areas of chaotic vibrations by leading them into a periodic

regime of system vibrations.
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Chaotic Vibrations of Flexible

Rectangular Shells

In this chapter, chaotic vibrations of flexible rectangular shells forced by transversal

harmonic load are analyzed. The study is conducted with the application of the

qualitative theory of differential equations and nonlinear dynamics. An infinitely

dimensional problem is reduced to a finitely dimensional one with the application

of the Bubnov-Galerkin method with higher approximations and the method of finite

differences with approximation O(Δ2). An initial problem has been solved with the

use of the fourth-order Runge-Kutta method. It has been shown that within the range

of harmonic vibrations, the results obtained from both methods are fully convergent,

whereas in the range of chaos such convergence can be obtained only in relation to

the character of vibrations, i.e., in relation to the frequency spectrum. The increase in

the number of element partitions in the method of finite differences and the number

of approximations in the Bubnov-Galerkin method leads to better results, but there

is some threshold value beyond which further calculations are impossible.

12.1 Fundamental Equations

Within a classical theory of nonlinear equations, we shall analyze a rectangular

spherical shell (Fig. 12.1) with constant stiffness and density and harmonically

forced. In an assumed system of rectangular coordinates, a three-dimensional area

fulfilled with a shell has the following form:

Ω = {x1,x2,x3|(x1,x2) ∈ [0;a]× [0;b], x3 ∈ [−h;h]} 0 ≤ t < ∞.

We shall assume the following non-dimensional form of equations of the theory of

shallow shells as the basis for further research [21]:

1

12(1−µ2)

(

1

λ2

∂ 4w

∂x4
1

+λ2 ∂ 4w

∂x4
2

+2
∂ 4w

∂x2
1∂x2

2

)

− kx2

∂ 2F

∂x2
1

− kx1

∂ 2F

∂x2
2

− L(w,F)− ∂ 2w

∂ t2
− ε

∂w

∂ t
−q(x1,x2, t) = 0,
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Fig. 12.1 Scheme of the

spherical rectangular shell

under analysis

1

λ2

∂ 4F

∂x4
1

+λ2 ∂ 4F

∂x4
2

+2
∂ 4F

∂x2
1∂x2

2

+ kx2

∂ 2w

∂x2
1

+ kx1

∂ 2w

∂x2
2

+
1

2
L(w,w) = 0, (12.1)

where

L(w,F) =
∂ 2w

∂x2
1

∂ 2F

∂x2
2

+
∂ 2w

∂x2
2

∂ 2F

∂x2
1

−2
∂ 2w

∂x1∂x2

∂ 2F

∂x1∂x2

is a known nonlinear operator.

System (12.1) has been reduced to a non-dimensional form with the use of

the following nondimensional parameters. Parameters: λ = a/b; x1 = ax̄1, x1 =
ax̄2; kx1

= a2/Rx1
h, kx2

= b2/Rx2
h denote the curvatures of a shell with relation to,

respectively, x1 and x2, w = 2hw̄ is the deflection; F = E(2h)3F̄ is the function of

strains; t = t0t̄ is time; q = E(2h)4

a2b2 q̄ is the external load; ε = (2h)ε̄ is the coefficient

of damping.

The bars over nondimensional values have been omitted in the equations. The fol-

lowing denotation has also been introduced: a,b are shell dimensions, respectively

toward coordinates x1 and x2; µ is the Poisson coefficient.

We shall attach the following boundary conditions to Eqs. (12.1):

1. Support on a flexible incompressible ribs

w = 0;
∂ 2w

∂x2
1

= 0; F = 0;
∂ 2F

∂x2
1

= 0 for x1 = 0,1;

w = 0;
∂ 2w

∂x2
2

= 0; F = 0;
∂ 2F

∂x2
2

= 0 for x2 = 0,1. (12.2)

2. Edge clamping

w = 0;
∂w

∂x1
= 0; F = 0;

∂ 2F

∂x2
1

= 0 for x1 = 0,1;

w = 0;
∂w

∂x2
= 0; F = 0;

∂ 2F

∂x2
2

= 0 for x2 = 0,1. (12.3)
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3. Free edge support

w = 0;
∂ 2w

∂x2
1

= 0; F = 0;
∂F

∂x1
= 0 for x1 = 0,1;

w = 0;
∂ 2w

∂x2
2

= 0; F = 0;
∂F

∂x2
= 0 for x2 = 0,1. (12.4)

4. Clamping with respect to flexible incompressible ribs:

w = 0;
∂w

∂x1
= 0; F = 0;

∂ 2F

∂x2
1

= 0 for x1 = 0,1;

w = 0;
∂w

∂x2
= 0; F = 0;

∂ 2F

∂x2
2

= 0 for x2 = 0,1. (12.5)

The initial conditions follow:

w(x1,x2)|t=0 = ϕ1(x1,x2),
∂w

∂ t
= ϕ2(x1,x2). (12.6)

We shall still consider a case of the application of a transverse harmonic load

q(t) = q0 sin(ωpt), where ωp is the frequency of exciting force and q0 is the

amplitude of exciting force, and we will search for the solution to differential equa-

tions (12.1)–(12.6) with the application of the Bubnov-Galerkin method with higher

approximations and the method of finite differences with a different partition of spa-

tial coordinates. Our aim is to find, with the use of these computational methods, the

so-called “real” chaos.

12.2 Bubnov-Galerkin Method with Higher Approximations

We approximate the functions sought, the solutions to Eqs. (12.1), with the use of

expressions with a finite number of random parameters, and we shall present them as

the product of two functions satisfying one of the boundary conditions (12.2)–(12.5)

in the following form:

w =
N

∑
i=1

N

∑
j=1

Ai j(t)ϕi j(x1,x2),,

F =
N

∑
i=1

N

∑
j=1

Bi j(t)ψi j(x1,x2). (12.7)

This solution is based on test functions that are energetically orthonormal-

ized, i.e.:
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(∇4(ϕi j),ϕnm) =

{

0, for i, j �= n,m,

1, for i, j = n,m.
(12.8)

We shall choose such coordinates of system {ϕi j(x1,x2), ψi j(x1, x2)} that func-

tions ϕi j(x1, x2), ψi j(x1, x2) for ∀i, j are linearly independent, continuous together

with their first derivatives up to the order of four within the range of Ω, and that

ϕi j(x1, x2), ψi j(x1, x2) satisfy one of the respective boundary conditions (12.2)–

(12.5). In addition, ϕi j(x1, x2), ψi j(x1, x2) are supposed to be complete.

For convenience, we shall denote the left sides of the equations of system (12.1)

respectively by Φ1 and Φ2:

Φ1

(

w,F,
∂ 2w

∂x2
1

,
∂ 2F

∂x2
1

, . . .

)

+q(x1,x2, t) = 0,

Φ2(w,F,
∂ 2w

∂x2
1

,
∂ 2F

∂x2
1

, . . .) = 0. (12.9)

By applying the Bubnov-Galerkin procedure in system (12.9), we obtain:

1
∫

0

1
∫

0

Φ1ϕkl(x1,x2)dx1 dx2+

1
∫

0

1
∫

0

q(x1,x2, t)ϕkl(x1,x2)dx1 dx2 = 0,

1
∫

0

1
∫

1

Φ2ψkl(x1,x2)dx1dx2 = 0, k = 1,2, . . . ,N, l = 1,2, . . .N (12.10)

Taking (12.10) into account Eq. (12.9), we obtain

∑
kl

[

∑
i j

Ai jI1,kli j−∑
i j

Bi jI2,kli j +∑
i j

qI3,kli j −∑
i j

Ai j ∑
rd

BrsI4,kli jrs

−∑
i j

[

d2Ai j

dt2
+ ε

dAi j

dt

]

I8,kli j

]

= 0,

∑
kl

[

∑
i j

Ai jI7,kli j +∑
i j

Bi jI5,kli j −∑
i j

Ai j ∑
rs

ArsI6,kli jrs

]

= 0,

k, i,r = 1,2, . . . ,N, l, j,s = 1,2, . . . ,N. (12.11)

In the preceding equations, ∑
kl

[∗] before all the equations of system (12.11) means

that each equation is for us a complex system with kl of this type of equation, and

integrals from the Bubnov-Galerkin method have the following form:

I1,kli j =

1
∫

0

1
∫

0

1

12(1−µ2)

[

1

λ2

∂ 2ϕi j

∂x2
1

∂ 2ϕkl

∂x2
1

+λ2 ∂ 2ϕi j

∂x2
2

∂ 2ϕkl

∂x2
2

+ 2
∂ 2ϕi j

∂x1∂x2

∂ 2ϕkl

∂x1∂x2

]

ψkldx1 dx2,
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I2,kli j =

1
∫

0

1
∫

0

[

−kx2

∂ 2ψi j

∂x2
1

− kx1

∂ 2ψi j

∂x2
2

]

ϕkldx1 dx2,

I3,kli j =

1
∫

0

1
∫

0

ϕklq(x,y, t)dx1 dx2,

I4,klirs j =

1
∫

0

1
∫

0

L(ϕi j,ψrs)ϕkldx1 dx2,

I5,kli j =

1
∫

0

1
∫

0

[

1

λ2

∂ 2ψi j

∂x2
1

∂ 2ψkl

∂x2
1

+λ2 ∂ 2ψi j

∂x2
2

∂ 2ψkl

∂x2
2

+ 2
∂ 2ψi j

∂x1∂x2

∂ 2ψkl

∂x1∂x2

]

ϕkldx1 dx2,

I6,kli jrs =

1
∫

0

1
∫

0

1

2
L(ϕi j,ϕrs)ψkldx1 dx2,

I7,kli j =

1
∫

0

1
∫

0

[

−kx2

∂ 2ϕi j

∂x2
1

− kx1

∂ 2ϕi j

∂x2
2

]

ψkldx1 dx2,

I8,kli j =

1
∫

0

1
∫

0

ϕi jψkldx1 dx2. (12.12)

Integrals (12.12), apart from I3,kli j in some cases, i.e., when the transverse load

is not applied to the whole surface of a shell, are calculated along the whole central

surface of a shell.

After applying Bubnov-Galerkin method, with respect to higher approximations

describing spatial coordinates, we obtain a system of algebraic linear equations with

respect to coefficients Bi j, that is solved by reversing the matrix, and the system of

differential equations of the order of four with respect to coefficients Ai j, that is

later reduced to a normal form and solved with the use of fourth-order Runge-Kutta

method:

Ki jBi j = F1(Ai j), (12.13)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dAi j

dt
= Xi j,

dXi j

dt
+ εXi j = F2(Ai j,Bi j, t), i = 1,Mx, j = 0,My,

(12.14)
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where Ki j in (12.13) is the matrix of coefficients of a linear algebraic system with

respect to unknown parameters Bi j, F1(Ai j) is a column of elements depending on

parameters Ai j, and (12.14) is a normal system of differential equations of the order

of four with respect to Ai j and Xi j. The step of integration in time is selected from

the condition of maintaining the stability of the solution.

As an example, we shall analyze a spherical rectangular shell with uniform

boundary conditions (12.2) and zero initial conditions (12.6) ϕ1(x1,x2) = 0,
ϕ2(x1, x2) = 0. Functions ϕi j,ψi j in Eq. (12.7) will be presented as a product of

two functions, each of which depends on one argument only (such functions should

satisfy boundary conditions (12.2)):

w =
N

∑
i=1

N

∑
j=1

Ai j(t)sin(iπx1)sin( jπx2),

F =
N

∑
i=1

N

∑
j=1

Bi j(t)sin(iπx1)sin( jπx2). (12.15)

Let us analyze numerically the convergence of the Runge-Kutta method in rela-

tion to N in Eq. (12.15) or flexible rectangular shell within the range of harmonic

vibrations and within the area of chaos. Let us analyze point {q0,ωp} = {5,25},

situated in the area of harmonic vibrations (Fig. 12.2).

For all values of N we observe one-frequency harmonic vibrations that for small

values of N have small vibration amplitudes that are similar to one another.

Fig. 12.2 Dependence of w(t) for different approximations of the Bubnov-Galerkin method in the

range of harmonic vibrations
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With larger number of approximations N = 11,13,15 we obtain the consistency

of results also with respect to an amplitude, i.e., time histories fully overlap.

Further, we shall analyze the convergence of the Bubnov-Galerkin method in the

range of chaotic vibrations. Let us analyze point {q0,w0}= {151.8,ω0}. After more

detailed analysis, we can see that the convergence of vibrations in the area of chaotic

vibrations is much worse than in the area of harmonic vibrations.

Table 12.1 presents the following characteristics: N is the number of elements

of the order of (12.15), time history w(0.5, 0.5, t) in the central point of a spheri-

cal shell, phase portrait w(w′), frequency spectrum S(ω), Poincaré map wt(wt+T ),
where T = 2π/ωp is the period of an excitation force.

The analyzed problem is significantly different from the Lorenz problem. For

N = 1,3 periodic vibrations are observed, as well as unirotational cycle in a phase

portrait, whereas the Poincaré map consists of one point. For N = 5 the system

transforms into the state of chaos with a dominant frequency of an exciting force,

and the Poincaré intersection describes a chaotic set of points. For N = 7 we deal

with periodic vibrations again, there is a point in Poincaré map, and a phase portrait

presents a unirotational cycle. Apart from that, we can see that time courses N = 3, 7

practically overlap, but they differ with respect to the amplitude from a time course

for N = 1. All three courses are harmonically characterized by the frequency of

an exciting force, whereas a signal is chaotic for N = 5. Such a process can be

described the transition from harmonic motion to chaotic vibrations, as further for

N = 9, 11, 13, 15 we can observe chaotic vibrations in time course and in frequency

spectrum, i.e., the convergence starts only for N ≥ 9.

Figure 12.3 shows time history w(0.5, 0.5, t) for t ∈ [40; 41] and for various

elements of series (12.15) in the area of chaos (see scales of the character of vibra-

tions in Fig. 12.4). On the other hand, convergence of w(0, 5, 0.5, t) vs. is reported

in Fig. 12.5.

We do not observe chaos during the analysis of time course of convergence,

which implies checking the possibility of convergence in an average sense, i.e., in

relation to a frequency spectrum. Therefore, we shall analyze a frequency spectrum

and Poincaré map for different values of N in (12.15) and for point q0 = 151.8,
ωp = ω0.

Let check the relations of wmax(q0) for these approximations of the Bubnov-

Galerkin method for which convergence with respect to the average spectrum in an

average sense has been detected (Fig. 12.4). Apart from monitoring the relations of

wmax(q0) we shall also observe the scales of the character of vibrations in relation

to control parameters {q0,ωp}, where ωp is the frequency of excitement.

Identification of the type of vibrations of a spherical rectangular shell on the basis

of construction of the scales of character of vibrations {q0,ωp} for each time course

w(t) has been conducted by the analysis of frequency spectrum S(ω) of Lyapunov

exponents, and the denotation applied is presented in Fig. 12.4.

At this point, let us emphasize that full convergence of the Bubnov-Galerkin

method could not be achieved in relation to time courses, but the convergence in an

average sense in relation to frequency spectrum has been achieved.
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Table 12.1 Shell dynamics characteristics

12.3 Method of Finite Differences

Let us now analyze the possibility of application of some other method, namely

the method of finite differences with approximation O(Δ2) in relation to spatial

coordinates x1 and x2. In this case, after applying it in continuous system (12.1)–

(12.5) we obtain a discrete system that has the following operational form
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Fig. 12.3 Convergence of the Bubnov-Galerkin method in relation to time history w(0.5, 0.5, t)
in the range of chaos

− 1

12(1−ν2)

(

λ−2Λ2
1wi j +2Λ2

12wi j +λ2Λ2
2wi j

)

−KxΛ2Fi j −KyΛ1Fi j

−Λ1wi j ·Λ2Fi j −Λ2wi j ·Λ1Fi j +Λ12wi j ·Λ12Fi j +qi = (wtt + εwt)i, j
(

λ−2Λ2
1Fi j +2Λ2

12Fi j +λ2Λ2
2Fi j

)

= −KxΛ2wi j −KyΛ1wi j −Λ1wi j ·Λ2wi j +(Λ12wi j)
2 ,

Fig. 12.4 Dependence wmax(q0) for various values of N
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Fig. 12.5 w(t) and S,db(ωp) in the area of periodic vibrations in relation to N

where

Λiy =
1

h2
i

[y(xi −hi)−2 · y(xi)+ y(xi +hi)] , i = 1,2,

Λ12y =
1

4h1h2
[y(x1 +h1,x2 +h2)+ y(x1 −h1,x2 −h2)

− (x1 +h1,x2 −h2)− (x1 −h1,x2 +h2)],

Λ2
i y =

1

h4
i

[y(xi −2hi)−4y(xi −hi)+6y(xi)

−4y(xi +hi)+ y(xi +2hi)], i = 1,2,

Λ2
12y =

1

h2
1h2

2

[y(x1 −h1,x2 −h2)−2y(x1 −h1,x2)+ y(x1 −h1,x2 −h2)

−2(x1,x2 −h2)+4y(x1,x2)−2y(x1,x2 +h2)

+ y(x1 +h1,x2 −h2)−2(x1 +h1,x2)+ y(x1 +h1,x2 +h2)]

Λ2
12y =

1

h2
1h2

2

[y(x1 −h1,x2 −h2)−2y(x1 −h1,x2)+ y(x1 −h1,x2 −h2)

−2(x1,x2 −h2)+4y(x1,x2)−2y(x1,x2 +h2)

+ y(x1 +h1,x2 −h2)−2(x1 +h1,x2)+ y(x1 +h1,x2 +h2)] . (12.16)
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We must attach the following initial and boundary conditions to Eqs. (12.16):

wi j = f1(rk,θk), w′
n = f2(rk,θk), (0 ≤ k ≤ n), 0 ≤ t ≤ ∞,

wN, j = 0, Λ1wN, j = 0, FN, j = 0, Λ1FN, j = 0, j = 1, ¯M−1,

wi,M = 0, Λ1wi,M = 0, Fi,M = 0, Λ1Fi,M = 0, i = 1, ¯N −1. (12.17)

The first equation of a system is solved with the application of the fourth-

order Runge-Kutta method, and the second one with the application of the method

of inverse matrix. The time threshold has been selected in accordance with the

Runge law.

Let us also numerically analyze convergence of the method of finite differences

in relation to n, i.e., the number of elements of division of segments [0;a] and [0;b]
for a rectangular spherical shell. Let us analyze the point with parameters used in the

previous paragraph, i.e., {q0, ωp} = {151.8,ω0}. Table 12.2 provides the follow-

ing characteristics: time course w(0.5,0.5t) for 40 ≤ t ≤ 42, phase portrait w(w′
t),

frequency power spectrum S, db(ωp), and Poincaré map wt(wt+T ) for a different

number of division of segments.

For all n signals are different (Fig. 12.6), but the convergence of characteristics

such as frequency spectrum, the Poincaré map or a phase portrait is significant,

beginning with n > 10.

For a more detailed analysis of relationships of the convergence of the method

of finite differences, the diagrams of relation wmax(q0) have been prepared for

n = 8;14;20 (Fig. 12.7). Under these diagrams, scales characterizing the type of

vibrations have been provided that were prepared on the basis of the analysis of the

power spectrum. Conventional denotation used there is provided under Fig. 12.4.

Together with the increase of the number of segment divisions, the area of chaotic

vibrations also increases (n = 20 shall be our model value). Together with the in-

crease of the number of segment divisions, the diagrams approach one another and

their shape comes closer to the shape of a model diagram.

12.4 Comparison of Results Obtained with the Use

of the Bubnov-Galerkin Method and the Method

of Finite Differences

Figure 12.8 shows two relationships wmax(q0) corresponding with the results ob-

tained with the application of the Bubnov-Galerkin method for N = 11 and N = 15,

and with the application of the method of finite differences for the division of n = 8

and n = 20. It can be observed that approximations for N = 11 and the number of

division n = 8, as well as for N = 15 and n = 20 qualitatively overlap.

Let us now focus on the first case (N = 11 and n = 8).

For small values of the amplitude of exciting force, when the system under-

goes harmonic vibrations, we observe complete overlapping of diagrams wmax(q0)
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Table 12.2 Characteristics of shell dynamics
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Fig. 12.6 Convergence of the method of finite differences in relation to time history w(0.5,0.5, t)

for both cases, i.e., the convergence of results is obtained with respect to both the

amplitude and the scales of the character of vibrations. When the character of vi-

brations changes, slight differences can be observed, but the values of critical load

overlap, and the type of vibrations is the same for both methods. However, for large

values of the amplitude of external excitation, significant differences in the obtained

type of vibrations are observed (harmonic vibrations for N = 11 and chaotic vibra-

tions for n = 8).

Fig. 12.7 Dependence wmax(q0) for various values of n
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Fig. 12.8 Comparison of the method of finite differences and the Bubnov-Galerkin method

By increasing the number of division of spatial coordinates in the method of fi-

nite differences (n = 20) and the number of approximations in the Bubnov-Galerkin

method (N = 15) we managed to obtain the convergence of results. In this way,

complete overlap of the results obtained for the small amplitude of exciting force

(q0 ≤ q1), and the convergence with respect to the type of vibrations for a larger

amplitude of exciting force (q0 ≥ q2) has also been achieved. Segment {q1, q2}
is a transformation element between harmonic vibrations and the state of complete

chaos of a material system. We can observe complex vibrations here, e.g., two-

frequency vibrations and subharmonic vibrations and the areas of Andronov-Hopf

bifurcation. Obtaining complete overlap of the results of both methods is not pos-

sible, but such convergence has been achieved at some isolated points. Generally,

we can state that it is possible to obtain such qualitative convergence of the results

from the two methods mentioned before. We should note here that the increase of

the number of range divisions in the method of finite differences and the number of

approximations in the Bubnov-Galerkin method leads to better results.

The approximation N = 15 in the case of Bubnov-Galerkin method and approx-

imation n = 20 for the method of finite differences turn out to be threshold values

for the time of calculations, as increasing them leads to the sudden prolongation

of work of computational algorithm. Table 12.3 shows the time needed for calcula-

tions in the analysis of chaotic vibrations of flexible and rectangular shells with the

application of the Bubnov-Galerkin method and the method of finite differences on

a PC computer with Pentium 4 processor (2GHz).
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Table 12.3 Comparison of effectiveness of the Bubnov-Galerkin method and the method of finite

differences

Bubnov-Galerkin method N = 11 N = 13 N = 15

Time of time history analysis 1 min 2.2 min 4 min

Time of vibration scale construction 3.5 hours 7.7 hours 14 hours

Time of control parameters plane

construction

30 days 68 days 122 days

Finite difference method n = 8 n = 14 n = 20

Time of time history analysis 0.66 min 3 min 9 min

Time of vibration scale construction 2.25 hours 10.5 hours 30 hours

Time of control parameters plane

construction

20 days 81.2 days 261 days

12.5 Conclusions

On the basis of cases analyzed here, it has been shown that the convergence of the

results obtained with the application of both methods can be achieved with respect

to the type of vibrations, i.e., by the power spectrum. As in this case, unlike in static

problems, the convergence on the basis of time courses cannot be obtained, we still

managed to obtain such convergence in an average aspect, i.e., with respect to the

character of vibrations. It should be emphasized here that for small amplitudes of

excitement, we obtained the convergence of the results for both methods also in a

traditional way, i.e., on the basis of a time course. The increase of the number of

division elements in the method of finite differences and of the number of approxi-

mations in the Bubnov-Galerkin method lead to significantly better results, although

there is some threshold value beyond which reliable results cannot be obtained for

the time being.



Chapter 13

Determination of Three-layered Nonlinear

Uncoupled Beam Dynamics with Constraints

In this chapter both regular and chaotic vibrations, various bifurcations, and

scenarios exhibited by three-layered non-linear uncoupled beams with constraints

are illustrated and discussed. The finite difference approximation is applied and nu-

merical results reliability is first rigorously discussed. New scenarios of transition

to chaos and synchronization phenomena are reported, and the essential influence

of four various boundary conditions on various nonlinear behaviors is outlined.

13.1 Introduction

Investigation of multi-layered beams with constraints is one of the challenging tasks

of today’s nonlinear dynamics. Classical approaches of modeling three-layer beams

and plates are reported in references [79, 80, 202, 204, 205]. Experimental re-

sults of compressional damping measurement and transverse vibrations study in an

elastic-viscoelastic-elastic sandwich beam are presented in references [273, 275].

Free vibration analysis of non-uniform beams with an arbitrary number of cracks

and concentrated masses is carried in Li’s paper [187]. The eigenvalue equation

of a non-uniform beam with any two kinds of end support, any finite number of

cracks, and with concentrated masses is determined from a second-order determi-

nant, which significantly saves computational effort. Three identification methods

of nonlinear model behavior of an externally excited cantilever beam are proposed

and discussed in reference [81]. The propagation of structural waves on an in-

finitely long periodically supported Timoshenko beam is studied in reference [120].

The power series expansion of displacement components method, yielding a set

of fundamental dynamic equations of a one-dimensional higher order theory for

a laminated composite beam subjected to axial stress derived via the Hamilton

principle, is applied by Matsunaga [201]. The approach introduced is used for

the analysis of natural frequencies and buckling stresses of laminated composite

beams, taking into account the complete effects of transverse shear, normal stresses,

and rotary inertia. A vast number of papers is devoted to control of beams. Here

J. Awrejcewicz, V.A. Krysko, Chaos in Structural Mechanics, 297
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only a few recent ones are mentioned, but readers may use the references cited

in those papers. Active vibration control of beams with smart constrained layer

damping treatment is proposed by Balamurugan and Narayanan [50]. The sensor

piezoelectric layer measures the vibration response of the structure, and a feedback

controller is used to regulate the axial deformation of the piezoelectric actuator

and hence to provide adjustable damping in the structure. The piezoelectric con-

trol of damped sandwich beams is proposed in reference [296]. The analysis of the

proposed linear quadratic regulator, and the real representation of complex modal

reduced models for hybrid piezoelectric-active viscoelastic-passive vibration con-

trol, are reported. In addition, the parametric analysis and the comparative study

of control strategies of damped sandwich beams are given. Investigation of chaos

exhibited by beams with different boundary conditions is reported in a series of

references [146, 223, 224, 226, 320, 323]. In this chapter contact complex vibra-

tions of three-layered nonlinear uncoupled beams are studied. A gap (constraint)

occurs between three-layered beams. It is assumed that in a contact zone the beams

may freely slip, which characterizes a contact condition violation due to occur-

rence of a transversal load action. In contact zones where stretching occurs, a

sudden lack of contact may appear. A pressure in a contact zone is defined via

the hypothesis given in reference [131]. Each of the beams is governed by the

Euler-Bernoulli kinematics hypothesis. This chapter addresses the problems of reg-

ular and chaotic vibrations of three uncoupled beams in a dissipative surrounding

medium. In general, the beams material is considered a nonlinear and elastic one.

In particular, problems with the following types of nonlinearity are considered: (i)

material nonlinearity, where beam material is elastic and (ii) material kinematic

and geometric nonlinearities (beam material deformation is governed by one of

the given deformation diagrams). Each of these nonlinearities is illustrated and dis-

cussed separately. Our continuous system consisting of the package of three-layered

beams is solved using a finite difference method with error O(h2). The various

scenarios of transition of harmonic vibrations of a three-layered package into a

chaotic state for different boundary conditions (four boundary conditions, 13.10–

13.12) are studied. In all cases considered, zero values of the initial conditions are

applied.

13.2 Fundamental Relations

In order to outline a need for theoretical analysis of a sandwich beam, two different

classes of problems will be briefly discussed. The first class consists of coupled

beams with separate contact zones, which occur due to either technological defects

or special exploration conditions. The second class includes uncoupled beams with

constraints and interactions through boundary conditions. Note that such a sandwich

beam may include many layers with different thickness and mechanical properties,

as well as clearances. This class is studied within this chapter. The mentioned layers

may either slip freely or with friction. The contact conditions between layers may
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Fig. 13.1 The analyzed beam

sandwich

depend on time and coordinates, and may include all possible non-ideal one-sided

contacts between layers.

However, weld conditions in both normal and horizontal directions are not con-

sidered. Layer behavior coincides with one of the nonlinear beam theories given

later. The functions of contact pressure between layers are excluded from the un-

knowns number [131].

The analyzed beam sandwich is reported in Fig. 13.1, which includes three beams

with thickness hl (l = 1, 2, 3).
Observe that the origin of the coordinates is situated left in the upper beam in its

mean curvature, and constraints are denoted by δm (m = 1, 2).
The coordinate x is measured beginning from the left beam and is extended along

the beam axis, whereas the z axis is measured from the middle beam curve down.

The sandwich length is denoted by a. Deformations occurring in the middle beam

curvatures are assumed to be small and are neglected. A beam curvature deforma-

tion is characterized through the parameter χl . The beam material is assumed to be

isotropic, and hence the Young modulus El , the shear modulus Gl , the volume elas-

ticity modulus Kl , the transversal deformation coefficient νl , and the plastic flow

coefficient σsl are functions of (x,y). In other words, we consider the beam material

as non-homogeneous until a deformation takes place, but is physically nonlinear. In

what follows we assume that physical material parameters El , Gl , Kl , νl are unique

functions of a material point and its deformation state. This assumption is within

the frame of nonlinear theory of elastic deformations, or the theory of small elastic-

plastic deformations. A material point deformation state is characterized by the vol-

ume deformation ε0l and intensity of deformation εil . The theory introduced below

is based on the hypothesis of straight normals, i.e., the Euler-Bernoulli hypothesis.

For the case of two beams made from the same material and having the same

thickness, the following Winkler relation between clamping and contact pressure

holds (see Fig. 13.2):

qk = k
E

h
(w1 −δ1 −w2), (13.1)

where k is the Winkler proportionality coefficient, δ1 denotes beams distance,

whereas w1, w2 describe deflections of first and second beams, respectively. Other-

wise (i.e., for two different beam materials and different distances) one obtains

qk = k

(

1+
E1h2

E2h1

)

E1

h1
(w1 −δ1 −w2). (13.2)
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Fig. 13.2 Scheme of ideally

(13.1) and with linear strain

hardening (13.2) elastic-

plastic material

Since in real systems very often E1h2 ≃ E2h1, the further formula (13.1) is ap-

plied assuming E and h to be characteristic quantities. Note that the function qk(w)
defined through formula (13.1) is linear with respect to a measure of transver-

sal beam damping in a contact zone. However, use of nonlinear relation between

qk and w does not lead to serious complexity of the further introduced method

to solve the considered contact problems, i.e., instead of qk one may substitute

qk(w) in the equilibrium equations, which is widely used in equations of nonlinear

beams theory. It is worth noting that deriving the beam motion, the dependencies

E = E(x, z, ε0, εi), ν = ν(x, z, ε0, εi) are assumed to be given through theory of

small elastic-plastic deformations [57, 64, 83, 124, 255].

13.3 Formulation of the Problem and Computational Algorithm

It is assumed that one of the beams is transversally and periodically driven. Let the

investigated beams occupy the following domains in R3:

Ωl = {(x,y,z)| 0 ≤ x ≤ a, 0 ≤ y ≤ b, al ≤ z ≤ bl}, (l = 1,2,3),

where:

α1 = −h1/2, α2 = (h1/2+δ1), α3 = (h1/2+δ1 +δ2 +h2),

β1 = h1/2, β2 = (h1/2+δ1 +h2), β3 = (h1/2+δ1 +δ2 +h2 +h3)

for the first, second, and third beam, respectively.

Following the mentioned theory of small elastic-plastic deformations, the differ-

ential equation modeling an equilibrium state of the beam with bending stiffness

Jl(x) and with an account of the kinematic Euler-Bernoulli model and subject to an

action of the transversal load q∗l (x, t) reads

∂ 2

∂x2

(

Jl(x)
∂ 2wl

∂x2

)

= q∗l (x, t), (13.3)

where due to the d’Alembert principle:

q∗l (x, t) = ql +qkl −
γl

g
hl

∂ 2wl

∂ t2
− εl

∂wl

∂ t
.
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The following notation is used: ql(xl , t) is the transversal load; h0l l-th beam thick-

ness with respect to its center x = a/2; wl is the beam deflection; El is the Young

modulus; bl is the beam width; t is the time; εl is the damping coefficient; γl

is the weight density; g is the acceleration due to gravity; and l is the beam

number.

Equation (13.3) can be presented in its equivalent form

hl

∂ 2wl

∂ t2
+ εl

∂wl

∂ t
= −Ll(wl)−qkl −ql , l = (1,2,3). (13.4)

Here and later indices l = 1, 2, 3 are associated with upper, middle, and below

beam, respectively.

The introduced nonlinear operators in (13.4)

Ll(wl) =
∂ 2

∂x2

(

Jl(x)
∂ 2wl

∂x2

)

, (13.5)

where

Jl(x) = bl

∫ bl

dl

Elz
2dz. (13.6)

A lack of contact between beams is accounted for through formulas analogous to

formula (13.1), i.e.:

qkn = (−1)nk1
E1

h1

(

w1 −d1 −w2
h02

h01

)

ψ1, (n = 1,2), (13.7)

qkm = (−1)m+1k2
E2

h2

(

w2 −d2 −w3
h03

h02

)

ψ2, (m = 1,2), (13.8)

where kl is the proportionality coefficient between contact pressure and clamping.

The function ψl characterizes contact zone dimension, and possesses the following

form:

ψn =

(

1+ sgn
(

wn −δn −wn+1
h0n+1

h0n

)

)

/2, (n = 1,2). (13.9)

Recall that an occurrence of the multiplier ψn in equations governing beams dy-

namics transforms them to a nonlinear form, and the new problem obtained is both

physically and structurally a nonlinear one. By a structural nonlinearity we mean

nonlinearity causing variation of a computational scheme within the process of de-

formation. The integration space holds for Xl(x = (0,a)) with the boundary ∂Xl .

Equations (13.4) are solved together with one option of the following boundary

conditions on ∂Xl :

(i) Stiff clamping

∂wl(x, t)

∂x
= wl(x, t) = 0 ; (13.10)
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(ii) Hinged clamping

∂ 2wl(x, t)

∂x2
= wl(x, t) = 0 ; (13.11)

(iii) Free boundary

∂ 2wl(x, t)

∂x2
=

∂

∂x

(

Jl(x)
∂ 2wl(x, t)

∂x2

)

= 0 ; (13.12)

Furthermore, initial conditions may take the form

∂wl(x,0)

∂x
= Fl(x), wl(x,0) = fl(x), (0 ≤ x ≤ a), l = 1,2,3, (13.13)

where Fl and fl are functions characterizing a distribution of velocities and deflec-

tions of beams in the initial time instant.

The following non-dimensional parameters are introduced:

x = x̄a, z = z̄h0l , hl = h̄lh0l , wl = w̄lh0l ,

El = ĒlG0l , bl = b̄lb0l , dl = d̄lh0l ,

t = t̄
a2

h0l

√

γl

G0lb0l

, εl = ε̄l

a2

h2
0l

√

γl

gG0lb0l

, kl = k̄l

G02h4
02b0l

G0la
4

.

Beam dynamics is governed by the following non-dimensional equations, where the

overbars are omitted for the sake of simplicity:

hl

∂ 2wl

∂ t2
+ εl

∂wl

∂ t
= −Ll(wl)−qkl −ql , l = (1,2,3). (13.14)

An account of physical beam material nonlinearity is realized through the method

of variated elasticity parameters. Owing to this method shear and Young moduli are

coupled via the following relation

El =
9KlGl

3Kl +Gl

. (13.15)

Kl is treated as a constant and equal to 1.94 G0l . Recall that in theory of plasticity,

shear modulus is defined through the formula

Gl =
1

3

σli(eli)

eli

. (13.16)

For example, one of the following cases can be applied [25, 26]:

1. Ideally elastic-plastic material:

σli = 3G0lesl for eli < els,

σli = σls for eli ≥ els ; (13.17)
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Fig. 13.3 Scheme of pure

aluminum behavior

2. Elastic-plastic material with linear strain hardening:

σli = 3G0leli for eli < els,

si = 3G0lels +3G1l(eli − els) for eli ≥ els ; (13.18)

3. Diagram for pure aluminum (Fig. 13.3):

σli = σls

(

1− exp
(

− eli

els

)

)

. (13.19)

In the above the following notation is applied: G0l , G1l is the shear moduli; eil is the

deformation intensity; σil is the stress intensity; esl is the flow deformation intensity;

and Kl is the volume elasticity modulus.

Since for a beam we have eyyl = ezzl = exyl = exzl = ezyl = 0, the deformation

intensity reads

eli =
2

3

∣

∣

∣

∣

z
∂ 2wl

∂x2

∣

∣

∣

∣

. (13.20)

In our proposed model the introduced transversal load may act either on all beams

simultaneously, or on each of them separately. Variations of the load along beam

length and in time can be realized in an arbitrary manner.

In order to integrate Eq. (13.1) the finite differences method with error O(h2) is

applied. For this purpose the space D = {(x, t)|0 ≤ x ≤ 1, 0 ≤ t ≤ T} is covered by

the rectangular mesh xi = ihx, t j = jht (i = 0, 1, 2, . . .n; j = 0, 1, 2, . . .), where

△ xi = xi+1 −xi = hx = 1/nx (nx is integer) and ht = t j+1 − t j. In the mesh xi, t j, the

differential eqs. (13.4), (13.10)–(13.13) are substituted by the corresponding finite

differences. In order to increase accuracy of the obtained results symmetric formulas

for derivatives have been applied (for a comparison see Tables 13.1–13.3).

Table 13.1 Comparison of beam center deflection computations for various time and spatial

steps

ht = 0.001 0.0001 0.00004 0.00002

nx = 10 0.02362 0.02362 0.02362 0.02362

16 0.02351 0.02351 0.02351 0.02351

20 0.02348 0.02348 0.02348 0.02348

24 0.02347 0.02347 0.02347 0.02347

28 0.02346 0.02346 0.02346 0.02346
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Table 13.2 Magnitudes of the fundamental frequency for different time and spatial steps

ht = 0.001 0.0001 0.00004 0.00002

nx = 10 32.8657 32.8651 32.8651 32.8650

16 32.4956 32.4949 32.4949 32.4949

20 32.4109 32.4103 32.4102 32.4102

24 32.3651 32.3644 32.3644 32.3644

28 32.3375 32.3368 32.3268 32.3368

Table 13.3 Absolute and relative errors of fundamental amplitude estimation

10 16 20 24 28

Amplitude 32.8650 32.4949 32.4102 32.3644 32.3368

δ 0.5282 0.158 0.0734 0.0276 0

δ% 1.63 0.488 0.226 0.085 0

For example, one may derive the following relations for the beam with number l:

wli, j+1 =
1

1+ εlht

2hli

[

2wli, j +

(

εlht

2hli

−1

)

wli, j +
h2

t

hli

(

(−1)lqkl +L(wl)i, j

)

]

,

where

L(wl)i, j =
[

Jli+1wli+2, j −2(Jli+1 + Jli)wli+1, j +(Jli+1 +4Jli + Jli−1)wli, j

−2(Jli + Jli−1)wli−1, j + Jli−1wli−2, j

]

/h4
x , (l = 1,2,3).

In the above i( j) corresponds to a spatial (time) (l = 1, 2, 3) coordinate.

Finally, a three-layered scheme can be obtained. In order to compute wl(x, t) on

the layer ( j + 1), the values wl(x, t) of two previous layers j-th and ( j− 1)-th are

accounted for. The computation begins from wl(x, t) in a fictitious layer with the

number j = −1. Furthermore, a derivative in the initial conditions (13.13) is also

substituted by finite difference relations using the non-symmetric difference.

In order to apply the method of variated parameters, a beam is divided into

n2 layers. In each time step the following quantities are computed for a node x j;

deformation intensity through formula (13.20); El and Gl using one of relations

(13.17)–(13.19) (depending on the chosen deformation diagram); integral (13.6) is

estimated through the Simpson rule.

An example where upper and below beams are hinged on their ends is further

illustrated and discussed.

The following initial conditions are introduced:

Fl(x) = fl(x) = 0, i = 1,2,3 (x ≤ x ≤ 1). (13.21)

Note that a transversal load is applied only to the top beam and possesses the fol-

lowing harmonic form:

q1 = q10 cos(ωt). (13.22)
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The given algorithm has been tested for its convergence with respect to both spatial

and time meshes in static and dynamic problems. Applying a set-up method [95], a

deflection of a hinged beam center with a uniformly distributed load along its length

within a static problem has been calculated.

Owing to analysis of the obtained results, a beam deflection does not depend on a

time step magnitude at least for 2 ·10−5 ≤ ht ≤ 10−3. A change of spatial distribution

from nx = 28 to nx = 10 results in an error only of 1%. Note that for ht = 2 · 10−5

and nx = 28, the deflection achieved in the beam center is equal to 0.02346, which

is in very good agreement with results obtained through an analytical method in

statics (see [54]), i.e., 0.02343. The same values of ht and nx have been applied

to solve dynamical problems. Namely, a hinged beam subject to transversal load

(13.22) is studied, assuming q10 = 1.5 and ω = 0.5. Analysis of the obtained results

yielded the conclusion that a variation from nx = 28 to nx = 10 caused a change

of the fundamental amplitude of only 1.6% in a frequency spectrum. Owing to the

discussed preliminary computations, the spatial step with respect to the x coordinate

equals 0.05 (nx = 20), whereas the time step t = 2 ·10−5 and the number of layers

along thickness nz = 20.

13.4 Structurally Nonlinear Problems

Problem 13.4.1 Computations are carried out for k1 = k2 = 2000; 0 ≤ t ≤
120; δ1 = δ2 = 0.05; beam material is linear; upper (l = 1) and lower (l = 3) beams

are hinged on their left edges (x = 0) (see (13.11)) whereas they are clamped on

their right edges (see (13.10)) and free on their right ends (see (13.12)). The whole

sandwich is governed by Hook’s law.

Recall that the top beam is always subjected to the harmonic excitation q1 =
q10 cos(ωt). Let us fix the excitation frequency ω = 1.0 and treat the excitation

amplitude q10 as the control parameter. Note that now and later excitation frequency

is chosen to be close to free vibration frequencies of both upper and lower beams.

Observe that the top beam vibrations are harmonic unless its contact with the middle

beam is achieved. For each value of q10 the following dependencies are constructed:

deflection variation (w1(0.5, t), w2(0.5, t), w3(0.5, t)), power spectrum (note that

the mentioned characteristics are qualitatively similar for other beams and they are

not shown), deflection surface (w1(x, t), w2(x, t), w3(x, t)) and the contact pressure

between first and second, as well as second and third beams (q12(x, t), q23(x, t))
for the time and space intervals attached to figures.

Now a scenario of a three-layered package from harmonic to chaotic vibrations

will be briefly described.

For q10 = 0.5 the first contact between upper and middle beams occurs, then

a contact loss (jump) between the second and third beams takes place. Since our

system is deterministic, the middle beam vibrations are damped owing to occur-

rence of damped waves. Both jump and successive damped vibrations effects are

clearly expressed by the contact surface pressure, which occupies a narrow zone
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Fig. 13.4 Time histories of deflection wi(0.5, t) i = 1,2, the corresponding power spectra, deflec-

tion surfaces wi(x, t) i = 1, 2, and the contact pressure q12(x, t) between the first two beams for

q10 = 0.8

in space (x = 0.4) and time. Observe that when the beam inertia wins a chal-

lenge with the dissipative forces (q10 = 0.8), synchronization occurs associated with

period tripling bifurcations in both beams simultaneously (Fig. 13.4). The latter phe-

nomenon is also exhibited via a periodic variation with the same amplitude of the

contact pressure. It should be emphasized that the reported period tripling exhibited
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by both beams simultaneously has not been found yet during investigation of either

one-layered beams, plates, or shells. Nowadays chaos exhibited by discrete dynami-

cal systems is relatively well understood. Many appropriate theorems are formulated

for such systems including the very important one, the so-called window 3, which is

associated with analysis of the map f (x)= x2 +C. A natural question arises: do other

periodic orbits exist? The answer is given by the Sharkovsky theorem. However, in

the beginning of the Sharkovsky ordered sequence period doubling bifurcation ap-

pears almost everywhere (one or few of them), and then period tripling bifurcations

follow. In contrast, in our case already in the beginning a period tripling bifurcation

occurs.

It is worth noting that for constructively nonlinear beams treated within the the-

ory of contact problems of continuous systems, period tripling bifurcations similar

to that governed by the mentioned one-dimensional map have been detected. Ob-

serve that the described chart of synchronized vibrations of two beams can be traced

on a relatively long interval of the load until a contact between second and third

beam is reached. The contact pressure between the first and second beams is uni-

form in the sense of excitation amplitude and frequency, but occurring locally. In

other words the full synchronization of vibrations between two beams is observed.

Owing to increase of q10, the second beam starts to touch the third beam, it starts

to jump, and the damped vibrations appear. Although synchronization of the first

two beams for the frequency associated with the period tripling holds, the second

beam end exhibits a beating phenomenon. A minor increase of q10 yields an oc-

currence of a new synchronization type. Namely, two upper beams vibrate with the

period 4. However, when q10 achieves the new critical value (q10 = 1.0) all three

beam dynamics are synchronized for the frequency corresponding to a doubled pe-

riod of the two upper beams. Note that the third beam vibrates with the frequency

associated with two doubled periods. Further increase of the load up to (q10 = 1.2)
yields a collapse of synchronized motion of the two top beams (Fig. 13.5), and the

whole sandwich is transited to chaos on the frequencies associated with the dou-

bled period. In particular, chaotic vibrations are exhibited by the third beam with

the accompanied vibration break (see w3(0.5, t) and contact pressure charts).

Problem 13.4.2 Now upper (l = 1) and lower (l = 3) beams are clamped on both

ends (see (13.10)), whereas the middle beam is fixed as in Problem 13.4.1.

In this case the frequency ω = 1.54 is fixed. First of all, the vibrations are

qualitatively similar to those reported in the previous case until a contact between

the second and third beams occurs. Namely, the first two beams vibrate in a syn-

chronized manner, but the synchronization follows one Hopf-Andronov bifurcation.

Owing to a successive increase of the transversal load amplitude, the vibration char-

acter of two synchronized top beams dynamics is changed (after period doubling

bifurcation, a period tripling bifurcation takes place, i.e., Sharkovsky diagram is

manifested (Fig. 13.6)). The third beam exhibits the vibration break. In other words,

a synchronization of a whole three-layered package is not observed. The increase of

q10 successfully transits the vibrations to chaos, which is clearly outlined by contact

pressure distribution between first and second, as well as second and third beams.
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Fig. 13.5 Time histories of deflection wi(0.5, t) i = 1, 2, the corresponding power spectra, deflec-

tion surfaces wi(x, t) i = 1, 2, 3, and the contact pressure q12(x, t) between the first two beams

for q10 = 1.2

Problem 13.4.3 Here upper (l = 1) and lower (l = 3) beams are clamped on their

left ends (see (13.10)), whereas they are hinged on their right ends (see (13.11));

middle beam is fixed as in previous problem.

In this case the external frequency ω = 1.0 is fixed. In this problem, similarly

to the discussed Problems 13.4.1 and 13.4.2, the dynamic behavior is qualita-

tively similar until a contact associated with the third beam occurs. Synchronization
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Fig. 13.6 Time histories of deflection wi(0.5, t) i = 1, 2, 3, the corresponding power spectra,

deflection surfaces wi(x, t) i = 1, 2, 3, and the contact pressure q12(x, t) and q23(x, t), (q10 =
1.5, ω = 1.54)

occurrence of the first and second beams on the frequency associated with period

tripling (Fig. 13.7) is followed by a transition into excitation period, i.e., here the

full phase locking phenomenon with respect to one excitation frequency occurs.

The latter observation is exhibited by periodic behavior of contact pressure, which

has not appeared in the beginning of synchronization (Fig. 13.7). For q10 = 0.65 a

strange chaotic attractor is exhibited, which is associated with period doubling of the
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Fig. 13.7 Time histories of deflection wi(0.5, t) i = 1, 2, the corresponding Poincaré maps and

power spectra, deflection surfaces wi(x, t) i = 1, 2, and the contact pressure q12(x, t), (q10 =
0.65, ω = 1.0)

fundamental excitation period. The contact between third and second beams forces

the system to change the synchronized regime of two first beams, i.e., vibrations

with two Andronov-Hopf bifurcations occur (Fig. 13.8). A successive increase of

the transversal load amplitude causes again a change of the first two beam vibra-

tions (period tripling) with the successive system transition into a chaotic state on

tripled frequencies of the first two beams (the third beam vibrates with the funda-

mental frequency).
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Fig. 13.8 Time histories of deflection wi(0.5, t) i = 1, 2, 3, the corresponding power spectra,

deflection surfaces wi(x, t) i = 1, 2, 3, and the contact pressure q12(x, t) and q23(x, t), (q10 =
0.9, ω = 1.0)

Problem 13.4.4 Now in the considered package the left-hand side beam (l = 1)
end is clamped (see (13.10)), whereas the right one is hinged (see (13.11)). The

boundary conditions of the lower beam are applied in an inverse manner. The mid-

dle beam (l = 2) is hinged on both ends. The top beam vibrates with the frequency

ω = 1.0 first. Then, after an impact between upper and middle beams, the second

beam vibrates with the given frequency within a transitional time interval, and then
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its vibrations are damped. Owing to an increase of the external load amplitude on

the third beam, the synchronized vibrations of two-layer package with the excitation

frequency appear. This feature is represented by a variation of the contact pressure

between beams, i.e., it is synchronized on the excitation frequency. Further increase

of the excitation amplitude forces the system to exhibit its synchronized state af-

ter the period doubling Hopf-Andronov bifurcations (Fig. 13.9). Observe that for

Fig. 13.9 Time histories of deflection wi(0.5, t) i = 1, 2, 3, the corresponding power spectra,

deflection surfaces wi(x, t) i = 1, 2, 3, and the contact pressure q12(x, t) and q23(x, t), (q10 =
1.3, ω = 1.0)
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two first beams the full synchronization is exhibited. The successive increase of the

external load amplitude shifts the system to chaos on the fundamental frequency

(see the associated diagrams of contact pressure between first–second and second–

third beams).

Problem 13.4.5 In this case the boundary conditions differ from those given in

problem 13.4.4 slightly, since only boundary conditions associated with the middle

beam are changed, i.e., it is clamped on both ends (see (13.10)).

In general, the initial vibration regime, when the top and middle beams are

in a contact (or a contact of two-layered package with the third beam occurs)

is similar to the earlier reported cases. However, now already in the beginning

period tripling bifurcation occurs (Fig. 13.10). Then a successive period dou-

bling occurs, the system is qualitatively changed, collapse of period tripling oc-

curs, and the package synchronization with the frequency associated with period

doubling is exhibited. Then the three-layer package transits into chaotic vibra-

tions state on the excitation frequency. The latter behavior is exhibited by all

characteristics.

13.5 Structurally and Physically Nonlinear Problems

In this section same boundary conditions are applied as in Sect. 13.4. A beam

material is considered as physically nonlinear with deformation diagram (13.17).

Computations have been also carried out for k1 = k2 = 2000; 0 ≤ t ≤ 120;

δ1 = δ2 = 0.05. Flow deformation intensity for all beams e1s = e2s = e3s = 0.1.

It should be emphasized that instead of an elastic-plastic problem a simplified

nonlinear-elastic one has been solved, when loading and relief create the same

curve.

We are going to study the formulated problem when upper (l = 1) and lower

(l = 3) beams are hinged on their left ends (x = 0) (see relation (13.11)), whereas

they are clamped on their right ends (x = 1); see relation (13.12). The middle beam

(l = 2) is clamped on its left end (see (13.10)), whereas it is free on its right end

(see (13.12)). The excitation frequency ω = 1.0.

It is worth noticing that a supplement of physical nonlinearities essentially

changes the vibration chart as well as the scenario of three-layered uncoupled beams

into chaotic state.

Although each of the beams of the three-layered package is not elastic now, but

physically nonlinear, the upper beam vibrations are periodic due to small deflec-

tions. Furthermore, the physical nonlinearity is rather exhibited in the negligible

manner until a contact between the upper and middle beams is achieved. Note that

the first contact between these beams yields an occurrence of the broad band spec-

trum support typical for a chaotic state. In the Poincaré sections, distribution of

chaotic points is visible. There is a lack of synchronization. All other fundamental

characteristics exhibit chaos of two-beam dynamics on the excitation frequency. A
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Fig. 13.10 Time histories of deflection wi(0.5, t) i = 1, 2, 3, the corresponding power spectra,

deflection surfaces wi(x, t) i = 1, 2, 3, and the contact pressure q12(x, t) and q23(x, t), (q10 =
2.4, ω = 1.0)

contact between second and third beams (Fig. 13.11) yields more developed chaotic

dynamics into a general picture of a three-layered vibration sandwich. The power

spectrum of the third beam is fully broad band.

Analysis of structurally and physically nonlinear three-layered beams package

with the boundary conditions, where both upper and lower beams are clamped
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Fig. 13.11 Time histories of deflection wi(0.5, t) i = 1, 2, 3, the corresponding power spectra,

deflection surfaces wi(x, t) i = 1, 2, 3, and the contact pressure q12(x, t) and q23(x, t), (q10 =
1.2, ω = 1.0)

through (13.10) (ω = 1.54), and when these beams are clamped on their left ends

and hinged on their right ends (ω = 1.0) (middle beams is clamped (free) on its

left (right) end), outlines the same scenario of transition of three-layered package

vibrations into chaos owing to increase of the amplitude of the excitation q10.
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13.6 Special Case

In this section more complicated problems are studied. Namely, we follow a way of

study of three-layered beams sandwich with finite bending stiffness, when each of

beams is linearly elastic.

Fig. 13.12 Time histories of deflection wi(0.5, t) i = 1, 2, 3, the corresponding power spectra,

deflection surfaces wi(x, t) i = 1, 2, 3, and the contact pressure q12(x, t) and q23(x, t), (q10 =
2.4, ω = 1.54)
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Problem 13.6.1 The middle (l = 2) beam possesses non-clamped ends (boundary

conditions (13.12), ω = 1.0), but in the initial time instant it is in an equilibrium

state. The left end of the upper beam (l = 1) is clamped (see (13.10)), whereas

its right end is hinged (see (13.11)). The mentioned conditions are applied in the

reverse manner to the lower beam (l = 3).

Problem 13.6.2 The middle (l = 2) beam is free as in the previous case, whereas

upper (l = 1) and lower (l = 3) beams are hinged on both ends. In both the problems,

the third beam is subjected to sinusoidal load.

Consider first Problem 13.6.1. Note that a first contact between the top and mid-

dle beams is associated with their bending and a contact with the third beam, which

is exhibited by the contact pressure diagrams. The top beam vibrations are har-

monic with fundamental frequency, and vibrations of external beams are damped

with time. Increase of initial amplitude of excitation transits whole package vibra-

tions into chaos on the excitation frequency. The middle beam, owing to an impact

within its averaged movement time, maintains contact with the top beam in a chaotic

manner. Since it is bended, it touches the third beam along its ends also chaotically.

Further increase of the external excitation amplitude shifts the package into a deep

chaotic state (see the fundamental characteristics reported in Fig. 13.12). The change

of the boundary conditions on external beams practically does not change a scenario

to chaos for the considered three-layered package, but now in the power spectra a

transition to chaos is observed on the fundamental excitation frequency and on the

linearly dependent frequencies.

To conclude, a transition of three-layered package of elastic beams into chaos in

practice does not depend on the boundary conditions associated with top and lower

beams only if the third beam has unclamped ends.

13.7 Conclusions

A study of a three-layered uncoupled beams package subjected to harmonic exci-

tation acting on the upper beam with an account of physical nonlinearities yields

immediately chaotic dynamics only if a contact between beams is achieved (clearly

exhibited peak in the power spectrum associated with the fundamental frequency

occurs). In this case a synchronization phenomenon has not been detected, although

its occurrence is typical for our three-layered package considered as a structurally

nonlinear problem. In the case of structurally nonlinear three-layered beams, the

period tripling phenomenon has been detected within a synchronization regime of

the first two beams. Furthermore, the full agreement of vibration and bifurcation

behavior with that predicted by the Sharkovsky theorem has been illustrated. In-

crease of number of layers in the package of uncoupled beams over two yields a vio-

lation of two-layered package synchronization, and the system transits into a chaotic

state. However, the latter conclusion essentially depends on a choice of the boundary

conditions.



Chapter 14

Bifurcation and Chaos of Dissipative Nonlinear

Mechanical Systems of Multi-layer
Sandwich Beams

The dynamics of a physically dissipative non-linear multi-layer sandwich of three

beams is analyzed. The boundary conditions are arbitrary. The transversal load can

be applied either simultaneously to all beams or separately to each of the beams. The

finite difference method is used to solve the governing equations. Different types

of beam material are considered: ideally elastic-plastic, elastic-plastic with linear

straightness, and pure aluminum. Some new bifurcation and chaotic phenomena of

the system are reported and discussed.

14.1 Introduction

Damping and dissipating energy of a beam (or of sandwich beams) have been stud-

ied by a large number of researchers. Mead and Markus [202, 203, 204] studied a

sixth-order differential equation of motion in terms of the transverse displacement

of a beam with arbitrary boundary conditions, and it serves as a classical method of

modeling and describing damped three-layer beams and plates (see also [79, 80]). In

references [273, 274] the experimental results from a cantilever beam under impact

loading and with an operating four-bar mechanism are reported. Both experimental

and analytical results for the compressional vibration of an elastic-viscoelastic-

elastic three-layer sandwich beam are reported by Sisemore and Darveness [275].

Another research direction includes the free vibration of beams with concentrated

masses (see Chen [69] and Goel [111]). The natural frequencies of a cantilevered

beam with a slender tip mass are investigated in references [55, 56]. The Euler-

Bernoulli and Timoshenko beam models are used in reference [66] to analyze the

free vibration of simply supported and cantilever beams with distributed mass. Two

distributed masses in-span attached to a beam are studied [67]. A mass carried by

two different beam segments is studied by Kopmaz and Telli [141].

Free vibration analysis of non-uniform beams with an arbitrary number of cracks

and concentrated masses is carried out in Li’s paper [187]. The eigenvalue equation

of a non-uniform beam with any two kinds of end support, any finite number of
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cracks, and with concentrated masses are determined from a second order determi-

nant, which significantly saves the computational effort.

A nonlinear model analysis approach, based on invariant manifold theory, is pro-

posed by Shaw and Pierre [264], and then used by Xie et al. [319].

Three identification methods of nonlinear model behavior of an externally ex-

cited cantilever beam are proposed and discussed [81]. The propagation of structural

waves, on an infinitely long periodically supported Timoshenko beam, are studied in

reference [120]. The power series expansion of displacement components method,

yielding a set of fundamental dynamic equations of a one-dimensional higher order

theory for a laminated composite beam subjected to axial stress derived through the

Hamilton principle, is applied by Matsunaga [201]. The approach introduced is used

for the analysis of natural frequencies and buckling stresses of laminated composite

beams, taking into account the complete effects of transverse shear, normal stresses

and rotary inertia.

The dynamic stability of a stepped beam subject to a moving mass is analyzed

[2]. It is shown that the stability of certain beam models can be improved by provid-

ing the beam with appropriately spaced steps.

Two simple systems comprising straight uniform Euler-Bernoulli beams in which

there are internal self-balancing axial loads are analyzed by Mead [203].

A vast number of papers is devoted to control of beams. Here only a few re-

cent ones are mentioned, but a reader may use references cited in those papers.

Active vibration control of beams with smart constrained layer damping treatment is

proposed by Balamurgan and Narayanan [50]. The sensor piezoelectric layer mea-

sures the vibration response of the structure, and a feedback controller is used to

regulate the axial deformation of the piezoelectric actuator and hence to provide

adjustable damping in the structure. The piezoelectric control of damped sandwich

beams is proposed in reference [296]. The analysis of the proposed linear quadratic

regulator, and the real representation of complex modal reduced models for hybrid

piezoelectric-active viscoelastic-passive vibration control are reported. In addition,

the parametric analysis and the comparative study of control strategies of damped

sandwich beams are given.

Investigation of chaos exhibited by beams with different boundary conditions

is reported in series of references [146, 223, 225, 226, 320]. Different aspects of

nonlinear longitudinal or transverse vibrations of beams subject to periodical longi-

tudinal or transverse excitations are analyzed.

In this chapter a system consisting of three sandwich beams in a dissipative

medium is analyzed. The beam material is assumed to be nonlinear and elastic.

14.2 Problem Formulation and Computational Algorithm

Dynamic interaction of three sandwich beams with clearance in their equilib-

rium state is analyzed. The kinematic J. Bernoulli hypothesis is assumed for the

formulation of the governing equations. It is assumed that in a contact zone the
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beams slip freely. A contact pressure (load) is found using Winkler hypothesis [131].

Finally, one of the beams is subjected to periodic transverse load excitation.

The beam occupies the following domain in a three-dimensional space:

G =

{

(x,y,z)| 0 ≤ x ≤ a, 0 ≤ y ≤ b, −h

2
≤ z ≤ h

2

}

,

and the following notation is used: h is the beam thickness; h10 is the beam thickness

in a center; wl is the beam deflection; El is the elasticity modulus; bl is the beam

width; t is time; εl is the damping coefficient; u is beam length; ρl is material den-

sity; pl is the clearance between beams (l = 1, 2, 3); σl is the Poisson coefficient;

ei is deformation intensity; σi is stress intensity; esl is intensity of flow deformation;

σs is intensity of stress flow deformation; and K is the volume elasticity modulus.

The following non-dimensional parameters are introduced:

x = x̄a, y = ȳb, z = z̄h0l , hl = h̄lh0l ,

wl = w̄lh0l , El = ĒlG0l , bl = b̄lb0l , pl = p̄lh0l .

The x coordinate is measured beginning from the left plate end and is extended

along the beam axis, whereas the z axis is measured beginning from the mean

curve down.

The beams motion is governed by the following non-dimensional equations:

hl =
∂ 2wl

∂ t2
+ εl

∂wl

∂ t
= −Ll(wl)−qkl −ql , l = 1,2,3. (14.1)

Now and later the index l = 1 corresponds to the top beam, l = 2 corresponds to

the middle beam, and l = 3 refers to the bottom beam.

The operators Ll(wl) are defined via the formula

Ll(wl i) =
∂ 2

∂x2

[

(b1Pl(x))
∂ 2wl

∂x2

]

, (14.2)

where:

Pl(x) =
∫ h

2

− h
2

Elz
2dz. (14.3)

The method of variation of the elasticity parameters is further applied in order to

include physical material nonlinearities. In accordance with this method the elastic-

ity modulus is coupled with the Poisson and deformation moduli via the relation

E =
9KG

3K +G
. (14.4)

The modulus K is assumed to be constant and equal to 1.94G0l . Recall that in

strain theory the shear modulus is defined via the formula

G =
1

3

σi(ei)

ei

. (14.5)
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An arbitrary strain diagram of the beam material σi(ei) can be used. For example,

it can be represented by one of the following choices [159]:

1. Ideally elastic–plastic material.

σi = 3G0lesl , for ei < esl ,
σi = σs, for ei ≥ esl .

(14.6)

2. Elastic–plastic material with linear strengthness.

σi = 3G0lesl , for ei < esl ,

σi = 3G0lesl +3Gl(ei − esl), for ei ≥ esl .
(14.7)

3. Diagram for pure aluminum has the form:

σi = σs

[

1− exp

(

− ei

esl

)]

. (14.8)

The deformation intensity is governed by the following relation:

ei =

√
2

3

[

(exx − eyy)
2 +(eyy − ezz)

2 +(exx − ezz)
2 +

3

2
e2

xy

] 1
2

.

Neglecting (for a beam) the components eyy and ezz one obtains

ei = −2

3
exx, or ei = −2

3
z

∂ 2w

∂x2
. (14.9)

The boundary conditions of the beam system are arbitrary. In particular, one

may apply free, simple support or clamping conditions. The initial conditions have

the form
∂wl(x,0)

∂ t
= Fl(x), wl(x,0) = fl(x), l = 1,2,3, (14.10)

where Fl and fl are function of velocities and deflection distributions at the initial

time instant, respectively. The transversal load can be applied either to all beams

simultaneously or it can act on each of the beams separately. The load distributions

along the beam and in time can be taken arbitrarily. In addition, a jump phenomenon

(the beams separation phenomena) during interactions of the beams is included. The

contact stresses are defined by the relations

qkl = (−1)lk1
E1

h1

(

w1 − p1 −w2
h02

h01

)

ψ1, l = 1,2, (14.11)

qkl = (−1)i+1k2
E2

h2

(

w2 − p2 −w3
h03

h02

)

ψ2, l = 2,3, (14.12)

where k1 is the proportionality coefficient between contact pressure and clamping;

the function ψ1 defines a contact zone dimension and is found from the formula
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ψl =
1

2

[

1+ sign

(

wl − p−wl+1

h0l+1

h0l

)]

. (14.13)

In order to integrate Eq. (14.1) the finite differences method of approxima-

tion O(h2) is applied. The space D = (x, t)| 0 ≤ x ≤ 1, 0 ≤ t ≤ T is covered by

the rectangular mesh xi = ihx, t j = jht (i = 0, 1, 2 . . .n; j = 0, 1, 2, . . .), where

Δxi = xi+1 − xi = hx = 1/nx (nx is an integer) and ht = t j+1 − t j. Between the nodes

the differential equation (14.1) is approximated by finite-differences relations. In

order to increase the accuracy, results of the symmetric formulas for derivative are

applied. After a series of easy transformations for a beam with beam number l one

obtains

wli, j+1 =
1

1+ εlht

2hli

[

2wli, j +

(

elht

2hli

−1

)

wli, j +
h2

t

hli

((−1)lqkl +L(wl)i, j)

]

,

where

L(w)i, j = [pli+1wli+2, j −2(pli+1 + pli)wli, j +(pli+1 +4pli − pli−1)wli, j

−2(pli + pli−1)wli−1, j + pli−1wli−2, j]/h4
x + k f lwli, j,

p(x) = blP(x), l = 1,2.

Note that a three-layered system is obtained. In order to compute wl(x, t) on the

layer ( j + 1) the values wl(x, t) in two other layers, j-th and ( j − 1)-th, are used.

First the wl(x, t) values of a fictive layer with number j = −1 are taken in order to

initiate computations. Note also that a derivative in the initial conditions (14.10) is

substituted by a finite difference relation.

An application of the variation of parameters method requires a splitting of the

beam along its thickness into nz layers.

Next, for the node x j of each layer, the deformation intensity is found using

the formula (14.9) on each time step of the computation. The elasticity modulus is

defined via formulas (14.4), (14.5) and one of the expressions (14.6)–(14.8), and

next the integral (14.3) is computed using the Simpson method.

14.3 Numerical Results

As an example the case when the top and lower beams are simply supported through

balls on both ends is considered:

∂w1(0, t)

∂x
= w1(0, t) =

∂w1(1, t)

∂x
= w1(1, t), l = 1,3. (14.14)

The middle beam is treated as the cantilever one:

∂w2(0, t)

∂x
= w(1, t) = 0,
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∂ 2w2(1, t)

∂x2
=

∂

∂x

(

b2P(x)
∂ 2w2(1, t)

∂x2

)

= 0. (14.15)

The following initial conditions are applied:

Fl(x) = fl(x) = 0, i = 1,2,3 (0 ≤ x ≤ 1), (14.16)

and the transverse load drives only the top beam in a harmonic way:

q1 = q10 cos(ωt). (14.17)

The algorithm used to solve the equation governing beam vibrations is investi-

gated from the point of view of both space and time meshes. The relaxation method

is used to find the deflection in the center of a simply supported beam after the

sudden application of uniformly distributed load along its length (q10 = 0.15).
The computational results, depending on both the mesh step in time ht (along

horizontal direction) and the number of beams splitting along its length nx (along

vertical direction), are reported in Table 14.1.

Note that the center deflection, found analytically for a static approach (14.9), is

equal to 0.2343. Analysis of these results implies that a deflection does not depend

on the computational time step, at least for the intervals investigated. However, it

depends essentially on the number of splittings along the spatial coordinate. On the

other hand, a solution to the problem leads to the conclusion that, for ht ≤ 0.0001

and for a given nx, one obtains the same behavior for the interaction of the beams.

However, the results depend strongly on nx, which may have the following physical

interpretation. Observe that an application of a beam reduces the problem to the

analysis of a multibody system dynamics with finite degrees of freedom instead of

a continuous system governed by partial differential equations.

Hence, vibration of a number of nodes along the thickness direction yields in

practice to the solution of another problem.

The results obtained suggest the following choice of computational steps. The

spatial step along the x coordinate is set equal to 0.05(nx = 20), and the time step

is taken as 2 · 10−5. The number of layers along the z coordinate is taken equal

to nz = 20. The computations are carried out for k1 = k2 = 2000, a ≤ t ≤ 120;

the clearances between beams are assumed to be p1 = p2 = 0.05. The material of

the beams is assumed to be elastic-plastic with linear strain hardening (14.7). Flow

Table 14.1 Beam center deflection for different mesh steps in time ht and along its length nx

ht = 0,001 0,0001 0,00004 0,00002

nx = 10 0,02362 0,02362 0,02362 0,02362

16 0,02351 0,02351 0,02351 0,02351

20 0,02348 0,02348 0,02348 0,02348

24 0,02347 0,02347 0,02347 0,02347

28 0,02346 0,02346 0,02346 0,02346
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deformation intensity is assumed to be es1 = es2 = es3 = 0.1 for all three beams, and

the excitation frequency ω = 0.80.

Note that a non-linear elastic problem is solved instead of the elastic-plastic one,

when the load-relief curve is without hysteresis. Of course, this is a simplification

of the real deformation process of the beams.

14.4 All Three Beams are Linearly Elastic

Beams will be linearly elastic if G1 = G2 = G3 = 1. The computational results are

shown in Figs. 14.1–14.24. In Figs. 14.1, 14.4, 14.7, 14.10, 14.13, 14.16, 14.19,

14.22, the amplitude characteristics w(0.5; t), phase portraits, Poincaré sections,

and the power spectrum of beams vibration are located vertically. The results cor-

responding to the top, middle, and lower beams are located beginning from the

left to right. Time histories of the deformation of the beams surfaces are shown in

Figs.14.2, 14.5, 14.8, 14.11, 14.14, 14.17, 14.20, 14.23. Finally, in Figs.14.3, 14.6,

14.9, 14.12, 14.15, 14.18, 14.21, 14.24 the time movement of the surfaces of con-

tact pressure are reported. The damping coefficients ε1 = ε2 = ε3 = 1.4. Note that

all characteristics are taken for center points in the cases of freely supported beams

(on balls), and for the end point of the cantilever beam.

For small load values q10 < 0.34 only the top beam vibrates, and the frequency

spectrum includes only the external excitation frequency ω . With the load increase,

after an impact between top and middle beams, the latter starts to vibrate (Fig. 14.1).

The top beam exhibits quasi-periodic vibrations (view a phase portrait similar to an

ellipse in shape and see the Poincaré sections). Although in the frequency spectrum

the frequency 2ω is observed, but its amplitude is much more smaller than that

corresponding to the fundamental frequency. A deflection surface of the top beam

creates a regular waveform structure. The middle beam vibrates in a quasi-periodical

manner, and in the spectrum the fundamental frequency ω and integral multiple

frequencies 2ω, 3ω appear. Its deflection surface is much more complicated than

that of the top beam (Fig. 14.2). The contact zone between them occurs in their

central parts (Fig. 14.3).

The described qualitative behavior takes place until q10 = 0.596 when the middle

beam touches the lower one. This event causes a qualitative change in the type of vi-

bration of all three beams: the first period doubling appears. In the power spectrum

the frequency components ω/2, 3ω/2 and so on, are visible. Note that in the top

beam the fundamental frequency ω dominates in its power spectrum. In the middle

beam the amplitudes corresponding to the frequencies mentioned above are similar.

Therefore, the phase portrait changes slightly for the first beam, whereas loops ap-

pear in the phase portrait of the second beam. Two sets of points are observed in the

Poincaré sections. The sudden triple bifurcation, just after vibration occurrence, is

observed in the third beam (see Fig. 14.4).

The deflection surface of the top beam remains practically unchanged, but this

cannot be said of the second beam (Fig. 14.5). Characteristic properties of a con-

tact zone between the two top beams are conserved; only its width is increased.
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Fig. 14.1 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), and power spectra

for q1 = 0.34

An interaction between middle and top beams appears at the end of the console

beam (Fig. 14.6). The phase portrait and power spectrum prove that a slight degree

of chaos appears. Increasing the load up to q10 = 0.606 (Fig. 14.7) the frequency

components corresponding to a triple bifurcation appear also in both top and mid-

dle beams. The physical explanation follows: the amplitude of the lower vibrations

increases, and hence it interacts more strongly with two remaining beams. Simulta-

neously, in the power spectra of all three beams the components corresponding to
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Fig. 14.2 Time histories of the beam surfaces for q1 = 0.34

the first Hopf bifurcation appear. The deflection surfaces of the beams are practically

conserved (Fig. 14.8). The contact zone between the top and middle beams changes,

and contact takes place on some intervals along the beams length (Fig. 14.9). A col-

lapse of the triple bifurcation with a simultaneous occurrence of period doubling

(Hopf) bifurcation occurs for q10 = 0.612 (Fig. 14.10). However, the frequency

components produced by this bifurcation are essentially smaller in comparison

to the analogous components of the first bifurcation. Therefore, the fundamental
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Fig. 14.3 Contact pressure between beams for q1 = 0.34

associated characteristics, like amplitude characteristics, Poincaré section, phase

portrait, and power spectra, remain practically unchanged (see Figs. 14.10, 14.12).

Furthermore, for q10 ≥ 0.614 (Fig. 14.13), in the spectra of second and lower

beams, noisy components appear. All beams are in the synchronization regime

within the frequencies of the secondary Hopf bifurcation. The points of the Poincaré

sections display irregularity. The vibration picture is conserved up to q10 = 0.65

(see Fig. 14.16) with a simultaneous increase of noisy components. The deflection
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Fig. 14.4 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), and power spectra

for q1 = 0.596 and q1 = 0.6

character and interaction zones of the beams do not change (see Fig. 14.17 and

Fig. 14.18). Next, the second Hopf bifurcation is collapsed, and vibration of all

beams is synchronized on the fundamental frequency ω , and all other frequency

components are integral multiples, i.e., 2ω, 3ω and so on (Fig. 14.19). Further-

more, when the load increases up to q10 = 2, the motion of the second beam becomes

chaotic, which is displayed by the “wash-out” phase portraits and Poincaré sections
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Fig. 14.5 Time histories of the beam surfaces for q1 = 0.596 and q1 = 0.6

(Fig. 14.22). On the other hand, those characteristics exhibit the regularization of

vibrations of top and lower beams. The beams interaction changes qualitatively.

The contact zones between all three beams are split into intervals (Fig. 14.23 and

Fig. 14.24).

To conclude, the following scenarios leading to chaos are reported: one-frequency

vibration (harmonic regime), first Hopf bifurcation, triple bifurcation and its collapse,
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Fig. 14.6 Contact pressure between beams for q1 = 0.596 and q1 = 0.6



332 14 Bifurcation and Chaos of Sandwich Beams

Fig. 14.7 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), and power spectra

for q1 = 0.606 and q1 = 0.61

second Hopf bifurcation and its collapse, transition to chaos. This scenario is not

similar to that of the Feigenbaum transition: the bifurcation sequence is finite, and

in addition in spite of a period doubling bifurcation, a triple bifurcation is observed.
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Fig. 14.8 Time histories of the beam surfaces for q1 = 0.606 and q1 = 0.61
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Fig. 14.9 Contact pressure between beams for q1 = 0.606 and q1 = 0.61
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Fig. 14.10 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), and power spec-

tra for q1 = 0.612 and q1 = 0.61
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Fig. 14.11 Time histories of the beam surfaces for q1 = 0.612 and q1 = 0.61
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Fig. 14.12 Contact pressure between beams for q1 = 0.612 and q1 = 0.61
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Fig. 14.13 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), and power spec-

tra for q1 = 0.614 and q1 = 0.61
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Fig. 14.14 Time histories of beam surfaces for q1 = 0.614 and q1 = 0.61
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Fig. 14.15 Contact pressure between beams for q1 = 0.614 and q1 = 0.61



14.4 All Three Beams are Linearly Elastic 341

Fig. 14.16 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), and power spec-

tra for q1 = 0.616 and q1 = 0.62
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Fig. 14.17 Time histories of the beam surfaces for q1 = 0.616 and q1 = 0.62
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Fig. 14.18 Contact pressure between beams for q1 = 0.616 and q1 = 0.62



344 14 Bifurcation and Chaos of Sandwich Beams

Fig. 14.19 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), and power spec-

tra for q1 = 0.65



14.4 All Three Beams are Linearly Elastic 345

Fig. 14.20 Time histories of the beam surfaces for q1 = 0.65
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Fig. 14.21 Contact pressure between beams for q1 = 0.65
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Fig. 14.22 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi) and power

spectra for q1 = 2.0
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Fig. 14.23 Time histories of the beam surfaces for q1 = 2.0



14.5 All Three Beams are Nonlinearly Elastic 349

Fig. 14.24 Contact pressure between beams for q1 = 2.0

14.5 All Three Beams are Nonlinearly Elastic

Beams will be absolutely nonlinearly elastic if G1 = G2 = G3 = 0. The computa-

tional results are reported in Figs. 14.25–14.29. The vibration characteristics are

located similarly to those in the linearly elastic case. In addition, the dependence on

time of the deformation intensity is reported in ei(t). This is defined on the beam

surfaces in the case of free (balls) support, and clamping for the cantilever beam.
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Fig. 14.25 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), power

spectra and ei(t) for q1 = 0.34

The solid curve corresponds to the flow deformation intensity es1. Similar to

the previous case, the top beam exhibits quasi-harmonic vibrations (Fig. 14.25).

This can be easily observed in the phase portrait and the power spectrum. Note that

deformation intensity exceeds es1 i.e., the deformation intensity achieves a horizon-

tal part of the deformation diagram (14.7). Increasing q10 more excites the second

beam. In the power spectrum of the second beam, the components ω and 2ω are
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Fig. 14.26 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), power

spectra and ei(t) for q1 = 0.75

observed. Since the second component is essentially larger then the first one, the

amplitude characteristics are qualitatively different in comparison with the case of

harmonic vibrations. For q10 = 0.75 the first period doubling (Fig. 14.26) occurs

and the components ω/2, 3ω/2, and so on, appear.

However, the quasi components are very small for the first beam, so its vibra-

tions remain quasi-harmonic. For the second beam, those components are large and



352 14 Bifurcation and Chaos of Sandwich Beams

Fig. 14.27 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), power

spectra and ei(t) for q1 = 0.8

the vibrations more complex, as shown by the amplitude characteristics and the

phase portraits. In the Poincaré section, with respect to the period of exciting force,

two sets of points occur, instead of one point observed for a smaller load. Both

beams achieve the horizontal part of the deformation diagram, which is exhibited

by the characteristics ei(t). This picture holds also during contact with the third
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Fig. 14.28 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), power

spectra and ei(t) for q1 = 1.0

beam (Fig. 14.27), which in practice immediately approaches a chaotic state. For

q10 = 1 the first Hopf bifurcation is collapsed (Fig. 14.28); in the spectrum of the

top and middle beams a strong increase of noisy components is observed, and then

the system moves into chaos (Fig. 14.29).

To conclude, the increase of the parameter q10 is accompanied by a motion at

low scales. The higher frequencies appear and the beams motion is more complex.
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Fig. 14.29 Vibrations wi(0.5; t), velocities ẇi(0.5; t), Poincaré sections (ẇi, wi), power

spectra and ei(+) for q1 = 1.5

In the power spectrum a transition from the discrete to the continuous spectrum

is observed, and it is widened into a set of high frequencies. During a transition

to chaos, and occurrence of large motions, the shape of the power spectrum re-

calls that of the processes where the energy cascades into the top of spectrum. In

other words, a clearly expressed maximum, with mild decrease of the spectrum

density in the direction of high frequencies, and a sudden decrease in the direction
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of low frequencies are observed (Figs. 14.27–14.29). The increase of q10 is ac-

companied by a shift of the spectrum density maximum in the direction of high

frequencies.

It should be emphasized that energy cascade into the high part of the spectrum

is typical for continuous systems exhibiting complex dynamics, including hydrody-

namic objects.

Note that a route to chaos is different than in the case previously analyzed. The

bifurcation series are not observed, and after the first Hopf bifurcation the system

immediately transits to chaos. Therefore, the presence of nonlinearly elastic material

qualitatively changes the vibrational process.

14.6 Conclusions

The general and high-accuracy method to trace bifurcation and chaos of physically

dissipative nonlinear sandwich of three beams is proposed. First, the governing

equations are derived and the computational finite difference algorithm is de-

scribed. Three different materials of the beams are considered (ideal elastic-plastic,

elastic-plastic with linear strengthens, and the pure aluminum). The amplitude char-

acteristics, phase portraits, Poincaré sections, and the power spectrum are used to

trace bifurcations and chaos of the analyzed system. Two main computational ex-

amples are reported. In the first one, the dynamics of linearly elastic beams are

analyzed. The periodic, quasi-periodic, and chaotic dynamics of the beams is de-

scribed in the text and is not repeated here. In addition, the contact zones between

beams are traced. One frequency bifurcation, a first Hopf bifurcation, the triple bi-

furcation birth and its collapse, a second Hopf bifurcation and its collapse, and the

bifurcation scenario leading to chaos are illustrated and discussed, among others.

The second example includes three beams that are nonlinearly elastic (detailed

description is given in the latter section). In the beam’s power spectrum, a transition

from the discrete to continuous spectrum is observed with a clearly exhibited energy

cascade into the high-spectrum component. The bifurcation series scenario leading

to chaos is not observed in this case. After the first Hopf bifurcation the system

suddenly jumps straight into chaos.



Chapter 15

Nonlinear Vibrations of the Euler-Bernoulli

Beam Subjected to Transversal Load
and Impact Actions

In this chapter, complex vibrations of a flexible Euler-Bernoulli type beam driven

by dynamical load and with various type of inputs on its edge are studied. The

governing equations include damping terms with damping coefficients ε1, ε2 as-

sociated with deflection w and displacement u, respectively. Damping coefficients

ε1, ε2 and the transversal load coefficients (q0,ωp) serve as control parameters.

The formulated infinite dimensional problem is reduced to that of final dimen-

sion applying the finite difference method with approximation O(h2) with regard to

spatial coordinates and it is solved via the fourth-order Runge-Kutta method. This

approach enabled identification of damping coefficients ε1 and ε2, as well as inves-

tigation of elastic waves generated by an impact introduced through a mass (lumped

body) moving at constant velocity V . The introduced analysis is supported by ap-

plied achievements of the qualitative theory of differential equations and nonlinear

dynamics.

15.1 Introduction

This chapter provides a novel approach to various topics of nonlinear vibration of a

continuous system, impact, wave, bifurcation, and chaos.

It is well known that dynamical behavior of the Bernoulli-type beams with im-

pacts has been studied theoretically, numerically, and experimentally for a long

time. For example, the Bernoulli-type beam supported by springs and periodically

forced has been studied using the finite elements method [152]. Dynamics of vibro-

impacts are observed evaluating the impact velocity as a function of excitation

frequencies.

In reference [75] an experimental study of a beam held in a fixed mount with

clamped-free boundary conditions forced by a sinusoidal impactor was carried out.

The authors show that a mean square response amplitude is captured by the first

proper orthogonal beam mode.
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Periodic solutions of a periodically driven multi-DOF beam system possessing

an elastic stop in the middle was studied in reference [306]. The steady-state beam

responses were analyzed using two-point boundary value problems and multiple

shooting applying the approximation of one, two, and four degrees of freedom of

the beam.

Regular and chaotic impacting and non-impacting motion of a driven beam has

been studied in [58]. One-, two- and three-impacts per motion of a vibro-impacting

pinned beam are studied experimentally and the results are compared with those

obtained from multi degree-of-freedom models. It is concluded that the latter models

are necessary to estimate proper system responses for a high-frequency range [91].

Regular and chaotic dynamics of a long-term behavior of periodically excited

linear beams with a one-sided spring has been studied in reference [307] both nu-

merically and experimentally.

A rod subjected to both supercritical force and a time-dependent transverse load-

ing has been studied numerically via the discretization method [283].

On the other hand, chaotic motions exhibited by deterministic systems are nowa-

days widely reported in the scientific literature. Although they have been observed in

fluid mechanics, other mechanical objects governed by partial differential equations

like plates and shells may also exhibit the so-called spatial-temporal deterministic

chaos [21, 25, 31]. More rigorously the associated problem of uniqueness of solu-

tion to dynamical problems for shells of Timoshenko type has been investigated in

references [160].

However, in spite of an increasing number of investigations of chaotic dynamics

of such complex deterministic objects like plates, conical, spherical, and cylindrical

shells the investigation of geometrically nonlinear Euler-Bernoulli type beams still

await further study. Our work, among others, addresses the influence of damping

terms ε1, ε2 and various geometrical beam parameters on the frequency character-

istics of the mentioned objects, and we analyze the behavior of waves generated by

the lumped body impact on the beam.

15.2 Problem Formulation

We mainly address the problem of mathematical modeling of the longitudinal vibra-

tions of flexibly Euler-Bernoulli type beams with various boundary conditions (see

Fig. 15.1).

Introducing the coordinates XOZ we consider the mentioned beam in the space

Ω = {x ∈ [0,a]; −c ≤ z ≤ c; − b
2
≤ y ≤ b

2
} with its middle surface deformation

εx = ∂u
∂x

+ 1
2

(

∂w
∂x

)2

, where w(x, t) denotes the beam deflection, and u(x, t) describes

displacement of its middle surface along the OX axis. It is assumed that owing

to the Euler-Bernoulli hypothesis a normal (to the middle surface) remains all the

time normal during the beam deformation process εxx = εx − z ∂ 2w
∂x2 . The mentioned

assumptions allow us to obtain the following dimensional governing equations:
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Fig. 15.1 Model of the

studied problem

ρ
∂ 2u

∂ t2
+ρε2
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∂ t
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∂ 2u

∂x2
+

∂w

∂x
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∂x2

)
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+ρε1

∂w

∂ t
+
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3

E

1−ν2

∂ 4w

∂x4
− E2c

1−ν2

(

∂ 2u

∂x2
+

∂w

∂x

∂ 2w

∂x2

)

∂w

∂x

− E2h

1−ν2

(

∂u

∂x
+

1

2

(

∂w

∂x

)2)∂ 2w

∂x2
−q = 0, (15.1)

where E is the Young modulus, ρ denotes beam material density, ε1, ε2 are the

already mentioned damping coefficients, 2c is the beam height, a denotes the beam

length, and q is the beam transversal load.

Let us apply new dimensionless parameters in the following form:

A =
E

1−ν2
, w̄ =

w

2c
, ū =

ua

(2c)2
, x̄ =

x

a
, λ =

a

2c
,

q̄ = q
a4

(2c)4A
, t̄ =

t

τ
, τ =

a

h
, h =

√

Ag

ρ
, ε̄ = ε

a

h
, (15.2)

where x̄, ū, w̄, t̄, q̄, ε̄ are the mentioned dimensionless parameters, and in the

forthcoming system 15.3 bars are omitted. Now dimensionless parameters are as

follows: u is the displacement along axis x, w is the deflection, t denotes time, q is the

transversal load, ε is the dissipation coefficient, g is the gravitational acceleration,

and a, 2c are the linear beam dimensions.

The dimensionless equations are given in the form

∂ 2w

∂ t2
+ ε1

∂w

∂ t
=

1

λ2

(

− 1

12

∂ 4w

∂x4
+ l1(w,u)+ l2(w,u)+q

)

,

∂ 2u

∂ t2
+ ε2

∂u

∂ t
=

∂ 2u

∂x2
+ l3(w,w), (15.3)
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where

l1(w,u) =
∂w

∂x

∂ 2u

∂x2
+

(

∂w

∂x

)2 ∂ 2w

∂x2
, l2(w,u) =

(

∂u

∂x
+

1

2

(

∂w

∂x

)2)∂ 2w

∂x2
,

l3(w,w) =
∂w

∂x

∂ 2w

∂x2

are the nonlinear operators.

The following boundary conditions are attached to Eqs. (15.3):

1. Clamping-clamping:

w(0) = w(1) = 0, u(0) = u(1) = 0,
∂w(0)

∂x
=

∂w(1)

∂x
= 0 ; (15.4)

2. Simple-support:

w(0) = w(1) = 0, u(0) = u(1) = 0,
∂ 2w(0)

∂x2
=

∂ 2w(1)

∂x2
= 0 ; (15.5)

3. Clamping-free edge:

w(0) = u(0) = 0, Mx = Nx = 0, (15.6)

where Nx =
∫ c
−c σxxdz is the longitudinal force, Mx =

∫ c
−c σxxzdz is the torque.

The following initial conditions are attached to system Eqs. (15.3), (15.4), (15.5),

(15.6) in the considered problems 1–3:

w(x)|t=0 = u(x)|t=0 = 0, ẇ(x)|t=0 = u̇(x)|t=0 = 0. (15.7)

15.3 Finite Differences Method

The infinite dimensional problem (15.3), (15.4), (15.5), (15.6), (15.7) is reduced to a

system of ordinary differential equations (ODEs) using the finite differences method

with approximation O(h2). In each mesh node the following system of ODEs is

defined:

L1,h(wi,ui) = εiẇi + ẅi,

L2,h(wi,ui) = ε2u̇i + üi, i = 0, . . . ,n, (15.8)

where:

L1,h(wi,ui) =
1

λ2

[

− 1

12

1

h4
(wi−2 −4wi−1 +6wi

−4wi+1 +wi−2)+
1

2h
(wi −1−wi+1)

1

h2
(ui+1 −2ui +ui−1)
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+
1

2h
(wi−1 −wi+1)

1

h2
(ui+1 −2ui +ui−1)

+

(

1

2h
(wi−1 −wi+1)

)

1

h2
(wi+1 −2wi +wi−1)

+
1

h2
(wi+1 −2wi +wi−1)

(

1

2h
(ui+1 −ui−1)

+
1

8h2
(wi−1 −wi+1)(wi−1 −wi+1)

)

+q

]

,

L2,h(wi,ui) =
1

h2
(ui+1 −2ui +ui−1)

+
1

2h
(wi−1 −wi+1)

1

h2
(wi+1 −2wi +wi−1).

The following boundary conditions are added to the considered cases:

(i) Problems 1 and 2:

w0 = wn = 0, u0 = un = 0 ; (15.9)

(ii) Problem 3:

w0 = u0 = 0, Mx = Nx = 0. (15.10)

Initial conditions (15.7) in the difference form for problems 1–3 are:

w(xi)|t=0 = u(xi)|t=0 = 0,

ẇ(xi)|t=0 = u̇(xi)|t=0 = 0, i = 0, . . . ,n. (15.11)

The ODEs obtained for all problems are solved via fourth-order Runge-Kutta

algorithm. The beam considered is subjected to the action of sign changeable load

of the form

q = q0 cos(ωpt), (15.12)

where ωp is the frequency of excitation, and q0 is the excitation amplitude. Let us

emphasize that the considered system is dissipative and damping coefficients ε1,ε2

correspond to deflection w and displacement u, respectively.

15.4 Influence of Damping Coefficients on the Frequency

Characteristics

Let us consider the influence of damping ε1 on the behavior of frequency char-

acteristics along the beam length. The relative beam length λ = a
2c

= 50; it is

sinusoidally driven with amplitude q0. Note that both steps h (spatial) and Δt (time)

have been chosen from stability conditions applying the Runge principle. We have

taken n = 40, h = 1/40, and the time step Δt = 3.9052×103.
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Below, we study the influence of ε1 on variations of the fundamental frequency

characteristics along the beam length applying the following indicators (for prob-

lems 1 and 3): Poincaré sections, modal portraits w(w′
x), time histories w(t), power

spectra, and phase portraits w(ẇ).

15.4.1 Power Spectra

In Table 15.1 power spectra for problem 1 for various damping coefficients ε1, ε2 =
0 are reported. The amplitude of excitation q0 for each ε1 has been chosen to keep

the condition w(0.5) ≈ 1.5.

Analysis of the results reported in Table 15.1 shows that depending on ε1 value,

the number of frequencies along the beam length changes. Decreasing ε1 induces

a decrease of frequencies and already for ε1 = 5 all beam points vibrate with one

frequency along the whole beam length.

Below more detailed investigations are presented. With a decrease of parameter

ε1 one may observe a convergence of the frequencies on the graphs of power spec-

tra depending on the beam length (x = 0.25, x = 0.5, x = 0.75). For ε1 = 20 the

number of frequencies in the beam center (x = 0.5) is significantly smaller in com-

parison to the beam quadrants (x = 0.25; 0.75). In the center a linear combination

of the free frequency ω3 =
ωp

6
and the free frequencies ω5 = 2.12 and ω1 ≈ 10−6

occurs, whereas in the quadrants (x = 0.25; 0.75) five more linearly independent

frequencies and the linear combination ω2 =
ωp

11
appear. The frequency ω4 essen-

tially depends on the length: for x = 0.25, we have ω4 = 1.76, and for x = 0.75, we

have ω4 = 1.22. In the considered case the number and magnitude of frequencies

in the beam quadrants fully overlap already for ε1 = 10. The number of frequencies

for x = 0.5 is less than for x = 0.25; 0.75, but the values of frequencies overlap their

values for x = 0.25 and x = 0.75. If ε1 = 10 then in points x = 0.25 and x = 0.75 a

larger set of linearly dependent frequencies appears, whereas for x = 0.5 this num-

ber is smaller. Full overlapping of frequencies in the beam quadrants is caused by a

symmetric clamping introduced from both beam sides. For ε1 = 5 the number and

magnitude of frequencies do not depend on the beam length. Finally, in general, the

influence of the damping ε1 on the frequency characteristics plays an essential role

in the case of problem 1.

Investigation of problem 3 (λ = 50) In this section we study beam vibrations for

the series of fixed values of damping ε1 = 20, 10, 5, 1 and use variation of damping

ε2. In Tables 15.2 and 15.3 power spectra for problem 3 and for various values of

damping coefficients are reported. The amplitude q0 has been chosen for each case

in a way analogous to that in the previous problem.

The following main results have been obtained while analyzing this problem.

Full overlapping of the number and magnitude of frequencies was observed only

for ε1 = 1 and ε2 = 0. Only one linear combination ω5 =
ωp

2
appears. Furthermore,

increasing the value of ε1 (for ε2 = 0), and decreasing the distance between the
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Table 15.1 Power spectra

studied point and the clamping yield an increase of the frequencies occurring in the

spectrum. On the contrary, on the free beam edge a number of frequencies is small

in comparison to other beam points.

For ε1 = 20, ε2 = 0 on the beam free edge only three frequencies appear (all of

them are linearly dependent). In point x = 0.75 the number of frequencies increases
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Table 15.2 Power spectra for λ = 50 (a)



15.4 Influence of Damping Coefficients on the Frequency Characteristics 365

Table 15.3 Power spectra for λ = 50 (b)
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to five, and there is one linear combination; in the center (x = 0.5) we already have

six frequencies, all of them linearly independent. For x = 0.25 nine frequencies

occur and only one linear combination of the frequencies exists (the same as for

point x = 0.75). In the case of ε1 = 20 and ε2 = 0.05 one observes a decrease of the

number of frequencies along the whole beam length, but their number is different.

Namely, for ε1 = 20 and ε2 = 0.1 the number of frequencies (two) is the same along

the beam length, whereas for ε1 = 20, ε2 = 0 the number of frequencies varies from

nine to three.

For ε1 = 10 and ε2 = 0 a picture analogous to the case of ε1 = 20, ε2 = 0 occurs,

but more frequencies increase in comparison to the previous case. The number of

linear combinations is minimal. For x = 0.25 the number of frequencies is so high

that they are almost indistinguishable and the system moves into a chaotic state. An

increase of the parameter ε2 up to 0.05 yields a rapid decrease of the number of

frequencies in the power spectrum, but their distribution along the beam length is

different. They fully coincide only for ε2 = 0.1.

Although for ε1 = 5 and ε2 = 0 the number of frequencies and their values for

x = 0.75 and x = 1 fully coincide, in point x = 0.5 an increase in the number of fre-

quencies is observed, and for x = 0.25 they increase again. Increasing the parameter

ε2 in a way analogous to that described so far, one may observe for ε2 = 0.07 full

coincidence of the number of frequencies.

In Table 15.4, taking into account results obtained so far, the graphs of conver-

gence of the number of frequencies along the beam length for increasing of ε2 are

reported. The vertical axis corresponds to the beam length, whereas the horizontal

axis corresponds to the number of frequencies. One corresponds to the free beam

edge, whereas zero corresponds to the clamped beam edge. Each curve is supple-

mented by the associated damping coefficient ε2.

Analysis of the reported results allows us to conclude that the influence of coeffi-

cient ε2 is important, since its gradual increase results in observation of coincidences

of the number of frequencies along the beam length.

If one takes graphs for an arbitrary ε1, then a gradual decrease of the number of

frequencies may be observed while approaching the studied beam point to the free

beam edge (x = 1).
For ε2 = 0.1 in majority of the studied cases, including ε1 = 20, 10 full coinci-

dences of the number of frequencies occurs. It occurs for ε1 = 5 taking ε2 = 0.07.

This means that considering the values of ε1 = 5, 10, 20 it is necessary to take into

account the damping value in the beam material (ε2).
For ε1 = 1 and ε2 = 0 the number and frequency values along the beam length

coincide, i.e., they are optimal in the case of engineering computations. In other

words, neglecting of the damping term ε2 for ε1 > 1 may lead to the occurrence of

a new system state with completely different number of frequencies along the beam

length.

Investigation of problem 3 (λ = 100) Next, we study problem 3 regarding the

character of beam vibration variation depending on an increase of the relative beam

length (λ = 100). Note that in the previous cases the beam of length λ = 50 has
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Table 15.4 Graphs of frequency convergence

been considered. Having in mind that frequency of free beam vibrations ωp = 10.2
for λ = 100, we consider only the influence of coefficient ε1(ε2 = 0).

Comparing the results for λ = 50 (Tables 15.2 and 15.3) and for λ = 100

(Table 15.5) one may conclude that the number of frequencies is essentially higher

for the first case, although the way in which new frequencies occur remains un-

changed. In this case the occurrence of chaotic dynamics is not observed. In

addition, linear combinations of any arbitrary frequencies for arbitrary values of

ε1 do not appear. Full coincidence of both the number of frequencies and values

is observed only for ε1 = 1. In the case of ε1 = 20 only two frequencies occur on

the free beam edge, whereas already for point x = 0.75 there are five frequencies;

for x = 0.5 and for x = 0.25 there are six frequencies. However, the corresponding

frequencies values for x = 0.5 and 0.25 are different.

Although the number of frequencies appearing for ε1 = 20 is different depending

on the considered beam point, it coincides for λ = 50, 100. In the free edge this
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Table 15.5 Power spectra for λ = 100

difference is a minimal one. For ε1 = 10 a difference in the number of frequencies

(for different λ) decreases. Beginning from ε1 = 5 one may observe convergence

of the number of frequencies depending on the considered point, whereas the full

convergence appears for ε1 = 1. To conclude this section, we have illustrated the

convergence of the number of frequencies for the values ε1 = 1, ε2 = 0 indepen-

dently of the geometrical beam parameters.
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Table 15.6 Time histories and deformation curves

Investigation of deformation (problem 3) In Table 15.6 the graphs of middle beam

surface deformation for problem 3 along the beam length λ = 50, 100 for series of

ε1 values in the time instant t = 109.72 (in time histories w(t) the sign “1” is marked)

have been presented.

Analysis of the obtained results shows that the number of the observed periods

for λ = 50 and 100 is different. It may be explained through the difference of the

chosen excitation frequencies ωp = 5.1 and 10.2, respectively.

In addition, for the case of λ = 50 asymmetry of the deflection graphs with

respect to OX axis is observed, whereas for λ = 100 the mentioned graphs are sym-

metrically distributed with respect to the OX axis for all values of ε1 (except of

ε1 = 20). Among the others, a period doubling for a doubled parameter λ has been

observed.

15.5 Waves Generated by a Longitudinal Impact

Next, we consider the case of an impact on the free beam edge generated by a

lumped body moving longitudinally (see Fig. 15.2).



370 15 Nonlinear Vibrations of the Euler-Bernoulli Beam

Fig. 15.2 Model of the studied problem

After an impact the mass remains attached to the beam and then dynamics of the

system “beam-impacting mass” is studied.

We need to attach to Eqs. (15.3) the following dimensionless boundary condi-

tions:

w(0) = u(0) = 0,
1

χ
Nx =

∂ 2u

∂ t2
, Mx = 0, (15.13)

where χ =
Mrp

Mσ
, Mrp is the impacting body mass, Mσ is the beam mass.

Initial conditions are as follows:

w(x)|t=0 = u(x)|t=0 = 0,

ẇ(x)|t=0 = u̇(x)|t=0 = 0, x �= 0, u̇(x)|t=0 = V for x = 0, (15.14)

where V is the impacting body velocity in the impact time instant.

The defined infinite problem is reduced to a finite dimensional one using finite

differences with approximation O(h2). In each mesh point a system of ODEs similar

type to that of (15.3) is obtained, and the following additional equations on the

border (15.15) are attached:

w0 = u0 = 0,
1

χ
Nx = ü, Mx = 0. (15.15)

Initial conditions in this case take the form:

w(xi)|t=0 = u(xi)|t=0 = 0,

ẇ(xi)|t=0 = u̇(xi)|t=0 = 0 for x �= 0,

u̇(xi)|t=0 = Nx

1

χ
for x = 0, i = 1, . . . ,n. (15.16)

Now we take the external load governed by (15.12), where q0 = 10−6, and the

damping coefficients are ε1 = 1, ε2 = 0. We consider the cases for the following

control parameter values χ = 1, 1.5, 2 and the computed frequency spectra are

reported in Table 15.7.
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Table 15.7 Power spectra in the case of impact action

One may observe in the reported spectra the frequency number increase corre-

sponding to increase of χ up to 1.5. For χ = 1 only one Hopf bifurcation at ω6

is observed, and the series of the dependent frequencies ωp, ω2, ω4, ω6, ω7, ω10

differ from each other by the value of 0.87. The pairs of frequencies: ω1–ω6 differ

from each other by the values of 0.35. The frequencies ω7–ω11 differ from each

other by the value of 0.2.

For χ = 1.5 two Hopf bifurcations associated with ω8, ω14 appear, and the linear

combination of ω3 and frequencies ω7, ω12 appear. Frequencies ω1, ω2 and ω4, ω5

differ from each other by the value of 0.1. The remaining detected frequencies are

linearly independent.

Two Hopf bifurcations are also detected for χ = 2 for ω8, ω14 and the frequencies

ωp, ω7, ω10, ω13, ω16, ω19 differ by the value of 0.66.

Then, for the parameters fixed so far, various χ and V = 10−14, the wave move-

ment along the beam length is studied. Below, graphs of the displacement waves for

different time instants are analyzed. Among the others, time instants corresponding

to qualitative changes in the time courses for χ = 1, 1.5, 2 have been defined.
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Table 15.8 Beam displacement generated by impact

For the initial time instant the reported displacements generated by impact (see

Table 15.8) remain in the neighbourhood of the point u = 0 along the whole beam

length with negligible differences occurring on the free beam edge.

A stationary time instant of the steady-state time histories occurs when the beam

deflection becomes symmetric with respect to the beam axis, whereas it remains

asymmetric up to this instant.

A critical time instant defines the time when interaction of both longitudinal and

transversal beam vibrations appears. The occurrence of a critical time instant is

characterized either by a convex graph or by the intersection of the OX axis. We

have found that the critical time instant is minimal for χ = 2, tcr = 1594, maximal

for χ = 1, tcr = 1651, and the critical time instant for χ = 1.5 is 1594.

15.6 Conclusions

We have shown how important role a proper identification of damping parameters

ε1 and ε2 plays in the analysis of dissipative vibrations of a flexible beam.

A choice of parameters ε1 and ε2 is essential, since their improper values may

require a principally new computational scheme. In the case of ε1 > 1 and ε2 = 0
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the beam vibrations may occur as the vibrations of uncoupled nonlinear oscillators,

each of them exhibiting vibrations with its own spectrum of frequencies. A criterion

of the choice of ε1 and ε2 is the observation that nonlinear beam vibrations should

be considered as those generated by the system of coupled nonlinear oscillators.

Modeling the beam as an elastic object and after application of the finite differ-

ence method along the spatial coordinates, one obtains the lumped system with

40 degrees of freedom being viewed as the system of 40 coupled oscillators. The

proposed criterion of a reliable choice of damping parameters ε1 and ε2 remains

valid also in the case of nonlinear beam vibrations.
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completely stable, 43

complex

dynamical approach, 42

dynamics, 355

half-plane, 227

modal model, 298

structure, 89

value, 36

vibrations, 216, 294

complexity, 42

temporal, 8

component

harmonic, 108, 118

composite, 41, 156

beam, 320

function, 78

composite beam, 297

composite laminated plate, 9

composite object, 54

composite shell, 163, 165

composition catastrophe, 136

compressed rod, 10

compressibility condition, 226

compressible liquid, 60

compression, 17, 153, 230

compressional damping, 297

compressional vibrations, 319

computation

elastic strain energy, 10

harmonics, 120

manifold, 7

computational

algorithm, 2, 6, 28, 85, 294, 300, 301, 320,

355, 372

method, 3, 58, 283

results, 349

time, 15, 63

computations, 3, 73, 117

economics, 15

stability, 42

concentrated mass, 9

condition

accurate series, 55

boundary, 28, 52, 58, 63, 73, 79, 106, 152,

165, 168, 183, 184, 190, 216, 238, 239,

243, 272, 282, 284, 286, 291, 311, 322,

357, 360

geometrical, 52

uniform, 64

compressibility, 226

convergence, 62

Dirichlet, 113

Dirichlet kernel, 115

existence, 47

fixing, 49

initial, 65, 144, 178, 179, 233, 324

intersection, 174

irregularity, 233

minimization, 68

multiplicity, 119

necessary, 13, 48

orthogonality, 56

solution

exact, 65

stability, 286

stationarity, 46

sufficient, 7, 139

symmetry, 208

conditional branch, 43

conditioning, 71

conditioning equation, 27

conditions, 20, 69, 263

boundary, 4, 11, 13, 28, 46

Dirichlet, 113

equilibrium, 42

load, 9

MBG, 5

sufficient, 7

conical

shell, 358

surface, 203

console beam, 326

constant
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acceleration, 176

Feigenbaum, 268

Nyquist, 118

rigidity, 272

stiffness, 281

velocity, 193, 197, 200, 357

constraints, 52, 83

beam, 297

ideal, 42

one-sided, 171, 190, 203

two-sided, 176

contact

area, 188

between beams, 301

continuous, 173

load, 187

loss, 191

one-sided, 299

pressure, 299, 308, 310, 314, 316

shell-mass, 194

stress, 322

surface, 48, 185, 191

vibrations, 298

zone, 193, 194, 301, 320, 355

continual system, 207

continuity conditions, 46

continuous

contact, 173, 194

function, 72, 178

differentiable, 38

functional, 37

inner product, 59

model, 34

parameter, 110

partially, 113

potential operator, 5

signal, 117

solution, 4

spectrum, 354

system, 41, 271, 288, 298, 324, 357

total energy, 46

continuum, 46

contour

bounded, 205

curve, 180

contractual rarefaction, 19

contradistinction, 101

control, 153, 220

beam, 297

chaos, 271, 274, 279

electromechanical, 8

parameter, 6, 91, 95, 100, 106, 136, 166,

205, 211, 219, 230, 255, 264, 305, 357

point, 65, 258

controllable synchronization, 279

controlled horseshoe chaos, 8

controller, 298, 320

convection, 227

convective flow, 63

convergence, 37, 59, 69, 72, 83, 95, 114, 118,

215, 246, 250

approximate solution, 13

Bubnov-Galerkin method, 248, 273

condition, 62

energetical, 71

finite differences, 291

Fourier series, 113, 248

geometrical, 230

method

finite differences, 293

MBG, 2, 4, 5

Newton, 191

Runge-Kutta, 286

rate, 63

convergent

curve, 246

energy, 70

Feyer summation, 113

Fourier series, 69, 115

linear space, 37

operator, 5, 6

convex surface, 48

convexity, 161

convolution theorem, 117

coordinates, 17, 30, 40, 42, 45, 74, 80, 103,

109, 120, 155, 160, 164, 172, 181, 185,

226, 227, 260, 272, 281, 321, 358

boundary, 114

circled, 264

circular, 161, 279

generalized, 137

loading, 254

polar, 205

spatial, 1, 28, 107, 210, 240, 283, 294, 324,

357

Coriolis acceleration, 172

correction of solution, 83

cosine, 109

Couette flow, 227

coupled

beams, 298

moduli, 302

non-linear equations, 9

oscillators, 172

thermoelasticity problems, 6

crack, 9, 297, 319

crisis, 7, 230

criterion



398 Index

energetical, 41, 49, 51, 53, 55

exact, 61

stability, 45, 124, 125

variational, 47

Volmir, 144, 168, 255

critical

bifurcation point, 50

load, 3, 42, 43, 47, 56, 76, 85, 89, 91, 92,

125, 136, 188, 245, 246, 254, 263, 274,

293

longitudinal, 279

parameter, 42, 189

pressure, 237

state, 45, 55, 168

surface size, 104

time, 372

critical loading, 188

cross

-type

heterogeneity, 147

non-homogeneity, 91

addition, 41, 90

section, 189, 235, 237, 251, 266

cryogenic fuel tank, 236

cubical cell, 232

curvature, 16, 152, 240, 246, 268, 272, 282,

299

average, 151

non-dimensional, 140

radius, 28, 181, 206

curve, 11, 42, 43, 85, 87, 92, 100, 119, 124,

143, 144, 153, 154, 156, 166, 168, 179,

189, 192, 194, 196, 200, 209, 222, 246,

254, 313, 321, 366

“deflection-loading”, 89

axial, 197

characteristic, 47

closed, 16

control, 278

equilibrium, 44, 45

family, 137

load-relief, 325

logistic, 266

monotonic, 154

parameterized, 137

response, 236

separating, 130

space-located, 28

curved shallow, 9

curvilinear circle, 243

cutout, 30, 35

cycle, 229, 231

limit, 9

unirotational, 287

cyclic

-fold bifurcation, 9

load problem, 3

cylindrical

panel, 178

shell, 3, 9, 28, 128, 151, 152, 154, 172, 235,

237, 240, 243, 245, 254, 255, 264, 273

intersection, 278

d’Alembert principle, 174, 300

damage, 9

damped, 127

beam, 7, 300, 319, 320

sandwich, 298

vibrations, 305, 312, 317

damping, 100, 127, 133, 135, 139, 143, 168,

194, 246, 272, 320, 357, 362, 366, 370

amplitude, 120

coefficient, 25, 206, 240, 282, 325, 361

compresional, 297

linear, 126

decomposition, 114, 251

function, 69, 113

geometrical, 84

defect, 298

definition, 36, 37, 49, 59

axial force, 52

extra displacement, 53

global stability, 260

inner product, 12

limit, 112

non-homogeneity, 1

stability loss, 54

static deformation, 18

weighting function, 74

deflected

rod, 51

shell, 278

surface, 48

deflection, 18, 47, 53, 78, 84, 85, 88, 96, 123,

124, 151, 153, 156, 158, 161, 166, 168,

175, 181, 188, 189, 193, 200, 258, 266,

271, 278, 282, 321, 324, 357, 358, 361,

372

-loading dependence, 78

-time relation, 255

amplitude, 153

asymmetry, 369

averaged, 261

beam, 301, 303

hinged, 305

central, 191

critical, 169

description, 299
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distribution, 322

dynamical, 172, 197

equilibrium, 95

finite, 6

function, 240

initial, 152

isoclines, 209, 214

maximum, 274

minimum, 223

over-critical, 274, 279

pre-critical, 254

shell, 2, 161, 194, 211

small, 313

state, 83

surface, 197, 308, 325

time history, 107, 306, 309, 312, 315

transversal, 173

“deflection-loading”, 78

“deflection-loading” curve, 89

deformable

body, 47, 171

surface, 174, 175

system, 42

deformation, 16, 17, 20, 85, 123, 126, 299,

301, 358

adhesive-plastic, 15

axial, 298

compatibility, 26, 55, 241

diagram, 313

elastic, 48

equation, 23, 28

field, 3

flexural, 153

function, 22

intensity, 303, 304, 321, 325, 349

linear, 47

local, 175, 203

modulus, 321

non-

axial, 237

linear, 237

passive, 136

piezoelectric actuator, 320

shell, 28

surface, 17, 18, 174

degree of heterogeneity, 144

delay in

control, 8

Duffing eqaution, 7

delta type functions, 117

density, 19, 28, 272, 321, 354, 359

coefficient, 99, 145

constant, 281

fluid, 225

parameter, 161

periodic points, 233

shell, 36

weight, 301

dependency

continuous solution, 4

dynamic coefficient, 103

functional, 28

harmonic frequency, 119

load-time, 188

nonlinear, 101

Young modulus, 1

derivative, 72

generalized, 3, 38

high order, 39, 113

normal, 38

partial, 240

describing function, 115

destabilization, 139

diagonal

direction, 61

matrix elements, 74

diagram

bifurcation, 7, 8

chaotic zone, 6

diameter, 176, 208

diffusion, 61

dimension

contact, 189

fractal, 8

Lyapunov, 10

reduction, 74

spatial, 8

dimensional

parameter, 179

dimensionless

boundary conditions, 370

parameters, 359

Dirac delta, 60

Dirichlet

conditions, 113

kernel, 114, 115

theorem, 56

Dirichlet theorem, 46

discontinuity, 216

first order, 217, 223

point, 113, 114

discontinuous load, 237

discrete, 59

phase space, 129

signal, 117

solution, 6

spectrum, 354

system, 136, 139, 288
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value, 65, 254

discretization method, 358

dispersion, 134

displacement component method, 320

dissipation

coefficient, 359

force, 139

of energy, 134, 136, 225

dissipative

beam, 319, 355

force, 306

system, 272, 361

vibrations, 135, 372

distortion, 236

distributed

load, 168, 191

mass, 319

distribution of

amplitudes, 135

energy, 146

error, 66

load, 254, 274

pressure, 156

temperature, 4

disturbance, 43, 225

dispersion, 134

Donnell theorem, 10

double

asymptotic trajectory, 231

integral, 30, 33

precision, 108

doubling

bifurcation, 332

five period, 219

inifinite series, 230

period, 214, 230

point, 269

torus, 7

“dovetail”, 137

driven

beam, 300, 357, 361

shell, 254

Duffing equation, 7

dynamic

amplification, 102, 103

buckling, 8, 123, 124, 144, 160

area, 125

critical loading, 3

stability, 135, 191, 237

dynamical

analysis, 27

approach, 42

behavior, 9, 15, 172, 308

criterion, 45, 140, 168

Volmir, 255

deflection, 197

four-dimensional, 8

hypothesis, 28

load, 357

method, 54

problem, 1, 3, 5, 6, 159

reaction, 173

system, 128

autonomic, 130

infinite DOF, 120

dynamically stable, 125

dynamics

beam, 301

chaotic, 6, 7, 9, 274

complex, 355

equation, 106

flying objects, 11

nonlinear, 297

of mapping, 230

shell, 15, 288

rectangular, 190

stability, 123

dynamism coefficient, 101, 104

edge, 9, 19, 30

clamping, 282

free, 180, 283

load, 357

loaded, 33

simply supported, 28

effective

numerical method, 6

velocity estimation, 5

eigen-

elements system, 5

functions, 66, 127

values, 45, 62

vectors, 45, 99

elastic

-plastic

beam, 355

deformations, 299

material, 302

-plastic material, 322

-plastic problem, 313

base, 48

beam, 317, 320, 349

bearing, 7

foundation, 9

limit, 157

material, 15

problem, 325

shell, 190
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stability, 41, 51, 136

stop, 358

strain energy, 10

surface, 173

system, 54, 152

deformations, 49

stability loss, 125

wave, 27

elasticity, 20

modulus, 16, 19, 321

theory, 15, 38, 49

volume, 299

electromagnetic field, 171

element

additional, 19, 84, 102

central, 41, 88, 100

cross-type, 91

finite

linear, 63

method, 6, 11, 183

non-homogeneous, 92

rigid, 85

rotational, 25

shell, 15, 27, 30, 56, 83

separated, 32

strengthening, 100

surface, 90

elementary

catastrophe, 139

potential energy, 164

works, 20

elementary bifurcations, 136

elliptic

-type partial equation, 2

catastrophe, 137

energetic

barrier, 154

space, 4

energetical

criterion, 46, 49, 51, 53, 55

finite norm, 73

method, 11, 74

norm, 4, 70

energetically

normalized, 273

orthonormalized, 69, 283

energy, 69

“pumping”, 125

cascade, 354

convergence, 70

criterion, 41

dissipation, 126, 134, 136, 225, 319

distribution, 146

kinetic, 20, 25

linearization, 55

operator, 73

potential, 10, 50, 136, 139, 164

total, 48, 51

source, 127

system, 46, 54

transfer, 9

Englis-Bolotin method, 173

enhances, 135

equation, 10, 194

algebraic, 73, 79, 214, 243

beam, 297, 301

deformations, 28

differential, 47

partial, 1, 60

dimensionless, 359

dynamics, 106

equilibrium, 300

forces, 164

fourth order, 241

fundamental, 29, 181

heat transfer, 4

Holmes-Duffing, 6

hyperbolic-type, 2

initial, 96

integral, 57

-differential, 8

linear, 49, 285

differential, 67

linearized, 45, 155

matrix, 13

motion, 20, 151

Navier-Stokes, 2, 225

Newton, 129

non-

coupled, 75

dimensional, 165, 179, 238

numerical integration, 120

operational, 70

partial differential, 9, 210

PDE, 240, 271

phase-modulation, 7

quasi-linear, 5

shell, 163

solution, 71

stability, 54, 152

variational, 25, 26

equilibrium, 45, 46, 48, 51, 241

closely located, 55

conditions, 42

deflection, 95

equation, 56, 300

interaction, 7
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point, 49, 54, 75, 134, 139, 153, 155, 156,

246

rectilinear form, 53

state, 11, 43, 44, 50, 125, 130, 137, 191,

317, 320

equivalent

deformation, 18

Galerkin method, 64

equivocal function, 78

error, 2, 12, 57, 61, 63, 141, 305

distribution, 66

estimation, 6, 67, 119, 237

extremes, 65, 71

finite differences method, 303

function, 56

inner product, 59

MR, 5

weighting method, 64, 66

estimated

critical loading, 47, 76

equilibrium, 46

solution, 63

total energy, 49

estimation, 175

coefficients, 13

eigenvalues, 45, 99

error, 2, 67, 72, 119, 237

frequency

spectrum, 108, 120

vibrations, 98

impulse influence, 3

Lyapunov exponents, 8

MBG, 6

numerical, 123

solution, 65

stability, 76

strength, 41

Euler

-Bernoulli

beam, 320, 357

hypothesis, 298, 299, 319

-type coefficient, 188

equations, 1

load, 140

method, 47, 54, 226

numbers, 112

rod, 138

evolutional problem, 2, 3, 5

exact

criterion, 61

model, 15

solution, 5, 56, 63–65, 69–71, 76, 108, 119,

183, 210

excitation, 211, 236, 255

amplitude, 214, 217, 258, 307

artificial, 246

force, 260

frequency, 219, 251, 264, 269, 325, 357,

361, 369

harmonic, 208, 305

initial, 107

large, 44

mechanical, 9

mode, 9

parametric, 8

sign-changeable moment, 223

stiff, 132

transverse, 320

vertical base, 7

excited

beam, 297, 358

cantilever, 320

cantilever system, 7

shell, 205

existence of

solution, 271

chaos, 9

chaotic attractor, 6, 7

solution, 3, 4, 56

experimental

data, 128

load estimation, 188

stand, 124

explosion of density point, 36

external

edge, 30

excitation, 293, 297, 320

harmonic, 9

force, 6, 20, 25, 47, 48, 51, 56, 75, 126, 212,

225

frequency, 308

load, 50, 127, 206, 237, 240, 245, 261, 266,

271, 282, 313, 370

harmonic, 254

pressure, 235

reaction, 173

tank, 236

extortion, 134

extrapolation, 84, 158

extremal

frequency, 119

point, 60, 89

resistance, 41

factorization, 74

Faedo-Galerkin method, 2

feedback, 298

feedback controller, 320



Index 403

Feigenbaum

constant, 268

scenario, 218, 225, 262, 268

transition, 332

zone, 212

Feyer summation, 113

fibre, 16

field

deformation, 3

gravitational, 176

potential, 228

thermal, 9

fifth order approximation, 3

filtrate action, 116

filtrate property, 31, 39

finite

-time stability, 123, 125

bending stiffness, 316

deflection, 6

destabilization, 139

differences algorithm, 355

differences method, 3, 63, 76, 141, 143, 183,

207, 210, 281, 283, 288, 294, 323, 360

error, 303

dimensional problem, 370

elements method, 73, 357

energetical norm, 73

series approximation, 120

first

-order

characteristics, 107

discontinuity, 217

Lagrange equation, 175

ODE, 243

mode, 6, 8

type elasticity, 17

fixing conditions, 49

flatter, 130, 135, 139

flexible

beam, 372

construction, 171

Euler-Bernoulli beam, 357

plate, 18

rib, 28, 180, 239, 282

shell, 89, 220, 237, 281, 286, 294

flexural

deformation, 153

mode, 9

stiffness, 15, 19, 34, 35, 83

vibrations, 8, 237

flow, 60, 124, 226

coefficient, 299

convective, 63

Couette, 227

deformation, 303, 321, 350

rate, 60

supersonic, 9

fluctuations, 48, 84, 133, 135

fluid, 171, 271, 358

mechanics, 57, 60

flutter panel, 9

focusing action, 115, 116

fold-type

bifurcation, 136

catastrophe, 138

stability, 138

force

compressing, 47

conservative, 46

dissipation, 139

dissipative, 306

excitation, 45, 160, 215, 240, 260, 272, 287,

352

external, 20, 25, 48, 126, 225

frequency, 283

inertial, 42, 123, 187

initial, 52

internal, 56

iterational, 171

longitudinal, 360

moment, 29

moving, 173, 176, 202

normal, 8

periodic, 357

periodic with impacts, 7

potential, 75

self-interaction, 195

statically determinable, 52

supercritical, 358

vector, 126

weighting, 172

forced

Holmes-Duffing equation, 6

orthogonality, 56

response, 236

shell, 281

form

discrete, 59

matrix, 74

non-

dimensional, 15, 177

linear, 2

normal, 191

operational, 288

Timoshenko, 53

variational inequality, 4

Fourier

coefficients, 114, 115
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series, 10, 73, 112, 113, 156, 248

transform, 36, 69, 109, 117, 120, 249, 273

fractal, 229

basin, 6

orbit, 7

structure, 268

Frechet differential, 5

free

boundary, 302

contour, 216

edge, 180, 283, 366, 372

end, 305

from stresses, 125

rotation, 6

support, 239, 273, 322, 349

vibrations, 9, 106, 107, 120, 127, 222, 319

flexural, 237

frequency, 212

frequency

angular, 109

beam mode, 6

bifurcation, 355

characteristics, 362

definition, 110

excitation, 208, 215, 240, 272, 274, 283,

313, 325, 357, 361

external, 308

fundamental, 304

harmonics, 107

hidden, 112

input function, 277

natural, 9, 96, 249, 297, 320

Nyquist, 120

peak, 118

period, 107

perturbation, 140

radiation, 112

region, 118

spectrum, 120, 264, 281, 287, 291, 305, 370

synchronization, 221, 232

vibrations, 55, 98, 100, 206

free, 305

linear, 276

friction, 298

full

convergence, 287

synchronization, 221, 279, 307

function

Airy, 241

amplitude, 110

analytical, 12, 58, 113, 131

approximate, 75

autocorrelation, 8

boundary conditions, 106

composite, 78

contact, 299

continuous, 178

deflection, 173, 240

deformation, 22

delta type, 117

equivocal, 78

filtering property, 31

focusing action, 115

generalized, 15, 36–38

Heaviside, 31

impulse, 40

in antiphase, 274

inverse, 35

minimization, 71

nonlinear, 130

orthonormal, 65

periodic, 117, 133

positively defined, 47

potential, 136

stepping, 34

strain, 282

stresses, 27, 206

test, 61, 62, 64, 65, 67, 68, 72

unity, 33

variation, 23, 24, 152

velocity, 322

weighting, 59, 60, 62, 63

functional, 37, 38, 50, 70, 129

dependency, 28

minimum, 68

operator, 55

singularity, 1

fundamental

amplitude, 305

energetical criterion, 49

equation, 29, 181, 297, 320

excitation period, 310

frequency, 304, 325

gain, 50

Galerkin

-Pietrov method, 5

method, 6, 9, 41, 55, 57, 62, 63, 65–67, 69,

73, 74, 84

coherent, 65

equivalent, 64

modification, 63

traditional, 64, 73

projection, 7, 57

solution, 63, 71

gas-fluid interaction, 3

Gauss method, 107, 141, 187

general
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function, 113

solution, 136

stability loss, 125

generalization, 4, 36, 37, 75

generalized

coordinates, 137

derivative, 3

functions, 15, 36–38

method

Galerkin, 63

Melnikov, 7

geometric

conditions, 29

nonlinearity, 3, 9, 47, 235, 237, 298

parameters, 148, 160

geometrical

boundary, 52, 55

convergence, 230

decomposition, 84

imperfection, 152

global

critical load, 261

equilibrium, 135

function, 62

shell behavior, 93

stability

loss, 270

stability loss, 41, 260

Green formula, 60

Hénon model, 230

half-

positive function, 47

trajectory, 131

wave, 254, 260, 264

Hamilton principle, 20, 25, 297, 320

Hamiltonian system, 7

hard stability loss, 85

hardening, 300, 303, 324

harmonic

analysis, 113

convergence, 95

distortion, 236

excitation, 9, 208

force, 274

form, 304

frequency, 107, 119, 120

input function, 276

load, 205, 254, 256, 283

oscillator, 133

resonance, 229

vibrations, 8, 107, 127, 212, 214, 217, 219,

226, 259, 270, 277, 279, 286, 290, 293,

298, 317

harmonical analysis, 112

harmonically

excited, 205, 216, 281

shell, 211

harmonics, 99, 100, 112, 121

heat

conductions, 60

exchanger tubes, 8

field, 171

transfer, 4, 11

Heaviside function, 31, 34

Hessenberg form, 99

heteroclinic orbit, 7

heterogeneity, 144, 147, 163

heterogeneous shell, 144, 146, 148

hidden frequencies, 109

high

-amplitude vibrations, 139

accuracy, 112

frequency, 358

higher

-approximation method, 168

approximation, 2, 106, 120, 160, 183, 190,

249, 281

modes, 101

Hilbert space, 73

hinged

beam, 313

hinged beam, 304

hinged clamping, 302

hinged support, 180

hole, 208

Holmes-Duffing equation, 6

holonomic constraints, 174

homoclinic orbit, 7

homogeneous

conditions, 243

equation, 246

initial state, 54

plate, 8, 95, 105, 107, 121

shell, 28, 35, 84, 87, 89, 90, 92, 100, 141,

143, 145, 149, 163, 165, 166, 168

solution, 240, 242

Hook law, 15, 17, 305

Hopf bifurcation, 8, 9, 139, 219, 226, 228, 266,

269, 307, 312, 327, 328, 330, 355, 371

horseshoe, 7, 229

Housholder transform, 99

hybrid

control, 298, 320

form, 165, 178, 240

hydrodynamics, 226, 229, 271, 355

hyperbolic

-type equation, 2
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catastrophe, 137, 139

equation, 4, 6

hyperbolic equation, 2

hypersonic vehicle, 236

hypothesis, 16

Bernoulli, 320

dynamical, 28

Euler-Bernoulli, 298

Kirchhoff-Love, 179

linearity, 95

straight normals, 299

hysteresis, 325

ideal interpolating function, 118

identification, 249, 275, 297, 320, 357, 372

identity function, 55

impact, 171, 174, 176, 190, 311, 317, 325, 358,

369

chaotic, 358

Faedo’s, 2

force, 7, 123, 319

two-sided model, 7

wave, 171, 357

impacting tubes, 8

impactor, 357

imperfection, 47, 63, 124, 138, 140, 151–153,

155, 246

method, 54

implicit Newmark method, 9

impulse

action, 3

function, 38–40

load, 127

singular, 117

in large stability loss, 188

in-span attached mass, 319

inclination, 110

inclusion, 43

sub-differential, 4

inertia, 25, 123, 164, 193

beam, 306

inertial force, 42, 139, 171, 187

infinite

dimensional problem, 360

dimensional system, 7, 57, 120, 210, 281,

357

Fourier series, 115

series, 112, 117

infinitely small damping, 139

infinity, 38, 54, 114

inflection point, 124, 137

initial

approximation, 84, 158, 246

axial force, 53

boundary

conditions, 58, 206, 291

problem, 2, 281

buckling amplitude, 124

conditions, 13, 28, 62, 65, 96, 130, 144, 159,

168, 178, 179, 191, 233, 240, 243, 254,

286, 302, 304, 322, 324, 360

configuration, 42

deflection, 152

displacement, 107

equation, 77

equilibrium, 46, 49, 50

general solution, 136

imperfection, 140, 154

irregularities, 152

parameters, 7

state, 44, 52, 54, 76

system, 45

time, 109, 317

velocity, 176

inner product, 57, 59, 61, 67

input

data, 110, 116, 118

function, 279

longitudinal, 274

periodic, 271

signal, 117, 129

instability, 8, 45, 133, 135, 136, 138

aerodynamic, 139

Bernard, Taylor, 229

internal, 9

region, 42

snap-through, 10

solution, 63

static, 41

integrable mapping, 230, 233

integral, 26, 28, 32, 53, 55, 67, 97, 183, 323

-differential equation, 8

boundary, 22, 24, 75

Bubnov-Galerkin method, 77, 80, 185, 242,

284

computation, 178

double, 30

equation, 173

partial, 57

estimation, 304

Fourier, 113

manifold, 130

matrix, 133

multiple frequencies, 325

representation, 244

integration, 20, 33, 61, 108, 286

by parts, 22, 25, 28, 38, 75

numerical, 67, 237
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procedure, 120

Runge-Kutta method, 9

series, 113

space, 301

step, 141, 178, 191

with weights, 115

intensity of deformation, 299

interference, 111, 112

interior, 31

interlacing trajectories, 268

intermittency, 7, 231, 233

internal

crisis, 230

force, 52, 56, 75

instability, 9

resonance, 7, 8, 236

self-balancing load, 320

interpolating function, 118

interpolation, 111, 208

parabolic, 116

intersection, 174

circural, 272

Poincaré, 287

inverse

function, 35

matrix, 99, 291

rule, 67

irregularity, 111, 154, 328

isolated

chaotic subset, 279

harmonic, 118

matrix, 133

maximum, 110

peak, 112, 120

point, 113, 294

isoparametric approach, 74

isotropic, 16

material, 15, 163, 166, 299

plate, 9

solid body, 4

iteration, 83, 107

iterative method, 246

“jump”, 210

jump down phenomenon, 7, 322

Kantor criterion, 140

kernel, 114, 115

kinematic

loading, 43

nonlinearity, 298

viscosity, 225

kinematical model, 29, 178, 266, 271, 300

kinetic energy, 20, 25, 164

Kirchhoff-Love model, 3, 16, 17, 29, 163, 178,

180, 266, 271

Lagrange-Dirichlet theorem, 46

Lagrange

equation, 175

multipliers, 112, 174

theorem, 54, 75

Lamerey diagram, 231

laminar

flow, 226

layer, 61

phase, 231

Landau-Hopf scenario, 218, 225, 227, 262

large sense, 44

lateral surface, 30

law

Hook, 15, 17, 305

linear temperature, 4

mass conservation, 60

non-linear control, 8

nonlinearity, 124

Runge, 141, 143, 291

least squares method, 55, 61, 64

Lebesque-class, 3

light

beam, 232

limit

cycle, 9, 130, 131, 139, 231

definition, 112

point, 137, 154

stability, 128

limiting mechanism, 134

linear, 95

approach, 154

beam, 7, 358

combination, 174, 184, 217, 219, 362, 367,

371

damping, 126

deformation, 47

differential equation, 11, 194

equation, 49, 83, 152, 273, 285

algebraic, 214, 243

differential, 67

finite element, 63

model, 171

operator, 129

differential, 73

PDE, 241

quadratic regulator, 298, 320

self-coupled problem, 1

solution, 58

strain, 300, 303, 324

strengthness, 322, 355
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system, 42, 68

vibrations, 121, 191, 206, 212, 276

viscoelastic material, 8

linear mode, 8

linearity, 124

linearity hypothesis, 95

linearization, 47, 55, 237

linearized

equation, 45, 47, 56, 153, 155, 227

Poincaré transformation, 231

linearly

elastic, 316, 325, 349, 355

independent, 13, 68, 71, 74, 240, 284, 362

liquid, 60, 61, 225

little sense, 43

load

-deflection relation, 154

-relief, 325

-time dependence, 140, 188

acceleration, 198

asymmetric, 151

axial, 136

buckling, 124, 140, 152, 155, 158, 161

conservative, 136

constraints, 42

contact, 187

critical, 3, 42, 43, 47, 76, 89, 136, 210, 245,

261, 263, 279, 293

cyclic, 3

external, 240, 272, 282, 370

finite-time, 127

harmonic, 254, 281

impact, 319

impulse, 127

in antiphase, 275

monotonic increasing, 85

non-

homogeneous, 246

symmetric, 266

normal, 177, 188

one-parameter, 138

outer, 126

parameter, 206

post-critical, 209

pre-critical, 143

pressure, 321

self-balancing, 320

sign changeable, 361

sign changing, 218

sinusoidal, 317

spatial, 8

static, 125, 237

buckling, 166

time-dependent, 237

transversal, 78, 84, 123, 184, 243, 278, 285,

300, 304, 322, 358

uniform, 245

“load-buckling”, 166

“load-deflection” diagram, 254

loading, 54, 80, 96

angle, 246, 254, 270

critical, 45, 90, 91, 93, 188

degree, 278

external, 6, 50

harmonic, 205

monotonic, 42

sinusoidal, 270

static, 88, 245

symmetric, 155

zone, 254

“loading-

deflection characteristics”, 84

loading-deflection characteristics, 91

local

deformation, 203

extremes, 104, 160, 219, 261

potential energy, 136

stability, 85, 91, 260

loss, 41, 149

stability loss, 270

thickness change, 19

weighting function, 62

locally

integrable, 37, 38

stable, 44

locking phase phenomenon, 309

locus

equilibrium, 42, 45, 46, 48

single, 43

longitudinal

coordinate, 238

force, 360

impact, 369

input function, 274, 276, 279

load, 277

movement, 52

rod axis, 6, 51

vibrations, 320

wave, 260

loop, 78, 268, 325

Lorenz model, 230, 231, 253, 287

loss, 3

loss of

contact, 191, 305

stability, 44, 51, 55, 85, 124, 125, 137, 140,

149, 152, 153, 156, 163, 168, 188, 189,

218, 254, 257, 270, 274

loss of
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synchronization, 232

low scale motion, 353

lumped

body, 7, 171, 173, 176, 177, 179, 182,

189–191, 194, 196, 200, 369

Lyapunov

exponents, 8, 10, 212, 221, 233, 249, 274,

287

sense, 125, 127

stability, 130, 140, 188

magneto-elastic beam, 7

Mandelbrodt fractal, 229

manifold, 7, 130, 229, 230, 248, 274, 320

map, 249, 307

Poincaré, 8, 274, 287, 291

mapping, 120, 226, 229, 231, 233

chain, 271

Markov chains, 129

mass conservation law, 60

material

adjoined, 19

beam, 298, 320

cutouts, 28

deformation, 47

density, 359

elastic

non-linear, 355

isotropic, 163

layer, 167

non-linearity, 302

shell, 15, 16, 36

viscoelastic, 8

mathematical modeling, 123

Mathieu-Hill equation, 127

matrix

equation, 13

form, 58, 74

integral, 133

inverse, 291

operator, 126

quadratic, 243

reversing, 285

stable, 134

toroidal, 134

tridiagonal, 99

maximal

energy, 46, 48

maximum

amplitude, 110, 116

deflection, 210, 255, 274, 278

error, 71

isolated, 110

load, 87, 158

local, 219

Lyapunov exponent, 8

MBG, 1–6, 10, 11, 13

measurable function, 3

medium, 25, 100, 143, 171, 240

composite, 41

dissipative, 298, 320

Melnikov method, 6

membrane, 205

mesh, 74, 141, 360, 370

rectangular, 303, 323

method, 160

σ , 116

“set-up”, 209

approximate, 4, 55, 171

Bubnov-Galerkin, 1, 10, 13, 56, 77, 96, 157,

168, 190, 253, 273, 283

collocation, 11, 65

computational, 58, 283

controlling, 279

convergence, 118

discovering hidden frequencies, 112

discrete, 59

discretization, 358

displacement component, 297, 320

effectiveness, 63

energetical, 51, 74

Englis-Bolotin, 173

Euler, 47

finite differences, 3, 63, 207, 210, 294, 323,

360

finite elements, 6, 73

finte elements, 357

Galerkin, 5, 7, 9, 62, 64, 66, 67, 73

Gauss, 107

harmonic analysis, 113

high order approximations, 41

identification, 320

least squares, 61

Lyapunov exponent, 8

MBG, 4, 10, 12

momentum-impulse, 61

Newton, 76

numerical, 5, 78, 208

partially reversible, 55

Rayleigh-Ritz, 56, 67, 69, 71

reduction, 31

relaxation, 324

Ritz, 1, 140

-Timoshenko, 183

Runge-Kutta, 9, 141, 187, 208, 235, 243

smoothing, 116

spectral, 63, 74

spectroscope, 112
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variated elasticity parameters, 302

variated parameters, 304

variation, 321

variational, 2, 67

weighting errors, 58

mid-plane, 8

minimal

error, 65

loading, 56

potential energy, 48

square representation, 61

minimization, 65

function, 71

principle, 10

minimum

energy, 48, 139

functional, 68

infinite, 113

variation, 47

modal

model, 298, 320

non-linear equation, 9

portrait, 266, 268, 362

technique, 236

“modal portrait”, 268

model

approximate, 139

continuous, 34

Euler-Bernoulli, 300

geometrically linear, 171

Kirchhoff-Love, 3, 17, 29, 163, 178, 180,

266

Lorenz, 231, 253

mathematical, 128, 129, 180, 271

modal, 298

momentous-less, 237

non-linear, 297, 320

non-perfect shell, 124

parameters, 100

shell, 15, 152

spatially discrete, 6

Timoshenko, 3, 319

two-sided impact, 7

modes

antisymmetric, 8

approximation, 6

axisymmetric, 236

flexural, 9

orthogonal, 357

vibrations, 100–102, 105

modification

MBG method, 11

Rayleigh-Ritz method, 56

modulated signal, 117

modulation, 232

modulus, 35

elasticity, 16, 19, 321, 323

inverse, 36

shear, 302

Young, 1, 166, 359

molecule motion, 228

moment

bending, 268

load, 153

time, 108

momentous-less model, 237

momentum-impulse method, 61

motion

m-periodic, 133

“basic”, 125

beam, 300, 321

chaotic, 6, 135, 258, 275

equation, 9, 15, 20, 26, 28, 30, 319

initial, 230

laminar, 226

low scale, 353

non-disturbed, 128

perturbed, 54

regular, 274, 278

shell, 124, 177

stability, 42, 126

stationary, 130

synchronized, 221, 307

time history, 107

trajectory, 125

transition, 287

transverse, 7

moving load, 195

“moving load”, 171

MR convergence, 5

multi-

DOF system, 358

frequency vibrations, 274

layered, 319

periodic, 134

multibody system, 324

multifrequent vibrations, 134

multiple

shooting, 358

multiple-layered, 15, 166, 297

multiplicity condition, 119

multipliers, 26, 63, 117, 301

natural

frequency, 9, 235, 249, 255, 297, 319

vibrations, 95, 99

Navier-Stokes equations, 2, 225

neighborhood
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equilibrium, 50, 54

point, 47

spectral, 10

Newhouse scenario, 225, 228

Newton

-Raphson method, 83, 237

equation, 129

method, 76, 83, 158, 191

node, 67, 74, 360

equation, 142, 323

interpolation, 208

noise, 225, 328

component, 353

non

-autonomous

system, 7

-autonomous system, 129

-axiall deformation, 237

-axially symmetric shell, 205

-clamped beam end, 317

-closed trajectory, 131

-compressed rib, 180

-dimensional

amplitude, 153

curvature, 140

equation, 179, 238

form, 15, 121, 151, 177, 182, 281

parameter, 29, 188, 206, 282, 302, 321

system, 272

time, 109

velocity, 226

-disturbed motion, 128

-harmonical vibrations, 121

-homogeneity, 15, 20, 29, 41, 76, 87–90, 99,

101, 237

perforation-type, 92

-homogeneous

element, 98

load, 246

material, 299

plate, 104

shell, 6, 15, 19, 84, 87, 90–92, 96

state, 54

surface, 102

-impacting motion, 358

-linear

-elastic, 313

beam, 297, 319

deformation, 237

dynamics, 262

elastic bearing, 7

equation, 76, 184

operator, 301

physically, 313

response, 236

strongly, 84

vibrations, 9, 95, 124

-linear diffusion, 61

-linearity, 236, 298

structural, 301

-linearly elastic beam, 349

-loading state, 49

-perfect shell, 124

-potential operator, 2

-rectangular window, 118

-resistant element, 132

-self-coupled operator, 2

-static branch, 125

-stationary

constraints, 174

problem, 210, 241, 248

-stretched rib, 180

-symmetric

difference, 304

load, 151, 237, 266

matrix, 99

-synchronized vibrations, 221

-trivial solution, 127

-uniform

beam, 319

-uniform pressure, 237

-uniformity, 237

load, 158

parameter, 160

non-

stationary

heat problem, 11

perturbations, 128

problem, 2, 57, 61

uniform

beam, 297

loading, 271

outer pressure, 151

shell, 161

non-coupled

equations

differential, 75

non-homogeneity

definition, 1

surface

total size, 104

system, 3

non-homogeneous

shell

square, 100

non-linear

beam

sandwich, 355
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conditions

boundary, 6

elastic

problem, 325

equation

algebraic, 83

vibrations

longitudinal, 320

nonlinear, 5

beam, 307

behavior, 236

dependency, 101

dynamical problem, 3

dynamics, 205, 281

equation, 45, 78, 152, 156, 158

operational, 2

function, 130

ODE, 243

operator, 129, 238, 240, 272, 282, 360

oscillator, 373

PDE, 246

structure, 42

system, 135

vibrations, 95, 106, 107, 248

nonlinearity, 130, 139, 313

“soft”, 90

geometrical, 47

material, 321

strong, 83

nonstatic state, 279

nonunique solution, 246

norm, 65

energetic, 4

energetical, 70

finite energetical, 73

uniform, 2

normal

force, 8

form, 7, 107, 160, 187, 191

harmonic excitation, 10

line, 28

load, 177, 188

perpendicular deformation, 20

stresses, 297, 320

to shell, 238

normalization, 74, 85

normalized

energetically, 273

function, 113

surface, 87

numerical

-perturbation approach, 9

agreement, 188

algorithm, 2, 3, 5, 8, 41, 76, 78, 83, 119,

120, 123, 208, 271

analysis, 84

data, 118

integration, 67, 237

solution, 108, 210

Nyquist

constant, 118

frequency, 120

odd-order cycle, 230

ODE, 243

Cauchy problem, 246

one

-dimensional

dynamics, 54

mapping, 231

-dimensional torus, 229

-frequency vibrations, 219, 286

-sided

constraints, 171, 190, 203

contact, 299

spring, 358

-to-one internal resonance, 8

-to-two internal resonance, 7

DOF, 130

onset of chaos, 6

operational equation, 2, 70

operator, 179, 321

convergent, 5, 6

differential, 141

eigenfunctions, 127

energy, 73

functional, 55

linear differential, 73

matrix, 126

non-self-coupled, 2

nonlinear, 238, 240, 272, 282, 301, 360

positively defined, 68

symmetrical, 70

optical vibrations, 112

optimization, 8

orbit

chaotic, 8

periodic, 84, 227

quasi-periodic, 7

singular, 130

two-dimensional, 269

orbital stability, 130

ordinary

differential equation, 1, 7, 9, 11

ordinary differential equation, 107

orthogonal

beam mode, 357
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collocation, 60, 67

equation, 59, 75

functions, 55, 69, 74

orthogonality, 55, 67, 127

orthogonalization, 56, 62, 74

orthonormal functions, 65, 283

oscillator, 135, 172

harmonic, 133

impact, 8

outer pressure, 151, 159, 240

over-critical

deflection, 274, 279

equilibrium, 76

state, 231

panel, 9, 178, 193, 195

parabola, 158

parabolic

approximation, 116

equation, 2, 4, 5

extrapolation, 84

parallelepiped cutout, 30

parametric

analysis, 298, 320

resonance, 7, 125, 127

partial

derivative, 226, 240

equation, 2, 7, 9, 11, 57, 59

partially

continuous, 113

reversible method, 55

partition element, 281

passive deformation, 136

PDE, 271, 324

PDE to ODE transition, 210

peak, 110, 112, 116, 120

degree, 118

separated, 119

pending onset of chaos, 7

perfect

construction, 125

filter, 118

shell compression, 155

perfect construction, 123

perforated plate, 8

perforation, 92

perforation-type non-homogeneity, 92

period

2π , 133

-doubling

bifurcation, 9, 231

doubling, 7, 214, 219, 230, 251, 307, 309,

313, 325, 332, 369

excitation, 256, 287

frequency, 107

sampling, 118

trebling, 251

tripling, 313

tripling bifurcation, 306, 307

trippling phenomenon, 317

periodic

coefficient, 241

cycle, 230

dynamics, 9, 355

excitation

transverse, 321

Fourier transform, 117

function, 117, 127, 133, 271, 274, 279

motion, 96, 130, 132

orbit, 84, 219, 227

homoclinic, 7

variation, 306

vibrations, 139, 287

window, 219

periodically

driven beam, 300

excited plate, 8

supported beam, 297

periodicity, 113

perpendicular

cutouts, 28

deformation, 20

ribs, 147

shell, 16, 30

perturbation, 47, 128, 140, 229

perturbed

manifold, 7

motion, 54

phase

-modulation, 7

-space system, 129

dislocation, 133, 134

laminar, 231

locking, 309

plane, 131, 132, 188, 220

portrait, 130, 139, 219, 256, 266, 269, 274,

287, 291, 325, 328, 350, 355

trajectory, 129, 130

phenomena

blue sky catastrophe, 7

physical

continuum, 46

explanation, 326

interpretation, 6

nonlinearity, 3, 47, 313

surface, 74

physically non-linear, 299

piecewise
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function, 178

linear polynomials, 73

piezoelectric

-active control, 298, 320

actuator, 298, 320

sensor, 298, 320

pitch angle, 7

pitchfork bifurcation, 9

plane, 175

-space manifold, 229

bifurcational, 6

control parameter, 248

modal, 268

perpendicular, 28

plastic

flow coefficient, 299

strain, 155

plasticity, 302

plate, 95, 200, 271, 307, 319

analysis, 4

baffle, 8

chaotic

behavior, 9

deflection, 123

deformation, 56

dynamics, 8, 120

homogeneous, 105

square, 107

perforation, 92

rectangular, 41, 178

soft, 100

thin flexible, 18

three-layered, 297

vibrations, 102

Poincaré map, 8, 219, 231, 256, 274, 287, 291,

310, 313, 325, 335, 352, 355, 362

point

balance, 125, 127, 128, 131

bifurcation, 152, 155, 236, 254

center, 107

characteristic, 20

contact, 172

contour, 179

critical, 227

equilibrium, 75, 139

explosion, 36

extremal, 89

isolated, 294

mass, 176

material, 299

saddle-node, 231

shell, 16, 83, 84

spectrum, 5

stability, 264

stationary, 1

Poisson coefficient, 17, 163, 206, 240, 272,

282, 321

polar coordinates, 205

polynomial, 65, 73

-type solution, 73

second order, 84

Pomeau-Manneville scenario, 218, 225, 262

population growth, 230

positive Frechet differential, 5

positively defined operator, 68, 70

post-

buckled

rod, 75

state, 45

system, 46, 50

buckling, 47, 76

critical

load, 144

state, 217, 248, 256, 257, 261

post-critical load, 209

potential, 54

energy, 10, 20, 48, 49, 51, 139, 164

field, 228

force, 42, 75

function, 136

operator, 5

power

frequency, 274

plant, 172

series, 297

series expansion, 320

spectrum, 8, 212, 214, 220, 249, 251, 256,

268, 291, 295, 305, 308, 310, 325, 326,

332, 350, 355, 364

pre-

buckled beam, 6

compressed shell, 10

critical

deflection, 254

load, 143

state, 217, 237, 260

stresses, 125

precision, 108

pressure

clamping, 299

contact, 187, 301, 305, 308, 310, 314, 316,

328

distribution, 156

external, 235

in contact, 298

load, 321

non-uniform, 151

outer, 127, 155, 159
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sensor, 205

zone, 251, 255

primary parametric excitation, 8

principle

conservation, 48

d’Alembert, 174, 300

energetical, 51

Hamilton, 20, 25, 297

Lagrange, 75

minimization, 10

possible displacements, 52

Runge, 120, 248

variational, 67

prismatic rod, 4

problem

asymmetric, 155

boundary, 76, 178

buckling, 123

Cauchy, 187, 208, 243

dynamic, 6

dynamical, 159

Euler, 47

linear MR, 5

non-stationary heat, 11

simplification, 30

stability

limit, 128

motion, 127

shell, 141

static

instability, 41

statics, 59, 124, 274

symmetry, 65

three-dimensional, 16

variational, 56, 74

procedure

approximation, 3

averaging, 8

Bubnov-Galerkin, 1, 77, 97, 183, 242, 284

error estimation, 67

Feyer, 113

orthogonalization, 56

Runge-Kutta, 107, 120

process

computational, 85

convergence, 95, 119

deformation, 325

deformation analysis, 123

dynamical analysis, 27

iterative, 83

linearization, 47

perforation, 92

projection method, 1, 7, 11, 57

proof, 46, 71, 226

solution existence, 3

pure orthogonalization method, 75

quadratic

functional construction, 2

linear regulator, 298

matrix, 243

regulator, 320

quadrature, 36, 59, 67

quasi-

harmonic vibrations, 350

linear equation, 5

periodic

dynamics, 355

motion, 132, 229, 258

orbit, 7

turbulence, 227

vibrations, 261, 264, 325, 350

periodicity, 123, 132, 232

quasi-periodicity, 133

radial slice, 206, 208, 212

radiation, 112

random

direction, 161

factor, 156

frequency response, 236

parameter, 283

trajectory, 139

vibrations, 132

randomness, 134

rate of

convergence, 5, 63

flow, 60

MBG, 6

Rayleigh

-Bernard convection, 227

method, 69

-Galerkin, 11

-Ritz, 55, 56, 67, 68, 71, 76

-Ritz-Timoshenko, 11

solution, 71

reaction

Belousov-Zhabotinskiy, 232

dynamical, 175

force, 173, 192

reactor, 172

real chaos, 283

realization of

ideal system, 47

MBG, 6

rectangular

base, 9

contact area, 189



416 Index

mesh, 303, 323

plate, 8, 41, 178

shell, 2, 16, 95, 100, 140, 281, 286, 291, 294

spherical, 84

stability, 123

surface, 185

rectilinear equilibrium form, 51, 53

recurrent summation, 111

reduction

dimension, 74

method, 11, 31

three-dimensional problem, 15

regular

flow, 226

motion, 274, 278

vibrations, 231, 297

wave, 325

regularity condition, 4, 233

regularization, 330

regulator, 298, 320

relaxation method, 324

reliability, 209, 210, 247, 270, 297

relief, 313

resistance, 41, 131

contour, 210, 216, 219

time, 221

resonance, 90, 92, 93, 127, 134, 139, 147

auto-parametric, 9

high harmonic, 229

internal, 236

parametric, 7, 125

subharmonic, 8

resonant

frequency, 236

mode, 8

Reynolds number, 226

rib, 15, 239

flexible, 180

incompressible, 282

not compressed, 28

shell modelisation, 91

width, 91, 101, 105

rigid

body, 171, 191

impact, 190

element, 85

shell, 89

stability, 274

rigidity, 272

Ritz

-Timoshenko method, 77, 183

method, 2, 140

solution, 71

rocket, 172, 235

boosters, 236

rod, 11, 136, 140

axially compressed, 10

axis, 47

longitudinal, 51

border, 52

calculation, 56

Euler, 138

extra extension, 52

post-buckled, 75

prismatic, 4

stability, 51

supercritical force, 358

thin, 51

rotary

inertia, 297, 320

shell, 127, 155

rotation, 17, 181

axis, 206

free, 6

point, 28

rough

approximation, 84

solution, 54, 58

roughness, 203

route to chaos, 7, 8, 10, 355

RTN, 228

Ruelle

-Takens

-Feigenbaum scenario, 269

-Newhouse scenario, 212, 218

scenario, 269

-Takens-

Newhouse scenario, 262

scenario, 228

Ruelle-Takens scenario, 269

Runge

-Kutta method, 9, 107, 120, 141, 143, 160,

187, 191, 208, 235, 243, 273, 281, 291,

357, 361

law, 141, 143, 291

principle, 120, 248

rule, 208, 361

saddle-node point, 231

sampling, 117, 118

Sanders-Koiter theorem, 10

sandwich

beam, 319, 320

sandwich beam, 297, 298

scenario

Feigenbaum, 218, 262

harmonic-chaotic motion, 225

Landau-Hopf, 218, 225, 227, 228, 262
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Pomeau-Manneville, 231, 262

Ruelle-Takens, 269

-Newhouse, 212, 218, 262

to chaos, 317, 330, 355

scheme, 32

Cauchy-Dirichlet, 2

mode superposition, 7

non-homogeneity, 92

numerical integration, 3, 67, 83

second-

order

approximation, 116

derivative, 73

determinant, 297, 320

equation, 2, 7, 141, 184

system, 131

type

elasticity, 17

intermittency, 232

system, 44

sector-type shell, 205, 212, 214, 218, 220

vibrations, 216

self-

balancing load, 320

coupled

linear problem, 1

operator, 5

dynamics, 225

excited vibrations, 130, 132, 135

interaction force, 195

transformation, 92

separation of variations, 23

series

approximated solutions, 5

Fourier, 10, 69, 73, 113, 115, 156

minimizing, 70

power, 8, 320

Taylor, 65

trigonometric, 83, 157

“set-up” method, 209

set-up method, 246, 248, 305

shallow elastic shell, 9

Sharkovskiy

diagram, 307

theorem, 307, 317

shear

modulus, 299, 302, 321

transverse, 297, 320

shell, 20, 41

-mass

contact, 194

interaction, 191, 197

system, 188, 190

-type

construction, 180

structure, 235, 236

“stiff”, 93, 101

averaged, 264

behavior, 91

bending, 251

buckling, 126

curvature, 282

cylindrical, 28, 235, 272, 273

deflection, 161, 259

isocline, 211

deformation, 28

dynamics, 120, 292

irregular, 9

edge, 153

element, 30, 83

flexible, 240, 294

free vibrations, 127

function, 57

geometry, 140

harmonically excited, 211

height, 140

heterogeneous, 144, 146

homogeneous, 35, 85, 90, 100, 165

imperfection, 153

isotropic material, 17

jump, 209

kinetic energy, 25

layer, 163

load, 158

loading, 88

model, 15

motion, 27, 124, 177

non-homogeneous, 29, 89, 93, 96, 104

parameter, 90

perfect, 155

pipe, 153

point, 16, 79, 84

radius, 212

resistance, 206

response, 261

rise, 182

section, 18

sector-type, 205, 210, 216

shallow, 3

snap, 140

spherical, 179, 287

stability, 54, 75, 77, 123, 128, 152, 191, 237

state

critical, 55

initial, 76

strengthened, 156

surface, 30, 78, 84, 86, 98, 243, 285

thickness, 124, 158
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thin, 15, 140

to cutout transition, 34

uniformly loaded, 221

vertex, 208

vibrations, 248

shuttle Challenger, 236

simple-support, 8, 9, 323, 360

simple-support beam, 319

Simpson rule, 304

sine, 72, 109, 117

singular

impulse, 117

phase trajectory, 130

point, 157

trajectory, 131, 132

singularities, 120

singularity, 1, 131, 156

stable, 137

sinusoidal load, 254, 270, 361

skippings, 44

slender beam, 6, 7, 319

sliding clamping, 208

sloping parameter, 206, 209, 210, 216, 217

Smale

-Birkhoff homoclinic theorem, 7

horseshoe, 7, 229

small sense, 90

smart layer, 320

smooth

function, 115

reduction, 160

surface, 48, 173

thin shell, 156

smoothness, 4

snap-through, 129

snap-through buckling, 9

Sobolev space, 4

soft

characteristics, 121

excitation, 133

Hopf bifurcation, 269

loading, 43

regime, 129

RTN scenario, 229

shell, 84, 88, 101, 145

“soft”, 89

“soft” shell, 91, 93

solid body, 4, 47, 49

solution, 4, 12

accuracy, 56, 63

approximate, 5, 57, 58, 67

behaviour, 61

convergence, 241

correction, 83

differential equation, 1, 10

estimation, 65

exact, 56, 62, 70, 119, 183, 210

existence, 3

Galerkin method, 69

homogeneous, 240

initially general, 136

mass dynamics, 198

MR application, 2

periodic, 130, 358

problem, 109

region, 74

rough, 54

scheme, 7

stable, 286

statics, 209

uniqueness, 271

solvability, 3, 4, 55

space, 1, 37, 42, 303, 323

-located curve, 28

-plane manifold, 229

boundary, 225

contact, 188

five-dimensional, 139

Hilbert, 73

of integration, 301

point mass, 36

shuttle Challenger, 236

Sobolev, 4

three-dimensional, 238

spatial

behaviour, 61

coordinate, 324

coordinates, 1, 28, 107, 160, 210, 240, 283,

294, 357

dimension, 8

discrete model, 6

problem, 4

system, 271

thermal load, 8

variable, 207

vibrations, 256

spectral

analysis, 95, 120

frequency, 274

method, 63, 74

neighborhood, 10

spectroscope method, 112

spectrum

frequency, 370

spectrum power series, 8

spherical shell, 100, 188, 216, 220, 281, 286

SPM scenario, 231

“spots”, 277
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spring, 42, 357

springing support, 203

square

addition, 84

element, 41, 88, 102

matrix, 99

mesh, 141

plate, 8

homogeneous, 107, 121

representation, 61

shell, 91

SRTN, 228

stability, 43, 75, 84, 90, 124, 125, 130, 138,

139, 155

analysis, 235

bifurcational, 49, 270

conditions, 361

criterion, 45

dynamic, 320

dynamical, 8, 123, 191

elastic, 41, 51

equation, 54

limit, 128

loss, 42, 53, 85, 133, 149, 153, 156, 163,

168, 188, 189, 226, 254, 257, 260

bifurcational, 51

Lyapunov, 140

motion, 127

rigid, 274

shell, 3, 152, 237

solution, 143, 273, 286

statical, 30, 47, 77, 165

stiff, 218, 264

structural, 136

transient, 9

trivial, 7

stabilization, 103, 220

solution, 7

stable limit cycle, 227

state

-space approximation, 1

chaos, 287

critical, 45, 55, 168

deflection, 83

equilibrium, 11, 43, 44, 50, 54, 125, 137,

154, 191, 300, 320

initial, 52, 76

non-loaded, 49

nonstatic, 279

post-critical, 248, 256

pre-critical, 217, 237

stability, 47

stress, 46, 127, 157

unstable, 231

static, 18

approach, 324

balance, 132

behaviour, 15

bifurcation, 123, 139

buckling load, 166

equilibrium, 154

instability, 41

load, 10, 125, 245

critical, 248

motion, 279

point of balance, 124

problem, 6, 235

nonlinear, 4

stability, 30, 135

stresses, 193

statical

approach, 42

boundary condition, 55

criterion, 45

loading, 87

method, 48, 54

stability, 47, 76, 77, 85

statics, 107, 124

analysis, 15

problem, 4

stationarity, 46

stationary

energy, 46

motion, 130

points, 1

problem, 2, 5, 59, 61, 274

steady-state

chaos, 7

response, 358

stability, 9

time history, 372

vibrations, 107

steering vibrations, 274

stepping function, 34

stiff

characteristics, 121

shell, 98, 145

stability loss, 257, 261, 264, 270

stiff shell, 91, 93

stiffness, 15, 100

bending, 300, 316

characteristics, 89

coefficient, 104, 145

constant, 281

cutout, 35

element, 84, 92, 102

flexural, 19, 34, 35, 83

parameters, 30
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shell, 91

stochastic

disturbance, 132

system, 129

stochasticity, 132

straight normals hypothesis, 299

strain, 123, 155

bending, axial, 236

continuity conditions, 46

elastic, 10

flexural, 153

function, 271, 282

hardening, 303, 324

linear, 300

strange attactor, 228

strange attractor, 8, 135, 309

strength

limit, 157

strengthness, 322

stress, 42, 152

-deflection, 108

-deformation, 49

-strain, 95, 157

axial, 297, 320

concentration, 124

contact, 322

function, 27, 206, 271

initial, 53

intensity, 303, 321

measure, 193

state, 127, 128

to deformation transition, 22

virtual, 46

stretched rib, 28

stroboscope, 116

stroke, 231

strong

bending state, 237

convergence theorem, 5

deflection, 156

filtrate action, 116

focusing action, 115

nonlinearity, 83

strongly

condensed series, 116

nonlinear, 84

subcritical Hopf bifurcation, 9, 231

subduction of chaos, 230

subharmonic

motion, 8

resonance, 10

vibrations, 294

sudden

buckling, 124

configuration transition, 191

contact lack, 298

jump, 188, 189

prolongation, 294

snap-through, 129, 155

tripple bifurcation, 325

sufficient conditions, 7, 49, 139

super-harmonic response, 236

superposition, 7, 113, 129

supersonic flow, 9

support

ball-type, 28, 243

contour, 216

free, 239, 273, 322

edge, 283

springing, 203

supported

periodically, 297

rectangular plate, 8

simply, 9

suppressing vibrations, 8

surface, 32

balance, 139

central, 16, 18, 23, 98

contact, 48, 185, 189

deflection, 197, 305, 310

deformable, 175

deformation, 358

expansion, 101

flow, 60

interaction, 195

irregularities, 175

mean, 28

middle, 124

neutral, 172

non-homogeneity, 102

of chaos, 270

parameter, 90

physical, 74

rotation, 17

shell, 78, 84, 86, 243, 285

smooth, 173

transverse, 9

unity, 178

suspension bridge, 135

symmetric

bifurcation, 138

clamping, 362

deflections, 152, 210

deformation, 237

loading, 155

matrix, 99

operator, 69

shell, 3, 19, 127, 205



Index 421

symmetrical

convergence, 120

matrix, 99

operator, 70

symmetry

axis, 84, 91

condition, 208

problem, 65

synchronic motion, 279

synchronization, 123, 133–135, 220, 229, 279,

297, 306, 307, 313, 328

-chaos, 233

of frequencies, 223, 232

synchronization-intermittency-chaos, 233

synchronized vibrations, 134, 307

synchronous action, 205

system, 193

n degrees-of-freedom, 95, 108

“beam-impacting mass”, 370

algebraic, 12, 158

autonomic, 8

basic, 5

bifurcation, 129

boundary, 128

chaotic dynamics, 9

characteristic point, 20

conservative, 42, 45, 49, 75

continuous, 41, 271, 288, 298

coupled oscillators, 172

deformable, 30, 42

deformations, 49

deterministic, 305, 358

discrete, 136, 139

dissipative, 272, 361

disturbance, 43

eigenelements, 5

elastic, 152

energy, 54

entire, 46

potential, 51

equations, 56, 57, 59, 64, 285

equilibrium, 44

functions, 62

Hamiltonian, 7

hidden frequencies, 109

lumped, 203

mechanical, 95, 205

multi-DOF, 358

multibody, 324

nonlinear, 129, 135, 243

PDE, 240, 266

perfect, 138

post-buckled, 46, 50

resistance, 131

shell-mass, 190

stability, 10, 140, 145

stable, 126

structural mechanics, 7

vibrating, 121

with non-homogeneity, 3

system, complete, 72

systems, 139

T index, 178

“tail”, 110

Takens scenario, 225, 228

tangential plane, 180

target-oriented excitation, 220

Taylor

instability, 229

series, 65

technique

computational, 6, 42

numerical, 2

perturbation, 7

technological defect, 298

temperature

filed, 3

gradient, 232

linear law, 4

temporal solution trajectory, 7

test

functions, 13, 58, 61, 62, 65, 67, 68, 71, 72,

273, 283

solution, 64, 74

theorem

Chetayev, 128

convolution, 117

decomposition, 113

Dirichlet, 46, 56

fundamental, 3

Lagrange, 54

-Dirichlet, 46

MBG, 2

RTN, 228

Sanders-Koiter, 10

Sharkovskiy, 317

Smale-Birkhoff, 7

solution uniqueness, 4

strong convergence, 5

theory

catastrophe, 136

elasticity, 15, 20, 38, 49

fractal, 8

generalized functions, 36

heat conduction, 60

nonlinear, 8, 17

numerical methods, 5
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stability, 54

thermal-elasticity, 4

thermal

-elasticity, 4

field, 9

load, 8

thermoelasticity-type equation, 6

thick plate, 9

thickness

beam, 301

modification, 30

plate, 4

rarefaction, 19

shell, 16, 19, 91, 124

thin

-walled

construction, 4

layer, 61

shell, 156, 188

structure, 41, 172

plate, 4, 8, 18

rod, 51

shell, 9, 15, 140, 151, 153, 235

third order approximation, 2

Thom’s list, 139

three

-dimensional

equation, 226

problem, 16

shell, 272

solution, 66

space, 238, 281, 321

-impacts per motion, 358

-layer wafer, 156

-layered

beam, 297

package, 305, 307

-mode interactions, 7

time, 168, 301, 321

-dependent

moment, 222

process, 42

-dependent loading, 358

-independent

load, 237

-spatial chaos, 226, 279

finite, 128

function, 26

history, 214, 220, 249, 293

time history, 192

Timoshenko

beam, 297

equation, 176

method, 55

model, 3, 319

shell, 271, 358

titanium alloy, 167

topological

similarity, 138

structure, 131, 132

topology, 135, 229

tori, 7

toroidal matrix, 133, 134

torque, 205, 221, 223, 360

torsion moment, 268

torus, 134, 229

doubling, 7

total

energy, 49, 53

potential, 50, 51

potential energy, 48

trajectory, 174, 220, 229

balance, 138

double asymptotic, 231

mass, 193

motion, 20

phase, 130

random, 139

temporal solution, 7

tripling, 268

transfer

energy, 9

heat, 4, 11

transform

Fourier, 36, 69, 109, 117, 120

Housholder, 99

transient

mapping, 120

sampling period, 118

stability, 9

transition

boundary, 37

chaotic-harmonic, 276

configuration, 191

cutout-shell, 34

force, 123

harmonic-chaotic, 287

into chaos, 262, 297, 315, 332

process, 128

rod, 51

stresses-deformations, 22

system, 1

to equilibrium, 43

transitory process, 129, 154

transversal

deflection, 255

deformation coefficient, 299

displacement, 51
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homoclinic orbits, 7

impact, 190

load, 84, 123, 184, 235, 240, 243, 300, 304,

322, 357

pressure, 237

transversally

driven beam, 300

excited, 205

vibrating mass, 173

transverse

displacement, 236

load, 136, 144, 148, 168, 272, 276, 278, 283,

285

loading, 358

motion, 7

surface, 9

vibrations, 6, 297, 320

travelling, 8

trebling, 251

triangle, 181

tridiagonal matrix, 99

trigonometric series, 83

trilayered shell, 166, 168

triple bifurcation, 313, 325, 330, 355

trivial stability, 7

tube heat exchanger, 8

turbulence, 132, 134, 225, 226, 231

turbulent

flow, 226

layer, 61

solution, 226

twisting, 51

two

-dimensional

orbit, 269

problem, 16, 57

system, 130, 139, 205

-form flatter, 139

-frequency vibrations, 258, 261, 294

-layered

package, 313

-modes interaction, 9

-period motion, 133

-point boundary problem, 358

-sided

constaints, 182

constraints, 176

impact model, 7

-to-one resonance, 9

DOF system, 174

post-buckled states, 45

two-dimensional

problem

abstractive problem, 11

two-layered

package

synchronization, 317

umbilici catastrophe, 139

unbounded motion, 8

uncoupled

beams, 297

oscillator, 373

undamped buckled beam, 7

uniform

approximation, 55

boundary condition, 64, 286

boundary conditions, 127

compression, 155

convergence, 59, 251

load, 221, 245

norm, 2

pressure, 156, 237

shell, 161

stretching, 8

unique function, 299

uniqueness of solution, 4, 271, 358

unirotational cycle, 287

unity

function, 31, 33, 39

surface, 178

unloading, 44, 155

unstable equilibrium, 43

variable

coefficient, 54

load, 272

parameter, 30

pitch angle, 7

shell parameters, 15

step, 120

variation, 3, 21, 50, 55, 75, 152, 212, 301

coefficient, 181

contact pressure, 312

contact surface, 48

damping, 362

deflection, 189, 197

energy, 51

finite, 113

function, 23, 24

liquid molecules, 61

method, 194, 321

resonant frequency, 236

variational, 2

approach, 45, 62

criterion, 47

differentiation, 28

equation, 15, 25, 26, 55
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estimation, 51

function, 22

inequality, 4

method, 11, 67, 77, 183

problem, 56, 74

variations separation, 23

vector of displacement, 126

velocity

constant, 200

estimation, 5

flow, 8

function, 322

liquid molecules, 61

motion, 194

non-dimensional, 226

projection, 198

surface point, 29

vertex, 208

vertical

base excitation, 7

displacement, 175

load, 9

movement, 48

velocity component, 190, 192

virtual work, 174

viscoelastic

-passive control, 298

plate, 8

viscoelastic-passive control, 320

Volmir criterion, 144, 168, 255

volume, 60

elasticity, 299, 303

elasticity modulus, 321

wafer, 156

waffled rib, 15

wall, 291

“wash-out” phase portrait, 329

wave, 152, 154, 167, 255, 260, 278

amplitude-travelling, 8

damped, 305

elastic, 27

impact, 171

propagation, 297, 320

weak

convergence, 4

depreciation of amplitude, 111

turbulence, 134

weakly

damped, 7

non-linear vibrations, 95

weight, 110, 115

body, 176

density, 301

mass, 187

weighting

errors, 64–66

method, 58

force, 172

functions, 13, 59, 60, 62, 63, 73

weights, 61, 67

weld conditions, 299

WEM, 58

wind-type load, 156, 160

“wrinkle”, 138

“wrinkle-type”, 137

“wrinkle-type” catastrophe, 138, 139

Young modulus, 1, 163, 168, 299, 301, 302,

359
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